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1 Introduction

The universe appears isotropic on large scales, and it is thus natural to assume that whatever
it was that fueled primordial inflation, it was an isotropic system. It is interesting, however,
to analyze critically this assumption. Observations tell us that the cosmological background
and the spectrum of scalar perturbations are isotropic, but they do not tell us anything about
higher-point correlation functions or about tensor modes, for the simple reason that we have
not detected them yet.

This raises the following question: can one have a physical system driving inflation
whose dynamics are intrinsically anisotropic — perhaps maximally so — but that nevertheless
yields an isotropic background and an isotropic scalar spectrum of perturbations? We are
not interested in systems for which one can tune coefficients in the Lagrangian in order
to achieve the desired degree of isotropy, but rather in systems whose symmetries are so
powerful as to enforce such an isotropy, leaving open the possibility of anisotropic signals for
other observables.

To make the discussion more concrete, let’s consider the cubic group. This is the discrete
subgroup of rotations that maps a cubic lattice into itself. Calling x̂, ŷ, ẑ the lattice’s preferred
directions, the cubic group is simply the set of permutations of x̂, ŷ, ẑ as well as single-axis
inversions x̂ → −x̂, etc. Barring fine tunings, the dynamics of an homogenous system with
this symmetry group — such as a cubic crystal in the continuum limit — in general will not
be isotropic. However, certain observables are forced to be. In particular, because of cubic
symmetry, any two-index tensor associated with the lattice must take the form

T ij ∝ x̂ix̂j + ŷiŷj + ẑiẑj = δij . (1.1)

On the other hand, with more indices there are structures that are invariant under the
cubic group only, and can in principle lead to observable anisotropies. For instance, at the
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four-index level, the tensor structure

x̂ix̂j x̂kx̂l + ŷiŷj ŷkŷl + ẑiẑj ẑkẑl (1.2)

is invariant under the cubic group, but cannot be rewritten in terms of Kronecker deltas only.
Solids are natural candidates for considering discrete subgroup of rotations, and for this

reason we will elaborate on the above ideas in the context of solid inflation [1, 2],1 which
we review in the next section. In solid inflation, inflation is driven by a solid’s stress-energy
tensor Tµν . For the background evolution to be isotropic, one needs an isotropic T ij on the
ground state of the solid. However, T ij in general is invariant only under the symmetries
of the solid under consideration, which restricts the number of possible symmetry groups
to those whose invariant two-index tensors are accidentally isotropic. As we saw above, the
cubic group has this property.

Moving away from the background, the constraints become more severe. The fluctuating
degrees of freedom are the solid’s phonons, which can be parametrized by a 3-vector field ~π(x),
and the metric perturbations. To discuss possible anisotropies of scalar correlation functions,
it is sufficient to focus on the phonons: the longitudinal one mixes with the scalar metric
perturbations, and so any anisotropies in its dynamics will be reflected in scalar correlation
functions. In particular, the two-point function is determined by the phonons’ quadratic
Lagrangian, which takes the general form

L2 = Aij π̇
iπ̇j +Bijlm∂

iπj∂lπm , (1.3)

where Aij and Bijlm are tensors that are invariant under the symmetry group of the solid.
We see that for the scalar two-point function to be isotropic, one also needs the invariant
four-index tensors to be isotropic. As we saw above, the cubic group does not pass this test.

We will show in section 3 that the only discrete subgroup of rotations with the above
properties is the icosahedral group — the symmetry group of an icosahedron. The natural
question now is which observables are going to exhibit the anisotropies associated with such an
icosahedron: there should be many preferred directions in the sky (20, 30, or 12, depending
on whether one counts the faces, edges, or vertices), which should show up in correlation
functions. The question can be approached once again in terms of invariant tensors. The
scalar three-point function is determined by the cubic Lagrangian for the phonons, which
now can involve a six-index tensor:

L3 ⊃ T ijklmn∂iπj∂kπl∂mπn . (1.4)

We will show that the icosahedral group allows for the anisotropic invariant tensor

T ijklmnaniso ∝ 2(γ + 2) δijklmn + (γ + 1)
(
δijklδmnδmi+1 + · · ·

)
+
(
δijklδmnδmi−1 + · · ·

)
,

where γ is the golden ratio, the six-index and four-index deltas are nonzero only if all their
indices take the same value, and i + 1 and i − 1 are to be interpreted modulo 3, that is,
3 + 1→ 1 and 1− 1→ 3. This makes the three-point function potentially highly anisotropic.
In fact, we will show that there is a choice of Lagrangian coefficients for which the three-point
function is completely anisotropic, in the sense that it has exactly vanishing overlap with any
three-point function template associated with isotropic models.

1See also [3–6] for more general applications of solids in astrophysics and cosmology.
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Anisotropies can show up in the tensor spectrum as well. The reason is that the
quadratic Lagrangian for tensor modes also involves a six-index invariant tensor,

L(γ)
2 ⊃ Cijklmn ∂iγjk ∂lγmn . (1.5)

However, we will see that such six-index tensor can receive anisotropic contributions only
from higher-derivative terms in the Lagrangian. It is consistent within our effective theory
to assume that these are so large as to yield order-one anisotropies in the tensor spectrum,
and in the examples we considered we found no indication that this disrupts the technical
naturalness of the effective theory, but we have not investigated the question systematically.
We leave this for future work. Notice that a strong anisotropy in the tensor spectrum can in
principle reconcile tensions between a large tensor signal in a small patch of the sky and little
or no signal in a whole-sky average. Indeed, in a forthcoming publication we show that in our
model the tensor spectrum can be highly directional, with peaks aligned with the underlying
icosahedral structure [7].

