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ABSTRACT

Architectures of School Mathematics: Vernaculars
of the Function Concept

Jacob Frias Koehler

This study focuses on the history of school mathematics through the discourse surrounding

the function concept. The function concept has remained the central theme of school math-

ematics from the emergence of both obligatory schooling and the science of mathematics

education. By understanding the scientific discourse of mathematics education as directly

connected to larger issues of governance, technology, and industry, particular visions for

students are described to highlight these connections. Descriptions from school mathemat-

ics focusing on expert curricular documents, developmental psychology, and district reform

strategies, are meant to explain these different visions.

Despite continued historical inquiry in mathematics education, few studies have offered

connections between the specific style of mathematics idealized in schools, the learning

theories that accompanied these, and larger societal and cultural shifts. In exploring new

theoretical tools from the history of science and technology this study seeks to connect

shifting logic from efforts towards rational organization of capitalist society with the logic

of school mathematics across the discursive space. This study seeks to understand this

relationship by examining the ideals evinced in the protocols of educational science. In

order to explore these architectures, the science of mathematics education and psychology

are examined alongside the practices in the New York City public schools–the largest school

system in the nation. To do so, the discourse of the function concept was viewed as a set of

connections between mathematical content, psychology, and larger district reform projects.

Four architectures–the mechanical, thermodynamic, cybernetic, and network models–are

examined.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

“Our schools are, in a sense, factories in which the raw materials (children) are to be

shaped and fashioned into products to meet various demands of life... This demands good

tools, specialized machinery, continuous measurement of production to see if it is

according to specifications, the elimination of waste in manufacture, and a large variety of

output.”–Elwood P. Cubberley1

This study seeks to examine the transformations in the school machinery through the sub-

ject of mathematics. By focusing on the central organizing principle of the discipline–the

function concept–transformations in visions for the mathematical citizenry are described.

Beginning with the rise of mass public schooling in New York City through the emergence

of post-World War II reforms, these changes are explored through three different kinds

of techno-scientific regimes; clockwork mechanisms, fuel powered engines, and abstract

cybernetic information processors.

1.1 Need for the Study

Since the dawn of the modern public school system, mathematics education has occupied

a troubled position within the field, becoming the site of a contentious discourse that while

1. Ellwood Patterson Cubberley, Public School Administration: a Statement of the Fundamental Princi-

ples Underlying the Organization and Administration of Public Education (Houghton Mifflin, 1922), 338.
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taking different forms through time, continues to rage.2 At the heart of the discussion are

questions about how to improve the content, teaching, and performance of students-all of

which are seen as suffering- in mathematics throughout the public high schools of the United

States. While calls to attend to the poor state of mathematics education have sounded

throughout the twentieth century and well before, often school mathematics is taken for

granted as a necessary part of every child in the United States adolescent experience.

The notion of school mathematics, algebra in particular, as a gatekeeper to higher ed-

ucational and societal positions, comes with it an assumed importance for the culture of

American society.3 While this importance has seen its questioning since earlier times, math-

ematics has maintained a prominent role in the obligatory public school cannon through-

out the twentieth century.4 During this time, the professional community has primarily

directed its efforts towards the delivery and assessment, the processes and outcomes, and

how to alter mathematics instruction to be more appropriately carried out. Critiques focus

on who is being left out, and how to bring needed equity into the practice, rather than

questioning the practice itself as a necessary element in the certificating processes of the

modern child.

Because the more particular questions continue to receive the lions share of attention

from the research community, larger questions about the nature of knowledge of school

mathematics have gone unexamined. This research seeks to offer an alternative way of

looking at such problems by examining the history of the school mathematics as a scien-

tific discourse through the example of the function concept. Rather than positing school

mathematics as an obvious part of the contemporary educative experience, this study seeks

to ask how it has become possible to see an alternative situation as anything but rational.

2. George M. A. Stanic, ‘The Growing Crisis in Mathematics Education in the Early Twentieth Century,’

Journal for Research in Mathematics Education 17, no. 3 (1986.):

3. David W Stinson, ‘Mathematics as gate-keeper: Three theoretical perspectives that aim toward em-

powering all children with a key to the gate,’ The Mathematics Educator 14, no. 1 (2004.).

4. Herbert M Kliebard and Barry M Franklin, ‘The Ascendance of Practical and Vocational Mathematics,

1893-1945: Academic Mathematics under Siege,’ in A History of School Mathematics, ed. GMA Stanic and

J.Kilpatrick, vol. 1 (NCTM, 2003.), 399–440.
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1.2 Purpose of the Study

The purpose of the study is to examine the history of obligatory high school mathematics

through the mathematical concept of function. The function concept has been identified

as the unifying idea through school mathematics since mass schooling arose in the United

States at the turn of the twentieth century. In formal mathematics, the function concept

stood at the center of some of the most important developments for centuries. This den-

sity of discourse on both the school mathematics function and the formal mathematicians

function makes it an ideal place to emphasize the political technologies of schooling.

To investigate the history of school mathematics as a scientific discourse on the function

concept means recognizing the dynamic nature of school mathematics itself. Mathematics

education is composed both of problems around mathematics and issues around education.

In terms of the function concept, numerous definitions have occurred throughout school

mathematics in the twentieth century. This study seeks to connect the changing use of

mathematical definitions to the larger discursive practices surrounding school mathematics

by examining their rooting in formal mathematics and psychology.

In order to do so, a certain understanding of the disciplines themselves needs to be

clarified. The mathematical discourse on the function concept will be analyzed from a

stance that sees mathematics as a cultural practice rather than a practice that involves

the study of absolute truths. An example from the history of mathematics that will prove

relevant to school mathematics in the post World War II era would be what Corry has

referred to as a structural image of algebra.5 The idea of an image of knowledge is used

in describing an attempt to study mathematics reflexively. This view recognizes two kinds

of questions might be asked by the historian; those dealing with the subject matter of

mathematics (or within the body of knowledge), and questions dealing with the larger

discipline itself(the image of knowledge). Here, the notion of Newton’s laws of motion

are exemplary of answers to a question about a problem in the mathematical ’body of

knowledge’. However, when comparing the Ptolemaic and Newtonian models of the solar

system, questions about the discipline itself are being asked. In approaching the history of

5. L. Corry, Modern algebra and the rise of mathematical structures (Birkhäuser Verlag, 1996)
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mathematics in such a way, Corry argues that it is the historians duty to relate the changes

in the body of knowledge to those in the image of knowledge itself.

Corry utilized this approach to investigate the history of the structural image of algebra

that emerged in the work of Dedekind in the eighteenth century and was later the center-

piece of the Bourbaki’s foundational stance. This work will be of fundamental importance

to school mathematics in the aftermath of World War II and the rise of the new math.

Further, while this work provides an understanding of a particular mathematical image,

the structural image does not constitute the sole image of mathematics education in the

twentieth century. Additional works will be consulted which produce alternative images of

mathematical and scientific knowledge.

Unlike Corry’s work, however, the historian of mathematics education must attend to

understand the educational component of school mathematics. While relying on certain

mathematical images of content, school mathematicians were primarily involved in prob-

lems of training students to understand particular presentations of school mathematics.

Therefore it is not enough to simply attend to the mathematical ideas but also to the

understanding of the science of training.

Joining mathematics and mathematical training has recently been explored from a

similar standpoint where the historian has begun to pay attention to issues of scientific

pedagogy. For example, Kaiser explored the dispersion of Feynman diagrams in postwar

physics while focusing on how training with the new diagrammatic practice was central to

a particular theoretical stance in physics.6 Warwick explored the history of mathematical

physics at Cambridge in a similar way, paying close attention to the role of the tripos

examination and the rise of purely analytic solution methods.7

Elsewhere, these authors have explicitly discussed the problem of researching training.

Drawing on Foucault and Khun, Warwick and Kaiser recognize scientific practice and

scientific pedagogy as integrally linked and call for further work to explore the connection to

6. David Kaiser, Drawing Theories Apart: The Dispersion of Feynman Diagrams in Postwar Physics

(University of Chicago Press, 2005)

7. Andrew Warwick, Masters of Theory: Cambridge and the Rise of Mathematical Physics (University

of Chicago Press, 2003)
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certain scientific models and the training practices that accompanied them.8 While these,

and other authors recent work has marked this important shift, none of the studies have

attempted to study the massive state scientific training machine of school mathematics.

There have been important studies in the history of education which have begun to

investigate the relationships between different scientific images and the coincident science

of the child. Most notable to this study is Bakers work on the nineteenth century thinkers

readings of child development and learning. Here, Baker contrasts Platonic, Aristotelian,

and Newtonian approaches to problems of power and motion to reveal similar approaches

to rationales of child development.9 Baker also calls on Foucault’s work to explain her

approach.

Much like Corry and Elkana’s use of the division between the body of knowledge and

image of knowledge, Foucault discussed knowledge with the French vocabulary for of both

connaissance and savior.10 These describe something along the lines of the body image

dichotomy of scientific knowledge and are notions which suggested be of interest to the

historian of science. Foucault expounded this understanding throughout what he called

his archaeologies.

He claimed that rather than exploring the sciences through the “consciousness\knowledge

(connaissance)\science axis (which cannot escape subjectivity), archaeology explores the

discursive practice\knowledge (savior)\science axis.”11 Central to these studies is a focus

on the discourse of science. For Foucault, the notion of discourse was more than simply

what had been spoken, but instead involved an entire network of relationships that exhibit

some kind of regularity in understanding a science and how it viewed its particular ob-

jects.12 By focusing on discourse as a network of relationships, and seeking to describe the

8. Andrew Kaiser David Warwick, ‘Khun, Foucault, and the Power of Pedagogy,’ in Pedagogy and the

Practice of Science: Historical and Contemporary Perspectives, ed. Andrew Kaiser David Warwick (MIT

Press, 2005), 393–409

9. Bernadette M. Baker, In Perpetual Motion: Theories of Power, Educational History, and the Child

(P. Lang, 2001)

10. See Michel Foucault, The Archaeology of Knowledge (Tavistock, 1972), n15.

11. ibid., 183.

12. Foucault discusses this most pointedly in his Archaeology of Knowledge and points to his works The
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rules that determine such relationships, Foucault believes an alternative historical project

can be undertaken in the form of a General History.13 Such work is not meant to give a

totalization but instead describes a subset of interrelations within a larger web of discursive

practices.

Edwards elaborated on Foucault’s notion of discourse to examine the role of computers

in post World War II America. Defining the term, Edwards claims:

”A discourse, then, is a self-elaborating ’heterogeneous ensemble’ that combines tech-

niques and technologies, metaphors, language, practices, and fragments of other dis-

courses around a support or supports. It produces both power and knowledge: indi-

vidual and institutional behavior, facts, logic, and the authority that reinforces it.”14

Central to Edwards’ study was the way in which computer technology made possible a

’closed world’ discourse. Here, the computer as technology provided support for a range

of other scientific knowledge and practice reliant on understanding natural and machine

processes through the computer metaphor. The pinnacle example for Edwards (and many

other recent historians of this period) was the cybernetic movement exemplified in the

writing of Norbert Wiener.

In his codification of cybernetic science, Wiener talked about human cognition and

computer functionality interchangeably. By comparing computers and brains, the cyber-

neticians were in fact participating in a much older practice of linking technological objects

as methphorical basis for scientific practice. Descartes and Helmholtz are two additional

notable figures who had earlier likened the functioning of the human body to that of a

machine, however their machines were distinctly different from that of the computer.

Elsewhere, Deleuze and Guattari deployed a similar notion of a machinic phylum to

describe the coupling of natural and artificial objects in human history. They claim:

History of Madness, The Birth of the Clinic, and The Order of Things as initial attempts of archaeological

studies.

13. Foucault, The Archaeology of Knowledge, 3-12.

14. Paul N. Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America

(MIT Press, 1997), 40.
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”We may speak of a machinic phylum, or technological lineage, wherever we find a

constellation of singularities, prolongable by certain operations, which converge, and

make the operations converge, upon one or several assignable traits of expression.”15

These constellation of singularities are lower, specific parts of the phyla (Deleuze uses

the example of the chemistry of carbon), part of a larger flow that can be recognized by

certain assignable traits. Serres elaborates a similar set of ideas in discussing the classical,

thermodynamic, and cybernetic models that cut across individual sites of discourse includ-

ing the mathematics of Descartes and Fourier and the artwork of Garrard and Turner.16

For these writers and many others, to investigate the history of scientific discourse

means being aware of the objects that were the target of understanding which in turn

informed a larger set of relations. These ideas are important to this study because the

function concept itself was a part of mathematical debates about modeling physical pro-

cesses that had to undergo revision with the rise of new technologies.

These ideas serve to connect the desire to provide sound methodological footing by

positing discourse as the object of study. As noted however, it is not simply enough

to study the curriculum itself but instead how the curriculum has called on a larger set

of relationships that speak to an understanding of nature that is in no way obvious nor

predetermined. The purpose of this study then is to examine school mathematics by

connecting the discourse on the function concept to a larger set of relations that were at

work which made certain discursive formations possible. Specifically, this study will answer

the following questions:

1. How did the discourse on the function concept change in the early and mid twentieth

century in school mathematics?

(a) What was the mathematical heritage of these formations?

(b) How did technology inform this discourse?

2. What was the psychological discourse of the function concept?

15. Gilles Deleuze and Felix Guattari, A Thousand Plateaus: Capitalism and Schizophrenia (Athlone Press,

1988), 406.

16. Michel Serres, Hermes: Literature, Science, Philosophy (Johns Hopkins University Press, 1982)
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(a) How did one learn the function concept?

(b) How did one teach the function concept?

(c) How did one measure understanding of the function concept?

3. How did the discourse on the function concept reflect larger changes in society in

culture?

(a) How do the changes in the mathematics of the function concept relate to these?

(b) How do the changes in the psychology of the function concept relate to these?

1.3 Procedures of the Study

As noted earlier, this study seeks to make use of theoretical tools that allow a reflexive

investigation into the history of the science of school mathematics through the function

concept. Methodologically this study will use the vocabulary of archaeology to describe

the approach that focuses on the discourse of school mathematics. Foucault describes

archaeological history as an endeavor to examine the discourse of an individual in time

as part of a larger set of relationships not easily individuated by the particular author or

scientific disciplinary allegiance. For example, in The Order of Things Foucault described

the connections in the discourse between natural history, language, and political economy.17

In doing so, the goal is to identify shared commitments between these sciences.

”Our aim was to reveal a well-determined set of discursive formations that have a

number of describable relations between them,”18

This archaeology of mathematics education proceeds in a similar manner.

17. ”What I wished to do was to present side by side, a definite number of elements: the knowledge of

living beings, the knowledge of the laws of language, and the knowledge of economic facts, and to relate

them to the philosophical discourse that was contemporary with them during a period extending from

the seventeenth to the nineteenth century.” Michel Foucault, The Order of Things: An Archaeology of the

Human Sciences (Vintage Books, 1970.),x.

18. Foucault, The Archaeology of Knowledge,158.
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Because school mathematics utilizes existing mathematical thinking as a basis for its

discourse, the history of the function concept will be explored first to better understand

how mathematics, technology, and culture interact. While Baker began to explore how

physical and pedagogical theories interact–particularly through the Newtonian world in

perpetual motion–the actual mathematics of Newton does not play a central role. Because

the present study focuses explicitly on the discourse of the function concept, the more

technical considerations have been given coverage in chapter 3–though necessarily limited.

Further, while there are particularly technical discussions around the formal mathe-

matical and physical rooting of the mathematics of the function concept in chapter 3, the

reader who does not desire to engage with the mathematics can easily skip this work to

focus on how these ideas were actualized in the specific episode of school mathematics

described in chapters 4, 5, and 6.

1.3.1 Methodological Needs

Historical research itself was responsible for the earliest work in school mathematics. With

the professionalization of the field at the turn of the twentieth century, the first doctoral

dissertations awarded in mathematics education at Teachers College emphasized the his-

tory of arithmetic in the sixteenth century.19. These works were carried out under the

supervision of David Eugene Smith, a man who himself burst onto the scene with a cri-

tique of Cajoris history of mathematics teaching . Despite this early work taking on a

historical form, the past century has witnessed a rather sporadic production of historically

oriented work.20

More recently, the field of historical work in school mathematics has seen an increased

production of materials and organization.21 Despite the emergence of greater attention,

19. Lambert L. Jackson, ‘Educational Significance of Sixteenth Century Arithmetic from the Point of

View of the Present Time’ (PhD diss., Columbia University, 1906.)

20. Some notable examples are: Phillip S Jones and Arthur F Coxford Jr, National Council of Teachers of

Mathematics Yearbook 32nd (NCTM, 1970). George M. A. Stanic, ‘Why Teach Mathematics? A Historical

Study of the Justification Question’ (PhD diss., University of Georgia, 1983.).

21. B. Sriraman, Crossroads in the History of Mathematics and Mathematics Education, Montana Math-

ematics Enthusiast ; Monograph 12 (Information Age Pub., 2012), 296.
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existing historical work has struggled to find clear methodological footing. Schubring noted

the low emphasis on methodology that has led existent historical research in a problematic

direction.

The low emphasis on methodology may be caused by what proves to be an illusion: the

idea that research into the history of mathematics instruction presents an easy task,

that this history is just a collection of facts which are observable without difficulties, and

that one only needs to collect these facts. This is in particular the view of the history

of mathematics instruction as a series of administrative decisions that supposedly were

transformed into practice. According to this perspective, the history basically is a

history of the curriculum, of the syllabus, managed by centralist authorities...the real

problem is whether, and how, centralized decisions were implemented in school practice,

and this opens up again the immense range of dimensions relevant to the historical

development.22

In The Handbook on the History of Mathematics Education, Schubring has continued

to focus on the methodological issues that surface in conducting research into the history

of mathematics education.23 Behind much of this is that mathematics education itself is

a blending of both scientific and social, and its study requires considering both the formal

scientific and societal practices in order to understand its history. This study seeks to

address these issues by drawing on methodological tools from social histories of scientific

knowledge, providing a new way of thinking about the history of mathematics education

as science.

1.3.2 Socio-Political Problems

In approaching the history of school mathematics through the function concept, this study

also seeks to address recent calls for the incorporation of alternative theoretical frameworks

22. Gert Schubring, ‘Researching into the History of Teaching and Learning Mathematics: the State of

the Art.,’ Paedagogica Historica 42, nos. 4/5 (2006): 665–677

23. Gert Schubring, ‘On Historiography of Teaching and Learning Mathematics’ [in English], in Handbook

on the History of Mathematics Education, ed. Alexander Karp and Gert Schubring (Springer New York,

2014), 3–8
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in socio-political research.24 The rise of such work in the past decades has begun to raise

questions about the positioning of the political within research on mathematics education.

For example, Pais and Valero argue that despite the rise of these socio-political studies,

this work has in fact maintained allegiance to the very research these efforts claim to

be troubling. Maintaining a view that mathematics education is a professional discipline

that studies the teaching and learning of mathematics, that mathematics education seeks

to improve the teaching of mathematics, and that mathematics education as a science

stands as an independent field of research, apart from other educational studies have been

emblematic of the majority of mathematics education whether political or conservative.25

They go on to note the important rise of the incorporation of certain alternative theoretical

frameworks–notably those of Foucault and Zizek–in more recent work as contributing to

the beginnings of such endeavors. Despite the initial use of such alternative frameworks,

these shared commitments have seemingly endured, particularly in political research.

As Valero and Pais suggest, one way to avoid such problems may be to study the

discipline of school mathematics reflexively. Examining a scientific discourse in such a

manner would involve questioning how the discourse becomes able to function and the

rules it operates by instead of seeking to work on the functioning itself. This study argues

that a historical stance affords such reflexivity. Further, that in synthesizing a number of

contemporary works in the history of mathematics and science, the methodological clarity

needed in pursuing such a study can be provided.

While Valero and Pais point to research reliant on postmodern and post-structural

frameworks, historians of mathematics education have been reluctant to adopt such stances.

Writing on methodological issues, Karp briefly mentions the rise of postmodern theories

24. For more on the rise of these see Stephen Lerman, ‘The Social Turn in Mathematics Education,’

in Multiple Perspectives on Mathematics Teaching and Learning, ed. Jo Boaler (Ablex Pub., 2000) and

Rochelle Gutiérrez, ‘The Sociopolitical Turn in Mathematics Education,’ Journal for Research in Mathe-

matics Education 44, no. 1 (2013): 37–68

25. See Alexandre Pais and Paola Valero, ‘Researching research: mathematics education in the Political,’

Educational Studies in Mathematics 80, nos. 1-2 (2012): 9–24, 12-13. A similar critique of ethnomathematics

occurs in: Renuka Vithal and Ole Skovsmose, ‘The End of Innocence: A Critique of ’Ethnomathematics’,’

Educational Studies in Mathematics 34, no. 2 (1997): 131–157.
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that have questioned former research paradigms seeking out strict cause and effect de-

scriptions.26 Despite recognizing these studies, the idea that dealing with mathematics

education may not mean dealing with absolute truths is summarily rejected. Despite this,

the appearance of these alternative frameworks has been taken seriously in a number of

other works on the history of mathematics and science. Motivated by this work, the

present study seeks to answer both the methodological problems that face work in the his-

tory of mathematics education while also elaborating an approach to studying the science

of mathematics education reflexively.

By addressing these issues, this study seeks to engage a wide range of readers interested

in the history of public education, the history of mathematics, of mathematics education,

and of educational psychology. I argue that there have been no studies to understand the

science of education from a reflexive stance and that by doing so provide a different reading

than existing histories of school mathematics and more general histories of education.

1.3.3 Mathematical Background

The function concept developed primarily in early works in dynamics through the model-

ing of a vibrating string. A large literature on the purely mathematical features of these

debates already exists.27 The present study–similar to Baker’s work–identifies the notion

26. See Alexander Karp, ‘The History of Mathematics Education: Developing a Research Methodology,’

in Handbook on the History of Mathematics Education, ed. Alexander Karp and Gert Schubring (Springer

New York, 2014), 9–24, 14-15.

27. See for example: Elizabeth Garber, ‘Vibrating Strings and Eighteenth-Century Mechanics,’ in The

Language of Physics (Birkhauser Boston, 1999), 31–62, J.R. Ravetz, ‘Vibrating Strings and Arbritrary

Functions,’ in The Logic of Personal Knowledge: Essays Presented to M. Polanyi on his Seventieth Birthday,

11th March, 1961 (Taylor & Francis, 2015), 71–88, and C. Truesdell and L. Euler, The Rational Mechanics

of Flexible Or Elastic Bodies, 1638-1788: Introduction to Leonhardi Euleri Opera Omnia Vol X Et XI Seriei

Secundae, Leonhardi Euleri Opera omnia ; Ser. 2, vol. 11, pt. 2 (Orell Füssli, 1960), J.T. Cannon and S.

Dostrovsky, The Evolution of Dynamics: Vibration Theory from 1687 to 1742: Vibration Theory from 1687

to 1742, Studies in the History of Mathematics and Physical Sciences (Springer New York, 2012), and

TinneHoff Kjeldsen and Jesper Lutzen, ‘Interactions Between Mathematics and Physics: The History of the

Concept of Function: Teaching with and About Nature of Mathematics,’ Science & Education 24, nos. 5-6

(2015): 543–559
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of a child in perpetual motion as a model for the early history of the function concept.

This is due to the relationship to the pendulum hypothesis that accompanied the classi-

cal mathematical solution to the problem of the vibrating string. Following this period

however, Newtonian frameworks were rejected and the rise of the study of heat allowed

an alternative vision for mathematics to become reasonable through the rise of the study

of heat and the science of thermodynamics. Perpetual motion and gravitational theories

give way to thermodynamics and pushed earlier understandings of the conservation of en-

ergy to reconsider the impossibility of, as Mirowski says, ’getting something for noting’.28

Later, after numerous incredible efforts at understanding the problem of vibrating strings,

a wholly different form of space was conceptualized most clearly in Lebesgue’s integral and

Weiner’s use of it in re-examining the problem of the vibrating string.

The mathematical background will be discussed more in the following chapter to outline

the particular approaches to doing mathematics of import to this study. Here, four images

of mathematics drive the discussion. The classical, rational, structural, and contemporary

images of mathematics will be connected to prominent mathematicians work that took

up redefining the function concept. Many famous mathematicians including Descartes,

Euler, Fourier, Dedekind, Cantor, Riemann, Lebesgue, the Bourbaki group, McClain, and

Grothendieck have contributed to important work on definitions of the function concept.

While an in depth discussion of the mathematics is beyond the scope of the present study,

the important elements of the mathematics will be laid out based on both primary math-

ematics sources and secondary sources in the form of mathematics textbooks.

As mentioned, the mathematical vocabulary of the function concept arose connected

to modeling the behavior of human technology. Another important focus of this study will

then be to seek out the technological lineage of the different mathematical discourses. To do

so, secondary works that have covered these histories are utilized in filling out connections

to larger cultural practices in the form of clockwork mechanisms, thermodynamic engines,

and cybernetic systems. Mumford, Dijksterhuis, Prigogine and Stengers, Delanda, and

Serres works are central to connecting the mathematical, social, and technological ideals

28. P. Mirowski, More Heat Than Light: Economics as Social Physics, Physics as Nature’s Economics

(Cambridge University Press, 1989), 5-6.
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of these discursive singularities.29

In exploring this history, the vibrating string provides a description of the mathematical

technological lineage of ideas that were later utilized by the school mathematician. The

mathematical and technological background are of import for they form the basis of coming

to understand when, how, and why these mathematical models became useful for schooling

and mathematics education as a science. The coupling of these notions with the science of

education forms the later analysis.

1.3.4 Mathematics Education and the Function Concept

To examine the discourse on the function concept in school mathematics this study will

connect the earlier discussed mathematics with its appearance in the material culture of

school mathematics. To do so, a range of materials from mathematics education will

be explored including committee reports, journal articles, mathematics textbooks, and

examinations. These have been produced in growing quantity since the beginning of the

science of mathematics educations emergence at the turn of the twentieth century.30

Additionally, to answer the second set of questions about the psychology of the func-

tion concept, the professional discourse on educational psychology will be targeted to un-

derstand changing views of research and learning. The psychological works of Edward

Thorndike, Charles Judd, William Brownell, and Jean Piaget are the most important for

the early period of mathematics education. These writers will be explored both for their

theories of learning, but also for their ideas about research practices.

In exploring the mathematical and psychological theories an attempt is made to connect

29. L. Mumford, The Myth of the Machine: Technics and Human Development (Harcourt Brace Jo-

vanovich, 1967), E.J. Dijksterhuis, The Mechanization of the World Picture (Oxford University Press,

1969), I. Prigogine and I. Stengers, Order Out of Chaos: Man’s New Dialogue with Nature (Bantam Books,

1984), Manuel DeLanda, War in the Age of Intelligent Machines (Zone Books, 1991), and Serres, Hermes:

Literature, Science, Philosophy

30. For more on the establishment of mathematics education as a profesion see: Eileen F. Donoghue,

‘The Origins of a Professional Mathematics Education Program at Teachers College’ (PhD diss., Teachers

College, 1987), 329 and Joe Tom Rodgers, ‘The Philosophy oF Mathematics Education Reflected In the

Life and works of David Eugene Smith’ (PhD diss., Vanderbilt, 1976), 139
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the two in terms of shared commitments to understanding the natural world. Each of

the analysis chapters constitute attempts to connect the psychological and mathematical

discourse as specific assemblages with distinctive technological lineages. For Thorndike and

the early school mathematicians, this was a clockwork mechanism. For Judd, Brownell,

and the inter and post war mathematics educators it was a fire powered engine. Later

the cybernetic scientific model gave support to both the New Math and Piaget’s genetic

epistemology. Michael Bloomburg, Joel Klein, neo-Vygotskianism and neo-Piagetianism,

the Common Core State Standards and other contemporary experts rely on a network

architecture.

1.4 Resources for the Study

Professional organizations dealing with mathematics, most notably the College Entrance

Examination Board, the American Mathematical Society and later Mathematical Asso-

ciation of America, the National Council of Teachers of Mathematics, the Progressive

Education Association, the University of Illinois School Mathematics Project, and the

School Mathematics Study Group all discussed the function concept as the central idea in

school mathematics in the form of committee work, journal articles, textbooks and other

curricular materials, and reports. Additionally, a number of journals have continued to

deal with problems of teaching and learning in mathematics including School, Science, and

Mathematics and The Mathematics Teacher provide additional articles dealing with the

function concept through the twentieth century. Textbooks from this period have also been

discussed in other studies, particularly those of Donaghue and Baker et. al.31

Because schooling in the United States involves both national, state, and local gover-

nance, the production of documents around school mathematics in New York City will also

be explored. The New York City public schools were one of the first and largest public

31. Specifically see: Eileen F Donoghue, ‘Algebra and Geometry Textbooks in Twentieth-century Amer-

ica,’ in A History of School Mathematics, ed. George Stanic and Jeremy Kilpatrick, vol. 1 (NCTM, 2003),

329–398, and David Baker et al., ‘One hundred years of elementary school mathematics in the United

States: A content analysis and cognitive assessment of textbooks from 1900 to 2000,’ Journal for Research

in Mathematics Education, 2010, 383–423
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school systems in the United States. Further, situated in New York State, they were part

of a state government that had a board of regents formed prior to the city school system

that was responsible for producing curricular expectations as well as examinations.32 Both

of these sources were readily accessible and explored to better understand both the first

and third set of research questions. The archives of the New York City board of education

as well as the New York State Regents archives were used to access most of this material.

Additionally, a variety of organizations like the AMS, MAA, NCTM, PEA, UCISM, and

SMSG produced curricular documents that will be examined.33 The textbooks, reports,

and journal articles discuss both the mathematical and psychological nature of the func-

tion concept, however additional primary sources from the psychologists of mathematics

education will be utilized to connect the mathematical and psychological discourse. The

psychological works of Edward Thorndike, Charles Judd, William Brownell, and Jean Pi-

aget are the most important for the early period of mathematics education. These writers

will be explored both for their theories of learning, but also for their ideas about research

practices.

32. For more on the background of the New York State Regents Mathematics program see: Robert

Stephen Watson, ‘Stability and Change in New York State Regents Mathematics Examinations, 1866-2009:

A Socio-Historical Analysis’ (PhD diss., City University of New York, 2010), 352.

33. For example: National Education Association of the United States. Committee on College Entrance

Requirements, Report of Committee on College Entrance Requirements July, 1899 (The Association, 1899),

National Committee on Mathematical Requirements, The Reorganization of Mathematics in Secondary Ed-

ucation a Summary of the Report by the National Committee on Mathematical Requirements, Washington,

D.C., 1922, National Council of Teachers of Mathematics, The Place of Mathematics in Secondary Educa-

tion: A Preliminary Report (1938), National Council of Teachers of Mathematics, The Revolution in School

Mathematics: A Challenge for Administrators and Teachers: A Report (1961)
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Chapter 2

Historical Background

2.1 Manhattan Architectures

(a) Map of Plans for New Amsterdam 1644 (b) Lower Manhattan 1759

Figure 2.1: Early Organization of the City of New York

One of the early attractions of the city of New Amsterdam was the fact that there was a

free public school operating starting in 1633.1 As the maps of the period demonstrate, the

organization of the metropolis bears little in common with the contemporary islands streets

and buildings. While the material organization of the built environment has changed, so

has the existence of different forms of schooling. This is not to suggest however, that the

Dutch plans for lower Manhattan were by no means devoid of a plan. For it was ten years

1. M. Cohen and S. Ries, Public Art for Public Schools (Monacelli Press, 2009), 14.
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before the opening of the school, in 1623, that an engineer named Cryn Fredericksz arrived

with the plans for the island arrived to deploy an extension of the homelands architecture.2

The present configuration of the island began in 1807 with Simeon Dewitt, Gouvernor

Morris, and John Rutherford initiated what would later be the 1811 Commissioners Plan.

This work is synonymous with the gridded arrangement of 12 avenues and 155 streets that

still frames the arrangement of the island.

“In fact, it is the most courageous act of prediction in Western civilization: the land it divides,

unoccupied; the population it describes, conjectural; the buildings it locates, phantoms; the

activities it frames, nonexistent.”3

An abstract and anticipatory design, most of the island was still uninhabited. The grid,

however, represented the turn to a new kind of planning and architecture. It was in similar

time, 1805, that the Free School Society was organized in the city, and oversaw a number of

’common schools’.4 These schools were proposed as alternatives to the religious supervision

that was popular, and the common schools were explicitly proposed as a place to help the

2. R. Koolhaas, Delirious New York: A Retroactive Manifesto for Manhattan (Monacelli Press, 1994),

17.

4. Cohen and Ries, Public Art for Public Schools, 14. D. Ravitch, The Great School Wars (Basic Books,
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poor of the city through a non-religious education.

2.1.1 Schooling Background

Figure 2.2: Map of Common Schools in New York City 1850

Dewitt Clinton compared the workings of the Lancasterian inspired schooling to an ef-

ficient machine. The plan of the city’s geography and schools were both making use of

developments in technology through the systematic organization of plans for buildings and

children.

It was in similar time as the Free School Society began their work that a new kind of

school would also make its ways to the shore of the United States. Modeled after the Ecole

Polytechnique, a number of engineering oriented academies began operating up and down

the East Coast of the United States. Institutions like West Point, Rennsselear Polytechnical

Institute, Massachusetes Institute of Technology, and Clemson University were all based on

the Polytechnique and represented a new scientific technical knowledge of the industrialized

1974), . D.B. Tyack, The One Best System: A History of American Urban Education (Harvard University

Press, 1974)
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democratic world. The rise of engineering knowledge, and the institutions that oversaw its

production, were important for both the planning of the city as well as the education of

its inhabitants.

Soon after the events of the late eighteenth and early nineteenth century, New York

City would see the organization of the first governmentally controlled school plan in 1843.5

In similar time the city witnessed the construction of the Crystal Palace, home of the 1854

Exhibition of the Industry of all Nations. Within the new enormous steel building modeled

after the English version of 1851, was housed a demonstration of Otis’ elevator and safety

catch; opening the door to a verticality seldom before seen in architectural form. The rise

of the skyscraper and steel frame building heralded a further development of industry and

imagination.

Figure 2.3: Skeleton of the Crystal Palace

While schooling was occupying a more important component of the cities government,

the individuals eligible were still subject to radically different conditions. African Ameri-

cans were housed in separate ’colored’ schools through the nineteenth century in New York

City until the official elimination of segregation in 1900. Before this, the manumission so-

ciety worked to educate the black children of the city. In addition to the African American

population, there was a growing population of immigrant children flowing into the tene-

ments of lower Manhattan. The architectural inadequacies of the haphazard housing were

portrayed for their continued perpetuation of sickness and death due to overcrowding, lack

5. This was not simply a reorganization of the Free School Society, but instead represented a contentious

debate about control for schooling. For more on this debate, see Ravitch, The Great School Wars
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of ventilation, tendency to catch fire, and propensity to collapse. The illustration below

from Harpers Weekly demonstrates the tenement experience for many of their inhabitants.

Figure 2.4: Tenement House Life in New York 1881.

The sickness and death associated with the immigrants housing was represented fa-

mously in Jacob Riis works. In books like Children of the Poor and The Battle of the

Slums, Riis referred to the tenements as ’death dens’, and demanded a change in con-

dition.6 Tenement schools were included in Riis’ work in the late nineteenth century.

For example, Riis’ photographs below demonstrate the tenement school of a narrow over-

crowded classroom with poor ventilation and light. Similarly, the playground is a long

narrow hallway sharing space with a stove and its pipes.

Before legislation creating a tenement board committee to reform the slums of Reese’s

photographs, New York City organized its school system under the Board of Education in

1898, concurrent with the unification of the five boroughs. With William Maxwell at its

head, the schools also centralized school construction under architect C.B.J. Snyder. Snyder

6. J. Riis, The Battle With The Slum (1902)
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(a) Condemned Playground (b) Condemned Classroom

Figure 2.5: Jacob Riis’ Images of Tenement Schooling

would direct an enormous buliding project constructing more than 350 school buildings

during his tenure (1893-1921). Snyder saw his schools as having a central function of

providing a healthy environment for children. This would include a focus on providing

better light and ventilation across the system.7

Soon after the formation of the Board of Education, the Tenement House Department

was formed to codify new standards for slum architecture. The author of a 1914 report

reflecting on the early work of the Tenement Department would write:

“The city through its Tenement House Department is bringing about permanent im-

provement; structural, letting in light and air; sanitary, giving adequate water supply,

decent toilets and cleanliness throughout the house and in the yards and courts.”8

Further still, connections were made between the cleaning of the slums and the assimilation

of the immigrants through education.

“The next problem is that of educating our citizens, native and foreign, to assume their

responsibilities, to use and to care for the facilities provided, and to co-operate in the

city housekeeping instead of acting like careless children.”9

7. Cohen and Ries, Public Art for Public Schools, 34.

8. Housing Reform in New York City: A Report of the Tenement House Committee of the Charity Orga-

nization Society of the City of New York, 1911, 1912,1913. (M.B. Brown, 1914), 2.

9. ibid., 2.
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For the cities poor and downtrodden at the turn of the century, new forms of gover-

nance offered solutions to the health and educative needs of the city through standardized

protocols foreseen in the plan of 1811. It was at this time however, in opposition to ear-

lier efforts, that all of the cities children’s were considered eligible for schooling. African

American and immigrant, rich and poor, all were soon legislated to attend the booming

public schools. The building of the city as well as the education of its children was to be

overseen by institutions that donned new centralized organizational schemes with control

isolated in the hands of a select few; typically academics, businessmen, and politicians.

These were institutions that arose within a larger social context that also saw the

continued uprising and organization of laborers against their conditions across the United

States. Industry and government cooperated together to quash many of the uprisings,

and offered solutions in the form of new regulation and laws targeting the improvement of

working conditions while at the same time offering certain protections to striking workers.

In short time however, both the workers, government, and industry moved towards massive

centralization. These were calculated moves though, and schools were proposed in the

interest of the corporations facing mobs of unruly workers in order to avoid future work

stoppages.

As David Tyack noted, the U.S Commissioner of Education, following the strike of

1877, suggested:

“Capital, therefore should weigh the cost of the mob and the tramp against the cost

of universal and sufficient education.”10

Work camps and housing in more rural geographies of the later nineteenth century rec-

ognized schooling as an important element of avoiding revolts against management and

working conditions.11 Historians of education for some time have made note of the connec-

tions between the rise of the corporate state and public schooling.12 Further, for example,

10. Tyack, The One Best System: A History of American Urban Education, 74.

11. see H. Zinn, A People’s History of the United States (New Press, 2003), 262.

12. See for example J.H. Spring, Education and the Rise of the Corporate State (Beacon Press, 1972)

and Tyack, The One Best System: A History of American Urban Education, 72-88 , H.M. Kliebard, The

Struggle for the American Curriculum, 1893-1958 (Routledge Falmer, 2004), 105-129.
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in Tyack’s seminal work, one continually finds reference to the mechanical nature of early

schooling. Both the functioning of the districts supervision as well as the behavior of the

children are described in terms of this great machine of schooling. These protocols for

mechanistic schooling were the result of a number of new sciences, including mathemat-

ics education and educational psychology. New scientific methods were hailed for their

objective nature and worked to depoliticize conversations about learning and development.

While historians of education have made note of the connections between the educa-

tional sciences and their new standards of objectivity as well as the functioning of schools

as organizational machinery, none have described the machine itself. In investigating the

discourse of mathematics education since the rise of the schooling machine is seen as when

children were incorporated into the Megamachine of modern industrial American capital-

ism.13 Four distinct mechanical vocabularies have been identified and form the focus of

the analysis of the study–the clockwork, thermodynamic, cybernetic, and network child.

Mechanistic science has been linked to the use of clockwork metaphors and the cre-

ation of pure objectivity through the use of simple machines in observing nature. Two

important elements constituted the clockwork world. First, was the idea that the universe

operated like a perpetual motion machine. Gravity, conservation of energy, and pendu-

lar assumptions are all very important objects of this kind of thinking. Second, for the

mechanist, is the notion that simple machines reveal truths about nature in a purely ob-

jective way. Armed with this belief, a small number of scientists established new research

norms and standards in Renaissance physics and mathematics, as well as twentieth century

mathematics education and psychology.

An alternative to the mechanist, is the thermodynamicist. Here is an example of a

science where energy can be created and disappear. Heat as opposed to gravity drives the

natural processes which interest the scientist. Within these processes, changes occur that

are not simply quantitative but also qualitative. Similar qualitative concerns entered the

realm of research practices that valued the judgement of the observer in an alternative

13. Mumford described the Megamachine as the combined efforts of techno-industrial capitalism.

SeeMumford, The Myth of the Machine: Technics and Human Development and L. Mumford, The Pentagon

of Power, v. 2 (Harcourt Brace Jovanovich, 1974).
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approach to studying natural systems. The mathematical physics of Euler and Fourier and

the psychology of Judd and Brownell belong here.

More recently is the cybernetician. Coupled with problems in computer technology

and weaponry, this science relied on an alternative notion of time with the rise of a vitalist

clock. For school mathematics, this occured alongside the rise of federal educational pro-

grams that focused on both curricular reforms and educational research that both relied

on developments in set theory to frame their materials. Piaget’s version of Bergson was

coupled with a model for a child’s mind based on the mother structures of the Bourbaki’s

mathematics, and the constructivist project is centered on the group concept.

Finally, network architectures feature a radical individualism and open networks of in-

formation flows to drive a late capitalist approach to schooling and control. Ubiquitous

technology and data analysis drive new globalist architectures as well as models for ed-

ucational reform. A shift to rationalizations based on open access and personal choice

are idealized at the district level as well as models for how classroom teaching based on

a certain kind of brain could be improved. The background for these different images of

science are discussed in the following section.

2.2 Scientific Technological Images

Figure 2.6: New York City Board of Education Employee Repairing Clocks
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2.2.1 Clockwork Imagery

It was in Paris, 1656, that Christian Huygens perfected the pendulum clock. This work

allowed for the standardization of measurements that produced the first accurate maps of

France.14 The introduction of standard time keeping devices had great consequence across

a number of sciences however, and was emblematic of a new approach to understanding

nature. As Prigogine and Stengers note, ”for classical mechanics the symbol of nature was

the clock.”15 Armed with this new technology many fundamental changes were evident in

culture and society bearing reliance on clockwork mechanisms and keeping time.

The clock provided man a new object to think with. With the standardization of time

through a machine that was perfectly regular, human culture now had at its disposal the

possibility of an abstract and universal time that was not before recognized. The connec-

tions between machine, movement, and abstract concepts was central to these alterations.

Pointing to the division of mathematical and physical time in the work of Bonet, Duhem

notes the theoretical difficulties of linking pure time and the physical world that existed in

scholastic science. Pure time, argues Duhem, was only realized abstractly and remained

disconnected from physical realizations.16 Centuries later, these problems disappeared and

a wholly different conceptualization and use of standardized time was evident. A clockwork

mechanism would in fact demonstrate perfect time, and through a simple machine the

difficulties of these scholastic thinkers were given an alternative solution.

Scholastic science and culture is central to bearing witness to these changes. Duhem

focused on elements of scholastic practice where difficulties in examining notions of time

drove revision, but others have explored how these same individuals were at work in physi-

14. H. Bredekamp, The Lure of Antiquity and the Cult of the Machine: the Kunstkammer and the Evolution

of Nature, Art, and Technology (Markus Wiener Publishers, 1995), 27.

15. Prigogine and Stengers, Order Out of Chaos: Man’s New Dialogue with Nature, 111.

16. See: P. Duhem, Medieval Cosmology: Theories of Infinity, Place, Time, Void, and the Plurality of

Worlds (University of Chicago Press, 1987)
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cal, mathematical, and economic fields at the same time.17 Specifically for mechanics, this

meant a wholly different use of graphical representation as exemplified by Nicole Oresme’s

lattitudes of forms. This was part of a larger movement to a new geometricization of the

natural world.18

(a) Oresme’s Graphs (b) Graphingstories.com 2016

Figure 2.7: Emergence and Endurance of the Graph

Breaking with the former Aristotlean doctrine, Oresme and others began generating

graphical representations of problems dealing with motion. For example, to Aristotle,

motion was an individual event, determined by the entity that itself was in motion. In rep-

resenting a variety of comparisons graphically that demonstrated general laws, we engage

in a practice non-existent in Aristotle due to this understanding of qualitative motion.19

The school child of today is quite used to seeing distance time graphs, however these were

not a part of mathematical practice until Oresme and others allowed the comparison of

quantities (distance and time) that earlier were seen as wholly different entities. Despite

17. J. Kaye, Economy and Nature in the Fourteenth Century: Money, Market Exchange, and the Emergence

of Scientific Thought (Cambridge University Press, 2000) and M. Clagett, The science of mechanics in the

Middle Ages (University of Wisconsin Press, 1959)

18. Nicole Oresme, De latitudinibus formarum. Add : Blasius Pellecanus, Quaestiones super tractatus de

latitudinibus formarum (Cerdonis, Matthaeus, 1482), 24.

19. Jean D. Groot, ‘Dunamis and the Science of Mechanics: Aristotle on Animal Motion,’ Journal of the

History of Philosophy 46, no. 1 (January 2008): 43–67.
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this, Oresme did not link terrestrial and celestial time.20

Oresme and the larger scientific discourse of his time not only saw the potential for

understanding problems of time and motion but also economic exchange and equilibrium.

As Kaye has discussed, there is a direct connection between the physical geometricization

of scholastic mathematics in the latitude of forms and the geometric notion of the mar-

ket and economy.21 Just as for Aristotelian science where motion was not a quantifiable

object, neither were economic theories of ’value’.22 While the scholastics were important

in developing an alternative vision for science, time, and economy; the linking of abstract

time, motion, and theories of value would become central to the economic project of the

physiocrats, exemplified by Francois Quesnay.23

In similar time as Huygens work with his clock, the physiocratic economic doctrine

linked reified theories of motion to economic principles, and the market was now something

governed by general laws that operated like those of the universe. One of Quesnay’s

innovations was the graphical representation of economy in his Tableau economique. While

the physiocratic doctrine was directed at an agricultural society, Adam Smith pushed

revisions that incorporated a more industrialized flow of trade. Mirowski, for example,

notes Adam Smith’s affinity with astronomy, and the explicit linking of principles of the

conservation of energy with the behavior of the value of an object at motion within a

market.24

With the rise of industrial capitalism however, societies experienced time in a com-

pletely different manner due to the ability offered to sustain consistent schedules across

20. Marshall Clagett, ‘Nicole Oresme and Medieval Scientific Thought,’ Proceedings of the American Philo-

sophical Society 108, no. 4 (1964): 300.

21. Kaye, Economy and Nature in the Fourteenth Century: Money, Market Exchange, and the Emergence

of Scientific Thought , 163-231.

22. Mirowski, for example notes ”only after we leave the anthropomorphic stage does it become conceivable

that value is a law-goverened phenomenon, a reified natural entity, and that social status and trading ratios

are governed by it.”Mirowski, More Heat Than Light: Economics as Social Physics, Physics as Nature’s

Economics, 146.

23. B.E. Harcourt, The Illusion of Free Markets (Harvard University Press, 2011), 78-91.

24. Mirowski, More Heat Than Light: Economics as Social Physics, Physics as Nature’s Economics, 167.
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multiple sites. As Mumford pointed out in the early part of the twentieth century:

“the clock is not merely a means of keeping track of the hours, but of synchronizing

the actions of men” 25

Thompson describes the transformations that occurred in the relationships to labor, time,

and capitalism in a similar way. Pointing to the example of Crowley Iron Works Law

Book, Thompson notes how the documents author saw the implementation of a strict set

of timelines and expectations as integral to solving production problems.

“And whereas I have been informed that sundry clerks have been so unjust as to reckon

by clocks going the fastest and the bell ringing before the hour for their going from

business, and clocks going too slow and the bell ringing after the hour for their coming

to business, and those two black traitors Fowell and Skellerne have knowingly allowed

the same; it is therefore ordered that no person upon the account doth reckon by any

other clock, bell, watch or dyall but the Monitor’s, which clock is never to be altered

but by the clockkeeper....”26

Such thinking demonstrated an innovation in the way it was possible to conceptualize

control of humans. For Foucault, the timetable in the factory was also turned to pedagogical

discourse. By breaking up schooling into a series of stages accompanied with examinations,

the linking of the body with a specific version of linear evolutionary time was part of the

new method.27 In addition to the examination and timetable, the schoolhouse itself worked

to distribute bodies in a way similar to the architectures of Manhattan’s grid and the new

kind of organized factory building.

