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Abstract 

Dissecting the role of the hippocampal-prefrontal circuit in anxiety 
 

Nancy Padilla Coreano 
 

The ventral hippocampus (vHPC), medial prefrontal cortex (mPFC), and basolateral 

amygdala (BLA) are each required for the expression of anxiety-like behavior. Yet the 

role of each individual element of the circuit is unclear. The projection from the vHPC to 

the mPFC has been implicated in anxiety-related neural synchrony and spatial 

representations of aversion. The role of this projection was examined using multi-site 

neural recordings combined with optogenetic terminal inhibition.  

 

Inhibition of vHPC input to the mPFC disrupted anxiety and mPFC representations of 

aversion, and reduced theta synchrony in a pathway-, frequency- and task-specific 

manner. Moreover, bilateral, but not unilateral, inhibition altered physiological correlates 

of anxiety in the BLA, mimicking a safety-like state. These results reveal a specific role 

for the vHPC-mPFC projection in anxiety-related behavior and the spatial representation 

of aversive information within the mPFC. Moreover, these data suggested that theta-

frequency input from the vHPC plays a causal role in anxiety-like behavior.  

 

Next, it was investigated whether optogenetic stimulation of the vHPC-mPFC at a theta 

frequency was sufficient to increase anxiety. Stimulating the vHPC input to the mPFC 

with a sinusoidal light pattern at 8 Hz significantly increased anxiety behavior. The 

anxiogenic effect of vHPC terminal stimulation was frequency- (8 Hz but not 20 Hz) and 

pattern- (sinusoids but not pulses) specific. To understand how pulses and sinusoidal 



 

light modulate mPFC neurons differentially, mPFC pyramidal neurons were recorded 

both in vitro and in vivo while stimulating vHPC terminals with the same sinusoidal or 

pulsatile patterns. In vitro, sinusoidal stimulation increased the rate of spontaneous 

EPSCs, while pulses evoked strong, stimulus-locked EPSCs. Additionally, sinusoidal 

light resulted in an increase of theta-frequency subthreshold fluctuations in membrane 

potential of mPFC pyramidal cells. In vivo, sinusoidal stimulation of vHPC terminals 

increased the phase-locking of mPFC single unit spiking to the optical stimulation 

pattern without changing overall firing rates. Together, these results suggest that 

sinusoidal stimulation at 8 Hz enhances theta-frequency activity in mPFC neurons as 

well as anxiety-related behavior. Moreover, they suggest that theta-frequency 

components of neural activity play a privileged role in vHPC-mPFC communication and 

hippocampal-dependent forms of anxiety.  
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Chapter 1: Introduction 
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1.1 What is Anxiety 

Anxiety is necessary for survival 

Anxiety is a state of increased apprehension that allows avoidance of potential danger. 

It has been defined as a psychological, physiological and behavioral state induced by a 

threat, either actual or potential (Steimer 2002). Anxiety results in the expression of 

defensive behaviors that are necessary for survival. In the wild, a zebra will avoid 

roaming alone in fear of being the prey of a pack of lions that lives nearby. In this case 

the zebra acts defensively toward the potential threat (pack of lions), demonstrating how 

anxiety-related behaviors can increase survival. 

 

Fear versus anxiety  

As defined in the DSM-5 manual, fear is the emotional response to real or perceived 

imminent threat, whereas anxiety is anticipation of future threat (DSM-5, pg 208). These 

definitions have been expanded by neuroscientists. Fear is defined as an adaptive state 

of apprehension to an imminent threat, where the state dissipates rapidly once the 

threat is removed. Threats that evoke fear tend to be a specific stimulus, and those 

threats can emerge from learning or be innate (McFarland 1986; Steimer 2002). On the 

other hand, anxiety is a longer state of apprehension elicited by a less predictable 

threat. Threats that evoke anxiety are physically or psychologically more distant, 

therefore they are more uncertain (Davis et al. 2010; Steimer 2002). However, fear and 

anxiety have many features in common. Fear and anxiety both result in the expression 

of defensive behaviors (freezing, avoidance, attack, etc.) in response to threats. Fear 

and anxiety trigger activation of the sympathetic nervous system and the hypothalamo-
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pituitary-adrenal axis (HPA), which results in secretion of glucocorticoids and 

preparation to fight or flight (Canon 1915; Steimer 2002). Furthermore, fear and anxiety 

can even be evoked by the same threat depending on the distance and certitude of the 

threat. Additionally, in Plutchik’s theory of emotions, fear and anxiety are in the same 

overall category with fear being stronger than anxiety. Anxiety is proposed to be a state 

of sustained fear by Davis and colleagues. Under this framework some tasks of learned 

fears evoke anxiety, like contextual fear, since the stimulus is sustained and not very 

specific (Davis et al. 2010). This definition of anxiety can be conflicting with the clinical 

definition.  

 

Fear and anxiety are sometimes indistinguishable without confirmation from the subject 

experiencing the threat. For example, if a predator odor is presented to a rodent, would 

that be interpreted as an imminent threat or is the odor an indication of a possible threat 

in the near future? Without asking the rodent, we cannot distinguish these two 

possibilities. For this reason, most researchers treat fear and anxiety as 

indistinguishable emotions, unless they are using a task that has been extensively 

validated for one of these emotions.  

 

Learned vs innate behaviors 

Defensive behaviors can be learned or innate. Specifically, fears can be innate or 

learned (Gross and Canteras 2012). Anxiety assays take advantage of innate fears (or 

anxieties), like bright spaces, open spaces, or predator smells. Learned fear is most 

commonly studied using pavlovian fear conditioning in which a neutral unconditioned 
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stimulus (e.g. tone) is repeated paired with an aversive stimulus (e.g. shock). The 

neutral stimulus subsequently becomes conditioned and evokes a conditioned response 

(CR; changes in locomotion, respiration, etc.). This fear memory to the conditioned 

stimulus (CS) is long lasting has been extensively used to understand the plasticity 

underlying an aversive memory (Maren and Quirk 2004). One challenge in using 

learned fears paradigms to elucidate the fear circuitry is dissociating which effect is due 

to the learning component vs the emotion. It is also possible to study a learned anxiety. 

Some anxiety assays commonly used required learning (table 1; conditioned 

responses). One example is active avoidance task in which animals learned that they 

can avoid a shock that is signaled by a tone (Bravo-Rivera et al. 2014).  

 

1.2 Anxiety in humans 

 “A thousand miseries at once 

Mine heavy heart and soul ensconce, 

All my griefs to this are jolly, 

None so sour as melancholy.” 

Dysfunctional anxiety 

This poem was written by Robert Burton in The Anatomy of Melancholy in 1621. As he 

described his condition in the preface: “for I had gravidum cor, foetum caput [a heavy 

heart, hatchling in my head], a kind of imposthume in my head, which I was very 

desirous to be unladen of”. What was known as melancholy in 17th century now includes 

symptoms of both depression and anxiety disorders. In The Expression of the Emotions 

in Man and Animals, Charles Darwin describes a woman who suffers from a strong fear 
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of death, for herself, her husband and children, and is diagnosed with acute 

melancholia. This woman would probably be diagnosed with generalized anxiety 

disorder nowadays. As in the case of the woman described by Darwin, excessive 

anxiety can be maladaptive. Psychiatric disorders that include pathological anxiety 

states have been defined and characterized towards the end of the twentieth century. 

The DSM-5 defines anxiety disorders as those that include features of excessive fear 

and anxiety and related behavioral disturbances. One example is generalized anxiety, in 

which people are over-anxious about many different issues. Another example is social 

anxiety, in which people experience anxiety about interacting with other humans. All 

anxiety disorders are characterized by increased avoidance behavior, and fear or 

anxiety to specific objects or situations. It has been estimated that the lifetime 

prevalence of anxiety disorders in the USA is 28% (Kessler RC et al. 2005), making 

anxiety disorders a major economic and health problem (Greenberg et al. 1999).  

 

Common treatments for anxiety disorders 

The most commonly used treatments for anxiety disorders are pharmacological and 

behavioral therapy. The best studied behavioral therapy is Cognitive Behavioral 

Therapy (CBT), which is the most commonly used therapy for patients with anxiety 

disorders. Pharmacological treatment is commonly combined with behavioral therapy. 

Common drug groups prescribed include: selective serotonin reuptake inhibitor (SSRIs) 

or a serotonin-norepinephrine reuptake inhibitor (SNRIs) and benzodiazepines. A major 

problem in the field of psychiatry is that as many as 40% of patients do not respond to 

SSRIs or other drug treatment (Kupfer, Frank, and Phillips 2012). Moreover, CBT only 
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works on 50% of adolescents with anxiety disorders (Walkup et al. 2008). There is 

some evidence that CBT only significantly works for OCD and PTSD, which correspond 

to a small subset of anxiety disorders (Hofmann and Smits 2008). The lack of effective 

treatments for anxiety disorders increases the need to research the neural mechanisms 

of anxiety behaviors. 

 

Circuits mediating anxiety in humans  

Advances in neuroimaging studies have allowed validation of neurobiological network 

hypotheses for anxiety disorders. In healthy subjects and in patients with anxiety 

disorders, functional imaging (fMRI) procedures and other imaging techniques have 

provided evidence of the existence of a complex extended anxiety network. I will 

discuss some of those findings here.  

 

Insights from imaging patients with anxiety disorders 

Many studies have imaged patients with PTSD, phobias, panic disorder and GAD (Shin 

and Liberzon 2009). Many studies have shown increased fMRI activity in the amygdala 

of PTSD patients in response to trauma-related imagery or cues (Shin et al. 2001; 

Bremner et al. 2007). Several studies, however, have found no differential response in 

the amygdala in PTSD (Lanius et al. 2002). However, the convention is that PTSD 

patients have increase reactivity in the amygdala. Also, functional neuroimaging studies 

of PTSD have reported decreased activation or failure to activate the mPFC (including 

the rACC, medial frontal gyrus, and subcallosal cortex) by the presentation of trauma-

related stimuli (Bremner et al. 1999; Yang et al. 2004; Hou et al. 2007). Finally, many 
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studies have found decreased hippocampal volume in PTSD patients and hippocampal 

function appears to be abnormal as well. However, a few studies have found no 

changes on hippocampal volume or function in PTSD patients (reviewed in Shin and 

Liberzon 2009).  

 

Several studies show that the amygdala and brain stem hyper-responsivity in panic 

disorder (Van den Heuvel OA et al. 2005; Pillay et al. 2007). Moreover, there is 

increased Activation in rACC and dACC, and a possible decreased in gray matter 

volumes. A common limitation in neuroimaging studies of this disorder is the inclusion of 

participants taking psychiatric medications. Thus, the findings of such studies should be 

interpreted cautiously (Shin and Liberzon 2009). In the vast majority of the studies the 

amygdala was hyperactive, with some inconsistencies in panic disorder and GAD. 

Another common finding is the abnormal activation (compared to healthy controls) in the 

dorsal and rostral anterior cingulate cortex (ACC), the hippocampus and the insular 

cortex (Shin and Liberzon 2009). Findings from fMRI imaging of PTSD, panic disorder, 

social phobia, specific phobia and generalized anxiety patients are summarized in table 

1. Functional imaging has helped us identify brain regions dysfunctional in anxiety 

disorders. One big limitation is the inability to distinguish between these functional 

abnormalities being signs of the disorder or vulnerability factors. Animal models can be 

useful to address directionality and causality of the relationship between brain function 

and behavior.  
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Insights from trait anxiety studies 

Not all humans are alike; the same situation may make one person feel anxious, but not 

another. Trait anxiety reflects the tendency to respond with anxiety in anticipation of a 

threat. Healthy individuals can have high trait anxiety, but not pathological anxiety, 

making them more anxious than the average individual. A recent fMRI study showed 

that higher levels of trait anxiety during an emotional discrimination task were correlated 

with increased associated with stronger activation of ACC. Moreover, anxiety was 

associated with reduced functional connectivity between ACC and lateral prefrontal 

cortex (LPFC). Suggesting that lack of functional connectivity could be linked to 

increased risk of anxiety (Comte et al. 2015). Moreover, high trait anxiety healthy 

subjects had higher amygdala and insula activation during presentation of emotional 

faces than lower trait anxiety subjects (Stein et al. 2007). Moreover, higher scores on 

several measures assessing anxiety proneness (e.g., neuroticism, trait anxiety, and 

Table 1: Summary of direction of functional neuroimaging finding in anxiety disorders 
(adapted from Shin and Liberzon Neuropsychopharmacology (2010) 35, 169-191). 
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anxiety sensitivity) were associated with greater activation of the amygdala and the 

anterior insula (Stein et al. 2007). Another fMRI study showed that activity in the 

basolateral amygdala elicited by unconscious processed fearful faces correlated with 

individual differences in trait anxiety in healthy subjects using. This correlation neither 

detected in the dorsal amygdala nor the hippocampus (Etkin et al. 2004). Although Etkin 

and colleagues did not find a correlation between trait anxiety and hippocampal activity, 

another study showed that once you divide the hippocampus into the anterior and 

posterior compartments, then a correlation with trait anxiety emerged. This study found 

that during a task that alternated threat and safety trials, state anxiety was related to 

activity in anterior but not posterior hippocampus, whereas trait anxiety showed the 

opposite pattern. Additionally, fMRI connectivity analysis showed that activity in anterior 

hippocampus was more strongly related than the posterior hippocampus to activity in 

ventromedial prefrontal cortex under threat than under safety conditions (Satpute et al. 

2012). Together, these studies suggest that differences in amygdala reactivity to 

emotional cues correlates with individual differences in trait anxiety, and that this might 

also be the case for the posterior hippocampus.  

 

Insights from imaging healthy humans 

Many studies have imaged healthy human subjects to identify which brain regions are 

involved in processing emotional stimuli. These studies consistently show that the 

amygdala, the dorsal anterior cingulate cortex (dACC), and the insular cortex are 

activated by negative stimuli (e.g. photographs) (Shin and Liberzon 2009). A different 

approached to identify brain regions involved in anxiety has been to induce a high fear 
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and anxious state in healthy humans with the use of pharmacological agents. These 

studies show that under a pharmacologically-induced anxious state there is increased 

activity in the amygdala, insular cortex, claustrum, cerebellum, brain stem, and the ACC 

(Javanmard et al. 1999; Schunck et al. 2006). This type of study, however, is 

problematic since it is very difficult to dissociate the effects of the drug from the effect of 

the fear or anxiety state induced.  

 

Genetic factors in anxiety disorders  

Anxiety disorders are heritable, with some of them having up to 40% heritability 

(Hettema, Neale, and Kendler 2001). Indeed, gene polymorphisms for dopamine 

receptors, serotonin receptors, GABA receptors and interlukins have been implicated as 

risk factors for anxiety disorders (Lacerda-Pinheiro et al. 2014). A specific study showed 

that patients with a genetic polymorphism of the serotonergic system lower activation of 

the right prefrontal cortex and increased activity of both amygdalae after presentation of 

faces with emotional expression (Domschke et al. 2006). Another study showed that a 

common functional variation on the human 5-HT1A gene was associated with 

decreased threat-related amygdala reactivity (Fakra et al. 2009). This type of study 

demonstrates a potential link between genetics and the functional role of specific brain 

regions.  

 

Conclusions and Caveats  

Altogether, fMRI imaging studies show a high overlap on the brain regions that process 

emotional stimuli in healthy subjects and the brain regions that are potentially 
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dysfunctional in anxiety disorders. These findings suggest that in anxiety disorders the 

circuitry that mediates emotional stimuli is dysfunctional, and that dysfunctional activity 

might account for the inappropriate behavioral response.  

