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Abstract

We examine an intervention randomized at the village level in which female farmers invited to a
single training session were randomly paired with farmers whom they did not know and encour-
aged to share new agricultural information throughout the growing season for a recently adopted
cash crop. We show that the intervention significantly increased the productivity of all farmers
except of those who were already in the highest quintile of productivity, and that there were
significant spillovers in productivity to male farmers.

1 Introduction

Programs aimed at increasing agricultural productivity are regarded as some of the most powerful

means to reduce poverty [Asfaw et al., 2011, Thirtle et al., 2001]. Essential elements in the early

stages of such programs are the dissemination of information from centers of science and research

to subsistence farmers and the subsequent diffusion of this new knowledge within a village.

Thus, the effectiveness of agricultural extension depends not only on the technical merits of a

new technology but on the quality of the interactions between extension agents and the farmers

whom they train, as well as the subsequent interactions between trained and untrained farmers

(Anderson and Feder [2007, pp.2346] and Foster and Rosenzweig [1995]). Despite significant

effort and money devoted to programs that expect a few select individuals who are trained to

disseminate information to the remainder of the village, many studies over the past forty years
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have documented a poor retention of learned information and even poorer diffusion of information

across farmers, exacerbating poverty for the poorest individuals both in terms of productivity

and in social capital [Feder et al., 2004, Leonard, 1977, Sinha and Mehta, 1972]. For example,

Sinha and Mehta [1972] report that farmers who learned about a new innovation passed on

only 28% of what they had learned to the farmers to whom they directly. In contrast, Conley

and Udry [2010] report that Ghanaian pineapple farmers were able to improve yields through

contact with farmers in their own social network, suggesting that diffusion does not necessarily

occur across an entire village network, but is specific to each individual’s own network. Indeed,

belonging to strong social networks is correlated with earlier adoption of innovations and better

outcomes [see Isham, 2002, Munshi, 2004, for example].

Unfortunately, although the poorest farmers frequently stand to benefit the most from new

technologies, they are often outside of the very networks that would allow them to learn about

these innovations. This is particularly true of women, who provide a significant amount of labor

to African agriculture, are responsible for most food crop production, and typically experience

significantly lower yields than men, even for the same crops [Quisumbing, 2003, Udry, 1996,

Udry and Goldstein, 2006]. At the same time, there is evidence that networks of females are

typically less oriented towards cash crops than those of males [Edmeades et al., 2008, Katungi

et al., 2008]. Thus, women may suffer from large “structural holes” in their production networks

[Hoang et al., 2006] and this could explain at least part of their lower productivity. This suggests

that agricultural extension programs could be augmented by attempts to improve the dissemina-

tion of information to women and the subsequent dissemination of information within women’s

production networks.

This study evaluates an extension program that uses female social networks to disseminate

new information in rural Uganda, which we refer to as the Social Network Intervention (SNI).

We exogenously paired farmers in a networking session in which participants were taught new

information. Each woman was paired with another randomly selected female cotton farmer

who she did not already know. Both women were invited to the initial networking session in

which information about better farming techniques was provided. The paired women were given

pictures of each other (Polaroids) and asked to speak to each other throughout the cotton-growing

season.
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In addition to comparing the SNI to the standard counterfactual (no intervention) we also

compare the SNI with a standard extension training model similar to training previously im-

plemented by extension agents in Uganda.1 In the standard training program, women and men

were invited to attend a series of training sessions designed to impart the same information: both

interventions focused on the same list of agricultural information points provided to our team

by local ginners with the idea that these were simple, inexpensive and important techniques for

improving cotton yields.2 Whereas participants in the SNI met once with our team and were

asked to talk with each other after that point, the standard training (TR) disseminated informa-

tion via biweekly visits from a trainer during the five critical stages of the season: pre-planting,

planting, pesticide use, harvesting, and marketing. Due to the possible additive effects of social

networking and training, we randomized the two programs across villages to also include a sam-

ple in which both the SNI and TR were implemented for the same people. We compared our

results to a control group that did not receive any training.

We show that the SNI had a positive impact on overall outcomes. Difference in difference

estimates of cotton yields show that cotton farmers in villages that received the SNI experienced

large gains compared to the control group. A Tobit specification, which accounts for the fact

that many farmers chose not to plant cotton in 2010, shows significant gains from SNI for all

farmers including, independently, both men and women. Similarly, an OLS regression of yields

shows gains for all but the highest performing farmers (namely, those with starting yields greater

than 400 kilograms per hectare, where the average starting yield is 180 kilograms per hectare).

In addition, we show that women paired in the SNI intervention were more likely to talk to each

other after the intervention, that knowledge about farming (as measured by a test administered

in the second round) was higher for women who received the intervention, and that pairing

women with each other increased yields even for women who did not attend the information

sessions. Finally, men, despite not being directly treated, also gained in yields.

Our intervention falls into the purview of network alteration interventions as summarized by

Valente [2012], and this is one of few studies in the development literature that uses a randomized

encouragement design aimed at exogenously changing social networks.3 Recent literature on

1See Baffes and Maratou-Kolias [2013] for details regarding the training program.
2See Appendix B for the list of information points.
3See Mullally et al. [2013] for an overview of randomized encouragement designs in agriculture.
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networks suggests that the structure of a network and the roles of individuals within that network

can have important implications in learning [Bandiera and Rasul, 2006, Bramoullé et al., 2014,

Bramoullè et al., 2009, Bursztyn et al., 2014, Conley and Udry, 2001, 2010, Jackson and Golub,

2012]. Perturbing the network structure is one method of understanding the mechanisms of

learning, particularly when the reflection problem confounds network effects [Manski, 1993].

Field et al. [2013] is another recent study that exogenously perturbs new microfinance groups in

Bangladeshi villages by varying the meeting frequency of these groups to understand the impact

of network effects on loan repayment. BenYishay and Mobarak [2016] also examine information

flows by perturbing village networks in Malawi. They study information diffusion by altering

which member of the network received an incentive to spread information. They find that peer

farmers in Malawi (average village members selected by a local focus group), when provided with

a small incentive, are more effective at promoting adoption than lead farmers (leaders identified

by the same community focus group), or government-employed extension workers.

Where our study, Field et al. [2013], and BenYishay and Mobarak [2016] attempt to alter the

structure of the network, other studies, such as Adelman [2013], Leonard [2007], Duflo and Saez

[2014] and Marmaros and Sacerdote [2002] use natural variation in networks to identify network

effects. Still others use other sources of variation to understand when and how networks can affect

decisions. For example, Breza [2016] uses natural variation in loan repayment incentives to study

the impact of a peer’s repayment on an individual’s timing of payments, and shows evidence of

network effects, and Banerjee et al. [2013] exploit the natural random variation found in the

network centrality of each individual who was initially exposed to their microfinance program to

identify network effects.

Where we differ from other research is in our focus on developing new network ties between

females, specifically, between individuals who do not know each other well but who may have

different sources of valuable information. These nascent and weaker connections may be more

likely to propagate new information [Granovetter, 1974, 2005, Santos and Barrett, 2005] and

may therefore be more useful to individuals (and the network as a whole) than expanding the

raw size of the network. Weak ties may also better incorporate individuals who might otherwise

not be reached by a central individual in a village, or may not be selected for extension training

sessions.
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We believe that our findings have implications for developing more effective and more cost-

effective extension training programs. Extension agents are frequently spread thinly across hun-

dreds of farmers, without the time or resources to address each farmer’s concerns in their ex-

ecution of new farming techniques. Furthermore, the more distant and less skilled farmers are

often not selected for training programs, and may not even receive a second–hand account of a

training session.

