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Abstract 

 

Improved mono-synaptic tracing tools for mapping, monitoring,  

and manipulation of neural circuits 

 

Thomas R. Reardon 

 

 

 

 

This work concerns the use of engineered genetic tools to build maps of the mammalian 

nervous system. Within the practice of circuit neuroscience, one of the most effective tools to 

emerge in recent years are the neurotropic viruses. Among these are modified strains of rabies 

virus which are made safe for laboratory use. We introduce here a novel form of engineered 

rabies virus with substantially improved utility for exploring the structure and function of neural 

circuits. Additionally, using this new tool, an investigation of an important motor circuit, the 

cortico-striatal circuit, is presented.
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Part 1 
 

Preface 

This work concerns the use of engineered genetic tools to build maps of the mammalian 

nervous system. To a working neuroscientist, this is a straightforward response to an obvious 

problem: what is connected to what?  But the question has some deeper philosophical tensions 

that we first examine before turning our attention to the neural circuit and behavior we care most 

about, motor cortex and the rise of volitional skilled movement. 

 

What does it mean to map a neural circuit? 

A unifying if dogmatic belief in contemporary neuroscience holds that animal behavior is 

anchored in the variable connections amongst neurons. No behavior exists, no memory trained or 

recalled, which is not somehow enabled by the activity of neurons over a defined set of 

connections. This has led to a somewhat controversial consensus that a fully detailed map of the 

nervous system could account for the myriad complexity of even human behavior. Since the 

acceptance of the Neuron Doctrine over a century ago (Shepherd, 1991), each generation of 

neurobiologists has attempted to find ever finer maps of these connections.  

Arguments about neural maps quickly degenerate into dogma, pitting reductionists 

against phenomenologists (Alivisatos et al., 2012; Seung, 2011; Markram, 2006; Tononi & 

Koch, 2008; Watts & Swanson, 2002). But the larger question here is whether we can build 

practical but detailed maps of the neural connections which help not only elucidate but predict 

behavior (Lichtman & Denk, 2011). At root, we are always seeking to understand the response of 

the nervous system given some input, to understand the transformation of information from 



2 
 

sensory input to motor output.  We wish to understand whether some basic truths exist which can 

simplify our understanding, patterns which appear again and again in the connections of neurons 

performing similar roles in different animals, or performing similar roles within the same animal, 

but in widely different behaviors. Thus, we seek patterns that might serve as elements of brains 

that range from milligrams to kilograms (Swanson, 2012). Where the structure within the 

structures (cortex, basal ganglia, etc.) is also conserved, and is the granularity at which 

genetically-identified circuit mapping works. 

It is important to note early that neural communication can span more than the synaptic 

contacts contemplated here.  There is non-synaptic communication, for example ephaptic  and 

electrical coupling via gap junctions, as well as extra-synaptic communication from one neuron 

acting potentially on many responder neurons by means of neurotransmitter diffusion. There are 

even forms of non-synaptic communication such as gaseous neurotransmission. But as used in 

this work, neural circuit is meant to capture chemical neurotransmission and its dominance in the 

function of the nervous system. 

 

 



3 
 

 

Figure 1.1: A ‘complete map’ of the nervous system of Caenorhabditis elegans (adapted from 

WORMATLAS) 

 

From mapping in invertebrates to mapping by neural class 

For some primitive animals such as Caenorhabditis elegans, a complete map exists of 

every connection amongst the 302 neurons (Figure 1.1) of its nervous system (White et al., 

1986), leading to the possibility of computer models which might faithfully recapitulate the 

entirety of nematode behavior. At the other extreme lies homo sapiens, with a densely wired 

brain and dynamic connections numbering in the trillions. Notably, no other tissue, organ or 

system within the mammalian biome approaches the classification complexity of the nervous 

system (NIH Blueprint 2016). To start to understand the neural underpinnings of behavior in 

animals this complex, we require simplifications that group thousands to hundreds of thousands 

of neurons together in neural classes. The first classification is of course anatomical, where the 

region (e.g. cortex) and sub-region (e.g. cortical lamina) define the class. In the last two decades, 

the dominant theme of this simplification is the belief that, in addition to regional location, 
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neurons can and should be classed according to a few basic properties: developmental 

provenance, primary neurotransmitter, complement of receptors, physiological excitability, and 

relative location within their anatomical residence (among others, see Swanson et al., 1996; see 

Ascoli et al., 2008 for a comprehensive taxonomy). 

 

Genetic identification of neural classes 

Within the mammalian nervous system, this has led to the description and qualification of 

ever increasing classes of neurons. On the order of 150 classes account for most experimental 

usage today (NIH Blueprint for Neuroscience; NIH/GENSAT 2016), many of which are 

identified by the expression of a handful of specific genes related to either primary 

neurotransmitter or receptor complement. For instance, lower motor neurons, which manage the 

final output of all of the brains myriad calculations, are recognized universally by the expression 

of choline-acetyltransferase (ChAT), an enzyme crucial to the synthesis of the neurotransmitter 

released by motor neurons (Nachmansohn & Machado, 1943). Of course, the expression of all of 

these genes is driven by a cascade of transcription factors, which ought to be the means by which 

any one class of cell is identified, but the first-order classification of neural classes is dominated 

by the two factors (neurotransmitter and receptor) mentioned. It may be that any classification 

system for neurons produces false taxonomies, where in reality subtle differences amongst, say, 

interneurons within a cortical lamina, could ultimately produce a number of classes on the order 

of the number of neurons. The reason we want to explore the circuitry of classes is not to make a 

claim that the classes were correctly identified, but instead to leverage simplifications which 

might pragmatically assist us in understanding animal behavior without accounting for all the 

unique neural snowflakes of Caenorhabditis elegans. 
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Underlying all of this classification is an unstated faith that neurons within a class work 

together, under similar operating parameters, to transform synaptic inputs to axonal outputs, and 

enact behavior.  The belief ultimately holds that the complete one-to-one mapping of all neurons 

is unnecessary because the complete mapping of classes is sufficient to explain behavior. As one 

might conclude in the object-oriented paradigm of computer science, the class owns the instance. 

While the tools of genetic engineering opened up the possibility of classifying neurons by 

genetic properties, it was only with the introduction of conditional recombination that 

experiments could reliably leverage genetic identity (Sauer, 1987; Golic & Lindquist 1989). In 

particular, the ability to deliver DNA plasmids and viruses which were “turned on” in only 

neurons of the appropriate genetic background has allowed for tracing amongst genetically 

identified neurons where previously only bulk anatomical tracing was available. 

 

Need and challenges to understanding behavior in terms of connections  

among genetically identified neurons 

 

Studies of behavior in Mammalia rarely concern themselves with the effect on behavior 

from single neurons, but rather with the reproducible activity patterns of distinct sets of 

functionally coupled neurons, termed neural ensembles. Neurons grouped at this scale form the 

critical link between single-neuron computation and behavioral or cognitive functions. At a 

general level, ensembles fulfill the criteria of the neural classes described above, genetically 

identified and anatomically isolated within a local network. However, ensemble activity is sparse 

and only transiently stable within the local network, and complex behaviors usually invoke 

activity over multiple brain areas, which together with the sheer numbers of neurons and 

synapses in Mammalia restrict us from simple descriptive analysis of neural cause and 
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behavioral outcome, just as we learn very little of the properties of water from studying the 

electrostatic and steric properties of individual molecules of H2O. Instead, we rely on statistical 

models and the intuitions they afford to make predictions about water. Similarly, only combined 

approaches from cellular and network analyses that define neural classes together with 

approaches from behavioral and theoretical neuroscience have potential to uncover organizing 

principles of behaviorally relevant ensemble activity.  

To ask how neurons implement behavior is to ask what is learning.  Motor learning is the 

most direct form of learning we undertake.  We know that motor learning requires cortex and the 

basal ganglia working in concert. We concern ourselves here first with an investigation into the 

earliest signals of motor output.  We imagine the nervous system as a grand input-output device 

with cortex at its pinnacle, seesawing back and forth between the processing of sensory inputs 

and the generation of motor plans that direct final motor output.  This is of course a gross 

simplification, as the nervous system has an endless amount of short-circuits and reflex loops, 

but here we start from a modest assertion that volitional motor output begins in cortex, and that 

cortex both can generate new motor output as well as modulate output in progress.  

To begin to understand the rules cortex follows in implementing its instructions to lower 

structures in the nervous system, we first leverage the abstraction of neural classes. To exploit 

classes previously identified, we use tracing tools which find connections among genetically-

identified classes of neurons. The tracing we implement and enhance here is born from the belief 

that ensembles of neurons form repeated units that “gang up” to implement behavior. According 

to the statistical approach, albeit with limitations, this would seem the best way of attempt to 

dissect the function of neural ensembles. 
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Historical perspective on connectivity mapping 

 

A reasonable claim could be made that the history of neuroscience is coincident with the 

history of neuroanatomical methods for analyzing the structure of neural networks. With the 

proposition in 1897 by Sherrington that synapses are the site of information transfer, tracing of 

these connections was the underlying framework for arguably all neuroscience that followed. 

The twin towers of neuroanatomy—Golgi and Ramón y Cajal—followed with the first proper 

visual exploration of individual neurons. This era of randomly labeled cells dominated the field 

for decades. While these approaches have been invaluable in for determining the architecture of 

local (intraregional) connectivity, the drawbacks were also significant: myelination obscured or 

excluded axons from impregnation with reagents, forcing scientists like Ramón y Cajal to focus 

their efforts on neonatal animals. Neurons were filled with dye randomly and completely, 

without regard to neuronal polarity.  And of course in vivo application was untenable. 

In the decades which followed, most of the progress in mapping neural circuits was done 

using synthetic dyes, or similar substrates which impregnated and darkly stained sparse 

populations of neurons to reveal the fine geometry of connectivity. Even prior to this, the crude 

technique of lesions leading to Wallerian degeneration of axons had illustrated the longest-range 

projections of the nervous system—remarkably, as recently as the 1960s, such lesion studies 

were still providing the bulk of advances in knowledge of neural paths, as with the first 

comprehensive studies of cortico-striatal projections (Webster, 1961), which provides the 

necessary background for Part 2 in this monograph (Figure 1.2). Cell-filling dyes such as Procion 

yellow allowed for staining the full extent of single neurons after direct injection into the cell 

body (Stretton & Kravitz, 1968), and later helped to join physiology with anatomy by allowing 

the diffusion of dye through a patch pipette. After 1970, a shift in techniques arose which relied 
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on the underlying biological processes of neurons to achieve their effect. The most important 

result was the establishment of tracers which took advantage of neuronal polarization, yielding 

tracers of either anterograde or retrograde action (Kristensson et al., 1971). From that point 

forward, the selectivity of neuronal labeling became a key feature in circuit mapping studies. A 

common property of these selective tracers is their biological, rather than purely synthetic, 

origin. 

 
Figure 1.2: the first systematic attempt to map cortical projections to the striatum; lesions of 

cortex caused Wallerian degeneration of cortical axons in striatum, which are then impregnated 

with silver stain for visualization (adapted from Webster, 1961) 
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Continued refinement of tools led to the introduction of biological-synthetic hybrids, such 

as conjugated forms of cholera toxin subunit B (CTB) or wheat germ agglutinin (WGA). The 

greatest benefit obtained was perhaps the ability to introduce them in vivo in a circuit of inquiry. 

Collectively, these macromolecular tools, including dextran amines (Glover et al., 1986), latex 

beads (Katz et al., 1984), and DiI (Honig & Hume, 1986, in culture), all suffered from one key 

deficit: they could not amplify themselves once introduced into the cell. While many of the 

proteins such as horseradish peroxidase (HRP) engaged cellular machinery to obtain retrograde 

or anterograde specificity, they were not easily adopted by the emerging tools of molecular 

biology due to issues of ectopic expression (HRP is a plant protein which does not functionally 

express in mammalian cells). The amplification problems were thus not easily solvable by 

genetic means, since it was difficult or impossible to enable neurons to make tracer proteins 

autonomously. 

Viral pathway and connectivity tracing techniques were introduced first to address the 

issue of signal amplification but ultimately proved to be even more useful for the ability to 

engineer them as agents which would label neurons based on genetic-identity (Enquist, 1994). 

These are discussed further below. 

Static and dynamic mapping: marker proteins and functional proteins 

Neuroanatomical mapping traditionally attempts to construct “labeled lines” of the 

nervous system. These are static maps, charting the possible flow of information from sensory 

input to behavioral output. They are invaluable in our quest for boundary anatomical constraints 

on information processing and coding, but these static maps can only give us part of the picture 

as they capture every potential channel for nervous signaling without describing how those 

signals are processed at their destination. Dynamic mapping is the refinement of static maps such 
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that certain connections are re-described in terms of their activity and response. In a dynamic 

map, one neuron may output the exact same signal to three different regions of the brain, but the 

neurons at the receiving end may have significantly different responses.  This could be as subtle 

as differences in synaptic strength, causing one neuron to respond more strongly to the same 

input that another like neuron receives.  It could be more dramatic, such as the change in valence 

from excitatory to inhibitory. 

Using viral genetic tools, we are able to both build static maps of inputs to a particular 

neuron using fluorescent proteins as payloads in the viruses, as well as deploy functional proteins 

that allow us to monitor and manipulate activity of individual neurons and thus build dynamic 

maps. (Kaifosh et al., 2013; Petreanu et al., 2007). 

 

  



11 
 

The modern era: using deletion-mutant rabies virus to create static and dynamic maps 

 

 

Figure 1.3: retrograde tracers, adapted from Ugolini 2010: WGA-HRP, a tracer based on the 

proteins wheat-germ-agglutinin and horseradish peroxidase; HSV-1, herpes simplex virus, PrV 

pseudorabies virus) 

 

Tracing tools which rely on genetic encoding and expression have two major advantages 

over traditional synthetic tracers, namely the ability to target specific types of cells and the 

potential to amplify signals or other proteins of interest. The explosion of recombinant-

engineering tools allowed for the exploration of a variety of protein-based and viral-based 

mechanisms to tracing.  Some of the earliest tools used, such as a complex of wheat germ 

agglutinin and horseradish peroxidase (WGA-HRP) relied on the uptake of proteinaceous 

material by axons and the transport of that material in either a preferentially retrograde or 

anterograde fashion (Figure 1.3).  These tools leverage the transport properties of one protein 

(the lectin WGA) with the reporter properties of another (stainable HRP). However, they suffer 
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from two major drawbacks: it is not proven that the transport of proteins is truly trans-synaptic, 

and more importantly, the amount of “signal”, or expression, from the reporter gene was 

dependent on the amount of initial uptake. 

Viral tools in contrast solve the problem of signal weakness because they can amplify in 

situ (note that viruses can be replication-incompetent yet still amplify genomically within a cell).  