 

Imaging techniques provide, perhaps the best, noninvasive way to study the human 

brain, but fMRI data has multiple problems and caveats. First, the fMRI signal is based 

on the complex interaction of neuronal activity, metabolism and blood flow. Also, the 

spatial scale is poor having hundreds of thousands of neurons in each voxel (Bandettini 

2009). The temporal scale in fMRI data is also very limited, in the order of seconds, 

while neuronal changes can occur much faster in the millisecond scale.  

 

1.3 Animal Models of Anxiety-like Behaviors  

Research with human subjects faces many challenges, especially when it comes to the 

manipulation and control of variables. Additionally, studying any mechanisms underlying 

anxiety in humans poses ethical problems. Animal models of anxiety-like behaviors 

provide a way to investigate the neural mechanisms that generate non-pathological 

anxiety. 

 

“In observing animals, we are not so likely to be biased by our imagination; and we may 

feel safe that their expressions are not conventional.” –Charles Darwin 

 

In The Expression of the Emotions in Man and Animals, Charles Darwin sets the 

foundation for the view of defensive behaviors across species as evolutionary 
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precursors to human fear and anxiety (Blanchard and Blanchard 1989). There are 

dozens of anxiety tests used in animal research (table 2). Some of them measure 

physiological responses, while others measure behavioral responses (Rodgers, Cao, 

and Holmes 1997). In 1986, Willner proposed three criteria for assessing animal models 

of human mental disorders: predictive validity, face validity and construct validity. 

Predictive validity measures if the test predicts the condition being modeled, face 

validity regards the phenomenological similarity, and construct validity its theoretical 

rational (Willner 1986). Most of these tests have been validated using pharmacological 

agents that affect anxiety behavior in humans, thus establishing predictive validity 

(Rodgers, Cao, and Holmes 1997). Human anxiety includes behavioral disturbances 

like avoidance, escape and hypervigilance. Therefore, animal anxiety assays that evoke 

those behaviors have face validity (Rodgers, Cao, and Holmes 1997).  

 

The most commonly used unconditioned behavioral anxiety tests are the elevated plus 

maze (EPM) and the open field test (OFT). The EPM was developed by Pellow and 

colleagues in 1985 for rats, and it is based on the natural aversion of rodents to open 

spaces. In the EPM there are two open arms and two closed arms, and rats and mice 

display avoidance to the open arms (Pellow et al. 1985; Lister 1987). Lister and 

colleagues showed that mice behavior in the EPM was consistent with their behavior in 

other anxiety tests. Moreover, they showed that anxiolytic drugs (benzodiazepines or 

ethanol) increased exploration and time spent in open arms, while anxiogenic drugs 

(caffeine or picrotoxin) decreased it. On the other hand, amphetamines and imipramine 

did not affect avoidance to open arms in the EPM (Lister 1987). In the EPM, time spent 
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on the open arms and entries into the open arms are the main behavioral variables that 

have been validated pharmacologically. Additional anxiety behavioral features that can 

be recorded in the EPM include head-dipping and distance traveled in the open arms 

(Rodgers, Cao, and Holmes 1997). The OFT is very similar to the EPM, except that 

instead of avoiding the open arms, rodents avoid the center of the field and instead 

spend most time in the periphery (Walsh and Cummins 1976). A different unconditioned 

anxiety test is the potentiated startle response, which takes advantage of rodents’ 

innate aversion to bright light. In the startle paradigm, rodents are presented with an 

unpredictable burst of noise and in response the display a startle reflex. The amplitude 

of the startle reflex is enhanced after rats are presented with an innately aversive 

stimulus, such as a cat 

(Blundell, Adamec, and 

Burton 2005) or bright 

illumination (Davis, Walker, 

and Lee 1997). This 

paradigm has been validated 

pharmacologically similarly to 

the EPM and OFT (Davis, 

Walker, and Lee 1997). Using 

the EPM, OFT and other 

common anxiety assays, scientists have learned a lot about the circuitry underlying 

anxiety behavior. 

 

Table 2: Some commonly used tests for anxiety 
behaviors. From Rodgers 1997  
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1.4 The extended circuitry of anxiety and fear 

There is a large distributed circuit of brain regions involved in anxiety behaviors, which 

show a high degree of interconnectivity (Figure 1). The majority of these brain regions 

have been implicated in anxiety behaviors via lesions, pharmacological inactivations 

and anti-anxiety drug infusions. More recently, the emergence of optogenetics has 

allowed controlling neuronal activity with more temporal and spatial resolution. 

Additionally, optogenetics allows inhibiting or exciting specific projection outputs or 

specific subpopulations within these brain regions.  

 

There is substantial overlap on the circuits mediating fear and anxiety behaviors (Gross 

and Canteras 2012; Likhtik et al. 2014; Calhoon and Tye 2015). However, some 

evidence suggests that there are some differences in the circuits of fear and anxiety, 

specifically the bed nucleus stria terminalis is necessary for anxiety, but not fear 

behaviors (Davis et al. 2010). In the following section I will discuss the general findings 

for the circuitry of both fear and anxiety behaviors. Here, I summarize the evidence for 

some select brain regions’ involvement in anxiety and fear behaviors. I will also 

emphasize if they interact with the ventral hippocampus or the medial prefrontal cortex.  
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As discussed earlier, the amygdala is dysfunctional in most anxiety disorders (table 1). 

In parallel, animal research of learned fear and anxiety shows a major role of the 

amygdala in mediating these behaviors.  Lesioning or silencing the basolateral 

amygdala (BLA) disrupts the behavioral and autonomic responses to a learned fear 

stimulus (Davis and Shi 2000; Fendt and Fanselow 1999). Moreover, pharmacological 

inactivation of the BLA is necessary for the retrieval of a learned fear memory to a tone 

(Sierra-Mercado, Padilla-Coreano, and Quirk 2011). The BLA projects to the central 

amygdala (CeA), which is also necessary for the behavioral and autonomic response to 

a conditioned fear stimulus (Kapp et al. 1979). Lesions or infusion of an anxiolityc drug 

to the BLA and CeA together, disrupted avoidance behavior to a shock probe (Treit and 

Menard 1997; Treit, Pesold, and Rotzinger 1993). However, lesioning the BLA alone did 

not affect avoidance to the open arms in the EPM (K. G. Kjelstrup et al. 2002). Taken 

together, this data suggests a stronger role of the BLA in learned fear than in anxiety 

behaviors.  However, lesions are problematic to interpret because they can reflect 

Figure 1: Distributed circuit involved in anxiety behavior. S:septum, Hyp: hypothalamus; 
mPFC: medial prefrontal cortex; Amy: amygdala; B: bed nucleus stria terminalis; Hipp: 
hippocampus; PAG: periaqueductal gray 
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compensatory mechanisms rather than a functional role. Recent development of 

optogenetics, a technique that allows to reversible hyperpolarize or depolarize neurons 

with light, has been used to further clarify the role of the BLA in anxiety behaviors. 

Optogenetic activation of BLA somatas, using the excitatory opsin channelrhodopsin-2 

(ChR2), increases anxiety behavior in the EPM and OFT (Tye et al. 2011). However, 

ChR2 activation of somas is arguably anti-physiological since normally neurons do not 

fire simultaneously unless there is a seizure. Experiments using optogenetic inhibition 

with inhibitory opsins (halorhodopsin, archeorhodopsin, etc.) are easier to interpret. BLA 

somata inhibition did not affect anxiety behavior. However, inhibition of the BLA 

projections to the CeA increased avoidance behavior (Tye et al., 2011). On the other 

hand, inhibition of the BLA projections to the vHPC decreased avoidance behavior (Ada 

C. Felix-Ortiz et al. 2013). Together these studies demostrate that different outputs of 

the BLA have opposite roles in the expression of anxiety. This is consistent with recent 

electrophysiological work that shows that the BLA distinct neuronal populations that 

encode aversive vs appetitive stimuli and project to different outputs (Beyeler et al. 

2016). 

 

The hippocampus is historically known for its role in memory and cognition, and for 

being part of the limbic system. However, these two roles seem to be anatomically 

segregated. The idea that the hippocampus has distinct functional domains along the 

dorsal-ventral axis has been proposed for long based on the anatomical connectivity, 

and lesion studies of the dorsal vs ventral compartments (Risold and Swanson 1996; 

Moser and Moser 1998). The ventral compartment of the hippocampus (vHPC) is 



 
17 

necessary for anxiety. Lesioning the vHPC, but not the dorsal compartment (dHPC), 

decreased anxiety in a variety of tasks (Bannerman et al. 2003; Bannerman et al. 2004). 

On the other hand, lesions of the dHPC, but not the vHPC, disrupted  spatial memory 

(Moser and Moser 1998).  

 

There is also some evidence for distinct roles of dHPC and vHPC in learned fear using 

pavlovian fear conditioning paradigms. For cued (e.g. tone) fear conditioning, total or 

ventral hippocampal lesions produce robust deficits in freezing to auditory stimuli 

(Maren 1999; Richmond et al. 1999), whereas dorsal hippocampal lesions spare 

auditory fear conditioning (Kim and Fanselow 1992; Anagnostaras, Maren, and 

Fanselow 1999; Anagnostaras et al. 2001). Furthermore, muscimol inactivation of the 

vHPC, but not the dHPC, prior to fear acquisition training prevented the acquisition of a 

cued fear memory (Maren and Holt 2004). Altogether, this argues that vHPC, and not 

dHPC, is necessary for acquiring cued fear memories. This role of the vHPC is 

consistent with the idea that vHPC alters fear conditioning by depriving the amygdala 

from necessary hippocampal information via the projection of vHPC to BLA.  

 

The role of vHPC in retrieval of cued fear memories is more controversial. One study 

showed that inactivation of the vHPC prior to a retrieval test had no effect, while vHPC 

lesions did affect retrieval of cued fear (Maren and Holt 2004). However, other studies 

showed that inactivating or lesioning the vHPC prior to fear recall impaired retrieval of 

the cued fear memory (Hunsaker and Kesner 2008; Sierra-Mercado, Padilla-Coreano, 

and Quirk 2011).  
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In paradigms of contextual fear, lesion and inactivation studies have implicated both the 

vHPC and dHPC are necessary for contextual fear expression or acquisition (Maren 

and Holt 2004; Hunsaker and Kesner 2008). One study showed that inactivating the 

dHPC or vHPC had no effect on retrieval contextual fear, but inactivating vHPC prior to 

the training disrupted the acquisition of contextual fear (Maren and Holt 2004). It is 

important to point out that lesion studies are problematic to interpret because there 

could be postsurgical recovery or compensatory systems, such as recruitment of 

another neural system. Optogenetic approaches to excite or inhibit neurons with high 

temporal control allow to study the role of dHPC in contextual fear.  One study used 

optogenetics to manipulate activity within a specific HPC subregion known as the 

dentate gyrus. Optogenetic inhibition of the dorsal dentate gyrus, but not the ventral 

dentate gyrus, blocks acquisition of contextual fear (Kheirbek et al. 2013). Another 

recent study showed that somatostatin interneurons in the dHPC are necessary for 

retrieval of a contextual fear memory (Lovett-Barron et al. 2014). These optogenetic 

studies more clearly implicate the dHPC in contextual fear learning.  

 

Some electrophysiological evidence suggests that the dorsal-ventral axis is more of a 

gradient than two distinct and independent hippocampal subregions. The representation 

of spatial information exists throughout the hippocampus although the size of the fields 

increases dramatically in the vHPC (Kjelstrup et al. 2008; Royer et al. 2010). 

Considering the electrophysiological and behavioral evidence, the role of the 

hippocampus in spatial learning and contextual learned fear is consistent with a gradient 
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model of the dorsal-ventral axis. On the other hand, the role of the hippocampus in fear 

to a discrete cue, unconditioned fear and anxiety is consistent with a dorsal and ventral 

dichotomy model. Less work has been done to dissociate the role of the dHPC and 

vHPC in innate anxiety behavior, but at least one study suggests that activity in the 

vHPC, and not the dHPC, correlates with levels of anxiety (Adhikari, Topiwala, and 

Gordon 2010). 

 

The medial prefrontal cortex (mPFC) is an anatomical division of the prefrontal cortex, 

which is known for its diverse roles from integration of sensory inputs to decision 

making (Nauta 1971). The medial subdivision of the prefrontal cortex has been long 

implicated in processing of stress and aversive stimuli (Diorio, Viau, and Meaney 1993). 

Moreover, a growing body of evidence demonstrates that the mPFC provides top-down 

control and regulation of fear and anxiety behaviors (Milad and Quirk 2012; Adhikari et 

al. 2015). The mPFC is necessary for anxiety behaviors, as lesions or pharmacological 

inactivation of the mPFC result in decreased avoidance behavior in multiple anxiety 

assays (Shah and Treit 2003). More recently, it has been shown that single units in the 

mPFC represent aversive features of the environment (Adhikari, Topiwala, and Gordon 

2011). The role of the mPFC during learned fear is more complex because of the 

opposing roles of different subregions of the the mPFC. Mounting evidence shows that 

the prelimbic (PL) subregion of the mPFC promotes fear, while the infralimbic (IL) 

subregion promotes extinction of the fear (Burgos-Robles, Vidal-Gonzalez, and Quirk 

2009; Burgos-Robles et al. 2007; Milad and Quirk 2012). In humans, the dorsal anterior 
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cingulate cortex, the homolog of the rodent PL, is consistently abnormal in patients with 

anxiety disorders as discussed earlier (Milad and Quirk 2012). 

 

There is no clear evidence that this dissociation of the PL and IL exists during innate 

fear or anxiety behaviors. A recent study showed that optogenetic inhibition of IL 

somata alone was insufficient to change avoidance behavior in the open field  (Adhikari 

et al. 2015), indicating that PL activity is sufficient to mediate avoidance behavior during 

the open field. This same study showed that inhibition of outputs of the IL to the 

basomedial amygdala increased avoidance behavior. This suggests that some IL 

outputs are anxiolytic, which is consistent with the role of IL promoting extinction of 

learned fear. This study indirectly demonstrates that PL, more than IL, mediates 

avoidance behavior. This hypothesis is consistent with electrophysiological work 

showing that PL firing represents aversive features in the EPM (Adhikari, Topiwala, and 

Gordon 2011). However, no experiment has yet directly compared the contributions of 

IL vs PL activity in anxiety-like behaviors.  

 

The bed nucleus stria terminalis (BNST) receives strong projections from the BLA 

and projects to many hypothalamic and brainstem regions (Dong and Swanson 2004).  

Therefore, it is anatomically well situated to mediate physiological aspects of anxiety. 

Additionally, the ventral hippocampus projects to the BNST (Cullinan, Herman, and 

Watson 1993). The strongest evidence for a role of BNST in anxiety behaviors comes 

from numerous studies using the light-enhanced startle response test (Davis, Walker, 

and Lee 1997; Davis et al. 2010). Pharmacological inactivation of the BNST blocks the 
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potentiation in the fear startle that is normally caused by exposure bright light or 

injection of corticotropin releasing hormone (Lee and Davis 1997; Walker and Davis 

1997). Using the EPM as an anxiety test, there have been conflicting findings on the 

effect of BNST lesions in avoidance behavior (Treit, Aujla, and Menard 1998; Duvarci, 

Bauer, and Paré 2009). More recent work that used optogenetics to dissect the role of 

the BNST and its different outputs in anxiety behavior potentially explains the conflicting 

lesion findings (Kim et al. 2013). Optogenetic inhibition of the anterodorsal BNST 

decreased anxiety, while inhibting the oval BNST decreased anxiety behavior. 

Moreover, specific outputs of the anterodorsal BNST to the lateral hypothalamus, 

parabrachial nucleus and ventral tegmental area-each implemented an independent 

feature of anxiolysis: reduced risk-avoidance, reduced respiratory rate, and increased 

positive valence, respectively (Kim et al. 2013). 