This paper is organized as follows: section 2 provides background on the research context

and describes the data collection and randomization. In section 3 we examine the evidence for

improved yields among our sample, focusing on our targeted farmers: women and farmers with

lower yields. Having shown the strong positive impact of the program, we examine some potential

channels through which the intervention may have affected outcomes. Section 4 concludes.

2 Data

Although it is likely that networks play important roles in all settings, measuring the value of

a social network is easier when opportunities for learning are high and existing networks are

incomplete. This study’s focus in Uganda is an excellent setting to examine the role of social

networks and learning in farming for a variety of reasons. First, farmers are growing a crop that

was only recently reintroduced. Due to civil war and political unrest, cotton production ceased

under Idi Amin’s regime when the majority of the Indians who managed Uganda’s businesses

were persecuted and expelled. As a result, at least one generation passed in which no transfer of

knowledge occurred for this cash crop. It is precisely in these circumstances, where technologies

are nascent, that social networks and learning should have their greatest impacts.

Second, since the reintroduction of cotton, the government and ginners have tried to im-

prove productivity using various extension services, but none of these education campaigns were

targeted towards women. Baffes [2009] shows that male heads of households’ crop yields are

three to four times those of female heads of households in Uganda. As females supply 70-80%

of agricultural labor in rural Uganda and are responsible for up to 80% of food crop production

[Tanzarn, 2005], low female crop yields are a tremendous loss to national welfare and have been a

subject of significant research in Uganda and developing countries in general [Quisumbing, 2003,
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Udry, 1996, Udry and Goldstein, 2006].

Third, women who grow cotton undoubtedly belong to social networks, but the chances

that their existing networks include optimal numbers of women cotton farmers are low. While

males’ days are delineated by morning work and afternoon discussion with other males, women’s

days are often a simultaneous combination of work, childcare, and household responsibilities.

Women’s wider range of household responsibilities raises the cost and reduces their availability

for acquiring new production techniques. As such, existing female social networks develop pri-

marily around household and childcare responsibilities, and these networks are not the best place

for women to learn about cotton production. Further, female production networks will also be

less oriented around cash crops than those of men [Edmeades et al., 2008, Katungi et al., 2008].

Responsibilities close to the home also restrict females from participating in geographically dis-

persed social networks and community projects, and force their relationships to be dependent on

the collaborative tasks that they perform with other females, such as collecting water and fuel,

and harvesting crops [Maluccio et al., 2003]. Thus, though there are significant opportunities

provided by the government and ginners for farmers to learn about cotton growing, women, in

particular, face numerous obstacles to attending such learning sessions and thereby improve their

productivity and yields.

To investigate the role of networks in cotton farmers’ productivity, we introduced two ran-

domized interventions in cotton farming villages in the North and Northeast of Uganda.4 A

household survey was administered in randomly selected villages in the two major cotton grow-

ing regions of Uganda: North (13 villages) and Northeast (13 villages). The baseline data were

collected from February through May 2009. The second round was collected in March through

May 2010. We interviewed randomly selected households that grew cotton in 2008 stratified

by headship gender.5 The household survey consisted of questions on household demograph-

ics, input use and outputs for cotton and other crops grown, household controls of financial

assets, including sales from cotton, and a separate survey instrument on farmers’ social networks

regarding adoption, cultivation, and marketing of cotton.

4This was part of the larger RCT that implemented a cotton training program under “Gender Dimension of Cotton
Productivity in Uganda” led by Laoura Maratou (University of Maryland) and John Baffes (World Bank). For a basic
overview of the interventions see Vasilaky [2013].

5The head of the household was defined as the individual who made land, resource and income allocation decisions
in the household.
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In order to compare two different methods of transmitting the same information, we dissem-

inated the same information about cotton growing through two different interventions, testing

each separately as well as combining the two. To do this, we randomly assigned these treatments

by village. By randomizing the SNI and TR programs across villages, we were able to measure

the effects of the SNI treatment and the TR treatment, and the complementary effects of both

treatments against a control group. The SNI was targeted to all female cotton farmers who were

surveyed in SNI villages, and the TR was targeted to all surveyed farmers (men and women) in

TR villages. We first randomly selected villages from a list of cotton growing villages in Oyam

District and Mbale District. Among those villages, we randomly assigned SNI and TR treat-

ments. A total of 13 villages received SNI, and 17 villages received TR. Table 1 represents the

sample sizes across the two treatments. While only some villages were selected to receive one of

the two programs, every village in our sample was visited by our team. Therefore, the effects

from our results cannot be attributed purely to a behavioral response to our visits.

Finally, in each village we conducted a census of all female and male cotton growers.6 We

then randomly selected 7 female and 7 male farmers to be surveyed in two crop years. Therefore,

approximately an equal number of male heads and female heads of households participated in

the study. In villages that received the TR intervention, all households selected for the survey

were invited to training sessions conducted by a local agronomist for five training stages in 2009:

pre-planting in March through April; planting in May; pesticide use in July through August;

harvesting in October through November; and marketing in December and January. All farmers

in the village were invited to the training sessions, and care was taken to make sure that female

participation was encouraged and welcomed. We know from the logs of these sessions that women

did attend, but not every invited farmer attended every session.

In villages that received the SNI, the 7 surveyed female farmers and an additional 7 female

farmers were invited to one information training session.7 The intention was to incorporate

a greater number of females in the study, beyond those who were surveyed, and increase the

number of individuals participating in the game information sessions. This training consisted of

teaching farmers precisely the same facts provided in the training session, and enumerated in

6All farmers on the census list were farmers who had harvested cotton in the previous season.
7Note that the 7 additional farmers were not surveyed in the larger study.
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the Appendix, but in a less repetitive fashion where the teaching was spread among all female

participants. At the conclusion of the session, women were paired with another woman trained

during the same session. The goal of these two stages was to add a new network link for each

woman, and to increase the reach of the training information.

The pairing was achieved by first stratifying the cotton-growing participants into distinct

geographic areas of the village,8 and then randomly pairing individuals within these areas.9

Following this initial pairing, we inquired if the pairs spoke to one another regarding cotton

issues.10 We re-selected a pair if the individuals spoke to each other about production or if both

were to receive training in training villages. Thus, in villages that received both the SNI and

the training intervention, each pair consisted of at least one female who was invited to receive

training and one female who was not invited to receive training. Each pair received a Polaroid

photo of themselves and their partner, identified cultivation issues, chose a collaborative goal,

and set potential times when they would meet to exchange information. They then presented

this to their peers at the group information meeting. In this way, they were strongly encouraged

to build a relationship to discuss cotton growing. Individual participants appeared to take the

pairing exercise seriously, despite not being given any incentives to attend our meetings or to

continue speaking with one another during the season.

To measure the impact of the intervention we look at unbiased estimates of the intention-

to-treat (ITT), which includes cultivators as well as non-cultivators.11 We then investigate

the treatment-on-the-treated (TOT), which includes cultivators only. Table 2 reports summary

statistics of our farmers’, including their average yield. The average Ugandan cotton farmer in

our sample produces between 100 and 200 kilograms per year.12 Standard deviations for the yield

8This was to ensure that females were sufficiently distant from one another such that they most likely did not speak
to one another on production issues, but also were not separated by large geographic constraints.

