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ABSTRACT 

The Sustainment and Consequences of Cytosolic Calcium  

Signals in Osteocytes 

Genevieve N. Brown 

 

 Osteocytes are widely regarded as mechanosensors, capable of detecting changes in the 

mechanical environment of the bone tissue and modifying cellular responses accordingly. 

Indeed, an intact osteocyte network is required for bone changes in response to unloading, and 

studies have shown that loading/unloading influences osteocyte expression of proteins that 

modulate bone turnover, such as sclerostin and receptor activator of nuclear factor kappa B 

ligand (RANKL). However, mechanisms underlying osteocyte mechanotransduction remain 

unclear. For instance, one of the earliest responses of bone cells to mechanical stimuli is a rise in 

intracellular, or cytosolic, calcium (Ca
2+

cyt), but the mechanisms by which osteocytes generate or 

utilize Ca
2+

 signals to direct bone adaptation are largely unknown. 

In this thesis, I explored the mechanisms underlying the sustainment of Ca
2+

cyt 

oscillations in osteocytes as well as downstream consequences of these patterns. I discovered that 

Ca
2+

cyt oscillations are generated in osteocytes by Ca
2+

 release from the endoplasmic reticulum 

and that the predominant expression of T-Type voltage sensitive Ca
2+

 channels in these cells 

facilitates this behavior. I also explored the role of the actin cytoskeleton – another prominent 

feature in osteocytes – and found that actin dynamics are important for the generation of Ca
2+

cyt 

signals. Furthermore, I confirmed that Ca
2+

cyt transients subsequently activate actomyosin 

contractions in osteocytes by monitoring interactions of osteocytes exposed to Ca
2+

 agonists on 

micropillar substrates.  



 

 

With this information, I sought to relate Ca
2+

cyt signaling and actomyosin contractility in 

osteocytes to their roles as coordinators of bone adaptation. Ca
2+

-dependent contractions have 

been shown to facilitate the release of extracellular vesicles, small membrane-enclosed packages 

of proteins that cells use for communication, in other cell types. I found that mechanical 

stimulation increased the production and release of extracellular vesicles in osteocytes, and this 

was dependent on Ca
2+

 signaling. These extracellular vesicles contained key bone regulatory 

proteins and were small enough to plausibly transport through the lacunocanalicular system. 

Thus, I uncovered a novel mechanotransduction pathway by which osteocytes may coordinate 

tissue-level adaptation. As an extension of this work, I also characterized these behaviors in new 

osteocyte cell lines which may better reflect native cell physiology.  

The work in this thesis anchors Ca
2+

 signaling as a critical osteocyte response to 

mechanical loading and adds to the body of work exploring how and why these signals are 

generated. The results of these studies add new information to the still limited knowledge of this 

important bone cell and extend Ca
2+

 signaling research by connecting early mechanosensation 

events to subsequent protein responses to mechanical loading. Understanding the mechanisms 

behind the robust Ca
2+

cyt oscillations in osteocytes and how they relate to their roles as 

coordinators of bone adaptation may improve our ability to prevent or treat bone degeneration in 

diseases like osteoporosis where mechanosensitivity is impaired. 
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Chapter 1 

 

1.1 Background 

1.1.1 Bone adaptation 

Wolff’s Law posits that bone adapts its internal structure to support and sustain external 

loads
1
. This is demonstrated by the enhanced bone strength in athletes

2,3
 and the loss of bone in 

unloading conditions, such as extended bedrest
4
 and microgravity

5,6
. Furthermore, it is believed 

that changes in the ability of bone to adapt to its mechanical environment underlie several 

skeletal pathologies, including osteoporosis
7
. A better understanding of the skeleton’s ability to 

adapt to physiologic mechanical loads has potential to reveal new strategies for mitigating the 

more extreme demands placed on bones in pathologic conditions and to inform novel, 

innovative, and more precise treatments for patients with bone disease. Thus, there is 

considerable interest in studying the mechanisms of bone adaptation. 

For these architectural changes to occur, one or more cells within the bone must be 

sensitive to mechanical stimulation. Bone is comprised of three major cell types (Fig. 1.1). 

Osteoblasts are cuboidal cells derived from the mesenchymal lineage responsible for matrix 

deposition. Osteoclasts are large, multi-nucleated cells of hematopoietic origin that resorb bone. 

The balanced activity of osteoblasts and osteoclasts, with bone formation following resorption on 

identical surfaces, is called remodeling. Imbalanced activities of osteoblasts and osteoclasts can 

result in either excess bone formation or resorption, both typically pathologic outcomes. 

Together, these cells make up less than 10% of the bone cell population and, with lifetimes 

estimated in only weeks, represent a transient population of cells. 
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The majority of bone cells are osteocytes – mature bone cells embedded within the bone 

matrix that can survive for decades
8
. Osteocytes mature from osteoblasts that become entombed 

in deposited matrix. Their function was enigmatic for a long time, largely due to their 

inaccessibility. While osteoblast and osteoclast populations were relatively easy to isolate and 

characterize, it was challenging to extract osteocytes from the bone and maintain their 

phenotype. However, with the introduction of an osteocyte-like cell line
9
 and new technologies 

to probe their functions in vitro and in vivo
10

, the role of osteocytes in bone adaptation has 

received considerable attention over the last few decades.  

 

1.1.2 Osteocytes as mechanosensors 

Osteocytes are considered ideal mechanosensors due to their abundance and intricate 

arrangement within the bone tissue
11-15

. They are stellate cells characterized by numerous 

cellular processes – or dendrites – emanating from the cell body and connecting cells with one 

another and with cells on the bone surface, such as osteoblasts and osteoclasts
16

. Osteocyte cell 

bodies reside in lacunae, and the dendrites extend through channels within the bone tissue called 

canaliculi. The extensive network created by these structures is called the lacunocanalicular 

system (LCS). 

Mechanical loading of bone results in bending, with areas of compression and tension 

forming along the bone surfaces. Physiologic loads from activities such as running and jumping 

can engender strains in the range of 2000-3000µɛ
17

. However, when similar strains were used to 

stimulate bone cells in vitro, they were not sufficient to engender a biological response
18

, 

suggesting that cells embedded within the bone experience a different mechanical stimulus than 

strain on the whole bone surface. Using poroelastic models to relate whole bone strains to cell 
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level mechanical signals, it was proposed as early as the 1970s that small shear stresses acting on 

osteocytes within the LCS are induced by the flow of interstitial fluid
19-21

. In the 1990s, a 

seminal theoretical paper predicted that the relatively small deformations to the whole bone 

tissue could translate to fluid shear stresses similar to those in vascular tissues 
19

 (reviewed in 
22

). 

It is therefore now widely accepted that the predominant stimulus experienced by osteocytes in 

situ is fluid shear stress that results from this interstitial fluid pressurization in the LCS upon 

dynamic deformation of the whole bone
20,22,23

. Indeed, this has been verified experimentally
24,25

, 

and fluid shear is now extensively used as a stimulus for in vitro studies.  

In vitro studies subjecting osteocytes to fluid shear have shown that loading can enhance 

the release of prostaglandin E2 (PGE2)
26-28

, nitric oxide
29,30

, osteopontin
31

, Wnts
32

, and modulate 

the ratio of receptor activator of nuclear factor kappa-B ligand (RANKL) and its decoy receptor 

osteoprotegerin (OPG)
33,34

 over the course of hours and days. A few studies have also 

demonstrated that conditioned medium from osteocytes exposed to fluid flow decreases 

osteoclastogenesis
33,34

, inhibits osteoclast resorptive activity
35

, and promotes osteoblast 

differentiation
36

. Taken together, these studies demonstrate that osteocytes can respond to 

mechanical loads by adapting downstream protein responses.  

In vivo studies have also demonstrated that osteocytes are sensitive to their mechanical 

environment and can orchestrate bone turnover in response to changing mechanical demands
14,15

. 

In transgenic mice with ablated osteocytes, bone resorption was enhanced due to an increase in 

the RANKL/OPG ratio, and mice were resistant to unloading-induced bone loss
37

. More recent 

studies using osteocyte-specific inducible knockouts of RANKL suggested that osteocytes are 

the primary source of RANKL for modulating osteoclast activity
38,39

. Loading has also been 

demonstrated to affect osteocyte control of osteoblast activity through the Wnt/β-catenin 
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inhibitor sclerostin, which suppresses the activity of osteoblasts. Studies of both ulnar and tibial 

loading in mice have been shown to decrease levels of the sclerostin protein expression, while 

unloading has been shown to increase levels of sclerostin
40

. These changes are highly correlated 

with sites of anabolic bone formation in these models 
40-43

. Taken all together, these studies 

highlight the essential role of osteocytes in both immediate mechanosensation and the 

coordination of later adaptive responses (Figure 1.2). 

 

1.1.3 Calcium signaling in bone cells 

One of the earliest responses of bone cells to mechanical stimulation is a rise in Ca
2+

cyt
44

. 

Ca
2+

cyt signaling mediates a multitude of physiological processes in a wide range of tissues
45

, 

including cell growth in cardiac progenitors
46

, insulin production in pancreatic β cells
47

, 

differential gene expression in T-cells
48

, and migration in lung fibroblasts
49

. In the 

musculoskeletal system, Ca
2+

cyt signals affect the differentiation of mesenchymal stem cells
50

 

and contribute to RANKL-induced osteoclastogenesis
51-53

.  

In one of the earliest studies of real-time bone cell mechanotransduction, primary 

osteoblasts were demonstrated to exhibit heterogeneous Ca
2+

cyt responses to different fluid shear 

stress levels, with most cells exhibiting a single response to fluid flow with variable magnitude
44

. 

Further studies examined the effects of different flow profiles on osteoblast Ca
2+

cyt responses and 

found that osteoblasts are more responsive to steady and pulsatile flow than oscillatory flow
54

. 

Furthermore, cells exposed to multiple bouts of flow were found to exhibit similar response 

characteristics, suggesting an intrinsic mechanosensation response
55,56

. When cultured in 

micropatterned networks recapitulating the characteristic spacing and connectivity of osteocytes 

in vivo, osteoblasts exhibited subsequent, lower-magnitude responses to steady flow
57

. In 
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addition, osteoblasts cultured in these networks could propagate Ca
2+

cyt signals to neighboring 

cells when a single cell was stimulated by indentation
58

. 

The characterization of osteocyte Ca
2+

cyt responses to mechanical loading came nearly a 

decade later. In explanted fragments of chicken embryonic calvariae, bone cells were 

demonstrated to exhibit autonomous Ca
2+

 responses
59

, and embedded osteocytes stimulated by 

microneedle displacement
60

 or shear stress over the explant surface
61

 were shown to exhibit 

Ca
2+

cyt responses that could be propagated to neighboring cells
62

. Furthermore, osteocytes were 

more responsive and more sensitive to microneedle displacement when stimulated along a 

dendritic process rather than at the cell body
63

. This result was confirmed by a later study using 

localized hydrodynamic forces
64

.  

When exposed to fluid shear in vitro, osteocytes cultured in micropatterned networks 

were discovered to exhibit unique patterns in Ca
2+

cyt; robust, un-attenuated oscillations in Ca
2+

cyt 

were observed in response to steady flow in MLO-Y4 osteocytes, with some cells exhibiting up 

to 17 Ca
2+

cyt transients in a 9-minute stimulation period
65

. These responses were distinct from the 

Ca
2+

cyt responses of osteoblast precursors
65,66

 and more pronounced under steady than oscillatory 

flow
67

.  

This unique pattern in Ca
2+

cyt was recently confirmed in an ex vivo system where 

osteocytes and osteoblasts in native murine tibiae were subjected to dynamic deformational 

loading. Osteocytes, identified as cells residing in lacunae approximately 40 µm below the bone 

surface, exhibited robust oscillations in Ca
2+

cyt in response to load
68

. This pattern was more 

pronounced than the autonomous Ca
2+

cyt responses of osteocytes, which were undetectable, as 

well as the loading-induced and autonomous responses of cells on the bone surface
59,68

. Taken 
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together, these studies allude to a key role of Ca
2+

cyt signaling in osteocyte mechanosensation 

(Figure 1.3). 

 

1.2 Motivations 

While robust Ca
2+

cyt have been observed in osteocytes in response to mechanical loading, 

and mechanical loading has been demonstrated to affect the adaptive response of osteocytes 

through modulation of protein expression, to date no studies have connected Ca
2+

-mediated 

mechanosensitivity to signal transduction in osteocytes. Furthermore, the mechanisms 

underlying the initiation and sustainment of Ca
2+

cyt oscillations have not been clearly identified. 

Ca
2+

cyt oscillations in osteocytes are dependent on ER stores and modulated by inhibition of 

membrane Ca
2+

 channels
65

, but the exact nature of this interaction remains unknown. For 

instance, inhibition of T-Type voltage-sensitive calcium channels (VSCC) has similar effects as 

disruption of ER stores, yet no link has been demonstrated between them in osteocytes. 

Furthermore, the role of the ER has only been studied indirectly through the use of 

pharmacologic inhibitors. 

A prominent feature of osteocytes is an actin-rich cytoskeleton. By tracking strains in the 

actin network within osteocytes subjected to fluid flow
69,70

, our laboratory previously observed 

that development of tension in the actin precedes a Ca
2+

 response. We also discovered an 

immediate compression of the actin network following a Ca
2+

 signal, indicative of an actomyosin 

contraction. This is the first demonstration of a mechanical consequence of mechanotransduction 

in osteocytes and likely relates to the function of osteocytes as regulators of bone adaptation, but 

no studies have explored this phenomenon. This warrants a detailed investigation of the 
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interactions between the actin cytoskeleton and Ca
2+

cyt signals in osteocytes, which are so far 

largely unexplored. 

Furthermore, Ca
2+

cyt-dependent contractions may facilitate the release of proteins from 

osteocytes within the bone to cells on the bone surface through the shedding of extracellular 

vesicles. Though vesicles have been identified in osteocytes
71

 and shown to contain osteocyte 

proteins
72

, to date no studies have explored their role in osteocyte mechanobiology. 

 

1.3 Aims and Organization 

The goal of this thesis is to extend the understanding of how Ca
2+

cyt signals in osteocytes 

are generated, sustained, and involved in adaptive protein responses.  

In the first study presented in Chapter 2, we explored whether the ER sustains Ca
2+

cyt 

oscillations in osteocytes through interaction with T-Type VSCC. We hypothesized the 

predominant expression of T-Type channels in osteocytes may contribute to their unique Ca
2+

cyt 

patterns and further speculate that T-Type VSCC in osteocytes may interact with ER stores. Our 

efforts were guided by the following aims: 

Specific Aim 1a: To determine the effects of VSCC inhibitors on Ca
2+

cyt signals and 

Ca
2+

ER dynamics in osteocytes and osteoblasts.  

Specific Aim 1b: To investigate the physical association of T-Type VSCC with the ER in 

osteocytes and osteoblasts. 

In the next study presented in Chapter 3, we explored how the dynamics of the actin 

cytoskeleton are coupled to Ca
2+

 signaling in osteocytes. Our first aim was to determine whether 

actin dynamics are important in sustaining Ca
2+

 oscillations in osteocytes. Next, we sought to 

confirm osteocytes exhibit Ca
2+

-dependent contractions in an alternative experimental system by 
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chemically and mechanically inducing Ca
2+

cyt responses in osteocytes seeded onto micropillars. 

Finally, looking towards future studies in animal models, we sought to identify an inhibitor of 

this contractility that could be translated to in vivo studies.  

Specific Aim 2a: To evaluate the influence of actin dynamics on Ca
2+

cyt oscillations in 

osteocytes under fluid shear stimulation. 

Specific Aim 2b: To verify Ca
2+

-dependent actomyosin contractility in osteocytes by 

measuring interactions with a deformable substrate.  

Specific Aim 2c: To inhibit actin contractions independent of Ca
2+

 signals in osteocytes. 

 In Chapter 4, we wanted to link the observed Ca
2+

 oscillations and actin contractility to a 

functional consequence in osteocytes. There is a well-established role for Ca
2+

/actin dynamics in 

promoting exocytosis, and recent research has highlighted the importance of exocytosis in the 

shedding of vesicles that serve to transport proteins from one cell to another. Thus, we 

hypothesized Ca
2+

cyt oscillations have a role in immediate osteocyte protein responses by 

facilitating the shedding of extracellular vesicles. This hypothesis was explored through the 

following aims:  

Specific Aim 3b: To quantify mechanically-induced extracellular vesicle release in 

osteocytes with and without inhibition of Ca
2+

 oscillations. 

Specific Aim 3c: To characterize the size and contents of osteocyte-derived extracellular 

vesicles. 

 The previous chapters use the MLO-Y4 osteocyte cell line, which, since its introduction 

in 1997
9,73

, has revolutionized the study of osteocytes. However, as our studies begin to link 

behaviors in MLO-Y4 osteocytes to their protein responses, it is important to evaluate how well 

they recapitulate native osteocyte physiology. Recently, two new osteocyte cell lines – IDG-SW3 
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and Ocy454 – have been developed to address the lack of sclerostin expression in MLO-Y4
74,75

. 

Sclerostin is expressed almost exclusively in osteocytes and serves to inhibit bone formation, 

therefore it is a specific and effective target of current therapies for osteoporosis. In order to rely 

on these new cell lines for experimental studies linking Ca
2+

 responses to changes in sclerostin 

expression, we sought to characterize these responses in Chapter 5. Given the consistency among 

our prior in vitro and ex vivo studies, we hypothesized mature osteocytes would exhibit 

oscillations in Ca
2+

cyt in response to fluid shear, while immature cells would be less sensitive. 

The following aims reflect the characterization of these two cell lines: 

Specific Aim 4a: To evaluate the percentage of responsive cells and number of Ca
2+

 

peaks in immature and differentiated Ocy454 cells subjected to fluid shear. 

Specific Aim 4b: To evaluate the percentage of responsive cells and number of Ca
2+

 

peaks in immature and differentiated IDG-SW3 cells subjected to fluid shear. 

Lastly, though the final study in Chapter 6 was actually developed prior to the start of the 

other studies presented herein, it represents an important move in extending that work to inter-

cellular communication dependent on these processes. A loadable perfusion chamber was 

developed to simultaneously load and perfuse explanted bovine bone cores. These bone cores are 

organotypic, with preserved osteocytes in the lacunocanalicular system connected with 

osteoblasts on the bone surface. This system also has the singular advantage to generate an 

experimental group that cannot be made in vitro or in vivo: genetically modified osteoblasts with 

intact osteocytes. Culturing these bone cores in a loadable perfusion bioreactor thus enables 

precise mechanical interventions and long-term culture of these critical samples. This work was 

guided by the following aims: 
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Specific Aim 5a: To design a loadable perfusion chamber for the long-term culture of 

bovine trabecular bone. 

Specific Aim 5b: To evaluate the accuracy of the mechanical properties of bone tissue 

calculated from samples inside the chamber.  

Specific Aim 5c: To confirm that perfusion of bovine trabecular bone in could maintain 

osteocyte viability for up to 4 weeks in culture.  

