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Abstract 

Cytoskeletal Regulation of Centromere Maintenance and Function  

in the Mammalian Cell Cycle 

Chenshu Liu 

 

Equal partitioning of genetic materials of the chromosomes is key to the mitotic cell cycle, as 

unequal segregation of chromosomes during mitosis leads to aneuploidy, a hall mark of human 

cancer. Accurate chromosome segregation is directed by the kinetochore, a proteinaceous 

structure on each sister chromosome that physically connects the chromosome to the spindle 

microtubules. Kinetochore assembles at the centromere, a specialized chromosome region 

epigenetically defined by the histone H3 variant centromere protein A (CENP-A) in higher 

eukaryotes including mammals. In order to maintain centromere identity against CENP-A 

dilution caused by S phase genome replication, new CENP-A molecules are loaded at preexisting 

centromeres in G1 phase of the cell cycle. Despite of the several important stages and molecular 

components identified in CENP-A replenishment, little is known about how new CENP-A 

proteins become stably incorporated into centromeric nucleosomes. Here by using quantitative 

imaging, pulse-chase labeling, mutant analysis, cellular fractionation and computational 

simulations, I have identified the cytoskeleton protein diaphanous formin mDia2 to be essential 

for the essential for the stable incorporation of newly synthesized CENP-A at the centromere. 

The novel function of mDia2 depends on its nuclear localization and its actin nucleation activity. 

Furthermore, mDia2 functions downstream of a small GTPase molecular switch during CENP-A 

loading, and is responsible for the formation of dynamic and short actin filaments observed in 

early G1 nuclei. Importantly, the maintenance of centromeric CENP-A levels requires a pool of 



polymerizable actin inside the nucleus. Single particle tracking and quantitative analysis revealed 

that centromere movement in early G1 nuclei is relatively confined over the time scale of initial 

CENP-A loading, and the subdiffusive behavior was significantly altered upon mDia2 

knockdown. Finally, knocking down mDia2 results in prolonged centromere association of 

Holliday junction recognition protein (HJURP), a chaperone required to undergo timely turnover 

to allow for new CENP-A loading at the centromere. Our findings suggest that diaphanous 

formin mDia2 forms a link between the upstream small GTPase signaling and the downstream 

confined viscoelastic nuclear environment, and therefore regulates the stable assembly of new 

CENP-A containing nucleosomes to mark centromeres’ epigenetic identity (Chapter 2 and 3). 

 

While centromere identity is essential for kinetochore assembly, once kinetochores are 

assembled, fine-tuned interactions between kinetochores and microtubules become important for 

a fully functioning mitotic spindle during chromosome segregation. It has been previously found 

that another diaphanous formin protein mDia3 and its interaction with EB1, a microtubule plus-

end tracking protein, are essential for accurate chromosome segregation1. In Chapter 4 of this 

thesis, I found that knocking down mDia3 caused a compositional change at the microtubule 

plus-end attached to the kinetochores, marked by a loss of EB1 and a gain of CLIP-170 and the 

dynein light chain protein Tctex-1. Interestingly, this compositional change does not affect the 

release of cytoplasmic dynein from aligned kinetochores, suggesting a population of Tctex-1 can 

be recruited to the kinetochores without dynein. During mitosis, Tctex-1 associates with 

unattached kinetochores and is required for accurate chromosome segregation. Tctex-1 

knockdown in cells does not affect the localization and function of dynein at the kinetochore, but 

produces a prolonged mitotic arrest with a few misaligned chromosomes, which are subsequently 



missegregated during anaphase. This function is independent of Tctex-1’s association with 

dynein. The kinetochore localization of Tctex-1 is independent of the ZW10-dynein pathway, but 

requires the Ndc80 complex. Thus, our findings reveal a dynein independent role of Tctex-1 at 

the kinetochore to enhance the stability of kinetochore-microtubule attachment. 

 

Together, these work suggest novel regulatory roles of the cytoskeletal systems in the 

maintenance as well as subsequent functions of the centromere/kinetochore, and provide 

mechanistic insights into the complex control principles of accurate chromosome segregation. 

Our findings provide a new model in understanding the epigenetic maintenance of genome 

integrity, and will have implications with regard to how aberrant cell divisions underlying 

aneuploidy can be targeted in the treatment of cancer.
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Introduction 

For every cellular life form on earth, one of the most conspicuous phenomena is the ability 

to go through mitotic cell division cycles in order to proliferate. In mammals, the mitotic cell cycle 

is an essential constituent of the homeostasis of any proliferative tissue. Key to the mitotic cell 

cycle is the equal partitioning of genetic information stored in the chromosomes every time the 

cell divides. Errors in this process could cause aneuploidy, a condition where daughter cells inherit 

incorrect numbers of chromosomes after mitosis and thus a hallmark of early developmental 

defects and malignant tumor progression2. 

 

During the cell cycle, accurate and equal chromosome segregation relies on the highly 

regulated spatiotemporal dynamics of the chromosomes and their interaction with the 

cytoskeletal systems. These interactions include the proper interactions between chromosomes 

and the spindle microtubules at the kinetochores. The kinetochore, a proteinaceous complex 

assembled at the centromere region of each mitotic chromosome, functions as the sites for 

microtubule plus end attachment and powers chromosome movement essential for their equal 

segregation. Because kinetochores are dynamic structures that go through assembly/disassembly 

in every cell cycle3, it is important for each kinetochore to remember where assembly occurs on 

the chromosome every time the cell divides.  The centromeric chromatin (the centromere) serves 

as the landmark for kinetochore assembly, and based on this specialized chromosomal region a 

functional kinetochore can be built at the right location over many rounds of cell divisions. 

Instead of the underlying DNA sequences, mammalian centromeric chromatin are determined 

epigenetically by nucleosomes containing the histone H3 variant centromere protein A (CENP-

A). Due to CENP-A dilution as DNA replicates in S-phase,  newly synthesized CENP-A proteins 
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are deposited during early G1-phase of each cell cycle at preexisting centromeres to maintain 

their identities4. A number of molecular pathways required for CENP-A deposition have been 

identified, however, the stable incorporation of new CENP-A at centromeres and the 

relationships between multiple pathways underlying different phases of CENP-A loading, remain 

poorly understood.  

 

In this chapter, I will review the field of centromere/kinetochore biology, with a special 

focus on the epigenetic determination of centromere identity, as well as the highly regulated 

kinetochore-microtubule attachment essential for chromosome segregation. I will also give a 

brief overview on the major cytoskeleton systems that play critical roles in both interphase and 

mitosis, in order to ensure proper centromere/kinetochore functions underlying accurate 

chromosome segregation. 

 

The kinetochore and the centromere in dividing cells: an overview 

Mitosis starts with the characteristic changes of chromatin/chromosomes in shape and 

position: prior to nuclear envelop breaks down in prophase, the replicated chromatin fibers 

condense into chromosomes that is optically resolvable, the condensed chromosomes then move 

toward the center of the cell in prometaphase, and join each other in collectively forming the 

metaphase plate. Each sister chromatid is then separated and segregated toward the opposite 

poles of the mother cell during anaphase, and ultimately end up in each of the two daughter cells 

in telophase when cytokinesis completes5,6. It was first observed and described by Walther 

Flemming in the late nineteenth century that the condensed chromosomes in mitosis connect to 
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the spindle fibers (now known as spindle microtubules) at well-defined sites on the 

chromosomes7. These attachment sites on the chromosomes were later coined as ‘centromeres’ 

by Cyril Darlington in 19365, a term now commonly used when referring to the specialized 

chromosomal region that joins two sister chromatids of a chromosome, upon which complex 

protein assemblies are built to attach to spindle microtubules. With early cytogenetics studies 

where individual metaphase chromosomes spread were stained, centromeres are visibly the 

‘constriction’ sites on a typical, ‘X’ shaped metaphase chromosome8. Being a marker for 

geneticists in analyzing relative positions of genetic loci along each chromosome9, the 

centromere itself remained a challenging problem regarding its form and function for almost a 

century until a better definition of kinetochore structure was available in the 1960s. 

 

Through thin-section transmission electron microscopy, it has been shown that 

kinetochores in vertebrate cells assume a trilaminar structure 10-13 – the inner kinetochore, the 

central kinetochore and the outer kinetochore (Figure 1.1). The inner kinetochore makes direct 

contact with centromeric chromatin, while the 50-60 nm thick outer kinetochore directly attaches 

to the plus ends of spindle microtubules. The central kinetochore is defined as the region 

between the dense inner and outer layers. Expansion of the outer layer can be observed under 

conditions spindle microtubule is depolymerized and is called fibrous corona3,14. Across different 

species, there are two major types of kinetochores determined by the distribution of underlying 

centromeric chromatin – holocentric and monocentric. Holocentric organisms such as 

Caenorhabditis elegans have diffuse centromeres scattered along the length of the 

chromosomes15, whereas monocentric organisms such as yeasts, flies and mammals have one 

concentrated centromere at one location of a chromosome. Within monocentric organisms, the 
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budding yeast Saccharomyces cerevisiae has only one centromric mark (see next section on 

centromere for more details) per centromere instead of multiple marks clustered regionally, thus 

is called ‘point’ centric organism16. Despite the vast diversity of centromere/kinetochore 

distribution along the chromosomes, the hierarchical configuration of the kinetochore along its 

inner layer to outer layer axis is more or less similar across species17,18. Decades of work have 

generated a map of molecular architecture as well as assembly hierarchy along the kinetochore’s 

inner-outer axis. For instance, the centromere protein A (CENP-A) assembles into nucleosomes 

at inner centromere region contacting the inner kinetochore layer; CENP-B, CENP-I, CENP-T 

and other members of the ‘constitutive centromere-associated network’ (CCAN) associate with 

CENP-A nucleosomes and resides from the inner centromere to the inner kinetochore. Motor 

proteins like cytoplasmic dynein, CENP-E, microtubule associating proteins like the Ndc80 

complex, and checkpoint proteins like Bub1, on the other hand distribute in the outer layer of the 

kinetochore17. Recent advances in super resolution microscopy and computer algorithms that can 

generate localization accuracy at sub-pixel resolution continues to increase the precision of each 

centromere/kinetochore component’s relative position19. Interestingly, although physically inner 

layer components of centromere/kinetochore resides at the basis or outer layer components and 

suggests linear recruitment(s), the hierarchical relationships during kinetochore assembly 

(especially at outer kinetochore) could be more complex with feedbacks and cross talks3. 

Nonetheless, it has been widely accepted that inner centromere lays the foundation of 

kinetochore assembly thus brings up an outstanding question for the whole field: how is 

centromere determined in the first place? 
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Centromere determination and centromere protein A (CENP-A) 

As a chromosomal region, the centromere is composed of DNA and DNA-binding 

proteins like histones. A simple minded way to explain centromere determination could be using 

defined primary DNA sequences to which proteins bind. However, in the vast majority of 

eukaryotes DNA sequences responsible for nucleating centromeres are not found13. In fact, 

except in the case of the budding yeast Saccharomyces cerevisiae, where a precise 125bp-long 

DNA sequence is both necessary and sufficient for the determination of its point-centromere20-22, 

all other organisms from the fission yeast to human, centromere DNA sequences diverge greatly 

in length (fission yeast ~10kb, fruit fly ~100kb, human ~1Mb), and exhibit no discernable 

conservation across evolution or even among different chromosomes within the same species23. 

Repetitive sequences (tandem arrays of ‘satellite DNA’) are commonly found in the DNA 

sequences underlying centromeres in these organisms, however they are neither necessary nor 

sufficient for centromere determination. On one hand, ‘acquired’ functional centromere 

(‘neocentromeres’) has been found on certain rearranged chromosomes in the absence of typical 

centromeric DNA sequences24. On the other hand, DNA sequences alone cannot drive the 

formation of centromeres, evidenced by the well preserved centromere DNA sequences in stable 

dicentric chromosomes where one centromere is silenced25. In contrast to the lack of genetic 

conservation with regard to DNA-sequences underlying the centromere region, an obvious 

common theme among the vast majority of eukaryote is the presence of a particular protein at the 

centromere, the centromere protein A (CENP-A or CENH3). 

 

CENP-A was initially identified by William Earnshaw in 1986 as one of three human 

chromosomal autoantigens (CENP-A, B, C) using autoimmune sera from scleroderma-spectrum 
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disease patients26,27. Soon afterwards, this 17 kDa protein was shown to copurify with 

nucleosome core particles including histones, and exhibits histone-like properties as well as 

distinctive features not related to histone H3 or any other histones28,29. CENP-A is a relatively 

conserved protein used by the vast majority of eukaryotes for centromere determination 

(including Schizosaccharomyces pombe, Saccharomyces cerevisiae, Caenorhabditis elegans, 

Drosophila, Xenopus and Homo sapiens30-32, with the exception of certain species with 

holocentric chromosomes such as insects in the order Lepidoptera33), despite of the differences 

in holocentricity and monocentricity (Figure 1.2). Based on the work from multiple groups over 

the last decade, we now understand that CENP-A is essential for centromere’s epigenetic 

determination and function, in particular the assembly of a functional kinetochore. Depletion of 

CENP-A in C.elegans single cell embryos and human somatic cells both lead to extensive loss of 

most kinetochore proteins and result in massive chromosome misalignment and 

missegregation34,35. On the other hand, ectopic targeting of clustered CENP-A proteins at 

chromosome arms using the LacI-LacO systems in both drosophila and human cells 

demonstrated that regionally concentrated CENP-A is sufficient to drive functional kinetochore 

assembly, judging by their ability to recruit key centromere/kinetochore components including 

CENP-C and Ndc80, as well as their ability to attach to spindle microtubules during 

chromosome segregation36-38. Biochemistry and structural biology revealed that CENP-A is a 

histone H3 variant that specifically participate in the formation of nucleosomes at the centromere 

region of the chromosomes13,39. CENP-A nucleosomes are interspersed with the H3 nucleosomes 

at the centromere, as revealed with extended chromatin fibers40. While H3 nucleosomes can be 

found in both centromere and non-centromere regions of the chromosome, CENP-A 

nucleosomes can largely only be found at the centromeres.  Similar to canonical histone H3, 
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CENP-A forms a heterotetramer when co-expressed with the native binding partner histone H4. 

Despite of the identical stoichiometry of (CENP-A:H4)2 compared to (H3:H4)2 in the 

subnucleosomal heterotetramer, CENP-A dramatically differs from H3 in that the interface 

between CENP-A and H4 is mover 10 fold more rigid than that between H3 and H4, evidenced 

by a substantially reduced hydrogen/deuterium exchange rate primarily in the α2 region of 

CENP-A compared to H3 when in complex with H441. Through this unique conformational 

feature of the nucleosome, CENP-A possibly confers the epigenetic mark to direct 

centromere/kinetochore assembly.  

 

Recently work in molecular counting have revealed that in human somatic cells, there are 

about 400 copies of CENP-A molecules (200 CENP-A containing nucleosomes) per centromere 

at steady state. This number indicates that 1 in 25 nucleosomes at the centromere region is 

CENP-A containing nucleosome, and the mark of CENP-A at centromere is approximately 50 

times enriched compared to the genome in general on the chromosomes42. However, as long as 

there is a finite number of molecules residing at a chromosome locus, serial dilution will occur 

when that chromosomal locus undergoes continuous rounds of DNA replication in a proliferating 

cell. Starting with a fixed number of CENP-A molecules per centromere, if the dilution continues 

to happen, in only 10 rounds of cell divisions the number of CENP-A molecules per centromere 

will be less than 1 (Figure 1.3). Therefore an obvious question is: as a marker molecular that 

maintains centromere identity, how does CENP-A maintain its own levels at the centromere? 
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It turns out the cell addresses this problem by replenishing the CENP-A levels per 

centromeres in every cell cycle. Unlike its canonical counterpart histone H3 which is replenished 

during DNA replication in S-phase6, CENP-A loading is uncoupled from DNA replication.  

Pulse-chase analysis using a cell line stably expressing SNAP tagged CENP-A was able to 

differentiate the existing copies of ‘old’ CENP-A at the centromere and the newly synthesized 

CENP-A molecules, by fluorescently label either the ‘old’ or the ‘new’ CENP-A pools with cell 

permeable fluorescent dye (tetramethylrhodamine for instance). Using this approach, new 

CENP-A was observed to be loaded onto the centromere after mitosis, during early G1-phase of 

the cell cycle in mammals4. Fluorescent recovery after photobleaching (FRAP) experiments 

confirmed the time window for loading in early G1, using Drosophila syncytial embryos as well 

as human cultured cells43,44. Over the years, many molecular components constituting the CENP-

A loading machineries during G1-phase have been identified through biochemical affinity 

purifications and cell biology approaches35,45-50. Throughout the cell cycle, CENP-A containing 

nucleosomes at the centromere is redistributed half to half from one centromeric chromatin to 

two sister chromatids’ centromeres after centromeric DNA replication (Figure 1.4). The gaps 

left by the 50% loss of CENP-A nucleosomes per centromere is shown to be temporarily filled 

up by H3.3 containing nucleosomes as a ‘placeholder’51. As cell cycle progresses through G2 

phase and into mitosis, the two sister chromatids’ centromeres are finally segregated into two 

daughter cells, each containing 50% of the CENP-A levels compared to the unreplicated 

centromere in the mother cell. Upon mitotic exit, the down regulation of CDK1/CDK2 activity 

(an inhibitory signal to CENP-A loading machinery) together with Polo kinase 1 (Plk1, a 

positive ‘licensing’ signal required to initiate CENP-A loading) being recruited to the 

centromeres, allows the whole CENP-A loading program to start52,53. Upon the cell enters early 
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G1, the Mis18 complex (composed of Mis18α, Mis18β, and Mis18BP1/KNL2) forms a complex 

at the ‘old’ CENP-A labeled centromere46,53-55, in order to recruit the deposition of newly 

synthesized CENP-A bound to its specific chaperone Holliday Junction Recognition Protein 

(HJURP) in a prenucleosomal complex47,48. After new CENP-A:HJURP is recruited to the 

centromere, HJURP utilizes its nucleosome assembly activity to assemble CENP-A into the 

nucleosomes underlying the centromeres36,47,48. Notably, such process of CENP-A loading is 

actively initiated and can be allowed to happen only at the right time per cell cycle. Therefore, 

when CENP-A levels are restored at each centromere and the cells go through genome 

replication to finally reach the next G2/M-phase, the upregulation of CDK1/CDK2 activity will 

inhibit the assembly of Mis18 complex at the centromere and thus prevent precocious loading of 

CENP-A in mitosis52.  

 

Emerging mechanisms contributing to the stable maintenance of centromere identity 

Apart from the well-studied process of licensed CENP-A loading, recent findings in the 

field suggest additional signals and pathways essential for the stable incorporation and 

maintenance of CENP-A levels at the centromeres inside G1 cell nuclei.  

(1) A Rho family small GTPase molecular switch is required for new CENP-A 

incorporation at centromeres 

Rho family small GTPase proteins along with their cognate guanine nucleotide exchange 

factors (GEFs) and GTPase activating proteins (GAPs) participate in the signaling regulation of 

membrane and cytoskeleton dynamics56,57.  Recent studies have suggested nuclear functions of the 

Rho family small GTPase signaling.  Net1, a RhoA specific GEF, and active RhoA have been 
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found inside the nucleus58.  Nuclear pool of RhoA is specifically activated in a Net1-dependent 

manner upon ionizing radiation (IR)58.  Loss of Ect2 and Net1 has been shown to suppress RhoB 

activation upon IR-induced DNA damage59.  Rac1, another Rho family small GTPase protein, has 

a functional nuclear localization signal (NLS) for nuclear import mediated by karyopherin α2 and 

is associated with numerous nuclear proteins60.  Interestingly, recent work demonstrated that 

nuclear RhoA activity is a function of mechanochemical inputs to the nucleus, as magnetic force 

applied to nesprin-1 activates RhoA in isolated nuclei61. 

    

Leptomycin B (LMB) treatment results in a nuclear accumulation of the GTPase activating 

protein MgcRacGAP concurrent with a decrease in the cytoplasm62.  The guanine exchange factor 

Ect2 contains a NLS and is preferentially localized to the nucleus at steady state63.  Mass 

spectrometry based proteomics identified MgcRacGAP as a component of the complex associated 

with Mis18BP1/KNL2, a key player in the licensing step of the CENP-A loading 

machinery35,36,46,54,55. Fluorescently tagged MgcRacGAP exhibits dynamic centromere 

localization half-way into G1-phase. Knocking down either MgcRacGAP or Ect2 for one cell cycle 

reduces the total CENP-A levels at the centromere by half, which is consistent with a defect in 

CENP-A replenishment64.  As both Ect2 and MgcRacGAP are required for cytokinesis65, the fact 

that binuclear cells from failed cytokinesis (following Cytochalasin D or Latrunculin A treatment) 

have ordinary CENP-A levels suggest that failed cytokinesis itself is not the reason for defective 

CENP-A replenishment.  Importantly, the fact that depleting either MgcRacGAP or Ect2 results 

in the same CENP-A phenotype suggests defective small GTPase cycling, rather than either 

protein per se, is the reason underlying CENP-A reduction. Furthermore, depleting Cdc42 or Rac1, 

but not RhoA, results in a similar phenotype as MgcRacGAP or ECT2 depletion, indicating that 
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Cdc42 and/or Rac1 are the small GTPases involved in new CENP-A loading/maintenance64.  Thus, 

it is proposed that a molecular switch of Rho family small GTPase is essential in regulating 

epigenetic centromere maintenance by stabilizing newly loaded CENP-A64.  However, because 

neither CENP-A nor histone proteins have been shown to be direct effectors downstream of the 

small GTPase signaling pathways, it remains a unknown what is the molecular effector(s) that 

connect small GTPase signaling and CENP-A loading. It is difficult to know the functional role 

for the small GTPase pathway in this process without identifying the downstream effector(s).  

 

(2) Chromatin/chromosome remodeling during CENP-A loading 

Apart from MgcRacGAP-dependent small GTPase molecular switch, the stable 

maintenance of newly loaded CENP-A during the course of G1 phase requires additional 

chromatin/ chromosome associated proteins. Components of the remodeling and spacing factor 

(RSF) complex, Rsf-1 and SNF2h are shown to be required for the stable maintenance of CENP-

A levels at the centromere upon salt extraction. Rsf-1 exhibits centromere localization in mid-

G1, when it also coprecipitates with CENP-A chromatin. In addition, reconstituted and spaced 

CENP-A nucleosomes can be reconstituted and spaced by puriried RSF complex in vitro49, thus 

suggests a separate step during G1 CENP-A loading to stably incorporate CENP-A molecules in 

the centromere chromatin.  

 

RSF complex has ATP-dependent nucleosome remodeling/spacing activity and favors the 

transcription initiation of chromatin in vitro49. Several other chromatin remodeling events linked 

to active transcription have also been suggested to be important for CENP-A loading. For 



13 
 

instance, recent evidence suggest that while transcriptionally permissive marks such as 

H3K4me2 or H3K9 acetylation can promote CENP-A maintenance, while elevated levels of 

heterochromatin (transcriptionally nonpermissive) formation at α–satellite DNA inhibits CENP-

A maintenance66-68.  RNA transcript including long noncoding RNA transcripts have been shown 

to be required for CENP-A recruitment at the centromeres69. In addition, RNA polymerase II has 

been found at human mitotic centromeres70, and disruption of transcription initiation or RNA 

splicing can lead to defective CENP-A maintenance at the centromeres69,71.  One possibility 

underlying the involvement of transcriptionally permissive remodeling event during CENP-A 

loading is the effective exchange of place holder histone H3.3, although direct test of this 

hypothesis still remains challenging51,72. 

 

(3) Other centromere proteins promote the stable maintenance of CENP-A 

The fact that centromeres are epigenetically defined by CENP-A does not rule out the 

possibility that other centromere proteins can affect CENP-A loading and maintenance. The 

recruitment of licensing factors in early G1 onto existing ‘old’ CENP-A labeled centromeres has 

created a classic ‘chicken-and-egg’ problem. In fact, depletion of several centromere proteins can 

result in severe loss of CENP-A at the centromere. For instance, KNL2 depletion leads to 

substantial loss of new CENP-A at the centromere35, while CENP-C depletion reduces the high 

stability of incorporated ‘old’ CENP-A at the centromeres73. Meanwhile, it has been recently 

shown that CENP-B, an alphoid repeats binding protein at inner centromere, directly binds to 

both CENP-A and CENP-C and is required to stabilize CENP-C levels at the centromere74. It 

should be noted that despite the interdependent relationship between CENP-A, B, C, it is still 

CENP-A that defines the identity of the centromere. Using an induced knock out system75, it has 
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been shown that upon CENP-A depletion most kinetochore/centromere proteins will be 

quantitatively lost, following the serial dilution of residual CENP-A molecules at the centromere. 