9We used numbers randomly drawn from a uniform distribution, U [0, x], where x represents the number of individ-
uals in the group. We would then pair individual “1” with the first listed number on the list of numbers drawn from
U[0,14]. If the first number was “1” then we would select the next number in the list, perhaps “3”. Now “1” and “3”
would be paired, “3” would be crossed out, and we would continue down the list in this way until all 14 women were
paired.

10In only 2 instances did this occur, and we then re-paired individuals to ensure that all pairs had not spoken to
one another about production issues.

11For the purposes of first estimating the ITT, Bulte et al. [2014, footnote 21] assign a zero yield to even those
farmers who have not planted. Similar research also provides the ITT as a first step of estimating program impacts in
randomized agricultural programs studying yield outcomes [BenYishay and Mobarak, 2016, Kondylis et al., 2014].

12One kilogram of seed cotton yields 0.30 kilograms of cotton lint—which could produce one to two t-shirts, for
example—and return 30-40 US cents (600-900 shillings per kilogram) to a Ugandan farmer. Seed cotton refers to the
harvested cotton lint and seed, where the seeds have not been filtered from the lint. Cotton seed refers to the actual
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of cotton (kilograms per acre) and level of cotton (total kilograms produced) are particularly

high. The number of acres used to grow cotton is between one-half and one acre on average.

Though land is not seen as scarce, the labor required to clear and prepare the land renders yield

per acre a more accurate measure of productivity than total production. Also of note is that

average output per kilogram of seed was 52 kilograms in 2009 and fell to 37 kilograms in 2010.

In 2010, both the Northern and Eastern parts of Uganda suffered from rain deficits in both

treatment and control areas [Namara and Bitekerezo, 2010].

Before estimating the effects of the intervention, we also check that our treatment assignment

is balanced. F-statistics in Table 3 show the joint test of whether the effects of treatment

assignment are different from zero. We do observe some imbalance. We can see that for the overall

sample age and education differ from the control at 10% significance. Table 4 shows the balance

for females only. For females who received the SNI treatment we see that age is not imbalanced,

while education and inputs, including used acreage and pesticides are not statistically different

across all three treatment groups at 5% and 10% significance levels, respectively. A difference in

difference framework will difference out any constant imbalances along observables, and we also

confirm that our conclusions are largely unchanged after controlling for the latter variables in

section 3.

3 Estimation

Our intervention is motivated by the standard target-input learning model [Foster and Rosen-

zweig, 1995, Jovanovic and Nyarko, 1996], but with the understanding that weak network links

might provide important information for growing cotton. In the standard version of the model,

households can learn by doing (learning from their own experiences) as well as from the experi-

ences of others in their community. The speed with which households learn will depend on the

number of people from whom they can learn as well as the fidelity of the signals they observe.

We consider the possibility that distant links, though suffering from reduced fidelity in trans-

mission, might provide essential additional information because the signals are less likely to be

correlated with the farmer’s own signal.13 In other words, a farmer’s immediate neighbor’s plot

seeds that the cotton plant produces.
13See Appendix C for a formal exposition of the model.

9



might provide a precise signal about the optimal level of inputs that is virtually identical to the

farmer’s own signal, and, is therefore, not very informative.

On the other hand, information from a more distant farmer may be less precise but provide

more independent information. Take for example, a pest infestation. Farmers need to decide

when to apply pesticides after observing pests: should they apply them at first sight of a pest,

or wait to see if the infestation worsens? Since pest infestations spillover to neighboring farms,

when a farmer observes yields following a timing choice, she needs to take into account the fact

that her own yield depends on her neighbors’ choices and that her neighbors’ yields depend on

her choice. Thus, she may collect precise but not independent signals. On the other hand, the

choices and results from distant farmers may provide more information about optimal timing,

because there are no spillovers.

This intervention was not directly designed to increase the size of a woman’s network, but to

improve the quality of learning in the network by adding (or improving) a different kind of link.

We asked women to communicate more with another specific woman chosen from a different

area of the village and with whom they did not previously exchange information about cotton

farming. The pairing is easiest to understand as an increase in the fidelity for an existing link

with greater independence of signals. This type of intervention is likely to be beneficial to women

because women’s networks have been shown to be geographically limited [Katungi et al., 2008].

Additionally, we have specifically chosen to test this implication in a setting where accumulated

learning levels are low, women tend to have low quality production networks to begin with,

and low levels of education and previous extension outreach suggest that the precision of initial

guesses about timing are low.

Importantly, we can verify that the pairings we encouraged were between farmers who did

not previously observe one other’s input decisions. We look at whether individuals in the SNI

intervention mentioned the person to whom they were assigned in the social network survey.

First, we ensure that no participants mentioned speaking to their pair in the 2009 baseline survey,

confirming our strategy of forming new, weak network links with the pairings. Examining the

list of new names added in 2010, we find that 26% of our SNI participants specifically mentioned

their pair, suggesting that the SNI pairings did create new links.14

14Women in the control villages added, on average, two and a half new names to their rosters in the second year.
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We test these hypotheses using the following reduced form regression:

qt(SN, TR) = α0 + α1SNI + α2TR+ α3SNI · TR+ β0 · t (1)

+β1SNI · t+ β2TR · t+ β3SNI · TR · t+ u

The estimated β̂1 captures the average treatment effect (ATE) of the SNI on yields, namely the

effect of SNI across time, or SNI · t where:

β̂1 = [E(y|SNI = 1, t = 1, TR = 0)− E(y|SNI = 1, t = 0, TR = 0)]−

[E(q|SNI = 0, t = 1, TR = 0)− E(q|SNI = 0, t = 0, TR = 0)] (2)

β̂2 captures the effect of TR on yields and β̂3 captures the effect of the combined programs as

separate from the summed effects (across time). We expect both β1 and β2 to be greater than 0.

We measure the impact of the SNI both by looking at the overall gain in yields for women

and men and looking at the degree to which the intervention encouraged women to continue

planting cotton.15

3.1 Cotton Yields

We first estimate the reduced form effect of SNI and TR on cotton yields (Equation 2) in a

difference in difference framework. Yields are defined as the total output divided by intended

acreage. An ordinary least squares approach provides unbiased and interpretable estimates of

the intent to treat. The outcome variable, yield, represents the kilograms of cotton seed output

per acre.16 We are interested in the coefficients on SNI · t, and SNI · TR · t: that is, the pure

impact of the SNI on outcomes, and the interaction effect of SNI and TR. Note that we also check

that the estimated coefficients on SNI, TR and SNI · TR are insignificant, demonstrating the

However, given that an average of 96 individual names were mentioned across all surveys within a village, there is only
a 3% probability of selecting one individual name in a random process with two and a half draws out of sample of 96.
Thus, the finding that 26% of households mentioned their pair is notably different from what we would expect from a
random process.

15In all of the regressions below, standard errors are clustered at the village level, as well as using a cluster wild
bootstrap in Appendix A [Cameron et al., 2008, 2011].

16Table 13 presents the main estimates using wild bootstrapped standard errors, and Table 14 presents the main
results using a panel structure with fixed effects. Neither change the interpretation of our results.
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validity of the random selection. Similarly, the t variable measures whether there is a significant

time trend in yields, which we expect to be negative given the adverse weather events (drought)

in 2010. The estimated impacts of SNI · t and of SNI · TR · t on total yield (Column 1) are

insignificant. The impact of receiving both the SNI and TR is the sum total of β1, β2, and β3.

β3 is not statistically different from zero suggesting that the effects are not substitutes, which is

likely if the two interventions are effective for different groups.

