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ABSTRACT

Optimization in Strategic Environments

Itai Feigenbaum

This work considers the problem faced by a decision maker (planner) trying to optimize over

incomplete data. The missing data is privately held by agents whose objectives are different from

the planner’s, and who can falsely report it in order to advance their objectives. The goal is

to design optimization mechanisms (algorithms) that achieve “good” results when agents’ reports

follow a game-theoretic equilibrium.

In the first part of this work, the goal is to design mechanisms that provide a small worst-case

approximation ratio (guarantee a large fraction of the optimal value in all instances) at equilib-

rium. The emphasis is on strategyproof mechanisms—where truthfulness is a dominant strategy

equilibrium—and on the approximation ratio at that equilibrium. Two problems are considered—

variants of knapsack and facility location problems. In the knapsack problem, items are privately

owned by agents, who can hide items or report fake ones; each agent’s utility equals the total

value of their own items included in the knapsack, while the planner wishes to choose the items

that maximize the sum of utilities. In the facility location problem, agents have private linear

single sinked/peaked preferences regarding the location of a facility on an interval, while the plan-

ner wishes to locate the facility in a way that maximizes one of several objectives. A variety of

mechanisms and lower bounds are provided for these problems.

The second part of this work explores the problem of reassigning students to schools. Students

have privately known preferences over the schools. After an initial assignment is made, the students’

preferences change, get reported again, and a reassignment must be obtained. The goal is to design

a reassignment mechanism that incentivizes truthfulness, provides high student welfare, transfers

relatively few students from their initial assignment, and respects student priorities at schools. The

class of mechanisms considered is permuted lottery deferred acceptance (PLDA) mechanisms, which

is a natural class of mechanisms based on permuting the lottery numbers students initially draw to

decide the initial assignment. Both theoretical and experimental evidence is provided to support

the use of a PLDA mechanism called reversed lottery deferred acceptance (RLDA). The evidence



suggests that under some conditions, all PLDA mechanisms generate roughly equal welfare, and

that RLDA minimizes transfers among PLDA mechanisms.
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Chapter 1

Introduction

1.1 A Bit on Mechanism Design

Decisions often need to be made under incomplete information. In many cases, the uncertainty

regarding the missing data is due simply to random phenomena, such as the outcome of a future

event or measurement errors. In contrast, it could be that some or all of the missing data is

known—not to the decision maker (who we shall call the planner from now on), but rather to

strategic agents, who can manipulate it in order to affect the planner’s decision in a way that

serves their own agendas. As an example, consider the National Resident Matching Program [Roth

and Sotomayor, 1992], where a planner attempts to match medical residents with positions at

hospitals. Each resident knows her true preferences over the hospitals (where they would like to

work), and each hospital knows its true preferences over residents (whom they would like to hire),

but that information is unknown to the planner. The planner must rely on the participants’ reports

of their preferences in order to compute a matching. However, depending on the algorithm used by

the planner, it might not be in the participants’ best interest to report their preferences truthfully:

for example, a resident might be averse to ranking highly a hospital that ranks her low, for fear

of “wasting” a top choice on a lost cause. How do agents behave in such an environment? And,

since their reports are not necessarily truthful, can the planner still rely on those reports to make

decisions?

The field of mechanism design (e.g. [Borgers et al., 2015; Vulkan et al., 2013]) uses the tools

of game theory to model the way agents report in such environments. The planner’s choice of

mechanism (algorithm) induces a game among the agents, where each agent chooses their report

(input) to the mechanism in an attempt to get a favorable output. The agents’ inputs are assumed
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to follow some notion of game-theoretic equilibrium, meaning (informally speaking) that no agent

can benefit from changing their report. Thus, the planner’s goal becomes designing a mechanism

that performs well when agents’ reports follow an equilibrium.

Much of the mechanism design literature deals with transferable utilities, where monetary com-

pensation can be used to incentivize agents’ behavior. The crown jewel is the Vickrey-Clarke-Groves

(VCG) mechanism [Groves, 1973], which tackles the problem of social welfare maximization. In

this problem, given a set of outcomes, and agents’ private valuations of these outcomes, a planner

wishes to choose an outcome that maximizes the total valuation. The VCG mechanism cleverly uses

money transfer to allow a social welfare-maximizing outcome to be chosen at (a dominant strategy)

equilibrium.1 There is also much literature where money plays a more significant role than just

incentivizing: see, for example, Myerson’s profit-maximizing mechanism [Myerson, 1981]. These

ideas and others have guided the design of a variety of real world mechanisms, such as spectrum

auctions [Cramton, 2013] and sponsored search auctions [Edelman et al., 2007] .

In many strategic environments (such as those explored in this work) agents’ utilities are non-

transferable, due to financial compensation being considered unethical or infeasible. An example

is the school choice problem—the assignment of students to public schools—in which students can

report false preferences over the schools in an attempt to improve their assignment [Abdulkadiroglu

and Sönmez, 2003]. Allowing students to pay for improved assignments is often unlawful, due to

the disadvantage suffered by students from less affluent backgrounds. Another example is the

organization of kidney exchange programs, where incompatible patient-donor kidney transplant

pairs may exchange kidneys, and hospitals/transplant centers may avoid reporting patients to the

program in a bid to increase the number of their own patients getting a kidney or increase the

number of operations done locally [Ashlagi and Roth, 2014; Ashlagi et al., 2013; Hajaj et al.,

2015]. Most nations forbid monetary compensation for organ donation, so again utilities are non-

transferable. Non-transferable utilities is a strong restriction in mechanism design; for example,

without money, there is usually no way to choose an optimal outcome at equilibrium in social

welfare maximization problems. Nevertheless, the field of mechanism design has accomplished

much under this restriction. For example, both scenarios described above are the subject of rich

and active research, that has lead to the reform of school choice programs throughout the world,

1Note—the actual optimal solution, not just the best achievable at equilibrium.
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as well as the creation and improvement of kidney exchange programs.

1.2 An Overview of This Dissertation

This work focuses entirely on mechanism design without money, that is with non-transferable

utilities. It consists of two parts. The first (and major) part is theoretical in nature, while the

second part has a more applied flavor.

1.2.1 Approximate Mechanism Design without Money

In the first part of this work (Chapters 2-5), we contribute to a stream of literature on “Approximate

Mechanism Design without Money”, which originated in [Procaccia and Tennenholtz, 2009]. Con-

sider an optimization problem in a strategic environment. We say that a mechanism is strategyproof

if truthfulness is a dominant strategy equilibrium under it (meaning that it is always optimal for

each agent to report their private information truthfully, regardless of the other agents’ private

information and reports). Also, we say that a mechanism has a worst-case approximation ratio α

if α is the smallest number for which, on every instance, the mechanism provides a value of at least

1
α times the optimal value (when agents are truthful); we say that a mechanism is β-approximate if

β ≥ α. In their paper, Procaccia and Tennenholtz suggest to focus on strategyproof mechanisms,

and use the worst-case approximation ratio as a benchmark for the quality of mechanisms. In other

words, the goal of their approach is to design strategyproof mechanisms with as small as possible

worst-case approximation ratios. In our work, we use their approach to tackle strategic variants of

the knapsack problem and one-dimensional facility location problems.

For one of the mechanisms in Chapter 2, we slightly deviate from (or more precisely, generalize)

Procaccia’s and Tennenholtz’s approach, and consider a mechanism that is not generally strate-

gyproof, but that still guarantees good approximation as long as the agents play according to a

Bayes-Nash or coarse correlated equilibrium. This approach is related to the notion of the “Price

of Anarchy,” and the techniques used in analyzing that mechanism—to smoothness based proofs

[Roughgarden, 2015].
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1.2.1.1 Selfish Knapsack

In Chapter 2 we consider a variant of the knapsack problem: there are n agents, each owning a

(mutually disjoint) set of items, where every item has a given value and size. Each agent’s item

set is known only to that agent. Agents may hide items from the planner (understate), or report

fake ones that they do not actually own (overstate). The planner must choose, from the reported

items, which items to include in a knapsack with a fixed capacity. Each agent gets a utility equal

to the total value of their (non-fake) items included in the knapsack, while the planner’s objective

is to maximize social welfare (the sum of utilities). Our results are:

1. We provide a randomized mechanism, called HALF-GREEDY, satisfying the following prop-

erties:

(a) When agents can only overstate, HALF-GREEDY is strategyproof and 2-approximate.

We show that HALF-GREEDY is best possible by providing a matching lower bound (no

randomized strategyproof mechanism can beat 2-approximation). In addition, random-

ization is shown to be necessary: no deterministic strategyproof mechanism can provide

any constant approximation ratio.

(b) When agents can only understate, HALF-GREEDY is not strategyproof, but as long as

the agents’ reports follow a Bayes-Nash equilibrium or a coarse correlated equilibrium,

the mechanism still provides at least 1
2 of the optimal value on every instance. The

same is true when agents are not limited to understating, under a very mild additional

assumption.

2. For the special case of a duopoly, namely 2 understating-only agents, we provide a randomized

strategyproof 5+4
√
2

7 ≈ 1.522-approximate mechanism. We also provide a lower bound of

5
√
5−9
2 ≈ 1.09 on the worst-case approximation ratio attainable by randomized strategyproof

mechanisms.

3. For the special case of one-bad-apple, namely when all agents but one are honest, and the

manipulating agent is understating-only, we provide a lower bound of 1+
√
5

2 ≈ 1.618 (the

golden ratio) on the worst-case approximation ratio attainable by deterministic strategyproof

mechanisms, as well as a deterministic strategyproof mechanism that attains it.
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4. We also consider a different model, where each agent owns a single item, whose value-to-size

ratio is publicly known, but whose actual value and size are private information. In this

model, we show that a small modification of HALF-GREEDY leads to a mechanism that is

strategyproof and 2-approximate. We also show that it is best possible (no randomized strat-

egyproof mechanism can beat this approximation ratio) and that randomization is necessary

(no deterministic strategyproof mechanism can provide any constant approximation ratio).

All results appear in [Feigenbaum and Johnson, 2015].

1.2.1.2 One-Dimensional Facility Location

In Chapters 3-5, we consider variants of one-dimensional facility location problems. In these prob-

lems, the planner wishes to locate a facility on an interval I. There are n agents located throughout

that interval, where each agent’s location is their own private information. We consider two types

of agents: agents who want the facility to be located as far from them as possible (type 1 agents),

and get a utility equal to their distance from their facility; and agents with the opposite preference

(type 2 agents), who get a disutility equal to their distance from the facility. The planner, of course,

attempts to optimize a certain objective function. We consider the following cases of this problem:

1. The desirable facility model, where all agents are type 2, and the planner wishes to minimize

the Lp measure of the distances.

2. The obnoxious facility model, where all agents are type 1, and the planner’s objective is

to maximize the sum of the distances (maxisum) or to maximize the minimum distance

(egalitarian).

3. The hybrid model, where we may have both types of agents simultaneously. In this model,

in order to make the preferences of both types comparable, we say that type 2 agents get a

utility equal to the length of I minus their distance from the facility.2 The planner wishes to

maximize the sum of utilities.

Our results are:

2See discussion in Chapter 5.
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1. In the desirable facility model:

(a) We show that the median mechanism, which is deterministic and strategyproof, is a

2
1− 1

p approximate mechanism, along with a matching lower bound on deterministic

strategyproof mechanisms. We also show that no randomized strategyproof mechanism,

from a class covering all mechanisms currently known in literature, can beat the median’s

approximation ratio for integer 2 < p <∞.

(b) We show a lower bound of 1
2(2

1− 1
p + 1) on the worst-case approximation ratio attainable

by randomized strategyproof mechanisms for all p (subject to a couple of very mild

assumptions), even when only 2 agents are present.

2. In the obnoxious facility model:

(a) We characterize all deterministic strategyproof mechanisms. For the maxisum objective,

we use our characterization to show a lower bound of 3 on the worst-case approximation

ratio attainable by deterministic strategyproof mechanisms (which matches a known

mechanism). For the egalitarian objective, we use our characterization to prove that no

deterministic strategyproof mechanism can provide any bounded approximation ratio.

(b) For the maxisum objective, we design a randomized strategyproof 3
2 -approximate mech-

anism, as well as prove a lower bound of 2√
3

on the worst-case approximation ratio of

randomized strategyproof mechanisms. For the egalitarian objective, we provide a lower

bound of 3
2 .

3. In the hybrid model, we provide a deterministic, strategyproof, 3-approximate mechanism

(note that the matching lower bound is carried from above), and a randomized, strategyproof,

23
13 -approximate mechanism.

4. We extend some of our results for the obnoxious model to a generalized model where each

agent may control multiple locations.

The current state of knowledge regarding the problems discussed is summarized in table 1.1.

All results appear in [Feigenbaum and Sethuraman, 2014; Feigenbaum et al., 2013a].

3Under some conditions.

4Known result from [Cheng et al., 2013a].
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Det. UB Det. LB Rand. UB Rand. LB

Desirable (Lp) 2
1− 1

p 2
1− 1

p ? 2
1− 1

p ,12(2
1− 1

p + 1)...3

Obnoxious (maxisum) 3...4 3 3
2

2√
3

Obnoxious (egalitarian) ∞ ∞ ? 3
2

Hybrid (maxisum) 3 3 23
13

2√
3

Table 1.1: Facility location results. The first and second columns specify the upper and lower

bounds on the worst-case approximation ratio attainable by deterministic strategyproof mecha-

nisms; the third and fourth column do the same for randomized mechanisms.

1.2.2 Reassignment in School Choice

In the second part of this work (Chapter 6) we consider the problem of reassigning students to

schools. The problem of assigning students to schools, also known as the school choice problem,

has received much attention in the mechanism design literature, starting with [Abdulkadiroglu and

Sönmez, 2003]. In school choice problems, the planner is given a set of students and a set of

public schools with given capacities. The students have privately known strict preferences over the

schools, while the schools have publicly known weak preferences over students, called priorities.

The students report their preferences to the planner, who then outputs a match, which must

respect capacities and priorities. In New York City, this is done via the Deferred Acceptance (DA)

mechanism [Roth, 2008].

However, in practice, a significant number of students do not show up at their assigned school,

for a variety of reasons: a superior private school admission, moving to a different city, or simply

a change of mind are a few. Thus, additional vacancies are created, and some reassignment is

possible. Students may resubmit their preferences, and the planner can compute a reassignment.

A reassignment mechanism has seemingly opposite goals. On the one hand, utilizing the vacancies

can improve overall welfare; on the other hand, the reassignment should not transfer too many

students from their original assignments, since it is difficult for schools to cope with a dramatic

change in their student population (note that the reassignment can happen after the school year

has begun!).

We consider a class of reassignment mechanisms, which we call permuted lottery deferred ac-
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ceptance (PLDA). We assume the initial assignment (the one before students change their prefer-

ences) is obtained via DA, where a single lottery is used to break ties in school priorities. Once

students’ submit their revised preferences, PLDA simply re-runs DA, but with (generally) different

tie-breaking, which is correlated with the initial lottery and initial assignments. PLDA respects

capacities and priorities, and does not transfer students from their initial assignment against their

will. It also satisfies a relaxed variant of strategyproofness when the number of students is “very

large”. We provide both theoretical and experimental evidence to support using a particular PLDA

mechanism, called reversed lottery deferred acceptance (RLDA). Our results are as follows:

1. We consider a theoretical model with a continuum of students and no school priorities. Within

that model, we show that if a certain technical condition is satisfied, which essentially requires

the relative demand for schools to remain unchanged after students resubmit their preferences,

all PLDA mechanisms provide identical welfare, and RLDA minimizes transfers among all

PLDA mechanisms.

2. We use data from New York City’s school choice program to show, via simulation, that

even with a finite number of students and with priorities, our analysis essentially holds:

PLDA mechanisms perform very similarly on welfare measures, and RLDA minimizes trans-

fers among them.



9

Part I

Worst-Case Approximation and

Mechanism Design
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Chapter 2

Selfish Knapsack

2.1 Introduction

We study a strategic variant of the knapsack problem, in which there are n agents, each agent owns

a set of items, and every item has a given value and size. A social planner must design a mechanism

to choose which items to include in a knapsack of a certain capacity, where the total size of the

chosen items cannot exceed the capacity. Each agent gets a utility equal to the total value of her

own items included in the knapsack, while the designer wishes to maximize social welfare (the sum

of the utilities of the agents). However, the set of items each agent owns is private information,

and an agent may choose not to disclose all of her items (may report any subset of them). We call

this the understating model (UM). Revealing all items might not be in an agent’s best interest:

Example 2.1. Assume the knapsack’s capacity is 1. Consider a mechanism which always chooses

an optimal (social welfare maximizing) solution based on the reported items. Assume agent 1’s true

set of items is {a, b} and agent 2’s true set of items is {c}, where a, b and c have values 1, 3
4 and

3
4 and sizes 1, 1

2 and 1
2 respectively. If the agents report truthfully, the mechanism chooses {b, c}

as the solution; however, if agent 1 hides item b and reports her set of items to be {a}, the chosen

solution becomes {a}, increasing agent 1’s utility from 3
4 to 1 while decreasing social welfare from

3
2 to 1.

To incentivize truthful reporting, we look for strategyproof mechanisms, where truth-telling is

a dominant strategy equilibrium (no agent can benefit from misreporting). As Example 2.1 sug-



CHAPTER 2. SELFISH KNAPSACK 11

gests, such mechanisms cannot always achieve optimality, so we seek mechanisms that approximate

optimality well. Specifically, we try to design strategyproof mechanisms with small worst-case ap-

proximation ratios (a mechanism is α-approximate if it provides, on every instance, social welfare

value of at least 1
α times the optimal welfare; the worst-case approximation ratio is the smallest

such α). We note that one of the mechanisms we design actually fails to be strategyproof, but still

has a nice strategic property: every induced Bayes-Nash equilibrium (BNE) and coarse correlated

equilibrium (CCE) is guaranteed to have a small approximation ratio.

We emphasize that agents can misreport the existence of items, but not their properties– their

size and value; that is, the planner has the power to verify the size and value of the reported

items. One example of such a scenario is the allocation of a scientific resource, like time on a

particle accelerator or NSF funding. Scientists submit research proposals, each requesting a certain

amount of resource and has a certain expected scientific value. This expected scientific value

is evaluated/confirmed by an impartial expert. A scientist can avoid submitting some of their

proposals, in an attempt to increase the total amount of resource she receives via proposals she does

submit (by avoiding “complementing” other scientists’ proposals well, similarly to Example 2.1).

Thus, the problem of choosing which proposals to accept in order to maximize total expected

scientific value falls within our model.

While our focus is on UM, we also consider the overstating model (OM) where an agent is

allowed to report fake items, which she does not actually own (report supersets of her true set of

items); the planner is assumed to be unable to differentiate between real and fake items. Despite

the fact that the agent derives no value from the inclusion of fake items in the knapsack, she can

use them to indirectly increase her utility:

Example 2.2. Consider Example 2.1, only now agent 1’s true set of items is {a} and agent 2’s

true set of items is {c}. If the agents report truthfully, the mechanism chooses {a} as the solution.

However, if agent 2 reports {c, d}, where d is a fake item of value 3
4 and size 1

2 , the chosen solution

becomes {c, d}. Agent 2 does not derive any benefit from the inclusion of d in the knapsack, but she

does benefit from the inclusion of c; thus this manipulation increases her utility from 0 to 3
4 , while

decreasing social welfare from 1 to 3
4 .

In the allocation of scientific resources, fake items are proposals that the scientist has no intention

to seriously pursue, submitted with the intention of creating a seemingly high-valued package along
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with some of her real proposals, potentially inducing the planner to choose this package– and

hence increasing the chance of the real proposals within the package to be chosen (similarly to

Example 2.2). Finally, in addition to UM and OM, we also consider their joint generalization, the

full model (FM), where agents can simultaneously hide items and report fake ones.

Our work is part of a growing literature on the subject of approximate mechanism design without

money [Procaccia and Tennenholtz, 2013a] (as well as the price of anarchy [Roughgarden, 2015]).

This approach has been applied to many types of problems, such as matching [Dughmi and Ghosh,

2010], facility location [Alon et al., 2010a; Feldman and Wilf, 2013a; Feigenbaum et al., 2013b], and

kidney exchange [Ashlagi et al., 2013]. The most relevant paper we could find is [Chen et al., 2011],

which (among other results) provides a randomized strategyproof mechanism for UM with a large

constant approximation ratio; there is no overlap between our results and theirs. Also related is the

“Funding Games” model of Bar-Noy et al. [Bar-Noy et al., 2012], where agents wish to maximize

the size of their chosen items. In addition, there are other papers that consider manipulation

involving the existence of objects rather than their properties. In the context of exchange markets,

such manipulation is considered in [Atlamaz and Klaus, 2007; Postlewaite, 1979]; in connection with

approximation, similar manipulation is considered in [Ashlagi et al., 2013; Dughmi and Ghosh, 2010;

Chen et al., 2011]. Overstating bears similarity to the notion of “slot destruction” in [Schummer

and Vohra, 2013], where airlines withhold information regarding cancellation of flights (equivalent

to reporting fake flights) in order to manipulate a mechanism assigning landing times. Finally,

examples of price of anarchy analysis for non-SP mechanisms can be found in [Caragiannis et al.,

2015; Bhawalkar and Roughgarden, 2011].

Contributions. We provide a randomized mechanism, called HALF-GREEDY, with good strate-

gic properties. In OM, it is strategyproof, 2-approximate, no randomized strategyproof mechanism

can beat this approximation guarantee, and no deterministic strategyproof mechanism can provide

any constant approximation. In UM it is not strategyproof, but every BNE and CCE induced by

it is 2-approximate; this remains true in FM, under a mild assumption. In addition, we design

mechanisms for two specialized environments in UM. One is the case of a duopoly, namely n = 2

agents; there, we design a randomized strategyproof 5+4
√
2

7 ≈ 1.522-approximate mechanism, and

provide a lower bound of 5
√
5−9
2 ≈ 1.09 on the approximation ratio attainable by randomized strat-

egyproof mechanisms. The other case is of one-bad-apple, where only one agent is manipulative
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among an otherwise honest population. For this environment, we provide a deterministic strate-

gyproof 1+
√
5

2 ≈ 1.618-approximate mechanism, along with a matching lower bound. Finally, we

consider a different environment, called Known-Quality-Unknown-Quantity (KQUQ), where every

agent owns exactly one item, whose value-to-size ratio is known, but whose actual value and size

are not known; we show that a simple modification of HALF-GREEDY yields a strategyproof

mechanism which is 2-approximate, while no randomized strategyproof mechanism can beat this

approximation guarantee, and no deterministic strategyproof mechanism can provide any constant

approximation.

The rest of this chapter is organized as follows. In Section 2.2 we formalize our model. In

Section 2.3, we discuss HALF-GREEDY and its strategic properties. Sections 2.4 and 2.5 are ded-

icated to the specialized environments of a duopoly and one-bad-apple, respectively. In Section 2.6

we discuss the KQUQ environment.

2.2 Model

We assume without loss of generality that the knapsack’s capacity is 1. Let N = {1, 2, . . . , n} be a

set of agents, n ≥ 2. Each agent i has a ground set of items Gi (informally, the set of items agent i

can potentially own), and a finite true set of items Xi ∈ Ĝi, where, for a set A, Â is the collection

of all finite subsets of A. Each item a ∈ Gi has size s(a) ∈ (0, 1] and value v(a) ∈ (0,∞); for

A ∈ ∪̂i∈NGi, we define s(A) =
∑

a∈A s(a) and v(A) =
∑

a∈A v(a).1 We assume that Gi ∩Gj = ∅

for i 6= j.

For each agent i ∈ N , letR∗i (Xi) ⊆ Ĝi be her report space when her true set of items isXi. In the

understating (UM), overstating (OM) and full (FM) models, R∗i (Xi) equals X̂i, {A ∈ Ĝi : A ⊇ Xi}

and Ĝi respectively. Each agent i reports some Ri ∈ R∗i (Xi). A deterministic mechanism is a

function f :
∏
i∈N Ĝi → ∪̂i∈NGi which maps the agents’ reports to a set of items to include in

the knapsack; a randomized mechanism is a function from
∏
i∈N Ĝi to all random variables over

1The fact that our formulation allows us to distinguish between items with identical size, value and owner is a

mere convenience. All of our results translate to a model where such items are indistinguishable; in such a model, the

planner allots each agent room in the knapsack for an item with a certain value and size, but the agent may choose

which actual item (with that value and size) to include.
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∪̂i∈NGi.2 We restrict our attention to feasible mechanisms; a deterministic (resp. randomized)

mechanism f is feasible iff, for all R ∈
∏
i∈N Ĝi:

1. f only uses the reported items: f(R) ⊆ ∪i∈NRi (resp. surely, meaning with probability 1).

2. f doesn’t violate the knapsack’s capacity: s(f(R)) ≤ 1 (resp. surely).

The utility that agent i derives from a chosen solution S ∈ ∪̂i∈NGi when her true set is Xi is

defined as u(Xi, S) = v(Xi∩S). A mechanism is strategyproof if truthfulness is a dominant strategy

equilibrium. For a deterministic (resp. randomized) mechanism f , this means that for all i ∈ N ,

X ∈
∏
j∈N Ĝj , Ri ∈ R∗i (Xi), we have u(Xi, f(X)) ≥ u(Xi, f(X−i, Ri)) (resp. E[u(Xi, f(X))] ≥

E[u(Xi, f(X−i, Ri))]).
3 We emphasize that for randomized mechanisms, the requirement is that

truthful reporting maximizes an agent’s expected utility (independently of all other agents’ reports).

Informally speaking, the planner wants to choose a solution S which maximizes social wel-

fare:
∑

i∈N u(Xi, S). However, as we saw in Examples 2.1 and 2.2, strategyproof mechanisms

cannot always choose the optimal solution. Thus, we settle for an approximation to optimality:

we attempt to design strategyproof mechanisms with small worst-case approximation ratios. We

define the worst-case approximation ratio of a deterministic (resp. randomized) mechanism f to be

max
X∈

∏
i∈N Ĝi

∑n
i=1 u(Xi,OPT (∪i∈NXi))∑n

i=1 u(Xi,f(X))
(resp. max

X∈
∏
i∈N Ĝi

∑n
i=1 u(Xi,OPT (∪i∈NXi))∑n

i=1 E[u(Xi,f(X))]
), where OPT (A)

is an optimal solution to the knapsack problem when the set of available items is A.4 A mechanism

whose worst-case approximation ratio is at most α is called α-approximate.

Finally, one of our mechanisms is not always strategyproof, but has another strategic property:

every Bayes-Nash equilibrium (BNE) and coarse correlated equilibrium (CCE) induced by it has a

small approximation ratio. BNE is a solution concept suitable for when agents have distributional

knowledge of each other’s items; CCE is suitable for when that knowledge is exact. We briefly

remind the reader of the relevant definitions; for a complete discussion, see [Roughgarden, 2009;

Roughgarden, 2015].

2∏
i∈N Ĝi = Ĝ1 × · · · × Ĝn.

3We define the notation (z−i, z
′
i) = (z1, . . . , zi−1, z

′
i, zi+1, . . . , zn) for every i ∈ N and n-dimensional vector z.

4We consider the worst-case approximation ratio to be∞ if the denominator is 0 and the numerator is not; in case

they are both 0, we consider the ratio to be 1. Note that in the randomized case, the only source of randomization

is f , thus there is no need to take expectation of the numerator.
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1. Let Ẋ be a random variable over
∏
i∈N Ĝi with distribution F . A strategy Si is a function

mapping Xi ∈ Ĝi to a random variable over R∗i (Xi); we also define Ṡi = Si(Ẋi). A strategy

profile S is a BNE w.r.t. mechanism f and distribution F iff, for every i ∈ N and strategy S′i,

E[u(Ẋi, f(Ṡ))] ≥ E[u(Ẋi, f(Ṡ−i, Ṡ
′
i))]. S is α-approximate iff

∑n
i=1 E[u(Ẋi,OPT (∪i∈N Ẋi))]∑n

i=1 E[u(Ẋi,f(Ṡ))]
≤ α.