Chapter 7 summarizes the conclusions of this thesis work and suggests future studies to 

expand on these findings.  
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1.4 Figures 

 

Figure 1.1 Types of bone cells and their primary functions. Bone is comprised of three major 

cell types that work in concert to maintain the skeleton. Osteoblasts are responsible for matrix 

deposition, while osteoclasts are responsible for matrix resorption. Osteocytes are the most 

abundant cells thought to primarily function as mechanosensors. Osteoblasts that become 

embedded in their deposited matrix can mature into osteocytes. Osteocytes are characterized by 

numerous dendrites emanating from the cell body that connect cells to one another and to 

osteoblasts and osteoclasts on the bone surface. Images adapted from OpenStax, Anatomy & 

Physiology. OpenStax CNX. May 18, 2016 http://cnx.org/contents/14fb4ad7-39a1-4eee-ab6e-

3ef2482e3e22@8.25  
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Figure 1.2 Osteocyte regulation of osteoblast and osteoclast activities. Summary of the 

various biochemical responses of osteocytes to mechanical loading and how these function to 

promote or inhibit bone formation and resorption. Image adapted from: “The osteocyte: doing 

the hard work backstage.” M. Prideaux and L. Bonewald, Medicographia. 2012; 34:228-235 
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Figure 1.3 Mechanically-induced calcium oscillations in in vitro and in situ osteocytes. (A) 

MLO-Y4 osteocytes cultured in micropatterned cell networks exhibit repetitive, spike-like 

changes (oscillations) in Ca
2+

cyt levels when exposed to steady fluid shear. (B) Osteocytes 

embedded in an explanted murine tibia exhibit similar patterns in Ca
2+

cyt when subjected to 

dynamic, deformational loading of the whole bone. Images adapted from references 65 and 68.  
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Chapter 2 

Interactions between the endoplasmic reticulum and T-Type voltage-sensitive calcium 

channels in osteocytes to sustain mechanically-induced calcium oscillations  

 

This thesis chapter has been previously published, in part, in the manuscript:  

Genevieve N. Brown, Pui L. Leong, and X. Edward Guo. “T-Type voltage-sensitive 

calcium channels mediate mechanically-induced intracellular calcium oscillations in 

osteocytes by regulating endoplasmic reticulum calcium dynamics.” Bone 88, 2016. 

 

2.1 Introduction 

Osteocytes are widely regarded as mechanosensors, capable of detecting changes in the 

mechanical environment of the bone tissue and modifying cellular responses accordingly
11,14

. 

Osteocytes exhibit robust oscillations in Ca
2+

cyt in response to mechanical stimulation, a pattern 

distinct from their osteoblast precursors and attributed to their mechanosensitivity
65,68

. Prior in 

vitro work from our laboratory concluded that Ca
2+

cyt transients depend on both the extracellular 

reservoir of Ca
2+

 ions (with Ca
2+

 transported through channels on the plasma membrane) and 

intracellular storage organelles, in particular the endoplasmic reticulum (ER)
65

 (Figure 2.1). 

Indeed, prior studies in osteoblasts alluded to the importance of the ER as a subcellular 

store of Ca
2+

 for flow-induced Ca
2+

 responses in bone cells. Block of Ca
2+

ER release by TMB-8
44

 

or neomycin
76

 dramatically reduced the number of osteoblasts capable of exhibiting Ca
2+

cyt 

transients, and thapsigargin treatment eliminated the lower magnitude subsequent peaks in 

micropatterned osteoblasts
57

. 
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In osteocytes, depletion of ER stores abrogates oscillations. Treatment with the drug 

thapsigargin to block ER Ca
2+

 reuptake significantly reduced the number of Ca
2+

cyt transients 

from an average of five down to a single response. A similar effect was observed in in situ 

osteocytes, where thapsigargin treatment abolished multiple Ca
2+

 responses induced by dynamic 

loading of a murine tibia
68

.  

 The distinct Ca
2+

 oscillations in osteocytes, which are absent in osteoblasts and inhibited 

by ER disruption
65

, suggest that a phenotypic difference between these two cells may explain 

this behavior. Ca
2+

cyt oscillations in osteocytes are also affected by inhibition of a number of 

membrane channels involved in Ca
2+ 

transport, and targeting channels expressed primarily in 

osteocytes should clarify some mechanisms underlying this unique behavior. For instance, the 

expression of voltage-sensitive calcium channel (VSCC) subtypes changes as osteoblasts 

differentiate into osteocytes
77

. Osteoblasts express both low threshold T- and high threshold L-

type VSCC, whereas osteocytes predominantly express T-Type VSCC
78

. Previous studies 

published from our laboratory explored the effects of VSCC inhibitors when added to the flow 

medium after shear stimulation
65

. The addition of the T-Type inhibitor NNC 55-0396 interrupted 

Ca
2+

cyt responses in osteocytes, preventing subsequent Ca
2+

 transients, but had little observable 

effect on osteoblasts. Treatment of in situ osteocytes with the T-Type inhibitor prior to 

mechanical stimulation also significantly reduced the number of Ca
2+

 responses
68

. Interestingly, 

inhibition of these channels in both systems had similar effects as disruption of ER stores, though 

no link has been demonstrated between them in osteocytes. This suggests that T-Type VSCC 

may interact with the ER in osteocytes, with the ER possibly relying on T-Type VSCC to 

replenish Ca
2+

 following Ca
2+

 release.  
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VSCC have been shown to interact with the ER and Ca
2+

ER release pathways in other 

cells. A direct association of T-Type VSCC with the ER has been previously demonstrated in 

arterial smooth muscle, where CaV3.2 channels were found to be localized to ER caveolae by 

transmission electron microscopy and to bind to ryanodine receptors (RyR) on the ER by a 

proximity ligation assay
79

. In a previous study, blocking RyR by tetracaine did not abolish 

Ca
2+

cyt oscillations in osteocytes, but inhibition of inositol triphosphate (IP3) generation by 

treatment of cells with neomycin, which prevents IP3 receptor (IP3R)-mediated release of Ca
2+

 

from the ER,  abolished multiple responses
65

. Thus, a similar association may exist between T-

Type VSCC and IP3R in osteocytes. In addition, a number of proteins participate in Ca
2+

 release 

from ER stores and Ca
2+

 entry triggered by this release – a phenomenon referred to as store-

operated calcium entry (SOCE) – such as Stromal Interaction Molecules (STIMs) and Ca
2+

-

Release Activated Channels (CRACs)
80

. In particular, STIM1 has been shown to interact with L-

Type VSCC in rat cortical neurons
81

 and vascular smooth muscle cells
82

 and CaV3.1 T-Type 

VSCC in cardiac myocytes
83

. The potential role of SOCE-related proteins in osteocyte Ca
2+

 

signaling have not yet been explored.  

Though our previous studies implicate roles for both the ER and T-Type VSCC in 

osteocyte Ca
2+

cyt responses, their relative contributions or any interactions between the ER and 

T-Type VSCC remain unknown. This is largely due to an inability to observe ER Ca
2+

 dynamics 

in the same way that we can probe Ca
2+

cyt events
84,85

, i.e. to monitor Ca
2+

 localized to the ER 

separately from Ca
2+

 entering the cell from the extracellular fluid. However, advances in 

genetically encoded Ca
2+

 biosensors now enable the targeting of these sensors to subcellular 

organelles, including the ER
86-88

.  



17 

 

Thus, the focus of this work is to observe Ca
2+

ER dynamics in bone cells to better 

understand the role of ER stores in the unique Ca
2+

 oscillations in osteocytes. We hypothesized 

that an ability to refill ER stores results in Ca
2+

cyt oscillations in osteocytes. We also 

hypothesized that the predominant expression of T-type channels in osteocytes may contribute to 

their unique Ca
2+

cyt patterns and further speculated that T-type VSCC in osteocytes may interact 

with ER stores. 

 

2.2 Materials and Methods 

2.2.1 Cell culture 

Osteocyte-like MLO-Y4 cells (a gift from Dr. Lynda Bonewald, University of Missouri-

Kansas City, Kansas City, MO) were cultured on 0.15 mg/ml collagen (rat tail type I, BD 

Biosciences, San Jose, CA) coated culture dishes in minimum essential alpha medium (α-MEM, 

Life Technologies, Carlsbad, CA) supplemented with 5% fetal bovine serum (FBS, Hyclone 

Laboratories Inc., Logan, UT) and 5% calf serum (CS, Life Technologies, Carlsbad, CA). 

MC3T3-E1 pre-osteoblasts (ATCC, Manassas, VA) were cultured in α-MEM supplemented with 

10% FBS. Cells were maintained at 5% CO2 and 37°C in a humidified incubator. MLO-Y4 cells 

were sub-cultured prior to reaching 70-80% confluence in order to maintain an osteocyte-like 

phenotype. 

 

2.2.2 Inhibitors 

All inhibitors used in this study were purchased from Sigma-Aldrich (St. Louis, MO). 

Thapsigargin is an inhibitor of the Ca
2+

-ATPase pump on the ER (SERCA) which facilitates the 

reuptake of Ca
2+

 into the ER, and thapsigargin treatment (1µM) thereby results in ER depletion. 
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Two VSCC inhibitors were used in this study: the T-Type inhibitor NNC 55-0396 (20 µM) and 

the L-Type specific inhibitor nifedipine (10µM). MLO-Y4 cells were also treated with the 

following inhibitors related to SOCE: YM58483 (3µM), a CRAC inhibitor
89

; SKF-96365 

(50µM), a SOCE inhibitor that inhibits STIM1 (similar effects as STIM1 silencing)
90

 but 

exhibits off-target effects on VSCC activity
91

; and 2-APB (50µM), a reliable inhibitor of SOCE 

and IP3R
91,92

. Cells were incubated in the inhibitors for 15 minutes prior to flow exposure, and 

the inhibitors remained in the flow medium for the duration of the experiment.  

 

2.2.3 Ca
2+

cyt indicators and Ca
2+

ER visualization 

To observe Ca
2+

cyt changes only, MLO-Y4 and MC3T3-E1 cells were stained with Fluo-8 

AM (AAT Bioquest, Sunnyvale, CA) dissolved in 20% Pluronic F-127 in DMSO (Invitrogen, 

Carlsbad, CA). To visualize ER calcium levels in osteocytes and osteoblasts, cells were 

transiently transfected with the D1ER plasmid (plasmid #36325, Addgene, Cambridge, MA)
93

 

using standard non-liposomal techniques (Fugene 6, Promega Corporation, Madison, WI). D1ER 

is a second generation cameleon Ca
2+

 fluorescence resonance energy transfer (FRET) sensor 

targeted to the ER with a retention sequence. To simultaneously visualize Ca
2+

cyt and Ca
2+

ER, 

cells were transfected with D1ER and then stained with the red-shifted Ca
2+

cyt indicator Fura 

Red-AM (20µM, Life Technologies, Carlsbad, CA) in DMSO and Kolliphor® EL (Sigma-

Aldrich, St. Louis, MO) prior to fluid flow stimulation.  

To verify the localization of the D1ER plasmid, transfected cells were stained with ER-

Tracker Red (Molecular Probes, Eugene, OR). Cells were rinsed and incubated with a warmed 

1µM working solution of ER-Tracker Red for 30 minutes at 37ºC. Cells were rinsed with fresh 

medium and post-incubated for 15 minutes prior to imaging. The FRET biosensor was excited at 
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430nm, and fluorescence emission of YFP (530nm) was collected as the FRET image. The ER 

Tracker Red dye was imaged using 568nm excitation/660nm emission. 

 

2.2.4 Fluid flow stimulation 

Prior to staining with appropriate Ca
2+

 indicators, cells were plated onto 10µg/mL 

fibronectin (Corning, Corning, NY) coated glass slides at ~80% confluency to establish cell-cell 

contact. Slides were then stained and assembled into a custom parallel-plate flow chamber with a 

glass bottom that permits live cell imaging under fluid shear stimulation. For single cell studies, 

cells were plated onto 500µm thick glass slides (Delta Technologies, Loveland, CO) to 

accommodate the shorter working distance of the higher magnification objectives. The chamber 

was placed on the stage of an inverted microscope (Olympus, Waltham, MA) and attached to a 

magnetic gear pump (Scilog, Madison, WI) for the application of steady, laminar, unidirectional 

flow at a shear stress of 35 dynes/cm
2
, which has been shown to induce multiple Ca

2+
cyt 

responses in osteocytes and fewer, weaker responses in osteoblasts in our previous studies
65

. In 

addition, the Ca
2+

cyt patterns observed in vitro under this flow profile are consistent with those 

observed in ex vivo mouse tibia under physiologic dynamic loads
68

, while oscillatory flow 

induces fewer responses
67

. Baseline fluorescence intensity was captured for 1 minute prior to 

fluid shear stimulation for 9 minutes. 

 

2.2.5 Imaging and image analysis 

For monitoring ER depletion, time-lapse images were collected 36-48 hours post 

transfection at 40X magnification. The FRET biosensor was excited at 430nm using a Lambda 

DG-4 xenon lamp (Sutter Instruments, Novato, CA), and fluorescence emissions of YFP 
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(530nm) and CFP (470nm) were captured simultaneously using a quadview beamsplitter 

(Photometrics, Tucson, AZ) and custom quad-band polychroic (Chroma, Bellows Falls, VT)
69

. 

To monitor ER depletion, cells were imaged for 20 minutes following the addition of 

thapsigargin (1µM). Images were acquired every 3 seconds to minimize photobleaching. The 

FRET ratio was calculated on a pixel-by-pixel basis using cross-correlation based image 

registration of the FRET and donor emissions to obtain relative Ca
2+

ER levels. The time to 

depletion was defined as the time at which the normalized FRET ratio fell below 0.8
94

.  

To monitor the effects of VSCC and SOCE inhibitors on Ca
2+

cyt responses, time-lapse 

images of cells were collected at 20X magnification for 9 minute periods of fluid flow 

stimulation. The Fluo-8 Ca
2+

 indicator was excited at 488nm, and fluorescence emissions were 

collected at 527nm. A Ca
2+

cyt transient was defined by an increase Fluo-8 intensity at least 4 

times the magnitude of noise prior to flow onset
55

. 

To simultaneously monitor Ca
2+

cyt and Ca
2+

ER, single cells expressing Fura Red and the 

D1ER FRET sensor were identified at 60X magnification. Single excitation (430nm) was used to 

excite the dye and FRET biosensor, and fluorescence emissions of YFP, CFP, and Fura Red 

(641nm) were captured separately and simultaneously. Images were acquired every 3 seconds. 

Ca
2+

cyt time-courses were extracted from the Fura Red image. Photobleaching was corrected in 

this channel using an exponential fit of the baseline Ca
2+

cyt levels. The FRET ratio was 

determined from registered FRET/donor emissions. Regions of interest were selected to capture 

Ca
2+

 micro-domains within the cell based on the location of the initiation of a Ca
2+

cyt response
95

. 

To investigate the relationship between Ca
2+

 activity in the cytosol and the ER, we defined a 

percentage synchrony as the number of coincident Ca
2+

cyt and Ca
2+

ER transients divided by the 

total number of transients (peaks and inverse peaks). Ca
2+

cyt peaks and decreases in Ca
2+

ER were 
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identified as transient responses (i.e. decrease and recovery) with a magnitude greater than four 

times the magnitude of the noise in the baseline images. 

 

2.2.6 Immuno-detection 

 For immunostaining, cells were rinsed in Dulbecco’s Phosphate Buffered Saline (DPBS, 

Gibco, Carlsbad, CA), fixed in 4% paraformaldehyde (Sigma Aldrich, St. Louis, MO) in DPBS, 

and permeabilized with 0.2% Triton
TM

 X-100 (Sigma-Aldrich, St. Louis, MO). Non-specific 

protein antibody interactions were blocked using 2.5% Normal Horse Serum for 30 minutes 

(Vector Laboratories, Burlingame, CA). A rabbit polyclonal antibody to IP3R (ab5804, Abcam, 

Cambridge, MA) and a goat polyclonal antibody to α1H subunits of T-Type VSCC (sc-16261, 

Santa Cruz Biotechnology, Dallas, TX). Cells were incubated overnight at 4°C with antibodies 

diluted in 1% Bovine Serum Albumin (BSA, Vector Laboratories). Detection was achieved using 

anti-rabbit IgG and anti-goat IgG secondary antibody solutions conjugated to Dylight 594 

(VectaFluor, Vector Laboratories). Following antibody incubations, the plasma membrane was 

labeled with 5 µg/ml Wheat Germ Agglutinin (WGA) AlexaFluor 488 conjugate (Invitrogen, 

Carlsbad, CA), which also stains the Golgi apparatus in permeabilized cells. Samples mounted 

with DAPI mounting medium (Vector Laboratories). Negative controls with no primary antibody 

were prepared to evaluate non-specific binding. We observed considerable non-specific staining 

in MLO-Y4 cells probed with the goat polyclonal antibody and isolated the calf serum used in 

cell culture as the primary contributor to this non-specific staining. Subsequently, cells were 

cultured for 48 hours prior to fixation in CS-free medium to eliminate this effect. Images were 

taken on a FV1000 confocal microscope (Olympus, Waltham, MA).  
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2.2.7 Proximity ligation assay 

 To evaluate a functional interaction between T-Type VSCC and the ER in osteocytes, we 

used a proximity ligation assay (PLA). In this assay, primary antibodies raised in two different 

species are bound by two different PLA probes against those species. Each PLA probe is a 

secondary antibody conjugated to a DNA strand. In close proximity (<40nm), the DNA strands 

from each probe can ligate, forming a closed-loop DNA oligonucleotide which exhibits 

fluorescence.  

 For this assay, we used the Duolink In Situ Red PLA kit recognizing goat and rabbit 

primary antibodies (Sigma Aldrich, St. Louis, MO) to detect interaction events between the T-

Type VSCC and IP3R on the ER, respectively. The assay was performed according to the 

manufacturer’s protocol. Blocking and primary antibody procedures were performed as in 2.2.7. 

Samples were incubated with the PLA probes for 1 hour at 37°C, washed in buffer, and treated 

with ligation solution for 30 minutes at 37°C. Cells were washed again and then exposed to an 

amplification-polymerase solution for 100 minutes at 37°C. Samples were mounted with DAPI 

mounting medium contained in the kit and imaged by confocal microscopy.  

 Controls were used to evaluate non-specific interaction events by also preparing samples 

without any primary antibody and with only one of each of the primary antibodies. For 

comparing the number of interaction events between the two cell types, an adjusted number of 

interaction events per cell was calculated by subtracting the average number of non-specific 

reactions per cell from the number of interaction events per cell for each sample. To facilitate the 

counting of interaction events, PLA images were thresholded in Image J (NIH, Bethesda, MD) 

such that interaction events appeared as black dots on a white background.  
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2.2.8 Data analysis 

The data presented herein analyzes only responsive cells, though responsive percentages 

were greater than 80% for all experiments, except for SKF-96365 and 2-ABP treatment, which 

reduced the number of responsive MLO-Y4 cells to ~60% and 50%, respectively in cell 

populations. A cell was defined as responsive if the magnitude of the first Ca
2+

cyt response was at 

least four times higher than fluctuations in intensity during baseline measurements. Student’s t-

tests were used to determine significant differences for the number of Ca
2+

cyt peaks at a specific 

experimental condition and for differences in mean interaction events between the two cell types. 