Yields in this sample are right skewed and most producers, before and after the treatments,

produce less than 400 kilograms per acre. According to standard models of learning, we should

not expect a significant impact from SNI or TR for those who are already productive because of

previous learning. Column 2 of Table 5 estimates Equation 2, conditional on having grown 400

kilograms of cotton per acre or less in 2009 (which excludes the top 11% of our original sample).

Columns 3 and 4 show the same sample divided into male- and female-headed households.17

The SNI treatment has a positive and significant impact on households who harvested less

than 400 kilograms of cotton in 2009 as shown in Column 2. On average, females in the SNI

treatment gained a total of 98 kilograms per acre (Column 3), while men living in SNI villages

gained 70 kilograms per acre (Column 4), conditional on their starting yields. The effects of

the training program are comparable at 72 kilograms per acre for females (and this effect is not

statistically different from the average SNI effect, p value= 0.7). Considering that the average

yield across 2009 and 2010 was 160 kilograms per acre, the gains from SNI are economically

significant for both men and women. The interaction effect between SNI and TR is negative

(though not significant), indicating that the joint effect of the SNI and TR is less than the sum

of each intervention’s independent effect. This is not surprising given that SNI and TR introduce

the same information, but using different dissemination methodologies. Note that, because 2010

was a bad year compared to 2009, most of the gains we observe from the two interventions are

actually avoided losses, rather than net gains.

We next estimate a Tobit model to account for the underlying right skewed distribution,

17Note that despite the SNI being a randomly assigned program, in 2009, women who were selected for the SNI
happened to be worse off than those who were not. It is not surprising that, as we continue to subdivide our sample
(in this case, women with less than 400 kg production in the first period), we will find small groups that are not
balanced—this result does not mean that the randomization is invalid. Importantly, however, this baseline difference
is controlled for by using a difference-in-difference framework in Table 12 and Table 11, and does not change our main
results.
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where a zero is considered the result of a latent process which is itself driven by our treatments.

Table 5 exhibits the results in Columns 5-8. The results are significant and larger than the OLS

estimates in Columns 1-4, and provide additional support that the SNI had a positive effect on

farmers’ outcomes.18

Finally, we also look at the effect of the intervention on inputs in Table 6.19 Inputs for

the overall sample did not change for this period, including for females alone. Seed, land and

pesticide use remained constant while yields increased, suggesting that practices beyond inputs

increased yields for females.

3.2 Growing and Harvesting Cotton

As noted earlier, the respondents in our sample experienced a drought in 2010. Almost everyone’s

yields declined between 2009 and 2010, as noted by the Table 2. A number of farmers experienced

zero yields, and both the SNI and TR prevented overall declines as compared to the control group.

In 2009, within our full sample of male and females farmers, 6 households experienced no output.

By 2010, 136 households experience zero yields – 90 of them did not plant, and 46 grew, but had

zero yields.

One possible impact of the intervention is that it encouraged farmers to continue planting

cotton. To test this, we look at the impact of the SNI and TR on farmers’ decisions to grow

cotton. Table 7 estimates the effect of the SNI and TR on remaining a cotton grower between

2009 and 2010, despite the adverse weather shocks mentioned earlier. We use a probit model to

predict the probability that a grower continues to grow cotton where the outcome variable is 0

if the individual ceased to grow cotton in 2010, and equals 1 if they planted cotton. Column 1

indicates that the presence of the SNI in a village positively and significantly impacted a farmer’s

decision to continue to grow cotton. The marginal effect of the program at mean values is an

18% increase in the probability of remaining a cotton grower. Training a farmer increased the

probability of remaining a cotton grower by 11% but is statistically insignificant. For females,

the increase is greater, where the SNI increased the probability of remaining a cotton grower by

38% and 25% for training. Although we cannot reject the hypothesis that TR and SNI have the

18In this specification females experienced a smaller increase in yields relative males, but the difference is not
statistically significant (p value = 0.36).

19Table 15 presents the same estimates using wild bootstrapped standard errors.
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same impact, we can reject the hypothesis that female farmers in SNI villages are as likely to

plant as female farmers in control villages.

Since both training and the social network intervention increased the probability that a

woman would grow cotton in the subsequent year a natural next step is to evaluate whether

yields improved conditional on cultivation. That is, conditional on growing cotton, did women

in TR or SNI villages exhibit lower or higher yields than women in control villages? Conversely,

it is possible that not only did the treatments encourage women to grow cotton, but they also

made them better cultivators than those farmers in control villages who continued to grow (and

may be likely to have been among the better farmers). To test the similarity of the distributions

across treatments for those who planted cotton in 2010, in Table 8 we use a probit to look at

the effect of SNI on the probability of a positive harvest in 2010 restricting the sample to only

those farmers who chose to grow cotton in 2010. In Column 1, we see that in this sample, the

SNI has a significant effect for the overall sample and for men alone. However, when we reduce

the sample to females who had yields less than 400 in the baseline, the effects, though positive,

are not significant.

Examining the case of women who had yields below 400 kg per acre in 2009, we learn about

the relative size of the intensive and extensive margin effects. Women who received only the

SNI treatment were 38.5 percentage points more likely to plant cotton than women in control

villages. Since the average yield for all such women who planted cotton in 2010 was 147 kg per

acre, this would suggest that examining only the extensive margin, SNI should have increased

the average yield by 0.38*147 or 57 kg per acre. Comparing this to the estimated coefficient

of 98 kg per acre (see Table 5), the intensive margin would be about 41 kg per acre. However,

98 kg per acre is not statistically different from 57 kg per acre, so the estimate of the intensive

margin is not significantly different from zero.

If we consider women who received SNI and also received training, we find they are about

43 percentage points more likely to plant and experience a gain of about 120 kg/acre (based on

the estimated coefficient). Again, using the overall average of 147 kg/acre, the extensive margin

implies a gain of about 63 kg per acre leaving an intensive margin of about 57 kg per acre. Thus,

having been encouraged by the interventions to plant cotton, women in these villages gained

somewhere between 57 and 63 kg per acre, and being better farmers led to imprecisely estimated
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gains of between 41 and 57 kg per acre. However, we cannot draw any definitive conclusions

from this estimate alone, given its self-selected sample.

Thus, for this subsample, the SNI increased the probability that treated women would choose

to plant cotton and increased the probability that men who did plant would have a positive yield.

In addition, the evidence suggests that women who did plant because of the SNI intervention did

not experience worse outcomes than women who chose to plant in the control villages. Note that

since the decision not to plant is endogenous, we cannot make an identified causal conclusion

about the actions of this sample, however, overall, this estimation suggests that the bulk of the

impact for women is on the extensive margin—the decision to plant—and the impact for men

(despite not directly receiving the treatment) is on the intensive margin—the probability that

they would have a positive harvest conditional on choosing to plant.

3.3 Intervention Costs

The SNI had a significant and positive impact – impacts that are not statistically different from

a standard extension training program. However, the social network intervention is significantly

less expensive than the standard extension training intervention. Typical extension training

programs are costly. Each trainer can only train a handful of farmers at any one time before

quality and reach degrade. In addition, it takes man-hours, transportation and fuel to reach

remote villages.