Finally, we should emphasize that when we talk about ‘solids’ we do not mean systems
with an underlying crystal structure, but rather continuous, homogeneous solid media, which
can be more symmetric than crystals in the continuum limit. For instance, there is no crystal
with icosahedral symmetry group, but it is perfectly consistent to assume such a symmetry
for a continuous medium (in fact, there are quasi -crystals with icosahedral symmetry [8].)
Even though the solids of everyday life are not homogeneous at microscopic scales, there is
no a priori reason why there couldn’t exist (perhaps strongly coupled) field theories that at
finite density exhibit perfectly homogeneous solid-like states. If one is uncomfortable with
such an assumption, one can regard our inflationary model simply as a system of three scalar
fields with certain symmetries. As we now review, the low-energy effective field theory is the
same, which makes the difference between the two viewpoints unsubstantial.

2 Solid inflation

From an effective field theory standpoint, the mechanical deformations of an homogeneous
solid can be described in terms of three scalar fields φI(x) (I = 1, 2, 3) [9], whose expectation
values in the ground state of the solid are

〈φI〉 = xI (2.1)

and whose Lagrangian is invariant under the shift symmetries

φI → φI + aI , aI = const (2.2)

(see also [1, 10] for alternative approaches.) The φI ’s can be regarded as the comoving
coordinates of the solid’s volume elements. By Poincaré- and shift-invariance, to lowest
order in derivatives the Lagrangian must take the form

L = F
(
BIJ

)
, BIJ ≡ ∂µφI∂µφJ , (2.3)

where F is an a-priori generic function, determined by the solid’s equation of state. For a
solid with symmetry group G ⊂ SO(3), one also demands that the Lagrangian be invariant
under the internal rotations

φI → OIJφ
J , OIJ ∈ G , (2.4)

which restricts the form of F .
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For instance, in the case in which G is the full SO(3) —which is the case extensively
studied in [2]—F can only depend on three invariants, e.g.

[B] , [B2] , [B3] , (2.5)

where the square brackets denote the trace of the matrix within. Any other rotationally
invariant function of BIJ can be expressed in terms of these, e.g.

detB =
1

6

(
[B]3 − 3[B][B2] + 2[B3]

)
. (2.6)

Upon minimally coupling the solid to gravity, the form of F is restricted further by
demanding that the solid be able to drive near exponential inflation. In order for that
to happen, one needs a solid that can be stretched by a large exponential factor without
changing too much its physical properties, such as its energy density. Such a behavior is of
course unlike that of any standard solid we know of, but it can be achieved by imposing an
approximate internal scale invariance [2]

φI → λφI . (2.7)

Focusing again on the SO(3) invariant case, to implement this symmetry it is useful to
organize the three invariants (2.5) as

X = [B] , Y =
[B2]

[B]2
, Z =

[B3]

[B]3
. (2.8)

X depends on the overall normalization of B, but Y and Z do not, and as a result Y and Z are
invariant under the transformation (2.7). The requirement of approximate scale invariance
thus translates into a weak dependence of F (X,Y, Z) on X. In particular, by evaluating the
solid’s stress-energy tensor on an FRW background, one finds [2]

ρ = −F, p = F − 2

a2
FX (X = 3/a2) , (2.9)

which yields the slow-roll parameter

ε ≡ − Ḣ

H2
=

3

a2

FX
F

=
∂logF

∂logX
. (2.10)

Of course “slow-roll” here is a bad characterization, because nothing is rolling, slowly or
otherwise: the background configurations for our φI ’s only depend on the spatial coordinates.
But slow-roll parameters like ε and the higher order ones can also be defined geometrically,
without any reference to rolling fields, purely in terms of the time-dependence of the Hubble
scale H. We will adopt these geometric definitions — as we did above for ε —and still use
the standard slow-roll nomenclature.

In the presence of perturbations, the scalars and the metric are

φI = xI + πI(x) , gµν = gFRW
µν (t) + δgµν(x) , (2.11)

where gFRW
µν = diag(−1, a2, a2, a2) is the standard FRW metric. At distances much shorter

than the Hubble radius, one can neglect the metric perturbations and identify ~π(x) with the
phonon field. Expanding the solid Lagrangian to quadratic order, one finds two parameters
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cL and cT characterizing the longitudinal and transverse phonon propagation speed. These
are determined by certain derivatives of F , evaluated on the background configuration. In
particular, one finds the universal exact relation [2]

c2
T =

3

4

(
1 + c2

L −
2

3
ε+

1

3
η

)
, (2.12)

where η ≡ ε̇/εH is the second slow-roll parameter.

To study cosmological perturbations and compute their correlation functions, it is con-
venient to decompose the metric in an ADM fashion,

ds2 = −N2dt2 + hij
(
dxi +N idt

)(
dxj +N jdt

)
, (2.13)

and choose spatially flat slice gauge (SFSG),

hij = a(t)2 exp (γij) , ∂iγij = γii = 0 . (2.14)

The curvature perturbation ζ can be defined in a gauge-invariant fashion, and in the above
gauge it is related to the phonon field ~π by

ζ =
1

3
~∇ · ~π . (2.15)

Then, using standard cosmological perturbation theory, one can compute the correlation
functions for scalar and tensor modes. At the two-point function level, the relevant observ-
ables are the scalar tilt, the tensor tilt, and the tensor-to-scalar ratio:

nS − 1 ' 2 εc2
L − 5s− η (2.16)

nT − 1 ' 2c2
Lε (2.17)

r ' 16 εc5
L , (2.18)

where s monitors the time-dependence of cL, s ≡ ċL/cLH. Particularly unusual predictions
are the positivity of the tensor tilt — which would usually require a violation of the null energy
condition — and the strong suppression of the tensor-to-scalar ratio in the slow sound speed
limit, a factor of c4

L stronger than for standard single-field cases.

Expanding further the solid Lagrangian to cubic order, one finds that at leading order
in slow-roll the phonon self-interactions take the form

L(3) = M2
pa(t)3H2FY

F

{
7

81
(∂iπ

i)3 − 1

9
∂iπ

i∂jπ
k∂kπ

j − 4

9
∂iπ

i∂jπ
k∂jπ

k +
2

3
∂jπ

i∂jπ
k∂kπ

i

}
.

