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Abstract

Background: Multi-assay algorithms (MAAs) can be used to estimate HIV incidence in cross-sectional surveys. We compared
the performance of two MAAs that use HIV diversity as one of four biomarkers for analysis of HIV incidence.

Methods: Both MAAs included two serologic assays (LAg-Avidity assay and BioRad-Avidity assay), HIV viral load, and an HIV
diversity assay. HIV diversity was quantified using either a high resolution melting (HRM) diversity assay that does not
require HIV sequencing (HRM score for a 239 base pair env region) or sequence ambiguity (the percentage of ambiguous
bases in a 1,302 base pair pol region). Samples were classified as MAA positive (likely from individuals with recent HIV
infection) if they met the criteria for all of the assays in the MAA. The following performance characteristics were assessed:
(1) the proportion of samples classified as MAA positive as a function of duration of infection, (2) the mean window period,
(3) the shadow (the time period before sample collection that is being assessed by the MAA), and (4) the accuracy of cross-
sectional incidence estimates for three cohort studies.

Results: The proportion of samples classified as MAA positive as a function of duration of infection was nearly identical for
the two MAAs. The mean window period was 141 days for the HRM-based MAA and 131 days for the sequence ambiguity-
based MAA. The shadows for both MAAs were ,1 year. Both MAAs provided cross-sectional HIV incidence estimates that
were very similar to longitudinal incidence estimates based on HIV seroconversion.

Conclusions: MAAs that include the LAg-Avidity assay, the BioRad-Avidity assay, HIV viral load, and HIV diversity can provide
accurate HIV incidence estimates. Sequence ambiguity measures obtained using a commercially-available HIV genotyping
system can be used as an alternative to HRM scores in MAAs for cross-sectional HIV incidence estimation.
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Introduction

HIV incidence is the rate of new HIV infections in a population.

Reliable incidence estimates are needed to monitor and respond to

the HIV/AIDS epidemic. Longitudinal cohort studies and cross-

sectional surveys have been used to estimate HIV incidence.

Cross-sectional incidence estimation may be preferred in some

settings [1].

Serologic assays have been developed for cross-sectional HIV

incidence estimation. However, these assays can overestimate

incidence because some individuals with long-term HIV infection

are misclassified as assay positive [2]. Some investigators have

suggested using sequence-based measures of HIV diversity for

HIV incidence estimation (e.g., by quantifying the proportion of

ambiguous or mixed base positions in Sanger sequencing data or

by using computational methods to quantify HIV diversity using

next generation sequencing data) [3,4,5,6]. This approach is based

on the premise that HIV diversity tends to increase over time

following HIV infection [7,8]. Potential limitations of using

sequence-based diversity data alone for HIV incidence estimation

have been noted [5]. The cost of this approach would also be

prohibitive for large cross-sectional surveys.

Multi-assay algorithms (MAAs) have recently been developed

that provide accurate cross-sectional HIV incidence estimates for

populations in the United States (US), where most HIV infections

are subtype B [9]. These MAAs include both serologic assays and

non-serologic biomarkers, such as CD4 cell count and HIV viral

load [2,9,10]. We recently developed a robust MAA that includes

the BED capture enzyme immunoassay (BED-CEIA, Calypte

Biomedical Corporation, Lake Oswego, OR, USA [11]), an

avidity assay based on the Genetic Systems 1/2+O EIA (BioRad-

Avidity assay; BioRad Laboratories, Redmond, WA, USA, [12]),

HIV viral load, and HIV diversity [13]. An advantage of this

MAA is that it does not require CD4 cell enumeration at the time

of sample collection [13]. In this MAA, HIV diversity in the env

region is quantified using a high resolution melting (HRM)

diversity assay that does not require sequencing [14,15]. The assay

is less expensive and easier to perform than sequencing assays and

simplifies data analysis, since the output of the HRM diversity

assay is a single numeric HRM score. The HRM diversity assay

has been validated by comparison of HRM scores to diversity

measures obtained from next generation sequencing data [15]. In

previous reports, this assay has been used to compare HIV

diversity in individuals with recent vs. non-recent infection [8] and

to analyze HIV diversification over time [15,16]. The assay has

also been used in studies that demonstrate the biological relevance

of HRM-derived measures, including the association of HRM

scores with infant survival [17] and response to antiretroviral

treatment [18].