CENP-C, N, P start to diminish after day 5 of induced depletion, while CENP-T, I and Ndc80 

complex only start to diminish after day 7 post induced depletion. Interestingly, CENP-B levels 

at the centromere only starts to decline after day 9 post induced CENP-A depletion. The differed 

‘diminishing kinetics’ among various centromere proteins and the fact that CENP-B being the 

last one to leave the centromere in the absence of enough CENP-A suggest that CENP-B might 

have the highest affinity toward CENP-A and only a few remaining CENP-A molecules are 

enough to ensure the retention of CENP-B. The conclusion that CENP-A is what defines the 

centromere while CENP-B is not, is also manifested by the lack of CENP-B yet the presence of 

CENP-A on Y-chromosome centromeres42. 

 

Taken together, with multiple lines of evidence of emerging mechanisms that regulate 

CENP-A incorporation and maintenance, it would be important for the field to evaluate the 

relative contribution of each of the signaling inputs as well as chromatin/chromosome regulators, 

and how a coordinated function can be achieved among them during the stable maintenance of 

CENP-A nucleosomes. 

 

The cytoskeleton systems: actin and microtubules 

Mammalian cells achieve most of their motile behaviors (e.g. migration and division) 

using a network of protein filaments inside the cells – the cytoskeleton systems. In higher 

eukaryotes including mammals, the cytoskeleton systems are composed of four major categories 
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– actin filaments, microtubules, intermediate filaments and septins76-79. Despite structural and 

functional differences, common features are shared such as GTP/ATP binding and mechanical 

work through energy coupling. Serving as structural and signaling hubs during dynamic cellular 

processes, cytoskeleton filaments usually form a vast network through protein protein 

interactions either on monomers (the building blocks of the filaments) or polymers (the 

filaments).  For the scope of my thesis here, I will only focus on the actin and microtubule 

cytoskeletons. Actin filaments are polymerized from globular subunits (G-actin) into a two-

stranded helical filaments, the filamentous actin (F-actin)77. Microtubules are hollow tubes 

composed of 13 protofilaments, with each protofilaments polymerized from α/β-tubulin-dimer 

subunits aligned head-to-tail79. G-actin binds to ATP while tubulin monomer binds to GTP. 

Nucleotide hydrolysis activity of the subunits is coupled to the filamentous 

assembly/polymerization reaction. Due to the subunit structures and the way they are assembled 

together, polymerized filaments of both actin and microtubules have intrinsic polarities: F-actin 

grows on the barbed end (as opposed to the pointed end)80, while microtubules undergoes most 

of its dynamic events at the plus end (as opposed to the minus end which usually anchors at 

MTOC such as centrosomes)79,81. Nucleotide hydrolysis accompanied with polymerization 

reactions can result in ‘structural plasticity’ – in the case of actin “treadmilling” and for 

microtubules the “dynamic instability” 82-84.  Despite their important functions during numerous 

cellular processes, it is not well understood how specific spatial and temporal organization are 

regulated to provide structural support, to generate force, and to serve as integration hubs for 

signaling.  
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Filamentous actin in the nucleus 

Actin has well documented functions in the cytoplasm such as filopodia and lamellipodia 

formation, nuclear movement85 and cytokinesis86,87. The role of the actin cytoskeleton inside the 

nucleus remain controversial and mysterious. It has been debated more than 40 years about the 

existence, form and function of actin or actin related proteins inside the cell’s nucleus88. Despite 

a body of biochemical evidence of the existence of actin, Arp and myosin found in the nuclear 

fraction89,90, much of the earlier controversies stemmed from a lack of reliable reagents to 

achieve direct visualization of polymeric actin inside somatic cell nuclei88,91. Recent years have 

witnessed a tremendous progress in developing tools that can reliably and specifically probe the 

size, shape and dynamics of endogenous actin polymers inside somatic cell nuclei (Table 1.1)92-

97. However, the potential functions of nuclear actin are just starting to emerge. Apart from the 

apparently varied forms and functions reported using different probes under differed conditions, 

it remains elusive how physiological control is achieved to opt between different nucleation 

pathways, at different nuclear positions at different time during cell cycle. In addition, it is 

largely unclear how the physical properties of short actin filaments could participate in the 

regulation of molecular events inside the nucleus. 

 

Microtubule dynamics and the dynein motor 

Like the actin cytoskeleton, it is always curious how the complex behaviors of 

microtubules are manifested at different scales – how self-assembly/disassembly can happen 

specifically in response to differed signaling cues, can bias one over the other in nearby cellular 

compartments, and can come up with organizational diversity as a function of time, such as the 

thin fiber in interphase while thick bundled kinetochore fibers during mitosis. Kinetochore 
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microtubules are essential for connecting mitotic chromosomes to the spindle apparatus in order 

to execute the accurate segregation of the genome. Many microtubule associate proteins (MAPs) 

are essential for the function of microtubule cytoskeleton, among them is the cytoplasmic dynein 

complex98. Dynein is a multi-component motor protein complex with the core part being 

dimerized heavy chains including the motor domains that directly walk on the microtubules 

toward the minus end99. The functions of dynein motor complex at the kinetochore has been well 

studied during mitotic chromosome alignment and segregation100,101, and have been shown to be 

essential for force generation and stable kinetochore-microtubule attachment, as well as for the 

timely removal of spindle assembly checkpoint proteins from bioriented kinetochores101-107. 

However, the exact roles of dynein accessory proteins, including light chains that bind to the 

heavy chains, during mitosis is less well understood.  

 

During mitosis, many motor and non-motor proteins can localize to the outer layer of 

kinetochores that in direct contact with microtubule plus ends.  Although there is much support 

for the KMN network (KNL1, Mis12, and Ndc80 complexes) serving as the core microtubule 

binding apparatus at the kinetochore 108,109, it is quite clear that many other kinetochore- and 

microtubule-associated proteins play important roles in maintaining the stable connection 

between kinetochores and dynamic microtubule plus ends.  For instance, depletion of the 

Ska1/RAMA complex 110-113 or a formin mDia3 114,115 results in chromosome misalignment 

phenotypes in mammalian cultured cells. Meanwhile, the fact that cells depleted of motor 

proteins  such as dynein or CENP-E still have quite a few chromosomes aligned at the metaphase 

plate, indicates that force-generating motors are not the only mechanisms underlying 

chromosome alignment in prometaphase100,116-120. Emerging evidence suggest a more complex 
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interaction network of microtubule plus-end tracking proteins in fine tuning the structural and 

signaling dynamics at the kinetochore/microtubule interface121-123. Therefore it remains an open 

question how do different molecular-modules coordinate their interactions with microtubule 

plus-ends in achieving regulated kinetochore-microtubule attachment? 

 

The diaphanous formin proteins 

For both actin and microtubule cytoskeleton, initial nucleation is the rate limiting step in 

filament growth. While microtubule utilize gamma-tubulin and MTOC to help nucleation, actin 

nucleation depends on upstream signaling (such as small GTPase signaling) activated Arp2/3 

complex and formin proteins to nucleate branched and unbranched filaments, respectively77,124.   

Among many formin families, the diaphanous formin family of proteins are well-

established regulators of both actin and microtubule dynamics125,126 and function as effectors of 

the small GTPase signaling in diverse aspects of the cell cycle.  Diaphanous formins assume an 

auto-inhibited state resulted from an intra-molecular interaction between the DID and DAD 

domains.  Upon small Rho GTPase binding at the N-terminus, the auto-inhibition of mDia 

formins is released to expose the formin homology domain (FH2) responsible for actin 

polymerization and microtubule stabilization124.  A short-version of mDia proteins consisting of 

formin homology domains without regulatory regions required for auto-inhibition (Figure 1.5) is 

constitutively active even in the absence of small GTPase binding127. 

 Three members of the diaphanous formin family, mDia1-3, have conserved domain 

structures and a similar mode of action but different choices of upstream GTPase signaling 

pathways115,127-135 (Figure 1.5).  While important kinetochore functions have been discovered for 
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the diaphasnous formin mDia31,136, its family member mDia2 is the one that has been shown to 

shuttle from cytoplasm to nucleoplasm evidenced by nuclear accumulation upon LMB treatment137 

and clear nuclear distribution in early G1 cells (Figure 1.5). Notably, mDia2 has been shown to 

be required for nuclear actin assembly during serum stimulation94. Meanwhile, mDia2 has been 

shown to be the effector of either Rac or Cdc42130-132, two small GTPases downstream of the 

MgcRacGAP-based molecular swtich whose depletion results in a centromeric CENP-A reduction 

phenotype64.  Based on recent proteomic discoveries of many chromatin-related proteins 

associated with the FH1FH2 domain of mDia2 but not mDia1 or 3138, it is intriguing to ask: is 

mDia2 the effector of the small GTPase signaling pathway that directly acts on stable CENP-A 

loading/maintenance? 

 

Quantitative approaches in understanding dynamic processes 

Recent years have witnessed profound progress in the transition of cell biology toward a 

more quantitative science. Quantitative imaging has come a long way in generating 

multidimensional and high throughput datasets that characterize complex cellular behaviors. 

Despite many measurements, an integrated quantitative understanding often times remains 

challenging due to intrinsic complexity or technical hurdles against precise measurement (e.g. 

photo toxicity, masked localization due to protein overexpression, etc.).  In addition to 

quantitative experimental measurements, quantitative modeling of complex biological systems is 

a powerful tool to bridge our knowledge of microscopic molecular processes with macroscopic 

observations. Building mathematical models, both deterministic and probabilistic, is not only a 

key to recapitulate and explain experimental findings, but also a critical step in guiding future 

experiments by generating testable predictions139. In this thesis, I will present a combination of 
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multiple quantitative approaches in understanding the complex cytoskeletal control of 

centromere and kinetochore functions during mammalian cell cycle. 
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Figures 

 

Figure 1.1. The laminar structure of the kinetochore 

Adapted from Cleveland, Mao and Sullivan (2003), electron micrograph showing a biorientad 
mitotic chromosome composed of two sister chromatids, attached by microtubules from two 
opposite poles. Microtubules (pseudo-colored in green) contact with the outer kinetochore layer 
(yellow), while the inner kinetochore layer (red) is in a continuum with the inner centromere 
chromatin (magenta). The non-centromere chromosome for the sister chromatid on the right is 
pseudo-colored in blue. 
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Figure 1.2. Centromere protein A (CENP-A) is widely used to mark the identity of 
centromeres in eukaryotes 

Eukaryotes including including S. pombe, S. serevisiae, C. elegans, Drosophila, Xenopus and 
Homo sapiens all use CENP-A to mark their centromeres. The names of CENP-A in individual 
species (for instance, ‘CID’ in Drosophila) are color coded according to the color of CENP-A 
staining in the corresponding images. Adapted from images obtain for respective species (see 
text for references). Scale bars: 5 µm. 
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Figure 1.3. Centromeric CENP-A are diluted as chromosomes replicate 

(Left) Schematic showing the one half reduction of CENP-A nucleosomes’ numbers per 
centromere during centromeric DNA replication in S-phase, resulting in a scenario of ‘serial 
dilution’ if no replenishment is available.  (Right) Counting of CENP-A’s number per 
centromere upon continued serial dilution, modeled with exponential decay function. Reference 
number of CENP-A copy number at steady state is based on Bodor et al., 2014. 
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Figure 1.4. The CENP-A cycle.   

As the epigenetic mark of centromere identity, centromeric CENP-A proteins are replenished 
during the G1-phase of cell cycle in a highly regulated manner. CENP-A loading occurs only 
once per cell cycle at preexisting centromeres marked by the old CENP-A molecules inherited 
from previous centromere prior to DNA replication. See the text for more details. 
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Figure 1.5. Diaphanous formins are effectors of the small GTPase signaling.  

(A) Schematic diagram of the general structure and the mode of action of diaphanous formin 
proteins.  GBD – GTPase binding domain; DID – Dia interacting domain; FH – Formin 
homology domain; DAD – Dia auto-inhibition domain.  Small GTPase binding releases the auto-
inhibitory interaction between the DID and the DAD domains.  The FH1FH2 alone can be used 
as a constitutively active construct that functions without the GTPase signaling.  

(B) Comparison between the three members of diaphanous subfamily formins, with emphasis on 
cognate the upstream small GTPase signaling and the subcellular localization.  Scale bar, 10 µm. 
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Chapter Two *: Diaphanous formin mDia2 regulates CENP-A levels 
at centromeres 
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Abstract 

Centromeres of higher eukaryotes are epigenetically defined by CENP-A, a centromere-

specific histone H3 variant.  The incorporation of new CENP-A into centromeres to maintain the 

epigenetic marker following genome replication in S phase occurs in G1 phase; however, how new 

CENP-A is loaded and stabilized remains poorly understood.  Here, we identify the formin mDia2 

as essential for stable replenishment of new CENP-A at centromeres.  Quantitative imaging, pulse-

chase analysis and high-resolution ratiometric live cell studies demonstrate that mDia2 and its 

nuclear localization are required to maintain CENP-A levels at centromeres.  Depletion of mDia2 

results in a prolonged centromere association of HJURP, the chaperone required for CENP-A 

loading.  A constitutively active form of mDia2 rescues the defect in new CENP-A loading caused 

by depletion of MgcRacGAP, a component of the small GTPase pathway essential for CENP-A 

maintenance.  Thus, the formin mDia2 functions downstream of the MgcRacGAP-dependent 

pathway in regulating assembly of new CENP-A containing nucleosomes at centromeres. 
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Introduction 

Epigenetic landscape of the chromosome is well inherited independent of underlying DNA 

sequences.  In mammals, centromeres, the fundamental unit for chromosome segregation during 

mitosis, are defined epigenetically by nucleosomes containing the histone H3 variant CENP-A 140-

142.  In order to maintain centromere identity against CENP-A dilution as DNA replicates and cell 

divides, newly synthesized CENP-A proteins are deposited at centromeres during early G1 of each 

cell cycle 143.  This process is initiated by Plk1-mediated 53 centromeric recruitment of the Mis18 

complex at anaphase onset 144-146 and involves the recruitment of HJURP 147,148, the CENP-A 

chaperone.  

The incorporation of new CENP-A at centromeres remain poorly understood.  A small 

GTPase molecular switch has been shown to stabilize newly incorporated CENP-A.  Depletion of 

Cdc42 or Rac1 in human cells leads to a decrease of CENP-A level at centromeres 64.  The 

downstream effector(s) of the small GTPase activity remains unidentified.  Mammalian 

Diaphanous-related (mDia) formins nucleate and assemble unbranched actin structures 

downstream of Rho family GTPase signaling 149.  Recent studies have revealed potential nuclear 

roles for mDia formins 150,151.  Among mDia formin proteins (mDia1-3), only mDia2 can shuttle 

between the cytoplasm and the nucleus 150,152.  By affinity purification and mass spectrometry 

analysis, histones and topoisomerases have been identified as binding partners of mDia2, but 

neither mDia1 nor mDia3 153. 

Using quantitative imaging, we now provide direct evidence that the formin mDia2 is a 

novel cytoskeleton protein required for maintaining CENP-A levels at centromeres.  As a 

constitutively active form of mDia2 rescues centromeric CENP-A levels caused by depletion of 

MgcRacGAP, a component of the small GTPase pathway essential for CENP-A maintenance, we 
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additionally uncover mDia2 as the downstream effector of the GTPase pathway for epigenetic 

centromere maintenance.   
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Results and discussion 

Diaphanous formin mDia2 is essential to maintain CENP-A levels at centromeres 

To test if the formin mDia2 is required for CENP-A level maintenance at centromeres, 

mDia2 protein levels were reduced in human cells (0.47 ± 0.11 relative to control, p < 0.0001) by 

the transfection of small interfering RNA (siRNA) duplexes targeting mDia2 for 48 hr (Figure 

2.1A).  The mDia2 depletion resulted in a decreased level, but not elimination, of CENP-A at 

centromeres (Figure 2.1B) without affecting total CENP-A protein levels (Figure 2.1A) compared 

to control cells (transfected with GAPDH siRNA).  Significantly, the loss of CENP-A at 

centromeres could be rescued by the co-expression of a siRNA-resistant full-length mDia2 (Figure 

2.1B), excluding the possibility of an off-target effect from mDia2 siRNA.  CENP-A levels at 

centromeres from large numbers of cells were quantified using an automatic image-analysis 

algorithm (Figure S2.1; see Materials and Methods), designed in this study, without human bias.  

This confirmed the partial reduction in CENP-A levels at centromeres in mDia2-depeleted cells 

(Figure 2.1C).  The decrease of CENP-A level was not caused by loss of centromere numbers in 

individual cells, judging by counting the immunostaining of CENP-B (Figure 2.1D), which 

localizes to centromeres independently of CENP-A 154.  In contrast to mDia2, knockdown of 

mDia3, a formin protein that has been shown to associate with kinetochores and to be important 

for kinetochore-microtubule attachment 114,115, did not result in loss of CENP-A at centromeres 

(Figure 2.1, B and C).  These results support a role for the formin mDia2 in CENP-A level 

maintenance at centromeres.   
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To exclude the possibility that the CENP-A loss in mDia2-depleted cells could be due to 

cell-cycle-dependent transcriptional regulation of CENP-A, YFP-CENP-A levels were measured 

in fixed cells stably expressing a yellow fluorescent protein (YFP)-tagged CENP-A.  Despite that 

the YFP-CENP-A fusion is controlled by the 5’ LTR of the virus 148, a similar CENP-A loss at 

centromeres was observed upon mDia2 depletion (Figure 2.1, E and F).  Reduced CENP-A levels 

in mDia2-depleted cells is reminiscent of the depletion of the CENP-A chaperon HJURP (Figure 

2.1, E and F).  These results are consistent with a role for mDia2 in regulating CENP-A levels at 

centromeres.     

 

The mDia2 protein is specifically required for loading of new CENP-A 

  To determine if mDia2 is required for cell-cycle-dependent incorporation of new CENP-

A into centromeres of duplicated sister chromatids after mitotic exit into G1, YFP-CENP-A levels 

at individual centromeres were followed by high-resolution ratiometric live-cell imaging designed 

in this study (for imaging and quantification analysis see Figure S2.2, Materials and Methods).  In 

control cells, the increase of centromeric YFP-CENP-A levels began shortly after anaphase onset 

and continued for several hours (Figure 2.2, A and B, and Video 1 and 2), which is consistent 

with previous observations 64,143.  By contrast, the increase of YFP-CENP-A levels at centromeres 

in mDia2 depleted cells could not be maintained despite an initial slight increase within 2 hours 

after anaphase onset (Figure 2.2, A and B; Video 1 and 2). The defective increase of YFP-CENP-

A in mDia2 depleted cells is also manifested with a significantly shorter apparent half-time 

(Figure S2.2, B and C), consistent with attempted yet failed loading events.  These results clearly 

demonstrate that mDia2 is essential for replenishing CENP-A levels during early G1 phase, when 

new CENP-A is loaded onto centromeres marked with pre-existing CENP-A. 
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  Whereas cell-cycle distribution was not significantly altered upon depletion of mDia2 

(Figure S2.2G), live-cell imaging analysis showed reduced levels of CENP-A recruitment at 

centromeres upon mDia2 depletion.  Cells with fully loaded CENP-A at centromeres inherits 50% 

“old” CENP-A during S phase and recruit 50% “new” CENP-A at early G1. To test which 

population of CENP-A was affected by mDia2 depletion, “old” and “new” CENP-A levels were 

analyzed by the SNAP-tag pulse-chase method 64,143.  The “old” inherited CENP-A was pulse-

labeled (15 min) with a fluorescent mark, whereas all additional CENP-A (“new”) was chased 

with a non-fluorescent label (Figure 2.2C).  This analysis revealed that mDia2 depletion resulted 

in 37% reduction of total CENP-A levels, but unchanged levels of “old” CENP-A in comparison 

to control cells (Figure 2.2, D-F).  Thus, the formin mDia2 functions in the recruitment of “new” 

CENP-A onto centromeres in G1 cells. 

 

The formin mDia2 is a downstream effector of the MgcRacGAP-dependent small GTPase 

pathway required to maintain CENP-A levels at centromeres   

The mDia2 protein contains functional nuclear localization (Figure 2.3A) and nuclear 

export signals, and shuttles between the nucleus and the cytoplasm through importin-α/β- and 

CRM1-mediated nuclear transport mechanisms 152,155.  Depletion of mDia2 did not change CENP-

A distributions between cytoplasm and nucleus, though resulted in less CENP-A bound to 

chromatins, as expected (Figures 2.3B and S2.3A).  Full-length mEmerald-mDia2 proteins were 

accumulated in nucleus upon treatment with leptomycin B (LMB) to block CRM1.  By contrast, 

the K35A/R36A mutation within the NLS signal abolished nuclear accumulation of mEmerald-
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mDia2 upon LMB treatment (Figure 2.3C).  Replacing endogenous mDia2 with this mutant 

resulted in significantly reduced levels of CENP-A at centromeres (Figure 2.3, D and E), 

demonstrating that the nuclear function of mDia2 is required for its role in CENP-A maintenance. 

 

A small GTPase switch including MgcRacGAP, a Rho family GTPase activating protein, 

is involved in CENP-A maintenance at centromeres 64.  The mDia formin proteins are auto-

inhibited through an intramolecular interaction between N-terminal GBD-DID domains and C-

terminal DAD domain 128.  The auto-inhibition is relieved upon the binding of the small GTPase 

at the GBD domain 134.  The mDia2 construct lacking the regulatory GBD and DAD domains 

(FH1FH2-mDia2), but not FH1FH2-mDia2 constructs with actin assembly-defective point 

mutations (K853A, I704A, and W630A) 156, was able to restore CENP-A levels at centromeres as 

well as the full-length mDia2 in cells depleted of endogenous mDia2 (Figure 2.4, A and B).  

Although lacking the known NLS signal, the EGFP-fused FH1FH2-mDia2 localized to the nucleus 

in G1 cells (Figure 2.4C).  Further, the constitutively active form of mDia2 was very efficient in 

restoring CENP-A levels at centromeres in MgcRacGAP-depleted cells (Figure 2.4D).  This is 

consistent with the formin mDia2 as a downstream effector of the MgcRacGAP-dependent 

GTPase pathway to play a role in centromeric CENP-A maintenance.         

 

Depletion of mDia2 results in a prolonged centromere association of HJURP 

New CENP-A loading at G1 centromeres requires the CENP-A histone chaperone HJURP, 

which also has the CENP-A nucleosome assembly activity 157.  A subset of early G1 cells has 

HJURP colocalized to centromeres 148.  To test whether depletion of mDia2 affects the dynamics 
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of HJURP at centromeres, we examined the HJURP centromere localization in early G1 cells 

expressing the EGFP-HJURP fusion upon releasing from thymidine arrest (Figure 2.5A).  This 

revealed that mDia2 depletion did not affect the intensity of HJURP at centromeres (Figure 2.5, 

B and C), but the percentage of HJURP positive cells upon depleting mDia2 was almost doubled 

compared to control cells (Figure 2.5D).  These results indicate a prolonged attempting of new 

CENP-A nucleosome assembly by HJURP in the absence of mDia2.  Stochastic simulation 

demonstrated that prolonged HJURP dwelling (i.e. reduced HJRUP turnover) not only suffices to 

cause a higher percentage of HJURP positive cells as observed experimentally, but also contributes 

to the inability of CENP-A accumulation on centromeres, which is in good quantitative agreement 

with ratiometric live cell measurement over time (Figure S2.3, B-E).  These results are consistent 

with a role of mDia2 in regulating CENP-A levels at centromeres and indicate that this function is 

at least in part through the regulation of the timely turnover of HJURP at centromeres (Figure 

2.5E). 

 

A novel nuclear function of formin mDia2 in centromere epigenetic regulation 

Centromeres are epigenetically marked by the conserved histone H3 variant CENP-A. 

Each sister centromere inherits one half the number of CENP-A molecules upon DNA duplication.   

In order to maintain centromere identity, new CENP-A is added to double the number of CENP-

A molecules at centromeres during G1.  Loading of new CENP-A molecules into centromeres 

includes the following steps (Figure 2.5E, left panel): (1) the assembly of licensing factors, the 

Mis18 complex, at anaphase onset 144-146, (2) new CENP-A deposition and nucleosome assembly 

by the CENP-A chaperone HJURP at early G1 157, and (3) a maintenance step involving a small 

GTPase molecular switch 64.  Here, our results reveal a critical role for the formin mDia2 in 
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regulating epigenetic maintenance of centromere identity.  Quantitative imaging and high 

resolution ratiometric live cell studies have demonstrated that knockdown of mDia2 results in 

reduced levels of CENP-A at centromeres.  In contrast, depletion of mDia2 does not affect the 

recruitment of H2A.Z, another histone variant in human cells (Figure S2.3, F and G).   