2. For a given X ∈
∏
i∈N Ĝi, a random variable Ṙ over

∏
i∈N R

∗
i (Xi) is a CCE under mechanism

f if for every i ∈ N , R′i ∈ R∗i (Xi), we have E[u(Xi, f(Ṙ)] ≥ E[u(Xi, f(Ṙ−i, R
′
i)]. Ṙ is α-

approximate iff
∑n
i=1 u(Xi,OPT (∪i∈NXi))∑n

i=1 E[u(Xi,f(Ṙ))]
≤ α.

2.3 The HALF-GREEDY Mechanism

In this section, we analyze the strategic properties of a randomized mechanism we call HALF-

GREEDY. In OM, we show that HALF-GREEDY is strategyproof and 2-approximate. We also

show that no randomized strategyproof mechanism can beat this approximation guarantee, and no

deterministic strategyproof mechanism can provide a constant worst-case approximation ratio. In

UM, we show that while HALF-GREEDY is not strategyproof, every BNE and CCE it induces is

2-approximate; in FM, we can preserve this result, under a mild additional assumption.

For technical convenience, we assume the existence of a given total order � on ∪i∈NGi. To define

HALF-GREEDY, we need two auxiliary mechanisms. The first one is the GREEDY mechanism,

which adds items to the knapsack by decreasing value-to-size ratio, breaking ties according to �.

It is convenient to define �′ to be a total order on ∪i∈NGi, where for a, b ∈ ∪i∈NGi, if v(a)
s(a) >

v(b)
s(b) ,

then a �′ b, and if v(a)
s(a) = v(b)

s(b) , then �′ agrees with �.

Definition 2.1. For every A ∈ ∪̂i∈NGi, and every b ∈ A, let LA(b) = {a ∈ A : a �′ b}; if s(A) > 1,

let oA = max�′{b ∈ A : s(LA(b) ∪ {b}) > 1}. Let the reported items be R ∈
∏
i∈N Ĝi. Define

the GREEDY mechanism GR as follows: if s(∪i∈NRi) ≤ 1 then GR(R) = ∪i∈NRi, otherwise

GR(R) = L∪i∈NRi(o∪i∈NRi).

The second auxiliary mechanism is MAXIMUM-VALUE, which returns a single item with the

maximum value possible, breaking ties according to �:

Definition 2.2. Let the reported items be R ∈
∏
i∈N Ĝi. Define the MAXIMUM-VALUE mecha-

nism MV as follows: if ∪i∈NRi = ∅ then MV (R) = ∅, otherwise MV (R) = max�{a ∈ ∪i∈NRi :

v(a) ≥ v(b) ∀b ∈ ∪i∈NRi}.
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Now we can define HALF-GREEDY, which is well known to be 2-approximate (see [Burke and

Kendall, 2005]):

Definition 2.3. The HALF-GREEDY mechanism HG runs GR with probability 1
2 and MV with

probability 1
2 (probabilities chosen independently of the input).

Before we continue, we show a simple lemma that will be helpful in the analysis of HALF-

GREEDY. We define a bit of helpful notation: for every set A ∈ ∪̂i∈NGi, we define XA to be the

unique set profile where A = ∪i∈NXA
i .

Lemma 2.1. Let A,B,C ∈ ∪̂i∈NGi, and assume B ⊆ A, C ∩ A ⊆ B. Then, C ∩ GR(XA) ⊆

GR(XB) and C ∩MV (XA) ⊆MV (XB) (that is, every item in C that is included in the knapsack

when we run MV /GR on XA remains in the knapsack when we run them on XB).

Proof. Let c ∈ C ∩MV (XA); note that by feasibility of MV , c ∈ A and hence c ∈ C ∩A, implying

c ∈ B. Now, by definition of MV , we have that c = max�{a ∈ A : v(a) ≥ v(b) ∀b ∈ A}. Since

B ⊆ A and c ∈ B, we have that c = max�{a ∈ B : v(a) ≥ v(b) ∀b ∈ B} (as c is maximal in the

larger set, it remains maximal in the smaller set), so c ∈MV (XB).

Now, let d ∈ C ∩ GR(XA); by feasibility of GR, d ∈ A, hence d ∈ C ∩ A, hence d ∈ B. If

s(B) ≤ 1, then GR(XB) = B, and in particular d ∈ GR(XB). So assume s(B) > 1, and note that

this implies s(A) > 1. Clearly, oA �′ oB; since d ∈ GR(XA) = LA(oA), d �′ oA �′ oB. Since d ∈ B

and d �′ oB, then d ∈ LB(oB), so d ∈ GR(XB).

2.3.1 Overstating Model

We begin with analyzing HALF-GREEDY in OM. Strategyproofness follows from a very simple

fact: under both GR and MV , every real item that is included in the knapsack when agent i reports

Ri, remains in the knapsack when agent i reports Ri ∩Xi, namely avoids reporting the fake items

within Ri:

Lemma 2.2. Let i ∈ N , X ∈
∏
j∈N Ĝj and Ri ∈ Ĝi.Then Xi ∩GR(X−i, Ri) ⊆ GR(X−i, Ri ∩Xi)

and Xi ∩MV (X−i, Ri) ⊆MV (X−i, Ri ∩Xi).

Proof. Apply Lemma 2.1 with C = Xi, B = (Ri∩Xi)∪(∪j∈N\{i}Xj) and A = Ri∪(∪j∈N\{i}Xj).
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In other words, an agent never loses from restricting her report to the real items within that

report. This immediately implies:

Corollary 2.1. In OM, HALF-GREEDY is strategyproof and 2-approximate.

Proof. Strategyproofness is immediate from Lemma 2.2, since for every agent i and for every

possible report Ri ⊇ Xi in the overstating model, Ri ∩Xi = Xi. The fact that the mechanism is

2-approximate is already known, as noted earlier.

It is important to note that once GREEDY first fails to add an item to the knapsack (namely,

it attempts to pick up an item that does not fit in the remaining space), it stops and returns the

items currently in the knapsack; it does not try to add the next item that fits in the remaining

space. This seemingly trivial choice is actually crucial for maintaining strategyproofness, as the

following example shows. Thus, one must be careful about choices that are seemingly unimportant

for approximation, as they may be important for strategic properties.

Example 2.3. Consider the BAD-GREEDY mechanism BG, defined as Algorithm 2.1. Consider

the case of n = 2, with X1 = {a}, X2 = {b}, v(a) = s(a) = 1, v(b) = 1
4 , s(a) = 1

2 ; on this instance,

BG(X) = {a}, and the utility of agent 2 is v(X2∩{a}) = 0. However, if agent 2 reports R2 = {b, c},

where v(c) = 1, s(c) = 1
2 (that is, agent 2 reports a fake item c in addition to her true item b),

then BG(X1, R2) = {b, c}, and agent 2’s utility is v(X2 ∩{b, c}) = 1
4 . Thus, BAD-GREEDY is not

strategyproof in OM (assuming a ∈ G1, b, c ∈ G2).

We also provide matching lower bounds, which essentially complete the picture for OM. They

show that (1) HALF-GREEDY is best possible in OM: no randomized strategyproof mechanism

can beat 2-approximation, and (2) randomization is necessary: no deterministic strategyproof

mechanism can provide any constant approximation. For lower bounds, we make the assumption

that the ground sets are unrestricted: Gi is called unrestricted if it contains infinitely many items

of size s and value v for every s ∈ (0, 1] and v ∈ (0,∞).

Theorem 2.1. In OM, if the ground sets are unrestricted, there is no randomized strategyproof

mechanism with a worst-case approximation ratio strictly smaller than 2. Also, there is no deter-

ministic strategyproof mechanism with a constant worst-case approximation ratio.
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Algorithm 2.1 BAD-GREEDY

Require: A ∈ ∪̂i∈NGi

1: S ← ∅, T ← A

2: while T 6= ∅ do

3: next← max�′ T

4: T ← T\{next}

5: if s(S ∪ {next}) ≤ 1 then

6: S ← S ∪ {next}

7: end if

8: end while

9: return S

Proof. We begin with the bound for randomized mechanisms. Let f be a randomized strategyproof

mechanism with worst-case approximation ratio 1 < r < 2 (the case of r = 1 has been covered in

Example 2.2, as r = 1 can only be achieved by the mechanism that always chooses the optimal

solution). Consider X′ ∈
∏
i∈N Ĝi. In this instance, X ′1 = {a1, . . . , aM2}, where v(aj) = 1

M and

s(aj) = 1
M2 for all j = 1, . . . ,M2; X ′2 = {b} where v(b) = s(b) = 1; X ′i = ∅ for all i > 2, where M

is some very large integer. The optimal solution for this instance is X ′1, with optimal value M . If

no item in X ′1 is chosen with probability strictly more than p, the approximation ratio is at least

M
pM+(1−p) (note that choosing any items from X ′1 excludes choosing b and vice versa), and thus we

must have M
pM+(1−p) ≤ r, namely p ≥ M−r

Mr−r . Thus it must be the case that some item aj is chosen

with probability at least q = M−r
Mr−r .

Next, consider X, which is identical to X′ except X1 = {aj}. In this instance, the optimal

solution is X2, with optimal value 1. Due to strategyproofness, it must be the case that item aj is

chosen with probability at least q (since otherwise agent 1 has an incentive to report X ′1 instead of

X1). Thus, the approximation ratio on this instance is at least 1
q
M

+(1−q) = 1
M−r

M2r−Mr
+Mr−M
Mr−r

. Sending

M →∞, this becomes r
r−1 > r for r ∈ (1, 2). Contradiction.

Next, we show the bound for deterministic mechanisms. Let g be a deterministic strategyproof

mechanism with worst-case approximation ratio r ∈ [1,∞). Assume M > r, and consider profile

X ′1. If the mechanism doesn’t choose any item in X ′1, the approximation ratio is at least M
1 > r.
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Thus, the mechanism chooses at least one item in X ′1, say aj . Now, consider X. On that profile,

the mechanism must choose aj due to strategyproofness, leading to an approximation ratio of

1
1
M

= M > r. Thus, we have arrived at a contradiction.

2.3.2 Understating and Full Models

In UM, HALF-GREEDY is no longer strategyproof—it is sometimes beneficial for an agent to hide

items.

Example 2.4. Consider the case of n = 2, where X1 = {a, b}, X2 = {c, d}, v(a) = 2, v(c) = 2− ε,

s(a) = s(c) = 1
4 + ε, v(b) = 3 + ε, v(d) = 3, s(b) = s(d) = 1

2 , where ε > 0 is very small. It is easy

to check that there are no dominant strategies:

1. For agent 1: ∅ is strictly dominated by {a}, {a} is a worse response than {b} which is worse

than {a, b} when agent 2 reports ∅, and {a, b} is a worse response than {b} when agent 2

reports {c}.

2. For agent 2: ∅ is strictly dominated by {c}, {c} is a worse response than {d} which is worse

than {c, d} when agent 1 reports ∅, and {c, d} is a worse response than {d} when agent 1

reports {a}.

However, that is not necessarily bad news. Both GR and MV satisfy the following property:

fix some agent i ∈ N . For all other agents j 6= i, every item of j which is included in the knapsack

when agent i reports Ri, remains in the knapsack when agent i reports R′i ⊆ Ri.

Lemma 2.3. Let i ∈ N , Ri, R
′
i ∈ Ĝi, R′i ⊆ Ri. Let (R1, . . . , Ri−1, Ri+1, . . . , Rn),

(X1, . . . , Xi−1, Xi+1, . . . , Xn) ∈
∏
j∈N\{i} Ĝj. For all j ∈ N\{i}, Xj ∩GR(R) ⊆ GR(R−i, R

′
i) and

Xj ∩MV (R) ⊆MV (R−i, R
′
i).

Proof. Apply Lemma 2.1 with C = Xj , B = R′i ∪ (∪k∈N\{i}Rk), A = Ri ∪ (∪k∈N\{i}Rk).

Thus, when an agent hides items, all other agents weakly benefit. Therefore, if an agent benefits

from hiding items, social welfare increases, since then all other agents benefit as well. Following

this observation, it is intuitive to expect that the agents’ manipulations would result in a higher

social welfare than when they are truthful (although one needs to verify that nothing goes wrong
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when all agents simultaneously engage in hiding items). To model how agents hide items, we

consider two options regarding the knowledge agents have of each other’s items. The first option

is when that knowledge is distributional (a.k.a. Bayesian game): agents know a joint distribution

from which the real items are drawn. For this option, we assume that agents behave according

to a BNE. The second option is when the knowledge is exact (a.k.a complete information game):

agents can see their peers’ items. For this option, we merely assume that agents behave according

to a CCE.5 Note that HALF-GREEDY is prior independent, namely we do not assume that the

planner has any knowledge (apart from the reports) of the agents’ items, distributional or exact.

We use a smoothness-based argument ([Roughgarden, 2015]) to show that every BNE and CCE

under HALF-GREEDY results in social welfare weakly greater than when the agents are truthful;

since truthfulness results in 2-approximation, this implies:6

Theorem 2.2. In UM, for every prior F over
∏
i∈N Ĝi, every BNE w.r.t. HALF-GREEDY and

F is 2-approximate. Similarly, for every X ∈
∏
i∈N Ĝi, every CCE w.r.t. HALF-GREEDY and X

is 2-approximate.7

Proof. We show the proof for BNE; the proof for CCE is similar. Fix agent i ∈ N . Let Ẋ be a

random variable over
∏
i∈N Ĝi with probability distribution F . Let S be a BNE under mechanism

HG and probability distribution F . Note that since we are in the understating model, Ṡj ⊆ Ẋj

surely for every j ∈ N (reminder: Ṡj = Sj(Ẋj)). Thus, we can apply Lemma 2.3 n − 1 times to

deduce

E[u(Ẋi, HG(Ẋ))] ≤ E[u(Ẋi, HG(Ṡ−i, Ẋi))];

5A fairly weak assumption– CCE is a generalization of mixed Nash equilibrium.

6Note that Theorem 2.2 implies that the game induced by HALF-GREEDY has a price of anarchy of 2 w.r.t.

these equilibria concepts.

7Readers familiar with Rougharden’s work on smooth games ([Roughgarden, 2009; Roughgarden, 2015]) might

notice that our proof essentially takes the following form: we show that the game induced by HG is (1, 0)-smooth with

respect to the truthful choice function. Then, (a trivial adaptation of) Roughgarden’s extension theorems imply that

the social welfare obtained at BNE/CCE is weakly larger than the social welfare obtained when agents are truthful.

Since truthfulness results in 2-approximation to optimality, the BNE/CCE is also 2-approximate. However, our proof

is just as easily described from first principles, so we avoid the smoothness terminology in favor of accessibility.
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that is, when all agents other than i hide items, agent i’s utility weakly increases. Now, by definition

of BNE,

E[u(Ẋi, HG(Ṡ−i, Ẋi))] ≤ E[u(Ẋi, HG(Ṡ))]

(when all agents other than i play according to S, i’s optimal response is to play Si). Thus, we

have that

E[u(Ẋi, HG(Ẋ))] ≤ E[u(Ẋi, HG(Ṡ))].

As i was chosen arbitrarily, this holds for all agents, and so we have that

n∑
i=1

E[u(Ẋi, HG(Ẋ))] ≤
n∑
i=1

E[u(Ẋi, HG(Ṡ))].

Now, as we noted, HG is 2-approximate, that is∑n
i=1 u(Xi, OPT (∪j∈NXj))∑n
i=1 E[u(Xi, HG(X))]

≤ 2

for any fixed X, which implies ∑n
i=1 E[u(Ẋi, OPT (∪j∈NẊj))]∑n

i=1 E[u(Ẋi, HG(Ẋ))]
≤ 2.

Thus, we also have that ∑n
i=1 E[u(Ẋi, OPT (∪j∈NẊj))]∑n

i=1 E[u(Ẋi, HG(Ṡ))]
≤ 2.

Next, we consider FM. In FM, Theorem 2.2 almost holds. The reason we say “almost” is

indifference. As Lemma 2.2 shows, no agent can benefit from reporting fake items. However, an

agent might report fake items in a way that does not change her utility, but decreases other agents’

utilities. Let us give an example of such a Nash equilibrium, which is a special case of both BNE

and CCE:

Example 2.5. Consider the case of n = 2 agents, X1 = {a}, X2 = {b}, where v(a) = 1, s(a) = 1
M ,

v(b) = M − 2, s(b) = M−1
M , where M is some large integer, M >> 2. Truthful reporting is a Nash

equilibrium. Note that when agents report truthfully, HALF-GREEDY chooses a with probability
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1
2 and b with probability 1. However, if agent 1 reports R1 = {a, c} where v(c) = M − 1 and

s(c) = M−1
M , and agent 2 reports truthfully, we still get a Nash equilibrium, in which HALF-

GREEDY still chooses a with probability 1
2 , but b is chosen with probability 0 (c is chosen with

probability 1, but since it is a fake item, it does not add to the agents’ utilities or to the objective

function value). In the latter Nash equilibrium, the approximation ratio is 2M − 2.

We show that problematic equilibria such as the one above cannot occur if agents are not

deliberately malicious.

Definition 2.4. Let i ∈ N , Xi, Ri ∈ Ĝi. Ri is called a malicious report for agent i when her true

set of items is Xi if there exists R′i ∈ Ĝi where for all j ∈ N and all (X1, . . . , Xi−1, Xi+1, . . . , Xn),

(R1, . . . , Ri−1, Ri+1, . . . , Rn) ∈
∏
k∈N\{i} Ĝk, we have

E[u(Xj , HG(R))] ≤ E[u(Xj , HG(R−i, R
′
i))], with the inequality being strict for at least one agent

in at least one instance.

In other words, a malicious report is a report that can never benefit any agent (including the

agent reporting it), and can sometimes hurt an agent. Thus, if the agents are even very mildly

altruistic, they would not report maliciously. Also, in a Bayesian game, we say that a strategy

Si is malicious if Si(Xi) is malicious w.r.t. Xi, for some Xi ∈ Ĝi, with positive probability.8

Non-malicious reports satisfy an important property– fake items included in those reports have no

impact on the real items included in the solution. We first prove a restricted case of it, where all

agents but one are honest:

Lemma 2.4. Let i ∈ N , Xi, Ri ∈ Ĝi. If Ri is not malicious for agent i with true set of items Xi,

then for every choice of (X1, . . . , Xi−1, Xi+1, . . . , Xn) ∈
∏
k∈N\{i} Ĝk, and for every j ∈ N , we have

that Xj ∩GR(X−i, Ri) = Xj ∩GR(X−i, Ri∩Xi) and Xj ∩MV (X−i, Ri) = Xj ∩MV (X−i, Ri∩Xi).

Proof. Assume that there exists (X1, . . . , Xi−1, Xi+1, . . . , Xn) ∈
∏
k∈N\{i} Ĝk such that, for some

j ∈ N , Xj ∩MV (X−i, Ri) 6= Xj ∩MV (X−i, Ri∩Xi) (the proof for GR instead of MV is identical).

8Assuming non-maliciousness is weaker and easier to justify than assuming no fake items are reported. Assuming

no fake items reported is similar in spirit to the assumption of “no overbidding” in generalized second price auctions

[Caragiannis et al., 2015]. Reporting fake items in our mechanism, much like overbidding in GSP, is a weakly

dominated strategy; however, both can lead to unreasonable and bad equilibria due to indifference, and are thus

ruled out by assumption.
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First, note that for every instance where the true set of items for agent i is Xi, and for any

fixed reports for the agents in N\{i}, reporting Ri ∩Xi instead of Ri weakly increases all agents’

utilities (agent i by Lemma 2.2, and the rest by Lemma 2.3). Thus, it is enough to show that

on our instance, when all k ∈ N\{i} own and report Xk, reporting Ri ∩Xi instead of Ri strictly

increases some agent’s utility (since then Ri would be malicious). Lemmas 2.2 and 2.3 imply that,

for all k ∈ N ,

u(Xk,MV (X−i, Ri ∩Xi)) ≥ u(Xk,MV (X−i, Ri)).

and

u(Xk, GR(X−i, Ri ∩Xi)) ≥ u(Xk, GR(X−i, Ri)).

By Lemma 2.3 if j 6= i and Lemma 2.2 if j = i, Xj ∩MV (X−i, Ri) 6= Xj ∩MV (X−i, Ri ∩ Xi)

implies

Xj ∩MV (X−i, Ri) ⊂ Xj ∩MV (X−i, Ri ∩Xi),

thus

u(Xj ,MV (X−i, Ri ∩Xi)) > u(Xj ,MV (X−i, Ri)),

which, in combination with the already established inequality

u(Xj , GR(X−i, Ri ∩Xi)) ≥ u(Xj , GR(X−i, Ri))

proves our result.

We can now get rid of the honesty assumption:

Lemma 2.5. Let i ∈ N , Xi, Ri ∈ Ĝi. If Ri is not malicious for agent i with true set of items Xi,

then for every choice of (X1, . . . , Xi−1, Xi+1, . . . , Xn), (R1, . . . , Ri−1, Ri+1, . . . , Rn) ∈
∏
k∈N\{i} Ĝk,

and for every j ∈ N , we have that Xj ∩ GR(R) = Xj ∩ GR(R−i, Ri ∩ Xi) and Xj ∩MV (R) =

Xj ∩MV (R−i, Ri ∩Xi).

Proof. We prove for GR; the proof for MV is identical. Let us define the reports and true sets of the

agents other than i as (R1, . . . , Ri−1, Ri+1, . . . , Rn), (X1, . . . , Xi−1, Xi+1, . . . , Xn) ∈
∏
k∈N\{i} Ĝk.

Assume Ri is non malicious for agent i with true set Xi. For j 6= i, by Lemma 2.4,

Rj ∩GR(R) = Rj ∩GR(R−i, Ri ∩Xi) surely.
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Intersecting both sides with Xj yields

Xj ∩Rj ∩GR(R) = Xj ∩Rj ∩GR(R−i, Ri ∩Xi) surely.

By feasibility of GR, we have Xj ∩GR(R) ⊆ Rj and Xj ∩GR(R−i, Ri ∩Xi) ⊆ Rj ; thus it follows

that

Xj ∩GR(R) = Xj ∩GR(R−i, Ri ∩Xi).

For j = i, Xi ∩GR(R) = Xi ∩GR(R−i, Ri ∩Xi) is immediate from Lemma 2.4.

Therefore, non-maliciousness rules out equilibria like the one in Example 2.5. Fake items might

be reported at equilibria, but they would have no impact on welfare. This, in addition to Theo-

rem 2.2, leads to the following result:

Theorem 2.3. In FM, for every prior F over
∏
i∈N Ĝi, every BNE w.r.t. HALF-GREEDY and F

in which no malicious strategy is used is 2-approximate. Similarly, for every X ∈
∏
i∈N Ĝi, every

CCE w.r.t. HALF-GREEDY and X in which no malicious report is used with positive probability

is 2-approximate.

Proof. We prove the theorem for BNE; the proof for CCE is similar. Let Ẋ be a random variable

over
∏
i∈N Ĝi with probability distribution F . Let S be a BNE under mechanism HG and proba-

bility distribution F , and assume that no malicious strategies are being played in S. We define S′i

to be the strategy that maps each set A to Si(A) ∩A. Applying Lemma 2.5 n times in succession,

once for each agent, we can immediately conclude that every agent gets the exact same utility under

S and S′. If S′ is a BNE in the full model, then since no fake items are reported, it is clearly also

a BNE in the understating model, and hence by Theorem 2.2 it is 2-approximate, and therefore S

is 2-approximate as well. Thus, it is enough to show that S′ is a BNE in the full model.

Fix agent i. Apply Lemma 2.5 n− 1 times to get that for all Yi ∈ Ĝi, E[u(Ẋi, HG(Ṡ−i, Yi))] =

E[u(Ẋi, HG(Ṡ′−i, Yi))]; thus, it follows that since Si is a best response by agent i when all other

agents j play Sj , it remains a best response when they all play S′j instead. Also, by Lemma 2.2,

agent i weakly benefits from playing S′i instead of Si, so S′i is also a best response to all other agents

j playing S′j . Thus, S′ is a BNE in the full model.

Finally, we make a note regarding the existence of BNE: when moving from UM to FM, HG

doesn’t lose any BNEs.
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Theorem 2.4. Let S be a BNE in under HG and distribution F in the understating model; then

it remains such a BNE in the full model.

Proof. Assume S is not a BNE in the full model. Then there must exist an agent i and strat-

egy S′i where E[u(Ẋi, HG(Ṡ))] < E[u(Ẋi, HG(Ṡ−i, Ṡ
′
i))]. But, by Lemma 2.2, this implies that

E[u(Ẋi, HG(Ṡ))] < E[u(Ẋi, HG(Ṡ−i, Ṡ
′
i ∩ Ẋi))], and since Ṡ′i ∩ Ẋi ⊆ Ẋi surely, it follows that S is

not a BNE in the understating model.

2.4 The EQUAL-UTILITY Mechanism

In this section, we consider the special case of n = 2 in UM. We design a specialized randomized

mechanism, called EQUAL-UTILITY for this environment, which is strategyproof and 5+4
√
2

7 ≈

1.522-approximate. We hope that the ideas behind EQUAL-UTILITY lead to generalizations

for larger numbers of agents. In the next section, we show that no deterministic strategyproof

mechanism can beat EQUAL-UTILITY’s approximation ratio, thus randomization leads to strict

improvement. We also provide a lower bound of 5
√
5−9
2 ≈ 1.09 on the approximation ratio attainable

by randomized strategyproof mechanisms, showing the necessity of some approximation gap.

The idea behind EQUAL-UTILITY, shown as Algorithm 2.2, is to solve the knapsack problem

optimally, with one additional constraint: that the agents’ utilities are exactly equal. Since in

general, apart from ∅, there might not be a deterministic solution that satisfies this additional

constraint, we allow for randomized solutions instead. Formally, we want to solve the following

mathematical program (PROGRAM), where A is a random decision variable (set of items):9 maxi-

mize E[v(A)] subject to: (1) A ⊆ X1∪X2 and s(A) ≤ 1 surely and (2) E[v(A∩X1)] = E[v(A∩X2)].

As every agent gets exactly half of A’s expected welfare, it is in each agent’s best interest to maxi-

mize that welfare. Therefore agents have no incentive to restrict the feasible region of PROGRAM

by hiding items, and thus PROGRAM alone is a strategyproof mechanism.

However, PROGRAM does not always lead to good approximation. It fails to do so on instances

where one agent’s items are much superior to the other’s. For example, if one agent has one item

9PROGRAM can be stated as a linear programming problem with exponentially many variables. Let T = {S ⊆

X1 ∪X2 : s(S) ≤ 1}. Then PROGRAM can be stated as: maximize
∑
S∈T v(S)pS subject to

∑
S∈T v(S ∩X1)pS =∑

S∈T v(S ∩X2)pS ,
∑
S∈T pS = 1 and pS ≥ 0 for all S ∈ T (where the pS ’s are our decision variables).
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of value M , the other agent has one item of value ε, and M >> ε, the equal utility constraint

dictates that the M -valued item is almost never chosen. Thus, we add a preliminary check meant

to catch such instances before we turn to PROGRAM. The preliminary check is as follows: say

we wish for our mechanism to be α-approximate. Consider OPT (X1) and OPT (X2), namely

the optimal solutions using just a single agent’s items. If OPT (Xi) is significantly bigger than

OPT (Xj), to the extent where OPT (Xi) is guaranteed to be an α-approximation on its own to the

optimal value, then we simply return OPT (Xi). This is checked via the condition v(OPT (Xi)) ≥
1
α(v(OPT (X1)) + v(OPT (X2))).

10 If neither agent can satisfy the specified condition, we turn to

PROGRAM.

Algorithm 2.2 EQUAL-UTILITY

Require: Sets of items X1, X2, where Xi ∈ Ĝi; parameter α ∈ [1, 2)

1: Z1 ← OPT (X1), Z2 ← OPT (X2)

2: if v(Zi) ≥ 1
α(v(Z1) + v(Z2)) for some i ∈ {1, 2} then

3: return Zi . option 1

4: else

5: return optimal solution to PROGRAM with input X . option 2

6: end if

Theorem 2.5. In UM, for α ≥ 5+4
√
2

7 ≈ 1.522, EQUAL-UTILITY is strategyproof and α-

approximate.