While the HRM diversity assay offers many advantages for

measuring HIV diversity, it is not widely available. For this reason,

we also evaluated the performance of a MAA that includes

sequence ambiguity in the pol region as a measure of HIV

diversity. Previous studies have used pol region sequence ambiguity

to measure HIV diversity for HIV incidence analysis [3,5,19]. In

this report, sequence ambiguity was quantified by measuring the

percentage of ambiguous bases in pol region consensus sequences

generated using an HIV genotyping system developed for HIV

drug resistance testing (ViroSeq HIV-1 Genotyping System,

Celera, Alameda, CA, USA). While this approach is more labor-

intensive and costly than measuring HIV diversity using the HRM

diversity assay, the ViroSeq system is commercially available and

is used in a large number of laboratories in the US and elsewhere.

The two MAAs evaluated in this report include a limiting

antigen avidity assay recently developed by the US Centers for

Disease Control for HIV incidence estimation (LAg-Avidity assay,

Sedia Biosciences Corporation, Portland, OR, USA [20]) rather

than the BED-CEIA. The LAg-Avidity assay is combined with a

second serologic assay, the BioRad-Avidity assay (described

above), as well as two non-serologic biomarkers: HIV viral load

and HIV diversity (HRM score for a region in HIV env or the level

of sequence ambiguity in pol region data from population

sequencing). Samples were considered to be MAA positive (likely

from individuals with recent HIV infection) if they met the criteria

for all of the assays in the MAA.

The performance of the two MAAs was assessed using a large

set of samples from individuals in three clinical cohorts with known

duration of HIV infection. Performance was assessed by evaluat-

ing: (1) the proportion of samples classified as MAA positive as a

function of duration of infection, (2) the mean window period (the

mean duration of time that individuals were MAA positive), (3) the

shadow (the time period prior to sample collection that is being

assessed by the MAA [2,21]), and (4) the accuracy of MAA-derived

cross-sectional incidence estimates for three cohort studies. The

performance of these two MAAs was also compared to the

performance of an optimized 2-assay MAA that does not include a

diversity measure.

Methods

Ethics Statement
The Multicenter AIDS Cohort Study (MACS), AIDS Linked to

the IntraVenous Experience (ALIVE), HIV Network for Preven-

tion Trials (HIVNET) 001/001.1, Johns Hopkins Hospital

Clinical Cohort (JHHCC), HIV Prevention Trials Network

(HPTN) 061, and HPTN 064 studies were conducted according

to the ethical standards set forth by the institutional review boards

of the participating institutions and the Helsinki Declaration of the

World Medical Association; participants provided written in-

formed consent. The work reported here included analysis of

stored samples and data from those studies; this work was

approved by Institutional Review Boards at the participating

institutions. No participants were recruited or followed during the

course of this work.

Samples used for MAA development
Stored plasma and serum samples collected 1 month to .8

years after seroconversion were acquired from cohort studies in

the US (1,782 samples from 709 individuals, see Table S1). The

sources of these samples were: the MACS [22] (men who have sex

with men [MSM], 564 samples from 365 individuals), the ALIVE

cohort [23] (persons who inject drugs, 410 samples from 241

individuals), and the HIVNET 001/001.1 vaccine preparedness

cohort [24] (men and women with different risk factors for HIV

acquisition, 808 samples from 103 individuals). Five hundred

additional samples from the JHHCC that were collected .8 years

after seroconversion were also analyzed [25]; approximately half

of the JHHCC study participants are persons who inject drugs.

Detailed descriptions of these sample sets and the methods used to

estimate the seroconversion date for each sample were reported

previously [9,26].

Samples used for cross-sectional incidence estimation
Stored plasma and serum samples used for cross-sectional

incidence estimation were obtained from three cohort studies in

the US: (1) the HPTN 064 cohort (low incidence) [27], (2) the

HIV Diversity for Incidence Estimation
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HIVNET 001/001.1 cohort (medium incidence) [24], and (3) the

HPTN 061 cohort (high incidence) [28]. These samples were

collected at follow-up visits 6–18 months after study enrollment

(see Table S1).

Laboratory methods
Testing with the LAg-Avidity and BioRad-Avidity assays was

performed previously [9,10]. LAg-Avidity assay results are

reported as normalized optical density units (OD-n). BioRad-

Avidity assay results are reported as avidity index (%). Samples

that had a LAg-Avidity result ,2.9 OD-n and a BioRad-Avidity

avidity index result ,85% (N = 213) were tested with an HIV viral

load assay. One hundred nineteen of those samples analyzed had a

viral load .400 copies/mL, and 113 (95.0%) of the 119 samples

were available for evaluation with the HRM diversity assay and

ViroSeq system (the remaining six samples were depleted in prior

testing). HRM scores were obtained for 111 (98.2%) of the 113

samples (1 from the MACS cohort, 7 from the ALIVE cohort, and

103 from the HIVNET 001/001.1 cohort; 2 samples failed

analysis). Sequence ambiguity measures were obtained for 108

(95.6%) of the 113 samples (1 from the MACS cohort, 7 from the

ALIVE cohort, and 100 from the HIVNET 001/001.1 cohort; 5

samples failed analysis).