All data are shown as mean ± standard deviation. Multi-factorial analysis of variance (ANOVA) 

with Bonferroni’s post hoc analysis was performed to determine statistical differences between 

mean values of inhibitor treatments on the two cell types. Statistical significance can be observed 

when p<0.05.  

 

2.3 Results 

2.3.1 Effects of L- and T-Type VSCC inhibitors on bone cell Ca
2+

cyt responses to fluid flow 

Osteocytes (n=480 cells, 18 slides) exhibited numerous Ca
2+

cyt oscillations under fluid 

flow, and these multiple responses were significantly reduced by treatment with the T-type 

inhibitor NNC 55-0396 (n= 201 cells, 10 slides) (Figure 2.2A). The L-type inhibitor had no 

effect on the number of Ca
2+

cyt responses in osteocytes (n=187 cells, 8 slides). Osteoblasts were 

less responsive than osteocytes, exhibiting less than two Ca
2+

cyt peaks on average for all groups 

(n=237, 53, 79 cells; 8, 2, 3 slides for control, L- and T-Type inhibitors, respectively) (Figure 

2.2B).  
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2.3.2 Effects VSCC inhibitors on ER dynamics in bone cells 

The localization of the D1ER plasmid to the ER was verified by staining D1ER-

transfected osteocytes with ER Tracker Red (Figure 2.3). Transfected cells were imaged for 20 

minutes following the addition of thapsigargin to deplete the ER. Representative FRET ratios of 

a single osteocyte treated with thapsigargin is shown in Figure 2.4A.  

Though osteocytes express little to no L-Type VSCC, in an earlier study the inhibitor 

amlodipine influenced Ca
2+

 baseline levels in both cells types. Further study found that 

amlodipine is actually a non-specific VSCC inhibitor with an off-target effect of rapidly 

depleting the ER (Figure 2.5). We therefore confirmed that the VSCC inhibitors used in this 

study had minimal effect on ER depletion. 

The time to deplete the ER under the outlined conditions is shown in Figure 2.4. The 

scatter plots show representative depletion curves for MLO-Y4 cells (Figure 2.4B) and MC3T3-

E1 cells (Figure 2.4C). The small difference (3%) between untreated MLO-Y4 cells (n=14) and 

MC3T3-E1 cells (n=6) in the time to depletion did not reach significance. Similarly, the effect of 

VSCC inhibitors had on the time to depletion in osteoblasts was not significant (Figure 2.4C; 

n=5, 4 cells for L- and T-Type inhibition, respectively), and the L-Type VSCC inhibitor had no 

effect in osteocytes (Figure 2.4B, n=5 cells). Treatment of MLO-Y4 cells with the T-Type VSCC 

inhibitor prior to the addition of thapsigargin resulted in a significantly faster time to depletion 

compared to untreated controls (Figure 2.4B, n=6 cells). On average, it took ~300s longer for 

Ca
2+

ER levels to deplete in control cells than those with disrupted T-Type VSCC.  
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2.3.3 Simultaneous imaging of Ca
2+

cyt and Ca
2+

ER in bone cells under fluid flow 

To simultaneously image Ca
2+

cyt and Ca
2+

ER, bone cells were transfected with D1ER, 

stained with Fura Red-AM, and imaged using a quadview beamsplitter (Figure 2.6A). The FRET 

ratio was calculated from the FRET and donor images, and in some cells, a subregion 

corresponding to Ca
2+

cyt spike initiation was selected for analysis (Figure 2.6B). Representative 

time courses for MLO-Y4 and MC3T3-E1 cells under control (untreated), L-Type inhibitor 

treated, and T-Type inhibitor treated conditions is shown in Figure 2.7. In osteocytes, elevations 

of Ca
2+

cyt coincided with depression of Ca
2+

ER, with subsequent peaks occurring after recovery of 

Ca
2+

ER levels (n=10 cells). In osteoblasts, significantly fewer Ca
2+

cyt responses were observed, 

and while the ER contributed to these responses, a depression in Ca
2+

ER was often not recovered 

in the course of the experiment (n=11 cells). Treatment of either cell type with the L-Type VSCC 

inhibitor nifedipine had no detectable effect on the number of Ca
2+

cyt peaks (n=8 osteocytes, 5 

osteoblasts), and the T-Type VSCC inhibitor NNC 55-0396 had no detectable effect on 

responses in osteoblasts (n=6 cells). Treatment of MLO-Y4 cells with the T-Type VSCC 

inhibitor significantly reduced the number of Ca
2+

cyt responses (Figure 2.8A, n=9 cells). 

The percentage of synchronous responses was defined as the number of coincident Ca
2+

cyt 

and Ca
2+

ER transients divided by the total number of transients (peaks and inverse peaks). The 

synchronous response percentage was high in control osteocytes, with more than 80% of Ca
2+

cyt 

peaks corresponding to dynamic changes in Ca
2+

ER (Figure 2.8B). MC3T3-E1 cells exhibited few 

Ca
2+

cyt peaks in response to flow (Figure 2.8A), and more often than not those peaks were not 

synchronous with a transient drop in Ca
2+

ER (Figure 2.8B). Inhibition of T-Type VSCC 

significantly reduced the synchrony in osteocytes to similar levels observed in osteoblasts, with 

an average of ~20%.  
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2.3.4 Effects of SOCE inhibitors on osteocyte Ca
2+

cyt responses 

MLO-Y4 cells were subjected to fluid flow stimulation in the presence of three different 

SOCE-related inhibitors to inform the mechanism of Ca
2+

 exchange with the ER. These 

inhibitors were first used on osteocyte populations (YM58483: n=223 cells, 7 slides; SKF-

96365: n=231 cells, 4 slides; 2-APB: n=84 cells, 5 slides) to evaluate their effects on the 

percentage of responsive cells (Figure 2.9A) and the number of Ca
2+

cyt peaks (Figure 2.9B).  

Treatment of single osteocytes transfected with D1ER resulted in similar effects (Figure 

2.10). The number of Ca
2+

cyt peaks (Figure 2.10A) and the synchronous response percentage 

(Figure 2.10B) were determined for each group. YM58483 had no effect on Ca
2+

cyt responses in 

osteocytes (n=3 cells), and though SKF-96365 reduced the number of Ca
2+

cyt responses, the 

effect was not significant (n=4 cells). Neither treatment influenced synchrony. Treatment with 2-

APB significantly reduced the number of Ca
2+

cyt responses and the percent of synchronous 

responses (n=5 cells). Again, the effect on Ca
2+

cyt responses was consistent with Fluo-8 

experiments on larger cell populations. Representative curves of Ca
2+

cyt and Ca
2+

ER in MLO-Y4 

cells treated with these inhibitors showed high synchrony in YM58483 and SKF-96365 treated 

cells (Figure 2.10C,D), whereas 2-APB treatment resulted in no recovery of ER levels following 

a Ca
2+

cyt transient (Figure 2.10E).  

 

2.3.5 Interaction between T-Type VSCC and the ER 

 Immunostaining for T-Type VSCC revealed punctate staining in osteocytes, with some 

regions of dense staining along the border of the cell membrane (Figure 2.11). Staining for T-

Type VSCC in osteoblasts revealed weaker, more diffuse staining (Figure 2.12). Staining for 



27 

 

IP3R in osteocytes showed strong nuclear localization and striated patterns of staining 

throughout the cell (Figure 2.13). Osteoblasts exhibited similar IP3R staining patterns, though 

the striations were less pronounced (Figure 2.14). Specificity of staining was confirmed with 

negative controls for each antibody (Figure 2.15).  

 The PLA revealed a considerable number of interaction events between T-Type VSCC 

and IP3R in osteocytes (n=5, Figure 2.16), with some images showing over 100 interaction 

events for as few as 6 cells. Controls revealed only minor non-specific interactions. Far fewer 

interactions were detected in osteoblasts (n=3, Figure 2.17). Quantitative comparisons of 

adjusted interaction events between cell types revealed significantly greater proximity between 

T-Type VSCC and IP3R in osteocytes (Figure 2.18).  

 

2.4 Discussion 

The purpose of this study was to uncover mechanisms underlying the generation of 

Ca
2+

cyt oscillations in osteocytes. Previous studies have implicated the ER as an important source 

of Ca
2+

 for transient Ca
2+

 signals in osteocytes responding to mechanical stimuli, however to date 

no study has precisely identified the mechanisms by which the ER enables Ca
2+

cyt oscillations in 

osteocytes. This study represents the first attempt to visualize the dynamics of Ca
2+

 specifically 

in the ER in osteocytes. Using a FRET biosensor localized to the ER, we were able to 

simultaneously observe Ca
2+

 exchange between the ER and the cytosol. We found high 

synchrony between rises in Ca
2+

cyt and depressions in Ca
2+

ER, with subsequent Ca
2+

cyt responses 

occurring after a recovery of Ca
2+

ER levels, suggesting that ER dynamics dictate osteocyte Ca
2+

 

responses to fluid flow. Additionally, a major goal of this study was to link a phenotypic 

difference between osteocytes and osteoblasts in the expression of VSCC to the mechanobiology 
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of these cell types. Indeed, we found that challenging T-Type VSCC alters the kinetics of ER 

depletion in osteocytes and that the predominant expression of T-Type VSCC in osteocytes 

sustains Ca
2+

cyt oscillations by facilitating Ca
2+

cyt/Ca
2+

ER synchrony. Using inhibitors of various 

SOCE-related pathways, we determined that this exchange of Ca
2+

 between the cytosol and the 

ER is likely not a result of STIM proteins or transport of Ca
2+

 through CRACs, but rather 

through an interaction of the ER with T-Type channels on the osteocyte cell membrane.  

Previous studies detected little to no L-Type VSCC expression in MLO-Y4 osteocytes, 

but found detectable levels of T-Type VSCC
77

. Furthermore, a pattern of development suggested 

a loss of L-Type VSCC with the differentiation of osteoblasts to osteocytes. A later study 

confirmed this finding and additionally reported that T-Type channels mediated mechanically-

induced ATP release in osteocytes
78

. Most recently, a study in IDG-SW3 osteocytes found that 

parathyroid hormone treatment increased the expression of L-Type VSCC and decreased T-Type 

VSCC in osteocyte-stage cells to revert them to a less mature phenotype
96

. Our results are 

consistent with the role of VSCC in the differentiation of osteoblasts to osteocytes and 

additionally suggest the predominant expression of T-Type VSCC in osteocytes is important for 

their distinct role as mechanosensors. Indeed, T-Type VSCC have been shown to associate with 

integrins in a mechanoreceptor complex in osteocytes, lending credence to the role of these 

channels in osteocyte mechanobiology
97

. 

As previous studies resulted in similar effects of VSCC and ER antagonists on osteocyte 

Ca
2+

cyt responses, we sought to determine whether there was any interaction between T-Type 

VSCC and the ER in osteocytes. The time to depletion was very similar (within 3%) in untreated 

MLO-Y4 and MC3T3-E1, suggesting that ER release kinetics alone cannot account for the 

Ca
2+

cyt oscillation behavior in osteocytes. Treatment of MLO-Y4 with a T-Type VSCC inhibitor 
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prior to thapsigargin resulted in a significantly faster time to depletion compared to untreated 

controls. This suggests that the presence of T-Type VSCC may serve to refill ER stores in 

osteocytes, which may explain the ability of osteocytes to sustain Ca
2+

cyt oscillations.  

Though inhibitor studies challenging the ER allude to a mechanism involving Ca
2+

ER 

release and refilling in sustaining Ca
2+

cyt oscillations in osteocytes, these conclusions are 

speculative without the direct measurement of Ca
2+

ER dynamics under flow. This is also true for 

measurements of ER depletion, where only a single induction of Ca
2+

ER release is monitored. In 

this study, by simultaneously monitoring Ca
2+

 separately in the cytosol and ER in osteocytes, we 

found that most rises in Ca
2+

cyt were accompanied by a corresponding decrease and recovery in 

Ca
2+

ER. This supports the hypothesis that osteocytes are capable of generating Ca
2+

cyt oscillations 

by an ability to refill the ER stores. The effects of T-Type VSCC inhibition implicate T-Type 

channels in this process. 

Though the T-Type inhibitor had a large suppressive effect on Ca
2+

cyt/Ca
2+

ER synchrony 

in osteocytes, there are other possible mechanisms linking the exchange of Ca
2+

 between these 

two spaces. However, the lack of a pronounced suppression between control cells and those 

treated with YM58483 on the number of Ca
2+

cyt responses and the percentage of synchronous 

responses indicates that CRACs are not involved. While SKF-96365 treatment mildly decreased 

the number of responses, this reduction is likely due to reported off-target effects on VSCC
91

. 

The only inhibitor that produced similar effects as the T-Type antagonist was the IP3R inhibitor 

2-APB, which blocks IP3-mediated release of Ca
2+

 from the ER. Thus, the exchange of Ca
2+

 

between the cytosol and the ER is likely not a result of Ca
2+

 transport through CRAC or STIM1 

involvement, but rather through the IP3-mediated release of Ca
2+

ER.  
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The results of the proximity ligation assay further support the hypothesis that T-Type 

VSCC interact with the ER to facilitate IP3-mediated Ca
2+

ER release. Immunostaining for T-Type 

VSCC revealed strong presence of this channel in osteocytes and weaker staining in osteoblasts, 

consistent with prior work from our laboratory
98

. IP3R staining patterns were similar between 

cell types, with striated staining throughout the cell and expression in the nucleus. The large 

number of interaction events between T-Type VSCC and IP3R in osteocytes is likely in part due 

to stronger presence of T-Type VSCC.  

There are a few limitations to the current study. First, the small sample sizes, though 

consistent with our experiments on large cell populations, mean our study was only designed to 

detect relatively large effects of the investigated treatments. Future studies looking for more 

subtle differences will require a larger sample size. In addition, our conclusions are drawn from 

experiments using small molecule inhibitors, which often have incomplete or off-target effects. 

Thus, future studies could be aimed at genetic modifications of cells to alter the expression of 

VSCC to investigate their role in osteocyte Ca
2+

 signaling. The average synchrony in osteoblasts 

was also approximately 20%, though standard deviations were somewhat high due to the limited 

number of responses. As all T-Type treated MC3T3-E1 cells analyzed in this study had only one 

response with no coincident inverse response from the ER, the synchrony in the T-Type treated 

osteoblasts was zero, though this value was still not statistically different from MC3T3-E1 

untreated controls. Although the present study indicates that the first Ca
2+

cyt response in both 

cells can have some contribution of the ER, it is known that extracellular Ca
2+

 is also required, 

thus this effect is likely due to differences between the first and subsequent Ca
2+

cyt transients in 

these cells. Future work could explore these differences. Finally, the aim of the proximity 

ligation assay was to evaluate a functional interaction between T-Type VSCC and the ER. IP3R 
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were targeted due to the numerous pathway studies indicating their importance in regulating Ca
2+

 

release from the ER in osteocytes; however, strong staining was also observed in the nucleus. 

The lack of nuclear expression of T-Type VSCC and range of the assay suggests that any 

interaction events detected here indeed represent proximity between T-Type VSCC on the 

plasma membrane and IP3R on the ER, but future studies could aim to clarify the cellular 

localization of these structures. Furthermore, whether the differences in interactions between 

cells is simply a result of the abundance of T-Type VSCC in osteocytes remains unclear, but 

could be explore in future work by overexpressing T-Type VSCC in osteoblasts. 

 

2.5 Conclusions 

The sustainment of robust oscillations in Ca
2+

cyt under mechanical loading is a hallmark 

of osteocytes both in vitro and ex vivo, thus the primary goal of this study was to uncover the 

mechanism by which osteocytes rely on specific subcellular stores of Ca
2+

 to generate these 

multiple responses. By observing Ca
2+

 dynamics in both cytosolic and ER spaces, this study 

demonstrated that osteocytes generate multiple responses through an ability to refill ER stores. 

Our data suggests that T-type VSCC facilitate the recovery of Ca
2+

ER through a functional 

interaction in osteocytes to permit this behavior. We uncovered a new mechanism involving T-

type VSCC underlying the unique behavior of osteocytes as mechanosensors.  
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2.6 Figures 

 

Figure 2.1. Pathways involved in intracellular Ca
2+

 signaling in osteocytes. Both the 

extracellular reservoir and intracellular storage organelles contribute to Ca
2+

 signaling in 

osteocytes. Channels along the cell membrane facilitate Ca
2+

 transport from these spaces. 

Purinergic receptors and T-Type VSCC are the most critical channels in osteocytes. Activation 

of purinergic signaling generates phospholipase C (PLC), which generates inositol triphosphate 

(IP3), which can bind to the IP3 receptors (IP3R) on the membrane of the endoplasmic reticulum 

(ER), resulting in Ca
2+

 release from the ER. Sarcoplasmic/endoplasmic reticulum Ca
2+

 ATP-ase 

(SERCA) pumps on the ER membrane serve to refill the ER with Ca
2+

 ions. Ca
2+

 from the 

extracellular environment can be transported directly through T-Type VSCC upon activation. 

Image adapted from Reference 67.  
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Figure 2.2. The effects of VSCC inhibitors on Ca
2+

cyt responses in osteocytes and 

osteoblasts. Representative images of Fluo-8 stained cells, Ca
2+

cyt time courses, and 

quantification of the number of Ca
2+

cyt peaks are shown for (A) MLO-Y4 and (B) MC3T3-E1 

cells treated with the L-Type inhibitor nifedipine or the T-Type inhibitor NNC 55-0396 prior to 

exposure to fluid flow. Ca
2+

cyt transients are shown as intensity changes of the fluorescent 

indicator Fluo-8 normalized to intensity at baseline prior to fluid flow exposure. Error bars are 

standard deviations. *p<0.05 compared to controls within each group. 
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Figure 2.3. Localization of D1ER to the ER. Live, transfected cells were stained with (A) ER-

Tracker Red to show localization of the (B) D1ER plasmid (yellow = FRET) to the ER. This 

image is a representative osteocyte.  
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Figure 2.4. The effects of VSCC inhibitors on Ca
2+

 dynamics in the ER. (A) Thapsigargin 

was used to induce depletion of the ER over the time course of the experiment. The FRET ratio 

was calculated by registering and dividing the FRET and donor images and calculating the ratio 
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within the cell. Depletion was determined by a reduction in the normalized FRET ratio to below 

0.8. (B) Untreated MLO-Y4 exhibited similar depletion characteristics as those treated with an 

L-Type inhibitor. Treatment with the T-Type inhibitor resulted in significantly faster depletion, 

quantified in the bar graph. (C) In MC3T3-E1, no differences were detected in the depletion 

times among all groups. Error bars are standard deviations. Significance was assessed by one-

way ANOVA. *p<0.05 compared to control. 
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Figure 2.5. Effects of inhibitors alone on Ca
2+

ER levels. MLO-Y4 cells were imaged for 20 

minutes, and drug was added after 1 min. Drugs were used at the following concentrations: 

thapsigargin (1µM); amlodipine (10µM); nifedipine (10µM); NNC 55-0396 (20µM). Note the 

rapid depletion of the ER (ratio below 0.8) upon addition of amlodipine. No other drugs showed 

off-target effects. 
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Figure 2.6. Simultaneous measurement of Ca
2+

cyt and Ca
2+

ER dynamics. To simultaneously 

monitor Ca
2+

 in the cytosol and the ER, cells were transfected with D1ER and stained with the 

red-shifted fluorescent Ca
2+

cyt indicator Fura Red-AM. Single cells at 60X were imaged using a 

quadview beamsplitter with single excitation of both indicators to achieve simultaneous, real-

time measurements of Ca
2+

cyt and Ca
2+

ER. A representative image is shown in (A). The FRET 

ratio was calculated from the FRET and donor images, and (B) shows the selection of a 

subregion to determine the changes in Ca
2+

ER microdomains corresponding to Ca
2+

cyt spike 

initiation. 
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Figure 2.7. The effects of VSCC inhibitor treatment on Ca
2+

cyt responses and Ca
2+

cyt/Ca
2+

ER 

synchrony in MLO-Y4 osteocytes and MC3T3-E1 osteoblasts. Representative time courses 

from MLO-Y4 and MC3T3-E1 cells imaged at 60X magnification under fluid flow exposure in 

the presence or absence of L- and T-Type VSCC inhibitors. Flow was started after the collection 

of 60s baseline. Detected peaks and valleys are indicated by “+”.  
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Figure 2.8. Quantification of the effects of VSCC inhibitors on the number of Ca
2+

cyt 

responses and Ca
2+

cyt/Ca
2+

ER synchrony in MLO-Y4 osteocytes and MC3T3-E1 osteoblasts. 