Even a small amount of virus, perhaps a single virion, can amplify within a cell and produce both 

strong visual signals as well as targeted functional effectors. The two best known virus families 

for trans-synaptic tracing are the herpes simplex viruses (HSVs) and rabies viruses (RABVs) 

(Figure 1.3, 1.4) 

Herpes simplex HSV-1 and related strains such as pseudorabies PrV (not to be confused 

with pseudotyped rabies) have enjoyed wide usage (Ugolini 2010; Enquist et al., 1998). The 

alpha-herpesvirus family consists of large, double-stranded DNA viruses. They express as many 

as 100 different genes from more than 150,000 base pairs. As such, it is a challenge to engineer it 

to make specific proteins of interest, or more importantly to remove native genes which are 

otherwise deleterious.  This exposes the most significant drawback to HSV, which is 

cytotoxicity. The virus spreads rapidly and expresses strongly, and neurons rapidly disintegrate 

during storms of apoptosis (Thompson et al., 1983). Work has progressed toward taming the 

virus for usage in experimental neuroscience (Zeier, et al, 2009), but that work lags behind 

similar work on rabies viruses, a radically simpler RNA virus. 
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Figure 1.4: A: the alpha-herpesvirus HSV-1, or pseudorabies, showing both capsid and envelope; 

B: rabies virus, a much simpler RNA virus, has only 5 genes on one continuous segment, lacks a 

capsid and displays only a single glycoprotein along its surface 

 

The first appearance of rabies as a systematic tracer of neural connections appears with 

the work of Ugolini in 1995. Coincidentally, another breakthrough that year was the cloning and 

rescue from DNA of rabies virus. Using a laboratory strain of rabies virus, CVS-11, Ugolini was 

able to demonstrate that the spread of virus occurs along well-known nerve paths, that virus is 

taken up at axon terminals and transported in an exclusively retrograde fashion (a view since 

overturned in the context of primary sensory neurons by Zampieri et al, 2014), and that axons of 

passage were not infected. Whether the virus transports exclusively trans-synaptically was not 

definitely showed but suggested. 

Kelly & Strick (2000) exploited CVS-11 rabies as a poly-synaptic tracer in rodents and 

primates (Figure 1.5). The virus is lethal in its fully constituted form, but because it is “fixed”, it 
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has well understood transmission kinetics. By timing the course of the spread of infection 

through different nuclei and regions of the CNS, they were able to establish loops of connectivity 

from cortex to striatum to basal ganglia output and thalamus, and around again. 

 

Figure 1.5: poly-synaptic spread of rabies virus in the cortico-basal-ganglia-thalamic loop 

(adapted from Kelly & Strick 2000) 

 

The current era of genetically-identified circuit tracing began with Wickersham, et al 

(2006), when they succeeded in engineering rabies virus such that the singular gene required for 

cellular uptake and egress was deleted and reintroduced in trans (Figure 1.6). This deletion 

restricts the spread of virus to one synaptic jump. When combined with pseudotyping—the use 

of ectopic surface glycoproteins to alter the tropism of enveloped viruses--genetically identified 

neurons can be targeted, from ensembles down to single cells, and the virus offers the potential 

to identify all of the inputs to a targeted cell. 
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Figure 1.6: trans-synaptic labeling using deletion-mutant rabies viruses; pTVA plasmid for avian 

virus ASLV-A TVA receptor; EnvA envelope glycoprotein from ASLV-A; pRabies-G plasmid 

for rabies SAD-B19 glycoprotein; pDSRED reporter plasmid; SADΔG-EGFP deletion-mutant 

rabies virus contains five genes, with EGFP replacing native G, based on the inoculation strain 

SAD-B19 (adapted from Arenkiel & Ehlers 2009) 

 

Constraints on original deletion-mutant rabies 

 

As with many breakthroughs in the development of experimental tools, it can take several 

years of exploitation for a clear picture to emerge of the limitations of the technique, and several 

iterations before it reaches its potential.  The invention of deletion-mutant rabies by Wickersham 

et al. (2007) similarly came with restrictions that constrained its use in many experimental 

applications. There has been continuous improvement to the original tool (Okasada, et al. 2010; 

Wickersham et al., 2013), in particular with a variety of increasingly sophisticated 

complementation reagents (Weissbourd, et al. 2014).  One major restriction to which these 

improvements were addressed is the limited trans-synaptic spread of SAD-B19ΔG. This virus was 

typically limited to ten or fewer cells for every primary cell infected (Watabe-Uchida 2012; Wall 

et al., 2013; but see Rancz, et al. 2011). Another major restriction arose when SAD-B19ΔG was 
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used to express functional proteins. The virus appeared to have a strong cytotoxic impact. The 

former led to incomplete static maps of the particular circuit in question, and the latter restricted 

the usage of the virus for in vivo experiments of the variety contemplated above for dynamic 

mapping. This led to the pursuit of several improvements to the base provided by Wickersham et 

al., using both improvement glycoproteins and entirely novel strains of deletion-mutant rabies. 

These are discussed at length in the following chapters. 
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Part 2 
 

Preface 

 

 It is conventional to consider the neocortex as the seat of consciousness and the root of 

volitional behavior.  Cortex is adjacent to and tightly bound with the basal ganglia, and it is 

possible that all cortical output is available to the basal-ganglia. The striatum represents the 

major input region of the basal ganglia. Here, we consider cortex and striatum as a joint structure 

and offer an inquiry and early results about the nature of the unidirectional projection from 

cortex to striatum, based on mono-synaptic tracing studies. 

 

Functions of dorsal striatum 

The basal ganglia are the first structure that cortical neurons encounter as their axonal 

outputs course downward toward the spinal cord.  The projection from cortex (or pallium) to the 

basal ganglia is conserved from primates all the way to “ancient” vertebrates such as the lamprey 

(Gerfen & Bolam, 2010; Grillner 2008, 2011). Proper function of this circuit is required for the 

acquisition of skilled motor behaviors (Dudman & Krakauer, 2016; Koralek et al., 2012; Yin et 

al., 2009). In rodents, operant tasks such as sequential lever presses require proper function of 

basal ganglia (Costa 2007).  Dysfunction within the dorsal basal ganglia, most often due to 

dysregulation of ascending dopaminergic input, leads to profound motor deficits, most famously 

the symptoms observed in Parkinson’s and Huntington’s disease.  The major recipient of the 

massive cortical projection to the basal ganglia are the input nuclei, the ventral and dorsal 
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stratum. These two input nuclei also receive by far the largest transmission of dopamine in the 

brain. The dorsal striatum is the target of the inquiry here. 

From the first investigations into the tragedy of Phineas Gage to contemporary studies of 

cortically-lesioned patents, it is conventionally if not dogmatically thought that volitional 

behaviors emerge from frontal cortex. But evidence mounts that the interaction between cortex 

and the striatum is necessary for the proper acquisition of skilled movements, and we hold that 

skilled movements are the primary expression of volition. As is described below in detail, the 

cortical projection to striatum is nearly global, to the extent that striatum may receive a near-

complete copy of cortical output (Dudman & Gerfen, 2015; J. Dudman personal 

correspondence). The striatum, to a first approximation, shadows cortex. If cortical processing is 

the heart of volition, we might say that cortico-striatal processing is key to the proper expression 

of volition. 

Volitional behavior as used here focuses on skilled movements and includes tasks such as 

reaching for desired objects. These are motivated behaviors, neither reflexive nor repetitive, and 

require both planning and ongoing maintenance and compensation. Data increasingly suggest 

that plasticity in the cortico-striatal circuit are key to acquiring these skilled behaviors (Koralek 

et al., 2012). 

Basal ganglia output emerges downstream of the striatum (Figure 2.1), from the globus 

pallidus (GP) and substantia nigra pars reticulata (SNr).  Two output paths variably affect 

behavior: there are strong descending outputs to the superior colliculus and pontine nuclei which 

can serve to directly initiate and modulate motor behaviors, and ascending outputs to the 

thalamus. This latter forms the cortico-basal-ganglia loop, thought to affect ongoing maintenance 
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of movement among other integrative roles (Parent & Hazrati, 1995; Haber 2003; Costa et al., 

2004; Cui et al., 2013).  

 

 

Figure 2.1: map of basal ganglia of the rodent, sagittal view, with striatum as primary input 

region of basal ganglia, GP and SNR as primary output; CPu caudate putamen or dorsal striatum, 

AcbC nucleus accumbens, GP globus pallidus, IGP global pallidus internal segment, vl/vm/md 

thalamic nuclei, STh subthalamic nucleus, SNR substantia nigra pars reticulata, SC superior 

colliculus, PPT pedunculopontine tegmental nucleus (adapted from Dudman & Gerfen 2015) 

 

 

Architecture of the basal-ganglia: input and output 

The striatum is composed primarily of medium spiny neurons (MSN), which form a 

GABAergic projection. The MSNs receive excitatory input from cortex and thalamus, with the 

former providing perhaps 80% of total input (Dudman & Gerfen 2015; personal observation 
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from retrograde tracing studies). Most famously, the striatum is the target for majority of 

dopamine released from the midbrain.  

In rodents, the dorsal striatum is a unitary structure, whereas in primates it is divided into 

two portions, the putamen and caudate nucleus.  The putamen corresponds to dorsolateral 

striatum in rodents, where the caudate corresponds to dorsomedial striatum.  Our circuit analysis 

below will focus on dorsolateral striatum, thought to be a center for the consolidation of skilled 

motor actions as they become habit (Yin et al., 2005; Yin et al., 2009) 

MSNs project to two downstream nuclei, the global pallidus (GP) and the substantia nigra 

(SN) via “direct” and “indirect” pathways (Figure 2.2). The GP itself has an output segment, GPi 

in primates and entopeduncular nucleus in rodents. GP outputs both onward to substantia nigra 

as well as outward to thalamus. The SN pars reticulata represents the last stage of output from 

the basal ganglia.  

For purposes of model simplification, we leave aside the role of the subthalamic nucleus 

(STN) as both a zone of direct cortical input as well as a target for a portion of striatal output. 

Thus, with the exception of modulatory dopamine, all basal ganglia output is GABAergic and 

inhibitory. 

In the canonical model of basal ganglia function, the inhibitory output is tonic while 

phasic excitation from cortex leads to disinhibition via the striatal projection neurons. That is, 

activation of striatonigral medium spiny neurons by cortical input results in inhibition of 

substantia nigra pars reticulata, thus disinhibiting its action on the thalamus, superior colliculus, 

and other targets. The indirect pathway is more complex but at its simplest may act in reverse. 

The key observation is that striatal neurons which project to one pathway or the other may work 
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antagonistically, which immediately begs the question of how medium spiny neurons receive 

input and what transformations they make in forming outputs. 

 

Figure 2.2: map of basal ganglia pathways in the rodent, sagittal view, with striatonigral 

projections for the direct pathway and striatopallidal projections for the indirect pathway 

(adapted from Dudman & Gerfen 2015) 

 

 

Medium spiny neurons are the dominant striatal neuron 

Conserved nature of cortico-striatal input and output 

 

It is estimated that 95% or more of all neurons in the striatum are MSNs (higher in 

rodents, lower in primates), with the rest comprised of a small but important number of 

cholinergic, tonically active neurons as well as a vanishingly small number of GABAergic 
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interneurons (Dudman & Gerfen 2015). While MSNs are less prevalent in primates, this 

anatomical ratio of MSN abundance is conserved across the span of Mammalia from human to 

mouse, and further extends to avian, reptile, and aquatic species. It is highly conserved. Thus, 

what we discover about the nature of cortical innervation of striatum in rodents may yield insight 

into the role of the striatum in modifying or guiding “cortically initiated” behavior across many 

species. It may also reveal much about the evolution of cortex as it expanded to dominate the 

basal ganglia in generating behavior.  

 

Cortical input to striatum is global 

No region of the central nervous system receives more cortical input than the striatal 

nuclei.  For sensory-motor and frontal areas of cortex, the projection is densest to dorsal striatum.  

There is evidence that these cortical projection neurons all make synapses onto dorsal striatum 

(Zheng & Wilson 2002; Dudman & Krakauer 2016; but see Donoghue & Kitai 1981) even as 

they continue on to pontine or spinal nuclei. In this light, the cortico-striatal projection can be 

seen as a total mapping of cortical output. 

In a series of important studies from the Wilson laboratory (Cowan & Wilson, 1994; 

Kincaid & Wilson, 1996; Kincaid et al., 1998; Zheng & Wilson, 2002) we get clues as to the 

combinatorics that necessitate the view that the cortex fully maps to striatum.  Each medium 

spiny neuron has roughly 7500 synapses, of which we assume 4000 are from cortex.  Within the 

volume of a single MSN, there are nearly 400,000 cortical axons and 3000 other MSNs. Each 

cortical axon has boutons for 40 synapses within the volume of the dendritic field of the MSN, 

yielding a potential connection rate around 1%. Thus, the cortico-striatal connection is quite 

sparse, and even neighboring MSNs are unlikely to receive input from the same cortical neuron. 
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Functional organization of dorsal striatum: putative motor striatum 

While the cortical projection to striatum may be “complete”, it does not follow the 

functional homuncular organization of sensorimotor cortices. A cortical axon typical meanders 

and synapses across a vast range of striatum, while the regions of highest synaptic output, or 

focus, are organized along a ventromedial / dorsolateral axis (Voorn 2004) (Figure 2.3). For our 

purposes, this means that a putative “motor striatum” can be seen as that part of dorsolateral 

striatum upon which motor cortical areas make their greatest number of synaptic contact. 

Regardless, this organization is entirely unlike the homuncular organization that is typical used 

to describe cortex.  Rather than a “foot” or “finger” focal area, individual MSNs within the 

dorsolateral striatum appear to mix a variety of somatotopic information. It should be noted that 

despite the assertion here, there is evidence of overlapping “focal” and “diffuse” cortico-striatal 

projection systems. For instance, Wright et al. (1999) showed that the highly organized output of 

adjacent barrels in mouse whisker sensory cortex yields two different forms of axon projections, 

one that is similarly focused in adjacent zones of striatum and another that spans across barrels. 

As will be seen below, our view is that the overwhelming majority of inputs to dorsal striatum 

are of the “mixed” variety (see Brown and Feldman 1992). 

The striatal outputs visibly diverge down two separate axonal paths, leading dense but 

distinct fiber bundles into either GPe or SN. Axons of either pathway rise without obvious 

organization or anatomical preference from medium spiny neurons across the expanse of the 

striatum. Projection neurons of the striatum were thus classed as indirect (striatopallidal) or 

direct (striatonigral). 
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Figure 2.3: excitatory projection map from cortex and thalamus into striatum, including dorsal 

and ventral extents. (adapted from Voorn et al, 2004) 
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Striatum neurons lack obvious anatomical organization 

While the outputs of the striatum present clear anatomical feature, the neurons which give 

rise to those outputs appear distributed evenly throughout the striatum.  The first evidence of 

genetic separation of cell-types arose from the discovery of “patch” and “matrix” zones 

(Graybiel 1978) within the striatum, which contained relative differences in some receptors and 

neuropeptides but which did not separate neurons by projection targets.  Patch and matrix do 

serve to organize cortical inputs, such that inputs from different cortical sublayers synapse 

differentially on each compartment (Gerfen, 1989). It is this fact which leads to the question of 

whether a similar organization might be found based on the identity and location of the two 

different outputs neurons of the striatum. But to understand whether cortical axons connected 

equally to the two different basal ganglia pathways required the discovery of markets for those 

neurons. 

 

Direct and indirect pathways 

After it emerged in the 1970’s that most neurons of the striatum were projection neurons 

and that their outputs followed two distinct pathways, it was next shown that all projection 

neurons were of the medium spiny GABAergic variety.  Starting in 1982, a series of immuno-

histochemical tracing studies revealed a striking anatomical feature of the striatum, showing that 

the distinct projection pathways (Figure 2.4) corresponded to expression of different 

neuropeptides and, later, specific subtypes of dopamine receptors (Gerfen & Sawchenko, 1984; 

Izzo et al., 1987; Gerfen 1990). 

Our work began with this question: how do projections neurons of the neocortex synapse 

onto the two major subclasses of neurons at the input of the basal ganglia?  We investigated 



29 
 

whether cortical neurons, as distinguished by their somata, or starting location, may or may not 

drive the basal ganglia by differentially communicating with its two parallel pathways. While the 

basal ganglia play a role across a wide spectrum of vertebrate behavior, we concerned ourselves 

with skilled motor behaviors, and asked how the synaptic map from cortex to the striatum, the 

input nucleus of the basal ganglia, impacts motor behavior. It has been shown that activation of 

striatonigral neurons can promote locomotion, whereas activation of striatopallidal neurons can 

retard (Kravitz, et al., 2012; Kravitz et al., 2010).  Changes in the relative innervation of these 

pathways produce striking effects and may underlie significant pathologies (Cazorla, et al., 

2014). Further, phasic activity in these two populations was observed in skilled instrumental 

tasks (Xin & Costa, 2010).  

