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Abstract

Background: Deep brain stimulation (DBS) has been shown to be effective for Parkinson’s disease, essential tremor, and primary dystonia. However, mixed results

have been reported in Huntington’s disease (HD).

Case Report: A single case of HD DBS was identified from the University of Florida DBS Brain Tissue Network. The clinical presentation, evolution, surgical

planning, DBS parameters, clinical outcomes, and brain pathological changes are summarized.

Discussion: This case of HD DBS revealed that chorea may improve and be sustained. Minimal histopathological changes were noted around the DBS leads.

Severe atrophy due to HD likely changed the DBS lead position relative to the internal capsule.
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Introduction

Huntington’s disease (HD) is an autosomal dominant, progressive

neurodegenerative disorder characterized by adult onset of symptoms,

including cognitive decline, psychiatric changes, and movement disorders

including but not limited to chorea, dystonia, rigidity, and/or

bradykinesia.1 There is no cure for HD and many therapeutic options

have demonstrated limited efficacy, and some treatments such as

dopamine blocking agents may result in unintended side effects.2,3

Deep brain stimulation (DBS) is a potentially effective surgical treatment

option for select medication-resistant and disabling hyperkinetic HD-

related comorbidities (e.g. severe chorea and ballism).4 We have

previously reported two HD cases treated with DBS.5 The first case

had medication-resistant chorea in which the chorea at rest responded

reasonably well to bilateral internal globus pallidus (GPi) DBS. The

second was a case of young onset HD with familial dystonia who

presented with generalized dystonia and showed a poor response to
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bilateral GPi DBS. We report in this paper the clinical response to long-

term DBS and also the brain histopathological findings from the first case.

Case report

A 33-year-old male presented to our clinic with a 4-year history of

chorea and an extensive family history of HD. Our group has previously

published details of this case.5 Here we summarize the information in order

to put into context our findings. The patient’s speech was minimally

dysarthric, he had involuntary vocalizations, and he was diagnosed with

vocal tics. He had bilateral chorea and ballism of the upper extremities,

clonic movements in the lower extremities, and dystonia in his hands and

legs. He was unable to self-feed, sit without restraint, or interact with his

daughter as a result of his hyperkinetic movements. The patient’s

hyperkinetic movements failed to respond to multiple dopamine antagonists

including Tetrabenazine 25 mg twice a day, which was prescribed to the

patient in 2009, but then discontinued because of a decrease in both

alertness and appetite. It was determined that palliative bilateral GPi DBS

was reasonable given his relatively preserved cognitive function. This

decision was made following consultation with the family and the patient

about their keen desire for amelioration of choreic movements. Bilateral

GPi DBS was performed followed by implantable pulse generator

placement 3 weeks later. At the time of surgery, both DBS leads were

placed a minimum of 2–3 mm from the internal capsule.

Post surgery

The patient developed worsening dysphagia immediately after the

operation, necessitating percutaneous endoscopic gastrostomy tube

placement prior to hospital discharge. His gait worsened; bradykinesia

had worsened but chorea was significantly better and chorea at rest was

completely resolved. The resulting dysphagia and worsening of gait were

probably due to a transient postoperative condition rather than lead

location, since symptoms improved with time and did not worsen after

the DBS device was turned on. The severity of his persistent movement-

induced chorea was significantly reduced in magnitude and ballistic

character. He had increased falls and dragging of his right foot prior to

activation of the DBS device. Following several difficult postoperative

months he improved, except in gait and balance. His follow-up clinical

scores are summarized in Table 1. From our previous work, we

anticipated a mild worsening of motor scores in later years. The mild

worsening of Unified Huntington’s Disease Rating Scale (UHDRS)

motor assessment observed during follow-up could have been expected

due to the natural progression of the disease. Furthermore, the

worsening of chorea at the 3-year follow-up was most likely a result of

the progression of disease because the chorea did not improve when the

DBS device was turned off during clinic visits. Nevertheless, it is

important to note that the symptoms did not return to pre-DBS levels.