(A) The number of Ca
2+

cyt responses in untreated, L-Type inhibitor treated, and T-Type inhibitor 

treated bone cells. (B) The percentage of synchronous responses in MLO-Y4 and MC3T3-E1 

treated with VSCC inhibitors. The percentage of synchronous responses was defined as the 

number of coincident Ca
2+

cyt and Ca
2+

ER transients divided by the total number of transients 

(peaks and inverse peaks). Error bars are standard deviation. Significance was assessed by multi-

factorial ANOVA with Bonferroni’s post hoc analysis. *p<0.05 compared to control. 
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Figure 2.9. Inhibition of SOCE in MLO-Y4 cell populations. (A) Percentage of responsive 

cells and (B) number of Ca
2+

cyt peaks in control and treated groups. Error bars are standard 

deviations. *p<0.05 compared to control 
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Figure 2.10. Pharmacologic inhibition of SOCE in single MLO-Y4 osteocytes. (A) Number 

of Ca
2+

cyt peaks in control and inhibitor treated groups. (B) The percentage of synchronous 

responses in MLO-Y4 treated with SOCE inhibitors. Simultaneous measurement of Ca
2+

cyt and 

Ca
2+

ER in MLO-Y4 cells exposed to fluid shear pre-treated with (C) YM58483, (D) SKF-96365, 

and (E) 2-APB. Flow was started after the collection of 60s baseline. Detected peaks and valleys 

are indicated by “+”. Significance was assessed by one-way ANOVA. Error bars are standard 

deviations. *p<0.05, ***p<0.001 compared to control.  
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Figure 2.11. Immunostaining of T-Type VSCC in MLO-Y4 osteocytes. Representative 

images of osteocytes probed for T-Type VSCC (red) and counterstained with WGA (green) to 

indicate the plasma membrane and DAPI (blue) to indicate nuclei.  
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Figure 2.12. Immunostaining of T-Type VSCC in MC3T3-E1 osteoblasts. Representative 

images of osteoblasts probed for T-Type VSCC (red) and counterstained with WGA (green) to 

indicate the plasma membrane and DAPI (blue) to indicate nuclei.  
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Figure 2.13. Immunostaining of IP3R in MLO-Y4 osteocytes. Representative images of 

osteocytes probed for IP3R (red) and counterstained with WGA (green) to indicate the plasma 

membrane and DAPI (blue) to indicate nuclei.  
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Figure 2.14. Immunostaining of IP3R in MC3T3-E1 osteoblasts. Representative images of 

osteoblasts probed for IP3R (red) and counterstained with WGA (green) to indicate the plasma 

membrane and DAPI (blue) to indicate nuclei.  
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Figure 2.15. Positive and negative staining of T-Type VSCC and IP3R in bone cells. 

Representative images of cells stained with and without (negative) primary antibodies (1° Ab) 

for T-Type VSCC and IP3R.  

  



49 

 

 

Figure 2.16. Proximity ligation assay between T-Type VSCC and IP3R in MLO-Y4 

osteocytes. Representative images of interaction events (red dots) between anti-goat and anti-

rabbit PLA probes in fixed osteocytes. The top panel represents interaction events between 

probes targeting T-Type VSCC and IP3R antibodies raised in goat and rabbit, respectively. 

Nuclei are indicated by counterstaining with DAPI. Representative images are also shown for 
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controls with either antibody alone or absence of both primary antibodies (negative). The right 

column is a threshold image of the interaction events in red.  
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Figure 2.17. Proximity ligation assay between T-Type VSCC and IP3R in MC3T3-E1 

osteoblasts. Representative images of interaction events (red dots) between anti-goat and anti-

rabbit PLA probes in fixed osteoblasts. The top panel represents interaction events between 

probes targeting T-Type VSCC and IP3R antibodies raised in goat and rabbit, respectively. 

Nuclei are indicated by counterstaining with DAPI. Representative images are also shown for 
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controls with either antibody alone or absence of both primary antibodies (negative). The right 

column is a threshold image of the interaction events in red.  
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Figure 2.18. Comparison of PLA interaction events between T-Type VSCC and IP3R in 

osteocytes and osteoblasts. An adjusted number of PLA interaction events was determined for 

each cell type by counting the number of interaction events in samples probed for both 

antibodies, normalizing by the total number of cells, and subtracting an average number of non-

specific interactions per cell from the images with either antibody alone. Error bars are standard 

deviations.  Student’s t-test was used to determined differences between cell types. *p < 0.05 
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Chapter 3 

Actin cytoskeletal dynamics and Ca
2+

 signaling in osteocytes 

 

This thesis chapter, in part, is being prepared for submission as the manuscript:  

Genevieve N. Brown, Andrea E. Morrell, Samuel T. Robinson, Rachel L. Sattler, Andrew 

D. Baik, and X. Edward Guo. “Calcium-dependent contractility and vesicle release in 

osteocytes mediate bone mechanoadaptation.” Science, in preparation. 

 

3.1 Introduction 

Many in vitro studies have explored the role of subcellular organelles in contributing to 

the biochemical responses of osteocytes to mechanical stimulation. For instance, both the 

primary cilium
95

 and the endoplasmic reticulum (ER) have been demonstrated to contribute to 

Ca
2+

 signaling in osteocytes, and mechanosensitive channels within the cell membrane have also 

been shown to contribute to these responses
27

. Furthermore, subcellular structures influence the 

transmission of mechanical forces to cells from the extracellular environment. The cell 

cytoskeleton and its associated molecules relay this mechanical information to locations within 

the cell containing mechanosensitive proteins, such as the nucleus or the ER
99

. Thus, the 

cytoskeleton of osteocytes likely plays a critical role in flow-induced mechanosensing
100-102

.  

The actin cytoskeleton is very pronounced in osteocytes, with dense perinuclear actin 

networks and actin filaments extending along the entire length of osteocytes processes
103

. Actin 

filaments maintain cell shape, dendritic morphology, and support membrane tension in 

osteocytes as evidenced by studies using latrunculin B to depolymerize actin
103,104

. Indeed, the 

dramatic differences in cytoskeletal components between osteocytes and osteoblasts, particularly 
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in dendrites, suggest that actin may play a critical role in osteocyte mechanosensory function
104

. 

Furthermore, differences in osteocyte morphology in long bones compared with those that 

experience relatively mild mechanical environments
105

 suggests the importance of the cell 

cytoskeleton and conferred cell shape in bone adaptation.  

Many studies have explored the role of the actin cytoskeleton in bone cells exposed to 

loading
106

, with a particular focus on cytoskeletal rearrangement following fluid flow 

stimulation. Fluid flow induced stress fiber formation in osteoblasts and osteocytes, with 

differential effects of flow profile (unidirectional or oscillatory) and duration on the fiber 

arrangement
31

. Stress fiber formation in osteoblasts was dependent on Ca
2+

cyt signaling, as 

disruption of ER stores prevented flow-induced stress fiber formation, though stretch-activated 

Ca
2+

 channel (SACC) inhibition had no effect
107

. Cytoskeletal rearrangement in response to 

loading can even be observed in situ, where osteocyte cell bodies align along the principal 

loading direction
108

. 

Fewer studies have investigated the role of cytoskeletal deformation/dynamics in 

initiating the responses of bone cells to mechanical stimuli, though many studies have alluded to 

its importance. Spontaneous oscillations in Ca
2+

cyt in mesenchymal stem cells were found to be 

dependent on the small GTPase protein RhoA and Rho-associated protein kinase (ROCK) 

signaling, but not the cytoskeleton
109

. The expression of RhoA and ROCK in osteoprogenitors 

are modulated by fluid flow, and inhibition of ROCK was able to prevent flow-induced Runx2 

expression in these cells
100

. Furthermore, an intact actin cytoskeleton was necessary for this 

response, suggesting that cytoskeletal tension maintained by ROCK is necessary for flow-

induced osteogenic differentiation of mesenchymal stem cells
100

. Inhibition of actin was also 

found to decrease Ca
2+

cyt oscillation frequency in myofibroblasts
110

. In osteoblasts, fluid-shear 
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induced COX-2 expression was dependent on an intact actin cytoskeleton
111

, but PGE2 release 

and Ca
2+

cyt were actually increased by actin disruption
112

.  

In osteocytes, flow-induced PGE2 release was inhibited by actin disruption, supposedly 

through effects on SACC
102

. The actin cytoskeleton was also shown to be important in 

hypotonicity-induced Ca
2+

cyt rises in osteocytes
113

, which was previously demonstrated to depend 

on SACC
114

. In another study, cell strain was found to increase with increasing fluid shear stress 

over osteocytes, and this was correlated with increases in Ca
2+

cyt
115

. However, this study did not 

measure Ca
2+

 dynamics simultaneously with deformation and did not track the deformation of a 

specific cytoskeletal element. To date, no studies have investigated the role of the actin 

cytoskeleton in initiating Ca
2+

 responses in osteocytes under physiologic mechanical loads.  

Our laboratory developed a technique to observe the deformation of cytoskeletal 

elements in rounded osteocytes under fluid flow at high temporal resolution in both bottom- and 

side-view 
69

. Using this technique, we reconstruct a quasi-three-dimensional (quasi-3D) image of 

the cell under fluid flow. Traditional bottom-view imaging of osteocytes transfected with a 

fluorescent protein tagged to the actin cytoskeleton showed time-dependent deformation of the 

cytoskeleton under loading, with moderate creep and recovery of the actin cytoskeleton in the 

normal strain directions. The addition of side-view imaging revealed more pronounced 

cytoskeletal deformations and the observation of a shear strain. In a later study, the cortical actin 

network in osteocytes was found to be more responsive to oscillatory flow than microtubule 

networks when the temporal resolution was sufficient to probe subcellular responses within a 

single oscillation period
70

. Taken together, these studies suggest that actin dynamics are 

important for bone cell responses to mechanical loading, and thus likely influence Ca
2+

 signaling 

in these cells.  
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In addition, in unpublished work from laboratory, we discovered that the actin 

cytoskeleton compresses, or contracts, following a Ca
2+

cyt transient. This contraction was phasic, 

with strains in the cytoskeleton recovering to baseline levels in approximately the same period 

we observe between Ca
2+

cyt oscillations in osteocytes. Furthermore, we detected smooth muscle 

contraction-related proteins in osteocytes and found that inhibition of myosin light chain kinase 

(MLCK) by ML-7 significantly delayed the contraction, suggesting a smooth muscle mechanism 

underlying this contractility.  

For this study, we hypothesized that the actin cytoskeleton is tightly coupled to Ca
2+

 

signaling in osteocytes to effect a mechano-transduction-mechano process in which actin 

dynamics facilitate Ca
2+

 entry, and Ca
2+

cyt rises result in an actomyosin contraction. We first 

explored the role of actin dynamics in the generation of Ca
2+

cyt oscillations. Though previously 

examined, we also sought to verify that osteocytes exhibit this Ca
2+

cyt-dependent contractility in 

an alternative system. Micropillar substrates are commonly used to investigate cellular force 

generation and dynamic substrate interactions
116

,  so we next translated our Ca
2+

 signaling 

experiments to this experimental setup. To our knowledge, this is the first study to explore Ca
2+

-

dependent dynamics of cells on micropillars. Furthermore, since ML-7 only delayed contractions 

in our earlier quasi-3D work, we sought to identify an inhibitor of contractility that could be used 

in future work to delineate the roles of Ca
2+

cyt signaling and concomitant contractions in 

osteocyte responses to mechanical loading.  
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3.2 Methods 

3.2.1 Cell culture 

Osteocyte-like MLO-Y4 cells (a gift from Dr. Lynda Bonewald, University of Missouri-

Kansas City, Kansas City, MO) were cultured on 0.15 mg/ml collagen (rat tail type I, BD 

Biosciences, San Jose, CA) coated culture dishes in minimum essential alpha medium (α-MEM, 

Life Technologies, Carlsbad, CA) supplemented with 5% fetal bovine serum (FBS, Hyclone 

Laboratories Inc., Logan, UT) and 5% calf serum (CS, Life Technologies, Carlsbad, CA). Cells 

were maintained at 5% CO2 and 37°C in a humidified incubator. MLO-Y4 cells were sub-

cultured prior to reaching 70-80% confluence in order to maintain an osteocyte-like phenotype. 

 

3.2.2 Inhibitors 

 Cytochalasin D (CytoD) prevents actin polymerization
117

 and was used in this study to 

explore the role of actin dynamics on the generation of Ca
2+

cyt signals in osteocytes (3µM in 

DMSO, Sigma Aldrich, St. Louis, MO). Thapsigargin is an inhibitor of the Ca
2+

-ATPase pump 

on the ER (SERCA) which facilitates the reuptake of Ca
2+

 into the ER, and thapsigargin 

treatment (1µM) thereby results in ER depletion (Sigma Aldrich). Cells were treated for 15 

minutes prior to assembly in the flow chamber, for an additional 15 minutes prior to flow onset, 

and throughout the experiment. Jasplakinolide is an F-actin stabilizing agent that has been used 

both in vitro and in vivo to disrupt cortical actin networks
118-121

. It was used in this study (1µM in 

DMSO) to evaluate its potential as an inhibitor of Ca
2+

cyt-dependent contractility. Cells prepared 

for quasi-3D studies were assembled into flow chambers with drug-containing medium and 

incubated with the drug for 15 minutes prior to flow exposure.  
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3.2.3 Ca
2+

cyt indicators and cell transfections 

To observe Ca
2+

cyt changes only, MLO-Y4 were stained with Fluo-8 AM (AAT Bioquest, 

Sunnyvale, CA) dissolved in 20% Pluronic F-127 in DMSO (Invitrogen, Carlsbad, CA). To 

visualize the actin cytoskeleton, cells were transiently transfected with a LifeAct-GFP plasmid 

using standard non-liposomal techniques (Fugene 6, Promega Corporation, Madison, WI). To 

simultaneously visualize the actin cytoskeleton and measure Ca
2+

cyt, cells were dual-transfected 

with a LifeAct-mkate2 plasmid and a cameleon Ca
2+

 fluorescence resonance energy transfer 

(FRET) sensor
84,122

. 

 

3.2.4 Fluid flow stimulation on osteocyte populations 

Prior to staining with Fluo-8, cells were plated onto 10µg/mL fibronectin-coated glass 

slides at ~80% confluency to establish cell-cell contact. Slides were then stained and assembled 

into a custom parallel-plate flow chamber with a glass bottom that permits live cell imaging 

under fluid shear stimulation. The chamber was placed on the stage of an inverted microscope 

(Olympus, Waltham, MA) and attached to a magnetic gear pump (Scilog, Madison, WI) for the 

application of steady, laminar, unidirectional flow at a shear stress of 35 dynes/cm
2
. Baseline 

fluorescence intensity was captured for 1 minute prior to fluid shear stimulation for 9 minutes. 

 

3.2.5 Micropillar fabrication and cell stimulation 

Micropillars were fabricated from PDMS with 1µm diameter and 7µm height according 

to previously published methods
116,123

. PDMS micropillars were demolded in isopropanol and 
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then gradually switched to PBS to prevent dehydration and collapse. Pillars were coated with 10 

µg/ml rhodamine fibronectin (Cytoskeleton, Inc., Denver, CO) overnight at 4°C.  

To evaluate actin morphology in osteocytes seeded onto the pillars, LifeAct-GFP 

transfected MLO-Y4 cells were seeded onto fibronectin-coated micropillars for 30 minutes prior 

to imaging.  

To simultaneously image pillars and Ca
2+

cyt dynamics, pillars were rinsed gently in PBS, 

and MLO-Y4 cells were seeded onto the pillars in Fluo-8 staining solution with reduced-serum 

medium (2.5% CS, 2.5% FBS in αMEM). After 30 minutes, cells were rinsed gently with 

reduced serum medium and then set up for imaging. Ca
2+

 was elevated by chemical induction 

using 50µM ATP (Sigma Aldrich, St. Louis, MO) or 5µM ionomycin (Sigma Aldrich) infused 

gently into the dish with a syringe.  

 

3.2.6 Single cell quasi-3D microscopy 

For quasi-3D studies, cells were plated onto fibronectin-coated glass microslides 

fabricated by laser-cutting glass coverslips and inserted into a square glass flow chamber 

(Vitrocom, Mountain Lakes, NJ) mounted on a microscope stage. Bottom- and side-view images 

of single cells were collected simultaneously by acquiring images from an inverted microscope 

(Olympus, Waltham, MA) and a 45° mirror (Red Optronics, Mountain View, CA) in the light 

path of an upright microscope (Olympus, Waltham, MA), respectively. Steady, laminar, 

unidirectional flow at a shear stress of 20 dynes/cm
2 

was applied by a syringe pump (Kent 

Scientific, Torrington, CT). Baseline fluorescence intensities were captured for 5 seconds prior 

to fluid shear stimulation for an additional 55s. 
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3.2.7 Imaging and image analysis 

To monitor the effects of CytoD on Ca
2+

cyt responses, time-lapse images of cells were 

collected at 20X magnification for 9 minute periods of fluid flow stimulation. The Fluo-8 Ca
2+

 

indicator was excited at 488nm, and fluorescence emissions were collected at 527nm. A Ca
2+

cyt 

transient was defined by an increase Fluo-8 intensity at least 4 times the magnitude of noise prior 

to flow onset
55

. 

Separate images of Fluo-8 stained MLO-Y4 cells and rhodamine-fibronectin micropillars 

were captured every 10 seconds on an inverted microscope with a stage warmer at 100X using an 

oil objective. Baseline images were collected for 60 seconds prior to the addition of medium or 

agonists.  