We report our results and compare with others in subsequent sections. 
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Figure 2.4: schematic of the two parallel pathways of the basal ganglia, sagittal view in rodent 

brain. Striatonigral medium spiny neurons project along the direct pathway while striatopallidal 

MSNs project along the indirect pathway. GP global pallidus, IGP globus pallidus internal 

segment, STh subthalamic nucleus, VTA ventral tegmental area, SNc substantia nigra pars 

compacta (adapted from Gerfen 2015) 

 

 

Medium spiny neurons are identified by two genetic markers which coincide with axonal 

output 

 

Following the initial insight that striatal neurons could be segregated by both the isolation 

of inputs from cortex as well as the expression of specific neuropeptides, a more significant 

discovery (Gergen 1990) was made regarding the output of MSNs: it had been shown the two 

different dopamine receptors were widely expressed in the striatum, but Gerfen discovered that 

MSNs which projected via the direct pathway exclusively expressed the D1 receptor while those 

projecting more dorsally into the pallidum expressed the D2 receptor (Figure 2.6), and that there 

was scant cross-expression (Figure 2.5).  A number of studies then established that D1- and D2-

receptor-expressing MSNs have different responses to dopamine, different basal physiological 

properties, and different morphological features (Gertler et al., 2008).  Over the course of the 

next two decades, an explosion of research investigated the relative contribution of D1- and D2- 

expression neurons in sculpting normal and abnormal animal behavior (see discussions in Gerfen 

and Bolam, 2010; Howes et al., 2012). 

While other genes also serve to mark the separation of these subpopulations (dynorphin 

and substance P versus enkephalin) is it the different expression of dopamine receptor subtypes 

that has drawn the most attention (Surmeier et al., 2007).  Each of these receptors responds to 

binding of dopamine differently, with dopamine having marginally excitatory effects to D1-

expressing cells and inhibitory to D2-expressing cells. Given the wide and still growing literature 

on reward and the effects of dopamine on behavior, this difference has provided the most 
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compelling models for how differential pathway output might serve as a basis for learned 

behaviors (Schulz 2002; Costa 2011; Vicente et al., 2016). 

 

 

 

Figure 2.5: immunostaining illustrates the anatomical mixture of striatonigral (green) and 

striatopallidal (red) neurons, based on different G protein expression (from Gerfen et al. 2002) 

 

 

Figure 2.6: schematic representation of direct- and indirect-pathways of the basal ganglia.  

Cortical input feeds onto two subpopulations of medium spiny neurons. Striatonigral (direct-

pathway) neurons express substance P, dynorphin and the dopamine receptor Drd1a, and project 

en passant to the globus pallidus on their way to terminations in the midbrain output nuclei of 

the basal ganglia; enkephalin, the adenosine receptor 2A, and the dopamine receptor Drd2 

collectively mark the neurons of the striatopallidal (indirect-pathway) projection) (adapted from 

Gerfen 2015) 

 

 

Other class groupings of medium spiny neurons may exist which are masked by 

identification using dopamine receptor expression 
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A major caveat to these models is the mixture of direct- and indirect-pathway neurons 

into patch and matrix.  While it is clear from anterograde tracing (figure not shown; results from 

AAV-FLEX-synaptophysin_GFP labeling of synapses of D1-Cre expressing and A2AR-Cre 

expressing neurons) that indirect-pathway neurons project only to globus pallidus, and that 

direct-pathway axons make a lesser connection to globus pallidus on their way to substantia 

nigra and GPi, it is not understood if there are “pure” striatonigral connections.  If a variety of 

subclasses exists for each pathway, it may be that differences in cortical innervation are masked 

by grouping classes at too large a granularity. 

 

Genetic tools are required to separate inputs to MSNs 

 

The striatum can be viewed as having two overlapping anatomical organizations: (1) 

patch and matrix, and (2) direct- and indirect-pathway.  Patch and matrix can roughly be viewed 

as organizing inputs, for instance from different cortical layers or feedback from midbrain 

structures, while the pathways organize output. In each case, a set of genes are uniquely 

expressed. To date, there is minimal evidence that patch and matrix have much impact on 

pathway identity. (Dudman & Gerfen, 2015). 

Given the mixing of pathway neurons, traditional synthetic tracers, and even biological 

tracers such as wheat-germ-agglutinin (WGA), cannot help untangle whether there is an 

underlying organization of cortical inputs based on striatal pathway output identity. 

 

 

How convergent or divergent are synapses onto medium spiny neurons? 
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Several models of cortical axon arborization have been described for the striatal afferents.  

It is not clear whether these are actual genetic subtypes of cortical neurons (Gerfen 1989; Greig 

2013).  The two simplest models are focal and diffuse (Kincaid et al., 1998). In either case, it 

does not appear that focal arborization leads to more convergent or multiplicative contact onto 

target neurons. Rather, the sparse model of Zheng and Wilson (2002) and Parent and Parent 

(2006) appears to be dominant. Under that model, we expect only single contacts from passing 

cortical axons, and further expect that adjacent MSNs do not receive common cortical input. 

It may be that the synaptic organization of inputs to MSNs is merely obscured by the 

non-laminar structure of the striatum, much the same way that non-laminar structure of pallial 

tissue (closely related to neocortex in evolution) obscures the input structure of projections 

neurons in animals such as passeriform songbirds (Gerfen & Surmeier 2011). 

An important caveat about convergence is that relative amount of total input that 

striatonigral and striatopallidal neurons receive.  It has been suggested that neurons of the direct-

pathway are modestly less compact, electrotonically, than indirect-pathway neurons, owing to a 

substantially increase in surface area (Figure 2.7).  This latter observation, while controversial, 

implies 50% more spine (cortical projection neurons synapse exclusively on dendritic spines of 

MSNs) onto the direct-pathway (Gerfen & Surmeier 2011; Day et al 2008; Planert et al., 2013). 

All data presented below, from myself as well as similar reports from Wall et al. (2013), ignore 

this possibility, which would represent an otherwise substantial and important normalization of 

the data we do present. 
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Figure 2.7: (a) reconstruction of representative striatonigral medium spiny projection neuron; (b) 

same from striatopallidal (c) response of each type of MSN to somatic current steps; indirect-

pathway MSNs are more excitable, possibly due to overall membrane compactness (adapted 

from Gertler et al., 2008) 

 

 

Open questions regarding cortical input: specifists and generalists 
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Figure 2.8: four example models of cortico-striatal connectivity based on D1 and D2 classes) 

 

 

A series of questions can be asked about the cortical input onto MSNs (Figure 2.8): 

 

1) Are cortical-striatal neurons specifists?  A putative specifist would be a cortical neuron 

which only contacts striatal neurons which project to one pathway or the other. 

2) Are cortical neurons generalists? A generalist would contact striatal neurons of both 

pathways indiscriminately, which statistics of contact simply to a random matrix. 
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3) What are the properties for clustering cortico-striatal neurons within a spectrum of 

specificity to generality?  Possibilities include a strong preference for synaptic contact, 

but not exclusivity; differences in relative strength of synaptic contacts; differences in 

location of synaptic contacts; for instance spine versus shaft of dendrite; or distal versus 

proximal dendrite (Gerfen & Surmeier 2011) 

4) Do cortical neurons cluster within these possible biases based on projection type (intra-

telencephalic versus pyramidal-tract), laminar origin, and cortical region. 

 

While there is clear evidence of laminar bias in the cortical inputs to patch and matrix of 

the striatum, at the time this study commenced there was no evidence supporting a similar bias 

for connections onto direct- and indirect-pathway projection neurons. The first question we set 

out to answer was whether there is evidence for pure specifists. 

 

 

No evidence for binary specifists 

 

 

To explore whether there is binary specificity in the cortico-striatal projection (Figure 

2.8), we use optogenetic techniques in combination with double-mutant mice find common 

inputs onto neighboring striatonigral and striatopallidal neurons.  Mice expressing tdTomato 

under the control of the D1R promoter (Shuen et al., 2008), selectively expressed by striatonigral 

neurons, were bred with mice expression Cre under the control of the A2AR promoter, 

selectively expressed by striatopallidal neurons. A novel SAD-B19-based RABVΔG-hChR2-YFP 

(channelrhodopsin) was injected into dorsal striatum following priming infections AAV-EF1a-

FLEX-hGFP-CVS*B19(G) and AAV-FLEX-TVA-mCherry (see below for description of 

chimeric glycoprotein CVS*B19).  Initially, only striatopallidal neurons and expressed 
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channelrhodopsin. After a period of 5-7 days, a significant number of cortical neurons were 

infected trans-synaptically and also expressed channelrhodopsin. By recording post-synaptic 

responses in neighboring striatonigral neurons, we could assess whether cortical neurons known 

to project (via trans-synaptic marker) to one class of MSN also project to the other. 

We estimate that approximately 200 striatal neurons were infected in the priming 

infection, and that on the order of 2000 cortical neurons were trans-synaptically infected. In 

contrast with the findings of Cowan and Wilson (2002) and the view espoused in Dudman & 

Gerfen (2015), we found that neighboring MSNs received common cortical input in all but one 

of eleven neurons tested. This may be due to a significant population of cortical axons 

(thousands) simultaneously expressing channelrhodopsin. 

 

 

 

Results using new RABV strategies: SAD-B19ΔG, CVS*B19(G), and CVS-N2cΔG. 

 

 

Our initial efforts at retrograde tracing from dorsal striatum and cortex relied on the same 

SAD-B19ΔG-GFP virus described by Wickersham et al. (2007), but complemented via a mouse 

mutant which conditionally expressed SAD-B19(G) glycoprotein as well as the avian TVA800 

receptor (Takatoh et al., 2013). However, this system yielded very low trans-synaptic spread of 

virus, on the order of 4 secondary neurons for each primary neuron. By trying a variety of AAV-

based approaches to complementation, a “cocktail” approach was ultimately chosen which mixes 

several Cre-conditional viruses together in one infection. Unlike the system used in Watabe-

Uchida et al. (2012), we chose to include a reporter of primary infection (see description of the 

necessity of this approach in Part 3), which allowed us to normalize viral spread to the number of 
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primary starter neurons. Under these conditions we never obtained more than 8 neurons for each 

primary neuron. Figure 2.9 shows a typical animal where the ratio of viral spread was 6.9. 

 

Figure 2.9: analysis of spread of SAD-B19ΔG from a single D2R-Cre mouse following injection 

by AAV-FLEX-TVA and AAV-FLEX-hGFP-SADB19(G). Red primary, blue secondary.  Total 

secondary 22221, total primary 3226. 

 

 Viral spread of less than 10 secondary neurons implies a labeling rate of cortical neurons 

of well under 1%. We were concerned that this number was so low that the system overall was 

vulnerable to biases in labeling (see Discussion in Part 6) or very high animal-to-animal 

variability, or both. As well, the ratio of contralateral to ipsilateral connectivity was nearly 

undetectable, and significantly below the level estimated by Webster (1961) in rodents and 

Parent & Hazrati (1995) in primates, perhaps by an order of magnitude. (Figure 2.10) 
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Figure 2.10: retrograde, trans-synaptic spread of SAD-B19ΔG using SAD-B19(G), showing 

ipsilateral to contralateral ratio. Left: ipsilateral/contralateral ratio, with Bregma at 0. Right: red 

contralateral and blue ipsilateral secondary neuron count. 

 

Updated and improved AAV complementation vectors have expanded the spread ratio to 

dozens in ideal scenarios (Weissbourd et al 2014). To further improve spread, we pursued a 

strategy wherein a synthetic glycoprotein is created from the “head” of CVS-11(G) and the “tail” 

of SAD-B19(G), thus preserving the ability of the glycoprotein to bind to RABV M protein and 

form a functional virion while altering the receptor affinity of the resulting virion.  Roughly, this 

lead to a 10-fold increase in total trans-synaptic spread. (Figure 2.11). Notably, the increase in 

contralateral spread lagged far behind the increase in ipsilateral, implying either a bias for class 

(e.g., cortical lamina) or projection length of pre-synaptic neurons. This is addressed in more 

depth in Part 3. 
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Figure 2.11: representative image from CVS*B19(G) complementation of first-generation 

RABVΔG; retrograde labeling from dorsal striatum, in A2AR-Cre animal, showing cortical cells 

projecting onto striatopallidal neurons. Note the relative ratio of ipsilateral to contralateral labels 

 

Because our experiments relied on the use of a complementation AAV which expresses a 

nuclear GFP reporter (histone2B-GFP fusion), we were able to count primary starter neurons and 

normalize secondary presynaptic counts to starter counts. 
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Figure 2.12: full anatomical projection map of cortical input to direct-pathway medium spiny 

neurons. ‘X’ marks primary starter infection. Data was hand-scored on 0-100 intensity scale, and 

averaged across 3 animals for each condition. 
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Figure 2.13: full anatomical projection map of cortical input to indirect-pathway medium spiny 

neurons. (top) Direct (bottom) Indirect. ‘X’ marks primary starter infection. Data was hand-

scored on 0-100 intensity scale, and averaged across 3 animals for each condition. 

 

 

In a final set of experiments, we repeated our anatomical investigation using the complete 

CVS-N2c system described in Part 3. Based on the significant increase in trans-synaptic spread, 

we arrived at new conclusions regarding the level of cortical innervation of striatonigral and 

striatopallidal neurons.  A key feature in our analysis relative to previously published work is 
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that our data cover approximately 60,000 labeled cortical neurons vs 200 as seen in Wall et al. 

We saw a significant shift in prefrontal and motor areas towards the direct-pathway striatonigral 

neurons. Somatosensory areas, in particular barrel cortex, favored striatopallidal connections 

(Figure 2.12) 

 

Earlier Results from Wall, et al. (2013) using legacy RABVΔG 

 

In the course of the study presented above, another report emerged describing the cortico-

striatal circuit.  Wall et al. used the first-generation rabies tracing tools based on SAD-B19 to 

trace relative cortical synaptic contact to striatonigral and striatopallidal neurons.  The published 

data showed the number of secondary neurons per animal (presumably spread from hundreds of 

primary neurons) was only in the range of 150-200.  Using the mono-synaptic tracing system 

first seen in Wickersham et al (2007), they created a priming infection in the central dorsal 

striatum (Figure 2.14), and followed that with pseudotyped rabies infection which spread to 

presynaptic sites. This was the first published attempt to map presynaptic partners for both 

striatonigral and striatopallidal neurons. 

The key result of their inquiry was that, for most cortical areas, the relative outputs are 

balanced across both striatal pathways. The largest differences are seen among the midline 

cortical areas, with a strong preference among primary motor cortex for striatopallidal neurons 

and among the more midline areas (retrosplenial, cingulate) for striatonigral (Figure 2.15, 2.16, 

2.17, 2.18). 

Traditionally, the dorsal striatum in rodents is segregated in lateral and medial extents, 

which correspond to anatomically distinct anatomical components of primate striatum (putamen 

and caudate, respectively).  However, Wall et al. deliberately chose to probe a central striatal 
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site, which may obscure cortico-striatal organization that is better delineated within the 

traditional structures. 

 

 

 

 
 

Figure 2.15: location of primary starter infection within dorsal striatum, the presumed locus of all 

presynaptic labeling shown in the following figure. These priming infections are more medial 

and more ventral than that seen in Figure 2.12, by approximate 500um in both directions.  (from 

Wall et al., 2013) 
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Figure 2.16: relative map of inputs onto medium spiny neurons in dorsal striatum (from Wall et 

al., 2013) 
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Figure 2.17: cortico-striatal input biases. p-values removed, error bars are 1 SEM (modified from 

Wall et al. 2013) 

 
 

Figure 2.18: relative density of cortico-striatal projection to direct-pathway striatal neurons, 

based on Wall et al. (2013). ‘X’ marks the primary infection (Franklin-Paxinos mouse atlas; 

projection data as interpreted from Wall et al.) 