For Delanda and Bosquet, the clockwork mechanism offered a specific way of approach-

ing training in warfare that again relied on a single universal timeframe. Both point to

Frederick the Great as the exemplar of a clockwork army. Through his specific efforts to

25. Mumford, The Myth of the Machine: Technics and Human Development , 14.

26. E. P. Thompson, ‘Time, Work–Discipline, and Industrial Capitalism,’ Past & Present 38, no. 1 (1967):

56–97, 82.

27. ”The disciplinary methods reveal a linear time whose moments are integrated, one upon another,

and which is orientated towards a terminal, stable point; in short, an ’evolutive’ time.”Michel Foucault,

Discipline and Punish: The Birth of the Prison (Vintage Books, 1979), 160.
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reduce individual initiative through strict protocols for training the Prussian king was part

of a larger system of thinking interweaving time, machine, and human activity. Drilling

procedures linked the soldier with their weapons, and the rise of minute training exercises

to be performed in unison until the military performed like a lifeless machine were the

manifestation of such thinking. A large singular unit moving to a universal protocol was

the calling card of the clockwork army.28

Standardization of a similar nature is found in laboratory procedures as well. Daston

and Galison have labeled mechanical objectivity as related to an approach to scientific

vision that foregrounds images constructed by machines.29 Like Frederick the Great, these

scientists saw individual creativity and initiative as detrimental to their work. To produce

a scientific image prior to that of the mechanical regime was an exercise in craft. The artists

hand that had before revealed the most accurate image was now replaced by a machine.

Benjamin recognized a similar event in the fine arts occurring at the turn of the twen-

tieth century.

“Around 1900, technological reproduction not only had reached a standard that per-

mitted it to reproduce all known works of art, profoundly modifying their effect, but

it also had captured a place of its own among the artistic processes.”30

The artists work, much like the pedagogue and physicists had completely changed.

Mass production of art via machine, for Benjamin, was the target of lament. As he noted

elsewhere, the downfall of the former model where artistic work and mathematics stood

intertwined also exemplified this change. For Benjamin, this is seen in the move of the

architect from the Ecole des beaux Arts to the Ecole Polytechnique.31 For Bredekamp, it

becomes evident when the Kunstkammer stops carrying artistic work within its collection,

28. See DeLanda, War in the Age of Intelligent Machines, 65-69. and Antoine Bousquet, The Scientific

Way of Warfare: Order and Chaos on the Battlefields of Modernity (Columbia University Press, 2009),

37-53.

29. Lorraine Daston and Peter Galison, Objectivity (Zone Books, 2007), 115-190.

30. Walter Benjamin, ‘Expose of 1935,’ in The Arcades Project (Harvard University Press, 1999), 21.

31. ibid., 4.
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and the original scientific laboratory rejected the artisans hand.32

Descartes has been discussed as ushering in a similar approach to mathematics and

philosophy. Moving to revise the scholastic doctrine, Descartes introduced a physical sys-

tem that involved alternative understandings about laws of motion based on conservation

principles connected to the creator.33 Descartes is important due to his work in what is

commonly referred to as analytic geometry. An important element of the prehistory of the

function concept was Descartes use of abstract symbols to represent relationships.

Most evident in his Geometry, Descartes was among the first mathematicians to intro-

duce abstract symbols to effect a solution to algebraic equations.34 This work was part of a

larger philosophical physical project that gave exercises in pure thinking that were morally

and ethically beneficial.35 The role of simple machines and perpetual motion were central

to his mathematics and his understanding of physical processes.

Later, Newton would argue against much of Descartes work.36 Despite his disagree-

ments with Cartesian mathematics, Newton agreed with certain elements of the larger

philosophical project. In opposition to Aristotelian physics, that saw more interest in

understanding why motion was produced, the mechanistic physicist was drawn to global

descriptions. For, as Galileo discovered, if motion is perpetual, one need not ask for

causes.37

For mechanical physics the collision of particles motivated theories of motion. For

example, as Bertolini-Meli has pointed out, Descartes, Beeckman, and Marci all discussed

collisions of particles resulting in the conservation of motion.38 The mechanical world was

32. Bredekamp, The Lure of Antiquity and the Cult of the Machine: the Kunstkammer and the Evolution

of Nature, Art, and Technology

33. Domenico Bertolini Meli, Thinking with Objects: The Transformation of Mechanics in the Seventeenth

Century (Johns Hopkins University Press, 2006), 135-160.

34. See for example: C.B. Boyer, History of analytic geometry (Scripta Mathematica, 1956), 74-102.

35. See: Matthew L. Jones, The Good Life in the Scientific Revolution: Descartes, Pascal, Leibniz, and

the Cultivation of Virtue (University of Chicago Press, 2006), 15-54.

36. N. Guicciardini, Isaac Newton on Mathematical Certainty and Method (MIT Press, 2009), 59-106.

37. Prigogine and Stengers, Order Out of Chaos: Man’s New Dialogue with Nature, 57.

38. Meli, Thinking with Objects: The Transformation of Mechanics in the Seventeenth Century , 148-149.
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one that all motion was the result of collisions between hard atoms initially set in motion

by a divine other. In this universe, all dynamics were expressible by closed equations.

Prigogine and Stengers point to the use of the Hamiltonian as such an example that

allowed the description of a machines motion based on its spatial configuration.39 In

their discussion, Priogogine and Stengers focus on the mathematical assumptions evident

in certain approaches to modeling dynamical systems.

The function concept ends up being a central notion in the history of one of the central

problems of classical dynamics, modeling a vibrating string. In examining the mathematical

approaches to this problem, the seventeenth century mathematicians consistently called on

the pendulum assumption to drive their dynamical models. The mathematical background

of the vibrating string will be explored in the next chapter, and the mechanical approach

of classical dynamics serves to highlight the connections between assumptions about the

nature of the world and mathematical practice.

Across these shifts was the emergence of an abstract and timeless universe that operated

on immutable laws of nature. This is the Laplacian dream, where science targets the single

mathematical equation to describe the entire world. Laplace described this vision most

accurately opening his essay on probability.

“Given for one instant an intelligence which could comprehend all the forces by which

nature is animated and the respective situation of the beings who compose it an in-

telligence sufficiently vast to submit these data to analysis it would embrace in the

same formula the movements of the greatest bodies of the universe and those of the

lightest atom; for it, nothing would be uncertain and the future, as the past, would

be present to its eyes. The human mind offers, in the perfection which it has been

able to give to astronomy, a feeble idea of this intelligence. Its discoveries in mechanics

and geometry, added to that of universal gravity, have enabled it to comprehend in

the same analytical expressions the past and future states of the system of the world.

Applying the same method to some other objects of its knowledge, it has succeeded

in referring to general laws observed phenomena and in foreseeing those which given

circumstances ought to produce.”40

39. Prigogine and Stengers, Order Out of Chaos: Man’s New Dialogue with Nature, 57.

40. Pierre Simon Laplace, Pierre-Simon Laplace Philosophical Essay on Probabilities: Translated from the
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Laplace’s vision of understanding nature is found again in the early discourse on school

mathematics. In describing the early approaches to mathematical models of vibrating

strings (aware that this is where the discourse on the function concept would be centered)

the mathematical work in chapter 3 describes how fundamental assumptions about motion

connect to a specific way of thinking about the universe in mathematical models. Later,

in chapter 4, the mechanical model will be connected with the early discourse of school

mathematics. In examining the discourse on the function concept in the curriculum, text-

books, examinations, and psychological work at the turn of the century, a scientific model

that embodies many of the features described by the classical system is argued to have

appeared within the founding scientific pursuits of mathematics education.

The central elements of the mechanical discourse in school mathematics involved a

single track for all where the same mathematical experience suited every student. Addi-

tionally, this discourse involved an understanding of mathematics as unified science, and

preferred visual representations of graphs over alternative options. Finally, is a determin-

istic psychology that understood learning as mechanical and intelligence as predetermined

by a higher power.

2.2.2 Thermodynamics

While for classical science, the clockwork mechanism embodies a specific approach to under-

standing nature, the industrial revolution and consequent rise of the steam engine ushered

in a different set of problems for science and society. Prigogine and Stengers discuss heat

as the ’rival’ of gravitation due to the emergence of a focus on natural processes where

energy was not conserved, particularly with the rise of thermodynamics.41 In mathematics

and physics, the Newtonian image of a universe governed by mechanical laws of motion

was replaced by one less stable.

In classical dynamics, a system is described by the position and motion of the elements

of the system. When modeling a typical problem in thermodynamics, an alternative set of

parameters and boundary conditions start the problem, and the question is what happens

fifth French edition of 1825 With Notes by the Translator (Springer New York, 1998), 4.

41. Prigogine and Stengers, Order Out of Chaos: Man’s New Dialogue with Nature, 103-129.
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to the system when changes are imposed from the outside. A key figure in these devel-

opments was the mathematician Joseph Fourier. In exploring the mathematics of heat,

Fourier offered an alternative view to the classical mathematicians. Indeed there was an

initial rejection of his efforts by many of the classicists, including Laplace. Despite this,

the use of trigonometric series became one of the central problems of nineteenth century

mathematicians.

Central to these problems is the use of equilibrium conditions to understand future

behavior. This kind of a problem fundamentally differs as there is the possibility of con-

version processes at play that are in fact irreversible. Transformations of state, as when

a substance changes from liquid to gas, are central components of the heat engine. These

transformations generate energy and motion in the system. This is opposed to simply

transmitting potential energy through motion as a mechanical system does.

In unfolding through time, a thermodynamic systems irreversible properties open up

alternative ways in understanding larger problems about time. A chemical conversion may

produce energy, and in fact may preserve energy, but also can result in an irreversible state.

The simplest example is that of a heat engine and the fuel it consumes in producing motion.

From these situations came the necessary revision to the notion of the conservation of

energy. Now, rather than a world moving in perpetual motion like a clockwork mechanism,

the universe was now a heat engine and society a site of energy transformation.

The consequences of the heat powered engine, just as with the pendular clock, had

repercussions outside of strict engineering problems. Darwinian evolution is an example

of a problem where the arrow of time has been introduced, and in fact stands at the

center of the theory. Now, a biological organism does not have a fixed type but is forever

in development based on contact with its immediate environment. Serres also found the

thermodynamic image in Michelet’s book, The Sea of 1861.42 By linking the behavior of

sea currents with the Carnot cycle, Michelet’s work is evidence of the worlds transformation

into an engine of sorts. Serres additionally links Freud with thermodynamic irreversible

time.43

42. Serres, Hermes: Literature, Science, Philosophy , 29-38.

43. ibid., 72.
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In psychology, Freud put forward a theory of mind where the engine served as the

diagram for circulation between the conscious and unconscious. Psychic energy moved

based on temperature differences in these reservoirs. Further, the death drive spoke to the

notion of entropy and tendency towards death of closed systems.44

Doane also discussed this connection between Freud and thermodynamic time.45 The

world, for Freud is seen as a source of energy that bombards the individual who needs

insulation from over-stimulation. Doane finds this protection in the form of perception

consciousness, and in Freud’s Beyond the Pleasure Principle, this forms a hard shell pro-

tecting the individual from an increasing onslaught of sensorial stimulation. Freud is seen

as part of a larger movement that destabilized notions of time from its classical sense.

The emergence of cinema was also a part of this alteration of the representation and

understanding of time and memory. With Etienne-Jules Marey’s chronophotography, phys-

ical time became subject to a similar gaze. In his work utilizing images of bodies in motion,

Marey introduced cinematographic techniques within a scientific physiological project.46

Marey worked motivated by Helmholtz, the first to clarify the second law of thermody-

namics. Film, as a result, represented time as one directional as well.

Helmholtz himself had worked to understand the interchange of natural forces in chem-

ical, mechanical, and thermal reactions in organic bodies.47 Part of this work involved a

theory of vision that replaced a classical understanding of pure vision with one involving

subjectivity. As Crary has noted, Helmholtz’s work should be considered alongside theories

of light and a revised understanding of vision coincident with the rise of wave theories of

light.48 When Helmholtz investigated hearing, he would liken the behavior of the hairs of

the inner ear to separating the sound into individual components much as one would in

44. Bousquet, The Scientific Way of Warfare: Order and Chaos on the Battlefields of Modernity , 75.

45. See M.A. Doane, The Emergence of Cinematic Time: Modernity, Contingency, the Archive (Harvard

University Press, 2002), 33-68.

46. ibid., 33-68.

47. Laura Otis, Networking: Communicating with Bodies and Machines in the Nineteenth Century (Uni-

versity of Michigan Press, 2001), 28-29.

48. Jonathan Crary, Techniques of the Observer: On Vision and Modernity in the Nineteenth Century

(MIT Press, 1992), 86.
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Fourier analysis.49

Crary also recognized the shift in vision in works of art themselves. The prototypical

example for both Crary and Serres is Turner. In his work, one finds an alternative repre-

sentation of the sun as a source of heat. The emergence of temporality in positioning the

observer through this alternative representation of energy stands in direct opposition to the

classical model where immediate, universal sight dominated.50 Helmholtz and physiologist

Emil Du Bois-Reymond performed experiments that overthrew the immediat

Serres also points to Turner and explores the connections to Carnot’s thermodynamics.

Contrasting Turner’s work to the painting of George Garrard who depicted Samuel Whit-

breads brewery in London in the late 18th century, the horse that stood as the symbol

of power for Garrard was replaced by the motive force of fire.51 The battle between the

thermodyanamic world of Carnot and the classical mechanics of Langrange is exemplified

in Turner’s Fighting Temeraire. The painting shows the ship responsible for the victory at

Trafalgar being towed to its death by the new source of power, the heat powered tugboat.52

On the battlefield itself, the consequences of the rise of thermodynamics have been

noted in the rise of Napleonic armies valuing flexibility and individual decision making.53

It would be continued with the introduction of the tank onto the battlefield.54 Delanda

summarized the Napoleonic army as motorized whereby ”motorized armies were the first to

make use of a reservoir of loyal human bodies, to insert these bodies into a flexible calculus

(nonlinear tactics), and to exploit the friend/foe different to take warfare from clockwork

dynastic duels to massive confrontations between nations.”55

For school mathematics, these developments will be argued as central to the interwar

49. Otis, Networking: Communicating with Bodies and Machines in the Nineteenth Century , 43.

50. Crary, Techniques of the Observer: On Vision and Modernity in the Nineteenth Century , 138-139.

51. For more on the relationship between horse power and classical society see: Thomas Almeroth-

Williams, ‘The Brewery Horse and the Importance of Equine Power in Hanoverian London,’ Urban History

40, no. 3 (2013): 416–441

52. Serres, Hermes: Literature, Science, Philosophy , 57.

53. Bousquet, The Scientific Way of Warfare: Order and Chaos on the Battlefields of Modernity , 76-77.

54. Deleuze and Guattari, A Thousand Plateaus: Capitalism and Schizophrenia, 397.

55. DeLanda, War in the Age of Intelligent Machines, 141.
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Figure 2.8: Turner’s Temeraire

discourse of school mathematics. A re-visioning of time, particularly in the psychological

theories of Charles Judd and William Brownell, and an understanding of knowledge as a

creative process speak to some of the similarities. Additionally, the idea of the forgetting of

initial conditions can be found in Brownell’s work with crutches and their effect on memory

are further evidence of similarity in approaching natural processes.

In mathematics this is said to begin through approaches to solving the wave equation

that led to the introduction of arbitrary functions. This work revised notions of continuity

and what kind of behavior a function might exhibit. Consequently, there were problems

with the earlier understanding of what a function might be when not easily describable

behavior began to arise in the use of trigonometric series and separation of variables in

solving mathematical problems. Here, Euler contradicted an earlier theory of Leibniz that

assumed notions of continuity that limited functions to be considered as analytic only.56

For example, the classical wave equation:

56. Umberto Bottazini, The Higher Calculus: A History of Real and Complex Analysis from Euler to

Weierstrass (Springer, 1986), 26-27.



CHAPTER 2. HISTORICAL BACKGROUND 38

∂2y

∂t2
=
∂2y

∂s2

is solved by functions that do not obey Liebnizian laws of continuity. Truesdale notes this as

the greatest scientific advance of the eighteenth century. In opening up the consideration of

such new mathematical objects, something that was explicitly opposed by mathematicians

in 1750 was by 1810 unanimously accepted.57 These new objects, in the form of oddly

behaving functions not necessarily analytically describable, became the central object of

study for many of the nineteenth century mathematicians.58

The mathematical treatment of this will be discussed in the following chapter. In

chapter 5, the language of the function concept during the inter and post World War II

era in school mathematics will be linked with the notion of a function that allows for such

individuation into classes of functions that ensues from such a starting place that Euler

offered. Across the mathematical use of the function concept in the materials of school

mathematics to the psychology of learning and the research norms that accompanied this,

the interwar period shifted to understand nature in a way that mirrors the nature of the

expressed cultural and mathematical physical developments in function theory and the

conservation of energy in conversion processes. Indidviduation of mathematics classes, a

theory of learning as reorganization, and an altered vision for students futures in society

are the focus of this shift.

2.2.3 Cybernetic Science

Cybernetics is a term coined by the mathematician Norbert Wiener to describe what he

saw as a unified scientific project that explore diverse phenomena through a similar lens.

His foundational text was:Cybernetics or Control and Communication in the Animal and

57. Truesdell and Euler, The Rational Mechanics of Flexible Or Elastic Bodies, 1638-1788: Introduction

to Leonhardi Euleri Opera Omnia Vol X Et XI Seriei Secundae, 248.

58. H. J. M. Bos, ‘Mathematics and rational mechanics,’ in The ferment of knowledge, ed. George Sebastian

Rousseau and Roy Porter (Cambridge University Press, 1980), 327–356
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the Machine59. The machine that served as the central object to think with for the cy-

berneticians was an abstract one that produced information rather than movement. Time

would also prove central to cybernetic science, and Wiener–just like many mathematicians

involved in the history of the function concept before him–would consider the problem of

the vibrating string through the Lebesgue integral. This integration theory was motivated

by the set theoretic approaches of the nineteenth and early twentieth century mathemati-

cians that appeared in the school mathematics textbooks of the post World War II era.

These were the product of groups that had to this point not existed primarily due to the es-

tablishment of federal organizations that directed large sums of money towards curriculum

improvement through work by expert committee.

Wiener himself located the opening chapter of his work on Cybernetics discussing his-

torical relationships to scientific reasoning and time. He calls upon the earlier paradigmatic

technologies and suggests a new age dominated by communication and control.

“If the seventeenth and early eighteenth centuries are the age of clocks, and the later

eighteenth and the nineteenth centuries constitute the age of steam engines, the present

time is the age of communication and control.”60

Wiener described the problematizing of the Newtonian framework that had given rise to

the thermodynamic vision of Carnot and Fourier in order to describe the centrality of a

particular understanding of time. The title of the first chapter–Newtonian and Bergsonian

Time–hearkens Wieners vision for his new science as one coupled with a Bergsonian vitalist

understanding of time. The joining of man and machine in the cybernetic vision required

Wiener to contemplate problems of perception and reaction, an issue at the center of

Bergson’s discussions on time.

Bergson himself disagreed with certain elements of relativity theory and its representa-

tion of time, pursuing a public dispute with Einstein. Here, Einstein objected to Bergson’s

philosophical time, claiming that only the time of psychologists and physicist’s’ existed.61

59. Norbert Wiener, Cybernetics Or Control and Communication in the Animal and the Machine (M.I.T.

Press, 1961)

60. ibid., 39.

61. For a recent in depth discussion of the debate between Einstein and Bergson, see: Jimena Canales, A
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Einstein saw time as something separate from human consciousness whereas Bergson ar-

gued that time was directly related to consciousness.

Concerned with modern technologies and their ability to shape the psyche, Bergson, like

Freud, sought recourse in a conversation directed at memory and its operationalization.62

Despite these similarities, Bergsonian time was not Freudian time. As Halpern discusses,

Freud saw perception preceeding recollection whereas Bergson argued for the reverse, in

favor of a notion of time as becoming.63 The cinema also served as a focus for Bergson,

and the cinema camera served as a focus for his understanding that also can be recognized

in his debate with Einstein. Clocks and the standardization of time were a centerpiece of

Einstein’s work and Bergson recognized the intermediary machines as an often overlooked

element in the physicist’s time. Much like the frames of the film disallow the possibility for

pure representation on the screen, the machine, for Bergson, did not represent pure time.

Wiener worked during World War I as a computer for the Army. With the onset of

World War II, he again worked on problems in ballistics, though rather than doing the

computations himself, he and his colleagues were aided by the largest calculating device

in the world. This was a version of Vannevar Bush’s differential analyzer, a machine that

was a crucial precursor to computer technology born out of the same project in the form

of the ENIAC computer.64 The focus of Wiener’s work here was antiaircraft mechanisms,

and an attempt to design the machines capability of aiming in advance of targets utilizing

electrical networks.65 Central to these machines was the constant ability to adjust and

make predictions of future events based on continual flows of information in the form of a

feedback loop.

The connections between Bergsonian time and the situation read by Wiener in aircraft

gunnery then is that both demand a time ready to account for continued adjustment to

Tenth of a Second: A History (University of Chicago Press, 2009), 180-206.

62. Orit Halpern, Beautiful Data: A History of Vision and Reason since 1945 (Duke University Press,

2015), 53.

63. Halpern discusses the differences in depth in: ibid., 39-78.

64. Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America, 44-46.

65. Peter Galison, ‘The Ontology of the Enemy: Norbert Wiener and the Cybernetic Vision,’ Critical

Inquiry 21, no. 1 (1994): 234.
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historical data. This was the nature of the solution to the problem of anti-aircraft gunnery

that Wiener and his colleagues would present. Shooting down the ever increasing speeding

planes of the Nazi army required anticipation on the part of the gunner that was no longer

possible. Instead, the machine needed to predict where the plane was going to be based

on earlier firing data.66

Another result of this new focus on feedback and communication was the emergence

of a mathematical approach to electronic communication problems. This was to become

a new area of mathematical studies in the form of information theory, and Wiener was at

the center of the early developments in this field. Claude Shannon’s work in information

theory that included a new mathematical theory of information was the cornerstone of this

work. Here, opposed to the image of the the classical scientist who saw natural events as

deterministic, the information theorist views a system with an eye towards a statistical

interpretation based on probabilites of future occurrences. As Terranova has argued, this

rise of an informational culture was a moment that held great consequence for society.67

With the revised notion of time, and theory of feedback, the cyberneticians were also

responsible for a discourse on cognition that was an alteration from the earlier efforts. As

Edwards notes, the post World War II environment in the United States saw the continued

militarization of science across ”psychological theories, experimental designs, machine in-

terfaces, quasi-intellignet devices, and personal practices”68 as part of continued research

where psychology itself became politicized in a way not before experienced. Viewing the

body in terms of new technologies, cognitive psychology was born from the cybernetic dis-

course in turning to view the brain as a machine that dealt with problems of perception,

memory, and language through continued feedback and response mechanisms.

66. Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America, 186 and

Galison, ‘The Ontology of the Enemy: Norbert Wiener and the Cybernetic Vision’

67. Discussing the rise of information theory and its consequences for larger cultural moves, Terranova

writes: “an informational culture marks the point where meaningful experiences are under siege, continu-

ously undermined by a proliferation of signs that have no reference, only statistical patterns of frequency,

redundancy and resonance” Tiziana Terranova, Network Culture: Politics for the Information Age (Pluto

Press, 2004), 14.

68. Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America, 178.
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In providing new ideas for the earlier stimulus response theories, cognitive psychology

envisioned behavior as a hierarchically organized feedback system, and the organism would

behave much in the same way as any informational processing system. Within the cyber-

netic movement, the theory of neural nets from the neuropsychiatrist Warren McCulloch

and logician Walter Pitts presented the nervous system as functioning in the same general

way as its abstract feedback mechanism. McCulloch was responsible for obtaining funding

from the Macy foundation for yearly meetings that would bring together scientists across

a variety of disciplinary boundaries to discuss the cybernetic program.69 It was at these

meetings where Shannon discussed his mathematization of a mechanical rat learning to

escape a maze.

While mathematics and cognition were injected with theories reliant on new commu-

nication technologies as artifices for their theories, so too did organizational management.

The size of the military operation during World War II was nothing the modern world

had experienced before. In order to manage both the battlefield and the accompanying

scientific research laboratories, new approaches to managing the workers were introduced.

This rationalization of labor began at the turn of the century and was embodied by Freder-

ick Taylor’s scientific management theories born out of Taylor’s work in military arsenals.

From the logistical problems of the battlefield to the productive capacties of the factory, the

worker’s themselves became the subject of exterior machines informational management

practice.70

In a similar way, certain mathematicians took up problems of economy of thought.

The Bourbaki collective was exemplary in such an approach, as evidenced in the groups fa-

mous Architectures of Mathematics.71 Throughout the French collectives work, an attempt

was made to reformulate the foundations of mathematics based on a notion of hierarchi-

69. For more on the Macy conferences and their import to cybernetic science see: Edwards, The Closed

World: Computers and the Politics of Discourse in Cold War America, 180-205. and Katherine N. Hayles,

How We Became Posthuman: Virtual Bodies in Cybernetics, Literature, and Informatics (University of

Chicago Press, 1999)

70. DeLanda, War in the Age of Intelligent Machines, 105-117.

71. Nicholas Bourbaki, ‘The Architecture of Mathematics,’ The American Mathematical Monthly 57, no.

4 (1950):
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cal mathematical structures.72 Explicitly stating the relationship between Taylorism and

the structural approach in the Architectures, Bourbaki claimed a similarity between their

axiomatic method and scientific management:

“One could say that the axiomatic method is nothing more than the ”Taylor system”

for mathematics.”73

In this system, Bourbaki viewed mathematical structures as tools that the mathematician

could utilized to uncover general mathematical truths. While intution remained a part of

this system, the final arguments were presented in such a way that theirs was a mathe-

matical system devoid of physical objects. As Galison notes of Bourbakian mathematics;

”here is a picture of a narrative outside time, a structure of structures voided not only

of the physicality of objects but even of the specific, purely mathematical referentiality of

mathematical entities. Here was supposed to be relations of relations to be contemplated

out of time and out of space.”74

Born out of the work in nineteenth century mathematics, set theory itself stands as a

unique approach to understanding foundational problems in mathematics. Here was the

lens that Bourbaki viewed as appropriate to understand mathematical problems.

“as every one knows, all mathematical theories can be considered extensions of the

general theory of sets”75

From these foundations, the mathematical artifice constructed was recognized by Piaget

as of potential use in modeling children’s developmental growth. It is not surprising that

Piaget was also an adherent to a version of Bergsonian time that he received on expeditions

in the woods with his academic uncle who would recount the contemporary debates about

72. Corry, Modern algebra and the rise of mathematical structures, 289-338.

73. Bourbaki, ‘The Architecture of Mathematics,’ 227.

74. Peter Galison, ‘Structure of Crystal, Bucket of Dust,’ in Circles Disturbed: The Interplay of Mathe-

matics and Narrative, ed. A.K. Doxiadēs and B. Mazur (Princeton University Press, 2012), 57.

75. Bourbaki cited in Jose Ferreiros, Labyrinth of Thought: A History of Set Theory and Its Role in Modern

Mathematics (Birkhäuser Basel, 2001), 392.
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matter and memory that were so prominent at the turn of the century.76 Further, many

of the scientists involved in the war efforts would later involve themselves in a massive

educational reform effort supported by federal research dollars in the wake of World War II

and the rise of cold war rhetoric that accompanied the United States rise as world leader.

In this time two events proved of utmost importance to school mathematics: the rise of

the mathematical theory of sets, and the emergence of cognitive psychological theories in

the form of Piaget and Bruner. These notions will form the centerpiece of the analysis in

chapter 6.

Most important is that in this period, modern mathematics itself turns into a model for

a variety of disciplines in the focus on ‘structures’. Piaget explicitly uses mathematics as

a model for his genetic epistemology, and it so happens his model for cognition was based

on the notion of a mathematical group. So, with Harraway’s definition of “a cyborg is a

cybernetic organism, a hybrid of machine and organism, a creature of social reality as well

as a creature of fiction,”77 comes the cybernetic child. A young organism, faced with a

mathematical curriculum based on abstract objects in motion and a cognitive psychology

led by Piaget positively viewing the child as a cybernetic machine.

76. For more on Piaget’s upbringing see: Fernando Vidal, Piaget Before Piaget (Harvard University Press,

1994)

77. Donna Haraway, ‘The International Handbook of Virtual Learning Environments,’ chap. A Cyborg

Manifesto: Science, Technology, and Socialist-Feminism in the Late 20th Century, ed. Joel Weiss et al.

(Dordrecht: Springer Netherlands, 2006), 117–158, 117.
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Chapter 3

Mathematical Background

“Thus the keynote of Western culture is the function concept, a notion not even remotely

hinted at by any earlier culture.”– William L. Schaaf, City University of New York 1930.1

3.1 Introduction

While historians have disagreed about whether or not earlier cultures work amount to a

mathematical concept of functionality, Schaaf’s remarks are motivated by reflecting on

Spengler’s ideas around the independence of mathematically creative events.2 Western

cultures mathematics involves an understanding of new ways of viewing interdependence

and a shift to a more general view of such relationships. This is a vision shared by historians

despite whether they believe it emblematic of a linear or non-linear historical trajectory.

Later, Schaaf contrasted the difference between what he labeled as classical and west-

ern mathematics and highlights the fundamental differences in natural interrelationships.

Schaaf–writing in the 1930’s–discussed the issues before the Bourbaki’s and MacLane’s

work was written, however he points to many of the major contrasts between the first two

images of functionality important to this study, the mechanical and thermodynamic. His

1. William L. Schaaf, ‘Mathematics and World History,’ The Mathematics Teacher 23, no. 8 (1930):

496–503, 500.

2. See for example, ET Bell who describes an instinct for functionality at work in Babylonian mathe-

matics.E.T. Bell, The Development of Mathematics (Dover, New York, 1945), 31.



CHAPTER 3. MATHEMATICAL BACKGROUND 46

analysis is summarized in table 3.1 below. 3

Table 3.1: Significant Contrasts In Classical And Western Mathematics

Classical Mathematics Western Mathematics

1. Accepts only what can be seen and grasped ;

where definitive and physical visibility ceases, there

mathematics and logic also cease.

1. Abandons classical fetters, and be comes ab-

sorbed in highly abstract n-dimensional manifolds

of space, spurning diagrams and other common-

place aids.

2. Concentrates on the consideration of the

small,being handicapped by the principle of vis-

ible limits; hence the impossibility of conceiving

non-Euclidean geometry

2. Centers interest in the consideration of the in-

finite and “ultra-visional”, including the infinitely

large as well as the infinitesimally small.

3. Conceives of a limit as an infinitely small quan-

tity, yet fixed or static (Euclid).

3. Conceives of the lower limit of every possible fi-

nite magnitude; a becoming and remaining smaller

than any previously assignable quantity, however

small (Cauchy).

4. Interested primarily in magnitude, and hence in

proportion; all pro portion assumes the constancy

of its elements. Statues and frescos admit of en-

largements and reductions.

4. Interested primarily in relationships, and hence

in functions; all transformation implies variabil-

ity in its elements. Transformations are related

to the theory of modern musical composition, but

enlargements and reductions are meaningless here.

5. Interested chiefly in particular cases and indi-

vidual instances, i.e., a singly visible figure, a once-

and-for-all construction. Geometric constructions

affirm appearances

5. Interested chiefly in generalizations, i.e., oper-

ations not dealing with fixed visible figures, such

as groups of relations, infinite curves, trans forma-

tions, etc., where the process is of greater interest

than the result. Operations deny appearances.

6. Gives artistic expression to its consciousness

through the media of bronze and marble, where

the human figure, whether dancer or gladiator, is

given that fixed form in which contour, surface and

texture are most expressive and effective.

6. Manifests its artistic feeling in formless music,

where harmony and polyphony call forth feelings of

an infinite beyondness anything but visible; or in

a gloriously colored canvas, where light and shade

alone suffice to mark the outline.

3. Schaaf, ‘Mathematics and World History,’ 501
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The formal vocabulary of the function concept arose in the correspondence between

Leibniz and Bernoulli around the inverse tangent problem. Stated simply, the inverse

tangent problem asks; given some information about the tangent of a curve, can this orig-

inal curve be found?4 While it was in this correspondence that the first sight of the word

function apparently arose, Leibniz made reference to extending a discussion of earlier math-

ematical significance. It was in the problem of Florimond de Baune and Rene Descartes

involving the subtangent to a curve was seen by Leibniz as the progenitor of his discourse

on functions.

Following the publication of Descartes work on geometry, the initial reception was

strongest among the Dutch, and questions around how Descartes new method could be used

to solve the inverse tangent problem were raised in the correspondence beween Debaune–

a wealthy recreational mathematical thinker–and Descartes.5 It was in the geometry of

Descartes that a new vision for mathematics and the study of curves arose, and the rules

that surrounded Descartes mathematics drove his somewhat indifferent response to De-

baune’s challenge. Further, it is here at Descartes that many historians of the function

concept locate the modern turn towards mathematizing interdependence.6

The later work surrounding the function concept bore specific, continued relation to

the problem of the vibrating string. It was in similar time to Descartes work that Galileo’s

father worked to clarify mathematical ideas around harmony and pitch. The early models

4. For detailed analysis of the inverse tangent problem see: Christoph J. Scriba, ‘Zur Lösung des 2.

Debeauneschen Problems durch Descartes,’ Archive for History of Exact Sciences 1, no. 4 (1961): 406–

419, Christoph J. Scriba, ‘The inverse method of tangents: A dialogue between Leibniz and Newton (1675–

1677),’ Archive for History of Exact Sciences 2, no. 2, 113–137 , and its relation to the first mention between

Bernoulli and Leibniz J. Stedall, Mathematics Emerging: A Sourcebook 1540 - 1900 (OUP Oxford, 2008),

229.

5. Paul Tannery, ‘Pour l’histoire du problfffdfffdme inverse des tangentes,’ in Verhandlungen der III

Internationalen Mathematiker-Kongresses, ed. A. Krazer (Drück und Verlag, 1905), 502–514., Scriba, ‘Zur

Lösung des 2. Debeauneschen Problems durch Descartes’

6. Boyer, History of analytic geometry , A. P. Youschkevitch, ‘The Concept of Function up to the Middle

of the 19th Century,’ Archive for History of Exact Sciences 16, no. 1 (1976): 37–85, I. Kleiner, ‘A Brief

History of the Function Concept,’ in Excursions in the History of Mathematics (Birkhäuser Boston, 2012),

103–124
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for the world system were based on such musical models, and end up forming the basis for

world systems like Kepler’s model of the solar system. Together, the vibrating string and

its mathematization reveal specific approaches to dealing with the natural behavior of the

world and certain assumptions that are made in attempts to better model nature through

mathematics. Descartes and Galileo are representatives of a new order of science and man

that arose with a mechanical worldview. Both argue for the book of nature to be written

in mathematics, and a specific kind of mathematics at that.

Later, in the work of Euler and the Fourier, the concept of function would be revised

in light of alternative rules for acceptable objects of mathematical study. Much of the

contemporary classical understanding of the problems of vibrating strings are found here

in both the work of Euler and Fourier. What have become conventional approaches to

solving the standard wave equation through separation of variables and the use of Fourier

series arose in this period. After this work, much of the nineteenth century was spent

searching out and classifying numerous kinds of pathological functions. This work led

Poincare to describe the situation negatively as follows:

Logic sometimes makes monsters. For half a century we have seen a mass of

bizarre functions which appear to be forced to resemble as little as possible

honest functions which serve some purpose. More of continuity, or less of con-

tinuity, more derivatives, and so forth. Indeed, from the point of view of logic,

these strange functions are the most general; on the other hand those which

one meets without searching for them, and which follow simple laws appear as

a particular case which does not amount to more than a small corner.7

Despite Poincare’s intuitive preferences, an alternative approach would emerge, again sur-

rounding the problem of the vibrating string. In solutions to partial differential equations

that involve issues of integrability of functions, the nineteenth century saw important ideas

develop in the work of Riemann, Dirichlet, Dedekind, Cantor, Lebesgue, Henine, Baire,

Borel, and others, all addressing the notion of what a mathematical function was.8

7. Quoted in M. Kline, Mathematical Thought from Ancient to Modern Times: (OUP USA, 1990), 973.

8. A. F. Monna, ‘The Concept of Function in the 19th and 20th Centuries, in Particular with Regard to
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Typically, this work surrounds the emergence of a set theoretic stance for the founda-

tions of mathematics. This style of mathematics became most important in both European

and American scientific thought surrounding the Second World War. Lending itself to the

modeling of communication systems through human machine interfaces, set theory would

also drive much of the work around school mathematics reform in postwar United States,

and discussed more in chapter 5 on the cybernetic architecture. Specific to the vibrating

string, Norbert Weiner already mentioned as the father of cybernetics would call on the

problem of the vibrating string and the use of the Lebesgue integral in modeling its solution

as one of his great mathematical achievements.

Finally, more contemporary mathematical work has reformulated a synthetic approach

to grounding an understanding of certain elements of the function concept. One such

example resides in the area of Category Theory. Here, the focus is on Saunders MacLane

and in the work of Alexander Grothendieck. From their work the most recent emergence

of networks in the discourse of school mathematics are relate able to another foundational

change in mathematical objects and the practice surrounding their use. Zalamea has

pointed to Grothendieck’s use of the sheaf concept as a way to unify discrete and continuous

problems as well as emblematic of a cultural phenomenon related to the rise of networks.9

These notions will be connected with contemporary developments in school mathematics

reform at the scientific and institutional level in the final chapter of analysis.

3.1.1 Mechanical Functions

“If then we should take successively an infinite number of different values for the line

y, we should obtain an infinite number of values for the line x, and therefore an infinity

of different points, such as C, by means of which the required curve could be drawn.”–

Rene Descartes, 1637.10

the Discussions between Baire, Borel and Lebesgue,’ Archive for History of Exact Sciences 9, no. 1 (1972):

9. F. Zalamea, Synthetic Philosophy of Contemporary Mathematics (Falmouth, U.K., 2012), and F. Za-

lamea, Alexander Grothendieck and a Contemporary Theory of Transgression, Lecture series at the The

Media Studies Graduate Program Pratt University, October 2015. 2015, https://zalameaseminarnyc.

wordpress.com/.

10. Rene Descartes, The Geometry of Rene Descartes, Translated with commentary by David Eugene

https://zalameaseminarnyc.wordpress.com/
https://zalameaseminarnyc.wordpress.com/
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Descartes indeed introduced a new approach to working on problems involving inter-

dependence. However, it is important to note his preference for geometric construction

as an element of his pre-functionality. In the problem that Debaune posed to Descartes a

curve needed to be found given properties of its tangent. Here, Descartes offered a specific

solution based on transformation of axes. His conversation in the letter addresses both the

limits of his Geometrie as well as its inability to link the processes of differentiation and

integration. For the latter he tells Debaune of his preference for Archimedes methods based

on the method of exhaustion in computing the quadrature of the parabola. According to

the Descartes, the goal was to find a curve whose subtangent was constant. Again, this is

an inverse tangent problem because the given information is in terms of the tangent, and

we are set to find the curve that has this tangent. Today, we recognize the processes of

integration and differentiation usually linked through the fundamental theorem of calcu-

lus, however for Descartes, this was not an available option. Descartes diagram is found

below.11

Figure 3.1: Descartes Figure for Inverse Tangent Problem

Descartes tackled the problem by reformulating the geometry of the original figure.

Below, in figure 3.2, a simplified presentation shows the original situation and the result of

Smith (The Open Court Publishing Company, 1925), 34.

11. The letter itself can be found in Tannery’s Volume 2 of Descartes Correspondence.Rene Descartes,

Oeuvres de Descartes: Correspondence II, ed. Adam Charles and Paul Tannery (L.Cerf, Paris, 1898), 510 -

523.
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the transformation. Here, de Baune presented the axis AQ meet AC at a 45 degree angle.

Here, TC would be the subtangent of AB at B, and he wanted to find the curve AB so

that
BC

TC
=

α

BQ

for some constant α. It is easy to recognize that de Baune, with the ratio BC
TC is putting

forward what we now associate with differentials. Upon Descartes transformation of the

axes, he arrived at a situation with point B′ with subtangent t′. Through simple manip-

ulations and substitutions, Descartes showed the subtangent was constant, and noted the

curve that satisfied this situation was the hyperbola.

Figure 3.2: Descartes Transformation

More important however was his discussion around the indifference to pursuing such

problems further. The limitation of geometric curves presented a situation where thought

Descartes was able to offer a solution to what we would now associate with the differential

equations dy
dx = α

y−x in the original figure and dz
dw = − z

t′ after his transformation, as well as

noting the connections between the problem of tangents and inverse tangents with those

of his methods in the Geometrie and those of Archimedes quadrature, such work was not

appropriate for his system. This rejection is easily shrugged off as a lack of foresight and

ability, however there has been nearly no commentary on the emergence and subsequent

rejection of the study of differential equations in Descartes work.

Rather, the typical approach is to find where our contemporary conceptions of these

ideas might be found and trace out the development of mathematicians who admitted such

problems into their mathematical system. Liebniz is responsible for introducing differential

notation, and his transmutation theorem along with Newton’s work on the fundamental
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theorem are often pointed to as the birth of the calculus. Here, the connection between

integration and differentiation were made in modern terms and therefore admitted alter-

natives to the Cartesian system.

Tannery noted this problem in his discussion of Descartes letter, and points to the notion

that for Descartes geometric curves admitted only those traced by curves more in line with

the familiar geometry of ruler and compass construction.12 More recently, H.J.M. Bos has

written at length about the necessity of the constructibility of solutions for Descartes and

that only solutions that could be demonstrated as such were to be admitted.13 There were

other instances of curves and mathematical objects well known at the time–the conchoid

of Nicomedes, Quadratrix, and cycloid for example–which were also not appropriate for

the Cartesian system but nonetheless, well know to Descartes.14

Descartes mathematics has come to be understood more in terms of these rules and

limits. This includes a revision of an understanding of Descartes as marking a shift from

a formerly synthetic mathematics to a new analytic modern approach.15 Descartes view

of constructability as final demonstration and rejection of certain kinds of mathematical

objects will be a recurrent theme in the history of the function concept, where mathemati-

cians will continually alter the rules of their system to accept and deal with alternative

objects.

Descartes Geometrie is also pointed to a premier exemplar of a shift to modern handling

of interdependence and predecessor of the function concept.16 In the next chapter, the lack

of a formal function concept and preference for a similar style of mathematical approach

12. Descartes primary compiler at the beginning of the 20th century. See C. Adam and P. Tannery,

Oeuvres de Descartes: Correspondence, Oeuvres de Descartes (J. Vrin, 1974)

13. See H. J. M. Bos, Redefining Geometrical Exactness: Descartes’ Transformation of the Early Modern

Concept of Construction (Springer, 2001)

14. Douglas M. Jesseph, ‘Descartes, Pascal, and the Epistemology of Mathematics: The Case of the Cy-

cloid,’ Perspectives on Science 15 (4 2007): 410–433 and Paolo Mancosu and Andrew Arana, ‘Descartes and

the cylindrical helix,’ Historia Mathematica 37, no. 3 (2010): 403–427

15. M. Otte and M. Panza, Analysis and Synthesis in Mathematics: History and Philosophy (1997)

16. Boyer, History of analytic geometry , Youschkevitch, ‘The Concept of Function up to the Middle of

the 19th Century’
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to interdependence will be connected to the early expert discourse in school mathemat-

ics. Further, the implications of Descartes larger mathematical mechanical world will be

connected with the early psychology of mathematics education.

3.1.2 Thermodynamic Functions

“If some quantities so depend on other quantities that if the latter are changed

the former undergo change, then the former quantities are called functions of

the latter.”–Leonhard Euler 1755.17

As Cannon and Dostrovsky have discussed in depth, dynamics and the application

of linear partial differential equations to problems in vibration theory were not a part of

mathematics until near the middle of the seventeenth century. From Descartes through

Newton, calculus was a geometrical calculus before it became considered a functional cal-

culus.18 Particularly important to this realization was the deployment of Newton’s second

law to solving the wave equation. Important to the history of the function concept is the

development of new approaches where a functional calculus began to admit objects of a

non-algebraic kind. In the work of both Euler and Fourier, mathematical functions were

expanded to include objects that were not simply the result of algebraic equations. Fur-

ther, in Fourier’s work specifically, the issue of representing all wave phenomena by infinite

trigonometric series shifted the focus of nineteenth century mathematics to try to resolve

and understand such claims.

The well covered vibrating string controversy had to do with the classical vision for an

algebraic function in the work of D’Alembert against Euler’s suggestion that the solutions

to the wave equation are instead arbitrary functions that admit objects like the absolute

value type initial formation of the string. Briefly, it was now through D’Alembert that the

modern formulation of the problem becomes obvious. Applying Newton’s Second Law to

assumptions about small vibrations of a string, we arrive at the differential equation:

17. Youschkevitch, ‘The Concept of Function up to the Middle of the 19th Century,’ 70.

18. Cannon and Dostrovsky, The Evolution of Dynamics: Vibration Theory from 1687 to 1742: Vibration

Theory from 1687 to 1742
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∂2u

∂t2
= c2∂

2u

∂x2
(3.1)

One way to recognize the solution is to suppose that the function in two variables is

separable into two functions in a single variable each, and use the boundary and initial

conditions to find the solution. This is the method of separation of variables, and both

D’Alembert and Euler made use of it in solving the wave equation. For example, a simple

problem is the string fixed at both ends. The differential equation 3.1 then is coupled with

the boundary conditions:

u(0, t) = 0

u(L, t) = 0
(3.2)

The debates around the vibrating string involved the nature of the initial conditions.

Here, because of the second degree partial differential equation 3.1, two initial conditions

are necessary. For the vibrating string with fixed ends this is typically presented as:

u(x, 0) = f(x)

∂u

∂t
(x, 0) = g(x)

(3.3)

As the vocabulary anticipates, the boundary conditions equal to zero explains the fixed

ends of the string, and the initial conditions mean that the string is initially in position

of some function f(x), whose derivative at zero is some other function g(x). Then, you

assume the function is separable, i.e.:

u(x, t) = f(x)g(t) (3.4)

Differentiate this and rearrange terms to get:

1

c2

f ′′

f
=
g′′

g
= A (3.5)

From here the boundary conditions and inital conditions yield the solutions from typical

integration procedures in calculus. At this time however, D’Alembert argued that only
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algebraic functions, which at that time constituted continuous functions, were the only

admissible objects for solving these equations. 19 A specific example in the debate in-

volved a string that would be plucked in a triangular initial position. John Bernoulli also

contributed a solution that proposed the utility of infinite trigonometric series to model

the solutions.

Through the end of the eighteenth century, the problem remained unresolved. Joseph

Fourier would contribute to the debate in the early part of the nineteenth century with

his work surrounding the Analytic Theory of Heat. The problem of modeling the flow of

heat through a medium is similarly handled with partial differential equations, and Fourier

would also handle the problem of modeling the vibrating string. An important part of

Fourier’s work was the idea that infinite trigonometric series could solve all such differential

equations.20 Across Euler and Fourier’s work was the opening up of mathematical models

to a series of different kinds of functions that were completely arbitrary in nature.21 The

general initial condition provided for solutions, including piecwise linear functions like that

of the absolute value.

Fourier would claim that the vibrating string problem could be solved using his series.

The solution to 3.1 with 3.2 was given by Fourier as:

19. A detailed description can be found in Truesdell and Euler, The Rational Mechanics of Flexible Or

Elastic Bodies, 1638-1788: Introduction to Leonhardi Euleri Opera Omnia Vol X Et XI Seriei Secundae,

237-244.

20. See for example I. Grattan-Guinness, Joseph Fourier 1768-183O: A Survey of His Life and Work,

Based On a Critical Edition of His Monograph On the Propagation of Heat, Presented to Inst. de France,1807

(MIT Press, 1972), Victor J. Katz, ‘The calculus of the trigonometric functions,’ Historia Mathematica 14,

no. 4 (1987): 311–324

21. Jerome Ravetz, ‘Vibrating Strings and Arbitrary Functions,’ in The Logic of Personal Knowledge:

Essays Presented to Michael Polanyi on His Seventieth Birthday, 11th March 1961, ed. M. Polanyi (Free

Press, 1961)
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y =
2

l

∫ l

0

inf∑
0

sin
rπx

l
sin

rπx

l
cos

rπct

l
Y (x)dX

+
2

πl

∫ l

0

inf∑
0

sin
rπx

l
sin

rπx

l
sin

rπct

l
V (x)dX (3.6)

where Y and V were the initial shape and velocity of the string. Fourier would claim that

any function could be represented by his series. While we now know this to not be true,

this was not the case in the early nineteenth century.