Proof. First, we prove strategyproofness. We break the proof into cases:

1. Assume the mechanism ends at option 1. In that case, agent i clearly gets the best utility

she can possibly get, and hence has no incentive to misreport. Consider agent j 6= i. Assume

agent j reports X ′j ⊂ Xj . Let us denote Z ′j = OPT (X ′j). Note that v(Z ′j) ≤ v(Zj). Since

v(Zi) ≥ 1
α(v(Zi) + v(Zj)), trivially v(Zi) ≥ 1

α(v(Zi) + v(Z ′j)). Thus, agent j cannot prevent

the mechanism from ending at option 1 by misreporting. Furthermore, since at option 1 the

mechanism returns Zi, agent j has no influence on what is returned. Thus agent j cannot

change the outcome of the mechanism by misreporting.

10We use v(OPT (X1)) + v(OPT (X2)) instead of v(OPT (X1 ∪X2)) to maintain strategyproofness.
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2. Assume the mechanism ends at option 2. Consider agent 1 (the proof for agent 2 is identical).

Assume agent 1 reports X ′1 ⊂ X1. Let us denote Z ′1 = OPT (X ′1). Note that v(Z ′1) ≤ v(Z1).

Since the mechanism did not end at option 1, we have that

v(Z1) <
1

α
(v(Z1) + v(Z2))

(α− 1)v(Z1) < v(Z2)

(α− 1)v(Z ′1) < v(Z2) (since v(Z ′1)) ≤ v(Z1))

v(Z ′1) <
1

α
(v(Z ′1) + v(Z2)).

Thus, agent 1 cannot make the mechanism stop at option 1 and return Z ′1, and therefore

agent 1 cannot benefit from making the mechanism stop at option 1 (since if Z2 is returned,

her payoff is 0). At option 2, agent 1 would like to report all of her items: her utility is

exactly half of the optimal solution to PROGRAM, and so enlarging the feasible region of

PROGRAM weakly increases her own utility.

Next, we prove the mechanism is α-approximate. Since we know that v(Z1) + V (Z2) ≥

v(OPT (∪i∈{1,2}Xi)), if the mechanism ends at option 1 clearly it provides an α-approximation.

So we just need to prove this for the case the mechanism ends at option 2. Let O = OPT (X1∪X2),

O1 = O ∩ X1, O2 = O ∩ X2. In addition, let a = argmini∈{1,2} v(Oi), b = argmaxi∈{1,2} v(Oi) (if

v(O1) = v(O2), set a = 1 and b = 2), and let p = v(Ob)−v(Oa)
v(Ob)−v(Oa)+v(Za) . Consider the random variable

A which returns Za with probability p and O with probability (1 − p). p was chosen precisely so

that A becomes a feasible solution to our program:

E[v(A ∩Xb)] = (1− p)v(Ob)

=
v(Ob)v(Za)

v(Ob)− v(Oa) + v(Za)

=
(v(Ob)− v(Oa))v(Za)

v(Ob)− v(Oa) + v(Za)
+

v(Oa)v(Za)

v(Ob)− v(Oa) + v(Za)

= p · v(Za) + (1− p)v(Oa)

= E[v(A ∩Xa)].
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It is therefore enough to show that v(O)
E[v(A)] ≤ α. Note that

v(O)

E[v(A)]
=

v(Oa) + v(Ob)

(1− p)(v(Oa) + v(Ob)) + pv(Za)

=
(v(Oa) + v(Ob))(v(Ob)− v(Oa) + v(Za))

2v(Za)v(Ob)
.

When v(Za) and v(Ob) are fixed values, and v(Oa) is a variable, this is a parabola with a maximum

at v(Oa) = v(Za)
2 . Plugging that in, we have the following upper bound on the approximation ratio:

(v(Za)2 + v(Ob))
2

2v(Za)v(Ob)
=

1

2
+

v(Ob)

2v(Za)
+

v(Za)

8v(Ob)
.

Let us denote x = v(Ob)
v(Za)

; then our upper bound is 1
2 + x

2 + 1
8x . Since the mechanism did not end at

option 1, we know that

x =
v(Ob)

v(Za)

≤ v(Zb)

v(Za)

<
1

α− 1
.

We also know that

x =
v(Ob)

v(Za)

=
2v(Ob)

2v(Za)

≥ v(Ob) + v(Oa)

2v(Za)

=
v(O)

2v(Za)

≥ 1

2
.

So, to see how bad our upper bound can be, we maximize 1
2 + x

2 + 1
8x over x ∈ [12 ,

1
α−1 ]. Simple

analysis shows that for α > 1, the maximum is 1
2 + 1

2(α−1) + α−1
8 . We are therefore guaranteed

approximation ratio α from our mechanism as long as 1
2 + 1

2(α−1) + α−1
8 ≤ α, which is easily seen

to hold as long as α ≥ 5+4
√
2

7 .

Our bound on EQUAL-UTILITY’s performance is tight:
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Theorem 2.6. Let r = 5+4
√
2

7 . Assume the ground sets are unrestricted. For every δ > 0, there

exists an instance where EQUAL-UTILITY (with α = r) provides an approximation ratio strictly

larger than r − δ.

Proof. Consider the profile where X1 = {a, b} with v(a) = s(a) = 1 and v(b) = s(b) = 1
2 , and

X2 = {c} where v(c) = 1
r−1 − ε where ε > 0 is small, and s(c) = 1

2 . EQUAL-UTILITY will reach

option 2 on this instance. In this case, item a is chosen with probability p =
1
r−1
−ε− 1

2
1
r−1
−ε+ 1

2

. Items b

and c are chosen with probability 1− p. The mechanism’s approximation ratio is
1
r−1
−ε+ 1

2

p+(1−p)( 1
r−1
−ε+ 1

2
)
,

which, as ε→ 0, goes to 5+4
√
2

7 .

We next show that no randomized strategyproof mechanism can be arbitrarily close to optimality–

some separation is required:

Theorem 2.7. In UM, if the ground sets are unrestricted, no randomized strategyproof mechanism

can provide a worst-case approximation ratio strictly better than 5
√
5−9
2 ≈ 1.09.

Proof. Let f be a randomized strategyproof mechanism which provides a worst-case approximation

ratio r < 5
√
5−9
2 . Consider the profile where X1 = {a} with s(a) = 1 and v(a) = φ = 1+

√
5

2 (the

golden ratio), X2 = {b} with s(b) = 1
2 and v(b) = 1, and Xi = ∅ for all i ≥ 3. Let p = P(a ∈ f(X)).

To maintain approximation ratio r, we must have (I) pφ + (1 − p) ≥ 1
rφ. Now, consider profile

X′ = (X−1, X
′
1) where X ′1 = {a, c} and v(c) = 1, s(c) = 1

2 . Let p′ = P(a ∈ f(X′)). To maintain

approximation ratio r, we must have (II) p′φ + (1 − p′)2 ≥ 2
r . To maintain strategyproofness, we

must have (III) p′φ + (1 − p′) ≥ pφ. Now, (I) gives p ≥
φ
r
−1

φ−1 , (II) gives p′ ≤ 2− 2
r

2−φ . (III) can be

rewritten as p′(φ − 1) + 1 − pφ ≥ 0, and so this implies
2− 2

r
2−φ (φ − 1) + 1 − φ

φ
r
−1

φ−1 ≥ 0. Isolating r,

this gives r ≥ 5
√
5−9
2 , contradiction.

2.4.1 NP-Hardness

We note that EQUAL-UTILITY requires solving NP-hard problems. First, computing OPT (X1)

and OPT (X2) means solving the knapsack problem, which is known to be NP-hard. Solving

PROGRAM is NP-hard as well:

Theorem 2.8. Solving PROGRAM is NP-hard.
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Proof. We prove this by reduction from knapsack. Say we have an instance of the knapsack problem

with set of items I. Assume without loss of generality that the knapsack’s capacity in this instance

is 1
2 and that the sizes of the items are at most 1

2 each. Let an optimal solution be OPT ∗; we

want to know whether or not v(OPT ∗) ≥ k for some k > 0. Set X1 = I, and X2 = {a} where

v(a) = k and s(k) = 1
2 , and solve PROGRAM on this instance. Note that agent 2’s expected

utility can never surpass k, as she only has one item and its value is k. Thus, the optimal value of

PROGRAM is at most 2k, since the utilities must be equal. We claim that the optimal value of

PROGRAM is exactly 2k iff v(OPT ∗) ≥ k.

1. If v(OPT ∗) ≥ k, then there is a unique solution A to PROGRAM where A ∈ {OPT ∗ ∪

{a}, {a}} surely (as v(X1 ∩ (OPT ∗ ∪ {a})) = v(OPT ∗) ≥ k = v(X2 ∩ (OPT ∗ ∪ {a}))). Since

a is chosen with probability 1, agent 2 gets an expected utility of exactly k here, and hence

so does agent 1. Thus, E[v(A)] = 2k, and therefore the optimal value of PROGRAM is at

least 2k, and thus is exactly 2k.

2. If v(OPT ∗) < k, note that whenever S ⊆ X1∪X2 where v(S) ≤ 1, if a ∈ S, then v(S∩X1) ≤

v(OPT ∗) < k (since if a ∈ S, there is only capacity 1
2 left for agent 1’s items). Thus, it follows

that for every solution A of PROGRAM, there is a nonzero probability that a /∈ A (otherwise

agent 1’s expected utility must be strictly less than k, and agent 2’s expected utility is exactly

k). Thus agent 2’s expected utility is strictly less than k, and therefore the optimal value of

PROGRAM is strictly less than 2k.

We refer the reader to Appendix A for an informal discussion regarding managing this running-

time issue.

2.5 The PACIFY-THE-LIAR Mechanism

We continue exploring UM. We now allow for a general number of agents n, however we restrict

ourselves to an environment where there is only one bad apple—specifically, n − 1 agents are

assumed to be honest. We assume without loss of generality that agent 1 is the manipulative agent

(note that our results hold for free even if the honesty of an agent—whether or not that agent
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is manipulative—is private information of that agent, since we can simply say that if all agents

report to be honest, we include nothing in the knapsack).11 For this environment, we will provide

a φ-approximate deterministic strategyproof mechanism (φ = 1+
√
5

2 ≈ 1.618 is the golden ratio),

along with a matching lower bound.

Our deterministic mechanism, called PACIFY-THE-LIAR (Algorithm 2.3), is similar in spirit

to EQUAL-UTILITY. It begins with a preliminary test, which checks if agent 1 can guarantee an

α-approximation on her own (option 1), or if agents 2 through n can guarantee an α-approximation

together, without agent 1 (option 2). In the former case, we return OPT (X1), and in the latter

case we return OPT (∪i∈N\{1}Xi). We note a small difference between the preliminary tests in

EQUAL-UTILITY and in our new mechanism: in option 2, the benchmark used is the optimal

solution v(OPT (∪i∈NXi)) rather than the upper bound v(Z1) + v(Z2). This substitution is crucial

in order to maintain a φ approximation ratio, and does not violate strategyproofness due to the

honesty of all agents other than 1. If the preliminary test fails, we move to option 3, where we look

at a collection of solutions that guarantee α-approximation, and attempt to “pacify” agent 1 by

choosing her favorite solution within that collection.

Algorithm 2.3 PACIFY-THE-LIAR

Require: Sets of items X1, . . . , Xn, where Xi ∈ Ĝi; parameter α ≥ 1

1: Z1 ← OPT (X1), Z2 ← OPT (∪i∈N\{1}Xi)

2: if v(Z1) ≥ 1
α(v(Z1) + v(Z2)) then

3: return Z1 . option 1

4: else if v(Z2) ≥ 1
αv(OPT (∪i∈NXi)) then

5: return Z2 . option 2

6: else

7: S ← {A ⊆ ∪i∈NXi : v(A) > αv(Z2)}

8: return argmaxA∈S v(A ∩X1) . option 3

9: end if

Note that if we reach option 3, S is nonempty since we did not stop at option 2 (thus S includes

11If we naturally extend our definition of mechanism to allow reporting of all private data, including honesty. This

observation relies, of course, on the honest agents reporting their honesty correctly.
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the optimal solution). By hiding items, agent 1 can only make S smaller; however, since the

mechanism returns agent 1’s favorite solution in S, she has no incentive to make S smaller, and

thus no incentive to misreport.

Theorem 2.9. In UM, PACIFY-THE-LIAR is strategyproof and α-approximate for α ≥ φ.

Proof. We begin by proving strategyproofness. If the algorithm ends at options 1 or 2, the proof

is similar to case (1) in the proof of Theorem 2.5. If the algorithm ends at option 3, the fact that

agent 1 cannot benefit from making the mechanism stop at an earlier option follows from a similar

argument to the one in case (2) in the proof of Theorem 2.5. Thus, all we need to show is that

if the mechanism stops at option 3 under agent 1’s misreport, agent 1 does not benefit. Assume

X ′1 ⊂ X1 and let S′ = {A ⊆ X ′1 ∪ (∪i∈N\{1}Xi) : v(A) > αv(Z2)}. Then, note that S′ ⊆ S, and for

every A ∈ S′, v(A ∩X ′1) = v(A ∩X1); therefore, maxA∈S′ v(A ∩X1) ≤ maxA∈S v(A ∩X1), and so

agent 1 does not benefit.

Now that we have established strategyproofness, let us analyze the approximation ratio. Clearly

α-approximation is guaranteed when the mechanism ends at options 1 or 2. So let us consider the

case where the mechanism ends at option 3. Let A be the output. Since A ∈ S, v(A) > αv(Z2).

Since we did not stop at option 1,

v(Z1) <
1

α− 1
v(Z2)

v(Z1) + v(Z2) <
α

α− 1
v(Z2).

Therefore,

v(A) > αv(Z2)

> (α− 1)(v(Z1) + v(Z2))

≥ (α− 1)v(OPT (∪i∈NXi)).

Thus, we are guaranteed an α-approximate mechanism if 1
α ≤ (α − 1), and this is easily seen to

hold true for α ≥ φ.

Finally, we show that no deterministic strategyproof mechanism can do better:

Theorem 2.10. In the understating model, if the ground sets are unrestricted, no deterministic

strategyproof mechanism can provide a worst-case approximation ratio better than φ.
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Proof. Let f be a deterministic strategyproof mechanism with approximation ratio r < φ. Consider

the profile where X1 = {a} with s(a) = 1 and v(a) = φ, X2 = {b} with s(b) = 1
2 and v(b) = 1, and

Xi = ∅ for all i ≥ 3. To maintain approximation ratio r, we must have a ∈ f(X). Consider the

profile X′ that differs from X only in X ′1 = {a, c}, where s(c) = 1
2 and v(c) = φ− ε for some small

ε > 0. To maintain strategyproofness, we must have a ∈ f(X′). Thus, the approximation ratio on

that profile is φ−ε+1
φ , which can be made arbitrarily close to φ+1

φ = φ. Therefore, the worst-case

approximation ratio of f cannot be better than φ.

2.6 The Known-Quality-Unknown-Quantity Model

In this section, we consider a model which we call ‘Known Quality Unknown Quantity’ (KQUQ).

In this model, the true item profile X is known, and in fact |Xi| = 1 for all i ∈ N ; hence, we simply

call agent i’s item ai and avoid using X. Furthermore, for each ai, ri = v(ai)
s(ai)

is known, however

v(ai) and s(ai) themselves are private information of agent i. When r(ai) is given, s(ai) determines

v(ai), so we simply ask agent i to report s(ai). Agent i gets a utility of v(ai) if her item is chosen

and 0 if not; note that her utility from ai being chosen is v(ai) even if she misreports. In this model

the “quality” of an item is known, but its indivisible value and size are not.

Formally, a deterministic mechanism in this model is a function f : R2n
+ → 2{a1,...,an}, which

maps (r, s) to a subset of the items to be included in the knapsack (we define (r, s) to equal

(r1, . . . , rn, s1, . . . , sn), where si = s(ai)). We will require feasibility (s(f(r, s)) ≤ 1) and strat-

egyproofness (v(f(r, s) ∩ {ai}) ≥ v(f(r, (s−i, s
′
i)) ∩ {ai})) for all i ∈ N , s′i ∈ (0, 1]). We will

also look for randomized strategyproof mechanisms. The adaptation is similar to before: f maps

to a random variable over 2{a1,...,an}, feasibility is s(f(r, s)) ≤ 1 surely, and strategyproofness is

E[v(f(r, s) ∩ {ai})] ≥ E[v(f(r, (s−i, s
′
i)) ∩ {ai})]. For convenience of presentation, we will allow

items with zero value (all of our proofs can easily be adjusted to get rid such items).

In this model, while it is easily seen that HALF-GREEDY is not strategyproof (specifically,

MAXIMUM-VALUE is not strategyproof), it can be easily modified to become strategyproof and

remain 2-approximate—in fact, the modified mechanism is also well known to be a 2-approximation

in non-strategic environments [Burke and Kendall, 2005]. �′ is defined as before.

Definition 2.5. The NEXT mechanism is defined as follows: if s(∪i∈N{ai}) ≤ 1, return ∅,
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otherwise return o∪i∈N{ai}

Definition 2.6. MODIFIED-HALF-GREEDY runs GREEDY with probability 1
2 and NEXT with

probability 1
2 .

MODIFIED-HALF-GREEDY still runs GREEDY with probability 1
2 , but otherwise it doesn’t

choose the item with the maximal value, but rather the first item to not make it into the knapsack

in GREEDY.

Theorem 2.11. In KQUQ, MODIFIED-HALF-GREEDY is strategyproof and 2-approximate.

Proof. Fix agent j ∈ N . In MODIFIED-HALF-GREEDY, item aj is chosen with probability either

1
2 or 0. Specifically, an item is chosen with probability 1

2 if and only if it is in L∪i∈N{ai}(o∪i∈N{ai})∪

{o∪i∈N{ai}} (if s({a1, . . . , an}) ≤ 1, then all items are chosen with probability 1
2) . If item aj is chosen

with probability 1
2 , agent j has no incentive to manipulate. If item aj is chosen with probability

0, then o∪i∈N{ai} �
′ aj , so s(aj) has no impact on what L∪i∈N{ai}(o∪i∈N{ai}) ∪ {o∪i∈N{ai}} is, and

thus agent j cannot make the item get chosen. So strategyproofness is proven. 2-approximation of

MODIFIED-HALF-GREEDY is, as we mentioned, known.

As in GREEDY, we made some careful choices here to preserve strategyproofness. Specifically,

the choice for NEXT to return ∅ when s(∪i∈N{ai}) ≤ 1, despite us being able to include all items

in the knapsack in that case, is crucial; if we indeed included all items in this case, strategyproofness

would have been violated.

Next, a matching lower bound:

Theorem 2.12. No randomized strategyproof mechanism can provide a worst-case approximation

ratio strictly better than 2 in KQUQ.

Proof. Let f be a randomized strategyproof mechanism with approximation ratio t < 2. Consider

the case where r1 = M , r2 = 1, and ri = 0 for i ≥ 3, where M is a large integer. Assume

s(a1) = 1 and s(a2) = 1. Let p1 be the probability with which item a1 is chosen under f . Then

p1M + (1− p1) ≥ 1
tM to maintain approximation ratio t, and therefore p1 ≥

M
t
−1

M−1 . Now, consider

the case where s(a1) = 1
M2 (the rest of the data remains the same), and let p′1 be the probability

that item a1 is chosen under f in this case. To maintain strategyproofness, we must have p1 = p′1.
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Therefore, to maintain approximation ratio t, we must have p1
1
M + (1 − p1) ≥ 1

t , which yields

p1 ≤
1− 1

t

1− 1
M

. Therefore, we must have
1− 1

t

1− 1
M

≥
M
t
−1

M−1 , namely 1 + 1
M ≥

2
t . However, as M → ∞, the

left hand side goes to 1 and the right hand side remains 2
t > 1. Contradiction.

Finally, we show that randomization is necessary for good approximation:

Theorem 2.13. No deterministic strategyproof mechanism can provide a constant worst-case ap-

proximation ratio in KQUQ.

Proof. Let f be a deterministic strategyproof mechanism with approximation ratio t. Consider the

case where r1 = M , r2 = 1, and ri = 0 for i ≥ 3, where M > t. Assume s(a1) = 1 and s(a2) = 1.

On this instance, to maintain approximation ratio t, f must choose {a1}. Now, consider the case

where s(a1) = 1
M2 (the rest of the data is the same). On this instance, to maintain approximation

ratio t, f must choose {a2}. Thus, when agent 1’s item is of size 1
M2 , she will have an incentive to

report its size to be 1, violating strategyproofness.
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Chapter 3

Desirable Facility Location

3.1 Introduction

We consider the problem of locating a single facility on the real line. This facility serves a set of n

agents, each of whom is located somewhere on the line as well. Each agent cares about his distance

to the facility, and incurs a disutility (equivalently, cost) that is equal to his distance to access

the facility. An agent’s location is assumed to be private information that is known only to him.

Agents report their locations to a central planner who decides where to locate the facility based

on the reports of the agents. The planner’s objective is to minimize a “social” cost function that

depends on the vector of distances that the agents need to travel to access the facility. It is natural

for the planner to consider locating the facility at a point that minimizes her objective function,

but in that case the agents may not have an incentive to report their locations truthfully. As an

example, consider the case of 2 agents located at x1 and x2 respectively, and suppose the location

that optimizes the planner’s objective is the mid-point (x1 +x2)/2. Then, assuming x1 < x2, agent

1 has an incentive to report a location x′1 < x1 so that the planner’s decision results in the facility

being located closer to his true location. The planner can address this issue by restricting herself

to a strategyproof mechanism: by this we mean that it should be a (weakly) dominant strategy for

each agent to report his location truthfully to the central planner. This, of course, is an attractive

property, but it comes at a cost: based on the earlier example, it is clear that the planner cannot

hope to optimize her objective. One way to avoid this difficulty is to assume an environment in

which agents (and the planner) can make or receive payments; in such a case, the planner selects
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the location of the facility, and also a payment scheme, which specifies the amount of money an

agent pays (or receives) as a function of the reported locations of the agents as well as the location

of the facility. This option gives the planner the ability to support the “optimal” solution as the

outcome of a strategyproof mechanism by constructing a carefully designed payment scheme in

which any potential benefit for a misreporting agent from a change in the location of the facility is

offset by an increase in his payment.

There are many settings, however, in which such monetary compensations are either not possible

or are undesirable. This motivated Procaccia and Tennenholtz [Procaccia and Tennenholtz, 2013b]

to formulate the notion of Approximate Mechanism Design without Money. In this model the

planner restricts herself to strategyproof mechanisms, but is willing to settle for one that does not

necessarily optimize her objective. Instead, the planner’s goal is to find a mechanism that effectively

approximates her objective function. This is captured by the standard notion of approximation that

is widely used in the CS literature: for a minimization problem, an algorithm is an α-approximation

if the solution it finds is guaranteed to have cost at most α times that of the optimal cost (α ≥ 1).

Procaccia and Tennenholtz [Procaccia and Tennenholtz, 2013b] apply the notion of approximate

mechanism design without money to the facility location problem considered here for two different

objectives: (i) minisum, where the goal is to minimize the sum of the costs of the agents; and (ii)

minimax, where the goal is to minimize the maximum agent cost. They show that for the minimax

objective choosing any k-th median—picking the kth largest reported location—is a strategyproof,

2-approximate mechanism. They design a randomized mechanism called LRM (Left-Right-Middle)

and show that it is a strategyproof, 3/2-approximate mechanism; furthermore, they show that those

mechanisms provide the optimal worst-case approximation ratio possible (among all deterministic

and randomized strategyproof mechanisms, respectively). For the minisum objective, it is known

that choosing the median reported location is optimal and strategyproof [Moulin, 1980]. Feldman

and Wilf [Feldman and Wilf, 2013b] consider the same facility location problem on a line but with

the social cost function being the L2 norm of the agents’ costs (Feldman and Wilf actually used

the sum of squares of the agents’ costs, however most of their results can be easily converted to

the L2 norm. Of course, the approximation ratios they report need to be adjusted as well). They

show that the median is a
√

2-approximate strategyproof mechanism for this objective function,

and provide a randomized (1 +
√

2)/2-approximate strategyproof mechanism. Feldman and Wilf
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also generalize the median mechanism to maintain strategyproofness and a
√

2 approximation ratio

on trees; furthermore, they provide a family of randomized strategyproof mechanisms for trees, and

in particular show that a member of this family reduces the approximation ratio to strictly below
√

2. In addition, some consideration has been given in literature to the circle topology, by Alon

et al. [Alon et al., 2010b; Alon et al., 2010c]. A general survey of approximate mechanism design

without money for facility location problems has been written by Cheng et al. [Cheng and Zhou,

2015].

Aside from the recent literature on approximate mechanism design, our work is loosely related

to other strands in the literature with a much longer history. First is the classical work on social

choice, which deals with aggregating the preferences of a set of voters over a set of alternatives

[Moulin, 2015]. The location problem we consider is a special case in which the alternatives are

all possible points on the real line (the location of the facility), and agents have single-peaked

preferences. A significant difference, however, is the following: a typical social choice problem is to

find an aggregation rule satisfying a desired set of properties, whereas in our case the planner wishes

to optimize or approximate a given social objective function. Nevertheless, various techniques

and results from this literature are useful in our setting as well. An important result is Moulin’s

characterization of strategyproof mechanisms on the line [Moulin, 1980]. A parallel characterization

result was developed by Schummer and Vohra [Schummer and Vohra, 2002] for general graphs.

In both these papers, much like in our work, generalized medians play an important role; also,

despite not having a specific objective function, these characterizations assume less specific efficiency

related properties, such as Pareto efficiency and onto range. Additional papers along these lines

are [Barberà et al., 1998; Danilov, 1994]. We note that impossibility results abound in social

choice models; our focus on the simple special case enables us to avoid impossibility results such as

the Gibbard-Satterthwaite Theorem [Gibbard, 1973; Satterthwaite, 1975], which implies the non-

existence of a reasonable social choice function. A second relevant strand of literature is the classical

work in operations research on graphical location problems that considers locating the facility at

a Condorcet point [Hansen and Thisse, 1981; Labbé, 1985; Bandelt, 1985; Bandelt and Labbé,

1986] (a Condorcet point is one that is preferred by a majority of agents to any other location).

This literature seeks to establish bounds on the total cost to all the agents to access the facility

divided by the minimum cost, with the understanding that smaller ratios are better. However, this
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literature does not model individual agent incentives, and moreover does not also explore other

mechanisms. Finally, there is a rich literature on facility location problems and variations (such

as the k-median and k-center problems) where agent incentives are not taken into account. In

such problems, there is typically a single objective function (the planner’s), and agent locations

are known. In this literature, one resorts to approximation algorithms for a different reason—

often, these optimization problems turn out to be computationally intractable, and the focus is on

developing computationally efficient heuristics for which a worst-case approximation guarantee can

be proved (see [Vygen, 2005], and chapters 25-26 of [Vazirani, 2001]). To our knowledge, most of the

algorithms designed in this literature violate our (rather strong) strategyproofness requirements.

In our work, we follow a suggestion of Feldman and Wilf [Feldman and Wilf, 2013b] and study

the problem of locating a single facility on a line, but with the objective function being the Lp

norm of the vector of agent-costs (for general p ≥ 1). In the context of real world facility location

problems, where the agents must drive to and from the facility, the Lp norm can represent situations

where travel time or other cost increases superlinearly with the distance (as suggested in [Brandeau

and Chiu, 1988]). For example, when driving over larger distances, there is an increased likelihood

(depending on traffic) of the need to stop and refuel, or, in the case of electric cars, stop and

recharge–which is even more costly since such recharging can be done at home, without wasting

the driver’s time. As another example, certain hybrid cars increase their fuel consumption in longer

drives— which is relevant if the cost represents fuel consumption rather than travel time. For such

problems, our results provide strong lower bounds, robust to the topology of the road network

(since they only require a line) and the value of p. We also hope that our results regarding the

median will guide the construction of good mechanisms for more general topologies, similarly to

the case of p = 2 in [Feldman and Wilf, 2013b], where the optimality of the median on the line

inspires the construction of a mechanism for tree networks using the appropriate adaptation of

the median. Another use of the Lp norm is to strike a balance between efficiency and fairness.