 

 

Notes and Conclusions on the updated cortico-striatal projection map 

 

Transgenic TVA is not efficiently expressed at axon terminals, and thus does not 

efficiently support uptake of RABVΔG when pseudotyped with EnvA. This is both a restriction 
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and feature. As a feature, it means that we do not have to account for low-levels of expression of 

Cre in cortical neurons. As a restriction, it keeps us from attempting to distinguish the subclass of 

direct-pathway neurons that make substantial contact in GPe from those that make little or no 

contact. We could find no difference in efficiency of uptake of SAD-B19 vs. CVS-N2c when 

pseudotyped with EnvA. Injections of pseudotyped virus into the terminal fields did not sustain 

infection in the striatum. 

We labeled 300-fold more cortical neurons, a number which is so different that it is 

difficult to ascertain or even assert that our results are comparable. It is entirely possible that the 

spread of rabies infection depends on non-linear thresholds which are established by the nature 

of the underlying connectivity. For instance, it may be that the new method of CVS*B19(G) 

complementation crosses a “reliability” threshold or activity threshold such that synaptic biases 

inherent to SAD-B19 are overcome, or vice-versa, that CVS*B19(G) exploits a certain special 

class of synapses and misrepresents, as a sample, total synaptic input. We offer no evidence that 

our method fixes biases inherent to the original method, nor do we offer evidence that our 

method has biases not in the original method. 

Regardless, our results contain several significant departures as compared to Wall et al.: 

the dramatic increase in presynaptic labeling, the reduction in animal-to-animal variability, and 

the discovery that cortical neurons do not seem to exist in specifist subpopulations—at least not 

if one considers the direct- and indirect-pathways as the dominant organizing feature of the 

striatum. Let us deal with each of these departures separately. 

First, the dramatic increase in presynaptic labeling strongly hints at the truth of the 

conjecture that cortex completely “maps” (in the sense of mathematical project) the striatum. 

Somewhat surprisingly, despite some variability in the priming infection, the presynaptic maps 
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were actually less variable. We would have expected that a dramatic increase in spread would 

magnify the differences in cortical regional preferences, regardless of pathway.  Seen in this 

light, it is clearer now that the ipsilateral projection dominates the contralateral projection and 

that this effect grows moving from “later” processing areas in anterior cortex as compared to 

“earlier” areas in posterior cortex. One striking exception to this rule is the strong bilateral 

projection from gustatory cortices (lateral insular AI and GI). The other sensory modalities do 

not share this bilaterality, suggesting that gustatory information is mixed into a wide range of 

cortical output presented to the striatum. Given the role of the striatum in processing and 

responding to dopaminergic reward signals (Schultz 2002), and the primacy of food as reward, 

this makes some sense. 

Intriguingly, there is a subtle but consistent bias for stronger contralateral connectivity to 

the direct pathway. If those neurons, especially in motor areas, are similarly bias-connected to 

direct pathway neurons in the opposing hemisphere, then we suggest a model that optimizes for 

simultaneous activation (rather than suppression) of contralateral motor programs, based on the 

evidence that direct pathway activation promotes motor initiation. 

The data is clear, however, that exclusive specificity of connectivity (direct- or indirect-

only inputs) does not exist. This strongly suggests that medium spiny neurons are performing 

calculations with mixed information and that synaptic weights and plasticity in the striatum of 

those weights are a fundamental part of controlling skilled motor activity. 
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Problems exposed, opportunities to improve cortico-striatal map 

 

Both the original investigation by Wall et al. as well as our two similar experiments using 

updated viruses leave significant open questions and expose problems in the use of tracing tools 

which map genetically-identified neural circuits. First, within the striatum, there is very high 

animal-to-animal variability in cortical projections as seen from similar striatal locations.  

Second, bulk delivery of AAV used for complementation almost always spans across functional 

boundaries within the striatum and blurs what could be a strong organization of inputs within 

functional subzones of dorsal striatum. Third, ideal comparisons in this either/or system, should 

leverage the two hemispheres to make intra-animal comparisons of cortical innervation of 

striatonigral and striatopallidal neurons. 

Figure 2.8 proposes four different scenarios that a map of the cortico-striatal projection 

should attempt to answer. Only by combining fluorescent labels with activity reporters such as 

GCaMP and manipulation reagents such as channelrhodopsin will we able to satisfactorily 

address each scenario. In particular, the scenario wherein cortex makes equivalent number of 

synapses onto each of the two striatal populations, but with different synaptic weights, requires 

the use of tools which manipulation the functional output of cortical neurons. 

To improve these maps, we propose that: 

1) Priming infection be limited to less than 10 neurons.  The sparsity of cortico-striatal 

connectivity described extensively in the literature (see summary in Dudman & Gerfen 

2015) is likely overcome when the priming infection increases to hundreds of neurons. 

2) Additional pseudotypes of RABVΔG be used, deploying EnvB coats in addition to EnvA 

in use today. The dual population of striatal neurons is the ideal scenario for dual 

EnvA/EnvB tracing. The biggest obstacle to this approach is the lack of alternative 

conditional recombinase mutants, such as Flpo under the control of A2AR promoter. 
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3) Definitive average synapse number for striatonigral and striatopallidal neurons be 

established.  It is difficult to assign value to relative innervation of each striatal 

population when the total innervation is unknown. 

4) Functional zones with the striatum be mapped independently.  The organization proposed 

by Voorn et al (2004) should be followed. This implicitly requires (1) above. 

 

 

It is important to note that while our investigation into the nature of the cortico-striatal 

map focused on outputs and inputs associated with skilled movement, we believe this is only a 

means of attacking the overriding mystery: are cortex and striatum so synaptically and 

functionally intertwined that we ought to consider cortico-striatal processing as another “layer” 

to add to the canonical six-layer cortex. 
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Part 3. Updating deletion-mutant rabies: improving 

trans-synaptic spread 
 

Virally-based trans-synaptic tracing technologies are powerful experimental tools for 

neuronal circuit mapping. The glycoprotein-deletion variant of the SAD-B19 vaccine strain 

rabies virus (RABV) has been the reagent of choice in monosynaptic tracing, since it permits the 

mapping of synaptic inputs to genetically marked neurons. Since its introduction, new helper 

viruses and reagents that facilitate complementation have enhanced the efficiency of SAD-B19ΔG 

trans-synaptic transfer, but there has been little focus on improvements to the core RABV strain. 

Here we generate a new deletion-mutant strain, CVS-N2cΔG, and examine its neuronal toxicity 

and efficiency in directing retrograde trans-synaptic transfer. We find that by comparison with 

SAD-B19ΔG, the CVS-N2cΔG strain exhibits a reduction in neuronal toxicity and a marked 

enhancement in trans-synaptic neuronal transfer. We conclude that the CVS-N2cΔG strain 

provides a more effective means of mapping neuronal circuitry and of monitoring and 

manipulating neuronal activity in vivo in the mammalian central nervous system. 

Introduction 

  

The quest to understand the organization and function of neural circuits has been aided by 

the development of genetic techniques that link neuronal connectivity and animal behavior. 

Recombinant viruses have emerged as powerful tools for analyzing circuit structure and function 

(Nassi et al., 2015). When used with genetic markers for a large repertoire of neuronal types, 

recombinant trans-synaptic viruses permit the construction of precise maps of synaptic input and 

output, and provide an entry point for identification and manipulation of targeted neurons. The 

efficacy of such viruses depends on three main features: selectivity of expression in pre-defined 
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neuronal classes, long-term neuronal viability, and efficient marking of neuronal inputs or 

targets. 

 

Rabies virus- (RABV) based techniques have achieved particular prominence in circuit 

mapping (Coulon et al., 1989, Ugolini, 2010) because they enable retrograde-, and for primary 

sensory neurons anterograde-, trans-synaptic neuronal tracing (Ugolini, 1995; Zampieri et al., 

2014). Moreover, the use of glycoprotein [G] deletion-mutant RABVΔG restricts viral budding 

and transfer, permitting selective mapping of first-order presynaptic neurons (Wickersham et al., 

2007a,b). First-generation RABVΔG tools, based largely on the attenuated vaccine strain SAD-

B19 (Schnell et al., 1994; Wickersham et al., 2007b), have two significant limitations: 

inefficiency of trans-synaptic transfer and neurotoxicity with longer-term infection (Schnell et 

al., 2009; Callaway and Luo, 2015; Ghanem and Conzelmann, 2015) (see schematic Figure 

3.1A). Toxicity could reflect high levels of viral gene expression combined with inherent 

mechanisms for stabilizing viral glycoprotein (Morimoto et al., 2000; Palusa et al., 2012). 

Limitations to the efficiency of viral transfer could, in turn, be a function of weak viral 

neurotropism (Schnell et al., 2009; Conzelmann and Hagendorf, 2011). To address these 

limitations, we have explored whether the use of a different RABV strain might reduce toxicity 

(see Part 4) and achieve improved trans-synaptic transfer - permitting more accurate analysis of 

the organization of neural circuits in the mammalian central nervous system (CNS).  

 

Many studies have documented laboratory RABV strains that exhibit varying degrees of 

pathogenicity. These strains range from virulent, highly neurotropic and neuroinvasive challenge 
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viruses to apathogenic vaccine strains which have almost completely lost their neurotropism and 

neuro-invasiveness (Finke and Conzelmann, 2005; Jackson, 2013; Dietzschold et al., 2008). 

These laboratory strains exhibit predictable tropism and transmission speed, and are termed 

“fixed” viruses. The vaccine strain SAD-B19 was selected for its thermal stability, high titer in 

cell culture, low residual pathogenicity in small rodents and immunogenicity in vivo (Geue, et 

al., 2008) and was adopted as a neural circuit tracer (Kelly & Strick, 2000). In a search for 

alternative RABV strains, we focused our attention on “fixed” strains that have been selected for 

neuronal affinity and rapid transport in vivo, potentially making them better suited than vaccine 

strains for the analysis of neural circuitry. Amongst these fixed strains, the challenge virus CVS-

N2c exhibits strong neurotropism and reduced cytotoxicity (Morimoto et al., 1998; Ugolini, 

2010; Conzelmann and Hagendorf, 2011) and has been used previously, in a replication-

competent form, for multisynaptic circuit mapping in primates (Hoshi et al., 2005).  In addition, 

the availability of reverse-genetically rescued CVS-N2c (Wirblich and Schnell, 2011) enables 

the design of replication-incompetent strains that can be rendered non-virulent and potentially 

more suitable for laboratory usage. 

 

We report here the features of a glycoprotein-deficient CVS-N2cΔG strain derived from a 

virulent and highly neurotropic parental strain. Direct comparison with SAD-B19ΔG reveals that 

CVS-N2cΔG exhibits lower levels of neurotoxicity and enhanced retrograde trans-synaptic 

transfer. The enhanced efficacy of CVS-N2cΔG does not seem to be restricted to specific classes 

of neuron or circuits, in that we detected enhanced trans-synaptic transfer in both cortico-striatal 

and spinal premotor circuits. Neuronal viability is well maintained following infection by CVS-

N2cΔG variants that express proteins that permit monitoring and manipulation of neurons, as 
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demonstrated in the septo-hippocampal pathway and in the parabrachial projection to the ventral 

tegmental area (VTA).  The new CVS-N2cΔG strain maintains compatibility with many of the 

helper viruses and complementation constructs used for SAD-B19, and thus constitutes a more 

effective reagent with which to probe the organization, physiology and behavioral relevance of 

neural circuits in the mammalian CNS. 
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Results 

 

Recovery and pseudotyping of CVS-N2cΔG  
 

To provide a RABV strain for comparison with SAD-B19 derivatives, we explored the 

properties of a deletion mutant CVS-N2c strain, designated CVS-N2cΔG, in which the 

glycoprotein gene (G) has been removed and complemented in trans by the deleted G gene, to 

permit retrograde monosynaptic transfer. The strong neurotropism of CVS-N2c may reflect the 

adaptation of virus to continued passage in mouse brain and cultured neuronal cell lines 

(Morimoto et al., 1998, 1999).  We rescued and amplified virus exclusively in Neuro2A 

neuroblastoma cells, as a proxy for replication in primary neurons (see Experimental 

Procedures). Two Neuro2A-based lines were created for packaging: one expressing CVS-

N2c(G) for use in amplification (Figure 3.1B), and the other expressing EnvA for use in 

pseudotyping (Figure 3.1C).  To monitor viral transfer and neuronal viability, we created variants 

of CVS-N2cΔG expressing the fluorescent reporters dsRed or GFP (Figure 3.1B; Supplementary 

Figure 3.1).  We noted that the maximum attainable titer of CVS-N2cΔG using our packaging 

cells was always lower than that achieved with SAD-B19ΔG (Supplementary Table 3.1).  

 

Enhanced trans-synaptic transfer of CVS-N2cΔG virus 

We compared the efficiency of retrograde monosynaptic transfer of the CVS-N2cΔG and 

SAD-B19ΔG strains under similar infection conditions in cortico-striatal and spinal premotor 

circuits, assessing the spread of these viruses from primary infected, to trans-synaptically-

infected secondary neurons. 
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To achieve selective monosynaptic RABV transfer we used two priming (helper) 

reagents introduced in trans, one to complement the deleted RABV glycoprotein (G) gene and 

the other to express the pseudotyping receptor TVA. To induce complementation, we developed 

Cre-conditional adeno-associated viruses (AAV) expressing RABV(G) and a nuclear marker, 

human histone2B-GFP (nGFP) (Kanda et al., 1998; Sun et al., 2014). Two versions of the virus, 

designated AAV-FLEX-nGFP-2A-RABV[G], were used to express either SAD-B19(G) or CVS-

N2c(G) – proteins identical in length but differing in 60 amino acid residues. After Cre 

recombination, both viruses directed glycoprotein expression to similar levels, assessed by 

immunofluorescence (Supplementary Figure 3.2). Selectivity was established by targeting 

neuronal subtypes for EnvA/TVA pseudotyped RABVΔG infection (Wickersham et al., 2007b) 

using a Cre-conditional virus, AAV-FLEX-TVA-mCherry, to achieve TVA receptor expression 

(Watabe-Uchida et al., 2012).  

 

To provide a background control we injected all viruses into wild-type mice and assayed 

non-targeted expression. Neither of the AAV-FLEX-nGFP-2A-RABV[G] variants exhibited 

spontaneous recombination or expression, as revealed by complete absence of nGFP+ neurons. 

We detected little to no “leaky” expression of TVA from our AAV-FLEX-TVA-mCherry, as 

revealed by the detection of <5 RFP+ neurons after over-infection with either RABVΔG-

dsRed[EnvA] virus, indicating that EnvA/TVA infections were highly selective. As a final 

control, a separate injection of EnvA-pseudotyped CVS-N2cΔG into the spinal cord resulted in a 

maximum of one infected neuron per animal, supporting the selectivity of infection (for viral 

controls see Experimental Procedures). 
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To assess trans-synaptic transfer efficiency, neuronal infection with a mixture of the TVA 

and RABV(G) priming viruses (Figure 3.2A-C) was followed two weeks later by injection of 

matching EnvA-pseudotyped RABVΔG-dsRed, either SAD-B19ΔG or CVS-N2cΔG. We used the 

maximum attainable titer for both the SAD-B19ΔG and CVS-N2cΔG strains (Supplementary Table 

1). Primary neurons were defined by co-expression of nGFP from RABV(G) priming virus and 

dsRed driven by RABVΔG, whereas trans-synaptically infected secondary neurons expressed 

dsRed alone. After an additional 10 days post-infection, primary and secondary neurons were 

counted and the extent of transfer determined from the ratio of secondary to primary infection 

numbers.  