3.1.3 Cybernetic Functions

“Let E and F be two sets, which may or may not be distinct. A relation between

a variable element x of E and a variable element y of F is called a functional

relation in y if, for all x ∈ E, there exists a unique y ∈ F which is in the given

relation with x.”–N. Bourbaki, 1939 22

Fourier’s claims were dismissed upon initial presentation by a number of important

mathematicians of the time.23 Despite this, through the nineteenth century a primary

objective of many important mathematicians was deciding whether or not trigonometric

series converged or not. Dirichlet was one mathematician who would take up Fourier’s

problem, and in his response he offered a function that could not be represented by an

infinite trigonometric series. In a paper on Fourier series, Dirichlet introduced the function:

f(x) =


0 if x is a rational number

1 if x is an irrational number

22. N. Bourbaki, Theory of Sets (Springer, 2004), 351.

23. Grattan-Guinness, Joseph Fourier 1768-183O: A Survey of His Life and Work, Based On a Critical

Edition of His Monograph On the Propagation of Heat, Presented to Inst. de France,1807
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This was representative of a class of pathological functions that served as counterexamples

to many of the foundational problems around definitions of functions, continuity, differen-

tiability, and integrability.

In similar pursuits, Riemann offered his integral as a way of handling such problems.

He too saw this work directly connected to the study of trigonometric series. Together,

Riemann’s integral and Dirichlet’s work would map new terrain for the mathematician. In

related work, Dedekind would introduce his cuts as a way of understanding continuity of

the real number line. He would also be the first to introduce the notion of a function as a

mapping correspondence between collections of objects now more familiar as sets.24

It was within this language of sets that the next definition of the function concept would

become most clear. It was also here, that Lebesgue would find an alternative to Riemann’s

integral.25 Set theory itself, most prominently born in the mid-nineteenth century, was also

an attempt to ground mathematics in rigorous abstract conceptual framework.26 In his

work on trigonometric series, for example, Lebesgue would deploy a set theoretic approach

to proving Parseval’s equality, another important equation relating to the convergence of

Fourier series.

In practical application, the modeling of some kind of phenomenon by an infinite

trigonometric series requires truncating the series thereby using a finite number of terms.

Error is involved, and this is in fact what Parseval’s equality handles. Considering the

mean square error between the approximation and the function itself, Parseval’s equality

states that as the number of terms used in the approximation increases towards infinity,

the error approaches zero. Given error as:

E =

∫ b

a
f2αdx−

M∑
n=1

α2
n

∫ b

a
φ2
nαdx (3.8)

24. Corry, Modern algebra and the rise of mathematical structures

25. T. Hawkins, Lebesgue’s Theory of Integration: Its Origins and Development (American Mathematical

Society, 2001) and Monna, ‘The Concept of Function in the 19th and 20th Centuries, in Particular with

Regard to the Discussions between Baire, Borel and Lebesgue’

26. Ferreiros, Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics and

Corry, Modern algebra and the rise of mathematical structures
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Supposing that there is a neglect in the series, we have Bessel’s inequality:

∫ b

a
f2αdx ≥

∞∑
n=1

α2
n

∫ b

a
φ2
nαdx (3.9)

And allow limM→∞E, Parseval’s equality comes:

∫ b

a
f2αdx =

∞∑
n=1

α2
n

∫ b

a
φ2
nαdx (3.10)

This proof was possible with new conceptual tools founded on the theory of sets and notion

of measure. Fatou noted in similar time in his dissertation on trigonometric and Taylor

series “to show the advantage that can be obtained in these questions from the new notions

of the measure of sets and the generalized definite integral.”27

For this study, the use of the concept of a set as a foundational resource for mathematics

is quite definitively seen in the work following World War II. Much like its ability to open

new doors in mathematics by providing a greater generalizing capability through the use

of a structural edifice, school mathematicians took this same structural approach to the

curriculum and mind of the child. Norbert Weiner personifies a crossing over of such

generalizations into the social scientific world, but in the mathematical discourse a similar

approach underlay the structural vision for mathematics. The Bourbaki group put forward

the structural vision as the optimal way of understanding the foundational issues raised by

the classics.28 an attempt at a sweeping generalization of objects was attempted through

the use of the general structures.

In terms of the definition of function however, the group seems to have been aware of

the potential limitations of the structural vision. Their publication on the Theory of Sets

was discussed within the group for this fact.

“Should the word ”function” be reserved for mappings sending a set to the ”universe”,

as you have done (in which case, with your axioms, the values of the function constitute

themselves a set properly understood)? Or is it perhaps convenient to name ”function”

anything to which we attach a functional symbol, e.g., Pe(E), A×B,A⊗B (tens. prod.)

27. Quoted in Hawkins, Lebesgue’s Theory of Integration: Its Origins and Development , 168.

28. Corry, Modern algebra and the rise of mathematical structures, 329.
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etc.? Obviously, ”function” in the second sense will not be a mathematical object, but

rather a metamathematical expression. This is undoubtedly the reason why there are

people (without giving names...) who use the word ”functor”.”29

If they were to name names, Saunders Maclane and later Alexander Grothendieck would

have worked. Maclane in particular will be important, for he not only participated in

important work in category theory where the function would become a metamathematical

object, and the authoring of articles in the Mathematics Teacher, suggesting the benefits

of the set theoretic foundations for school mathematics.

For this analysis, the set theoretic architecture for mathematics is found explicitly in

a series of reforms following the Second World War. The examples from the mathematics

curriculum will be elaborated alongside the deliberate use of Bourbaki’s architectures for

childhood cognition in Piaget’s Genetic Epistemology. Both the language of sets and that of

’constructivism’ continue to reverberate in the science of mathematics education and school

mathematics. Despite this, there have been initial moves to alternative framing of the

function concept and a shaking of the structural approach of set theory. Mathematically,

this involved the rise of category theoretic notions and will be described in terms of both

MacLane’s contributions and finally Grothendieck’s mathematics. Later, this work will be

used to make sense of contemporary reforms in school mathematics.

3.1.4 Network Functions

As Weil’s quote on the potential alternative notion of a functor indicated, set theory did

not necessarily offer the final definition of the function concept. Yet another approach

would be found in the category theory work that developed through the twentieth century.

MacLane and Grothendieck offer examples of precisely such approaches. As Corry notes,

”the generalizing possibilities afforded by category theory also led to several attempts at

providing an abstract foundation for all of mathematics in terms of categorical concepts,

in the hope of overcoming the difficulties encountered when this task was attempted from

29. Weil’s response to an initial reading of the Theory of Sets quoted in Corry, Modern algebra and the

rise of mathematical structures, 296.
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the set-theoretical point of view.”30

Important for this study is a shift to a style of mathematical practice that does indeed

involve more meta questions, as well as a shift to mathematical and natural objects in mo-

tion. Further, category theory approached the notion of interdependence through functors

from a standpoint that was different from that of the structuralist in that the properties

and the nature of the elements are no longer important, but rather the connections between

such entities.

“Category theory proposes to formalize the idea of a mathematical structure through

the properties of its morphisms, namely, through the properties of the interconnections

among the different individual representatives of a given structure.”31

As Krömer points out in his history of category theory, “category theorists made efforts

to simulate set-theoretical features in CT.”32 The notion of simulation and a focus on

interrelationships as opposed to fundamental properties within the mathematics connect

with the earlier notions of network culture as well as the later analysis of the network child.

Two central ideas within category theory are the ideas of functor and category. Devel-

oping these from more traditional function notation, suppose we have a function f from

some set A to another set B. Here we would define membership as well as the way the

members of the set A are related to the set B. Diagrammatically this might be illustrated

as:

f : A→ B (3.11)

For the category theorist, a similar diagram serves to demonstrate an alternative approach

in terms of categories and functors. Take the diagram:

A
f−→ B (3.12)

30. Corry, Modern algebra and the rise of mathematical structures, 339.

31. ibid., 340.

32. R. Krömer, Tool and Object: A History and Philosophy of Category Theory (Birkhäuser Basel, 2007),

236.
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This can be taken as a category with elements A and B who there exists a one directional

relationship between. The primary difference from the set theory standpoint and that of

category theory is that the defining characteristics of the elements within the groups do not

make a difference, nor does the specificity of the relationship. Instead it is a global stance

that looks at collections of connections. The function is now simply the arrow between

categories.

Together with the notion of a natural transformation, one is continually confronted with

what has returned to be a diagrammatic and visually demonstrable mathematics. The use

of the word natural was not coincidental. In an early article, MacLane and Eilenberg

stated:

“Frequently in modern mathematics there occur phenomena of “naturality”: a “natu-

ral” isomorphism between two groups or two complexes, a “natural” homeomorphism

of two spaces and the like. We here propose a precise definition of the “naturality” of

such correspondences, as a basis for a general theory.”33

This involved considering both the collections and connections together at once.34

Following Corry’s example, suppose two categories and Ω and two functors F and G

between them, a natural transformation ΦF → G assigns to each object A in an arrow

ΦA : F (A)→ G(A) in Omega so that the commutative diagram below is satisfied35

A F (A)
ΦA−−−−→ G(A)

f

y yF (f)

yG(f)

B F (B) −−−−→
ΦB

G(B)

(3.13)

Following the early work in category theory, Alexander Grothendieck would push some

of contemporary mathematics most revelatory ideas in algebraic geometry motivated by

these notions. In doing so, the mathematical program of Felix Klein has returned to promi-

nence, and its open questions received some new novel answers. Grothendieck followed the

33. Saunders MacLane Samuel Eilenberg, ‘General Theory of Natural Equivalences,’ Transactions of the

American Mathematical Society 58, no. 2 (1945): 231–294, 537

34. S.M. Lane, Mathematics, form and function (Springer-Verlag, 1986)

35. Corry, Modern algebra and the rise of mathematical structures, 342.
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notion of category theory as a mathematical approach and introduced powerful new tech-

niques including his schemes, in order to offer new powerfully general interpretations of

mathematics.36 Central to this shift in mathematics and a re-geometricization of mathe-

matics37 This mathematics was one that rather than focusing on the thing itself, it was

the morphisms–or connections–became the objects of interest.

Felix Klein’s work arose alongside Sophus Lie and made use of the transformation group

in attempting to present a unified picture of geometries.38 One interpretation of the work

in category theory is that it succeeded in reviving Klein’s project through a homological

algebra and an Abelian category, and that this work made heavy use of the notion of an

adjoint functor.39 This regeometricization of mathematics marks an important turn away

from the set theoretic stance.

For this study, the notion of an alternative to the set theoretic foundations found

in category theory and its development of the notion of functor within a mathematical

edifice that values interrelationships over things in themselves will be connected with the

architecture of networks in the final chapter of this study. Here, the earlier emergent ecology

discussed in chapter 2?? is paired with a school mathematics that itself begins to ask meta

questions, and demonstrate it’s thinking with diagrams that resemble the motive nature

of the category theorists commutative diagrams. Further, the complete relativization of

36. See for example Zalamea, Synthetic Philosophy of Contemporary Mathematics, 133 - 172, L. Schneps,

Alexandre Grothendieck: A Mathematical Portrait (International Pressof Boston Incorporated, 2014)

37. Grothendieck himself turned away from functional analysis towards algebraic geometry.J.P. Marquis,

From a Geometrical Point of View: A Study of the History and Philosophy of Category Theory (Springer

Netherlands, 2009)

38. David Rowe, ‘The Early Geometrical Work of Sophus Lie and Felix Klein,’ in Ideas and Their Recep-

tion: Proceedings of the Symposium on the History of Modern Mathematics, Vassar College, Poughkeepsie,

New York, June 20-24, 1989, ed. D.E. Rowe and J. McCleary (Elsevier Science, 2014), 209–274 and Thomas

Hawkins, ‘Line Geometry, Differential Equations, and the Birth of Lie’s Theory of Groups,’ in Ideas and

Their Reception: Proceedings of the Symposium on the History of Modern Mathematics, Vassar College,

Poughkeepsie, New York, June 20-24, 1989, ed. D.E. Rowe and J. McCleary (Elsevier Science, 2014), 275–

330

39. Marquis, From a Geometrical Point of View: A Study of the History and Philosophy of Category

Theory , 158.
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objects of study that is most evident in Grothendieck’s mathematics is also apparent in

recent school reforms in New York City where universal standards have been devalued in

favor of comparisons based on peer group indicies.

It is an interesting story to find Klein putting forward a vision for mathematics educa-

tion at the beginning and his mathematical vision becoming relevant more than a century

later. This is most evident in the recent Common Core State Standards vision for ge-

ometry that puts forward a theory of invariants through rigid transformations. While

Klein’s own mathematics may have presented such an approach, that within the school has

taken more than a century to begin to present something like a geometry based on rigid

transformations.
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Chapter 4

Mechanical Mathematics

The Largest Army in the World, The New York Times 1907
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4.1 The New Army

A series of laws making education compulsory through the age of 16 while at the same

time banning child labor were central to the rise of mass education in New York City.1

In the 1899-1900 school year, there were a total of 493,849 pupils enrolled in the public

schools. By 1917 this number was up to 895,552 and represented 69.75 percent of the

eligible population.2 This was a definitive departure from a former existence for many

of the cities children. Moving away from a professional workplace and into an educative

institution meant they would now spend their time preparing for these workplaces at a

later age.

This made possible the largest organized assemblage of bodies in the world. In rapid

time, the New York City public schools assembled and operated a larger than 600,000

student soldier population. The large army and its growing building scheme replete with

the H-Plan schools providing more light and ventilation, would also see the construction

of the largest school in the world in the lower east side of Manhattan. The irony of the

school building being located on the grounds where James Fennimore Cooper played as a

rambling school child was not lost on observers.

“Perhaps it is only poetic justice that this lost island, once the very stronghold and

citadel of truancy, should have become the site of that from which the truants fled–a

school!”3

Cooper himself would address industrial empire’s expansion from a critical perspective

in New York through his novels.4 It was at the turn of the century however, when the

expansion of the empire within its geographic borders was to be replaced by a new kind of

exterior imperial strategy.

1. Interesting Facts and Figures in the Running of the Most Elaborate and Extensive Educational System

in the World, September 1907, 1

2. Data pulled from Superintendant Reports William H. Maxwell, Annual Report of the Superintendent

of New York City Schools, 1900 and William Ettinger, Annual Report of the Superintendant of Schools,

1919.

3. The Real Manhattan Island, December 1904, 1

4. see for example J.F. Cooper, The Pioneers (Start Publishing LLC, 2012)
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With the interior land of the present geographic organization of the United States had

for the most part been secured, Theodore Roosevelt presided over a nation that was in a

completely different position then the early westward expanding empire. Historians have

noted this transitional stage in American empire, and often point to the Spanish American

War as an exemplar of the new kind of nation state.5 During the westward expansion, ter-

ritorial acquisition was the name of the game. With its borders exhausted, the American

engine began operating on alternative fuels of international trade and materialist colo-

nial enterprise that secured global trade roots as well as pacified natives of foreign lands

containing valuable raw materials for the expanding industrial-technological society.

For the early school mathematician, these developments were important on a number

of fronts. First a decision needed to be made about what mathematical preparation was

appropriate for the new population entering the nations public schools. Second, what

should the appropriate mathematical content for this preparation be? Third, a coupling

with a science of learning that explained the processes of coming to understand basic

mathematics needed to be clarified psychologically. The answers to these questions in

much of the early discourse of school mathematics involved similar answers.

To investigate them, this chapter seeks to describe the science of school mathematics

based on a mechanical vision for school mathematics. From the presentation of the function

concept to the psychology of arithmetic and algebra, shared commitments were made to

a world where mathematical objects and intelligence were a priori entities governed by

immutable laws. This larger mechanistic worldview has ancestry in earlier physical models

of the universe.

4.1.1 Technology and the Emerging School

The clockwork universe is one in which “the clockwork metaphor came to represent the

order, regularity, and predictability science sought to uncover in the workings of the uni-

verse.”6 A clock is a collection of cogs and gears that work together in synchronic fashion in

5. See for example Zinn, A People’s History of the United States and P. Kennedy, The Rise and Fall of

the Great Powers (Knopf Doubleday Publishing Group, 2010)

6. Bousquet, The Scientific Way of Warfare: Order and Chaos on the Battlefields of Modernity , 38.



CHAPTER 4. MECHANICAL MATHEMATICS 67

a perfectly predictable way. This metaphoric rooting meant that a similar understanding

of natural processes would be based on the simple machine.

For scientific work, the clock was central to the classical visions of physical science. For

both the Newtonian and Cartesian models of physics, the clock serves as a symbol of the

accompanying theories on the conservation of energy.7 The simple machine of clockwork

is a metaphor for deterministic motion and universal constants of change. This is not a

physics where new energy is created or lost, but rather a universe in perpetual motion

according to universal immutable laws.

On the battlefield, a clockwork army was first seen by Maurice of Orange, but found a

later utilization by Frederick the Great. Here, Frederick coordinated his army by quashing

individual initiative and forming a collection of soldiers strictly disciplined to work in

coordinated predictable ways. Precision, predictability, and order,8 were the centerpieces

of the mechanistic tactics. Similar desires in the laboratory drove the artists hand from the

page in favor of strict protocols for scientific objectivity through technology. The rise of

photography led scientists to deploy these apparatus in ways that were viewed as objective

because they eliminated the human subjectivity from natural phenomena like the personal

equation. These simple machines also served as models for nature. Here, scientists like

18th century physician Julien Offray de La Mettrie argued that the human body worked

like a watch and that the soul is clearly an enlightened machine while in short time the

work of Francis Galton and the introduction of the camera the most appropriate way to

observe the human by deploying procedures and machines that bypassed the will.9

Compulsory schooling and state university systems emergence can be seen as the re-

sults of a mechanistic state seeking to coordinate a mass of population in order to affect

movement while at the same time calling on mechanistic scientific models to accomplish

such goals. Coordination efforts were also pursued in terms of mathematical disciplinary

expectations to identify what was of most import to the student who was to be of service to

the state. Committee work through the later part of the nineteenth century saw the don-

7. Prigogine and Stengers, Order Out of Chaos: Man’s New Dialogue with Nature, 111.

8. Bousquet, The Scientific Way of Warfare: Order and Chaos on the Battlefields of Modernity , 61.

9. Daston and Galison, Objectivity , 138.
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ning of the College Entrance Examination Board and their set of standards for appropriate

preparation for college. This board collected individuals from all secondary institutions

in the middle states with enrollments over 50 students with the power from time to time

to adopt and publish a statement of the ground which should be covered and of the aims

which should be sought by secondary school teaching.10

These standards and processes informed the work of the public high schools of New York

City. Soon after its consolidation, the board of education adopted the CEEB standards as

those appropriate for graduation. Superintendent Maxwell noted these developments:

“With the extension of the course of study in Manhattan and the Bronx, from seven to eight

years, and the enrichment of the elementary school course that will undoubtedly accompany this

extension, there need be no difficult in securing for our high school graduates advanced standing

in any college or university in this country. Such a development of our work will be of quite as

much advantage to those students who do not desire to pursue their studies beyond the high

school as it will be to those who intend to proceed to college.”11

Maxwell was committed to a single unified track for all students. The training of

students should be unified, the subjects that they experience should be presented as unified,

the sciences that support the expansion of knowledge in the sciences of pedagogy and

psychology were professionalized and moved towards unified standards of practice.

In terms of school mathematics, unification and singular vision were emblematic of

the curriculum and curricular discourse of the early pedagogues. Mathematics was to be

presented as a unified science, one that offered direct knowledge of the surrounding world

in absolutely perfect form. The function concept stood to be the idea that would unify

mathematics content for the school. Felix Klein would put forward a view of mathematics

as a unified science with the function concept at the center.

”It appears indeed that the different branches of mathematics have actually developed

not in opposite, but in parallel directions, that it is possible to combine their results into

10. Plan of Organization of the College Entrance Examination Board for the Middle States and Maryland,

1900, 8.

11. Maxwell, Annual Report of the Superintendent of New York City Schools
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certain general conceptions. Such a general conception is that of the function”12

Klein not only spoke of the importance in the formal area of mathematics but also

identified the function as crucial to the study of mathematics in school: “It is my conviction

that the function concept in its graphical form should be the soul of mathematical study

in the schools.”13 The function was destined to be the central piece of school mathematics

around which the learning experience would be structured. The properties of the function

in Klein’s discourse was not directed solely at a formal arena but caught up in a program

that sought to unify what he saw as a disparate landscape of specialization in mathematics

research. Unification of the pure and applied field was of utmost importance to Klein’s

geometry where mathematics was not to be removed from worldly tangible ideas and

models.14

Kleinian geometry unified the Euclidean and projective models and recognized the for-

merly disparate approaches to the subject as interdependent. Under this new view space

can be modeled by all possible relations of togetherness and the accompanying transfor-

mation group.15 This work spoke to an effort at providing unity to a fractured geometric

landscape. Additionally, Klein was a compiler who organized the Encyclopedia of the

Mathematical Sciences to give a complete overview of mathematics.16 In presenting the

graphical representation of functionality at the center of a unified program, Klein in fact

called on an understanding of the discipline much in line with the earlier encyclopedist

D’Alembert.

12. Felix Klein, The Present State of Mathematics, Remarks given at the opening address of the Mathe-

matical and Astronomical Society Congress, Chicago Ill. 1894

13. Felix Klein quoted in H.R. Hamley, Relational and Functional Thinking in Mathematics, National

Council of Teachers of Mathematics: Yearbook, v. 9, pt. 1934 (Teachers College, Columbia University,

1934), 53.

14. For more on Klein’s unification of pure and applied mathematics see Eduard Glas, ‘From Form to

Function A Reassessment of Felix Klein’s Unified Programme of Mathematical Research, Education and

Development,’ Studies in History and Philosophy of Science Part A 24, no. 4 (1993): 611–631

15. Eduard Glas, ‘Model-Based Reasoning and Mathematical Discover The Case of Felix Klein,’ Studies

in History and Philosophy of Science 31, no. 1 (2000): 71–86

16. Jeremy Gray, Plato’s Ghost (Princeton University Press, 2008), 116.
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In learning mathematics Klein saw mathematical knowledge as built up on intuitions

and activity with the world. Later these intuitive notions can be refined and become the

precise axioms of mathematics.17 Intuition then was the starting point; from here the

formal concepts and structures of mathematics could be developed. The eventual abstrac-

tions in formal mathematical language and symbolism have a starting point, and they are

arrived at as a result of this intuitive trajectory. The formula needed for computational

command over the function here emerges as the final result of the considerations and not

as the starting point. 18

Though Klein made tremendous advances withing professional mathematics, his work

in geometry was not what was reflected in the early curricular discourse. Instead, his

commitment to mathematics as a unified science including its applications, as well as his

understanding of geometric objects as intuitive and idealized in graphical form gained

support in the school mathematics community. Many of the early school mathematicians

were a product of Klein’s Gottingen program and carried his vision for mathematics as

unified science.

In doing so, these early pedagogues required a vision for the function concept. By 1900,

the mathematics of the function concept had been heavily commented on, and the multiple

definitions were available to utilize as the basis of school mathematics. The pedagogues

needed to decide which of these notions was the most appropriate for school children.

For Moore, this meant looking backwards to expose students to the historically important

methods of the seventeenth century mathematicians.

“Will not the twentieth century find it possible to give to young students during their

impressionable years in thoroughly concrete and captivating form the wonderful new

notions of the seventeenth century?”19

17. Glas, ‘From Form to Function A Reassessment of Felix Klein’s Unified Programme of Mathematical

Research, Education and Development,’ 619.

18. Felix Klein as quoted in Glas, ‘Model-Based Reasoning and Mathematical Discover The Case of Felix

Klein,’ 80.

19. Eliakim Hastings Moore, ‘On the Foundations of Mathematics,’ Bull. Amer. Math. Soc. 9, no. 8 (May

1903): 402–424, 424.
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Such a vision seems to be reinforced for many early school mathematicians in a pe-

riod where the first reforms and materials barely mention the function concept–like the

Committee of Ten Report–to a full fledged allegiance to its power to unify the curriculum

as a single focus for all students by the publication of the 1923 report. While the early

discourse on school mathematics lacks formality that we have come accustomed to when

encountering the function concept, the early school mathematicians had a very different

idea of what the consequences for a single unified curriculum that highlighted the function

concept would be.

If Moore’s thinking was reasonable, one may expect to find the traces of a function con-

cept that resembles that of the seventeenth century mathematicians ideas of functionality.

Early pedagogues seem to have heeded such suggestions, and like the seventeenth century

algebra, school algebra would focus on an informal notion of interdependence as function-

ality, no study of the function concept itself, and a focus on graphical representations as

the clearest way to see relationships. This vision extended from the view of the intuitive

and a priori nature of number to later understandings of interdependence relationships as

emblems of natural law. Such a view of the function concept and similar approach to the

idea of mathematical objects was put forward in the seventeenth century by Descartes.

4.1.2 The Cartesian Ideal

For much time, historians of mathematics have recognized Rene Descartes as central mod-

ern mathematics. Nearly 150 years ago, Hankel noted “modern mathematics dates from

the moment when Descartes went beyond the purely algebraic treatment of equations to

study the variation of magnitudes that an algebraic expression undergoes when one of its

generally denoted magnitudes passes through a continuous series of values.”20 This was

a revolutionary step, to claim that any quantity whatsoever could be represented by a

symbol. Descartes accomplished this work in the early part of the seventeenth century,

precisely where Moore would have drawn from.

Looking for a rigorous method to conduct investigations in true knowledge Rene Descartes

20. Hankel in Bottazini, The Higher Calculus: A History of Real and Complex Analysis from Euler to

Weierstrass, 8.
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decided to root his method in mathematics.

“When I considered the matter more closely, I came to see that the exclusive concern

of mathematics is with questions of order or measure and that it is irrelevant what-

ever the measure in question involves numbers, shapes, stars, sounds, or any other

object whatever. This made me realize that there must be a general science which

explains all the points that can be raised concerning order and measure irrespective

of the subject–matter, and that this science should be termed mathesis universalis–a

venerable term with a well-established meaning–for it covers everything that entitles

these other sciences to be called branches of mathematics...”21

It was in his Rules for Directing our Native Intelligence22 that Descartes offered the

initial framework for his world system. The mathematical counterpart would be in his later

appendix to the Discourse on Method23, the Geometrie.24

In his Geometrie, Descartes combined the analytic tools of Viete with certain ancient

geometric problems to conduct his new mathematics. Abstract symbols were called upon

to support reasoning about geometric problems in a way that Descartes claimed would

revolutionize mathematics and defeat many cumbersome problems in short time. With his

fourth rule he linked his method with mathematics. In the fifth he summarizes the larger

enterprise.

“The whole method consists entirely in the ordering and arranging of the objects on which we

must concentrate our mind’s eye if we are to discover some truth. We shall be following this

method exactly if we first reduce complicated and obscure propositions step by step to simpler

ones, and then, starting with the intuition of the simplest ones of all, try to ascend through the

same steps to a knowledge of all the rest.”25

21. R. Descartes, ‘Rules for the Direction of our Native Intelligence,’ in Descartes: Selected Philosophical

Writings (Cambridge University Press, 1988), 1–19, 5.

22. ibid.

23. Rene Descartes, ‘Discourse on Method,’ in Descartes: Selected Philosophical Writings (Cambridge

University Press, 1988), 20–56

24. Descartes, The Geometry of Rene Descartes

25. Descartes, ‘Rules for the Direction of our Native Intelligence,’ 6.
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Between the rules and the method exemplified in his mathematical practice, Descartes

laid down a scientific model that was appropriate within a society seeking to standardize

knowledge and citizenry. Number and quantity were part of a larger mathematics that was

able to describe many things. Natural science and mathematics become one. Djiksterhaus

notes “the standpoint taken by Descartes cannot be better described than by saying that

by carrying this conception to its extreme he virtually identified mathematics and natural

science.”26

Compared to the Cartesian model, Klein put forward a vision of mathematics for school-

ing that bore many similarities. Both Descartes and Klein understood mathematics as

unified science, valued the graphical presentation of interdependence over others, and saw

mathematical reasoning as progressing through a clear linear development. Klein under-

stands development in general to be of a linear order. For example he states:

“For whoever wants to enter into it must through his own labour mentally recapitulate

step by step the entire development; it is by all means impossible to grasp even a single

mathematical concept without having mastered all the antecedent concepts and their

connections, which led to its creation.27

The trajectory is obviously reversible then. If we know the consequent step, we can recog-

nize the prior step. Klein here allies himself with the simple machine.

The educational sciences, mathematics education and its early psychology advocated

similar ideals. These areas will be discussed in depth later. First comes the mathematical

connections between the early vision for the function concept in school as appeared in the

professional reports, journals, and textbooks of the founding period of school mathematics

as a science to that of the Cartesian vision.

4.1.3 A Mechanical Function

This argument proceeds by acknowledging the recognition of the function concept as the

unifying concept for the school mathematics curriculum. The period 1890-1910 primarily

26. Dijksterhuis, The Mechanization of the World Picture, 404.

27. Eduard Glas, ‘Klein’s Model of Mathematical Creativity,’ Science Education 11, no. 1 (2002): 95–104,

96.
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bore witness to the emergence of the focus on the function concept from people like Klein

and Moore rather than local, national, and state documents. The function concept and

interdependence are in fact not mentioned anywhere in the famous Committee of Ten

report. Similarly, the New York State syllabus in high school mathematics in 1908 also did

not recognize the concepts of functionality or interdependence.28 Despite this, in short time

the discourse on the function concept became central to the local and national discussions

on school mathematics including numerous curricular documents and journal articles. All

students work in this time would move them through algebra where the function concept

was to find its true home.

The algebra course unified around the function concept needed structure itself to in

the movement toward symbolism as a way of representing interdependence. In order to do

so, the use of graphs was to ease the transition to such abstract symbolic requirements.

This was a natural transition as “in the order of nature the graphic method precedes the

symbolic.”29 The graph was a new technology in the mathematics classroomemerging in the

first decade of the twentieth centurybut its youth did not deter it from occupying the logical

place to begin the discussion of functionality in the study of algebra. As noted, in New

York State, these suggestions were not immediately evident in the curricular documents.

Speaking on the NYS Algebra syllabus before the Middle State and Maryland Mathematics

Teachers Association in 1918, Decker notes:

“The central idea of algebra seems to be the function. A very simple way to get a

notion of the actual existence of function together with their variation is, I believe, to

plot them. I would introduce graphs very early in the course, the first functions plotted

being preferably those arising in connection with arithmetic.”30

Connecting graphical representations to arithmetic ideas positioned students to best

understand the culminating ideas of algebra, which was a subject centered on the function

28. University of the State of New York, Syllabus in Mathematics, 1908

29. Arthur Whipple Smith, ‘What Results are we Getting from Graphic Algebra?,’ The Mathematics

Teacher 4, no. 1 (1911): 14.

30. F. F. Decker, ‘The New York State Syllabus in Intermediate Algebra,’ The Mathematics Teacher 11,

no. 1 (1918): 2.
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concept. This would be the prevailing vision of the function concept through this early

period. Lennes recognized the inclusion of the graphical representation in algebra as one

of the modern tendencies of the early period.31 Graphical representations were to be

introduced early and often and the relationship between different representational strategies

was not seen as equal to many of the early pedagogues.

The graph should not follow from the equation, as the relation will then seem accidental.

Instead the graphical representation of relationships must precede variable equations. Using

graphical representations to motivate functionality in the algebra course was not to be a

rigid treatment of graphical proofs. In fact certain graphical methods were inferior when

compared to more accurate analytical methods. Nonetheless, this early step was necessary

if a full grasp of analytic functionality was to be obtained, after all the young child knows

the picture horse before he knows or uses the word horse.32

Moore would push such a vision in his retirement speech from his role as president of

the American Mathematical Society. As early as kindergarten, children were able to be

exposed to, and recognize functional relationships through graphical representations.

“The cross-grooved tables of the kindergarten furnish an especially important type of

connection, viz., a conventional graphical depiction of any phenomenon in which one

magnitude depends upon another.”33

Elsewhere, Moore would demonstrate how the cross-grooved tables could be used across

the grades from basic arithmetic through advanced algebra. The addition table can be eas-

ily replaced by its graphic cousin below to precipitate a clear understanding of dependence.

Whether or not the student was on the path to calculus, the exercises that the mathemati-

cian utilized in constructing new ways of thinking about geometry would also provide the

educational foundation for later school mathematics.

For Moore, the graphical representation was much easier to use and understand when

compared to more traditional methods. For the elementary student, the use of such struc-

31. N. J. Lennes, ‘Modern Tendencies in the Teaching of Algebra,’ The Mathematics Teacher 1, no. 3

(1909): 97.

32. Smith, ‘What Results are we Getting from Graphic Algebra?,’ 14.

33. Moore, ‘On the Foundations of Mathematics,’ 414.
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Figure 4.1: Mechanical Addition.

Figure 4.2: Linearizing Addition.

tures accompanied by the introduction of a symbolism would prepare the young child for

a mathematical future. This period of the childs education was not one where they would

meet the full potential of analytic reason and technique, but instead could deal with the

simplest algebraic and geometric aspects of functionality.34 The graphical representation

34. Eliakim Hastings Moore, ‘The Cross-Section Paper as a Mathematical Instrument,’ The School Review

14 (1906), 319.
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did not exhaust its utility in the elementary grades and its continued use would highlight

the interrelated nature of geometry and algebra. The double entry table and graphical

computation was directly related to later work in analytic geometry through simple ma-

chines where “geometric functionality comes to clearer vision by means of the notion of

linkage.”35

Figure 4.3: A linkage diagram.

Utilizing the linkage diagram above, the student can affect the construction of both the

standard parabola and the rectangular hyperbola. The former is constructed by allowing

the location of XM = 1 and keeping YP = XP . The functional relationship between the

X and Y variables are demonstrated by considering different mechanical movements of the

linkage, and possible relations such as movement along the line Y = X as earlier noted

which produces the parabola shown below.

The hyperbola can be constructed utilizing the same linkage, only now again making

XM = 1 but fixing YP = 3. After the mechanical construction takes place, by relating the

different positions relying on known proportional relationships the curves become relation-

ships between general ordered pairs. Taking the linkage diagram as our starting point, in

the case of the parabola we can reason as follows. Starting from point O, we let Xm = 1

and Yp = XP . Recognizing the similarity of the figures, we can establish the relationships

YL/XL = YM/XM from which quickly follows that YL = X2
L. Adding the restriction on

35. Moore, ‘The Cross-Section Paper as a Mathematical Instrument,’ 326.
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Figure 4.4: A Mechanical Parabola.

the movement of the vertical motion of L imparts the necessary criteria for the hyperbola

or the relationship XPYP = 3, or whatever constant height restriction is placed on L.

Figure 4.5: A Mechanical Hyperbola.

Descartes, in the second book of his Geometry constructs a hyperbola in much a similar

manner. Utilizing the machine below with rulers AK and GL both of indefinite length,
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the former fixed vertically in the plane, the later attached at pivot G, and the rectilinear

figure BKC hinged at L. Accordingly, “KL always coincides with some part of the line

BA (produced in both directions), imparts to the ruler a rotary motion about G,”36 and

generates the curve EC. Drawing CB parallel to AG, recognizing now that we have some

known and unknown quantities, we can label CB and BA x and y respectively as unknown

quantities, and GA, KL, and NL, as a, b, and c respectively as known quantities. From

here, NL is to LK, or c is to b as x is to BK, hence BK is the same as b
cy, so BL is the

same as b
cy − b, and ALx+ b

cy − b. Further, since CB is to LB as AG is to LA, and after

multiplication we arrive at the equation y2 = cy − cx
b y + ay − ac, and we have Descartes

equation for the hyperbola.

Figure 4.6: Descartes Mechanism.

320 La GEOMETRIE.

reigle G L, & du plan rediligne G N K L, dont le cofté

KN eft indefiniement prolongé vers G , & qui eftant

meu fur le plan de deflbus en ligne droite , c'eft a dire en
telle forte que fon diamètre.KL fe trouue toufîours ap-

pliqueTur quelque endroit de la ligne B A prolongée; de

part& d'autre, fait mouuoir circulairement cete reigle

G L autour du point G, a caufe quelle luy eft tellement

iointe quelle pafle toufîours par le point L. le choiiîs

vne ligne droite,commeA B,pour rapporter a fes diuers

poinstousceuxdecetelignecourbeEG, &en cete li-

gneAB ie choifis vn point, comme A, pour commencer

par luy ce calcul. le dis que ie choifis &rvn& l'autre, a

caufe qu'il eft libre de les prendre tels qu'on veult. car

encore qu il y ait beaucoup de choix pour rendre l'équa-

tion plus courte, &: plus ayfécj toutefois en quelle façon

qu'ouïes prene, on peut toufîours faire que la ligne pa-

roiflè de meûne genre, ainfî qu'il eft ayfe^ a demonftrer.

Apres

50

36. Descartes, The Geometry of Rene Descartes, 51.
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The simplest and easiest ideas in functionality can be experienced in the elementary

grades by relying on a mathematical stance that proceeds in a similar way as Descartes

presentation in the Geometrie. Before moving to more complicated exercises around inter-

dependence with the linkage diagram, students are to work with integer operations as this

is the most basic of all ideas. Here, experiences rooted in graphical arithmetic of magni-

tudes were idealized in a graphic algebra. “Before a pupil begins the study of algebra, even

while he is pursuing arithmetic, the graphic method of representing magnitudes should be

made familiar as a method of mathematics.”37

Shared with Descartes however, was an understanding of ideas like number and quantity

as definite and clear ideas that were in common across all minds. For Descartes, the notion

of the senses as providing perfect knowledge of the world was problematic.38 Nonetheless,

the senses provided access to such things that existed in the mind. For example, in his fifth

meditation, Descartes discusses the relationship between the mind and the senses in terms

of mathematical objects. In visiting the notion of quantity, measure, and shape, Descartes

reveals his opinions about the nature of mathematical objects in the fifth meditation.

“Quantity, for example, or continuous quantity as the philosophers commonly call it,

is something I distinctly imagine. That is, I distinctly imagine the extension of the

quantity (or rather of the thing which is quantified) in length, breadth and depth. I

also enumerate various parts of the thing, and to these parts I assign various sizes,

shapes, positions and local motions; and to the motions I assign various durations.”39

In fact, while the subjective nature of individual knowledge may differ from person to

person, there are inherent truths available in these basic mathematical ideas. Descartes

continues:

“Not only are all these things very well known and transparent to me when regarded

in this general way, but in addition there are countless particular features regarding

37. Smith, ‘What Results are we Getting from Graphic Algebra?,’ 14.

38. Olli Koistinen, ‘Descartes in Kant’s Transcendental Deduction,’ Midwest Studies In Philosophy 35,

no. 1 (2011): 149–163

39. Rene Descartes, ‘Rene Descartes: Meditations on First Philosophy,’ ed. John Cottingham (Cambridge

University Press, 2013), 89.
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shapes, number, motion and so on, which I perceive when I give them my attention.

And the truth of these matters is so open and so much in harmony with my nature,

that on first discovering them it seems that I am not so much learning something new

as remembering what I knew before; or it seems like noticing for the first time things

which were long present within me although I had never turned my mental gaze on

them before.”40

The early school mathematicians shared this view. These mathematical ideas were

already existent in children, and through a series of exercises they would become clear.

This is important, because by 1900 many problems had arisen in the real of mathematics

and the notion of a number as well as the possibility of alternative geometric realities.

For Descartes though, a triangle was immutable. There was an immutable, eternal object

called a triangle, and this had enduring qualities.

“This is clear from the fact that various properties can be demonstrated of the triangle,

for example that its three angles equal two right angles, that its greatest side subtends

its greatest angle, and the like; and since these properties are ones which I now clearly

recognize whether I want to or not, even if I never thought of them at all when I

previously imagined the triangle, it follows that they cannot have been invented by

me.”41

Of course, Klein, Moore, and the other early pedagogues were well aware of alternative

geometric interpretations of an object such as a triangle based on the emergence of non-

euclidean geometries through the nineteenth century. Despite the possibility of viewing

mathematical objects as abstract constructions however, and in posturing the nature as

eternal and a priori within the mind of students, the school mathematician defined a

particular episode in school mathematics that would end with the discard the view of a

number as an obvious entity or thought.

The consequences for the view of the function concept were that the relationships that

the students were attending to were real relationships that were part of a larger eternal

system. Such a view is apparent across the discourse on the function concept in school

40. Descartes, ‘Rene Descartes: Meditations on First Philosophy,’ 89.

41. ibid., 91.
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mathematics during the early period. Further, this view of mathematics was coupled–

through the new discipline of educational psychology–with a psychologizing of number,

arithmetic, and algebra that also propounded a view of mathematical objects as eternal

truths.

4.1.4 Mechanical Function in Text

To consider the discourse of function it is important to connect the material in elementary

school to that of the more obvious mathematics that comes with high school algebra and

beyond. Before examining situations of interdependence, the things being related needed

to be examined. Through the development of basic work with numbers and operations,

arithmetic was the starting point for a classical presentation of the idea of mathematics as

the study of quantity. Descartes was central to the revision of algebra through his use of

variables to represent quantities, but also maintained a view of mathematics as the study

of order and measure. The early arithmetic texts suggested a similar stance.

For textbook magnate George Myers, the appropriate presentation for students early

arithmetic experiences began with the child’s immediate world. For the earliest entrances

into a world of quantification or a Numberland, students in grades 1 and 2 were suggested to

have many experiences where they move from simple sensory experiences to more general

abstract views of number and quantity. For Myers, “the true pedagogical order is to begin

with numbers applied to tangible and present things; to proceed to numbers applied to

familiar but absent things, and lastly to abstract numbers.”42 However, this behavior was

’instinctive’ and existed in advance of the child’s attendance at school.

In high school texts of the period there is quite limited formal work with functions. For

textbook magnate George Wentworth, algebra would still maintain some of its classicism

in 1898. Wentworth’s New School Algebra43 “spared no pains to make this a model text-

book in subject-matter and mechanical execution.”44 Written before much of the discourse

on functionality in school mathematics, Wentworth presents algebra as an investigation of

42. Ada Van Stone. Harris, First Journeys in Numberland (Scott, Foresman Co., 1911), 9.

43. G. A. Wentworth, New School Algebra. (Ginn & co., 1903)

44. ibid., iv.
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equation solving. Starting with simple equations, moving through the basics of number

and operation into factorizations into equations with more than one unknown, work with

inequalities and involution and evolution precedes the mention of a mathematical func-

tion. Imaginary and quadratic expressions are also handled prior to the brief mention of a

function in the section on Variation.

“T̈wo quantities may be so related that when a value of one is given, the corresponding

value of the other can be found. In this case one quantity is said to be a function of

the other; that is one quantity depends upon the other for its value. Thus, if the rate

at which a man walks is know, the distance he walks can be found when the time is

given; the distance is in this case a function of the time.”45

From here specific types of variation are discussed, no formal notation is introduced, and

the introduction of functionality is couched in the language of variation near end of the text

that is completed by moving to problems of calculus and arithmetic progressions, geometric

progressions, limits, and logarithms. This use seems to be consistent in a number of other

texts for both students and teachers of the early period. While functions were alleged as

the root of algebra, the concept itself received near no formal attention and was typically

introduced towards the end of the textbooks. Smith and Reeve followed a similar path in

their Essentials of Algebra. The function concept arises only towards the end of the book

in any formal discussion, and occurs initially in the section on numerical trigonometry

where it is defined. “A quantity which depends upon another quantity for its value is

called a function of the latter.”46 Myers first year text in Algebra nowhere mentions the

function concept, however it begins with the fundamental operations and relates quantities

to geometrically represented magnitudes.47 Similary, Stone’s text Elementary Algebra48

nowhere mentions the function concept. However, there is an explicit reference to the

effort of putting the graph to use in highlighting algebraic principles rather than analytic

45. Wentworth, New School Algebra., 316.

46. David Eugene Smith and William David Reeve, Essentials of Algebra (Ginn / Company, 1924), 286.

47. George William Myers, First-year mathematics for secondary schools (University of Chicago Press,

1907)

48. J.C. Stone and J.F. Millis, Elementary Algebra: First Course (B.H. Sanborn & co., 1915)



CHAPTER 4. MECHANICAL MATHEMATICS 84

geometry.49

In his text The Teaching of Elementary Mathematics, Smith notes that algebra is

the study of functions, offers no clear definition but instead some examples of functional

thinking. Examples involving time were appropriate initial problems: “a stone fall, and

the distance varies as the time, and vice versa; we call the distance a function of the

time, and the time a function of the distance.”50 J.W.A. Young also noted in his textbook

The Teaching of Mathematics that the difference between arithmetic and algebra was that

“algebra studies functions.”51 He also recognizes situations relating to time, however his

definition is slightly different from Smith’s.

“The idea of functionality, of dependence of one variable quantity upon another, is in

itself simple, and the actual existence of such dependence in the material world is a

commonplace of the pupil’s experience.”52

Young also calls for the use of beginners to utilize squared paper and graphical repre-

sentations as facilitating the easiest understanding of functionality. Later, in a High School

Algebra textbook Young again noted a function as a relationship between variables in a

chapter on Graphs of Linear Equations. In one page he defines a function, dependent and

independent variables, and function notation. Despite this, the following exercises rely

heavily on the graphical representation of functions. Constructing graphs, interpreting

information from contextual graphs, and solving systems of equations graphically are the

focus of these exercises. Finally, a historical note that recognizes Descartes as the father

of “graphic algebra.”53

Earlier, in a committee on college entrance requirements, Young and others pushed a

single course for all students in high school, that geometric drawing was to be a component

49. Stone and Millis, Elementary Algebra: First Course, v.

50. David Eugene Smith, The Teaching of Elementary Mathematics (Macmillan, 1900), 164.

51. J.W.A. Young, The Teaching of Mathematics in the Elementary and the Secondary School (Longmans,

Green, / Company, 1906), 308.

52. ibid., 308.

53. See J.W.A. Young and Lambert Jackson, A First Course in Algebra (D. Appleton / Co., 1910),

205-210.
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of arithmetic from the early grades and that moving into secondary school geometry and

algebra would be interwoven.54 Despite this, there was not any mention of the function con-

cept in the discussions on algebra in the report.55 Young would continue to involve himself

in work on the function concept, beginning work on a committee to reorganize secondary

mathematics that was interrupted by the First World War but would be completed as The

Reorganization of Secondary Mathematics, hereafter the 1923 Report. For the early period

then, the function concept emerged primarily informally often associated with graphical

representations of dependent quantities. The function concept was associated with algebra,

an algebra which melded arithmetic and geometric topics.

With the coming of the First World War the massive needs of the country never before

experienced in a single mobilization called for mathematically trained citizens to operate

on the trench battlefield. A number of authors would point to the war as surfacing evidence

of the lack of mathematical preparedness of the nation.56 The commissioner of education

implored all students to stay in school and that the scientifically skilled citizen would be

of great demand upon the wars completion in the Mathematics Teacher.57

Rather than altering the curriculum or eliminating the need for academic school mathe-

matics, the First World War provided another more important advance to the school. The

use of the intelligence examination to support the demands of the armed forces to help

identify appropriate soldiers brought the practice to an industrial scale. Such work would

be important to the succeeding discourse on the function concept to accelerate a certain

kind of scientific practice mechanical in nature. This work would drive both the psychology

of the function concept in school as well as the scientific study of the curriculum itself.

54. Jones and Coxford Jr, National Council of Teachers of Mathematics Yearbook 32nd , 169.

55. United States. Committee on College Entrance Requirements, Report of Committee on College En-

trance Requirements July, 1899 , 140 - 142.

