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Abstract

Achieving a theoretical foundation for malaria elimination will require a detailed understanding of the quantitative
relationships between patient treatment-seeking behavior, treatment coverage, and the effects of curative therapies that
also block Plasmodium parasite transmission to mosquito vectors. Here, we report a mechanistic, within-host mathematical
model that uses pharmacokinetic (PK) and pharmacodynamic (PD) data to simulate the effects of artemisinin-based
combination therapies (ACTs) on Plasmodium falciparum transmission. To contextualize this model, we created a set of
global maps of the fold reductions that would be necessary to reduce the malaria RC (i.e. its basic reproductive number
under control) to below 1 and thus interrupt transmission. This modeling was applied to low-transmission settings, defined
as having a R0,10 based on 2010 data. Our modeling predicts that treating 93–98% of symptomatic infections with an ACT
within five days of fever onset would interrupt malaria transmission for ,91% of the at-risk population of Southeast Asia
and ,74% of the global at-risk population, and lead these populations towards malaria elimination. This level of treatment
coverage corresponds to an estimated 81–85% of all infected individuals in these settings. At this coverage level with ACTs,
the addition of the gametocytocidal agent primaquine affords no major gains in transmission reduction. Indeed, we
estimate that it would require switching ,180 people from ACTs to ACTs plus primaquine to achieve the same transmission
reduction as switching a single individual from untreated to treated with ACTs. Our model thus predicts that the addition of
gametocytocidal drugs to treatment regimens provides very small population-wide benefits and that the focus of control
efforts in Southeast Asia should be on increasing prompt ACT coverage. Prospects for elimination in much of Sub-Saharan
Africa appear far less favorable currently, due to high rates of infection and less frequent and less rapid treatment.
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Introduction

Plasmodium falciparum, the most virulent of the Plasmodium species

that cause malaria in humans, is responsible for hundreds of

millions of cases per year [1]. The number of fatal outcomes is a

matter of considerable debate, with estimates for 2010 ranging

from 655,000 to 1,238,000 [2,3]. Studies nonetheless agree that

overall levels of morbidity and mortality have declined over the

past decade, due at least in part to the worldwide scaling up of

insecticide-treated bed nets and the use of artemisinin-based

combination therapies (ACTs). ACTs, which pair fast-acting short-

lived artemisinin derivatives with longer-lasting partner drugs, are

now the first-line antimalarial drugs in almost the entire malaria-

endemic world [4,5].

Public health and malaria infection experts are increasingly

promoting the goal of malaria elimination in areas of low

transmission [6,7] while planning ways to achieve significant

reductions in higher-transmission areas [8,9]. Major obstacles,

however, stand in the way. These include insecticide and drug

resistance [10,11], under-developed health care systems, shifting

public funding priorities, donor fatigue [6], malaria importation

[12] and economic constraints [13]. The complex life cycle of P.

falciparum also presents unique challenges [14]. P. falciparum stages

differ markedly in their levels of metabolic activity, within-host

locations, and susceptibilities to antimalarials. Mathematical

modeling can help guide elimination efforts by providing

quantitative predictions to assess the feasibility of different

intervention and control strategies [15–18].
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ACTs and other antimalarial drugs reduce transmission in three

ways: by killing the disease-causing asexual blood stages and thus

preventing continued production of the intra-erythrocytic sexual

gametocyte forms; by killing existing gametocytes and reducing or

preventing onward transmission to the mosquito (thereby reducing

parasite oocyst numbers in mosquito midguts); and by post-

treatment drug prophylaxis wherein residual drug levels can

protect against new infections [19]. Here we utilize mathematical

modeling to quantify how ACTs reduce malaria transmission, with

or without late-stage gametocytocidal agents such as primaquine

(PQ) or methylene blue. These agents are receiving considerable

interest within the malaria community as to how their action

might be leveraged to help interrupt parasite transmission [20–22].

Here, we report outputs from our within-host model of P.

falciparum infection and transmission, and overlay these findings

onto geospatial maps of malaria endemicity in order to predict the

benefits of extended coverage of infected individuals and

incorporation of transmission-blocking agents into current ACT

regimens. In low-transmission settings we predict that if at least

93–98% of all symptomatic infections, corresponding to an

estimated 81–85% of all infected individuals, were treated within

five days of first fever, then the RC could be reduced to below one

and malaria would progress towards elimination in regions

harboring over ,91% of at-risk populations in Southeast Asia

and ,74% of the global at-risk population. Our findings suggest

that increasing treatment coverage with ACTs would be more

effective than adding additional transmission-blocking agents in

driving towards the goal of malaria elimination in Southeast Asia.

Results

A within-host model to predict the effects of drug
treatment on reducing malaria transmission

We used our recently developed within-host model of the

progression of P. falciparum infection [23] to simulate the densities

of asexual blood stage parasites and gametocytes in a population of

individuals with no acquired immunity to malaria. The variability

in densities among individuals was matched to the variability

observed in malaria therapy studies, in which syphilitic individuals

with no history of malaria infection were infected with P. falciparum

to induce a fever and clear the syphilis infection [23]. Of note, our

model incorporates three different types of antimalarial immunity:

an innate response that establishes an upper limit for parasite

density; a PfEMP1 variant-specific response that regulates short-

term periodic oscillations in density; and a variant-transcending

response that causes a steady log-linear decrease in density over

time, clearing the infection [23]. In our simulations, these

responses were calibrated such that the infection dynamics

matched those of experimental challenge volunteers who had no

previous malarial infections, i.e., we assumed that individuals

either had no prior episode of malaria or had acquired malaria so

long ago that their responses were equivalent to that of individuals

without prior infections. Further, we simulated only single

infections, i.e. we did not simulate infections that overlapped in

time.

Figure 1 illustrates six runs from our within-host infection

model; untreated individuals are denoted by ‘Untreated’ or ‘U’.

Figure 1A shows the log10 parasitized red blood cells (PRBC) per

mL, while Figure 1B depicts the daily gametocytemias over time,

which are typically two logs lower for untreated individuals. The

Figure 1A inset illustrates the asexual densities for the first 50

days post emergence of parasites into the bloodstream; colored

triangles illustrate the onset of first fever [23]. Once the daily

gametocytemias were simulated, a gametocyte density-to-infectiv-

ity relationship was utilized to translate these values into predicted

infectiousness to mosquitoes over time. Figure 1C illustrates the

predicted human-to-mosquito infectivity for each of the three

untreated individuals (U) using the Jeffery-Eyles (JE) relationship

between gametocyte densities and infectivity [23].

As described in detail below, we then incorporated the effects of

drug treatment into our within-host model to illustrate how this

modeled treatment affects malaria transmission. Figure 1 in-

cludes the results of a hypothetical drug treatment on three

individuals infected with P. falciparum; treated individuals are

denoted by ‘Treated’ or ‘T’. As with the untreated cases,

Figure 1A shows the asexual parasite densities in log10 PRBC/

mL, while Figs. 1B and 1C depict the daily gametocytemias and

human-to-mosquito infectivities. Treatment was assumed to begin

4, 9 and 14 days after the onset of fever. The effects of drug

treatment can be seen immediately on the asexual blood stage

population, which showed a steep drop in numbers after dosing, as

well as the gametocytemias that were lower among the treated

individuals following treatment. To calculate the net infectivity of

individuals to mosquitoes, gametocytes densities were transformed

into infectivity probabilities, and the area under the infectivity

curve was derived (AUIC). This approach was previously used

with field data [24] to estimate onward infectivity following

treatment. In the case where drugs reduced oocyst numbers

independently of their effects against gametocytes, the gametocyte

density-to-infectivity relationships were adjusted in a drug-

dependent manner. Infectivities of treated patients (T) were of

relatively brief duration and had largely disappeared within 30

days (Figure 1C). This hypothetical example illustrates many of

the processes involved in modeling the effects of drugs on

transmission. Below we describe how we have used in vitro and

field data to parameterize the various components of drug activity

and predict the effects of various antimalarial therapies in real-

world settings.