The cases of p = 1 and p = ∞, which were both studied in [Procaccia and Tennenholtz, 2013b],

can be viewed as representing the two extremes on the spectrum between maximizing efficiency

(minimizing the total social cost) and maximizing fairness (minimizing the cost of the agent who

is worst off). Thus, our definition of social cost allows for a controlled tradeoff between efficiency

and fairness by varying the value of p. On the line, this interpretation of the Lp norm becomes
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particularly interesting in the context of voting. Public opinion on many issues is considered to

be on a spectrum between political left and right, lending itself naturally to a one dimensional

description. One of the common problems in democratic societies is to balance between majority

rule and respecting minority rights; thus, the Lp measure allows for a quantitative exploration of

this balance. Of course, this interpretation of the Lp norm can be relevant to physical facility

location problems as well.

We define the problem formally in Section 3.2. In Section 3.3, we show that the median

mechanism (which is strategyproof) provides a 2
1− 1

p approximation ratio, and that this is the

optimal approximation ratio among all deterministic strategyproof mechanisms. We move onto

randomized mechanisms in Section 3.4. First, we present a negative result: we show that for

integer ∞ > p > 2, no mechanism—from a rather large class of randomized mechanisms— has an

approximation ratio better than that of the median mechanism, as the number of agents goes to

infinity. It is worth noting that all the mechanisms proposed in literature so far— for minimax,

minisum, and the L2 social cost functions— belong to this class of mechanisms. Next, we consider

the case of 2 agents, and show that the LRM mechanism provides the optimal approximation ratio

among all randomized strategyproof mechanisms (that satisfy certain mild assumptions) for this

special case, for every p ≥ 1. Our result for the special case of 2 agents also gives a lower bound on

the approximation ratio for all randomized mechanisms satisfying the assumptions. In the appendix

we discuss some omitted technical details, as well as an additional negative result for an alternative

definition of the agents’ cost.

3.2 Model

Let N = {1, 2, . . . , n}, n ≥ 2, be the set of agents. Each agent i ∈ N reports a location xi ∈ R.

A deterministic mechanism is a collection of functions f = {fn| n ∈ N, n ≥ 2} such that each

fn : Rn → R maps each location profile x = (x1, x2, . . . , xn) to the location of a facility. We

will abuse notation and let f(x) denote fn(x). Under a similar notational abuse, a randomized

mechanism is a collection of functions f that maps each location profile to a probability distribution

over R: if f(x1, x2, . . . , xn) is the distribution π, then the facility is located by drawing a single

sample from π.
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Our focus will be on deterministic and randomized mechanisms for the problem of locating

a single facility when the location of any agent is private information to that agent and cannot

be observed or otherwise verified. It is therefore critical that the mechanism be strategyproof—it

should be optimal for each agent i to report his true location xi rather than something else. To

that end we assume that if the facility is located at y, an agent’s disutility, equivalently cost, is

simply his distance to y. Thus, an agent whose true location is xi incurs a cost C(xi, y) = |xi − y|.

If the location of the facility is random and according to a distribution π, then the cost of agent i

is simply C(xi, π) = Ey∼π|xi − y|, where y is a random variable with distribution π. The formal

definition of strategyproofness is now:1

Definition 3.1. A mechanism f is strategyproof if for each i ∈ N , each xi, x
′
i ∈ R, and for each

x−i = (x1, x2, . . . , xi−1, xi+1, . . . xn) ∈ Rn−1,

C(xi, f(xi,x−i)) ≤ C(xi, f(x′i,x−i)),

where (α,x−i) denotes a vector with the i-th component being α and the j-th component being xj

for all j 6= i.

The class of strategyproof mechanisms is quite large: for example, locating the facility at agent

1’s reported location is strategyproof, but is not particularly appealing because it fails almost every

reasonable notion of fairness and could also be highly “inefficient”. To address these issues, and

to winnow down the class of acceptable mechanisms, we impose additional requirements that stem

from efficiency or fairness considerations. In this chapter we assume that locating a facility at y

when the location profile is x = (x1, x2, . . . , xn) incurs the social cost2

sc(x, y) =

(∑
i∈N
|xi − y|p

)1/p

, p ≥ 1.

For a randomized mechanism f that maps x to a distribution π, we define the social cost to be

sc(x, π) = Ey∼π

[(∑
i∈N
|xi − y|p

)1/p
]
.

1Note that for randomized mechanisms, we require strategyproofness in expectation, rather than ex-post.

2For this definition of social cost, an alternative option is to let the agents’ costs increase non-linearly with their

distance from the facility, in particular C(xi, y) = |xi− y|p. In Appendix B.1 we provide an interesting result for this

case.
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For this definition of social cost, our goal now is to find a strategyproof mechanism that does

well with respect to minimizing the social cost. A natural mechanism (and this is the approach

taken in the classical literature on facility location) is the “optimal” mechanism: each location

profile x = (x1, x2, . . . , xn) is mapped to OPT (x), defined as OPT (x) ∈ arg miny∈R sc(x, y).3

This optimal mechanism is not strategyproof as shown in the following example.

Example. Suppose there are two agents located at the points 0 and 1 respectively on the real

line. If they report their locations truthfully, the optimal mechanism will locate the facility at

y = 0.5, for any p > 1. Assuming agent 2 reports x2 = 1, if agent 1 reports x′1 = −1 instead, the

facility will be located at 0, which is best for agent 1.

Given that strategyproofness and optimality cannot be achieved simultaneously, it is necessary

to find a tradeoff. In this work we shall focus on strategyproof mechanisms that approximate

the optimal social cost as best as possible. The notion of approximation that we use is standard

in computer science: an α-approximation algorithm is one that is guaranteed to have cost no

more than α times the optimal social cost. Formally, the worst-case approximation ratio of a

mechanism f is supx{sc(x, f(x))/sc(x, OPT (x))}, where the supremum is taken over all possible

instances x ∈ ∪k≥2Rk of the problem.4 Our goal then is to design strategyproof (deterministic or

randomized) mechanisms whose worst-case approximation ratio is as close to 1 as possible.

3.3 The Median Mechanism

For the location profile x = (x1, x2, . . . , xn), the median mechanism is a deterministic mechanism

that locates the facility at the “median” of the reported locations. The median is unique if n is

odd, but not when n is even, so we need to be more specific in describing the mechanism. For

odd n, say n = 2k − 1 for some k ≥ 1, the facility is located at x[k], where x[k] is the kth largest

component of the location profile. For even n, say n = 2k, the “median” can be any point in the

3Strictly speaking, the mechanism is not well defined in cases where the social cost at x is minimized by multiple

locations, but we could pick an exogenous tie-braking rule to deal with such cases.

4For the case of randomized mechanisms, it should be noted that this approximation ratio is in expectation rather

than with high probability.
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interval [x[k], x[k+1]]; to ensure strategyproofness, we need to pick either x[k] or x[k+1], and as a

matter of convention we take the median to be x[k]. It is well known that the median mechanism

is strategyproof.5 Furthermore, the median mechanism is anonymous.6 Thus we may assume,

without loss of generality, that each agent reports her location truthfully.

Our main result in this section is that, for any p ≥ 1, the median mechanism uniformly achieves

the best possible approximation ratio among all deterministic strategyproof mechanisms. We start

with two simple observations, which will be used in the proof of this main result.

Lemma 3.1. For any real numbers a, b, c with a ≤ b ≤ c, and any p ≥ 1,

(c− a)p ≤ 2p−1[(c− b)p + (b− a)p].

Proof. For any p ≥ 1, f(x) = xp is a convex function on [0,∞), and so for any λ ∈ [0, 1] and

x, y ≥ 0,

f(λx+ (1− λ)y)) ≤ λf(x) + (1− λ)f(y). (3.1)

Setting λ = 1/2, x = c− b, and y = b− a, we get:

1

2p
(c− a)p ≤ 1

2
[(c− b)p + (b− a)p]. (3.2)

Multiplying both sides of the inequality by 2p gives the result.

Lemma 3.2. For any non-negative real numbers a and b, and any p ≥ 1,

(a+ b)p ≥ ap + bp.

Proof. For integer p, the result is a direct consequence of the binomial theorem; the same argument

covers the case of rational p as well. Continuity implies the result for all p.

5A classical paper of Moulin [Moulin, 1980] for a closely related model shows that all deterministic strategyproof

mechanisms are essentially generalized median mechanisms.

6In an anonymous mechanism, the facility location is the same for two location profiles that are permutations of

each other.
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Theorem 3.1. Suppose there are n agents with the location profile x = (x1, x2, . . . , xn). Define

the social cost of locating a facility at y as (
∑n

i=1 |y − xi|p)
1
p for p ≥ 1. The social cost incurred by

the median mechanism is at most 2
1− 1

p times the optimal social cost.7

Proof. We may assume that x1 ≤ ... ≤ xn. Let OPT be a facility location that minimizes the social

cost, and let m be the median. The inequality we need to prove is

n∑
i=1

|m− xi|p ≤ 2p−1
n∑
i=1

|OPT − xi|p.

We do this by pairing each location xi with its “symmetric” location xn+1−i and arguing that the

total cost of these two locations in the median mechanism is within the required bound of their

total cost in an optimal solution. For even n, this completes the argument; for odd n the only

location without such a pair is the median itself, which incurs zero cost in the median mechanism,

and so the argument is complete. Formally, the result follows if we can show

|m− xi|p + |xn+1−i −m|p ≤ 2p−1(|OPT − xi|p + |OPT − xn+1−i|p), ∀ i ≤ bn/2c.

We consider two cases, depending on whether OPT is in the interval [xi, xn+1−i] or not. In each

of these cases, OPT may be above the median or below, but the proof remains identical in each

subcase, so we give only one.

1. xi ≤ m ≤ OPT ≤ xn+1−i or xi ≤ OPT ≤ m ≤ xn+1−i. We will prove the first of these

subcases; the proof of the second is identical. Applying Lemma 3.1 by setting a = m,

b = OPT , and c = xn+1−i, we get

|xn+1−i −m|p ≤ 2p−1(|xn+1−i −OPT |p + |OPT −m|p).

Thus,

|m− xi|p + |xn+1−i −m|p ≤ |m− xi|p + 2p−1(|xn+1−i −OPT |p + |OPT −m|p)

≤ 2p−1(|m− xi|p + |xn+1−i −OPT |p + |OPT −m|p)

≤ 2p−1(|xn+1−i −OPT |p + |OPT − xi|p),

where the last inequality is obtained by applying Lemma 3.2 to the terms |m − xi|p and

|OPT −m|p.

7This is a generalization of the results for p = 2 [Feldman and Wilf, 2013b], p = 1 and p = ∞ [Procaccia and

Tennenholtz, 2013b] (when p =∞, the median mechanism provides a 2-approximation).



CHAPTER 3. DESIRABLE FACILITY LOCATION 45

2. OPT ≤ xi ≤ m ≤ xn+1−i or xi ≤ m ≤ xn+1−i ≤ OPT . Again, we prove only the first

subcase. Note that

|xn+1−i −m|p + |m− xi|p ≤ |xn+1−i − xi|p

≤ |OPT − xn+1−i|p

≤ 2p−1(|OPT − xi|p + |OPT − xn+1−i|p)

where the first inequality follows from Lemma 3.2. (Note that Lemma 3.1 is not used in the

proof of this case.)

We end this section by showing that no deterministic and strategyproof mechanism can give a

better approximation to the social cost.

Lemma 3.3. Consider the case of two agents and suppose the location profile is (x1, x2) with

x1 < x2. For p ≥ 1, suppose the social cost of locating a facility at y is (|x1 − y|p + |x2 − y|p)1/p.

Any deterministic mechanism that has worst-case approximation ratio better than 2
1− 1

p for p > 1

must locate the facility at y for some y ∈ (x1, x2).
8

Proof. The function sc(x, y) is strictly convex in y, and its unique minimizer is y∗ = (x1+x2)/2, with

the corresponding value sc(x, y∗) = |x2 − x1|/21−
1
p . Moreover sc(x, x1) = sc(x, x2) = |x2 − x1| =

2
1− 1

p sc(x, y∗). It follows that for the deterministic mechanism to do strictly better than the stated

ratio, the facility cannot be located at the reported locations; locating the facility to the left of

x1 or to the right of x2 only increases the cost of the mechanism, so the only option left for a

mechanism to do better is to locate the facility in the interior, i.e., in (x1, x2).

Theorem 3.2. Any strategyproof deterministic mechanism has an approximation ratio of at least

2
1− 1

p for the Lp social cost function for any p ≥ 1.9

8Ex-post Pareto efficiency (as defined in Section 3.4.2) requires the facility to be located in [x1, x2]; thus, this

property is stronger.

9The lower bound of 2 on the approximation ratio holds when p =∞, see Procaccia and Tennenholtz [Procaccia

and Tennenholtz, 2013b].
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Proof. Using Lemma 3.3, we can now argue similarly to the case of p =∞ (theorem 3.2 in [Procac-

cia and Tennenholtz, 2013b]).10 Suppose p > 1 (the bound holds trivially for p = 1), and suppose

a deterministic strategyproof mechanism yields an approximation ratio strictly better than 2
1− 1

p

for the Lp social cost. For the two-agent location profile x1 = 0, x2 = 1, Lemma 3.3 implies the

facility is located at some y ∈ (0, 1). Now consider the location profile x1 = 0, x2 = y. Again,

by Lemma 3.3, the mechanism must locate the facility at y′ ∈ (0, y) to guarantee the improved

approximation. But if agent 2 is located at y < 1, he can misreport his location as 1, forcing the

mechanism to locate the facility at y, his true location; this violates strategyproofness.

We note that our result continues to hold for arbitrary single peaked cost functions, as long as

the social cost remains an Lp measure of the distances.

3.4 Randomized Mechanisms

Recall that when the social cost is measured by the L2 norm or the L∞ norm, randomization prov-

ably improves the approximation ratio. In the former case, Feldman and Wilf [Feldman and Wilf,

2013b] describe an algorithm with an approximation ratio of (
√

2 + 1)/2; for the latter, Procaccia

and Tennenholtz [Procaccia and Tennenholtz, 2013b] design an algorithm with an approximation

ratio of 3/2. The mechanisms in both cases are simple and somewhat similar, placing non-negative

probabilities only on the optimal location and generalized medians (defined shortly), where these

probabilities are independent of the reported location profile. In this section we show that this

is not enough in general; namely, randomizing over generalized medians and the optimal location

does not improve the approximation ratio of the median mechanism for any integer p ∈ (2,∞). For

the case of 2 agents we show that the best approximation ratio is given by the LRM mechanism

among all strategyproof mechanisms. Extending this analysis even to the case of 3 agents appears

to be non-trivial.

3.4.1 Mixing Dictatorships and Generalized Medians with the Optimal Loca-

tion

We begin with a definition of generalized medians.

10Another argument along this line can be found in the proof of theorem 4.4 in [Feldman and Wilf, 2013b].
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Definition 3.2. Let x ∈ Rn, S ⊆ N , and m ∈ {1, . . . , |S|}. Let S = {s1, . . . , s|S|}, where xsi ≤

xsi+1. Then, the mth generalized median of subset S in location profile x is x[m,S] = xsm.11 If

S = N , we allow for the shorthand x[m] = x[m,N ].

Next, we define the class of mechanisms currently used in literature:

Definition 3.3. Let f be a mechanism which satisfies the following. For every n ∈ N, S ⊆ N , m ∈

{1, . . . , |S|}, there exist non-negative numbers vn,Sm , and vnOPT with vnOPT +
∑

S⊆N,m∈{1,...,|S|} v
n,S
m =

1, such that for every profile (x1, x2, . . . , xn), f locates the facility at OPT with probability vnOPT and

at x[m,S] with probability vn,Sm (where OPT is the optimal location for the profile (x1, x2, . . . , xn)).12

If f satisfies these properties, we say that f is a Mixed Generalized Medians Optimal (MGMO)

mechanism.

We now show that for integer p > 2, MGMO mechanisms cannot beat the median.

Theorem 3.3. Let f be a strategyproof MGMO mechanism. Then, for any finite integer p > 2,

the approximation ratio of f is at least 2
1− 1

p .

Proof. Fix n = 2k, with k ∈ N. In all profiles in our proof, the relative order of agents locations

remains the same: specifically, i < j implies xi ≤ xj for all of our profiles x. For every S ⊆ N , and

every j ∈ S let S(j) be the number of agents with index weakly smaller than j in S (for example,

if S = {2, 4, 9}, then S(2) = 1, S(4) = 2, and S(9) = 3). On our profiles, the probability that the

location of agent j ∈ N is chosen as a generalized median therefore is vnj =
∑

S⊆N :j∈S v
n,S
S(j).

For j = 1, . . . , k, define the profile xj as follows (where aj is a parameter to be defined shortly):

agents 1 through j are located at −aj ; agents j + 1 through k are located at 0; agents k + 1

through 2k − j + 1 are located at 1; and agents 2k − j + 2 through 2k are located at 1 + aj (note

the slight asymmetry in the location of the agents: while k agents are at or below zero, and k

agents are at or above 1, there is an additional agent at 1 compared to zero and so one less agent

at 1 + aj compared to −aj). Now, aj is chosen to be the smallest positive root of the function

gj(α) = jαp−1 − (k − j + 1) − (j − 1)(1 + α)p−1; such an aj must exist by the intermediate value

theorem, as gj(0) < 0 and gj(α) is a continuous function of α with gj(α)→∞ as α→∞.

11That is, x[m,S] is the mth largest location among the locations of the agents in S, allowing for repetition.

12When a location appears more than once in OPT and x[m,S] for S ⊆ N and m ∈ {1, . . . , |S|}, the probabilities

add up.
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We show that the optimal mechanism locates the facility at zero for the profile xj , i.e., OPT = 0.

Note that the social cost for this profile, when locating the facility at z ∈ [0, 1], is j(z+ aj)
p + (k−

j)zp + (k − j + 1)(1 − z)p + (j − 1)(1 + aj − z)p, and when z ∈ (−aj , 0) the social cost becomes

j(z + aj)
p + (k − j)(−z)p + (k − j + 1)(1 − z)p + (j − 1)(1 + aj − z)p. Note that the social cost

function is differentiable for z ∈ (0, 1) and for z ∈ (−aj , 0). The left and right derivatives at 0 are

both pjap−1j − p(k − j + 1)− p(j − 1)(1 + aj)
p−1, and thus the social cost function is differentiable

on (−aj , 1) with its derivative at z = 0 equal to zero (by our choice of aj). The fact that this is

a global minimum now follows from strict convexity of the social cost function ||xj − z(1, . . . , 1)||p

(for all z ∈ R). Thus, indeed, OPT = 0.

We now attempt to bound vOPT . For each profile xj , consider the profile x′j that differs only

in the location of agent j: namely, x′jj = 0 instead of −aj . Note that on this profile, OPT = 0.5 by

symmetry. Strategyproofness implies that a deviation from profile x′j to profile xj should not be

beneficial for agent j, namely ajv
n
j − 1

2v
n
OPT ≥ 0 (where aj is the increase in agent j’s cost caused

by that deviation when the facility is built in his reported location, and 1
2 is the decrease in his cost

caused by that deviation when the facility is located at OPT ), which implies vnj ≥
vnOPT
2aj

. Defining

aj for j = k + 1, . . . , 2k in a symmetric fashion, it follows that the same inequality holds for j in

that range, and that aj = a2k−j+1. Summing those inequalities up, we get:

1− vnOPT =
2k∑
j=1

vnj ≥
2k∑
j=1

vnOPT
2aj

= 2
k∑
j=1

vnOPT
2aj

=
k∑
j=1

vnOPT
aj

vnOPT ≤
1

1 +
∑k

j=1
1
aj

Now, we claim it is enough to show that as n→∞ (or equivalently, as k →∞),
∑k

j=1
1
aj
→∞.

The inequality then implies that vnOPT → 0. Consider the profile which locates k agents at 0 and

k agents at 1. The social cost of locating the facility at OPT on this profile is p
√
n/2, while the

social cost of locating the facility at an agent’s location is p
√
n2
− 1
p ; thus, the approximation ratio

of f on this profile is
vnOPT

p√n/2+(1−vnOPT )
p√n2−

1
p

p√n/2 = 2
1− 1

p − (2
1− 1

p − 1)vnOPT . Thus, as n → ∞, the

approximation ratio on these profiles approaches 2
1− 1

p , completing the proof.

We are left with the task of showing that limk→∞
∑k

j=1
1
aj

=∞ . To do so, we first show that for
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j ≥ k
1
p−1 +1, 2p−1(j−1) > aj . Recall that aj was defined as the smallest positive root of gj(α), and

that gj(0) < 0. Thus, it is enough to show that for j in the appropriate range, gj(2
p−1(j − 1)) > 0.

For notational convenience, we denote Q = 2p−1.

gj(Q(j − 1)) = jQp−1(j − 1)p−1 − (k − j + 1)− (j − 1)(1 +Q(j − 1))p−1

= Qp−1(j − 1)p−1 − k − (j − 1)

p−2∑
i=1

(
p− 1

i

)
(Q(j − 1))p−1−i

≥ Qp−1(j − 1)p−1 − (j − 1)p−1 − (j − 1)

p−2∑
i=1

(
p− 1

i

)
(Q(j − 1))p−1−i

≥ Qp−1(j − 1)p−1 − (j − 1)p−1 − (j − 1)

p−2∑
i=1

(
p− 1

i

)
(Q(j − 1))p−2

> Qp−1(j − 1)p−1 − (j − 1)

p−1∑
i=1

(
p− 1

i

)
(Q(j − 1))p−2

= Qp−1(j − 1)p−1 − (j − 1)(Q(j − 1))p−2
p−1∑
i=1

(
p− 1

i

)
> Qp−1(j − 1)p−1 − (j − 1)(Q(j − 1))p−22p−1 = 0.

Now,

lim
k→∞

k∑
j=1

1

aj
> lim

k→∞

k∑
j=dk

1
p−1+1e

1

2p−1j

=
1

2p−1
lim
k→∞

k∑
j=dk

1
p−1+1e

1

j

≥ 1

2p−1
lim
k→∞

∫ k

k
1
p−1+2

1

t
dt

=
1

2p−1
( lim
k→∞

∫ k

k
1
p−1

1

t
dt− lim

k→∞

∫ k
1
p−1+2

k
1
p−1

1

t
dt)

=
1

2p−1
(( lim
k→∞

(1− 1

p− 1
) ln k)− 0) =∞

which completes our proof.
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3.4.2 Optimality of the LRM Mechanism for 2 Agents

Procaccia and Tennenholtz [Procaccia and Tennenholtz, 2013b] defined the mechanism Left-Right-

Middle (LRM) as follows: place the facility with probability 1
2 at OPT , and with probability 1

4

at each of x[1] and x[n]. They have shown that it is strategyproof, and that it provides a best-

possible approximation ratio of 3
2 when p = ∞. Our next result shows that the LRM mechanism

provides the best possible approximation ratio among all shift and scale invariant (defined below)

strategyproof mechanisms for the case of 2 agents for all Lp social cost functions for p ≥ 1.

We begin with some definitions: we say that a mechanism f is shift and scale invariant if for

every location profile x = (x1, x2) and every c ∈ R, the following two properties are satisfied:13

1. Shift Invariance: the random variables Y ′ ∼ f(x1 + c, x2 + c) and Y + c s.t. Y ∼ f(x) are

equal in distribution.14

2. Scale Invariance: the random variables Y ′ ∼ f(cx1, cx2) and cY s.t. Y ∼ f(x) are equal in

distribution.

A convenient notation for a given location profile x is to denote its midpoint as mx = x1+x2
2 .

We say that a mechanism f is symmetric if for any location profile x and for any y ∈ R, P(f(x) ≥

mx + y) = P(f(x) ≤ mx − y).

The structure of the proof is as follows. Our goal is to show that within the class of strate-

gyproof, shift invariant and scale invariant mechanisms, we can further limit ourselves to symmetric

mechanisms that locate the facility always at the agents’ locations or the midpoint; within this fur-

ther restricted class, it becomes easy to prove that LRM is optimal. We achieve this goal gradually.

First we show that we may restrict ourselves to symmetric (and anonymous) mechanisms. We then

provide a characterization of strategyproofness for such mechanisms, and use it to show that we

can further restrict ourselves to mechanisms which, for each profile x, do not locate the facility

13While these two properties are natural and reasonable to expect, it should be noted that they are not implied

by strategyproofness- one example is the constant mechanism, which always locates the facility at the same point

regardless of the reports. Requiring unanimity in addition to strategyproofness is also not sufficient to guarantee

these properties; for example, the mechanism that runs LRM if x[1] = 0, and otherwise locates the facility at x[1] and

x[2] with probability 1/2 each, is easily seen to be strategyproof and unanimous but neither shift nor scale invariant.

14It is possible to replace shift invariance with symmetry in our assumptions, and preserve our results; see appendix.
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both at (min {x1, x2},max {x1, x2}) and at (−∞,min {x1, x2}) ∪ (max {x1, x2},∞) with positive

probability. We then show that we can restrict ourselves to mechanisms that locate the facility

always at the agents’ locations or the midpoint.

The following lemma allows us to focus on symmetric mechanisms.

Lemma 3.4. Given any strategyproof, shift and scale invariant mechanism, there exists a sym-

metric, strategyproof, shift and scale invariant mechanism with the same worst-case approximation

ratio.

Proof. Given a mechanism f , we define the mirror mechanism of f , fmirror, to be such that for

every profile x, we have that P(fmirror(x) ≥ mx + b) = P(f(x) ≤ mx − b) for all b ∈ R.15

We will need the following notation: For each profile x = (x1, x2), let Yx1,x2 ∼ f(x), and

Y ′x1,x2 ∼ fmirror(x). We claim that fmirror is shift invariant, scale invariant and strategyproof (all

of the equalities below are in distribution):

1. Shift invariance: let c ∈ R. Then Y ′x1+c,x2+c = 2mx1+c,x2+c−Yx1+c,x2+c = 2mx +2c−Yx1,x2−

c = Y ′x1,x2 + c.

2. Scale invariance: let c ∈ R. Then Y ′cx1,cx2 = 2cmx1,x2−Ycx1,cx2 = c(2mx1,x2−Yx1,x2) = cY ′x1,x2 .

3. Strategyproofness: assume fmirror is not strategyproof, and assume without loss of generality

that agent 2 has a profitable misreport: there exist profiles (w1, w2) and (w1, w2+α) for some

α ∈ R such that E[|w2 − Y ′w1,w2
|] > E[|w2 − Y ′w1,w2+α|]. However, note that w2 − Y ′w1,w2+α =

−w1−α+ Yw1,w2+α = Yw1−α,w2 −w1 (the second equality follows from shift invariance), and

that w2 − Y ′w1,w2
= Yw1,w2 − w1. Thus, it follows that E[|w1 − Yw1,w2 |] > E[|Yw1−α,w2 − w1|],

violating strategyproofness for f . Thus fmirror must be strategyproof.

Therefore, the mechanism g that picks f with probability 1/2 and fmirror with probability 1/2

is a strategyproof mechanism that is also symmetric; g trivially satisfies shift and scale invariance.

Finally, note that g has the same approximation ratio as f for all location profiles, since fmirror

has the same approximation ratio as f .

15Equivalently, the mirror mechanism can be thought of as follows: whenever f locates the facility at y ∈ R (that

is, the single sampling of f(x) yields y), fmirror ”mirrors” that location about mx, meaning it locates the facility at

2mx − y.
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Mechanisms which satisfy shift and scale invariance as well as symmetry also satisfy anonymity:

Lemma 3.5. If a mechanism f is shift invariant, scale invariant and symmetric, it is also anony-

mous.

Proof. Again, all equalities are in distribution. Let x be a location profile. We need to prove

Yx1,x2 = Yx2,x1 . Shift and scale invariance gives Yx2,x1 = −Yx1,x2 + x1 + x2; thus, P(Yx2,x1 ≤ b) =

P(x1 + x2− b ≤ Yx1,x2). But P(x1 + x2− b ≤ Yx1,x2) = P(Yx1,x2 ≤ b) by symmetry about mx, thus

Yx2,x1 = Yx1,x2 .

The next lemma deals with an equivalent condition for strategyproofness for symmetric, shift

and scale invariant mechanisms.