56. See for example William E. Breckenridge, ‘Applied Mathematics in High Schools. Some Lessons from

the War.’ [in English], The Mathematics Teacher 12, no. 1 (1919): and Harry English, ‘The Effect of

Post-armistice Conditions on Mathematical Courses and Methods,’ The Mathematics Teacher 12, no. 4

(1920):

57. Philander Priestly Claxton, ‘Suggestions by the Commissioner of Education,’ The Mathematics

Teacher 10, no. 2 (1917):
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At the early stages of the war, Rugg and Clarke launched a scientific study to reorganize

the mathematics curriculum. They viewed their pursuit as scientific due to the use of

quantitative analysis of existing school mathematics texts. The ’quantitative method’ was

applicable to the course of study itself, the study of pedagogy, the study of technologies

in the classroom to support learning, as well as methods for classifying students. Opening

their text Rugg and Clark claim:

“It is possible to substitute for prejudice and subjective opinion, concerning the effec-

tiveness of our present scheme of things, a systematic and scientific measurement of

results obtained from the present organization. Stock can be taken, relatively accu-

rately, of courses of study, of the effectiveness of teaching methods, of the use of devices

for improving the instruction of children in classes, and of methods of classifying and

marking students.. This can be done is such an intelligent way as to lead to concerted

action on the part of our mathematical group toward progressive improvement.”58

Fundamental to Rugg and Clark then was the deliberate gradation of subject matter

accessible to a mature ninth grade student who was likely sitting in what was their only

mandatory course past arithmetic. The authors argued for the centrality of functional

thinking in school mathematics.

“The central element in human thinking is the ability to see relationships clearly. In

the same way the primary function of a high school course in mathematics is to give

ability to recognize relationships between magnitudes to represent such relationships

economically by means of symbols, and to determine such relationships economically

by means of symbols and to determine such relationships.”59

From their analysis of contemporary textbooks, Rugg and Clark found a limited use of

graphical representations as most problematic.60 The authors point to a trend in textbooks

58. Harold Ordway Rugg and John Roscoe Clark, Scientific method in the reconstruction of ninth-grade

mathematics; a complete report of the investigation of the Illinois committee on standardization of ninth-

grade mathematics, 1913-1918 (Chicago, Ill.: The University of Chicago press., 1918), 3.

59. ibid.,154.

60. ibid., 153.
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to require the learning of all six fundamental operations before encountering an equation

as evidence of courses lacking unification around functional thinking.61

Soon after, Rugg and Clark would publish a text Fundamentals of High School Math-

ematics: A Textbook Designed to Follow Arithmetic based on their scientific investigation

into the curriculum. According to the authors, the book selected and organize the content

based on two criteria: social worth and thinking outcomes.62 Social worth meant training

in:

• the use of letters to represent numbers

• the use of the simple equation

• The construction and evaluation of formulas

• the finding of unknown distances by means of

– scale drawings

– the principle of similarity in triangles

– the use of the properties of the right triangle

• the preparation and use of statistical tables and graphs to represent and compare quan-

tities63

The ’thinking’ criterion however was solely directed at understanding functionality.

They repeat their statement on the important of recognizing relationships clearly, and call

that the ninth grade course that results from a scientific investigation that takes psycho-

logical ideals and social needs seriously would be centered on the function concept.

“To carry out this aim the course of study, therefore, should be organized in such a

61. Rugg and Clark, Scientific method in the reconstruction of ninth-grade mathematics; a complete report

of the investigation of the Illinois committee on standardization of ninth-grade mathematics, 1913-1918 ,

43.

62. Harold Ordway Rugg, John Roscoe Clark, and John R. Clark, Fundamentals of high school mathe-

matics: a textbook designed to follow arithmetic (Yonkers-on-Hudson, N. Y.: World Book Co., 1919), vii.
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way as to develop ability in the intelligent use of the equation, the formula, methods of

graphic representation, and the properties of the more important space forms in the

expression and determination of relationships.64

Much like their predecessors however, the authors refuse to mention the function con-

cept in the actual instructional material. Instead, relations and interdependence express

themselves primarily through tabular and graphic exercises before any work with equa-

tions and symbols. In a chapter titled How to Represent and Determine the Relationship

Between Quantities that Change Together, the authors point the student to the central

idea of mathematics. “In fact, it is the chief aim of mathematics to help you to see

how quantities are related to each other and to help you to determine their values.”65 This

happens most clearly with the graphical presentation of relationships. For example, in a

problem relating yards of cloth and total cost, “the graph tells the relation between the

cost and the number of yards purchased more clearly because it present it to the eye as a

picture.”66 After an additional section that discussed the notion of variables and constants,

the authors summarized the chapter reinforcing the utility of the graphical over tabular or

equation representations of interdependence.

1. Important facts about quantities which change together are more easily read and

interpreted if they are represented graphically

2. Graphs always show the relation between two varying quantities

3. There are three fundamental methods of describing the relationship between related

variables:

(a) The Graphic Method of expressing “Law”;

(b) The Tabular Method of expressing “Law”;

(c) The Formula, or Algebraic Method of stating “Law”.

64. Rugg, Clark, and Clark, Fundamentals of high school mathematics: a textbook designed to follow

arithmetic, vii.

65. ibid., 147.

66. ibid., 151.
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“They tell the same thing, the graphic method most clearly.67

Beginning in 1916, the National Committee on Mathematical Requirements sought to

investigate the necessary reorganization of the curriculum. As a result of the interceding

World War I and early funding problems, the committee would wait until 1920 when the

General Education Board of New York City sponsored the groups completion.68 J.W.A.

Young would chair the committee, but many earlier commentators on the function concept

joined the work including Moore, Smith, and Hedrick. The committee also put the function

concept forward as the unifying idea in school mathematics. The committee defined a

function as:

“the idea of relationship or dependence between variable quantities”69

According to the group, while enduring throughout all coursework the function concept

became most evident in work in algebra. Again, the preference was for the graphical

representation of the function as the most clear starting place and easiest for the students

to comprehend. The committee suggested an informal presentation that is important to

note aware of shifts that would occur in the mid and late century that in fact did feel the

need to impart work on the idea of a function as a definite mathematical object.

“It will be seen in what follows that there is no disposition to advocate the teaching of

any sort of function theory. A prime danger of misconception that should be removed

at the very outset is that teachers may think it is the notation and the definitions of

such a theory that are to be taught. Nothing could be further from the intention of

the committee. Indeed, it seems entirely safe to say that the word “function” had best

not be used at all in the early courses.”70

67. Rugg, Clark, and Clark, Fundamentals of high school mathematics: a textbook designed to follow

arithmetic, 162.

68. J.W.A. Young, ‘National Committee on Mathematical Requirements,’ The Journal of Education 94,

no. 14 (2350) (1921):

69. Mathematical Requirements, The Reorganization of Mathematics in Secondary Education a Summary

of the Report by the National Committee on Mathematical Requirements, 92.

70. ibid., 92.
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Informal reliance on example of dependence best exemplified through the graph, and

important in the same way for all students continued to be important in the committees

attention to the function concept as the unifying theme of school mathematics. Alternative

options were available for the pedagogues of this time to use in defining the function

concept. Gottlob Frege is such an example.

Reflecting in The Monist in 1917, Frege presents his mathematical system as also

being unified by the function concept. For him the function concept was not rooted in

intuition, and by 1903 claimed to have described “the deduction of the simplest laws of

numbers by logical means alone.”71 Despite these alternatives, the early period in school

mathematics favored a much less formal notion of dependence on variable quantities and

graphical representations. More recent histories of mathematics focusing on the function

concept additionally recognize alternative frameworks available at the turn of the century,

however when discussing the function concept the vision that endures in the discourse

on early school mathematics indeed is associated with the work in seventeenth century

mathematics.

Monna described the arguments occurring in the professional discourse on the function

concept focusing on the discussions between Baire, Borel, and Lebesgue.72 None of these

men had a vision for mathematics that could be argued as similar to that of the appearance

of the function concept in school mathematics materials. Lebesgue’s work will become im-

portant for school mathematics and the function concept, however it is not until the 1950’s

and 1960’s when such work becomes reasonable. Much of this centers upon Lebesgue’s re-

formulation of the notion of integration that Weiner and the cybernetics movement utilized

in their mathematical work.

Rather than calling on contemporary mathematical visions of the function concept then,

these early pedagogues sought use of the Cartesian vision. Monna also notes that it was

Descartes “with his application of algebraic methods to geometry, opened the way for the

71. Gottlob Frege, ‘Class, Function, Concept, Relation’ [in English], The Monist 27, no. 1 (1917): 114.

72. Monna, ‘The Concept of Function in the 19th and 20th Centuries, in Particular with Regard to the

Discussions between Baire, Borel and Lebesgue’
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introduction of the notion of function.”73 Similarly, Whiteside argues that “is is Descartes

who, collating Greek coordinate systems with the analytical power of the free variable,

which had been moulded in the 16th century to a fluid, usable state, laid the foundations

of an analytical study of geometrical forms.”74 Youschevitch also points to Descartes as

the first to introduce the analytical possibilities of the function concept.75 More recent

scholarship on Descartes has sought to emphasize that while Descartes did indeed introduce

an analytical method into mathematics, that it was primarily constructive in nature and

firmly involved graphical representations as the idealized form.76

Such a model for the function concept shared many similarities with that of the psy-

chology of school mathematics that emerged in parallel time. This early discourse on

the function concept brought with it a psychology that fit the mechanical nature of the

content desired. The mathematical image of the function concept wedded to a mechan-

ical vision was coupled with a psychological theory tinged with determinism. Edward

Thorndike exemplified this project bridging the psychological laboratory and the school

classroom. As one of the first educational psychologists posted at a University, Thorndike

would contribute to a mechanistic discourse in school mathematics through his odd mixture

of mechanical positivism and eugenics.

4.2 Mechanism Embodied

During the 19th century, psychology became a discipline that focused on physiological ex-

planations for psychic phenomena. A leader in the movement was the famous philosopher

William James. James exemplified the psychologist of this period who, in eschewing the

former philosophical garb of the discipline shifted to favor of an experimental paradigm.

73. Monna, ‘The Concept of Function in the 19th and 20th Centuries, in Particular with Regard to the

Discussions between Baire, Borel and Lebesgue,’ 58.

74. Derek Thomas Whiteside, ‘Patterns of Mathematical Thought in the Later Seventeenth Century,’

Archive for History of Exact Sciences 1, no. 3 (1961): 290.

75. Youschkevitch, ‘The Concept of Function up to the Middle of the 19th Century,’ 52.

76. See: Bos, Redefining Geometrical Exactness: Descartes’ Transformation of the Early Modern Concept

of Construction and Otte and Panza, Analysis and Synthesis in Mathematics: History and Philosophy
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Many wardens of the new psychology were to pass through James’ physiological psychol-

ogy courses and would espouse a similar commitment to psychology as accessible through

biological frameworks that linked thoughts with sensory stimulation.77 Two of his students

would rise to prominence in the psychology of school mathematics, Thorndike in the early

period and Judd during the inter and post World War II period.

Edward Thorndike would take the ideas he learned in James classroom and move them

to the educational setting thrusting open the discipline of educational psychology. Moved

by his initial reading of James’ Principles of Psychology as an undergraduate, Thorndike

moved to study under James at Harvard. It was at Harvard in the years 1895-1897 when

Thorndike transitioned to a full deliberate study of psychology and his first experiments

targeted children. Thorndike recalled these in his autobiography:

“I would think of one of a set of numbers, letter, or objects (I cannot now recall which

or how many). The child, facing me across a small table, would look at me and guess

which. If he guessed right, he received a small bit of candy. The children enjoyed

the experiments, but the authorities in control of the institution would not permit me

to continue them. I then suggested experiments with the instinctive and intelligent

behavior of chickens as a topic, and this was accepted.”78

So it was that animals intellectual activity would be the subject of Thorndike’s dis-

sertation titled Animal Intelligence: an Experimental Study of the Associative Processes

in Animals. In it, he set out to establish a new paradigm for research into animal intel-

lect by deploying what he believed to be purely objective protocols for research. These

stood out against former animal studies that would only described abnormal cases through

individual recollections of general observations on the part of the scientist. The trained

judgment of the expert psychologist free to wander and write about what absurdity moves

him needed to adhere to much more strict standards of research according to Thorndike in

his dissertation.

77. For more on James and his students see John Carson, The Measure of Merit: Talents, Intelligence, and

Inequality in the French and American Republics, 1750-1940 (Princeton University Press, 2007) 167-172.

78. Edward L. Thorndike, ‘Autobiography,’ in A History of Psychology in Autobiography, ed. C.A. Murchi-

son, A History of Psychology in Autobiography v. 3 (Russell & Russell, 1961), 263–270, 264.
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“To remedy these defects experiment must be substituted for observation and the

collection of anecdotes.”79

Thorndike made connections to his earlier experiments in educational psychology from

his work with animals. At the conclusion of his dissertation, Thorndike noted the im-

portance for pedagogues of the present study. Just as for animals, direct experience with

desired behaviors was an important part of how a human organism learned.

“I am sure that with a certain type of mind the only way to teach fractions in algebra,

for example, is to get the pupil to do, do, do.”80

Thorndike would go on to write numerous books explaining his theory of learning as well

as scientific methods. His work on the psychology of algebra and arithmetic would occur

later in his career and are difficult to make sense of without a view to the larger project

that included physiological concerns, the construction of the idea of intelligence, and the

research methodology to be used when investigating psychological issues. Because of the

interdependence of Thorndike’s psychology with physiology and eugenics, his ideas about

the nervous system need be explored alongside his learning theory in order to understand

his scientific vision.

4.2.1 Physiology of the Nervous System

In The Human Nature Club81, Thorndike’s first text after his dissertation, a hypothetical

meetings of an imaginary club that discussed psychological issues served to introduce a lay

audience to some of the fundamental problems facing the psychologist of his time. In this

work, Thorndike discusses his theory of mind and sensation that were integral to his later

elaborations on learning theory and intelligence testing. The relationship between physical

sensation and intellectual activity was at the center of these ideas.

79. Edward L. Thorndike, Animal Intelligence; Experimental Studies (New York: The Macmillan company,

1911), 6.

80. ibid., 105

81. Edward L. Thorndike, The Human Nature Club: An Introduction to the Study of Mental Life (Chau-

tauqua Press, 1900)
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The first meeting of the club involved itself with precisely such questions. In the first

chapter of Human Nature that targets the brain the character Mr. Tasker raised the

questions “how do we come to do things without having to think about what we’re doing?

In the second place, how do we know so little afterward about what we’ve done so many

times?”82 Calling on her experience in a lecture at Barnard, Miss Atwell described how the

professor explained the workings of the brain.

“He said that the brain was a machine for connecting our bodily acts or movements

with what we heard and saw and felt.”83

Later on, Ms. Atwell would sketch an image to help the explanation and the tech-

nological metaphor was elaborated where the functioning of the brain mirrored that of a

telegraph office.

“Here is the brain, with a lot of things–nerves, I suppose they are–coming in from all

over the body and bringing in the ’commotions’ that correspond to the electric currents

coming in to the telegraph office over the wires. The continuous lines represent those.

The dotted lines are the nerves going out to all the muscles.”84

Seeking a clearer understanding of the brains inner workings outside Ms. Atwell’s

recollections, the members visit a neighboring doctor. He affirms the telegraphic metaphor,

and details the complete assemblage of the brain based on the figure of nerve as signal

82. Thorndike, The Human Nature Club: An Introduction to the Study of Mental Life, 7.

83. ibid., 7.

84. ibid., 11.
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Figure 4.7: A Nerve

transmitter. The nerves (as shown in figure 3.8) connected the outside senses to the brain

directly and sent messages out from the brain to the rest of the body in a similar manner.

A brain could be thought of as a massive interwoven collection of these nerves.

The nerves acted as a singular unit to form the building blocks of the brain. Further,

there was a larger system of nerves running all through the body from the eyes, skin, nose,

ears, and mouth back to the brain. The doctor affirmed the clubs earlier vision:

“You were quite right in likening the brain to the switchboard of a telephone office;

and just as a telephone system is really nothing but a lot of incoming and outgoing

wires and a lot of connecting wires at some central station, so the nervous system,

including the brain, is really only a lot of nerve-cells, incoming cells, outgoing cells and

connecting or associative cells. This is what the brain is.”85

In likening the brain to a series of telegraphic wires, Thorndike was echoing what had

been a larger move to view human physiology through the metaphor of telephone lines that

dominated the 19th century discourse on physiology. Thorndike published the first edition

of the Human Nature Club in 1900, well after Galvani had first conducted experiments

of electricity on frogs in the 1780’s. Galvani was interested in what kind of electrical

charge could produce movement in the frog legs. For more than a century in between, and

85. Thorndike, The Human Nature Club: An Introduction to the Study of Mental Life, 15.
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a number of experiments involving the electrocution of animal and human subjects, the

predilection to associate the body with an electrical machine had become well accepted by

the time Thorndike wrote.

So then, if the body and brain functioned as a telegraphic web, how in fact were

messages transmitted and how did the connections in fact work? An example from neu-

roanatomy paralleling Thorndike’s writing was the dispute culminating in the Nobel Prize

of 1906 awarded to both Camillo Golgi and Santiago Ramon y Cajal. Both men utilized

Golgi’s new staining technique to investigate the brains function and the two men drew two

different conclusions. Golgi saw the brain and nervous system as an interconnected and

continuous entity where action at a distance was not possible. Cajal believe the opposite,

that the nervous system was dynamic and nerves were independent cells that could act on

one another through space.86 As Golgi stated:

“If nerve fibers proceed neither directly nor indirectly from the protoplasmic extensions,

and if there is no communication between the different groups of cells of the nervous

system, either by way of anastomoses or by the diffuse network, what then is the mode

of origin of the nerve fiber in the gray matter? How then is a functional relationship,

which one is forced to admit a priori, established between the various cells of different

parts of the nervous system?87

This statement drives home the mandate that comes with viewing action at a distance

not possible, the network must come pre-programmed. With the nerve net vision, the

brain is a continuously connected information transmitting system where the quality of the

connections between the sensible world and the brain drove intellectual activity. Similar

to the Cartesian and Newtonian rejections for the possibility of action at a distance, Golgi,

and later Thorndike took the deterministic stance on the nervous systems functionality.

Thorndike dedicated his Human Nature book to Francis Galton, the father of the eu-

genics movement and another important figure in the history of the technological biological

body. Writing in the nineteenth century, Galton aimed to show that qualities like talent

86. This discussion follows that of Otis Otis, Networking: Communicating with Bodies and Machines in

the Nineteenth Century , 55-57.

87. Golgi, quoted in Otis ibid., 58.
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and merit were hereditary and inborn and distributed in the form of a normal distribution.

Using composite portraits formed by overlaying a number of individual exposures, Galton

professed he was revealing an idealized form of an individual.

“”A composite portrait represents a picture that would rise before the minds eye of the

man who had the gift of pictorial imagination to the exalted degree...the merit of the

photographic composite is its mechanical precision, being subject to no errors beyond

those incidental to all photographic production.”88

In his work Galton made a commitment then to both the objective potential of the

photograph over the trained artists hand while simultaneously supporting a view of genetic

types that were a part of a larger social hierarchy. The arrangement of society based on this

social hierarchy was part of the psychologists mission, and Thorndike openly supported the

eugenic project.

As he noted in his 1912 lecture on the subject of eugenics and education, Thorndike

described eugenics with the project of improvement through breeding:

“By eugenics is meant, as all you know, the improvement of mankind by breeding89

After discussing his studies of ability and intelligence in children, he notes the inborn

nature of the demonstrated ability. Explicitly linking this with the study of arithmetic,

Thorndike explained his learning theory in a way that coincides with his view of neural

88. Francis Galton, ‘Composite Photographs,’ Nature, 1878, 97–100, 97.

89. Edward L. Thorndike, ‘Eugenics: With Special Reference to Intellect and Character,’ in Twelve Uni-

versity Lectures on Eugenics (Mead / Company, 1914), 319–342, 319.
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anatomy and communication in a closed network of connections that are the product of

inborn characteristics.

In his textbook on psychology, Thorndike spends a number of chapters revisiting the

structure of the neural system.90 Later, he would utilize this vision of to support his

discussion of learning. At the center of his educational psychology stood the notion of

awakening connections in nerves while recognizing that these connections were the result

of predetermined functionality based on the individuals eugenic heritage.

The body contained a nervous system that connected man to the world through his

sensations. These individual connections could act independently and in concert. Some-

thing like recognizing seven objects on a desk involved the illumination of several individual

connections at one time into an organized whole.

Thorndike’s model then involved selecting the appropriate exterior stimuli that could

be applied to a large variety of subjects in order to observe the responses. From all the

possible stimuli then existed a subset that evinced the superior intellect could be chosen

and the group experimented upon to find the distributions of intellectual ability. Together

with a continuous neural web model, Thorndike moved to construct his science of eugenics

based on the selection of what these stimuli were. Further, in experimenting one had to

be able to say something about how the responses distributed themselves.

4.2.2 Intelligence

The subject of intelligence was central to Thorndike’s work in the psychology of school

mathematics. Instruments designed and tested in other spaces to identify intelligent adults

would move into the educational laboratory to form the basis for a psychology of arithmetic

and algebra. Again, Thorndike would tap existing scientific models to construct his theory

of intelligence. The eugenic project and earlier work of Galton provided an understanding

of precisely how intelligence would be distributed in society.

Here, Thorndike made a similar move as when he expressed the nervous system with

inborn behavior. The distribution was a priori much like the quality of neural connections.

In looking for a model, Thorndike settled on the normal distribution. The use of the normal

90. Edward L. Thorndike, The Elements of Psychology (A.G. Seiler, 1913), 120-183.
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distribution as a model for populations was central to Galton’s earlier work that birthed

the eugenic project which Thorndike later moved to the mathematical classroom.

Astronomer and father of social statistics, Adolphe Quetelet was familiar with the

distribution from the astronomical work of Gauss. For Quetelet, the error distributions in

astronomical measurements spoke to natural laws that would also emerge when one took

large numbers of social measurements. His concept of the ’average man’ captured this

notion. This was the science of social physics, and Quetelet would explicitly link his ideas

with astronomy.

Quetelet relied on a social physics where this average man was viewed as the “center

of gravity” of society.91 Thorndike would follow Quetelet through Galton and spent a

large part of his career applying this model to schooling, and mathematics education in

particular. Before discussing a psychology of mathematics, Thorndike spent a tremendous

amount of time perfecting his science of intelligence. Just as for Quetelet and Galton,

Thorndike saw the intelligent activity existing in a predetermined stock. In his work on

individual intelligence, Thorndike echoes this vision:

”Men and women are always what they are for some reason; and the reason is

some fact in the real world. No mere chances, fairies, or demons impregnate a

human mind with its peculiarities. Each comes as a result of natural law, and

could be predicted by a perfect intelligence in possession of all the facts.”92

Thorndike would use mathematically oriented tasks to surface this intelligence. During

World War I, Thorndike would apply his theory as part of the larger work sponsored by

the armed forces to utilize intelligence tests in identifying candidates mental fitness. Here,

working alongside Robert Yerkes, Thorndike would refine the instruments he would later

use to construct his psychology of mathematics education. Yerkes lead the Psychological

Division of the Sanitary Corps of the Army Medical Corps.93 Together, Thorndike and

91. Allan Sekula, ‘The Body and the Archive,’ October 39 (1986): 3–64, 22.

92. E.L. Thorndike, Individuality (Houghton, Mifflin, 1911), 29

93. Carson, The Measure of Merit: Talents, Intelligence, and Inequality in the French and American

Republics, 1750-1940 , 197-228.
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Yerkes worked to improve the Army’s ability to vette the incredible number of incoming

soldiers through intelligence tests.

Thorndike in particular worked on his instrument called the Army a. This examination

would engage the examinee in a series of responses that stimulated the appropriate subset

of connections that would demonstrate intelligent activity. He arrived at understanding

these through the investigation of distinct groupings of “adult defectives, enlisted men,

and officer trainees”94, and judged the validity of the examination based on the correlation

with officers expectations. These examinations would predict the likelihood of being able

to perform in the armed forces.

The reason this work was so important to the early psychology of school mathematics

was that the exact same instrument was utilized in Thorndike’s psychology’s of arithmetic

and algebra. These works described a learning theory that is quite foreign to ours today.

In the following section, this paradoxical situation makes it clear that in fact Thorndike

did not really have a theory of learning as we envision it today. The inborn nature of

abilities led instead to a psychology of mathematics that was concerned with identifying

the appropriate set of stimuli and measuring the response reflective of what were natural

laws of intelligence that were to follow preset distributions. At the same time, Thorndike

would describe an algebra based on the study of relationships in order to surface some of

these characteristics that would then enable the school and nation to sort the intellectually

superior.

4.2.3 Psychology of Algebra

Thorndike presented the subject of algebra was one that “is chiefly a tool for scientific work,

for thinking about general relations.”95 Further, a similar structure in terms of the content

was desired by the psychologist, where earlier and basic ideas from arithmetic presaged the

algebraic approach that relied on abstraction. Problems involving interdependence began

to be dealt with through arithmetic, and were informal because of the lack of reliance on

94. Carson, The Measure of Merit: Talents, Intelligence, and Inequality in the French and American

Republics, 1750-1940 , 206.

95. Edward L. Thorndike, The Psychology of Algebra (New York: The Macmillan Company, 1926), 47.
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symbolic algebra.

Equally important was that Thorndike explicitly referenced some of the early commen-

tators on the function concept. In particular, he saw his Psychology of Algebra as providing

the psychological basis for the work of Nunn, Smith, Young, Rugg, Clark, and the National

Committee on Mathematical Requirements.96 In examining the psychology of algebra, the

ideas of algebra could be examined based on his model of connection measurement through

stimulus and response. Thorndike saw his contribution to school mathematics as linking

intelligent activity with connections that were demonstrated through reponse to mathe-

matically oriented stimuli:

“Suffice it to say here that it emphasizes the dynamic aspect of the mind as a system

of connections between situations and responses; treats learning as the formation of

such connections or bonds or elementary habit; and finds that thought and reasoning–

the so-called higher powers–are not forces opposing these habits but are these habits

organized to work together and selectively.”97

To identify these powers to construct his psychology, Thorndike utilized existing data

based on the work of the National Committee. In their 1923 Report, NCOMR had surveyed

numerous academic professionals from a variety of disciplines–scientific and non-scientific–

with instruments that listed a number of mathematical skills. The raters would identify

these by levels of importance from their perspective. From this the types of activities that

should be used to identify intelligent algebraic behavior could be determined. Proceeding

in exactly the same way as he had to build his measure of intellect in the war, Thorndike

constructed an intelligent algebraic child reflective of the mathematical character of the

function concept from the 1923 report.

Thorndike started from the designation of scientific and non-scientific futures to de-

termine which set of activities was appropriate for each. There were similarities, just

as many others had already recognized. Further, the similarities merged on relations of

interdependence and functionality. To Thorndike, algebra could be classified as dealing

with:

96. Thorndike, The Psychology of Algebra, v.

97. ibid., v.
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1. Manipulation of complicated polynomials

2. Formation and solution of equations

3. Formation and Evaluation of formulas

4. Development and use of the mathematical concept of function

5. Construction, interpretation, and criticism of graphs, statistical and functional98

From these, a hierarchy could be constructed that identified the more important con-

nections. The result was that algebra should not involve much complicated manipulation,

that proportionality must be mastered before work with equations, and that graphs and

the function concept were of central important in terms of construction and analysis.99

This content was coupled with his earlier theory of mind to push direct repeated expe-

rience with stimulus as the way to encourage learning. This direct experience in no way

inhibited the traditional elements of mathematics like abstraction and generalization. In-

stead, these ’higher powers’ were precisely an example of important connections becoming

visible in the student body.100

Throughout his Psychology of Algebra, Thorndike called on the 1923 Report and its

emphasis on the function concept to drive the organization of algebraic content and to

demonstrate what the new psychology meant for the construction of problems highlighting

functionality. Further, Thorndike pushed a singular ninth grade experience for all students

based on his scientific analysis.

Numerous assessment instruments were discussed in his work on algebra. Combining

the work of the mathematics educators with additional psychological batteries, Thorndike

explained the diversity of connections that should be demonstrated if one is to completely

measure such knowledge. Along with the materials from Rugg and Clark, Thorndike

suggested combining this with an instrument like the I.E.R. examination that measured

selective and relational thinking. Problems like:

99. Thorndike, The Psychology of Algebra, 82-83.

100. ibid., 251.
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• 1. What is the cost of four tickets at 50 cents each?

• 7. At 6 for 25 cents, what is the cost of 3 dozen?101

would uncover higher order thinking in the student in addition to the more specific

skills evidenced by measures like Rugg and Clarks.

Thorndike maintained the determinist frame for the distribution of these abilities. To-

wards the end of the psychology of algebra, Thorndike notes:

“The differences in algebraic ability which are due to differences in personal capacity,

are due in part to differences in general capacity for abstract learning which make some

pupils superior and others inferior in average academic ability. In small par, however,

they are due to differences in a special ability for algebra.”102

The depth of assessment that Thorndike called for in order to appropriately assess such

ability was more than could be taken on by a classroom teacher. Many of his investigations

took place within the New York City public schools, and he worked his entire professional

career from his office and laboratory in Manhattan. The existing state examination systems

measured functional thinking in the Regents exams of the late 19th and early 20th century

in accordance with the assessments of Rugg and Clark as well as Thorndike. Functional

notation appears nowhere in these examinations. In arithmetic, students are asked to

answer a limited number of free response questions involving quantities and situations that

were contextual in nature. Students worked to answer questions about specific situations

given a general equation or particular information. During the 1894 school year, the New

York State Regents examinations in Arithmetic, Advanced Arithmetic, Algebra, Geometry,

and Solid Geometry serve as examples of the mathematics that was used in the earlier

vetting of the academic class for high school attendance.

In arithmetic, students may be asked to “find the cost of carpeting a room 15 feet long,

12 feet wide with carpet 3 feet wide that costs 75 cents a yard.”103 Advanced arithemtic

102. Thorndike, The Psychology of Algebra, 420.

103. University of the State of New York, 116th Regents Examination in Arithmetic, 1894
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worked to further skills in number and operation:

“Indicate the following by signs: the difference of nine and five is multiplied by eight, this

product is divided by 10 and the quotient increased by one, the sum is squared, increased by

two, and the cube root of the result is taken.104

In two algebra examinations given the same year, there is potentially a single question

dealing with functionality:

“The length of a certain field is twice its width and the number of rods in its perimeter is

16 times the number of acres in its area; find the length and the width of the field.105

Instead, a focus on manipulating expressions and solving equations dominated these

years items. Advanced algebra followed suit, and added theories for expanding binomials

and working with equations of higher degree, though again not through the viewpoint of

a function.106 Through the next few decades there was still no sight of formal function

vocabulary or notation. Graphs did emerge in the questions, and interpendence was evident

in such questions as the following from the 1924 Regents Examination.

“A grocer sold 40 baskets of grapes at 45 cents a basket, 55 baskets at 40 cents, 80 at 30 cents,

95 at 25 cents and 120 at 20 cents.

Represent the above data by either a broken or a curved line graph.

From the graph estimate the probable demand if grapes sold for 38 cents a basket.

If the grocer had 70 baskets to sell, determine from the graph the highest price that he could

charge and still dispose of all the baskets.107

The College Entrance Examination Board, in their standardized examinations for en-

trance into college that served as the early benchmarks for the New York City schools

also witnessed the growing inclusion of graphical problems though they seem not to have

106. University of the State of New York, 122nd Regents Examination in Advanced Algebra, 1894
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appeared until the late 1920’s. This was accompanied by a diminishing reliance on more

traditional algebraic manipulations.108

4.3 Conclusion

Despite the ubiquity as a reference in early school mathematics, the function concept ap-

pears almost nowhere in a formal presentation. Instead, across the discourse on school

mathematics, talking about the function concept had more to do with recognizing a ra-

tional approach to engaging with the new world. When calling students to attend to

interdependence, the early pedagogues suggested that there were natural laws out there

to be found and explained by simple equations. By direct engagement with their world,

students would find these laws.

Further, this understanding of a universe governed by immutable laws carried over into

Thorndike’s psychology of school mathematics. While he espoused his eugenic doctrine,

Thorndike shared a commitment to a universe governed by eternal laws that imbibed

specific individual with intellectual talents that others simply did not have. This could be

observed by recourse to the objective tools of intelligence testing where protocols between

citizens and soldiers were blurred.

In the next period, the unified vision of school mathematics would crumble. By the

late 1920’s, calls for revision to the one for all educational ethos resulted in a move to

mass individuation. For the inter and post war period this meant discarding the view of a

universe governed by eternal laws in favor of one mobilized by difference.

108. Orlando E. A. Overn, ‘Changes in Curriculum in Elementary Algebra since 1900 as Reflected in the

Requirements and Examinations of the College Entrance Examination Board,’ The Journal of Experimental

Education 5, no. 4 (1937): 373–468, table on page 374.
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Chapter 5

The Thermodynamic Model

5.1 Introduction

“Nothing illustrates more strikingly the difference between the school of yesterday and the school

of today than an electric furnace standing where the teacher’s desk once stood.”1

This chapter seeks to examine the repercussions of the replacement of the teachers desk

with the furnace. In this technological shift, the history of school mathematics was to

experience both continuity and change with respect to the mechanical approach. The
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changes described in this chapter took place primarily at the psychological and institutional

level. Within the mathematical presentation of the function concept, much continuity

remained with the mechanical period. It is not until the next chapter that we will see a

marked distinction appears with the use of sets and maps.

Earlier (in chapter 2) the contrast between thermodynamic and mechanical thinking

were discussed as different ways of understanding natural processes. The present chapter

will connect these earlier discussions of thermodynamics with changes that first occurred

near the Great Depression and lasted through the post-World War II period (roughly the

late 1920’s through the early 1950’s). World War I had catalyzed scientific discourse on

intelligence and management as had the industrial ascension of the United States.2 The

War itself was contentious at home, often viewed as yet another opportunity to have the

poor fight for the rich.3

The First World War also helped the United States to more fully understand its indus-

trial potential, as it recognized its incredible productive capability through the construction

of new war machinery. Further, after the war this acceleration of industrialization would

call upon colonial markets to provide the raw materials that other , industrialized nations

needed. There would be much resistance around the world to this increased industrializa-

tion and shift in colonial strategy. The Pan African Congress, the Wafd Party, the May

Fourth Movement, Ataturk, the Destour party, Sarehat Islam, and Gandhi are all exam-

ples of movements arising in these colonialized spaces to attempt to check the expansion

of empires.4 Many alternative voices of resistance existed in both the United States, and

within New York City.

5.1.1 Shifts in Resistance

The National Association for the Advancement of Colored People (NAACP) was formed in

the early part of the twentieth century, and supported an integrationist vision for African

Americans in society. The organization’s leader, W.E.B. Du Bois, in keeping with this

2. Kennedy, The Rise and Fall of the Great Powers, 274 - 343.

3. Zinn, A People’s History of the United States, 359-374.

4. Kennedy, The Rise and Fall of the Great Powers, 286.
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strategy, encouraged African American support of the First World War.5 Afterwards, Du

Bois participated in the Pan African Congress and in part placed the blame for part of the

failure of the congress’ efforts upon Marcus Garvey.6750-793

Du Bois would also write at length on education.7 His discourse on the subject

shared many similarities–for example, commitments to schooling, science, and liberal state

institutions–with the writings of mechanical pedagogues. In contrast to the industrial vo-

cational focus of Booker T. Washington’s Tuskegee Institute, however, Du Bois himself

believed that the appropriate kind of knowledge was to be found in elite liberal univer-

sities in the United States, similar to Fisk University where he had studied. Though he

specifically preferred the truths of the mechanical universe of Galileo and Newton, Du Bois

in fact also derided Galileo for not standing up for his mechanical vision. For Du Bois,

speaking the truth about such a mechanical vision was as important as the vision itself.

“Students and graduates of Fisk University, let us judge this man (Galileo): on the

one hand range his service to mankind: his discovery of the great laws of motion in

the solar system, and on the other, place the cowardice of his lie; on the one hand the

advantage of a mechanical knowledge of the universe and on the other the necessity of

faith in one’s fellow-men as the foundation stone of society.”8

This mechanical knowledge seems to operate in a similar way within Du Bois’ vision of

improving black society. The opening line of his most famous essay on education demon-

strates his commitment to a select preordained few leading the laggard masses away from

ruin.

“The negro race, like all races, is going to be saved by its exceptional men. The problem

of education, then among Negroes must first of all deal with the Talented Tenth; it is

the problem of developing the Best of this race that they may guide the Mass away

5. See W.E.B. Du Bois, ‘Editorial,’ Crisis, July 1918, 111

6. W.E.B. Du Bois, Writings (Literary Classics of the United States, 1986)

7. See for example: W.E.B. Du Bois, The Education of Black People: Ten Critiques, 1906 - 1960

(Monthly Review Press, 2001)

8. W.E.B. Du Bois, ‘Galileo Galilei,’ ed. Herbert Aptheke (Monthly Review Press, 2001), 33–48, 41.
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from the contamination and death of the Worst, in their own and other race.”9

In both matters of both racial equality and educational efficacy, Du Bois displayed traces

of mechanistic thought. His early thinking was that in order for African Americans to gain

equal rights, a select group of talented minority leaders would have to emerge. Further, Du

Bois’ work was scientific from the outset. He too was a member of the new social scientific

experts who specialized in analyses of sociological conditions throughout the United States.

Much as Thorndike used experiments to argue for the equality of cognitive processes across

gender, Du Bois would use his scientific work to argue for equality of racial intelligence.10

Du Bois and the assimilative discourse of the NAACP stood in contrast to what Mar-

cus Garvey advocated for in the streets of New York City. Garvey adhered to many of

Booker T. Washingtons ideas about education and capital independence from white insti-

tutions.11 Rather than seeking participation in the new liberal American state however,

Garvey sought independence from it and raising such a vision for the future of Africa that

contrasted so starkly with that which Du Bois had hoped for is precisely what led Du Bois

to offer his aforementioned criticism of Garvey contributing to the downfall of the Pan

African Congress.

Rather than joining the army, Garvey started his own. Here, every man was capable of

rank in the movement. His Universal Negro Improvement Association bore resemblances to

a military organization in its ranking system and uniform, as well as it’s consistent parade

demonstrations through the Harlem streets. The structure and goals of this organization

were decidedly different from those of the other military groups–such as Harlem’s own

369th Infantry.

While Du Bois and the NAACP rose and broke in the early part of the century, there

continued to be a difference in approach with the work of other civil rights leaders. A

9. W.E.B. Du Bois, ‘The Talented Tenth,’ in Writings, ed. N.I. Huggins (Literary Classics of the United

States, 1986), 842–861, 842.

10. Maria Farland, ‘W.E.B. Du Bois, Anthropometric Science, and the Limits of Racial Uplift,’ American

Quarterly 58, no. 4 (2006): 1017–1045

11. E. David Cronon, Black Moses: The Story of Marcus Garvey and the Universal Negro Improvement

Association (University of Wisconsin Press, 1960), 39 - 72.
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(a) Harlem Hellfighters–369th Infantry (b) Universal African Legion

Figure 5.1: Two Different Kinds of Soldier and Army

notable example is found in A. Philip Randolph, who would criticize Du Bois from a

governmental perspective, arguing that Du Bois lack of consideration of socialist ideals

and his lackadaisical discourse on the First World War; specifically his lack of support of

the international.12 Today, A. Philip Randolph High School stands on the corner of 130th

Street and Convent Avenue in Harlem. The building was first opened in 1927 as a model

teacher training school; however, this soon became the first site of the Fiorella LaGuardia

High School. (notable for its depiction in the 1980’s motion picture Fame)

LaGuardia High School transformed the earlier model teacher training school of the

1930’s as part of a larger systematic approach to changing the one for all structure of

public education in New York City. LaGuardia High School was one of many specialized

schools that would open during the inter war period accompanying a shift in curricula

that included what would be referred to as “functional”. The functional curriculum was

one that identified students based on their appropriate readiness for specific careers rather

than offering a general education to all regardless of future employment prospects. Mayor

LaGuardia opened and named his school as part of a broader approach to education reform

that he claimed would aim to accomplish such goals as eliminating waste and corruption

and encouraging schools’ sensitivity to neighborhood needs and concerns, while continuing

12. C.D. Wintz, African American Political Thought, 1890-1930: Washington, Du Bois, Garvey, and

Randolph (M.E. Sharpe, 1996) , v.
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to utilize the school buildings in after hours for community centered programs.13

.

Figure 5.2: LaGuardia’s program

5.1.2 Scientific Consequences

The inter- and post-war periods in the United States witnessed a different vision of school

mathematics that emerged in the local and national discourse. Together, these approaches

made use of a psychological discourse that operated by similar rules. Other historians have

13. LaGuardia School Program, October 1933, 2
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noted that th inter- and post-war periods could be characterized by diminishing values in

education, or the rise of a movement of progressive thinkers who had more holistic or less

academically oriented impressions of children’s education.14

In my study, however, I choose to see Judd, Brownell, Breslich, Betz, Schorling and

other like minded school mathematicians’ move to mass individuation and varying needs

as similar to alterations across other technological regimes in scientific discourse that oc-

curred with the rise of thermodynamics and a revised definition of the function concept.

Immediately, the example of Judd and Brownell’s theory of learning as a creative process

occurring spontaneously within the individual as a relative process marks a break with the

connectionist project. Thorndike and the earlier mechanist’s had no room in their vision

for the creation of intelligent activity based on outside stimulation. The importance of in-

dividuation and interview were central to the nature of the changes in school mathematics

during this period.

While Adam Smith recognized the possibility of creating societal roles as something

that was potentially arbitrary, and that the division of labor was responsible for such pos-

sibilities, Thorndike himself thought these categories to be predefined and a product of

the natural order.15 In the inter-war period, the psychologists Charles Judd and William

Brownell put forward a science that dismissed initial conditions, and that instead could

produce an infinite collection of possible directions for thought. The natural order was

not preset, but was a product of the immediate present that was by no means predeter-

mined. This required fine-tuning and intervention based on qualitative and quantitative

information.

To this point, Brownell has received little attention in the existing literature on school

mathematics. The few mentions find Brownell ”anticipated today’s search for a broader

range of research methods.”16 Others recognize Brownell as anticipating the New Math and

14. Kliebard and Franklin, ‘The Ascendance of Practical and Vocational Mathematics, 1893-1945: Aca-

demic Mathematics under Siege’

15. Smith discussed the example of the porter and the professor.

16. J. Fred Weaver Jeremy Kilpatrick, ‘The Place of William A. Brownell in Mathematics Education,’

Journal for Research in Mathematics Education 8, no. 5 (1977): 382–384, 383.
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a structural image of school mathematics.17 There are also attempts to link Brownell with

the Gestalt psychological project.18 These earlier scattered historical claims, however, seem

now to be rather unfounded. Wundt, Judd, and Brownell make little to no reference to

an allegiance to Gestält ideals. Instead, their ideas are markers of an alternative scientific

rationality.

More recently, Gray has pointed to Wundt and some of his followers important ideas in

the German psychology of mathematics within the modernist mathematics movement.19

Here, the modernist project and its traces in the mathematics and psychological founda-

tions of spatial perception in a world troubled by the rise of alternative geometries are

understood as cutting across the disciplines of both mathematics and psychology. This

study directly connects Wundt to the work in school mathematics through the explicit

deployment of his ideas by Judd and later through Brownell.

For the history of the function concept, this shift towards an alternative curriculum and

psychological discourse in school mathematics resembles many of the larger mathematical,

social, and economic alterations at work. Further, the work of Euler and his debates with

D’Alembert on the nature of mathematical objects were primarily philosophical in nature.

Both believed the solution to the wave equation to be the same; however, they argued

over the nature of the mathematical objects represented by this solution. In opening such

inquiries the nineteenth century mathematicians underwent a search for all different kinds

of functions with unpredictable behavior. Many of these monsters were not subject to a

general theory, particularly in the case of integration.

Just as the Cartesian and Newtonian mathematical projects bore allegiance to mecha-

nistic frameworks, a society operating under an alternative mechanical paradigm contingent

on energy generated through the work of heat engines found its mathematical physics in

the science of thermodynamics. Prigogine and Stengers note the importance of work in

17. Nel Noddings, ‘Biographical Sketch: William Brownell and the Search for Meaning,’ Journal for Re-

search in Mathematics Education 25, no. 5 (1994): 524–525

18. Jeremy Kilpatrick, ‘The Place of William A. Brownell in Mathematics Education’and jones both

make such claims.

19. Gray, Plato’s Ghost
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thermodynamics as offering an alternative paradigm for a science based on deterministic

mechanical worldviews.20 To explain the difference, they point to the rise of the heat en-

gine as motivating a different way of thinking about physical systems. The science of heat

was stands in opposition to classical dynamics.

“In dynamics, a system changes according to a trajectory that is given once and for all,

whose starting point is never forgotten(since initial conditions determine the trajectory

for all time). However, in an isolated system all non-equilibrium situations produce

evolution toward the same kind of equilibrium state. By the time equilibrium has been

reached, the system has forgotten its initial conditions–that is, the way it had been

prepared.”21

Judd and Brownell’s description of learning as progressive creative reorganization and

the introduction of crutches speak to similar commitments, as does a social machinery

that is predicated on a well structured working program such as that of the New Deal.

Irreversible stages of development are central to the evolution of thermodynamic systems

as well as Brownell’s learning theory. The focus on differentiated systems as more reason-

able ways to accomplish equality and efficiency in schooling reflects such a thermodynamic

vision. Similarly, the school district in individuating trajectories for students creates some-

thing that might be understood more in terms of isolated systems of production. Delanda

notes that abstract motor devices involve three components: ”a reservoir (of steam, for

example), a form of exploitable difference (the heat/cold difference) and a diagram or pro-

gram for the efficient exploitation of (thermal) differences.”22 The inter and post war period

for the function concept proved to be a time where the abstract motor device prevailed as

an idealized device, and when the science of heat became a paradigmatic framework for

thinking about issues in school mathematics.

In battle, the rise of the motor as technological paradigm brought with it a notion of

command as necessitating flexibility. The speed and unpredictability occurring on the new

battlefield with the rise of technology based on fuel engines pushed such changes. Delanda

20. Prigogine and Stengers, Order Out of Chaos: Man’s New Dialogue with Nature, 103.

21. ibid., 121.

22. DeLanda, War in the Age of Intelligent Machines, 141.
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additionally points to the return of the human to the battlefield as another important

element of the motorized regime.23 The central role of unpredictability in Boltzman’s

physics is born out with the rise of individual decision making and individual initiative

through flexible tactics as important in this reformed model for leadership of troops and

students. Reliance on individual judgement of the school to meet students’ individual needs

and for the professional researcher to include in his analyses recognized inherent faults in

a purely mechanical vision of scientific knowledge creation. Judd and Brownell again

exemplified the rise of such a vision that valued the individual in a completely different

way.

During and after the war, the military and non-military were continually joined. The

work surrounding the war spoke to the needs of individual knowledge as linked with readi-

ness for wartime efforts in both military and non-military work. Much of this was continued

post-war. William Hart, in his War Preparedness Committee report, called for mathematics

courses targeting students in non-military activity “to create a reservoir of suitable candi-

dates for positions demanding mathematical skill and for the professions where advanced

mathematical knowledge is of advantage.”24 Morse and Hart earlier note the importance

of theoretical science as providing ”the reservoir of general methods any one of which may

be needed.”25 Betz calls to “create immediately an inexhaustible reservoir of competent

manpower, offered by men who have a dependable knowledge of ballistics, of sea and air

navigation, and of mechanized warfare!”26 Society required technical knowledge in excess

to avoid exhaustion and power reduction.

In examining changing theories of vision in the nineteenth century, Crary remarks on a

refined vision of the observer, moving away from a classical theory of vision to one inclusive

of the subjective experiences, “dissolving the Cartesian ideal of an observer completely

23. DeLanda, War in the Age of Intelligent Machines, 127.

24. William L. Hart, ‘On Education for Service,’ The American Mathematical Monthly 48, no. 6 (1941):

354-355.

25. William L. Hart Marston Morse, ‘Mathematics in the Defense Program,’ The Mathematics Teacher

34, no. 5 (1941): 195–202, 195.

26. William Betz, ‘The Necessary Redirection of Mathematics, Including Its Relation to National Defense,’

The Mathematics Teacher 35, no. 4 (1942): 147–160, 148.
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focused on an object.”27 For the researcher of school mathematics during the inter- and

post-war periods a similar subjective vision became required. Perception itself was an

object of vision that before had not existed.