 

The formin mDia2 is not likely to play a role in centromere licensing or the recruitment of 

centromere components, as we have not been able to detect mDia2 centromere localization at any 

point in the cell cycle.  This is further supported by the normal level of HJURP associated with 

centromeres in mDia2-depleted cells.  By contrast, the increased percentage of HJURP positive 

cells upon mDia2 depletion indicates a role of mDia2 in regulating nucleosome assembly for new 

CENP-A incorporation (Figure 2.5E, right panel).  Expressing a constitutively active form of 

mDia2 is able to rescue the CENP-A deposition defect caused by knockdown of MgcRacGAP, a 

phenotype that is consistent with the formin mDia2 being the downstream effector of the 

MgcRacGAP-dependent GTPase pathway during the maintenance step to stabilize newly 

incorporated CENP-A.  The formin mDia2 could be involved in this process by, at least, two 

different mechanisms: (1) assisting chromatin-remodeling for new CENP-A incorporation, as the 

FH2 region of mDia formins has been shown to interact with CENP-A using a yeast two-hybrid 

assay 115; and (2) altering mobility or organization of chromatin.  The latter possibility will require 

mDia2-mediated nuclear actin activity.  Recent studies have demonstrated nuclear actin network 

assembly mediated by formin proteins in regulating the MAL/SRF (megakaryocytic 

acuteleukemia/serum response factor) transcription function 150 and in DNA damage response 151.  

Although it has been shown that latrunculin A or cytochalasin D treatment does not affect CENP-

A levels at centromeres 64, actin in nucleus could form short oligomers or other forms of structures 
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that are less sensitive to drug treatment than actin polymers 158-161.  It will be important to 

understand whether actin dynamics is important for epigenetic centromere maintenance in future 

studies.   
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Materials and Methods 

siRNA sequences, constructs and antibodies 

The siRNAs used in this study include:  

GAPDH (NM_002046.4, UGGUUUACAUGUUCCAAUA); 

DIAPH3/mDia2 (AB244756.1, CUCCGGCACAAUUCAGUUCAA); 

DIAPH2/mDia3 (BC117414, CACCGTCTCAATGACATTCGA); 

HJURP (NM_018410.4, CUACUGGGCUCAACUGCAAU).  

The constructs used in this study include: H2B-YFP, H2B-RFP 148, FL-mEmerald-mDia2, 

FL-ΔNLS-mEmerald-mDia2, pEGFP-FH1FH2mDia2-WT, pEGFP-FH1FH2mDia2-K853A, 

pEGFP-FH1FH2mDia2-I704A, pEGFP-FH1FH2mDia2-W630A, pmCherry-C1 (Clontech Cat.# 

632524), MgcRacGAP MISSION shRNA plasmid (Sigma, NM_013277.3-2165s21c1, 

NM_013277.2-456s1c1). The pEGFP-FH1FH2mDia2 based constructs were gifts from Francesca 

Bartolini. The construct of mEmerald-mDia2-C-14 was a gift from Michael Davidson (Addgene 

plasmid # 54158).  Site directed mutagenesis was performed to generate the K35AR36A mutant, 

using QuikChange Lightning following manufacturer’s instructions. 

 

Primary antibodies used in this study include: rabbit anti mDia2 162, rabbit anti mDia3 (LS-

C19007, Lifespan), mouse anti CENP-A (Ab13939, Abcam), mouse anti tubulin (T6199, Sigma), 

rabbit anti HJURP (Ab100800, Abcam; Foltz et al., 2009), chicken anti GFP (Ab16901, Millipore), 

rabbit anti CENP-B (Ab25734, Abcam), mouse anti HA (MMS-101P, COVANCE), rabbit anti 

MgcRacGAP (Ab61192, Abcam), and rabbit anti H2A.Z (Ab4174, Abcam). 

http://www.ncbi.nlm.nih.gov/nucleotide/378404906?report=genbank&log$=nucltop&blast_rank=2&RID=5ZWHEH8Y013
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Cell culture, transfection, and drug treatment  

HeLa cells were used for most of the quantitative imaging experiments in this study. A 

HeLa cell line stably expressing YFP-CENP-A was used for high-resolution ratiometric live cell 

imaging. A HeLa cell line stably expressing GFP-HJURP (gift from Dan Foltz) was used for fixed 

cell imaging in Figure 5. Cells were maintained in DME medium supplemented with 10% FBS 

(complete growth medium) at 37°C in 5% CO2.  The transfection of siRNAs was performed with 

Hiperfect (Qiagen) following the manufacturer’s protocol.  For co-transfection experiments, 

siRNAs were transfected with at least 20-fold molar excess to marker plasmids encoding 

fluorescent proteins. Control cells were transfected with GAPDH siRNA.  All knockdowns were 

confirmed by immunoblotting analysis.  Cells were fixed for immunostaining or imaged 48 hours 

after transfection.  Thymidine synchronization (also detailed in ‘SNAP-tag pulse chase assay’ 

below) was performed with 2 mM thymidine in complete growth medium for at least 17 hr, washed 

twice in pre-warmed PBS, and released into complete medium supplemented with 24 µM 

deoxycytidine (for 9 hr if followed by another round of thymidine arrest).  Nocodazole was used 

at 100 ng/ml. Leptomycin B (LMB, provided in methanol: water = 7:3) was used at 20 nM (final 

concentration) for 1 hr.  All drugs were purchased form Sigma-Aldrich. 

 

Quantitative fixed cell imaging and data analysis using ‘INCA’ method 

For immunofluorescence and fixed cell imaging, cells grown on poly-D-lysine coated 

coverslips were washed in PBS (pre-warmed at 37°C), fixed in cold MeOH at -20°C for 5 min, 

and then permeablized with 0.1% Triton-X-100 in PBS for 1 min.  After being re-hydrated in PBS 
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briefly, fixed cells were blocked in 5% BSA in PBS at 4°C overnight.  Coverslips were subjected 

to primary antibodies diluted in PBS and Alexa Fluor® 488, DyLightTM594 or CyTM5 conjugated 

secondary antibodies, both at room temperature for 1 hr.  DAPI (16.67 ng/ml) was used to stain 

DNA/nuclei.  Coverslips were mounted using antifade reagent (ProLong Gold; Molecular Probes).  

Images were acquired at room temperature using an inverted microscope (IX81; Olympus) with a 

60×, N.A. 1.42 Plan Apochromat oil immersion objective (Olympus), a monochrome charge-

coupled device camera (Sensicam QE; Cooke Corporation) at 1×1 binning, which are all controlled 

by  the SlideBook software (3i and Olympus).  10 optical sections 0.5 µm apart spanning 5 µm 

were acquired for each field.  All images in each experiment along with appropriate controls were 

collected on the same day with identical exposure time.  Representative images presented in figures 

are scaled identically across groups.  Cells stably expressing YFP-CENP-A were fixed following 

a slightly different protocol to preserve YFP’s fluorescence: cells were washed in PBS (pre-

warmed at 37°C), fixed in freshly prepared EM grade paraformaldehyde (PFA, 4% diluted in PBS; 

16% stock from Electron Microscopy Sciences, Cat # 15710-S) at room temperature for 10 min, 

washed in PBS twice (5 min each), and then permeablized with 0.1% Triton-X-100 in PBS for 1 

min.  The subsequent block and staining steps are the same as the general protocol.   

 

Inspired by a previous study 64, we developed an image analysis technique by measuring 

the integrated CENP-A intensity per nucleus: the Integrated Nuclear CENP-A (INCA) 

measurement, a custom-written software using MATLAB (MathWorks, R2013a).  All 16-bit 

uncompressed raw images processed only by maximum Z-projection were fed into MATLAB for 

an automatic and unbiased measurement.  Briefly, raw images were subjected to band-pass 

filtering (Figure S2.1A) which eliminates noise by applying a narrow kernel and removes 
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background with a wide kernel (kernel sizes were fixed throughout the study).  Resultant DAPI 

images were subjected to Otsu thresholding 163 and watershed algorithm 164 to generate binary 

nuclear masks, which were subsequently applied to the cognate CENP-A images.  The integrated 

fluorescence intensities on CENP-A images within the nuclear masks were eventually measured 

in order to reflect the ‘loading capacity’ of all centromeric CENP-A in that particular nucleus/cell.  

To confirm quantification obtained using the ‘INCA’ method, a more labor-intensive traditional 

method measuring the integrated intensity of single centromeres (with ROIs slightly larger than 

each single centromere) was performed using ImageJ (NIH) and yielded the same results as the 

‘INCA’ method (Figure S2.1B).  The ‘INCA’ method returned the integrated intensity value for 

every single nucleus.  In order to compare the intensity values of nuclei between experiments, the 

measurements of each experiment were normalized against that of the control group in that dataset, 

therefore allowing cross-dataset comparison 64. Imaging experiment with or without co-

transfection markers were both carried out and analyzed using ‘INCA’ method with the same 

conclusions. 

 

High resolution ratiometric live cell imaging 

HeLa cells stably expressing YFP-CENP-A148 were plated onto Poly-D-Lysine coated 35 

mm glass-bottom dishes (MatTek Corporation) and maintained in CO2 independent medium 

supplemented with 4 mM L-glutamine and 10% FBS, with an environmentally controlled chamber 

at 37°C during imaging.  Images were acquired every 20 min for a total duration of about 13 hrs, 

with 11 z-sections spanning 10 µm (1 µm apart each optical section) being acquired at each time 

point.  Exposure time was kept constant throughout the duration of live imaging (200ms for YFP 

after being optimized against photobleaching).  All Live imaging were performed using a 
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motorized inverted microscope (IX81; Olympus) with a 60×, N.A. 1.42  Plan Apochromat oil 

immersion objective (Olympus) and a interline transfer cooled CCD camera (ORCA-R2 C10600-

10B; HAMAMATSU Photonics) at 1×1 binning, which were controlled by the MetaMorph 

software (Molecular Devices, LLC). 

 

For live imaging data, due to a much lower signal-to-noise ratio than fixed samples, a 

different quantification method was developed based on a previous study 64.  Essentially, intensity 

measurement was performed for individual cells upon mitotic exit and during G1.  Only cells 

staying in focus were subjected to measurement (mCherry-C1 was used as a cotransfection marker 

to identify siRNA transfected cells).  Measurements were performed on maximum z-projections 

with all 16-bit depth preserved.  Ratiometric analysis was performed by normalizing the time 

course of each cell’s centromeric CENP-A intensities with a ‘reference frame’, which represents 

the averaged centromeric CENP-A level for that particular cell before CENP-A loading occurs.  

Due to resolution constraints (i.e. more than one centromeres are inevitably overlapped during 

anaphase/ telophase), in order to ensure it is the single centromeres’ intensity that were measured, 

the reference frame (against which the ‘loading curve’ was normalized) were selected to be late 

prometaphase or early metaphase, where single sister centromere can be identified and measured 

to obtain an internal reference intensity before any new CENP-A loading has occurred.  During 

the course of telophase/G1 phase, only well separated single centromeres, whose intensity 

distributions are circular-symmetric on z-projection images, were randomly selected and measured 

using ImageJ (NIH).  Because pixel intensities on each centromere approximately follow 2D-

Gaussian distribution, local maxima were considered as a reasonable measurement of CENP-A 

levels per centromere.  The measurements were followed by normalization: each data point 
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throughout the time course was normalized against the host cell’s mean measurement in the 

‘reference frame’.  After normalization, data were plotted as mean ± SD.  For visual comparison, 

representative maximum z-projection images were demonstrated, with linear intensity 

transformation function (ITF) being applied 165 and identical dynamic range/ LUT being used for 

all images of each cell throughout the time course.   

 

Regarding photobleaching, our protocol for long term live cell imaging has been optimized 

such that only minimal photobleach occurred by 10 hours after imaging started (Figure S2.2, D-

F, and Video S3).  

 

SNAP-tag pulse chase assay 

The SNAP-tag pulse chase assay was performed based on published protocols 64,143.  

Essentially, HeLa cells stably expressing CENP-A-SNAP-3×HA were synchronized using double 

thymidine block (2 mM thymidine, 17 hr each) with 9 hr release in between (in medium 

supplemented with 24 µM deoxycytidine).  During the second round of thymidine arrest, siRNAs 

were transfected to allow for about 48 hr knockdown time before fixation whereas only one round 

of CENP-A deposition during the immediate next G1 was affected.  Upon releasing from the 2nd 

round of thymidine block, cells were pulse-labeled with TMR-Star, a fluorescent SNAP substrate 

(3 µM), for 15 min, followed with complete washes and block.  Cells were fixed and stained for 

total CENP-A (anti HA tag).  Quantitative imaging and image processing were performed as 

detailed above using the ‘INCA’ method.  
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Cell Fractionation 

Cell fractionation analysis was carried out using an adapted protocol based on established methods 

150,166,167.  Briefly, cells (5×106) were harvested and washed with cold PBS.  Cell pellet was 

resuspended in 500 µl 1x hypotonic buffer [20 mM Tris-HCl (pH 7.4), 10 mM NaCl, 3 mM MgCl2, 

1 mM PMSF, and 1x protease inhibitor cocktail (Roche)] by pipetting several times, followed by 

15 min incubation on ice to allow for swelling.  25 µl of 40% NP40 was added into the system 

prior to vortexing for 10 sec.  The homogenate was then centrifuged (3000 rpm 10 min at 4 ̊C) to 

separate the cytoplasmic fraction (supernatant) from the nuclear pellet.  Nuclear pellet was re-

washed with hypotonic buffer (without NP40) and centrifuged, and was then resuspended in 50 µl 

relatively low-salt extraction buffer [10 mM Tris (pH 7.4), 2 mM Na3VO4, 100 mM NaCl, 1% 

Triton-X-100, 1 mM EDTA, 10% glycerol, 1 mM EGTA, 0.1% SDS, 1 mM NaF, 0.5% 

deoxycholate, 20 mM Na4P2O7, 1 mM PMSF, 1x protease inhibitor cocktail] and incubated on ice 

for 30 min, with vortexing every 10 min.  The mixture was then centrifuged for 30 min at 14000 

g in 4 ̊C. Supernatant is nucleoplasm and pellet is chromatin-associated materials.  For 

immunoblotting, tubulin was used as the cytoplasmic marker 150, RNA Pol II as the nucleoplasmic 

marker 167, while histone H4K20me2 as the chromatin-associated marker 166.   

 

 

 

Immunoblotting analysis 
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Immunoblotting was carried out as previously described 168. Briefly, cells were lysed in 

RIPA buffer [50 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% Na-

Deoxycholate Acid] and then denatured using SDS sample buffer.  Cell lysates were subsequently 

subjected to 10% SDS-PAGE followed by membrane transfer (Immobilon-P, Millipore; Towbin 

transfer buffer, pH 8.3).  Immunoblots on the membrane were blocked with 5% nonfat milk 

dissolved in Tris-buffered saline with tween (TBST) [20 mM Tris−HCl (pH 7.4), 150 mM NaCl, 

0.05% Tween] and then probed with primary antibodies diluted in TBST.  Primary antibodies were 

visualized using Alexa Fluor®680 conjugated secondary antibodies (Life technologies) together 

with the LI-COR imaging system (LI-COR Biosciences). 

 

Cell cycle analysis 

Control HeLa cells or mDia2 knockdown cells (confluent) were trypsinized from 6-well 

plate, fixed with MeOH (-20°C), and stained with DAPI.  The BD LSRII Cell Analyzer was used 

for FACS experiments.  The FlowJo was used for FACS data analysis with Gaussian fitting based 

on univariate cell cycle model 169. 

 

Statistical analysis and plotting 

All statistical analyses were performed with GraphPad Prism 5 (GraphPad) using unpaired, two 

tailed t-test between groups unless noted otherwise (e.g. z-test with MATLAB to compare two 

sample proportions).  All plots were prepared in MATLAB (MathWorks, R2013a), Prism 

(GraphPad), Origin 8.6 (OriginLab) or Excel (Microsoft).  Control groups and mDia2-depleted 

groups in all experiments were pooled together after normalization and presented.   
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Stochastic simulation of HJURP turnover at centromeres 

To test if extended dwelling time of HJURP molecules on centromere can contribute to the 

change in the observed percentage of HJURP positive cells, we applied the Gillespie next reaction 

algorithm to numerically simulate the stochastic association/ dissociation events of HJURP 

molecules on the centromere 170.  Parameters were chosen based on reported numbers (kon, koff, 

etc., see Table 2.1) or realistic assumptions when no parameters are available (numbers of docking 

site per centromere).  Briefly, a realistic number of "docking sites" (30, which is smaller than the 

total number of CENP-A nucleosomes per centromere) were assigned for each single centromere 

and there is no HJURP associated on any docking site at the beginning.  Each round of simulation 

starts with generating a series of random numbers (Random Probability, Prand) for each time step 

(ti) and compare the Prand(ti) with the actual probability of either association (Pon) event or 

dissociation event (Poff) given the current docking site status is either unoccupied or occupied 

respectively at time ti. Pon and Poff are calculated following equations (1) and (2), where koff 

(dissociation rate constant, min-1) and kon* (pseudo-association rate constant, min-1) are derived 

from parameters listed in Table 2.1.  

𝑃𝑃𝑜𝑜𝑜𝑜 = 1 −  𝑒𝑒− (𝑘𝑘𝑜𝑜𝑜𝑜∗)∗𝑡𝑡𝑖𝑖          (1) 

𝑃𝑃𝑜𝑜𝑜𝑜𝑜𝑜 = 1 −  𝑒𝑒− (𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜)∗𝑡𝑡𝑖𝑖       (2) 

If Pon(ti) > Prand(ti), it suggests compared to random probability the association event is 

more likely to happen given an unoccupied docking site.  One molecule of HJURP will jump on 

the docking site.  If Poff(ti) > Prand(ti), it suggests compared to random probability the dissociation 

event is more likely to happen given an occupied docking site.  One molecule of HJURP will jump 

off and leave the docking site available for the next round of possible association event. 
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In the case of incomplete/ failed incorporation, the increased level of CENP-A as a result 

of HJURP association will be removed following HJURP dissociation, giving rise to unsuccessful 

association and the inability of new CENP-A nucleosomes to build up.  Meanwhile, koff is lowered 

by half compared to ordinary conditions to manifest on altered HJURP dwelling time and thus 

turnover rate (Figure S2.3A).   

 

Extended dwelling time shouldn’t affect the number of dwelling events per docking site 

per centromere. In order to estimate the total numbers of time steps in case of lowered koff and 

failed incorporation to get similar numbers of dwelling events, we plotted the number of dwelling 

event per docking site with empirical increment of time steps.  It turns out that 3500 time steps 

under this circumstance is the minimum requirement to achieve similar numbers of total dwelling 

event per docking site (p = 0.0923).  Total dwelling time per docking site therefore has the mean 

value of 333.384 min as compared to 185.06 min under ordinary conditions.  Δt is therefore 2.4721 

hr longer under the condition of ‘failed incorporation + lower koff’. 

 

Next, in order to assess the influence of temporal changes on the percentage of observable 

HJURP positive cells, we initiated another matrix to simulate thousands of cells’ collective 

behavior.  It is assumed that a cell shares the same temporal property of the docking site regarding 

HJURP’s presence on its centromeres.  Instructed by experimental observations and practical 

experiences (Table 2.1), here we assumed 50% cells are synchronized around the G1/S boundary 

upon being released from single round of thymidine arrest.  The exact position of each cell’s time 
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line at the start of simulation (upon thymidine release) is stochastically distributed within a normal 

time window (µ= 0, SD = 2). As a reference, a cell starts right at G1/S boundary (0 hr) will proceed 

for 9 hrs to start having HJURP on its centromeres. After 3 hrs for this cell to be a ‘HJURP positive’ 

cell, HJURP will stop being associated with centromeres, therefore making 12 hrs the last time 

point for it to be a ‘HJURP positive’ cell (Figure S2.3C). ‘Green point’ and ‘red point’ will be 

used hereafter to name the start and end of HJURP association respectively. Despite of the intrinsic 

uncertainties associated with cell synchronization, all cells are fixed 11 hrs after thymidine release 

for imaging (invariant observational point).  Consequently, all cells with their ‘red point’ before 

the observational point, and all cells with their ‘green point’ after the observational point, will not 

be documented as ‘HJURP positive’ cells.  The percentage of ‘HJURP positive’ cells can then be 

calculated based on these criteria (Figure S2.3D). 

 

In order to test if the number of HJURP molecules per centromere is altered at any given 

time during the period of being an ‘HJURP positive’ cell, 10 random position inside the ‘HJURP 

positive’ time window were chosen (per simulation) to count how many docking site are occupied 

at that particular time point. The number of occupied docking site on that centromere reflects the 

number of HJURP molecules per centromere at that time. This process is repeated three times for 

plotting the simulated HJURP level per centromere (Figure S2.3D). 

 

Finally, to visualize the time dependent ‘loading’ of CENP-A nucleosomes on the 

centromere, results from stochastic simulations described above were summed up over time to 

create ‘loading curves’ of the accumulated number of CENP-A nucleosomes per centromere. 
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Ordinary conditions and conditions with ‘failed incorporation + lower koff’ were processed 

respectively and plotted to compare with experimental measurements (Figure S2.3E). 

Online supplemental material  

Fig. S2.1 shows the Integrated Nuclear CENP-A (INCA) measurement method developed in this 

study.  Fig. S2.2 shows the method used for quantifying high resolution ratiometric live cell 

imaging data and details of nonlinear regression.  Fig. S2.3 shows the stochastic simulation of 

HJURP turnover at G1 centromeres.  Video S1 shows live cell imaging movies of a control cell 

and an mDia2 knockdown cell stably expressing YFP-CENP-A going through G1 phase.  Video 

S2 shows the ratiometric live cells imaging of YFP-CENP-A signals in a control cell and an 

mDia2 knockdown cell.  Video S3 shows a representative cell expressing YFP-CENP-A arrested 

in G1/S phase (in the presence of thymidine) imaged every 20 min for 10 hrs for photobleaching 

test.  Online supplemental materials can be found at:  

http://www.jcb.org/cgi/content/full/jcb.201512034/DC1

http://www.jcb.org/cgi/content/full/jcb.201512034/DC1
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Figures 

 

 
Figure 2.1. The formin mDia2 is required to maintain CENP-A levels at centromeres. 

(A) Depletion of mDia2 does not affect CENP-A protein level.  Immunoblotting analysis of HeLa 
cell lysates 48 hr post transfection with control (GAPDH) and mDia2 siRNAs.   

(B) Immunofluorescence detection of CENP-A and CENP-B in HeLa cells 48 hr post transfection 
with the indicated siRNAs and the full length mEmerald-tagged mDia2 (FL-mDia2) expression 
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vector (DNA - DAPI).  Transfected cells were identified by co-transfected fluorescence markers.  
Scale bar, 10 µm. 

(C) Scatter plot showing the distribution of normalized CENP-A integrated intensity per nucleus 
(mean ± SD overlaid with scatter plot) with the ‘INCA’ method (Figure S1).  Control: n = 292, 
HJURP siRNA: n = 196, mDia2 siRNA: n = 260, mDia2 siRNA + FL-mDia2: n = 136, and mDia3 
siRNA: n = 117 from three independent experiments.  The p-value was computed using two tailed 
t-test.  

(D) Depletion of mDia2 does not affect centromere numbers.  Whisker-Tukey boxplots show the 
number of CENP-B foci.  The boxes span 25-75 percentile of the data, while the center bar denotes 
median and the ‘+’ marks mean.  Control: n = 168 and mDia2 siRNA: n = 125 from three 
independent experiments.  The p-value was computed using two tailed t-test. 

(E) Depletion of mDia2 results in reduced levels of YFP-CENP-A at centromeres.  
Immunofluorescence images showing YFP-CENP-A in HeLa cells stably expressing YFP-CENP-
A 48 hr post transfection with indicated siRNAs (DNA - DAPI).  Scale bar, 10 µm.  

(F) Quantification showing the mean levels of normalized integrated YFP-CENP-A intensity per 
nucleus (means ± 95% confidence intervals).  Control (GAPDH siRNA): n = 456, HJURP 
siRNA: n= 250, and mDia2 siRNA: n = 158 cells from three independent experiments.  The p-
value was computed using two tailed t-test.   
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Figure 2.2. The mDia2 protein is required for loading new CENP-A during G1.  