Modeling drug effects against asexual blood stage P.
falciparum parasites

To model the effects of different drugs on asexual parasite

densities, we first modeled the within-host concentrations of the

partner drugs of two ACTs, artesunate+mefloquine (AM) and

artemether+lumefantrine (AL). AM is a frequently used first-line

therapy in parts of Southeast Asia [24], while AL has recently

become the most widely-used ACT worldwide [25]. Because we

calculated our asexual parasite densities daily, we did not model

the explicit concentrations of the artemisinin derivatives, as these

drugs have half-lives of 1 to 3 hr [4]. However, we did incorporate

their fast-acting PD potency on asexual blood stage parasite

densities [4]. As a point of reference, we also modeled the drug

Author Summary

We utilize a within-host mathematical model of malaria
transmission to predict the effects of antimalarial treat-
ment across the globe. We predict that areas containing
91% of the at-risk population of Southeast Asia can
achieve elimination if at least 93–98% of symptomatic
individuals are promptly treated with effective artemisinin-
based combination therapies (ACTs), based on assess-
ments of treatment and transmission levels as of 2010. The
benefit of attaining this level of coverage far outperforms
that of adding additional gametocyte-specific transmis-
sion-blocking drugs to current ACTs. We advocate for
elimination programs in Southeast Asia to focus on
maximizing ACT coverage.

Modeling Transmission Blocking and Malaria Elimination
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concentrations of chloroquine (CQ), the former first line therapy

that is highly active against asexual blood stages and has some

activity against very early stage gametocytes but is inactive against

mature gametocytes [21]. For lumefantrine (LMF) uptake and

clearance we used a two-compartment pharmacokinetic model

parameterized from field data; for mefloquine (MFQ) and CQ we

used two-compartment non-parametric models, also parameter-

ized from field data. Model equations, model parameters, and a

description of the model fitting to average concentrations as well as

population variation are detailed in Text S1. Notably, our study

assumed that individuals were fully compliant with treatment and

that parasites were sensitive to the various drug combinations. In

future work we hope to examine how differences in patient

compliance and parasite drug susceptibility impact transmission.

Figure 2 (panels A, C, E) illustrates the results of our PK

simulations for LMF, MFQ, and CQ, respectively. The black lines

indicate the median (LMF) or mean (MFQ, CQ) of the population

concentrations, while the blue lines indicate simulated individual

concentration profiles. Model outputs revealed wide variations in

concentrations within a population, due to differences in rates of

drug uptake and clearance. The number of concentrations

depicted in each panel corresponds to the number of patients in

each of the studies that provided data for model fitting. Of note,

LMF plasma concentrations achieved considerably higher levels

than the other two agents.

To simulate the effects of these drug concentrations against asexual

parasites, we first calculated hourly plasma and/or blood concentra-

tion levels from our PK modeling. We then translated the hourly drug

concentrations into asexual activities, assuming that the dose-response

relationships could be modeled as Hill functions. These Hill functions

were parameterized from in vitro and field data (see the SI). The

asexual activities of drugs were quantified as 48-hour parasite

reduction ratios (PRRs), i.e., the fold decreases in parasite numbers

every 48 hr, corresponding to one cycle of intra-erythrocytic

development and reinvasion. Figure 2 (panels B, D, F) illustrates

the drug concentrations translated into these PRRs over time. To

calculate the asexual parasite densities in our model under the effects

of drugs for a generic day t, we took the densities from day t-1, applied

our within-host model to calculate densities on day t including both

the effects of parasite growth and host immune responses, then

multiplied densities by the square root of the mean 48-hour PRR for

drug concentrations during day t. The resulting density was then used

to calculate densities at t+1, and so on until the end of the simulation.

Regardless of the drug regimens simulated here, asexual

parasite densities fell rapidly when an individual was treated.

The PRRs nevertheless showed substantial differences between

drugs in later time periods following treatment. For example, the

LMF PPRs rapidly declined within 5–15 days of treatment,

whereas CQ took longer to decline while showing more

heterogeneity. MFQ was also heterogeneous but always showed

lower PPRs even at peak plasma concentrations. The maximal

PRRs, and the differential rates of absorption, clearance, and

volumes of drug distribution are described more fully in the SI.

Predicted effects of antimalarials on gametocyte
development and transmission

While effective drug treatment rapidly clears asexual blood

stage parasites, even successful regimens differ markedly in their

Figure 1. Illustration of asexual, gametocyte, and human-to-
mosquito infectivity model outputs. The P. falciparum infection
model was run six times to simulate three untreated individuals and
another three treated with a hypothetical antimalarial. (A) Individual
log10 asexual blood stage parasitemias as a function of the number of
days post emergence of parasites from the liver into the bloodstream.
The inset depicts the first 50 days of infection; the triangles above
indicate the first day of fever. In this example, three individuals were
assumed to seek treatment a variable number of days after the onset of
fever. The black line illustrates the approximate level of detectability by
microscopy (,10 parasitized red blood cells/mL). (B) Daily gametocy-
temias (sexual stage parasitemias) of the same six individuals. The
hypothetical drug treatment was assumed to target early stages of
gametocyte development more strongly than later stages. (C)
Estimated probability of human-to-mosquito parasite transmission for
treated (T) vs. untreated (U) individuals. Areas under the infectivity
curves (AUIC) are equivalent to the number of fully infectious days. Net
infectivity simulations yielded 1.0, 2.4, and 6.3 fully infectious days for

treated (T) and 67.7, 6.5, and 28.6 days for untreated (U) individuals,
respectively. The model outputs for untreated patients shown in panels
A–C were previously reported in [23] and are shown to compare with
our modeling of treated patients.
doi:10.1371/journal.pcbi.1003434.g001

Modeling Transmission Blocking and Malaria Elimination
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Figure 2. Modeled pharmacokinetic and pharmacodynamic profiles of lumefantrine (LMF), mefloquine (MFQ) and chloroquine (CQ)
against asexual blood stage parasites. (A) Modeled plasma concentrations of LMF. The wide variability in concentrations reflects individual
differences in absorption and clearance. The black line indicates population median drug concentrations. (B) Estimated parasite reduction ratios (PRR)
over a 48 hr blood stage cycle for LMF as a function of time post onset of treatment. PRR is the fold reduction in asexual parasite densities due to
drug action. PRR values were calculated from drug concentrations using a Hill function transformation. Each curve illustrates the PRR over time for a
simulated individual; the black line illustrates the PRR for population median drug concentrations. (C–D) Plasma concentrations for MFQ and
corresponding activities against asexual blood stage parasites. Drug concentrations reflect data from both plasma and whole blood studies. (E–F)
Modeled plasma concentrations of both CQ and its metabolite monodesethyl-chloroquine (mdCQ) are shown in turquoise; PRR against asexual blood
stages are in purple. All drug concentrations are in mg/ml.
doi:10.1371/journal.pcbi.1003434.g002

Modeling Transmission Blocking and Malaria Elimination
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effects on gametocytes. As gametocytes develop, they become

metabolically more inert, thus reducing the number of drug

targets available. Specifically, gametocytes mature over the

course of ,10–15 days through Stages I–V, with each stage

differing in metabolic activity and drug susceptibility [26]. Stages

I–IV are sequestered in the microvasculature, spleen or bone

marrow and are not present in the blood circulation. Only Stage

V gametocytes have matured to the point of releasing from

sequestered sites, thus becoming visible by blood smear. Here, we

simulated differential effects of drugs against each developmental

stage. This feature is novel to the literature so far as we know,

although a recent article did allow for a differential effect on non-

circulating vs. circulating gametocytes [27].

To parameterize the modeled effects of drugs on gametocytes,

we first conducted a literature review to examine the types of

datasets that could inform the model. There are few in vitro studies

that have measured the stage-specific effects of drugs on

gametocytes [21]; however, many field studies have examined

the clearance of gametocytes within a population after drug

treatment. These studies typically measured the proportion of

individuals who were gametocytemic by microscopy after treat-

ment (threshold for detection: ,5–10 gametocytes per mL [28,29]).

Figure S1 illustrates the prevalence of gametocytes from field

studies of patients treated with a variety of antimalarials [28,30–

38]. The field studies are disaggregated by drug type: treatment

with SP [28,30,33]; CQ or amodiaquine (AQ) (sometimes in

combination with SP) [28,30–33]; various ACTs [28,30–32,34–

36,38]; or ACTs plus PQ [35,36,38]. The inter-study variability

observed in Figure S1 was likely due to a variety of factors,

including the levels of acquired immunity in the population, exact

timing of treatment, age of treated individuals, differences in

parasite biology, and drug treatment regimens.

These data were used to calibrate the gametocyte component of

our drug effects model. To generate a set of model outputs to

compare against field data, we simulated treating individuals with a

three-day course of AM and varied the assumed killing properties of

the two component drugs. We assumed that treatment started

relatively early in the infection, i.e., 5 days after first fever, in

agreement with field studies from Thailand and Indonesia [34,38].