Figure 5.3: Peace

J.M.W. Turner’s paintings are impor-

tant to both Serres and Crary for de-

scribing the move away from a classical

positioning of the subject. For Turner,

the role of the sun and allegiance with

Goethe’s theory of color were both indica-

tive of the thermodynamic vision of sub-

jectivity. The complex of Garrard’s man,

horse, tool, and ship was synonymous with

the classical theory of knowledge for Ser-

res. Turner altered this vision in a similar

way, for this was “the same path that runs

from Lagrange to Carnot, from simple ma-

chines to steam engines, from mechanics to

thermodynamics–by way of the Industrial

Revolution.”28

In a similar way, Thorndike represented the classical regime, for he, like Garrard was

a man of animal power. Brownell countered such a view with the his move to individual

subjectivity. Perhaps the same ideas were at work when New York City high-school teacher

Abraham J. Bogdanove painted his work Peace, where a returning soldier is posed as a

teacher preaching the new industrial possibilities in the wake of the war. Above, the

vermillion, golden orange, lavendar and blurred borders depict something like Turner’s

earlier work, that of a thermodynamic vision.

27. Crary, Techniques of the Observer: On Vision and Modernity in the Nineteenth Century , 98.

28. Serres, Hermes: Literature, Science, Philosophy , 56.
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5.1.3 The New School Science

The focus on this individuation of student trajectories and the dispersion into multiple dif-

ferent tracks occurred at both the national and local(New York City schools) level through

this period. At the national level committees were being formed and deployed to investi-

gate the nature of individual differences in students, while (in fact continuing to involve

many of the same individuals) the New York City public schools a moved toward mass

individuation of curricula and district structure, including specialized schools.

Mathematically, the function concept maintained its role at the center of the curriculum

across grades. Coupled with the differentiated strategies, school mathematics itself would

often be referred to as functional mathematics in the scientific discourse of this period.

There were few examples of revolutionary changes in the mathematical presentation of the

function concept in this period however, and the primary focuses were on the institutional

approaches dealing with a revised approach to early liberal government strategies. Psycho-

logically this meant the emergence of a Wundtian alternative to Thorndike’s mechanistic

work focused on the individual needs of the child.

Together, Charles Judd and William Brownell put forward versions of this thermody-

namic psychology. At the same time however, both Judd and Brownell relied on similar

technologies to surface these individual traits, namely the same or similar standardized

testing instruments that Thorndike and his followers had pioneered. Despite this, they

believed the use of such equipment require the user to operate from a position ready to

observe qualiiative elements of the experiments; this was not a part of the mechanists’

earlier vision. They encouraged intervention and participation by the researcher. Further,

their psychology utilized the vocabulary of “stages” in a way similar to that of thermody-

namic science where phase transitions form an important consideration in the conversion of

matter to harness energy. Brownell would write at length about both research in education

and the teaching of arithmetic. Across these, his explicit denouncements of Thorndike’s

linearity occur with the introduction of complexity and acceleratory aides to the learning

process that are heavily reliant on the notion of learning as complex reorganization aided

by outside materials(crutches).

These changes in schooling have many connections to conditions in American society
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that, in turn, provided conditions that made an alternative vision of school mathematics

possible. The inter-war period brought with it a crisis in economic policy for the United

States. The economic depression was seen as a result of the earlier laisse faire market

strategy, and interventionist Keynesian economic frameworks rebutted the former model

whose lack of planning and oversight were to become seen as its main problems. With

the New Deal, federal and state agencies partnered together to expand infrastructure and

offer work to the underemployed. Planning the nation and city, and the identification and

training of the future citizen would continue to be related efforts.

For the mechanical vision of the function concept in school mathematics, unification and

singularity were integral. A single unified track was suggested for all students regardless of

future plans. With the Depression and subsequent governmental response through national

programs, specific roles were to be filled by children meeting particular criteria. The growth

of the nation depended on strict planning and such protocols were carried into education.

School mathematics was to cater to the needs of individuals while also identifying which

students were to fill such roles. This specialization of duty made room for a psychology of

difference based on future societal roles and mathematics specific to each of these types.

For the mathematical function concept, little would change. Instead, many of the

reforms of this time continued to rely on a presentation in line with the discourse of

the 1923 report. While there were hints of a coming shift evident in the early 1940s,

a commitment to an alternative vision of the function concept would have to await the

completion of the Second World War. These alterations in the vision of schooling at

the national, local, and psychological levels were not accompanied by marked shifts in

the mathematical presentation of the function concept. Instead, a similar approach to

the function concept occurred along content lines, where the mechanists’ same vision was

put to different means. While many continued to proclaim the centrality of the function

concept to the curricula while at the same time espousing the importance of mathematics

to society, mathematically the function concept remained informal, described as primarily

as a relationship between variable quantities, with little or no focus on notation and the

understanding of a function as a mathematical object unto itself.
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5.2 Individuation

The growth of the immigrant community and the factory line were both important factors

in the earlier rise of the mechanical vision for school mathematics. While this vision initially

supported massive growth and was accelerated by the First World War, the stock market

crash and subsequent depression altered the nature of government and industry. The

invisible hand of the economy and the accompanying mechanistic vision for the population

fell out of favor in this setting.

Foucault made a point of highlighting a specific liberal style of governance, characterized

by a vision of market efficiency determined by the least intervention possible. Only in

the extreme case of monopolies and trusts should there be intervention from the outside.

Liberalism of this sort was pursued through the early part of the twentieth century until

the crash and the rise of interventionist policies in the Roosevelt administration. The New

Deal would prove integral to what was a revision of the nature of governance and economy.

With the New Deal, the vision for prosperity in the United States was contingent on

harnessing the country’s natural resources in a systematic way through state-sponsored

work programs. Schools worked to provide the individuals fit for this vision. While earlier

high schools called for mass participation, during the inter-war period legislation enacted

to protect adult jobs gave a further importance to the schools as certifying institutions.

Central to both efforts was the issue of restoring order and equilibrium to an economy and

society experiencing a failure of both the economic and educational systems.

Within the New York City schools, these events paralleled a rise in efforts toward

individualized instruction. During the late 1920’s and through the 1930’s, systematic

effort was directed at understanding the problem of failure in the schools. The results of

these studies were published in reports from the city’s bureau of school research. Here,

the investigators found the school system’s problem to be its one size fits all approach to

educating its students. Students were “no longer to be considered Ford cars or pickets in

a fence”.29

29. See Board of Education of New York City, Annual Report of the Superintendant of Schools 1936: All

the Children (Superintendant of Schools, 1936), introduction.
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The factory line model now proved unreasonable; instead, individuation was called

for. “The whole trend of education is toward a recognition of the individual pupil as a

personality whose needs, whose difficulties, whose aptitudes, whose emotional reactions,

must be studied intensively” declared the authors of a report on failure in the New York

City schools.30 To better serve the student of the inter-war period was to focus on individual

student needs, and to put opportunities in place that make the best use of these different

kinds of students.

The Graves report on failure in New York City schools speaks to the importance of

articulating tracks for students in an effort to “make the largest school system in the world

the smallest”31. To do so, a focus on developing the individual was central. The authors

advocated differentiated coursework for general education, commercial education, and man-

ual training were advocated. Students would make known which track was appropriate for

them based on performance on standardized assessments.

Around this time, the National Council of Teachers of Mathematics formed a group

to investigate individual differences tasked with looking at “ability grouping, differenti-

ated curricula, and the like.”32 For both the New York City schools and the NCTM, the

slow pupil was introduced as the focus problem. Earlier practices of age based promotion

were now seen as impractical. Instead, continuous measurement of “ability” and grouping

accordingly were necessary. This work gave rise to later attention to the differentiation

of students in committee work. Across these discussions the focus is on articulating ap-

propriate flows of students depending on their particular qualitative characteristics. The

language of phases and stages abounds.33

30. Education of New York City, Annual Report of the Superintendant of Schools 1936: All the Children,

14.

31. ibid., 14.

32. Raleigh Schorling, ‘Report of the Committee of Individual Differences,’ Mathematics Teacher 25, no.

7 (1932): 420–426, 420.

33. See also C. N. Stokes and Joseph B. Orleans, ‘A Tentative Program for the Sub-Committee on Admin-

istrative Phases of the Individual Differences Problem,’ The Mathematics Teacher 26, no. 1 (1933): 57–59

and J.T. Johnson, ‘Adapting Instructional Material to Individual Differences in Learning,’ The Mathematics

Teacher 26, no. 4 (1933): 193–199
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For the NCTM committee, this meant honing in on what was meant by ”pupils of low

ability”. Such students were just above “mental defectives or subjects of special education”.

Similarly, when the committee of 8 tasked with investigating failure in city schools recom-

mended reducing the number of “retards”, better articulation and flow between school

units, the formulation of standards of expectancy, a program for the discovery and devel-

opment of individual talents, and a plan individualizing curricular offerings were suggested

as ways of achieving this.34

The continued use of examinations was integral to this individuation. Contrary to

the earlier use of examinations to compare students’ work to those of the average, nor-

mal child, continued assessment now was useful for continued reorganization. Students’

capabilities were still evident through performance on standardized assessments; however,

rather than claiming to determine whether or not the child was of “normal intelligence”,

the results spoke to a more specific type of student. Schools would function better, re-

searchers believed, if these classes were homogeneous–which was synonymous with the

individuation–and examinations supported this work. The early examination was pro-

pelled by its utility on the battlefield during the First World War, however this battlefield

would undergo certain changes as evinced in much of the research produced during the

Second World War.

5.2.1 Function and Functionality

The work of the 1923 commission proved of crucial importance to the national and local

discourse on the function concept. This work had been initiated before the First World War,

put on hold, and then resumed through sponsorship from New York State.35 Throughout

the inter- and post-war periods, the 1923 report served as the mathematical basis for the

defining vision of the function concept. Later in the same decade, however, an additional

use of the vocabulary arose to describe the “functionality” of the curriculum. Together the

Eulerian vision of the function concept worked with an imperative to make mathematics

34. Education of New York City, Annual Report of the Superintendant of Schools 1936: All the Children,

49.

35. Young, ‘National Committee on Mathematical Requirements’
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“functional” for each and every student based on their individual needs.

The function concept continued to arise explicitly in students work in algebra. In the

NCTM’s 1932 Yearbook focusing on algebra, the notion of functionality receives explicit

attention in many of the articles. Jablonower, in examining recent tendencies in algebra

teaching, calls for the continued reliance on functionality as the driving emphasis of algebra,

while explaining that “we may think of two sense data as being functionally related when

a change in one sense datum is invariably accompanied by a change in the other.”36 In

the same volume, Lennes also calls for more attention to the function concept throughout

the grades. For him, in secondary mathematics ”a function is a quantity which varies

in a definite way as some quantity involved in it varies.”37 He notes the importance of

the function concept to understanding the universe as “we regard the universe as a huge

equation containing a vast number of variables.”38

In the same yearbook, Breslich also calls for school mathematics to be unified around the

function concept and functional thinking. For him functional thinking was to be extended

to consider variable quantities. “Recognition of the dependence of one variable quantity

on another related variable is considered by this writer to be one of the important aspects

of functional thinking. Other aspects are: recognizing the character of the relationship

between the variables: determining the nature of the relationships: expressing relationships

in algebraic symbols: and recognizing how a change in one of the related variables affects

the values of the others.”39

Only two years later the NCTM’s yearbook would focus solely on the function concept,

with Hamley’s individually authored work on Relational and Functional Thinking in Math-

ematics.40 In this extensive investigation, Hamley defines a function as “a correspondence

36. Joseph Jablonower, ‘Recent and Present Tendencies in the Teaching of Algebra in the High Schools,’

in The National Council of Teachers of Mathematics, The Seventh Yearbook (Teachers College, 1932), 13.

37. N.J. Lennes, ‘The Function Concept in Elementary Algebra,’ in The National Council of Teachers of

Mathematics, The Seventh Yearbook (Teachers College, 1932), 52–73, 55.

38. ibid., 55.

39. E.R. Breslich, ‘Measuring the Development of Functional Thinking in Algebra,’ in The National Coun-

cil of Teachers of Mathematics, The Seventh Yearbook (Teachers College, 1932), 93–117, 94.

40. Hamley, Relational and Functional Thinking in Mathematics
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between two ordered variable classes.”41 Functional thinking is the end goal for all these

writers, however this is usually synonymous with the utilization of the function concept

in order to approach situations in the everyday world. Hamley continually utilizes the vo-

cabulary of functional thinking through the entire book; however, this is not differentiated

from his discussions around the use of the function concept in the mathematics classroom.

Two examples of national reports that speaking to this vision of functionality were the

Joint Commission of the Mathematical Association of America and the National Coun-

cil of Teachers of Mathematics’ The Place of Mathematics in Secondary Education, and

the Progressive Education Association’s Mathematics in General Education. For the joint

committee, mathematics was the study of relations centered on the function concept. Math-

ematical functions were objects that related variable quantities or “expressions of the ways

in which one variable is related to others.”42 When describing the necessary elements of all

high school coursework, the joint commission identifies functions as occurring in the field of

elementary analysis as associated with the terms equation, formula, variable, dependence,

table, correspondence, sine, cosine, and tangent. There is also an independent category

designated as relational thinking, which is entirely associated with functional thinking.

This material would take a central place in the ninth grade class for all students under

the “algebra” label. The study of relationships by tables, graphs, formulas, and equations

based on numerical quantities. 43 Throughout the joint commissions work the 1923 report

is mentioned as having laid the foundation for the work in functional thinking.

In the PEA report, similarities and differences become apparent. Again, the group

wants the function concept to be the unifying theme of school mathematics, as seen in

the 1923 report.44 This work will be important for all students regardless of whether

or not they will be college attendees. Relationships between variable quantities and the

41. Hamley, Relational and Functional Thinking in Mathematics, 6.

42. W.D. Reeve, The Place of Mathematics in Secondary Education (National Council of Teachers of

Mathematics, 1940), 10.

43. ibid., 90.

44. Progressive Education Association, Mathematics in General Education: A Report of the Committee

on the Function of Mathematics in General Education (D.Appleton, 1940), 141.
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notion of independent and dependent variable are central to the organizations vision for

the function concept. Additionally, there is a weak deployment of the language of sets

when discussing functions as “determinate correspondence from one set to another, such

that each object in the first set corresponds to a determinate object in the second, is

called a one-valued function, or more generally a function.”45 No formal work with sets

is recommended, however, and while the language appears, set theoretical work is not

central to any of the mathematical discussion. There is additional clarification about the

role of the variable; now, rather than simply representing quantities, the variable could

push past the classical mathematics vision of the variable to relate to objects not usually

considered mathematically measurable including taste, moral value, degree of discomfort,

etc. In discussing the specifics of the function concept, the report points to the opportunity

to include propositional logic in the study of functions, where entities being related and

represented by variable quantities were to include statements. For example “That x likes

his homeroom teacher” where “the domain of x represents all children in the school”46.

This report stopped short of recourse to a foundation based on sets and maps however, and

instead turned to an algebra that aligned itself with many classical goals while admitting

a larger class of objects under consideration for interdependence.

Longley, in 1933, wrote “The Function Concept in Algebra”47, where again he calls

on the 1923 framework. Different, however, is the focus on individuation of learners into

four distinct categories. While Longley feels the importance of the function concept as put

forward in the 1923 framework is a reasonable goal for all students, he argues for grouping

students based on future roles. This was a more pronounced difference in the discourse of

school mathematics around the function concept. During the inter-war period, a continued

reliance on the informality of the concept as interdependence of variable quantities was

coupled with the use of functionality to also connote individualization. A system was func-

tional insofar as it recognized the potential of each individual by meeting his or her needs.

45. Association, Mathematics in General Education: A Report of the Committee on the Function of Math-

ematics in General Education, 142.

46. ibid., 162.

47. W. R. Longley, ‘The Function Concept in Algebra,’ The Mathematics Teacher 26, no. 1 (1933):
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This was to be accomplished by attending to the maintenance of homogeneous groups

decided by intelligence tests that would speak to mental age and vocational potential.

Such was the nature of a particular change that could be observed in the national and

local discourse on school mathematics. Endurance of content vision while attending to

different tracks for pupils was the characteristic shift in the interwar period. The nature

of this shift is most pronounced in the discussions of individual differences that permeate

both the national and local discourse of the 30’s and 40’s. Interesting for this study is how

this discourse on individuation interwove the discourse of functionality.

5.2.2 Functional Textbooks

In Davis’ General Mathematics of 1935, the function concept was defined as

“If two variables x and y are so related that when the value of x is given y can be

computed then the value of y is said to be a function of x.”48

Davis, unlike earlier authors, uses functional notation to connote such relationships. While

the formal symbolism is included throughout the chapter on functional relations, Davis

does not ask questions about whether a relationship is a function or not. Similar defini-

tions can be found across numerous texts in the 1930’s in textbooks targeting high school

teachers education such as Moorman’s or Hassler’s. Later, NCTM President and Teachers

College faculty member Howard Fehr’s Secondary Mathematics: A Functional Approach

for Teachers. 49 connects with the earlier reports by emphasizing the function concept

as the mathematical object that best served to unify the curriculum. He perceived that

functionality as the concept of dependence on variable quantities was also addressing a

functional approach to teaching. The PEA report utilized similar language and makes a

point to note the difference between the mathematical and non-mathematical use of the

terminology. In introducing its section on the function concept, the authors of the report

noted:

48. H.T. Davis, A course in general mathematics (The Principia Press, 1935), 105.

49. All these texts offer the function concept as correspondence between variable quantities, neither bring

up propositional statements and logic under the discussions of the function concept.this and that
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“Educators are likely to be misled by the use of the term function when teachers

of mathematics are discussing their teaching problems and purposes and teachers of

mathematics are likely to be misled by the approval with which educators greet the

proposal to “teach functional thinking.” In most educational literature to say that

learning (or subject-matter) is functional implies that the thing learned has or promises

to have real significance for the student, in that it will make a difference to him in his

behavior (including thinking) or in his command over his environment. Mathematics

may or may not be functional for a given student in this sense. This Report aims

throughout to discuss the teaching of mathematics so that it becomes functional in

the educational sense. But the term function is used in its technical mathematical

sense.”50

For both the PEA and Fehr, functionality had to do with immediate utility at the

level of the individual student. Mathematically, both continued to rely on the notion of

dependence of variable quantities. Fehr states “If to each number of the domain of a

variable x, there can be made to correspond in any manner whatsoever, a specified number

of the domain of another variable y, the variable y is said to be a single-valued function

of x.51 He similarly notes the possibility for rooting the concept in the language of sets in

discussing variables, noting, ”A variable over a set of numbers is an unspecified individual

member of the set.”52 Nonetheless, he reserves a conversation about the foundation of

the number concept for a later chapter, followed by discussions of denumerability and

non-denumerability.

Thus, Fehr recognized the ability to base the middle and high school experience on

logical foundations associated with a set theoretic approach. Despite this, he explicitly

discusses the advantages of the Cartesian approach as a more powerful extension of a

Euclidean frame. Mathematical structures were encountered incidentally for Fehr. While

many school mathematicians continued to rely on the 1923 framework for content, the

aforementioned additional definition of functionality brought with it new conversations in

50. Association, Mathematics in General Education: A Report of the Committee on the Function of Math-

ematics in General Education, 139.

51. Howard F. Fehr, Secondary Mathematics: A Functional Approach for Teachers (Heath, 1951), 62.

52. ibid., 62.
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the pedagogy of the function concept.

Kahn claims that in the period between 1930 and 1957, there were a total of 71 elemen-

tary algebra textbooks published in the United States.53 In his analysis, he notes the rise

of the individuation through the mention of the utility to a variety of different occupational

trajectories made by textbook authors.54 An important author for this study across these

textbooks would be John A. Swenson.

Swenson both worked at both Teachers College and served as head of New York City’s

Wadleigh High School mathematics department in the inter-war period. He authored a

series of textbooks in the years 1934 to 1937 under the title Integrated Mathematics.55 His

classroom served as a model for others in the district, and he was recognized as a leader

in both local and national school mathematics during this period.56 Across these works,

Swenson argued for the centrality of the function concept in the mathematics curriculum

while also suggesting the need for the reorganization of the curriculum to better reflect

students’ functional needs.

Swenson saw the importance of the graphical introduction to the function concept

under a Cartesian frame as the appropriate initial experience during the early high school

years.57 For the students who pursued calculus, the function concept would be introduced

through finite differences of algebraic functions presented in tabular form. Later this notion

is connected with the continuous case through the limiting process and an understanding

of Cauchy’s definition of continuity.58

53. Henry F. Kahn, A Study of the Manner in Which Selected Topics in Elementary Algebra were presented

to Students in America between 1900 and 1970 as Revealed in Selected Commercially Published Textbooks,

Temple University, 1974, 317.

54. ibid., 162-163.

55. J.A. Swenson, Integrated Mathematics with Special Application to Elementary Algebra (Edwards Broth-

ers Incorporated, 1935)

56. John A. Swenson, ‘Calculus in the High School,’ Junior-Senior High School Clearing House 5, no. 6

(1931): 347–349, editors note.

57. ibid., 347-348.

58. ibid., 347.
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Figure 5.4: Fite’s Function

Similarly, Columbia University mathematician

Benjamin Fite’s text, Advanced Calculus, presents

the student with a definition of the function concept

as “a variable y is said to be a function of a vari-

able x if the number represented by it depends upon

the number represented by x.”59 Fite uses the ex-

ample of the absolute value function to make sure

the student understands the inclusion of piecewise

linear functions as singular objects within the larger

class of functions. His approach to functions was

that of the later Euler, not necessarily represented

by mathematical symbols.60

Towards the end of this period, alternative ideas

began to emerge in terms of set theoretic rooting

for many foundational concepts. Barnett, writing in

1951, attempted to offer a more general approach to

the crucial area of teaching functionality in his Variation: Its Extension and Application

to Problem Solving.61 Here, Barnett recognizes the importance of years of efforts within

school mathematics to bring the function and functionality to the center of the curriculum.

He offers a new approach that he believes will compensate for the earlier weaknesses of men

like Breslich, Betz, and Fehr. Barnett introduced a new technique, the “two set” strategy

along with a new notation −(X), together which he believed to be offering a broader and

simultaneously clearer definition of the function concept.

In contrasting the traditional, non-functional approach to the solution to the problem:

“A plane flying at a uniform rate of speed covers a distance of 600 miles. Had the

speed been 30 miles per hour faster, the plane would have gone 120 miles farther in

59. Benjamin W. Fite, Advanced Calculus (MacMillan, 1938), 17.

60. ibid., 18.

61. Barnett Rich, Variation, its Extension and Application to Problem-Solving. (1951)
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the same time. Determine the original speed and time taken.”62

Barnett discriminates between the non-functional and functional solutions as those that

have multiple representations available, rather than the simple substitution into the ana-

lytic equations T = D
R . The functional solutions on the other hand, involve the variational,

sense change, rate of change, graphic, and uniform ratio scales as equally reasonable ap-

proaches that together exhibit structural similarity.63 Barnett’s mentor, Howard Fehr,

would take such a structural approach in his later works, and will be important to the next

chapter’s structural approach.

Overall, the mathematical presentation of the material did not change much during

this period. Instead, the alteration of the district towards a multiple track system was

additionally found in the textbooks produced in the period. Authors of texts during this

period made an explicit effort to address many of the aforementioned committees recom-

mendations including providing practical applications for a variety of professions as well

as addressing individual differences.64

5.2.3 Examinations

While they were still not mandated, the Regents Examinations were continually produced

across a number of courses during this period. The rise of the commercial arithmetic

exam served as a minimum basis for mathematical skill. 65 While functional notation and

vocabulary remained notably absent from the majority of Regents Examinations around

this time, 1934 is a good example of a year that the word function did in fact appear

in questions across grades. The Regents offered mathematics examinations in commercial

arithmetic, as well as intermediate algebra, and advanced algebra, and plane and solid

geometry. In 1934, the commercial arithmetic examination did not contain mention of

62. Rich, Variation, its Extension and Application to Problem-Solving., 132.

63. ibid., 134.

64. Kahn, A Study of the Manner in Which Selected Topics in Elementary Algebra were presented to

Students in America between 1900 and 1970 as Revealed in Selected Commercially Published Textbooks,

161-164.

65. University of the State of New York, Commericial Arithmetic Exam, June 1934
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the word function, however problems involving the calculation based on interdependence

of relationships abounded. All students needed to demonstrate computational ability on

a large addition problem, as well as some basic problems involving unit conversion and

percentages, multiplication, and addition.

Figure 5.5: Rapid Calculation

The examination consisted in answering ten

questions, two mandatory arithmetic compu-

tation problems shown in figure 5.5, and nine

contextual problems primarily involving com-

mercial settings of which the student was to se-

lect eight to solve. Problems involved comput-

ing interest rates, the total amount to build a

fence around a property, bank note yields, sales

commissions, balancing check books, discounts,

profit margins, income tax amounts, and to-

tal cost of a variety of foods.66 These were all

framed as word problems and students were to

write their answers.67

8. A merchant bought 20 suits for $720, less 25%. Find the

price he must mark each suit to make a profit of 20 % on the

selling price after allowing an advertised discount of 10% on

the marked price. [10pts]

The same year on the intermediate algebra examination, the function concept was

explicitly mentioned in problem 2768:

66. See State of New York, Commericial Arithmetic Exam

67. ibid.

68. University of the State of New York, Intermediate Algebra Examination, June 1934
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27. The number of degrees in the reading y of a thermometer

for a certain period of time is expressed by the equations

y = x2 − 5x + 3 where x represents the number of hours after

midnight.

a. Plot the graph of the function from x = 0 to x = 6 inclusive

[7pts]

b. At what time was the temperature at the lowest point?

[1pt]

c. What was the temperature at 5 a.m.? [2pt]

Again, in the same year, problems 15 and 17 of the advanced algebra examination men-

tioned the function concept69:

15. The resistance (r) of a copper wire of fixed diameter, at

constant temperature, varies directly as the length (l). If

180 ohms is the resistance of a wire 2880 feet long, determine

the linear function connecting r and l.

17. Is the function x
√

2 + 3x = 7 rational or irrational?

In 1950, the algebra examination included the use of functional notation for the first time,

however, this would continue to be a rare occurrence on the examinations for years to

come.70 For example, on the Twelfth Year Mathematics examination in 1958, problem 3

asked71:

69. University of the State of New York, Advanced Algebra Examination, 1934

70. Watson, ‘Stability and Change in New York State Regents Mathematics Examinations, 1866-2009: A

Socio-Historical Analysis,’ appendix D.

71. University of the State of New York, Twelfth Year Mathematics Examination, 1958
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3. If f(x) = 2x− 1, find f(a+ 1)

And in the 1959 eleventh-year mathematics examination problem number 22 asked72:

The period of the function 3 sin 2x is

(a) 120°

(b) 180°

(c) 3

(d) 360°

5.3 Thermodynamic Management

Certain historians of war have focused on a shift in tactical strategies that employed more

flexibility and differentiation as defined by a trend towards greater independence and deci-

sion making along the command line. This motorization of European armies was contingent

on a move away from animal power and line and column formations predicated on a singular

command structure with rigid decision making channels.73 Standing apart from mechanical

visions for the battlefield, these new motorized armies would prefer an individual soldier

who was flexible in the moment as opposed to the mechanical rigidly assigned movements.

For both these military leaders and the pedagogues, attempts at control by singular rigid

systems were proving unsuccessful. Across military and mathematical thinking, the shift to

reliance on combustion as a source of energy stimulated a different vision for approaching

natural systems. The motivating force of fire and the central role of the engine in modern

industrialized civilization offered a new resource for both organizations.

With the coming of the Second World War, school mathematics would again be allied

with the cause of war. Committees were formed, recommendations made, and across these

prevailed a similar vision for a motorized child. The language of differentiation is evident in

72. University of the State of New York, Eleventh Year Mathematics Examination, 1959

73. DeLanda, War in the Age of Intelligent Machines, 68.
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the documents surrounding school mathematics and World War I, as compared with those

of World War II. In World War I, the school would service the military by all students having

a basic understanding of mathematics while also exposing boys to industrial work similar

to that needed in typical military situations. For Breckenridge, reflecting on the lessons

of World War I meant that the nation should recognize the mathematical failings of the

present education system. His solution however, was framed as a single class appropriate for

all students with no differentiation based on roles. Tasks like the construction of artillery

tables were of central importance.74

In the early stages of the Second World War, the NCTM and MAA assembled a com-

mittee to examine the mathematical needs of the nation in war time. The work was headed

by Marston Morse and included Jon Von Neumann as ballistics adviser and Norbert Weiner

as computation adviser for the War Preparedness Committees Subcommittee on Educa-

tion for Service.75 Weiner had also contributed to an earlier effort to examine the use

of examinations as part of a different committee of the NCTM. Here, a series of three

examinations–alpha, beta, and gamma–were recommended to differentiate potential col-

lege bound students. Each of these represented different minimal competencies requisite of

different desired educational trajectories.76 Individuation based on minimal competencies

took the place of earlier singularly envisioned goals.

For William Hart, who headed the War Preparedness Committee’s work on education

for service, a similar discourse of minimal competencies prevailed. Now, specific roles in

the military were recognized as having particular training needs. Hart recognizes different

needs in such roles as infantry officers, coast artillery corps, field artillery, signal corps,

ordnance unit members, ground force, pilots, Navy officers, and men enlisted in the Navy.77

74. William E. Breckenridge, ‘Applied Mathematics in High Schools. Some Lessons from War.,’ The Math-

ematics Teacher 12, no. 1 (1919): 17–22

75. Wm. L. Hart, ‘Progress Report of the Subcommittee on Education for Service of the War Preparedness

Committee of the American Mathematical Society and the Mathematical Association of America,’ The

Mathematics Teacher 34, no. 7 (1941): 297–304

76. W. D. Reeve, ‘Report of the Commission on Examinations in Mathematics to the College Entrance

Examination Board,’ The Mathematics Teacher 28, no. 3 (1935): 137–137

77. Hart, ‘Progress Report of the Subcommittee on Education for Service of the War Preparedness Com-
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Hart aimed to identify the minimum mathematical needs of such work, and students were

discussed in terms of their readiness for these different avenues of service. Those who had

demonstrated ability should be offered accelerated coursework at the upper grades, in order

to expedite their readiness for service.

A similar focus on minimum needs was evident across much of the work surrounding

school mathematics and the Second World War. Admiral Chester Nimitz, for example,

pointed to the problematic state of affairs for national defense due to the massive failures

of enlisted men on basic arithmetic tests. A pre-induction course committee addressed

such concerns, and described these courses in terms of the “Essential Mathematics for

Minimum Army Needs.”78 Here, the committee described the essential content a student

was to master if he was to be ready for minimal duty taking into account that further

differentiation would occur at higher levels. Further, the mathematics that is identified as

important was not limited to wartime duty; these requirements for understanding applied

to all students, and from the list of mathematical topics provided, the committee believed

“every mathematical item in the list given can be justified in terms of general education.”79

The committee’s work was primarily arithmetically oriented, and the function concept was

not mentioned by name. Separate topics of equations, tables, and formulas and equations

encompassed the topics similar reports of the time identified with the function concept or

with relational thinking.

Following the war, a similar group with overlapping membership laid out work for the

post war society. In a series of twelve proposals, the commission reiterated a need to make

mathematics an integral part of all students education. Further, this work needed to be

differentiated based on student needs with different accordingly tracked courses.80 Finally,

the committee noted that the teaching of arithmetic and high school mathematics could

mittee of the American Mathematical Society and the Mathematical Association of America,’ 356-357.

78. ‘Essential Mathematics for Minimum Army Needs,’ The Mathematics Teacher 36, no. 6 (1943): 243–

282

79. ibid., 245.

80. These were sequential, related, and social mathematics.‘The First Report of the Commission on Post-

War Plans,’ The Mathematics Teacher 37, no. 5 (1944): 226–232, 228.
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be improved. A series of theses framed the work of the group.

Thesis 1 The school should guarantee functional competence in mathematics to all

who can possibly achieve it.81

In their second report, the committee offered a checklist of 28 required for all citizens’

minimal competency for the mathematics of citizenry, while the 1923 report guides the

vision of functionality. Thesis 12 states that schools of more than 200 pupils should offer

double tracks in mathematics.82 Further, Thesis 19 calls for “new and better courses...for

a large fraction of the school’s population whose mathematical needs are not well met in

the traditional sequential courses.”83

Additional work surrounding minimum needs aorund this time took on the work of

explaining the needs for the reorganization of mathematical instruction, particularly with

respect to arithmetic. For Brownell, this work again recognized “that the mathematical

skills and concepts essential for successful adjustment in the Army are no less essential for

successful and intelligent adjustment in civilian life.”84 Mathematics aiming to address both

disciplinary and social aims was described as “meaningful”. If mathematics, arithmetic in

particular, was taught in such a manner, the student would not forget the concepts and

would maintain ability on exams like the Army Classification Test problems in decimal

division.85

Brownell’s mentor Charles Judd also had formative experiences during the war. While

he was an Army instructor for Special Service, Judd noted that the army officers lacked an

understanding of civilization’s true nature and history, and developed materials to address

such difficulties, piloting them in the Santa Barbara California school district.86 Much of

81. ‘The First Report of the Commission on Post-War Plans,’ 227.

82. ‘The Second Report of The Commission on Post-War Plans,’ The Mathematics Teacher 38, no. 5

(1945): 195–221, 205.

83. ibid., 210.

84. William A. Brownell, ‘Essential Mathematics for Minimum Army Needs,’ The School Review 52, no.

8 (1944): 484–492, 484.

85. ibid., 489.

86. See Charles Hubbard Judd, Teaching the Evolution of Civilization (New York, 1946), ix-xi.
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this stemmed from Judd’s earlier efforts to establish a social studies curriculum, “Lessons

in Community and National Life,” for Herbert Hoover during the First World War.87

Judd would express a vision for the evolution of society utilizing based on his work

in learning theory. The human race had stopped physical alteration some time ago, and

now the evolution of the species was solely governed by the human brain. The brain itself

evolved in the same way as society did for Judd. Both were non-linear, and neither was

prefigured.

“The cerebrum is literally an organ of variation. In its infinite number of cells and

connecting fibers it is capable of combinations and permutations which never appeared

earlier in any living organism. To leave the way open for new organizations nature

gives infants cerebrums which have no fixed patterns.”88

Judd exemplifies his adherence to an alternative anatomical reading more than does Thorndike.

With this lack of pre-figuration, learning became possible, and alteration and variation

were crucial concepts. Like Helmholtz and Wundt before him, Judd spoke with a vision

for a world of creative possibilities. This was most evident in his inclusion of conversa-

tions with Brownell about developmental stages. While Judd was the direct successor to

Wundt’s work, his work was only partially interested in mathematics. His student William

Brownell would publish more prolifically and explicitly in terms of a psychology of school

mathematics.

Brownell relied heavily on the notion of stages of development as moments of reorgani-

zation of thinking that would occur in a non-linear manner. This exposition primarily took

the place of critiques of Thorndike and his “connectionist” followers. He was mentored by

Charles H. Judd, a contemporary of Thorndike who chose to pursue his studies in Wundt’s

laboratories in Germany as opposed to James classroom in Cambridge. Both Judd and

Brownell set out to revise norms of research to include more subjectivity on the part of the

researcher. This was again contrasted against earlier work with examinations and research

that sought to eliminate the human hand through the use of standardized instruments.

87. See Hoover’s letter in :Judd, Teaching the Evolution of Civilization, 11.

88. ibid., 19.
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5.3.1 Psychological Conversions

“A priori ist garnichts wahrscheinlich.”–Wilhelm Wundt89

Wundt led one of the first efforts in experimental psychology in Germany.90 His Leipzig

laboratory would be the site of his psychological project, which took an alternative ex-

perimental approach to that of James and other American researchers in the late nine-

teenth century. Helmholtz’s German peer, Wundt accepted the conservation of energy as

Helmholtz had described, however he also put forward a psychology that required consid-

ering the subject’s goals and intentions in addition to purely physical events.91 Wundt’s

student Charles H. Judd would bring a version of Wundt’s psychology back home and use

it to investigate mathematical psychology.

Wundt himself saw mathematics as the sine qua non for examining thought, particularly

through spatial perception.92 For Wundt and Judd, research needed to consider statistical

information. However, a purely quantitative analysis was not idealized, and their research

made use of more qualitative phenomena in addition to the standard instruments.93 Judd

spent the later part of his career at the school of education at the University of Chicago,

however he did not set out to become a pedagogue.

It was in A.C. Armstrong’s seminar on James’ psychology at Wesleyan that was the

site of both Thorndike and Judd’s commitments to the discipline. Together, they received

their introduction to psychology.94 It was also here that other psychological work was

89. Charles H. Judd, ‘Autobiography,’ in A History of psychology in autobiography, ed. C.A. Murchison

and E.G. Boring, v. 2 (Russell & Russell, 1961), 207–231, 216.

90. For a discussion of the history of Wundt and experimental psychology, Canales has recently revisited

the standard account through the rise of experiments in the personal equation. See: Canales, A Tenth of

a Second: A History , 21-58.

91. Arthur Blumenthal, ‘A Reappraisal of Wilhelm Wundt,’ American Psychologist 30, no. 11 (1975):

1081–1088

92. For more on Wundt and his relation to modern mathematics see: Gray, Plato’s Ghost , 398-400.

93. S. de Freitas Araujo, Wundt and the Philosophical Foundations of Psychology: A Reappraisal (Springer

International Publishing, 2016), 21-64.

94. Judd, ‘Autobiography,’ 211.
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discussed, including that of Wundt and Galton. Judd’s first academic publication was

an investigation of Galton’s experiments on perception in collaboration with Armstrong,

his mentor.95 In this study, participants were asked to visualize their breakfast table.

Depending on sharpness of mental imagery, this perception guided subject classifications

into five different groups.96 Later, Judd’s dissertation would focus on spatial perception.

In his two years in Germany, he noted that Wundt’s laboratory was primarily focused on

space and time perception experiments, and the reaction time work had passed. Judd also

recalled the disdain for American psychological theories–particularly that of James–in the

Liepzig labs.97 Similar critiques to those of Wundt directed towards James were found in

Judd’s criticisms of Thorndike and his followers.98 Judd’s, and later Brownell’s training

were emblematic of an alternative approach to psyschologizing the subjects against the

mechanical offspring of James.

Judd would carried forth the Wundtian model in his work at Leipzig, and his initial

academic pursuits upon return to the United States were in psychology proper. The use

of laboratory equipment in visual perception experiments were later turned into geometry

problems and social studies curricula upon university postings in departments of pedagogy.

In a conversation about the teaching and psychology of mathematics, Judd noted that his

work was a departure from both James and Descartes.

“Centuries ago Descartes distinguished between different temperaments. He used the

terms which the medieval physicians had employed, and called attention to the differ-

ences between the phlegmatic, or slow, individual and the quick, sanguine type of mind.

He pointed out that some are hot-tempered or choleric and others sad or melancholic.

The present-day psychologist is not satisfied with this general classification.”99

In order to understand the present-day psychology then, the work of Galton would help

95. A.C. Armstrong and Charles H. Judd, ‘The Imagery of American Students,’ Psychological Review 1,

no. 5 (1894): 496–505

96. Judd, ‘Autobiography,’ 211.

97. “Expecially was there a very pronounced antipathy to James.”ibid., 215.

98. See for example Charles H. Judd, ‘Educational Psychology by Edward Thorndike: Book Review,’ The

Elementary School Teacher, 1916, 491–492

99. Charles H. Judd, Psychology of High-School Subjects (Ginn, 1915), 6
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to combine spatial perception with abstract thought in order to shed light on distinctions

such as concrete and abstract thought that were required in industrial versus academically

oriented classrooms.100 In mathematics, psychology found its most clear site for analysis.

Here, Judd saw mathematics as involving both spatial perception and abstract perception

through geometric and algebraic thought respectively.101 Geometry and its psychology

were discussed in terms of a relational consciousness as opposed to an a priori deductive

artifice.

“Why not treat space as an external reality of a superior order embracing all the objects

in the world?”102

Judd believed that this was an appropriate assumption to make about space and time as

something other than products of a superior order. The process of learning that he was

interested in observing, was constantly referred to through the language of reorganization of

connections that lead to higher mental forms or phases through a combination of concrete

sensorial experiences and mental reflection and combination with earlier experience and

knowledge.

Judd’s student William Brownell would spend his career interested in the study of the

psychology of school mathematics, and would continue to speak to a similar vision of math-

ematical psychology. Through the 1930’s, 1940’s, and 1950’s Brownell wrote prolifically

on educational psychology including continued attention to arithmetic. Two important

elements of Brownell’s thought will be explored here, his alternative vision for a learning

theory and his writing on standards in research. Through his writings a shift in thinking

about schooling in terms of individuation and needs is given a psychological foundation.

Both areas worked together to make possible a different vision of the learner. From

early on in his career, Brownell problematized the research of his prdecessors and the valid-

ity of conclusions drawn from purely mechanical testing and reporting. In his dissertation,

“An Experimental Study of the Development of Number Ideas in the Primary Grades,”103

100. Judd, Psychology of High-School Subjects, 7-9.

101. ibid., 17.

102. ibid., 34.

103. William Brownell, ‘An Experimental Study of the Development of Number Ideas in the Primary
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Brownell sought to establish baselines for children’s understanding of basic number ideas

based on the age of the pupil. “Specifically, we are here attempting to examine the na-

ture and growth of number concepts by noting the quality of these concepts at various

developmental stages.”104

This work differs from the earlier work of Thorndike, as Brownell makes conscious

efforts to include discussions of the methods that children used in solving their problems. In

doing so, he believed that he was overcoming what he saw as problems with earlier research

methods that did not take the individual child into consideration. A methodological break

could be seen from both his rivals in the connectionist program, but also from work aimed

at similar goals as his own that was carried out under different research assumptions.

In classifying the readiness of children to understand basic number concepts, Brownell

included the study of both groups and individual learners, breaking his study into two

parts based on these lines of investigation.

“Part I is a group study. That is, it is an investigation based upon a study of averages,

the combined results of many subjects rather than the analytical study of the reactions

of individuals.”105

The conscious attention to the difference in pure group study accompanied by the

opening to include research that combined group and individual types marks a new different

style of research in mathematics education. In his dissertation, he seeks to differentiate

himself from the work of Howell that he extends by incorporating the new individual

concerns though attempting to closely mimic many of Howell’s experiments. The group

study was problematic for Brownell, and the fact that his results differed dramatically from

Howell’s spoke to the difficulty pursuing a group study purely based on averages.

As a result of the lack of concordance in the attempted replication of Howell’s work,

Brownell believed that children developed an understanding of number in serial nature (i.e.

in order 1,2,3,...).106 This was accomplished by exposing children to different arrangements

Grades’ (PhD diss., The University of Chicago, 1926)

104. Brownell, ‘An Experimental Study of the Development of Number Ideas in the Primary Grades,’ 26.

105. ibid., 30.

106. ibid., 80.
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of dots that represented different quantities, comparing the errors in counting, and relating

these to students age and grade. A simple apparatus shown in Figure 4.1, would briefly

expose cards to students with the number arrangements shown in Figure 4.2.

Figure 5.6: Brownell’s Equipment
Figure 5.7: Number Arrangements

In the first half of the study, children’s accuracy in identifying the quantities was mea-

sured along traditional lines of research. Brownell found the results unacceptable, however,

noting the problems with the construction of the groups as measured by Howell, his pro-

posal that no order existed in children’s acquisition of the meaning of number concepts,

and that these problems were in fact a result of the neglect of the inner thoughts of the in-

dividual student. To counter this, Brownell proposed that attending to the actual methods

deployed by the students would be better indicative of their arithmetical knowledge.

In the second part of his dissertation, Brownell set forward what he spoke of as a new

contribution to existing work in research in mathematics education.

In contrast with Part I, Part II of the report is concerned primarily with the individual.

The purpose of this section, in which there are four chapters, is to penetrate more deeply

into the genetic development of children’s concepts of number by examining the mental

processes of individual school children at different stages of this development.107

Just a few years earlier, when Thorndike authored his Psychology of Arithmetic, he saw

the researchers’ aptitude for measuring ability as evinced by:

(1) of the speed and accuracy shown in doing one same sort of task, as illustrated by

the Courtis test for addition...and (2) of how hard a task can be done perfectly (or

with some specified precision) within a certain assigned time or less...”108

107. Brownell, ‘An Experimental Study of the Development of Number Ideas in the Primary Grades,’ 178.

108. Edward L. Thorndike, The Psychology of Arithmetic (New York: The Macmillan company, 1922), 33.
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Brownell saw himself opening up the reasoning process of the individual as a novel way

to understand their genetic development. The ability became visible for Brownell through

interviews with subjects. By exposing their inner thoughts and processes the subject made

themselves seen and thereby measurable in a way that Thorndike had not valued.

To do so, Brownell selected 180 separate number cards to expose to a group of ele-

mentary school students in first through fourth grades he identified the maturity of the

participants based on the Stanford Binet instrument measuring mental age and I.Q., along

with chronological ages. Finally, by interviewing individual students the researcher would

aim to discover “first, his methods in apprehending concrete numbers, and, second, the

speed with which he employed these methods.”109 Levels of understanding were now con-

structed based on processes as well as the products of these thoughts.

In his results, Brownell describes the lowest level as exemplified by a subject who counts

many objects in a simplistic way. “He is therefore a slow counter, a consistent counter,

who gets into difficulties if for any reason he is forced to work at a rate above his usual

one.”110 A series of genetic stages could be seen based on methods of counting, rather

than strictly based in performance. Explaining the results of his findings with the students

in the first grade group, Brownell points to the results of the individual conversations

as lending support to a view that mechanical testing based solely on outcomes is not

an appropriate way to measure arithmetical abilities. Brownell read this as showing the

problem of using group tests to access the genetic development of students, and that this

development proceeds in a non-linear fashion “with transition stages in method which may

actually be characterized by loss in efficiency.”111

He proceeded to examine subjects from the first through fourth grades in a similar

manner, and found the same pattern evident across all grades.

“Development of ability to apprehend visual concrete numbers illustrates in individual

cases the theory of hierarchy of habits. We find mastery of one level of maturity followed

by loss of efficiency pending the mastery of the next higher level of maturity, this

109. Brownell, ‘An Experimental Study of the Development of Number Ideas in the Primary Grades,’ 192.

110. ibid., 201.

111. ibid., 209.
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followed by another plateau stage while the old methods are being further automatized

preparatory to a move to higher level, as so on and on.”112

With this, Brownell announced his career objective. A vision of learning as hierarchical

reorganization of habits to be pursued through an individual analysis of methods would

solve many of the problems of the former psychology of connection where the inner workings

of the individual made no difference. Students were now to be considered based on features

that were both extensive and intensive. Further, research as an objective science involved

the expert judgement of professionals in interpreting responses to interviews.

Throughout his career, Brownell considered himself a reformer of the traditional paradigm

of arithmetic instruction and research. Noting the “Revolution in Arithmetic,”113he explic-

itly links his work with the beginning of the functional project in school mathematics.114

Brownell believes this work involved attention to the shift in to focus to processes through

the use of close observation and the interviews.115 This approach unified both the dis-

ciplinary and social needs of school mathematics, just as the functional curriculum was

supposed to.

When Brownell’s investigation of the psychology of mathematics education was reliant

on his methodological innovations, he found that the process unfolded in a rather different

way than Thorndike had theorized. Progressing through stages differentiated by something

other than response rate and accuracy. The notion of stages of development proves central

to Brownell’s thesis. Learning occurred as progressions through stages that were rather

irreversible due to the notion that memory did not deteriorate in arithmetically oriented

tasks. Instead, through the introduction of meaningful processes in operations like multi-

digit subtraction learners reorganized prior knowledge and progressed through higher stages

of development. This movement was facilitated by “aides” and “crutches” implemented to

support the movement to higher stages.

112. Brownell, ‘An Experimental Study of the Development of Number Ideas in the Primary Grades,’241.

113. William A. Brownell, ‘The Revolution in Arithmetic,’ Mathematics Teaching in the Middle School 12,

no. 1 (2006): 27–30

114. ibid., 28.

115. ibid., 29
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Investigating the learning of one of the phases in arithmetic, Brownell contrasts his

approach to that of the connectionists based on this problem:

8 6 1

- 5 4 9

3 1 2

For the connectionist–according to Brownell–the learner would think,

”I can’t take 9 from 1, so I borrow 1 from 6; then I think, 9 from 11 are 2, and write

2: next I think 4 from 5 are 1, and write 1; and then I think 5 from 8 are 3 and write

3.”116

Instead, learners might act on the subtraction problem itself to reveal the inner workings

by crossing out the six and replacing it with a five while rewriting the ones column as an

eleven.