[Septally lesioned rats] presented a picture of striking alertness with limbs rigidly 

extended and eyes intently following the movements of the observer approaching 

the cage. The sudden presentation of almost any auditory stimulus produced an 

explosive startle reaction. The typical exploratory response of the normal rat to 

presentation of such an innocuous object as a pencil was replaced by 

‘freezing’… Rapidly approaching objects were attacked immediately with 

vigorous biting… - Brady and Nauta, 1953 

The septum has long been implicated in the generation of defensive behaviors that are 

elicited by feelings of fear or anxiety. Lesioning the septum causes a very strong 

increase in defensive behaviors, as described in the quote (Gotsick and Marshall 1972; 
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Brady and Nauta 1953). This increase in defensive behaviors is only seen when the 

whole septum is lesioning (Gotsick and Marshall 1972). A common interpretation of this 

rage syndrome is that the septal lesion causes a generalized disinhibition of fear, 

resulting in an animal that shows exaggerated or inappropriate defensive reactions to 

nonthreatening environmental stimuli (Sheehan, Chambers, and Russell 2004). The 

septum is subdivided in the lateral septum (LS) and the medial septum (MS); 

inactivating independently these subdivisions has different behavioral effects. During 

fear conditioning paradigms, the subdivisions of the septum might have different roles in 

the expression of fear. One study suggests a dissociable role for the LS and MS in fear 

to a conditioned tone and a conditioned context, respectively (Calandreau, Jaffard, and 

Desmedt 2007), but the results are not very convincing and no other study has reported 

such dissociation.  

 

The MS projects to the hippocampus (Robinson et al. 2016). A  recent study showed 

that during contextual fear cholinergic inputs from the MS to the dHPC are activated 

(Lovett-Barron et al. 2014). Furthermore, lesioning or inactivating the MS disrupts local 

field potential theta-frequency range (4-12 Hz) activity in the hippocampus (Petsche, 

Stumpf, and Gogolak 1962; Mizumori, Barnes, and McNaughton 1990; Buzsáki 2002).  

Theta activity in the HPC has been implicated in contextual navigation, suggesting that 

MS plays a role in contextual fear via its projection to the HPC. The role of MS in 

hippocampal theta will be further discussed in a later section.  
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During anxiety assays, lesions of either the LS or MS subdivision decrease avoidance 

behavior (Menard and Treit 1996). Additionally, pharmacological inactivation of the LS 

decreases avoidance behaviors (Trent and Menard 2010). However, this study is at odd 

with the septal rage seen by many labs. The ventral hippocampus (vHPC) strongly 

projects to the LS (Risold and Swanson 1996).  Since early twentieth century it has 

been proposed that the LS can be a relay station for the hippocampus (Smith 1910). 

Indeed, pharmacological disconnection of the LS and vHPC decreases avoidance 

behavior, suggesting that the connection between LS and vHPC is necessary for 

anxiety behavior (Trent and Menard 2010). A recent study showed that the LS outputs 

to the anterior hypothalamus are necessary for stress-induce increases on anxiety 

(Anthony et al. 2014). All of this work together suggests a model in which the vHPC can 

modulate the hypothalamus via the LS to modulate anxiety, and input from the MS 

could in turn feedback to the vHPC.  

 

The periaqueductal gray (PAG) is a brainstem region most known for its role in pain. 

Stimulating certain areas of the PAG causes self-reported fear sensations in humans 

(Nashold, Wilson, and Slaughter 1969; Jenck, Moreau, and Martin 1995). Specifically, 

stimulation of the dorsal PAG (dPAG) in humans induces acute signs of autonomic 

arousal and feelings of subjective anxiety, similar to a panic attack. In animals, dPAG 

stimulation has a similar effect in autonomic activation and sudden fear behaviors 

(Jenck, Moreau, and Martin 1995). A body of literature shows that the dorsolateral PAG 

controls defensive behaviors, like fight or flight, or freeze responses (Bandler and 

Shipley 1994). Electrical stimulation of the dorsolateral PAG in cats and rats produced 
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defensive behaviors associated with flight responses. On the other hand, stimulation of 

the ventrolateral PAG produced freezing responses (Bandler and Carrive 1988). The 

central amygdala projects strongly to the PAG (Gray and Magnuson 1992). Considering 

the roles of the amygdala and PAG, the classic model proposed is that dangerous 

stimuli activate the amygdala which then activates the PAG to evoke defensive 

behaviors in response (Behbehani 1995). More recent models also acknowledge that 

the direct projection from the medial prefrontal cortex to the PAG could also be 

modulating defensive behaviors (Calhoon and Tye 2015; Cheriyan et al. 2016); this 

hypothesis remains to be tested.  

 

1.5 The tripartite circuit of fear and anxiety 

As discussed above, there is a large distributed circuit implicated in anxiety, I will focus 

on a tripartite circuit within this extended circuit. A growing body of evidence shows that 

functional connectivity between mPFC, BLA and vHPC are an important feature in fear 

and anxiety states (Lesting et al. 2011; Sotres-Bayon et al. 2012; Courtin et al. 2014; 

Likhtik et al. 2014). Some of that evidence comes from recording local oscillations. Brain 

oscillations are generated from periodic fluctuations in the excitability in a group of 

neurons. The synchronized changes in membrane potential of neurons create an 

extracellular current which can be measured by recording the local field potentials (LFP) 

(Buzsáki and Draguhn 2004; Buzsáki and Watson 2012). In vitro, fluctuations of the 

extracellular field were sufficient to cause oscillations in the somatic membrane and to 

entrain spiking activity (Anastassiou et al. 2011). Therefore, it is possible that 

endogenous brain oscillations can causally affect neural function through field effects 
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under physiological conditions. Most brain rhythms are paced by inhibition; therefore 

these oscillations could also provide a mechanism for carrying information in temporal 

frames (Buzsáki and Watson 2012). The forebrain neuronal networks support different 

neuronal oscillations that occur at different speeds and frequencies. For fast oscillations 

the available time is short, so the participating neurons are constrained to a small 

volume. On the other hand, slower oscillations encompass a larger volume of tissue and 

more neurons (Buzsáki and Watson 2012).   

 

Theta-range (4-12 Hz) oscillations are one of the slower oscillations. Evidence suggests 

that theta rhythms are involved in facilitating the transfer of information from one brain 

region to another during sensory information processing (Colgin 2013).  They were first 

described in the dorsal hippocampus (dHPC) during navigation (Vanderwolf 1969). 

Theta oscillations were first implicated in anxiety from evidence showing that anxiolytic 

drugs decreased theta oscillations in the dHPC (McNaughton and Sedgwick 1978). In a 

mouse genetic model of anxiety, dHPC theta oscillations were stronger during anxiety 

behaviors (Gordon et al. 2005). Additionally, theta oscillations in the amygdala and 

dHPC synchronized during retrieval of a fear memory (Seidenbecher, Laxmi, and Pape 

2003); suggesting that theta might enhance dHPC and amygdala information transfer 

during fear recall. In humans with high trait anxiety, electroencephalogram recordings in 

the temporal lobe showed increase theta activity during presentation of aversive visual 

stimuli (Aftanas et al. 2003), suggesting that in the human brain theta rhythms are 

important during threat processing.  
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As discussed above there is mounting evidence that the vHPC, and not the dHPC, is 

involved in fear and anxiety behaviors (Kjelstrup et al. 2002; Bannerman et al. 2003; 

Fanselow and Dong 2010). A study that recorded vHPC, dHPC and mPFC LFPs, 

showed that only theta in the vHPC increased in relative power during anxiogenic 

environments (Adhikari, Topiwala, and Gordon 2010). Furthermore, mPFC theta 

increased relative power with anxiety, and mPFC theta power explained the avoidance 

behavioral variance (Adhikari, Topiwala, and Gordon 2010). Finally, this same study 

showed an increase in theta power correlation between the mPFC and vHPC during 

anxiety behavior. During differential fear conditioning, the BLA, mPFC and vHPC all 

increased theta during the presentation of conditioned tones. However, only the BLA 

and mPFC had higher theta during the CS+ compared to a CS- (Lesting et al. 2011; 

Likhtik et al. 2014). It is important to clarify that in these studies the CS- evoked 

significant freezing so it was not an absolute safety signal, suggesting that vHPC 

increases in theta with weaker threats like the CS- and stronger threats like the CS+ 

alike. Altogether, this work suggests that theta oscillations in BLA, mPFC and vHPC are 

important for fear and anxiety, although the evidence is of correlative nature. 

 

How are theta oscillations generated? A body of literature shows that theta rhythms in 

the hippocampus are dependent on input from the diagonal band of the medial septum 

(MS) (Petsche, Stumpf, and Gogolak 1962; Mizumori, Barnes, and McNaughton 1990). 

However, a recent study questions this model. In an intact in vitro preparation of the 

hippocampus, lacking any connections to MS, theta rhythms remained (Goutagny, 

Jackson, and Williams 2009). Moreover, in this preparation interneuron and pyramidal 
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synaptic activity was sufficient to elicit theta rhythms in the hippocampus. One 

possibility to consolidate these findings is that indeed local hippocampal activity is 

sufficient to generate theta rhythms, but the MS input amplifies and helps maintain the 

rhythm. However, not all theta oscillations are alike. Theta from the ventral and dorsal 

HPC can be modulated independently. When theta activity was recorded at two 

locations in CA1, one dorsal and one ventral, and the regions between were silenced by 

procaine, both regions continued to oscillate, but the ventral theta was slower than the 

dorsal theta (Goutagny, Jackson, and Williams 2009). Moreover, theta oscillations in the 

vHPC and dHPC appear to be functionally distinct, as seen in anxiety-like behaviors 

(Adhikari, Topiwala, and Gordon 2010).  

 

The amygdala also shows theta rhythms that emerge in vitro in the absence from 

specific input (Pape et al., 1998). The BLA and mPFC theta also synchronize during 

fear and anxiety. Fear-induced theta oscillations in mPFC are independent of MS 

activity (Courtin et al. 2014). This finding provides further evidence that theta oscillations 

in different regions have different sources.  During innate anxiety and retrieval of 

learned fear, oscillations in the mPFC and BLA increased in synchrony (Lesting et al. 

2011; Likhtik et al. 2014). Specifically, mPFC lead BLA theta when animals were in the 

relative safety of the periphery of the open field or during presentation of a CS-. 

Conversely, the BLA was more likely to lead the mPFC during the center of the open 

field or a CS+ (Likhtik et al. 2014). An important observation is that Lihktik et al. mostly 

recorded in the PL subregion of the mPFC.  Recently it was shown that optogenetic 

inhibition of PL parvalbumin interneurons (PV) caused re-set of mPFC theta and 
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increases in freezing behavior. Moreover, optogenetic stimulation of PL PV at 4 Hz was 

sufficient to evoke freezing behavior (Courtin et al 2014). Altogether, suggests that PL 

theta is strongly linked to fear behavior but it is also necessary for discrimination of fear.  

 

Recent optogenetic work also emphasizes how the vHPC-mPFC-BLA circuits work 

together during anxiety (Figure 2). Inhibition of the BLA projections to vHPC or to mPFC 

decreased avoidance behavior, suggesting an anxiogenic role of the BLA-mPFC and 

BLA-vHPC pathways (Felix-Ortiz et al. 2013; Felix-Ortiz et al. 2016).Interestingly, 

inhibition of the vHPC projection to the BLA did not affect avoidance behavior, and 

instead disrupted contextual fear (Jimenez et al. personal communication). Moreover, 

inhibition of the IL-amygdala projection increased avoidance, suggesting that this 

subregion of the IL contains anxiolytic neurons (Adhikari et al. 2015).  

 

 

 

Figure 2: Projections tested optogenetically within the emotional triad. Red arrow represents 
anxiogenic pathways, blue arrow represents anxiolytic pathway and dashed arrow represents no 
causal role in anxiety.  
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 1.6 Addressing the role of vHPC-mPFC in anxiety behavior 

The vHPC serves as the hippocampal output to the mPFC. Theta activity in this 

pathway increases during anxiety, suggesting it may have a causal role in anxiety 

behavior. Moreover, single units in the mPFC represent the aversion and safety in the 

elevated plus maze (Adhikari et al., 2011). That mPFC population of single-units is more 

phase-locked to vHPC theta; suggesting that these cells could receive projection from 

the vHPC and that this representation relies on the vHPC projection. To understand the 

contribution of the direct projection from vHPC to mPFC, I sought to answer the 

following hypotheses: 

 

Hypothesis 1 The vHPC projection to the mPFC is necessary for avoidance 

behavior. 

Hypothesis 2 The vHPC projection to the mPFC is necessary for the mPFC 

representation of aversion. 

Hypothesis 3 The vHPC projection to the mPFC is necessary for the anxiety-

related theta synchrony between vHPC-mPFC. 

Hypothesis 4 Activation of the vHPC projection to the mPFC in a theta frequency 

is sufficient to modulate anxiety behavior.  

 

Optogenetics combined with in vivo electrophysiology in behaving mice, provides a tool 

to address all of these hypotheses with high temporal control. To tests hypotheses 1 

through 3, I used archearhodopsin mediated inhibition of the vHPC terminals. The 

results from these experiments are presented in chapters 2 through 4. To test 



 
30 

hypothesis 4, I used channelrhodopsin mediated excitation of vHPC terminals. The 

results from these experiments are presented in chapter 5. The implications of the 

results presented in this thesis are then discussed in chapter 6.  
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Chapter 2: The role of the ventral 
hippocampal input to mPFC in anxiety 

behaviors 
 

The work in this chapter is published  
in Padilla-Coreano et al., 2016 Neuron 
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2.1 Introduction 

As discussed in the general introduction, anxiety is an adaptive state of increased 

apprehension that allows avoidance of potential danger. However, inappropriate 

expression of anxiety is maladaptive and, in humans, can lead to anxiety disorders. In 

order to develop better treatments for these disorders, we must understand the neural 

circuits that support normal anxiety behaviors. Studies in rodents have shown that 

anxiety-like behavior involves the ventral hippocampus (vHPC). Lesioning the vHPC, 

but not the dorsal compartment of the hippocampus (dHPC), decreased anxiety in a 

variety of tasks (Bannerman et al. 2003; Trent and Menard 2010). Moreover, the vHPC, 

and not the dHPC, is anatomically interconnected with the amygdala, therefore well 

situated to modulate emotional regulation within the amygdala (Pikkarainen et al. 1999). 

 

Besides the vHPC, the medial prefrontal cortex (mPFC), and basolateral amygdala 

(BLA) have been implicated in anxiety-like behaviors (Shah and Treit 2003; Tye et al. 

2011). These three regions share anatomical and functional connectivity (Pikkarainen et 

al. 1999; Hoover and Vertes 2007; Lesting et al. 2011; Likhtik et al. 2014); suggesting 

that they function as a distributed network that supports anxiety behavior in an 

interdependent manner. In particular, the vHPC has a direct monosynaptic excitatory 

projection to the mPFC (Jay and Witter 1991; Jay et al. 1992). The vHPC neurons that 

project to the mPFC are located in the intermediate and ventral CA1 pyramidal layer, 

and the ventral subiculum. These vHPC neurons innervate pyramidal cells and 

interneurons alike in the mPFC (Carr and Sesack 1996; Gabbott, Headlam, and Busby 
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2002); therefore vHPC can both excite mPFC and inhibit mPFC activity through 

feedforward inhibition.    