Imaging and DBS settings

Postoperative images of the lead locations are shown in Figure 1. GPi

was targeted, and leads were placed approximately 3 mm lateral to the

internal capsule at the most ventral contact and matched microelectrode

mapping. Optimal stimulation parameters were reached at

6 months post-lead implantation. At his 1-year follow-up, settings were

stable with the exception of increasing stimulation frequency. At the

2-year follow-up, chorea was well controlled and no changes were made to

his DBS parameters. During the 3-year follow-up visit because of

worsening of chorea and right lower extremity dystonia, variable contacts,

amplitude, pulse width, and frequencies were assessed, but motor (pulling)

side effects were observed with no additional benefits. DBS settings were

returned to his 1-year settings. At the 4-year follow-up, his DBS settings

were difficult to modify and the patient was no longer able to care for

himself independently due to increased whole-body rigidity. He had

significant weight loss and developed a sacral decubitus ulcer. Despite his

overall clinical decline, his resting chorea suppression remained controlled.

Neuropathology

The patient prospectively consented at the time of DBS implantation

to donate his brain to the UF DBS Brain Tissue Network program. Brain

Table 1. Baseline and post-DBS UHDRS assessments

Pre-DBS 6 mo. 12 mo. 24 mo. 36 mo. 48 mo.

Motor assessment 80 70 75 39 57 58

Chorea subscore 19 15 10 4 6 6

Behavioral assessment

(severity/frequency)

3/3 2/1 7/8 0/0 0/0 0/0

Independence scale 50 50 NA 10 10 10

Functional capacity 4 1 NA 1 1 1

Verbal fluency raw score NA 6 NA 6 2 2

Functional assessment 5 1 1 1 1 1

Abbreviations: DBS, Deep Brain Stimulation; mo., Months; UHDRS, Unified Huntington’s Disease Rating Scale.
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removal was performed within 24 hours of death; the left hemisphere was

frozen for other studies and the right hemisphere was fixed in 10%

formalin for a follow-up histological examination by a certified

neuropathologist (A.T.Y). Samples were taken from the following

regions: rostral caudate nucleus, basal ganglia, thalamus, hippocampus,

frontal cingulate gyrus and corpus callosum, superior temporal gyrus,

midbrain, pons, cerebellum, dentate cerebellum, frontal white matter

with DBS tract defect, GPi with distal lead defect, globus pallidus at the

anterior commissure, right mesial occipital lobe, and hippocampus.

Immunohistochemistry was performed using antibodies to glial fibrillary

acidic protein (GFAP) and ubiquitin. The neuropathological burden was

stratified on the basis of Vonsattel staging.7,8

Gross pathology observations. The cerebral hemisphere revealed

mild widening of the gyri and narrowing of the sulci, particularly in

the frontoparietal region. There was slight disruption of the

cerebral cortex at the site of entry of the DBS lead into the frontal

lobe. A 0.4-cm focus of recent subarachnoid hemorrhage was

located in the mesial occipital pole adjacent to the primary visual

cortex. Serial coronal sections of the cerebral hemispheres revealed

marked atrophy of the entire caudate nucleus, resulting in

significant hydrocephalus ex vacuo and a marked, straight rather

than convex contour of the caudate nucleus, which was atrophied

and located adjacent to the lateral ventricle. A small slightly

discolored slit-like caudate nucleus was identifiable. DBS lead

tracts were followed through serial coronal sections and the distal

lead tips were located in the GPi just above the optic track

bilaterally. The rostral midbrain, pons, and cerebellum did not

reveal any focal lesions.