(A) High resolution ratiometric live cell imaging showing defective YFP-CENP-A loading upon 
mDia2 knockdown.  Pseudo-colored live imaging stills following cells through the 10 hour time 
window after anaphase onset.  Identical lookup table (LUT, linear and covering the full range of 
data) was used over time. Scale bar: 10 µm (insets are 3× magnified).  
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(B) Quantification of centromeric YFP-CENP-A levels during G1 phase (plotted as mean ± SD).   
Control: n = 4,100 centromeres from 12 G1 pairs and mDia2 siRNA: n = 4,310 centromeres 
from 13 G1-pairs were measured from three independent transfections (See Materials and 
Methods and Figure S2 for more details). 

(C) Scheme for the SNAP pulse chase labeling to distinguish existing centromeric CENP-A 
protein (old) from newly synthesized CENP-A loaded onto centromeres (new).  

(D) Immunofluorescence analysis showing old CENP-A labeled by TMR-Star and total CENP-A 
stained with anti-HA antibody.  In merge: red - TMR-Star and green - HA-tag.  Scale bar, 10 µm 
(1 µm in 4× magnified insets).  

(E) Quantification of SNAP-tag-labelled CENP-A (old, red) and total CENP-A (total, green) 
(means ± 95% confidence intervals). The p-value was computed using two tailed t-test.  

(F) Quantification showing the normalized ratio between total CENP-A and old CENP-A (mean 
± SD overlaid with scatter plot).  Control: n = 215 and mDia2 siRNA: n = 217 cells from three 
independent experiments. The p-value was computed using two tailed t-test.  
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Figure 2.3. Nuclear mDia2 is required for CENP-A levels at centromeres. 

(A) The mDia2 protein structure showing the relative positions of GBD, DID, FH1, FH2 and 
DAD domains as well as the position of nuclear localization signal (NLS). 
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(B) Depletion of mDia2 does not affect CENP-A distribution in cytoplasm and nucleus.  Cellular 
fractionation and immunoblotting analysis showing the distribution of CENP-A proteins in 
cytoplasm, nucleoplasm and insoluble materials associated with the chromatin marked by 
tubulin, RNA polymerase II and H4K20me2, respectively.  A higher exposure of CENP-A blot 
was shown for its cytoplasmic distribution. 

(C) Cells expressing wild-type mDia2 or the mDia2K35A/R36A mutant (with a defective NLS) 
fused with mEmerald were treated with or without LMB (20 nM for 60 min) before fixation and 
imaging mEmerald.  Scale bar, 5µm. 

(D) Immunofluorescence detection of CENP-A and CENP-B in HeLa cells 48 hr post 
transfection with the indicated siRNAs and the full length mDia2 (FL-mDia2) or mDia2 ΔNLS 
mutant expression vectors (DNA - DAPI).  Scale bar, 5 µm.  

(E) Quantification showing the normalized CENP-A integrated intensity per nucleus (mean ± SD 
overlaid with scatter plot). The p-value was computed using two tailed t-test. Control: n = 174, 
mDia2 siRNA: n = 149, mDia2 siRNA + FL-mDia2: n = 136, mDia2 siRNA + FL-ΔNLS: n = 
103.   
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Figure 2.4. The formin mDia2 is a downstream effector of the MgcRacGAP-dependent 
GTPase pathway to regulate epigenetic centromere maintenance. 

(A) HeLa cells were transfected with indicated siRNAs along with expression vectors.  Cells 48 
hr post transfection were fixed and stained with DAPI (DNA), CENP-B and CENP-A.  Transfected 
cells were identified by fluorescence markers.  Scale bar, 10 µm.  

(B and D) Quantifications of normalized CENP-A integrated intensity per nucleus plotted as 
means ± SD overlaid with scatter plot.  The p-value was computed using two tailed t-test.  Control: 
n = 425, mDia2 siRNA: n = 260, mDia2 siRNA + FL-mDia2: n = 136, mDia2 siRNA + WT-
FH1FH2-mDia2: n = 383, mDia2 siRNA + K853A-FH1FH2-mDia2: n = 151, mDia2 siRNA + 
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I704A-FH1FH2-mDia2: n = 158, mDia2 siRNA + W630A-FH1FH2-mDia2: n = 128, 
MgcRacGAP shRNA: n = 117, MgcRacGAP shRNA + WT-FH1FH2-mDia2: n = 88 from at least 
three independent experiments.  

(C) Live cell imaging stills showing EGFP-FH1FH2-mDia2 nuclear localization during G1 phase 
upon anaphase onset (0 min).  Scale bar, 10 µm. 
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Figure 2.5. Depletion of mDia2 produces a prolonged HJURP localization at centromeres. 

(A) Scheme for the siRNA transfection and the thymidine arrest to examine centromere 
localization of HJURP in early G1 cells.  

(B) Immunofluorescence images of GFP-HJURP.  Centromeres were identified using ACA 
antibodies.  Scale bar, 5 µm (insets are 2× magnified). 

(C) Whisker-Tukey boxplots show the relative intensity of GFP-HJURP foci at centromeres.  
The boxes span 25-75 percentile of the samples, while the center bar denotes median and the ‘+’ 
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marks mean.  Control: n = 174 centromeres from 26 cells and mDia2 siRNA: n = 183 
centromeres from 20 cells.  The p-value was computed using two tailed t-test. 

(D) Mean percentage of GFP-HJURP centromere-positive cells with error bars showing standard 
deviations from three experiments (Control: n = 594 cells and mDia2 siRNA: n = 277 cells).  
The p-value was computed using two tailed z-test. 

(E) Model of mDia2 regulating CENP-A loading.  Left panel: time line of the epigenetic 
inheritance of CENP-A over cell cycle.  Right panel: schematic model showing mDia2 to be 
important for HJURP-mediated CENP-A chromatin assembly and timely HJURP turnover.    
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Figure S2.1. The Integrated Nuclear CENP-A (INCA) measurement.  

(A) Automatic routine of the ‘INCA’ method based on a previous study (Lagana et al., 2010) 
with minor modifications. See Experimental Procedures for more details. Scale bar, 5 µm. 

(B) A proof-of-principle application of the INCA method showing consistent conclusions with 
the traditional method when comparing centromeric CENP-A levels between anaphase and G1/S 
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phase cells (representative images with nuclear masks outlined in yellow).  Quantification of the 
normalized CENP-A integrated intensity following the INCA method (means ± 95% confidence 
intervals).  Anaphase: n = 156 and G1/S: n = 138 G1/S cells from three independent 
experiments.  CENP-A levels are approximately doubled in G1/S compared to anaphase.  This 
result is consistent with the quantification using the traditional method (means ± 95% confidence 
intervals).  Anaphase daughter cells: n = 423 and G1/S cells: n = 529 single centromeres 
randomly measured from the same cells used in the INCA measurement. Scale bar, 10 µm. The 
p-value was computed using two tailed t-test. 

(C) Another proof-of-principle application of the INCA method showing reduced CENP-A 
levels in cells depleted of HJURP.  Histograms showing normalized CENP-A integrated 
intensity plotted from control (n = 244) and HJURP siRNA (n = 196) cells (from three 
independent experiments and p < 0.0001 by two tailed t-test). Scale bar, 10 µm. 
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Figure S2.2. The method used for quantifying high resolution ratiometric live cell imaging 
data and details of nonlinear regression.  

(A) YFP-CENP-A signals approximately follow Gaussian distribution at centromeres, making it 
reasonable to use local maxima for the measurement of centromeric CENP-A levels. Scale bar, 5 
µm. 
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(B) Raw scatter plots of ratiometric CENP-A levels on individual centromeres, which were used 
for plotting mean ± SD in Figure 2B, in control cells and mDia2 siRNA treated cells.  

(C) Bar graphs comparing the “apparent” rate constant and time constant between control cells 
and mDia2 siRNA treated cells.  Apparent rate and time constants were computed from 
nonlinear regression using one phase association model. In total n = 4,100 centromeres from 12 
G1 pairs for control and n = 4,310 centromeres from 13 G1-pairs for mDia2 siRNA cells were 
analyzed and plotted (means ± 95% confidence intervals). 

(D) Scheme of thymidine synchronization and live imaging of G1/S cells with fully loaded 
CENP-A levels.  This was designed to test for photobleaching over long term live cell imaging. 

(E) Representative frames from live imaging movie of YFP-CENP-A in arrested G1/S cells. 
Imaging setup was identical as that used in Figure 2 and images were scaled on the same 
dynamic range over time.  Scale bar, 5 µm. 

(F) Quantification of centromeric YFP-CENP-A levels over time (plotted as mean ± SD).  For 
every time point, 100 centromeres in 10 cells were measured from 2 repeated experiments (See 
Materials and Methods for more details). 

(G) Depletion of mDia2 does not affect cell cycle.  Quantification of the percentage of cells 
within each cell cycle stage (mean ± SD, n = 30,000 cells per treatment from three independent 
experiments).  The univariate model was used for FACS data analysis(Watson JV et al., 1987). 
The p-value was computed by two tailed t-test. G1 (Control vs mDia2 siRNA) p = 0.2254, G1 
(Control vs Control + nocodazole) p = 0.0004, S (Control vs mDia2 siRNA) p = 0.2007, S 
(Control vs Control + nocodazole) p = 0.2031, G2/M (Control vs mDia2 siRNA) p = 0.3782, 
G2/M (Control vs Control + nocodazole) p < 0.0001.  
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Figure S2.3. Stochastic simulation of HJURP turnover at G1 centromeres. 

(A) Pair-wise immunoblots showing relative levels of nucleoplasmic and chromatin-bound 
CENP-A proteins in control cells and cells depleted of mDia2. 
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(B) Histograms of the distribution of single dwelling events per docking site per centromere. 
Exponential fits were given as inset.  For control and perturbed conditions: n = 761 and n = 855, 
respectively (pooled from 3 simulations). 

(C) Scatter dot plot of key ‘points’ of time lines from synchronized cell (a control condition’s 
plot is given for demonstrative purpose). Blue points are the starts of each simulated time line.  
‘Green point’ and ‘red point’ represent the start and end of HJURP association, respectively.  
The duration for each cell to be documented as ‘HJURP positive’ cell is the distance between 
cognitive green and red points, represented by the black bars in the schematics.  All cells with 
their ‘red point’ before the observational point (arrow, ‘Fixation & Observation’), and all cells 
with their ‘green point’ after the observational point, will not be documented as ‘HJURP 
positive’ cells.  The percentage of observed ‘HJURP positive’ cells (obs + %) can then be 
calculated based on these criteria.  See Materials and Methods for more details. 

(D) Left panel: simulated HJURP levels per centromere (mean ± SD).  Data were plotted using 
measurements from 10 random positions inside the ‘HJURP positive’ time window per 
simulation, 3 simulations in total.  Right panel: simulated percentages of ‘HJURP positive’ cells 
in control or perturbed populations with one round of thymidine synchronization (mean ± SD).  
Percentage values were calculated from 40 independent simulations, 2000 cells each. 

(E) Simulated ‘loading curves’ of the number of CENP-A nucleosomes per centromere overlaid 
with experimental measurements shown in Figure 2.  For each condition, 6 representative 
simulation traces were plotted.  For experimental data, mean ± SD were shown.   

(F) Immunofluorescence detection of histone H2A.Z 48 hr post transfection of indicated siRNAs 
(DNA - DAPI).  Transfected cells were identified by fluorescence co-transfection markers.  
Scale bar, 10 µm. 

(G) Quantification showing the distribution of normalized H2A.Z integrated intensity per 
nucleus (mean ± SD overlaid with scatter plots).  Control: n = 104, mDia2 siRNA: n = 105 cells 
from two independent experiments.  
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Chapter Three:  Diaphanous formin mDia2 bridges small GTPase 
signaling with nuclear environment to regulate stable CENP-A 

loading at the centromere 
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Abstract 

The epigenetic determination of centromeric chromatin in higher eukaryotes depends on 

CENP-A, a centromere-specific histone H3 variant.  Due to quantitative dilution of CENP-A 

during chromatin replication, new CENP-A assembles into centromeres at G1 phase to maintain 

the epigenetic mark. The stable incorporation of new CENP-A at the centromere is not well 

understood. We have discovered that a cytoskeletal regulator, diaphanous formin mDia2, is 

essential in maintaining CENP-A levels at the centromeres. Using quantitative imaging, here we 

determined the temporal requirement for the MgcRacGAP-dependent small GTPase signaling 

during CENP-A loading, and show that endogenous mDia2 acts downstream of the 

MgcRacGAP-dependent small GTPase pathway to ensure stable loading of CENP-A in early 

G1-phase. This function of mDia2 requires its actin nucleation activity, and dynamic actin 

filaments observed in early G1 nuclei depend on mDia2. Indeed, in the absence of nuclear actin 

pool, a polymerizable actin protein reintroduced into the nucleus, but not its non-polymerizable 

counterpart, could restore centromeric CENP-A levels. Particle tracking of centromere 

movement in early G1 nuclei revealed subdiffusive motion, a characteristic behavior 

significantly impaired in the absence of mDia2. Thus our findings suggest the nuclear 

diaphanous formin mDia2 forms a link between upstream small GTPase signaling and the 

downstream nuclear environment in order to promote the stable assembly of new CENP-A 

nucleosomes at the moving centromeres.  
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Introduction 

 

Epigenetic inheritance of chromosomal landscapes in eukaryotes is often regulated by 

signaling inputs as well as nuclear environment171-176. As a fundamental landscape essential for 

accurate partitioning of chromosomal materials during mitotic cell division, centromeres are 

defined epigenetically by the histone H3 variant centromere protein A (CENP-A) containing 

nucleosomes13. In order to ensure stable inheritance of centromere identity over generations of 

cell divisions, the centromere marker CENP-A manages to replenish its own levels at each 

centromere in every cell cycle to compensate for the quantitative dilution caused by centromeric 

chromatin replication4. A number of important signaling pathways have been identified 

underlying the initiation and execution of recruiting newly synthesized CENP-A molecules to the 

centromeres46-48,52-54. Nevertheless, a complete understanding is pending regarding how new 

CENP-A become stably incorporated into the centromeric nucleosomes. 

 

Recent work have identified a small Rho GTPase signaling pathway essential for stable 

maintenance of CENP-A levels at the centromeres. Depletion of the GAP, MgcRacGAP, as well 

as its downstream small GTPases Cdc42 and Rac1, results in 50% reduction of centromeric 

CENP-A levels50. We recently found that the mammalian diaphanous formin mDia2 – a 

cytoskeleton regulator and well-studied small GTPase effector – is also required for new CENP-

A loading at G1 centromeres177, thus positioning itself as a potential effector of the 

MgcRacGAP-dependent molecular switch in stabilizing newly loaded CENP-A178. However, it 

remains to be tested whether and when endogenous mDia2 acts downstream of the MgcRacGAP 

signaling pathway in regulating the stable incorporation of new CENP-A at centromeric 
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nucleosomes. It has also been recently reported that formin proteins, well known for their ability 

to regulate the actin and microtubule cytoskeletons in the cytoplasm124, could have unappreciated 

novel functions inside the nucleus. The diaphanous formin mDia2 for instance can translocate 

from the cytoplasm to the nucleus94,137 and bind to a growing list of nuclear proteins including 

histones and topoisomerases with its FH2 domain, characteristics not shared by the other 

members of the diaphanous family138. Inside the nucleus, diaphanous formin mDia2 can nucleate 

filamentous actin polymers. The roles of actin filaments regulating the dynamics environment 

inside somatic cells’ nuclei are beginning to emerge, with newly identified functions in the repair 

of double-strand DNA breaks97, interactions with chromatin remodeling complexes179,180, and 

crosstalk with important epigenetic enzymes181. It is therefore intriguing to ask whether and how 

nuclear actin polymerized by mDia2 could directly contribute to CENP-A assembly at 

centromeric chromatin. 

 

Using quantitative imaging and epistatic analysis, here we provide temporal evidence that 

endogenous diaphanous formin mDia2 functions downstream of the MgcRacGAP-dependent 

small GTPase signaling pathway in early G1. By polymerizing filamentous nuclear actin, mDia2 

is required for the relatively confined centromere movement when the stable incorporation of 

new CENP-A molecules occur. Combined evidence from our study indicates a unique role of 

mDia2 in bridging upstream small GTPase signaling and downstream nuclear environment 

during stable CENP-A loading at the moving centromeres in early G1 phase.   
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Results 

Endogenous mDia2 acts downstream of the MgcRacGAP-dependent GTPase signaling 

pathway to ensure ordinary CENP-A levels at centromeres 

To test whether endogenous mDia2 functions downstream of the MgcRacGAP-depdent 

small Rho GTPase molecular switch, we introduced exogenous fragment of the Dia 

autoinhibition domain (DAD) of mDia2 into cells depleted of MgcRacGAP. DAD fragment can 

bind to the Dia interacting domain (DID) of endogenous mDia2 with high affinity, thus 

ectopically opens up the otherwise auto-inhibited endogenous mDia2 due to a lack of small Rho 

GTPase binding to the GTPase binding domain (GBD) at the N-terminus (Figure 3.1A)182,183. A 

point mutation (L1168G) was introduced to the NES-like motif of DAD such that this fragment 

shifts its cytosolic distribution into the nucleus94,137. Another point mutation (M1141A) at the 

core of DAD abolishes its interaction with DID184, thus the combination of L1168G and 

M1141A serves as an ‘incactive’ control (Figure 3.1B). As expected, centromeric CENP-A 

levels were significantly reduced upon knocking down MgcRacGAP. Importantly, the decrease 

of CENP-A levels can be rescued by co-expressing DAD-L1168G, but not the DAD-L1168G-

inactive fragment (Figure 3.1 C and D). Because the DAD fragment per se is not necessary for 

restoring centromeric CENP-A levels upon depleting endogenous mDia2177, the results here 

strongly suggest an epistatic relationship between upstream small GTPase signaling and 

downstream endogenous mDia2 in maintaining CENP-A levels at the centromeres. 

 

MgcRacGAP is required for apparent CENP-A loading in early G1 
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The epistasis between MgcRacGAP and endogenous mDia2 prompted us to examine 

more closely of the temporal requirement of the MgcRacGAP-dependent small GTPase pathway 

during CENP-A replenishment. Despite an apparent centromere enrichment of MgcRacGAP 

toward the end of G150, depleting MgcRacGAP caused a defective CENP-A loading in live cells 

going through early G1 phase. High resolution ratiometric live cell imaging demonstrated that, in 

the absence of MgcRacGAP, the increase of YFP-CENP-A levels at individual centromeres 

cannot be maintained despite an initial slight increase within 2 h after anaphase onset (Figure 3.2 

A and B; Movie S1). Non-linear regression using a first-order reaction model predicted 

substantially lower plateau (maximum) loading amount as well as higher rate constant, consistent 

with attempted yet failed loading behaviors (Figure 3.2C). These data are in agreement with the 

phenotype caused by mDia2 depletion, thus by revealing the temporal requirement of the 

MgcRacGAP-dependent small GTPase pathway, support the epistatic relationship between 

MgcRacGAP and mDia2 in early G1-phase. 

 

Short and dynamic actin filaments in G1 nuclei require mDia2  

To understand how mDia2 regulates CENP-A loading in early G1, we went on to test if 

actin polymerization activity in full length mDia2 is required for its function in stable CENP-A 

assembly. Similar to the point mutation for actin nucleation activity in the constitutively active 

mDia2-FH1FH2 fragment126,177, K853A mutation in full length mDia2 failed to restore the 

decreased CENP-A levels at centromeres upon depleting endogenous mDia2 (Figure S3.1). 

Next, to examine if there are nuclear actin polymers inside G1 nucleus during CENP-A loading, 

an utrophin-based nuclear actin probe, Utr230-EN96, was transiently expressed in synchronized 

HeLa cells transfected with mDia2 or GAPDH (control) siRNA (Figure 3.3A).  Live cell 
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imaging revealed that about 40% of control G1 cells showed dynamic and short nuclear actin 

filaments as measured by the utrophin probe, with a typical “nuclear puncta” pattern.  In contrast, 

the percentage of cells with nuclear puncta pattern was significantly reduced upon mDia2 

depletion (Figure 3.3 B and C; Movie S2).  This result confirms the existence of short and 

dynamic nuclear actin in early G1 cells, dependent on mDia2. 

Actin polymerization inside the nucleus is important for stable maintenance of CENP-A 

levels at the centromeres 

To further test the possibility that filamentous nuclear actin polymerized by nuclear 

mDia2 directly participates in the regulation of stable CENP-A incorporation, we set out altering 

the pool of actin inside the nucleus. Importin 9 has been shown to be the essential importin 

responsible for shuttling actin monomers into the nucleus93. Depleting IPO9 depletes the pool of 

actin proteins inside the nucleus, but doesn’t change the total amount of YFP-CENP-A or 

untagged CENP-A proteins, nor does it alter the relative distribution of CENP-A proteins in the 

cytoplasm or nucleoplasm upon cellular fractionation (Figure 3.4B, S3.2A), therefore ruling out 

potential side effects on the expression or distribution of new CENP-A proteins (Figure 3.4 A 

and B). Given this opportunity to evaluate only the ‘loading’ machineries of CENP-A at 

centromeres, we expressed NLS-tagged actin constructs that accumulate in the nucleus 

independent of IPO997, and asked the question: is actin polymerization important for CENP-A 

level maintenance at the centromeres (Figure 3.4C)? Significantly, the wild type, polymerizable 

actin tagged with NLS can restore the reduced CENP-A levels upon IPO9 depletion; however, 

the nonpolymerizable185, R62D mutant of actin cannot rescue the phenotype (Figure 3.4 D and 

E), suggesting that actin polymerization inside the nucleus is essential for the stable maintenance 

of CENP-A levels at centromeres. Moreover, a meshwork of filamentous actin filaments at close 
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proximity to centromeres were observed in cells expressing the wild type NLS-actin, but not the 

R62D-actin (Figure S3.2B). 

Centromere movement is relatively confined during new CENP-A loading time 

Dynamic and short nuclear actin filaments can potentially regulate nuclear events by 

providing mechanical inputs that either actively transport cargos or help organize nuclear contents. 

Upon telomere damage, it has been shown that telomere movement is enhanced, which is likely to 

facilitate DNA repair186-188.  To test whether mDia2-mediated nuclear actin polymers affects 

centromere movement during the time new CENP-A is being loaded, single particle tracking of 

centromere movement was performed in early G1 nuclei by imaging HeLa cells stably expressing 

YFP-CENP-A at relatively high sampling frequency (Figure 3.5A and Movie S3).  Trajectories 

of these loci displayed relatively confined movement (Figure 3.5B), with anomalous diffusion 

over the time range of initial CENP-A loading in early G1, about 25 - 200 min post anaphase onset 

(Figure S3.3C).  The confined centromere motion, however, is significantly impaired upon mDia2 

knockdown (Figures 3.5A, 3.5B, S3.3), with an increase in relative apparent diffusion coefficient 

by 22.1% (Figure 3.5D).  In particular, long range centromere movements over the scale of several 

microns were occasionally observed in mDia2 knockdowns but not in control cells (Figure S3.4; 

Movie S3). Thus, the formin mDia2 is required for the relatively confined movement of 

centromeres at the time scale of CENP-A loading in early G1.  Furthermore, intensity profiling of 

individual tracks showed that the relative YFP-CENP-A loading ratio in control cells were 27.4% 

higher than that in mDia2 knockdown cells (Figure 3.5, C and D), supporting the earlier 

observations that the mDia2 protein is essential for new CENP-A deposition.          
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Long term depletion of nuclear mDia2 generates chromosomal phenotype consistent with 

centromere dysfunction 

Although the CENP-A loss upon depleting mDia2, MgcRacGAP or IPO9 only go as much 

as 50% reduction after approximately one round of cell cycle, it has been demonstrated that 

continued failure in CENP-A replenishment will ultimately lead to substantial loss of centromere 

identity and kinetochore function – reasons sufficient to cause errors in mitotic chromosome 

segregation. Due to serial dilution of residual cetromeric CENP-A, such continued failure could 

take as long as 5 consecutive days to show chromosomal phenotypes75. To test the long term 

consequences of defective CENP-A loading upon mDia2 depletion, we performed co-transfection 

to strategically replace endogenous mDia2 with either wild type or full length ∆NLS mutant of 

mDia2 (Figure 3.6A). Importantly, the full length ∆NLS-mDia2 construct did not cause higher 

index of binuclear cells than the wild type mDia2 construct, indicating that cytokinesis failure was 

not a major issue in our long term replacement (Figure S3.5)162. After 5 days, mitotic cells were 

well synchronized to score the metaphase chromosome alignment. Remarkably, the percentage of 

fully aligned chromosomes in wild type mDia2 expressing cells was indistinguishable from control 

group, while that in the ∆NLS-mDia2 expressing cells was significantly lower. Meanwhile, 

interphase nuclear morphology was compared between the two groups and cells expressing ∆NLS-

mDia2 have significantly higher percentage of micronuclei. Thus, a significantly higher indices of 

misaligned chromosomes in metaphase and micronuclei in interphase following long term 

depletion of nuclear portion of mDia2 are consistent with centromere dysfunction caused by the 

loss of centromere identity.  
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Discussion 

Faithful transmission of chromosomes during cell division requires the stable 

maintenance of centromeres, whose identity are epigenetically defined by a finite number of 

CENP-A-containing nucleosomes at each centromere42. Genome replication in S-phase and 

subsequent chromosome segregation in mitosis reduce the copy numbers of existing CENP-A-

containing nucleosomes by half, thus the epigenetic landmark at each centromere needs to reload 

itself every time the cell goes from mitosis to the next G1-phase. Loading of new CENP-A at G1 

centromeres requires release from inhibition signals from CDK52, initiation signals from Plk53, 

assembly of licensing factors at anaphase onset35,46, recruitment of new CENP-A molecules for 

nucleosome assembly by its chaperone HJURP36, and presumably a maintenance step using a 

small Rho GTPase molecular switch whose downstream effector remained to be tested. Notably, 

it has been suggested that the GAP responsible for the molecular switch, MgcRacGAP, only 

starts to have obvious centromere localization until late G1 (the earliest as 6 hours post anaphase 

onset)50. By contrast, mDia2, a candidate effector cytoskeletal regulator of the MgcRacGAP-

dependent pathway, has been shown to be important for loading of new CENP-A in early G1 

(around 2 hours post anaphase onset)177. To address this obvious discrepancy, we performed 

ectopic induction of endogenous mDia2 in the background of MgcRacGAP depletion, as well as 

direct live imaging for YFP-CENP-A loading kinetics in the absence of MgcRacGAP. 