 In the cortico-striatal pathway, medium spiny neurons (MSN) of the striatum receive 

extensive excitatory input from cortical projection neurons (Gerfen and Bolam, 2010), prompting 

us to compare the degree of retrograde trans-synaptic transfer from striatal to cortical neurons. 

To restrict priming infection, we used mice expressing Cre-recombinase under the control of the 

adenosine receptor 2A (Adora2A) promoter, which is active in approximately half of all MSNs 

(Gong et al., 2007) (Figure 3.2B,C). In each animal, we counted all primary labeled neurons and 

sampled secondary labeled neurons from the same five cortical regions. For both RABVΔG 

strains we observed a relatively linear increase in transfer ratio as the number of primary neurons 

increased (primary/secondary neuronal numbers: CVS-N2cΔG: 34/434, 57/810, 126/1240; SAD-

B19ΔG: 126/44, 132/58, 450/400). These transfer counts indicate that CVS-N2cΔG virus exhibits a 

22-fold higher (range 11- to 40-fold) incidence of retrograde trans-synaptic transfer into cortical 

projection neurons than SAD-B19ΔG virus (Figure 3.2D-F).  
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MSNs represent a near-homogenous and densely interconnected neuronal population, 

such that local intra-striatal transfer of RABV is expected. But in this circuit the determination of 

local viral transfer with current methods is not possible, for two reasons.  First, TVA-mCherry is 

not detectable with native fluorescence (Watabe-Uchida et al., 2012; Krashes et al., 2014). 

Nevertheless, antibody amplification of the mCherry signal will likely cross-react with RABV 

encoded dsRed, making primary vs secondary neuron identification ambiguous. Second, and 

more importantly, direct and trans-synaptic infection by RABVΔG cannot be distinguished within 

the population of TVA-expressing striatal cells, making secondary infection counts unreliable. 

 

This problem led us to evaluate the efficiency of trans-synaptic viral transfer in a spinal 

circuit within which local transfer can be cleanly assayed, permitting the analysis of viral transfer 

as a function of axonal projection distance. We focused on spinal premotor circuits, where 

primary infected motor neurons transfer virus to premotor interneurons. Since motor neurons are 

anatomically and genetically distinguishable from surrounding spinal interneurons, the use of 

selective Cre mouse lines makes it possible to distinguish primary EnvA/TVA labeled motor 

neurons from both local and distant secondary trans-synaptically-infected interneurons. 

 

To target spinal motor neurons, we used mice expressing Cre under control of the choline 

acetyltransferase (ChAT) promoter. Paired TVA and RABV(G) priming viruses were injected 

into the ventral horn of L3 and L4 lumbar spinal segments, followed two weeks later by L3 and 

L4 injection of RABVΔG-dsRed[EnvA] (Figure 3.3A). Primary infection was limited to motor 

neurons, as identified by their distinct morphology and ventral position and nuclear expression of 
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GFP by RABV(G) priming virus. We compared the total number of secondary infected neurons 

as a function of primary starter cell number for each strain, and found that SAD-B19ΔG was 

transferred to 7.0 ± 0.5 secondary cells (mean ± s.e.m.; Figure 3.3E), a number comparable to 

that found in previous studies using related helper viruses (Watabe-Uchida et al., 2012; Sun et 

al., 2014; Pollak Dorocic et al., 2014; Ogawa et al., 2014). By comparison, each CVS-N2cΔG 

primary neuron yielded 60.2 ± 16.3 secondary neurons (Figure 3.3E), close to an order of 

magnitude increase in the efficiency of total trans-synaptic transfer.  

 

We also analyzed the transfer ratio as a function of the distance of secondary neurons 

from the injection site. At local lumbar levels, we detected a ~80% reduction in primary 

infection by CVS-N2cΔG compared to SAD-B19ΔG, likely a result of the lower initial CVS-

N2cΔG titer (Figure 3.3B,E,F, Supplementary Table 1). Despite this difference, the total number 

of secondary infected neurons detected at local lumbar levels was similar with both viral strains 

(Figure 3.3B,F), indicative of a ~4-fold enhancement from CVS-N2cΔG mediated local trans-

synaptic transfer. But for more distant interneurons found in thoracic and cervical spinal cord 

segments and in the hindbrain, pairwise comparison revealed a 16- to 50-fold enhancement in 

efficiency of CVS-N2cΔG- over SAD-B19ΔG-mediated transfer (Figure 3.3C,D,G).  

 

Thus, trans-synaptic transfer of the CVS-N2cΔG strain exhibits an order of magnitude 

enhancement over SAD-B19ΔG, and an especially strong improvement in transfer efficacy into 

spinal premotor neurons with distant somata. 
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Restricted trans-synaptic transfer of CVS-N2cΔG  

Resolving whether the transfer of CVS-N2cΔG is restricted to trans-synaptic means is 

critical to the interpretation of anatomical tracing and connectivity maps. One report offered 

some evidence of synaptically restricted spread for SAD-B19 (Wickersham et al., 2007b). But 

the lack of conclusive evidence that any RABV strain is transferred exclusively across synapses 

makes it crucial to resolve whether CVS-N2c virus spreads by additional, non-synaptic, means.  

 

We tested the exclusivity of CVS-N2c transfer at proprioceptive sensory synapses with 

spinal motor neurons, given that information on the normal pattern of connectivity in this circuit 

is available at high enough resolution to match experimental data with predictions about the 

selectivity of viral transfer. Within this circuit, proprioceptive sensory afferents make direct 

connections with spinal motor neurons that project to the same muscle (forming homonymous 

connections) and weaker connections to motor neurons innervating muscles with synergistic 

functions, termed heteronomous connections (Mendelsohn et al., 2015; Frank and Westerfield, 

1983). In addition, despite the proximity of sensory terminals and motor neuron dendrites, 

proprioceptive sensory neurons do not form direct connections with motor neurons that innervate 

antagonistic muscles (Figure 3.4A,B; Eccles et al., 1957; Frank and Westerfield, 1983; Hongo 

et al., 1984; Mendelsohn et al., 2015).  The conservation of sensory-motor synaptic selectivity 

across mammalian species provided the basis for a ‘homonymous vs antagonist’ assay to test the 

exclusivity of synaptic viral transfer in mice.  

 

http://www.sciencedirect.com/science/article/pii/S0896627315005127#bib24
http://www.sciencedirect.com/science/article/pii/S0896627315005127#bib24
http://www.sciencedirect.com/science/article/pii/S0896627315005127#bib24
http://www.sciencedirect.com/science/article/pii/S0896627315005127#bib30
http://www.sciencedirect.com/science/article/pii/S0896627315005127#bib30
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To examine the exclusivity of CVS-N2c∆G transfer we examined sensory-motor 

connectivity between ankle extensor gastrocnemius [GS] and ankle flexor tibialis anterior [TA] 

antagonist circuits. Motor neurons that innervate these two muscle groups possess dendrites that 

are interleaved in the ventral spinal cord (Figure 3.4B), permitting the detection of potential non-

synaptic routes of transfer. We injected paired TVA and CVS-N2c(G) priming viruses into the 

GS muscle of ChAT-Cre mice, directing CVS-N2c(G) and TVA expression selectively in GS 

motor neurons (Figure 3.4C). Two weeks later EnvA-pseudotyped CVS-N2cΔG-dsRed was 

injected into spinal segments L3-L6, selectively infecting GS motor neurons. We then examined 

the pattern of fluorescent protein labeling in peripheral sensory endings derived from 

homonymous GS and antagonist TA group Ia proprioceptive sensory afferents.  

 

We detected dsRed-labeled sensory endings in contact with intrafusal muscle spindle 

fibers in 75% of GS muscles, but did not observe any dsRed-labeled spindle-associated sensory 

endings in the TA muscle (4 mice, n = 8 muscles; Figure 3.4D,E). This finding implies a tightly 

controlled and exclusively synaptic process of CVS-N2c∆G transfer from motor neurons to 

sensory terminals that form monosynaptic contacts with their target motor neuron pool. 
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FIGURE 3.1. Construction and Packaging of CVS-N2cΔG for monosynaptic tracing 

The CVS-N2c deletion mutant was created in the manner pioneered by Wickersham et al 

(2007a,b). A key difference is the use of a neural cell line for viral packaging. (A) Schematic 

illustrating monosynaptic restriction of viral spread from starter to secondary neurons. (B) CVS-

N2c genome and recombinant CVS-N2cΔG vector with XmaI/NheI insert restriction sites 

flanking dsRed insert as well as rescued virus expressing dsRed in Neuro2A cells (top) and 

complementation vector expressing CVS-N2c glycoprotein inside murine leukosis virus (MLV) 

(middle) stably transfected into Neuro2A cells for amplification of virus CVS-N2cΔG to create 

the line Neuro2A-N2c(G). Levels of GFP expression correspond to expression of N2c(G) 

(bottom). (C) Complementation vector expressing a chimeric EnvA glycoprotein with short CVS 

glycoprotein tail (top) transfected into Neuro2A cells for packaging of pseudotyped virus. 293-

TVA cells show infection by EnvA-pseudotyped CVS-N2cΔG and Neuro2A and Hek293 cells 

lacking the TVA receptor show no infection by the same virus (bottom).  

  



68 
 

 

 

FIGURE 3.2. Greater trans-synaptic transfer for CVS-N2c than SAD-B19 in the forebrain  

(A) Schematic for cortico-striatal retrograde trans-synaptic infection. Primary neurons in 

striatum infected by conditional AAV expressing RABV(G) and nuclear GFP (histone2B-GFP 

fusion: nGFP) and AAV expressing TVA and mCherry after recombination via germline 

Adora2a-Cre, and re-infected two weeks later by pseudotyped RABVΔG–dsRed[EnvA]. (B-C) 
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Confocal images of primary infection for SAD-B19 and CVS-N2c. Primary cells display both 

nGFP as well as dsRed. (D-E) Representative image of monosynaptic viral spread with 20x 

confocal image inset from anatomical plot showing all RABV+ neurons. (F) Plot of infection 

spread from primary striatal to secondary cortical neurons in 6 mice, 3 for each viral strain. 

Primary infection was marked by expression of both dsRed from RABV and nGFP from the 

AAV complementation vector. Primary infection was constrained to small populations in the 

same region of anterior dorsal striatum. Secondary infection was calculated by sampling the 

same 5 coronal sections from each animal as identified by position relative to Bregma. Pan-

cortical secondary infection is greater, but scales with numbers shown here. 
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FIGURE 3.3. CVS-N2cΔG from lumbar motor neurons shows enhanced trans-synaptic 

spread compared to SAD-B19ΔG 

(A) Schematic of RABV-monosynaptic tracing from lumbar motor neurons. (B-D) 

Representative images for each viral strain showing trans-synaptically transferred infection at 

lumbar (B), thoracic (C) and cervical (D) levels. (E) Total primary to secondary ratios for SAD-

B19ΔG (grey) and CVS-N2cΔG (red). (F,G) Plot of infection spread from primary to secondary 

neurons in 6 mice, 3 for each viral strain, at local lumbar (F), and (G) distant thoracic, cervical 

and hindbrain levels.  
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FIGURE 3.4. Restricted trans-synaptic transfer of CVS-N2cΔG 

(A) Experimental design to examine overlap of GS and TA motor neuron dendrites. (B) 

Fluorescent labeled motor neurons showing overlap of GS and TA dendrites. (C) Assay 
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to test for selective trans-synaptic transfer of RABV. (D) Example images of GS and TA 

muscle spindles showing dsRed positive sensory endings in GS (top) but not TA 

(bottom). (E) Quantitation of labeled sensory endings in GS or TA muscles.  
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Supplemental Information 

 A summary of figures and important controls follows. 

Supplementary Figure 3.1, related to Figure 3.1: Neuro2a cells infected with CVS-N2c∆G.  

Supplementary Figure 3.2, related to Figure 3.1: RABV glycoprotein immunofluorescence 

after transfection with AAV constructs.  

Supplementary Figure 3.3, related to Figures 3.1-3.3: Control experiments for the EnvA-

pseudotyped CVS-N2c∆G and the AAV constructs.  

Supplementary Table 3.1: Titer of viruses used in this study.  

 

 

 

Supplementary Figure 3.1, related to Figure 3.1: Infection of Neuro2A cells with CVS-

N2c∆G.  

Neuro2A cells infected with CVS-N2c∆G, expression after 4 days.  
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Supplementary Figure 3.2, related to Figure 3.1: Glycoprotein expression from AAV 

helpers. (A) Example images of Neuro2A cells infected with AAVs driving B19-G (left) or 

N2c-G (right). (B) Plot of rabies glycoprotein fluorescence intensity.  

 

Supplementary Figure 3.3, related to Figures 3.1-3.3: Selectivity of FLEX AAVs and EnvA-

pseudotyped rabies virus. (A) Injection of AAV-FLEX-nGFP-2A-G into spinal cord of wild-

type mice. (B) Injection of RABVΔG-N2c-dsRed[EnvA] into spinal cord of wild-type mice.  
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Virus 

Type 

Name Gene(s) Titer (units/ml) First 

described 

Estimated 

production 

time from 

rescue 

RABV-

B19 

SAD-B19∆G-GFP GFP 1x109 (WTG) 

1x108 (EnvA) 

Wickersham 

et al. (2007) 

3-4 weeks* 

RABV-

N2c 

CVS-N2c∆G-GFP GFP 3x108 (WTG) 

2x107 (EnvA) 

Here 6-8 weeks 

WTG + 2 

weeks 

RABV-

B19 

SAD-B19∆G-

dsRed 

dsRed 1x109 (WTG) 

1x108 (EnvA) 

Osakada et 

al., 2011 

3-4 weeks* 

RABV-

N2c 

CVS-N2c∆G-

dsRed 

dsRed 2x108 (WTG) 

1x107 (EnvA) 

Here 6-8 weeks 

WTG + 2 

weeks 

RABV-

B19 

SAD-B19∆G-

ChR2-eYFP 

ChR2 & 

eYFP 

1x109 (WTG) 

 

Osakada et 

al., 2011 

3-4 weeks* 

RABV-

N2c 

CVS-N2c∆G-

ChR2-eYFP 

ChR2 & 

eYFP 

1x107 (WTG) 

 

Here 6-8 weeks 

WTG + 2 

weeks 

RABV-

B19 

SAD-B19∆G-

GCaMP6f 

GCaMP6f 2x109 (WTG) 

 

Here, but see 

Osakada et 

al., 2011 for 

B19-

GCaMP3 

3-4 weeks* 

RABV-

N2c 

CVS-N2c∆G-

GCaMP6f 

GCaMP6f 6x107 (WTG) 

 

Here 6-8 weeks 

WTG + 2 

weeks 

AAV2/1 AAV2/1-FLEX-

nGFP-2A-B19G 

HistoneGFP 

and B19G 

2x109 Kaifosh et 

al., 2013 (and 

Addgene 

37452, 2012) 

1 week 

AAV2/1 AAV2/1-FLEX-

nGFP-2A-N2cG 

HistoneGFP 

and N2cG 

2x109 Here 1 week 

AAV2/1 AAV2/1-FLEX-

TVA-mCherry 

TVA and 

mCherry 

2x109 Watabe-

Uchida et al., 

2012 

1 week 

Supplementary Table 3.1: Viral vectors and titers used in this study. Titers are expressed as 

infectious units/ml.  * see Wickersham et al., 2010.  
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Part 4. Updating deletion-mutant rabies: reducing the 

toxicity 
 

 Using the CVS-N2cΔG introduced in Part 3, we also wished to examine its cytotoxic 

properties. As explained previously, one hypothesis holds that rabies “uses stealth” to spread in 

the nervous system (Schnell 2009), and relies on minimizing early immune response. We thus 

hypothesized that a strain of rabies which spreads particularly well would show relatively 

reduced cytotoxic effects. 