Treatment timing will vary from place to place given the treatment-

seeking behaviors of the local population; if treatment is delayed

significantly beyond this point, the ability of drugs to reduce

transmission is likely to be diminished. We began our simulations

assuming that the treatment had no effect on gametocytes at all; we

called this therapy purely schizonticidal. We then increased the

simulated killing properties of the combination, assuming that the

components only killed early stages of gametocytes (e.g. as for CQ).

We gradually increased this presumed killing power against early

gametocytes (from mild to varying levels of moderate to strong, as in

Figure 3A): as the killing power increased, gametocyte prevalence

post-treatment decreased. We then assumed that the short-lived

component killed both early and late stage gametocytes, with a

larger effect on the former (e.g. as for an ACT). Finally, we

simulated adding a single dose of a third drug that killed both early

and late stage gametocytes, with varying levels of activity (e.g. as for

ACT+PQ). Additionally, we varied the timing of this third

component as this has been a topic of debate [39], by assuming

that treatment occurred either on the first day of ACT treatment,

denoted by ‘,day 0.’, or last day, denoted by ‘,day 2.’. Our

studies used the simulated prevalence of post-treatment gametocyte

positive individuals as the output to be compared against field data,

since this metric was most often tracked in the field.

Once the model outputs had been generated, these were

compared to field studies of drug treatments with similar activity

(see Figures S1, S2): the modeled schizonticidal treatment data

were compared to field trials with SP; mild to moderate

gametocytocidal outputs were compared to data from field trials

of CQ, CQ+SP or AQ+SP; strong gametocytocidal outputs were

compared to ACT clinical trials data, and the modeled triple-

combination data were compared to field data for ACTs+PQ. For

each drug activity type we then chose the sets of simulations that

most closely resembled the mean, maximum, and minimum of

observed responses to represent the effects of each class of drugs

against gametocytes. We also included some intermediate sets of

simulations for the sake of comparison. Figure S2 illustrates the

model outputs that best approximated the mean and observed

variation in the field data; all model means were from 1,000 runs

for each parameterization. We modeled the entire range of

observed variation in post-treatment gametocytemias to allow for

sensitivity and robustness analyses in our results. This ‘ensemble

modeling’ approach has been used previously to model the effects

of vaccines on malaria transmission [40] as well as within-host P.

falciparum dynamics [41].

Figure 3A illustrates the results of the gametocyte activity

model fitting. The untreated model gametocyte prevalence 5 days

after first fever is shown in black. The modeled post-treatment

gametocyte prevalence assuming a pure schizonticidal combina-

tion is shown in green. The four model parameterizations that best

correspond to the observed field patterns after CQ treatment are

labeled ‘CQ mild’, ‘CQ moderate 1’, ‘CQ moderate 2’, and ‘CQ

strong’, respectively (indicating increasing levels of activity against

very early stage gametocytes). The three model parameterizations

that best correspond to the ACT field patterns are labeled ‘ACT

mild’, ‘ACT moderate’, and ‘ACT strong’, respectively. The four

model parameterizations that correspond to the ACT+PQ field

studies are labeled ‘ACT+PQ moderate ,day 0.’, ‘ACT+PQ

moderate ,day 2.’, ‘ACT+PQ strong ,day 0.’, and ‘ACT+PQ

strong ,day 2.’; the bracketed number indicates the day on

which the simulated PQ component was administered, relative to

the other two drug components.

Once the gametocyte parameterizations were fitted for each

type of drug combination, we then transformed the daily

gametocytemias before and after treatment into predicted

infectivities to mosquitoes. These transformations utilized game-

tocyte density-to-infectivity relationships derived from mosquito

feeding studies, as described in [23]. We chose two transforma-

tions, one derived from studies of mosquito feeding on malaria

therapy patients with no prior history of malaria infection (‘Jeffery-

Eyles’ or JE) and the other derived from feeding studies conducted

in field trials in Africa (‘Carter & Graves’ or CG). In short, the JE

transformation assumes that 1) gametocytes appearing in the first

few days of infection are non-infectious (immature); 2) low density

gametocytemias are relatively non-infectious; 3) high density

infections are highly infectious. The CG relationship assumes that

1) gametocytes are immediately infectious; 2) low density

gametocytemias are relatively infectious; 3) high density infections

are not as infectious as for JE [23]. These two functions are

substantially different and represent some of the possible types of

density-to-infectivity relationships. Calculation using both rela-

tionships allows us to highlight where differences in density-to-

infectivity assumptions play an important role in interpreting

model outputs [23]. It was assumed for both parameterizations

that modeled gametocytemias were infectious at densities below

the level of detection by microscopy (,5–10 gametocytes per mL).

Our model is thus able to capture the effects of ‘submicroscopic’

infections [23,35,42]. However, as densities decrease, infectivity

decreases asymptotically toward 0 (see Figure 3 of [23]). As a

simplification we assumed that gametocyte densities below 2

Modeling Transmission Blocking and Malaria Elimination
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gametocytes per 3 mL were non-infectious (given the need for 2

gametocytes per mosquito bite that typically collects ,3 mL of

blood) [23].

Figure S3 illustrates the modeled gametocytemias of

Figure 3A transformed into probabilities of mosquito infection,

along with data from feeding studies in the field [28,30–33],

treatment with various ACTs [28,30–32,34–36,38], and treatment

with ACTs plus PQ [35,36,38]. Both the JE and CG transformed

probabilities are shown; the data transformed using the JE

assumptions are in bold. The coloring of modeled infectivity data

corresponds to that of Figure 3A. The field feeding study data

were disaggregated according to the same criteria as the

gametocyte clearance data.

Once the model gametocyte and infectivity parameters were

fitted to data, we then calculated the AUIC for each drug

parameterization [23]. Table 1 provides the unadjusted net

human-to-mosquito infectivity for each of the drug parameteriza-

tions in Figure 3A. All data are from the mean of 1,000 model

Figure 3. Modeled post-treatment gametocyte prevalence and treatment effect sizes. Treated and untreated malaria infections were
simulated using our within-host malaria infection model. Modeled treatments differed according to the assumed level of gametocyte killing. Model
treatment was assumed to start 5 days after the first onset of fever; all model outputs represent the mean of 1,000 runs. (A) The number of individuals
predicted to be gametocyte positive by microscopy (threshold 5 gametocytes per mL) was tracked over time. Untreated model outputs are shown in
black. Treatment was assumed to be a combination therapy with a short-lived component (active for 3 days) and a longer-lived component with the
pharmacokinetic profile of mefloquine. The green line illustrates the effects of treatment assuming no gametocytocidal activity (‘Schizonticide’). The
assumed gametocytocidal activity of each component was progressively increased and compared to field data to generate the rest of the curves,
each labeled with their corresponding antimalarial (chloroquine, CQ; artemisinin-based combination therapy, ACT; primaquine, PQ). The curves
labeled ‘ACT+PQ’ assumed the presence of a second short-lived partner that strongly killed both early and late stage gametocytes; the number
indicates the day on which the simulated PQ component was administered. (B) Total effect sizes (fold-reductions in transmission) for each of the
modeled drug parameterizations as a function of treatment coverage, including the oocidal effects of drugs, assuming net untreated infectivity of
30.5 days, and using the ‘Jeffery-Eyles’ density-to-infectivity parameterization for treated individuals (Table 2; [23]). Each drug class is depicted in a
different color. The variation in each class is due to the different simulated levels of gametocytocidal activity for that drug type. Each line within a
given drug class represents the result of 1,000 simulation runs; the black lines indicate the mean effect sizes for each class of drug. The horizontal line
illustrates a six-fold reduction in transmission. The dotted vertical lines indicate the levels of treatment coverage needed to reach a six-fold reduction
in total human-to-mosquito transmission for each drug class. The y-axis is in log-scale.
doi:10.1371/journal.pcbi.1003434.g003

Modeling Transmission Blocking and Malaria Elimination
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runs. To determine the transmission reduction achieved with each

treatment, we divided the untreated AUIC by the treated AUIC.

For example, to calculate the transmission reduction post-

treatment, we first took untreated individuals and calculated the

mean AUIC for 5 days after first fever until the end of simulation;

the mean untreated AUIC values were 31.8 for the JE

parameterization and 29.3 for the CG parameterization

(Table 1). The post-treatment net infectivities of treated

individuals, i.e. the treated AUIC values, were 0.70 for JE and

0.94 days for CG (Table 1). Mean fold reductions in transmission,

post ACT treatment, were then 47.1 and 32.4 for JE and CG

transformations, respectively (Table 1).