Importantly, our results strongly support an epistatic relationship between MgcRacGAP and 

mDia2, and revealed that the requirement for MgcRacGAP in YFP-CENP-A loading already 

occurs in early G1 (around 2 hour post anaphase onset). One possibility is that low levels of 

MgcRacGAP already resides at early G1 centromere before its fluorescence signal becomes 

apparently detectable to regulate the small Rho GTPase signaling, which then communicates to 

downstream mDia2 to ensure stable incorporation of new CENP-A. Accordingly, centromeric 
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localization of MgcRacGAP at later G1 could potentially represent a separate step whose exact 

function remains to be identified. 

 

In addition to the connections to upstream signaling pathways, our data also provided 

evidence that mDia2 mediated nuclear actin polymerization could be important to the nuclear 

environment during stable CENP-A loading at the moving centromeres in early G1 phase. It has 

been demonstrated recently that nuclear actin polymers are required for efficient clearance of 

DNA double-strand breaks (DSB), through an mDia1/2-independent but Formin-2 (FMN2) 

dependent mechanism97. Apart from the differed families of formin proteins in these processes, 

the polymerized nuclear actin we observed in G1 cells have different morphology than those 

observed upon DNA damage. On the one hand, this underlines the diversified use of nucleators 

for actin polymerization involved in differed chromosomal pathways; on the other hand, because 

it has been suggested that CENP-A can be recruited to double-strand DNA breaks189, it might be 

interesting to test potential links between centromere maintenance and DSB repair, especially 

with regard to nuclear actin. 

 

The functional roles of filamentous actin inside the nucleus are just beginning to emerge. 

Broadly speaking, it has been debated whether actin polymerization inside the nucleus functions 

by simply depleting the monomer pool, or by contrast, actually does mechanical work with the 

polymerized filaments. The first hypothesis is supported by the observation that actin 

polymerization inside the nucleus release the inhibitory effect of monomeric actin on MAL 

(megakaryocytic acute leukemia protein), a cofactor for the transcriptional factor SRF (serum 
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response factor)94,95. However, monomer removal seemed not to be the reason behind the role of 

nuclear actin polymerization in CENP-A loading. If monomer removal is the main function of 

G1-actin filaments formation concurrent with CENP-A loading, depleting IPO9 (by which both 

monomeric and polymeric actin are removed) would not phenocopy filament inhibition (by 

depleting mDia2), with regard to CENP-A levels at the centromere. Meanwhile, the fact that the 

NLS-tagged polymerizable actin, but not its nonpolymerizable counterpart, restored CENP-A 

levels strongly suggests it is the filament specific functions that participate in regulating stable 

CENP-A maintenance. It didn’t escape our notice that mDia2 depletion could cause indirect 

transcriptional effects through the SRF pathway, and this will be discussed further in Chapter 

five of the thesis. 

 

Short and dynamic nuclear actin filaments can potentially regulate nuclear processes 

through two major mechanisms: (a) modulating the mobility or organization of chromatin; (b) 

delivering other assembly factors essential for CENP-A loading, or sequestering inhibitory 

factors that would otherwise suppress CENP-A loading. These two scenarios are not mutually 

exclusive. While a sequestering role is consistent with a lack of obvious colocalization of either 

mDia2 or nuclear actin filaments at the centromeres, further biochemical experiments are needed 

to examine potential interactomes of mDia2 as well as filamentous nuclear actin in G1 nuclei. A 

role in delivering assembly factors is inconsistent with the fact that at least the recruitment of 

HJURP at G1 centromeres is not affected upon mDia2 depletion177. Finally, a role in regulating 

the movement or spatial organization of chromosmes/chromatin is supported by the apparent 

change in the sub-diffusive motion of centromeres upon mDia2 knockdown, correlated with 

defective CENP-A loading. The sub-diffusive motion itself is consistent with the hypothesized 



79 
 

local reaction chambers that greatly enhance chemical efficiency190. Physically, this phenomenon 

is consistent with relatively stable chromosome territories191 and the fractal globule model192 

under ordinary conditions.  Indeed, we have observed several long range centromere movements 

in mDia2 depleted cells. Whether this reflects global rearrangement of chromosome territories in 

mDia2 knockdown cells remains to be investigated in the future. 

 

Given our combined results, we suggest that nuclear actin polymerized by formin mDia2 

contributes to the physical confinement of early G1 centromeres which is pivotal to ensure the 

chemical reactivity of stable CENP-A loading. The diaphanous formin mDia2, in turn, serves as 

a link between upstream small GTPase signaling and the downstream viscoelastic nuclear 

environment to regulate the stable marking of centromere’s epigenetic identity (Figure S3.6). 
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Materials and methods 

Constructs, siRNA sequences and antibodies 

The construct of GFP-myc-DAD182,184 was used as the template to make all DAD constructs in 

this study.  NLS-flag-tagged actin185 were kind gift from the Grosse Lab (University of Marburg) 

and was used as template to make the constructs used in this study. Utr230-EGFP-NLS was a 

kind gift from Dyche Mullins (UCSF). Full length K853A-mDia2 was generated based on the 

full length WT-mDia2 (plasmid 54158, Addgene), a kind gift from Michael Davidson. Site 

directed mutagenesis was performed to generate the mutants, using QuikChange Lightning 

following manufacturer’s instructions. The shRNA against MgcRacGAP was MISSION shRNA 

plasmid DNA from Sigma (clone NM_013277.2-456s1c1). The siRNA oligos used in this study 

were the same as those described before, except siRNA against IPO9 (s31299, SilencerSelect 

siRNA from ThermoFisher). Primary antibodies used in this study include: rabbit anti mDia2 

(Watanabe et al., 2008), mouse anti CENP-A (Ab13939, Abcam), mouse anti tubulin (T6199, 

Sigma), chicken anti GFP (Ab16901, Millipore), rabbit anti MgcRacGAP (Ab61192, Abcam), 

rabbit anti Flag (F7425, Sigma), rabbit anti IPO9 (Ab124710, Abcam), and rabbit anti 

H4K20me2 (Ab9052, Abcam). 

 

Cell culture, transfection, and drug treatment  

HeLa cells were used for most of the quantitative imaging experiments in this study. A HeLa cell 

line stably expressing YFP-CENP-A was used for high-resolution ratiometric live cell imaging. 

Cells were maintained in DME medium supplemented with 10% FBS (complete growth 

medium) at 37°C in 5% CO2.  The transfection of siRNAs was performed with Hiperfect 
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(Qiagen) or DharmaFECT DUO (Dharmacon) following the manufacturers’ protocols.  For co-

transfection experiments, siRNAs were transfected with at least 20-fold molar excess to marker 

plasmids encoding fluorescent proteins. Control cells were transfected with GAPDH siRNA.  All 

knockdowns were confirmed by immunoblotting analysis.  Cells were fixed for immunostaining 

or imaged 48 hours after transfection.  Thymidine synchronization was performed with 2 mM 

thymidine in complete growth medium for at least 17 hr, washed twice in pre-warmed PBS, and 

released into complete medium supplemented with 24 µM deoxycytidine (for 9 hr before 

entering mitosis).  Monastrol was used at 100 µM, MG132 was used at 10 µM.  All drugs were 

purchased form Sigma-Aldrich. 

 

Quantitative fixed cell imaging and automated image analysis 

Immunofluorescence and fixed cell imaging, as well as quantitative image processing using the 

INCA method were performed as previously described177. 

 

High resolution ratiometric live cell imaging and automated image analysis 

Live cell imaging was performed as previously described177. Quantitative analysis of single 

centromereic YFP-CENP-A movies were conducted in MATLAB using custom code, with part 

of the measurement dependent on the mixed-model Gaussian fit in µ–track (Gaudenz Danuser 

Lab and Khuloud Jaqaman Lab, UTSW)193.  Briefly, single centromeric foci of fluorescence 

were automatically detected and processed for local maxima measurement as a reasonable 

estimate for YFP-CENP-A level at each centromere. All centromeric foci’ intensity were then 

normalized against the ‘unloaded’ frame’s intensity and averaged for every time point in one 
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single cell, in order to generate a time-lapse averaged intensity profile for each cell (Figure 2B). 

Multiple cells’ time-lapse intensity traces were finally pooled for statistical analysis. 

 

Cell fractionation and immunoblotting analysis 

Cell fractionation and immunoblotting analysis were performed as previously described177, 

except that cellular fractionation only separated the cytoplasmic fraction and the nuclear pellet. 

 

Live imaging of centromere movement, single-particle tracking and analysis 

With the same wide-field microscopy setup as described before, HeLa cells stably expressing 

YFP-CENP-A were imaged from metaphase to early G1 every 5 min, across 11 z-sections 1 µm 

apart at every time point194. Maximum z-projections were generated for each time point in the 

movie, based on which single-particle tracking and analysis was performed, using primarily the 

MATLAB based software µ–Track (Jaqaman et al., 2008). Only cells that survived at the end of 

movie and those without obvious nuclear rotation are included in our analysis. The frame at 25 

min post anaphase onset, when most cells have their centromeres spread out well enough while 

largely remaining unloaded of CENP-A, was considered the beginning of each track. 

Approximately 36 frames spanning the 25 min to 200 min window were subjected to Gaussian 

mixture-model fitting to detect the coordinates of centromeres at sub-pixel resolution. 

Coordinates of centromeres at each frame were then subjected to drifting correction, following 

the equations below, for any given centromere at time point (i): 

𝑋𝑋𝑖𝑖′ = 𝑋𝑋𝑖𝑖 −  
∑ 𝑋𝑋𝑖𝑖𝑁𝑁
1

𝑁𝑁
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𝑋𝑋𝑖𝑖′ = 𝑋𝑋𝑖𝑖 −  
∑ 𝑋𝑋𝑖𝑖𝑁𝑁
1

𝑁𝑁
  

Where N is the total number of centromeres at time point i, Xi and Yi are raw coordinates per 

centromere at time point i, Xi’ and Yi’ are updated coordinates corrected for global drifting. This 

way global long-range movement of the whole cell is eliminated so that only the motion inside 

the nucleus relative to the cell is reflected as a change of coordinates. Reverse tracking was 

performed using the adjusted coordinates with default parameters in µ–track. Trajectory analysis 

was performed upon the resultant tracks using µ–track193,195 with tracks whose lengths are at 

least 20 frames (Figure S3B), following the principles below: 

𝜇𝜇𝜈𝜈,𝑙𝑙(𝛥𝛥𝛥𝛥) =  
1

𝑀𝑀𝑙𝑙 −  𝛥𝛥𝛥𝛥
 � |𝑥𝑥𝑙𝑙(𝛥𝛥 + 𝛥𝛥𝛥𝛥) − 𝑥𝑥𝑙𝑙(𝛥𝛥)|𝜈𝜈
𝑀𝑀𝑙𝑙−𝛥𝛥𝑜𝑜−1

𝑜𝑜=0

 

Where 𝑥𝑥𝑙𝑙(𝛥𝛥) is the position vector on trajectory 𝑙𝑙 at time nΔt for n = 0, 1, 2, 3 …, 𝑀𝑀𝑙𝑙-1. 𝑀𝑀𝑙𝑙 is the 

total number of positions in the trajectory 𝑙𝑙 . Δt is the true time interval between frames. 𝜇𝜇𝜈𝜈,𝑙𝑙(𝛥𝛥𝛥𝛥) 

is the moment of order ν for a given shift spanning n frames, consistent with a time shift δt = 

ΔnΔt. Euclidean distance is denoted by |…|. In particular, the condition where ν = 2 is Mean 

Square Displacement (MSD). Because each moment is dependent on the time shift following a 

power law, 

𝑚𝑚𝑜𝑜(𝛿𝛿𝛿𝛿) ∝ 𝛿𝛿𝛿𝛿𝛾𝛾𝜈𝜈 

The scaling coefficient was then computed with least-square linear regression of log(mn) as a 

function of log(δt). A similar MSD analysis was also conducted196 which led to the same 

conclusions (data not shown). Notably, in the ensemble MSD curve (Figure S5C), only the first 
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25% of the curve were subjected to least-square linear fit197. (Figure S3A). Relative apparent 

diffusion coefficients were computed using µ–track, in arbitrary unit.  

To quantify the change of intensity over time for each track, relative YFP-CENP-A loading ratio 

was defined as follows, in order to reflect the levels of CENP-A loading during an early time 

window of G1: 

𝐿𝐿𝐿𝐿 =  
∑ 𝐼𝐼(𝛿𝛿)140 𝑚𝑚𝑖𝑖𝑜𝑜
90 𝑚𝑚𝑖𝑖𝑜𝑜

𝑁𝑁 ∙  𝑀𝑀𝑒𝑒𝑀𝑀
 

Where LR is the YFP-CENP-A relative loading ratio, I(t) is the intensity at time point (t) post 

anaphase onset, N is the total number of frames with intensity information between 90 min and 

140 min, ‘Med’ is the median value of all tracks’ intensity values within the first two frames 

(25min, 30min). The range 90-140 min was empirically chosen so that the maximum initial 

loading capacity is captured prior to inevitable fluorescent quench near the end of the movies. 

We understand that this algorithm may underestimate the actual loading ratio, yet nevertheless 

believe this is the best way to stringently reveal any differences in loading capacity in early G1. 

‘Med’ was determined to be a robust point estimate of common intensity of all tracks prior to 

most CENP-A loading (this estimate is necessary as not all tracks were detectable in the first two 

frames, making it otherwise impossible to compute the ratio). 

 

Visualizing nuclear actin short filaments with Utr230-EN probe in G1 cells 

Schematic procedure is summarized in Figure 3A.  Briefly, cells were co-transfected with siRNA 

and mCherry vector (co-transfection marker) 48 hr prior to imaging, following aforementioned 

general transfection procedures.  Upon releasing from the thymidine arrest (–about 12 hr prior to 
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imaging), cells were transfected with Utr230-EN using the DharmaFECT Duo transfection reagent 

following manufacturer’s instructions.  Live imaging was performed as described above for “high 

resolution retiometric live cell imaging”, with some minor modifications: only single Z-section 

was imaged, and the movie was taken every 2 sec.  An additional 1.6x optical magnifier was used.  

Cells containing both mCherry (indicator of siRNA transfection) and Utr230-EN were documented 

as short movies and categorized based on the patterns of spatiotemporal dynamics of the Utr230-

EN probe. Three categories of patterns were observed: nuclear punctate, nuclear diffusive and 

cytoplasmic aggregate.  The nuclear punctate pattern distinguishes itself from nuclear diffusive 

pattern by multiple small fast-moving particles inside the nucleoplasm (Movie S2). 

 

Statistical analysis and plotting 

All statistical analyses were performed with GraphPad Prism 5 (GraphPad) using unpaired, two 

tailed t-test between groups unless noted otherwise (e.g. z-test with MATLAB to compare two 

sample proportions).  All plots were prepared in Prism (GraphPad) or MATLAB (MathWorks, 

R2015b).  Control groups and mDia2-depleted groups in all experiments were pooled together 

after normalization and presented.    
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CENP-A, Centromere protein A; DAD, Dia autoinhibition domain; DID, Dia interacting domain; 

GBD, GTPase binding domain; FH, formin-homology domain; MgcRacGAP, male germ cell Rac 

GTPase-activating protein; NLS, nuclear localization signal; NES, nuclear exporting signal; INCA, 

integrated CENP-A intensity per nucleus. 
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Figures 

 

 

Figure 3.1. Ectopic activation of endogenous mDia2 restores centromeric CENP-A levels in 
the absence of MgcRacGAP 

(A) Schematics showing that exogenous Dia autoinhibition domain (DAD) fragment of mDia2 
can bind to the Dia interacting domain (DID) of endogenous mDia2 and enable its actin 
polymerization activity even in the absence of Rho GTPase binding to the GTPase binding 
domain (GBD) of endogenous mDia2.  

(B) Engineered DAD localization in the nucleus. Wild type DAD fragment is excluded from the 
nucleus and a point mutation, L1168G, in a NES-like motif caused its nuclear accumulation. 
M1041A is a mutation in the core region that makes the DAD fragment unable to stimulate 
endogenous mDia2 activation. Scale bar, 10 µm. 

(C) Ectopic induction of endogenous mDia2 with DAD-L1168G rescues reduced CENP-A levels 
caused by MgcRacGAP depletion. Representative immunofluorescence images showing CENP-
A levels at centromeres. DNA are stained with DAPI. Scale bar, 5 µm. 

(D) Quantification of the normalized CENP-A integrated intensity per nucleus using Whisker-
Tukey boxplots overlaid with scatterplots. The boxes span the 25th to 75th percentile of the data, 
whereas the center bar denotes the median and the + marks the mean. n = 95 (Control), 96 
(MgcRacGAP shRNA), 91 (MgcRacGAP shRNA + DAD-L1168G), 82 (MgcRacGAP + DAD-
L1168A-inactive) cells. The p-values were computed using two-tailed t test. 
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Figure 3.2. MgcRacGAP depletion causes defective CENP-A loading in early G1 

(A) High-resolution ratiometric live-cell imaging showing unsuccessful YFP-CENP-A loading in 
early G1 upon MgcRacGAP depletion. The first frame after anaphase onset were aligned to be 
time point 0 min, and only one of two daughter cells was shown in each panel after anaphase 
onset. Identical lookup table was used over time for both control and MgcRacGAP knockdown. 
Warmer pseudo-color shows higher levels of centromeric YFP-CENP-A. Scale bar, 5 µm. 

(B) Time-lapse heat map showing the intensity of YFP-CENP-A at each single centromere 
automatically detected over time in the control and MgcRacGAP depleted cells shown in (A). 
Each colored box represents one single centromere, the color of that box coded based on the 
normalized intensity of that centromere at that particular time point. Due to low sampling 
frequency, a horizontal trace in the plot may not necessarily indicate the track of the same 
centromere over time. 

(C) (Left) Quantification of centromeric YFP-CENP-A levels during G1 phase. Thousands of 
centromeres from ten cells over the whole time course in either control of MgcRacGAP 
knockdown were clustered into each cell’s average trace before being plotted as ensemble 
average ± 95% confidence intervals. (Right) Bar graphs (mean±SE) showing the plateau loading 
levels of YFP-CENP-A and the rate constants resultant from nonlinear regression of the raw data 
plotted on the left. 
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Figure 3.3. The formin mDia2 is necessary for the formation of short and dynamic nuclear 
actin in G1 cells 

(A) Schematics for co-transfection of mDia2 siRNA with marker mCherry, as well as subsequent 
transfection of the nuclear actin probe Utr230-EN (Utr230-EGFP-NLS).  

(B) Representative localization patterns of Utr230-EN in live G1 cells expressing the probe. 
Scale bar, 10 μm. 

(C) The percentage of live cells showing the nuclear actin punctate structure upon expressing 
Utr230-EN analyzed in cells transfected with control (GAPDH) and mDia2 siRNA as indicated 
(n > 50 from three independent transfections). Error bars show standard deviations of three 
experiments. The p-value was computed using two tailed z-test comparing two-sample 
proportions.  
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Figure 3.4. Polymerizable actin inside the nucleus is important for stable maintenance of 
CENP-A levels at the centromeres 

(A and B) Depleting IPO9 does not change the levels of CENP-A inside the nucleus. Total YFP-
CENP-A and endogenous CENP-A were immunoblotted for control and IPO9 knockdown (A). 
CENP-A levels were immunoblotted using cell lysates separated into cytoplasmic and nuclear 
fractions in both control and IPO9 knockdown (B). Control immunoblotting for fractionation 
assay is shown in Figure S3.2A. 

(C) Nuclear localization signal (NLS) and flag-tagged actin localizes inside the nucleus. Flag 
staining showing both the wild type and the non-polymerizable R62D mutant accumulate inside 
the nucleus. 

(D) Polymerizable actin inside the nucleus rescues reduced CENP-A levels caused by IPO9 
knockdown. Representative immunofluorescence images showing CENP-A levels at 
centromeres. DNA are stained with DAPI. Scale bar, 10 µm. 

(E) Quantification of the normalized CENP-A integrated intensity per nucleus using Whisker-
Tukey boxplots overlaid with scatterplots. The boxes span the 25th to 75th percentile of the data, 
whereas the center bar denotes the median and the + marks the mean. n = 74 (Control), 50 (IPO9 
siRNA), 52 (IPO9 siRNA + NLS-actin-WT), 35 (IPO9 siRNA + NLS-actin-R62D) cells. The p-
values were computed using two-tailed t test. 
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Figure 3.5. Tracking of centromere dynamics in live G1 cells 

(A) A control cell (upper) and a cell depleted of mDia2 (lower) stably expressing YFP-CENP-A 
in early G1. Color-coded centromere-tracks were overlaid on the YFP-CENP-A image from the 
corresponding movie. Centromere tracks are color-coded based on their relative apparent 
diffusion coefficient (blue – low, red – high). Scale bar, 5 μm. 

(B) Representative centromere-tracks during early G1 from respective cells in (A). Centromere 
tracks are color-coded based on time: each track starts in red and ends in green. Occasional 
dotted lines are due to tracking gaps. Units on both axes are pixels. 

(C) Heat map showing representative centromere-tracks’ intensity profiling in early G1. Control 
and mDia2 knockdown are scaled so that their intensity levels at the beginning of the profiling 
(~25 min after anaphase onset) are comparable. Each horizontal bar is one track spanning from 
25 min to 200 min after anaphase onset. Intensity information of YFP-CENP-A tracks at each 
frame is color-coded (blue – low intensity, yellow/ red – high intensity). 

(D) Quantification of the dynamics of centromere movement in early G1. Cumulative frequency 
was plotted for the relative apparent diffusion coefficients of cells transfected with control 
(GAPDH) or mDia2 siRNA. The p-value (p < 0.0001) was computed using Kolmogorov-
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Smirnov test and two tailed t-test with the same conclusion. Insets are the boxplots showing the 
relative YFP-CENP-A loading ratio per track (see EXPERIMENTAL PROCEDURES for 
algorithm details). The boxes span 10-90 percentile of the data, while the center bar denotes 
median and the ‘+’ marks mean. The p-value for insets was computed using two tailed t-test. 
Control (GAPDH) siRNA: n = 225 tracks and mDia2 siRNA: n = 344 tracks. 
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Figure 3.6. Chromosomal phenotypes after long term replacement of endogenous mDia2 
with ∆NLS mutant 

(A) Scheme for the transfection and synchronization strategies in analyzing metaphase 
chromosomal alignment 5 days after depleting endogenous mDia2 and replacing it with full 
length WT- or ∆NLS-mDia2. 