 

The vHPC–mPFC projection appears to be a key component of this circuit, especially 

during the expression of innate forms of anxiety-like behavior. In rodents, theta-

frequency (4–12 Hz) synchrony emerges between the vHPC and mPFC during 

exposure to anxiogenic environments such as the elevated plus maze (EPM) (Adhikari 

et al. 2010). This finding suggests that activity in the vHPC-mPFC pathway is necessary 

for anxiety-like behaviors; however, the existing evidence is correlative. Theta activity in 

BLA is also linked to anxiety-like behavior (Likhtik et al. 2014), making the BLA 

projection to vHPC and mPFC a possible mediator of the increased synchrony in theta 

between vHPC and mPFC. However, a recent study showed that vHPC units that have 

task related information in an anxiety-task are more likely to project to the mPFC than to 

the amygdala (Ciocchi et al. 2015). Altogether, these findings suggest that the direct 

projection from the vHPC to mPFC is necessary for anxiety-like behavior. To test this 

hypothesis, we optogenetically inhibited the vHPC terminals in the mPFC during 

different anxiety assays. Bilateral inhibition of vHPC-mPFC pathway decreased anxiety 

behavior during the EPM, the open field and the novelty suppressed feeding test. This 

was not the case during unilateral vHPC-mPFC inhibition or bilateral inhibition of the 

mediodorsal thalamic input to the mPFC. 
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2.2 Results 

To examine the role of the direct vHPC-to-mPFC pathway during anxiety-like behavior, 

vHPC terminals in the mPFC were inhibited using an optogenetic approach. An adeno-

associated virus (AAV) carrying either the inhibitory opsin, enhanced Archeorhodopsin 

3.0 (Arch), or enhanced yellow fluorescent protein (eYFP) under the control of the 

CamKIIa promoter was injected bilaterally into the vHPC of wild-type mice (Figure 1A). 

Optical fibers were implanted in the mPFC, along with microelectrodes in the mPFC, 

vHPC, and BLA. Seven weeks were allowed for viral expression to achieve maximal 

opsin levels in vHPC terminals within the mPFC (Figure 1B); we have previously shown 

that this approach results in at least a 40% reduction in effective neurotransmission in 

vivo (Spellman et al., 2015). Mice were then tested in the EPM for 8 min, with 
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alternating 2-min periods of no illumination and illumination of the mPFC with green 

(532 nm) light (Figure1C).  
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In mice expressing Arch, but not those expressing eYFP alone, bilateral inhibition of 

vHPC terminals in the mPFC decreased open arm avoidance, as evidenced by both  

entries into and increased time spent in the open arms (Figure 2A). Locomotion, 

measured as distance traveled, was not affected by light in neither environment (Figure 

3). Moreover, inhibition of vHPC-mPFC did not affect velocity in the EPM (Figure 4).  

 

Unilateral lesion of vHPC does not affect anxiety behavior (Shah et al., 2003), which 

suggests that unilateral inhibition of vHPC-mPFC pathway would not affect avoidance 

behavior in the EPM. To test if unilateral inhibition of vHPC-mPFC is sufficient to disrupt 

anxiety behavior, a new cohort of wildtype mice were unilaterally injected with Arch 

under the CamKIIa promoter and an optical fiber was implanted in the ipsilateral mPFC. 

The same behavioral protocol as in the bilateral inhibition was repeated. As predicted, 
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unilateral vHPC terminal inhibition did not affect avoidance behavior in the EPM (Figure 

2B).  

 

Given that vHPC has been 

implicated in contextual fear (Maren 

and Holt, 2004), one potential 

caveat of these results is that the 

reduced open arm time is a 

consequence of disrupted 

contextual/spatial integration rather 

than a decreased in anxiety 

behavior.  

 

To address this potential caveat, we measured additional behavioral variables that 

indicate changes in anxiety-like behavior. We examined head dips in the open arms and 

the duration of open arm visits. The number of head dips over the open arm edge is 
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associated with anxiety behavior in the EPM (Rodgers and Johnson, 1995). We 

reasoned that if spatial representations alone were disrupted, without altering anxiety 

per se, the mice would continue to avoid head dips and make rapid exits from the open 

arms, despite bilateral inhibition of the vHPC-mPFC pathway. However, bilateral 

inhibition of the vHPC-mPFC pathway increased both the total number of head dips and 

the frequency of head dips per unit time spent in the open arms; unilateral inhibition had 

no effect on these measures, as expected (Figure 2C-D). Similarly, bilateral, but not 

unilateral, inhibition increased the duration of open arm visits (Figure 2C-D). Terminal 

illumination in eYFP-expressing mice had no effect on either behavior. These findings 

suggest that with bilateral (but not unilateral) terminal inhibition, mice fail to treat the 

open arms as aversive. In addition, bilateral inhibition of vHPC terminals in the mPFC 

also decreased center avoidance in the open field test (Figure 5A) and decreased 

latency to eat in the novelty suppression feeding test (Figure 5B), only in the Arch 

group. 

 

To control for the non-specific effects of decreased excitation in the mPFC, Arch was 

used to inhibit inputs from the mediodorsal nucleus of the thalamus (MD) (Figure 6A). 

The strength of MD inputs onto mPFC neurons approximates that of vHPC inputs (Little 

and Carter, 2012). Bilateral inhibition of MD inputs to the mPFC had no effect on open 

arm avoidance (Figure 6B), suggesting that the behavioral effects of vHPC terminal 

inhibition are not solely due to a non-specific decrease in excitatory input.  
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2.3 Discussion 

The findings described here demonstrate that the direct vHPC-to-mPFC pathway is 

necessary for anxiety-related behavior. The implications of these findings, particularly in 

terms of the extended BLA-vHPC-mPFC circuit, are discussed below. 
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The experiments reported here demonstrate that the direct vHPC-mPFC pathway is 

necessary for anxiety-like behavior as measured in the EPM, OF and NSF anxiety 

assays. These behavioral effects were not due to non-specific decreased of excitatory 

input to mPFC, as inhibiting the MD input did not affect anxiety. This work is consistent 

with a recent study demonstrating that blocking neuronal gap junctions between vHPC 

and mPFC decreased anxiety-like behavior (Shoenfeld et al., 2014). Interestingly, 

unilateral inhibition of vHPC-mPFC pathway did not affect avoidance behavior, 

suggesting that one functional hemisphere is sufficient to carry out the role of vHPC-

mPFC during anxiety. Disruption of the the BLA-to-vHPC pathway also results in 

decreased anxiety-like behavior (Felix-Ortiz, et al., 2013). This suggests that aversive 

task-relevant information could be indeed upstream of vHPC and might go from the BLA 

to vHPC to the mPFC.  

 

vHPC-mPFC pathway beyond innate anxiety 

In addition to innate forms of anxiety, such as those tested in the EPM and OF, learned 

fear also engages the vHPC-mPFC circuit. In learned fear paradigms, silencing the 

vHPC, similar to the BLA, disrupts both the expression (during fear recall) and 

suppression (during extinction recall) of fear (Maren and Holt 2004; Sierra-Mercado et 

al., 2011). These reports suggest that the role of the vHPC during learned fear may be 

more complex than during innate anxiety, as it is pro-fear during fear recall, but anti-fear 

after extinction has occurred (Sotres-Bayon et al. 2012).    
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The role of vHPC-mPFC pathway is not exclusively aversive processing. Our group has 

recently reported that inhibiting of vHPC-mPFC during a spatial working memory task 

results in decreased performance. This indicates that this pathway carries information 

that is relevant for both emotional and cognitive processing. It remains to be determine 

if distinct subsets of vHPC mPFC-projecting neurons mediate the effects of the pathway 

in emotional and cognitive processing. Discussion in chapters 2-3 will expand more on 

the type of information that vHPC-mPFC carries during a working memory task vs the 

EPM.  

 

Finally, it can be concluded that, as hypothesized, the direct hippocampal projection to 

the mPFC is necessary for anxiety-like behavior. The subsequent chapters discuss 

physiological changes that could explain the change in anxiety behavior.  

 

2.4 Methods 

Surgical Procedures: For the EPM experiments, mice were unilaterally or bilaterally 

infected (n = 29 and 23, unilateral and bilateral, respectively) with either AAV5 CamKIIa-

eArch3.0-eYFP or AAV5 CamKIIa–eYFP into the vHPC under isoflurane anesthesia. 

200 nl of 10 12 vg/ml virus was pressure-injected through a glass micropipette. In each 

hemisphere, six injections were done at -3.10 and at -3.30 AP levels for a total of 12 

injections per hemisphere. At each AP level, the six injection sites were ±2.90, -4.0; 

±2.90, -1.65; ±3.30, -3.60; ±3.30 -1.7; ±3.70, -3.2; ±3.70, -2.5 (ML and DV, respectively). 

Coordinates are in mm relative to Bregma (AP, ML) or brain surface (DV). All viruses 

were obtained from the University of North Carolina Vector core. Virus was infused at a 
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rate of 100 nl/min. Using this protocol, we have recently demonstrated that vHPC 

terminal inhibition in the mPFC decreases vHPC stimulation-evoked firing rates by 

approximately 40% in vivo (Spellman et al., 2015). 6–8 weeks after viral infection, mice 

for the EPM experiment, were implanted with electrodes and optical fibers in a second 

surgery, also under isoflurane anesthesia. Stereo-optrodes were implanted in the mPFC 

(AP -1.60 ML ±0.4 DV -1.25). Each stereo-optrode was comprised of a 230 um optical 

fiber glued to a bundle of 14 tungsten wire (13 mM diameter) stereotrodes placed 400–

500 mm below the end of the optical fiber. 75 mM diameter tungsten wire LFP 

electrodes were implanted in the BLA (AP -1.80, ML ±3.16, DV -4.10) and the CA1 

region of the vHPC (AP -3.30, ML ±3.30, DV -3.60). A reference screw was implanted in 

the skull over the frontal cortex and a ground screw in the skull over the cerebellum.  

For the MD experiments, AAV5-hSyn-eArch3.0-eYFP or AAV5-hSyn-eYFP was used. 

200 nl volume of [10 12 vg/ml] virus was injected into the MD of 15 mice (AP -1.2, ML ± 

0.35, DV -3.2). Eleven mice were used to determine the effects of bilateral MD-mPFC 

inhibition on avoidance behavior (Figure 6).  

 

EPM behavioral protocol: Behavior 5–7 days after electrode microdrive implantation, 

mice were food restricted to 80% of pre-operative weight and habituated to the 

opto/electrical tether in a small dark wooden box (20x3x30 cm) as they foraged for food 

pellets. On the fifth day of habituation, after 1 hr rest, mice were placed in the EPM 

under 300 lux illumination. Five mice were excluded from behavioral analysis for having 

less than 3 s of exploration in the open arms throughout the duration of the experiment. 

Behavior in the EPM was hand scored to ensure consistency of analysis. A mouse was 
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said to be inside an open or closed arm if all four paws were inside the arm. Head dips 

were defined as the full head of mouse coming out of open arm borders; this head-

dipping behavior is quantified and described in Rodgers and Johnson (1995). The laser 

output was controlled using Neuralynx Trial Control (Neuralynx) to deliver constant 532 

nm light at 10 mW (measured at the tip of the optical fiber) every 2 min.  

 

To test additional anxiety assays a cohort of 17 mice was injected with AAV5 CamKIIa-

eArch3.0-eYFP or AAV5 CamKIIa-eYFP and implanted with bilateral optical fibers in 

mPFC (see Surgical Procedures for coordinates). After 7 to 8 weeks of viral expression, 

the mice were tested in the open field (25 cm radius, 40 cm high) under 80 lux 

illumination for 8 min with the same laser protocol as the EPM. For the novelty-

suppressed feeding test, animals were food restricted for 24 hours and were place in a 

40×60 cm brightly lit arena (200-250 lux) with a food pellet in a diameter filter paper 

placed in the center. The trial was terminated either when an animal began chewing or 

600 seconds transpired. Immediately after terminating the trial, animals were then 

placed in their home cage and the amount of food consumed in 5 minutes was 

measured (home cage consumption), followed by an assessment of post-restriction 

weight. Percentage body weight lost during food deprivation prior to the testing was 

assessed to ensure both groups lost similar amounts of weight, and home cage 

consumption immediately after testing was assessed as a relative measure of hunger 

(mg pellet consume/mouse weight). The task was repeated twice on different days for 

each mouse, counterbalanced for light stimulation (ON) or no stimulation (OFF). 

Percentage body weight lost during food deprivation prior to the testing was assessed to 
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ensure both groups lost similar amounts of weight, and home cage consumption 

immediately after testing was assessed as a relative measure of hunger (mg pellet 

consume/mouse weight). Neither variable was affected by illumination in either eYFP or 

Arch animals.  

Statistics: To test significance of behavioral changes, two-way repeated-measures 

ANOVAs with post hoc, Bonferroni-corrected t tests were used.  
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The work in this chapter is published  
in Padilla-Coreano et al., 2016 Neuron 

Chapter 3: The role of the vHPC 
input to mPFC in the representation 

of aversion in mPFC 
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3.1 Introduction 

In the previous chapter I presented evidence that ventral hippocampus (vHPC) input to 

medial prefrontal cortex (mPFC) is necessary for anxiety behavior. What necessary 

information may the vHPC input be relaying to the mPFC? The hippocampus (HPC) is 

well known for having a spatial representation of the environment, specifically “place 

cells” in the dorsal HPC fire when animals are in a specific field location. The 

representation of spatial information exists throughout the HPC, although the size of the 

fields increases dramatically in the vHPC and the place cells are weaker (Kjelstrup et al. 

2009; Royer et al. 2010). Evidence from human hippocampal imaging suggests that the 

anterior hippocampus (the human homolog of the vHPC) responds to negative valence 

more than positive valence (Gerdes et al. 2010; Sterpenich et al. 2014). A recent 

publication showed that vHPC units that fire to specific arm-types (open vs closed arms) 

during the EPM are more likely to project to the mPFC than other brain regions (Ciocchi 

et al. 2015). These units in the vHPC are said to represent arm-type during the EPM.  

 

The mPFC is known for being involved in cognition and top-down regulation of 

emotions. In many types of behavioral paradigms there is task-relevant information 

represented by mPFC  (Burgos-Robles, Vidal-Gonzalez, and Quirk 2009; Jones and 

Wilson 2005). Neurons in mPFC indeed show task-modulation tasks ranging from fear 

learning, working memory and appetitive and addiction related tasks (Jones and Wilson 

2005; Peters, Kalivas, and Quirk 2009; Sotres-Bayon and Quirk 2010). During fear 

conditioning, mPFC neurons increase firing to the conditioned stimulus, that mPFC 

response is dependent on BLA activity (Sotres-Bayon et al. 2012). Similarly, the input 
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from BLA to mPFC is necessary for anxiety-like behaviors (Felix-Ortiz et al. 2016). 

Lesioning or inactivating the mPFC decreases anxiety-like behavior in rodents (Shah et 

al. 2003; Shah et al. 2004). These results suggest that mPFC neurons encode 

important aversive information that mediates anxiety responses. 

 

Single units in the mPFC represent spatial aversion in the elevated plus maze (EPM), 

some cells fire in open/aversive arms while others fire in closed/safe arms.  This 

representation of aversion correlates with the animal’s anxious behavior suggesting that 

the representation is important for the behavior (Adhikari et al, 2011). Both the BLA and 

vHPC are possible inputs that could contribute to this representation in the mPFC.  