(2.19)
The gravitational corrections to this are suppressed both in the de-mixing regime, k �
aHε1/2, and in the strong mixing one, k � aHε1/2, and one can argue that the cubic
Lagrangian above is all one needs to compute the three-point function of curvature pertur-
bations [2].

To leading order in slow roll, the result is

〈
ζ(~k1)ζ(~k2)ζ(~k3)

〉
' (2π)3δ3(~k1 +~k2 +~k3)

3

32

FY
F

H4

M4
p

1

ε3c12
L

× Q(~k1,~k2,~k3)U(k1, k2, k3)

k3
1k

3
2k

3
3

(2.20)
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where

Q(~k1,~k2,~k3) ≡ 7

81
k1k2k3 −

5

27

(
k1

(~k2 · ~k3)2

k2k3
+ k2

(~k3 · ~k1)2

k3k1
+ k3

(~k1 · ~k2)2

k1k2

)

+
2

3

(~k1 · ~k2)(~k2 · ~k3)(~k3 · ~k1)

k1k2k3
(2.21)

and

U(k1, k2, k3) =
2

k1k2k3 (k1 + k2 + k3)3

{
3
(
k6

1 + k6
2 + k6

3

)
+ 20k2

1k
2
2k

2
3

+18
(
k4

1k2k3 + k1k
4
2k3 + k1k2k

4
3

)
+ 12

(
k3

1k
3
2 + k3

2k
3
3 + k3

3k
3
1

)
9
(
k5

1k2 + 5 perms
)

+ 12
(
k4

1k
2
2 + 5 perms

)
+18

(
k3

1k
3
2k3 + 5 perms

)}
. (2.22)

Assuming FY ∼ F , this has a potentially huge fNL,

fNL = −19415

13122

FY
F

1

εc2
L

∼ 1

εc2
L

, (2.23)

but its most peculiar feature is probably its ‘shape’ [11]—in particular, its purely quadrupolar
angular dependence in the squeezed limit k3 � k1,2:

〈ζζζ〉 ∝ (1− 3 cos2 θ)

k3
1k

3
3

, (2.24)

where θ is the angle between ~k1 and ~k3.

3 Hunting for the right symmetry group

We now want to generalize all of the above to a more general solid, invariant only under
a discrete subgroup of rotations, which nonetheless features the desiderata identified in the
Introduction: an isotropic background stress-tensor, and an isotropic quadratic Lagrangian
for the phonons. As we saw, at the mathematical level these requirements are equivalent
to demanding that all invariant two-index and four-index tensors be fully isotropic for the
symmetry group in question.

There is an infinite number of discrete subgroups of SO(3), divided into two main classes:
the crystallographic point groups and non-crystallographic ones. Let’s start with the former
class. A crystallographic point group is the symmetry group of a crystal system that can fill
all of space. This means that the group has to map all the lattice points into one another,
which is a stronger requirement than being simply a subgroup of rotations. Since there is
only a finite number of crystal systems — triclinic, monoclinic, orthorhombic, tetragonal,
trigonal, hexagonal, and cubic — there is only a finite number of crystallographic point
groups. Except for the hexagonal one, all crystal systems can be defined in terms of their
three primitive lattice basis vector, let’s call them ~a, ~b, and ~c. Then, the two-index tensor

T ij = aiaj + bibj + cicj (3.1)
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Figure 1. The relative orientation between our coordinate system and the icosahedron discussed in
the text.

is invariant under the corresponding crystallographic point group. However, this tensor is not
invariant under general SO(3) rotations unless ~a, ~b, and ~c all have the same length and are
all orthogonal to one another. So, only the cubic crystal survives. Still, as already pointed
out in the Introduction, the cubic group fails our test at the four-index level, because the
tensor structure

aiajalam + bibjblbm + cicjclcm (3.2)

is invariant under the cubic group but not under general SO(3) rotations. We thus reach the
conclusion that no crystallographic point group can meet both of our criteria.2

The non-crystallographic point groups are the icosahedral group, the infinitely many Cn
groups (n-fold rotations about a given axis), and the extensions of Cn that include some kind
of reflection. In the two last cases, already at the two-index level we can easily construct
invariant tensors that are not SO(3) invariant: for instance, the projector onto the plane
perpendicular to the rotation axis.

So, all our bets are on the icosahedral group — the symmetry group of the icosahedron.
The icosahedron has 20 triangular faces, 30 edges, and 12 vertices, and there are 60 proper
rotations that maps it into itself. Following [12], we orient our cartesian axes so that the
icosahedron has two sides parallel to x, two parallel to y, and two parallel to z, as depicted
in figure 1. In this case, the coordinates of the vertices are (up to an overall rescaling)

(±γ,±1, 0) , (0,±γ,±1) , (±1, 0,±γ) , (3.4)

where γ =
√

5+1
2 is the golden ratio.

We can find the invariant tensors in the following way. By definition, the two-index
invariant tensors should satisfy

T ij = T ′ij ≡ Iia Ijb T ab (3.5)

2The only possible exception to this argument is the hexagonal crystal, some of whose links are not primitive
lattice vectors but rather suitable linear combinations thereof. Still, one can easily show that certain two-index
tensors that are invariant under the hexagonal group are not SO(3) invariant, e.g.