Thus, one of the primary benefits of the social network intervention is that it required only

two visits from a lead extension trainer with an assistant for each village, whereas the training

intervention required nine visits per village. The overall cost of the traditional training program

was $7,080 USD with each extension trainer leading anywhere from 7-30 farmers each at a given

demonstration on a bi-weekly basis for an approximate cost of $20 USD per farmer for 354 trained

farmers. In comparison, the SNI costed $2,080 for approximately the same number of farmers

– 30% of the cost and a little more than $5 per farmer. Conversely, the overall benefit per acre

to a female farmer, assuming a return of $0.30 per kilogram of seed cotton,20 and the estimated

effect sizes from Table 5, was $29 per acre for the SNI and $21 per acre for the TR. For the

20The Cotton Development Organization announces indicative prices for seed cotton each year. In 2009 and 2010,
the indicative price was 900 Ugandan Shillings [Ahmed and Ojangole, 2012].
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average female farmer with little over half an acre, the SNI remains a cost effective investment,

while the training does not. Note that this analysis assumes no spillovers despite the evidence

that the SNI, in particular, benefitted untreated men as well as treated women.

3.4 Testing the Impact on Knowledge

It is helpful to understand if the intervention improved outcomes through knowledge acquisition

at the information meetings, or potentially through other informal learning outside these meet-

ings. To investiage whether the gains in yields came from the increased knowledge that women

acquired during the meetings, we examine women’s scores on a quiz of cotton-farming knowledge.

As part of the survey in the second round, we gave each farmer a quiz on the information taught

in the initial meetings for the SNI. We then calculated the percentage of correct answers to the 12

questions on the information points taught (see Appendix B). This data can only be analyzed in

a cross-sectional regression, taking advantage of the randomization to identify program impacts.

As a check on our cross-sectional results, we also examined the yield regressions in the same

framework. Given that the assignment of programs is random, the impact of SNI and TR should

not be statistically different whether we use panel or cross-sectional data for the full sample.

Table 9 shows that both the SNI and TR improved the scores of participants by between

4% and 5%, or about half a question. Given that the initial average score was about 40% (4.5

questions correct out of 12), this is not an unimportant improvement. However, it is clearly

not the case that farmers remembered everything that they learned in either the information

session or the training. Using quiz scores over the whole sample from 2010, we estimate that

farmers who scored 10% higher on the test experienced 27 kilograms per acre greater yields (30

kilograms for a restricted sample of women). This suggests that an increase of 5% on the test

would increase yields by around 15 kilograms per acre. In comparison, we estimate that female

yields increased by between 60 and 90 kilograms, suggesting that improved knowledge is directly

responsible for only a small proportion of the gains.

In addition, there is a subset of females who participated in the pairing meetings and the

social network survey who were unable to attend the initial information games. These individuals

were paired but did not directly receive or learn the information taught via the games. Therefore,

we created another treatment variable, information, which assumes a value of 1 if an individual
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attended the meetings and was paired, and assumes a value of 0 if the individual did not attend

the meetings, but was paired with a new link in the second round. If SNI · t is insignificant after

controlling for information, then we might conclude that the program’s effect is operating via

the information games and not through the pairings. Of course, attendance in the information

meetings was voluntary, and therefore, information is endogenous. Women who attended may

have had lower opportunity cost or greater expected benefit from attending.

Table 10 includes the estimates of the information variable in the panel model for females.

In the OLS specification Information is not a significant contributor to the gains in female

yields while SNI remains significant. This would suggest that attending the information sessions

alone was not the only mechanism by which the SNI improved yields for females. Of course,

this effect may be muted if better farmers experienced less of an improvement on average. Note

that those who attended the meetings were, on average, better farmers before the intervention

than those who missed the meeting. Taken together, the results on quiz scores and attendance

suggest that the meetings may have improved quiz scores, but that this additional knowledge

explains only about 20% to 25% of the gains observed under the treatment.

4 Conclusion

Our research estimates the effects of a social network-based agricultural training program in

which female cotton farmers were given new information and encouraged to form paired links

with other female cotton farmers with whom they had not previously interacted. Our esti-

mated impacts of the SNI are positive and significant for farmers who were producing up to

400 kilograms per acre in 2009, where the average Ugandan farmer produces between 100 and

200 kilograms per acre per year. In particular, the difference in difference estimates of SNI on

yields show that pairing female cotton growers with someone they do not know, as well as pro-

viding pairs with new knowledge to share, increased yields by 98 kilograms per acre on average

for females. Furthermore, while the SNI had its greatest impact on females’ yields, it also had

positive spillover effects for males. This simple intervention achieves results that are similar to

those achieved with more conventional methods of transmitting information, with benefits to

those who are not directly targeted.
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Several mechanisms may have contributed to the effectiveness of the SNI; however, future

research is necessary to determine the specific mechanisms at play. We consider the direct effects

of the intervention–new links and new knowledge. The evidence suggests that the encouragement

of new links with other farmers was successful; we saw an increase in the number of new rela-

tionships discussing cotton production issues, particularly between women who were exogenously

paired. On the intensive margin, productivity increased overall, and for males alone. However,

estimates are less precise for females. The fact that men were never encouraged to form new

links but increased their yields suggests that improvements in knowledge within their existing

networks could have helped. For women, we find that the SNI expanded participants’ agricul-

tural knowledge (as seen on tests), and these gains can account for about 20% of the increase in

farmers’ yields. It is likely that the majority of improvements for females came from the pairing

of females to other women who had new sources of information. This may have encouraged

female farmers to grow the cash crop, but also enabled them to perform as well as their average

peer, even during a difficult year.

Taken together, our research shows that there are large gains from a development approach

that encourages the use of social networks in the presence of new information to improve yields

for female farmers. With our approach, low-cost agricultural training is possible without a top-

down training structure, and it can be more effective at improving outcomes for the poorest

farmers, who are very often females. This research is particularly relevant for extension services

in Uganda, the National Agricultural Advisory Services (NAADS), which is becoming more

decentralized, encouraging multiple providers and methodologies for extension services, with the

aim to address the specific inequalities present at a village level [Kahubire, 2005, Lungahi and

Opira, 2013]. NAADS has already moved away from direct visitation to group based visits,

mainly because direct visitation was not found to have a significant impact on outcomes [Benin

et al., 2011]. Further, NAADS has implicitly focused on larger male-headed households. As such,

our approach provides a tested methodology for incorporating a very decentralized process into

extension services. As women are effectively excluded from higher quality agricultural networks

and have fewer opportunities to learn about better farming practices, this method can help

overcome this training gap. Further, the SNI program also has positive impact for males as well.

These results point to a number of directions for future work, including developing a greater
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understanding of whether new, weak network connections facilitate information exchange, whether

information transmission via such connections is sustainable, and whether this methodology ex-

tends to other domains such as the adoption of health practices or information communication

technologies.
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Table 1: Treatment Sample Size
(No. of Villages in Parentheses)

(1) (2) (3)
TR No TR Totals

SNI 96 59 155
(8) (5) (13)

No SNI 120 50 170
(9) (5) (14)

Totals 216 109 325
(17) (10) (27)
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Table 2: Means of Main Variables in 2009 & 2010

(1) (2) (3)
2009 2010 Average 2009 & 2010

Social Network 0.48 0.48 0.48
Intervention (SNI) (0.500) (0.500) (0.500)
Training 0.66 0.66 0.66
Intervention (TR) (0.474) (0.475) (0.474)
Gender (Fem=1) 0.48 0.48 0.48

(0.50) (0.50) (0.50)
Education (Yrs) 5.6 5.9 5.7

(2.9) (2.9) (2.9)
Kg Cotton 140.8 79.54 109.9

(201.5) (129.2) (171.6)
Acres 0.983 0.586 0.783

(0.701) (0.593) (0.678)
Yield (Kg/Acre) 182.0 139.5 160.6

(208.7) (234.9) (223.1)
Kg Seed 4.976 3.232 4.097

(3.799) (3.000) (3.527)
Yield Per 52.83 36.96 44.83
Seed (78.32) (62.70) (71.27)
Mean of each variable with standard deviation in parentheses.
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Table 3: Balanced Panel Checks