The quantity most relevant for control efforts is the total effect

size, i.e., the reduction in transmission that includes the period of

transmissibility before treatment. The longer that individuals wait

to be treated, the less the maximum effect size achievable, because

these individuals could transmit the parasite prior to treatment.

After adding pretreatment infectivity (0.03 or 3.06 infectious days

for JE and CG transformations respectively), the total mean fold-

reductions for ACTs were 45.3 and 8.1, respectively. For

ACT+PQ, total mean effect sizes were predicted to be 92.2 (JE)

and 8.9 (CG), respectively. The reason for the large differences

between these two transformations is how they incorporate pre-

treatment infectivity. Thus, pretreatment infectivity plays a major

role in the total effect size. For JE, gametocytes were assumed to be

non-infectious early in the course of an infection, thus pretreat-

ment infectivity was almost nonexistent and the effect size was

determined by post-treatment infectivity. In contrast, the CG

model assumed that gametocytes were infectious upon emergence,

thus pretreatment infectivity was relatively large compared to post-

treatment infectivity.

Purely schizonticidal treatments (with zero gametocytocidal

activity) were predicted to reduce post-treatment transmission 6.2

to 5.7 fold (JE and CG, respectively). Including pretreatment

infectivity, the mean effect size of a pure schizonticide was 6.2 and

3.9 (JE and CG, respectively). For CQ, which is moderately

gametocytocidal against stage I–II gametocytes, total effect sizes

were estimated to be 15.6 and 6.0 for the JE and CG

parameterizations, respectively. These findings highlight the

substantial benefit of drugs with more potent gametocytocidal

activity in reducing transmission.

Incorporating effects on mosquito-stage parasite
development

The fold reductions in Table 1 illustrate how antimalarials

reduce transmission assuming 100% treatment coverage. Howev-

er, these calculations do not incorporate the oocidal effects of some

antimalarials. Treatments that are also oocidal (such as SP, LMF,

and MFQ [42]) will have larger effect sizes than predicted in

Table 1 because of greater reductions in overall human-to-

mosquito transmission. To calibrate oocidal drug effects, we

compared unadjusted model-predicted infectivity and observed

field infectivity post-treatment (see Text S1 and Figure S3). For

our ACT model infectivity, at day 7 the feeding studies indicated

an infectiousness of approximately 2–3.5%, whereas the model

predicted 5–8% under the JE parameterization (see Figure S3C).

This small difference between model and field studies nearly

disappeared by day 14 (possibly because of a dose-response effect

of LMF on mosquito stage development). To incorporate oocidal

activity, we thus assumed that ACTs (AL or AM) reduced onward

infectivity by 50% compared to the mean values in Table 1.

Mean post-treatment infectivity values became 0.35 (JE) and 0.47

(CG) net infectious days while the total effect sizes became 83.7

(JE) and 9.2 (CG). These data are shown in Table 2. Again, the
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assumed importance of pretreatment infectivity played a crucial

role in determining the effect sizes of treatment when the oocidal

effects of treatment were included.

When examining the effects of ACTs plus PQ, our adjustment

for the oocidal effects of PQ was different than that for LMF or

MFQ, because PQ is active against mosquito stages for only a few

days after treatment, but reduces infectivity almost completely

during its period of activity [43,44]. If we assumed that infectivity

in the first three days post ACT+PQ treatment was zero, then the

net infectivity post-treatment was 0.19 (JE) and 0.30 (CG) and the

total mean effect sizes were 162.1 (JE) and 9.6 (CG), respectively.

Figure 3B illustrates the total effect sizes for each of the modeled

drug parameterizations as a function of treatment coverage,

including the oocidal effects of drugs from Table 2, assuming that

the mean period of infectivity in untreated individuals is 30.5 days

(mean untreated infectivity from Table 1) and assuming the JE

density-to-infectivity parameterization for treated individuals. Each

drug class is depicted in a different color with individual lines

showing simulation outputs assuming varying levels of gametocy-

tocidal activity (CQ: mild, moderate 1, moderate 2, strong); (ACT:

mild, moderate, strong); (ACT+PQ: moderate 0 days delay,

moderate 2 days delay, strong 0 days delay, strong 2 days delay).

The black lines clustered within each drug class indicate the mean

effect size across all simulations. The horizontal line illustrates a six-

fold reduction in transmission, a threshold discussed below. The

dotted vertical lines indicate the levels of treatment coverage needed

to reach the six-fold reduction in total human-to-mosquito

transmission for each drug class. The y-axis is in log-scale. This

figure graphically illustrates the importance of treatment coverage

in determining the effect size of a control program.

At 100% coverage (i.e. all infected individuals), the effect size of

ACTs is 87.3 (JE parameterization, Table 2), assuming untreated

infectivity is 30.5 days. However, this value drops quickly, yielding

16.3 at 95% coverage, 9.0 at 90% coverage, 4.8 at 80% coverage,

and 3.2 at 70% coverage. For ACT+PQ, the effect sizes are 162.1,

17.7, 9.4, 4.9, and 3.3 at 100%, 95%, 90%, 80%, and 70%

coverage, respectively. Treatment with ACTs exceeds a six-fold

reduction threshold at ,84.3% coverage of the total population,

whereas the ACT+PQ regimen exceeds a six-fold reduction at

,83.9% coverage of the total population.

Sensitivity analyses
The above effect sizes (and those in Figure 3) were calculated

assuming the untreated infectivity is 30.5 days (the mean of the JE

and CG parameterizations) and using the JE parameterization for

treated individuals. If we use the average of the JE and CG

parameterizations for treated individuals, and still assume that the

untreated net infectivity is 30.5 days, the pretreatment net

infectivity is 1.55 (average from Table 1), the post-treatment

net infectivity for ACTs is 0.41 (average from Table 2), and the

computed effect sizes of ACTs become 15.6 at 100% coverage, 9.0

at 95% treatment coverage, 6.3 at 90% treatment coverage, 4.0 at

80% coverage, and 2.9 at 70% coverage. Assuming a post-

treatment net infectivity of 0.245 for ACT+PQ (average from

Table 2), these values become 17.0, 9.4, 6.5, 4.0, and 2.9 at the

coverage levels listed above. Treatment with ACTs reaches a five-

fold reduction in transmission at 85.5% coverage of the total

population; with ACTs+PQ, the coverage level required is 85.0%.

Treatment with ACTs exceeds a six-fold reduction threshold at

89.1% coverage, whereas the ACT+PQ regimen exceeds a six-fold

reduction at 88.5% coverage. These outputs suggest a barely

detectable impact of adding PQ to ACTs in the context of

reducing transmission levels with these model assumptions.

Mapping of fold-reductions in transmission necessary for
malaria elimination

To contextualize the fold-reductions in transmission theoreti-

cally achievable with various treatments, we developed a set of

maps of the fold-reductions in malaria transmission necessary to

achieve elimination in low-transmission settings. These maps were

derived from the worldwide maps of the basic reproductive

number of malaria, R0 [45], assuming the malaria control

coverage of 2010 as the baseline. We can also consider these

maps as calculating the RC, i.e. the reproductive number under

control efforts, as of 2010, though here we use the terms R0 and RC

interchangeably. R0 is a threshold criterion for transmission: if

R0.1 over a given region, the disease will spread within this region

(unless there is significant migration), if R0,1, the disease will

disappear within this region (unless there is significant importa-

tion).

In brief, the R0 values described in [45] were developed by

regressing various malariometric data (such as elevation and

rainfall) on tens of thousands of parasite rate surveys and modeling

the spatio-temporal autocorrelation structure of the residual

variation. The regressions used were Bayesian and geostatistical,

producing a full Bayesian posterior distribution for the age-

standardized parasite rate at each pixel (with a per-pixel size of

565 km, i.e. 5 km2).

Table 2. Modeled net infectivities and effect sizes of antimalarial treatment (adjusted for oocidal effects).