T ij ∝ bi1bj1 + bi2b
j
2 + bi3b

j
3 , (3.3)

where b1 = (1, 0, 0), b2 = (1/2,
√

3/2, 0), b3 = (−1/2,
√

3/2, 0).
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for each rotation matrix I that belongs to the icosahedral group (we refer the reader to [12]
for the explicit form of the rotation matrices). Given that there are 60 elements in the
icosahedral group and 9 = 3 × 3 entries in T ij , eq. (3.5) can be interpreted as a system of
60× 9 linear equations for the entries of T ij . The solutions are3

T 11 = T 22 = T 33, all other T ij = 0 . (3.6)

That is, all two-index tensors that are invariant under the icosahedral group have the form

T ij ∝ δij , (3.7)

and are therefore fully isotropic.
We can apply the same logic to the four-index invariant tensors:

T ijlm = T ′ijlm ≡ Iia Ijb I lc Imd T abcd . (3.8)

In this case, we have 60 × 81 linear equations for the 81 = 34 entries of T ijlm, and the
solutions are

T 1122 = T 1133 = T 2211 = T 2233 = T 3311 = T 3322

T 1212 = T 1313 = T 2121 = T 2323 = T 3131 = T 3232

T 1221 = T 1331 = T 2112 = T 2332 = T 3113 = T 3223

T 1111 = T 2222 = T 3333 = T 1122 + T 1212 + T 1221

all other T ijlm = 0 . (3.9)

These conditions can be rewritten compactly using only Kronecker deltas, which shows that
all four-index invariant tensors are fully isotropic as well:

T ijlm = Aδijδlm +B δilδjm + C δimδjl (3.10)

for arbitrary A, B, and C.
Finally, let us consider the six-index invariant tensors. Following the same logic, we

now have 60× 36 = 60× 729 equations

T ijklmn = T ′ijklmn ≡ Iia Ijb Ikc I ld Ime Inf T abcdef . (3.11)

On top of the isotropic solutions, schematically of the form T ∼ δδδ, we find an
anisotropic one:

T ijklmnaniso = 2(γ + 2) δijklmn + (γ + 1)
(
δijklδmnδmi+1 + · · ·

)
+
(
δijklδmnδmi−1 + · · ·

)
(3.12)

where the dots stand for all other combinations of four and two indices out of six, the delta
tensors with more than two indices are 1 only if all those indices take the same value, and
i+ 1 and i− 1 are to be interpreted modulo 3, that is 3 + 1 = 1 and 1− 1 = 3.

It is worth mentioning that one could have derived the invariant tensors above in a per-
haps more intuitive fashion, by using as building blocks the 12 vectors ~va (a = 1, . . . , 12) that
define the icosahedron’s vertices. Clearly, by taking suitable tensor products and summing
over all the vertices, e.g.

T i1···in =
∑
a

vi1a · · · vina , (3.13)

3We used Mathematica to solve this linear system and those that follow.
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one gets tensors that are invariant under the icosahedral group. However, it is not obvious
that one can get all the invariant tensors in this way. Our brute-force analysis above settles
the question (and the answer is ‘yes’, at least up to the six-index level, if one includes tensor
products of lower-order tensors as well.)

In conclusion, the icosahedral group has exactly the properties that we are after: all
its two-index and four-index invariant tensors are isotropic, whereas its six-index ones are
not. And it is the only subgroup of SO(3) with these properties. From now on we will thus
focus on a variant of solid inflation with icosahedral symmetry, which we dub ‘icosahedral
inflation’. As already emphasized, the anisotropy of the six-index invariant tensors translates
into an anisotropy of the scalar three-point function. Our goal now is to compute such a
three-point function.

4 Cubic Lagrangian of scalar modes

An anisotropic invariant six-index tensor can induce anisotropies in the scalar three-point
function through the trilinear phonon interaction

L3 ∝ T ijklmnaniso ∂iπj∂kπl∂mπn . (4.1)

However, to figure out the most general structure of the cubic Lagrangian compatible with our
symmetries requires some work. In the SO(3)-invariant version of solid inflation, this task was
straightforward: the full solid’s Lagrangian only depends on the three invariants (2.5), each
of which can be expanded in perturbations about the background solution, up to any desired
order. In icosahedral inflation, we face the problem of classifying the allowed invariants of
BIJ . Since BIJ starts at zeroth order in ~π,

B ∼ 1 + ∂π + ∂π∂π , (4.2)

to expand the Lagrangian to any given order in ~π —cubic, in our case — we need to consider
all orders in BIJ . However, at high orders, in principle we have to include more and more
invariants,

TI1J1···InJn B
I1J1 · · ·BInJn , (4.3)

where T is a generic 2n-index tensor with icosahedral symmetry. We are not aware of any
simplifying property of the icosahedral group analogous to the SO(3) statement that an
arbitrary invariant of BIJ can be written as a non-linear function of the three fundamental
invariants (2.5). Clearly, the number of independent invariants cannot be more than the
number of independent components of BIJ —six — but using the individual components of
BIJ would make our computations messy and unreadable.

To get around this problem, we can work directly with the fluctuation of BIJ about
its background, but, as we will see below, we will have to be careful about the non-linearly
realized symmetries.4 In SFSG gauge, our building block up to cubic order is

Bij = − 1

N2

(
π̇i −Nk∂kφ

i
)(

π̇j −Nk∂kφ
j
)

+ hkm∂kφ
i∂mφ

j

4In the standard effective field theory of inflation [13], it is straightforward to write the action directly in
terms of the metric perturbations in unitary gauge, by using for instance δg00 ≡ g00 +1. As emphasized in [2],
in solid inflation the analogous variable in unitary gauge would be δgij = gij − δij/a2, but this, unlike the
full gij , does not transform nicely under the residual time diffeomorphisms, because the background δij/a2

does not.
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' δij

a2
+

1

a2

(
∂iπj + ∂jπi

)
+

1

a2
∂kπ

i∂kπj −
(
π̇i −N i

) (
π̇j −N j

)
+
(
π̇i −N i

)
Nk∂kπ

j +
(
π̇j −N j

)
Nk∂kπ

i + 2δN
(
π̇i −N i

) (
π̇j −N j

)
+ · · ·

≡ 1

a2

(
δij + πij

)
(4.4)

where we defined πij as the fluctuating part of Bij , and we stopped differentiating between
the internal I, J, . . . indices and the spacial i, j, . . . ones (the reason is that the background
〈φI〉 = xI breaks spatial rotations and internal ones down to the diagonal combination.)
Were we to expand the full non-linear action up to cubic order, we would have

F (Bij) = F0 +
∂F

∂Bij

∣∣∣
0

πij

a2
+

1

2!