 

Interestingly, mPFC units that are synchronized with vHPC theta (4-12 Hz) preferentially 

represent arm-type in the EPM (Adhikari et al. 2011); suggesting that vHPC input, 

directly or indirectly, is necessary for this aversive representation. Given the high 

degree of interconnectivity in the vHPC-mPFC-BLA circuit complicate the picture, as 

BLA input to both mPFC and vHPC could contribute information for the arm-type 

representation. Is the direct vHPC-to-mPFC pathway required for this arm-type 

representation? Here, we specifically test the role of the direct projection from the vHPC 

in the mPFC representation of valence in the EPM by inhibiting the vHPC terminals 

while assaying mPFC activity during the EPM. We found that the spatial representation 

of aversion in mPFC is abolished during inhibition of vHPC.  
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3.2 Results 

  

 

 

 

 

 

 

 

 

To address the role of vHPC input in mPFC single-unit activity, we turned to unilateral 

inhibition. Aversion in the EPM is determined by arm-type; the strength of mPFC 

representations of arm-type varies with avoidance behavior (Adhikari et al. 2011). The 

behavioral effects of the bilateral inhibition could confound physiological findings. To 

eliminate this confound, mPFC single-unit activity was recorded during unilateral 

inhibition of the vHPC-to-mPFC pathway in an additional cohort. As shown in the 

previous chapter, unilateral vHPC terminal inhibition did not affect avoidance behavior. 

Thus, unilateral inhibition has the potential to separate the physiological and behavioral 

effects of disrupting the vHPC-mPFC circuit.  
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Inhibition of vHPC-mPFC pathway did not change overall firing rate of mPFC singe-

units (Figure 1) or for putative interneurons or pyramidal neurons (data not shown). 

To further examine the contribution of vHPC input toward mPFC unit activity during 

EPM exploration, task-related firing rates were examined. Each unit was classified as 

open- or closed-arm preferring, depending on where the firing rate was highest for that 

unit. Although net firing rate did not change, firing rates in the preferred arm type 

decreased with vHPC inhibition for both open- and closed-preferring units (Figure 2), 

suggesting that the net effect of vHPC input during the EPM is excitatory. 
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To address if vHPC input is 

necessary for spatial 

representations of aversion, we 

also turned to unilateral 

inhibition. Aversion in the EPM 

is determined by arm-type 

(Adhikari et al. 2011). 

Unilateral inhibition of vHPC-

mPFC inputs abolished the 

representation of aversion in 

mPFC single units, as 

measured by the EPM score, 

which reflects arm-type 

selectivity (see Experimental 

Procedures; Figures 3A-B). 

Mean EPM score was 

decreased regardless of 

whether the units were 

significantly phase-locked to 

vHPC theta or whether they fired preferentially in the open or closed arms (Figure 3C). 

Terminal illumination in mice expressing eYFP only did not affect EPM scores (Figure 

4A). Moreover, the decrease in arm-type representation was not simply due to a non-
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specific loss of excitation, since inhibiting the MD-mPFC pathway did not affect EPM 

scores (Figure 4B). Altogether, these findings suggest that direct vHPC inputs provide 

patterned excitation that is required for mPFC spatial representations of aversiveness in 

the EPM.  

 

However, mPFC neurons can represent task-relevant information in a variety of tasks. 

To determine whether vHPC input is important for mPFC representations of a similar, 

but non-aversive context, a modified neutral plus maze was created. In this maze, all 

four arms were fully enclosed, and the two types of arms were marked by different 

visual patterns (see Methods). An additional cohort of mice was injected in vHPC and 
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implanted with optrodes in mPFC and recorded during exploration of this neutral maze. 

Mice did not display a preference for either arm type (58% ± 12% and 42% ± 12% time 

spent in each arm type, respectively; p = 0.40). Importantly, mPFC units only weakly 

represented arm-type in this neutral maze compared to the the EPM (Figure 5A-B). 

Moreover, the EPM scores in the neutral maze were not statistically different from EPM 

scores generated from shuffled spikes (Figure 5C), suggesting that mPFC 

representations of arm-type in this neutral maze are minimal. Even so the 

representation in this non-avesive maze is minimal, inhibition of the vHPC-to-mPFC 

pathway decreased the mean EPM scores significantly (Figures 6).  
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This result suggested the possibility that the EPM score effects seen in the standard 

EPM are due to overall lost of spatial information rather than lost of aversive 

information. To test if vHPC input disrupted overall spatial information in mPFC single 

units, we computed the spatial information for each unit. This computation is standard in 

the field of place cells, and it measures how much firing is explained by location, thus 

how much spatial information a cell contains (Markus et al. 1994).  Inhibition of the 

vHPC-to-mPFC pathway during the EPM did not affect spatial information in mPFC 

single units (Figure 7). Altogether, these results suggest that spatial information in 

mPFC does not rely in vHPC input unless it is aversive related information (like arm-

type in the EPM).  
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3.3 Discussion: 

The experiments reported here show that inhibition of the direct vHPC input ablated the 

representation of aversive and non-aversive context within the mPFC. However, mPFC 

units encode negative valence; neurons that fire in response to bright, enclosed arms 

also fire in response to open arms in the dark (Adhikari et al. 2011). Moreover, terminal 

inhibition altered additional behavioral measures of valence, independent of arm choice 

(see Chapter 1), suggesting that vHPC inputs are crucial not just for spatial 

representations but also for the anxiety valence. This result is consistent with recent 

findings during a working memory task, in which the representation of goal location was 

disrupted by the same manipulation (Spellman et al. 2015). It is possible that in the 

working memory task the representation of goal location is positive valence, while in the 

EPM the arm-type representation consists of negative valence. Thus, the vHPC input to 

mPFC could convey necessary task-related valence information.  

 

Whether this valence is constructed in the mPFC with the help of vHPC input or is 

present in the vHPC itself is unclear. A recent report demonstrates that mPFC-

projecting vHPC neurons preferentially encode arm type in the EPM, while very few 

have well-defined place fields (Ciocchi et al. 2015). However, this study did not test if 
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the arm-type encoding at the level of vHPC represented valence or contextual 

differences of the closed vs open arms. On the other hand, evidence from human fMRI 

imaging suggests that the anterior hippocampus (the human homolog of the vHPC) 

responds to negative valence (Gerdes et al. 2010; Sterpenich et al. 2014). These 

findings suggest the possibility that vHPC inputs indeed convey valence information to 

the mPFC. Where might the vHPC get information about valence? It could come from 

the BLA, given the demonstration that optogenetic inhibition of BLA terminals within the 

vHPC also disrupts anxiety-like avoidance behavior (Felix-Ortiz et al. 2013). 

 

As discussed in the previous chapter, in addition to innate forms of anxiety, learned fear 

also engages the vHPC-mPFC circuit. However, it is possible that the influence of vHPC 

input on mPFC unit activity may differ across anxiety and learned fear paradigms. 

Silencing the vHPC during learned fear recall results in increased mPFC single-unit 

responses to the conditioned stimulus (Sotres-Bayon et al. 2012), suggesting an 

inhibitory role for the vHPC projection. Here, inhibiting vHPC input resulted in decreased 

neuronal activity within a neuron’s preferred arm, suggesting an excitatory role (Figure 

2). These opposite results may be due to differences in experimental methods—Sotres-

Bayon et al. (2012) used muscimol in the vHPC, which silences all projections, while 

here only those projections to the mPFC are inhibited. Alternatively, they may be 

genuine, task-related differences between learned and innate forms of anxiety. At least 

for innate anxiety, as demonstrated here, it does appear that the predominant effects of 

vHPC input are excitatory and, in particular, that this excitation boosts firing rates 

specifically in each neuron’s preferred arm. These data are consistent with findings 
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during a spatial working memory task, which indicate that inhibiting vHPC terminals 

eliminates the boost in firing that occurs in mPFC neurons in their preferred goal 

locations (Spellman et al. 2015).  

 

3.4 Methods: 

For general surgical procedures and behavioral protocol please see methods listed in 

Chapter 1. For the MD experiments, AAV5-hSyn-eArch3.0-eYFP or AAV5-hSyn-eYFP 

was used. 200 nl volume of [10 12 vg/ml] virus was injected into the MD of 15 mice (AP 

-1.2, ML ± 0.35, DV -3.2). Four of those mice were used to determine the effects of 

unilateral inhibition on arm type representations in mPFC neurons (Figure 4B). The 

mice utilized in the unilateral experiment underwent training and testing in a spatial 

working memory task 4 weeks prior to the exposure to the EPM. For the non-aversive 

maze experiment (Figures 5-6), an EPM under 100 lux illumination was modified such 

that all arms were closed. The walls of two arms were covered with vertical stripes and 

blue squares while the walls of the other two arms were covered with diagonal stripes 

and green triangles (58% ± 12% and 42% ± 12% time spent in each arm type, 

respectively; p = 0.40).  

 

Data Acquisition: Electrophysiological data were acquired using a Digital Lynx system 

(Neuralynx). LFPs were referenced to a screw located in the skull over the frontal 

cortex/olfactory bulb, band-pass filtered (1–1,000 Hz), and acquired at 2 kHz. Unit 

recordings were band-pass filtered at 600–6,000 Hz and acquired at 32 kHz; spikes 

were detected by thresholding and sorted off-line. Initial automated spike sorting was 

done based on peak, energy and principal component analysis, using Klustakwik (Ken 
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Harris, UCL) instantiated in SpikeSort3D (Neuralynx); clusters were subsequently 

manually confirmed. Isolation distance and L-ratio were computed as described in 

Schmitzer-Torbert et al. (2005). The median Isolation distance for the single-unit 

clusters was 26, and the median L-ratio was 0.08. 

 

Single-Unit Analysis: Only units with at least 100 spikes for each light condition were 

included. Firing rate analysis was also conducted for putative interneurons versus 

pyramidal neurons, separated as previously described (Spellman et al. 2015). The EPM 

score was calculated for each single-unit as previously described in Adhikari et al. 

(2011) (EPM Score = (A -B)/(A + B); where A = 0.25x(|FL-FU| + |FL- FD| + |FR –FU| + 

|FR –FD|) and B = 0.5x(|FL-FR| + |FU-FD|). FL, FR, FU, and FD are the percentage 

difference from mean firing rate in left, right, up and down arms, respectively). Only 

mice that explored each of the four arms on both light conditions for at least 4 s were 

included in the EPM score analyses. Firing rates for different compartments of the EPM 

was calculated as total spikes in that compartment divided by the time mouse spent in 

the compartment. To test the significance of phase-locking strength, EPM score, and 

firing rate analyses, the non-parametric Wilcoxon sign rank or rank-sum tests were 

used. To calculate information content (Figure 7), the EPM was divided into 9 bins. 

Time spent in each bin was calculated for each animal and the following equation was 

computed for each single unit:  

 

Where Pi is the probability of being in bin i, Ri is firing rate in bin I and R is mean firing 

rate for that single unit. 
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Statistics: To determine light effects on power correlations, cross-correlations, firing 

rate, MRL, EPM score, PPC, and gamma power, Wilcoxon (sign rank) paired tests were 

performed. The sign rank test does not assume normality in the data and is meant for 

paired samples. To determine fold changes or percentage changes in PPC and Granger 

lead strength, Wilcoxon one-sample tests were performed. To determine if the 

distributions of EPM scores (Figure 5) were different from each other, Kolmogorov-

Smirnov tests were performed. Finally, to determine light effects on the behavioral 

results, repeated-measures two-way ANOVAs were performed along with post hoc 

Bonferroni corrected t tests.  

 

Histology: Recording sites were histologically confirmed by visual examination of 

electrolytic lesions. Lesions were induced immediately before perfusions by passing 

current through an electrode at each implanted site (50 mA, 20 s). Perfused and fixed 

tissue was then sectioned and mounted with DAPI Fluoromount-G mounting medium 

(Southern Biotech). Native fluorescence of Arch and eYFP was imaged using an 

epifluorescence microscope. 
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Chapter 4: The role of the vHPC 
input to mPFC in theta synchrony 

in the vHPC-mPFC-Amygdala 
circuit 

The work in this chapter is published  
in Padilla-Coreano et al., 2016 Neuron 
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4.1 Introduction: 

A growing body of evidence shows that functional connectivity between mPFC, BLA and 

vHPC are an important feature in fear and anxiety states (Lesting et al. 2011; Likhtik et 

al. 2014; Courtin et al. 2014). Some of that evidence comes from recording local 

oscillations. Brain oscillations are generated from periodic fluctuations in the excitability 

of a group of neurons. The synchronized changes in membrane potential create an 

extracellular current which can be measured by recording the local field potential (LFP) 

(Buzsáki 2002; Buzsáki and Watson 2012). Theta-frequency oscillations (4-12 Hz) in 

the local field potential were first described in the dorsal hippocampus (dHPC) during 

navigation (Vanderwolf 1969), and have been more recently implicated in anxiety 

behaviors.   

Anxiety states are distinguished in particular by an increase in theta-frequency (4-12 

Hz) synchrony in the amygdala-hippocampal-prefrontal circuit. Theta oscillations in the 

vHPC, and not the dHPC, increase in relative power during anxiogenic environments 

(Adhikari et al. 2010). Moreover, the relative power of theta in increases during anxiety 

and the strength of theta explained the avoidance behavioral variance (Adhikari et al. 

2010). Theta power in the vHPC and mPFC correlate stronger during anxiety compared 

to a baseline non-aversive environment. The vHPC has a direct projection to the mPFC 

that could potentially mediate the increase in theta power correlation seen during 

anxiety.  

 

The high degree of interconnectivity in the vHPC-mPFC-BLA circuit and presence of 

multiple interacting oscillatory activity patterns complicate the picture. Theta-frequency 
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synchrony between the vHPC-BLA and BLA-mPFC is also enhanced during innate 

forms of anxiety (Lesting et al. 2011; Likhtik et al. 2014; Stujenske et al. 2014). 

Moreover, optogenetic inhibition of the projection from the BLA to the vHPC is anxiolytic 

(Felix-Ortiz et al. 2013). While theta power is increased with anxiety, fast gamma power 

is decreased, both in the BLA and mPFC (Stujenske et al. 2014). Even so, coupling 

between theta and gamma oscillations within the BLA is enhanced by anxiety 

(Stujenske et al. 2014). Finally, anxiety state modulates the directionality of oscillatory 

interactions between the mPFC and BLA, such that relative safety is associated with a 

shift toward enhanced mPFC influence over the BLA in both theta- and gamma-

frequency ranges (Likhtik et al. 2014; Stujenske et al. 2014). These findings emphasize 

the degree to which each of these three structures functions within an interconnected, 

interacting circuit. What then might be the role of an individual element within such an 

interactive circuit? We sought out to test the hypothesis that the direct ventral 

hippocampal projection to mPFC is necessary for the anxiety-related theta synchrony. 

To do so, we optogenetically inhibited the vHPC-mPFC pathway while simultaneously 

recording LFPs from the mPFC,vHPC and BLA during a safe environment and during 

exposure to the elevated plus maze (EPM). Inhibition of vHPC terminals decreased 

theta synchrony in a task-, frequency- and pathway-dependent manner.  
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4.2 Results: 
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The effects of bilateral vHPC-mPFC terminal inhibition on activity and synchrony within 

the extended vHPC-BLA-mPFC circuit were examined by recording single units in the 

mPFC and local field potentials (LFPs) in the mPFC, BLA, and vHPC. LFPs 

predominantly reflect summed synaptic activity within a brain region (Buzsaki et al., 

2012). The temporal relationship between spikes and/or LFP activity in one region and 

LFPs in another can be used as a measure of synchrony (Siapas, Lubenov, and Wilson 

2005; Harris and Gordon 2015).  
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Terminal inhibition in the EPM decreased synchrony in the theta-frequency range 

between the vHPC and mPFC, as measured by the strength of phase locking of mPFC 

spikes to theta oscillations in the vHPC LFP (Figures 2B-D). Phase locking of mPFC 

spikes to BLA theta was unaffected by terminal inhibition (Figures 2E-G), demonstrating 

pathway specificity of the vHPC terminal inhibition. However, phase-locking to BLA was 

considerably weaker than to vHPC, allowing for a possible floor effect. Unilateral 
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inhibition of vHPC-mPFC decreased phase locking of mPFC spikes to vHPC theta to a 

similar degree (Arch n = 16, p < 0.01; eYFP n = 11, p = 0.4258; Wilcoxon one-sample 

test). 