Results 

Reduced expression and neurotoxicity of CVS-N2cΔG virus in vitro 

To characterize CVS-N2cΔG for use in functional experiments we examined the level of 

RABV gene expression elicited by the SAD-B19ΔG and CVS-N2cΔG strains. Neuro2A cells were 

infected with RABVΔG-GFP, under conditions in which the multiplicity of infection (MOI) was 

kept below 0.1, to avoid cellular infection by multiple copies of virus. Two days after infection, 

both RABVΔG strains directed GFP expression at similar levels; but after four days, the level of 

GFP expression directed by SAD-B19ΔG was significantly higher than that conferred by CVS-

N2cΔG (unpaired Student’s t-test; p = 0.045, Figure 4.1A-C).  
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We next examined whether the SAD-B19∆G and CVS-N2c∆G strains differed in their 

ability to impose cytotoxic damage to Neuro2A cells. To assess this, we monitored the incidence 

of incorporation of propidium iodide (PI), a cell-impermeable DNA intercalating agent that is 

passively transferred through the plasma membrane of dead or dying cells. In uninfected 

Neuro2A cells, PI labeled 21% of cells, and in Neuro2A cells infected with CVS-N2cΔG-GFP 

22% of cells were PI labeled. But for Neuro2A cells infected with SAD-B19ΔG-GFP, 49% were 

PI labeled (Figure 4.1D-F) (p = 0.037, unpaired Student’s t-test). Thus, SAD-B19ΔG exerts a 

greater toxicity in vitro than CVS-N2cΔG strain, even with a comparatively inert fluorophore. 

 

Manipulating and monitoring neural activity with CVS-N2cΔG virus 

We next compared CVS-N2cΔG and SAD-B19ΔG strains for their ability to express 

proteins to monitor and manipulate neuronal activity. To achieve this, we created RABVΔG 

variants expressing humanized channelrhodopsin2 (hChR2), or a genetically encoded calcium 

indicator, GCaMP6f (Zhang et al., 2006; Chen et al., 2013). In this set of experiments we 

controlled the duration of infection by injecting native-envelope RABVΔG viruses such that they 

directly infected the terminals of projection neurons in cortico-striatal and hippocampal-septal 

circuits. 

 

To explore the utility of SAD-B19ΔG and CVS-N2cΔG as vectors for manipulating neural 

activity through hChR2 expression (Zhang et al., 2006) we first analyzed levels of neurotoxicity 

for each strain. Injection of RABVΔG into the dorsal striatum resulted in retrograde infection of 

cortical projection neurons. After 6 days, SAD-B19ΔG-hChR2-YFP infected neurons exhibited an 
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aberrant neuronal morphology with distal dendrites exhibiting noticeable disruption, and the 

surrounding neuropil containing neuronal debris (Figure 4.2A,C). In contrast, near-normal 

cortical neuronal morphology was observed 6 days after infection with CVS-N2cΔG-hChR2-YFP 

(Figure 4.2B,C). 

 

We examined the ability of RABVΔG-hChR2-YFP expression, to confer photo-

excitability, assaying responses over a four-week period (Figure 4.2D,E,F). Using SAD-B19ΔG-

hChR2-YFP virus, we detected few fully intact cortical neurons after 7 days of infection, 

precluding physiological analysis (6 animals; Figure 4.2A; data not shown). In contrast, photo-

illumination at 473 nm wavelength of cortical neurons infected by CVS-N2cΔG-hChR2-YFP 

reliably elicited action potentials in infected cortical neurons in acute forebrain slices (Figure 

4.2E,F), for up to 28 days after infection. Spike frequency increased with the duration of viral 

expression over the first 10 days (Figure 4.2F,G). Moreover, recordings from nearby YFPoff 

uninfected cortical neurons revealed excitatory postsynaptic currents elicited by presynaptic 

photo-stimulation (Figure 4.2H). Stable whole-cell recordings from CVS-N2cΔG-infected cortical 

neurons were obtained at a rate similar to that of uninfected neurons. Resting potentials (Vm) for 

infected and uninfected cells in the same animal were statistically similar over the infection 

period (-58.7mV ± 2.2, n = 7 versus -56.8mV ± 1.5, n = 16); without a clear trend for changes in 

Vm as a function of infection time. These results document the efficacy of CVS-N2cΔG in 

expressing hChR2 under conditions that permit optogenetic manipulation of neuronal activity. 
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We next assessed the efficacy of CVS-N2cΔG and SAD-B19ΔG as monitors of neural 

activity through expression of GCaMP6f (Chen et al., 2013). In this analysis we focused on 

hippocampal-septal circuits in which locomotion evokes robust hippocampal neuronal activity 

(Somogyi and Klausberger, 2008; Jinno et al., 2007). We first assayed neurotoxicity of each 

RABVΔG strain. Following injection of SAD-B19ΔG-GCaMP6f virus into the medial septum, 

infected hippocampal projection neurons exhibited marked signs of degeneration, most notably 

pronounced blebbing of neuronal processes 10 days after infection (Figure 4.3A,C). In contrast, 

septal neurons infected with CVS-N2cΔG-GCaMP6f for one week exhibited near-normal 

morphology and only a modest disruption at two weeks (Figure 4.3B,C).  

 

The activity of hippocampal-septal projection neurons after retrograde infection with 

CVS-N2cΔG-GCaMP6f was determined through in vivo two-photon Ca2+ imaging (Figure 4.3E). 

We detected hippocampal neuronal GCaMP6f-Ca2+ transients in mice during treadmill 

locomotion, with a tight temporal coincidence in locomotor episodes and neuronal burst activity 

(Lovett-Barron et al., 2014) (Figure 4.3G). In addition, we found that the magnitude of treadmill 

based locomotion-evoked Ca2+ signals recorded from hippocampal-septal projection neurons was 

constant over the first two post-injection weeks (Figure 4.3F). Repeated recordings from 

identified neurons were possible for the entire usable duration of the cranial imaging window, at 

least 17 days post-infection. These findings establish that CVS-N2cΔG confers durable, and 

physiologically non-disruptive, expression of GCaMP6f, permitting analysis of neuronal activity 

in vivo for at least several weeks. 
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FIGURE 4.1. Reduced expression level and cytotoxicity of CVS-N2c compared to SAD-B19 

(A) Neuro2A cells infected by GFP-expressing SAD-B19ΔG or (B) CVS-N2cΔG. (C) 

Intensometric plot of GFP expressed by each RABV strain at 2 and 4 days post-infection, 

normalized to single infected cells. (D) Neuro2A cells infected with SAD-B19ΔG or (E) CVS-

N2cΔG after 4 days and treated with propidium iodide, a proxy marker for cell death at 4 days 

post-infection. (F) Relative cell death after infection by each RABV strain. Error bars in C and F 

represent ± SEM.  
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FIGURE 4.2. CVS-N2cΔG is an effective trans-synaptic vector for optogenetic manipulation 

(A) Confocal image of neurons after 7 days of infection by SAD-B19ΔG virus expressing hChR2-

YFP (cortex). (B) Same proteins via virus CVS-N2cΔG. (C) Assay of cell health by 

morphological irregularity, blebs along proximal dendrites per RABV-infected neuron. (D) 

Schematic of cortico-striatal retrograde infection using CVS-N2cΔG-hChR2-YFP in the dorsal 

striatum in wild type mice and retrograde spread into cortex (top) and patch-clamp recording of 

infected cortical neurons (bottom). (E) Schematic of whole-cell current-clamp recordings 

obtained from neurons in acute cortical slices (top). In vitro two-photon images of a recorded 

cortical neuron retrogradely infected by CVS-N2cΔG-hChR2-YFP (green) and filled with 

fluorescent dye from patch pipette (red). (F) Example hChR2-photostimulation-evoked voltage 

responses recorded from CVS-N2cΔG-hChR2-YFP-infected neurons at 6, 10, 14, and 28 days 

post infection as seen in (B). (G) Spike probability at each 6/10/14/21/28 DPI showing 

increasing effectiveness of hChR2 expressed by the CVS-N2cΔG vector. (H) Schematic and in 

vitro two-photon image showing CVS-N2cΔG-infected (green) neuron in the vicinity of a non-

infected cortical neuron filled with red fluorescent dye via patch pipette (top). Example averaged 

postsynaptic responses recorded from the non-infected neuron confirming effective synaptic 

release at 8 days post infection (bottom). 
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FIGURE 4.3. CVS-N2cΔG is an effective trans-synaptic vector for optogenetic monitoring 

(A) Confocal image of neurons after 10 days of infection by SAD-B19ΔG virus expressing 

GCaMP6f (medial septum). (B) Same protein via virus CVS-N2cΔG. (C) Assay of cell health by 

morphological irregularity, blebs along proximal dendrites per RABV-infection neuron. (D) 

Schematic of infection of CVS-N2cΔG-GCaMP6f in medial septum and retrograde spread to the 

dorsal hippocampus. (E) Schematic of head-fixed two-photon imaging of dorsal hippocampus of 

mouse running on an environmentally enriched treadmill (top), in vivo two-photon image of an 

example septal projecting neuron imaged for activity in the area CA1 of the dorsal hippocampus 

(middle), and time-series of neural activity, expressed as relative changes in GCaMP6f 

fluorescence (𝛥F/F, black traces) of neuron during running bouts (grey traces) on belt, imaged 

via in vivo two-photon microscopy (bottom). (F) Population summary of the magnitude of 

running-evoked of Ca2+ signals indicating comparable responses over extended periods after 

infection (4-6 DPI: n = 13 cells in n = 2 animal; 10-17 DPI: n = 31 cells in n = 3 animals, 

Wilcoxon-Mann-Whitney two sample rank test, p = 0.592). (G) In vivo two-photon image of the 

same septal-projecting neuron in area CA1 of the dorsal hippocampus (left), and GCaMP6f 

fluorescence Ca2+ signals (𝛥F/F, black traces) recorded from the same neuron during running 

(grey traces) at 11, 14, and 17 days post-injection (right). Error bars in F represent ± SEM.  
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Part 5. Updating deletion-mutant rabies: alternate 

tools 

 
 Leveraging the same CVS-N2cΔG rabies strain introduced in Part 3, we created several 

new variants with utility to experimental neuroscience.  Here is describe versions which can be 

used to neuroanatomical investigations at the level of electron microscopy, as well as versions 

which can be used to drive genetic recombination in other viruses and germline mutants. 

 

 

Results 

 

Conditional recombination with Cre and Flpo: 

CVS-N2c expression level is sufficient to direct transgene recombination 

CVS-N2cΔG infection directs comparatively low levels of gene expression, and thus it is 

unclear whether Cre or Flpo proteins can be expressed at concentrations sufficient to exert 

efficient enzyme-mediated recombination. To address this issue we constructed -mCherry-2A-

Flpo and -mCherry-2A-Cre driver viruses for CVS-N2cΔG transduction.  CVS-N2cΔG-mCherry-

2A-Flpo virus was injected into the lumbar spinal cord of mice harboring a Flp-GFP reporter 

(Figure 5.1A) and the incidence of retrogradely-infected neurons was examined in thoracic 

spinal cord. Germ-line expression of GFP served as an indicator of recombination, and was 

detected in all neurons infected with CVS-N2cΔG-mCherry-2A-Flpo, revealed by expression of 

mCherry (Figure 5.1B). Thus, the level of Flpo expression achieved with CVS-N2cΔG 

transduction is sufficient to direct target gene recombination in an efficient manner. 

 

In a similar manner, we investigated whether CVS-N2cΔG directs Cre-mediated 

recombination. We injected CVS-N2cΔG-mCherry-2A-Cre into the ventral tegmental area (VTA) 
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of wild type mice, and in parallel injected a Cre-conditional AAV expressing GFP (AAV-FLEX-

GFP) into the parabrachial nucleus (PBN) (Figure 5.1C). We found that ~50% of mCherry+ 

RABV-infected neurons expressed GFP (Figure 5.1D), consistent with the sparsity of infection 

of PBN neurons and indicative of the efficacy of Cre expression. 

 

Electron-microscopy using APEX2 

 

 A recurring problem when performing tracing experiments with electron microscopy 

(EM) is the degeneration of neural tissue, and synapses in particular, during preparation of 

samples for imaging. Attempting to register the same neurons across light and confocal 

microscopy with EM is a Herculean task, as the preparation of samples degrades optical signals 

at the same time that it degrades tissue. One solution to this is the use of a unified reporter that 

allows for detection without extensive preparation. Genetically expressed proteins which can be 

directly detected with EM following minimal preparation include peroxidases such as HRP. 

However, HRP is not efficiently expressed (in proper conformation) by mammalian neurons. 

Alternative peroxidases offer that possibility (Matrell et al., 2012; Lam et al., 2014). We 

generated new CVS-N2cΔG rabies viruses that express the engineered ascorbate peroxidase 

APEX2. This new class of EM reporters are sensitive to expression levels, so we sought to 

determine whether CVS-N2cΔG-APEX2-Venus would be expressed at too low a level to be 

detected or such a high level that it induced cytotoxicity and dysmorphia. 

 We tested the virus in cultured HEK-293 cells as well as in vivo, and found that it 

expressed well and yielded both detectable fluorescence as well as EM-detectable membrane 

signals (Figure 5.2) 
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FIGURE 5.1. CVS-N2cΔG drives Cre- or Flp-dependent recombination 

(A) Schematic depicting injection of CVS-N2cΔG-mCherry-Flpo and recombination in Frt-

STOP-Frt-GFP mouse line. (B) Confocal images of thoracic spinal cord showing recombination 

in retrogradely infected neurons. (C) Schematic depicting injection and recombination by CVS-

N2cΔG-mCherry-Cre. (D) Images in parabrachial nucleus (PBN) showing neurons after 

recombination and expression from a local AAV-FLEX-GFP injection and a corresponding 

infection in VTA and retrograde uptake of Cre-expressing virus by PBN neurons. 
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FIGURE 5.2: electron micrograph of a neuron infected with CVS-N2cΔG-APEX2-Venus 

cellular membrane is well-preserved, allowing for fine-scale reconstruction of synaptic contacts 
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Part 6. CVS-N2c-ΔG and future innovations for rabies 

and viral tools 
 

 

Discussion of CVS-N2c-ΔG investigation 

 

Recombinant viruses facilitate the anatomical and functional analysis of mammalian 

neural circuits. We have explored the features of a recombinant strain of rabies virus, CVS-

N2cΔG, which permits monosynaptic tracing from genetically-defined neurons, as with the 

widely-used SAD-B19ΔG strain. CVS-N2cΔG exhibits a marked reduction in neurotoxicity, both 

in vitro and in vivo, facilitating its application in monitoring and manipulating neural circuits. 

Moreover, direct comparison of CVS-N2cΔG and existing SAD-B19ΔG strains reveals that CVS-

N2cΔG provides at least an order of magnitude enhancement in trans-synaptic transfer to 

presynaptic neurons, with an even greater enhancement in transfer to long-range inputs (Table 

1). CVS-N2c-based tools may therefore enable access to circuits that have so far proven 

refractory to RABV interrogation.  

 

Enhanced trans-synaptic tracing with CVS-N2cΔG. 