∂2F

∂BijBkl

∣∣∣
0

πijπkl

a4
+

1

3!

∂3F

∂BijBklBmn

∣∣∣
0

πijπklπmn

a6
+ · · · , (4.5)

where the subscript zeros mean ‘evaluated on the background’. By the background Friedmann
equations, the first derivative of F with respect to Bij can be related to ε [2]:

∂F

∂Bij

∣∣∣
0

= ε
1

3
a2F0 δij . (4.6)

This result was derived for the original solid inflation model assuming SO(3) invariance, but
in the appendix we prove that it holds for our icosahedral inflation case as well. The higher
derivatives of F do not enter the Friedmann equations, and therefore cannot be related simply
to other background quantities. As we will see below, they do obey constraints coming from
the non-linearly realized symmetries, but for the moment we can just parametrize them as
the most general icosahedral-invariant tensors with the right index-permutation symmetries
(i ↔ j, (ij) ↔ (kl), and so on). Since the factors of πij they are contracted with have
precisely the same permutation symmetries, we can simply write

F (Bij) =F0 ·
[
1 +

1

3
ε πii + α4

(
δijδkl + β1δikδjl

)
πijπkl (4.7)

+ α6

(
δijδklδmn + β2δijδkmδln + β3δikδjnδlm + β4 T

ijklmn
aniso

)
πijπklπmn + · · ·

]
,

where the α’s and β’s are generic dimensionless coefficients, with a weak time-dependence
that can be neglected to lowest order in slow-roll.

If for the moment we ignore the metric perturbations δN and N i, then πij is simply

πij =
(
∂iπj + ∂jπi

)
+ ∂kπ

i∂kπ
j − a2 π̇iπ̇j , (4.8)

and isolating the different orders in ~π in the action above is immediate. At the quadratic
level we get

L2 = F0 ·
[
−1

3
εa2 ~̇π 2 +

(
1

3
ε+ 2α4β1

)
(∂iπj)

2 + 2α4(2 + β1) (∂iπ
i)2

]
≡ −1

3
εa2F0 ·

[
~̇π 2 − c2

T

(∂iπj)
2

a2
− (c2

L − c2
T )

(∂iπ
i)2

a2

]
, (4.9)

where

c2
T = 1 +

6α4β1

ε
(4.10)

c2
L = 1 +

12α4(1 + β1)

ε
(4.11)
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are the transverse and longitudinal phonon speeds. For these to be between 0 and 1, we need
both α4 and α4β1 to be small,

α4, α4β1 = O(ε) , (4.12)

in analogy with the FY + FZ = O(ε) · F requirement of the original solid inflation case [2].
In fact, in the appendix we prove that the two propagation speed are related by the same
constraint as in solid inflation, eq. (2.12), so that — as anticipated — up to quadratic order
in perturbations our model is indistinguishable from solid inflation.

Eq. (4.12) implies that, to lowest order in slow-roll, only the second line in (4.7) con-
tributes to the cubic Lagrangian:

L3 ' α6F0 ·
[

(8− β3)
(
∂iπ

i
)3

+ 4β2

(
∂iπ

i
) (
∂jπ

k
)2

+ (4β2 + 3β3) ∂iπ
i∂jπ

k∂kπ
j

+ 6β3∂jπ
i∂jπ

k∂kπ
i + 8β4 T

ijklmn
aniso ∂iπ

j∂kπ
l∂mπ

n

]
. (4.13)

But we are not done yet. Ref. [14] argued that the approximate internal scale invariance (2.7)
manifests itself on the structure of the phonon self-interactions in the following way: the cubic
action expanded about a phonon background ~π0 cannot correct the quadratic action for the
fluctuations if the background is isotropic, ∂iπ

0
j ∝ δij . Applying this requirement to our

cubic action yields two constraints on the β’s,

72 + 28β2 + 12β3 + 48(γ + 2)β4 = 0 (4.14)

12β2 + 12β3 + 24(γ + 2)β4 = 0 , (4.15)

which allow us to eliminate β2 and β4,

β2 = 3β3 − 18 (4.16)

β4 =
9− 2β3

γ + 2
. (4.17)

We are thus left with only two free coefficients, α6 and β3, which from now on we will
simply call α and β. In conclusion, the cubic Lagrangian for icosahedral inflation reads

L3 = αF0 ·
[

(8− β)
(
∂iπ

i
)3

+ (12β − 72) ∂iπ
i
(
∂jπ

k
)2

+ (15β − 72) ∂iπ
i∂jπ

k∂kπ
j

+ 6β ∂jπ
i∂jπ

k∂kπ
i +

8(9− 2β)

γ + 2
T ijklmnaniso ∂iπj∂kπl∂mπn

]
(4.18)

Recall that in the original solid inflation model there was only one free coefficient at
this order, FY , appearing as an overall factor in front the cubic Lagrangian (2.19)—all the
relative coefficients of the different terms were completely fixed. If we set our anisotropic
structure to zero by setting β = 9/2, we recover precisely those ratios, and we get

α = − 2

243

FY
F

(β = 9/2) . (4.19)

On the other hand, we will show in the next section that the choice β = 8 characterizes the
completely anisotropic case, in the sense that the resulting three-point function has exactly
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zero overlap with all those that one could get from isotropic models. The cubic Lagrangian
in this case is

L3 = 8αF0 ·
[
3 ∂iπ

i
(
∂jπ

k
)2

+ 6 ∂iπ
i∂jπ

k∂kπ
j

+ 6 ∂jπ
i∂jπ

k∂kπ
i − 7

γ + 2
T ijklmnaniso ∂iπj∂kπl∂mπn

]
(β = 8) . (4.20)