(B) Representative immunofluorescence images showing three categories of metaphase 
chromosomal alignment patterns. Fully aligned with all chromosomal mass aligned into the 
metaphase plate; Type I misalignment characterized with only one or two chromosomal masses 
outside the metaphase plate; Type II misalignment characterized with more than two 
chromosomal masses outside the plate. Yellow arrow heads indicate misaligned chromosomes. 
Scale bar, 5 µm. 

(C) Mean percentage of each alignment category with error bars showing SEM from three 
experiments (control: n = 135, mDia2 siRNA + FL-WT: n = 129, mDia2 siRNA + FL-NLS: n = 
132 cells). The p-values were computed using two-tailed z-test. Control group is cells transfected 
with GAPDH siRNA. 

(D) Representative immunofluorescence images showing a cell with normal interphase nucleus 
and a cell with micronucleus. Scale bar, 5 m. Insets (30% of the main images) are mEmerald 
channel showing the mDia2 proteins expressed.  
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(E) Mean percentage of cells containing micronuclei with error bars showing SD from three 
experiments (control: n = 180, mDia2 siRNA + FL-WT: n = 104, mDia2 siRNA + FL-NLS: n = 
103 cells). The p-values were computed using two-tailed z-test. Control group is cells transfected 
with GAPDH siRNA. 
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Figure S3.1. Full length mDia2 with an actin nucleation/polymerization mutation in the 
FH2 domain failed to rescue CENP-A levels upon depleting endogenous mDia2 

Quantification of the CENP-A integrated intensity per nucleus. Bar graphs show mean±SEM of 
each group. The p-values were computed using two-tailed t test. Control group is cells 
transfected with GAPDH siRNA. 
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Figure S3.2. Polymerizable actin inside the G1 nucleus 

(A) Immunoblot showing marker protein species in the cellular fractionation assay. Tubulin was 
used to mark the cytoplasmic fraction while H4K20me2 for the nuclear fraction. 

(B) Putative non-diffusive nuclear actin filaments in close proximity to G1 centromeres was 
observed in fixed cells over expressing WT- but not R62D-NLS-actin (data for R62D-NLS-actin 
not shown). Scale bar, 10 µm. 
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Figure S3.3. Relatively confined centromere motion depends on mDia2-mediated nuclear 
actin 

(A) Ensemble average of MSD curves (plotted as mean ± SEM) from single particle tracking of 
centromere movement in early G1 control (GAPDH) and mDia2 knockdowns. Solid lines 
overlaid indicate linear regression (least-square fit) performed on the first 25% of the curves. 
Ensemble MSD curves demonstrate that MSD appear to saturate with a slightly concave 
curvature, indicative of impeded movement (anomalous diffusion) rather than free diffusion or 
directed transportation. 

(B) Scatter plot of relative apparent diffusion coefficient (A.U.) as a function of track length 
(number of frames in each track). Correlation analysis and linear regression (least-square fit) 
were performed, and regression lines were overlaid with scatter plots. The p-value comparing the 
Pearson coefficient of control and that of mDia2 knockdown was computed using two tailed z-
test. 

(C) Whisker-Tukey boxplots show the normalized apparent diffusion coefficient of G1 
centromeres in control and mDia2 nockdown cells. The boxes span 10-90 percentile of the data, 
while the center bar denotes median and the ‘+’ marks mean. The p-value was computed using 
two tailed t-test. 

(D) Relative YFP-CENP-A loading ratio was plotted as a function of the relative apparent 
diffusion coefficient. Mean ± 95% confidence intervals were plotted on both axes. 
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Figure S3.4. A representative example of long range centromere movement in early G1 
cells depleted of mDia2 

A time-lapse sequence showing the positions of centromeres in an mDia2 depleted cell during 
early G1. The centromere of interest is marked with a yellow arrow head across all the frames. 
Centromeres are marked with YFP-CENP-A and scaled on the identical look up table over time. 
The full trajectory (red) is depicted in the last panel, where the nuclear contour is depicted in 
gray. Scale bar, 5 µm. 
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Figure S3.5. Long-term replacement of endogenous mDia2 with ∆NLS mutant does not 
cause higher indices of binuclear cells compared to WT 

(A) Representative immunofluorescence images showing a cell with normal interphase nucleus 
and a binuclear cell. Scale bar, 5 m. mEmerald channels show the mDia2 proteins expressed.  

(B) Mean percentage of binuclear cells with error bars showing SEM from three experiments 
(control: n = 181, mDia2 siRNA + FL-WT: n = 98, mDia2 siRNA + FL-NLS: n = 99 cells). The 
p-values were computed using two-tailed z-test. 
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Figure S3.6. Graphical summary 

Graphical summary of the role of mDia2 in bridging upstream small GTPase signaling and 
downstream nuclear environment during stable CENP-A loading at the moving centromeres in 
early G1 phase. 
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Chapter Four *: A dynein independent role of Tctex-1 at the 
kinetochore 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*This chapter is reproduced from:  
A dynein independent role of Tctex-1 at the kinetochore  
Liu, C., Chuang, J.-Z., Sung, C.-H., and Mao, Y.  
Cell Cycle, 14:9, 1379-1388 (2015)  
Where the author of this thesis is the first author. 
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Abstract 

Dynein light chains are accessory subunits of the cytoplasmic dynein complex, a minus-

end directed microtubule motor.  Here, we demonstrate that the dynein light chain Tctex-1 

associates with unattached kinetochores and is essential for accurate chromosome segregation.  

Tctex-1 knockdown in cells does not affect the localization and function of dynein at the 

kinetochore, but produces a prolonged mitotic arrest with a few misaligned chromosomes, which 

are subsequently missegregated during anaphase.  This function is independent of Tctex-1’s 

association with dynein.  The kinetochore localization of Tctex-1 is independent of the ZW10-

dynein pathway, but requires the Ndc80 complex.  Thus, our findings reveal a dynein independent 

role of Tctex-1 at the kinetochore to enhance the stability of kinetochore-microtubule attachment.    
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Introduction 

Accurate chromosome segregation during mitosis requires proper interactions between 

chromosomes and plus ends of microtubules of the mitotic spindle 198,199.  The kinetochore, the 

proteinaceous complex assembled at the centromere region, serves as the microtubule attachment 

site at each mitotic chromosome 140,200.  Although there is much support for the KMN network 

(KNL1, Mis12, and Ndc80 complexes) serving as the core microtubule binding apparatus at the 

kinetochore 108,109, it is quite clear that many other kinetochore- and microtubule-associated 

proteins play important roles in maintaining the stable connection between kinetochores and 

dynamic microtubule plus ends.  Depletion of the Ska1/RAMA complex 110-113 or a formin mDia3 

114,115 results in chromosome misalignment phenotypes in mammalian cultured cells, reminiscent 

of depletion of the Ndc80 complex.  Two force-producing kinetochore-associated motors, the plus 

end-directed microtubule motor CENP-E and the minus end-directed microtubule motor 

cytoplasmic dynein, are associated with the outermost region of the kinetochore and have been 

implicated in the initial stages of microtubule interactions 201.  A group of microtubule plus-end-

tracking proteins are delivered to the kinetochore by microtubule plus ends and possibly act as 

tethers, as well as modulators of microtubule dynamics, at attachment sites 202,203.   

  

The dynein light chains are accessory subunits of the cytoplasmic dynein motor complexes 

and form a complex with the dynein intermediate chains at the base of the dynein heavy chains 204.  

While the light chains directly link dynein to its cargo as an adaptor protein 205, recent studies 

suggest that these noncatalytic subunits may play a dynein-independent role in diverse cellular 

functions.  For example, the LC8 family members of dynein light chains have been shown to 

interact, besides dynein, with a large number of proteins 206.  Similarly, the Tctex family member 
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of Tctex-1 (or DYNLT1) has dynein-independent roles in actin remodeling during neurite 

outgrowth 207 and in ciliary resorption 208,209.  We now show that Tctex-1 associates with 

unattached kinetochores and participates in stable microtubule attachment independent of 

cytoplasmic dynein.              
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Results  

Both Tctex-1 and CLIP-170 associate with dyneinless kinetochores 

We have shown that the formin mDia3 and its interaction with EB1, a microtubule plus-

end-tracking protein, are essential for accurate chromosome segregation 114.  Knockdown the 

mDia3 protein in cells results in a loss of EB1, but an increase of CLIP-170, another microtubule 

plus-end-tracking protein, at kinetochores aligned at the metaphase plate (Figures 4.1A, B and D), 

judging by their relative signals against anti-centromere antibody (ACA) as the kinetochore marker.  

The compositional change of microtubule plus ends attached to kinetochores does not affect the 

release of cytoplasmic dynein from aligned kinetochores, judging by the loss of kinetochore 

staining of dynein intermediate chain (DIC) (Figures 4.1C and 4.1D).  In contrast, the level of 

Tctex-1, a dynein light chain, is significantly increased on aligned kinetochores in mDia3 

knockdown cells (Figures 4.1C and 4.1D).  These results show that at least a population of Tctex-

1 and CLIP-170 can be recruited onto kinetochores without dynein.                

 

Tctex-1 is an outer kinetochore component 

To confirm that Tctex-1 is a kinetochore component, we examined the kinetochore 

localization of Tctex-1 in fixed cells (Figure 4.2A).  Indirect immunofluorescence showed strong 

Tctex-1 kinetochore staining, which colocalized with ACA, during mitosis but not interphase.  

Tctex-1 associated with kinetochores in prophase and remained at the kinetochore until metaphase.  

Furthermore, in late prometaphase cells, we detected Tctex-1 kinetochore signals on unaligned, 

but not aligned, chromosomes.  Using N-SIM super-resolution microscopy system, we examined 

the localization of Tctex-1 within the kinetochore and found that Tctex-1 localized peripherally to 
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Hec1, a component of the outer kinetochore protein complex Ndc80 (Figure 4.2B).  In addition, 

in cells treated with monastrol to produce monopolar spindles with monotelic chromosomes (with 

only one sister kinetochore attached to microtubule and the other unattached), Tctex-1 localized 

to only one of two sister kinetochores on many chromosomes (Figure S4.1A).  The strong Tctex-

1 staining was observed on the kinetochore further from the pole while the kinetochore closer to 

the pole had much less Tctex-1 staining.  This asymmetric staining of sister kinetochores on 

monotelic chromosomes in monastrol-treated cells are similar to previously documented 

kinetochore localization of Mad2, a mitotic checkpoint protein which localizes only to unattached 

kinetochores 210.  These results collectively suggest that Tctex-1 is an outer kinetochore component 

and associates only with unattached kinetochores. 

 

Cytoplasmic dynein is also recruited onto unattached kinetochores and departs from 

attached kinetochores along with mitotic checkpoint proteins through a dynein self-removal 

mechanism 211.  Despite the similar kinetochore localization pattern, we identified some 

differences in the timing in which Tctex-1 appeared at kinetochores in comparison with dynein.  

Judging by immunofluorescence staining compared to late prometaphase kinetochores, the 

prophase and early prometaphase kinetochores were able to recruit a significant amount of Tctext-

1 with no or little dynein (Figure S4.1B).  This result is consistent with the possibility that the 

recruitment of Tctex-1 onto unattached kinetochores can occur independently of dynein. 
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Tctex-1 plays a role in metaphase chromosome alignment and accurate chromosome 

segregation, and this function is independent of its ability to bind to dynein.   

 To test for the functions of Tctex-1 at the kinetochore, we transfected cells with a plasmid 

encoding Tctex-1 short hairpin RNA (shRNA) and far red fluorescent protein (HcRed).  The 

expression of Tctex-1 shRNA had resulted in a clear reduction of Tctex-1 protein level after either 

48 hr (Figure 4.3A), as well as 72 hr (data not shown), and a loss of Tctex-1 at unattached 

kinetochores by immunofluorescence microscopy (Figure 4.3B).  The loss of Tctex-1 at 

kinetochores could be rescued by expressing a shRNA-resistant Flag-tagged Tctex-1 construct 

(Figure 4.3B), further supporting that Tctex-1 is a kinetochore component.     

 

Chromosome movement and mitotic progression upon Tctex-1 depletion were assessed by 

live cell imaging in unperturbed mitoses using cells stably expressing the Histone H2B-EYFP 

fusion protein.  Depletion of Tctex-1 (72 hr post-transfection of the Tctex-1 shRNA construct) 

extended the average duration of mitosis (to 171 min) compared to control cells (51 min) (Figures 

4.3C and 4.4D, Movies S1 and S2).  More importantly, this mitotic delay is caused by a few 

chromosomes chronically misaligned near the spindle poles, which were subsequently 

missegregated at anaphase onset (Figures 4.3D, 4.4E and 4.4F).  The existence of only a few 

unaligned chromosomes is consistent with the observation that Tctex-1 depletion did not affect the 

overall cold-stable microtubules in metaphase cells (Figure S4.2).  Besides polar chromosomes, 

many Tctex-1-depleted cells also exhibited chromosome bridges upon anaphase onset.  The 

importance of Tctex-1 in mitotic progression is confirmed by the rescue with the expression of the 

shRNA resistant wild-type Flag-Tctex-1 protein in Tctex-1-depleted cells (Figures 4.3B-4.3D).  
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These results demonstrate that Tctex-1 is important for metaphase chromosome alignment and 

accurate chromosome segregation.   

 

Tctex-1 directly binds to dynein intermediate chain and has a predicted threonine 94 (T94) 

phosphorylation site 207.  Only the nonphosphorylatable Tctex-1-T94A protein, but not the 

phosphomimetic Tctex-1-T94E protein, is able to associate with the dynein complex 207.  In 

agreement, we confirmed that both Flag-wild type Tctex-1 and Flag-Tctex-1-T94A, but not Flag-

Tctex-1-T94E, were co-immunoprecipitated with endogenous dynein (DIC) in mitotic extracts 

(Figure 4.4A).  We examined whether the expression of these two Tctex-1 proteins can rescue 

mitotic defects caused by the depletion of endogenous Tctex-1.  Judging by live cell imaging, both 

Tctex-1-T94A and Tctex-1-T94E substantially reduced the duration of mitosis to a similar degree 

(Figures 4.4B, 4.4C and 4.4D, Movies S3 and S4).  Furthermore, the incidents of misaligned and 

missegregated chromosomes were similarly reduced in cell expressing T94A and T94E for the 

rescue (Figures 4.4B, 4.4C and 4.4F).  These results confirm an important role of Tetex1 for 

accurate chromosome segregation and suggest that this function of Tctex-1 at the kinetochore does 

not depend on its interaction with dynein. 

 

Tectx-1 knockdown does not affect dynein-Tctex-1L at kinetochores 

 It has been shown that another dynein light chain DYNLT3/Tctex-1L associates with 

kinetochores and binds to Bub3, a mitotic checkpoint protein 212.  These results have been 

interpreted as the Tctex-1L to contribute to dynein cargo binding specificity.  We examined 

whether the chromosome misalignment and missegregation phenotype caused by Tctex-1 
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depletion could attribute to the change of the population of dynein-Tectx-1L at kinetochores.  

Indirect immunofluorescence analysis revealed that Tctex-1L indeed associated with unattached 

kinetochores along with dynein (DIC) (Figures, S4.3A and S4.3B) as reported previously 212.  

Depletion of ZW10 from unattached kinetochores resulted in a significant loss of both dynein (DIC) 

and Tctex-1L to a similar extent (Figures, S4.3A and S4.3B), suggesting that the kinetochore 

association of Tctex-1L is dependent of dynein.  In contrast, depletion of Tctex-1 did not change 

the amount of Tctex-1L associated with unattached kinetochores (Figures, S4.3C and S4.3D).  

These results clearly suggest that depletion of Tctex-1 does not affect the pool of dynein-Tctex-

1L at kinetochores.            

 

The kinetochore localization of Tctex-1 is independent of cytoplasmic dynein 

An important role for dynein during mitosis is to transport of mitotic checkpoint proteins 

off kinetochores toward spindle poles upon microtubule capture 211.  BubR1 and Mad1 are two 

mitotic checkpoint proteins whose kinetochore localization depends on microtubule attachment 

213,214.  Immunofluorescence staining revealed the presence of BubR1 and Mad1 at unattached 

kinetochores of polar chromosomes, but not on attached kinetochores of chromosomes aligned at 

the metaphase plate in both control and Tctex-1 depleted cells (Figure 4.5).  This suggests that 

depletion of the dynein light chain Tctex-1 does not have an effect on dynein-dependent removal 

of mitotic checkpoint proteins from attached kinetochores.  Furthermore, this result supports the 

idea that Tetex1 has a direct role on microtubule capture at unattached kinetochores independent 

of dynein.   
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 To further support a possible dynein-independent role of Tctex-1 at the kinetochore, we 

examined the inter-dependency of kinetochore recruitment between Tctex-1 and cytoplasmic 

dynein.  Depletion of Tctex-1 from unattached kinetochores did not affect kinetochore association 

of cytoplasmic dynein (Figures 4.6A and 4.6B).  Furthermore, knocking down of ZW10, a 

component of the RZZ (Rod/ZW10/Zwilch) complex that recruits dynein to kinetochores 215,216, 

significantly reduced the level of dynein at unattached kinetochores (Figures 4.6A and 4.6C).  By 

contrast, ZW10 suppression only modestly diminished kinetochore recruitment of Tctex-1 

(Figures 4.6A and 4.6C).  In combination with the observation of Tctex-1 localization at 

kinetochores without dynein in mDia3 knockdown cells (Figures 4.1C and 4.1D) and prophase 

cells (Figure S4.1B), these results demonstrate that at least a portion of Tctex-1 can be recruited 

onto unattached kinetochores independent of dynein. 

 

Tctex-1 kinetochore localization depends on the Ndc80 complex 

The position of Tctex-1 in the hierarchical structure of the kinetochore will clearly provide 

us with crucial indications of Tctex-1’s role at the kinetochore.  To understand how Tctex-1 is 

targeted to the kinetochore, we searched for kinetochore components that are required for 

kinetochore recruitment of Tctex-1.  We found that the level of Tctex-1 on unattached kinetochores 

was substantially reduced in Hec1 (a component of the Ndc80 complex) knockdown cells (Figure 

4.6D, middle panel), suggesting an Ndc80-depedent kinetochore localization of the Tctex-1 

protein.  Conversely, knockdown of Tctex-1 did not affect kinetochore recruitment of the Ndc80 

complex (Hec1) (Figure 4.6D, bottom panel).  Furthermore, depletion of CENP-E, the 

microtubule plus end-directed motor, did not affect the recruitment of Tctex-1 onto unattached 

kinetochores (Figure 4.6E).  Depletion of Ndc80 components does not significantly affect the 
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level of dynein at kinetochores 217.  Thus, this result is consistent with a dynein-independent 

recruitment of Tctex-1 onto kinetochores.           
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Discussion         

It has been suggested that both Dynein-dynactin complex and CLIP-170 are present only 

at the unattached kinetochores and are released upon microtubule attachment 218.  The kinetochore 

localization of CLIP-170 might depend on the dynein/dynactin pathway 219-222.  We now show that 

CLIP-170 and Tctex-1, but not cytoplasmic dynein, remains at attached kinetochores which lack 

EB1 upon depletion of the formin mDia3.  Our work argues that the dissociation of CLIP-170 from 

attached kinetochores is neither a direct response from microtubule attachment nor through a 

dynein-dependent removal pathway.  Instead, the removal of CLIP-170 might involve changes of 

microtubule plus-end dynamics regulated by the accumulation of EB1 through its interaction with 

the kinetochore-associated mDia3 protein.  Furthermore, this result also indicates that the 

kinetochore localization of Tctex-1, a dynein light chain, does not depend on the dynein complex.   

 

Increasing evidence suggests that dynein light chains can bind to proteins other than 

cytoplasmic dynein in diverse cellular functions 206.  Our study unravels an important function for 

the dynein light chain Tctex-1 at the kinetochore in a dynein independent manner.  Evidence for 

this model includes the following.  First, Tctex-1 can be recruited onto kinetochores through 

dynein-independent mechanisms.  Tctex-1 associates with dynein-free kinetochores in prophase 

cells and in ZW10 knockdown cells, suggesting that at least part of Tctex-1 enriched at unattached 

kinetochores is free from the dynein complex.  Second, depletion of Tctex-1 does not affect dynein 

self-removal and the removal of the mitotic checkpoint proteins from attached kinetochores, 

implying that Tctex-1 is not functionally important for kinetochore-associated dynein.  Third, a 

phosphomimetic Tctex-1T94E protein, which has been shown to be unable to incorporate into the 

dynein complex in transfected cells 207 and now by coimmunoprecipitation analysis using mitotic 
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cell extracts, can rescue mitotic defects caused by the depletion of endogenous Tctex-1 proteins 

just like its nonphosphorylatable counterpart Tctex-1T94A that can associate with the dynein 

complex.  And fourth, depletion of the Ndc80 complex, but not ZW10-dynein, at unattached 

kinetochores results in a significant loss of Tctex-1.  These results coherently suggest that the 

functional role in metaphase chromosome alignment and accurate chromosome segregation by 

kinetochore-associated Tctex-1 is largely independent from its association with the dynein 

complex.                 

 

 Induction of a dimeric Tctex-1 “trap” results in rapidly disruption of early endosomal and 

lysosomal organization, but has no obvious effect on mitosis 223.  On one hand, these results 

support that Tctex-1 is not functionally important for dynein in mitotic progression.  On the other 

hand, these results, along with other observations, indicate that kinetochore-associated Tctex-1 

proteins may be not in rapid exchange with the free cytosolic pool, as is observed with dynein for 

endosomes and lysosomes.  Structural studies support a role for dynein light chains to promote 

protein dimerization and structural stabilization 206.  These light chains can allosterically bind to 

and regulate, besides dynein, diverse proteins and protein complexes.  Future work will require 

the identification of the binding partner for the dynein-independent population at kinetochores.   
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Materials and Methods 

Cell culture, transfection, and drug treatment 

T98G cells were maintained in DME medium supplemented with 10% FBS at 37°C in 5% 

CO2.  The Tctex-1 shRNA construct and rescue plasmids are as described previously 207,208.  

Transfection was performed using HiPerfect (QIAGEN) based on the manufacturer’s instructions 

(48hr or 72hr, as indicated in figures/figure legends), and cells transfected with shRNA were 

identified by the co-expressed HcRed.  The mDia3 siRNA was purchased from QIAGEN.  ZW10 

and CLIP-170 siRNAs were purchased from Dharmacon (Thermo Scientific) and used as 

instructed by the manufactures.  Nocodazole, monastrol and MG132 were purchased from Sigma-

Aldrich and used at final concentrations of 100 ng/ml, 100 µM and 10 µM, respectively.  All drug 

treatments were performed for particular length of time, as described in figure legends. 

 

Immunofluorescence microscopy and live cell imaging 

A commercial Tctex-1 antibody (H-60, Santa Cruz) was used in this study for all the data 

obtained.  ACA (purified human anti-centromere protein IgG) was from Antibodies Incorporated.  

Other commercial antibodies used in this study included anti-EB1 (1A11/4 & H-70, Santa Cruz), 

anti-CLIP-170 (F3 & H300, Santa Cruz), anti-Flag-M2 (F3165, Sigma-Aldrich), anti-DIC (74.1, 

Ab23905, Abcam), anti-Hec1 (9G3, Abcam), anti-αTubulin(DM1α, T6199, Sigma-Aldrich), anti-

BubR1(8G1, Abcam), anti-Mad1 (9B10, Santa Cruz), anti-CENP-E (C-5, Santa Cruz), and anti-

Tctex-1L (E15, Santa Cruz). 
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For indirect immunofluorescence, cells grown on poly-D-lysine coated coverslips were 

washed in pre-warmed PBS, extracted with 0.1% Triton-X-100 in PBS for 1 min, fixed in cold 

methanol at -20 °C for 10 min, and blocked in 5% BSA in PBS at 4 °C overnight.  Coverslips were 

subjected to primary antibodies diluted in PBS and DyLight488, Rhodamine or Cy5 conjugated 

secondary antibodies (Jackson Immuno-Research Laboratories, Inc.), both at room temperature 

for 1 hr.  DAPI (final concentration 16.67 ng/mL) was used to stain nuclei/chromosomes.  