”According to this plan children are directed to cross out the 6 of 861 and to substitute

5 (to show that 1 ten has been borrowed, or is to be borrowed); then to insert a small

1 above and to the left of the 1 one, to show that the first subtraction consists in 11−9

rather than 1− 9. In its altered form the example then reveals visibly what has been

and what is next to be done. In other words it provides a series of objective cues which,

by assumption at least may be easier for children to follow than the purely abstract

verbal patterns commonly given them.”117

Brownell believed that the use of such a “crutch” was not a detriment to the later

learning of the student, and that the individual learner would discard the intermediate

stage where the crutch was used upon movement to full understanding. This was the

progressive nature of learning mathematics according to Brownell, in contrast to the linear

well determined approach. Just as Brownell sought to introduce more qualitative features

into the research of learning, his learning theory utilized “sensory aides” to encourage

116. William A. Brownell, ‘A Study of Learning in one Phase of Arithmetic,’ Journal of General Psychology

25 (January 1941): 457–466, 458.

117. ibid., 458.
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learning. Through both he sought to establish a new vision of learning as “progressive

reorganization” against that of Thorndike and the connectionists.118

It is significant that Brownell also accepted much from the connectionist project as

important and necessary to continue. The role of practice was not de-emphasized; just as

Thorndike had, Brownell sought the most efficient use of practice in establishing his stages

of development. Learning could be viewed as either learning by repetition or by insight,

and the connectionists had contributed to understanding the first, while a meaning theory

would supply the additional understanding of learning by insight. This work put forward

the nature of learning as progressive reorganization.

“The learning problem is not one simply of perfecting an organization which already

exists in somewhat crude form; it is rather the creation of such an organization.”119

Efficiency, in this process could only be understood once former false notions of an

economy of learning rooted in a linear framework were discarded.

“Believing that learning should proceed in a straight line without break or interruption,

we deprecate any instructional practice which takes children even momentarily off the

main highway.”120

Instead, such diversions were necessary and worthy of investigation in their own right.

Learning as reorganization meant that these crutches–like the striking of the six–would be

discarded once the learner had a full understanding of the actual process at work, this in

return meant the learner had progressed to the later stage of development. In terms of

learning theory, then, Brownell saw himself contributing a novel theory that was based on

non-linear processes of natural development observable through new protocols that valued

the viewed the individual subject in a different light.

118. William A. Brownell, ‘The Progressive Nature of Learning in Mathematics,’ The Mathematics Teacher

37 (1944): 147–157

119. William A. Brownell, ‘Two Kinds of Learning in Arithmetic,’ The Journal of Educational Research

31, no. 9 (1938): 656–664, 656.

120. ibid.,661.
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These protocols necessarily had to differ from those of the earlier researchers due to

their vision of learning as a linear mechanical process. Other work contemporary with

Brownell also sought to establish a stage based framework for learning arithmetic based

on readiness standards by age. This work from the Committee of Seven for example,

aimed to establish readiness criteria for learning based on arithmetic performance.121 The

examinations performed by the committee yielded these readiness stages.

“There is a point in a child’s mental growth before which it is not effective to teach

a given process in arithmetic and after which that process can be taught reasonably

effectively. The child’s preceding grasp of those facts and processes that enter into the

new topic he is going to study is even more important than the mental level he has

reached. Through mental testing and achievement testing, a teacher can and should

determine when the children in her class are ready to undertake a new process, and

either through ability grouping or individual work should see that each child gets the

arithmetic for which he is ready at a time when he is ready for it.”122

While Brownell critiqued the work of the Committee of Seven openly, he was not op-

posed to the idea of a mental readiness standard. Instead, his four part critique focused on

the methods of investigation and the view of students maturity. For Brownell, the commit-

tee of seven did not take into consideration the methods of instruction taking place in the

classroom, nor did they use appropriate standards of performance on the examinations.123

These factors were methodological weaknesses of the study for Brownell.

Additionally, Brownell discussed the problematic multiplicity of views on maturity put

forward in the committee’s work. Washburne–the committees representative on arithmetic–

discussed maturation in terms of an inner ripening of the students maturity. This view was

criticized on the basis that it positioned student learning as immune to external factors.

121. Carleton Washburne, ‘When Should We Teach Arithmetic?: A Committee of Seven Investigation,’ The

Elementary School Journal 28, no. 9 (1928): 659–665

122. Carleton Washburne, ‘Mental Age and the Arithmetic Curriculum: A Summary of the Committee

of Seven Grade Placement Investigations to Date,’ The Journal of Educational Research 23, no. 3 (1931):

210–231, 229.

123. William A. Brownell, ‘A Critique of the Committee of Seven’s Investigations on the Grade Placement

of Arithmetic Topics,’ The Elementary School Journal 38, no. 7 (1938): 495–508, 507.
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Brownell argued instead for a vision of maturity contingent on environmental encounters

of the individual learner. The idea of a mental age exclusive from contextual factors as

an indicator for readiness was too limited.124 Instead of maturity based on age, prior

arithmetical experiences were the primary consideration for Brownell.

Brownell continued to propound this vision of the learner throughout his career. Readi-

ness was contingent on the learners prior experience with his or her environment. Mean-

ingfulness of learning was a continuum that was relative to the learner rather than some

exterior standard. For example, in a chapter called “How Children Learn Information”,

Brownell expresses such a continuum as shown in Figure 5.8 below.125

Figure 5.8: Spectrum of Meaning

In terms of arithmetic, near-zero meaning and on the scale of meaningfulness could be

associated with the fact that the word “two” represents two items. An understanding of

two as as a precise, exact “way of measuring a particular quantity regardless of the quality

being measured”126 constituted a much more meaningful understanding of the idea of two.

Brownell then demonstrated two important shifts in the psychology of mathematics

that were linked with the larger move toward individuation and functionality. First, the

vision of learning as proceeding through stages and as a process of creative reorganization

was different than Thorndike and his followers mechanical visions. Second, the notion that

the actual processes should be included in investigating learning through the use of the

individual interview was also in contradistinction to earlier work in arithmetic and alge-

bra. Brownell’s work, as well as the earlier mentioned contributions from the professional

discourse of school mathematics exhibited distinct changes in both what its purpose and

124. Brownell, ‘A Critique of the Committee of Seven’s Investigations on the Grade Placement of Arithmetic

Topics,’ 504.

125. William A. Brownell & Gordon Henrickson, ‘How children learn information, concepts, and general-

izations.,’ in The forty-ninth yearbook of the National Society for the Study of Education, Part 1: Learning

and instruction, ed. Nelson B. Henry (University of Chicago Press, 1950), 92–128

126. ibid., 95.
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objects of investigation would be, consistent with other changes in scientific practice in-

cluding the revaluation of the expert’s hand in conducting scientific investigations and a

physics focused on understanding the behavior of systems as non-deterministic.
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Chapter 6

Cybernetic Mathematics

“A conception of a city of the future with a school on top of each building. The space

immediately below the school will be used for living, and below that business offices will be

located”– Wallace K. Harrison
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6.1 Centralization

Wallace K. Harrison’s architectural vision for city of tomorrow anticipated many of the post

World War II developments in New York City. In his book School Buildings of Today and

Tomorrow, Harrison describes his vision for a future city where the educational spaces are

part of a new vision that incorporated technological developments like television and radio

broadcasting with newer building materials and strategies to transform the functionality of

the city.1 Harrison visualized a hypothetical radio controlled university that would be the

“nerve center of a new educational system.”2 Later, Harrison was able to realize a vision for

his own school of the future. His P.S. 34 was representative of numerous other structures

that sprung up in the metropolitan landscape after World War II. Harrison also worked

closely with Le Corbusier on the United Nations building and pursued a similar visual

and theoretical approach to the city. This vision valued modern technology and central

authoritative planning. Part of a larger building program, P.S. 34 and it’s Corbusier like

stalks was only one of 169 new school buildings that were constructed from 1946 through

1956. Many of these new buildings embraced the modernist project.3

Figure 6.1: Walter Harrison’s P.S. 34

1. W.K. Harrison, C.E. Dobbin, and R.W. Sexton, School Buildings of Today and Tomorrow (Architec-

tural Book Pub., 1931)

2. ibid., 3.

3. Cohen and Ries, Public Art for Public Schools, 114.
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For Corbusier, the urban center was a vital part of an improved future. His idealization

of the coming built environment was heavily contingent on centralization of populations

in cities that were able to make use of modern technology.4 Corbusier also sought out a

general project, and saw the future city as a result of a scientific formulation. “Proceeding

in the manner of the investigator in his laboratory, I have avoided all special cases, and all

that may be accidental, and I have assumed an ideal site to begin with. My object was

not to overcome the existing state of things, but by constructing a theoretically water-tight

formula to arrive at the fundamental principles of modern town planning.”5 For Corbusier

and Harrison, the scientist of the city was more interested in function and process than

visual aesthetic.

“The building must be, to a certain extent, industrial in character as it is a machine

for education and it must possess also that domestic quality avoiding the institutional

appearance that is so repellent to the average young student. In other words, because

the schoolhouse has come into a new phase of its existence, it must answer the new

demands that are placed upon it.”6

Harrison’s radio university would be in the center of a new metropolis that would allow

the greatest minds from various disciplines to interact with each other in close proximity.

Consequently, with the radio university of the future, there would be radio microphones

readily available to immediately broadcast the results of this open interaction of the wise

minds beaming out to all of the learners of New York City.

Much of Harrison’s vision came true for the reform of schooling in post-World War II

New York City. Centralized authorities of expert committees, first modeled architecturally

with the Rockefeller Center project in Manhattan (again Harrison played an important

part), would make their way to the reform of school mathematics and psychology in the

4. Robert Fishman, Urban Utopias in the Twentieth Century: Ebenezer Howard, Frank Lloyd Wright,

and Le Corbusier (MIT Press, 1982), 192-193.

5. L. Corbusier, The City of Tomorrow and Its Planning, Dover Architecture (Dover Publications, 2013),

164.

6. Harrison, Dobbin, and Sexton, School Buildings of Today and Tomorrow , 3.
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1950’s and 1960’s.7 The architectural strategy of the radio university was realized in many

of the reforms discussed in this chapter.

From the centrally planned, federally and privately funded nationwide research and

reform efforts led by elite scientists and mathematicians, to the adoption to a structural

image of mathematics for the school child and a new genetic psychological discourse, to

the rise of modernist school schools techno-scientific Utopian future adorned with a new

wave of modernist artwork, the model for the school mathematics child of this final chapter

assumes the form of a cyborg. This is argued due to the rise of the set-theoretic foundation

for mathematical presentation that many school mathematicians would put forward as a

better alternative to the theormodynamic and mechanical models. Rooting the presenta-

tion of school mathematics in the language of sets was a result of a larger structural project

that much like Corbusier’s models and Piaget’s genetic epistemology, shifted to a focus on

structural properties of actions on objects rather than properties of individual elements

themselves. Just as for Weiner’s cybernetic psychology the feedback loop encapsulated

a continuous construction of and reaction to the immediate world through coordination

between the human and machine, Piaget invoked the cybernetic feedback look in his ge-

netic epistemology to view the construction of knowledge as one in continuous production

through the actions of humans on objects of their environment. Piaget explicitly used

mathematics as a model for his psychology, recognizing the group concept as an extremely

important tool for the constructivist as well as relying on the history of mathematics and

science to formulate his system of developmental stages.

The 1950’s and 1960’s were also a tumultuous time for race relations in the United

States. With the emergence of an organized civil rights movement, the passage of Brown

v. Board and later Johnson’s Civil Rights Act, during this era there was an attempt to

deal with new expectations of fairness that no longer were satisfied by access to similar

institutions, but instead sought integration within white schools and neighborhoods. At

the district level, the city schools had to deal with continued calls for the integration of

schools following the Brown vs. Board decision at the same time as rising calls to change

7. For more on Rockefeller Center see Koolhaas, Delirious New York: A Retroactive Manifesto for Man-

hattan
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mathematics and science instruction that gained traction with the rise of the Russian space

program. While the New York City schools had abandoned segregated schools in name

in 1900, the neighborhood segregation that had in particular isolated large populations

of African American and Puerto Rican students was problematized by many residents of

these communities.8 Throughout the 1950’s and 1960’s, different approaches to integrating

the schools were pursued until the alternative approach to decentralization of the district

came in 1970.

Figure 6.2: Whitey’s on the

Moon

After the Brown v. Board decision in the Southern

United States, the issue of public school integration fo-

cused on enforcing new laws that demanded integration.

In New York City, the fact that segregation had not been

an actively enforced policy for more than half a century

created a different dynamic. Instead, the defacto seg-

regation of the cities urban communities led to a school

system in which the neighborhood homogeneity was mir-

rored due to neighborhood attendance policy’s. Rather

than arguing for the improvement of these institutions

themselves, many neighborhood civil rights leaders of the

time took the stance that separate but equal was never

going to be a realistic option. Despite the consistent cries

to act on the problem of segregation within New York City schools, little change occurred

to the demography of the system in this period.

In prioritizing scientific research and the space program, other New York City residents

expressed a pronounced displeasure with governmental policy in regards to the continued

issues raised by the civil rights movement. It was in this time that Gil Scott Heron recorded

Whitey’s on the Moon. A similar appraisal was offered of the 1958 school year by New

Amsterdam News reporter Sara Slack.

“Russia’s first Sputnik I sent school heads into late night session where they agreed to

put more emphasis on science, principles of space, travel missiles and propulsion. Yet

8. Ravitch, The Great School Wars, 251-266.
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this did not jolt them into desegregating any schools and providing equal education for

both Negro and white pupils.”9

This chapter describes the school mathematics that accompanied this extremely active

period in American society. First, the larger societal background will be discussed in

terms of both the fight for integration and the rise of the integrationist discourse in the

American civil rights movement as well as the new imperatives for scientific advances that

accompanied the Sputnik frenzy. As earlier, the aftermath of war and industry bore great

consequence for school mathematics in this time. Next, the mathematical alterations of

the period will be discussed. Numerous groups arose to reform the school mathematics

curriculum. The resulting materials presented a different mathematical image than those

that had been proffered to this point through the use of set theoretic foundations. Across

curricula, textbooks, and examinations, the language and notation of set theory and the

role of logic emerged as new elements in school mathematics. Finally, the psychological

changes that accompanied the mathematical alterations are discussed. Through Jerome

Bruner and Jean Piaget the emergence of a cyborg psychology in school mathematics can

be found. As mentioned, the notion of mathematical structures was a central consideration

in Piaget’s psychology of mathematics. Further, his recognition of certain drawbacks of

the Bourbaki system led him to begin to consider MacLane’s notion of category as a

solution to epistemological problems with the function concept in one of his last book

length publications.

6.2 Institutional Change

The city school system would face problems relating to both access and quality of education

throughout the post-World War II decades. In matters of racial equality, a discursive shift

towards massive centralized integration efforts became the focus of schooling reform in

New York City. Additionally, school science would undergo a transformation in funding

and with this the way that scientific knowledge was produced. The rise in federal support

for educational sciences and coordination of large scale reform projects headed by university

9. Sara Slack, Highlights Of School Year In New York City, July 1958, 9
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mathematicians and educators was an important part of these changes. Together, the large

scale work to integrate the schools and the move to large scale centralized educational

science projects indicate an institutional vision distinct from that of the thermodynamic

and mechanical models where the focus became centralization and an attempt to ignore

the visual perceptions of the eye altogether, whether in modernist architectural form, or a

set theoretic basis for mathematics.

6.2.1 Integration

Figure 6.3: Map of Segregated Schooling prior to Brown v. Board

On the eve of the Brown v. Board supreme court decision banning segregation in public

schools, New York State along with numerous other northern states had already existing

legislation banning school segregation. In fact, years before the Brown v. Board decision, a

democratic representative from New York, Arthur G. Klein, introduced a bill to end school

segregation across the United States.10 While outside of the city, many other states would

spend the inter-war period dealing with the implementation of new expectations in race

10. Special to the New York Times, Klein Asks Congress to End Segregation In Schools, Other Places in

National Capital, March 1949, 18
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and schooling, the situation of in the New York City schools turned to problematizing the

defacto segregation that resulted from many of the housing reforms of the Robert Moses

era.

“Certain signs point to increasing racial segregation in our schools due to segregation

in housing. If segregation does exist in effect in New York City schools, it is because the

present city Administration has not acted with sufficient vigor to meet the situation.”11

The hyper-concentration of homogeneous communities within small spaces that resulted

from the urban planning programs of the 30’s and 40’s were now directly tied to the

problems of schooling by leading politicians in the state like Jacob Javits. School board

meetings were taken over, and continuous mass protests from community members and

parents were a normal part of the Brown era in the New York City Schools.12 While these

problems have been well documented elsewhere, the important element for this study is

that in the post-war environment dense with conversations of freedom and equality that

sought recourse in the state school.

Again, as the earlier period conversation around the difference in approach and ideo-

logical ends of Garvey and Du Bois, this period found a large civil rights movement that

continued to express an interest in the modern capitalist democratic structures. Notable

other movements existed in this time, particularly those of the Black Muslims and Nation

of Islam resonating most loudly from the streets of Harlem through Malcolm X. The funda-

mental difference important for this study was that Malcolm and other civil rights leaders

of the time continued to offer an alternative to the integrationist agenda, however like the

scientific community, the civil rights movement in post-World War II United States saw

a large centralization particularly around Martin Luther King Jr that sought recompense

through the state.

The period following World War II in the New York City schools was one that would

culminate with yet another alteration in approach to city schooling with the decentraliza-

tion of 1970. Rather than seeking the state and city support for a large scale integration

11. The New York Times, Javits and Levitt Speak in Harlem, October 1954, 17

12. Ravitch, The Great School Wars, 267-279.
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project, community control of schools would become the answer to years of seemingly failed

progress towards centralized integration policies of the 1950’s and 1960’s.13 In similar time

many of the mathematics reform efforts of the period reached a twilight and closes this

chapters analysis.

6.2.2 Federal Scientific Research

The role of scientific research in the outcome of the Second World War was not lost on

president Roosevelt. Immediately following the war, Roosevelt commissioned Vannevar

Bush to supervise an investigation into what the continued support of federal scientific

research could look like for the United States. Bush was a former MIT professor and

important member of scientific work during the war. In this report, Science: The Endless

Frontier, Bush recommended the establishment of a federal organization along the lines

of what would become the National Science Foundation. Additionally, Bush pointed to

the importance of building the quality of mathematics and science education in schools

throughout the country as integral to maintaining the United States place as great power.14

Other military personalities like the Navy’s Admiral Hyman Rickover would continue

to voice the need for improving mathematics and science education. Rickover, for example,

would testify before the senate about the dire need for improving American education, and

after his military career would found a scientific research program for talented high school

students. Werner von Braun, a former Nazi scientist and future head of Apollo NASA

mission, would also call for attending to the highest caliber students technical education

in the schools. Von Braun represents another interesting dynamic in the post War United

States, where the federal government actively recruited and sheltered numerous Nazi scien-

tists in exchange for the sharing of scientific expertise gained in Germany’s laboratories.15

13. H. Lewis, New York City Public Schools from Brownsville to Bloomberg: Community Control and Its

Legacy (Teachers College Press, Teachers College, Columbia University, 2013), 14-30.

14. Vannevar Bush, Science: The Endless Frontier: A Report to the President on a Program for Postwar

Scientific Research (1945)

15. For more on the post War sheltering of von Braun and others like Klaus Barbie see: A. Cockburn and

J.S. Clair, Whiteout: The CIA, Drugs and the Press (Verso Books, 2014)
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Important to this study is that these calls sought a federal commitment to programs in

scientific research and schooling that until this time had been non-existent. While the

Roosevelt administration sponsored Bush’s initial investigation, it was president Truman

who would sign the first consequences of the effort into law by establishing the National

Science Foundation.16 President Eisenhower would later sign the National Defense Edu-

cation Act that established further allocations towards the improvement of scientific and

mathematical education in the public schools. Finally, the Johnson administration oversaw

the Elementary and Secondary Education Act where programs were explicitly dedicated

to supporting lower income schools and other underrepresented student groups.17

The emergence of the National Science Foundation, and the later passages of the Na-

tional Defense Education Act and the Elementary and Secondary Education Act postured

the role of the federal government in public education for specific ends. The National

Science Foundation would provide support for curricular research and in-service teacher

training while the NDEA and ESEA targeted district level initiatives for creating new

cadres of teachers and support for schools and students of lower income.18 For school

mathematics, this meant a new approach to the production of knowledge, particularly in

terms of curricular materials.

One of the earliest curricular reform efforts of the period was the University of Illinois

Committee on School Mathematics. Begun in 1951 the program would later seek outside

support and running continuously for nearly twenty years.19 The content of the materials

will be discussed later, however the projects emergence and maintenance was supported

by a combination of private foundation and public finances. New questions like “what’s a

16. J.T. Bennett, The Doomsday Lobby: Hype and Panic from Sputniks, Martians, and Marauding Meteors

(Springer New York, 2010), 89-109.

17. Christopher J. Phillips, The Subject and the State: The Origins of the New Math (University of Chicago

Press, 2014)

18. G Lappan and JJ Wanko, ‘The Changing roles and priorities of the federal government in mathematics

education in the United States,’ in A History of School Mathematics, ed. GMA Stanic and J.Kilpatrick,

vol. 2 (NCTM, 2003), 897–930, 908.

19. For a detailed analysis of the curricular projects of the period see H. V. Crespy, A Study of Curriculum

Development in Mathematics by National Groups, 1950-1966: Selected Programs, 1969, 371
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foundation?” and “how do we write a proposal?” became an important part of the school

mathematicians work.20 While the UICSM was started as a local entity, the federalized ap-

proach had specific requirements in terms of the nature of what would be seen as legitimate

research and work in school mathematics.

The UICSM program and the later School Mathematics Study Group were two of many

programs that received support from the new federal cache, but they were also representa-

tive of a new way of making curricular materials. Nationwide efforts led by committees of

mathematicians and educators with substantial backing from the federal government had

not been tried before. Together, many of the same reasons for earlier reforms were touted,

primarily that students entering mathematics and engineering programs at the University

level were largely unprepared for their work. The UICSM claimed to be motivated by the

fact that nearly 60% of the University’s science and engineering students needed remedial

mathematics coursework.21

These school reform programs were structured and carried out under many of the same

entities and involving the same personalities as the efforts surrounding the scientific move-

ment of cybernetics. For both the school mathematician and the cybernetician, centralized

command by expert committee was idealized. Additionally, both the pedagogue and cy-

bernetician sought to reassess human knowledge and activity in the light of the rapidly

changing technological landscape that included the computer. While Wiener struggled to

couple man and machine the school mathematicians were also attempting to understand

how an elementary school child might learn to work with new technology and languages

like FORTRAN.22 Both the school mathematician and the cybernetician called upon the

necessity to include modern understandings of science and mathematics in a curriculum

that presented mathematics as essentially unchanged since Newton.

For the school mathematician, this meant recognizing the scientific progress that was

20. Crespy, A Study of Curriculum Development in Mathematics by National Groups, 1950-1966: Selected

Programs, 297.

21. Division of Scientific Personnel and National Science Foundation Education, ‘The Role of the National

Science Foundation in Course Content Improvement in Secondary Schools,’ The School Review 70, no. 1

(1962): 1–15, 5.

22. For example, the SMSG produced a series of materials for teaching FORTRAN.
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made as a result of adopting new frameworks for the discipline, most notably the rise of set

theory in mathematics. While school mathematics was directly connected to the military

patronage of post-World War II scientific research, this involved the important changes

both to the nature of science as well as the procedures for validating and producing this

knowledge. The cybernetic child was a product of both of these innovations. The curricula

put forward was modeled by the new professional scientist knowledge base rooted in a post-

Newtonian framework. Additionally however, the new federal organizations responsible for

these projects were managed by protocols born from the operations research and systems

analysis work pioneered by mathematicians like John von Neumann during the War.23

24

6.3 The Structural Function

The school mathematics materials of the post-World War II abound with a new foundation

rooted in the mathematical language of sets. Despite the new veneer, the content of math-

ematics itself remained largely unchanged. This was an important contention of the new

math era, that rather than supplying the school with new ideas for inclusion the mathe-

maticians were instead viewing their project as identifying the appropriate presentation of

the same material. In order to do so, the structural vision of mathematics appears as a

driving framework for school mathematics that prior to the 1950’s had never been present.

For the mathematics curriculum, this meant that a logical presentation of even the

most basic ideas of number and quantity were to be formulated in set theoretic language.

The mathematicians and mathematics educators would often point to the fissure in the

mathematical sciences that occurred in the nineteenth century that gave birth to set theory

and an alternative to the Newtonian physical framework. The leader of the SMSG project,

23. Philip Mirowski, ‘Cyborg Agonistes: Economics Meets Operations Research in Mid-Century,’ Social

Studies of Science 29, no. 5 (1999): 685–718

24. It may be important to note that the research of the Geneva school was carried out primarily under

the funding of the Ford Foundation. While he and his first statistician–Benoit Mandelbrot–parted ways

after only a brief encounter, both men would produce most of their work supported directly by private

industry.
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Ed Begle, would discuss the groups work on in these terms.

“During the early part of the eighteenth century it became clear that further progress

in mathematics itself would require that the basic concepts be rethought, clarified, and

made more precise. It also became clear that in certain aspects of mathematics, clever

and intricate computations were less effective than a careful study of the structure of

the mathematical system, the way in which the basic ideas fit together.”25

The focus on the use of structure to unify and clarify the mathematical ideas already

identified as of import to the school were a common element of the reforms. Just as the

professional mathematician found new utility in the group, ring, field, and other “varieties”

of structural “species” as embodied in Van der Waerden’s text, would appear as reforms for

elementary and secondary school mathematics in a similar way.26 For van der Waerden, this

meant starting with the notion of operations on sets to build an understanding that would

then present structures of groups, then rings and fields, then relying on these to understand

polynomials. Important for this study is that the approach to viewing structures as the

foundation for algebra involved focusing on taking a set of objects, performing an operation

on this set, and explicitly looking for the behavior of these across the objects.

An early example of the structuralist image moving into arithmetic was Professor

Robert’s refutation of the Apple Theory. For Robert’s, when a young child was perform-

ing arithmetic tasks the outcome of import was the structural similarity of the operations

rather than the outcome of a single instance. Sounding the modernist call, Professor Ran-

som suggested ignoring the actual look of algebra instead of general structural similarities.

“A fertile source of difficulties in later mathematics is the fact that so much is taught

to the beginners about what algebraic work looks like, rather than what it actually

means.27

Roberts problematized the notion that 2a + 3a = 5a could be explained because “two

25. Edward G. Begle and Oliver Selfridge, ‘What’s All the Controversy About? Two Reviews of Why

Johnny Can’t Add,’ National Elementary Principal 53, no. 2 (January 1974), 27.

26. Corry, Modern algebra and the rise of mathematical structures, 8-9.

27. William R. Ransom, ‘The Apple Theory,’ The Mathematics Teacher 43, no. 4 (1950): 172–173, 172.
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apples plus three apples makes five apples.” To correct the Apple Theory, Roberts suggested

instead highlighting the distributive law that would present a more accurate understanding.

“So let us leave the apples out of it and explain ba + ca = (b + c)a as what it is, a

reversal of order in the operations of addition and multiplication.”28

Picking up on the criticism of the Apple Theory, Bernhardt presented an updated vision of

the entire beginning course in algebra in a similar structural dressing. Reviewing arithmetic

to focus on properties involving integers and the operations of multiplication and addition;

commutativity, associativity, the existence of an identity and zero element, and the dis-

tributivity of multiplication over addition.29 The goal of Bernhardt’s course highlight his

commitment to a structural project:

1. All processes are based upon generalizations of arithmetic.

2. In every situation–except, perhaps, in the introduction of the four axioms–the

students are asked to think for themselves, using arithmetic concepts as a basis.

3. The process of solving equations is not formalized to the extent usually advocated,

though the axiomatic method is thoroughly presented and used.

4. Checking of solutions was offered by various students as an interesting discovery.

It was exhibited and tits importance discussed, but no attempt was made to force

the children to adopt it.30

At their writing, neither of these articles were a part of a larger movement of curricular

reform. Nonetheless, both Ransom and Bernhardt’s vision for a structural algebra was

to be emblematic of these later programs. Jackson Adkins of Phillips Exeter expressed a

similar opinion that students in ninth grade algebra should understand the postulational

basis of mathematics.

28. Ransom, ‘The Apple Theory,’ 173.

29. Herbert Bernhardt, ‘Concerning the First Course in Algebra,’ The Mathematics Teacher 45, no. 1

(1952): 10–12, 10.
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By many contemporaries of this period, the style of mathematics would receive the

label “modern”. Saunders MacLane, mentioned earlier as an important mathematician

for his work in category theory, published an article in 1954 suggesting the importance of

considering a modern viewpoint in school mathematics.31 Specifically recognizing the lack

of awareness of hundreds of years of developments in the professional field, MacLane offers

the example of the study of algebra. For MacLane, a modern stance is one that concludes

“algebra is really the study of the formal properties of addition and multiplication”.32 Using

the example of modular arithmetic highlighted modernity in algebra while attending to the

understanding of basal numeration did so in arithmetic. In similar time, mathematician

Kenneth O. May identified the traits of this modern mathematics as “logic, the theory

of sets, Boolean algebra, and the set theoretic approaches to relations, functions, and

other topics of elementary mathematics.”33 While there were numerous textbooks available

for the University student that had appeared in the 1950’s, May identified the UICSM

materials as the only extant model for high school in 1958.

In this modern framework, the function concept itself would change appearance. The

structural definition relating the function to a mapping between sets emerged for the first

time in this period and appeared throughout the UICSM and SMSG materials. Further,

numerous periodical presentations of the function concept, the state curricular documents

and examinations of the period. The textbooks here are the result of the large federal

efforts at mathematics and science reform. While there were numerous efforts, many of the

smaller groups like the Cleveland Mathematics Project would utilize the materials from

SMSG or UICSM in their work.34 This presentation is important to this study because

it marked a turn to understanding what the subject of mathematics that a student was

encountering in fact represented. Rather than a model of the natural world appearing

31. Saunders MacLane, ‘The Impact of Modern Mathematics,’ NASSP Bulletin/National Association of

Secondary School Principals Bulletin 38, no. 203 (May 1954): 66–70

32. ibid., 67.

33. Kenneth O. May, ‘Finding out about ”modern mathematics”,’ The Mathematics Teacher 51, no. 2

(1958): 93–95

34. George H. Baird, ‘The Greater Cleveland Mathematics Program,’ The Mathematics Teacher 54, no.

1 (1961): 31–31
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through the language of numbers, now “modern” mathematics postured the practice as

based on purely conceptual creations in the form of axiom systems that were studied for

consistency rather than relation to reality.

This was a different modernism than what Schorling had presented years earlier. Now,

a modernist was troubled by ever quickening changes in reality and rethought representa-

tion in the process of such troubles. The school mathematician of this era was equally as

modernist in demanding a vision for mathematics to be presented in such a manner to com-

pensate for the now recognized fallibility in expecting to present mathematical knowledge

as a static body of facts that perfectly represent the natural world.

6.3.1 Structure in Texts

“Students must be skillful computers in order to work effectively with ideas.”35

Beberman would return to the Apple example to describe what kinds of improvements

might be made by occupying the modern point of view for school mathematics. He pre-

sented his argument through a hypothetical classroom example:

Teacher: Today we shall learn how to add terms, and we shall also learn how to tell

when they cannot be added. Who remembers what a term is?

Student: A term is an indicated product of numbers and letters.

Teacher: (nodding in agreement) Yes, we shall learn how to do problems like 2a +

3a, 4b+7b, 8x+3y, etc. How do we add 2a + 3a? Suppose Mary has two apples and Bill

has three apples. How many apples do they have altogether? ...Yes, they have five

apples altogether. So, 2a+3a=5a. Just add the numbers and write the letter next

to the answer. Who knows what 4x+7x is?...Good, yes, 4x+7x=11x. Now turn to your

textbook, and do the first 10 exercises on page 34.36

After this, attention turns to working with expressions not involving like terms.

Teacher: What is 2a + 3b? Suppose John has two apples and Susan has three bananas?

35. Max Beberman, ‘Improving High School Mathematics Teaching.,’ Educational Leadership 17, no. 3

(1959): 162–188, 162

36. ibid., 162.
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Can you add apples and bananas? (Rhetorical question.) Of course not. Therefore,

you cannot add 2a + 3b. You can only indicate their sum. Thus, we see that when

the terms are like, you can’t add them. Now do exercises 11 through 20 on page 34.

According to Beberman, this approach had nothing to do with mathematics, and further,

postured the student as learning by imitation only. For him, the UICSM work provided an

alternative option for presenting mathematics to students based on a structural solution.

“The subject matter of mathematics consists of abstractions,” said Beberman.37 These

abstractions were not marks on the chalkboard like the 2a + 3a problem, but instead “a

mathematical abstraction is an entity which has no physical existence.”38 Such abstractions

were not limited to problems involving apples and oranges however. Justice, for example,

provided Beberman with an example of another abstraction.

“For example, justice is an abstraction, and as a child observes instance of justice and

instances of injustice, he gradually reaches the point where he can classify a certain act

as being an instance of justice or an instance of injustice; that is, as being a just act

or an unjust act. Ideally, the child also learns the word ‘justice’ sometime after he has

learned to recognize instances of the abstraction justice. He views the word ‘justice’ as

a convenient label to use in talking about justice; he does not say that the word itself

is the abstraction.”39

This notion was directly translate-able to mathematical thinking, and the UICSM textbook

series would use this particular example in the early stages of the High School course. The

textbooks that Kenneth O. May referred to issued in 1957 by the UICSM in a series of

four units as an introduction to high school mathematics. These units were ordered as:

• Unit 1: The Arithmetic of the Real Numbers

• Unit 2: Generalizations and Algebraic Manipultaion

• Unit 3: Equations and Inequations

37. Beberman, ‘Improving High School Mathematics Teaching.,’ 163.

38. ibid., 163.

39. ibid., 163.
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• Unit 4: Ordered Pairs and Graphs40

Beberman and the UICSM materials did not present the description of abstractions of jus-

tice as a simple example to the public for what would be involved in improving instruction

but rather began the study of the arithmetic of the real numbers with this precise example.

In a hypothetical exchange between a mathematically mature friend Stan and his Alaskan

friend Al Moore who while deeply involved in pursuits like hunting and mining gold, had

little opportunity to attend school. As a result, when Stan asked Al to complete some

basic arithmetic problems, he was shocked to discover Al’s responses:

Figure 6.4: Al’s Arithmetic

Stan was disappointed, but understood Al’s problems as confusion around the language

40. University of Illinois Committee on School Mathematics, First Course in Algebra: Unit 1 The Arith-

metic of the real numbers (University of Illinois Committee on School Mathematics, 1955), University of

Illinois Committee on School Mathematics, First Course in Algebra: Unit 2 Generalizations and Algebraic

Manipulation (University of Illinois Committee on School Mathematics, 1955), University of Illinois Com-

mittee on School Mathematics, First Course in Algebra: Unit 3 Equations and Inequations (University of

Illinois Committee on School Mathematics, 1955), University of Illinois Committee on School Mathemat-

ics, First Course in Algebra: Unit 4 Ordered Pairs and Graphs (University of Illinois Committe on School

Mathematics, 1955)
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and symbol of number. “When I ask you about numbers, I don’t expect you to tell me

about the marks on the paper” replied Al. Turning to the example of justice as something

other than a word on a piece of paper. “If you were having a serious discussion about

justice, you would get pretty annoyed with someone who claimed he could show you what

justice is and did it by handing you a piece of paper.”41

Figure 6.5: Justice?

Following the introductory example, the students first en-

counter with arithmetic numerical expressions are not about com-

putation necessarily, but instead about recognizing similar out-

comes as the result of different operations on different integers.

The majority of the first unit continues to focus on logical pre-

sentations of arithmetic ideas, particularly on understanding the

distinction between names for mathematical objects and the ideas themselves. This was

necessary for the following presentation of generalizations and algebraic manipulations, and

equations and inequations, where solutions were framed in set theoretic language. Thus, in

the final unit of the course where ordered pairs and graphs were discussed, it was with the

language of lattice structures and sets that a student was to first encounter these topics

that would later be important to understanding the function concept.

In doing so, the notion of a coordinate plane is introduced in a manner to first under-

stand a general practice of arranging objects in a rectangular array in order to reference

location. A manufacturing plant with 25 buildings laid out on a 5× 5 grid motivated this

discussion by first providing a notion of an ordered pair. Then, the cartesian product is de-

fined as “the set of all ordered pairs with first components from A and second components

from B”42 This lattice is linked to the the ordered pair idea through the natural numbers,

and the “number plane lattice” is described as the cartesian product of all ordered pairs of

natural numbers.43 This allows students to represent graphs in the language of sets now.

41. Illinois Committee on School Mathematics, First Course in Algebra: Unit 1 The Arithmetic of the

real numbers, I-F.

42. Illinois Committee on School Mathematics, First Course in Algebra: Unit 4 Ordered Pairs and Graphs,

4-E.

43. ibid., 4.01.
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So the line x = y − 1 would be described as

{(x, y), x and y integers : x = y − 1}

Unit 5: Relations and Functions of the UICSM materials would formally introduce the idea

of a function reliant on the language of sets. Beginning again with a finite demonstration in

the context of the card game called TREE. This game was described by the lattice TREE

CHART:

Figure 6.6: UICSM Tree Chart

This chart could be used to understand ordered pairs that were or were not elements of

the set T. Based on this chart, a hand of 4 ’TREES’ a hand of 5, thus (5, 4) is an element

of T. Introducing the set theory notation, the authors demonstrate:

4 TREES 5 and: (5, 4) ∈ T are equivalent sentences

From here, the vocabulary of relations and the notion of symmetric relationships preface

the first formal description of the function concept. Again, through a contextual example,

this time involving the comparison of an anthropologist who wished to determine the weight
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of a subject given their height versus a chemist interested in the relation of the solubility

of salt and the temperature of the water. In both situations the scientists had graphical

representations to guide them.

(a) Anthropologist’s Chart (b) Chemist’s Chart

Figure 6.7: Two different kinds of relations

The chemist faced a different situation than the anthropologist, as only the chemist could

determine a single value corresponding to a given temperature, whereas the anthropologist

would obtain a range of numbers. Thus, “relations such as the chemists’ in which the

value of one quantity determines the corresponding value of another are called functional

relations–for sort, functions. In graphical terms, a function is a relation such that each

vertical line crosses the graph correspond with elements not in the domain of the relation.

In other words:

A function is a set of ordered pairs no two of which have the same first component.

“All functions are relations, but not all relations are functions.”44 Following this, students

are provided a number of exercises where through various representations they are asked

whether or not a situation represents a functional one. Additional problems relating naive

set theoretic operations to functions solidified the connections between sets, relations, and

functions.

44. University of Illinois Committee on School Mathematics, First Course in Algebra: Unit 5 Relations

and Functions (University of Illinois Committe on School Mathematics, 1955), 5.05.
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For each pair of functions, answer these three questions:

1. Is it the case that, for each x ∈ ζf ∩ ζg, f(x) = g(x)?

2. Is it the case that x ∈ ζf ∩ ζg?

3. Is it the case that f = g?

• f = {(Tim, 3), (Bill, 4), (Ed, 2), (John, 4)}

g = {(Tim, 3), (Mary, 4), (John, 4), (Cal, 3)}

For school mathematics and the function concept, this presentation was a marked

separation from those of earlier episodes. Never before had students been asked to consider

the concept of a function as their introduction. This presentation seems directly in line with

the earlier conversations around the need to understand mathematics and its operations

as purely abstract entities. The SMSG materials were to follow a similar approach to the

function concept, and larger structural image of mathematics.

Over the course of their work, the SMSG would produce more than 60 textbooks.45

Across these however, similarities to the UICSM materials are found in both a focus on

the logical aspects of the notion of mathematics as a language and that this language is

interested in the study of structures itself. In a volume produced to discuss issues around

the middle grades curriculum, the group emphasized the careful role that definitions and

logic must play in presenting the new mathematics.46 Henry Pollak addressed parallel

criticisms that had arisen in regards to the newer axiomatic presentation of mathematics

in the reform materials. It was in the newer presentation of the material that such an

approach could be provided however, as definitions become flexible and instead, Pollak

suggested “we must be honest with the students and let the mathematical abstractions take

45. Phillips, The Subject and the State: The Origins of the New Math, 47-74.

46. School Mathematics Study Group, Tentative Outlines of a Mathematics Curriculum for Grades 7,8,

and 9. SMSG Working Paper (U.S. Department of Health, Education, / Welfare, 1966)
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over in any of the variety of ways which might be most natural to the particular problem.”47

Picking up on Pollak’s ideas, G.S. Young of the SMSG offered some “uninvited comments

on the definition of the function”.48 For Young, the function concept was defined in terms

of sets of ordered pairs.49 In framing the concept in this way, the pedagogical implications

were an emphasis on the single valuedness of the concept, the fact that you don’t want a

formula, that the sets need not be sets of numbers, and that it is in fact a more precise

definition in that it makes it more obvious the infinite possibility of functions in certain

situations like analytic descriptions of the circle or the inverse of a simple parabola.50

In the next article, Leonard Gillman further described a vision for the nature of the

function concept in the SMSG’s work.51 Again relying on the notions of a set theoretic

foundation, Gillman asserts:

“I suspect that the best way to think of a function is as an association, i.e., as the

process of associating, i.e., as the passage from a given element to its associated ele-

ment. The emphasis is on the act of associating rather than on the totality of pairs of

associates. Note the suggestiveness of the notation: a→ b.52

Nonetheless, Gillman suggested that much of the current set theory in school mathematics

should be dismissed and delayed until students are ready to engage alongside the theorems

involving concepts like onto and one-to-one.

47. Henry O. Pollak, ‘The Use and Importance of Definition in Mathematics,’ in Tentative Outlines of

a Mathematics Curriculum for Grades 7,8, and 9. SMSG Working Paper, by School Mathematics Study

Group (U.S. Department of Health, Education, / Welfare, 1966), 485–486, 486.

48. Gail S. Young, ‘Univited Comments on the Definition of Function,’ in Tentative Outlines of a Math-

ematics Curriculum for Grades 7,8, and 9. SMSG Working Paper, by School Mathematics Study Group

(U.S. Department of Health, Education, / Welfare, 1966), 487–489

49. “I know prefer to say, “A function f a set A into a set B is a collection of ordered pairs, et.”, playing

down A and B, and always calling it f above.” Young claimed. ibid., 488.

50. ibid., 489.

51. Leonard Gillman, ‘On the Setting and Function of Sets and Functions,’ in Tentative Outlines of a

Mathematics Curriculum for Grades 7,8, and 9. SMSG Working Paper, by School Mathematics Study

Group (U.S. Department of Health, Education, / Welfare, 1966), 490–493

52. ibid., 492.
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While Pollak, Young, and Gillman don’t offer a necessarily united front in particular

location and rigor of the definition of a function, the nature of the mathematical wardrobe

is consistent amongst all three. Young later described the importance of providing the

mathematical student with the experience of understanding whether or not a system of

axioms is consistent. Unsure of location and time most appropriate, however, Young

conjectures the 8th grade as a potential opportunity to offer students experience of building

a model of the integers, then the rationals, then the reals, the constructing sets of ordered

pairs of reals, defining a line in terms of these and laying out a set model of Euclid.53

In the SMSG’s textbook First Course in Algebra the text moved through the study of

number systems and their properties in set theoretic language.54 The book begins with

the section Sets and Subsets.

Can you give a description of the following:

Alabama, Arkansas, Alaska, Arizona?

How would you describe these?

Monday, Tuesday, Wednesday, Thursday, Friday?

Include:

Saturday, Sunday

in the preceding group and then describe all seven. Give a description of

the collection of numbers:

1, 2, 3, 4, 5

of the collection of numbers:

2, 3, 5, 7, 8

.

The authors comforted the students that this indeed was the beginning of a mathematics

53. Gail S. Young, ‘On “On the Setting and Function of Sets and Functions”,’ in Tentative Outlines of

a Mathematics Curriculum for Grades 7,8, and 9. SMSG Working Paper, by School Mathematics Study

Group (U.S. Department of Health, Education, / Welfare, 1966), 494–498, 494.

54. School Mathematics Study Group, First Course in Algebra: Part I (Yale University Press, 1961)
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text, and that in fact the primitive notion of a set as a collection would drive much of

the later work in mathematics.55 It was not until the final chapter of Part II in the

SMSG’s First Course in Algebra that the student would encounter the formal definition of

the function concept. This was after chapters dealing with factors and exponent, radicals,

polynomial and rational expressions, truth sets of open sentences, graphs of open sentences,

systems of equations and inequalities, and quadratic polynomials.56

The chapter begins by discussing how a student would have to explain to their younger

brother the way of computing first class postage. This problem, explain the authors, is the

fundamental idea of the function concept.

“The problem of finding the amount of first-class postage really is a problem of pairing

off the numbers of two sets...What you are really explaining to your brother is the

description of these two sets and the rule which tells him how to take a given number

of the first set and associate with it a number of the second set.”57

After demonstrating how the graphical, tabular, and analytic representations for the

postage problem could be used to help little brother, students work with the language of

sets in rules when given different representations. For example, problem 1 in the section

asks students to identify the “two sets and the rule” given the table:

Positive integer n 1 2 3 4 5 6 7 8 9 10 . . .

nth odd integer 1 3 5 7 9

Then, the function concept is defined as a special kind of relationship in which the asso-

ciations between members of the two sets would uniquely associate a member of the first

with a member of the second.

“Given a set of numbers and a rule which assigns to each number of this set exactly

one number, the resulting association of numbers is called a function. The given set

55. Group, First Course in Algebra: Part I , 1.

56. School Mathematics Study Group, First Course in Algebra: Part II (Yale University Press, 1961), i-ii.

57. ibid., 511.
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is called the doemain of definition of the function, and the set of assigned numbers is

called the range of the function.”58

Thus, functions can be expressed in a number of ways. Tables, machines, diagrams, graphs,

expressions in one variable, and verbal descriptions all served as examples of functions.

Functions were often not capable of being represented by expressions in one variable, which

was precisely the purpose of the postage stamp situation that yields a step-function. The

problems in the textbook emphasize students recognizing functions as objects in themselves.

Problem 1 asks “Which of the statements in Problem Set 17-1a describe functions? If any

do not, explain why not.”59

These problems are important for they mark a change in the nature of the mathematical

objects the students are expected to deal with in terms of the function concept. Before,

in both the mechanical and thermodynamic periods, identifying whether or not things

were functions were not a part of school mathematics. The following sections worked

to establish better understandings of the different representations mentioned, but still

consistently asked meta questions about the nature of relationships in opposition to solely

focusing on identification of the relationship itself.

After being introduced to function notation and how this can be used to represent a

variety of functions including those of piecewise domains, questions continued to focus on

the nature of the objects rather than the rules themselves. Linear and quadratic functions

follow, and a continued reliance on the structural properties of the algebraic expressions

themselves presents a way for students to understand solution sets of polynomial equations.

On page 542, the authors motivate the general quadratic solution procedure with the

example:

x2 + 2x− 1 = 0

(x+ 1 +
√

2)(x+ 1−
√

2) = 0

58. Group, First Course in Algebra: Part II , 516.

59. ibid., 517.
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x+ 1 +
√

2 = 0 or x+ 1−
√

2 = 0

x = −1−
√

2 or x = −1 +
√

2

are all equivalent so the truth set of

x2 + 2x− 1 = 0 is {−1−
√

2, −1 +
√

2}

While the introduction of the function concept in the early courses was prefaced by the

structural properties and axiomatic approach to number systems later SMSG courses fol-

lowed a similar route. For example, in their Intermediate Mathematics textbook, students’

were first introduced to the properties of the natural and rational number systems before

the formal function concept. The authors explanation for the presentation is worth noting

at length:

“Scientists often speak of mathematics as a “language”, and their point of view is

certainly justified by the way they use mathematics. However, there is an implication

here that they are the “poets” while mathematicians are the “grammarians.” This

implication is not very generous, for there is little similarity in the aims of grammarians

and mathematicians. If we may say that the grammarian analyzes statements, breaking

them down for purposes of classification, we may say on the other hand that the

mathematicians’ aim is to show the relationships between statements and in particular

their logical dependence on each other. Mathematics is concerned with inferences–

the processes of drawing conclusions from given statements. Thus mathematicians are

concerned with collections of statements and the “structure” of such collections, rather

than the “structure” of individual utterances.”60

While the first chapter deals with the number system, the second is one on geometry.