Microscopic evaluation. Histological examination was performed on

the right hemisphere. The caudate nucleus was markedly atrophic and

had extensive neuronal loss, gliosis, and significant microglial cell

activation. Neuronal loss was also present in the putamen and globus

Figure 1. Microscopic Analysis at the Level of the Tip of the Deep Brain Stimulation Electrode. (A) The tip of the deep brain stimulation (DBS) lead

was placed in the internal globus pallidus (GPi) and was confirmed by postmortem analysis. Progressive atrophy of the GPi resulted in the lead being much closer to

the internal capsule (,1.3 mm) than would be predicted by microelectrode mapping and macrostimulation. (B) The tip of a DBS lead placed in the GPi confirmed

using hematoxylin and eosin. Some gliosis and hemosiderin deposits are also seen. (C) Gliosis surrounding the tip of the DBS lead as demonstrated by glial fibrillary

acidic protein immunohistochemistry. (D) A rim of meningothelial cells near the lead defect as seen by immunohistochemistry using epithelial membrane antigen.
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pallidus, but to a lesser extent. However, reactive astrocytes (GFAP)

were abundant in these nuclei. There were rare eosinophilic

intranuclear inclusions present in the cerebral cortex; however, no

intranuclear ubiquitin-positive inclusions were identified. These

findings were consistent with Vonsattel Grade 3 (of 4) for HD staging,

indicating that approximately 95% of the neurons in the caudate

nucleus were absent. There was focal widening of perivascular spaces

within the putamen but no significant atherosclerosis or other vascular

pathology within the basal ganglia or deep white matter. There was a

single focus of acute, subarachnoid hemorrhage in the right occipital

lobe with abundant hemosiderin-laden macrophages. The cortex

adjacent to the subarachnoid hemorrhage revealed subpial gliosis and

focal hemosiderosis.

The distal lead tip defect of the DBS electrode was located 1.3 mm

from the internal capsule (Figure 2A). There was remote gliosis at the

distal tip of the DBS lead as supported by immunohistochemistry for

GFAP (Figure 2B), and focal hemosiderin deposition (Figure 2B–H&E,

Figure 2C, GFAP). In addition, the lead tip defect was surrounded

Figure 2. Fusion of Magnetic Resonance and Computed Tomography Images Showing the Lead Locations at the Time of Deep Brain
Stimulation Surgery. The deep brain stimulation lead was placed within the internal globus pallidus and was intended to be .2–3 mm away from the internal

capsule. The physiology was confirmed by postoperative imaging.
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with a ‘‘rim’’ of menigothelial/arachnoidal cells as confirmed by

immunohistochemistry for epithelial membrane antigen (Figure 2D).

These menigothelial cells could have been derived from perivascular

spaces of several small deep penetrating blood vessels that were present

near the distal DBS lead tip defect. More proximally along the DBS

lead track, in the deep white matter of the right frontal lobe, there was

gliosis and hemosiderin deposition. The distal lead tip defect and lead

defect in the right frontal white matter show only remote gliosis around

a central cavity.

Discussion

This case is the first report in the literature of long-term clinical

effects in addition to post-mortem analysis of a HD DBS case. Our

patient was followed for several years clinically prior to his death, and

this clinical follow-up adds to the importance of the report. Following

bilateral GPi DBS, his symptoms were reduced by 51% at 24 months

and by 28% at 36 and 48 months as assessed by UHDRS motor

scores, with improvements of 79% at 2 years and 68% at 4 years on

the chorea subscores. Previously, we had reported the clinical features

of this case at 12 months.5 The patient likely manifested symptoms of

disease progression in combination with some minor, stimulation-

induced side effects. However, we believe that the change in lead

position making it closer to the internal capsule was probably not

causing detrimental side effects similar to the effects of the severity of

disease progression. As we move towards increasing patient numbers

for HD DBS, patient counseling regarding the likelihood of no benefit

or worsening of symptoms with disease progression will become an

integral part of treatment.