Lemma 3.6. A symmetric, shift and scale invariant mechanism f is strategyproof if and only if

for any profile x ∈ R2 with x1 = 0 < x2, the following conditions hold:

1. −
∫
(−∞,x2) ydF (y) +

∫
(x2,∞) ydF (y) + x2P(Y = x2) ≥ 0

2.
∫
(−∞,x2) ydF (y)−

∫
(x2,∞) ydF (y) + x2P(Y = x2) ≥ 0

where Y ∼ f(x) with c.d.f. F .

Proof. The proof is in the Appendix B.2.

Given a strategyproof, shift invariant, scale invariant and symmetric mechanism, the upcoming

results demonstrate how to find another strategyproof, shift invariant, scale invariant and symmetric

mechanism that restricts the probability assignment to x1, x2, and mx for every profile x and

simultaneously gives a weakly better approximation than the original mechanism.

Lemma 3.7. Let f be a strategyproof, shift invariant, scale invariant and symmetric mechanism.

There exists another strategyproof, shift invariant, scale invariant and symmetric mechanism g with

a weakly smaller expected social cost on every profile, such that at least one of the following two

properties holds:

(1) For every two-agent profile x, P(g(x) ∈ (x1, x2)) = 0. (Doesn’t utilize interior)16

16Note that it is possible for such a mechanism to still be ex-post Pareto efficient, if P(g(x) ∈ {x1, x2}) = 1.
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(2) For every two-agent profile x, P(g(x) ∈ (−∞, x1)∪ (x2,∞)) = 0. (Ex-post Pareto efficiency)

Proof. The proof is in the appendix B.2.

Lemma 3.8. Let f be a strategyproof, shift invariant, scale invariant, symmetric mechanism.

Assume that f is either ex-post Pareto efficient or doesn’t utilize interior. Then there exists another

strategyproof mechanism g with a weakly smaller expected social cost on every profile, such that

P(g(x) ∈ {x1, x2,mx}) = 1 for every location profile x. Furthermore, g satisfies shift invariance,

scale invariance and symmetry.

Proof. We break the proof into two cases.

1. Assume f is ex-post Pareto efficient. Let g be the mechanism that satisfies P(g(x) = x1) =

P(f(x) = x1), P(g(x) = x2) = P(f(x) = x2), P(g(x) = mx) = 1− P(g(x) = x1)− P(g(x) =

x2). Note that since mx minimizes the social cost function for the profile x, g certainly

provides a weakly better approximation ratio than f . Furthermore, symmetry, shift and scale

invariance are preserved.

Let us prove that condition 1 in Lemma 3.6 holds for g; the proof for condition 2 is similar.

Since f is a strategyproof mechanism, the condition implies that for any profile x = (x1, x2)

with x1 = 0 < x2,

0 ≤ −
∫
[0,x2)

ydF (y) + x2P(f(x) = x2)

= −
∫
(0,x2)

ydF (y) + x2P(f(x) = x2)

= −E[f(x)1
(
f(x) ∈ (x1, x2)

)
] + x2P(f(x) = x2)

= −mxP(f(x) ∈ (x1, x2)) + x2P(f(x) = x2)

= −mxP(g(x) = mx) + x2P(g(x) = x2)

= −
∫
(0,x2)

ydG(y) + x2P(g(x) = x2).

The third equality holds because the distribution is symmetric around mx. Hence, the con-

dition is satisfied for the mechanism g.

2. Assume f doesn’t utilize interior. Let g be the mechanism which, for every profile x, locates

P(g(x) = x1) = P(g(x) = x2) = 0.5, which is clearly strategyproof, shift invariant, scale
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invariant, and symmetric. sc(x, x2) minimizes sc(x, y) among y ≥ x2 and sc(x, x1) minimizes

sc(x, y) among y ≤ x1. Hence, E[sc(x, g(x))] ≤ E[sc(x, f(x))].

Now we are ready to prove the main theorem.

Theorem 3.4. The LRM mechanism gives the best approximation ratio among all strategyproof

mechanisms that are shift and scale invariant.

Proof. By the previous lemma, it suffices to search among the class of strategyproof shift invariant,

scale invariant and symmetric mechanisms where any element f of the class satisfies the property

that P(f(x) ∈ {x1, x2,mx}) = 1 for every location profile x. Clearly, for such mechanisms, the

approximation ratio increases as P(f(x) ∈ {x1, x2}) increases. Assume P(f(x) ∈ {x1, x2}) < 0.5.

Then P(f(x) = mx) > 0.5, and by symmetry, P(f(x) = x2) < 0.25. But this gives, when x1 = 0

and x2 > 0, that −mxP(f(x) = mx)+x2P(f(x) = x2) = −x2
2 P(f(x) = mx)+x2P(f(x) = x2) < 0,

violating strategyproofness by Lemma 3.6. Thus we must have that P(f(x) ∈ {x1, x2}) ≥ 0.5,

which implies that among all such mechanisms, LRM provides the best approximation ratio of

0.5(2
1− 1

p + 1).

An immediate consequence of Theorem 3.4 is the following corollary.

Corollary 3.1. Any strategyproof shift and scale invariant mechanism has an approximation of at

least 0.5(2
1− 1

p + 1) in the worst case.



CHAPTER 4. OBNOXIOUS FACILITY LOCATION 55

Chapter 4

Obnoxious Facility Location

4.1 Introduction

In this chapter we consider a problem closely related to the one in Chapter 3. Unlike in Chapter 3,

we consider an obnoxious facility, such as a landfill: agents prefer the facility to be as far away from

them as possible, and hence gain a utility equal to their distance from the facility rather than pay

a cost. To emphasize this change, we replace the notation for cost C with u: u(xi, y) = |xi − y|.

This change warrants an additional one: replacing R with a closed interval, which without loss of

generality we take to be I = [0, 2]. That is, the agents’ locations are in I, and a mechanism f has

domain In and range I (or distributions over I for randomized mechanisms). This is because any

reasonable aggregate measure of the utilities increases as the facility moves farther away from all

of the agents; thus, if the interval is not bounded, there is no optimal solution to the problem. The

definition of strategyproofness (Definition 3.1) is now modified as follows:

Definition 4.1. A mechanism f is strategyproof if for each i ∈ N , each xi, x
′
i ∈ I, and for each

x−i = (x1, x2, . . . , xi−1, xi+1, . . . xn) ∈ In−1, u(xi, f(xi,x−i)) ≥ u(xi, f(x′i,x−i)).

The social planner in this case tries to maximize some aggregate measure of the utilities, which

we call the social benefit function sb. Thus, the worst-case approximation ratio of a mechanism f

is supx{sb(x, OPT (x))/sb(x, f(x))}. We consider two possible objective functions for the planner

in this setting: sb(x, y) =
∑

i∈N u(xi, y) (maxisum), or sb(x, y) = mini∈N u(xi, y) (egalitarian). For

a probability distribution π over I, we define sb(x, π) = Ey∼π[sb(x, y)]; for notational convenience,
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when f is randomized and there is no confusion, we use f(x) to refer both to the probability

distribution and to the associated random variable (which has the same distribution). Barring the

changes described here, the rest of the notation remains identical to Section 3.2. The variant we

discuss was originally introduced (with the maxisum objective) in [Cheng et al., 2013b], and further

explored in [Ibara and Nagamochi, 2012].

The rest of the chapter is as follows: in Section 4.2, we characterize all deterministic strate-

gyproof mechanisms. In Section 4.3 we use the characterization to provide a lower bound of 3 and

∞ on the approximation ratio of deterministic strategyproof mechanisms for the maxisum and egal-

itarian objectives, respecitvely, matching the best attainable approximation ratio by a deterministic

strategyproof mechanism in both cases. In Section 4.4 we provide lower bounds of 2√
3

and 3
2 on

the approximation ratio of randomized strategyproof mechanisms for the maxisum and egalitarian

objectives, respectively. In Section 4.5 we consider a generalized model that allows an agent to

control more than one location. In this model, we provide a 3- and 3
2 -approximate strategyproof

mechanisms for the maxisum objective in the deterministic and randomized settings respectively

(in the randomized setting, we actually provide a family of such mechanisms).

4.2 Characterization of Deterministic Mechanisms

In this section, we characterize all deterministic strategyproof mechanisms for the obnoxious facility

model. Similar results have been independently obtained by others [Han and Du, 2012; Barber et

al., 2012; Manjunath, 2014]. We begin with a temporary, somewhat weak characterization of

deterministic mechanisms, in terms of single agent deviations:

Theorem 4.1. [Reflection Theorem] For any deterministic mechanism f , agent i ∈ N , and partial

location profile x−i, define fx−i
(a) = f(a,x−i).

1 Then, the mechanism f is strategyproof iff each

fx−i
is of the following form: there exists (not necessarily distinct) αx−i

, βx−i
∈ I, such that βx−i

≥

αx−i
and:

1. fx−i
(a) = βx−i

for 0 ≤ a < αx−i
+βx−i

2

2. fx−i
(a) = αx−i

for
αx−i

+βx−i

2 < a ≤ 2

1Note that when i 6= j, x−i and x−j are distinct objects, regardless of the values of their coordinates.
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3. fx−i
(
αx−i

+βx−i

2 ) ∈ {αx−i
, βx−i

}

If αx−i
6= βx−i

, we call
αx−i

+βx−i

2 the reflection point of i for the partial profile x−i.

Proof. First, assume that f is of the form described above. On a partial location profile x−i, agent i

can only get the mechanism to choose one of (up to) two locations: αx−i
or βx−i

. Let q =
αx−i

+βx−i

2 .

If xi = q, his distance from the two locations is equal, and so he is indifferent between them. If

xi ∈ [0, q), βx−i
is weakly farther from him than αx−i

, and so he weakly prefers βx−i
, which is what

the mechanism chooses, so he has no incentive to deviate.2 The case of xi ∈ (q, 2] is similar. Thus,

f is strategyproof.

On the other hand, assume that f is strategyproof. Fix a location profile x and an agent i. Let

g = fx−i
and let β = g(0). Let S = {a ∈ I : g(a) 6= β}. If S is empty, then g is constant, and we’re

done. So assume S is nonempty. Consider m = inf S. Note that if β < m, then an agent located

at β can benefit from a deviation to any point in S. Thus, β ≥ m. Let α = 2m − β (note that

with our knowledge at this point, it might be the case that α is negative and hence not in I; our

proof is careful not to assume otherwise). We begin by claiming that either g(m) = α, or that m

is a limit point of the set K = {a ∈ I : g(a) = α}. There are two cases to consider:

1. m ∈ S. Note that in this case m > 0. We claim that in this case g(m) = α. Assume otherwise,

namely g(m) = α′ 6= α. Note also that α′ 6= β (since m ∈ S), and thus m − α 6= |m − α′|.

There are two subcases:

(a) m − α < |m − α′|. In that case, note that as long as the agent is to the left of m, the

facility is located at β. Thus, if the agent is located at m− ε for some ε > 0, his distance

from the facility is β −m+ ε. His distance from α′ is at least |m− α′| − ε. However, as

β−m = m−α < |m−α′|, we may choose ε small enough so that |m−α′|−ε > β−m+ε.

In this case, the agent’s deviation from m− ε to m is beneficial to that agent.

(b) m − α > |m − α′|. In this case, it is still true that as long as the agent is to the left of

m, the facility is located at β. As the distance of β −m = m− α > |m− α′|, it follows

that an agent located at m will benefit from deviating to the left.

So indeed, g(m) = α.

2Weakly because it is possible that αx−i = βx−i .
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2. m /∈ S. Then m is a limit point of S (by definition). In this case we claim that m is a

limit point of K. Furthermore, note that β > m, since if β = m, then as m /∈ S, g(β) = β,

and the agent can benefit by deviating from β to any point in S. We note that since when

the agent is located at m, the facility is located at β, strategyproofness dictates that the

facility is always located in [α, β], no matter where the agent reports his location to be.

Now, assume m is not a limit point of K. Thus, it follows it must be a limit point of either

K1 = {a ∈ I : α < g(a) ≤ m} or K2 = {a ∈ I : m ≤ g(a) < β} 3. So, there are two cases:

(a) m is a limit point of K1. In particular, there exists some ε > 0 such that m + ε ∈ K1.

We consider the following subcases:

i. There exists 0 < ε′ < ε s.t. m + ε′ ∈ K1 and g(m + ε′) < g(m + ε); in this case, a

deviation from m+ ε to m+ ε′ is beneficial.

ii. There exists 0 < ε′ < ε s.t. m + ε′ ∈ K1 and g(m + ε′) > g(m + ε); in this case, a

deviation from m+ ε′ to m+ ε is beneficial.

iii. g(m+ ε′) = g(m+ ε) for all 0 < ε′ < ε s.t. m+ ε′ ∈ K1. As m is a limit point of K1

and all points in K1 are to the right of m, it follows that we may choose ε′ as small

as we want. For ε′ small enough, this would imply that the deviation from m + ε′

to m is beneficial: the distance of m+ ε′ from g(m+ ε) is m− g(m+ ε) + ε′ and the

distance of m+ ε′ from β is β −m− ε′. As β −m > m− g(m+ ε), we may choose

ε′ small enough to make the deviation in question beneficial.

(b) m is a limit point of K2. So, there exists 0 < ε < β−m
2 such that m+ ε ∈ K2. The agent

can benefit by deviating from m + ε to m (since the facility will be sent from g(m + ε)

to β, and since m ≤ g(m+ ε) < β, g(m+ ε) is closer to m+ ε than β).

Hence, by strategyproofness, we have reached a contradiction, and so m must be a limit point

of K.

We have shown that if m ∈ S then g(m) = α, and otherwise by definition of S g(m) = β. To

complete the proof, we must show that g(a) = α for all a > m. Assume otherwise for some a′ > m.

3Note that since g(a) ∈ [α, β] for all a ∈ I, and m is a limit point of S, it follows that m is a limit point of

{a ∈ I : a ∈ [α, β)} = K ∪K1 ∪K2.
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First, note that since g(m) is either α or β, g(a) ∈ [α, β] for all a ∈ I by strategyproofness. Note

that within this range, α is the point farthest from a′. Thus, the agent has an incentive to deviate

from a′ to any point a′′ for which g(a′′) = α, where the existance of such a point is guaranteed by

the above discussion. This is a contradiction, and so we’ve completed our proof.4

As a corollary of the above theorem, we can deduce:

Corollary 4.1. For any deterministic strategyproof mechanism f , and any n ∈ N, Rfn = {fn(x) :

x ∈ In} is finite.

Proof. Let x be an arbitrary profile, and set x0 = x. For a given profile xi−1, consider the profiles

z = (0,xi−1−i ) and z′ = (2,xi−1−i ). By the reflection theorem, at least one of f(z) = f(xi−1) or

f(z′) = f(xi−1) is true. This is trivial if agent i has no reflection point at xi−1−i . Otherwise, if he

has such a reflection point m, if xi−1i > m or xi−1i < m, he may deviate to 2 or 0 respectively

without changing the facility’s location; if xi−1i = m, then still the reflection theorem gives that

f(m,xi−1−i ) equals one of f(z) or f(z′), as required 5. Set xi equal to a profile among z and z′

satisfying the equality. Thus, xn is a profile in which all agents are located at the endpoints and

f(xn) = f(x). Since x was arbitrary, we have that all elements of Rfn can be obtained by applying

the mechanism to profiles locating all agents at the endpoints. Since there are only finitely many

such profiles, Rfn is finite.

Now it is time for our strong characterization result. Consider the following definition:

Definition 4.2. Let f be a deterministic mechanism s.t. |Rfn| ≤ 2 for all n ∈ N. For each n ∈ N,

let Rfn = {αn, βn} s.t. βn ≥ αn, and let mn = αn+βn
2 .6 For any n ∈ N, for every profile x ∈ In,

consider the partition of the agents Lx = {i ∈ N : xi < mn}, Mx = {i ∈ N : xi = mn}, and

Ex = {i ∈ N : xi > mn}. We say that f is a midpoint mechanism if it satisfies the following

property: for any n ∈ N, let x,y ∈ In be any profiles s.t. f(x) = βn and f(y) = αn. If βn > αn,

then there exists an agent i which satisfies one of the following:

4Note that we didn’t actually need that m is a limit point of K in the second case, but merely that K is nonempty.

However, this doesn’t seem to lead to a much simpler proof, so we stick with the more general argument.

5f(z) if f(m,xi−1
−i ) = βx−i , and f(z′) if f(m,xi−1

−i ) = αx−i .

6αn = βn is possible.
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(D-1) i ∈ Lx and i ∈My

(D-2) i ∈ Lx and i ∈ Ey

(D-3) i ∈Mx and i ∈ Ey

This definition is simple to interpret: the mechanism can switch the facility location from right

to left or from left to right only when an agent crosses the midpoint in the opposite direction.

In [Ibara and Nagamochi, 2012], the authors show that for a strategyproof mechanism f , |Rfn| ≤

2 whenever Rfn is a finite set.7 Using that, we can now show:

Theorem 4.2. A deterministic mechanism f is strategyproof iff it is a midpoint mechanism.

Proof. First, consider a given midpoint mechanism f , and fix n ∈ N. If fn is constant, then clearly

it is strategyproof. Otherwise, |Rfn| = 2. Consider a profile x ∈ In and an agent i ∈ N . The facility

can only be located at αn or βn. If i ∈Mx
n , he is indifferent between the two points, and thus has

no incentive to deviate. If i ∈ Ex
n , he prefers the facility to be located at αn; however, if f(x) 6= αn,

note that agent i cannot move the facility to αn by deviating- the rest of the agents remain still,

and he himself cannot be the agent required in the definition of the midpoint property (that agent

cannot be in Ex
n). The proof is similar for i ∈ Lx

n.

Now, assume instead that f is a strategyproof mechanism. Fix n ∈ N. By Corollary 4.1, Rfn is

finite, and thus by Ibara’s and Nagamochi’s result, |Rfn| ≤ 2. If Rfn is a singleton there is nothing to

prove; thus, assume |Rfn| = 2, and let αn, βn ∈ Rfn s.t. βn > αn. Let x,y ∈ In s.t. f(x) = βn and

f(y) = αn. Consider the sequence of profiles zi, defined for i = 0, . . . , n via zij = xj if j > i and

zij = yj otherwise. Assume no agent satisfies at least one of (D-1), (D-2) and (D-3). Then, when

agent i deviates in zi−1 to create profile zi, he does not cross mn from left to right (i.e. moving

from zi−1i < mn to zii ≥ mn or zi−1i ≤ mn to zii > mn). As the possible facility locations are αn and

βn, mn is his only candidate for reflection point in zi−1−i . Thus, the reflection theorem implies that

he cannot change the facility location to αn by deviating. Hence, f(y) = f(zn) = f(z0) = f(x),

contradiction.

7While they assume anonymity, the proof of this fact does not rely on that assumption. Also, note that this is not

an immediate implication of the Gibbard-Satterthwaite theorem, since the agents, by reporting a location, cannot

arbitrarily ”rank” the locations in Rfn; only some rankings are feasible.
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We note that Ibara and Nagmochi have characterized all anonymous mechanisms under the

assumption that Rfn is finite for all n ∈ N, using what they called “valid threshold mechanisms”.

Our proofs easily translate to the anonymous case, and under anonymity, our midpoint mechanisms

become equivalent to valid threshold mechanisms. Thus, our work allows the removal of the finite

Rfn assumption for the anonymous case as well.

4.3 Lower Bounds on Deterministic Mechanisms

We can use our characterization to obtain lower bounds on the possible approximation ratios for

the maxisum and egalitarian objectives in the deterministic setting.

Theorem 4.3. No deterministic strategyproof mechanism f can provide an approximation ratio

better than 3 for the maxisum objective.

Proof. Let f be a deterministic strategyproof mechanism. Let n ∈ N be even. If fn is constant,

the approximation ratio is clearly unbounded. If Rfn is not a singleton, then by Theorem 4.2,

|Rfn| = 2. Consider the profile x ∈ In which locates agents 1 through n
2 at αn, agents n

2 +1 through

n at βn (where αn < βn are as in the definition of midpoint mechanism). Assume without loss of

generality that f(x) 6= αn. Consider the profile y which locates agents 1 through n
2 at mn − ε for

some ε > 0, and agrees with x on the rest of the agents. Since no deviating agent reaches mn,

the facility location doesn’t change, that is f(y) = f(x) = βn. Locating the facility at βn (on

profile y) leads to a benefit of n
2 · (

βn−αn
2 + ε), while locating the facility at αn leads to a benefit of

n
2 · (

βn−αn
2 − ε) + n

2 (βn − αn), and sending ε→ 0 gives us the required result.8

By Theorem 4.7, our lower bound is best-possible. Our characterization can also be used to get

a lower bound for the egalitarian objective:

Theorem 4.4. No deterministic strategyproof mechanism f can provide a bounded approximation

ratio for the egalitarian objective.

Proof. For any n ≥ 2, |Rfn| ≤ 2 by Theorem 4.2. Consider any profile which locates at least one

agent at each point in Rfn; any such profile leads to a social benefit of 0 for the mechanism, whereas

the optimal benefit is positive.

8If n is odd, we could still make this proof work by locating the additional agent at mn and send n→∞.
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4.4 Lower Bounds on Randomized Mechanisms

We begin with the maxisum objective. We provide a lower bound of 2√
3

on the approximation ratio

of randomized strategyproof mechanisms.

Theorem 4.5. No randomized strategyproof mechanism can provide an approximation ratio better

than 2√
3

for the maxisum objective.

Proof. Let f be a randomized strategyproof mechanism which provides an approximation ratio

c < 2√
3

for the maxisum objective. Consider the case where N = {1, 2}, and let a = 2
√

3 − 3.

Let x be the location profile in which x1 = 1 − a and x2 = 1 + a. Assume without loss of

generality that P (f(x) < x1) ≥ P (f(x) > x2). The expected distance of the facility from x1 on

this profile is at most (1 − a)P (f(x) < x1) + (1 + a)P (f(x) > x2) + 2aP (x1 ≤ f(x) ≤ x2); as

P (f(x) < x1) ≥ P (f(x) > x2) and 2a ≤ 1, this implies that the expected distance of the facility

from x1 on profile x is at most 1.

Let y be the profile in which y1 = 0 and y2 = 1 + a. Let b = E[f(y)|f(y) > y2] − y2, and

let p = P (f(x) > y2). The mechanism’s expected benefit is 1 + a + 2bp, while the optimal cost

is 3 − a. To maintain approximation ratio of c, we must have 1 + a + 2bp ≥ 3−a
c , which implies

bp ≥ 3−a
2c −

1+a
2 . Also, as b ≤ 1− a, we have that p ≥ 1

1−a(3−a2c −
1+a
2 ). Now, the expected distance

of the facility from x1 on y is (2a + b)p ≥ ( 2a
1−a + 1)(3−a2c −

1+a
2 ) > ( 2a

1−a + 1)(
√

33−a
4 −

1+a
2 ) = 1.

This violates strategyproofness, as agent 1 has an incentive to misreport his location to be 0 when

the location profile is x.

Next, we show a lower bound of 3
2 for the egalitarian objective:

Theorem 4.6. No randomized strategyproof mechanism can provide an approximation ratio better

than 3
2 for the egalitarian objective.

Proof. Let f be such a mechanism, with approximation ratio c < 3
2 . Let the endpoints be 0 and

M + 2, where M is some large number. Consider the case with n = 2dM+1
ε e + 4 agents, where

1 > ε > 0. Consider the profile x which locates one agent at 1 and M + 1, locates an agent

in each 1 + aε ∈ (1,M + 1) s.t. a ∈ N, and splits the rest of the agents evenly among the two

endpoints (if there is an odd number of agents remaining, locate one agent at M+2
2 ). Note that

an optimal facility location is at M + 11
2 , with a benefit of 1

2 . Let p be the probability that the
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facility is located at [1,M + 1]. It follows that the resulting expected benefit is upper bounded

by ε
2p + 1

2(1 − p). To get the required approximation ratio, we must have ε
2p + 1

2(1 − p) ≥ 1
2c ,

which gives p ≤
1
2
(1− 1

c
)

1
2
− ε

2

. The facility must be located either in [0, 1] or in [M + 1,M + 2] with

probability at least 1−p
2 . Assume without loss of generality that it is located with probability at

least 1−p
2 in [0, 1]. Consider the profile x′, which is obtained from profile x by relocating the agents

from 0 so that there is an agent in every point aε ∈ [0, 1) s.t. a ∈ N. Let p′ be the probability

that on this profile, the facility is located at [0,M + 1]. Note that the optimal facility location

remains M + 11
2 with benefit 1

2 , and on the other hand the expected benefit on this profile is

bounded by ε
2p
′ + 1

2(1− p′), yielding the bound p′ ≤
1
2
(1− 1

c
)

1
2
− ε

2

. Let us analyze the expected distance

of the facility from 0 in the two profiles. For x, the expected distance from 0 is no more than

1−p
2 + p(M + 1) + 1−p

2 (M + 2). On the other hand, for x′, the expected distance from 0 is no

less than (1 − p′)(M + 1). Since we have obtained x′ from x using deviations of agents from 0,

strategyproofness dictates 1−p
2 + p(M + 1) + 1−p

2 (M + 2) ≥ (1 − p′)(M + 1).9 Reorganizing this,

we get: 3−p
2 + 1+p

2 M ≥ (1 − p′)M + 1 − p′. Using our bounds for p and p′, this implies the

inequality 1
2 + (12 +

1
2
(1− 1

c
)

1−ε )M ≥ (1 −
1
2
(1− 1

c
)

1
2
− ε

2

)M −
1
2
(1− 1

c
)

1
2
− ε

2

. Let us reorganize this inequality to

1
2 +

1
2
(1− 1

c
)

1
2
− ε

2

≥ (12 −
3
2
(1− 1

c
)

1−ε )M . As c < 3
2 , we can choose ε > 0 small enough so that 1

2 −
3
2
(1− 1

c
)

1−ε > 0.

Sending M to ∞ then causes the r.h.s of the inequality to go to ∞, violating the inequality.

4.5 Mutiple Locations Per Agent in the Obnoxious Model

In this section we follow the spirit of a suggestion in [Procaccia and Tennenholtz, 2013a] and study

a generalized model, in which a single agent may be associated with more than one location. As

this multiple location model is a generalization of our previous model, the lower bounds carry

over; in particular, for the maxisum objective, we have lower bounds of 3 and 2√
3

on deterministic

and randomized mechanisms respectively. In the deterministic case, we can find a strategyproof

9Consider the sequence of profiles x0 through xn, such that profile xi agrees with x′ on the location of agents 1

through i and with x on the location of the rest of the agents. Let i∗ be the index that maximizes EY∼f(xi)[Y ]; if

there is more than one such index, choose the minimal one. If i∗ > 0, then it is beneficial for agent i∗ to deviate so

that the profile changes from xi∗−1 to xi∗ , violating strategyproofness. Thus i∗ = 0, implying the expected distance

of the facility from 0 in those profiles satisfies EY∼f(x0)[Y ] ≥ EY∼f(xn)[Y ]. But, since x0 = x and xn = x′, we know

that 1−p
2

+ p(M + 1) + 1−p
2

(M + 2) ≥ EY∼f(x)[Y ] and EY∼f(x′)[Y ] ≥ (1− p′)(M + 1).
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mechanism to match the lower bound, despite the additional power given to the agents. In addition,

we provide a family of 3
2 -approximate randomized strategyproof mechanisms.

Our generalized model can be obtained from our previous model via the following changes.

First, let k = (k1, . . . , kn) ∈ Nn. A location profile is now z = (z1, z2, . . . , zn), where for each

i = 1, ..., n, zi = (zi1, z
i
2, . . . , z

i
ki

) ∈ Iki . A deterministic mechanism is a collection of functions

f = {fkn : n ∈ N,k ∈ Nn}, such that fkn : Ik1 × . . . × Ikn → I is a function that maps each

location profile to a facility location. The utility of agent i from facility location y is now defined as

u(zi, y) =
∑ki

j=1 u(zij , y), where u(x, y) is |x− y|. The maxisum objective is
∑n

i=1 u(zi, y) as usual.

The rest of the notation carries over, and the adjustment to the randomized model is easy and

left to the reader. For the approximation ratio, we note that the possible instances of the problem

include all possible options for both n and k.

First, we provide a 3-approximate strategyproof deterministic mechanism.