The authors believe that in presenting Euclidean geometry from a structural axiomatic

perspective that algebra was in fact the appropriate place to demonstrate the “tidiness”

60. School Mathematics Study Group, Intermediate Mathematics: Part I (Yale University Press, 1960),

1.
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of Euclid.61 Continuing in this direction allowed students to compare different geometries

but also recognize the larger applicability across systems of thinking. By emphasizing the

arithmetical nature of the real numbers logical circularity could be avoided in all the future

mathematical conversations across later mathematics work in both geometry and algebra.

By looking at the axiomatic structure of the integers and then that of Euclidean geometry,

students were now conducting a mathematical “comparative anatomy”.

The clear use of the structural image of mathematics and a revised notion of precisely

what should constitute a mathematical object was apparent across both the UICSM and

SMSG textbook materials. It is perhaps also important to note that the SMSG texts in

particular were meant to be consumable, and to stimulate teachers creation of their own

unique approaches to utilizing the materials and the new modern notions of set theory in

modern mathematics. Much like the mathematical practice presented, the nature of reform

and teaching was one that also focused on process and understood curriculum itself as in

construction.

While the curricular materials of the period embodied the structural image of algebra

and its definition of the function concept as a relationship between sets of things, the New

York State Regents Examinations changed in many of the same ways. The vocabulary of

sets appeared in both middle and high school examinations. Additionally, the focus on

structural properties of arithmetic accompanied the inclusion of naive set theory problems

through the 1960’s examinations.

6.3.2 Examinations

The exams were a bit slower than the earlier discussed curricular materials to adopt the

structural image of algebra, however by the mid 1960’s the exams began to include a num-

ber of questions that made the shift clear. For example, in 1964, the Regents Examination

in Experimental Eighth Grade Mathematics (8X)62 included the questions:

6. Indicate the union of sets C and D if C = {0, 1, 2} and D = {2, 5, 6}.

61. Group, Intermediate Mathematics: Part I , 2.

62. University of the State of New York, Experimental Exam in Grade 8 Mathematics, 1964
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14. What is the greatest number in the set {−17,+3,−21}?

20. The sets {32, 23, 14} and {4, 0} may be described as

1. equal

2. equivalent

3. disjoint

4. interesting

21. The total number of subsets that can be formed from the set {dog, cat, horse}

is

1. 8

2. 6

3. 3

4. 9
22. The fact that

2

3
+
[
(
1

2
) + (−6

7
)
]

= (−2

3
) +

[
(−5

7
) + (

1

2
)
]

shows an application of the:

1. distributive property under multiplication over addition

2. associative property under multiplication

3. associative property under addition

4. commutative property under addition

24. The integers in the set {x |2 ≤ x ≤ 5} are

1. 2, 3, 4, 5

2. 3, 4
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3. 2, 5

4. 3, 4, 5

Problem 26 deals with set notation for a given number line representation, 27 is about

sets and Venn diagrams, 28 about geometric figures as a set of points, 29 asks students to

identify situations appropriate for modeling with a broken line graph, 30 is on quadrants

of graphs, 31 completing a table for Y = 8X, 32 classifying negative integers, rational,

irrational, and imaginary numbers, 34 is on plotting points on a grid, and 35 on evaluating

expressions given “replacement sets”.

Clearly this year marked a decidedly different presentation steeped in the language and

representation of set theory. This examination was an experimental one, and relied more

on set theory than would the normal examinations of the period but served to demonstrate

the awareness of the similar alteration to the structural vision that the State recognized.

Just two years later on the Ninth Year Mathematics Examination, the language of sets

appears as does a problem probing students to demonstrate commutativity, associativity,

the distributivity of multiplication over addition, additive and multiplicative identities and

inverses.63 In the 1968 version of the same examination, again the language of sets and

focus on properties is evident.

Problem 12 asks to “find the solution set for: 2x − 5 = 4x + 7. Problem 20 asks to

identify the additive inverse of 8, 22 about membership of the “solution set” of 3x ≤ 5,

28 to correctly identify application of the distributive law, and 30 to show on a graph the

“solution set of the inequality −1 < x < 3.”64 Continuing in the later courses that dealt

with algebra and the function concept the set theortic language maintained. For example,

problem 27 of the 1968 Examination in Eleventh Grade Mathematics65 asked:

For the function defined by the equation y = 2 sin 1
2x, the values of

y are in the interval defined by

1. −2 < y < 2

63. University of the State of New York, Regents Examination in Ninth Grade Mathematics, 1964, 38.

64. University of the State of New York, Regents Examination in Ninth Year Mathematics, 1968

65. University of the State of New York, Regents Examination in Eleventh Grade Mathematics, 1968
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2. −2 ≤ y ≤ 2

3. −1
2 < y < 1

2

4. −1
2 ≤ y ≤

1
2

Additionally important, as can be seen in the 1964 test questions, the multiple choice

question became a more important part of the examinations with the rise of machine

scoring. Another link to the cybernetic discourse is the use of computing across both

the state examinations but also the curricular materials produced by both the SMSG

and UICSM. The SMSG and UICSM materials were developed in a nationwide effort and

both of the groups utilized large scale survey analysis techniques to determine curricular

material efficacy and flow.66 While school mathematics turned to the structural image of

mathematics, a similar occurrence can be found in the psychological discourse of the time.

The relations to the structural project were explicit in much of this work, and are described

in detail below.

6.4 Structures, Psychology, Cyborgs

“Yes, 4× 6 equals 6× 4 in numbers, like in one way six eskimos in four igloos is the same

as four in six igloos. But a ventian blind isn’t the same as a blind Venetian.”–Eight-Year-

Old-Mathematician 196567

The large scale curricular reforms and their financial support included many opportu-

nities for the workers from different geographic regions to come together on a consistent

basis. An important example comes from the Woods Hole conference in 1958. Here, a

small group of leading scientists involved in various academic disciplines came together to

discuss the state of the reforms in improving scientific and mathematical education in the

United States. As Rudolph has argued, this conference was an exemplification of the use of

66. see for example beberman...

67. Helen J. Kenney Jerome S. Bruner, ‘Representation and Mathematics Learning,’ Monographs of the

Society for Research in Child Development 30, no. 1 (1965): 50–59, 56.
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wartime research models and systems analysis in post World War II educational reform.68

For this study, it is additionally important for it serves as a moment where a clear argu-

ment is made for understanding childrens thinking in terms of Piaget’s work in Geneva

through his collaborator Inhelder’s presence at Woods Hole, and the conference chairman’s

report that featured so heavily the discourse on genetic epistemology. It is perhaps no

coincidence that both the psychological and mathematical discourse around the cybernetic

function concept relied on the language of structure.

6.4.1 Woods Hole and Bruner

The Woods Hole conference was called by the National Academy of the Sciences, spon-

sored by the Carnegie Corporation, National Science Foundation, U.S. Office of Education,

the Air Force, and RAND corporation, with Harvard Psychologist Jerome Bruner acting

as chair.69 His resulting report was contained in The Process of Education, where he

attempted to summarize the proceedings of the many sessions of the conference. Psycho-

logically, the report focused heavily on the discourse of structure, particularly relating his

conversations to those introduced by Barbel Inhelder, Piaget’s collaborator from Geneva.

The mathematics reformers of the UICSM, SMSG, members of accompanying science edu-

cation reform like Jerrold Zacharias from MIT and physics education reform, psychologist

like Bruner, Inhelder, and B.F.Skinner, as well two historians, high school teachers, and a

select few others were in attendance at Woods Hole.70

For school mathematics and the function concept, Bruner’s report is important be-

cause it describes the turn to a structural framework for developmental psychology. Much

of Bruner’s conversation is related to Piaget’s work through Inhelder, and there is little

doubt to the importance that Piaget would herafter play in mathematics education. While

Bruner himself did not write as prolifically as Piaget on school mathematics, in his Pro-

68. John L. Rudolph, ‘From World War to Woods Hold: The Use of Wartime Research Models for Cur-

riculum Reform,’ Teachers College Record 104, no. 2 (2002): 212–241

69. Jerome S. Bruner, The Process of Education, A Harvard paperback (Harvard University Press, 1960),

xix.

70. For a complete list of attendees, see Bruner’s preface in his Process
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cess he provides a connection to both the mathematics reformers in the United States and

the genetic epistemology of the Geneva psychologists Inhelder and Piaget. Elsewhere, he

described his understanding of mathematics as similarly the study of structures and the

practice of the mathematician as one of searching out and recognizing these structural

elements of problems.

“For the mathematician’s job is not pure puzzle-mongering. It is to find the

deepest properties of puzzles so that he may recognize that a particular puzzle is

an expemplar–trivial, degenerate, or important, as the case may be–of a family

of puzzles. He is also a student of the kinship that exists between families of

puzzles. So, for example, he sets forth such structural ideas as the commutative,

associative, and distributive laws to show the manner in which a whole set of

seemingly diverse problems all have a common puzzle form imposed on them.”71

Bruner would continue to put forward a structuralist vision for cognition and psychology.

He would also argue for the work to be done by the most learned in the disciplines. To

improve the science and mathematics in the schools of the United States, Bruner claimed

that recent years had shown:

“That the best minds in any particular discipline must be put to work on the task...To

decided that the elementary ideas of algebra depend upon the fundamentals of the

commutative, distributive, and associative laws, one must be a mathematician in a

position to appreciate and understand the fundamentals of mathematics.”72

Large scale federally funded research projects that would bring various disciplinary fields

together and providing the expertise necessary for the production of new materials, in-

cluding the use of film, television, computers, etc. was the model of reform that Bruner

supported. Supporting these faculty members through things like year long leaves of ab-

sence would help make this work possible. The most important outcome of these efforts

71. Jerome S. Bruner, ‘On Learning Mathematics,’ The Mathematics Teacher 53, no. 8 (1960): 610–619,

611.

72. Bruner, The Process of Education, 19.
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for Bruner would be to identify how school science and mathematics could best and ear-

liest offer children an opportunity to recognize these structural elements common across

the disciplines. Just as the mathematics of the SMSG presented mathematics as an effort

to recognize abstract structural similarities of operations on objects, Bruner presented a

learning theory that prioritized a similar structural discourse. The focus on the associa-

tive, commutative, and distributive laws was an example of a larger conversation of general

structures. Bruner suggested that new curricular materials strive to bring out these “gen-

eral principles” of scientific practice as early as possible.73 He identified the UICSM and

SMSG materials as precisely such exemplars that were both the product of the experts

that presented the deep structures of mathematics in such a developmentally appropriate

way.74

Bruner would also put forward a new model for research practice to investigate chil-

dren’s mathematical thought development. Here, the case study method of Piaget was

the preferred style of Bruner, as well as the psychological framework most appropriate to

understanding developmental thought in mathematics. In both his Process and other writ-

ings on mathematical psychology, Bruner calls on Piaget’s developmental ideas as a starting

point for his own investigations. One such study Representation and Mathematics Learning

serves to demonstrate Bruner’s structural image of research practice and mathematics. As

for Daston and Galison, the structural frame for objectivity in the sciences “was not about

sensation or even about things; it hd nothing to do with images, made or mental. It was

about enduring structural relatinships that survived mathematical transformations, scien-

tific revolutions, shifts of linguistic perspective, cultural diversity, psychological eveolution,

the vagaries of history, and the quirks of individual physiology.”75

When Bruner and his colleague Helen Kenney set out to investigate children who were in

Piaget’s stage of “concrete operations” through their understanding of properites of number

systems he did so in a very unique educational setting. The instructor of the classroom was

Zoltan Dienes, another famed mathematics education theorist of the time, and the students

73. Bruner, The Process of Education, 32.

74. ibid., 82.

75. Daston and Galison, Objectivity , 259.
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were identified as holders of high IQ scores and attendees of a prestigious private school.

Further, the students had individual tutors at each table in a large classroom. Despite

these anomoly’s in the setting, Bruner believed they did not impact the investigation as

contingent on these factors.

“In no sense can the children, the teachers, the classroom, or the mathematics be

said to be typical of what normally occurs in third grade. Four children rarely have six

teachers nor do eight-year-olds ordinarily get into quadratic functions. But our concern

is with the processes involved in mathematical learning and not with typicality. We

would be foolish to claim that the achievements of the children were typical. But it

seems quite reasonable to suppose that the thought processes going on in the children

were quite ordinary among eight-year-old human beings.”76

The task that Bruner was investigating with them aimed to understand these develop-

mental processes through focusing on structural properties of quadratic expressions. Using

both a balance beam with rings and wooden block manipulatives, the class of third graders

received six weeks of instruction that related factorization to notions of commutativity and

later applied these ideas to algebraic expressions.

(a) Bruner’s Balance (b) Quadratic Blocks

Figure 6.8: Objects to Manipulate

The use of the balance highlights Bruner’s structural mathematics. Rather than utilizing

the lever to understand proportionality in nature, he put’s the law of the lever to use

76. Jerome S. Bruner, ‘Representation and Mathematics Learning,’ 51.
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for different purposes. Instead, the factorization of integers is later related to those of

quadratic polynomials in order to demonstrate more general structural properties.

For example, recognizing that 2 rings on hook 9 can be balanced by 9 rings on hook

2 introduces the idea of commutativity. After working with the quadratic blocks to un-

derstand the factorization of quadratic functions, the objects are combined to highlight

the abstract structural properties set upon for investiagtion. “Suppose,” says Bruner, “x

is 5. The 5 rings on hook 5 is x2, five rings on hook 4 is 4x, and 4 rings on hook 1 is 4:

x2 + 4x+ 4. How can we find whether this is like a square that is x+ 2 wide by x+ 2 long

as before? Well, if x is 5, then x+ 2 is 7, and so 7 rings on hook 7. An nature obliges–the

beam balances.”77 This was what was necessary for a child to begin to understand the

fundamental nature of mathematics and could be pushed further if so desired with addi-

tional diverse situations such as “the order of eating courses at a dinner or of going to

different movies–and operations that have a noncommutative order–like putting on shoes

and socks”78 and eventually led to the idea of something like identical sets and ordered

identical sets.

Together, Bruner valued a structural image of mathematics as the most logical presen-

tation of the subject but also that of a structural understanding of psychological develop-

ment. His motivation through the work of Piaget points to a much larger corpus of work

on the psychology of mathematical learning. Here again, a continued reliance on a specific

model of mathematics, cognition, and research practice mirrored that of Bruner’s project

in many ways. Piaget would explicitly discuss his use of mathematical structures to un-

derstand cognition. Further, he and his collaborators published a book length text on the

function concept that provides a clear example of what the function concept’s psychology

was for the genetic epistemologist.

6.4.2 Piaget and Structure

“I should like now to examine the three mother structures of the Bourbaki mathematicians

and to raise the question of whether these mother structures correspond to anything natural

77. Jerome S. Bruner, ‘Representation and Mathematics Learning,’ 55.

78. ibid., 56.
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and psychological or are straight and mathematical inventions established by axiomatiza-

tion.”–Jean Piaget79

Piaget’s work was unlike any prior psychological theorist who took on problems of

learning mathematics. He left in his wake an enormous cannon of nearly thirty volumes of

work that investigated a full range of mathematical learning issues but at the same time

addressed such problems with a scientific viewpoint imbibed with contemporary notions

from disciplines like physics, mathematics, anthropology, and linguistics. While his work

and the larger discourse on structural psychology emerged in the United States in the

1950’s and 1960’s, much of this ignored his perceived role as an epistemologist who was

simply utilizing child psychology as an effective way to understand human behavior.

While Piaget has become a giant among mathematics education, the literature to this

point has ignored the use of mathematical metaphors pulled from late set theoretic math-

ematics and the early category theory work of MacLane and Eilenburg. These notions as

well as Piaget’s explicit discussion of the organism and behavior in terms of the cybernetic

model presented here offer a new perspective on his psychology and direct connection with

Wiener’s project. Piaget originally received his PhD studying the behavior of mollusks in

the waters surrounding Geneva, and would connect his understandings of neo-Larmarckian

biology to his later work in developmental psychology. One example of this connection is

found in his book on Behavior and Evolution.80

Here, Piaget describes the role of behavior in a biology that has freed itself from earlier

deterministic models through the cyberneticians notion of a feedback system.

“Behavior’s role in the formative mechanisms of evolution was naturally reinterpreted

in a more comprehensive fashion once it was realized that biological causality is never

linear or atomist in form, but always implies the operation of feedback system as defined

by the cyberneticians.”81

This opens a chapter by Piaget titled Cybernetic Interaction, “Genetic Assimilation,” and

79. J. Piaget, Genetic Epistemology, Woodbridge Lectures Delivered At Columbia University in October

of 1968, No. 8 (Columbia University Press, 1970), 24.

80. Jean Piaget, Behavior and evolution (Pantheon Books, 1978)

81. ibid., 45.



CHAPTER 6. CYBERNETIC MATHEMATICS 186

Behavior, whereby he discusses the new biological understandings of the organism that

is constantly in development with no predetermined outcome. Instead, the process of

constant action on, reflection, and connection to previous experiences in actions on objects

through reflective abstraction, led to the assimilation of these singular experiences into

higher schema.82 Just as for the cybernetician, the human was an information processing

machine whose functioning could be described through the feedback loop, Piaget posited

a child’s interactions with their environment in the same way.

For Piaget, biology and psychology were not distinct practices. He recalls in his auto-

biography his walks with his uncle and talks of Bergson that led to his understanding of

multiple systems, supposed disparate, as in fact operating under consistent principles.83

This was an early event for Piaget, and he recalled that in looking back on his lengthy

career, he had in fact pursued his system developed at this young age all along. He was

searching for a science then, that Bergson was unable to provide. “Between biology and

the analysis of knowledge I needed something other than a philosophy.”84 Later, after

meditating and then reading Begson, Piaget recognized these connections between biology,

psychology, society, and other disciplinary silos and took action.

“Thus I began to write down my system (people will wonder where I got the time,

but I took it wherever I could, especially during boring lessons!. My solution was very

simple: In all fields of life (organic, mental, social) there exist “totalities” qualitatively

distinct from their parts and imposing on them an organization.”85

After putting his system aside for a while to focus on more theoretical concerns, Piaget

would have the opportunity to experimentally verify his conjectures. He viewed this as his

chance to connect biology and psychology through what he labeled psychogenesis. It was

this early work that led to Claparéde’s hiring Piaget at the Rosseau Institute, where he

would serve out the remainder of his career. In his early experiments, he sought to under-

82. Piaget, Behavior and evolution, 45 - 58.

83. Jean Piaget, ‘Autobiography,’ in A History of Psychology in Autobiography, ed. Edward Boring (Clark

University Press, 1952), 237–256, 239 - 240.

84. ibid., 240.

85. ibid., 242.
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stand what would later become his three part developmental stages and the vocabulary of

pre-operative, concrete operational, and formal-logical.86

Piaget rooted his understanding and elaboration of these stages in the language of

mathematical set theory. The nature of his psychology’s interdisciplinary nature, or per-

haps anti-disciplinary, Piaget coordinated historical events across the fields of mathematics,

physics, and biology in order to describe and understand how a child developed knowledge.

Only after his forays into biology, psychological experiment, and the history of science was

he able to clearly elaborate his positions in his Genetic Epistemology. The work, according

to Piaget, “is basically an analysis of the mechanism of learning, not statically, but from

the point of view of growth and development.”87

In doing so, Piaget relied heavily on the recent developments in the history of science.

Well aware of the problems that the physicts grappling with relativity theory and the

mathematicians working to transcend the architectural framework of the Bourbaki’s, Piaget

incorporated these historical developments into his system. For Piaget, these developments

informed a vision of scientific knowledge as different than a static body of rules existing a

priori.

“Scientific though, then, is not momentary; it is not a static instance; it is a process.

More specifically, it is a process of continual construction and reorganization. This is

true in almost every branch of scientific investigation.”88

He points to the example of the Bourbaki’s work in developing mother structures and that

“this effort of their’s (Bourbaki’s), which was so fruitful, has now been undermined to some

extent or at least changed since McLaine and Eilenberg developed the notion of categories,

that is, sets of elements taken together, with the set of all functions defined on them.”89

Nonetheless, there is great value to be found in the Bourbaki’s mother structures for

the Genetic Epistemologist. For his part, Piaget seems to take Bourbaki’s work as valuable

86. Piaget, ‘Autobiography,’ 248.

87. ibid., 255.

88. Piaget, Genetic Epistemology , 2.

89. ibid., 3.
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as long as the scientist realizes that formalization itself is a fruitless project.90 After all,

if the work of the logicians had shown scientists anything, it was that there was not one

logic but many. Calling on Gödel’s work that demonstrated the impossibility of proving

the consistency of a system from within, Piaget describes how the genetic epistemologists

stance towards knowledge as in process takes these logical developments into consideration.

“This is the problem of structuralism in logic, and is a problem that shows the inade-

quacy of formalization as the fundamental basis. It shows the necessity for considering

thought itself as well as considering axiomatized logical systems, since it is from human

thought that the logical systems develop and remain still intuitive.”91

To his question as to whether or not Bourbaki’s structures had anything to do with

the child’s thought was answered in the affirmative. For Piaget, he recognized each of the

mother structures or formations of great similarity, in childrens thinking around mathe-

matical problems. The Bourbaki’s three mother structures were algebraic, ordering, and

topological, and Piaget claimed these did in fact become apparent to the attentive episte-

mologist.

For example, the algebraic structures can be found in children’s thinking around clas-

sification. When presented with the task of dividing a group of objects according to simi-

larities. Here, the child was in fact coming to understand the logic of classes. A 4 or 5 year

old may classify things on the basis of different geometric shapes, whereas a slightly older

child would ignore the particular shapes an be able to recognize the logical underpinnings

of class inclusion. Despite begin capable of discerning that “all ducks are birds but not

all birds are ducks”, the student is unable to recognize the relationship between the size

of the sets, or that when asked if there are more ducks or birds in the woods, the student

would reply; “I don’t know; I’ve never counted them.”92 Once clearly able to classify and

understand the complete logic of class inclusion, the operational structure of classification

had emerged. Piaget elaborated:

90. Piaget, Genetic Epistemology , 10.

91. Jean Piaget, Structuralism (Basic Books, 1970), 11.

92. ibid., 28.
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“The structure of class inclusion takes the following form: ducks plus the other birds

that are not ducks together form the class of all birds; birds plus the other animals

that are not birds together form the class of all animals; etc. Or, in other terms,

A+ A′ = B, B +B′ = C, etc. And it is easy to see that this relationship can readily

be inverted. The birds are what is left when from tall the animals we subtract all the

animals but the birds. This is the reversibility by negation that we mentioned earlier:

A − A = 0. This is not exactly a group; there is inversion as we have seen, but there

is also the tautology, A + A = A. Birds plus more birds equal birds. This means

that distributivity does not hold with this structure. If we write A + A − A, where

we put the parentheses makes a difference in the result. (A + A) − A = 0, whereas

A+ (A−A) = A. So it is not a complete group; it is what I call a gropuing, and it is

an algebra-like structure.”93

True to his system, Piaget recognizes the similarity between the mathematical concept

of a group and the cognitive development of a child. The group in particular was an

important structure for Piaget. This was because a group structure was not concerned

with the elements of the sets to be operated on, but instead because the group structure

was concerned with deriving properties by acting on things.94 Thus, it was a central tool

to Piaget’s psychology.

“It is because the group concept combines transformation and conservation that it has

become the basic constructivist tool.”95

With the mathematical structural foundation in place, Piaget would utlize the similar

conversations around class inclusion to discuss the psychology of the function concept.

These connections were elaborated in a book length study that demonstrates a detailed

application of the Genetic Epistemology to the function concept.

6.4.3 A Genetic Function

The work on the function concept was among his Piaget and the Geneva Circle’s last works.

Across two sets of experiments, Piaget and his collaborators investigate the epistemology of

93. Piaget, Structuralism, 28.

94. ibid., 19.

95. ibid., 21.
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the function concept in two parts differentiated by the notions of “constitutive functions”

and “constituted functions.” Piaget’s system then understands the constitutive functions

to be preoperatory, therefore the book begins with a series of investigations moving from

constitutive functions to constituted functions. An example of such a situation, for Piaget,

was the coordination of pairs. Two experiments of similar direction were offered to uncover

this potentially “most elementary cognitive structure”.96

From a psychological standpoint, Piaget believed that functions could be understood

“as the expressions of the schemes of assimilation of actions.” If one agrees to this premise,

Piaget goes on, “then function are already present in the conceptualization of any action

which modifies an object x into x′ or y, thereby also constituting an ordered pair (x, x′)

or (x, y).”97 In other words, to recognize the act of coordinating a pair is to recognize a

most fundamental cognitive structure that has to do with the function concept. The two

experiments involved two games.

(a) Flower Game (b) Train Game

Figure 6.9: Piaget’s Composition Games

In the first game, the images are meant to represent red and blue flowers of different

sizes. The flowers in the first row corresponded with flowers in the second row, and subjects

were asked to make a series of replacements, before the second row was covered up and

the investigator became interested in the students ability to make the connection between

96. Jean Piaget, Epistemology and Psychology of Functions (Reidel, 1968)

97. ibid., 3.
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multiple actions. The younger subjects are described as having an impossible time with

the compositions, whereas near 7 or 8 years the children begin to make the connections

based on something other than physical actions on objects.

Take, for example, subject CLA (Age 5).

Scientist: If you must find a big red one with a little bule one which chart will you use?

CLA: Here (D Correct)

Scientist: Try to find the same flower but this time don’t use this chart again (D).

CLA: I can’t do it.

After some helpful suggestions CLA figures the problem out, but is not able to do so

without the chart, nor were they able to consistently recognize commutativity. On the

contrary, subject DAN (Age 8 years 9 months) was able to recognize the compositions

as well as the commutativity, however again ran into trouble with the charts not visible.

Subject ARI (Age 10 years 1 month) was completely fluid in the experiment.

ARI constructs the four charts and names the ’color’, ’size’, ’both’(D), and ’just the same’ (I). D

begin closed, she goes through S the C: ‘could we go first through (C) then (S)? – ‘No’, then changes

her mind and finds it. C and the S being closed, she finds the solution and its inverse each time. In

order to find a little red one with another little red one with I close, she designates (D): ‘I get a big

blue one, then at (S) a little one, and I go to (C) and I find the little red one. – Can you did it another

way? –(She indicates another order)–And with (C) or (D) alone? –No, I can’t do it. – Why? – (Thinks

deeply while murmuring): Yes, I do it twice. Here (D) I get a big blue one, then I redo it and I get a

little red one. – And with (C) only? – Yes, I can also do it twice. – And with (S)? –Twice again.98

The second experiment worked to uncover the same cognitive structure, this time the game

was to move from different positions by way of colored train lines. Sometimes the trains

are closed, and alternative routes must be sought.

These experiments gave Piaget and his investigators a problem that their mathematical

model of cognition was not yet ready to deal with. For Piaget, the youngest children’s

behavior demonstrated that there was indeed a developmental stage of functionality that

was purely operatory in nature. “In the second experiment, the system involved can
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Figure 6.10: Apparatus for Wheel Experiment

take on the operatory form of a ‘group of displacements‘, yet as we must point out, this

system first appears as early as the sensorimotor period (12 to 18 months) in a specifically

empirical form through the step-by-step coordination of actions, prior to being structured

by deductive operations around age 7-8.”99 This preoperatory stage of development may be

aided by the recent work in mathematics through the notion of category, supposed Piaget.

Because mathematicians viewed this as a more general and fundamental entity, it could

serve as the necessary model for the most basic cognitive structure. As such, the remaining

first half of the book dealt with notions of relations and equivalence classes before more

formal functionality.

This would come in the second part that considered constituted functions. One experi-

ment here involved relating the size of wheels on a car to the distance that they travel in a

revolution. There were 4 components to the experiment itself. First, prediction sequences

of equal distance (after seeing motion would subject continue it), establishing relation be-

tween wheel and distance and quantification of the size of the wheels, prediction of wheel

size starting from a given distance as well as the distance from a given wheel, and finally

the functional law and proportional law.

Here, the youngest students in the first of three levels of understanding, fail to recognize

the relationship between the wheel and its distance. Take subject MART’s (Age 7 years 9

months) response for example:

99. Piaget, Epistemology and Psychology of Functions, 12.
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Students in the age range from 8 - 11 years were able to establish a relationship but offer

explanations in terms of empirical verifications rather than logical deduction sepearating

them from the highest level. For example, student MAR (Age 13 years 6 months) described

series of lengths as:

Using mathematics as a guide, Piaget is able to develop his cognitive stages based on

their relations to the mathematical objects uncovered by the subjects themselves. In the

case of functions, this was problematic because at this time Piaget was unable to make

use of the work in category theory that he hypothesized might realize precisely such a

fundamental structure. Nonetheless, recognizing that this stage existed and hypothesizing

on the potential use of the notion of category for this preoperatory stage was deemed a

success in itself.

In summarizing the investigations into the function concept then, Piaget declared:

“The two principal accomplishments of the preceding studies are that we were able to

realize a dream shared by several of us, i.e. to isolate a logic ( or a relatively coherent

prelogic) of preoperatory structures; and to account for the unlimited production of

‘constituted functions‘ in contrast to the limited number of operations”100

The second accomplishment is possible due to Piaget’s theory of cognition as a contiuous

structuring process and the organisms functioning as a perpetual feedback loop. Accord-

ingly, constant combinations of earlier operations on objects can continue to give rise to

more and more constituted functions creating an infinity of objects from only a few most

basic and prelogical entities. Much as the structuralists mathematics proceeds, so did

Piaget’s epistemology.

6.5 Piaget and Skinner’s Teaching Machine

Bruner’s Colleague B.F. Skinner presented an additional aid to educational psychologists

at the Woods Hole conference in the form of an automated teaching machine.101 He was

100. Piaget, Epistemology and Psychology of Functions, 192.

101. Bruner, The Process of Education
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Figure 6.11: Pressy’s Machine

not the first to propose such a machine, however, as it was Sidney L. Pressy, according to

Skinner, who in the 1920’s had first introduced a punchcard reading automated machine

that could respond to the correctness of a students answers to preset questions.102 Pressy

was ahead of his time to Skinner, and it was he who spoke the future of both psychology

and learning machine through the feedback loop.

“Pressy seems to have been the first to emphasize the importance of immediate feedback

in education and to propse a system in whch each student could move at his own

pace.”103

Skinner would experiment at length with teaching machines through the next decade of

his career at Harvard. While he is often pointed to as ushering in a revolt to the reforms of

the work of those like the SMSG, UICSM, as well as individuals like Piaget and Bruner who

are painted as humanists whereas Skinner’s behaviorism earned him being lumped with

the notion of a back to basics movement. It seems instead, that Skinner through Pressy

recognized what was not possible within the present technological setup. Instead, it seems

that he in fact envisioned many of the contemporary reforms in school mathematics that

utilize internet technology.

Piaget recognized Skinner’s work as a success. In his book Science and Education,

Piaget discussed the potential in teaching via machine. While he warned against the

potential mechanical presentation of content through machines, he also recognized that if

102. B. F. Skinner, ‘Teaching Machines,’ Science 128, no. 3330 (1958): 969–977

103. ibid., 969-970.
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this were the case then it would simply demonstrate the existing rote instructional role

so often occupied by the school teacher.104 He also suggested the positive potential in a

machine that would be capable of being programmed in such a way as to better replicate

the nature of a discipline like mathematics that they would in fact be doing society a great

service.

It should be no surprise then that the distinction between the work of Bruner, his

colleague Skinner, and Piaget, all who viewed cognition as contingent on actions on objects,

also valued an abstract machine with a feedback loop at its center. Piaget and Bruner not

only embraced the notion of an organism as a feedback loop, but also continually argued

that the model for mathematical thinking should be a late structural one. Piaget, while

motivated by Bergson’s vitalist clock also rejected the notion of the cinematographic vision

for cognition.

“A pedagogy based on the image, even when enriched by the apparent dynamism of

the film, remains inadequate for the training of operational construcivism, since the

intellignce cannot be reduced to the images of a film: it might much more correctly

be compareed in fact, to the projector that ensures the continuity of the film’s im-

ages, or better sill, to a series of cybernetic mechanisms ensuring such a continuous

flow of images by dint of an internal logic and of autoregulatory and autocorrecting

processes.”105

104. Jean Piaget, Science of Education and the Psychology of the Child (Penguin Books, 1971), 76.

105. ibid., 74.
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Chapter 7

Networks and Conclusion

“There is no such thing as either man or nature now, only a process that produces the one within the other

and couples the machines together.”–Gilles Deleuze and Felix Guattari1

Contemporary knowledge production in mathematics education continues to demon-

strate connections to abstract machines through network technology. This shift is seen

across school infrastructure reform, mathematical functions in the curriculum, classroom

pedagogy, and psychological models based on second order cybernetic systems. These

recent innovations will be described in order to briefly speak to the endurance of a way

of making school mathematics knowledge in the face of shifting ideals about biology and

technology.

First, a brief overview of network thinking and its implications for district level reforms

are discussed. Here, school infrastructure reform in New York City explicitly incorporated

a network district model. Next, how the network image has emerged in the content of

school mathematics content and pedagogy of the function concept will be described. In

contemporary work, new definitions and framing of the function concept in terms of recur-

sion and mathematical models are central to the network functions specificity. Continuing

to operate as a mathematical concept to make sense of interdependence in nature, the

psychological discourse of the function concept of the network regime is described for its

relations to second order cybernetics and autopoietic systems. Again, the psychological

1. G. Deleuze and F. Guattari, Anti-Oedipus, Continuum impacts (Bloomsbury Academic, 2004), 2.



CHAPTER 7. NETWORKS AND CONCLUSION 197

realm demonstrates most clearly a connection between understanding cognition through

machines. Finally, limitations and suggestions for further work will be discussed.

7.1 Network Models

Cybernetics pushed a vision of control that understood friction and chance processes as

negative elements of a closed system that could be handled by centralized control structures.

Contemporary system models have witnessed an inversion of this logic. A nuclear threat is

an example of a situation in which a centralized command structure would pose a great risk

to the nation/state/industry that was being protected. This logic gave rise to the Internet

architecture through the United States military’s ARPA and later DARPA project.2 To

disperse command and control rather than centralize it was crucial to surviving a nuclear

attack.

Network technologies arose from a tactical regime valuing a dispersed geography as

well as the ability to maintain operative functionality while individual members come on

and off line. Distributed decision making and the autonomy of individual actors become

central themes in the network milieu. Bosquet notes of these shifts:

“scientific developments are reflected in military thought with a move away from

computerized hierarchical centralization towards decentralized self-synchronizing net-

works.”3

The organizational logic of the military was similarly apparent in New York City through

the adoption of the network district structure and small school initiative.4 The network

structure is one where students choose from a wide variety of individualized schools in

an open system. Now, the idealized rationality to stabilize the inequality and differential

2. S. Lukasik, ‘Why the Arpanet Was Built,’ IEEE Annals of the History of Computing 33, no. 3 (March

2011): 4–21

3. Bousquet, The Scientific Way of Warfare: Order and Chaos on the Battlefields of Modernity , 164.

4. Managing by the Numbers: Empowerment and Accountability in New York City’s Schools (Center for

New York City Affairs, 2010)
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performance is through the rise of individual autonomy couched in the language of free

choice and open access.

Before dismantling the geographically located school regions, superintendent Klein ex-

perimented with autonomy for a sample of schools where performance and flexibility were

in direct proportion. These new reforms mirrored an ideology of open market competi-

tion and new industry partnerships along with competitive bids awarded in the 5 year $54

million agreement between New York State and Pearson (a multi-national testing conglom-

erate) to provide an overhaul of student assessments at the state level. This was also a part

of national educational reforms in the Race to the Top initiative. The administration fur-

ther invested in the ARIS system, an $80 million dollar informational infrastructure system

developed by IBM and other private companies for the school to monitor performance.5

In similar time Mayor Bloomberg and Chancellor Joel Klein wrestled control of the

schools from the state and implemented the network architecture. The demolition of ge-

ographically rooted schooling and the creation of a network structure whose nodes were

transitioned to the aforementioned autonomy zones marked the acceptance of the network

logic. Here, school autonomy zones represent a tactical regime where individual principals

make their own choices and are rewarded or punished based on resulting school perfor-

mance. Schools are continually refashioned from large universally themed institutions to

a number of small specialized schools managed by a combination of public and private

entities. This effort was a cooperative one between the Bill and Melinda Gates foundation

and the Bloomberg administration.6

Now, the natural and reasonable organization of the school district resulted from prob-

lematizing of the top-down model. Authority and hierarchy were subject to inversion where

decision making processes were to take place at the school level. Regulation of the district

involved embracing complexity rather than seeking to control it. The system of schools

embraced both the logic and material form of the network. Similar to a marketplace that

5. Lewis, New York City Public Schools from Brownsville to Bloomberg: Community Control and Its

Legacy , 91-94, 142.

6. Interview: Bill Gates talks about yesterday’s announcement that his foundation would donate $51

million to New York schools, September 2003, 1
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values totally free competition and consumer choice, the schools offer a portfolio to city

residents with open information about each options yearly performance.

The current autonomy zone is a reformation of earlier learning zones that were seen

as failed policies due to the lack of true autonomy by the successive architects.7 The

language of the Autonomy Zone should not go unnoticed. Elsewhere, the role of The

Zone in global infrastructure projects has been linked to a logic of excessive relaxation

and incentivization.8 In a similar way, the reforms in the school district to the network

model also represented a move towards greater openness and flow in the system as a means

for improvement, through incentivizing performance and relaxing regulatory intervention.

The earlier district configuration represented the last vestige of a disciplinary structure

to the city schools, where the individual governing structures of the local school boards

worked to improve the performance of distinct regions. Management of the schools is now

a private-public cooperative effort where the networks have a variety of public and private

interests operating as sub-networks to support the smaller schools.

The city schools not only posture themselves as autonomous individualized educational

sites, but low performing schools are shut down and taken over by a new administration

and staff operating in the same building. These new schools will offer a program more

tailored to the needs of the consumers having had the opportunity to purge themselves

of the former problematic humans involved. Since taking control of the public schools in

2002, Mayor Bloomberg shut down more than 117 schools.9 While closing schools is not a

new practice in the city, the rationalization for these closures are now based on a different

logic.

In the current school zones, principals are granted autonomy but this is only within

restrictions of measured performance and accountability; teachers are not free to teach

what they choose, decide what tests will be best reflective of student learning, or what

the proper way to evaluate their teachers are. Instead, an autonomy zone regulates by

7. Lewis, New York City Public Schools from Brownsville to Bloomberg: Community Control and Its

Legacy , 133-142. and Eric Nadelstern, The Evolution of School Support Networks in New York City, 2012

8. Keller Easterling, Extrastatecraft: The Power of Infrastructure Space (Verso, 2014)

9. Amy Padnani, An S.I. School May Close in a First Under Bloomberg, 2012
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imposing these elements as agreed upon performance targets for which the administrators

choose how to meet. Architect Nadelstern observed “the idea was that if we were to

move from a compliance-focused organization to a performance-based one, the relationship

between schools and central office would need to change dramatically.” 10

Posturing autonomy as freedom involves new ways of thinking about governing individ-

uals work “through the regulated choices of individual citizens, now construed as subjects

of choices and aspirations to self-actualization and self-fulfillment.”11 The failed schools of

centralized state control policy have been replaced by local, specialized schools. Hundreds

of individualized schools offer the freedom to choose as improvement. This positioning of

the individual is evident in both the model of district infrastructure and in psychological

neo-contructivism where “personal autonomy is the backbone of the process of construc-

tion.” 12

Such presumed freedom through individual autonomy, finds that in modern existence “a

multiplicity of authorities, movements and agencies comes into play, seeking to link up our

freedom, choices, forms of life and conduct with an often uncertain mix of political goals,

social aspirations and governmental ends.”13 The nature of the enactment of authority

has changed from a disciplinary science focused on closed models to one of openness,

autonomy, and control. Deleuze recognized the computer as an important element of this

shift, noting “what counts is not the barrier but the computer that tracks each person’s

position–licit or illicit–and effects a universal modulation.”14 At the district level, the

contemporary reformers exhibit a tendency to value autonomy and individual decision

making as unlocking a more equitable educative infrastructure.

10. Nadelstern, The Evolution of School Support Networks in New York City , 9.

11. Nikolas Rose, ‘Governing Advanced Liberal Democracies,’ The Anthropology of the State: A Reader,

1996, 144–162, 148.

12. Jere Confrey, ‘Chapter 8: What Constructivism Implies for Teaching,’ Journal for Research in Math-

ematics Education. Monograph 4 (1990): 107–210, 115.

13. Mitchell Dean, ‘Foucault, Government, and the Unfolding of Authority,’ in Foucault and Policial

Reason: Liberalism, Neo-liberalism and Rationalities of Government (UCL Press, 1996), 209–231, 211.

14. Gilles Deleuze, ‘Postscript on the Societies of Control,’ October 59 (1992): 3–7, 3.
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7.2 A Network Function

A network function abides by the new technological regime in adopting a representation of

natural forms as a discretized process iterated through time. Contemporary school reform

and research documents have incorporated the former images into a single vision under

distinct conceptual garb. For example, in the Encyclopedia of Mathematics Education, a

function is identified in terms of three aspects:

• “a mathematical entity in its own right”15

• “lenses through which other mathematical objects or theories can be viewed or con-

nected”16

• “modeling extra-mathematical situations”17

The first is associated with the traditional representations in terms of ordered pairs, graphs,

equations, and tables. The second aspect refers to something like the example of mapping

the natural numbers to some other sequence of numbers in correspondence as Cantor would

do. In the third aspect, the function concept becomes an object that approximates reality

such as a population model in time or a regression equation resulting from a data set.

7.2.1 Common Core Reforms

The largest contemporary national reform in school mathematics is the Common Core

State Standards. This web based document was developed as a cooperative effort between

states and supported by the federal government. From the implementation of the reform

process under neo-liberal market ideology to the design and use of the standards themselves,

network thinking dominates. Mathematical content is coded in terms of the hierarchy

of Domain-Cluster-Standard. While mathematical content is described at its finest

standard level description, there is no ordering and instead the user is meant to arrange the

15. Mogens Allan Niss, ‘Functions Learning and Teaching,’ in Encyclopedia of Mathematics Education,

ed. Stephen Lerman (Dordrecht: Springer Netherlands, 2014), 238–241, 238-239.

16. ibid., 239.

17. ibid., 239.
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material as they see fit. Further, the standards are not curricula, and users are encouraged

to use their choice of materials to accomplish student learning. There does exist an ordering

of content between grade levels however, where what happens in the previous year is a

necessary pre-requisite for understanding what comes next.

Continuing to frame universal expectations for students; school mathematicians and

governors have continued to put forward the function concept as the centerpiece of mathe-

matical content. In the CCSS, “functions describe situations where one quantity determines

another.”18 What is new within these reform definition of functions is the computerized

discourse and attention to recursive models that necessitate technologized computational

strategies. For example, introducing the domain of functions in high school the CCSS notes:

“A graphing utility or a computer algebra system can be used to experiment with prop-

erties of these functions and their graphs and to build computational models of functions,

including recursively defined functions.”19 and that “sometimes functions are defined by a

recursive process, which can be displayed effectively using a spreadsheet or other technol-

ogy.”20 Students are now also expected to familiarize themselves with the function concepts

recursive notation. For example, to demonstrate the recursive construction of the Fibonacci

numbers which are built by adding together the previous two terms of the sequence which

starts with 1,1,2,3,5,... In the CCSS’s recursive function notation this becomes:21

f(0) = f(1) = 1; f(n+ 1) = f(n) + f(n− 1) for n ≥ 1

As noted with the encyclopedia entry, the recursive form is connected to the stu-

dents reality as an appropriate way to model everyday situations. In the new standards

document, this comes in the coupling of the function concepts’ content standards with

eight Standards for Mathematical Practice. Specifically, the MP.4: Model with

mathematics and MP.5: Use appropriate tools strategically standards demon-

strate strong allegiance to the network model. MP.4 claims that “mathematically profi-

18. http://www.corestandards.org/Math/Content/HSF/introduction/

19. http://www.corestandards.org/Math/Content/HSF/introduction/

20. http://www.corestandards.org/Math/Content/HSF/introduction/

21. http://www.corestandards.org/Math/Content/HSF/IF/

http://www.corestandards.org/Math/Content/HSF/introduction/
http://www.corestandards.org/Math/Content/HSF/introduction/
http://www.corestandards.org/Math/Content/HSF/introduction/
http://www.corestandards.org/Math/Content/HSF/IF/
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cient students who can apply what they know are comfortable making assumptions and

approximations to simplify a complicated situation, realizing that these may need revi-

sion later...using tools as diagrams, two-way tables, graphs, flowcharts and formulas.”22

Flowcharts are meant to establish the ability to understand and deploy algorithmic think-

ing. The return of importance in algorithmic thinking has led to the emergence of a view

for the function concept that works both analytical and synthetic together. It is together

with the infusion of new tools that the student can make sense of these ideas.

For the network child, the appropriate tools include objects like “pencil and paper, con-

crete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system,

a statistical package, or dynamic geometry software.”23 Specific to the function concept,

MP.5 suggests that “mathematically proficient high school students analyze graphs of

functions and solutions generated using a graphing calculator...they know that technol-

ogy can help them to visualize the results of varying assumptions, explore consequences,

and compare predictions with data...use technological tools to explore and deepen their

understanding of concepts.”24

7.2.2 Network Texts

Network technology has also changed the nature of the textbook and classroom materials.

For New York State, five contracts were awarded to private companies to develop freely

available curricular materials aligned with the CCSS.25 Mathematics materials were in-

cluded in this, but the rather than being distributed in a material text are the works are

freely available online. The title of the high school curriculum is The Story of Functions.26

The majority of New York City school students continue to experience the function concept

22. http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf

23. http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf

24. http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf

25. See Jessica Bakeman, Teachers wait for next chapter of $28.3 million curriculum, November 2013,

26. https://www.engageny.org/resource/grades-9-12-mathematics-curriculum-map-and-course-overviews

http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf
http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf
http://www.corestandards.org/wp-content/uploads/Math_Standards1.pdf
https://www.engageny.org/resource/grades-9-12-mathematics-curriculum-map-and-course-overviews
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as presented through Algebra I content.27 Algebra I remains a graduation requirement for

students and performance on standardized exams has become an important element in de-

termining readiness for college level coursework.28In the new materials both recursive and

closed representations of functions are developed with updated tools and understandings

of alternative understandings of natural processes. Over the course of five modules, the

function concept is developed in a manner where the interplay of the recursive, discrete

sequence is related to, compared, contrasted, and many times equated with the continuous

models. The rise of the focus on recursion is something that earlier epochs did not utilize

in the same way.

The Algebra materials begin by introducing the three kinds of functions–linear, quadratic,

and exponential–that the students will spend their year working with. A modeling frame-

work is used to introduce these concepts before more traditional analytical work on expres-

sions to emphasize some familiar structural qualities of expressions themselves. It is in the

second module dealing with statistics that students begin using new tools to solve problems.

This module culminates with a conversation around linear models through regression aided

by computational technology. Next, the emphasis on discrete models continues when in

module 3, recursive presentations of linear and exponential functions are presented through

a compound interest context. The first section of this module–Linear and Exponential Se-

quences–is followed by one that connects these sequences to the larger function concept

framework–Functions and Their Graphs. 29

After a fourth module that addresses the quadratic function and its properties, the year

culminates in a synthesis of the first four modules by addressing students ability to model

with different representations of the three functions. Combining the content emphasis on

linear, quadratic, and exponential functions, this module presents graphical, tabular, and

verbal problems to the student that are to be modeled exactly or approximately by the

27. Algebra I continues to be the terminal material for students in both high schools and public universities

in New York City. See for example: Creating College Ready Communities: Preparing NYC’s Precarious

New Generation of College Students (Center for New York City Affairs, 2013)

28. Lewis, New York City Public Schools from Brownsville to Bloomberg: Community Control and Its

Legacy

29. See: https://www.engageny.org/resource/algebra-i-module-3/file/116311

https://www.engageny.org/resource/algebra-i-module-3/file/116311
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different functions.