The actin probe and FRET biosensor were excited simultaneously by a custom triple 

exciter (Chroma, Bellows Falls, VT) capable of 430nm and 570nm excitations on a Lambda DG-

4 xenon lamp (Sutter Instruments, Novato, CA), and fluorescence emissions of YFP (530nm), 

CFP (470nm), and mkate2 (641nm) were captured simultaneously using a quadview beamsplitter 

(Photometrics, Tucson, AZ) and custom quad-band polychroic (Chroma)
69

. Stage movement was 

corrected for using cross-correlation based image registration of the first frame with remaining 

frames in the image stack. The FRET ratio was calculated on a pixel-by-pixel basis using image 

registration of the FRET and donor emissions to obtain relative Ca
2+

cyt levels. Whole-cell strains 

in the actin cytoskeleton were determined by digital image correlation of the fluorescent F-actin 

image according to previously described methods
69,70

.  
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3.2.8 Pillar deflection 

 Images were first registered using cross-correlation to account for stage movement during 

acquisition. Uneven illumination intensity was adjusted by subtracting a heavily blurred image 

from the original, and adaptive filtering was used to smooth the pillar boundaries. Pillar 

displacements were then analyzed from these processed images by tracking pillar positions in 

image stacks using the “Tracking Objects” feature in MetaMorph (Molecular Devices, 

Sunnyvale, CA). A threshold-based tracking algorithm was used to determine the location of 

pillar centroids in each image of the stack. Maximum displacements following the addition of 

medium with or without Ca
2+

 agonists were recorded for 7 pillars under the cell periphery and 7 

static pillars away from the cell for each image.  

 

3.3 Results 

3.3.1 CytoD impairs Ca
2+

cyt responses in osteocytes 

We first sought to determine whether dynamics of the actin cytoskeleton were critical to 

the generation of Ca
2+

cyt responses by treating MLO-Y4 cells with 3µM CytoD to disrupt actin 

polymerization prior to fluid flow. Actin inhibition significantly reduced both the number of 

flow-induced Ca
2+

cyt spikes and the peak magnitude of Ca
2+

cyt spikes, but it did not abolish the 

ability of cells to generate multiple responses (control: n=88 cells, 82% responsive; cytoD: n=70 

cells, 39% responsive; Figure 3.1). We hypothesized that the remaining responses could be due 

to the release of Ca
2+

 from ER stores, which may or may not be disrupted with actin inhibition. 

Indeed, treatment of cells with both CytoD and thapsigargin completely abolished the multiple 

responses (n=19 cells, 5% responsive). 
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3.3.2 Chemically-induced Ca
2+

-dependent contractions of osteocytes on micropillar substrates 

By controlling the plating time, osteocytes were found to exhibit cortical actin 

arrangement on micropillars (Figure 3.2A), recapitulating the morphology preserved in quasi-

3D. We seeded Fluo-8 stained MLO-Y4 cells on rhodamine-fibronectin coated micropillars, and 

chemical induction was used to elevate Ca
2+

cyt levels by adding Ca
2+

 agonists in solution and 

focusing on the pillar heads during image acquisition. Pillar positions were tracked over time to 

determine displacements following Ca
2+

 induction (Figure 3.3). Addition of media alone (n=2, 

Figure 3.4) had no effect on pillar displacements. Following addition of 5µM ionomycin (n=3, 

Figure 3.5) or 50µM ATP (n=3, Figure 3.6), Ca
2+

cyt was elevated, and pillars near the periphery 

of the cell deflected further inward, suggesting a contraction. Particle tracking using a threshold-

based algorithm demonstrated that the maximum displacement of pillars below an osteocyte was 

significantly higher than static pillars away from the cell in both agonist conditions.  

 

3.3.3 Inhibition of actomyosin contractility by jasplakinolide 

 As in our previous work, fluid shear in cells imaged by quasi-3D microscopy (Figure 3.7) 

induced Ca
2+

cyt transients which were often coupled to compressions in the Ezz strain (n=5 cells, 

Figure 3.8). We next explored whether the actin stabilizing agent jasplakinolide could permit 

Ca
2+

cyt responses in cells but inhibit actomyosin contractions. Cells treated with 1µM 

jasplakinolide were capable of generating Ca
2+

cyt transients, but decreases in Ezz strains were not 

observed (n=2 cells, Figure 3.9). 
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3.4 Discussion 

We have shown now in two separate experimental systems that osteocytes exhibit 

contractions following Ca
2+

cyt induction. Quasi-3D studies confirmed that rises in Ca
2+

cyt occur 

with decreases in Ezz strain in actin networks, and inward deflection of pillars following a rise in 

Ca
2+

cyt levels suggest contractile behavior. Though the micropillar studies cannot confirm that 

this is an actomyosin contraction, the cortical actin arrangement of cells plated on the pillars 

corroborates this hypothesis. Furthermore, we now have evidence that an actin stabilizing 

compound can prevent these contractions in quasi-3D. Though preliminary, these results are 

encouraging. We have yet to determine a function for actomyosin contractility in osteocytes, 

though in other cells, Ca
2+

 oscillations and corresponding actin dynamics facilitate exocytosis of 

important chemical signals
124,125

. Indeed, jasplakinolide has been used both in vitro and in vivo to 

prevent exocytosis. These results suggest it is a promising agent for future studies aimed at 

delineating the roles of Ca
2+

 oscillations and contractility in downstream osteocyte functions.  

We have previously reported the development of viscoelastic strains in cytoskeletal 

networks of osteocytes under fluid shear stimulation and have shown that tensile strains occur 

prior to calcium spike initiation (unpublished work). This study demonstrates that actin dynamics 

are important for osteocyte Ca
2+

cyt oscillations, but other mechanisms of Ca
2+

 mobilization, such 

as release from ER stores, can still enable Ca
2+

 transients in the absence of actin polymerization 

or in the presence of actin stabilization. Whether actin dynamics interfere with Ca
2+

ER release is 

unclear from this study. Alteration in the expression of actin-associating proteins has been shown 

to accompany the differentiation of osteoblasts to osteocytes
104,126

. For instance, osteocytes 

express much more villin than osteoblasts, and its expression is primarily contained within the 

cell body
126

. Furthermore, previous studies have shown that the activity of phospholipase C 
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(PLC), which generates IP3 to release Ca
2+

 from ER stores, is regulated by villin
127

. Thus, it is 

plausible for actin dynamics to be coupled to the ER in osteocytes, and future studies 

simultaneously measuring Ca
2+

ER and actin dynamics, as in using the D1ER FRET sensor, could 

help elucidate this mechanism.  

A major limitation to these studies is the small sample sizes, partially because these 

measurements are made on single cells. Methods of extrapolating these results to population 

studies would prove valuable. For instance, though our preliminary data and the work of 

others
125

 suggests that Ca
2+

 signals are not impaired by jasplakinolide treatment, the drug should 

be evaluated on cell populations exposed to flow, as in the CytoD treatment. Conversely, the role 

of actin dynamics in Ca
2+

cyt spike initiation could be more thoroughly explored in quasi-3D, 

where the temporal resolution may unveil interesting differences in the time it takes for Ca
2+

 

signals to initiate when actin dynamics are impaired.  

 

3.5 Conclusions 

 We demonstrated that the prominent actin cytoskeleton in osteocytes is indeed involved 

in biochemical responses of these cells. We confirmed that osteocytes exhibit a mechano-

transduction-mechano process in which actin dynamics facilitate Ca
2+

 entry, and Ca
2+

cyt rises 

result in actomyosin contractions. Future work exploring the mechanisms involved in actin-

mediated responses to load may improve our understanding of mechanosensation and 

mechanotransduction in bone. 
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3.6 Figures 

 

Figure 3.1. Effects of cytoskeletal disruption on Ca
2+

cyt oscillations in osteocytes. (A) A dose 

study demonstrated that cells exposed to varying concentrations of CytoD could still respond to 

Ca
2+

 elevations by ionomycin. (B) Representative traces of Ca
2+

cyt transients in untreated 

osteocytes and cells treated with CytoD or CytoD and thapsigargin. (C) Percentage of responsive 
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cells under each condition. (D) Number of Ca
2+

cyt peaks under each condition. Error bars are 

standard deviations. *p<0.05 compared to untreated cells 
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Figure 3.2.  MLO-Y4 osteocytes on PDMS micropillars. (A) Cortical actin morphology of 

MLO-Y4 osteocytes seeded onto micropillars. (B) Micropillars coated with rhodamine 

fibronectin and (C) seeded MLO-Y4 stained with the Ca
2+

cyt indicator Fluo-8. 
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Figure 3.3. Particle tracking to determine pillar displacements. (A) Representative image of 

particle tracking in image stacks from experiments using Fluo-8 stained MLO-Y4 cells seeded 

onto fluorescent micropillars. For each image, the positions of 7 pillars at the cell periphery and 

7 pillars away from the cell were tracked over time, and maximum displacements following 

Ca
2+

cyt induction were calculated from the pillar position data. (B) Tracking of static pillars away 

from the cell. (C) Tracking of pillars beneath the cell periphery. Lines indicate positions over the 

entire imaging period.  

  



70 

 

 

Figure 3.4. Effects of addition of vehicle (media alone) on Ca
2+

 responses and pillar 

displacements. (A) Representative osteocyte stained with Fluo-8. (B) Rhodamine micropillars 

beneath the cell. (C) Time course of Fluo-8 intensity. (D) Maximum displacement following the 

addition of vehicle of pillars under the cell periphery and static pillars away from the cell. A 

Student’s t-test was used to determine differences between groups.  
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Figure 3.5. Effects of addition of ionomycin on Ca
2+

 responses and pillar displacements. (A) 

Representative osteocyte stained with Fluo-8. (B) Rhodamine micropillars beneath the cell. (C) 

Time course of Fluo-8 intensity. (D) Maximum displacement following the addition of 

ionomycin of pillars under the cell periphery and static pillars away from the cell. A Student’s t-

test was used to determine differences between groups. *p<0.05 
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Figure 3.6. Effects of addition of ATP on Ca
2+

 responses and pillar displacements. (A) 

Representative osteocyte stained with Fluo-8. (B) Rhodamine micropillars beneath the cell. (C) 

Time course of Fluo-8 intensity. (D) Maximum displacement following the addition of ATP of 

pillars under the cell periphery and static pillars away from the cell. A Student’s t-test was used 

to determine differences between groups. *p<0.05 
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Figure 3.7. Quasi-3D microscopy. Single osteocytes with rounded morphology are imaged in a 

square glass flow chamber at 60X. Dual-excitation and a custom quadview emission filter allow 

for simultaneous collection of three fluorescence channels: YFP and CFP of the FRET sensor 

and mkate2. An inverted microscope provides a traditional bottom-view image. A 45° mirror in 

the light path directs emissions to an upright microscope to also provide a side-view image.  
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Figure 3.8. Ca
2+

cyt responses and Ezz strain measurements in osteocytes exposed to steady 

fluid shear. Ca
2+

cyt transients are displayed as solid lines, while Ezz strains are shown as dotted 

lines. Flow was started at 5 seconds.  
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Figure 3.9. Ca
2+

cyt responses and Ezz strain measurements in osteocytes exposed to steady 

fluid shear following pre-treatment with jasplakinolide. Ca
2+

cyt transients are displayed as 

solid lines, while Ezz strains are shown as dotted lines. Cells were treated for 15 minutes prior to 

flow with 1µM jasplakinolide, and the drug was included in the flow medium. Flow was started 

at 5 seconds. 
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Chapter 4 

Mechanically-Induced Calcium Oscillations in Osteocytes Facilitate the Release of 

Extracellular Vesicles Containing Proteins Involved in Bone Adaptation 

 

This thesis chapter, in part, is being prepared for submission as the manuscript:  

Genevieve N. Brown, Andrea E. Morrell, Samuel T. Robinson, Rachel L. Sattler, Andrew 

D. Baik, and X. Edward Guo. “Calcium-dependent contractility and vesicle release in 

osteocytes mediate bone mechanoadaptation.” Science, in preparation. 

 

4.1 Introduction 

Osteocytes are the most abundant bone cells, making up more than 90% of the cell 

population buried in the bone matrix. They are highly dendritic cells, interconnected by cellular 

processes emanating from cell bodies through an extensive network called the lacunocanalicular 

system (LCS)
128-130

. In this respect, osteocytes form cellular networks that are ideally situated to 

sense and respond to mechanical events that arise from physiological loading conditions
20,22,131-

136
. Studies have demonstrated that the loss of osteocytes alone by targeted ablation will induce 

osteoporosis
37

. Interestingly, these transgenic mice with ablated osteocytes were also resistant to 

unloading-induced bone loss, and numerous studies have demonstrated osteocytes can 

orchestrate bone turnover in response to changing mechanical demands
14,15

, illustrating their 

critical role in detecting mechanical signals and maintaining skeletal integrity.  

Mechanotransduction refers to the conversion of a physical stimulus, such as applied 

load, to a biochemical response
137

. Over time, these biochemical responses act on osteoblasts, 

osteoclasts, and other supporting cell types to modulate the tissue composition and architecture, 
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resulting in adaptation of the whole bone. In health, these processes are coordinated to maintain 

tissue homeostasis. In disease, alterations in these biochemical responses and/or reduction in 

sensitivity to the applied forces may lead to the overall pathologies that present at the tissue 

level. Thus, there is considerable motivation to reveal mechanisms of mechanosensation and 

mechanotransduction in order to more effectively understand bone adaptation in health and 

disease. 

The most promising osteoporosis treatments are in fact targeted at osteocyte biology
138

. 

Osteocytes are the primary source of RANKL
38,39,139

, which stimulates bone resorption, and 

sclerostin
140,141

, which inhibits bone formation. The anti-RANKL antibody denosumab and anti-

sclerostin antibody romosozumab have both shown osteoanabolic effects in the clinic and in 

clinical trials
142,143

, respectively. However, prolonged inhibition of RANKL signaling disrupts 

routine remodeling of the skeleton, and the anabolic effects of anti-sclerostin antibody attenuate 

with repeated administration
142-145

. An underlying factor may be the desensitization of 

mechanotransduction
146

, warranting further study of osteocyte modulation of these key drug-

targeted proteins. Previous studies have shown mechanical loading downregulates (and 

unloading upregulates) gene and protein expression of sclerostin both in vivo and in vitro
75

. 

However, recent studies indicate that sclerostin knockout mice still respond to anabolic loading 

in vivo
42

, and wild-type animals treated with anti-sclerostin antibody can still sense disuse 

environments
43,75

. Studies of the regulation of RANKL and its decoy receptor OPG by loading 

have also produced conflicting results, though most suggest that anabolic levels of fluid shear 

reduce RANKL/OPG gene expression
33,34,75,147-149

. Notably, few studies have examined protein 

production of RANKL or OPG, and no in vivo experiments have examined gene or protein 
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changes of RANKL or OPG under physiological mechanical loads, only overloading or 

unloading
150-152

.  

The sustainment of robust oscillations in Ca
2+

 is a hallmark of osteocytes responding to 

mechanical stimuli
59-63,65,68,153,154

. Ca
2+

 signaling can regulate many cellular functions, including 

gene and protein expression, but no studies have explored the role of osteocyte Ca
2+

 signaling in 

the regulation of RANKL, OPG or sclerostin expression over time. To our knowledge, only two 

studies have even linked Ca
2+

 signaling in bone cells to protein responses. In a study on 

osteoblasts, fluid flow was shown to induce actin stress fiber formation and the production of 

COX-2
107

. Pre-treatment of cells with the intracellular Ca
2+

 chelator BAPTA-AM prior to flow 

abolished these responses. In another study, treatment of osteoblasts with thapsigargin prevented 

flow-induced upregulation of osteopontin
155

. However, to date no studies have investigated the 

role of osteocyte Ca
2+

 oscillations in protein modulation by mechanical loading. 

Furthermore, though the actin cytoskeleton has been implicated in mechanically-induced 

protein responses in osteocytes
27,101,102,106,111

, no studies have connected Ca
2+

-dependent actin 

dynamics to osteocyte signal transduction. In myofibroblasts, spontaneous Ca
2+

 oscillations and 

Ca
2+

-dependent contractions are critical for cellular communication in remodeling tissue
156

, 

though this study focused on force communication rather than biochemical signaling.  

Recently, vesicle release has been highlighted as an important means of intercellular 

communication
157,158

, where cells package proteins and mRNAs in membrane-enclosed 

extracellular vesicles (EVs) to shuttle their contents among one another
158,159

. Actomyosin 

contractility has been shown to facilitate EV release in endothelial cells
124

, and actin/Ca
2+

 

oscillations are coupled to vesicle secretion in mast cells
125

. Interestingly, vesicle-like structures 

have been detected in osteocyte networks in situ
71

, and osteocyte-like cells were found to 
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produce EVs enriched in proteins related to bone adaptation, including RANKL and sclerostin
72

. 

It is still unknown how osteocytes send biochemical signals from within the bone matrix to cells 

on the bone surface, and microvesicle trafficking could be an explanation.  

The overall purpose of this study is to demonstrate the importance of the unique Ca
2+

cyt 

oscillations in osteocytes in their role as coordinators of bone adaptation. We hypothesize that 

load-induced Ca
2+

cyt oscillations facilitate the production and release of EVs containing proteins 

involved in bone adaptation and posit this as a means by which osteocytes coordinate bone 

responses to mechanical loading.  

 

4.2 Methods 

4.2.1 Cell culture 

Osteocyte-like MLO-Y4 cells (a gift from Dr. Lynda Bonewald, University of Missouri-

Kansas City, Kansas City, MO) were cultured on 0.15 mg/ml collagen (rat tail type I, BD 

Biosciences, San Jose, CA) coated culture dishes in minimum essential alpha medium (α-MEM, 

Life Technologies, Carlsbad, CA) supplemented with 5% fetal bovine serum (FBS, Hyclone 

Laboratories Inc., Logan, UT) and 5% calf serum (CS, Life Technologies, Carlsbad, CA). Cells 

were maintained at 5% CO2 and 37°C in a humidified incubator. MLO-Y4 cells were sub-

cultured prior to reaching 70-80% confluence in order to maintain an osteocyte-like phenotype. 

Cells were plated onto 10µg/ml fibronectin (Corning, Corning, NY) coated large (38 x 

75mm) glass slides at a density of 30x10
4
 cells/slide and cultured for 36 hours. Prior to fluid 

shear exposure, MLO-Y4 cells were rinsed 3 times for 5 minutes each in phosphate buffered 

saline (PBS, Gibco, ThermoFisher Scientific, Waltham, MA) and pre-incubated with minimum 

essential medium alpha supplemented with exosome-depleted fetal bovine serum (System 
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Biosciences, Palo Alto, CA) to remove contaminating bovine exosomes. Exosome-depleted 

serum had no effect on the ability of cells to exhibit Ca
2+

cyt responses (Figure 4.1). 

 

4.2.2 Fluid shear stimulation 

Cells were assembled into a custom parallel-plate flow chamber. Fluid shear was applied 

at 35 dynes/cm
2
 for two 10-minute bouts of steady flow separated by a 15 minute rest period, 

which has been shown to induce Ca
2+

 oscillations in earlier studies
65

. Flow was driven by a 

magnetic gear pump (Ismatec, Cole-Parmer, Vernon Hills, IL). To inhibit Ca
2+

 oscillations, cells 

were pre-treated for 30 mins prior to flow onset with 15mM neomycin (Sigma Aldrich, St. Louis, 

MO), which has been shown in earlier studies of micropatterned cells to reduce the number of 

Ca
2+

 transients to a single response. This experimental design is summarized in Figure 4.2.  