(1) (2) (3) (4) (5) (6) (7)
VARIABLES fertilizer age education yield used acreage pesticide seed

SNI 0.159 1.756 1.133 58.85 -0.355 -0.0165 0.198
(0.548) (0.460) (0.115) (0.129) (0.101) (0.939) (0.841)

TRAINING -0.0820 0.325 0.327 26.98 -0.260 1.583 -0.253
(0.343) (0.896) (0.638) (0.462) (0.203) (0.336) (0.742)

Tr · SNI -0.177 -5.066 -1.825* -15.22 0.270 -1.825 -1.226
(0.505) (0.113) (0.0503) (0.800) (0.279) (0.271) (0.312)

Constant 0.100 47.60*** 4.240*** 140.2*** 1.231*** 0.285* 5.410***
(0.242) (0.0001) (1.56e-08) (1.61e-07) (3.54e-07) (0.0731) (9.54e-10)

Observations 320 325 325 321 325 320 320
R-squared 0.011 0.017 0.022 0.015 0.029 0.006 0.023
F test p value 0.312 0.0613 0.0894 0.243 0.354 0.108 0.232

p-values in parentheses, standard errors clustered at village level
output and inputs in kgs per acre, education is years completed

*** p<0.01, ** p<0.05, * p<0.1
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Table 4: Balanced Panel Checks: Females

(1) (2) (3) (4) (5) (6) (7)
VARIABLES fertilizer age education yield used acreage pesticide seed

SNI 0.577 3.630 1.759*** 8.496 0.145 0.297 1.033
(0.259) (0.333) (0.00347) (0.830) (0.223) (0.213) (0.338)

TRAINING 0.00 1.182 1.833** 44.92 0.270** 0.0878*** 1.013
(0.0983) (0.623) (0.0130) (0.273) (0.0122) (0.00321) (0.220)

Tr · SNI -0.577 -6.427 -2.843** 2.114 -0.331* -0.366 -2.017
(0.259) (0.170) (0.0107) (0.974) (0.0506) (0.131) (0.118)

Constant 0.00 49.00*** 1.500*** 127.4*** 0.627*** 0.00 3.679***
(0.112) (0.00) (2.34e-05) (2.48e-10) (6.02e-10) (3.85e-06)

Observations 155 159 159 156 159 155 155
R-squared 0.032 0.020 0.041 0.010 0.032 0.055 0.034
F test p value 0.259 0.516 0.00883 0.362 0.0817 0.00613 0.380

p-values in parentheses, standard errors clustered at village level
output and inputs in kgs per acre, education is years completed

*** p<0.01, ** p<0.05, * p<0.1
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Table 7: Probit: Decision to Grow Cotton

(1) (2) (3) (4)
VARIABLES All yields yields less 400 yields less 400 M yields less 400 F

SNI 0.182* 0.256** 0.173 0.385***
(0.0725) (0.0108) (0.141) (0.00439)

TRAINING 0.109 0.128 0.0633 0.249**
(0.205) (0.144) (0.571) (0.0266)

Tr · SNI 0.0406 -0.0281 0.114 -0.205
(0.782) (0.858) (0.419) (0.342)

Observations 325 287 144 143
mean probability cultivated 0.723 0.714 0.743 0.685

p-values in parentheses, standard errors clustered at village level
*** p<0.01, ** p<0.05, * p<0.1
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Table 8: Probit, Probability of Positive Yield for Planters in 2010

(1) (2) (3) (4)
VARIABLES All yields yields less 400 yields less 400 M yields less 400 F

SNI 0.188** 0.195* 0.247*** 0.147
(0.0419) (0.0522) (0.00741) (0.279)

TRAINING 0.121 0.157 0.189** 0.117
(0.161) (0.111) (0.0117) (0.463)

Observations 235 205 107 98
mean probability harvested 0.804 0.785 0.813 0.755

p-values in parentheses, standard errors clustered at village level
*** p<0.01, ** p<0.05, * p<0.1
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Table 9: Cross Sectional Impact of SNI on Yields
and Information Learned

(1) (2) (3)
MODELS Tobit OLS OLS
VARIABLES yield yield information learned

SNI 134.9** 51.06* 0.0601**
(0.0302) (0.0884) (0.0320)

TRAINING 105.1* 46.77* 0.0298
(0.0803) (0.0825) (0.218)

Tr · SNI -47.89 -6.737 -0.0444
(0.567) (0.875) (0.270)

Constant -96.42** 32.15** 0.380***
(0.0284) (0.0417) (0.00)

Observations 273 273 273
R-squared 0.072 0.024
mean 84.96 84.96 0.415
p-values in parentheses, standard errors clustered at village level

*** p<0.01, ** p<0.05, * p<0.1
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Table 10: Impact of SNI on Yields,
Controlling for Attendance at the Information Meetings

(1)
MODELS OLS

t -100.5***
(0.000466)

SNI -84.76***
(0.000312)

TRAINING -9.655
(0.678)

Tr · SNI 77.25**
(0.0262)

SNI · t 108.4**
(0.0304)

TRAINING · t 73.01*
(0.0739)

Tr · SNI · t -58.21
(0.351)

Info 39.21***
(0.00338)

Info · t -12.98
(0.720)

Constant 127.4***
(4.41e-10)

Observations 286
R-squared 0.071
mean yield 108.8

p-values in parentheses, standard errors clustered at village level
Information indicates whether a women attended the information meeting.

Data include only females (no males were invited to the information meetings).
*** p<0.01, ** p<0.05, * p<0.1
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Table 12: OLS, Difference in Difference for Yields less than 400, Controlling for Imbalanced
Covariates

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Female Female Female Female Female

VARIABLES less than 400 less than 400 less than 400 less than 400 less than 400 less than 400 less than 400 less than 400 less than 400

t -82.94*** -83.12*** -82.94*** -83.12*** -100.5*** -100.5*** -104.7*** -100.5*** -104.7***
(0.00376) (0.00458) (0.00379) (0.00462) (0.000449) (0.000458) (0.00556) (0.000458) (0.00573)

SNI -2.305 -2.232 -15.44 -15.12 -54.07** -60.95** -69.67** -46.50* -66.81**
(0.928) (0.924) (0.549) (0.540) (0.0210) (0.0130) (0.0145) (0.0539) (0.0299)

TRAINING 15.68 15.25 6.990 6.884 -6.996 -12.86 -20.90 0.504 -14.21
(0.460) (0.442) (0.713) (0.708) (0.761) (0.578) (0.455) (0.984) (0.667)

Tr · SNI 24.21 21.35 42.58 40.41 64.76* 74.30* 77.42* 53.96 68.33
(0.442) (0.483) (0.178) (0.201) (0.0694) (0.0530) (0.0574) (0.142) (0.131)

SNI · t 80.89** 81.07** 80.89** 81.07** 98.28** 98.28** 109.6** 98.28** 109.6**
(0.0125) (0.0141) (0.0126) (0.0142) (0.0222) (0.0224) (0.0323) (0.0224) (0.0329)

TRAINING · t 82.28* 82.80* 82.31* 82.86* 72.16* 72.28* 83.72* 72.24* 84.18*
(0.0711) (0.0733) (0.0713) (0.0734) (0.0735) (0.0736) (0.0850) (0.0738) (0.0844)