The HRM diversity assay was performed as previously

described [8,14]. Briefly, a region of HIV env was amplified. A

smaller env region (ENV1, 239 base pairs) was then amplified in a

nested polymerase chain reaction (PCR) that included a fluores-

cent, duplex-dependent DNA dye (LCGreen Plus, BioFire

Diagnostics, Inc., Salt Lake City, UT, USA). After the nested

PCR step, the samples were analyzed using a LightScanner

instrument (BioFire Diagnostics, Inc.); in this step, samples were

warmed, and the fluorescent dye was released as the DNA

duplexes melted. The negative derivative of fluorescence vs.

temperature (–dF/dT) was plotted against temperature to yield the

melting peak for each sample. The width of the melting peak

(which corresponds to the level of genetic diversity in the

amplicon) was reported as the ENV1 HRM score. HRM scores

were determined using the DivMelt software package (DivMelt,

ENV1 protocol) [29].

The ViroSeq HIV-1 Genotyping System was used to generate

HIV pol sequence data using 6–7 primers and to manually edit

assembled sequences to yield a single consensus sequence (1,302

base pairs). Mixed base positions were identified according to the

manufacturer’s instructions. The final consensus sequence was

exported in FASTA format. A Perl script was used to calculate the

number of mixed base positions in each sequence and to

determine the percentage of bases in each sequence that were

ambiguous: sequence ambiguity (%) = [(number of mixed base

positions)6(100)]/(total number of positions). FASTA sequence

data were submitted to GenBank (National Center for Biotech-

nology Information, U.S. National Library of Medicine, Bethesda,

MD, USA) and were assigned accession numbers KF729799-

KF729936.

Statistical methods
Samples were classified as MAA positive if they met the criteria

for all component assays. Samples were classified as MAA negative

if they failed to meet the criteria for one or more of the component

assays. MAAs were evaluated using statistical methods described

previously [2,26]. For each MAA, the mean window period and

shadow were calculated by fitting cubic splines to the data;

confidence intervals were determined using blocked bootstrapping.

The results were used to generate probability curves that show the

proportion of MAA positive samples as a function of time since

HIV seroconversion. The mean window period corresponds to the

area under the probability curve [26]. As noted above, the shadow

measures the time period prior to sample collection that is being

assessed by the MAA. One can also think of the shadow as follows:

among persons who are MAA positive (in the window period) at

the time of the survey, the shadow represents the average duration

of time that those persons already spent in the window period

prior to the survey. Additional information about the methods

used to calculate the mean window period and shadow is provided

in a previous report [26].

Samples that were missing HRM diversity assay or sequence

ambiguity results (sample not available or assay failure) were

excluded from the analysis. The potential impact of these missing

values was assessed using a secondary analysis that incorporated

the partial information available for these samples (i.e., data from

the serologic and viral load assays); this analysis assumed that

samples missing diversity data and samples with diversity data

were not systematically different with regard to the relationship

between being MAA positive and the duration of infection.

Incidence estimation
Incidence estimates for the HPTN 064, HIVNET 001/001.1,

and HPTN 061 cohorts were calculated using the following

formula: Incidence = [(# MAA positive samples)6(100)]/[(num-

ber uninfected individuals)6(mean window period)] [13]. Confi-

dence intervals were calculated as previously described [13,30].

Incidence estimates were evaluated by calculating the percent

difference between the incidence estimate obtained using a MAA

and the incidence estimate obtained from longitudinal cohort

follow-up, where % difference = [(the absolute value of the MAA-

based incidence estimate minus the longitudinal incidence

estimate)6(100)]/(the longitudinal incidence estimate). Statistical

analyses were performed using the R statistical programming

language [31] or Mathematica (Wolfram Research, Champaign,

IL, USA).