 

4.2.3 Isolation and characterization of extracellular vesicles 

Conditioned medium from flow experiments was collected immediately after 

experiments and frozen at -20°C prior to analysis. Exosomes were purified from conditioned 

medium by differential ultracentrifugation
160

 on a Beckman L8-M ultracentrifuge (Beckman 

Coulter, Brea, CA) with a 50.2 Ti fixed-angle rotor (Figure 4.3). Conditioned medium samples 

were centrifuged at 2000 x g to pellet dead cells, and the supernatants were transferred to 

polycarbonate ultracentrifuge tubes (Beckman Coulter). Samples were massed to within 0.02 g to 

ensure balance. First, samples were centrifuged at 10,000 x g for 30 minutes to remove any cell 

debris. Supernatants were further spun at 100,000 x g for 70 minutes to pellet out extracellular 

vesicles. As this fraction often contains contaminating protein aggregates, pellets were rinsed and 

resuspended in PBS and centrifuged once again at 100,000 x g for 70 mins. Pellets from 6 
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independent slides exposed to one of the experimental conditions (control, steady flow, or steady 

flow with neomycin treatment) were combined to generate one sample for analysis. Pellets were 

resuspended in 1 ml PBS for particle characterization or 150 µl RIPA buffer for Western blot.  

Particle concentration and size distribution were analyzed by Nanoparticle Tracking 

Analysis on a Malvern NanoSight (Malvern, United Kingdom) at the Cornell Nanobiotechnology 

Center (Ithaca, NY). Samples were diluted in PBS, and data from 5 separate measurements of the 

same sample were averaged to determine the sample concentration and average particle size. The 

average of n=4 samples per group were analyzed.  

 

4.2.4 Immuno-detection 

Immediately following flow exposure, cells were fixed and permeabilized in ice-cold 

acetone. Cells were probed for the expression of the secretory exosome marker lysosomal 

associated membrane protein 1 (LAMP1) using standard immunocytochemistry techniques. 

Briefly, cells were blocked in 5% BSA (Sigma Aldrich, St. Louis, MO) and incubated overnight 

with a rabbit polyclonal anti-LAMP1 antibody (ab24170, Abcam, Cambridge, MA). The 

VectaFluor Detection system with DyLight 594 Anti-rabbit Ig reagent (Vector Laboratories, 

Burlingame, CA) was used to probe the antibody for LAMP1.  

Exosome contents were assessed by Western blot. Exosome protein lysates were prepared 

by lysing vesicle preparations in RIPA lysis and extraction buffer supplemented with protease 

and phosphatase inhibitors (ThermoScientific, Waltham, MA) for 10 mins. Protein lysates were 

mixed 1:1 with 2X Laemmli buffer (Sigma Aldrich, St. Louis, MO) and boiled for 5 minutes at 

95°C. Protein samples were separated by gel electrophoresis using pre-cast polyacrylamide gels 

and a Mini-PROTEAN electrophoresis chamber (Biorad, Hercules, CA). Proteins were 
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transferred to a PVDF membrane (Biorad) by wet transfer. Membranes were blocked with 5% 

BSA (Sigma Aldrich), and primary antibody incubations were performed overnight at 4°C. The 

following primary antibodies were used to assess vesicle contents: goat polyclonal antibody to 

RANKL (sc-7627, Santa Cruz Biotechnology, Dallas, TX); goat polyclonal antibody to OPG (sc-

8468, Santa Cruz Biotechnology);  rabbit polyclonal antibody to LAMP1 (ab24170, Abcam); 

goat polyclonal to sclerostin (AF-1589, R&D Systems, Minneapolis, MN). Membranes were 

rinsed well with TBST (Biorad) and then probed with the appropriate secondary antibodies. 

Detection was performed using the SuperSignal West Femto chemiluminescence detection kit 

(Thermo Scientific) and a FujiFilm LAS-4000 Luminescent Image Analyzer (FujiFilm, 

Stamford, CT). Proteins were verified by band size using a molecular weight ladder (Biorad) and 

specificity using concurrent negative controls.  

 

4.2.5 Statistics 

 One-way ANOVA with Dunnett’s post hoc was used to compare differences in means 

among the three groups studied relative to the control group. Significance was observed at 

p<0.05.  

 

4.3 Results 

4.3.1 Neomycin inhibits Ca
2+

 oscillations in osteocytes exposed to fluid flow 

To evaluate the relative role of flow-induced Ca
2+

cyt oscillations in osteocyte responses to 

mechanical loading, we treated cells with the phospholipase C (PLC) inhibitor neomycin to 

reduce the number of Ca
2+

cyt responses in cells exposed to flow (Figure 4.4). Treatment of MLO-
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Y4 cells before and during fluid shear stimulation resulted in a dramatic decrease in the number 

of responsive cells as well as the number of Ca
2+

cyt responses in responsive cells.  

 

4.3.2 Fluid flow increases LAMP1 expression 

Immunostaining for the secretory vesicle marker LAMP1 revealed punctate staining 

consistent with the presence of vesicle-like structures (Figure 4.5). Exposure of MLO-Y4 

osteocytes to fluid flow increased the expression of LAMP1, with more abundant punctate stains 

visible in cells and staining present further throughout the cell body. Inhibition of Ca
2+

 

oscillations using neomycin diminished this response.  

 

4.3.3 Flow induces the release of extracellular vesicles in a Ca
2+

-dependent fashion 

Mechanical stimulation of osteocytes induced significant release of extracellular vesicles 

into the culture medium (Figure 4.6A), with nearly a 30-fold increase in the number of detected 

particles (Figure 4.6B). This response was dramatically blunted in the presence of neomycin. 

One-way ANOVA with Dunnett’s post hoc revealed a difference between control and flow 

groups. No difference was detected between control and flow with neomycin treatment.  

 

4.3.4 Extracellular vesicles from osteocytes contain proteins related to bone adaptation 

Western blots on osteocyte EV protein lysates detected LAMP1 within the vesicles. In 

addition, the bone regulatory proteins RANKL, OPG, and sclerostin were among the proteins 

contained within these EVs (Figure 4.7A). Densitometric analysis of detected bands (Figure 

4.7B) showed increased levels of all detected proteins by flow.  
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4.3.5 Particle size 

The average diameter of all released EVs was 175nm. A representative distribution of EV 

sizes is shown in Figure 4.8A. The EV diameters were not significantly different among groups 

(Figure 4.8B).   

 

4.4 Discussion 

Our most intriguing finding is that load-induced, Ca
2+

-dependent actomyosin contractions 

in osteocytes facilitate the release of EVs. Our data suggests that fluid flow modulates osteocyte 

protein expression by enhancing the production and release of EVs which contain key bone-

regulatory proteins such as RANKL, OPG, and sclerostin. This load-induced response is Ca
2+

-

dependent, as treatment with neomycin, which significantly reduces the number of Ca
2+

 

responses, diminishes LAMP1 expression as well as EV release. Interestingly, vesicle-like 

structures have been identified in osteocytes and shown to be enriched in bone regulatory 

proteins
72

. Though actin networks had been previously implicated in mechanically-induced 

protein responses in osteocytes, this is the first study to explore the regulation of EV production 

by mechanical loading as a potential mechanism for these observations.  

In a recent morphological study, RANKL and OPG showed strong co-localization to 

vesicles of osteocytes, indicated by lysosomal-associated membrane protein 1 (LAMP1)
161

. The 

presence of several OPG-positive structures in canaliculi prompted the group to measure 

canaliculi diameter in TEM images. They reported a mean canaliculi diameter of 219 ± 45 nm in 

the cortical bone of mice
161

, which is in line with previously published values
162,163

. It is still 

unknown how osteocytes send biochemical signals from within the bone matrix to cells on the 

bone surface, and EV transport represents a compelling potential mechanism. Our preliminary in 
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vitro data has found RANKL, OPG, and sclerostin in EVs with an average diameter of 175 nm; 

thus transport of these proteins through the LCS is a plausible and intriguing means by which 

osteocytes may coordinate tissue-level bone adaptation.  

This is one of few studies to demonstrate that Ca
2+

-mediated vesicle release can be 

mechanically-regulated. Most recent studies coupling Ca
2+

 dynamics with exocytosis focus on 

agonist-induced Ca
2+

 signaling and exocytosis. In an early study of surfactant secretion in lung 

epithelial cells, substrate stretch was shown to induce Ca
2+

 transients and concurrent 

exocytosis
164

. Furthermore, the response was dose-dependent. In the musculoskeletal system, 

dynamic compression was shown to induce exocytosis in chondrocytes
165

, and Ca
2+

 signaling has 

been established as an important biochemical response in these cells as well. It is well 

established that mechanical loading induces a dose-dependent increase in Ca
2+

cyt transients in 

osteocytes
65,66,68

; thus, this further supports the role of EV release in regulating responses to 

mechanical loading. 

There are a few limitations to the current study. First, though we identified sclerostin 

within EVs released from mechanically stimulated MLO-Y4 cells, this cell line historically 

expresses limited levels of this protein. Therefore, future work examining the regulation of 

sclerostin expression by load and Ca
2+

cyt signaling should translate these experiments to primary 

cells or more appropriate cell lines
74,75

. Many studies have generated data to support the role of 

actomyosin contractility in exocytosis, and we have shown actin contractility following Ca
2+

cyt 

responses in our cells, but we did not directly show a relationship between actin contractions and 

EV release in osteocytes. Repeating these studies with an inhibitor of actomyosin contractility 

would help to solidify this hypothesis. Numerous studies have shown that the actin-stabilizing 
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compound jasplakinolide interrupts exocytosis
125

; therefore, this is a promising drug for future 

studies explored EV release in osteocytes.  

 

4.5 Conclusions 

This study uncovered a novel and direct consequence of mechanically-induced Ca
2+

 

signaling in osteocytes and connected this early biochemical response to subsequent protein 

responses under mechanical loading. We added insights into the regulation and release of 

proteins involved in bone adaptation to mechanical loading. Better understanding these 

mechanisms may inform the pharmacodynamics of current treatments targeting RANKL, OPG 

and sclerostin and potentially help optimize treatment strategies.  
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4.6 Figures 

 
Figure 4.1. Ca

2+
cyt oscillations in MLO-Y4 cells exposed to fluid shear in medium 

supplemented with exosome-depleted FBS. Representative time courses are shown for 5 cells 

exposed to flow. Flow onset was at 60s.  
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Figure 4.2. Overview of the experimental design. (A) Three experimental conditions were 

examined in this study. Cells were exposed to fluid shear, and one group was treated with 

neomycin to prevent flow-induced Ca
2+

cyt oscillations. Untreated cells under static conditions 

served as controls. (B) Cells were exposed to two bouts of steady flow with an inserted rest 

period. Flow duration was 10 minutes. Neomycin was present in the medium for both pre-

incubation and equilibration steps, resulting in 30 minutes exposure to the drug prior to 

mechanical stimulation.   
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Figure 4.3. Differential ultracentrifugation procedure for isolating extracellular vesicles. 

Extracellular vesicles were isolated from conditioned medium and subjected to a 10,000 x g 

centrifugation step to eliminate cell debris and two 100,000 x g centrifugation steps to wash and 

pellet vesicles. Image adapted from Reference 151.  
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Figure 4.4. Inhibition of Ca
2+

cyt signaling by treatment with neomycin. Representative MLO-

Y4 cells stained with the Fluo-8 Ca
2+

cyt indicator and exposed to steady flow at t=60s under (A) 

control conditions or (B) with 15mM neomycin treatment for 15 minutes prior to flow. The drug 

was also included in the flow medium. The normalized intensity for 4 representative cells is 
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shown on the right. (C) Percent of cell exhibiting at least one Ca
2+

cyt transient following flow 

onset. (D) Average number of Ca
2+

cyt transients per cell in responsive cells. Error bars are 

standard deviations. Student’s t-test was used to assess differences between the two groups. 

*p<0.05  
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Figure 4.5. LAMP1 immostaining in MLO-Y4 cells exposed to fluid shear. MLO-Y4 cells 

were fixed immediately following the experiment and immunostained for LAMP1 expression 
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with a secondary antibody conjugated to AlexaFluor-594. Nuclei were indicated with a DAPI 

counterstain. Representative 20X (left panel) and higher magnification 60X (insets, right panel) 

images were taken for each group.   
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Figure 4.6. Flow-induced extracellular vesicle release. Nanoparticle tracking analysis was 

used to determine the concentration of particles in samples prepared by differential 

ultracentrifugation. (A) Representative frame of particles in a sample exposed to fluid flow. (B) 

Particle concentration. One-way ANOVA with Dunnett’s post hoc was used to assess differences 

among groups compared to control samples. Error bars are standard deviations. **p<0.01 
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Figure 4.7. Immuno-detection of extracellular vesicle contents. (A) Vesicles fractions were 

isolated by differential ultracentrifugation and resuspended in lysis buffer to extract protein for 

Western blots. The proteins examined included the vesicle marker LAMP1 and the bone 

regulatory proteins RANKL, OPG, and slerostin. (B) Quantification of detected bands for each 

protein.  
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Figure 4.8. Size distribution of osteocyte-derived extracellular vesicles. (A) Representative 

distribution of particle size for a sample of vesicles isolated from cells exposed to flow. (B) 

Average particle size for each group. Error bars are standard deviations. Differences were 

evaluated by one-way ANOVA with Dunnett’s post hoc. No differences were detected among 

groups.  
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Chapter 5 

Validation of Ca
2+

 signaling patterns in the Ocy454 and IDG-SW3 cell lines 

 

5.1 Introduction 

Osteocytes are abundant cells buried within the bone with an essential role in maintaining 

skeletal health
11

. They are widely regarded as mechanosensors and are considered the primary 

source of sclerostin and receptor activator of nuclear factor κB ligand (RANKL), which control 

osteoblast and osteoclast activities, respectively. However, the mechanisms underlying osteocyte 

control of bone adaptation are not completely clear, limiting our ability to effectively treat 

diseases underpinned by reduced sensitivity, such as osteoporosis. 

 Due to the nature of their location in the bone, osteocytes are difficult to study. Isolation 

of primary cells requires intensive digestion treatments to extract cells from the bone matrix
166

, 

resulting in low yields. However, a few studies using primary osteocytes have considerably 

furthered our understanding of how osteocyte responses to mechanical loading can regulate 

osteoblast and osteoclast activities. In studies subjecting primary chick osteocytes to pulsatile 

fluid flow (PFF), conditioned medium was shown to inhibit osteoblast proliferation, promote 

osteoblast differentiation, upregulate the expression of Wnt proteins, and inhibit osteoclast 

formation and resorptive capacity
32,35,36

. In a study by the same group on primary human 

osteocytes, conditions of inflammation such as rheumatoid arthritis were shown to upregulate the 

ratio of RANKL and its decoy receptor, osteoprotegerin (OPG), and PFF reduced the ratio back 

to control levels
167

. The introduction of the MLO-Y4 osteocyte-like cell line in 1997 

revolutionized the study of osteocytes, making it feasible to study the biology of this important 

cell type in vitro and the regulation of key osteocyte proteins by mechanical load. For instance, 
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exposure to oscillatory fluid flow was found to reduce the ability of osteocytes to support 

osteoclastogenesis by decreasing the ratio of RANKL to OPG mRNA
33,34,168

, and PFF had 

similar effects
169

. In another study using low-magnitude, high-frequency vibration, RANKL 

protein expression was decreased as well, though very early, suggesting to the authors that 

loading likely inhibited RANKL release from the membrane rather than new protein synthesis
170

. 

 Indeed, our laboratory recently discovered that load-induced Ca
2+

cyt oscillations and 

actomyosin contractions in osteocytes facilitate the release of extracellular vesicles (EVs) 

containing bone regulatory proteins. In addition to RANKL and OPG, we detected sclerostin in 

these MLO-Y4-derived EVs. However, MLO-Y4 cells historically express low levels of 

sclerostin, limiting the ability to study the mechanical regulation of this important protein. A 

better understanding of sclerostin expression by mechanical load is needed. Previous in vivo 

studies have shown mechanical loading downregulates (and unloading upregulates) expression of 

sclerostin, and that this down-regulation is required for bone formation responses to 

loading
40,41,75

. However, recent studies indicate that sclerostin knockout mice still respond to 

anabolic loading in vivo
42

, and wild-type animals treated with anti-sclerostin antibody can still 

sense disuse environments
43,75

. Thus, there is conflicting evidence regarding whether sclerostin is 

important in bone mechanoregulation. 

Two new osteocyte cell lines have been established recently to address the lack of 

sclerostin expression in MLO-Y4 (Figure 5.1). The Ocy454 cell line exhibits a mature osteocyte 

phenotype, characterized by high levels of DMP1 and sclerostin relative to MLO-Y4 cells
75

. 

Furthermore, sclerostin expression is modulated by both mechanical and hormonal stimulation in 

these cells, with microgravity inducing increases in both sclerostin and RANKL expression in 

mature Ocy454, and parathyroid hormone (PTH) and prostaglandin E2 (PGE2) suppressing 
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sclerostin levels upstream of these mechanical responses. The cell line IDG-SW3 exhibits a late-

osteoblast phenotype capable of differentiating into a mature osteocyte phenotype in osteogenic 

conditions
74

. Over time, IDG-SW3 cells decrease the expression of alkaline phosphatase, turn on 

expression of early osteocyte markers such as E11, and gradually increase the expression of 

DMP1, sclerostin, and FGF23. This cell line is therefore a useful system for studying phenotypic 

differences between these two cell types. Both cell lines provide new models for studying the 

mechanical regulation of sclerostin and opportunities to overcome limitations of MLO-Y4 cells. 

As our laboratory is interested in connecting Ca
2+

-mediated mechanosensitivity to 

downstream protein responses in osteocytes, we sought to characterize the Ca
2+

 signaling 

patterns in immature and mature Ocy454 and early- and late-stage IDG-SW3 to determine if they 

resemble the previously characterized patterns observed in MC3T3-E1 and MLO-Y4 cells, 

respectively
65

. Given the consistency among our prior in vitro and ex vivo
68

 studies, we 

hypothesized mature osteocytes would exhibit oscillations in Ca
2+

cyt in response to fluid shear, 

while immature cells would be less sensitive. 

 

5.2 Methods 

5.2.1 Cell culture and differentiation 

 Ocy454 cells were allowed to proliferate at 33°C in minimum essential alpha medium (α-

MEM, Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, 

Gibco, Life Technologies) and 1X antibiotic/antimycotic (Anti-Anti, Life Technologies) on 

0.15mg/ml collagen-coated tissue culture dishes (rat-tail type I, BD Biosciences, San Jose, CA). 

Upon confluence, cells were transferred to 37°C to differentiate. Cells were cultured for an 

additional 14 days with routine medium changes.  
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IDG-SW3 cells were allowed to proliferate at 33°C in α-MEM with 10% FBS containing 

recombinant mouse interferon-γ (IFN-γ, Life Technologies, Carlsbad, CA) on collagen-coated 

dishes. Confluent IDG-SW3 were then transferred to 37°C with medium without IFN-γ and 

supplemented with 50µg/mL ascorbic acid and 4mM β-glycerophosphate to induce 

differentiation. Cells were grown for 21 days under these conditions. 