Coverslips were mounted using antifade reagent (ProLong Gold; Molecular Probes).  Images were 

acquired at room temperature using an inverted microscope (IX81; Olympus) with a 60×, NA 1.42 

Plan Apochromat oil immersion objective (Olympus), a monochrome charge-coupled device 

camera (Sensicam QE; Cooke Corporation), which are controlled by  the SlideBook software (3i 

and Olympus).  10 z-sections 0.5 µm apart spanning 5 µm were taken for each cell.  All images in 

each experiment along with appropriate controls were collected on the same day with identical 

exposure time.  No-neighbor deconvolution and/or maximum z-projection was performed on 

selected stacks of representative images, which were subsequently scaled in ImageJ (NIH) or 

MATLAB (Mathworks, Inc.) for visual comparison.  Quantitative image analysis was performed 

with ImageJ (NIH).  To measure fluorescent intensities at each individual kinetochore, unassigned 

unit 16-bit tiff images of whole stacks or of maximum z-projections were exported from the 

SlideBook with all bit depth information being preserved.  ROIs (regions of interest) were 

generated covering each kinetochore based on channel-merged image and the integrated pixel 

intensities were then measured for each channel within the ROI.  In each cell, five cytosolic ROIs 

near the kinetochore ROIs were also quantitated as above and averaged for background subtraction. 

Intensity data were then subjected to ratio calculation and normalization before plotting. 
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For live cell imaging, cells stably expressing H2B-EYFP were plated onto Poly-D-Lysine 

coated 35 mm glass-bottom dishes (MatTek Corporation) and maintained in CO2 independent 

medium (Gibco #18045) supplemented with 4 mM L-glutamine and 10% FBS, with an 

environmentally controlled chamber at 37°C during imaging.  Images were acquired every 3 min 

using an inverted microscope (IX81; Olympus) with a 40×, NA 0.6 LUCPLFLN air objective 

(Olympus) and a interline transfer cooled CCD camera (ORCA-R2 C10600-10B; HAMAMATSU 

Photonics), which were controlled by the MetaMorph software (Molecular Devices, LLC). 

 

Structured Illumination Microscopy (N-SIM) 

Cells grown on No. 1.5 (0.17 mm thick) cover glasses coated with poly-D-lysine were 

washed, extracted and fixed as in common immunofluorescence.  Endogenous Ndc80 and Tctex-

1 proteins were recognized by mouse anti-hec1 antibody (9G3, Abcam) and rabbit anti-Tctex-1 

(H-60, Santa Cruz), which were subsequently labeled by secondary antibodies conjugated with 

DyLight488 (Jackson Immuno-Research Laboratories, Inc.) and Alexa Fluor 568 (Life 

Technologies), respectively.  ProLong Gold without DAPI (Life Technologies) was used as 

mounting medium to achieve a refractive index as close to 1.515 as possible.  Mounted samples 

were completely cured and sealed before imaging.  To rule out any potential shift between different 

channels due to the optics of the microscope, a custom-built reference slide was used for channel 

alignment and post-hoc pixel registration.  Manufacturer’s imaging procedure (N-SIM, Nikon) 

was followed.   In particular, a 100x oil objective (Apo TIRF 100x Oil DIC N2, NA 1.49) was 

used in conjunction with Andor DU-897 X-6050 EMCCD camera.  3D-SIM mode imaging was 

performed with laser lines 488 and 561 nm at constant temperature under control.  41 z-sections 

0.125 µm apart spanning 5 µm were taken with MCL NanoDrive PiezoZ Drive.  For each z-section, 
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15 different moiré fringes resulted from illuminations with known, high spatial frequency patterns 

were captured.  Reconstruction was performed with N-SIM module inside NIS-Elements using 

optimal parameters, to create super-resolution images by processing multiple moiré patterns. 

  

Immunoprecipitation and immunoblotting analysis 

Immunoprecipitation were performed using Dynabeads® following standard protocol 

provided by the manufacturer (Life technologies) with minor modifications. Confluent mitotic 

cells (arrested in nocodazole for 9 hrs) growing on 10 cm dish were trypsinized and collected into 

50 ml vials. Centrifugations were performed (with second time in PBS supplemented with protease 

inhibitor cocktail, Roche 04-693-159-001) at 4°C, 1500 rpm for 5 min each to harvest cells.  

Dynabeads with Protein G (Life technologies) were washed in PBS for three times, and incubated 

with primary antibodies (anti-dynein intermediate chain 74.1) at a ratio of 10 µg antibodies per 1 

mg beads, for 2 hrs on 4°C rocker.  IP lysis buffer [1% NP-40, 25 mM Tis-HCl (pH 7.5), 150 mM 

NaCl, 5 mM EDTA (pH 8.0)] supplemented with protease inhibitor cocktail was added into the 

harvested cells (400 µl per sample), mixed well and incubated on 4°C rocker for 30 min, after 

which DNA were destroyed with syringe needle (BD-25G5/8) followed by additional 15 min 

incubation. The lysate mixture was then centrifuged at 12000 rpm for 10 min to remove insoluble 

materials, after which 20 µl input was retrieved, boiled with SDS sample buffer and stored.  After 

incubation with primary antibodies, beads were washed three times.  380 µL of the supernatant of 

cell lysate were then added into the beads and gently homogenized by pipetting.  Beads-lysate 

mixture were incubated on 4°C rocker for 1 hr, after which the beads were washed three times and 

boiled in SDS sample buffer [30% glycerol, 350 mM 1M Tris (pH 6.8), 10% SDS, 0.05% 

bromophenol blue and 5% 2-mercaptoethanol]. 
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For immunoblotting, cells were lysed in RIPA buffer [50 mM Tris-HCl (pH 7.5), 150 mM 

NaCl, 1% NP-40, 0.1% SDS, 0.5% Na-Deoxycholate Acid] and denatured in SDS sample buffer.  

Cell lysates were then subjected to 10% SDS-PAGE followed by membrane transfer (Immobilon-

P, Millipore; Towbin transfer buffer, pH 8.3).  Immunoblots on the membrane were blocked with 

Tris-buffered saline with tween (TBST) [20 mM Tris−HCl (pH 7.4), 150 mM NaCl, 0.05% Tween] 

containing nonfat dry milk and then probed with affinity-purified primary antibodies in TBST.  

Primary antibodies were visualized using horseradish peroxidase (HRP)-labeled goat secondary 

antibodies and enhanced chemiluminescence (ECL), or using AF680 anti mouse (Life 

technologies) and IRDye800 anti rabbit antibodies (LI-COR Biosciences) together with the LI-

COR imaging system (LI-COR Biosciences). 

 

Statistical analysis and graphing 

All statistical analyses were done in Prism 5 (Graphpad) or Stata 12 (StataCorp, LP).  

Unpaired two-tailed student’s t-test was performed at the 5% level of significance unless otherwise 

noted.  Statistical decisions are made after computing p-values: p > 0.05, not significant; p is 

between 0.01 and 0.05, significant; p is between 0.001 and 0.01, very significant; p < 0.001, 

extremely significant.  Two-way ANOVA test was performed in particular experiments to test if 

the interaction between two variables [e.g. treatment (control/siZW10) v.s. protein (DIC/Tctex-1) 

in Figures 4.6C and S4.3B] is significant at the 5% level of significance.  After calculation, a 

significant outcome suggests that the effects of treatment (siZW10) vary by different proteins (i.e. 
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DIC and Tctex-1 behave significantly differently upon the same treatments).  All graphs were 

prepared in either Prism 5 (Graphpad) or Origin 8.6 (OriginLab). 
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Figures 

 

 

 

Figure 4.1. CLIP-170 and Tctex-1, but no dynein, remain at attached kinetochores without 
mDia3 and EB1. 

(A - C) Indirect immunofluorescence staining of DNA (DAPI staining) and ACA, along with EB1 
(A), CLIP-170 (B), Dynein (DIC in C), and Tctex-1 (C) in control and mDia3 knockdown 
metaphase cells as indicated (72 hr post-transfection).  Cells were treated with nocodazole for 4 
hrs and then released into MG132 for 1 hr prior to fixation.  Bar, 5 µm. 

(D) Quantification of the relative intensities (per kinetochore) at aligned kinetochores of 
EB1/ACA, CLIP-170/ACA, DIC/ACA, and Tctex-1/ACA in metaphase cells (mean with 95% 
confidence interval, p < 0.0001 as indicated by *** based on more than 30 kinetochores from at 
least 5 cells).     
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Figure 4.2. The dynein light chain Tctex-1 associates with unattached kinetochores. 

(A) Immunofluorescence detection of ACA, Tctex-1, and DNA (DAPI staining) in mitotic cells.  
In merged panels: ACA – green, Tctex-1 – red, and DNA – blue.  Insets: colocalization of Tctex-
1 and ACA at a pair of sister kinetochores.  Arrows point to spindle poles and arrow heads point 
to unattached kinetochore on a polar chromosome.  Bar, 5 µm. 

(B) Left panel: N-SIM Super-resolution images showing Hec1 (green) and Tctex1 (magenta).  
Right panel: graph showing a representative linescan of the fluorescent intensity of a pair of 
sister kinetochores that is highlighted in left panel (inset). 
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Figure 4.3. Tctex-1 is essential for accurate chromosome segregation. 

(A) Immunoblotting of cell lysates 48 hr posttransfection with control or Tctex-1 shRNA plasmids 
as indicated. 

(B) Immunofluorescence staining of ACA and Tctex-1 in mitotic cells 48 hr posttransfected with 
control or Tctex-1 shRNA plasmids, as well as the wild-type Flag-Tctex-1 expression vector, as 
indicated.  For Tctex-1 shRNA + Flag-Tctex-1 cells, Tctex-1 was stained with anti-Flag antibody.  
Bar, 5 µm.     

(C) Time spent from nuclear envelope breakdown to metaphase (or pseudometaphase) (green) and 
from metaphase (or pseudometaphase) to anaphase onset (magenta) of cells (expressing H2B-
EYFP) transiently transfected with control or Tctex-1 shRNA plasmids, as well as the wild-type 
Flag-Tctex-1 vector (72 hr post-transfection).  Each vertical bar represents a single cell.  The 
transfected cells were identified by HcRed, which are coexpressed by the shRNA plasmid, before 
live cell imaging.  Pseudometaphase is designated as when the majority of chromosomes are 
aligned with an obvious metaphase plate and a few polar chromosomes.   

(D) Stills of live-cell imaging showing cells transfected with control or Tctex-1 shRNA plasmids, 
as well as the wild-type Flag-Tctex-1 expression vector, as indicated, during unperturbed mitoses.  
The transfected cell was identified by cytosolic red signals from the co-expression of HcRed as 
showed in the last still image.  Bar, 5 µm. 
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Figure 4.4. The mitotic role of Tctex-1 does not depend on its interaction with dynein. 

(A) Immunoprecipitates from mitotic cell extracts with DIC antibody and then probed with DIC 
and Flag antibodies as indicated.  Cells were transfected with Flag tagged wild-type Tctex-1, 
Tctex-1-T94A or Tctex-1-94E.   

(B) Time spent from nuclear envelope breakdown to metaphase (or pseudometaphase) (green) and 
from metaphase (or pseudometaphase) to anaphase onset (magenta) of cells (expressing H2B-
EYFP) transiently transfected with Tctex-1 shRNA plasmids and expression vectors for the 
nonphosphorylatable Tctex-1T94A or the phosphomimetic Tctex-1T94E variants (72 hr post-
transfection).  Each vertical bar represents a single cell. 

(C) Stills of live-cell imaging showing cells transfected with Tctex-1 shRNA plasmids and 
expression vectors for the nonphosphorylatable Tctex-1T94A or the phosphomimetic Tctex-
1T94E variants, as indicated, during unperturbed mitoses.  Bar, 5 µm. 

(D) Distribution of total time spent in mitosis (from nuclear envelope breakdown to anaphase onset) 
in cells transfected with shRNAs and expression vectors as indicated.  Whisker-Tukey boxes span 
25-75 percentile, while center bar denotes median and “+” marks mean.   

(E) Stills of live-cell imaging showing a control cell and cells transfected with Tctex-1 shRNA 
plasmids at the anaphase onset.  Arrows indicate missegregated polar chromosomes and arrow 
heads indicate chromosome bridges.  Bar, 5 µm. 
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(F) The percentage of mitotic cells with normal segregation (blue), missegregated polar 
chromosomes (green), chromosome bridges (yellow), and both (red) at the anaphase onset were 
analyzed in cells transfected with shRNAs and expression vectors as indicated.  Mean with 95% 
confidence interval were plotted with chi-square test being performed to compute the p-value. 
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Figure 4.5. Tctex-1 depletion does not affect the association of the mitotic checkpoint 
proteins at unattached kinetochore and their release from attached kinetochores.   

(A and B) Immunofluorescence detection of DNA, ACA, BubR1 (A) and Mad1 (B) in 
prometaphase and metaphase cells transfected with control or Tctex-1 shRNA plasmids as 
indicated.  Bar, 5 µm.    

(C) Quantification of the normalized relative kinetochore intensities (per kinetochore) of 
Mad1/ACA in mitotic cells.  Whisker-Tukey boxplots span 25-75 percentile, while center bar 
denotes median and “+” marks mean.  Quantifications were based on 30 kinetochores (control 
unaligned), 30 kinetochores (control aligned), 37 kinetochores (Tctex-1 shRNA unaligned) and 30 
kinetochores (Tctex-1 shRNA aligned) from multiple cells.   
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Figure 4.6. Tctex-1 kinetochore localization is dynein independent. 

(A) Immunofluorescence detection of ACA, dynein (DIC), and Tctex-1 in nocodazole treated (3 
hrs) mitotic cells transfected with Tctex-1 shRNA plasmids or ZW10 siRNA as indicated.  Bar, 5 
µm. 

(B and C) Quantification of the normalized relative kinetochore intensities (per kinetochore) of 
DIC/ACA and Tctex-1/ACA (mean ± SEM) in mitotic cells.  In (B), 63 (control) and 57 (Tctex-1 
shRNA) kinetochores from multiple cells were measured.  In (C), 83 (control) and 41 (ZW10 
siRNA) kinetochores from multiple cells were measured.                  

(D and E) Immunofluorescence detection of ACA, Hec1 (A) or CENP-E (B), and Tctex-1 in 
mitotic cells transfected with Hec1 (A) or CENP-E (B) siRNA.  Bar, 5 µm.   



129 
 

 

Figure S4.1. Tctex-1 is an outer kinetochore component.  

(A) A T98G cell with a monopolar spindle upon monastrol treatment (100 µM for 30 min) stained 
with DNA (left panel) as well as ACA (green) and Tctex-1 (magenta) (right panel) showing Tctex-
1 strong localized to the unattached outward-facing kinetochores (see inserts).  Bar, 5 µm.  

(B) Indirect immunofluorescence staining of ACA, dynein (DIC), Tctex-1, and DNA in prophase 
and prometaphase cells as indicated.  Bar, 5 µm.  
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Figure S4.2. Tctex-1 depletion does not affect the global stability of kinetochore bound 
microtubule fibers.   

T98G cells were transfected with control or Tctex-1 shRNA plasmids.  After 72 hr, cells were 
incubated on ice for 10 min before they were fixed and processed for immunofluorescence staining 
for tubulin (green) and ACA (magenta).  Bar, 5 µm.  
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Figure S4.3. Knockdown of Tctex-1 does not affect kinetochore recruitment of dynein-
Tctex-1L 

(A and C) Immunofluorescence detection of ACA, dynein (DIC), and Tctex-1L in nocodazole 
treated mitotic cells transfected with ZW10 siRNA or Tctex-1 shRNA plasmids as indicated.  Bar, 
5 µm. 

(B and D) Quantification of the normalized relative kinetochore intensities (per kinetochore) of 
DIC/ACA and Tctex-1/ACA (mean ± SEM) in mitotic cells.  In (B), 184 kinetochores from 14 
control cells and 186 kinetochores from 13 ZW10 siRNA cells were measured.  In (C), 98 
kinetochores from 13 control cells and 68 kinetochores from 10 ZW10 siRNA cells were measured.       
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Chapter Five: Discussion and future directions 
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FORMIN centromere’s epigenetic identity 

 

(1) Diaphanous formin mediated nuclear actin regulates CENP-A maintenance at the 

centromere 

In mammalian cells, accurate chromosome segregation is guided by the centromere, a 

specialized chromosomal region epigenetically defined by nucleosomes containing the histone 

H3 variant CENP-A. In order to keep centromere identity with ongoing CENP-A dilution caused 

by S phase genome replication, new CENP-A proteins are deposited at preexisting centromeres 

in G1 phase of the cell cycle. Multiple molecular pathways have so far been identified 

underlying CENP-A replenishment, however, little is known in terms of how new CENP-A 

proteins become stably incorporated into centromeric nucleosomes. In Chapter 2 and 3 of this 

thesis, I identified the cytoskeletal protein diaphanous formin mDia2 is essential for newly 

synthesized CENP-A to be stably deposited at G1 centromeres, using quantitative imaging and 

pulse chase analysis. Using high resolution quantitative ratiometric live cell imaging, we further 

provided temporal evidence that the MgcRacGAP-based small GTPase small molecular switch is 

required from early G1 phase. Formin mDia2 functions downstream of the MgcRacGAP-

dependent small GTPase pathway, as ectopic activation of endogenous mDia2 in the absence of 

MgcRacGAP is sufficient to maintain stable CENP-A loading. This novel function of mDia2 

depends on its nuclear localization and its ability to polymerize actin. Dynamic and short actin 

filaments were observed in early G1 nuclei in an mDia2 dependent manner. Indeed, centromeric 

CENP-A level was reduced in cells depleted of IPO9 and expressing a nonpolymerizable actin 

mutant. To further examine the physical role of mDia2 mediated nuclear actin during CENP-A 

replenishment, single particle tracking of centromere movement was performed in early G1 
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nuclei over the time scale of initial CENP-A loading. Quantitative analysis uncovered 

subdiffusive behaviors where normal G1 centromeres movements are relatively confined. The 

confinement of centromere motion, however, is significantly impaired upon mDia2 knockdown. 

Finally, depletion of mDia2 results in a prolonged association of HJURP, the dedicated CENP-A 

loading chaperone, at the centromere. Thus, our findings suggest the diaphanous formin mDia2 

forms a link between the upstream small GTPase signaling and the downstream confined nuclear 

environment, and therefore regulates the stable assembly of new CENP-A containing 

nucleosomes at least in part through the timely turnover of centromeric HJURP to mark 

centromere’s epigenetic identity (Figure 5.1). Our findings have solved a key problem in the 

CENP-A field: what are the substrates or effectors that link small GTPase signaling to the 

loading/maintenance of CENP-A molecules at the centromere. Furthermore, with the 

identification of actin nucleation activity of mDia2 and polymerizable nuclear actin per se being 

essential for the stable maintenance of centromeric CENP-A levels, we have discovered a new 

nuclearskeletal mechanism that participates in the epigenetic regulation of CENP-A maintenance 

coupled to centromere chromatin movement. Lastly, with the finding that mDia2 depletion 

influences HJURP dwelling, but not its recruitment at G1 centromeres, we have identified a new 

route of crosstalk where mDia2-mediated nuclear actin has a potential role in the timely 

removal/turnover of CENP-A’s loading machineries. 

 

It didn’t escape our notice that diaphanous formin mDia2 could also participate in the 

regulation of nuclear events indirectly through the megakaryocytic acute leukemia protein 

(MAL) – serum response factor (SRF) pathway. It has been shown that mDia1/2 can nucleate 

actin polymerization inside somatic cell nuclei, and the polymerization of nuclear actin plays an 
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important role in abolishing the inhibitory effect of monomeric actin toward MAL, thus enable 

MAL to be a cofactor for SRF’s transcriptional activity94. SRF is a transcriptional factor required 

for the expression of many immediate early genes, cytoskeletal genes as well as muscle-specific 

genes224,225. By immunoblot against the total protein levels of CENP-A inside the cells, we did 

not find any difference in the expression level of CENP-A itself, upon mDia2 depletion. 

Together with the fact that YFP-CENP-A (which is controlled from 5’ sequences distinct from 

the endogenous locus of CENP-A) also has reduced levels at the centromere, this makes it 

unlikely that CENP-A is a downstream target gene of SRF pathway and the phenotype we 

observed was due to transcriptional level regulation177. Interestingly, among the many target 

genes of SRF is CENP-B, which is expressed in heart and differentially regulated in Srf-/- 

embryonic stem cells226. Although CENP-B has been implicated in centromere function as 

mentioned earlier in the introduction part of the thesis74, it is unlikely to be the reason underlying 

the CENP-A phenotype we had. On one hand, we didn’t observe any changes in centromeric 

CENP-B foci in cells depleted of mDia2177; on the other hand, even if CENP-B is reduced upon 

mDia2 depletion (and the SRF transcriptional activity based on mDia2) by more than 90%, 

centromeric CENP-A levels have been shown to remain unchanged at least within the time frame 

of our assay74. Currently we have not tested any other downstream factors of SRF is involved in 

CENP-A maintenance, nor have we tested whether any of the other molecular components in the 

CENP-A loading pathway have changed expression levels upon mDia2 depletion. Future work 

will include systems scale screen using microarray or RNA-seq against known CENP-A loading 

factors upon mDia2 depletion to rule out possible indirect effects. 
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Apart from possible differences in target gene expression downstream of the mDia-

nuclear actin-SRF pathway, another alternative explanation lies in the relationship between 

transcription and centromere chromatin. It has been shown that the definition of centromeres at 

the holocentric chromosomes of C.elegans inversed correlated with germline transcription, 

shown by the complementary occupancy of CeCENP-A and RNA Polymerase II across the 

C.elegans genome227. Interestingly, it has also been shown that filamentous nuclear actin 

polymers inversely correlates with the transcriptional activity of RNA Polymerase II181,228. These 

lines of evidence suggest a positive correlation between polymerized nuclear actin filaments and 

centromere identity, and implicates that there might be a connection between nuclear actin 

filaments and centromere determination, indirectly through the regulation of transcription 

activity of the chromatin. Nevertheless, recent findings in Xenopus and human cells also suggest 

that regional transcription permissive marks and the RNA polymerase II based transcripts at 

centromere are important for CENP-A inheritance, possibly through H3.3 exchange69-72. The 

exact relationship of RNA transcription and centromere determination therefore remains an 

important problem, especially with regard to the range of transcription permissive marks versus 

nonpermissive marks relative to centromere chromatin’s position at the chromosome229. At this 

point we are unable to rule out possible influences on transcription due to mDia2 depletion. 

Nevertheless future work using ChIP-seq will enable the measurement of transcription 

activation/silencing upon mDia2 depletion, at the whole genome scale. 

 

Based on our data, the current model we proposed at the beginning of this section 

(Figure 5.1) explains the correlated behaviors of mDia2’s function downstream of MgcRacGAP-

based small GTPase signaling, G1 CENP-A loading, nuclear actin dynamics, centromere motion 
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as well as the turnover of HJURP. However, caveats remain especially in terms of the 

localization of mDia2. We have not been able to document any enriched centromere localization 

of mDia2, either with antibody staining or overexpressed fluorescently tagged mDia2 protein. It 

remains to be tested with genome editing techniques that allows fluorescent tagging of 

endogenous mDia2 proteins. Additionally, it didn’t escape our notice that an obvious temporal 

discrepancy exists between the role of mDia2 in early G1 and the apparent centromere 

localization of MgcRacGAP in late G1 judging from overexpression of fluorescently tagged 

MgcRacGAP proteins. One possibility is that MgcRacGAP starts to function at early G1 

centromere even before their maximal centromere levels are reached. This is consistent with the 

finding that depleting MgcRacGAP results in similar phenotype in real time YFP-CENP-A 

loading (Chapter 3), and that MgcRacGAP binds to KNL2, a component of the licensing factors 

for CENP-A loading that already localizes at centromere in early G150. Finally, it remains 

possible that the observed changes upon mDia2 depletion are concurrent yet not directly due to 

causal relationships, thus future work will be focused on evaluating the effect of IPO9 depletion 

on centromere movement in early G1 over the time window of CENP-A loading, as well as the 

impact of MgcRacGAP and/or IPO9 depletion on the turnover of HJURP at G1 centromeres.  