Table 2. Reported Cases Using DBS in the Setting of Huntington’s Disease

Study Patients,

n

Target (Bilateral) Follow-up,

months

UHDRS Chorea

subscore

improvement

Present study 1 GPi 48 68%

Zittel et al.19 3 GPi 12–36 40%–58%

Wojtecki et al.28 6 GPi and GPe 6 60%

Gonzalez et al.10 7 GPi 36 58%

Gruber et al.15 1 GPi STN 48 50%

Cislaghi et al.22 1 GPi 48 67%

Lopez-Sendon Moreno et al.20 1 GPi 60 56%

Huys et al.11 1 GPi 12 NA

Velez-Lago et al.5 2 GPi 12 73%

Spielberger et al.21 1 GPi 48 75%

Garcia-Ruiz et al.13 1 GPi 12 NA

Kang et al.23 2 GPi 24 50% and 63%

Groiss et al.18 1 GPi NA NA

Ligot et al.27 5 GPe 12–19 NA

Biolsi et al.14 1 GPi 48 21%

Fasano et al.17 1 GPi 12 77%

Hebb et al.12 1 GPi 12 50%

Fawcett et al.16 1 GPi 4 56%

Moro et al.25 1 GPi 8 64–76%

Abbreviations: DBS, Deep Brain Stimulation; GPe, External Globus Pallidus; GPi, Internal Globus Pallidus; STN, subthalamic nucleus; UHDRS, Unified

Huntington’s Disease Rating Scale
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Improvements in HD-related hyperkinetic choreic and ballistic

movements have been reported by several groups following GPi

DBS.5,10–22 However, several authors have also observed that

GPi DBS-induced improvements may not extend to bradykinesia,

and this issue has recently been cited as an important limitation of GPi

DBS.10,23–25 This is important to consider in patients similar to the one

we have reported. Since our patient was younger than most of the

other case reports, a more severe clinical presentation of chorea and/

or rigid-akinetic syndrome could be expected. In such presentations,

other targets, which we summarized, could be tried. External globus

pallidus (GPe) DBS may, according to the basal ganglia box model,26

modulate integration of motor symptoms in chorea; however, it

remains unknown if GPe DBS will be viable in humans. Two

case series of GPe DBS have been recently published, as shown in

Table 2.27,28 In HD patients, during the resting ‘‘off’’ stimulation state,

corticosubcortical regional cerebral blood flow has been reported as

reduced. In keeping with the basal ganglia thalamocortical circuit

model, GPe stimulation may be able to modulate connectivity and

reduce regional cerebral blood flow in the basal ganglia and cortical

regions.27 Further support for use of GPe DBS is drawn from the

results of a prospective pilot study by Beste et al.,29 which suggested

that GPe stimulation could be regarded as a beneficial treatment,

specifically with respect to improvement of cognitive symptoms in HD;

however, the rationale for this idea remains speculative.

Postmortem neuropathological examination showed severe atrophy in

the caudate nucleus and putamen consistent with the patient’s disease

stage and consistent with HD progression as shown by several recent

studies.30,31 Microscopic observations and measurement of the distance

between the GPi and internal capsule confirmed that when the patient

expired, there was a worrisome smaller than expected distance between

the internal capsule and GPi, as the DBS lead at death was

approximately 1.3 mm away from the internal capsule (Figure 2).

Most DBS practitioners prefer approximately 2–3 mm of spacing

between the GPi and the internal capsule to avoid stimulation-induced

side effects. As globus pallidus atrophy progresses over the course of

HD,30,31 this phenomenon could result in the unintentional realignment

of the DBS lead too close to the internal capsule (,2.0 mm), despite

adequate placement at the time of implantation. These findings support

our previous hypothesis that progressive brain atrophy could affect the

long-term outcome of DBS, lead to side effects, and render programming

more difficult.32 However, remarkably in our case, programming could

be maintained at similar current densities throughout the 4-year course.

It is possible that smarter DBS devices, such as current steering DBS

leads, would be desirable in a situation where atrophy results in increased

proximity of adjacent structures to the intended target, resulting in a

narrower therapeutic stimulation window.33 The ideal DBS system

would facilitate directional sculpting of the electrical field in order to

selectively stimulate the intended target. Novel DBS lead designs may

also be specifically relevant for patients whose DBS leads are placed in

suboptimal locations, and may present an opportunity for better

management of anatomical shifts due to progressive atrophy over time.

In summary, this case revealed that choreic symptoms improve and

remain stable following bilateral GPi DBS with a 4-year follow-up. There

was improvement of resting chorea and stable improvement in outcome at

48 months post implantation. Despite severe atrophy of the GPi, there was

minimal, local histopathological change associated with the DBS device.
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