Synchrony was further examined using the LFPs recorded from each brain 

region. Consistent with decreased phase locking of mPFC spikes to vHPC theta, 

terminal inhibition decreased the correlation of theta power between the mPFC and 

vHPC (Figure 2B). This effect was specific to the closed arms of the EPM (Figure 2C-

D), consistent with previous reports showing that theta power correlation is higher in the 

safe compartments of the task (Adhikari et al., 2010; Likhtik et al., 2014). Terminal 

inhibition had no effect on overall power in mPFC (Figure 3); therefore, this decrease in 

theta power correlation was not due to a decrease on theta power. Terminal inhibition 

had no effect on vHPC-mPFC theta power correlations in a familiar, non-aversive 

environment (Figure 2A), demonstrating task specificity. Terminal inhibition had no 

effect on coherence between vHPC and mPFC (data not shown). Interestingly, 

unilateral inhibition of vHPC did not result in decreased theta power correlation between 

vHPC and mPFC.  Considering that phase locking to theta was decreased with 
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unilateral inhibition, this suggests that phase locking measurements are more sensitive 

than power correlation measurements.  

 

The disruption in vHPC-mPFC theta power correlation was also frequency and pathway 
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specific. Inhibiting vHPC terminals did not affect mPFC-vHPC power correlations in the 

delta (1–4 Hz), beta (13–30 Hz), or slow gamma (30–70 Hz) frequency ranges (Figure 

4). This frequency specificity is consistent with previous reports showing that anxiety 

does not modulate vHPC-mPFC synchrony in frequency ranges other than theta 

(Adhikari et al., 2010).  

 

Overall mPFC-BLA theta power correlations were unaffected by vHPC-mPFC terminal 

inhibition (Figures 5B,D). Similarly, there was no overall effect on vHPC-BLA theta 

power correlations (Figure 5A), though a decrease in theta power correlation could be 

detected when analysis was restricted to data from the closed arms (Figure 5C). These 

findings reinforce the pathway specificity of the manipulation.  
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Together, these findings demonstrate that terminal inhibition functionally disconnects 

the mPFC from the vHPC during anxiety-like behavior, particularly disrupting 

communication in the theta-frequency range. Interestingly, two measures of local 

synchrony within the mPFC were increased by terminal inhibition. Both correlated firing 

of simultaneously recorded mPFC single units (Figure 6A) and phase-locking of mPFC 

single units to mPFC fast gamma (70–120 Hz) (Figure 6B) were increased by 

illumination in Arch- but not eYFP-expressing animals. These findings raise the 
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possibility that when decoupled from vHPC inputs, mPFC neuronal spiking 

synchronizes more strongly with local inputs.  

We explored the effect of inhibiting vHPC-mPFC pathway on previously established 

markers of anxiety in the amygdala and mPFC LFPs. Fear conditioning and open field 

exposure induce characteristic patterns of neural activity in the BLA and mPFC (Lesting 

et al., 2011; Likhtik et al., 2014; Stujenske et al., 2014). Specifically, in addition to the 

increased theta activity and synchrony discussed above, the strength (power) of fast 

gamma-frequency (70–120 Hz) oscillations in the BLA and mPFC decrease during 

anxiety and increase during relative safety (Stujenske et al., 2014). Within the BLA, the 

strength of the relationship between theta- and gamma-frequency oscillations is 

increased with anxiety and decreased with relative safety (Stujenske et al., 2014). 

Accordingly, exposure to the EPM decreased fast gamma power and increased theta-

gamma coupling compared to a baseline safe condition (Figure 7A-C). If inhibition of the 

vHPC-mPFC pathway is truly anxiolytic, we would expect that bilateral inhibition would 

reduce these physiological markers of anxiety. Indeed, bilateral terminal inhibition 

mimicked the effects of relative safety on each of these parameters. Bilateral inhibition 

increased the strength of gamma oscillations in the BLA and mPFC (Figure 8), inducing 

a shift in the directionality of gamma synchrony toward increased mPFC lead (Figure 

8D). Bilateral inhibition also reduced the strength of coupling between theta and gamma 

oscillations within the BLA (Figure 8E). Unilateral inhibition, however, did not alter any of 

these parameters in the inhibited hemisphere (Figures 8F–H), nor did illumination in 

eYFP-expressing mice (data not shown).  
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4.3 Discussion: 

The BLA, vHPC, and mPFC comprise a tripartite circuit in which each element is 

important for anxiety-like behavior. Silencing or lesioning any of these three structures 

alters avoidance behavior in tests such as the EPM (Jinks and McGregor 1997; K. G. 

Kjelstrup et al. 2002; Shah and Treit 2003; Bannerman et al. 2003). Similarly, 

optogenetically manipulating BLA inputs into the vHPC (Felix-Ortiz et al. 2013) or the 

mPFC (Felix-Ortiz et al. 2016) alters anxiety. However, these structures are intimately 

interconnected (Hoover and Vertes 2007; Pikkarainen et al. 1999), as evidenced by the 

remarkable degree of synchrony that arises during fear and anxiety behaviors (Adhikari 

et al. 2010; Lesting et al. 2011; Likhtik et al. 2014; Seidenbecher et al. 2003; Stujenske 

et al. 2014). Thus, manipulations of any one structure could alter activity patterns in any 
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other within the circuit; the specificity of such manipulations is questionable. Here we 

attempt to address this caveat by recording simultaneously from the three structures. 

Inhibition of the vHPC terminals within the mPFC was relatively specific, disrupting 

synchrony in the theta frequency range between the vHPC and the mPFC with minimal 

effects on theta synchrony between the BLA and either structure. Importantly, phase-

locking of mPFC units to vHPC theta was reduced in both unilateral and bilateral 

silencing experiments, demonstrating that reduced theta synchrony is a primary effect of 

inhibiting vHPC input. By contrast, only bilateral inhibition had effects on BLA and 

mPFC gamma strength and synchrony, suggesting that these measures may be read-

outs of the anxiety state rather than being causally involved in generating it. 

 

The effects of terminal inhibition on vHPC-mPFC interactions were remarkably specific. 

Theta- synchrony was unaffected in a familiar, non-aversive environment, arguing that 

vHPC input is required for the increase in synchrony seen in the EPM; indeed, terminal 

inhibition completely wipes out the fold increase in power correlation from the familiar 

environment to the EPM (compare Figure S4BtoFigure S3). The effects of LFP 

synchrony were confined to the closed arms, consistent with our prior findings (Adhikari 

et al. 2010), suggesting that vHPC-mPFC interactions are particularly engaged during 

periods of active inhibition of exploration. We also found deficits in LFP synchrony were 

limited to effects on power correlations, without any effects on coherence. The phase-

locking data presented here are therefore particularly important in demonstrating 

effective disruption of connectivity. 
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The experiments reported here also demonstrate that bilateral inhibition of vHPC-mPFC 

pathway decreased gamma power and theta-gamma coupling within the BLA. These 

two BLA physiological measurements correlate with defensive behavior in the OF and 

learned fear (Stujenske et al. 2014). Our experiments show that gamma power and 

theta-gamma coupling in the BLA are also modulated by exposure to the EPM. 

Unilateral inhibition of vHPC-mPFC did not affect gamma power and theta-gamma 

coupling in the ipsilateral BLA. This suggests that vHPC-mPFC activity is not necessary 

for this anxiety-related BLA gamma patterns, or that these BLA gamma patterns are 

upstream of the vHPC-mPFC activity. Interestingly, disruption of the the BLA-to-vHPC 

pathway also results in decreased anxiety-like behavior (Felix-Ortiz, et al. 2013). This 

suggests that aversive task-relevant information could be indeed upstream of vHPC and 

might go from the BLA to vHPC to the mPFC.  

 

Conclusion: 

A long literature links theta-frequency synchrony between the vHPC, mPFC, and BLA to 

both learned fear and innate anxiety (Adhikari et al. 2011; Lesting et al. 2011; Likhtik et 

al., 2014; Seidenbecher et al. 2003; Stujenske et al. 2014). Indeed, directly 

manipulating theta-frequency oscillations within the mPFC induces freezing, suggesting 

a causal relationship between theta and fear (Courtin et al. 2014). Here, inhibition of the 

vHPC-to-mPFC pathway disrupted theta-frequency synchrony between the two 

structures without affecting synchrony at other frequencies. This specificity is consistent 

with the frequency-specific increases in synchrony seen during anxiety (Lesting et al. 

2011; Likhtik et al. 2014; Seidenbecher et al. 2003; Stujenske et al. 2014). Interestingly, 
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inhibition of this same vHPC-to- mPFC pathway during a working memory task had no 

effect on theta-frequency synchrony (Spellman et al. 2015); instead, low gamma (30–70 

Hz) synchrony was specifically disrupted. These contrasting findings demonstrate the 

surprising result that a specific anatomical pathway can mediate synchrony at different 

frequencies depending on behavioral state.  

 

4.4 Methods: 

For surgical procedures please see methods in chapter 2. 

Data Acquisition: Electrophysiological data were acquired using a Digital Lynx system 

(Neuralynx). LFPs were referenced to a screw located in the skull over the frontal 

cortex/olfactory bulb, band-pass filtered (1–1,000 Hz), and acquired at 2 kHz. Unit 

recordings were band-pass filtered at 600–6,000 Hz and acquired at 32 kHz; spikes 

were detected by thresholding and sorted off-line. Initial automated spike sorting was 

done based on peak, energy and principal component analysis, using Klustakwik (Ken 

Harris, UCL) instantiated in SpikeSort3D (Neuralynx); clusters were subsequently 

manually confirmed. Isolation distance and L-ratio were computed as described in 

Schmitzer-Torbert et al. (2005). The median Isolation distance for the single-unit 

clusters was 26, and the median L-ratio was 0.08. 

Single-Unit Analysis: Only units with at least 100 spikes for each light condition were 

included. A given unit was said to be significantly phase locked if the distribution of the 

LFP phases where the spikes occurred was not uniform as assessed with Rayleigh’s 

test for non-uniformity of circular data. Zero phase corresponds to the peak of the 

signal. Phase locking strength was quantified using pairwise phase consistency (PPC) 
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(Vinck et al., 2010). To calculate the power envelope and phase of ongoing theta and 

gamma oscillations, a band-pass filter for 4–12 Hz was used using a zero-phase-delay 

FIR filter with Hamming window (filter0, provided by K. Harris and G. Buzsaki, New York 

University, USA), the phase component was calculated by a Hilbert transform, and a 

corresponding phase was assigned to each spike. 

LFP analysis: All data were analyzed using custom-written scripts in MATLAB 

(MathWorks). Power correlations were computed as previously described (Adhikari et 

al. 2010). Briefly, we determined power as a function of time using the multitaper 

method, with window sizes customized for each frequency range. Window sizes for the 

power correlation were 2.5, 1, and 0.125 s for theta (4–12 Hz), beta (13–20 Hz), and 

gamma (30–70 Hz) frequencies, respectively. Pearson’s correlation was then used to 

measure the association between power across regions. Although power 

measurements are not normally distributed, power across vHPC and mPFC meets the 

criteria for multivariate normality (significant skewness and kurtosis); therefore, a 

pearson’s correlation provides a complete description of the association. To determine 

the strength of power correlations that would be expected by chance, we randomly 

shuffled the time windows in one brain region 2,000 times, calculating a Pearson’s 

correlation each time. From these random distributions, we identified the 95% critical 

value for each frequency range; these were remarkably consistent at r = 0.142 to 0.150 

for each frequency,  

averaging at 0.146 for theta, beta, slow, and fast gamma, and 0.147 for delta ranges. 

For open versus closed arm power correlation analysis, only mice that spent at least 3 s 

in each arm type during each light condition were included. Coherence of mPFC and 
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vHPC LFPs was estimated using the Welch method (mscohere function in MATLAB) 

with the same parameters used as for the power spectra. Fast gamma power was 

calculated for times the animal was in the closed arms of the EPM. LFPs from times 

spent in the closed arms of the EPM were filtered for 70–120 Hz, and power was 

calculated using a Hilbert transformation and normalized to fast gamma power 

throughout the session. To quantify theta-gamma coupling, we computed the mean 

resultant length (MRL) of fast gamma power as a function of theta phase for times spent 

in the closed arms of the EPM. Theta phase and gamma power were both calculated 

using the Hilbert transform. The MRL was chosen because of the observed unimodal 

relationship of theta phase-gamma amplitude coupling in gamma ranges and its higher 

statistical power compared to the non-parametric modulation index (Tort et al., 2009).  

Granger causality analysis was performed as described in Stujenske et al. (2014)  

using arfit toolbox for Matlab. The strength of mPFC granger lead was calculated as 

GCImPFC/BLA=GCImPFC/BLA + GCIBLA/mPFC for each animal, and the strength of 

BLA granger lead was calculated as GCIBLA/mPFC= GCImPFC/BLA+GCIBLA/mPFC. 

Histology: Recording sites were histologically confirmed by visual examination of 

electrolytic lesions. Lesions were induced immediately before perfusions by passing 

current through an electrode at each implanted site (50 mA, 20 s). Perfused and fixed 

tissue was then sectioned and mounted with DAPI Fluoromount-G mounting medium 

(Southern Biotech). Native fluorescence of Arch and eYFP was imaged using an 

epifluorescence microscope. 

 

 



 
76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5: Theta frequency 
oscillatory stimulation of vHPC 
terminals in mPFC increases 

anxiety-like behavior 

The in-vitro physiology in this chapter was 
collected in collaboration by Sarah Canetta 
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5.1 Introduction 

A growing body of evidence suggests that functional connectivity between the mPFC, 

BLA and vHPC plays an important role in fear and anxiety states (Lesting et al. 2011; 

Sotres-Bayon et al. 2012; Courtin et al. 2013; Likhtik et al. 2014). In particular, studies 

have seen increases in synchrony between local field potential oscillations recorded 

from these regions during fear and anxiety. These local oscillations (referred to as the 

local field potential or LFP) reflect an extracellular current which results from 

synchronized changes in the membrane potentials of local neurons (Buzsáki and 

Draguhn 2004; Buzsáki and Watson 2012).  

 

Anxiety states are distinguished in particular by an increase in theta-frequency (4-12 

Hz) synchrony in the amygdala-hippocampal-prefrontal circuit. In the elevated plus 

maze, a test of innate anxiety, mPFC and vHPC theta oscillations increase in power, 

and mPFC theta power correlates with avoidance behavior (Adhikari et al. 2010). 

Moreover, theta power correlations between the mPFC and vHPC increase during 

anxiety (Adhikari et al. 2010). During innate anxiety and retrieval of learned fear, 

oscillations in the mPFC and BLA increased in synchrony in the theta- and gamma-

frequency ranges (Lesting et al. 2011; Likhtik et al. 2014; Stujenske et al. 2014; Karalis 

et al. 2016). Recently, we demonstrated that optogenetically inhibiting the ventral 

hippocampal (vHPC) input to the medial prefrontal cortex (mPFC) decreases anxiety-

like behavior and theta synchrony between the mPFC and vHPC, without affecting other 

frequencies (Padilla-Coreano et al. 2016). While these data suggest that the theta-

frequency may play a unique and specific role in relaying anxiety-related input between 
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the vHPC and mPFC, the evidence to support this hypothesis remains merely 

correlative. 