ACT ACT+PQ

Parameterization mild mod strong mean
mod
,0.

mod
,2.

strong
,0.

strong
,2. mean

Net Infectivity (JE) 0.45 0.33 0.27 0.35 0.24 0.26 0.10 0.16 0.19

Net Infectivity (CG) 0.60 0.45 0.37 0.47 0.34 0.41 0.16 0.29 0.30

Fold-reduction (post-treatment, JE) 70.5 96.2 115.9 94.2 129.7 120.4 318.5 194.6 190.8

Fold-reduction (post-treatment, CG) 49.0 65.6 79.6 64.8 86.3 71.3 180.1 99.7 109.4

Effect size, JE 66.8 89.3 106.0 87.3 117.4 109.7 253.1 168.1 162.1

Effect size, CG 8.9 9.2 9.4 9.2 9.5 9.3 10.0 9.7 9.6

Abbreviations: JE, Jeffery-Eyles; CG, Carter & Graves; ACT, artemisinin-based combination therapy; PQ, primaquine. Net infectivity values indicate the mean number of
days that an individual is infectious for a mosquito vector, as explained in Table 1. Effect sizes illustrate the fold reductions in transmission for an ACT or ACT+PQ
treatment, modeled with distinct levels of gametocytocidal activity). The numbers in brackets for the ACT+PQ treatments indicate the treatment day on which the PQ
component was administered.
doi:10.1371/journal.pcbi.1003434.t002
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These worldwide maps of predicted parasite rates varied in

intensity from pixel to pixel, given different magnitudes of various

malaria covariates. By utilizing empirical and theoretical relation-

ships, the maps were combined with aspects of malaria that

remain constant over time and space to calculate R0. One such

malaria invariant is the net infectivity of infected humans to

mosquitoes, assuming no acquired immunity developed over the

course of repeated infections [23]. To calculate this invariant, we

used our within-host model of malaria transmission to simulate the

progression of infectivity in thousands of simulated individuals,

and then calculated the mean area under the human-to-mosquito

infectivity curves [23].

To achieve elimination in a given area, the fold-reduction in

transmission under control must be greater than or equal to the R0

[46]. Thus, we took the worldwide maps of R0 in [45] and

calculated the fold-reductions necessary over each pixel to reduce

the estimated RC to below 1. Our maps of the transmission

reductions include estimates of uncertainty inherited from the RC

posterior densities at each pixel. Table 3 summarizes these maps

by providing the number of people living in areas requiring ,2

fold reductions in transmission to interrupt transmission, as well as

2–5, 5–10, 10–20, 20–50, 50–100, and .100 fold reductions to

interrupt transmission. Table 3 calculates these necessary fold-

reductions with 75% confidence, i.e., our posterior estimates of RC

fall within the given regions with 75% confidence.

Because our within-host model simulates the progression of

infections for individuals with no prior history of malaria infection,

our modeling conclusions are most relevant for areas of low

transmission where individuals have accumulated little acquired

immunity from prior infections. We thus restricted our analyses to

areas with R0,10, which excludes the more endemic areas of

Africa and aligns with the transmission levels prevalent in

Southeast Asia. In terms of biting intensity, an R0 of 10 translates

to a yearly entomological inoculation rate of approximately 3

infectious bites per person per year, which would result in

approximately 1.5 infections every year [47]. This upper limit of

analysis can be compared with the intensity reported in an area of

‘low and seasonal’ transmission in Thailand, where individuals had

one infection every other year [34].

Figure 4 provides a worldwide map of the probabilities that

areas can interrupt malaria transmission (RC,1) assuming a five-

fold reduction in transmission. Areas with R0.10 are masked, as

these regions have such high transmission that our modeling

predictions are less relevant. Fold reductions were organized into 6

bins for clarity. Figure 5 shows these probabilities of interruption

for Southeast Asia, where transmission is generally much lower

than in Africa. Figures S4 and S5 present maps of the

probabilities of interrupting transmission assuming two- or ten-

fold reductions in transmission, respectively. These maps are

discussed below in the context of the reductions achievable with

antimalarial drugs.

Discussion

This study calculates the effects of antimalarial therapies on P.

falciparum transmission, using a within-host model of malaria

infection [23] and a PK/PD model parameterized from field

studies. The effects of drugs are modeled on both asexual and

sexual stages of parasite development under different assumptions

Table 3. Required effect size required to reduce RC below 1, worldwide and solely in Southeast Asia, stratified by populations at
risk.

Required effect size Population Population at risk (%)
Total population
(%)

Worldwide no risk 4,362,130,000 62.89%

,2 1,672,204,000 64.97% 24.11%

2–5 223,901,000 8.70% 3.23%

5–10 94,173,000 3.66% 1.36%

10–20 83,986,800 3.26% 1.21%

20–50 123,546,000 4.80% 1.78%

50–100 84,695,100 3.29% 1.22%

.100 291,346,000 11.32% 4.20%

Total population 6,935,981,900

Total pop at risk 2,573,851,900

Southeast Asia no risk 56,595,000 24.98%

,2 135,508,000 79.71% 59.80%

2–5 19,389,600 11.41% 8.56%

5–10 7,800,520 4.59% 3.44%

10–20 3,838,410 2.26% 1.69%

20–50 2,955,060 1.74% 1.30%

50–100 477,035 0.28% 0.21%

.100 39,566 0.02% 0.02%

Total population 226,603,191

Total pop at risk 170,008,191

Abbreviations: Southeast Asia is defined here as encompassing the countries Thailand, Myanmar, Laos, Vietnam, and Cambodia. Required effect size denotes the fold-
reduction in malaria transmission needed to interrupt transmission over the given population. Confidence of interruption is at the 75% level.
doi:10.1371/journal.pcbi.1003434.t003
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of gametocyte-to-infectivity relationship. We also generate global

maps of the fold reductions in malaria transmission, i.e. the effect

sizes, necessary to achieve elimination in regions of low endemicity

(defined as having local R0 values less than 10).

From our model outputs, we can generate three major

conclusions. First, the infectivity of individuals before treatment

plays a crucial role in determining effect size. If treatment is

delayed more than only a few days after the onset of fever, and

gametocytes are infectious during this period, then the effect sizes

achievable even with first-line ACT therapies plus the gametocy-

tocidal agent PQ are limited. Second, if we account for the effects that

the partner drugs LMF and MFQ exert upon mosquito stages of the

Figure 4. Worldwide map of the predicted probabilities that a five-fold effect size will interrupt malaria transmission. This map shows
the predicted probabilities that a five-fold reduction in transmission (‘five-fold effect size’) would interrupt malaria transmission over a given pixel.
Map pixel size is 5 km2. In order to interrupt malaria transmission in a given area, the basic reproductive number for malaria under control (RC) needs
to be reduced below 1. Probabilities for each pixel are calculated according to Bayesian posterior estimates of uncertainty [45]. Probabilities have
been binned into six categories for clarity. Areas with high transmission (defined as at last a 50% probability of R0.10) are masked because our
model results are applicable to regions of relatively lower transmission. Most of Sub-Saharan Africa is masked because of the very intense
transmission. However, most of Sahelian Africa, as well as East Africa, parts of Southern Africa, most of India, as well as most of Southeast Asia and
essentially all of South America have high probabilities of interruption at this control level. Note that local conditions (within a given pixel) may be
more or less favorable to transmission than the per-pixel averages shown here, and so these maps are most applicable for regional or country-level
planning, rather than local-level control efforts. Microenvironments or ‘hotspots’ might require additional interventions and/or greater treatment
coverage than the per-pixel average [67]. Data collection sites used to construct the maps are reported in [45]. A partial database of the actual site
locations and the measured levels of malaria endemicity can be found on the Malaria Atlas Project (MAP) website: www.map.ox.ac.uk.
doi:10.1371/journal.pcbi.1003434.g004

Figure 5. Map of the predicted probabilities that five-fold reductions will interrupt transmission in Southeast Asia. The predicted
probabilities that a control effort with a five-fold reduction would interrupt transmission are shown for Southeast Asia, using the same masking of
high transmission areas (R0.10) and mapping assumptions as for Figure 4. Areas that appear to be uniform may have small-scale heterogeneities in
transmission that are beyond the scale of this map. Map pixel size is 5 km2.
doi:10.1371/journal.pcbi.1003434.g005
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parasite life-cycle, then there is little difference in the benefits of ACTs

versus ACTs+PQ in terms of transmission reductions. Both regimens

are extremely effective at stopping onward transmission, with many

fold greater benefits versus purely schizonticidal treatments that act

only upon asexual blood stage parasites. Third, the proportion of

individuals receiving treatment has a major impact on reductions in

transmission (Figure 3B). In Tables 1 and 2 our effect size

calculations assumed 100% coverage. Because untreated individuals

are so much more infectious than treated individuals, leaving even a

few individuals untreated drastically reduces the effectiveness of a

control program.