5 The size and shape of non-gaussianities

Like in the original case of solid inflation, and for the same reasons spelled out there [2], the
leading trilinear interactions we need to consider to compute the scalar three-point function
are the phonon self-interactions we wrote down above. That is, we can neglect interactions
involving the metric perturbations. The computation of the three-point function parallels
that in [2], with obvious modifications due the new tensor structures we have in the cubic
Lagrangian. Neglecting the weak time-dependence of the scalar modes outside the horizon,
the result is

〈ζ1ζ2ζ3〉 ' (2π)3δ3(~k1 + ~k2 + ~k3)×

(−)
9

32

H4

M4
p

· α

ε3c12
L

· Q(~k1,~k2,~k3)U(k1, k2, k3)

k3
1k

3
2k

3
3

, (5.1)

where

Q(~k1,~k2,~k3) = (8− β) k1k2k3 + 6β

(
~k1 · ~k2

)(
~k2 · ~k3

)(
~k3 · ~k1

)
k1k2k3

+ (9β − 48)

(
k1

(
~k2 · ~k3

)2
k2k3

+ k2

(
~k3 · ~k1

)2
k3k1

+ k3

(
~k1 · ~k2

)2
k1k2

)

+
−16β + 72

γ + 2

1

k1k2k3

(
2(γ + 2)ki1k

i
1k
i
2k
i
2k
i
3k
i
3 + (γ + 1)

(
ki1k

i
1k
i
2k
i
2k
i+1
3 ki+1

3

+ ki1k
i
1k
i+1
2 ki+1

2 ki3k
i
3 + ki+1

1 ki+1
1 ki2k

i
2k
i
3k
i
3 + 4ki1k

i
1k
i
2k
i+1
2 ki3k

i+1
3

+ 4ki1k
i+1
1 ki2k

i
2k
i
3k
i+1
3 + 4ki1k

i+1
1 ki2k

i+1
2 ki3k

i
3

)
+
(
ki1k

i
1k
i
2k
i
2k
i−1
3 ki−1

3

+ ki1k
i
1k
i−1
2 ki−1

2 ki3k
i
3 + ki−1

1 ki−1
1 ki2k

i
2k
i
3k
i
3 + 4ki1k

i
1k
i
2k
i−1
2 ki3k

i−1
3

+ 4ki1k
i−1
1 ki2k

i
2k
i
3k
i−1
3 + 4ki1k

i−1
1 ki2k

i−1
2 ki3k

i
3

))
(5.2)

and

U(k1, k2, k3) =
2

k1k2k3 (k1 + k2 + k3)3

{
3
(
k6

1 + k6
2 + k6

3

)
+ 20k2

1k
2
2k

2
3

+18
(
k4

1k2k3 + k1k
4
2k3 + k1k2k

4
3

)
+ 12

(
k3

1k
3
2 + k3

2k
3
3 + k3

3k
3
1

)
9
(
k5

1k2 + 5 perms
)

+ 12
(
k4

1k
2
2 + 5 perms

)
+18

(
k3

1k
3
2k3 + 5 perms

)}
. (5.3)

The overall delta function leaves us with only two independent momenta, say ~k2 and ~k3.
Usually, because of isotropy, the absolute orientation of these two vectors does not matter, and
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Figure 2. The coordinate system defined in the text. The ẑ, ẑ′ = k̂2, and x̂′ axes all lie in the
same plane.

one needs only three independent quantities to characterize the kinematical configuration:
the magnitudes k2 and k3, and the relative angle θ. For us, because of our anisotropies,
the absolute orientation matters, and so we have to keep all the six components of ~k2 and
~k3. This complicates the analysis considerably. In particular, we cannot use the standard
techniques of [11].

A convenient parametrization of ~k2 and ~k3 is the following one. Define θ2 and φ2 as the
standard polar and azimuthal angles of ~k2, but define θ3 and φ3 as the polar and azimuthal
angles of ~k3 with respect to a primed coordinate system in which the z′ axis is along ~k2,
and the x′ axis lies in the plane defined by the z and z′ axes (see figure 2). The cartesian
components of ~k2 and ~k3 thus are

~k2 = k2 (sin θ2 cosφ2, sin θ2 sinφ2, cos θ2) (5.4)

~k3 = k3 (sin θ2 cosφ2 cos θ3 + cos θ2 cosφ2 sin θ3 cosφ3 − sinφ2 sin θ3 sinφ3,

sin θ2 sinφ2 cos θ3 + cos θ2 sinφ2 sin θ3 cosφ3 + cosφ2 sin θ3 sinφ3,

cos θ2 cos θ3 − sin θ2 sin θ3 cosφ3) . (5.5)

The advantage of this parametrization is that θ3 is the relative angle between ~k2 and ~k3,
and so any dependence on θ3 is perfectly consistent with isotropy. Anisotropies show up as
a non-trivial dependence on φ2, φ3, and θ2.