 

To determine whether vHPC-mPFC activity, specifically in the theta frequency, plays a 

causal role in anxiety-like behavior, we tested whether optogenetically stimulating the 

vHPC terminals at a theta frequency was sufficient to increase avoidance behavior in 

the elevated plus maze (EPM). Moreover, we tested whether any such effects might be 

frequency-specific.  To potentially mimic naturally occurring oscillations, we stimulated 

ChR2 with a sinusoidal waveform at 8 or 20 Hz, as well as with more typical 8 or 20 Hz 

pulsatile stimulation parameters.  We found that stimulation of vHPC terminals 

increased avoidance behavior in a frequency- and pattern-specific manner. 

5.2 Results 
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CamKIIa-ChR2(h134R)-mCherry was injected bilaterally in the vHPC and optical fibers 

implanted in the mPFC. Seven weeks after the injection we observed robust expression 

of ChR2 in mPFC terminals (Figure 1A-B). Mice were tested in the elevated plus maze 

(EPM) alternating the light off and on every two minutes (Figure 1C).  

 

Stimulating the vHPC-mPFC pathway with a sinusoidal light pattern at 8 Hz significantly 

increased avoidance behavior in the EPM, while stimulating with brief pulses of light at 8 

Hz or sinusoidal light at 20 Hz had no effect (Figure 2). These experiments demonstrate 

that the anxiogenic effect of vHPC terminal stimulation is frequency- (8 Hz but not 20 

Hz) and pattern- (sinusoids but not pulses) specific. This result was surprising, as 

pulses of light are the most common light pattern used to stimulate neurons and 

terminals optogenetically and are thought to be most efficacious at activating neurons.  
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To understand how pulses and sinusoidal light modulate mPFC neurons differentially, 

mPFC pyramidal neurons were recorded using in vitro slice whole-cell electrophysiology 

while stimulating vHPC terminals with the same sinusoidal or pulsatile patterns (Figure 

3A). mPFC pyramidal neurons were held at -70 mV in voltage clamp, and light was 

delivered via a 200 um optical fiber placed adjacent to the 40x field of view.  8 Hz pulses 

evoked large, stimulus-locked post-synaptic excitatory currents, which were not seen 

with either the 8 or 20 Hz sin stimulation. Although robust stimulus-locked currents were 

only seen with 8 Hz pulsatile stimulation, 8 Hz sinusoidal stimulation did result in a 

significant increase in spontaneous-like EPSCs (Figure 3B-C). The mean rate of EPSCs 

during sinusoidal stimulation was lower than for pulsatile stimulation (Figure 3D). 
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Moreover, the EPSCs that occurred during sinusoids were smaller in size than pulse-

evoked excitatory events (Figure 3E).  

 

To explore possible frequency-dependent effects, responses to 8 Hz and 20 Hz 

stimulation EPSCs event rate were compared within the same neuron. First, we 

calculated significant EPSCs event rate during baseline (prior to light onset) and during 

20 Hz pulses or sinusoids (Figure 4A). The average EPSCs event rate during 20 Hz 
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pulses was weaker than 8 Hz pulsatile stimulation (Figure 4B). During sinusoidal there 

was no significant difference in the EPSCs event rate for 8 Hz vs 20 Hz, although 5 out 

of 9 cells decreased event rate during 20 Hz sinusoids compared to 8 Hz sinusoids 

(Figure 4B). Next, we quantified how locked to the stimulus the EPSC responses were, 

by calculating phase-locking strength of a cell’s significant events to the optical stimulus. 

If the events are occurring a preferred phase of the optical stimulus (e.g. peak of pulse 

or peak of sine) then the cell events will be significantly phase-locked by a Rayleigh 

test. EPSCs evoked by pulses were more likely to be stimulus-locked, while EPSCs 

during sinusoidal stimulation were not phase-locked to the stimulus regardless of the 

frequency (Figure 5). Surprisingly, events evoked by 8 Hz pulses were significantly 

phase-locked in all recorded neurons, but only 30 % of the neurons had significantly 

phase-locked events during 20 Hz pulses. The postsynaptic response to 20 Hz pulses 

have low fidelity, as neurons had EPSCs event rates much lower than 20 Hz (see 

individual cells in Figure 

4A), but 30% of cell’s had 

significantly phase-locked 

events during 20 Hz pulses 

(Figure 5). These results 

suggest that while EPSCs 

that occur during pulsatile 

stimulation are stimulus-

locked, while EPSCs 
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events that occur during sinusoidal stimulation do not occurred phase-locked manner 

suggesting that they occur in a more spontaneous manner.   

 

 

Next, to investigate if sinusoidal stimulation is sufficient to enhance rhythmic activity in 

vivo, single units from mPFC were recorded during sinusoidal vHPC terminal stimulation 

at 8 and 20 Hz.  In vivo, sinusoidal stimulation of vHPC terminals increased phase-

locking of mPFC single units to the optical stimulation pattern without changing overall 

firing rates. Firing rate was compared during light off and on epochs (2 minute epochs 

for 8 minutes) for sinusoidal stimulation at 8 Hz and 20 Hz, there was no difference in 

overall firing rate for both frequencies (Figure 6A). On the other hand, there was 

significant phase-locking to the sinusoidal stimulus at both frequencies (Figure 6B). 



 
84 

These results demonstrate that sinusoidal stimulation can successfully bias spiking to 

occur rhytmically in vivo.  

 

5.3 Discussion: 

In this study, we combined optogenetic stimulation with in vivo single unit recording and 

in vitro whole cell recording to compare how different patterns of vHPC terminal 

stimulation affect mPFC activity and anxiety-like behavior. The results suggest that 

sinusoidal stimulation at a theta frequency increases spontaneous excitatory events in 

mPFC and increases theta-frequency oscillatory intracellular activity in the membrane. 

These postsynaptic changes induced by vHPC terminal stimulation, might in turn 

account for the enhancement in phase locking to 8 Hz of single units in vivo as well as 

an increase in anxiety-related behavior. Moreover, they suggest that theta-frequency 

components of neural activity play a privileged role in vHPC-mPFC communication and 

hippocampal-dependent forms of anxiety.  

 

Theta-frequency sinusoidal stimulation is sufficient to for anxiety-like behavior 

Terminal stimulation of vHPC-mPFC pathway increased avoidance behavior in the 

EPM, only when stimulated at 8 Hz in a sinusoidal pattern, but not at 20 Hz. This result 

is consistent with our vHPC-mPFC inhibition experiments showing that inhibiting this 

pathway decreases avoidance behavior and decreases vHPC-mPFC theta synchrony 

and not synchrony occurring in other frequencies (see chapters 2 & 4). The frequency 

specificity observed in the current behavior experiment is also consistent with work 

showing that during anxiety assays there is an increase in theta synchrony between 
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vHPC-mPFC (Adhikari et al. 2011). One possible mechanism for this enhancement in 

anxiety behavior is that the optical stimulation facilitates vHPC-mPFC information 

transfer. The stimulation might enhance vHPC input that signals aversion by increasing 

oscillatory activity in the membrane of mPFC neurons, which in turn might bring the 

membrane closer to firing threshold in a rhythmic manner such that the cell is more 

likely to fire in response to naturally occurring vHPC input. Behaviorally, the increase in 

avoidance behavior can be explain by the following models 1) the existing aversive 

information is enhanced by 8 Hz sinusoidal stimulation or 2) the stimulation is aversive 

itself, causing the animals to seek refuge in the closed arms. Our experiment in the 

EPM does not distinguish between these two models. Ongoing experiments stimulating 

vHPC-mPFC with a sinusoidal 8 Hz and addressing if stimulation elicits conditioned 

place aversion will allow determining if there is evidence for model 2). Moreover, it is still 

unclear what the 8 Hz sinusoidal stimulation does to the representation of aversion firing 

patterns in mPFC single units. Once we know which model explains the increase in 

avoidance behavior and what the stimulation does to the mPFC representation of 

aversion (arm-type specific firing in EPM) we will have a better understanding of the 

mechanism of this frequency- and pattern-specific effect.  

 

Although 8 Hz pulsatile stimulation of vHPC-mPFC caused strong evoked excitation of 

mPFC neurons, it did not affect avoidance behavior, at least as measured in time spent 

in open arms. It is possible that 8 Hz pulses affected other behavioral measurements 

that we did not quantify. Ongoing analyses are considering risk assessment behaviors 

(head dips, body stretches) during 8 Hz pulsatile stimulation. One prediction is that the 
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strong evoked excitation of 8 Hz pulses can interrupt ongoing vHPC information and 

decreased anxiety-like behavior modestly.  

 

Reconciling in vivo and in vitro results 

Surprisingly, when stimulating vHPC terminals in vitro there was no detected significant 

phase locking of EPSCs events to the sinusoidal stimulation. The lack of phase locking 

in the in vitro EPSCs suggests that the excitatory events are spontaneous or too sparse 

to detect phase locking. One possibly mechanism for the increase in spontaneous 

asynchronous activity, as ChR2 conducts Ca2+ (Nagel et al. 2003), is an accumulation 

of Ca2+ in the terminals resulting in an increase probability of vesicle release in vHPC 

terminals. On the other hand, during pulsatile stimulation all EPSCs were strongly 

phase-locked to the stimulus demonstrating that they were evoked by the pulses rather 

than being spontaneous and asynchronous.  

 

However, in vivo mPFC spiking was significantly phase-locked to the 8 Hz sinusoidal 

stimulation. Considering the in vitro findings, a possible explanation for the phase 

locking observed in vivo is that the sinusoidal stimulus causes an increase in oscillatory 

depolarization of the membrane at 8 Hz. This oscillatory depolarization increases 

probability of the postsynaptic cell firing, and therefore the spikes are phase-locked to 

the optical sinusoid stimulus. It is therefore possible that the sinusoidal stimulus entrains 

spiking activity in vivo via fluctuations of the cellular membrane.  

 

Lessons from frequency differences in postsynaptic response 
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Surprisingly, the postsynaptic response to pulsatile stimulation of terminals was 

frequency dependent. Stimulating vHPC terminals with 20 Hz pulses evoked fewer 

EPSCs than 8 Hz pulses (Figure 4B). This effect was unlikely to be due to the kinetics 

of ChR2 as hypothalamic cells expressing ChR2 can follow 20 Hz pulsatile stimulation 

in vitro with near 100% efficacy (Adamantidis et al. 2007). This frequency dependency 

can arise at the pre-synaptic terminal if 20 Hz is less efficient than 8 Hz at inducing the 

release of vesicles at 20 Hz, or post-synaptically, if mPFC neurons cannot follow vHPC 

input at 20 Hz. Both mechanisms, however, are consistent with the vHPC-mPFC 

pathway having biophysical frequency limits that are independent of the opsin kinetics. 

The frequency preference for 8 Hz is consistent with in vivo studies showing that HPC 

cells fire close to 8 Hz during a spatial navigation task (Harvey et al. 2009). This efficacy 

of specific frequencies could be true in other pathways. Scientists who use optogenetics 

should use a frequency and pattern of stimulation that best fits what their pathway of 

interest does under physiological conditions.  

 

In vivo, the sinusoidal stimulation at 8 Hz was sufficient that entrain mPFC spiking to 8 

Hz. How is this increase in rhythmic spike activity occurring during 8 Hz sinusoidal 

stimulation? One possibility is that this rhythmic activity is generated by presynaptic 

release of neurotransmitter in a rhythmic manner that produces currents below the 

threshold of what we consider events in this study, therefore causing oscillatory activity 

in the postsynaptic membrane. Another possibility is that interneuron activation could 

mediate this effect. In vitro, it has been demonstrated that the firing of a single 

interneuron is sufficient to entrain the cell membrane of a pyramidal CA1 cell to oscillate 



 
88 

at theta (Cobb et al. 1995). Moreover, in vivo evidence suggests that CA1 LFP theta 

oscillations may be entrained by interneurons spiking at specific theta phases 

(Klausberger et al. 2003). vHPC projects to both mPFC interneurons and pyramidal 

neurons, so it is possible that the increase in oscillatory intracellular activity in pyramidal 

mPFC neurons is achieved via interneuron activation by the optical stimulus. 

Alternatively, rhythmic changes in the extracellular field that occur by influx of positive 

ions in the terminals during the sinusoidal stimulation could cause the postsynaptic 

membrane to oscillate.  

 

Altogether, these results reinforce that theta-range frequencies, can maximize 

information transfer between vHPC and mPFC. Past in vivo studies that show task 

related changes in theta synchrony between vHPC and mPFC together with the current 

findings support this hypothesis (Adhikari et al. 2010; Lesting et al. 2011).  

5.4 Methods 

Surgical Procedures: For the EPM experiments, 45 mice were bilaterally infected with 

either AAV5 CamKIIa-hChR2(H134R)-mCherry or AAV5 CamKIIa–eYFP into the vHPC 

under isoflurane anesthesia. 200 nl of 10 12 vg/ml virus was pressure-injected through 

a glass micropipette. In each hemisphere, five injections were done at -3.10 and at -

3.30 AP levels for a total of 10 injections per hemisphere. At each AP level, the five 

injection sites were ±2.90, -4.0; ±3.30, -3.60; ±3.30 -1.7; ±3.70, -3.2; ±3.70, -2.5 (ML 

and DV, respectively). Coordinates are in mm relative to Bregma (AP, ML) or brain 

surface (DV). All viruses were obtained from the University of North Carolina Vector 

core. Virus was infused at a rate of 200 nl/min. 6–8 weeks after viral infection, a subset 
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of mice for the EPM experiment, were implanted with electrodes and optical fibers in a 

second surgery, also under isoflurane anesthesia. Stereo-optrodes were implanted in 

the mPFC (AP -1.60 ML ±0.4 DV -1.25). Each stereo-optrode was comprised of a 230 

um optical fiber glued to a bundle of 14 tungsten wire (13 mM diameter) stereotrodes 

placed 400–500 mm below the end of the optical fiber. 75 mM diameter tungsten wire 

LFP electrodes were implanted in the BLA (AP -1.80, ML ±3.16, DV -4.10) and the CA1 

region of the vHPC (AP -3.30, ML ±3.30, DV -3.60). A reference screw was implanted in 

the skull over the frontal cortex and a ground screw in the skull over the cerebellum.  

 

Behavioral procedure: EPM behavioral protocol: Behavior 5–7 days after electrode 

microdrive implantation, mice were food restricted to 80% of pre-operative weight and 

habituated to the opto/electrical tether in a small dark wooden box (20x3x30 cm) as they 

foraged for food pellets. On the fifth day of habituation, after 1 hr rest, mice were placed 

in the EPM under 250-300 lux illumination. Five mice were excluded from behavioral 

analysis for never visiting the open arms throughout the duration of the experiment. 

Behavior in the EPM was hand scored by a blinded scorer to ensure consistency of 

analysis. A mouse was said to be inside an open or closed arm if all four paws were 

inside the arm. The LED (465 nm; PlexBright LD-1 Single Channel LED Driver from 

Plexon) output was controlled with an Arduino device and custom made code and sent 

to the LED via the analog channel of the LED Driver to deliver pulses or sinusoids of 

465 nm light at ~8 mW (measured at the tip of the optical patch cord fiber) every 2 min 

for 8 minutes.  
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In vivo electrophysiology: Data were acquired using a Digital Lynx system (Neuralynx). 

LFPs were referenced to a screw located in the skull over the frontal cortex/olfactory 

bulb, band-pass filtered (1–1,000 Hz), and acquired at 2 kHz. The Arduino signal that 

controlled the LED was recorded as a proxy for the optical stimulation signal by copying 

the output of the Arduino into a channel of the Neuralynx system. Unit recordings were 

band-pass filtered at 600–6,000 Hz and acquired at 32 kHz; spikes were detected by 

thresholding and sorted off-line. Initial automated spike sorting was done based on 

peak, energy and principal component analysis, using Klustakwik (Ken Harris, UCL) 

instantiated in SpikeSort3D (Neuralynx); clusters were subsequently manually 

confirmed. Phase locking to the Arduino sinusoidal stimulus was calculated using the 

phase component of a Hilbert transform of the sinusoidal stimulus. A given unit was said 

to be significantly phase-locked if the distribution of the sinusoidal phases where the 

spikes occurred was not uniform as assessed with Rayleigh’s test for non-uniformity of 

circular data. Zero phase corresponds to the peak of the signal. Phase locking strength 

was quantified using pairwise phase consistency (PPC) (Vinck et al., 2010).  