“In Module 5, they(students) synthesize what they have learned during the year by

selecting the correct function type in a series of modeling problems without the benefit

of a module or lesson title that includes function type to guide them in their choices.

This supports the CCLS requirement that student’s use the modeling cycle, in the

beginning of which they must formulate a strategy.”30

Central to this work is being able to transform the traditional representations–tabular,

graphical, verbal–into simple mathematical statements that have consistent structural char-

acteristics. These are not the mathematical structures of the set theoretic foundations, but

rather structures of symbolic expressions.31 To perform modeling tasks, the NYSED cur-

riculum materials present a graphical, tabular, or verbal description of a situation to be

understood by students.

“For each, they formulate a function model, perform computations related to solving

the problem, interpret the problem and the model, and then validate through iterations

of revising their models as needed, and report their results.”32

This description mirrors the algorithmic heritage of the network regime, and is further

exemplified in the modeling processes visualization in a flowchart diagram. This model is

complete with different formatted cells representing entry and exit points(problem, report),

decisions(validate), and process(formulate,compute, interpret) boxes as one would find in

a computer programs flowchart.

Across the ninth grade algebra materials the interplay of the discrete and continuous

is emphasized, but not under the former set theoretic language that had remained in the

New York State mathematics standards until the CCSS adoption. The function concept

has come to value the algorithmic way of modeling nature and cognitive processes. The

30. https://www.engageny.org/resource/algebra-i-module-5/file/11951

31. See the CCSS mathematical standards on seeing structure in expressions: http://www.

corestandards.org/Math/Content/HSA/SSE/

32. https://www.engageny.org/resource/algebra-i-module-5/file/11951

https://www.engageny.org/resource/algebra-i-module-5/file/11951
http://www.corestandards.org/Math/Content/HSA/SSE/
http://www.corestandards.org/Math/Content/HSA/SSE/
https://www.engageny.org/resource/algebra-i-module-5/file/11951
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Figure 7.1: The Modeling Cycle

modeling cycle connects content with student behavior, as the mathematical practices are

both processes and proficiencies.33

7.2.3 Autopoietic Cognition

These new curricular reform documents and their corresponding materials connect with

a new understanding of the mathematical child’s psychology that emerges in the wake of

the early cybernetic vision. The network model for cognition views learning and cognition

through an alternative biology. Just as Thorndike understood human evolution and the

biological functionality of the nervous system as foundational to mathematical cognition,

these remain the bedrock of school mathematics psychology.

Cybernetics remains an important element in the construction of cognition through

the language of autopoiesis. The earlier notion of the feedback loop has been revised to

understand the system as embedded in the environment rather than connecting the system

to the environment.34 Maturana defined the autopoietic living machines as follows:

“An auotpoietic machine is a machine organized (defined as a unity) as a network of

processes of production(transformation and destruction) of components that produces

the components which: (i) through their interactions and transformations continuously

regenerate and realize the network of processes (relations) that produced them; and

(ii) constitute it (the machine) as a concrete unity in the space in which they (the

components) exist by specifying the topological domain of its realization as such a

network.” 35

33. As described in the CCSS. See: http://www.corestandards.org/Math/Practice/

34. Raf Vanderstraeten, ‘Observing Systems: a Cybernetic Perspective on System/Environment Rela-

tions.,’ Journal for the Theory of Social Behaviour 31, no. 3 (2001): 297

35. Humberto Maturana, Autopoiesis and Cognition: the Realization of the Living (D. Reidel Pub. Co.,

http://www.corestandards.org/Math/Practice/
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Maturana is often pointed to for his contributions to the field through Autopoiesis and

Cognition, where an updated understanding of machines was informed by insect vision to

mark out the second iteration of cybernetics.36

Other example of the logic of autopoietic life had been developed before Maturana

however. Mathematician John Conway had already described the game of life through

a simulated society as the result of a few simple rules acting on basic objects arranged

in an array of cells. These procedures would either die off, stabilize, or oscillate without

end. As Gardner notes, “the basic idea is to start with a simple configuration of counters

(organisms), one to a cell, then observe how it changes as you apply Conway’s “genetic

laws”.”37

(a) The fate of five triplets in “life”. (b) Five Iterations of Koch Snowflake

Figure 7.2: Simulating Nature

Koch’s snowflake is an example of a similar approach to generating natural forms. By

iterating simple rules one is able to generate complex forms that mimic nature on the

computer screen.

As Parikka has discussed, these technological shifts resulted in a biology where the indi-

vidual organism is positioned within a different relationship to the larger colony. A variety

1980), 78-79.

36. Hayles, How We Became Posthuman: Virtual Bodies in Cybernetics, Literature, and Informatics,

134-137.

37. Martin Gardner, ‘The Fantastic Combinations of John Conway’s New Solitaire Game “life”,’ Scientific

American, 1970, 120–123, 120.
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of other models of nature have assumed the new availability of computer simulations to

understand group behavior. Craig Reynolds boids are another example of such thinking. In

a 1986 paper title Flocks, Herds, and Schools: A Distributed Behavioral Model38, Reynolds

begins:

“A flock exhibits many contrasts. It is made up of discrete birds yet overall motion

seems fluid; it is simple in concept yet is so visually complex it seems randomly arrayed

and yet is magnificently synchronized. Perhaps most puzzling is the strong impression

of intentional, centralized control. Yet all evidence indicates that flock motion must

be merely the aggregate result of the actions of individual animals, each acting solely

on the basis of its own local perception of the world.”39

This relationship of the individual to the collective is wholly different than that of the early

cyberneticist. Specific to school mathematics and its psychology, Piagetian models were

closed feedback loops and did not value distributed cognition like we find in Reynolds’ mod-

els. Further work in numerous other contemporary approaches to modeling natural forms

with simulations that continue to adhere to emergent epistemological frames, including the

science of school mathematics.40

School mathematicians models for distributed cognition position the student through

a discourse consistent with that of Reynolds boids. To conduct research in school math-

ematics in the network age means to recognize the student as a simulated life form. The

editors of the Handbook of Research Design in Mathematics and Science Education–a prod-

uct of the National Science Foundation’s educational research program–explicitly map the

auotopoietic machine onto the discourse of mathematics education research.

“From analogies based on hardware–where whole systems are considered to be no more

than the sum of their parts, and where the interactions that are emphasized involve

38. Craig W. Reynolds, ‘Flocks, Herds and Schools: A Distributed Behavioral Model,’ SIGGRAPH Com-

puter Graphics 21, no. 4 (1987): 25–34.

39. ibid., 25.

40. See J. Parikka, Insect Media: An Archaeology of Animals and Technology, Posthumanities Series (Uni-

versity of Minnesota Press, 2010), Stephen Wolfram, A New Kind of Science (Wolfram Media, 2002), Manuel

DeLanda, Philosophy and Simulation: The Emergence of Synthetic Reason (Bloomsbury Academic, 2011)
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no more than simple one-way cause and effect relationships. To analogies based on

software–where silicon-based electronic circuits involve layers of recursive interactions

that often lead to emergent phenomena at higher levels that cannot be derived from

characteristics of phenomena at lower levels. To analogies based on wetware–where

neurochemical interactions may involve “logics” that are fuzzy, partly redundant, partly

inconsistent, and unstable. In fact, as an age of bio-technologies gradually supersedes

an age of electronic technologies, the systems that are priorities to investigate are no

longer inert; they are living entities characterized by complex, dynamic, continually

adapting and self-regulating systems.”41

These changes are noted in an updated Piagetian psychology through Von Glaserfeld,

as well as with a revival of Lev Vygotsky’s psychology. The logic of complex dynamical

systems appears within these models of mathematical cognition. Just like Reynold’s boids,

Koch’s snowflake, Conway’s Game of Life, and Wolfram’s cellular automata, the network

school has come to understand thinking in terms or wetware across the infrastructural,

mathematical, and psychological spaces. One such example is the radicalization of Piaget’s

cybernetic psychology.

Von Glasersfeld updated Piaget’s work to include the second phase of cybernetic science

also motivated by Maturana’s work on frog vision.42 Von Glassersfeld–like Maturana–saw

post 1960’s developments in second order cybernetics opening up newer understandings of

systems and the individual elements acting within.

“Cybernetics has a far more fundamental potential. Its concepts of self-regulation,

autonomy, and interactive adaptation provide, for the first time in the history of western

civilisation, a rigorous theoretical basis for the achievement of dynamic equilibrium

between human individuals, groups, and societies.”43

Just as Wiener was interested in the relationship between man, animal, and machine,

the updated vision for his cybernetic science integrated technological developments to put

41. Anthony E. Kelly and Richard A. Lesh, Handbook of Research Design in Mathematics and Science

Education. (Routledge, 2000), 12.

42. Vanderstraeten, ‘Observing Systems: a Cybernetic Perspective on System/Environment Relations.’

43. E. von Glasersfeld, Radical Constructivism (Taylor & Francis, 2013), 150.
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forward a new theory of machine. The developments noted by the editors of the Handbook

on Research Design are fundamental to second order cybernetic science. This vocabulary

and logic has been explicitly identified in the contemporary framing of the mathematical

learner that also has incorporated the social logic of simpler organic cultures like fish,

ants, and birds. Von Glasserfeld’s radical constructivism as well as Sfard’s Commognition

impart a biopolitical outline of the school child reliant on the discourse of autopoiesis.

For the second stage of constructivist psychology, Von Glasersfeld makes use of Matu-

rana’s work to describe how language works in the classroom and the role of the teacher.

“When a farmer has to drive a few heads of cattle along one of those small country roads

flanked by hedges that have no openings every now and then, the task is practically

impossible if he has no helper. He has to stay behind the animals to keep them going,

and when the first cow spots an opening in the hedge, it inevitably turns into the

field. The others follow, and the farmer then has to run into the field to drive them

back through the gap. This is difficult enough, but what makes the situation desperate

is that the cows, forced back on the road, always turn into the direction from which

they came. It is a no-win scenario and no farmer would undertake such a trip without

bringing along at least an obedient dog. This makes all the difference. Whenever

the farmer spots a gap in the hedge ahead, he sends the dog to block it–and the

problem does not arise. Note that the dog does not drive the cattle, it merely provides

an additional constraint for their movement. It is the farmer who has to keep them

moving. In this scenario, the dog has a function that is similar to an important use of

language in the classroom.”44

Here, the farmer is the teacher in charge of the dog. To control language means to “set

up constraints that orient them in a particular direction.”45 Connections to the network

regime involve the visions of both the classroom, its pedagogy, and the individual learner

as part of a system that operates according to network logic relinquishing a vision of

centralized control. The biological model of the swarm, school, and herd has replaced that

of the first generation cyberneticians’ closed feedback loop. For radical constructivism, it

44. Glasersfeld, Radical Constructivism, 183-184.

45. ibid., 184.
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is a different life form that motivates this behavior, not Thorndike’s chicken nor Shannon’s

mouse, but von Uexküll’s tick and Reynold’s boids.

Sfard, explicitly positions mathematics as an autopoietic system.

“the claim is made that mathematics is an autopoietic system–one that spurs its own

development and produces its own objects”46

In the network model, autopoiesis drives the view of nature to be inculcated in the math-

ematics student, serves as a model for students cognition, and also informs a vision of the

classroom environment and its pedagogy. One of the consequences for Sfard of deploying

the autopoietic vision is that mathematical objects must not be considered real things to

be found in the world.47 Instead mathematical concepts can be represented by processes

and diagrammed by decision trees.

Figure 7.3: A realization tree of the signifier “solution of the equation 7x+ 4 = 5x+ 8

“Definition: The (discursive) object signified by S (or simply object S) in a given

discourse on S is the realization tree of S within the discourse...To put it recursively,

46. A. Sfard, Thinking as Communicating: Human Development, the Growth of Discourses, and Mathe-

matizing (Cambridge University Press, 2010), xviii.

47. ibid., 129.
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the discursive object signified by S is the S itself together with all the objects signified

by its realizations.”48

The process represented by the realization tree is what counts now. These trees are per-

sonal constructs, and researchers should focus on the effective deployment of an individuals

own realization tree.

“Hence, one method to gauge the quality of one’s discourse about, say, function, would

be to assess the richness, the depth, and the cross-situational stability of the person’s

realization tree for the signifier “function”.49

For the classroom, mathematics pedagogy mimics the dynamism apparent in the psy-

chological view. The Mathematics Assessment Project offers several lessons that are de-

signed to address the CCSS reform vision of the function concept. In the lesson Repre-

senting Functions of Everyday Situations, the authors claim to address both the content

standards involving the interpretation, construction, and contrasting of linear, quadratic,

and exponential function models as well as addressing the structure of algebraic expres-

sions.(Standards F-IF, F-LE, A-SSE)50 Additionaly, the practice standards of modeling

and the use of tools are addressed.

Pedagogically, the authors propose a similar dynamism. Students are first asked to

respond to a brief task individually. These responses are communicated to the teacher.

Depending on the responses of the students, the classroom itself would value different con-

versations and questions in order to impart accurate understanding of the function concept.

Scripted responses for teachers recommend numerous questions contingent on student mis-

takes. This kind of a classroom exhibits the logic of autopoiesis and self organizing systems

in the way the delivery of materials take place and the vision for the student in the class-

room. Knowledge is produced through a network of interactions through discourse for

which certain goals exist, however the teacher is meant to lead students away from small

misconceptions in order to contribute to a larger classroom discourse that affords learning.

48. Sfard, Thinking as Communicating: Human Development, the Growth of Discourses, and Mathema-

tizing , 166.

49. ibid., 167.

50. http://map.mathshell.org/download.php?fileid=1740

http://map.mathshell.org/download.php?fileid=1740
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Student materials Representing Functions of Everyday Situations S-1
© 2015 MARS, Shell Center, University of Nottingham

Four Situations

1. Sketch a graph to model each of the following situations.
Think about the shape of the graph and whether it should be a continuous line or not.

A: Candle

Each hour a candle burns down the same
amount.

x = the number of hours that have elapsed.

y = the height of the candle in inches.

B: Letter

When sending a letter, you pay quite a lot for
letters weighing up to an ounce. You then
pay a smaller, fixed amount for each
additional ounce (or part of an ounce.)

x = the weight of the letter in ounces.

y = the cost of sending the letter in cents.

C: Bus

A group of people rent a bus for a day. The
total cost of the bus is shared equally among
the passengers.

x = the number of passengers.

y = the cost for each passenger in dollars.

D: Car value

My car loses about half of its value each
year.

x = the time that has elapsed in years.

y = the value of my car in dollars.

x

y

x

y

x

y

x

y

Student materials Representing Functions of Everyday Situations S-2
© 2015 MARS, Shell Center, University of Nottingham

2. The formulas below are models for the situations.

Which situation goes with each formula?

Write the correct letter (A, B, C or D) under each one.

y = 30 + 20x

Situation ………… Situation ………… Situation ………… Situation …………

3. Answer the following questions using the formulas.
Under each answer show your reasoning.

a. How long will the candle last before it burns completely away?

b. How much will it cost to send a letter weighing 8 ounces?

c. If 20 people go on the coach trip, how much will each have to pay?

d. How much will my car be worth after 2 years?

y =
300

x
y =12 - 0.5x y = 2000 ´ (0.5)x

Figure 7.4: Probing Initial Conditions

In another lesson targeting mathematical modeling and the function concept titled

Modeling Population Growth: Having Kittens51, students understand that populations of

kittens develop in a similar less predictable way. Using the given information, students

approximate solutions and discuss shortcomings of their approaches. The lesson again

views the classroom from a dynamic perspective. Depending on students initial responses

and work, different examples are recommended.

This exercise models a function concept and classroom that lack determinism. Both

the vision of knowledge production in the classroom, and the understanding of nature

through an autopoietic frame are examples of such shifts. Together, the content shift and

pedagogical differences in contemporary reforms utilize a different positioning of the subject

that earlier models. In the network regime, this autonomy and choice through flexible

decision making by the individual subject is what will lead to stabilization and equality.

Thus, traces of network thinking can be found across the contemporary psychological,

material, and district level reform literature. Such thinking values decentralized models and

51. http://map.mathshell.org/download.php?fileid=1708

http://map.mathshell.org/download.php?fileid=1708
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Student materials Modeling Population Growth: Having Kittens  S-1 
 © 2015 MARS, Shell Center, University of Nottingham 

Having Kittens 

Here is a poster published by an organization that looks after stray cats. 

 

 

Figure out whether this number of descendants is realistic. 

Here are some facts that you will need: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cats can’t add but 

they do multiply! 

 
In just 18 months, this female cat can 
have 2000 descendants. 

Figure 7.5: Kitten Life

personal choice and autonomy as levers to increasing justice. Further, the network regime

emphasizes process and self organizing systems as models informed by both technology and

nature.

7.3 Conclusion

Previous research in the history of school mathematics has lacked sound methodological

rooting.52 Recent work in critical scholarship in mathematics education has called for

approaches that focus on the way school knowledge is produced rather than solely focusing

on improving this knowledge.53 By developing a historical methodology, this study sought

to contribute to both these shortcomings. Theoretically, critical scholars have called on

work from post-structural and post-modern theorists in an effort to better understand

52. Schubring, ‘On Historiography of Teaching and Learning Mathematics’

53. Pais and Valero, ‘Researching research: mathematics education in the Political’
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the politics of school mathematics.54 By utilizing elements of this literature, a historical

methodology informed an exploration of the nature of knowledge production in school

mathematics.

The choice of methodological tools was driven by an attempt to clarify what school

mathematics knowledge is. Accordingly, the distinction between knowledge as body vs.

image informed a reflexive approach. Rather than focusing on problems traditionally asked

by researchers–such as how should the function concept be taught–this study investigated

the answers that school scientists have offered around learning a concept that has main-

tained its place at the center of the curriculum. These answers demonstrate a continued

shared commitment between visions of nature and technology.

For the early pedagogue, the clockwork mechanism simultaneously provided a means

to organize bodies in factories and schools while speaking to a parallel understanding of

natural processes. Thorndike’s eugenic psychology mirrored a well determined world in

which an elite few were pre-ordained with the thinking tools to rule society. In such a

world, what was natural was set in motion some time before by the great creator, much

like the assumptions of the Cartesian universe and mathematics. The linkage device and the

clockwork mechanism work together to produce a certain kind of knowledge and subject.

This happened at a time when American society began to offer state sponsored schooling

as a tool for achieving equality on a scale never before pursued. By pointing out the

shared logic of the factory and the school and by connecting this with the construction

of curricular knowledge, this study offers a contribution to understanding the nature of

mathematics curricular knowledge as subjective. The later examples of thermodynamic

engines and Wundtian psychology, set theoretic mathematics and a cybernetic psychology,

and lastly, network technologies and self organizing biological forms provide support for

the endurance of these connections. This study was the first of its kind to explore these

relationships in school mathematics.

Despite the methodological and historical contributions, this study did not focus on

issues of race or gender–two ideas central to much critical scholarship in school mathemat-

ics. This is one of the potential limitations of this study. Critiques of Foucault’s work

54. Gutiérrez, ‘The Sociopolitical Turn in Mathematics Education’
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have highlighted the limited perspective with respect to these areas as well. Spivak, for

example, notes the problem in Deleuze and Foucault’s work around the way the subject

is constructed. Here, the problem is of representation and its two forms; representation

as in politics in the form of ’speaking for’ and representation as re-presentation like in art

and philosophy. These two forms of representation are “related but irreducibly discon-

tinuous.”55 Because of this oversight, the subject as portrayed in Foucault’s work denies

the subaltern voice. In order to address these problems, Spivak recommends moving to-

wards a valuation of the two forms of representation instead of viewing the subject solely

as a construction of a helpless other.56 Despite this, Foucault’s work does offer positive

contributions to understanding the institutionalization of knowledge.57

Elsewhere, Ann Stoler lodged a similar rethinking of Foucault’s work from the per-

spective of colonial discourse on sex and race. In examining Foucault’s work, Stoler also

pointed to problems with an approach in which the other occupied a typography consistent

with a European episteme. Using the example of the Dutch colonies, Stoler describes the

process of identity-making as ’unstable and in flux’. This is contrasted against Foucault’s

vision through the History of Sexuality where a knowledge of sex was contingent on a well

formed set of middle class values ready to be defended.58 Hence, to examine the discourse

on race and sexuality would involve considering a subject not made strictly as a reflection

against a well formed European middle-class vision of self.

Accordingly, it is important to note that the vision of the function concept portrayed

here is limited to the institutional space and its conceptualization of a subject. Despite

this limitation, this study offers further work in race and gender a re-conceptualized view

of the subjective nature of mathematical knowledge that can be linked with problems of

racial and sexual identity. From here, the production of school mathematics knowledge

55. Gayatri Chakravorty Spivak, ‘Can the Subaltern Speak?,’ in Can the Subaltern Speak?: Reflections on

the History of an Idea (Columbia University Press, 2010), 21–78, 25.

56. ibid., 29.

57. ibid., 46.

58. A.L. Stoler, Race and the Education of Desire: Foucault’s History of Sexuality and the Colonial Order

of Things (Duke University Press, 1995), 113.
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could be understood through its interrelatedness to projects of empire and colonization.

Thus by beginning to explore connections between governance and the curriculum, further

work can use the institutional history to better understand the role of racial projects and

school mathematics knowledge production.
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BIBLIOGRAPHY 222

Crary, Jonathan. Techniques of the Observer: On Vision and Modernity in the Nineteenth

Century. MIT Press, 1992.

Creating College Ready Communities: Preparing NYC’s Precarious New Generation of

College Students. Center for New York City Affairs, 2013.

Crespy, H. V. A Study of Curriculum Development in Mathematics by National Groups,

1950-1966: Selected Programs, 1969.

Cronon, E. David. Black Moses: The Story of Marcus Garvey and the Universal Negro

Improvement Association. University of Wisconsin Press, 1960.

Cubberley, Ellwood Patterson. Public School Administration: a Statement of the Funda-

mental Principles Underlying the Organization and Administration of Public Educa-

tion. Houghton Mifflin, 1922.

Daston, Lorraine, and Peter Galison. Objectivity. Zone Books, 2007.

Davis, H.T. A course in general mathematics. The Principia Press, 1935.

Dean, Mitchell. ‘Foucault, Government, and the Unfolding of Authority.’ In Foucault and

Policial Reason: Liberalism, Neo-liberalism and Rationalities of Government, 209–231.

UCL Press, 1996.

Decker, F. F. ‘The New York State Syllabus in Intermediate Algebra.’ The Mathematics

Teacher 11, no. 1 (1918):

DeLanda, Manuel. Philosophy and Simulation: The Emergence of Synthetic Reason. Blooms-

bury Academic, 2011.

. War in the Age of Intelligent Machines. Zone Books, 1991.

Deleuze, G., and F. Guattari. Anti-Oedipus. Continuum impacts. Bloomsbury Academic,

2004.

Deleuze, Gilles. ‘Postscript on the Societies of Control.’ October 59 (1992): 3–7.

Deleuze, Gilles, and Felix Guattari. A Thousand Plateaus: Capitalism and Schizophrenia.

Athlone Press, 1988.



BIBLIOGRAPHY 223

Descartes, R. ‘Rules for the Direction of our Native Intelligence.’ In Descartes: Selected

Philosophical Writings, 1–19. Cambridge University Press, 1988.

Descartes, Rene. ‘Discourse on Method.’ In Descartes: Selected Philosophical Writings, 20–

56. Cambridge University Press, 1988.

. Oeuvres de Descartes: Correspondence II. Edited by Adam Charles and Paul Tan-

nery. L.Cerf, Paris, 1898.

. ‘Rene Descartes: Meditations on First Philosophy,’ edited by John Cottingham.

Cambridge University Press, 2013.

. The Geometry of Rene Descartes. Translated with commentary by David Eugene

Smith. The Open Court Publishing Company, 1925.

Dijksterhuis, E.J. The Mechanization of the World Picture. Oxford University Press, 1969.

Doane, M.A. The Emergence of Cinematic Time: Modernity, Contingency, the Archive.

Harvard University Press, 2002.

Donoghue, Eileen F. ‘Algebra and Geometry Textbooks in Twentieth-century America.’

In A History of School Mathematics, edited by George Stanic and Jeremy Kilpatrick,

1:329–398. NCTM, 2003.

Donoghue, Eileen F. ‘The Origins of a Professional Mathematics Education Program at

Teachers College.’ PhD diss., Teachers College, 1987.

Du Bois, W.E.B. ‘Editorial.’ Crisis, July 1918, 111.

. ‘Galileo Galilei,’ edited by Herbert Aptheke, 33–48. Monthly Review Press, 2001.

. The Education of Black People: Ten Critiques, 1906 - 1960. Monthly Review Press,

2001.

. ‘The Talented Tenth.’ In Writings, edited by N.I. Huggins, 842–861. Literary Clas-

sics of the United States, 1986.

. Writings. Literary Classics of the United States, 1986.



BIBLIOGRAPHY 224

Duhem, P. Medieval Cosmology: Theories of Infinity, Place, Time, Void, and the Plurality

of Worlds. University of Chicago Press, 1987.

Easterling, Keller. Extrastatecraft: The Power of Infrastructure Space. Verso, 2014.

Education of New York City, Board of. Annual Report of the Superintendant of Schools

1936: All the Children. Superintendant of Schools, 1936.

Edwards, Paul N. The Closed World: Computers and the Politics of Discourse in Cold War

America. MIT Press, 1997.

English, Harry. ‘The Effect of Post-armistice Conditions on Mathematical Courses and

Methods.’ The Mathematics Teacher 12, no. 4 (1920):

Ettinger, William. Annual Report of the Superintendant of Schools, 1919.

Farland, Maria. ‘W.E.B. Du Bois, Anthropometric Science, and the Limits of Racial Uplift.’

American Quarterly 58, no. 4 (2006): 1017–1045.

Fehr, Howard F. Secondary Mathematics: A Functional Approach for Teachers. Heath,

1951.

Ferreiros, Jose. Labyrinth of Thought: A History of Set Theory and Its Role in Modern

Mathematics. Birkhäuser Basel, 2001.
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Basel, 2007.

Lane, S.M. Mathematics, form and function. Springer-Verlag, 1986.

Laplace, Pierre Simon. Pierre-Simon Laplace Philosophical Essay on Probabilities: Trans-

lated from the fifth French edition of 1825 With Notes by the Translator. Springer New

York, 1998.

Lappan, G, and JJ Wanko. ‘The Changing roles and priorities of the federal government

in mathematics education in the United States.’ In A History of School Mathematics,

edited by GMA Stanic and J.Kilpatrick, 2:897–930. NCTM, 2003.

Lennes, N. J. ‘Modern Tendencies in the Teaching of Algebra.’ The Mathematics Teacher

1, no. 3 (1909):



BIBLIOGRAPHY 231

Lennes, N.J. ‘The Function Concept in Elementary Algebra.’ In The National Council of

Teachers of Mathematics, The Seventh Yearbook, 52–73. Teachers College, 1932.

Lerman, Stephen. ‘The Social Turn in Mathematics Education.’ In Multiple Perspectives

on Mathematics Teaching and Learning, edited by Jo Boaler. Ablex Pub., 2000.

Lewis, H. New York City Public Schools from Brownsville to Bloomberg: Community Con-

trol and Its Legacy. Teachers College Press, Teachers College, Columbia University,

2013.

Longley, W. R. ‘The Function Concept in Algebra.’ The Mathematics Teacher 26, no. 1

(1933):

Lukasik, S. ‘Why the Arpanet Was Built.’ IEEE Annals of the History of Computing 33,

no. 3 (March 2011): 4–21.

MacLane, Saunders. ‘The Impact of Modern Mathematics.’ NASSP Bulletin/National As-

sociation of Secondary School Principals Bulletin 38, no. 203 (May 1954): 66–70.

Managing by the Numbers: Empowerment and Accountability in New York City’s Schools.

Center for New York City Affairs, 2010.

Mancosu, Paolo, and Andrew Arana. ‘Descartes and the cylindrical helix.’ Historia Math-

ematica 37, no. 3 (2010): 403–427.

Marquis, J.P. From a Geometrical Point of View: A Study of the History and Philosophy

of Category Theory. Springer Netherlands, 2009.

Marston Morse, William L. Hart. ‘Mathematics in the Defense Program.’ The Mathematics

Teacher 34, no. 5 (1941): 195–202.

Mathematical Requirements, National Committee on. The Reorganization of Mathemat-

ics in Secondary Education a Summary of the Report by the National Committee on

Mathematical Requirements. Washington, D.C., 1922.

Maturana, Humberto. Autopoiesis and Cognition: the Realization of the Living. D. Reidel

Pub. Co., 1980.



BIBLIOGRAPHY 232

Maxwell, William H. Annual Report of the Superintendent of New York City Schools, 1900.

May, Kenneth O. ‘Finding out about ”modern mathematics”.’ The Mathematics Teacher

51, no. 2 (1958): 93–95.

Meli, Domenico Bertolini. Thinking with Objects: The Transformation of Mechanics in the

Seventeenth Century. Johns Hopkins University Press, 2006.

Mirowski, P. More Heat Than Light: Economics as Social Physics, Physics as Nature’s

Economics. Cambridge University Press, 1989.

Mirowski, Philip. ‘Cyborg Agonistes: Economics Meets Operations Research in Mid-Century.’

Social Studies of Science 29, no. 5 (1999): 685–718.

Monna, A. F. ‘The Concept of Function in the 19th and 20th Centuries, in Particular with

Regard to the Discussions between Baire, Borel and Lebesgue.’ Archive for History of

Exact Sciences 9, no. 1 (1972):

Moore, Eliakim Hastings. ‘On the Foundations of Mathematics.’ Bull. Amer. Math. Soc.

9, no. 8 (May 1903): 402–424.

. ‘The Cross-Section Paper as a Mathematical Instrument.’ The School Review 14

(1906).

Interview: Bill Gates talks about yesterday’s announcement that his foundation would do-

nate $51 million to New York schools, September 2003.

Mumford, L. The Myth of the Machine: Technics and Human Development. Harcourt Brace

Jovanovich, 1967.

. The Pentagon of Power. v. 2. Harcourt Brace Jovanovich, 1974.

Myers, George William. First-year mathematics for secondary schools. University of Chicago

Press, 1907.

Nadelstern, Eric. The Evolution of School Support Networks in New York City, 2012.

Interesting Facts and Figures in the Running of the Most Elaborate and Extensive Educa-

tional System in the World, September 1907.



BIBLIOGRAPHY 233

LaGuardia School Program, October 1933.

The Real Manhattan Island, December 1904.

New York Times, Special to the. Klein Asks Congress to End Segregation In Schools, Other

Places in National Capital, March 1949.

Niss, Mogens Allan. ‘Functions Learning and Teaching.’ In Encyclopedia of Mathemat-

ics Education, edited by Stephen Lerman, 238–241. Dordrecht: Springer Netherlands,

2014.

Noddings, Nel. ‘Biographical Sketch: William Brownell and the Search for Meaning.’ Jour-

nal for Research in Mathematics Education 25, no. 5 (1994): 524–525.

Oresme, Nicole. De latitudinibus formarum. Add : Blasius Pellecanus, Quaestiones super

tractatus de latitudinibus formarum. Cerdonis, Matthaeus, 1482.

Otis, Laura. Networking: Communicating with Bodies and Machines in the Nineteenth

Century. University of Michigan Press, 2001.

Otte, M., and M. Panza. Analysis and Synthesis in Mathematics: History and Philosophy.

1997.

Overn, Orlando E. A. ‘Changes in Curriculum in Elementary Algebra since 1900 as Re-

flected in the Requirements and Examinations of the College Entrance Examination

Board.’ The Journal of Experimental Education 5, no. 4 (1937): 373–468.

Padnani, Amy. An S.I. School May Close in a First Under Bloomberg, 2012.

Pais, Alexandre, and Paola Valero. ‘Researching research: mathematics education in the

Political.’ Educational Studies in Mathematics 80, nos. 1-2 (2012): 9–24.

Parikka, J. Insect Media: An Archaeology of Animals and Technology. Posthumanities Se-

ries. University of Minnesota Press, 2010.

Phillips, Christopher J. The Subject and the State: The Origins of the New Math. University

of Chicago Press, 2014.



BIBLIOGRAPHY 234

Piaget, J. Genetic Epistemology. Woodbridge Lectures Delivered At Columbia University

in October of 1968, No. 8. Columbia University Press, 1970.

Piaget, Jean. ‘Autobiography.’ In A History of Psychology in Autobiography, edited by

Edward Boring, 237–256. Clark University Press, 1952.

. Behavior and evolution. Pantheon Books, 1978.

. Epistemology and Psychology of Functions. Reidel, 1968.

. Science of Education and the Psychology of the Child. Penguin Books, 1971.

. Structuralism. Basic Books, 1970.

Plan of Organization of the College Entrance Examination Board for the Middle States and

Maryland, 1900.

Pollak, Henry O. ‘The Use and Importance of Definition in Mathematics.’ In Tentative Out-

lines of a Mathematics Curriculum for Grades 7,8, and 9. SMSG Working Paper, by

School Mathematics Study Group, 485–486. U.S. Department of Health, Education, /

Welfare, 1966.

Prigogine, I., and I. Stengers. Order Out of Chaos: Man’s New Dialogue with Nature.

Bantam Books, 1984.

Ransom, William R. ‘The Apple Theory.’ The Mathematics Teacher 43, no. 4 (1950): 172–

173.

Ravetz, Jerome. ‘Vibrating Strings and Arbitrary Functions.’ In The Logic of Personal

Knowledge: Essays Presented to Michael Polanyi on His Seventieth Birthday, 11th

March 1961, edited by M. Polanyi. Free Press, 1961.

Ravetz, J.R. ‘Vibrating Strings and Arbritrary Functions.’ In The Logic of Personal Knowl-

edge: Essays Presented to M. Polanyi on his Seventieth Birthday, 11th March, 1961,

71–88. Taylor & Francis, 2015.

Ravitch, D. The Great School Wars. Basic Books, 1974.



BIBLIOGRAPHY 235

Reeve, W. D. ‘Report of the Commission on Examinations in Mathematics to the College

Entrance Examination Board.’ The Mathematics Teacher 28, no. 3 (1935): 137–137.

Reeve, W.D. The Place of Mathematics in Secondary Education. National Council of Teach-

ers of Mathematics, 1940.

Reynolds, Craig W. ‘Flocks, Herds and Schools: A Distributed Behavioral Model.’ SIG-

GRAPH Computer Graphics 21, no. 4 (1987): 25–34.

Rich, Barnett. Variation, its Extension and Application to Problem-Solving. 1951.

Riis, J. The Battle With The Slum. 1902.

Rodgers, Joe Tom. ‘The Philosophy oF Mathematics Education Reflected In the Life and

works of David Eugene Smith.’ PhD diss., Vanderbilt, 1976.

Rose, Nikolas. ‘Governing Advanced Liberal Democracies.’ The Anthropology of the State:

A Reader, 1996, 144–162.

Rowe, David. ‘The Early Geometrical Work of Sophus Lie and Felix Klein.’ In Ideas and

Their Reception: Proceedings of the Symposium on the History of Modern Mathemat-

ics, Vassar College, Poughkeepsie, New York, June 20-24, 1989, edited by D.E. Rowe

and J. McCleary, 209–274. Elsevier Science, 2014.

Rudolph, John L. ‘From World War to Woods Hold: The Use of Wartime Research Models

for Curriculum Reform.’ Teachers College Record 104, no. 2 (2002): 212–241.

Rugg, Harold Ordway, and John Roscoe Clark. Scientific method in the reconstruction of

ninth-grade mathematics; a complete report of the investigation of the Illinois com-

mittee on standardization of ninth-grade mathematics, 1913-1918. Chicago, Ill.: The

University of Chicago press., 1918.

Rugg, Harold Ordway, John Roscoe Clark, and John R. Clark. Fundamentals of high

school mathematics: a textbook designed to follow arithmetic. Yonkers-on-Hudson, N.

Y.: World Book Co., 1919.



BIBLIOGRAPHY 236

Samuel Eilenberg, Saunders MacLane. ‘General Theory of Natural Equivalences.’ Trans-

actions of the American Mathematical Society 58, no. 2 (1945): 231–294.

Schaaf, William L. ‘Mathematics and World History.’ The Mathematics Teacher 23, no. 8

(1930): 496–503.

Schneps, L. Alexandre Grothendieck: A Mathematical Portrait. International Pressof Boston

Incorporated, 2014.

Schorling, Raleigh. ‘Report of the Committee of Individual Differences.’ Mathematics Teacher

25, no. 7 (1932): 420–426.

Schubring, Gert. ‘On Historiography of Teaching and Learning Mathematics’ [in English].

In Handbook on the History of Mathematics Education, edited by Alexander Karp and

Gert Schubring, 3–8. Springer New York, 2014.

. ‘Researching into the History of Teaching and Learning Mathematics: the State of

the Art.’ Paedagogica Historica 42, nos. 4/5 (2006): 665–677.

Scientific Personnel, Division of, and National Science Foundation Education. ‘The Role

of the National Science Foundation in Course Content Improvement in Secondary

Schools.’ The School Review 70, no. 1 (1962): 1–15.

Scriba, Christoph J. ‘The inverse method of tangents: A dialogue between Leibniz and

Newton (1675–1677).’ Archive for History of Exact Sciences 2, no. 2, 113–137.

. ‘Zur Lösung des 2. Debeauneschen Problems durch Descartes.’ Archive for History

of Exact Sciences 1, no. 4 (1961): 406–419.

Sekula, Allan. ‘The Body and the Archive.’ October 39 (1986): 3–64.

Serres, Michel. Hermes: Literature, Science, Philosophy. Johns Hopkins University Press,

1982.

Sfard, A. Thinking as Communicating: Human Development, the Growth of Discourses,

and Mathematizing. Cambridge University Press, 2010.



BIBLIOGRAPHY 237

Skinner, B. F. ‘Teaching Machines.’ Science 128, no. 3330 (1958): 969–977.

Slack, Sara. Highlights Of School Year In New York City, July 1958.

Smith, Arthur Whipple. ‘What Results are we Getting from Graphic Algebra?’ The Math-

ematics Teacher 4, no. 1 (1911):

Smith, David Eugene. The Teaching of Elementary Mathematics. Macmillan, 1900.

Smith, David Eugene, and William David Reeve. Essentials of Algebra. Ginn / Company,

1924.

Spivak, Gayatri Chakravorty. ‘Can the Subaltern Speak?’ In Can the Subaltern Speak?:

Reflections on the History of an Idea, 21–78. Columbia University Press, 2010.

Spring, J.H. Education and the Rise of the Corporate State. Beacon Press, 1972.

Sriraman, B. Crossroads in the History of Mathematics and Mathematics Education. Mon-

tana Mathematics Enthusiast ; Monograph 12. Information Age Pub., 2012.

Stanic, George M. A. ‘The Growing Crisis in Mathematics Education in the Early Twen-

tieth Century.’ Journal for Research in Mathematics Education 17, no. 3 (1986.):

. ‘Why Teach Mathematics? A Historical Study of the Justification Question.’ PhD

diss., University of Georgia, 1983.

State of New York, University of the. 116th Regents Examination in Arithmetic, 1894.

. 118th Regents Examination in Advanced Arithmetic, 1894.

. 122nd Regents Examination in Advanced Algebra, 1894.

. 122nd Regents Examination in Algebra, 1894.

. Advanced Algebra Examination, 1934.

. Commericial Arithmetic Exam, June 1934.

. Eleventh Year Mathematics Examination, 1959.

. Experimental Exam in Grade 8 Mathematics, 1964.



BIBLIOGRAPHY 238

State of New York, University of the. Intermediate Algebra Examination, June 1934.

. Regents Examination in Elementary Algebra, 1924.

. Regents Examination in Eleventh Grade Mathematics, 1968.

. Regents Examination in Ninth Grade Mathematics, 1964.

. Regents Examination in Ninth Year Mathematics, 1968.

. Syllabus in Mathematics, 1908.

. Twelfth Year Mathematics Examination, 1958.

Stedall, J. Mathematics Emerging: A Sourcebook 1540 - 1900. OUP Oxford, 2008.

Stinson, David W. ‘Mathematics as gate-keeper: Three theoretical perspectives that aim

toward empowering all children with a key to the gate.’ The Mathematics Educator

14, no. 1 (2004.).

Stokes, C. N., and Joseph B. Orleans. ‘A Tentative Program for the Sub-Committee on Ad-

ministrative Phases of the Individual Differences Problem.’ The Mathematics Teacher

26, no. 1 (1933): 57–59.

Stoler, A.L. Race and the Education of Desire: Foucault’s History of Sexuality and the

Colonial Order of Things. Duke University Press, 1995.

Stone, J.C., and J.F. Millis. Elementary Algebra: First Course. B.H. Sanborn & co., 1915.

Swenson, J.A. Integrated Mathematics with Special Application to Elementary Algebra.

Edwards Brothers Incorporated, 1935.

Swenson, John A. ‘Calculus in the High School.’ Junior-Senior High School Clearing House

5, no. 6 (1931): 347–349.

Tannery, Paul. ‘Pour l’histoire du problfffdfffdme inverse des tangentes.’ In Verhandlun-

gen der III Internationalen Mathematiker-Kongresses, edited by A. Krazer, 502–514.

Drück und Verlag, 1905.



BIBLIOGRAPHY 239

Teachers of Mathematics, National Council of. The Place of Mathematics in Secondary

Education: A Preliminary Report. 1938.

. The Revolution in School Mathematics: A Challenge for Administrators and Teach-

ers: A Report. 1961.

Terranova, Tiziana. Network Culture: Politics for the Information Age. Pluto Press, 2004.

‘Essential Mathematics for Minimum Army Needs.’ The Mathematics Teacher 36, no. 6

(1943): 243–282.

‘The First Report of the Commission on Post-War Plans.’ The Mathematics Teacher 37,

no. 5 (1944): 226–232.

‘The Second Report of The Commission on Post-War Plans.’ The Mathematics Teacher

38, no. 5 (1945): 195–221.

Thompson, E. P. ‘Time, Work–Discipline, and Industrial Capitalism.’ Past & Present 38,

no. 1 (1967): 56–97.

Thorndike, Edward L. Animal Intelligence; Experimental Studies. New York: The Macmil-

lan company, 1911.

. ‘Autobiography.’ In A History of Psychology in Autobiography, edited by C.A.

Murchison, 263–270. A History of Psychology in Autobiography v. 3. Russell & Russell,

1961.

. ‘Eugenics: With Special Reference to Intellect and Character.’ In Twelve University

Lectures on Eugenics, 319–342. Mead / Company, 1914.

. The Elements of Psychology. A.G. Seiler, 1913.

. The Human Nature Club: An Introduction to the Study of Mental Life. Chautauqua

Press, 1900.

. The Psychology of Algebra. New York: The Macmillan Company, 1926.

. The Psychology of Arithmetic. New York: The Macmillan company, 1922.



BIBLIOGRAPHY 240

Thorndike, E.L. Individuality. Houghton, Mifflin, 1911.

Times, The New York. Javits and Levitt Speak in Harlem, October 1954.

Truesdell, C., and L. Euler. The Rational Mechanics of Flexible Or Elastic Bodies, 1638-

1788: Introduction to Leonhardi Euleri Opera Omnia Vol X Et XI Seriei Secundae.

Leonhardi Euleri Opera omnia ; Ser. 2, vol. 11, pt. 2. Orell Füssli, 1960.

Tyack, D.B. The One Best System: A History of American Urban Education. Harvard

University Press, 1974.

United States. Committee on College Entrance Requirements, National Education Associ-

ation of the. Report of Committee on College Entrance Requirements July, 1899. The

Association, 1899.

Vanderstraeten, Raf. ‘Observing Systems: a Cybernetic Perspective on System/Environment

Relations.’ Journal for the Theory of Social Behaviour 31, no. 3 (2001): 297.

Vidal, Fernando. Piaget Before Piaget. Harvard University Press, 1994.

Vithal, Renuka, and Ole Skovsmose. ‘The End of Innocence: A Critique of ’Ethnomathe-

matics’.’ Educational Studies in Mathematics 34, no. 2 (1997): 131–157.

Warwick, Andrew. Masters of Theory: Cambridge and the Rise of Mathematical Physics.

University of Chicago Press, 2003.

Washburne, Carleton. ‘Mental Age and the Arithmetic Curriculum: A Summary of the

Committee of Seven Grade Placement Investigations to Date.’ The Journal of Educa-

tional Research 23, no. 3 (1931): 210–231.

. ‘When Should We Teach Arithmetic?: A Committee of Seven Investigation.’ The

Elementary School Journal 28, no. 9 (1928): 659–665.

Watson, Robert Stephen. ‘Stability and Change in New York State Regents Mathematics

Examinations, 1866-2009: A Socio-Historical Analysis.’ PhD diss., City University of

New York, 2010.

Wentworth, G. A. New School Algebra. Ginn & co., 1903.



BIBLIOGRAPHY 241

Whiteside, Derek Thomas. ‘Patterns of Mathematical Thought in the Later Seventeenth

Century.’ Archive for History of Exact Sciences 1, no. 3 (1961):

Wiener, Norbert. Cybernetics Or Control and Communication in the Animal and the Ma-

chine. M.I.T. Press, 1961.

Wintz, C.D. African American Political Thought, 1890-1930: Washington, Du Bois, Gar-

vey, and Randolph. M.E. Sharpe, 1996.

Wolfram, Stephen. A New Kind of Science. Wolfram Media, 2002.

Young, Gail S. ‘On “On the Setting and Function of Sets and Functions”.’ In Tentative Out-

lines of a Mathematics Curriculum for Grades 7,8, and 9. SMSG Working Paper, by

School Mathematics Study Group, 494–498. U.S. Department of Health, Education, /

Welfare, 1966.

. ‘Univited Comments on the Definition of Function.’ In Tentative Outlines of a

Mathematics Curriculum for Grades 7,8, and 9. SMSG Working Paper, by School

Mathematics Study Group, 487–489. U.S. Department of Health, Education, / Welfare,

1966.

Young, J.W.A. ‘National Committee on Mathematical Requirements.’ The Journal of Ed-

ucation 94, no. 14 (2350) (1921):

. The Teaching of Mathematics in the Elementary and the Secondary School. Long-

mans, Green, / Company, 1906.

Young, J.W.A., and Lambert Jackson. A First Course in Algebra. D. Appleton / Co., 1910.

Youschkevitch, A. P. ‘The Concept of Function up to the Middle of the 19th Century.’

Archive for History of Exact Sciences 16, no. 1 (1976): 37–85.

Zalamea, F. Alexander Grothendieck and a Contemporary Theory of Transgression. Lecture

series at the The Media Studies Graduate Program Pratt University, October 2015.

2015. https://zalameaseminarnyc.wordpress.com/.

. Synthetic Philosophy of Contemporary Mathematics. Falmouth, U.K., 2012.

https://zalameaseminarnyc.wordpress.com/


BIBLIOGRAPHY 242

Zinn, H. A People’s History of the United States. New Press, 2003.


	List of Figures
	List of Tables
	Introduction
	Need for the Study
	Purpose of the Study
	Procedures of the Study
	Methodological Needs
	Socio-Political Problems
	Mathematical Background
	Mathematics Education and the Function Concept

	Resources for the Study

	Historical Background
	Manhattan Architectures
	Schooling Background

	Scientific Technological Images
	Clockwork Imagery
	Thermodynamics
	Cybernetic Science


	Mathematical Background
	Introduction
	Mechanical Functions
	Thermodynamic Functions
	Cybernetic Functions
	Network Functions


	Mechanical Mathematics
	The New Army
	Technology and the Emerging School
	The Cartesian Ideal
	A Mechanical Function
	Mechanical Function in Text

	Mechanism Embodied
	Physiology of the Nervous System
	Intelligence
	Psychology of Algebra

	Conclusion

	The Thermodynamic Model
	Introduction
	Shifts in Resistance
	Scientific Consequences
	The New School Science

	Individuation
	Function and Functionality
	Functional Textbooks
	Examinations

	Thermodynamic Management
	Psychological Conversions


	Cybernetic Mathematics
	Centralization
	Institutional Change
	Integration
	Federal Scientific Research

	The Structural Function
	Structure in Texts
	Examinations

	Structures, Psychology, Cyborgs
	Woods Hole and Bruner
	Piaget and Structure
	A Genetic Function

	Piaget and Skinner's Teaching Machine

	Networks and Conclusion
	Network Models
	A Network Function
	Common Core Reforms
	Network Texts
	Autopoietic Cognition

	Conclusion

	Bibliography