We can put these fold-reductions in context using our maps of

transmission reductions necessary for elimination. Figure 4
illustrates a worldwide map of the probabilities that a five-fold

reduction in transmission would interrupt the spread of malaria. In

this map the pixel size is 5 km2. Because our model is most

applicable in regions of relatively low transmission, we masked out

the regions where R0, the basic reproductive number, is predicted

to be greater than 10 (with a probability exceeding 50%). Higher

transmission regions are more difficult to model, given the

complex interactions of immunity, superinfection, and control.

As can be seen from the map, many areas of Africa have such

intense transmission that R0 exceeds 10, and we cannot say how

transmission might be affected by the use of drugs in such areas.

However, examining the map, one can visualize many regions

of Africa, including the Sahel, most of East Africa, and parts of

Southern Africa, where elimination would appear possible with a

five-fold reduction in transmission. Further, much of India and

Southeast Asia have low enough transmission that elimination

would be possible at this level of control. Prospects for elimination

in Myanmar and southern Thailand, however, do not appear to be

favorable. Figure 5 provides a zoomed-in view of the probabilities

of malaria elimination with an effect size of five, focusing on

Southeast Asia. Table 3 provides a quantification of the

populations at risk both worldwide and in Southeast Asia, as well

as the populations where elimination is possible at different levels

of control. Worldwide, regions where malaria can be interrupted

with five-fold reductions contain 74% of the population at risk; in

Southeast Asia regions that can interrupt transmission with five-

fold reductions harbor 91% of the population at risk.

Given these maps and quantifications of populations at risk, we

can apply our modeling results to determine the percentage of the

population that needs to be treated promptly with antimalarials to

interrupt transmission in various areas. Figure 3B illustrates the

relationship between treatment coverage with different antimalar-

ials and the resulting fold reductions in transmission, assuming the

Jeffery-Eyles gametocyte density-to-infectivity relationship (used to

calculate the needed treatment coverage levels below). To achieve

a five-fold reduction in transmission, approximately 81% of the

total infected population would need to be treated with ACTs or

ACTs+PQ. As a comparison, achieving this fold reduction with

CQ (with weak activity against early-stage gametocytes) or a

schizonticide (with no gametocytocidal activity) would require

treatment coverage of ,86% and ,96% respectively. To achieve

a six-fold reduction in transmission, approximately 84% of the

total infected population would need to be treated with ACTs or

ACTs+PQ (illustrated in Figure 3B). Our modeling thus suggests

that the addition of PQ to an ACT would provide almost

negligible benefits at these levels of coverage, reducing the fraction

of the population needing to be treated by less than 1% versus

treatment with ACTs alone that already provide quite potent

gametocytocidal activity (Figure 3B).

Combining the maps and the within-host modeling results based

on our JE parameterization, we thus estimate that promptly

treating ,81% of the total infected population with ACTs and/or

ACTs+PQ would interrupt transmission in areas covering 91% of

the population in Southeast Asia. These coverage rates are for the

infected population as a whole, regardless of whether individuals

are symptomatic or not. In a study conducted in a region of

western Thailand with low and seasonal transmission, most

infections (87%) were found to be symptomatic [48]. In

experimental challenge studies among human volunteers, all

subjects displayed some degree of symptoms [49].

If we take the former proportion (87%) as the percentage of the

infected population that is symptomatic, then 93% of the

symptomatic population would need to be treated with ACTs

and/or ACTs+PQ to achieve interruption in the areas of Figure 5
based on the predicted five-fold reduction; the percentage rises to

97% to achieve six-fold reductions. Thus, it is possible that treating

only symptomatic individuals may be sufficient to eliminate

transmission throughout most of Southeast Asia. Almost all of

these individuals, however, would need to be reached with

treatment (either through a public campaign or private sector

provisioning or a combination of both) in order to interrupt

transmission, using drugs alone. Our result that prospects for

malaria elimination are favorable for most of Southeast Asia is

supported by two other studies that also find that elimination

efforts are feasible using antimalarials in this region [50,51].

Figures S4 and S5 illustrate the probabilities assuming control

interventions with two-fold and ten-fold reductions, respectively.

At the two-fold level, much of central Thailand can interrupt

transmission, but there are significant portions of Myanmar,

Cambodia, Southern Laos, and Southern Thailand where

elimination is not likely. At the ten-fold level, there are small

pockets in Southern Thailand as well as large areas in Myanmar

where interruption is still not likely.

These estimates may be somewhat optimistic because we are

using only the JE density-to-infectivity relationship when calculat-

ing the infectivity of treated individuals. As we are focusing on low

transmission areas, this assumption seems reasonable (the JE

relationship was derived from individuals with no prior infections).

However, if we take the mean of the JE and CG relationships for

treated individuals, then we predict that it would require treating

85.5% of the total population, or 98.3% of symptomatic patients

with ACTs to achieve a five-fold reduction (85.0% of the total or

97.7% of symptomatic patients with ACTs+PQ). Further, we find

that it is not possible to achieve a six-fold reduction only treating

symptomatic individuals with either the ACTs or the ACTs+PQ

modeled here, assuming the mean of the JE and CG relationships

for treated individuals. Thus, the assumed density-to-infectivity

relationship has a large effect on the calculated effectiveness of

control programs.

We note that our maps predict the levels of control necessary to

interrupt transmission at the per-pixel level (5 km2), incorporating

uncertainty analysis. These average reductions needed to interrupt

malaria transmission are not at the per-village or per-household

level. Hotspots of transmission will need to be identified and

treated in order to achieve elimination in a given region. The

uncertainty for each pixel takes into account this heterogeneity to

some degree, but nevertheless caution is advised before using these

maps for local-scale planning. We would suggest our maps be used

to guide elimination planning at a regional or national level; for

elimination planning at a district or city level more intensive

surveillance will likely be needed.

If we consider the timelines to elimination, the narrower the

margin by which the effect size exceeds the threshold for

elimination, the longer elimination will take, as population-wide

transmission will decay more slowly [46]. Conversely, the higher
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the proportion of individuals above the needed threshold, the

faster elimination will be achieved [46]. We do not compute the

quantitative benefits of mass drug administration here, and instead

focus on individual-level treatment. However, we would qualita-

tively expect that mass drug administration may provide a benefit

to elimination efforts by speeding an area toward faster

elimination, assuming that the critical level of coverage can be

reached (i.e. the RC of the region drops to below 1). Once an area

has eliminated malaria, the costs of maintaining elimination may

be less than those needed to achieve elimination in the first place,

though more research is needed on strategies to maintain

elimination in previously endemic areas [7].

In areas where antimalarials are predicted to be insufficient to

achieve elimination, other interventions may be included in

control efforts to increase the effect size of the combined control

effort. The combined effect size is simply the product of both

component interventions. For example, if the coverage level with

antimalarials reduces transmission by three-fold and distribution of

bed nets reduces transmission another three-fold, the combined

effects are a nine-fold reduction in transmission (as long as there

are no antagonistic interactions between the two efforts). Thus,

high fold-reductions can be achieved by bundling interventions.

While we do not compute the effect sizes of other interventions

here, the results in this paper can be combined with other

modeling efforts for the purposes of an integrated elimination

effort.

Given these conclusions, serious efforts to eliminate malaria will

require extensive planning and sustained support [6]. We note the

encouraging prediction that high coverage (at least 81–85% of

total infections, corresponding to an estimated 93–98% of

symptomatic infections) with ACTs that act against P. falciparum

asexual, sexual, and mosquito stages might suffice to interrupt

transmission throughout most of Southeast Asia, especially if

complimented by insecticide-treated bed net distribution to reduce

population infectivity. We also note that the addition of a single

dose of a purely gametocytocidal drug such as PQ to ACTs can

reduce onward transmission slightly. However, the focus of control

efforts should be on maintaining a high level of treatment

coverage. Based on our modeling, PQ and similarly gametocyto-

cidal therapies added to ACTs do not appear to be a magic bullet

ensuring elimination and add only nominally to the transmission

reductions achievable with ACTs that act against the various

parasite stages at feasible levels of coverage.

Efforts are ongoing to utilize our model to predict the effects of

possible emerging artemisinin resistance, which threatens existing

ACT control strategies [10,52,53]. Additional modeling is also

required to delineate better what measures beyond expanded

ACT and insecticide-treated bed net coverage would help reduce

the RC in Africa to levels that might make elimination an

achievable goal.