Following the standard conventions for correlation functions of the Newtonian poten-
tial Φ,

Φ =
3

5
ζ (5.6)〈

Φ( ~k1)Φ( ~k2)
〉

= (2π)3δ3(~k1 + ~k2)
∆Φ

k3
1

(5.7)〈
Φ( ~k1)Φ( ~k2)Φ( ~k3)

〉
= (2π)3δ3(~k1 + ~k2 + ~k2)f(~k1,~k2,~k3) , (5.8)

we define fNL using equilateral configurations:

f(~k1,~k2,~k3)
∣∣
equil

= fNL
6∆2

Φ

k6
1

. (5.9)
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However, the equilateral-triangle condition only fixes the relative angle θ3, and so in our case
the resulting fNL depends non-trivially on the other angles, φ2, φ3, and θ2. To get a readable
expression, we average fNL over φ2 and φ3,

f̄NL(θ2) ≡ 1

4π2

∫
dφ2dφ3 fNL(θ2, φ2, φ3) . (5.10)

The remaining dependence on θ2 will still be a measure of anisotropy. For our three-point
function, we get:

∆Φ =
9

100

H2

M2
p

· 1

εc5
L

(5.11)

f(~k1,~k2,~k3) = −15

2

α

εc2
L

·∆2
Φ ·

Q(~k1,~k2,~k3)U(k1, k2, k3)

k3
1k

3
2k

3
3

(5.12)

f̄NL(θ2) = − α

εc2
L

[
19415

378
(β − 8) +

104135

6048
(2β − 9)P6(cos θ2)

]
, (5.13)

where P6 is the sixth order Legendre polynomial.
The typical size of fNL is the same as in the standard solid inflation case, parametrically

as big as 1/εc2
L if one assumes α ∼ 1 (analogous to FY ∼ F for solid inflation). But clearly

the most interesting feature here is the angular dependence of fNL: the appearance of P6 in
f̄NL(θ2) is the first indication that the case with β = 8 is a very special one, with a completely
anisotropic fNL: if we average f̄NL over cos θ2, which is equivalent to averaging the full fNL

over all angular variables, we get zero.
We can go further and, following [11], consider the overlap between our three-point

function and other ‘shapes’. This is defined as

cos (f, f ′) ≡ f · f ′√
f · f
√
f ′ · f ′

(5.14)

where
f · f ′ ≡

∑
~ki

f
(
~k1,~k2,~k3

)
f ′
(
~k1,~k2,~k3

)
/
(
σ2
k1σ

2
k2σ

2
k3

)
. (5.15)

The sum runs over all triangles in momentum space, and is in fact an integral since the
momenta are continuous variables.

If for f we take our shape (ignoring overall constant factors, which do not contribute to
the overlap (5.14)),

f(~k1,~k2,~k3)→ Q(~k1,~k2,~k3)U(k1, k2, k3)

k3
1k

3
2k

3
3

, (5.16)

and for f ′ that coming from a general isotropic model,

f ′ → f ′(k1, k2, k3) , (5.17)

we find exactly vanishing overlap if β = 8. Again, the reason is manifest if, when computing
the angular integrals for the overlap (5.14), we perform the integrals over φ2 and φ3 first:∫

dcos θ2 dφ2 dcos θ3 dφ3 ff
′ =

∫
dcos θ3

32π2

7

U
(
k1, k2, k3

)
k4

1k
4
2k

4
3

k2
2k

2
3 f
′(k1, k2, k3) (5.18)

×
∫
dcos θ2

(
(β − 8)G1(k2, k3, θ2, θ3) + (2β − 9)G2(k2, k3, θ2, θ3)

)
,
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where

G1(k2, k3, θ2, θ3) = −
[
2(k2

2 + k3
3)P2(cos θ3) + k2k3 cos θ3(1 + 3 cos2 θ3)

]
(5.19)

G2(k2, k3, θ2, θ3) =
[
k2

2 P2(cos θ3) + 2k2k3 P3(cos θ3) + k2
3 P4(cos θ3)

]
· P6(cos θ2) (5.20)

and the Pn’s are the Legendre polynomials. All quantities that only depend on the magni-
tudes k1, k2, k3 factor out of the θ2 integral, because they cannot depend on the orientation
of the triangle defined by the momenta.

We clearly see the two limiting cases now. For β = 9/2, only the G1 contribution
survives, it has no θ2 dependence, and we recover the results of the isotropic solid inflation
case. On the other hand, for β = 8, G1 is gone and G2, being proportional to P6(cos θ2),
averages to zero when we integrate over θ2.

6 Anisotropic tensor spectrum?

The existence of an anisotropic six-index invariant tensor suggests that anisotropies can
also show up in the tensor modes’ two-point function, because of the possible quadratic
Lagrangian term

T ijklmnaniso ∂iγjk ∂lγmn . (6.1)

However, it is easy to convince oneself that such a term cannot arise from expanding the
lowest-derivative action we have been working with so far,

S =

∫
d4x
√
−g
[

1

2
M2

pR+ F
(
BIJ

)]
, (6.2)

simply because all possible anisotropies are in the structure of F , but its argument BIJ =
gµν∂µφ

I∂φJ does not involve derivatives of the metric.

On the other hand, in the presence of higher derivative terms, one will generically get
such a term. Consider for instance the invariant

(g · · · g)µ1ν1···µ6ν6 · ∇µ1∇ν1φI1 · · · ∇µ6∇ν6φI6 · T
I1···I6
aniso , (6.3)

where (g · · · g) stands schematically for any twelve-index tensor built out of the metric. Set-
ting the φI ’s to their background values xI , and expanding in powers of the tensor modes γ,
the covariant derivatives ∇∇φI have the schematic form

∇∇φI ∼ H + ∂γ ; (6.4)

and so, upon taking all the contractions in (6.3), one does expect to find the term (6.1) at
quadratic order. Similar considerations apply to higher-derivative terms that involve higher
powers of curvature tensors, for instance a trilinear term schematically of the form(

Rµνρσ ∂µφ
I∂νφ

J∂ρφ
K∂σφ

L
)3
, (6.5)

with suitable contractions with our anisotropic invariant tensor T I1···I6aniso . (We need at least
three Riemann tensors, because our Taniso is totally symmetric, while Rµνρσ has antisymmetry
properties as well.)
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However, if we want the anisotropic quadratic terms that we get from these higher
derivative corrections to compete with the purely isotropic ones we get from the Einstein-
Hilbert action, we need to give the higher derivative corrections a large coefficient, of order
M2

p/H
4 in the examples above. This makes the smallness of F ,

F ∼ H2M2
p �M4

p , (6.6)

potentially unstable against quantum corrections. For instance, we expect graviton loops
involving φ’s on the external legs and the coupling (6.5) in the vertices, to drastically correct
F (BIJ). A quick order-of-magnitude estimate of this two-loop diagram

gives a correction to the effective action

∆F ∼
M5

p

H
ε21/2 , (6.7)

assuming the phonon speeds are relativistic, cL, cT ∼ 1, and we cutoff the loop integrals at
the solid’s strong coupling scale, Λstrong ∼ ε3/4F 1/4 [2]. For ∆F to be at most of order F ,
we need a small enough ε:

ε .
(
H/Mp

)2/7
. (6.8)

This goes in the opposite direction to the bound on ε that guarantees that perturbations are
weakly coupled at freeze out [2],

ε�
(
H/Mp

)2/3
, (6.9)

but, for small H/Mp, it is perfectly compatible with it.