Two major drawbacks in the application of attenuated RABV-based tools are high 

neurotoxicity (Morimoto et al., 1999) and inefficiency of trans-synaptic transfer (Callaway and 

Luo, 2015). Early generations of monosynaptic RABV-based vectors were primarily variants of 

the attenuated vaccine strain SAD-B19 (Schnell et al., 1994; Callaway and Luo, 2015; Ghanem 

and Conzelmann, 2015; Wickersham et al., 2007a,b), which is weakly neurotropic and strongly 

immunogenic. By contrast, most virulent RABV strains are highly neurotropic, neuroinvasive 

and, somewhat counter-intuitively, exhibit reduced immunogenicity and neurotoxicity by virtue 
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of their sequestration in neurons and evasion of surveillance by immune cells (Schnell et al., 

2009). 

 

The contrasting features of the SAD-B19 and CVS-N2c strains may stem from 

differences in growth and selection conditions. SAD-B19 was developed as a vaccine vector 

through serial passaging on non-neuronal cells. In contrast, CVS-N2c was developed through 

exclusive passaging in neonatal mouse brain and murine neuroblastoma cells as a challenge virus 

for testing RABV vaccines (Morimoto et al., 1998). As a result, CVS-N2c is highly 

neuroinvasive, has selective tropism for neuronal cells, lower replication and protein expression, 

and faster transport through the CNS (Bostan et al., 2010). These traits diverge from those of 

SAD-B19, which has a lower tropism for neurons, but a higher affinity for non-neuronal cells 

and faster replication. The consequence of accelerated replication is a greater number of viral 

particles and a strong induced immune response (see Schnell et al., 2009; Ghanem and 

Conzelmann, 2015; Morimoto et al., 1998 and Morimoto et al., 1999 for discussion on relative 

tropism and virulence of different RABV strains). These observations led us to consider whether 

a more virulent RABV strain might hold promise for circuit analysis. In addition, the reverse 

genetic rescue of the virulent CVS-N2c strain (Wirblich and Schnell, 2011) has eased the task of 

generating a glycoprotein deficient virus for use in monosynaptic tracing, as well as evading the 

biohazards inherent in working with virulent RABV.  

 

We also provide evidence that CVS-N2cΔG is transferred retrogradely through an 

exclusive trans-synaptic route. The analysis of sensory-motor connectivity shows that CVS-
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N2cΔG does not transfer to nearby, non-connected, synapses – with the implication that the 

enhancement in secondary neuron labeling occurs via an increase in synaptic transfer, rather than 

adventitious viral infection. The strength of glycoprotein complementation vector (Callaway and 

Luo, 2015), increased viral budding (Mebastion et al., 1996), enhanced glycoprotein 

neurotropism, reduced immunogenicity, and reduced viral toxicity (Schnell et al., 2009) may, 

separately or together, underlie the efficiency of RABV transfer and expression.  

 

Of these variables, an increased neurotropism that maps to the viral glycoprotein is a 

plausible explanation for the increased transfer efficiency of CVS-N2c (Morimoto et al., 1998). 

We and others have replaced the SAD-B19 glycoprotein with that of CVS-N2c when 

complementing SAD-B19ΔG virus and found that it increases trans-synaptic transfer, although 

not to the levels observed with fully complemented CVS-N2cΔG virus (Kaifosh et al. 2013; 

Velez-Fort et al., 2014; Reardon, Murray, Jessell, and Losonczy, unpublished data). By 

implication, the CVS-N2c glycoprotein may enhance trans-synaptic viral transfer. After CVS-

N2cΔG infection the lack of infiltrating T-cells, antibodies and other antiviral immune effectors 

(Roy and Hooper, 2008; Schnell et al., 2009) may also increase the efficiency of viral transfer 

through the CNS. Finally, neuronal viability could extend the duration of competence for trans-

synaptic transfer, as well as maintain host accessory proteins that assist in RABV transfer. We 

note that our work relies on the same complementation strategy as Wickersham et al, (2007b), 

and thus any improvements to that system, such as enhancement in TVA/EnvA selectivity or 

glycoprotein expression vectors, can easily be applied to the CVS-N2c strain.  
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Selection of appropriate RABV vectors for circuit analysis 

 In our studies, CVS-N2cΔG showed at least an order of magnitude enhancement in trans-

synaptic spread compared to the SAD-B19ΔG strain, and was particularly effective in trans-

synaptic infection of neurons with long-range projections.  A similar improvement was seen in 

two distinct CNS circuits, suggesting that CVS-N2cΔG lacks neuronal subtype constraints as a 

trans-synaptic tracer. Thus for anatomical studies CVS-N2cΔG appears to have major advantages 

over SAD-B19ΔG and other prominent vaccine strains (Mori and Morimoto, 2014).  Although it 

is conceivable that the trans-synaptic efficiency of SAD-B19 could be improved with 

modifications to the complementation vectors (e.g. DeNardo et al., 2015) or the use of alternate 

complementation methods (Rancz et al., 2011; Wertz et al., 2015) it is highly likely that the 

spread of CVS-N2c could be improved in the same way.  Thus the use of the CVS-N2cΔG viral 

strain for anatomical studies has the potential to uncover aspects of neuronal connectivity 

inaccessible through the use of SAD-B19ΔG.  

 

 The ability to manipulate and monitor the activity of neurons within large networks, on 

behaviorally relevant timescales, sets CVS-N2cΔG apart from currently available RABV vectors.  

CVS-N2cΔG can drive tolerated levels of optogenetic activators, as well as recombinase proteins 

for selective recombination in presynaptic cells – opening the way for application of the full 

repertoire of conditional genetic tools in behaving animals. Previous studies have expressed 

optogenetic and recombinase proteins via SAD-B19ΔG strains (Osakada et al., 2011) but neuronal 

manipulations were typically restricted to short post-infection times, typically 5-7 days (Kiritani 

et al., 2012; Namburi et al., 2015).  
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We have found that use of SAD-B19ΔG precludes functional analysis of neuronal activity, 

as a consequence of premature neuronal dysfunction or death. The high levels of protein 

expression achieved by SAD-B19ΔG may be a major contributor to its viral toxicity (Morimoto et 

al., 1999; Morimoto et al., 2000; Schnell et al., 2009). In particular, high expression levels of 

optogenetic proteins may facilitate cell death faster than would be observed when SAD-B19ΔG is 

used to express relatively inert fluorescent proteins (Lin, 2011; Cetin and Callaway, 2014). In 

contrast, CVS-N2cΔG permits viable expression and long-term functional analysis using 

GCaMP6f or hChR2. Indeed, GCaMP calcium transients were detectable in hippocampo-septal 

neurons for up to 17 days, and cortical neurons expressing hChR2 under CVS-N2cΔG control 

maintained normal cell physiology and functional responses for 28 days after infection. We 

cannot exclude that over longer post-infection times, CVS-N2cΔG may also induce neuronal 

dysfunction (Scott et al., 2008), but the existing time-window opens potential new avenues for 

functional and behavioral experiments not available through use of SAD-B19ΔG.  

 

CVS-N2cΔG seems to have major advantages over SAD-B19ΔG in terms of anatomical 

tracing and functional analysis of circuit organization. But there are circumstances whereby 

SAD-B19ΔG remains a relevant reagent. The higher protein levels produced after SAD-B19ΔG 

infection make it more suitable for use as an acute vector, when fast expression of the transgene 

is important. SAD-B19ΔG drives protein expression just one day post-infection, which is not 

achievable with CVS-N2cΔG. In addition, the higher SAD-B19ΔG directed protein expression 

levels permit visualization of fine neuronal morphologies (Wickersham et al. 2007a,b).  
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Moreover, the generation of viral particles in the laboratory is currently easier with SAD-

B19ΔG than with CVS-N2cΔG. Titers on the order of 1x109 infectious particles per milliliter can 

typically be achieved with SAD-B19ΔG, in a period of one to two weeks. CVS-N2cΔG titers used 

here were usually two orders of magnitude lower and generation of concentrated stocks of the 

virus can take four to six weeks. Given that full-length CVS-N2c can be grown in laboratory to 

similar titers as SAD-B19, it is possible that future refinement of CVS-N2cΔG packaging cells 

will improve attainable titers to the same level as SAD-B19ΔG. 

 

Our findings therefore establish CVS-N2cΔG as an efficient monosynaptic retrograde 

reagent, one which overcomes many of the drawbacks inherent in the use of SAD-B19-based 

strains. Additionally, the enhanced ability of functional CVS-N2cΔG variants to monitor and 

manipulate presynaptic neuronal populations may also make it easier to link the organization of 

neural circuits to their encoded behaviors.  

Summary of deletion mutant SAD-B19 and CVS-N2c 

 
  

SAD-B19 

 

 

CVS-N2c 

Type Vaccination strain Challenge strain 

 

Packaging 

 

Native-coat G Standard cell culture in BHK-21 

cells; 7 days production time. 

Specialized culture in Neuro2A 

cells; 28 day production time. 
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Pseudotyped EnvA 7-10 days for production 14 to 28 days for production. 

 

Complementation Commercially available viruses,  

transgenic animals available, 

requires B19-specific glycoprotein 

complementation 

N2c-specific glycoprotein vectors 

required, and available. Transgenic 

animals not yet available. 

 

 

Titers 

 

Native-coat G Low 10^9 typical Mid 10^7 typical 

Pseudotyped EnvA Low 10^8 typical, native-coat 

background 10^2 typical 

Low 10^7 typical, no detectable 

native-coat background. 

 

Expression 

 

Onset Visible fluorescence within 24 

hours. 

Requires ≥4 days for visible 

fluorescence. 

Specificity Infects glia, limited reports of 

retrograde in vivo specificity. 

No glial infection, demonstrated 

retrograde in vivo specificity. 

Toxicity Modest with fluorophores, higher 

with optogenetic proteins. 

Low with fluorophores; survival up 

to 28 days even with optogenetic 

proteins. 

 

Applications 

 

Trans-synaptic Transfer 7-40 presynaptic neurons typical 

with AAV complementation. Poor 

transfer to long-range inputs.   

60-400 presynaptic neurons. Good 

transfer to long-range inputs. 

Optogenetic 

manipulation (eg. ChR) 

Short-term utility (1-5 days). 

Toxicity apparent ≥5 days.  

Medium-term utility (7-28 days 

longest tested). 

Optogenetic monitoring 

(eg. GCaMP) 

Short-term utility (1-10 days). 

Toxicity apparent ≥10 days. 

Medium-term utility (7-21 days 

longest tested). 

Table 1: Comparison of packaging, titers, expression and application of SAD-B19 ΔG and CVS-N2c ΔG 

RABV strains. See text for further details.  
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What does rabies tell us? 

 

 The evidence presented in Part 3 proves, for the first time with high confidence, that the 

retrograde spread of at last one rabies strain, CVS-N2c, is exclusively trans-synaptic in vivo (see 

Zampieri, et al. (2014) for anterograde data). Clearly, in culture, other means of viral egress are 

supported, or the manufacture of virus would be untenable. But one overriding question remains: 

how does rabies infect neurons? While many attempts have been made (Lafon 2005), no 

definitive answer exists. This leaves us to question the nature of rabies spread and the biases and 

opportunities that creates: 

 

 

1) Does the density of synaptic contact influence spread?  Do multiple synaptic contacts 

from one cell increase the odds of viral transfer relative to singly-connected neurons? 

2) Does the virus prefer weak or strong synapses? 

3) Does it prefer symmetric or asymmetric synapses? 

4) Does synaptic activity enhance or retard viral spread? 

5) Does the length of projection influence spread? 

6) Are there non-linear thresholds that change the amount of spread, such that a small 

sublinear improvement in one kinetic features of the virus (say, axonal trafficking) 

leads to an order-of-magnitude increase in spread.  
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It appears that at least (5) and (6) above might be true. For instance, in the cortico-spinal 

circuit, we notice a near 200-fold increase in spread with one strain versus another, while local 

circuits only experience a 4-fold increase. 

 

 

 

How much does it map? 

 

 Currently, even with CVS-N2c-based tools, rabies only labels a minority of pre-synaptic 

inputs. But is there a level at which the sample size is sufficient for us to virtually recreate the 

entire map of the circuit?  For the cortico-striatal study in Part 2, we propose that such a 

threshold exists due to the sparsity of excitatory synaptic connections. At a number close to 20% 

of presynaptic-contacts-labeled, we expect to at least separate sparsely and multiple connected 

neurons, if the range of contacts is 1-5, as speculated in Dudman & Gerfen (2015). 

 

 

Evidence of activity dependence 

 

 As discussed above, a significant concern regarding experimental use of rabies viruses to 

build maps of neural connections is the possibility that the virus prefers to traverse active 

synapses. A reasonable but unproven hypothesis regarding rabies holds that since the virus is 

exclusively trans-synaptic in transport, it is likely dependent on synaptic proteins or the process 

of synaptic release to jump across a synapse. This has been widely discussed in the literature of 

virology, but has only been directly examined in vitro (Ghanem & Conzelmann, 2015; Bergami 

et al., 2015). Evidence from in vitro studies shows that the virus can spread effectively in the 

absence of neural activity. But since we know that the virus is promiscuous during in vitro 

manufacture, the evidence in Bergami et al. and elsewhere is not entirely satisfying. We propose 
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that the virus uses entirely different means of budding and uptake during its in vivo life-cycle. 

We explored this phenomenon in two experiments shown below. 

 

  
 

Figure 6.1: example of double-labeled neurons in the medial septum. Left: in a PV-Cre+ mouse, 

cells were infected by AAV-FLEX-EGFP and SAD-B19ΔG-dsRed. 
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Figure 6.2: example of double-labeling results in medial septum after blocking synaptic activity. 

Left: In a PV-Cre+ mouse, septal neurons were infected with AAV-FLEX-TeLC-GFP, which 

blocks synaptic release. Right: schematic of SAD-B19 infection, starting in hippocampus and 

spreading retrograde to septal projection neurons. 

 

 In the first experiment, we created a SAD-B19 mono-synaptic priming infection in dorsal 

hippocampus of animals expressing Cre in parvalbumin-positive neurons. As the medial septum 

is known to send a strong parvalbumin-positive projection to the hippocampus, we then 

‘silenced’ the activity of those septal neurons by injecting an AAV conditionally expressing 

tetanus light-chain fused to EGFP (AAV-FLEX-TeLC-GFP) (Figure 6.2). Those neurons which 

would normally receive SAD-B19 via their axonal projection into the hippocampus sustained no 

infection. Conversely, in controls, robust spread of RABV SAD-B19 was sustained (Figure 6.1).  
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For five animals in the first synaptically-blocked condition, we observed zero RABV+ neurons.  

In another five animals with only EGFP sham expression, we observed 219 RABV+ neurons. 

 In a separate experiment, we explored whether natural activity could influence viral 

spread.  We hypothesized that long-term reductions in neural activity, as would occur in barrel 

cortex and barreloids of the thalamus following whisker-trimming, would reduce spread of 

RABV. Thus we created a bilateral priming infection in the barrel cortex of mice which were 

unilaterally whisker-trimmed and examined the retrograde spread of virus from barrel cortex to 

the barrel-projecting thalamus (figure not shown). Since this experiment compared two 

conditions within the same animal, it seemed ideal for exploring the activity dependence of 

RABV. 

 In a cohort of four animals, we examined the spread of SAD-B19 five days following 

RABV infection. We found a striking increase in spread in the non-whisker-trimmed hemisphere 

(figure not shown; animal 1: 50% reduction, 21 vs. 10; animal 2: 75% reduction, 44 vs. 11; 

animal 3: 85% reduction, 13 vs. 2; animal 4: 35% reduction, 29 vs. 19). 

 While this evidence is not conclusive, it is highly suggestive of a link between neural 

activity and the kinetics of RABV trans-synaptic transfer. 

 

 

Future improvements: Wickersham et al. 