MLO-Y4 cells were cultured to confluence in α-MEM with 5% FBS (Hyclone 

Laboratories, Inc., Logan, UT) and 5% calf serum (Life Technologies).  

 

5.2.2 Ca
2+

 indicators 

To observe Ca
2+

cyt changes in Ocy454 cells, plated cells were stained with Fluo-8 AM 

(AAT Bioquest, Sunnyvale, CA) dissolved in 20% Pluronic F-127 in DMSO (Invitrogen, 

Carlsbad, CA). Fluo-8 was excited at 488nm, and fluorescence emission was collected at 527nm. 

IDG-SW3 cells were stained with the red-shifted Ca
2+

cyt indicator Fura Red-AM (20µM, Life 

Technologies, Carlsbad, CA) in DMSO and Kolliphor® EL (Sigma-Aldrich, St. Louis, MO) 

prior to fluid flow stimulation. Fura-Red was excited at 430nm, and fluorescence emission was 

collected at 641nm, resulting in increases in Fura-Red emission upon Ca
2+

 binding. Ca
2+

cyt 

transients were defined by increases in intensity at least 4 times the magnitude of noise prior to 

flow onset.  

 

5.2.3 Fluid flow stimulation  

Differentiated cells were digested by serial collagenase (200 U/ml, Gibco, Life 

Technologies, Carlsbad, CA) treatments and trypsin-EDTA (0.05%, Life Technologies) and re-

plated onto collagen-coated glass slides in antibiotic-free medium. Immature cells were 
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subcultured onto glass slides using trypsin-EDTA dissociation. Cells were stained with the 

appropriate Ca
2+

 indicators and then assembled into a custom parallel-plate fluid flow chamber. 

Cells were exposed to laminar, unidirectional steady flow at 35 dynes/cm
2 

using a magnetic gear 

pump (Ismatec, Cole-Parmer, Vernon Hills, IL). Baseline fluorescence intensity was captured for 

1 minute prior to fluid shear stimulation for 9 minutes.  

To evaluate the influence of fluid shear on sclerostin expression, cells were exposed to 

fluid shear at 35 dynes/cm
2
 for two 10-minute bouts of steady flow separated by a 15 minute rest 

period. Slides were post-incubated in flow-conditioned medium for 24 hours, and total protein 

was extracted. To investigate the role of flow-induced Ca
2+

cyt oscillations in these responses, an 

additional group was treated with 15mM neomycin (Sigma Aldrich, St. Louis, MO), which we 

have shown in earlier studies to impair Ca
2+

 responsiveness. 

 

5.2.4 Immuno-detection 

Immediately following flow exposure, cells were fixed and permeabilized in ice-cold 

acetone. Cells were probed for the expression of sclerostin using standard immunocytochemistry 

techniques. Briefly, cells were blocked in 2.5% normal horse serum and incubated overnight 

with a goat polyclonal antibody to sclerostin (AF-1589, R&D Systems, Minneapolis, MN). The 

VectaFluor Detection system with DyLight 594 Anti-goat Ig reagent (Vector Laboratories, 

Burlingame, CA) was used to probe the antibody for sclerostin.  

Cellular expression of sclerostin was assessed by Western blot. Protein lysates were 

prepared by lysing 100mm dishes of confluent cells in RIPA lysis and extraction buffer 

supplemented with protease and phosphatase inhibitors (ThermoScientific, Waltham, MA) for 30 

mins. Protein lysates were mixed 1:1 with 2X Laemmli buffer (Sigma Aldrich, St. Louis, MO) 
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and boiled for 5 minutes at 95°C. Protein samples were separated by gel electrophoresis using 

pre-cast polyacrylamide gels and a Mini-PROTEAN electrophoresis chamber (Biorad, Hercules, 

CA). Proteins were transferred to a PVDF membrane (Biorad) by wet transfer. Membranes were 

blocked with 5% BSA (Sigma Aldrich), and incubation with the primary anti-sclerostin antibody 

was performed overnight at 4°C. Membranes were rinsed well with TBST (Biorad) and then 

probed with a rabbit anti-goat IgG secondary antibody (Abcam, Cambridge, MA). Detection was 

performed using the SuperSignal West Femto chemiluminescence detection kit (Thermo 

Scientific) and a FujiFilm LAS-4000 Luminescent Image Analyzer (FujiFilm, Stamford, CT). 

Proteins were verified by band size using a molecular weight ladder (Biorad) and specificity 

using concurrent negative controls.  

 

5.2.5 Statistics 

 Differences in the number of Ca
2+

cyt peaks between mature and immature cells were 

evaluated with student’s t-tests. Significance was detected at p<0.05.  

 

5.3 Results 

5.3.1 Ocy454 differentiation 

 The differentiation of Ocy454 cells was verified by monitoring DMP1-GFP expression. 

Few cells exhibited DMP1-GFP expression at 33°C, even after 14 days post-confluence. At 

37°C, Ocy454 cells exhibited considerable DMP1-GFP expression by Day 12 (Figure 5.2).  

We also evaluated sclerostin expression in these cells. Sclerostin was not detected in 

immature (undifferentiated) Ocy454 cells, while mature (differentiated for 14 days) cells showed 

strong immunoreactivity between 20 and 30 kDa (Figure 5.3A). In addition, sclerostin 
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expression was stronger in Ocy454 cells than in protein extracted from MLO-Y4 (Figure 5.3B). 

Negative controls without primary antibody verified antibody specificity (Figure 5.3C).  

 

5.3.2 Ca
2+

cyt signaling in the Ocy454 cell line 

 Due to the moderate GFP expression in these cells, cells were stained with the Fluo-8 

Ca
2+

cyt indicator to evaluate Ca
2+

 responses to fluid flow (Figure 5.4). Representative traces of 3 

cells are shown in Figure 5.4.  

 Approximately 50% of immature cells responded to fluid shear with at least one Ca
2+

cyt 

transient, and on average cells exhibited 1 or 2 Ca
2+

cyt peaks (n=126 cells, 7 slides; Figure 5.5). 

Mature cells were more responsive, with more than 75% of cells responding to flow (n=442 

cells, 5 slides; Figure 5.5A). The average number of Ca
2+

cyt transients in mature Ocy454 cells 

was nearly 4 peaks, though some cells exhibited up to 19 Ca
2+

 transients in a single stimulation 

period (Figure 5.5B).  

 

5.3.3 Influence of Ca
2+

 signaling on slerostin changes in response to fluid shear 

 We next sought to determine whether these flow-induced Ca
2+

cyt oscillations were critical 

for downstream regulation of sclerostin by mechanical stimulation. Mature Ocy454 cells 

exhibited strong sclerostin expression, while sclerostin was no longer detectable in cells exposed 

to fluid shear (Figure 5.6). Sclerostin was also down-regulated to undetectable levels in 

neomycin-treated cells.  
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5.3.4 Ca
2+

cyt signaling in the IDG-SW3 cell line 

After 21 days in culture, IDG-SW3 cells exhibited strong expression of DMP1-GFP 

(Figure 5.7A). Cells were stained with the Fura-Red Ca
2+

cyt indicator to characterize Ca2+ 

responses (Figure 5.7B). Representative time courses of the Ca
2+

cyt responses of these cells are 

shown in Figure 5.8. Undifferentiated IDG-SW3, which represent a late-osteoblast, exhibited a 

strong peak after the onset of flow, with a few subsequent smaller responses. Day 21 IDG-SW3, 

which represent an osteocyte, exhibited Ca
2+

cyt oscillations in response to flow.  

 

5.4 Discussion 

In this study, we demonstrated that mature Ocy454 and IDG-SW3 cells are more 

responsive to fluid shear than their immature counterparts, with a higher percentage of 

responsive cells and higher average number of Ca
2+

cyt transients. These results are consistent 

with previous data using the MLO-Y4 and MC3T3-E1 cell lines as well as studies performed on 

explanted mice tibia from our laboratory. Taken together, these results suggest that these Ca
2+

cyt 

signaling patterns are inherent to osteocyte behavior. 

We also showed that the Ocy454 cell line in particular is useful for studying mechanisms 

underlying sclerostin downregulation in response to levels of mechanical stimuli in vitro that can 

stimulate bone formation responses in vivo
68

. The only previous study using Ocy454 evaluated 

changes in sclerostin mRNA to very low levels of fluid shear (maximum 8 dynes/cm
2
)
75

. Our 

results more closely mirror the dramatic decreases in sclerostin protein expression that others 

have shown in loaded limbs of mice by immunohistochemistry
40,41

. Interestingly, we found that 

inhibition of Ca
2+

cyt oscillations, i.e. inhibiting the osteocyte response closely linked to 

mechanosensing, has no influence on sclerostin downregulation. Therefore, sclerostin expression 
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itself may not be finely regulated by mechanical load, which would explain some of the 

discrepancies in knockout and sclerostin inhibited animals subjected to loading. Additional 

validation of the signaling patterns under various levels and profiles of fluid shear in these cells 

may clarify this behavior. 

The limitations of this study are largely due to the limitations that exist in the culture of 

these cells. Mature cells of both cell lines were digested from their deposited matrix and replated 

for fluid shear stimulation. This was chosen to ensure accurate transmission of fluid shear to the 

cell monolayers; however, the procedure certainly influenced the morphology of the cells and 

modified their environment. Indeed, three-dimensional culture enhanced the osteocytic 

phenotype of Ocy454 cells in a previous study
75

, so digestion would presumably influence the 

phenotype of the cells. However, the similarity to our characterization of mature cells across the 

cell lines and ex vivo suggests we are recapitulating a true osteocyte behavior. Another limitation 

lies in the detection of the sclerostin protein. The expected molecular weight of the sclerostin 

monomer is 23-28kDa, and we detected immuno-reactivity at a slightly lower molecular weight. 

Though we verified specificity with negative controls, we have no other explanation for this 

observation. A recent publication demonstrated that sclerostin can be expressed in multiple 

molecular weight forms corresponding to dimer and trimeric forms of the protein in addition to 

other bands, and a band was detected in bone cells at this molecular weight
171

. Future work will 

aim to clarify this observation by testing other antibody manufacturers and using blocking 

peptides.  

 



106 

 

5.5 Conclusion 

 In this study, we highlighted that load-induced Ca
2+

cyt oscillations are a hallmark of 

osteocyte mechanosensitivity by exploring the Ca
2+

 signaling patterns of two relatively new 

osteocyte cell lines. We also recapitulated the in vivo time course of sclerostin suppression by 

mechanical load in an in vitro system, providing a platform for future studies to explore finer 

aspects of osteocyte regulation of bone adaptation.  
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5.6 Figures 

 

Figure 5.1 Summary of available osteocyte cell lines. Highlighted is the lack of sclerostin 

expression in the MLO-Y4 cells line, which is the most common cell line used for studying 

osteocyte mechanobiology.  
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Figure 5.2. Ocy454 differentiation. Expression of GFP driven by the DMP1 promoter in 

Ocy454 cells grown at 33°C and 37°C for 5, 9, 12, and 14 days.  
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Figure 5.3. Immuno-detected of sclerostin protein. (A) Increase in sclerostin expression with 

differentiation of Ocy454 cells. (B) Sclerostin expression is more abundant in mature Ocy454 

cells than in the MLO-Y4 cell line. (C) Negative control with no 1° antibody.  
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Figure 5.4. Ca
2+

cyt signaling in immature and mature Ocy454 cells. The top panel shows 

Fluo-8 staining in immature and mature Ocy454 cells under fluid shear stimulation. 

Representative time courses of Ca
2+

cyt responses in three cells from each group are shown below.  
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Figure 5.5. Quantification of differences in Ca
2+

 signaling behavior between immature and 

mature Ocy454 cells. (A) Responsive cell percentage. (B) The number of Ca
2+

cyt peaks 

following flow onset in responsive cells. Error bars are standard deviations. Differences were 

assessed by student’s t-test. ***p<0.001 
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Figure 5.6. Regulation of sclerostin expression by mechanical loading and Ca
2+

cyt 

oscillations. Mature Ocy454 cells were exposed to fluid flow in the presence or absence of 

neomycin and compared with static controls. Whole cell protein was extracted and probed for 

sclerostin expression by Western blot.  
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Figure 5.7. IDG-SW3 cell line. (A) After 21 days of differentiation under osteogenic conditions, 

cells express high levels of GFP driven under the DMP1 promoter. (B) Fura-Red staining in 

IDG-SW3 cells to indicate Ca
2+

cyt.  
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Figure 5.8. Ca
2+

 signaling patterns in early- (Day 0) and late- (Day 21) stage IDG-SW3 

cells. Fura-Red staining was used to indicate Ca
2+

cyt, and plotting the Fura-Red intensity over 

time reveals transient Ca
2+

 activity.  
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Chapter 6 

A Loadable Perfusion Bioreactor for the Long Term Culture of Bovine Bone Explants 

 

This thesis chapter has been previously published, in part, in the manuscripts:  

Silvia Marino, Katherine Ann Staines, Genevieve Brown, Rachel Anne Howard-Jones, 

and Magdalena Adamczyk. “Models of ex vivo explant cultures: applications in bone 

research.” BoneKEy Reports 5, Article number 818, 2016. 

and 

Genevieve N. Brown, Rachel L. Sattler, and X. Edward Guo. “Experimental studies of 

bone mechanoadaptation: bridging in vitro and in vivo studies with multiscale systems.” 

Interface Focus 6, 2016. 

 

6.1 Introduction 

The observation that bone can adapt its internal structure to the external mechanical 

demands placed upon it dates back to more than a hundred years ago
172

. Yet, a clear 

understanding of the mechanisms underlying mechanoadaptation remains unknown. This is in 

part due the complexity of studying a process involving numerous cell types interacting in a 

complex loading environment over varying time scales. Bone adaptation involves changes in 

bone structure and composition over weeks achieved through coordinated changes at sites of 

resorption, formation, and remodeling. It is thought that osteocytes – the mechanosensors in bone 

– direct these processes by regulating osteoclast and osteoblast activities
1
. However, in 

traditional in vivo or in vitro approaches, it can be difficult to marry the short-term sensing and 

longer-term responding timescales, and preserving the spatial relationship between bone cells is 
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challenging. The cellular network formed by osteocytes in the LCS integrates information from 

whole bone deformation at different locations in the organ, communicates biochemical responses 

to bone surfaces where effector cell populations reside, and coordinates the sites of bone 

formation and resorption responses to adapt the bone structure. Therefore, there exists a need for 

experimental systems that can couple early osteocyte network responses to mechanical loading to 

later tissue level changes. 

The introduction of three-dimensional (3D) cell cultures has added some complexity to in 

vitro studies and has proven immensely valuable in unveiling cell behaviors that are intricately 

tied to the native morphology and parameters of the microenvironment
74,104,173-175

. However, the 

opposite approach – stripping down native tissues to fewer, more controllable features – has also 

provided unique platforms for connecting these scales. By nature of their source, major 

advantages of these ex vivo or explanted tissues are that they maintain native tissue architecture, 

cellular composition, and cell-cell arrangement. Thus, explants that can approximate this 

environment in a controlled experimental setting offer a unique opportunity to study the load-

regulated processes in bone biology. 

Few bone explant cultures have been established to investigate the adaptive response of 

bone tissue to mechanical cues, largely due to the requirement to sustain viability of the 

explanted tissue in culture over long enough periods. The introduction of the ZetOS bioreactor 

overcame these limitations by providing a system to simultaneously perfuse nutrients through 

trabecular bone explants and apply dynamic loading
176,177

. Bovine bone cores complete with 

surface cells and bone marrow were sustained for three weeks in culture, with osteocyte viability 

remaining above 60% and osteoblast/osteoclast populations responding to mechanical and 

chemical stimuli
178

. The application of simulated jumping strains resulted in increased bone 
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formation parameters in some samples, and most importantly, architectural changes in the 

trabecular bone tissue
178

. Furthermore, application of load resulted in changes in the apparent 

stiffness of the bone samples
179

. Similar results were reported in a rabbit trabecular bone explant 

model cultured in a perfusion/loading system, where mechanical loading resulted in new bone 

deposition demonstrated by osteoid formation and the presence of double fluorochrome labeled 

surfaces
180

. Comparable systems have been developed to sustain viability in whole bone organ 

cultures
181

. These improvements in culture conditions lay a strong foundation for using 

trabecular bone explants to study the mechanisms underlying mechanical adaptation.  

A major advantage of transferring tissues to culture environments is the ability to adapt 

the tissue to remove confounding variables and isolate critical interactions. Our laboratory 

developed a trabecular bone explant model of osteocyte-osteoblast interactions to evaluate 

histological and mechanical property changes in response to loading that had been built on 

previous explants used for short term loading experiments
182-186

. In this system, bovine trabecular 

bone cores were thoroughly cleaned to remove bone marrow, disrupted nerves, and vasculature, 

as experimental studies have demonstrated an influence of these systems in bone. The explants 

were also treated to remove any surface cells, which have been shown to populate the bone 

surface after a few days in culture in an uncontrolled manner
187

. A controlled number of primary 

osteoblasts could then be seeded back onto the surface. The resulting explant provides a system 

in which osteocytes in their native environment can send signals to osteoblasts, and bone 

deposition and changes in mechanical properties can be measured in response to load. For 

instance, we demonstrated that dynamic deformational loading resulted in early biochemical 

responses, such as the release of PGE2, as well as the deposition of osteoid and changes in 
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apparent elastic modulus of the explant after 4 weeks. Blocking the PGE2 response abrogated the 

anabolic effects of loading
188

.  

In this earlier study, mechanical loading and tissue perfusion were applied by a custom 

loadable perfusion bioreactor based upon previously reported systems for bovine bone cores
176-

179
, and similar systems have been recently reported for rabbit trabecular bone explants and 

whole bone organ cultures
180,181

. However, these systems as well as those that are commercially 

available have several limitations. First, many loadable perfusion systems do not accommodate 

the culture of individual specimens, limiting the statistical methods that can be employed for 

evaluating multiple experimental conditions. Second, some of these systems cannot de-couple 

the effects of flow perfusion, which itself can be a mechanical stimulus to osteocytes, from the 

dynamic applied loads
189

. Though the ZetOS system addresses these limitations, the design 

necessitates stimulating bone under displacement control
178,179

, which can result in inaccurate 

loading of trabecular bone due to the unsupported struts of the trabeculae along the cut explant 

boundaries. Indeed, in previous studies from this group, they found higher increases in stiffness 

in dead bone cores than living ones cultured in ZetOS bioreactors
189

, suggesting to us that end-

crushing is symptomatic in this design.  Finally, though our early custom bioreactor attempted to 

overcome these limitations, too many manipulations to remove the bone for mechanical testing 

complicated the experimental setup, increasing risks of contamination throughout the long 

culture period. 

Therefore, the goal of this study was to design an easy-to-use loadable perfusion 

bioreactor for individual bovine trabecular bone explants to maintain cell viability over long 

culture periods and permit routine mechanical stimulation and testing of specimens.  
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6.2 Methods 

6.2.1 Explant and cell culture reagents 

Explants and primary osteoblasts were cultured in minimum essential alpha medium (α-

MEM, Life Technologies, Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS, 

Hyclone Laboratories, Inc., Logan, UT) and antibiotics (100 U/ml penicillin, 100 µg/ml 

streptomycin, Life Technologies). Cells were maintained at 5% CO2 and 37°C in a humidified 

incubator.  