Theorem 4.7. Let R∗ = {i :
∑ki
j=1 z

i
j

ki
≤ 1}, L∗ = {i :

∑ki
j=1 z

i
j

ki
> 1}. Let f be the mechanism which

locates the facility at 2 if
∑

i∈R∗ ki ≥
∑

i∈L∗ ki and at 0 otherwise. This mechanism is strategyproof

and 3-approximate for maxisum.

Proof. Strategyproofness is easy (note that R∗ is exactly the set of agents weakly preferring the

facility to be located at 2 over 0). The optimal facility location is clearly in {0, 2}. Assume without

loss of generality that f(z) = 2. All we have to prove is that sb(z,0)
sb(z,2) ≤ 3. But note that every

agent i ∈ R∗ receives a utility of at least ki when the facility is located at 2 and at most ki

when the facility is located at 0. On the other hand, each agent i ∈ L∗ trivially gets a utility

between 0 and 2ki. Thus, using the fact that f(z) = 2 implies
∑

i∈R∗ ki ≥
∑

i∈L∗ ki, we get

sb(z,0)
sb(z,2) ≤

2
∑
i∈L∗ ki+

∑
i∈R∗ ki∑

i∈R∗ ki
≤ 2

∑
i∈R∗ ki+

∑
i∈R∗ ki∑

i∈R∗ ki
= 3.

Note that when ki = 1 for all i, this mechanism reduces to the mechanism proposed in [Cheng

et al., 2013b].

Finally, we define a class of randomized strategyproof mechanisms that provide a 3
2 -approximation

and show that it is nonempty.

Theorem 4.8. Let f be a randomized mechanism that, for a profile z, locates the facility at 0 with

probability pz and at 2 with probability (1− pz). Then the following conditions on pz are sufficient

to make the mechanism strategyproof and 3
2 -approximate:
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1. pz is increasing in
∑

i∈L∗ ki and decreasing in
∑

i∈R∗ ki.

2. 1
3+ 1

6 ·
∑
i∈L∗ ki∑
i∈R∗ ki

≥ pz ≥ 2
3−

1
6 ·

∑
i∈R∗ ki∑
i∈L∗ ki

(if
∑

i∈R∗ ki = 0, the leftmost term is∞; if
∑

i∈L∗ ki = 0,

the rightmost term is −∞).

Furthermore, the class of mechanisms of this form is nonempty.

Proof. Strategyproofness is clear. Fix z, and set p = pz. For the approximation ratio, there are two

cases to consider. First, assume that the optimal facility location for profile z is 0, with social ben-

efit OPT . If 0 and 2 are both optimal, clearly any choice of p yields approximation ratio 1. Assume

2 is not optimal; then
∑

i∈L∗ ki > 0. As for every i ∈ R∗ we have that
∑ki
j=1 zj
ki

≤ 1, his utility from

locating the facility at 2 is at least ki, and so the social benefit from locating the facility there is at

least
∑

i∈R∗ ki. Thus, it is enough to prove that pOPT + (1−p)
∑

i∈R∗ ki ≥
2
3OPT , or equivalently

(1− p)
∑

i∈R∗ ki ≥ (23 − p)OPT . If the right hand side is negative, then this inequality is satisfied.

Assume that the right hand side is nonnegative. Note that OPT ≤ 2
∑

i∈L∗ ki+
∑

i∈R∗ ki (the util-

ity of i ∈ R∗ from locating the facility at 0 is bounded by ki, while the utility of i ∈ L∗ is trivially

bounded by 2ki). Thus, it is enough to prove that (1−p)
∑

i∈R∗ ki ≥ (23−p)(2
∑

i∈L∗ ki+
∑

i∈R∗ ki).

Isolating p in this inequality gives p ≥ 2
3 −

1
6

∑
i∈R∗ ki∑
i∈L∗ ki

, which is satisfied.

On the other hand, assume that the optimal facility location for profile z is 2; note that this

implies
∑

i∈R∗ ki > 0. Similarly to the analysis above, we can get a lower bound of
∑

i∈L∗ ki

on the benefit of locating the facility at 0 and upper bound of 2
∑

i∈R∗ ki +
∑

i∈L∗ ki on OPT .

Thus, we need that (1 − p)OPT + p
∑

i∈L∗ ki ≥
2
3OPT , and so it is enough to verify that

p
∑

i∈L∗ ki ≥ (p− 1
3)(2

∑
i∈R∗ ki +

∑
i∈L∗ ki). Isolating p yields p ≤ 1

3 + 1
6

∑
i∈L∗ ki∑
i∈R∗ ki

.

Finally, we verify that p = max {23 −
1
6 ·

∑
i∈R∗ ki∑
i∈L∗ ki

, 0} (where if
∑

i∈L∗ ki = 0, p = 0) satisfies the

above properties. The only thing that requires proof is p ≤ 1
3 + 1

6 ·
∑
i∈L∗ ki∑
i∈R∗ ki

(assuming
∑

i∈R∗ ki > 0;

if
∑

i∈R∗ ki = 0 then there is nothing to prove). Note that the right hand side is positive, so it is

enough to show is that 1
3 + 1

6 ·
∑
i∈L∗ ki∑
i∈R∗ ki

≥ 2
3−

1
6 ·

∑
i∈R∗ ki∑
i∈L∗ ki

when
∑

i∈L∗ ki > 0. But this is equivalent to

(
∑
i∈L∗ ki)

2+(
∑
i∈R∗ ki)

2

(
∑
i∈L∗ ki)(

∑
i∈R∗ ki)

≥ 2, and note that
(
∑
i∈L∗ ki)

2+(
∑
i∈R∗ ki)

2

(
∑
i∈L∗ ki)(

∑
i∈R∗ ki)

= 2 +
(
∑
i∈L∗ ki−

∑
i∈R∗ ki)

2

(
∑
i∈L∗ ki)(

∑
i∈R∗ ki)

≥ 2.

It is worth noting that the randomized mechanism given in [Cheng et al., 2013b], for the special

case of ki = 1 for all i, falls into the category of mechanisms we defined here.
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Chapter 5

Hybrid Model of Facility Location

5.1 Introduction

In this short chapter, we consider a hybrid of the models discussed in Chapters 3 and 4. The model

we discuss generalizes the one in Section 4.1 as follows. The space of locations is again a bounded

interval, assumed to be I = [0, 2] without loss of generality. In the hybrid model, there are two

types of agents: type 1 agents, who wish for the for the facility to be located as far away from them

as possible, and type 2 agents, who wish for the facility to be located as close to them as possible.

We denote the type of agent i as θi, and the utility of a type θ agent located at x when the facility

is located at y as u(θ, x, y). Like in Chapter 4, when θ = 1, the utility is u(1, x, y) = |x− y|. When

θ = 2, one might expect the utility for a type 2 agent to be −|x − y|. However, negative utilities

would lead us to an objective function (which would be maxisum in this chapter) that can take

both positive and negative values; for such objective functions, the notion of approximation ratio

is ill-defined. To fix this, we define u(2, x, y) = 2 − |x − y|, namely we add the length of I to the

negative utility. In terms of incentives, this has no impact: the definition of strategyproofness is

equivalent whether the length of I is added or not. However, adding this particular constant is the

unique choice that simultaneously makes the utilities of both type 1 and 2 lie in the same range

[0, 2]; thus, in a way, this utility definition does not discriminate between the types. Finally, for a

probability distribution over π, we define u(θ, x, π) = Ey∼πu(θ, x, y). If y is a random variable with

distribution π, we make a slight abuse of notation and define u(θ, x, y) = u(θ, x, π) when there is

no risk of confusion.
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We consider the type of each agent i to be private information of that agent, which needs to be

reported to the planner (although all of our results continue to hold when it is publicly known). Let

T = {1, 2}. A mechanism f is now a collection of functions {fn : n ∈ N}, where fn : Tn × In → I

(in case of a randomized mechanism, the range is the space of all probability distributions over I).

The definition of strategyproofness therefore becomes:

Definition 5.1. A mechanism f is strategyproof if for each i ∈ N , each xi, x
′
i ∈ I, θi, θ

′
i ∈ T , and

for each x−i = (x1, x2, . . . , xi−1, xi+1, . . . xn) ∈ In−1,θ−i = (θ1, θ, . . . , θi−1, θi+1, . . . , θn) ∈ Tn−1:

u(θi, xi, f((θi, θ−i), (xi,x−i))) ≥ u(θi, xi, f((θ′i, θ−i), (x
′
i,x−i)))

.

The objective function we are interested in throughout this chapter is maximizing the sum

of utilities sb(θ,x, y) =
∑n

i=1 u(θi, xi, y) (maxisum). The worst case approximation ratio of a

mechanism f is supθ,x
sb(θ,x,OPT (θ,x))
sb(θ,x,f(θ,x)) .

5.2 Deterministic and Randomized Mechanisms for the Hybrid

Model

In this section, we design a best-possible 3-approximate deterministic strategyproof mechanism for

the maxisum objective, as well as a 23
13 -approximate randomized strategyproof mechanism for the

same objective.

Theorem 5.1. Let R = {i : θi = 1, xi ≤ 1} ∪ {i : θi = 2, xi ≥ 1} and L = {i : θi = 1, xi > 1} ∪ {i :

θi = 2, xi < 1}. Let f be the mechanism that locates the facility at 2 if |R| ≥ |L| and at 0 otherwise.

Then f is a 3-approximate strategyproof mechanism for the maxisum objective.

Proof. Strategyproofness is easy. Note that R is the set of agents who weakly prefer the facility

to be located at 2 over 0, and L is the set of remaining agents. Since there are only two possible

facility locations in this mechanism, it is enough to rule out manipulations by an agent i who prefers

the facility to be located at the endpoint not chosen by the mechanism. Assume without loss of

generality that the facility is located at 2, yet agent i prefers the facility to be located at 0 (that

is, i ∈ L). Then, by misreporting, he cannot decrease |R| and cannot increase |L|, and therefore
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regardless of his report, the facility will be located at 2.

For the approximation ratio, let θ and x be a type and location profile respectively. We would

like to show that sb(θ,x,a)
sb(θ,x,f(θ,x)) ≤ 3 for every possible facility location a ∈ I.1 We will prove this for

the case of f(θ,x) = 2; the other case is similar. Let Rj be the set of agents of type j in R, and

similarly let Lj be the set of agents of type j in L. Define q1 := sb(θ,x, a) =
∑

i∈R1∪L1
|xi − a| +∑

i∈R2∪L2
(2− |xi − a|), and q2 := sb(θ,x, f(θ,x)) =

∑
i∈R1∪L1

(2− xi) +
∑

i∈R2∪L2
xi. We need to

show that q1 ≤ 3q2. This is trivial when q1 < q2, so assume q1 ≥ q2. Note that for i ∈ R1 ∪ L1,

increasing xi by δ decreases q2 by δ, and decreases q1 by at most δ (might even increase q1 in some

cases). Similarly, for i ∈ R2 ∪ L2, decreasing xi has the same effect. Given that xi ≤ 1 for i ∈ R1,

xi ≥ 1 for i ∈ R2, and xi ∈ [0, 2] for all i, it is enough to prove q1 ≤ 3q2 on the profile where xi = 1

for i ∈ R, xi = 2 for i ∈ L1, and xi = 0 for i ∈ L2.
2 We shall assume this profile for the rest of

the proof. On that profile, we have q1 =
∑

i∈R1
|a− 1|+

∑
i∈L1∪L2

(2− a) +
∑

i∈R2
(2− |a− 1|) and

q2 = |R|. We break our proof into two cases:

1. a ∈ [0, 1]:
∑

i∈R1
|a−1|+

∑
i∈L1∪L2

(2−a) +
∑

i∈R2
(2−|a−1|) = |R1|+ 2|L1|+ 2|L2|+ |R2|+

a(−|R1|−|L1|−|L2|+ |R2|) ≤ max {|R|+ 2|L|, |L|+ 2|R2|}, where the inequality follows from

the fact that the maximum is obtained when a ∈ {0, 1} (If −|R1| − |L1| − |L2| + |R2| ≤ 0,

then it is obtained at a = 0, and otherwise at a = 1). Note that |L| ≤ |R| since f(x) = 2,

and that |R2| ≤ |R| by definition. Thus, max {|R|+ 2|L|, |L|+ 2|R2|} ≤ 3|R|. Therefore,

q1 ≤ 3|R| = 3q2

2. a ∈ [1, 2]:
∑

i∈R1
|a−1|+

∑
i∈L1∪L2

(2−a)+
∑

i∈R2
(2−|a−1|) = −|R1|+2|L1|+2|L2|+3|R2|+

a(|R1| − |L1| − |L2| − |R2|) ≤ max {|L|+ 2|R2|, |R|}. Again, both terms we’re maximizing

over are no more than 3|R|, and so again q1 ≤ 3|R| = 3q2.

1Note that the statement “ sb(θ,x,a)
sb(θ,x,f(θ,x))

≤ 3 for every possible facility location a ∈ I” is equivalent to

sb(θ,x,OPT (θ,x))
sb(θ,x,f(θ,x))

≤ 3, as OPT (θ,x) maximizes the numerator by definition and hence the ratio. However, we choose

to analyze an arbitrary fixed a rather than OPT (θ,x) to avoid having to consider the impact agents’ reports have

on the optimal location of the facility.

2Since, if q1 − δ ≤ 3(q2 − δ), then q1 + 2δ ≤ 3q2, hence q1 ≤ 3q2.
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Note that by Theorem 4.3 no deterministic strategyproof mechanism can do better than 3-

approximation (as the obnoxious model is a special case of the hybrid model). Thus, the approxi-

mation ratio achieved by our mechanism is best-possible. Moreover, in the obnoxious facility model,

the above mechanism reduces to the deterministic mechanism proposed in [Cheng et al., 2013b],

who proved that it is a 3-approximation for that special case.

We now use randomization in an attempt to lower the approximation ratio. Getting a 2-

approximation is easy: choosing each endpoint with probability 1
2 is a 2-approximate strategyproof

mechanism.3 However, we can do better:

Theorem 5.2. Let p1 = 12
23 , p2 = 8

23 , and p3 = 3
23 . Consider the following randomized mechanism

f . If |R| ≥ |L|, then P (f(θ,x) = 2) = p1 and P (f(θ,x) = 0) = p2; if |R| < |L|, then P (f(θ,x) =

2) = p2 and P (f(θ,x) = 0) = p1; and either way, P (f(θ,x) = 1) = p3. The mechanism f is

strategyproof and 23
13 -approximate.

Proof. Strategyproofness is proved similarly to Theorem 5.1. For the approximation ratio, we

would like to show that sb(θ,x,a)
sb(θ,x,f(θ,x)) ≤

23
13 for every possible facility location a ∈ I. We will

prove this for the case of |R| ≥ |L|; the other case is similar. Define Rj and Lj as in the proof

of Theorem 5.1. We begin by noting that the approximation ratio is bounded from above by

46
19 (it is easy to see that every agent is guaranteed a benefit of at least 19

23 in our mechanism,

while the maximal benefit of any agent is 2). Note that the mechanism’s expected benefit is

q2 = − 7
23

∑
i∈R1

xi − 1
23

∑
i∈L1

xi + 1
23

∑
i∈R2

xi + 7
23

∑
i∈L2

xi + 27
23 |R1|+ 21

23 |L1|+ 25
23 |R2|+ 19

23 |L2|.

We break into cases:

1. a ∈ [0, 1]: in this case, the benefit from locating the facility at a is q1 =
∑

i∈R1
|a − xi| +∑

i∈L1
(xi − a) +

∑
i∈R2

(2 + a − xi) +
∑

i∈L2
(2 − |a − xi|). Note that the ratio q1

q2
increases

with xi for i ∈ L1, and decreases with xi for i ∈ R2; thus, to maximize it, we set xi = 2 for

i ∈ L1 and xi = 1 for i ∈ R2. For i ∈ L2, xi = a maximizes the ratio (note that changing xi

by α decreases the numerator by α and either increases or decreases the denominator by 7
23α,

a change that decreases the ratio since it is known to be no more than 46
19 <

23
7 ). Depending

on a, to maximize the ratio we need to set xi = 0 for all i ∈ R1 or xi = 1 for all i ∈ R1. We

3In [Cheng et al., 2013b], the authors note that this mechanism is 2-approximate for the obnoxious facility model;

this still holds true for the hybrid model.
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check both cases:

(a) xi = 0 for all i ∈ R1. Then the ratio becomes a(|R1|−|L1|+|R2|)+2|L1|+|R2|+2|L2|
27
23
|R1|+ 19

23
|L1|+ 26

23
|R2|+ 19

23
|L2|+ 7

23
a|L2|

. As

|R1|+ |R2| − |L1| ≥ |L2| ≥ 0, this ratio increases with a and hence maximized at a = 1

4, which leads to the ratio: |R1|+|L1|+2|R2|+2|L2|
27
23
|R1|+ 19

23
|L1|+ 26

23
|R2|+ 26

23
|L2|
≤ 23

13 .

(b) xi = 1 for all i ∈ R1. The ratio becomes a(−|R1|−|L1|+|R2|)+|R1|+2|L1|+|R2|+2|L2|
20
23
|R1|+ 19

23
|L1|+ 26

23
|R2|+ 19

23
|L2|+ 7

23
a|L2|

. Maxi-

mization occurs either at a = 1 or at a = 0. We check both cases:

i. a = 1: the ratio becomes |L1|+2|R2|+2|L2|
20
23
|R1|+ 19

23
|L1|+ 26

23
|R2|+ 26

23
|L2|
≤ 23

13 .

ii. a = 0: the ratio becomes |R1|+2|L1|+|R2|+2|L2|
20
23
|R1|+ 19

23
|L1|+ 26

23
|R2|+ 19

23
|L2|

. As |L| ≤ |R|, it follows that

the ratio is bounded from above by 1+2
20
23

+ 19
23

= 23
13 .

2. a ∈ [1, 2]: in this case, the benefit from locating the facility at a is q1 =
∑

i∈R1
(a − xi) +∑

i∈L1
|a− xi|+

∑
i∈R2

(2− |a− xi|) +
∑

i∈L2
(2 + xi − a). Similarly to the previous case, the

ratio q1
q2

is maximized when xi = 0 for i ∈ R1, xi = 1 for i ∈ L2, xi = a for i ∈ R2, and xi = 1

for all i ∈ L1 or xi = 2 for all i ∈ L1. We break into cases:

(a) xi = 1 for all i ∈ L1: the ratio becomes a(|R1|−|L2|+|L1|)−|L1|+2|R2|+3|L2|
1
23
a|R2|+ 27

23
|R1|+ 20

23
|L1|+ 25

23
|R2|+ 26

23
|L2|

. Maximum is

obtained at either a = 1 or a = 2:

i. a = 1: the ratio becomes |R1|+2|R2|+2|L2|
27
23
|R1|+ 20

23
|L1|+ 26

23
|R2|+ 26

23
|L2|
≤ 23

13 .

ii. a = 2: the ratio becomes 2|R1|+|L1|+2|R2|+|L2|
27
23
|R1|+ 20

23
|L1|+ 27

23
|R2|+ 26

23
|L2|
≤ 46

27 <
23
13 .

(b) xi = 2 for all i ∈ L1: the ratio becomes a(|R1|−|L2|−|L1|)+2|L1|+2|R2|+3|L2|
1
23
a|R2|+ 27

23
|R1|+ 19

23
|L1|+ 25

23
|R2|+ 26

23
|L2|

. Maximum is

obtained at either a = 1 or a = 2:

i. a = 1: the ratio becomes |R1|+|L1|+2|R2|+2|L2|
27
23
|R1|+ 19

23
|L1|+ 26

23
|R2|+ 26

23
|L2|
≤ 23

13 .

ii. a = 2: the ratio becomes 2|R1|+2|R2|+|L2|
27
23
|R1|+ 19

23
|L1|+ 27

23
|R2|+ 26

23
|L2|
≤ 46

27 <
23
13 .

The approximation ratio of the mechanism above is tight: when there are two agents of different

types, with the type 1 agent at 1 and the type 2 agent at 0, the optimal benefit is 3, whereas the

mechanism’s expected benefit is 39
23 , and the ratio is exactly 23

13 .

4Of course, for agents i ∈ L2 we technically cannot have xi = 1, but the bound holds nonetheless.
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Part II

School Choice
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Chapter 6

Reassignment In School Choice

6.1 Introduction

During the past fifteen years, insights from matching theory have informed the design of school

choice programs in several cities around the world. The formal study of this mechanism design

approach to school choice originated in the paper of Abdulkadiroglu and Sonmez [Abdulkadiroglu

and Sönmez, 2003]. They formulated a model in which students have strict preferences over a

finite set of schools, each with a given capacity; and each school partitions the set of students into

priority classes. There is now a vast and growing literature that explores many aspects of school

choice systems. A common feature of most models used in this literature is that they are essentially

static. An important aspect of the problem—that has not received as much attention—is the issue

of incorporating dynamic considerations, such as changes in student preferences, into the design of

assignment mechanisms. This is the main motivation for our work.

6.1.1 Our Approach and Summary of Results

In many public school systems throughout the United States, students and families are required to

submit preferences over the schools they are eligible for. For administrative and other reasons, this

is done fairly early in the academic year. In particular, at the time these preferences are submitted,

students typically do not know their options outside of the public school system. As a consequence,

a significant fraction of the students end up not using their allotted seat in a public school. Yet,

there is no known systematic way of reallocating these seats to the students, though it is clear that
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a good reallocation can lead to significant gains in overall welfare.1 Our goal is to design an explicit

reallocation mechanism run at a late stage of the matching process which can better utilize the

seats freed up by applicants who choose not to utilize their initial assignments.

We consider a two-stage model of school assignment with finitely many schools. Students

initially submit their ordinal preferences over schools, and receive a first-round assignment based

on these preferences via the Deferred Acceptance (DA) algorithm; school preferences are given by

weak priorities, and ties are broken via a single lottery ordering across all schools. Afterwards, some

students may be presented with better outside options (such as admission to a private school), and

may no longer be interested in the seat allotted to them. In the second round, students are invited

to re-submit their (new) ordinal preferences over schools. The goal is to reallocate the seats so

that the resulting assignment is fair, efficient, and so that the overall (two-stage) mechanism is

strategyproof and does not penalize students for participating in the second-round.

A natural starting point for reallocating seats is to simply re-run DA on the new preferences,

using the same school preferences (priorities and tie-breaking) as in the first round. However, this

approach may result in a cascade of transfers of students from one school to another, which would

be difficult for schools to handle. Alternatively, the second-round mechanism could try to allocate

the vacant seats first to those students who were unassigned in the first round so as to reduce

transfer costs. Unfortunately, students can readily manipulate such a reassignment mechanism by

submitting truncated preference lists initially: such students are either assigned one of their top

choices in the first round or they receive high priority in the second round. The challenge is to

design a reallocation mechanism that retains the good properties of DA while also avoiding its

potentially high transfer costs. The key idea we introduce is to suitably permute the first round

lottery numbers and apply a version of DA in which the initial assignment serves as a guarantee

and in which the permuted lottery numbers are used to break ties in school priorities. In particular,

we show that a mechanism that upgrades students’ allocations based on a simple reversal of the

first-round lottery order keeps the number of reassignments small while maintaining allocative

1Many school assignment systems in the United States and elsewhere use a supplementary round in which students

are allowed to “appeal” their assignment and resubmit their preferences. However, the supplementary round matching

is done fairly soon after the main round and is not tied to when the outside options of the students are realized, so

significant allocative inefficiencies remain.
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efficiency. In a model with no school priorities, we show that this “reverse lottery” mechanism is

optimal in terms of minimizing transfers and maximizing welfare within a large and natural class of

mechanisms . Empirical investigations based on data from NYC’s high school admissions suggest

that this mechanism performs well even in the presence of school priorities.

Our work formulates (Section 6.2) two closely related models for this problem: the discrete

model in which there is a finite number of students, and on which the computational and empirical

findings are presented; and a continuum model, in which we assume a mass of students, and on

which the theoretical results are proved. To keep things simple, the continuum model focuses on

the case where schools have a single priority class.

We consider a class of reassignment mechanisms called Permuted Lottery Deferred Acceptance

(PLDA) mechanisms. Such mechanisms find a reassignment by running DA on the reported second-

round preferences of the students, and differ in how ties in school preferences are broken. Each

school first prioritizes students who were assigned to it in the first round over those who weren’t;

within each of the resulting two classes, students are prioritized according to their initial priorities

at the school; further ties across all schools are broken via a permutation of the lottery numbers.

PLDAs differ from each other only in the choice of the permutation. The class of PLDA mechanisms

is a natural class to consider if the reassignment mechanism must respect school priorities and

cannot reassign students against their will (reassign them to a school they prefer less to their

original assignment).

Our main theoretical result (Section 6.3) identifies a technical condition, in the continuum

model, under which all PLDAs produce ‘type-equivalent’ assignments, implying that they are equiv-

alent in terms of welfare of the final assignment. Furthermore, when this condition is satisfied, we

show that reverse lottery DA (RLDA)—the PLDA which permutes the first round lottery numbers

by “reversing” them2— minimizes the total number of transfers among all PLDAs. We then assess

the performance of PLDAs on data from the New York City school system (section 6.4), in the

presence of priorities. We observe that different PLDAs including RLDA perform fairly similarly

in terms of allocative efficiency, whereas RLDA is able to reduce the number of transfer students

significantly. For instance, based on the 2004-05 data set from the NYC public school system we

find that the re-running DA using the same lottery numbers results in about 7235 transfer students,

2The student with the worst first-round lottery number is given the highest priority in the second round.
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whereas reversing the lottery numbers results in only 3079 transfer students.

6.1.2 Related Work

In this subsection we survey related literature. The mechanism design approach to school choice

was first formulated by Balinski & Sonmez [Balinski and Sonmez, 1999] and Abdulkadiroglu &

Sonmez [Abdulkadiroglu and Sönmez, 2003]. Following the publication of [Abdulkadiroglu and

Sönmez, 2003], many economists have worked closely with school authorities to re-design school

choice systems, starting with New York City [Abdulkadirolu et al., 2005a] and Boston [Abdulka-

dirolu et al., 2005b] in 2003 and 2005 respectively, followed by New Orleans (2012), Denver (2012),

and Washington DC (2013), among others. These centralized mechanisms appear to outperform

the uncoordinated and ad-hoc assignment systems that they replaced [Abdulkadiroğlu et al., 2015].

Furthermore, a significant portion of the theoretical literature has focused on the relative merits of

the two canonical mechanisms—Deferred Acceptance and Top Trading Cycles (TTC)—and their

variations. There is a rich and growing (theoretical and empirical) literature on school choice prob-

lems that explores several aspects including indifferences in preferences and the trade-offs between

efficiency and incentives in such models. We do not survey this literature here as it is not directly

relevant to our model, but we refer the reader to recent surveys by Pathak [Pathak, 2011] and

Abdulkadiroglu and Sonmez [Abdulkadirolu and Snmez, 2011] for an overview.

In our model, students submit preferences, receive an assignment, resubmit preferences and

receive their final allocation. If we decouple the two rounds and think of them as independent

problems, the first round resembles the models used in the standard literature on school choice

problems, whereas the second round resembles the literature on allocation problems where some

agents may have an endowment. We next briefly survey the papers that are most relevant to our

development.