Tr · SNI · t -47.82 -48.18 -47.93 -48.40 -54.40 -54.71 -63.35 -54.50 -64.21
(0.370) (0.371) (0.370) (0.370) (0.372) (0.371) (0.354) (0.372) (0.350)

age 0.749 0.391
(0.221) (0.480)

education 6.936*** 6.528** 3.502 4.405
(0.00961) (0.0103) (0.184) (0.106)

pest -16.87 -12.30
(0.107) (0.245)

usedacreage -19.61* -47.22***
(0.0916) (0.00255)

Constant 107.1*** -1,362 83.75*** -680.2 127.4*** 122.4*** 148.3*** 134.2*** 166.9***
(7.55e-07) (0.256) (6.05e-05) (0.531) (4.11e-10) (4.71e-09) (2.73e-08) (1.22e-09) (3.37e-07)

Observations 574 570 574 570 286 286 250 286 250
R-squared 0.044 0.047 0.066 0.066 0.061 0.069 0.060 0.068 0.104
mean yield 123.7 123.7 123.7 123.7 108.8 108.8 108.8 108.8 108.8

p-values in parentheses, standard errors clustered at village level
*** p<0.01, ** p<0.05, * p<0.1
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Table 13: Difference in Differences of Intervention on Yields, Wild Bootstrapped SEs

(1) (2) (3) (4)
VARIABLES OLS OLS Less 400 OLS less 400 M OLS less 400 F

t -95.80 -82.94 -71.76 -100.5
0.115 0.255 0.135 0 .13

TRAINING 38.44 15.68 30.93 -6.996
0.405 0.545 0.385 0.765

TRAINING · t 65.18 82.28 97.83 72.16
0.19 0.15 0.12 0.115

SNI 69.42 -2.305 40.77 -54.07*
0.17 0.91 0.305 0.08

SNI · t -0.708 80.89 69.89 98.28*
0.96 0.1 0.145 0.075

Tr · SNI -26.68 24.21 -4.395 64.76*
0.695 0.425 0.975 0.09

Tr · SNI · t 27.85 -47.82 -41.85 -54.40
0.64 0.49 0.655 0.405

Constant 129.6*** 107.1*** 94.15 127.4***
(0.00) (0.00) 0.13 (0.00)

Observations 646 574 288 286
R-squared 0.046 0.044 0.056 0.061
mean yield 160.4 123.7 138.5 108.8

p-values in parentheses, standard errors clustered at village level
*** p<0.01, ** p<0.05, * p<0.1
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Table 14: Main OLS Difference in Difference with Fixed Effects

(1) (2) (3) (4)
VARIABLES All yields yields less 400 yields M less 400 yields F less 400

SNI 0.0938 80.89** 69.89 98.28**
(0.998) (0.0123) (0.106) (0.0215)

TRAINING 65.64 82.09* 97.83 71.81*
(0.152) (0.0708) (0.113) (0.0736)

Tr · SNI 29.41 -47.10 -41.85 -53.40
(0.569) (0.376) (0.580) (0.378)

year -95.80*** -82.94*** -71.76** -100.5***
(0.00338) (0.00369) (0.0284) (0.000425)

Constant 192,651*** 166,751*** 144,289** 202,052***
(0.00335) (0.00366) (0.0283) (0.000423)

Observations 646 574 288 286
R-squared 0.039 0.025 0.029 0.049
Number of hhdid 325 287 144 143
mean yield 160.4 123.7 138.5 108.8

p-values in parentheses, standard errors clustered at village level
*** p<0.01, ** p<0.05, * p<0.1
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B Information points in Training and SNI

Appendix: Game Points

1. Ladybirds are good insects (show picture)

2. Spacing between rows is 75 cm (3 sheets long)

3. Spacing between plants is 30 cm long (1 sheet)

4. Only plant 3-5 seeds per hole

5. More than 2 seedlings in one place will reduce cotton yield

6. First weeding occurs between the 2nd and 3rd week after planting

7. Second weeding occurs between the 6th and 10th week after planting

8. Bollworm (show picture) larvae appears between the 8th and 9th week after planting

9. Check germination after 5 days-replants seeds at gaps to get even crop cover

10. Prepare land several weeks in advance for cotton planting

11. Cotton is good for mixed and rotational crop

12. Use pesticide 5th to 7th week after planting for Lygus bug (show picture)

13. Use pesticide 8th to 9th week after planting for Bollworm (show picture)

14. Always cover hands and mouth when spraying pesticides

C Appendix: Model

To demonstrate our hypothesis that weak ties can improve yields, we use a simple modification to

the standard target-input learning model [Foster and Rosenzweig, 1995, Jovanovic and Nyarko,

1996]. Households in this setting are growing cotton without the benefit of significant previous

experience due to the interruption caused by civil war. We expect households to learn by doing

(learning from their own experiences) as well as from the experiences of others in their community

or from agricultural extension agents. Female-headed households experience lower yields in part

because they have fewer opportunities to learn from others, and they may not be able to take

full advantage of the training offered by extension officers. In particular, women may have fewer
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weak ties than men because their networks are more geographically concentrated and search

costs for valuable ties may therefore be higher.

The conventional exposition of the target-input model focuses on the choice of input levels

(such as fertilizer). However, in the Uganda setting, the greatest opportunities for learning are

on issues of timing. Fertilizers are not generally used in cotton farming in this setting. Farmers

are learning when to prepare, plant, thin, weed, apply pesticides, and harvest.21 The farmer

chooses an input level (or, in our case, a time to apply inputs), θit, in order to maximize profits

(see appendix D for more detailed exposition of this model). Profits are larger when the farmer’s

timing is closer to the ideal timing for a particular field in a particular year, τit. Profit q for

farmer i in period t is

qit = 1− (θit − τit)2 (3)

τit, the correct timing or input, is a normally distributed random variable (τit = τ? + µit :

µ ∼ N(0, σ2τ )). The most profitable choice of timing or input is τit, but this is unknown and

therefore, the farmer will seek to maximize profit by learning and then choosing τ?. After

choosing the timing, given the best available information, the farmer can observe the output and

infer what the correct timing would have been for that time period. The farmer uses this noisy

observation of τ? to update his or her beliefs over τ? from θt to θt+1.
22 In the next period the

farmer will choose the expectation of the posterior distribution as the new input level in period

t+ 1.

The precision of the farmer’s estimate of the target improves as the farmer observes more

outcomes and updates the estimate with each new outcome. Denoting the number of outcomes

observed at time t as St−1 the variance of the farmer’s estimate is derived from straightforward

application of Bayes’s rule:

σ2θt =
1

ρθt=0 + ρτSt−1
(4)

21The monitoring reports from trainers in the TR intervention contain information on what farmers said they spoke
about to other farmers. The most commonly reported conversations are focused on timing issues. Farmers complain
about inadequate access to pesticides and fertilizers but they do not talk about application levels [see Conley and Udry,
2010, for more about typical farmer information exchanges].

22In the pure target-input model, farmers observe τ directly, as a type of signal. Here we suggest that they infer it.
The difference is that mathematical inference only gives us τit = θit ±

√
1− qit. However, by assuming farmers have

access to some additional information that allows them to know if their guess is above or below the optional level, these
two views of a signal are formally identical.

42



where ρθt=0 is the precision (inverse of the variance) of a farmer’s estimate in the initial period

and ρτ is the precision of the observations of the target timing (ρτ = 1
σ2
τ
). The expected ouput

(Et(qit) = 1− σ2θt − σ
2
τ ) depends on the variance of the ex ante best timing (σ2τ ), which does not

change over time and the variance of the farmer’s estimate (σ2θt), which falls over time, resulting

in increased expected profits.