We will not attempt a systematic analysis of higher derivative corrections here. However,
the above estimates suggest that it may be consistent to expect higher derivative corrections
to be large enough to yield order-one anisotropies in the tensor spectrum, but small enough
to preserve the technical naturalness of our effective field theory. We will investigate the
issue further in a forthcoming publication, where we will also give the detailed form of the
resulting anisotropic tensor spectrum.

7 Concluding remarks

We have shown that, among the generalizations of solid inflation with discrete rotational
symmetries, that with icosahedral symmetry is the only one that is naturally compatible
with the observed isotropy of the background and of the scalar spectrum.

The associated scalar three-point function is in general highly anisotropic, and this
suppresses its overlap with all the standard templates used in CMB data analyses. For
a specific choice of the Lagrangian coefficients (β = 8, in our notation), it is completely
anisotropic, in the sense that such an overlap vanishes exactly. This leaves open the possibility
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that a large non-gaussian signal is hiding in the data, waiting to be unveiled by a dedicated
anisotropic analysis.

It is worth pointing out that our anisotropies are not of the same nature as those
discussed in [15, 16]: there, for any given realization one expects small anisotropies in the
scalar spectrum; but, statistically speaking, these average to zero. On the other hand, in
our case it is the statistical correlation functions themselves that are intrinsically anisotropic,
potentially maximally so.

Similar considerations apply to the tensor spectrum as well: in the presence of siz-
able higher-derivative corrections, it can be highly anisotropic, which makes the standard
detection strategies inefficient, and calls for a dedicated analysis.

For the scalar modes, we see no reason for the β = 8 case to be preferred over others;
for instance we see no symmetry protecting it against quantum corrections. However, it is
a simple, consistent limit of our theory, and we find it interesting that such a completely
anisotropic limit exists at all. Is it an accidental feature of our truncation of the theory at
the cubic/three-point function level, or does it survive at higher orders as well?
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A Background stress-energy tensor

To relate the background stress-energy tensor to F and its derivatives, it is useful to organize
F ’s dependence on BIJ in terms of the variables

X ≡ [B] , bIJ ≡ BIJ

[B]

(
BIJ = gµν ∂µφ

I∂νφ
J
)
. (A.1)

X depends on the overall normalization of BIJ whereas bIJ does not. As a result, the
approximate internal scale invariance (2.7) translates into a weak X-dependence of F .

Taking the variation with respect to the metric for the solid action

Ssolid =

∫
d4x
√
−g F (X, bIJ) , (A.2)

we find the stress-energy tensor

Tµν = gµνF − 2FX∂µφ
I∂νφ

I − 2

X
FIJ
(
∂µφ

I∂νφ
J − bIJ∂µφK∂νφK

)
, (A.3)

where the subscript X and IJ stand for partial derivatives w.r.t. X and bIJ .

When we evaluate Tµν on the background configuration, we can use the fact that FIJ
must be icosahedral invariant. As we saw, for a two-index tensor this implies that it is
proportional to δIJ . The terms in parentheses in (A.3) thus cancel against each other, and
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we are left with the same background stress-energy tensor as in SO(3)-invariant solid inflation.
In particular:

ρ = −F, p = F − 2

a2
FX (A.4)

ε =
FXX

F
. (A.5)

B Phonon propagation speeds

To find the phonon propagation speeds, we should expand the solid action (A.2) to quadratic
order in the phonon field ~π. Let’s use the same X and bij variables of last section; the
expansion of the action then reads

L = FX δX + Fij δb
ij +

1

2
FXX(δX)2 + FX,ij δX δbij +

1

2
Fij,kl δb

ijδbkl + . . . (B.1)

When we specialize all the derivatives of F to the background, by icosahedral symmetry they
must take the form

Fij , FX,ij ∝ δij , Fij,kl = f1 δijδkl + f2

(
δikδjl + δilδjk

)
, (B.2)

with generic, time-dependent coefficients. This kills some of the terms in (B.1) because, by
definition (eq. (A.1)), the fluctuation of bij is traceless. We are left with

L ' FX δX +
1

2
FXX(δX)2 + f2 (δbij)2 (B.3)

We thus need δX up to quadratic order in the phonon field, and δbij up to linear order.
These are

δX = πii , δbij ' 1

3

(
πij − 1

3
πkkδij

)
, (B.4)

where πij is the fluctuation of Bij ,

Bij = δij + πij , πij = ∂iπj + ∂jπi + ∂µπ
i∂µπj . (B.5)

At quadratic order in ~π we get

L2 = −FX
[
~̇π2 − c2

T (∂iπj)
2 − (c2

L − c2
T )(∇ · ~π)2

]
(B.6)

with

c2
L = 1 + 2

FXX
FX

+
8

27

f2

FX
, c2

T ≡ 1 +
2

9

f2

FX
(B.7)

This is identical to the SO(3)-invariant solid inflation’s result, upon identifying

f2

∣∣
here

↔ (FY + FZ)
∣∣
there

. (B.8)

As a consequence, icosahedral inflation still obeys the relation (2.12), and, more in general,
is indistinguishable from solid inflation at the quadratic level.
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