A common assumption made in school choice literature is that schools are not strategic players

and often do not have preferences; instead, students are assumed to have objectively verifiable

priorities at the various schools they are eligible for, based on criteria such as whether they live

close to the school. The coarseness of these priorities gives the mechanism designer some flexibility

in how the mechanisms are actually implemented. An important theme in this literature is the issue

of single versus multiple tie breaking. Under the single tie-breaking rule, a strict ordering of the
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students is drawn by the schools collectively, and all ties within a priority class are broken according

to this tie-breaking rule; under multiple tie-breaking, however, each school draws its own random

ordering of the students for breaking ties. Abdulkadiroglu et al. [Abdulkadiroglu et al., 2009]

empirically compared single tie-breaking verus multiple tie-breaking for the Deferred Acceptance

mechanism using data from New York City public schools and observed that single tie-breaking

results in more students receiving their top choices, but also in more students receiving a “poor”

outcome or being unassigned. Recent papers of Arnosti [Arnosti, 2015], Ashlagi & Nikzad [Ashlagi

and Nikzad, 2015] and Ashlagi, Nikzad, and Romm [Ashlagi et al., 2015] study various aspects

of this issue carefully and find that single tie-breaking is better in “over-demanded” markets,

whereas there is a real trade-off between these rules in under-demanded markets. A concrete design

recommendation of Ashlagi and Nikzad [Ashlagi and Nikzad, 2015] is that “popular” schools use

single tie-breaking to break ties, which is the tie-breaking rule used in our work. We note that

the coarseness in school priorities is an important element in our model: RLDA exploits these

indifferences to reduce the number of reassignments, while satisfying natural efficiency and fairness

properties.3

A second strand of literature that is somewhat relevant to our model is the work of Abdulka-

diroglu and Sonmez on house allocation models with existing tenants [Abdulkadiroglu and Sonmez,

1999]. This model is a hybrid version of the housing market problem [Shapley and Scarf, 1974] in

which each agent owns a house and has strict preferences over all houses, and the house allocation

problem in which a set of agents collectively own houses (but no house is endowed to any indi-

vidual agent) that they wish to allocate among themselves. In the hybrid model, there are agents

of both types (some who are endowed with houses; and some who are not) and houses of both

types (some that are endowed to an agent; and some not). The key contribution of Abdulkadiroglu

and Sonmez [Abdulkadiroglu and Sonmez, 1999] is a mechanism that simultaneously generalizes

TTC and Random Serial Dictatorship in the following sense: when each agent is endowed with a

house, their mechanism coincides with the TTC mechanism; and when no agent is endowed with

a house, their mechanism coincides with the random serial dictatorship mechanism. Furthermore,

3Prior work has exploited indifferences to achieve other ends. For example, Erdil and Ergin [Erdil and Ergin,

2008] show how to improve allocative efficiency; and Ashlagi and Shi [Ashlagi and Shi, 2014] show how to increase

community cohesion.
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they show that this new mechanism is strategy-proof, Pareto efficient, and individually rational (if

an agent’s endowed house is allocated to someone else, that agent strictly prefers her assignment

to her original endowment), and give other mechanisms for this hybrid model. Given our extensive

understanding of the hybrid model, one could proceed by treating the first-round assignment to

each student as her endowment, and apply the generalized TTC mechanism. While this is a natural

idea, it suffers from some drawbacks. First, the endowments in the hybrid model are exogenous,

whereas in our model the endowments are computed based on the preferences; so a strategy-proof

mechanism in the hybrid model is not necessarily strategy-proof in ours, as a student could manip-

ulate the mechanism by manipulating the endowments received in the first round. Secondly, while

the TTC mechanism is natural in a model with endowments, it may not be a good mechanism for

assigning public-school seats to students, where it is perfectly reasonable for a student to have a

right to attend a school, but not to be able to trade these rights with each other. In other words,

the first-round assignment in our context should serve only as a guarantee on a student’s final

allocation, not as a means to improve her eventual allocation.

Our work is among the few papers to consider a dynamic point of view of school admissions.

To our knowledge, Compte and Jehiel [Compte and Jehiel, 2008] were the first to consider the

Deferred Acceptance mechanism for the problem of reassigning agents to positions in an organi-

zation when each agent already holds a position. Agents have preferences over the positions, and

each position has a rank-ordering of the agents reflecting how well their skills fit the position. The

standard Deferred Acceptance mechanism applied to this problem may make agents worse-off in

the reassignment, which may not be acceptable in environments when participation is voluntary.

To incentivize participation, they apply the Deferred Acceptance mechanism to a modified instance

in which the top-priority agent at any position is the one who currently occupies it. This modified

Deferred Acceptance mechanism is strategyproof, stable, and respects individual guarantees (each

agent is assigned to a weakly better position). Subsequently, Combe, Tercieux, and Terrier [Combe

et al., 2016] study a more general model, motivated by the problem of assigning teachers to posi-

tions. In this model the mechanism is faced with two types of teachers: those that already have a

position and are looking to improve, and those who are new to the system. As some teachers are

already assigned to a school, the mechanism must guarantee an outcome that is at least as good

for such teachers (individual rationality). The standard Deferred Acceptance algorithm guarantees
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stability with respect to the reported preferences, but may fail individual rationality, whereas the

modified Deferred Acceptance algorithm guarantees individual rationality but may violate stability

with respect to the original school preferences because those are artificially modified to prioritize

the teachers who are already at the school. Combe et al. (among many other results) show that the

modified Deferred Acceptance mechanism can be improved significantly in terms of overall welfare

while also reducing the degree of instability. While the mechanism we use is a many-to-one version

of this modified Deferred Acceptance mechanism, a critical distinction between this stream of work

and ours is that their models assume the endowment (initial assignment) to be exogenous, whereas

in our model this is also obtained by running a Deferred Acceptance mechanism. This opens up

the possibility of an agent improving their eventual assignment by manipulating their intermediate

endowment, a feature that is notably absent from this literature. A second important distinction

is that we are interested in exploiting indifferences in school priorities to reduce the number of

reassignments, which is not addressed in this literature.

Finally, Narita [Narita, 2016] analyzes the preference data from NYC school choice system and

observes that preferences change after the initial match as students learn more about the schools.

His work is focused on developing an empirical model of evolving preferences. Using this model,

Narita concludes that the welfare cost of ignoring changes in demand is large, and proposes a

centralized reallocation mechanism that can best accommodate these changing preferences. In this

context, Narita also considers the modified Deferred Acceptance mechanism and establishes its

usefulness. However, Narita does not explore how the mechanism can minimize reassignment costs,

which is a central component of our work.

6.2 Model

We start by describing a setup with a finite set of students (and later use it for our empirical

analysis). In Section 6.2.2, we translate to a setting with a continuum of students which facilitates

our theoretical analysis.
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6.2.1 Discrete Model

We consider the problem of allocating seats at a finite set S of schools to a finite set A of students.

Students initially submit their preferences over the schools. Schools have weak priorities over

students, and ties are broken according to a single lottery order across all schools. Seats are initially

allocated according to the student optimal Deferred Acceptance (DA) algorithm [Abdulkadiroglu

and Sönmez, 2003]. However, the students who are allotted seats may subsequently be presented

with better outside options, such as admission to a private school that is not in S, and may no longer

be interested in the seats allotted to them, effectively vacating them. After these outside options

are revealed, students submit their new ordinal preferences over schools, and a reassignment is

computed. Since the reassignment occurs at a relatively late stage, moving students from one school

to another is costly, potentially for both schools and students. Our goal is to design a procedure to

find a new assignment that minimizes the amount of student movement with respect to the original

assignment, while satisfying appropriate notions of efficiency, fairness, and incentives. We call the

initial stage of seat allocation the first round, and call the reallocation stage after vacancies are

created the second round. We emphasize that the first-round mechanism is fixed to be DA with a

single uniformly random lottery for tie-breaking, and that the only freedom afforded the planner is

the design of the second-round mechanism.

Formally, let S = {s1, . . . , sn} be a finite set of schools, and let sn+1 6∈ S denote the outside

option. Let A = {1, . . . ,m} be the set of students. For every school si ∈ S, let qi ∈ N+ be the

capacity of school si. We assume that the outside option has infinite capacity qn+1 = ∞. Each

school si has weak priorities �Si over A, which partition the students into priority classes.

Each student a ∈ A has strict first round preferences �a and second round preferences �̂a over

S∪{sn+1}. We assume that �̂ is consistent with �, meaning that the second round preferences are

obtained from the first round preferences via truncation: for every a ∈ A: (1) for every si, sj ∈ S,

si �a sj iff si�̂asj , and (2) for every si ∈ S, sn+1 �a si implies sn+1�̂asi. Note that this simply

corresponds to the preferences over S being fixed, while the ranking of sn+1 weakly improves,

corresponding to an outside option (possibly) being realized between the two rounds.

An assignment is a function α from A to S ∪ {sn+1}, where |α(si)| ≤ qi for all si (in a slight

abuse of notation, we use α(si) to denote α−1(si)). A lottery is a bijection L : A → {1, · · · ,m},

and we will call L(a) the lottery number of student a. In adherence with current practice [Ashlagi
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and Nikzad, 2015], we will assume that the first round assignment µ is obtained via DA, with

student preferences �, and school preferences given by taking the priorities �S and breaking ties

according to a (uniformly random) lottery L in favor of the student a with the larger L(a). The

goal is to compute a second round assignment function µ̂, which we call a reassignment, based on

this first round assignment and students’ reported second round preferences (as well as the first

round preferences and the lottery).

Let us describe some of the desired properties of such a reassignment. Naturally, any reassign-

ment which requires taking away a student’s initial assignment against their will is impractical.

Thus, we require our reassignment to respect first-round guarantees:

Definition 6.1. A reassignment µ̂ respects guarantees if every student prefers their second round

allocation to their first round allocation, that is, for every a ∈ A, µ̂(a)�̂aµ(a).

One of the main reasons for using DA in the real world is the way it respects priorities: if

a student is not assigned to a school she wants, it is only because that school is full of students

of higher priority. A desired property from a reassignment mechanism is to continue respecting

priorities, even in the final assignment:

Definition 6.2. A reassignment µ̂ respects priorities if for every school si ∈ S and student

a ∈ A such that si �̂a µ̂(a), we have |µ̂(si)| = qi and for every a′ such that µ̂(a′) = si, we have

a′ �Si a.

We define what we mean by a transfer student. All else being equal, we want to minimize the

number of such students.

Definition 6.3. A student a ∈ A is a transfer student if she leaves a school in S for another

school in S. That is, a is a transfer student under reassignment µ̂ if µ(a) 6= µ̂(a) and µ(a)�̂asn+1.4

The timeline is as follows. First, students submit first round preference reports �r and the

mechanism designer obtains the first round assignment µ by running DA with (single) tiebreaking

via a uniformly random lottery L. Then, students observe their outside option, and update their

4Several alternative definitions of transfer students, such as counting students who are initially in sn+1 and end

up at a school in S, and/or counting students who no longer find their initial assignment acceptable, could also be

considered. We note that our results continue to hold for all of these alternative definitions.
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preferences. Finally, students submit their updated second round preference reports �̂r and the

mechanism designer obtains the second round assignment µ̂ by running a reassignment mechanism.

A reassignment mechanism is a function that maps L, µ and the agents’ reports �r and �̂r into a

reassignment µ̂.

We focus on the following class of reassignment mechanisms, which is a very natural one to

consider if respecting guarantees and priorities is required:

Definition 6.4 (Permuted Lottery Deferred Acceptance Mechanisms). Let P be a permutation

of {1, . . . ,m}. The permuted lottery deferred acceptance mechanism (PLDA) associated with P

computes a reassignment by running DA on A with student preferences �̂r and S with school

preferences �̂S determined as follows. For each si:

• A student a ∈ A for which µ(a) = si is denoted as guaranteed at si, and all other students

are non-guaranteed at si.

• Schools prefer all guaranteed students to all non-guaranteed students, that is, for every student

a ∈ A guaranteed at si and student a′ ∈ A non-guaranteed at si, a�̂Si a′.

• Ties within each of the two classes (guaranteed and non-guaranteed) are broken first according

to �Si , and then according to the permuted lottery P ◦L (in favor of the student with the larger

permuted lottery number).

In this paper, we provide some evidence to support the use of the reverse lottery DA (RLDA)

mechanism, which is a PLDA associated with the permutation P (a) = m − L(a) + 1 (namely,

the permutation that reverses the order induced by L). We note that PLDA mechanisms respect

guarantees and priorities, assuming truthful reports of preferences. Now, these mechanisms are

not generally strategyproof, meaning that it is not always optimal for a student to report her

preferences truthfully. Note that we refer to the student potentially manipulating both her first

and second round preferences in order to improve her final assignment.

Example 6.1. Consider a setting with n = 2 schools and m = 4 students. Each school has capacity

1 and a single priority class. For readability, we let ∅ denote the outside option, ∅ = sn+1 = s3.

The students have the following preferences:

1. s1 �1 ∅ �1 s2 and ∅ �̂1 s1 �̂1s2,
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2. s1 �2 s2 �2 ∅, second round preferences identical,

3. s2 �3 s1 �3 ∅, second round preferences identical,

4. s2 �4 ∅ �4 s1, second round preferences identical.

Assume the reassignment mechanism is RLDA. Assume student 2’s utility is M for s1, ε for s2,

and 0 for s3 in both rounds, where M >> ε > 0. Consider the lottery L(i) = i (for i = 1, 2, 3, 4).

If the students report truthfully, the first round assignment is

µ(A) = (µ(1), µ(2), µ(3), µ(4)) = (s1, s2, ∅, ∅),

and the reassignment is

µ̂(A) = (µ̂(1), µ̂(2), µ̂(3), µ̂(4)) = (∅, s2, s1, ∅).

However, consider what happens if student 2 reports s1 �r2 ∅ �r2 s2 (and the same in round 2).

Then, the first round assignment becomes µ(A) = (s1, ∅, s2, ∅), and the reassignment becomes

µ̂(A) = (∅, s1, s2, ∅),

which is a strictly beneficial change for student 2 (and in fact, weakly beneficial for all students).

We remark that this reassignment was not stable in the second round when students reported

truthfully, since in that case school s2 had second round preferences 2�̂S2 4�̂S2 3�̂S2 1, and so school

s2 and student 4 form a blocking pair.

Consider now the expected utility of student 2 from reporting truthfully and from misreporting,

when all other students report truthfully and the expectation is over the first round lottery order.

With probability 1
4! , the lottery order is 1 �B 2 �B 3 �B 4, in which case student 2 can change

her assignment from s2 to s1 by reporting s2 as unacceptable. Moreover, one can verify that for

any lottery order, if student 2 receives s1 in the first or second round under truthful reporting, then

she also receives s1 in the same round by misreporting.5 Hence, by misreporting in this particular

fashion, student 2 increases her probability of receiving s1 by at least 1
4! . Thus, for M sufficiently

large relatively to ε, this violates strategyproofness.

5This is because any stable matching in which student 2 is assigned s1 remains stable after student 2 truncates.

Indeed, student 2 is not part of any blocking pair, as she got her first choice; and any blocking pair not involving

student 2 remains blocking under the true preferences, as only student 2 changes her preferences.
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Nevertheless, there is reason to expect that students will not strategize when PLDA mechanisms

are used. The manipulation seen in Example 6.1 is rather complex, as the misreporting student

must manipulate other students’ first round guarantees and eventual assignments in a delicate

fashion. Such “scheming” requires a very high level of sophistication, as well as in-depth knowledge

of other students’ preferences (both first and second round), and hence is quite unrealistic. On

the other hand, in the continuum model presented in Section 6.2.2, where a single student cannot

affect other students’ guarantees and assignments, it is easily seen that it is dominant strategy

for each student to report both her first and second round preferences truthfully.6 We therefore

avoid further distinction between preferences and their reports unless otherwise stated. It is also

worth noting that (in the discrete model) PLDA mechanisms satisfy “strategyproofness” when

the second round is taken in isolation: if the first round reports are fixed, truthful reporting of

second-round preferences is a dominant strategy for each agent. While we do not believe this

sort of “strategyproofness” is sufficient on its own for incentivizing truthfulness, it is certainly an

attractive property to have in a reassignment mechanism.

6.2.2 Continuum Model

While our empirical analysis is done with respect to the discrete model, our theoretical results are

obtained in a model with a continuum of students. One could intuitively think of this model as the

case where the number of students is very large. Azevedo and Leshno [Azevedo and Leshno, 2014]

have provided an appropriate interpretation of DA in such a continuum model. In what follows we

utilize their model for our needs. All of our theoretical results are obtained in the setting where all

students initially belong to a single priority class, at all schools. We therefore present our definitions

in that restricted setting.

In the continuum model, the set of schools remains S = {s1, . . . , sn} with the additional outside

option sn+1 /∈ S as before. The capacities of the schools are q1, . . . , qn ∈ R+, and qn+1 = ∞. A

student type λ is described by the triplet λ = (�λ, �̂λ, lλ), where �λ and �̂λ are strict preferences

over S ∪ {sn+1}, which are, respectively, the student’s first and second round preferences, and

lλ ∈ (0, 1) is the student’s first round lottery number. Let Λ be the set of all student types λ. Let

6While we define the continuum model for the case without priorities, this still holds for any reasonable extension

to the case with priorities.
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η be a probability measure over Λ, which expresses the distribution of lottery numbers across the

student types. For convenience of notation, let Θ be the space of all student preferences, meaning

the set of all first round and second round pairs of strict preferences over S ∪ {sn+1}, and for each

θ ∈ Θ define ζ(θ) = η({λ ∈ Λ : (�λ, �̂λ) = θ}) to be the measure of all students with preferences θ.

We assume that the first round lottery numbers are uniform and do not discriminate based on

preferences (to capture a uniformly random first round lottery order), meaning that for all θ ∈ Θ

and intervals (a, b) with 0 ≤ a ≤ b ≤ 1, the proportion of students with preferences θ who have

lottery number in (a, b) is equal to the length of the interval, η({λ ∈ Λ : (�λ, �̂λ) = θ, lλ ∈ (a, b)}) =

(b − a)ζ(θ).7 We also assume that inconsistent student types have total ζ-measure 0, that is, any

θ violating consistency satisfies ζ({θ}) = 0.

An assignment α is a function from Λ to S ∪ {sn+1}, where for all si ∈ S ∪ {sn+1}, α(si) is

η-measurable, and η(α(si)) ≤ qi. We will again let µ denote the first round assignment, and let µ̂

denote the second round assignment.

Next, we define transfers in the continuum; the definition is virtually identical to the discrete

case.

Definition 6.5. We say that λ ∈ Λ is a transfer student if she leaves a school in S for another

school in S. That is, λ is a transfer student under reassignment µ̂ if µ̂(λ) 6= µ(λ) and µ(λ)�̂λsn+1.

We briefly define (static) DA in the continuum in general. We will then use it to define the first

round and second round assignments. Let each type λ have strict preferences rλ over the schools.

Define tλi ∈ R+ to be the score of type λ in school si, and assume schools prefer students with

higher scores. When the preferences are so defined, Azevedo and Leshno [Azevedo and Leshno,

2014] have shown that, under a few technical conditions (which are trivially satisfied for both of

our rounds), there exists an assignment α which is reasonably interpreted as the result of student

proposing DA. The assignment α is defined via a vector of cutoffs T ∈ Rn+1
+ , where a student of

type λ is assigned to her favorite school among those where her score weakly exceeds the cutoff:

α(λ) = maxrλ {si ∈ S ∪ {sn+1} : tλi ≥ Ti}. T is market clearing, namely η(α(si)) ≤ qi for all

si ∈ S ∪ {sn+1}, with equality if Ti > 0. Azevedo and Leshno [Azevedo and Leshno, 2014] provide

a market clearing cutoff vector that corresponds to student proposing DA. We remark that this set

7This can be justified via an axiomatization of the kind obtained in [Al-Najjar, 2004].
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of cutoffs minimizes all cutoffs at all schools simultaneously (among all market-clearing cutoffs),

although we do not use that fact in our analysis.

We return now to describing our mechanism’s operation in the continuum. The first round

assignment µ is defined via the market-clearing cutoffs C ∈ Rn+1
+ . C corresponds to the case where

each student type λ has preferences �λ and score lλ at each school. Since we are in the case where

there are no first round priorities, the first round is simply random serial dictatorship with the

order given by a first round lottery, and so we will use the terms ‘first round score’ and ‘first round

lottery’ interchangeably to refer to lλ.

Next, let a permutation P to be a (Lebesgue) measure preserving bijection from (0, 1) to (0, 1).

Under permutation P , a PLDA outputs the second round assignment µ̂ = µ̂P , defined via the

market clearing cutoffs ĈP ∈ Rn+1
+ . ĈP corresponds to the case where each student type λ has

preferences �̂λ and score l̂λi = P (lλ) + 1(µ(λ) = si) for each school si ∈ S ∪ {sn+1}. The second

round scores are obtained by permuting the lottery number and then adding 1 for the first round

assignment. Note that since lλi ∈ (0, 1), this makes sure that for every school, students assigned to

it in the first round have a higher score than students not assigned to it in the first round.

The permutation that defines the RLDA mechanism is R, where R(x) = 1 − x. We will also

be interested in the forward lottery deferred acceptance mechanism (FLDA), which preserves the

original lottery order and is defined by the identity permutation F (x) = x.

6.3 Type Equivalence and Transfer Minimization

In this section, we show that in the continuum model, under a certain technical condition, called

the order condition, all PLDAs produce ‘type-equivalent’ assignments, and hence are equivalent in

terms of welfare.8 Furthermore, when this condition is satisfied, RLDA minimizes transfers among

all PLDAs. We also give an example of a concrete class of scenarios where the order condition

holds: the case of uniform dropouts.

6.3.1 The Order condition

We begin by defining the order condition, which we will need to state our main results.

8A reasonable utility model in the continuum would yield that type equivalence implies welfare equivalence.
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Definition 6.6. We say that the order condition holds on a set of primitives (S, q,Λ, η) if:

1. For every permutation P , for all si, sj ∈ S ∪ {sn+1}, if Ci > Cj,then ĈPi ≥ ĈPj .

2. For all pairs of permutations P, P ′ and schools si, sj ∈ S ∪ {sn+1}, ĈPi > ĈPj ⇒ ĈP
′

i ≥ ĈP
′

j .

The first part of the condition says that the cutoff ordering is preserved from the first to the

second round, and second part of the condition simply means that tie breaking is consistent across

permutations. We may interpret the order condition as an indication of consistency of relative

demand for schools. Informally speaking, it means that the revelation of the outside options does

not change the relative popularity of the schools. The requirement that it holds for all permutations

is one of robustness.

6.3.2 Type equivalence and Main Results

Next, we define type equivalence, which simply means that, for PLDAs, the measure of each type

with preferences θ ∈ Θ assigned to each school is independent of the permutation:

Definition 6.7. PLDAs are said to produce type-equivalent allocations under permutations P

and P ′ (or alternatively, permutations P and P ′ are said to be type-equivalent) if for all θ ∈ Θ and

si,
η({λ ∈ Λ : (�λ, �̂λ) = θ, µ̂P (λ) = si}) = η({λ ∈ Λ : (�λ, �̂λ) = θ, µ̂P ′(λ) = si}).

We are now ready to state the main results of this section.

Theorem 6.1 (Order condition implies type equivalence). Assume ζ({θ}) > 0 for all consistent θ ∈

Θ. If the order condition holds, PLDAs produce type equivalent allocations under all permutations.

Proof. Assume the order condition holds. For convenience, we slightly change the second round

scoring function of a PLDA with permutation P to be l̂λi = P (lλ) + 1(lλ ≥ Ci), meaning that

we give each student a guarantee at any school for which they met the cutoff in the first round.

By consistency of preferences, it is easily seen that this has no effect on the resulting assignment

or cutoffs. We re-index the schools in S ∪ {sn+1} so that Ci ≥ Ci+1. Moreover, we assume that

this indexing is done such that ĈPi ≥ ĈPi+1 (as defined by PLDA) holds simultaneously for all

permutations P (this is possible by the order condition). Define Xi = {si, . . . , sn+1}. We say a
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student can afford a school in a round if her score in that round is at least as large as the school’s

cutoff in that round. Let

βi,j = η({λ ∈ Λ : si is the most desirable school in Xj with respect to �̂λ})

be the measure of the students who, when their set of affordable schools is Xj , will choose si (when

following their second round preferences). Let Eλ(C) and ÊλP (ĈP ) be the sets of schools affordable

for type λ in the first and second round, respectively, when running PLDA with lottery P .

Let P be a permutation. Note that βi,j > 0 for all j ≤ i since ζ(θ) > 0 for all θ ∈ Θ (and βi,j = 0

for all j > i). Also note that, for each student λ ∈ Λ, there exists some i such that Eλ(C) = Xi,

and since the order condition is satisfied, there exists some j ≤ i such that ÊλP (ĈP ) = Xj . The

fact that ÊλP (ĈP ) = Xj for some j is a result of the order condition; our modified scoring function

guarantees that Eλ(C) ⊆ ÊλP (ĈP ) (every school affordable in the first round is guaranteed in the

second) and hence that j ≤ i. Let γPi = η({λ ∈ Λ : ÊλP (ĈP ) = Xi}) is the measure of students

whose affordable set in the second round of PLDA with permutation P is Xi.

Let P ′ be another permutation (and define γP
′

i similarly). We will prove by induction that γP
′

i =

γPi for all si ∈ S∪{sn+1}. Note that this implies type equivalence, since by uniformity of the lottery,

we have that for all θ ∈ Θ, η({λ ∈ Λ : (�λ, �̂λ) = θ, ÊλP (ĈP )}) = γPi ζ(θ) and similarly for P ′.9

Assume γP
′

j = γPj for j = 1, . . . , i−1. Then we have that
∑

j≤i−1 βi,jγ
P
j =

∑
j≤i−1 βi,jγ

P ′
j . Assume

that γPi 6= γP
′

i , and assume w.l.o.g. γPi > γP
′

i . It follows that qi ≥
∑

j≤i βi,jγ
P
j >

∑
j≤i βi,jγ

P ′
j ,

where the first inequality follows since si cannot be filled beyond capacity. Thus, under P ′, si is

not full, and therefore ĈP
′

i = 0. However, this means that all students can afford si under P ′,

and therefore γP
′

i = 1−
∑

j<i γ
P ′
j = 1−

∑
j<i γ

P
j ≥ γPi . This provides the required contradiction,

completing the proof.

Theorem 6.2 (Reverse lottery minimizes transfer). If PLDAs produce type equivalent allocations

under all permutations, RLDA minimizes the measure of transfer students among PLDA mecha-

nisms.

Proof. Fix θ = (�θ, �̂θ) ∈ Θ and school si ∈ S. We will show that R minimizes transfers of

students with preferences θ out of school si. Let P be a permutation. The measure of students

9Note that by the change we made to the second round scoring function, the choice a student makes in the first

round does not impact her affordable schools in the second.
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with preferences θ leaving school si in the second round under PLDA with permutation P is

hP = η({λ ∈ Λ : (�λ, �̂λ) = θ, µ(λ) = si, µ̂P (λ) 6= si}). The measure of students with preferences

θ entering school si under permutation P is eP = η({λ ∈ Λ : (�λ, �̂λ) = θ, µ(λ) 6= si, µ̂P (λ) = si}).

Due to type equivalence, there is a constant c, independent of P , such that hP = eP−c. If sn+1�̂θsi,

then there are no transfers of students with preferences θ out of school si. So assume si�̂θsn+1.

We will show that hR ≤ hP for all permutations P . If eR = 0, then hR = eR − c ≤ eP − c = hP

for all permutations P . So assume eR > 0. We claim that in this case hR = 0, which will

complete our proof. Since eR > 0, there exists some student λ ∈ Λ with (�λ, �̂λ) = θ for which

si = µ̂R(λ)�̂θµ(λ). By consistency, we have si �θ µ(λ), and therefore λ could not afford (meet the

cutoff for) si in the first round. Assume hR > 0 (we aim to obtain a contradiction). By similar

reasoning, there exists some student λ′ ∈ Λ with (�λ′ , �̂λ
′
) = θ for which sj = µ̂R(λ′)�̂θµ(λ′) = si.

By definition, λ′ could afford si in the first round, and hence lλ
′
> lλ. Note that since si�̂θsn+1,

then sj�̂θsn+1, and thus by consistency sj �θ si. Thus, λ′ could not afford sj in the first round,

and so, since also lλ
′
> lλ, the definition of RLDA yields l̂λj > l̂λ

′
j under RLDA. Thus, since λ′ can

afford sj in the second round, so can λ, but— as we saw— sj�̂θsi = µ̂R(λ). This is a contradiction,

and therefore hR = 0, completing our proof.

Thus, when the order condition holds, Theorem 6.1 essentially means that all PLDAs will gen-

erate identical welfare; therefore, it is reasonable to focus on the objective of transfer minimization,

and Theorem 6.2 implies that RLDA performs best relatively to that objective.