 

6.2.2 Obtaining bovine trabecular bone cores 

Bovine wrists with intact carpal-metacarpal joint capsules from 6 week old calves were 

obtained from a local slaughterhouse shipped overnight on ice. The hoof was removed at the 

fetlock joint along with tendons along the shaft of the metacarpus. Joints were sterilized in 

diluted Roccal-D Plus (Zoetis, Florham Park, NJ) for 30 minutes and 70% ethanol for an  

The flat articular surface of the metacarpus was exposed and cleaned of synovial fluid 

using gauze soaked in 70% ethanol, and the carpal bone was secured into a vise. Using a 

diamond-tipped coring tool (Starlite Industries, Rosemont, PA) and a hand drill, 7-mm diameter 

bone cores were drilled from the articular surface through to the medullary cavity with constant 

PBS irrigation. Bone cores were transferred to petri dishes with pre-warmed, fully supplemented 

media.   

 

6.2.3 Preparing individual bone explants 

Trabecular bone cores were lightly cleaned with PBS jet rinsing (Interplak water jet, 

Conair, Stamford, CT) and then cut to the appropriate size (7-mm height) using a IsoMet low 
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speed saw with high carbon (HC) wafering blade (Buehler, Lake Bluff, IL) (Figure 6.1). The 

individual bone explants were then thoroughly cleaned using repeated PBS rinses and 0.25% 

trypsin-EDTA (Gibco, Life Technologies, Grand Island, NY) treatments to remove marrow 

components, damaged vasculature and nerves, and any surface cells. The remaining cells are 

osteocytes embedded within the bone matrix. This procedure results in thorough cleaning such 

that few resident surface cells repopulate the bone, even after weeks in culture (Figure 6.2).  

 

6.2.4 Obtaining primary osteoblasts by explant outgrowth 

The “excess” bone cores pieces from trimming the cores were thoroughly rinsed with 

PBS, cut into 2-3 mm bone chips, and transferred to tissue culture dishes with pre-warmed, fully-

supplemented media. The bone chips were kept at 37°C and 5% CO2 to allow for outgrowth of 

primary cells. The second population of cells migrating from the chips was considered a more 

homogeneous population of osteoblasts. Upon confluence, cells were switched to osteogenic 

media supplemented with 10 mM β-glycerophosphate and 50 µg/ml ascorbic acid (Sigma 

Aldrich, St. Louis, MO). 

 

6.2.5 Seeding primary osteoblasts onto explants 

The primary osteoblasts isolated by explant outgrowth were used to seed a controlled 

number of cells back onto the bone cores at a concentration of 2.5 x 10
5
 cells/explant in fully-

supplemented media using a custom cell-seeder with slow stirring for 1 hour. Explants were then 

transferred to 6-well plates prior to assembling into bioreactors. Seeding of bone cores with 

primary osteoblasts results in uniform distribution of cells, which gradually populate the bone 

surface (Figure 6.3).  
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6.2.6 Loadable perfusion bioreactor 

To sustain the viability of osteocytes in culture periods long enough to observe changes 

in bone formation and elastic modulus in response to mechanical loading, we designed a 

loadable perfusion bioreactor. The design consisted of a polyetherimide perfusion base and cap 

with a 316L stainless steel piston to transmit load (Zero Hour Parts, Ann Arbor, MI). A 

compression spring with threaded button and retractable stainless steel plungers were used to 

easily lock the positions of the piston and cap (McMaster-Carr, Elmhurst, IL). Silicon O-rings 

were used to create a tight seal for perfusion (McMaster-Carr). Ceramic discs custom-cut from 4-

bore ceramic tubes (McMaster-Carr) were used to provide an even surface for loading the bone 

cores through which fluid could perfuse. All stainless steel components were passivated with 

10% w/v citric acid for 30 minutes at 65°C.  

Low-level perfusion at 0.01 ml/min was driven by a multichannel peristaltic pump 

(Ismatec, Cole-Parmer, Vernon Hills, IL) to supply the bone tissue with nutrients and enhance 

waste exchange to keep osteocytes embedded within the bone alive
190

. Tubing was connected 

between the pump, reservoir, and bioreactor by luer adapters (Cole-Parmer). The bioreactor was 

coupled to a mechanical testing (Bose Electroforce, Bose, Eden Prairie, MN) for mechanical 

interventions and testing of mechanical properties. The average of 5 separate measurements of 

height and diameter were used to determine the geometric properties of the explant. On Day 0, 

the apparent elastic modulus was determined for each specimen from the slope of the stress-

strain curve constructed from the last 5 loading cycles of a 20 second 1Hz sinusoidal bout of 

loading from -5 to -10N. From this information, the load necessary to apply a stimulus of 2400 

microstrain (µɛ) was calculated. Subsequently, samples were subjected to daily loading with a 
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1Hz sinusoidal compressive waveform from a pre-load of -2N to the determined load. On the 

final day of experimentation, the apparent elastic modulus of each specimen was determined 

again.  

 

6.2.7 Validation of mechanical testing in the bioreactor 

 Solid ultra-high molecular weight polyethylene (UHMWPE) cylinders were machined to 

the size of the explants (7 mm diameter, 7 mm height) and used as standard materials to evaluate 

mechanical testing in the bioreactor, as the moduli is comparable to that of trabecular bone. 

Apparent elastic moduli were determined in three different configurations: a standard unconfined 

compression test between two stainless steel platens, a compression test between the load piston 

with the sample in the bioreactor base, and an additional compression test with the bioreactor cap 

attached to the loading piston (the intended configuration for using the bioreactor). To correct for 

compliance of the polyetherimide base (Cbase), an adjusted displacement for the sample was 

calculated by: 

𝛿𝑒𝑥𝑝𝑙𝑎𝑛𝑡 =  𝛿𝑡𝑜𝑡𝑎𝑙 −  𝐹 × 𝐶𝑏𝑎𝑠𝑒 

Cbase was calculated as the inverse of stiffness determined from the slope of the force-

displacement curve for the base only (average of 5 independent tests). In each configuration, 5 

UHMWPE samples were tested.  

To evaluate whether mechanical testing, routine loading, and long term culture caused 

artificial increases in apparent moduli of bovine bone cores throughout the duration of the 

experiment, we loaded devitalized bone cores for 1, 3, 5, and 10 days and compared the percent 

difference in apparent elastic modulus after 4 weeks in culture to non-loaded explants and tissue 

culture controls. Bone cores were harvested as described and then devitalized by repeated freeze-
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thawing. Loads corresponding to 2400µɛ were determined for each sample to apply dynamic 

loading of similar strains across all groups.  

 

6.2.8 Analysis of osteocyte viability 

Explants were cut vertically in half using the Isomet saw prior and stained with 

Molecular Probes LIVE/DEAD Viability/Cytotoxicity kit (Invitrogen, Carlsbad, CA) to evaluate 

cell viability. Explants were imaged by confocal microscopy (Olympus FV1000, Olympus, 

Waltham, MA) ~100µm into the bone tissue.  

Traditional histological techniques were also used to complement staining in living 

explants. The other half of the explants were fixed in neutral buffered formalin (Fisher Scientific, 

Hampton, NH), embedded in paraffin, sectioned at 8µm thickness, and stained with hematoxylin 

and eosin (H&E) to evaluate cell viability by morphology. Empty lacunae or shriveled cell nuclei 

were used to discern dead osteocytes. The number of live osteocytes were counted and 

normalized to bone area. Counts were performed on non-consecutive sections by three 

independent blinded observers.  

 

6.2.9 Statistics 

 One-way ANOVA with appropriate post-hoc analyses were used to evaluate differences 

across groups. For differences among configurations and the percent change in moduli of 

devitalized explants, Bonferroni’s post hoc analysis was used to compare all pairs. For osteocyte 

viability, Dunnett’s post hoc was performed using the initial group as the control. Significance 

was detected at p<0.05. 
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6.3 Results  

6.3.1 Design of a loadable perfusion bioreactor for individual bovine trabecular bone explants 

 The exploded and assembly views for the bioreactor design are shown in Figure 6.4. 

Perfusion is achieved in a bottom-up approach through an inlet in the bioreactor base and an 

outlet in the loading piston. Silicon O-rings and ceramic discs sit above and below the trabecular 

bone explant in the base, guiding fluid to perfuse through and not around the bone tissue. 

Another O-ring serves as a secondary seal between the base and the cap, preventing leaks and 

avenues for infection. The stainless steel loading piston secures the bone core throughout culture. 

The threads of the piston are engaged by a button with compression spring to lock the piston into 

position. For ease of use for mechanical testing, this button can release the threads to allow the 

piston to come off the bone core. Furthermore, the quick-locking plunger screws allow the cap to 

be released from the base and moved up along the piston away from the sample. In this 

configuration, mechanical testing can be performed. The entire assembly, with a single 

bioreactor connected to the perfusion pump and mechanical testing device, is shown in Figure 

6.5.  

 

6.3.2 Validation of frictionless loading and accurate mechanical testing 

 We first sought to validate that dynamic deformational loads could be delivered to bone 

explants in this device in a frictionless manner. This is evidenced by smooth load and 

displacement curves from a representative mechanical test of a trabecular bone explant (Figure 

6.6).  

 We next wanted to verify the accuracy of mechanical testing in this device by comparing 

mechanical testing results from different configurations on samples of a standard material 



125 

 

(Figure 6.7). Correction for the compliance of the plastic base resulted in no differences in 

apparent elastic moduli determined between a standard unconfined compression test and one 

performed in the bioreactor.  

 Finally, we wanted to ensure that mechanical testing, routine loading, and long term 

culture did not result in significant artificial increases in apparent moduli of bovine bone cores 

throughout the duration of the experiment. We loaded devitalized bone cores for 1, 3, 5, and 10 

days and compared the percent difference in apparent elastic modulus after 4 weeks in culture to 

non-loaded explants and tissue culture controls. No differences were detected among groups, and 

average percent changes were below ±10% for all groups (Figure 6.8).  

 

6.3.3 Confirmation of osteocyte viability over extended culture 

We also sought to confirm perfusion could maintain osteocyte viability in culture. After 2 

weeks, live osteoblasts appear confluent along the bone surface (Figure 6.9A, B), and beneath 

this surface layer, live osteocytes can be identified (Figure 6.9C). Static cultures, in comparison, 

show a number of dead osteocytes (Figure 6.9D). Histological assessment revealed osteocyte 

viability is maintained in perfused cultures for up to 4 weeks, whereas viability is compromised 

in static conditions (Figure 6.10). 

 

6.4 Discussion 

 We have described the design of a loadable perfusion bioreactor permitting the long term 

culture and characterization of trabecular bone explants capturing osteocyte-osteoblast 

interactions in response to mechanical load. The bioreactor design permits routine and accurate 

mechanical testing, precise mechanical interventions, and perfusion to sustain cell viability for at 
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least the 4 weeks examined in this study. This system sets the stage for studies aimed at 

determining the role of osteocytes in sensing mechanical loads and coordinating bone adaptation 

to those loads. As an example, osteocytes embedded within trabecular bone explants have been 

shown to elicit Ca
2+

 responses (Figure 6.11), which we have shown in vitro to be a critical 

mechanical response to applied loads that modulates the production of bone regulatory proteins. 

Future studies could explore the role of Ca
2+

 signaling in regulating the expression of proteins 

involved in osteocyte control of osteoblast activity to better understand how bone formation is 

initiated. 

This bioreactor design overcomes a number of limitations in similar available or 

previously described systems. Foremost is the ability to evaluate individual specimens for 

biochemical characterization and study endpoints. Additionally, loading of individual specimens 

under load control permits the application of similar strains across all samples, similar to strain-

matching that is done for in vivo experiments.  

While powerful as a model system, limitations exist. The added challenge of keeping 

osteocytes viable makes decoupling the long term effects of loading versus transport difficult. 

Additionally, while native arrangement of the osteocytes and connection with surface cells is 

achieved with the explant, the bone core size and shape do not capture the whole bone response 

to mechanical loading as faithfully as would a whole bone explant, models of which exist, but for 

shorter term experimentation. Additional limitations relate to the chosen cell types. For instance, 

both osteocytes and osteoblasts are capable of releasing PGE2 in response to mechanical 

stimulation, so it is unclear from our earlier study if this response was mediated primarily 

through osteocyte mechanosensing. A critical advantage of this explant system, however, is the 

ability to selectively manipulate the osteoblast population to disrupt signaling pathways in 
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osteoblasts only, a condition that cannot be created by in vivo studies. Finally, the removal of all 

cell types except osteocytes and the seeded cell type of interest may obscure the essential 

interactions of other native cells in the adaptive process. Despite these limitations, explanted 

trabecular bone cultures can be used to probe outcomes of mechanical loading at very different 

time points with a simplified cell composition in a still intricate arrangement.  

 

6.5 Conclusion 

We designed an easy-to-use loadable perfusion bioreactor for trabecular bone explants to 

capture long-term tissue-level changes in response to mechanical loads mediated by osteocytes. 

This system enables us to isolate interactions between osteocytes and osteoblasts in a controlled 

manner to delineate mechanisms underlying load-induced bone formation responses. This 

bioreactor can serve as a platform for future studies aimed at understanding mechanoadaptation 

in bone. 
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6.6 Figures 

 

Figure 6.1. Trabecular bone explants. (A) Trabecular bone core drilled from a bovine 

metacarpus. (B) 7 mm trabecular bone explant cut from the bone core using a low speed saw.  
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Figure 6.2. Cleaning of trabecular explants. (A) A confocal image of a cleaned trabecular 

bone explant stained with a LIVE/DEAD cytotoxicity/viability kit. Repeated PBS rinsing and 

trypsinization removes all surface cells, leaving only live osteocytes embedded in the bone (live 

cells are green). (B) Cleaned explant after 14 days in culture. Live osteocytes remain in the 

interior, and rigorous cleaning ensures that few surface cells (arrows) remain to populate the 

bone surface.  
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Figure 6.3. Controlled seeding of primary osteoblasts onto trabecular bone explants. 

Confocal images of trabecular explants stained with a LIVE/DEAD cytotoxicity/viability kit. A 

defined number of cells are seeded onto explants using a custom cell seeder. Osteoblasts 

gradually and evenly populate the available bone surfaces.  
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Figure 6.4. Loadable perfusion bioreactor for perfusion and mechanical testing/dynamic 

loading of trabecular bone explants. The exploded view highlights the main components used 

to secure the trabecular bone explant (bone core) for loading and perfusion. The assembly view 

is a schematic of a bioreactor for an individual bone specimen.  
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Figure 6.5. Setup of the experimental system. Each loadable perfusion bioreactor is connected 

to a multi-channel perfusion pump and can be placed in a mechanical testing device for loading 

or mechanical testing.  
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Figure 6.6. Representative load and displacement curve from the last ten cycles of dynamic 

mechanical testing. The applied waveform was a 1 Hz sinusoidal compressive waveform from -

-5N (level 1) to -10N (level 2) under load control.  
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Figure 6.7. Configurations for mechanical testing of a standard material to evaluate effects 

of the chamber design on accuracy of mechanical testing. Configuration 1 represents a 

standard unconfined compression testing configuration between two rigid stainless steel platens. 

Configurations 2 and 3 are in the polyetherimide chamber base with and without the chamber 

cap, respectively. Standard ultra-high molecular weight polyethylene solid specimens machined 

to the same geometry of trabecular bone explants (n=5) were tested in each configuration, and 

the apparent elastic modulus was determined from the slope of a load-displacement curve 

constructed from the final compressive cycle of a mechanical test and the specimen geometry. 

Using one-way ANOVA with Bonferroni’s post hoc analysis, significant differences were 
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detected in the sample moduli determined from specimens in the chamber, but upon correction 

for the compliance of the plastic base, these differences were no longer significant. **p<0.01 
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Figure 6.8. Percent change in elastic modulus of devitalized bone cores loaded routinely 

and culture for 4 weeks. (A) 36 trabecular bone explants were randomly assigned to one of 6 

groups (n=6/group): tissue culture control, non-loaded, and loaded for 1, 3, 5, and 10 days. 

Apparent elastic moduli were determined for each sample at Day 0, and a load level 

corresponding to 2400µɛ was determined for each sample to apply similar strains across all 

specimens. The modulus was determined again after 4 weeks (Day 28), and a percent difference 
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was calculated. (B) Average percent change in apparent elastic modulus for each group. Error 

bars are standard deviations. One sample was eliminated as an outlier from the 5 day loading 

group (gray italics). One-way ANOVA with Bonferroni’s post hoc analysis was used to 

determine differences among groups, and p<0.05 was set to indicate significance. No differences 

were detected.  
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Figure 6.9. Influence of perfusion on osteocyte viability over long term culture. (A) 

Reconstructed confocal image of an explant perfused for 14 days in the loadable perfusion 

chamber. (B) Inset of the confocal slice corresponding to the bone surface. (C) Live osteocytes 

(green cells, white arrows) are observed 20µm below osteoblasts on the bone surface. (D) A 

number of dead osteocytes (red cells) can be observed in static cultures at the same time point.  
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Figure 6.10. Histological assessment of osteocyte viability in explants cultured for 2 or 4 

weeks (wk) in loadable perfusion bioreactors compared with static tissue culture controls. 

Error bars are standard deviations. Sample numbers for each group are indicated. One-way 

ANOVA with Dunnet’s post hoc analysis was used to determine differences in the number of 

live osteocytes from initial levels. *p<0.05 
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Figure 6.11. Calcium signaling in trabecular bone explants. Confocal image of an explant 

stained with the Fluo-8 calcium indicator and treated with 50µM ATP. Arrows indicate 

responsive osteocytes.  
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Chapter 7 

Summary 

The work in this thesis solidifies Ca
2+

 signaling as a critical osteocyte response to 

mechanical loading and adds to the body of work exploring how and why these signals are 

generated. In Chapter 2, we discovered Ca
2+

cyt transients are coupled to Ca
2+

ER dynamics in 

osteocytes exposed to fluid flow and that T-Type VSCC interact with the ER to effect this 

behavior. In Chapter 3, we demonstrated that actin cytoskeletal dynamics are involved in Ca
2+

cyt 

signal generation and that Ca
2+

 signals in turn activate actomyosin contractions. These 

contractions can be prevented by the drug jasplakinolide, which has been previously used in vivo. 

In Chapter 4, we identified a new mechanotransduction pathway in which load-induced Ca
2+

cyt 

oscillations are facilitating the production and release of extracellular vesicles in osteocytes, 

which contain key bone regulatory proteins such as RANKL, OPG, and sclerostin. In Chapter 5, 

we translated our studies to new osteocyte cell lines which more faithfully capture native cell 

behaviors, namely the expression of sclerostin. Finally, in Chapter 6, we introduced a novel 

system for exploring interactions between embedded osteocytes and cells on the bone surface 

which may help translate some of our findings from the cellular level up to the tissue level. 

Ultimately, a better understanding of the mechanisms behind the robust Ca
2+

cyt oscillations in 

osteocytes and how they relate to their roles as coordinators of bone adaptation may improve our 

ability to prevent or treat bone pathologies underpinned by reduced mechanosensitivity. 
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