 

(2) Systems-scale examination of formin’s roles in epigenetic regulation of chromatin and 

chromosomes 

Given our discoveries that diaphanous formin mDia2 functions downstream of the small 

GTPase molecular switch MgcRacGAP in stable centromeric CENP-A loading, one obvious 

question is: where does mDia2 localize inside the nucleus?  Despite extensive efforts we haven’t 

been able to detect any centromere specific localization of mDia2 in G1-phase. This could be due 
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to technical challenges in antibody or exogenous protein overexpression, which could be 

potentially addressed with new technologies such as tagging endogenous mDia2 with genome 

editing; on the other hand, endogenous mDia2 could actually have association beyond the 

centromere to be readily activated with differed inputs at difference locations at different times, 

with centromeric local activation by MgcRacGAP or small GTPase being only one of many 

inputs. Biochemical proteomic analysis will thus provide more insights regarding mDia2’s 

potential binding partners in complexes where it is involved during centromere maintenance and 

beyond. Among many chromatin related complexes, certain chromatin remodeling complex use 

polymerized actin filaments in their functions180,230. Therefore, one possibility is mDia2 

mediated nuclear actin filaments participates in chromatin remodeling complex, where 

interactions between mDia2/ nuclear actin and chromatin proteins could be important. Indeed, it 

has been reported that the FH2 domain of diaphanous formin can interact with CENP-A in a 

yeast-two hybrid assay231. Interestingly, our preliminary immunoprecipitation didn’t detect 

CENP-A binding with EGFP-mDia2-FH1FH2, but instead has found histone H3 binding 

specifically with EGFP-mDia2-FH1FH2 (Figure 5.2). This result is quite surprising to us, one 

possibility is the technically low abundance of CENP-A in the lysate, while the other possibility 

consistent with non-specific binding to the chromatin while being specifically and locally 

activated by upstream signaling. The biochemical association of histone H3 with EGFP-mDia2-

FH1FH2 is very interesting, not only because it confirms recent proteomic results, but also 

because it has been proposed that H3 (likely in particular H3.3) has to be “evicted” from 

centromeric nucleosomes to allow CENP-A incorporation51. Future work will further examine 

the biochemical association of mDia2, with a focus on chromatin proteins, using hypothesis 

driven approaches or unbiased screens based on mass spectrometry analysis.  
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On the other hand, from the chromosomal point of view, it is interesting to know whether 

centromeric chromatin the only chromosomal target of formin-based regulation? Although we 

have shown that another nonconventional histone variant H2A.Z remains the same levels 

globally, closer examination is required to test for other nonconventional histone variants under 

conditions like DNA damage. Finally, our results on the constrained centromere movement 

inside G1 nuclei during CENP-A loading is consistent with earlier observations of the motion of 

interphase chromosome foci in yeast and flies232, as well as the fractal globule model of 

interphase chromosome territory192. Because we have observed several long range centromere 

movements in mDia2 depleted cells, whether this reflects global rearrangement of chromosome 

territories upon mDia2 depletion remains to be investigated in the future. 

(3) An ever-expanding repertoire of nuclear actin-based epigenetic processes  

After over 40 years of controversies, it is now clear that both actin and actin motors exist 

inside the nucleus88,89,91. In particular, the existence of polymerized actin filaments are not 

confirmed until recently with multiple meticulously designed probes94,96. We now know that 

polymerized actin filaments do exist inside the nucleus, although it has been debated whether 

actin polymerization inside the nucleus functions by simply depleting the monomer pool, or by 

contrast, actually does mechanical work using the polymerized filaments. On the one hand, it has 

been shown that actin polymerization inside the nucleus release the inhibitory effect of 

monomeric actin on MAL (megakaryocytic acute leukemia protein), a cofactor for the 

transcriptional factor SRF (serum response factor)94,95. On the other hand, our results together 

with other groups’ results strongly suggest it is the filament specific functions that participate in 

regulating certain epigenetic processes97. In the meantime, emerging evidence suggest that 

multiple forms of morphology of filamentous actin as well as multiple paths to nucleation co-
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exist inside somatic cell nuclei (e.g. FMN2 mediated DNA damage response v.s. mDia2 

mediated CENP-A loading), underlying the diversified mechanisms a cell can use to specifically 

address highly-regulated processes. Future work include close examination of the indices and 

morphology of filamentous nuclear actin as a function of cell cycle time, as well as on any 

potential crosstalk between the diversified nucleation pathways. Finally, our findings about the 

role of mDia2 mediated nuclear actin in centromere maintenance suggest a unappreciated 

mechanism to ensure genome integrity, where actin comes in first to help maintain centromere 

identity long before microtubules actually get in touch with the kinetochores assembled on 

centromeres. Such mechanism could be part of a growing list of biological functions participated 

by polymerizable nuclear actin (e.g. anti-gravity buffering233, DNA damage response etc.) that 

demonstrate novel organizational capability. Future work combining in vivo perturbation and in 

vitro reconstitution234 would provide new perspective in understanding the dynamic epigenetic 

events inside the nucleus across nanometer to micron scale in space, over cellular to organismal 

scale in time. 

 

(4) Quantitative measurements of centromere identity 

Faithful transmission of the chromosomal information over continuous rounds of cell 

division in all higher eukaryotes depends on centromeres. It is crucial for each replicated 

chromosome to have one and only one centromere, as it has been shown that acentric fragments 

or dicentric chromosomes are often times missegregated during cell division235-237. In mammals, 

to allow each chromosome to “remember” where the centromere is, the centromere protein A 

(CENP-A) was used to specifically label active centromeric chromatin upon which kinetochore 

assembly will occur238. For the last two decades, great progress has been made toward 
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understanding how CENP-A maintains its own levels at the centromere in order to stably make 

the epigenetic mark. It became apparent that accurate measurement of CENP-A levels is the key 

to the systematic dissection of essential molecular requirements underlying stable CENP-A 

maintenance. While important discoveries on those molecular requirements being made by 

various groups, different quantitative methods were formulated and applied (Table 5.1). Each of 

those established methods in making quantitative measurements of CENP-A levels has its merits 

and limitations. In order to achieve high throughput, automated and non-subjective measurement 

that can take into account pixel intensities from all centromeres for a given cell, we developed 

the integrated nuclear CENP-A (INCA) measurement using custom code in MATLAB. First, at 

the core of the INCA algorithm heterogeneous local backgrounds for each image or cell were 

acknowledged and addressed by kernel filtering (Figure 5.3) on the original raw images, prior to 

quantitative measurement of the integrated CENP-A pixel intensities from all centromeres from 

one cell within its nuclear mask (Figure 5.4). Importantly, by applying the INCA measurement, 

integrated intensity measurement is not prone to the risk of thresholding-based masks generated 

upon single centromeres which can result in tremendous artifacts, and can quickly generate 

clustered measurement that reflects ‘loading’ capacity for each cell. Of course the INCA method 

has its own limitation: e.g. SNR of the images need to be within certain range such that no 

visible nucleoplasmic, non-centromeric pixel intensities will remain after kernel filtering. It is a 

criteria met with our current studies and fixation protocols, but nonetheless necessitates future 

improvement based on our quantitative measurement algorithm, potentially through combining 

Gaussian mixed-model fitting for local centroid amplitude detection and measurement, rather 

than Otsu-thresholding based centromere detection and measurement239. 
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During the course of our study, another method called ‘Centromere Recognition and 

Quantification  (CRaQ)’ was developed by the Jansen lab, using automated macros in ImageJ 

and multivariate parameters for thresholding-based measurement42,240. While being a great way 

to automatically measure intensity values on each individual centromeres, almost 50% percent of 

centromeres per cell are excluded, and the resultant measurements may not necessarily reflect the 

integrated ‘loading’ capacity of one cell (especially if potential spatial reorganization of G1 

centromeres were to be considered, e.g. should loaded centromeres move less and thus tend to 

cluster). Future improvement based on either CRaQ or INCA will thus be focused on more 

precise detection and measurement using thresholding-free and fitting-based method. 

 

A Tctex-1 based molecular “Velcro” at the kinetochore beyond cytoplasmic dynein 
complex 

 

In Chapter 4 of this thesis, we have identified the dynein light chain T-complex testis-

specific protein 1 (Tctex-1 or DYNLT1) as a novel factor important for the regulation of 

kinetochore-microtubule attachment during mitotic chromosome alignment. Using quantitative 

imaging and live cell analysis, we found that Tctex-1 associates with unattached kinetochores 

and localizes at the outer layer of kinetochores. Depleting Tctex-1 does not affect the recruitment 

or removal of dynein at the kinetochore, but results in prolonged mitotic arrest due to misaligned 

chromosomes. Tctex-1 does not rely on dynein for its function at the kinetochore, as both the 

dynein-bound and the dynein-free mutants of Tctex-1 can rescue the phenotype of mitotic 

chromosome misalignment/missegregation to a similar level, and the kinetochore localization of 

Tctex-1 is independent of the ZW10-based dynein pathway. Therefore, we have uncovered a 
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dynein-independent function of Tctex-1at the kinetochore. All three types of light chain (LC) 

proteins of the dynein complex (LC8, LC7/roadblock, and Tctex-1) dimerize and assemble on 

the intermediate chain (IC) and together bind to the tail domain of dynein heavy chain  

homodimers104. Apart from mediating interactions between dynein complex and dynein 

accessory proteins101, light chain proteins also can interact with a broad range of proteins outside 

of the dynein complex. For instance, Tctex-1 can interact with Fyn, DOC2, FIP1, CD155, 

rhodopsin and the poliovirus receptor241; LC8 has been shown to be a tail-binding light chain for 

dynein and myosin 5a, and to have more than 40 binding partners in various cellular contexts 

such as transport, mitosis and transcription242. Importantly, the LC8 binding motifs found in 

LC8’s binding partners are often located near the coiled-coil or other dimerization domains242. 

Therefore, an attractive model has been proposed that LC8 could function as a general 

‘molecular velcro’ that facilitates dimerization. Structural analysis revealed tertiary fold 

similarity between LC8 and Tctex-1 despite no sequence identity based on structural 

alignment241, and suggested that Tctex-1 binds to its targets in a way similar to LC8241,243. 

Therefore ‘molecular velcro’ could have a more general role in dimerization and/or protein 

complex formation, with the use of either LC8 or Tctex-1 to achieve specificity among 

diversified cellular processes. Adding to the dynein-independent roles of Tctex-1 in actin 

remodeling underlying neurite outgrowth244, our findings revealed a fundamental function of 

Tctex-1 underlying accurate chromosome segregation in mitosis. 

Currently there is no evidence for the known Tctex-1 binding partners outside of the 

dynein complex to be involved in regulating kinetochore function and mitotic chromosome 

segregation241, and our current data have not addressed the fundamental question – what is the 

binding partner of the dynein-free Tctex-1 that contributes to kinetochore/microtubule 
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attachment? Nevertheless, with clues from structural studies (regarding the ‘Tctex-1 binding 

motif’) and lessons learned from LC8242,243, bioinformatics prediction in conjunction with mass 

spectrometry profiling can be conducted in the future to screen for potential mitotic proteins that 

associate with Tctex-1 at the kinetochore. 

 

(1) A phosphorylation suppressed self-removal mechanism regulates the localization of 

kinetochore dynein, but not Tctex-1 

While studying the dynein-independent role of Tctex-1 at the kinetochore, we noticed that the 

regulated kinetochore localization of Tctex-1 differs from the dynein motor, regarding their 

response towards Aurora kinase inhibition.  Marked by the dynein intermediate chain (DIC), the 

dynein motor’s kinetochore localization in monopolar spindle, but not in prophase, requires 

Aurora kinase activity. As the small molecule ZM447439, a potent inhibitor towards Aurora B 

kinase, abolishes DIC’s kinetochore localization in monastrol treated cells. However, neither 

Tctex-1’s kinetochore localization in monopolar spindle or prophase requires Aurora kinase 

activity (Figure 5.5). This results indicate yet another differed properties of Tctex-1 and dynein 

motor at the kinetochore, thus providing further supports to a dynein-independent function of 

Tctex-1 at the kinetochore. 

Since the main difference between monastrol generated monopolar spindle and prophase cell is 

microtubule-kinetochore attachment present in the former but not the latter, we decided to test if 

the differential response of dynein upon Aurora inhibition is dependent on microtubule-

kinetochore attachment.  Dynein’s kinetochore localization is assessed using 

immunofluorescence imaging in the presence or absence of Aurora kinase activity, when 

microtubule attachment to kinetochores are abolished. Interestingly, Aurora kinase activity is 
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dispensable for kinetochore dynein (DIC) recruitment upon nocodazole treatment. By contrary, 

Aurora kinase activity is required for kinetochore dynein (DIC) localization upon MT 

attachment, in a monopolar spindle’s kinetochores where microtubule attachment have been 

established.  This results suggest a model where the role of Aurora phosphorylation, instead of 

being required for dynein’s recruitment to kinetochores, is required for suppressing the 

microtubule-based self-removal of dynein motors so that they can maintain their kinetochore 

localization (Figure 5.6). Our result differs from previous reports that Aurora B is required for 

the recruitment of dynein to kinetochores245. Future work will include in vitro examination of 

dynein’s motor activity in the presence or absence of Aurora B kinase. 

(2) A novel asymmetric “antagonistic” module at kinetochore microtubule plus ends 

After identifying a dynein-independent pool of Tctex-1 at the kinetochore, the next logical 

question is how does Tctex-1localize at the kinetochore and what does it do at the kinetochore? 

Similar to the chromosome alignment phenotype caused by Tctex-1 depletion, knocking down 

the microtubule plus end tracking protein CLIP-170 has been reported to result in misaligned 

chromosome and prolonged mitosis246. Importantly, CLIP-170 has the same asymmetric 

localization biased toward distal sister kinetochore in prometaphase cells247. Therefore, we 

decided to look into the relationship between Tctex-1 and CLIP-170. Immunofluorescence 

confirmed that CLIP-170 has asymmetric localization at sister kinetochores in monopolar 

spindle, similar to Tctex-1. Interestingly, knocking down CLIP-170 CLIP-170 or Tctex-1 

negatively affect the kinetochore localization of one another (Figure 5.7). These data suggest 

that Tctex-1 associates with CLIP-170 and they are required for each other’s robust residence at 

the kinetochore.  Indeed, bioinformatics predictions uncovered possible regions on CLIP-170 

and DIC that could bind to Tctex-1 (Figure 5.8). Interestingly, potential Tctex-1 binding motifs 
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coincide with low-probability coiled-coil regions (for DIC and CLIP-170) or regions near the 

end of the proteins (CLIP-170), consistent with a role in providing additional ‘molecular velcro’ 

for robust localization and function. 

Given that both Tctex-1 and its possible interactor CLIP-170 are enriched at distal sister 

kinetochore, while the master microtubule plus end tracking protein EB1 is enriched near 

proximal sister kinetochore (Figure 5.9), it is possible that the apparently opposite localization is 

actively regulated.  Indeed, upon mDia3 depletion, the level of kinetochore EB1 decreases while 

that of Tctex-1 and CLIP-170 increases136, suggesting an “antagonistic” network at the 

kinetochore-microtubule plus ends. Importantly, in order to test if EB1 and microtubule plus end 

dynamics itself is required for this antagonistic regulation, we performed a “chemical epistatic 

analysis” where all microtubules were depolymerized using nocodazole, followed by 

measurement of Tctex-1 and CLIP-170 at the kinetochore in the absence of mDia3.  No increase 

in kinetochore Tctex-1 or CLIP-170 were observed in mDia3 knockdowns when treated with 

nocodazole (Figure 5.10), suggesting that microtubule plus-end dynamics is required for the 

asymmetric “antagonistic” protein network at outer kinetochore, composed of mDia3 and Tctex-

1/CLIP-170.  By dissecting the inter-dependence between various kinetochore modules, we have 

identified a novel asymmetric “antagonistic” module at kinetochore microtubule plus ends 

(Figure 5.10 and Figure 5.11): A compositional change is initiated by mDia3 depletion, 

mediated by EB1 and microtubule plus-end dynamics, and executed by Tctex-1 and CLIP-170. 

The exact role of this module in the mechanochemical biology of kinetochore remains to be 

examined. 
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Toward a quantitative understanding of kinetochore-microtubule interactions at the 

microtubule plus ends 

As a key modulator in the aforementioned asymmetric “antagonistic” module, mDia3 itself is an 

outer kinetochore protein (Figure 5.12) that can bind to and stabilize microtubules1. Point-

mutation (4E) in mDia3 abolishes its microtubule stabilization activity, and interestingly 

dampens the ordinary oscillatory movement of aligned kinetochores (Figure 5.11). Since 

kinetochore oscillation is a complex function of k-fiber coordination and microtubule 

turnover248, we set out to test if 4E-mDia3 changes the turnover of microtubule itself. 

Interestingly, immunofluorescence revealed an elevated level of acetylated tubulin in cells 

expressing 4E-mDia3 (Figure 5.13, A and B). Tubulin acetylation depends on time and happens 

preferentially on stable microtubules. The elevated acetylated tubulin signals accumulate inside 

the spindle or near the poles, consistent with the situation where upon losing the microtubule 

stabilization activity of mDia3, dynamic instability at the plus ends occurs at higher frequencies 

thus the turnover (i.e. treadmilling) of tubulin subunit into the bulk of spindle occurs at a lower 

rate. Further in vitro reconstitution using TIRF microscopy is needed to better understand the 

mechanisms by which both WT- and 4E-mDia3 influence microtubule dynamic instability. In 

addition, with Monte Carlo simulation based on a stochastic state model (Figure 5.13, C and D), 

fitting in vitro measurement to theoretical growth/shortening rates could provide mechanistic 

insights of the energetic landscape of the kinetochore-microtubule interactions.  
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Figures  

 

 

Figure 5.1. Working model for the diaphanous formin mDia2 mediated nuclear actin 
regulating CENP-A maintenance at the centromere 

(A) Cartoon showing the functions of mDia2 downstream of the MgcRagGAP-based small 
GTPase pathway in regulating CENP-A loading at the moving centromeres. Green: H3 
nucleosomes; Red: old CENP-A nucleosomes; Yellow: new CENP-A nucleosomes. (B) 
Schematics showing the correlative relationships between mDia2, G1 CENP-A loading, nuclear 
actin dynamics, centromere motion as well as the turnover of HJURP. Solid arrows indicate 
direct evidence for the requirement of mDia2 in each of the aspects; dashed arrows indicating 
putative causal relationships that require further test. 
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Figure 5.2. Immunoprecipitation using wild type mDia2-FH1FH2-EGFP confirmed it co-
complex with histone H3 

Input and IP lanes are all shown. EGFP protein (GFP-C1) was used as a control with anti GFP 
antibody to rule out tag-effect. Anti-IgG antibody was also used as a control with mDia2-
FH1FH2-EGFP protein to rule out antibody non-specific binding (unpublished data). 
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Figure 5.3. Kernel filtering and local background removal are critical to accurate 
quantitative measurement 

Maximum Z-projected images from two control cells stained with CENP-A were shown on the 
identical scale for raw data (67-110), and for Kernel filtered data (0 – 40). Two different 
acquisitions of both control cells, even using the same batch of preparation and identical optical 
and software set up, could have different background levels. Therefore band-pass filtering and 
local background removal become key to accurate measurement against variations. 
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Figure 5.4. Integrated nuclear CENP-A measurement is a form of data clustering 

Flowchart of the MATLAB program used in our study. Note that cells touching images’ boarders 
were excluded to avoid edge effect. Each nuclear mask generated from DNA image (DAPI 
staining) provided a clustered measurement of the integrated centromeric CENP-A levels in that 
mask, representing the ‘loading capacity’ of CENP-A onto centromeres for that cell at the time 
being fixed. Combined with Figure 5.1, non-centromeric space inside the nuclear masks 
generally take zero intensity values. 
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Figure 5.5. Tctex-1 and dynein have differed kinetochore localization response upon 
Aurora kinase inhibition 

(A) Dynein intermediate chain (DIC)’s kinetochore localization in monopolar spindle, but not in 
prophase, requires Aurora kinase activity. Phosphorylated histone H3 (pH3) staining was used as 
a marker for Aurora kinase activity. (B) Neither Tctex-1’s  kinetochore localization in monopolar 
spindle or prophase requires Aurora kinase activity. (C) Quantifying the percentage of DIC or 
Tctex-1 localized kinetochore in all kinetochores (unpublished data). 
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Figure 5.6. A phosphorylation suppressed self-removal mechanism regulates the 
localization of kinetochore dynein 

(A) Aurora kinase activity is dispensable for kinetochore dynein (DIC) recruitment upon 
nocodazole treatment. (B) Quantifying the percentage of DIC localized kinetochore in all 
kinetochores, as well the the levels of DIC on kinetochores, upon nocodazole treatment, with or 
without Aurora activity. (C) Aurora kinase activity is required for kinetochore dynein (DIC) 
localization upon MT attachment. (D) Model for a role of Aurora phosphorylation, instead of 
being required for recruitment, is required for suppressing microtubule-based self-removal in 
dynein’s kinetochore localization (unpublished data). 
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Figure 5.7. Tctex-1 associates with CLIP-170 and they affect each other’s localization at the 
kinetochore  

(A) CLIP-170 has asymmetric localization at sister kinetochores in monopolar spindle, similar to 
Tctex-1. (B) Immunoblot showing the knockdown of CLIP-170. (C) Knockding down CLIP-170 
or Tctex-1 negatively affect the kinetochore localization of one another. (D) Quantification of the 
relative kinetochore levels of Tctex-1, CLIP-170 and DIC under various conditions (unpublished 
data). 
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Figure 5.8. Bioinformatics prediction of possible regions on CLIP-170 and DIC that could 
bind to Tctex-1 

Probability of coiled-coil structure along the proteins (CLIP-170 and DIC) are also shown. Note 
that potential Tctex-1 binding motifs coincide with low-probability coiled-coil region or regions 
near the end of the proteins to potential provide additional ‘molecular velcro’ for robust 
localization and function (unpublished data). 
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Figure 5.9. Tctex-1 and EB1 have opposite asymmetric kinetochore localizations 

(A) Dual color immunofluorescence images of Tctex-1 (red) and the outer kinetochore protein 
Hec1 (green) in a monopolar spindle. Line-scans are from the center to the periphery of the 
spindle. Note that Tctex-1 accumulates near the distal sister kinetochore. (B) Representative 
immunofluorescence images of a monopolar spindle with EB1 accumulating near the proximal 
sister kinetochore (unpublished data). 
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Figure 5.10. Microtubule plus-end dynamics is required for the asymmetric “antagonistic” 
protein network at outer kinetochore  

(A and B) Schematics for the “chemical epistasis” analysis to test if EB1 is required for the 
compositional change following mDia3 depletion. (C) No increase in kinetochore Tctex-1 or 
CLIP-170 were observed in mDia3 knockdowns when treated with nocodazole. (D) Graphical 
summary of the relationships of different modules in fine-tuning kinetochore-microtubule 
attachment (unpublished data). 
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Figure 5.11. A novel asymmetric “antagonistic” module at kinetochore microtubule plus 
ends 

Graphical model depicting the compositional change initiated by mDia3 depletion, mediated by 
EB1 and microtubule plus end dynamics, and executed by Tctex-1 and CLIP-170. The exact role 
of this module in the mechanochemical biology of kinetochore remains to be examined 
(unpublished data). 
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Figure 5.12. mDia3 is an outer kinetochore protein required for ordinary metaphase 
kinetochore oscillations 

(A) Dual-color immunofluorescence images show mDia3’s relative kinetochore localization. 
ACA was used as the positional marker for inner kinetochore and centromere. Hec1 was the 
positional marker for outer kinetochore. Asterisks mark spindle poles, arrows mark 
representative kinetochore pairs. (B) Kymographs (left) showing altered oscillatory behaviors of 
kinetochore movement (visualized with YFP-CENP-A) in cells expressing an mDia3 mutant 
(4E-mDia3) with defective microtubule stabilization activity. Quantification (right) show the 
relative distances from spindle poles to the respective kinetochores, ICD stands for inter-
centromere distance (unpublished data). 
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Figure 5.13. Toward a quantitative understanding of kinetochore-microtubule interactions 

(A and B) Immunofluorescence images and quantifications demonstrate that defects in mDia3’s 
microtubule stabilization activity correlate with higher levels of acetylated tubulin in metaphase 
spindles. (C)in silico modeling of microtubule plus end dynamics with Monte Carlo simulation. 
2-dimentional rendering of the 13-3 lattice is shown as inset in a representative trace of 
simulated kymograph.  (D) Contours of the simulated growth and shortening rate of microtubule 
plus ends as a function of different possible bond energies. Lateral bond energies (Glat) and 
longitudinal bond energies (Glong) are both in the unit of kBT (kB, Boltzmann’s constant; T, 
absolute temperature of the reaction). Future work fitting experimentally measured data using 
this model could provide mechanistic understandings of the energetic landscape of the 
kinetochore-microtubule interactions (unpublished data). 
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Table 1.1: Summary of current observations of nuclear actin filaments 
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Table 2.1: Parameters used for numerical simulation of HJURP turnover 
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Table 5.1: Summary of representative current methods in quantitative CENP-

A measurement 
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