One important case covered by our results is the case of uniform dropouts. In this case, students

either remain with the same preferences in the second round, or drop out of the system entirely. If

dropouts occur in an i.i.d.-like fashion, the order condition is satisfied.10 One real world scenario

that can be represented this way is when dropouts occur not due to a better private option, but

rather exogenously—say, due to moving to a different city—and thus should not be expected to be

10Formally, this is the case where there exists p ∈ [0, 1] s.t. for every strict preferences over schools �, ζ({θ = (�θ

, �̂θ) ∈ Θ :�θ=�, �̂θ = sn+1 � . . .}) = pζ({θ = (�θ, �̂θ) ∈ Θ :�θ=�}), and ζ({θ = (�θ, �̂θ) ∈ Θ :�θ=�, �̂θ =�

}) = (1 − p)ζ({θ = (�θ, �̂θ) ∈ Θ :�θ=�}). We note that this is essentially the case where dropouts are i.i.d. with

probability p. We do not phrase it in that language because of the well-known technical measurability issue w.r.t. a

continuum of random variables, but it should be noted that this issue can be handled— see, for example, [Al-Najjar,

2004].
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correlated with preferences or first round assignments.

6.4 Empirical Analysis

In this section, we use actual data from New York City’s (NYC) school choice program to simulate

and evaluate the performance of PLDA mechanisms under different permutations P . The simula-

tions indicate that our theoretical results are real-world relevant. Different choices of P are found

to yield similar allocative efficiency: the number of students assigned to their k-th choice for each

rank k, and number of students remaining unassigned, are very similar for different permutations P .

At the same time, the difference in the number of transfer students is significant, and is minimized

under RLDA.

6.4.1 The Data and Simulations

We use data from the high school admissions process in NYC for the academic years 2004-05,

2005-06 and 2006-07, as follows:11

1. First round preferences: In our simulation, we take the first round preferences � of every

student to be the preferences they submitted in the main round of admissions. Except for

the fact that students may rank no more than 12 schools in reality, the algorithm used in

practice is strategyproof [Abdulkadiroğlu et al., 2005], so it may be reasonable to assume

these preferences to be true (but see [Hassidim et al., 2015]).

2. Second round preferences: In our simulation, students either drop out from the system entirely

in the second round or maintain the same preferences. Students are considered to drop out

if the data does not record them as attending any public high school in NYC the following

year. For a minority of the students (9.2%− 10.45%), their attendance in the following year

could not be determined by our data, and hence we make them drop out randomly at a rate

equal to the rate of dropouts for the rest of the students (8.9%− 9.2%).

11We performed an initial cleanup of the data, such as removing preference entries which did not correspond to an

existing school code.
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3. School capacities: Each school’s capacity is set equal to the number of students assigned to it

in the data.12 This is a lower bound on the actual capacity; however, it should be noted that

schools for which this lower bound is strict are schools which remained non-full in reality.

Informally speaking, such schools could be considered “unpopular”, and one could intuitively

expect the additional capacity in such schools to have little impact.

4. School priorities over students are obtained directly from the data.13

We consider the following family of permutations, parameterized by a single parameter α, that

smoothly interpolates between RLDA and FLDA. Each student a receives a uniform i.i.d. first

round lottery number la (a normal variable with mean 0 and variance 1), generating a uniformly

random lottery order as needed. The second round lottery number of a is specified as αla + l′a,

where l′a is a new i.i.d. normal variable with mean 0 and variance 1, and α is identical for all the

students. Note that α = −∞ corresponds to RLDA and α =∞ corresponds to FLDA. For a fixed

real α, every realization of second round lottery numbers corresponds to some permutation of first

round lottery numbers, with α roughly capturing the correlation of the second round order with

that of the first round. We remark that two different iterations using the same α do not generally

give the same PLDA, since in a PLDA a permutation is deterministic, while l′a is random. We

quote averages across simulations.

6.4.2 Results

The results of our computational experiments based on 2004-05 NYC high school admissions data

appear in Figure 6.1 and Table 6.1 (The results for 2005-06 and 2006-07 were similar). Allocative

efficiency appears to not vary much across values of α: The number of students receiving their k-th

choice for each 1 ≤ k ≤ 12, as well as the number of unassigned students, vary by less than 1%

of the total number of students (larger values of α give more students their first choice, but only

slightly). This is consistent with what we would expect based on our theoretical finding of type

equivalence (Theorem 6.1) of the final allocation under different PLDA mechanisms.

12As per the final assignment produced by centralized allocation.

13Unlike in the theoretical analysis, where we assumed no priorities, we take them into consideration here. We

obtained similar results to the ones described below in simulations with no school priorities.
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Table 6.1: Simulation Results, 2004-2005 NYC High School admissions

α Transfers Transfers k = 1 k = 2 k = 3 Unassigned

(number) (%) (%) (%) (%) (%)

FLDA: ∞ 7235 8.84 50.27 13.21 7.53 4.79

7.39 7035 8.59 50.26 13.22 7.53 4.79

2.72 6551 8.00 50.21 13.24 7.55 4.79

1.00 5830 7.12 50.10 13.31 7.57 4.78

0.37 5240 6.40 49.98 13.38 7.61 4.76

0.00 4792 5.85 49.86 13.45 7.64 4.76

-0.37 4336 5.30 49.75 13.49 7.68 4.74

-1.00 3751 4.58 49.59 13.55 7.72 4.73

-2.72 3253 3.97 49.47 13.57 7.76 4.71

-7.39 3106 3.79 49.44 13.57 7.76 4.70

RLDA: −∞ 3079 3.76 49.43 13.56 7.76 4.70

The table above describes the mean number/percentage of students transferring, and the mean

percentage getting their k-th choice or remaining unassigned, in terms of their percentage out of

the total number of students, including those that drop out. The data contained 81,884 students

and 653 schools. The percentage of students who dropped out was 9.22%. We averaged across 50

realizations for each value of α. Variation across realizations in number of transfers was ∼ 100.
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Figure 6.1: Number of transfers of students versus α. The number of transfers under the extreme

values of α, namely, α =∞ (FLDA) and α = −∞ (RLDA) are shown via dotted lines.

We find that the mean number of transfers is minimized at α = −∞ (RLDA), and increases

with α, see Figure 6.1, again consistent with our theoretical results (Theorem 6.2). The mean

number of transfers is as large as about 7, 200 under FLDA compared to just 3, 100 under RLDA.

Overall our findings suggest that RLDA would be the best choice of mechanism in the family of

PLDA mechanisms considered.
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Appendix A

Appendix for Chapter 2

In this appendix, we (highly) informally discuss a possible “fix” to EQUAL-UTILITY’s running

time issues. As we have mentioned, EQUAL-UTILITY requires solving two NP-Hard problems:

the knapsack problem and PROGRAM. However, we do have approximation algorithms for these

NP-hard problems: there is a known FPTAS for knapsack [Vazirani, 2013], and from the proof of

Theorem 2.5 we can easily deduce an algorithm which produces 1
1−εα approximation to PROGRAM

in time polynomial in 1
ε whenever EQUAL-UTILITY needs to solve it. The problem is that if we use

these approximation algorithms, strategyproofness can technically be violated in a strange fashion.

To understand this, consider trying to compute OPT (Xi). Suppose that the knapsack FPTAS

is “non-monotonic”, meaning that there exist Xi, X
′
i ∈ Gi where X ′i ⊂ Xi, and yet the FPTAS

provides a higher value solution when it is run on X ′i (than when it is run on Xi). In such a

situation, in EQUAL-UTILITY, it could be in agent i’s best interest to report X ′i when her true

set of items is Xi. Therefore, despite the fact that the goals of the agent and the designer are fully

aligned with each other in this case (they both want to maximize the value of items chosen from

Xi), the agent can potentially benefit from reporting X ′i instead. Nevertheless, if she does so, it

is in an attempt to assist, rather than mislead, the designer by narrowing down the search space.

The violation of strategyproofness in the approximation algorithm to PROGRAM is of the same

kind.

These violations are of the type observed in [Nisan and Ronen, 2007]. Informally speaking, these

strange violations could be eliminated if we allow the designer to “listen” to the agent’s solution

proposals for such problems, and choose the best between her own computed solution and the
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agent’s. Thus, in situations where such communication is possible, EQUAL-UTILITY’s running

time issues can be handled. A formalization of this idea can be made by an adjustment of what is

called “Second Chance Mechanisms” in [Nisan and Ronen, 2007].
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Appendix B

Appendix for Chapter 3

B.1 An Alternative Definition of Individual Cost

Let g be a strictly increasing and convex C1 function on [0,∞) with g(0) = g′(0) = 0. Note that

g(x) = xp satisfies this description for all p > 1. We consider a scenario where the cost of agent i is

C(xi, y) = g(|xi − y|) when the mechanism is deterministic and locates the facility at y. Similarly

C(xi, π) = Ey∼π[g(|xi − y|)] when the mechanism is randomized and locates the facility according

to distribution π. The social cost function (for n = 2) h(|x1− y|, |x2− y|) is only assumed to be (1)

anonymous (h(d, d′) = h(d′, d)) and (2) satisfy that for all a ∈ (min {x1, x2},max {x1, x2}) where

x1 6= x2, h(|x1 − a|, |x2 − a|) < h(|x2 − x1|, 0). Note that for p > 1, the Lp norm of the distances

and the Lp norm of the costs (for the general g above) both satisfy these conditions. We show that

in this case, no randomized strategyproof mechanism satisfying shift invariance, scale invariance

and ex-post Pareto efficiency for n = 2 can help us improve the approximation ratio relatively to

the median mechanism.

Theorem B.1. Let f be a randomized mechanism satisfying shift invariance, scale invariance, and

ex-post Pareto efficiency for n = 2. Assume f is strategyproof with respect to the individual cost

function C(xi, y) = g(|xi − y|), where g is a strictly increasing and convex C1 function on [0,∞)

with g(0) = g′(0) = 0. If the social cost function satisfies (1) and (2), then the approximation ratio

of f is at least as large as the median’s.

Proof. Using a proof similar to that of Lemma 3.4, we may assume without loss of generality that
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f is symmetric. Consider a profile where n = 2 and x1 = 0, x2 = 1. Let Y = f(0, 1). We would

like to show that P(Y ∈ (0, 1)) = 0. Suppose for the sake of contradiction that there there exists

x ∈ (0, 12) such that P(Y ∈ (x, 1−x)) = q > 0. Now suppose agent 2 now misreports his location to

1+ε for some small ε > 0 such that 1
1+ε > 1−x. By shift and scale invariance, f(0, 1+ε) = (1+ε)Y .

Then the difference in cost for agent 2 between the two profile of reports is

E[g
(
|1− (1 + ε)Y |

)
]− E[g

(
|1− Y |

)
] =

= −
∫ 1

1+ε

0
(g(1− y)− g(1− (1 + ε)y))dF (y) +

∫ 1

1
1+ε

(g((1 + ε)y − 1)− g(1− y))dF (y) ≤

≤ P(Y ∈ [
1

1 + ε
, 1])g(ε)− q

(
g(1− x∗)− g(1− (1 + ε)x∗)

)
where x∗ ∈ arg miny∈[x,1−x] g(1 − y) − g(1 − (1 + ε)y). The inequality follows from the fact

that g((1 + ε)y − 1) − g(1 − y) ≤ g(ε) for all y ∈ [ 1
1+ε , 1] and that g(1 − y) − g(1 − (1 + ε)y) ≥

g(1− x∗)− g(1− (1 + ε)x∗) for all y ∈ [x, 1− x]. Note that

lim
ε→0+

E[g
(
|1− (1 + ε)Y |

)
]− E[g

(
|1− Y |

)
]

ε
≤

≤ lim
ε→0+

P(Y ∈ [
1

1 + ε
, 1])

g(ε)

ε
− q g(1− x∗)− g(1− (1 + ε)x∗)

ε
≤

≤ P(Y = 1)g′(0)− qg′(1− x∗)x∗ < 0

The third inequality follows from g′(0) = 0 and g′(1 − x∗) > 0 (since g is strictly convex). This

implies that E[g
(
|1− (1 + ε)Y |

)
]− E[g

(
|1− Y |

)
] < 0 for ε sufficiently small, implying that there is

a profitable deviation for agent 2.

B.2 Omitted Proofs from Section 3.4.2

Lemma 3.6. A symmetric, shift and scale invariant mechanism f is strategyproof if and only if

for any profile x ∈ R2 with x1 = 0 < x2, the following conditions hold:

1. −
∫
(−∞,x2) ydF (y) +

∫
(x2,∞) ydF (y) + x2P(Y = x2) ≥ 0

2.
∫
(−∞,x2) ydF (y)−

∫
(x2,∞) ydF (y) + x2P(Y = x2) ≥ 0
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where Y ∼ f(x) with c.d.f. F .

Proof. First, let us prove that the two conditions imply strategyproofness. By shift invariance and

anonymity, it suffices to check strategyproofness for profiles where x1 = 0 and x2 ≥ 0. Moreover,

any scale invariant mechanism is trivially strategyproof with respect to the profile (0, 0) since scale

invariance implies f(0, 0) = 0, which means that no agent has incentive to misreport his location.1

Thus, we can assume that x2 > 0. It suffices to show that agent 2 cannot benefit by deviating

from his true location if the two aforementioned conditions hold. Since x2 > 0, we can denote

agent 2’s deviation x′2 as cx2 for some c ∈ R. Moreover, we can assume that c ≥ 0. This can be

justified as follows. Assume c < 0. Note that by symmetry, in any fixed profile z, the closer a

point is to mz, the smaller the expected distance of the facility is from that point. In particular,

this implies that C(x2, f(0,−cx2)) ≤ C(−x2, f(0,−cx2)). But also note that by scale invariance,

C(−x2, f(0,−cx2)) = C(x2, f(0, cx2)). Thus, C(x2, f(0,−cx2)) ≤ C(x2, f(0, cx2)). Consequently,

if reporting cx2 is a profitable deviation for agent 2 for some c < 0, then reporting −cx2 is also a

profitable deviation for the agent.

When agent 2 reports his location to be cx2, where c > 1, the change in cost incurred by agent

2 is (where Corig is the expected cost of agent 2 under truthful reporting and Cdev is the expected

1f(0, 0) = 0 follows from, say, f(0, 0) = f(0 · 1, 0 · 1) = 0 · f(1, 1) = 0, where the second equality is by scale

invariance.
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cost of agent 2 under misreporting):

Cdev − Corig =

= −(c− 1)

∫
(−∞,x2

c
)
ydF (y) +

∫
[
x2
c
,x2)

((c+ 1)y − 2x2)dF (y)+

(c− 1)

∫
(x2,∞)

ydF (y) + (c− 1)x2P(Y = x2) =

= −(c− 1)

∫
(−∞,x2)

ydF (y) +

∫
[
x2
c
,x2)

(2cy − 2x2)dF (y)+

(c− 1)

∫
(x2,∞)

ydF (y) + (c− 1)x2P(Y = x2) ≥

≥ −(c− 1)

∫
(−∞,x2)

ydF (y) + (c− 1)

∫
(x2,∞)

ydF (y) + (c− 1)x2P(Y = x2).

Hence, when condition 1 holds, we have that −(c− 1)
∫
(−∞,x2) ydF (y) + (c− 1)

∫
(x2,∞) yF (y) + (c−

1)x2P(Y = x2) ≥ 0, which means that Cdev − Corig ≥ 0.

Similarly, when 0 ≤ c < 1, the change in cost incurred by agent 2 is:

Cdev − Corig =

= (1− c)
∫
(−∞,x2)

ydF (y) +

∫
(x2,

x2
c
]
(2x2 − (c+ 1)y)dF (y)−

(1− c)
∫
(
x2
c
,∞)

ydF (y) + (1− c)x2P(Y = x2) =

= (1− c)
∫
(−∞,x2)

ydF (y) +

∫
(x2,

x2
c
]
(2x2 − 2cy)dF (y)−

(1− c)
∫
(x2,∞)

ydF (y) + (1− c)x2P(Y = x2) ≥

≥ (1− c)
∫
(−∞,x2)

ydF (y)− (1− c)
∫
(x2,∞)

ydF (y) + (1− c)x2P(Y = x2).

Hence, when condition 2 holds, we have that (1− c)
∫
(−∞,x2) ydF (y)− (1− c)

∫
(x2,∞) ydF (y) + (1−

c)x2P(Y = x2) ≥ 0, which means that Cdev − Corig ≥ 0. Hence, the mechanism is strategyproof

for any profile x with x1 = 0 < x2.

To prove the other direction, suppose condition 1 does not hold for some profile x with x1 = 0 <
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x2. Then there exists ε > 0 small enough such that −
∫
(−∞,x2) ydF (y) +

∫
(x2,∞) ydF (y) + x2P(Y =

x2) ≤ −ε for some x2 > 0. We choose c > 1 s.t. P(Y ∈ [x2c , x2)) <
ε

4x2
, then we have that

Cdev − Corig =

= −(c− 1)

∫
(−∞,x2)

ydF (y) +

∫
[
x2
c
,x2)

(2cy − 2x2)dF (y) + (c− 1)

∫
(x2,∞)

ydF (y)+

(c− 1)x2P(Y = x2) ≤

≤ (c− 1)(−
∫
(−∞,x2)

ydF (y) +

∫
[
x2
c
,x2)

(2x2)dF (y) +

∫
(x2,∞)

ydF (y) + x2P(Y = x2)) <

< −(c− 1)
ε

2
< 0,

which contradicts strategyproofness of the mechanism.

Similarly, suppose condition 2 does not hold for some profile x with x1 = 0 < x2. Then there

exists ε > 0 small enough such that
∫
(−∞,x2) ydF (y)−

∫
(x2,∞) ydF (y) +x2P(Y = x2) ≤ −ε for some

x2 > 0. We choose 0 < c < 1 s.t. P(Y ∈ (x2,
x2
c ])) < ε

4x2
, then we have that

Cdev − Corig =

= (1− c)
∫
(−∞,x2)

ydF (y) +

∫
(x2,

x2
c
]
(2x2 − 2cy)dF (y)− (1− c)

∫
(x2,∞)

ydF (y)+

(1− c)x2P(Y = x2) ≤

≤ (1− c)(
∫
(−∞,x2)

ydF (y) +

∫
[
x2
c
,x2)

(2x2)dF (y)−
∫
(x2,∞)

ydF (y) + x2P(Y = x2)) <

< −(1− c) ε
2
< 0,

which contradicts strategyproofness of the mechanism.

Lemma 3.7. Let f be a strategyproof, shift invariant, scale invariant and symmetric mechanism.

There exists another strategyproof, shift invariant, scale invariant and symmetric mechanism g with

a weakly smaller expected social cost on every profile, such that at least one of the following two

properties holds:
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(1) For every two-agent profile x, P(g(x) ∈ (x1, x2)) = 0. (Doesn’t utilize interior)2

(2) For every two-agent profile x, P(g(x) ∈ (−∞, x1)∪ (x2,∞)) = 0. (Ex-post Pareto efficiency)

Proof. Let f be as given above. Assume f violates both (1) and (2) on some profile x (otherwise,

there is nothing to prove: we can take g = f). By shift invariance we may assume without

loss of generality that x1 = 0. We may assume by anonymity and shift invariance that x1 =

0 < x2. Let Y ∼ f(x). Let p1 = P(Y ∈ (mx, x2)) + P(Y=mx)
2 = P(Y ∈ (x1,mx)) + P(Y=mx)

2 ,

p2 = P(x2,∞) = P(−∞, x1), z1 = E[Y 1(Y ∈(x1,mx))]+mxP(Y=mx)/2
p1

, and z′1 = E[Y |Y ∈ (−∞, x1)],

z2 = E[Y 1(Y ∈(mx,x2))]+mxP(Y=mx)/2
p1

, z′2 = E[Y |Y ∈ (x2,∞)].3

Consider a random variable Y ′′ defined as follows: P(Y ′′ ∈ {z′1, x1, z1, z2, x2, z′2}) = 1, P(Y ′′ =

z′1) = P(Y ′′ = z′2) = p2, P(Y ′′ = z1) = P(Y ′′ = z2) = p1, and P(Y ′′ = x1) = P(Y ′′ = x2) = P(Y =

x1) = P(Y = x2). Clearly, Y ′′ is symmetric about the midpoint mx. Since the social cost function

is convex, it follows that E[sc(x, Y ′′)] ≤ E[sc(x, Y )].

Now, consider a random variable Y ′ obtained from Y ′′ as follows. We construct Y ′ from Y ′′ by

shifting parts of the probability mass at z1 and z′1 to x1 as well as by shifting parts of the probability

mass at z2 and z′2 to x2 while ensuring that E[Y ′] = E[Y ′′]. Specifically, since z1 < x1 < z′1, we

can write x1 = λz1 + (1 − λ)z′1 for some 0 < λ < 1. One way to shift the probability mass is to

subtract probability λp and (1 − λ)p from z1 and z′1 respectively and add probability p to x1 for

p sufficiently small (do the same transformation for points z2, z
′
2, and x2). This transformation

ensures E[Y ′] = E[Y ′′] because

(p1 − λp)z1 + (p2 − (1− λ)p)z2 + (P(Y ′′ = x1) + p)x1 = p1z1 + p2z2 + P(Y ′′ = x1)x1.

In order to maximize the shift in probability mass, we choose the largest p possible or p =

min(p1λ ,
p2
1−λ). If p = p1

λ , then P(Y ′ ∈ {z′1, x1, x2, z′2}) = 1, as P(Y ′ = z′1) = P(Y ′ = z′2) =

p2 − (1 − λ)p, and P(Y ′ = x1) = P(Y ′ = x2) = P(Y ′′ = x1) + p. Else if p = p2
1−λ , then

2Note that it is possible for such a mechanism to still be ex-post Pareto efficient, if P(g(x) ∈ {x1, x2}) = 1.

3Note that if P(Y = mx) = 0, then z1 is the conditional expectation of Y given that Y ∈ (x1,mx). When

P(Y = mx) > 0, imagine that whenever Y = mx, we flip a fair coin; then z1 is the conditional expectation of Y given

that Y ∈ (x1,mx) or Y = mx and the coin lands on heads. z2 can be defined in a similar manner (replace (x1,mx)

with (mx, x2) and heads with tails). From this description it is clear that z1 ∈ (x1,mx], z2 ∈ [mx, x2), and that they

are symmetric about mx.
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P(Y ′ ∈ {x1, z1, z2, x2}) = 1, P(Y ′ = z1) = P(Y ′ = z2) = p1 − λp, and P(Y ′ = x1) = P(Y ′ =

x2) = P(Y ′′ = x1) + p. It is clear from construction that Y ′ is symmetric about mx. Convexity

implies E[sc(x, Y ′)] ≤ E[sc(x, Y ′′)], and so E[sc(x, Y ′)] ≤ E[sc(x, Y )].

Now, let g be a mechanism that locates the facility according to Y ′ given profile x. Note that

there is a unique way to extend the definition of g to all other two-agent profiles such that g is shift

and scale invariant as well as symmetric; let us extend the definition of g that way. Furthermore,

this extension is easily seen to imply the following:

1. Since E[sc(x, g(x))] ≤ E[sc(x, f(x))] for the profile x, the social cost obtained by mechanism g

via the extension is no more than the one obtained by mechanism f for all two-agent profiles.

2. If P(g(x) ∈ (x1, x2)) = 0, then P(g(q) ∈ (q1, q2)) = 0 for all two-agent profiles q. Similarly,

if P(g(x) ∈ (−∞, x1)∪ (x2,∞)) = 0, then P(g(q) ∈ (−∞, q1)∪ (q2,∞)) = 0 for all two-agent

profiles q.

Thus, all that is left for us to do is to show strategyproofness of g. We can do so by verifying the

conditions in Lemma 3.6 (the fact that it holds for all the required profiles is then again immediate

by shift and scale invariance). When p = p1
λ , we claim that it suffices to show that:

z′2(p2− (1−λ)p)− z′1(p2− (1−λ)p) +x2(P(Y ′ = x2) +p) ≥ (z′2− z′1)p2− (z1 + z2)p1 +x2P(Y = x2)

and that

z′1(p2− (1−λ)p)− z′2(p2− (1−λ)p) +x2(P(Y ′ = x2) +p) ≥ (z′1− z′2)p2 + (z1 + z2)p1 +x2P(Y = x2)

To justify this claim, we need to show that the right hand sides are always greater than or equal to

0. But note that z1, z2, p1, z
′
1, z
′
2, and p2 were defined so that the right hand sides amount exactly

to the conditions of Lemma 3.6 for f on the profile x, and thus must be greater than or equal to

zero. After some algebra, the two inequalities above reduce to:

z′1(1− λ)p− z′2(1− λ)p+ x2p ≥ −z1p1 − z2p1, (B.1)

and

−z′1(1− λ)p+ z′2(1− λ)p+ x2p ≥ z1p1 + z2p1. (B.2)
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To show (B.1), we know that

z′1(1− λ)p+ z1p1 = (z′1(1− λ) + z1λ)p = x1p = 0, that is z′1(1− λ)p = −z1p1,

and that

x2p = (z′2(1− λ) + z2λ)p ≥ z′2(1− λ)p− z2p1, that is x2p− z′2(1− λ)p ≥ −z2p1.

Combining the two above expressions gives us the desired result. Similarly, (B.2) follows from the

fact that z′1(1− λ)p+ z1p1 = 0 and that x2p = (z′2(1− λ) + z2λ)p ≥ −z′2(1− λ)p+ z2p1. The proof

for the case where p = p2
1−λ is similar and so will be omitted.

B.3 Alternative Assumptions in Section 3.4.2

Theorem 3.4 holds if we replace the assumption of shift invariance with symmetry. It is clear from

the structure of the proof that it is enough to replace Lemma 3.4 with the following lemma:

Lemma B.1. Given any strategyproof, symmetric and scale invariant mechanism, there exists a

strategyproof, symmetric, scale and shift invariant mechanism with a weakly smaller worst-case

approximation ratio.

Proof. Given a mechanism f , define g(x) = f(0, x2−x1)+x1. Assume f is strategyproof, symmetric

and scale invariant. We claim that g is strategyproof, symmetric, scale and shift invariant with a

weakly smaller worst-case approximation ratio. The fact that g is shift invariant and has a weakly

smaller worst-case approximation ratio than f is immediate. Let Yx1,x2 ∼ f(x) and Y ′x1,x2 ∼ g(x);

the relevant equalities below are in distribution.

1. g is symmetric: let x ∈ R2, and let b ∈ R. Then P(Y ′x1,x2 ≥ mx + b) = P(Y0,x2−x1 ≥

mx + b − x1) = P(Y0,x2−x1 ≥ m(0,x2−x1) + b) = P(Y0,x2−x1 ≤ m(0,x2−x1) − b) = P(Y0,x2−x1 ≤

mx − b− x1) = P(Y0,x2−x1 + x1 ≤ mx − b) = P(Y ′x1,x2 ≤ mx − b).

2. g is scale invariant: let x ∈ R2 and let c ∈ R. Then Ycx1,cx2 = Y0,c(x2−x1) + cx1 = cY0,x2−x1 +

cx1 = c(Y0,x2−x1 + x1) = cY ′x1,x2 . The second equality follows from scale invariance of f .

3. g is strategyproof: let x ∈ R2, b, x′2 ∈ R. There are two cases:
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(a) Assume E[|x2 − Y ′x1,x2 |] > E[|x2 − Y ′x1,x′2 |]. Note that E[|x2 − Y ′x1,x2 |] = E[|(x2 − x1) −

Y0,x2−x1 |] and E[|x2 − Y ′x1,x′2 |] = E[|(x2 − x1) − Y0,x′2−x1 |]. Thus, it follows that when

agent 1’s location is 0 and agent 2’s location is x2−x1, agent 2 can benefit under f when

reporting x′2 − x1 instead, violating strategyproofness of f . Contradiction.

(b) Assume E[|x1−Y ′x1,x2 |] > E[|x1−Y ′x1+b,x2 |]. Note that E[|x1−Y ′x1,x2 |] = E[|−Y0,x2−x1 |] =

E[|(x2 − x1)− Y0,x2−x1 |], where the last equality follows from symmetry of f . Also note

that E[|x1 − Y ′x1+b,x2 |] = E[| − b− Y0,x2−x1−b|] = E[|(x2 − x1)− Y0,x2−x1−b|], where again

the last equality follows from symmetry of f . Thus, when agent 1’s true location is 0 and

agent 2’s true location is x2−x1, then agent 2 benefits under f by reporting x2−x1− b,

violating strategyproofness of f . Contradiction.
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