Materials and Methods

Model description
Our recently reported within-host mathematical model [23] was

utilized to simulate asexual and sexual blood stage parasite

densities over time in untreated and treated individuals. This

model reproduces the range of observed parasite densities among

individuals undergoing malaria therapy, wherein adult males with

tertiary syphilis (and no acquired immunity to malaria) were

infected with various strains of P. falciparum to induce a fever in

order to clear the syphilis [29,54–56]. Our model uses a

combination of parasite antigenic variation and host immune

responses to reproduce the observed range of responses in these

patients. The model calculates the density of asexual parasites

every two days and uses log-linear interpolation to generate daily

counts. The model also calculates the daily human-to-mosquito

infectivity using gametocyte density-to-infectivity relationships

derived from mosquito feeding studies on human volunteers

[23]. The source code for our model is provided in Dataset S1
(see SI). We note that our modeling uses discrete-time difference

equations rather than a continuous time model, to calculate both

asexual densities and gametocyte densities over time. We chose the

former, as the calculation of gametocyte densities from asexual

densities is difficult with a continuous-time model because

gametocyte densities are a function of weighted cumulative

asexual densities and are highly stochastic. For a thorough

description, we refer to [57].

We also note that an insightful report by Kay and Hastings [58],

building on earlier work from this group [59], simulated the

concentrations of both artemisinin derivatives and ACT partner

drugs using compartmental PK/PD modeling. These authors also

simulated the killing effects of these drugs against asexual parasites

assuming Michaelis-Menten dose-response functions (which are

similar to the Hill functions used here). These authors focused on

the effects of emerging artemisinin resistance and provided

substantial data on artemisinin PK/PD properties. Our two

studies differ in that we simulated parasite densities daily and so we

did not explicitly model artemisinin PK values because of the short

half-lives of the artemisinins. Further, our stochastic difference

equation model of within-host parasite growth and immune

response was calibrated to match the range of variation in the

malaria therapy data [23]. We also modeled the effects of drugs

against asexual, sexual, and mosquito stages of development.

Thus, The Kay and Hastings study [58] is a representation of the

effects of drugs against asexual stages incorporating resistance,

whereas our study focused on the effects of drugs on total human

malarial transmission. Importantly, their simulations predict that

the spread of ART resistance would result in a potentially rapid

decline in ACT effectiveness. In future studies, we plan to

investigate the effect of ART resistance on effect sizes and how this

would impact the required treatment coverage to drive the RC to

below 1 in low-transmission settings.

Antimalarial drug pharmacokinetics
PK modeling was used to simulate the concentrations of

antimalarial drugs after uptake. The concentrations of CQ and its

active metabolite, monodesethyl-chloroquine (mdCQ), were sim-

ulated using a non-compartmental model parameterized with data

from Papua New Guinean children [60]. For LMF, a two-

compartmental model was developed from plasma concentration

data from the treatment of uncomplicated individuals in western

Thailand (Mae La) [61]. For MFQ, a non-compartmental model

was developed that incorporated data from two studies, one in

Thailand [62] and the other in Peru [63] (the Peruvian study used

whole blood concentrations, rather than plasma). The plasma

concentrations of the artemisinins were not modeled, although

such data exist [62]. This is because the half-lives of the

artemisinins are so short (,1–3 hr) that effective concentrations

are gone within one day after uptake [62]. A full description of the

PK modeling is provided in the SI.

Drug pharmacodynamics against asexual parasites
The dose-response effect of antimalarials against asexual

parasites was assumed to follow the commonly used ‘Hill function’

[64], a four-parameter dose-response function: K(x)~ a{bð Þ
.�

1z x=cð Þd
� �Þzb, where a is set to 0, b is set to 1, c is what we
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term the EC50, d is the Hill slope, and x is the plasma

concentration of the drug. The Hill function dose-response curve

type was chosen because this function type was utilized by both of

the references that provided in vivo EC50 values for MFQ [65,66],

and because many of the in vitro studies using CQ and LMF used

Hill dose-response relationships to model the effects of drugs

against asexual blood stage parasites. Because each drug has a

characteristic maximum inhibitory effect, this dose-response

function was scaled by the maximum parasite reduction ratio

(PRR) for each drug. To determine the effect on asexual parasites

of a drug concentration on a given day t of modeling, the asexual

parasite densities from day t-1 were used as inputs into the within-

host model. The predicted densities on day t were then calculated,

incorporating the effects of host immunity and parasite growth.

The mean of
ffiffiffiffiffiffiffiffiffiffiffi
PRR
p

:K xð Þ over day t was then subtracted from the

within-host simulations after appropriate log transformation to

calculate the end of day asexual parasite densities, incorporating

the effects of host immune responses, parasite growth, and drug

concentrations. These densities were then used to calculate the

asexual parasite densities on day t+1, and so on until the end of the

simulation time. A full description of the PD modeling against

asexual blood stages is provided in the SI.

Drug pharmacodynamics against gametocytes
The dose-response effect of antimalarials against gametocytes

was assumed to follow a binary model, where antimalarials act

against gametocytes only if drug concentrations are above a

certain drug-specific threshold. This binary model was adopted

because of the current paucity of dose-response data against

gametocytes, as compared to asexual blood stage parasites where

the many data sets permit the use of Hill slopes to define dose-

response relationships. The threshold for gametocyte activity was

chosen to be the in vitro IC50 against asexual blood stage parasites

scaled by a factor of five [21]. For CQ, LMF, and MFQ, this value

is 40, 174, and 322 ng/ml, respectively (SI). To determine the

stage-specific gametocytocidal effects of drugs, the within-host

malaria model was first run assuming treatment with a purely

schizonticidal combination therapy. The post-treatment gameto-

cyte clearance curves from these simulations were then compared

to clearance curves from field studies using SP [28,30–38] to

validate the model outputs. In separate simulations, we assumed

that individuals were treated with a combination that was weakly

gametocytocidal, and these results were compared to field data

from CQ trials [28,30–33] to choose a drug parameterization. We

also performed simulations assuming treatment with a stronger

gametocytocidal combination, and modeled our parameters by

comparing these results with ACT field trial data [28,30–32,34–

36,38]. Finally, we simulated treatment with a stronger gameto-

cytocidal combination paired with a third highly gametocytocidal

drug, and compared these results to ACT+PQ field data

[35,36,38] to parameterize this combination. Outputs from

modeled drug parameterizations that were consistent with

observed trends were considered representative of that type of

treatment. A full description of the process of model parameter-

ization of antimalarial effects against gametocytes is provided in

the SI.

Drug pharmacodynamics against mosquito-stage
parasites

Once the ensembles of gametocyte densities after treatment had

been generated for various drug combinations, we used two

different gametocyte density-to-infectivity relationships (‘Jeffery-

Eyles’ and ‘Carter & Graves’) to translate the daily gametocyte

densities into predicted human-to-mosquito infectivities [23].

These modeled daily infectivities were then compared to field

studies in which mosquitoes were fed on human volunteers after

treatment. For the effects of a single dose of PQ on drug

transmission, we assumed that the first three days post-treatment

were non-infectious (including the day of treatment). For the

effects of partner drugs with longer half-lives that are active against

sexual-stage parasites for longer periods (LMF, MFQ), we scaled

the area under the infectivity curve (AUIC).

Analysis of model uncertainty
To quantify the uncertainty associated with our predictions, we

utilized an ensemble modeling approach [40,41]. In ensemble

modeling, various scenarios are simulated to illustrate the effects of

changing assumptions of model outputs. Ensemble modeling is

especially appropriate when insufficient or conflicting data exist to

determine the relative likelihoods of the possible scenarios. For our

ensembles, we used different sets of assumptions about the stage-

specific effects of drugs against gametocytes and the type of

gametocyte density-to-infectivity relationship to map out the

uncertainties associated with our best-estimate predictions of the

effects of drugs on transmission.

Supporting Information

Dataset S1 Text of source code for model (final_mo-
del.rtf).