 

In vitro electrophysiology: Whole-cell current and voltage clamp recordings were 

performed in layer 5/6 pyramidal cells in the prelimbic (PrL) region of the mPFC. 

Recordings were obtained with a Multiclamp 700B amplifier (Molecular Devices, 

Sunnyvale, CA, USA) and digitized using a Digidata 1440A acquisition system 

(Molecular Devices) with Clampex 10 (Molecular Devices) and analyzed with pClamp 

10 (Molecular Devices). Following decapitation, 300 μM slices containing mPFC were 

incubated in artificial cerebral spinal fluid containing (in mM) 126 NaCl, 2.5 KCl, 2.0 
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MgCl 2, 1.25 NaH 2PO4, 2.0 CaCl2, 26.2 NaHCO3 and 10.0 D- glucose, bubbled with 

oxygen, at 32 ̊ C for 30 min before being returned to room temperature for at least 30 

min prior to use. During recording, slices were perfused in artificial cerebral spinal fluid 

(with drugs added as detailed below) at a rate of 5 ml min−1. Electrodes were pulled 

from 1.5 mM borosilicate-glass pipettes on a P-97 puller (Sutter Instruments, Novato, 

CA, USA). Electrode resistance was typically 3–5MΩ when filled with internal solution 

consisting of (in mM): 130 K-gluconate, 5 NaCl, 10 HEPES, 0.5 EGTA, 2 MgATP and 

0.3 NaGTP (pH 7.3, 280 mOs). Pyramidal cells were visually identified based on their 

shape and prominent apical dendrite at × 40 magnification under infrared and diffusion 

interference contrast microscopy using an inverted Olympus BX51W1 microscope 

(Olympus America, Center Valley, PA, USA) coupled to a Hamamatsu C8484 camera 

(Hamamatsu, Middlesex, NJ, USA). 

 

Recordings were made in voltage clamp at aholding potential of -70 mV… and at the 

cell’s natural resting membrane potential in current clamp. Optogenetic stimulation was 

done with a blue LED (465 nm; PlexBright LD-1 Single Channel LED Driver from 

Plexon) connected via patchcords to a rotary joint that was then connected via 

patchcords (200 µm, 0.22 NA) to the light fiber, which was placed just adjacent to the 

40x field of view. Light pulses were 5 ms long and were delivered at 8 Hz or 20 Hz for 

30 seconds, via pulsed or sinusoidal stimulation generated with an Arduino device and 

custom-made code and sent to the LED via the analog channel of the LED Driver. 

Recording analysis was performed with Matlab (Mathworks, Natick, MA). Events were 
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defined as excitatory currents that were >4 standards deviations away from the baseline 

mean (red dots in Figure 3B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6: Discussion 
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6.1 Summary of findings 

The findings described in this thesis demonstrate that activity within the direct vHPC- to-

mPFC pathway is necessary and sufficient for anxiety-related behavior. Also, they 

demonstrate that this pathway is necessary for vHPC-mPFC theta synchrony, and 

spatial representations of aversion in the mPFC. Intriguingly, optogenetic inhibition and 

excitation of vHPC terminals resulted in frequency-specific effects.  Together, these 

findings suggest a model in which behaviorally relevant information about the spatial 

aversive structure of the environment from the vHPC is sent to the mPFC and utilized to 

guide avoidance behavior; theta-frequency synchrony appears to be important for this 

process. The implications of these findings and future directions, particularly in terms of 

the extended BLA-vHPC-mPFC circuit, are discussed below.  

 

6.2 Implications for Theta Synchrony in the vHPC-mPFC-BLA Circuit  

The BLA, vHPC, and mPFC comprise a tripartite circuit in which each element is 

important for anxiety-like behavior. Silencing or lesioning any of these three structures 

alters avoidance behavior in tests such as the EPM (Jinks and McGregor 

1997;.Kjelstrup et al. 2002; Shah and Treit 2003; Bannerman et al. 2003). Similarly, 

optogenetically manipulating BLA inputs into the vHPC (Felix-Ortiz et al.  2013) or the 

mPFC (Felix-Ortiz et al. 2016) alters anxiety. However, these structures are intimately 

interconnected (Hoover and Vertes 2007; Pikkarainen et al. 1999), as evidenced by the 

remarkable degree of synchrony that arises during fear and anxiety behaviors (Adhikari 

et al. 2010; Lesting et al. 2011; Likhtik et al. 2014; Seidenbecher et al. 2003; Stujenske 

et al. 2014). Thus, manipulations of any one structure could alter activity patterns in any 



 
94 

other within the circuit; the specificity of such manipulations is questionable. I attempted 

to address this caveat by recording local field potentials (LFP) simultaneously from the 

three structures while inhibiting the vHPC terminals in mPFC. Inhibition of the vHPC 

terminals within the mPFC was relatively specific, disrupting synchrony in the theta 

frequency range between the vHPC and the mPFC with minimal effects on theta 

synchrony between the BLA and either structure.  

 

Optogenetic stimulation of vHPC-mPFC at a theta range frequency (8 Hz), and not at 20 

Hz, was sufficient to increased avoidance behavior. In vitro whole-cell recordings of 

mPFC suggest that vHPC terminal sinusoidal stimulation at a theta frequency increases 

spontaneous excitatory events in mPFC and increases theta-frequency oscillatory 

activity in the membrane. These postsynaptic changes induced by vHPC terminal 

stimulation, might in turn account for the enhance in theta-frequency spiking activity in 

vivo as well as the increase in anxiety-related behavior. Moreover, altogether these 

results suggest that theta-frequency components of neural activity play a privileged role 

in vHPC-mPFC communication and hippocampal-dependent forms of anxiety. Perhaps 

this privileged role of theta during aversive behaviors could extend to mPFC theta. A 

recent study showed that inhibiting PV-interneurons caused a reset in mPFC theta and 

increased mPFC theta power. This manipulation also increased fear behavior, even in 

the lack of fear stimuli (Courtin et al. 2013). 

 

6.3 Implications for Resonance in the vHPC-prefrontal pathway 
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Three findings in this thesis suggest that the vHPC-mPFC pathway has resonance or 

preferred frequencies. The first finding is that, although ChR2 kinetics follow 20 Hz 

stimulation, optical stimulation of vHPC terminals with 20 Hz pulses failed to evoked 

EPSCs in mPFC pyramidal cells as well as 8 Hz pulses. This resonant frequency 

filtering could be occurring at the level of the vHPC terminal or at the level of the 

postsynaptic mPFC pyramidal cell, or perhaps both. The data in this thesis does not 

distinguish between these possibilities, but some past studies suggest, that at least 

HPC projecting pyramidal neurons do exhibit resonance. In vivo, dorsal HPC CA1 

pyramidal cells fire at an average of ~7 Hz during a navigational task (Harvey et al. 

2009), so perhaps their biophysical properties are such that they function better at 

theta-like frequencies. This finding could explain why optical stimulation with 20 Hz 

pulses failed to evoked EPSCs as well as 8 Hz pulses. Possibly, stimulating with 8 Hz 

pulses was more natural for the terminals, as they responded better to this frequency, 

compared to 20 Hz pulses.  

 

The second finding is that stimulating vHPC terminals with 8 Hz sinusoids elicited 

oscillatory activity in the intracellular membrane, but 20 Hz sinusoids failed to do so. 

Theta frequency oscillations in the membrane potential of CA1 pyramidal cells increase 

in amplitude when the animal is inside the place field of the cell (Harvey et al. 2009). 

Moreover, by injecting electrical sinusoidal currents at various frequencies into CA1 

neurons in vitro, many studies have demonstrated that the maximal (resonant) response 

of the CA1 membrane potential is theta frequency. Therefore, the resonant frequency 

was about the same as the natural oscillation frequency (Leung 1998; Hu, Vervaeke, 
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and Storm 2002). These findings may explain why 20 Hz sinusoids failed to evoke 

oscillatory membrane activity in mPFC neurons.  

 

The third finding is that inhibition of the vHPC terminals in the mPFC decreased theta-

frequency synchrony between vHPC and mPFC, but not synchrony in other 

frequencies. One possibility is that synchrony in other frequencies that were unaffected 

by the inhibition is mediated by multiple common inputs to mPFC and vHPC, or that 

they are noise, part of the resting state networks. 

 

This special role of frequency specificity and cross-regional coupling of theta is best 

tested with a closed-loop stimulation design that enhances or disrupts synchrony with 

the same optogenetic stimulation. This approach would vary the timing of that 

stimulation based on the ongoing theta recorded, such that you have an internal control 

for total activity induced by ChR2. If the vHPC LFP is recorded and filtered for theta at 

real time, the phase information can be used to guide the stimulation and potentially 

enhance the synchrony between vHPC and its outputs. Phase in the HPC changes 

across layer and location, so LFP should be consistently recorded in the pyramidal layer 

with a high impedance electrode, such that it reflects best the extracellular field 

surrounding the projecting neurons. However, once the theta phase information is 

collected, it is not clear what ChR2 stimulation pattern or approach could enhance the 

synchrony between vHPC and mPFC. A recent study used a closed-loop approach to 

alter hippocampal outputs relative to ongoing theta rhythms on a trial-by-trial basis, 

providing within-animal controls for all stimulation conditions. Siegle and Wilson chose 
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to alter hippocampal outputs via timed ChR2 activation of parvalbumin-positive 

interneurons, at either the falling phase or rising phase of theta recorded in the LFP. 

Triggering inhibition at the peak of theta and the trough of theta had opposite behavioral 

effects during spatial working memory (Siegle and Wilson 2014). This study shows that 

the HPC theta timing during spatial working memory is behaviorally meaningful. 

However, in this study there were no measures of cross-regional synchrony. 

Unfortunately, no study has reported a close-looped stimulation paradigm that increases 

cross-regional coupling thus far. Here are some potential stimulation paradigms to try to 

increase theta coupling between mPFC and vHPC: 

 

1. Stimulate vHPC terminals in mPFC with short pulses at the trough phase of 

vHPC theta. The trough would indicate when the vHPC cells are most likely 

firing, as the extracellular field is negative. If mPFC cells are uniformly phase 

locked to a specific phase of vHPC theta, then that phase can be the stimulated 

phase rather than the trough. This protocol may enhance the vHPC input to the 

mPFC and subsequently the theta activity in mPFC. But it could also be 

problematic, as ChR2 spikes generated at the terminals could cause collision 

with ongoing natural spikes and possible disrupt synchrony.  

 

2. Stimulate PV interneurons in mPFC at the peak phase of vHPC theta. PV IN in 

mPFC have been shown to reset mPFC theta, so re-setting mPFC theta in a 

coordinated manner with vHPC theta could increase synchrony between the 

vHPC-mPFC. This approach takes into consideration the previous closed-loop 
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experiment (Siegle and Wilson 2014), and that interneuron inhibition to pyramidal 

cells in HPC has been shown to be sufficient to generate theta oscillations 

(Goutagny et al. 2009). The caveat of this approach is that it would cause 

stimulation of all mPFC PV interneurons, rather than the selected PV 

interneurons that are innervated by vHPC. Ideally, only the PV interneurons 

innervated by vHPC would express ChR2, and that would make this stimulation 

paradigm more specific to vHPC input and potentially more naturalistic to vHPC-

mPFC theta generation. To this date no viral approach would accomplish this 

specificity, but most likely future technology will allow it. 

 

3. Stimulate vHPC terminals in mPFC using the instantaneous amplitude of vHPC 

theta as an analog input to control the power of laser. This approach, rather than 

focusing on the phase, focuses on mimicking the amplitude of vHPC theta in 

mPFC, which could potentially enhance the power synchrony between vHPC and 

mPFC. This protocol would benefit from knowing what vHPC terminals do in 

response to a sinusoidal optical ChR2 input. Before employing this protocol, it 

would be best to record vHPC terminal output during a sinusoid optical stimulus.  

 

6.4 Implications for the Origin of Spatial Representations of Aversion  

Inhibition of the direct vHPC input ablated the representation of aversive and non-

aversive context within the mPFC. This result is consistent with recent findings during a 

working memory task, in which the representation of goal location was disrupted by the 

same manipulation (Spellman et al. 2015). However, mPFC units encode valence; 
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neurons that fire in response to bright, enclosed arms also fire in response to open arms 

in the dark (Adhikari et al. 2011). Moreover, terminal inhibition altered additional 

behavioral measures of valence, independent of arm choice, suggesting that vHPC 

inputs are crucial not just for spatial representations but also for the anxiety valence. 

Whether this valence is constructed in the mPFC with the help of vHPC input or is 

present in the vHPC itself is unclear. A recent report demonstrates that mPFC-

projecting vHPC neurons preferentially encode arm type in the EPM, while very few 

have well-defined place fields (Ciocchi et al. 2015). Evidence from human hippocampal 

imaging suggests that the anterior hippocampus (the human homolog of the vHPC) 

responds to negative valence (Gerdes et al. 2010; Sterpenich et al. 2014). These 

findings suggest the possibility that vHPC inputs indeed convey valence information to 

the mPFC. It is still unknown how 8 Hz sinusoidal stimulation of vHPC terminal affects 

the mPFC representation of aversion. Knowing how it affects mPFC representation will 

help interpret the increase in anxiety-like behavior observed with the stimulation.  

 

Where might the vHPC 

get information about 

valence? It could come 

from the BLA, given the 

demonstration that 

optogenetic inhibition of 

BLA terminals within the 

vHPC also disrupts anxiety-like avoidance behavior (Felix-Ortiz et al. 2013). However, 
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inhibition of the vHPC terminals in BLA did not disrupt anxiety-like behavior (Jimenez et 

al. personal communication). This suggests that the flow of necessary anxiety-relevant 

information goes from BLA to vHPC, and given the findings presented here, from vHPC 

to mPFC (Figure 1). BLA has been long implicated in valence representation, so it is 

reasonable to hypothesize that valence information is sent from BLA to vHPC and there 

it is integrated with contextual information, and relayed to mPFC. To directly test this 

hypothesis, I propose to inhibit the BLA projection to the vHPC while recording single 

units in the mPFC during the EPM and a non-aversive maze with two contexts as a 

negative control. If inhibition of the BLA-vHPC decreases arm-type representation 

during the EPM, but not the non-aversive maze, then it can be concluded that indeed 

valence information travels from the BLA to the vHPC, where it can be integrated with 

contextual information and then relayed to the mPFC.  

 

6.5 Conclusion 

A long literature links theta-frequency synchrony between the vHPC, mPFC, and BLA to 

both learned fear and innate anxiety (Adhikari et al., 2011; Lesting et al., 2011; Likhtik et 

al., 2014; Seidenbecher et al., 2003; Stujenske et al., 2014). Indeed, optogenetically 

enhancing theta-frequency oscillations within the mPFC increased anxiety-like behavior. 

Moreover, inhibition of the vHPC-to-mPFC pathway disrupted anxiety-like behavior and 

theta-frequency synchrony between the two structures without affecting synchrony at 

other frequencies. Interestingly, inhibition of this same vHPC-to- mPFC pathway during 

a working memory task had no effect on theta-frequency synchrony (Spellman et al., 

2015); instead, low gamma (30–70 Hz) synchrony was specifically disrupted. These 
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contrasting findings demonstrate the surprising result that a specific anatomical pathway 

can mediate synchrony at different frequencies depending on behavioral state.  
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