In the target input model, farmers do not experiment on their own plots for two key reasons.

First, choosing any timing that is not the best guess of the target timing results in lower expected

production. Thus, there is significant cost to experimentation. Second, different timing of actions

does not provide new information: there is only one informative signal per plot.23 Experimenting

within the plot does not provide new information but if the farmer can observe the choices of other

farmers, that information can be used to update to her beliefs on the optimal timing. Assume that

the farmer can observe or infer her neighbor’s signal τ in period t, plus some additional reporting

noise ξ(τj = τ? + µj + ξij). Thus they see a signal with precision ρν = 1/σ2ν = 1/(σ2τ + σ2ξ ),

where σ2τ is the variance of the state of nature and σ2ξ is the variance of the observation of one’s

neighbors signal. The variance of the farmer’s guess evolves as follows:

σ2θt =
1

ρθt=0 + ρτSt−1 + ρνNt−1
(5)

where Nt−1 is the total number of trials of other farmers observed at period t. Expected output

is now a function of learning by doing (St) and learning from others (Nt).
24

However, if a farmer cannot learn more by subdividing her plot, why does she learn from the

experience of a neighbor whose plot is adjacent to hers? In particular, the experiences (signals)

within one plot are likely to be correlated with the experiences of neighboring plots. Nearby plots

are likely to suffer from highly correlated weather and pest events [in particular, pest spillovers:

see Harper and Zilberman, 1989, Regev et al., 1976] meaning the signals received on two such

plots are also correlated. To formalize this idea, assume that farmer i observes farmer j’s signal

and that the new signal is correlated to farmer i’s signal as described by γij . Formally, the

23µit is identical across the whole plot, so while varying θit across the plot changes qit, it does not provide new
information. Dividing the plot gives multiple observations of one draw from a random variable, not multiple draws.

24Foster and Rosenzweig [1995] assume learning depends not on the number of neighbors but the hectares planted.
Since hectares planted is not evolving in our model or data, we use the simplifying assumption that one farmer equals
one observation.
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farmers sees a signal which is a weighted sum of her own signal and another, independent signal

(τj = γij(τ
? + µj) + (1 − γij)τi + ξij). The parameter γ ∈ (0, 1] gives a measure of the spatial

independence of states of nature over two plots where γij = 1 means the states of nature are

uncorrelated and γij = 0 means they are perfectly correlated.25 We show in the appendix that

σ2ν = σ2τ +σ2ξ/γ
2
ij , or σ2τ + 1/ρξijγ

2
ij . Thus, the precision of a neighbor’s signal is decreasing in the

variance of the additional noise (increasing in the fidelity) σ2ξ and increasing the independence

of the signal γij .
26

The variance of the farmer’s guess now evolves in the following manner (where J is the set of

possible network links and φξ is the fidelity of a neighbor’s signal, the inverse of the variance):

σ2θ =
1

ρθt=0 + ρµSt−1 +
∑t−1

l=0

∑
k∈J

1
σ2
µ+1/ρξikγ

2
ik

(6)

Recall that

Et(qit) = 1− σ2θt − σ
2
τ (7)

and we can see that

∂Eqit
∂γ

> 0
∂Eqit
∂ρξ

> 0

∂2Eqit
∂ρξij∂S

< 0
∂2Eqit

∂ρξij∂N−J
< 0

∂2Eqit
∂ρξij∂ρθt=0

< 0
∂2Eqit
∂ρξij∂γij

> 0

where N−J =

t−1∑
l=0

∑
k/∈J

1

σ2µ + 1/ρξikγ
2
ik

In other words, network links with greater independence (γ) and fidelity (ξ) are more useful

on average, and increasing the fidelity for a particular link j is less useful for farmers who have

already had the opportunity to learn (larger S), have otherwise better networks (larger N−J),

have a more precise prior about the correct timing of activities (greater ρθt=0) and that increasing

25Munshi [2004] generates variability in the usefulness of a neighbor’s information by assuming farmer characteristics
are heterogeneous; different farmers may be seeking different target input levels. In our specification, there is only one
target input level, but nearby neighbors provide less unique information.

26Note that when γ is zero, we have the same result as a farmer subdividing her own plot: nothing will be learned.
When γ is one, we have the standard learning result as above: the precision of a neighbor’s signal is a function of the
underlying variance of the state of nature and the variance that results from the noise in translating signals.
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the fidelity of a particular signal is more useful for links that have greater independence (greater

γij).

Uncorrelated signals are useful for farmers because they provide a more precise signal of

the optimal timing. Stronger network links, such as with nearby neighbors, imply more precise

information flows but, following the intuition of Granovetter [1974], it may be that weaker links

provide signals with greater independence and therefore information.

D Derivations

Definitions of terms:

The farmer observes a signal τ drawn from N(τ?, σ2τ ). She has a prior over the true value of

τ?distributed N(θt, σ
2
θt

). The signal and the prior are combined to create the posterior:

N(θ, σ2θt)⇒ N(θt+1, σ
2
θt+1

)

σ2θt =
σ2θtσ

2
τ

σ2θt + σ2τ
θt+1 =

σ2θt
σ2θt + σ2τ

τ +
τ

σ2θt + σ2τ
θt

Introducing the notation for the precision ρ = 1
σ2 we can rewrite these as

σ2θt+1
= 1/ρθt+1 =

1

ρθt + ρτ

θt+1 =
ρτ

ρθt + ρτ
τ +

ρθ
ρθt + ρτ

θt

Now in period t+1, the farmer observes a second signal τt+1 and updates again, with resulting

precision σ2θt+2
= 1

ρθt+1
+ρτ

= 1
ρθt+2∗ρτ . More generally, σ2θt = 1

ρθt=0
+St−1∗ρτ , where St−1 is the

number of observations of neighbor’s signals at time t− 1.

When the farmer also observes the signals from other farmers j, τijt = τjt+ξ. The variance of

this new signal is σ2ν = σ2τ +σ2ξ and finally combining own learning with learning from others, the

variance of the prior evolves as follows: σ2θt = 1
ρθt=0

+St−1∗ρτ+Nt−1∗ρν where Nt−1 is the number of

neighbor’s signals observed at time t− 1.
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Now assume that signals between two farmers i and j are correlated in the following fashion:

τi = τ? + µi (8)

τj = γij(τ
? + µj) + (1− γij)τi + ξij (9)

Essentially the signal from a neighbor is a weighted sum of the farmer’s own signal, an un-

correlated (informative) signal and the standard noise associated with observing someone else’s

signal. However, the farmer knows γij and observes her own signal and can use this information

to recover the uncorrelated (informative signal) from the observed signal.

τj − τi(1− γij)
γij

= τ + µj +
ξij
γij

(10)

The error associated with this new signal σ2ν is σ2τ +
σ2
ξij

γ2ij
. In other words, although the farmer can

extract an unbiased uncorrelated signal, the noise associated with this signal is greater than the

noise associated with the pure uncorrelated signal and this noise is a function of the correlation

between the two signals. Note that where γ = 1 we have the same uncorrelated signal as before

and when γ = 0 we have a completely uninformative signal (with infinite variance). In general,

because γ ∈ (0, 1], the error associated with this signal is greater than the error associated with

an uncorrelated signal: σ2µ + σ2ξij < σ2µ +
σ2
ξij

γ2ij
.
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