(RTF)

Figure S1 Post-treatment gametocyte prevalences from
field studies. The graphs show gametocyte prevalences of field

populations after antimalarial treatment. Gametocyte positivity

was assessed using microscopy (threshold ,5–10 gametocytes per

mL blood). The notation (‘2 Day 0’) indicates that only individuals

who were gametocyte negative at admission were included in the

study. Field notes include the location of study and subset of

population treated. All study curves represent mean population

values linearly interpolated from measured prevalences. (A) The

percentage of individuals positive for gametocytes after treatment

with sulfadoxine-pyrimethamine (SP) [28,30,33]. The pattern after

SP treatment can be described as an inverted-V: few mature

gametocytes were present at treatment because treatment was

relatively prompt and some studies excluded gametocyte carriers

at admission. A peak in prevalence was caused by sequestered

gametocytes emerging into the blood stream. The peak gradually

declined as the immune system cleared gametocytes from the

blood. (B) Gametocyte prevalences after treatment with chloro-

quine (CQ) or amodiaquine (AQ) (sometimes in combination with

SP) [28,30–33]. (C) Gametocyte prevalences after treatment with

various artemisinin-based combination therapies (ACTs): (arte-

mether-lumefantrine, AL), (artesunate, A1, A3, AS), (artesunate-

mefloquine, AM), (dihydroartemisinin-piperaquine, DHP) [28,30–

32,34–36,38]. (D) Gametocyte prevalences after treatment with

ACTs plus primaquine (PQ) [35,36,38].

(PDF)

Figure S2 Comparison of modeled post-treatment ga-
metocyte prevalences to field study data. The post-

treatment gametocyte prevalences from Figure S1 were averaged

to create a set of target data to parameterize the modeled effects of

antimalarials on transmission. (A) The mean of the field data after

treatment with sulfadoxine-pyrimethamine (SP) [28,30,33] is

illustrated by the red line and the range of observed responses

are depicted in light blue. The modeled gametocyte carriage

curves are shown in black and green. All model treatment was
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assumed to start 5 days after the first onset of fever, consistent with

average behavior from field studies [34,38]. All model outputs

represent the mean of 1,000 runs. The solid black line illustrates

modeled gametocyte carriage among untreated individuals; the

dashed black line illustrates modeled clearance in untreated

individuals among gametocyte negatives at admission (‘- Day 0’).

Modeled gametocyte clearance in untreated individuals is

mediated only by immune processes as described in [23]. The

solid green line depicts modeled gametocyte prevalence after

treatment with a schizonticidal combination therapy (i.e. a short-

lived component that rapidly kills asexual parasites and a longer-

lived one that is less potent; neither are assumed to affect

gametocytes); the dashed green line depicts modeled gametocyte

carriage after schizonticidal treatment, including only gametocyte

negative individuals at treatment (‘- Day 0’). (B) Gametocyte

prevalences after treatment with chloroquine (CQ) or amodia-

quine (AQ) (sometimes in combination with SP) [28,30–33]; mean

values are illustrated in red, range in blue. Modeled gametocyte

prevalences are also provided. Model prevalences assume

treatment with a combination of drugs (short-lived and long-lived)

that kill asexual parasites but only affect early stage gametocytes.

Mild, moderate (2 being stronger than 1), and strong model

outputs vary in the assumed intensity of early stage gametocyte

killing. (C) Gametocyte prevalences after treatment with various

artemisinin-based combination therapies (ACTs) [28,30–32,34–

36,38]; mean values are in red and the range is illustrated in blue.

Model data illustrate treatment with a combination of drugs, a

shorter-lived one that kills both early and late stage gametocytes

and a longer-lived partner that only kills early stages. Model

outputs vary in their assumed gametocyte killing strengths. The

curve labeled ‘no late stage effects’ illustrates the effects of a

combination that has no effect on gametocytes aged .13 days old.

(D) The same data as in (C) are illustrated with the exception that

two ACT field studies were removed from the field data curves

because of potentially confounding drug resistance effects

(CQ+AS, [31] and SP+AS, [35]). (E) Gametocyte prevalences

after treatment with ACTs plus primaquine (PQ) [35,36,38]; the

red line indicates the mean of field studies; the range of studies is

shown in blue. Model outputs assume treatment with three drugs:

a short-lived drug that kills early and late stage gametocytes, a

long-lived partner that kills late stage gametocytes only (these first

two drugs were parameterized from the ACT field data, using the

‘mild’ parameterization), and a second short-lived partner drug

that strongly kills both early and late stage gametocytes. The

designation of ,day 0. or ,day 2. refers to the numbers of days

that single dose PQ was delayed after initiating ACT treatment

(i.e. simultaneously or 2 days after).

(PDF)

Figure S3 Infectivity to mosquitoes after treatment.
These graphs illustrate the probability that a human will infect a

mosquito following antimalarial treatment. Infectivity is defined

as the probability that a mosquito bite will produce oocysts.

Field study data are indicated with markers; model outputs are

indicated by curves. All model outputs represent the mean of

1,000 runs; treatment was assumed to begin 5 days after first

fever. Field markers represent the mean from a set of mosquito

feedings. Model output curve coloring is taken from Figure S1.

Two different gametocyte density-to-infectivity relationships

were used to model infectivity: Jeffery-Eyles (in bold; JE) and

Carter & Graves (CG) [23]. Some field and model data included

only gametocyte negative individuals at admission, as indicated

by (‘Day 0 2’); others included all individuals (‘Day 0 +/2’). (A)

Field data post-treatment with SP (sulfadoxine-pyrimethamine)

or SP plus amodiaquine (AQ) [28]. The modeled outputs are

from simulations approximating the effects of chloroquine (CQ)

treatment. Field-measured infectivity after SP treatment resem-

bles that of modeled CQ treatment, even though gametocyte

densities after SP treatment were much higher than after CQ.

The discrepancy is explained in part by evidence that SP acts

against the mosquito stages of development, thus reducing the

human-to-mosquito infectivity for given levels of gametocytemia

[68–70]. (B) Field-measured infectivity after treatment with CQ,

SP, or CQ+SP [30–33]. Model outputs were normalized to

remove simulated individuals positive at treatment. The JE

parameterization is more consistent with field data, although it is

unclear how infectious individuals were 0–3 days post-treatment.

(C) Field-measured infectivity [28,37] and modeled outputs after

treatment with artemisinin-based combination therapies (ACTs),

including only individuals that were gametocyte negative at

admission. (D) Field-measured infectivity [30–32] and modeled

outputs after treatment with artemisinin-based combination

therapies (ACTs), including all treated patients. The JE

parameterization is more consistent with field data, at least

after the initial period of infection. (E) Field-measured infectivity

after treatment with ACTs [28,37]; modeled infectivity is for

ACTs plus primaquine (ACT+PQ). The lack of field infectivity

data for the ACT+PQ combination treatment precludes direct

comparison, but the ACT-treated field data is provided for

reference. (F) Field-measured infectivity after treatment with

ACTs, excluding individuals positive for gametocytes [30–32];

modeled infectivity is for ACT+PQ, also after exclusion. The JE

parameterization produced infections that are infectious only at

an extremely low level.

(PDF)

Figure S4 Maps of the predicted probabilities that a
two-fold effect size will interrupt malaria transmission.
The upper map shows the predicted probabilities that a two-fold

reduction in transmission (‘two-fold effect size’) would interrupt

malaria transmission over a given pixel. Map pixel size is 5 km2. In

order to interrupt malaria transmission in a given area, the basic

reproductive number for malaria under control (RC) needs to be

reduced below 1. Probabilities for each pixel are calculated

according to Bayesian posterior estimates of uncertainty (45).

Probabilities have been binned into six categories for clarity. Areas

with high transmission (R0.10) are masked because our model

results are applicable to regions of relatively lower transmission.

Note that local conditions (within a given pixel) may be more or

less favorable to transmission than the per-pixel averages shown

here, and so these maps are most applicable for regional or

country-level planning, rather than local-level control efforts.

Microenvironments or ‘hotspots’ might require additional inter-

ventions and/or greater treatment coverage than the pixel average

[67]. The lower map inset illustrates the predicted probabilities

that a control effort with a two-fold reduction would interrupt

transmission in Southeast Asia, using the same masking of high

transmission areas (R0.10) and mapping assumptions as for the

upper map. Areas that appear to be uniform may have small-scale

heterogeneities in transmission that are beyond the scale of this

map.

(PDF)

Figure S5 Maps of the predicted probabilities that a
ten-fold effect size will interrupt malaria transmission.
The upper and lower maps are illustrated as per Figure S4,

except that Figure S5 shows the predicted probabilities that a ten-

fold reduction in transmission (‘ten-fold effect size’) would

interrupt malaria transmission over a given pixel (size is 5 km2).

(PDF)
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Text S1 Pharmacokinetic and pharmacodynamic equa-
tions and distributions [71–90].
(PDF)
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