 

The inventor of the deletion-mutant rabies virus tracing system has continued to improve 

the underlying technology.  Most recently, he has proposed a breakthrough approach to the 

problem of cytotoxicity but removing the L-transcriptase gene from the virus and reintroducing 

in trans, much like the system of complementation in trans use for G-glycoprotein. This holds 

the promise of completely nullifying any cytotoxic effects of the parent RABV strain. Because 
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the L gene of RABV is too large for including within an AAV genome, this system relies on 

alternate expression mechanisms, in particular lentiviruses (Wickersham, et al. 2015). By 

allowing for very low expression levels of Cre from the RABV vector, stronger expressing 

vectors can be driven to increase RABV packaging and expression.  Techniques like this which 

directly target to pathogenicity of rabies, namely its ability to amplify itself in an immune-

avoidant manner, promise to have the greatest effect in improving RABV as both an 

experimental research vector as well as a clinical therapeutic vector. 
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Experimental Procedures 
 

 

Rescue of CVS-N2cΔG variants 

DNA rescue plasmids for CVS-N2c were created previously (Wirblich and Schnell, 

2011). Four sequence differences were noted for CVS-N2cΔG relative to previously published 

sequences (GenBank HM535790), though we have not explored whether these changes are new 

mutations or represent historical sequencing errors. Rescue plasmids for deletion mutant CVS-

N2cΔG-insert variants were created by removing the G-gene sequence and introducing 5’ XmaI 

and 3’ NheI restriction sites and subsequent ligation with expression inserts, while maintaining 

the entire ~500bp G-L intergenic sequence, with the goal of preserving native viral expression 

levels and tropism. Removal of the G-L intergenic sequence in a mCherry-expressing variant did 

not noticeably change the level or pattern of fluorescent protein expression in culture (data not 

shown). Two fluorescent protein expression inserts were initially constructed, expressing either 

GFP or dsRed. Rescue was performed in Neuro2A cells (ATCC CCL-131) by co-transfection 

(Lipofectamine 2000) of CVS-N2cΔG genomic plasmid, pCAGGS-T7, pTIT-L, pTIT-N-, pTIT-P 

(Finke et al., 2003), pCAGGS-N2c(G). Although pTIT helper plasmids correspond to SAD-B19 

sequences, their use in only the very first round of rescue minimized genetic drift of CVS-N2cΔG. 

pCAGGS-N2c(G) was created by insertion of the N2c glycoprotein gene into the pCAGGS 

expression plasmid. Rescue took up to 10 days, significantly longer than SAD-B19ΔG. 

Supernatants from rescue cultures were collected for up to 10 days following the first appearance 

of virus. It is possible that more efficient RABV backbone plasmids could avoid the use of T7 

(Ghanem et al., 2012), but here we found that T7 polymerase was causal to the rescue. All 

culture of Neuro2A cells and derived lines took place in EMEM with 10% FBS without 
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antibiotics. Cells were grown at 37C and 5% CO2 until confluent, then held in extended 

harvesting conditions at 34C and 3% CO2. Harvested supernatant was filtered at 0.45um and 

stored at -80 °C until used. 

 

Packaging of CVS-N2cΔG 

We considered that maintenance of the virus exclusively in murine neural tissue is likely 

important to the thousand-fold improvement in neurotropism of the CVS-N2c strain compared to 

SAD-B19. Neuro2A cells stably expressing either N2c(G) or EnvA_cytG were created for viral 

amplification and pseudotyping (Figure 1B,C). The resulting cell lines are called N2A-N2c(G) 

and N2A-EnvA_cytG. For each variant, the glycoprotein gene was cloned into the MLV 

expression vector pCMMP-IRES-GFP, transfected into Gryphon retroviral packaging cells 

(Allele Biotech), and MLV-N2c(G)-IRES-GFP after filtering was used to infect Neuro2A cells. 

We found that Neuro2A cells are significantly less vital in culture than the traditional viral 

production cell line, BHK-21. Due to their limited vitality, we continued selection of these cells 

via FACS for more than 6 months. While titers produced are now useful for experimental 

purposes, they are still at least 2 orders of magnitude lower than titers produced from BHK-21 

cells. However, the N2A-N2c(G) packaging line makes up much of the difference in viral counts 

by increasing effective titer, possibly due to improved neurotropism. Neuro2A cells expressing 

EnvA_cytG were created similarly, from a chimeric protein made from EnvA and the tail of 

N2c(G). Cross-pseudotyping (using EnvA_B19 to pseudotype CVS-N2cΔG) yielded very low 

titer, suggesting that the interaction of C-terminal glycoprotein and RABV M protein is critical 

for proper packaging.  
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Amplification was performed by adding rescue supernatant to N2A-N2c(G) cells. Due to 

the relatively slow metabolism of cells in these conditions, we found it necessary to collect 

subsequent viral supernatants for up to 28 days in modified culture conditions of 34C and 3% 

CO2. Virus for injection was spin-purified by ultracentrifugation (2 hour, 20000 RPM) and 

resuspension of viral pellets in phosphate buffered saline. Pseudotyping was performed by 

adding amplified supernatant to N2A-EnvA-cytG cells. This was done at the highest possible 

multiplicity-of-infection (MOI), but typically only 0.20. As noted above, our CVS-N2cΔG titers 

(approximately 10^8 per ml) are orders-of-magnitude lower than what we obtained for SAD-

B19ΔG. The resultant virus only infects cells which express the avian TVA receptor, as tested 

using HEK293-TVA cells (Osakada et al., 2011) and, as designed, does not infect Neuro2A or 

HEK-293 cells (Figure 1C). 

 

All SAD-B19ΔG
 variants were rescued and amplified per standard protocol (Wickersham 

et al., 2010). Rescue plasmids were constructed from the “Supercut” rescue plasmid (Ghanem et 

al., 2012). Titers assayed by fluorescent foci were 109 - 1010 for native-enveloped and 108 – 109 

for EnvA-pseudotyped. 

 

Testing specificity of viral infection and expression 

To test the selectivity of our AAV construct we injected AAV driving the Cre-dependent 

expression of N2c glycoprotein into the spinal cord of wild-type animals. 1 µl of the AAV-

FLEX-nGFP-2A-RABV[G] was injected into the ventral horn at spinal segments L3-L6. 
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Animals were sacrificed after two weeks and the spinal cords assayed for GFP expression. To 

test for contaminating wild-coat virions in our EnvA-pseudotyped CVS-N2cΔG preparations we 

injected 1.2 μl of these viruses into the ventral horn of spinal segments L3-L6.  After 10 days 

animals were sacrificed and examined for expression of fluorescent protein.   

 

Analysis of Spread 

Mice expressing Adora2a-Cre (RRID: MMRRC_031168-UCD; Aged 12 to 16 weeks) 

were used for cortico-striatal tracing. Mice expressing ChAT-Cre (RRID: IMSR_JAX:006410) 

were used for spino-motor neuron tracing. For all injections, animals were anesthetized using 

isoflurane and given analgesics. For cortico-striatal injections, a craniotomy was created above 

dorsal striatum and injection pipette was lowered to target (0.75 mm AP, 2.2 mm ML, 3.3 mm 

DV). For AAV, we injected 39 nl of a 1:2 cocktail of AAV-FLEX-TVA_mCherry with AAV-

FLEX-nGFP-2A-RABV[G]. Following two weeks of recovery and AAV expression, a 

secondary surgery was performed by the same technique and 300 nl of RABVΔG(EnvA) was 

injected. All AAVs were serotyped 2+1, using established procedures (McClure et al., 2011). 

Pairs of animals were sacrificed at 5, 10, and 15 days following RABVΔG infection, brains 

harvested and sliced at 100 μm by microtome for visualization. There was no significant 

difference in viral spread over the three differing infection periods. Imaging was done by 

confocal microscopy (Leica SP5 for cortico-striatal, Zeiss 710 for spinal cord). All sections 

containing priming infection were imaged and double-labeled cells counted. Additionally, the 

locus and extent of priming infection was verified as the same, ±100μm, for all six animals. For 

secondary labeling, slices at 5 AP coordinates (Bregma +2.8, +2.1, +0.5, +0.1, -0.2) were viewed 

and dsRed+ cells in cortex manually counted.  



112 
 

For analysis of viral spread within the spinal cord, procedures were followed as above, 

but instead of craniotomy, injections were made into the ventral horn of the cord between L3 and 

L4 of 12-week old ChAT-Cre mice. All secondary labeling was counted within lumbar, thoracic 

and cervical spinal cord as well as the hindbrain (defined as caudal to Bregma -5.4) (Franklin 

and Paxinos, 2013). 

 

Gene expression analysis and cytotoxicity 

Neuro2A cells were infected with either SAD-B19 or CVS-N2c strains of RABVΔG-GFP. 

For immunocytochemical analysis, Neuro2As were cultured in poly-l-lysine coated Labtek 

chamber slides and fixed with 4% paraformaldehyde in phosphate buffer after 2 or 4 days. 

Cultures were counterstained with neurotrace-647 (Invitrogen) and mounted in Mowiol. Images 

of infected and uninfected cells were taken using a Zeiss 510 confocal microscope with identical 

settings for each culture. In each field of view the mean grey scale value for infected and 

uninfected cells was calculated, with uninfected cell values subtracted from infected as 

background values. Each culture was repeated 3 times with >50 cells analyzed per condition. 

Culture conditions were identical for analysis of propidium iodide incorporation. After fixation, 

cells were treated with 100 μg/ml RNAse for 20 minutes at 37°C before addition of 500 nM 

propidium iodide for 3 minutes at room temperature.  

 

Tissue preparation for in vitro electrophysiological recordings. 

Following surgical procedures above, C57 wild-type mice were infected with SAD-B19 

or CVS-N2c strains of RABVΔG-hChR2-YFP. Six – 10 and 14 days after virus injection we 
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prepared coronal slices (350 µm) from the forebrain containing the injection sites, as described 

previously (Turi et al., 2015). During recording slices were maintained at room temperature and 

perfused at 1-2 ml per minute with artificial cerebrospinal fluid (ACSF) containing (in mM) 125 

NaCl, 25 NaHCO3, 3 KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, 22.5 glucose, 3 sodium pyruvate 

and 1 ascorbate, and saturated with 95% O2 and 5% CO2. Slices were visualized with Dodt 

contrast optics using a Zeiss Examiner Z1 upright microscope equipped with a 63× objective (1.0 

NA; Zeiss) and two-photon scanning apparatus (Bruker Technologies). 

 

In vitro electrophysiological recordings and hChR2 photostimulation. 

For whole-cell current-clamp recordings we patched hChR2 expressing neurons in the 

secondary motor and cingulate cortices. The intracellular signals were amplified by a Dagan 

BVC-700A amplifier. Recording pipettes were pulled from borosilicate glass to tip resistances of 

~4–7 MΩ and filled with intracellular solution containing low Cl- (in mM): 140 potassium 

gluconate, 4 NaCl, 10 HEPES, 4 Mg2ATP, 0.3 Tris2GTP, 14 phosphocreatine and 0.1 Alexa 594. 

Pipette capacitance was compensated, and the signals were filtered at 1–10 kHz and digitized at 

50 kHz. hChR2 photostimulation was performed with a blue DPSS laser (473 nm, CrystaLaser) 

coupled to the microscope’s two-photon scan-head (Lovett-Barron et al., 2012). For testing the 

efficacy of the hChR2 expression we run a 5 Hz photostimulation protocol on the cells held at 

their resting membrane potential. After recording of 5-8 traces the number of photostimulation 

evoked spikes was divided by the number of the light stimuli. 

 

Hippocampal window implant 
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Following surgical procedures above, C57 wild-type mice were infected in the medial 

septum with SAD-B19 or CVS-N2c strains of RABVΔG-GCaMP6f. Hippocampal window 

implant surgeries were performed as described previously (Kaifosh et al., 2013, Lovett-Barron et 

al., 2014). Briefly, we anesthetized mice with isoflurane and treated them with buprenorphine 

(0.1 mg/kg, subcutaneous) to minimize postoperative discomfort. We exposed the skull and 

drilled a 3-mm diameter circle centered over left dorsal CA1, matching the size of the cannula 

window to be implanted. We removed the bone and dura, and then slowly aspirated cortex 

covering the hippocampus while constantly irrigating with chilled cortex buffer until the external 

capsule was exposed. Then we implanted the sterilized window implant by wedging it into place, 

and secured the top of the cannula to the skull and stainless steel head-post with grip cement, 

leaving it to dry for 15–20 min before returning mice to the home cage (awake and mobile in 5–

20 min). We monitored mice every 12 hours for three days after surgery, administering 

buprenorphine to minimize any signs of discomfort. Three days after the surgery the animals 

were habituated to handling and head-fixation then we started to image the GCaMP6f expressing 

cells. 

 

In vivo cytotoxicity and blebbing analysis 

 Following injection of SAD-B19 or CVS-N2c strains of RABVΔG-GCaMP6f into the 

medial septum, or RABVΔG-hChR2-YFP into striatum to retrogradely infect cortico-striatal 

neurons, we selected regions with similar numbers of infected neurons for analysis (n = 3 

animals per condition; 10-15 neurons analyzed per region for hChR2; 2-10 neurons for 

GCaMP6f). Identical magnification was used for each sample and the number of blebs were 

counted for each infected neuron.  
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Two-photon imaging 

We used an in vivo resonant galvo-based imaging system (Bruker) and an ultra-fast 

pulsed laser beam (Coherent; 920-nm wavelength) controlled with an electro-optical modulator 

to excite GCaMP6f through a 40X objective. Distilled water served to connect the water 

immersion objective with the cannula. Fluorescent light was detected with photomultiplier tube 

(green GCaMP6f fluorescence, GaAsP PMT) operated with PrairieView software. In vivo 

imaging was performed in head-fixed mice running on a linear treadmill (Kaifosh et al., 2013). 

We tracked locomotor behavior by measuring treadmill wheel rotation, recorded as changes in 

voltage across an infrared photo-transistor as wheel spokes blocked light from an infrared LED. 

Time series were collected in green (GCaMP6f signal) channel at 512 × 512 at ~30 Hz then 

underwent motion-correction as described in (Kaifosh et al., 2013). Regions of interest (ROIs) 

were manually drawn over corrected time-series in Image J (NIH), to isolate the somata of cells 

of interest and the extracted F/F signals were aligned with the running signal.  

 

Conditional Recombination 

To analyze germline recombination by CVS-N2cΔG-FLPo-mCherry we injected 50 nl of 

virus into the ventral spinal at L3 of RCE-FRT mice (Sousa et al., 2009). These animals contain 

a Frt-flanked STOP cassette prior to the GFP coding sequence, and so report expression of Flp-

recombinase. 10 days after CVS-N2cΔG-FLPo-mCherry injection neurons in the thoracic spinal 

cord were imaged using a Zeiss 510 confocal microscope and expression of mCherry, GFP or 

both was noted.  
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Activity Dependence of RABV spread 

Priming viruses described previously for SAD-B19 with complementation via B19*CVS(G) 

glycoprotein were injected into Nr5a1-Cre animals. Saturating amounts (>200nl) were injected 

into barrel cortex of 12-week-old mice.  At the end of injection surgery, animals were 

unilaterally whisker-trimmed on the right-side whisker pad and then left to recover per standard 

recovery protocol above. At 5 days post RABV infection, animals were euthanized, brains 

extracted, and slices prepared at 100um. Cells counts of RABV+ neurons were based on confocal 

images and were done blind to left-right orientation of slices. 

 

Viral Reagents 

 CVS-N2cΔG RABV and AAV complementation vectors are available from Addgene as 

Jessell Lab plasmids. Packaging cells (N2A-N2cG, N2A-EnvA_cytG) are available from the 

authors. 
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Animal Controls 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: D1rda-Cre [D1R] expression analysis illustrating striatal localization of Cre expression 

(GENSAT) 
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Figure: Drd2-Cre [D2R] expression (GENSAT) 

 

Figure: Adora2A-Cre [A2AR] expression (GENSAT) 

 

 

 