Results

We evaluated two new 4-assay MAAs that include the BioRad-

Avidity assay, the LAg-Avidity assay, HIV viral load, and HIV

diversity (measured using the HRM diversity assay or sequence

ambiguity, Figure 1). Both MAAs used the following assay cutoffs:

BioRad-Avidity assay ,85%, LAg-Avidity assay ,2.9 OD-n, and

HIV viral load .400 copies/mL. The cutoffs for these three assays

are the same as those in an optimized 4-assay MAA that also

includes CD4 cell count [10]; that MAA was identified by

comparing .500,000 candidate MAAs that included different

assays and assay cutoffs [10]. The two new MAAs described in this

report replace CD4 cell count in the optimized MAA with a

diversity measure. One of the two new MAAs described in this

report includes the HRM diversity assay for the ENV1 region as

the fourth assay, using an HRM score cutoff value of ,4.5

(Figure 1, Panel A). This HRM region and cutoff value were

identified in a previous optimization study that evaluated MAAs

that included the HRM diversity assay, the BED-CEIA, the

BioRad-Avidity assay, and viral load [13]. The second new MAA

described in this report includes sequence ambiguity analysis as the

fourth assay, using an ambiguity cutoff value of ,0.5% (Figure 1,

Panel B). This cutoff value was used in a previous report that

evaluated the use of sequence ambiguity alone for identification of

recent HIV infections [3].

The two MAAs were evaluated using 1,782 samples from 709

individuals who enrolled in three cohort studies (MACS, ALIVE,

and HIVNET 001/001.1; see Methods). The mean window

HIV Diversity for Incidence Estimation
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period and shadow obtained for each MAA are shown in Figure 1.

The MAA that included the HRM diversity assay had a mean

window period of 141 days (95% CI: 113–168 days). The MAA

that included sequence ambiguity had a mean window period of

131 days (95% CI: 103–156 days). Additional statistical evaluation

of the two MAAs indicated that missing HRM data (for 8 samples)

and missing sequence ambiguity data (for 11 samples) did not have

a significant impact on the mean window periods determined for

the MAAs (data not shown). These analyses did suggest that results

generated using the MAA that includes the HRM diversity assay

are more stable in the presence of missing data (data not shown).

In a secondary analysis that accounted for missing data, the upper

boundary of the 95% confidence interval for the shadow of the

sequence ambiguity-based MAA was 456 days, indicating that this

MAA may be evaluating incidence in a time period that extends

more than 1 year before sample collection.

Models for the probability of MAA positive classification as a

function of duration of infection were generated for each of the

two MAAs (Figure 2). For comparison, the figure also includes a

model for the probability of assay positive classification using the

LAg-Avidity assay alone (cutoff,1.5 OD-n) [10]. For both MAAs,

the probability that samples were classified as MAA positive

approached zero with increasing duration of infection (i.e., all

individuals were eventually classified as MAA negative). This was

not the case when the LAg-Avidity assay was used alone. For the

MAAs, none of the 500 samples from individuals who were

infected more than 8 years (samples from the JHHCC) were

classified as MAA positive. In contrast, when the LAg-Avidity

assay was used alone, 29 [5.8%] of the 500 samples were

misclassified as assay positive [9,10].

The two MAAs were also used to estimate HIV incidence in

three clinical cohorts (HPTN 064, HIVNET 001/001.1, and

HPTN 064; see Methods, Table 1). The number of samples tested

in each step of the MAA, and the number of samples that met the

criteria for each assay, are shown in Table 1. The number of

serologic assays required for this type of assessment is influenced

by the assay order. If the BioRad-Avidity assay is performed first

(as shown in Figure 1 and Table 1), 301 (84%) of the 358 cohort

samples are identified as MAA negative in the first step of the

MAA, leaving 57 samples to be tested with the LAg-Avidity assay.

Overall, 415 serologic assays are required. In contrast, if the LAg-

Avidity assay is used as the first step in the MAA, only 270 (75%)

of the 358 cohort samples are identified as MAA negative, leaving

88 samples to be tested with the BioRad-Avidity assay. Overall,

Figure 1. Multi-assay algorithms (MAAs) for cross-sectional HIV incidence estimation. Two MAAs are shown. The mean window period
and shadow for each MAA are shown; 95% confidence intervals are shown in parentheses. Results from the component assays were expressed as
follows: BioRad-Avidity assay: percentage (avidity index); limiting antigen avidity enzyme immunoassay (LAg-Avidity): normalized optical density units
(OD-n); viral load: copies/mL; high resolution melting (HRM) diversity assay: single number (HRM score); sequence ambiguity: percentage.
doi:10.1371/journal.pone.0101043.g001

Figure 2. Proportion of samples classified as MAA positive as a
function of the duration of HIV infection. Probability curves are
shown for the two MAAs described in Figure 1. A probability curve is
also shown for the limiting antigen avidity assay (LAg-Avidity assay
cutoff,1.5 OD-n) alone [10]. Key: blue line, MAA with the high
resolution melting (HRM) diversity assay; green line, MAA with
sequence ambiguity; dotted line, LAg-Avidity assay alone.
doi:10.1371/journal.pone.0101043.g002
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446 serologic assays would be required. The MAAs are also

designed so that the more labor intensive and costly assays are

performed last. For HPTN 064, HIVNET 001/001.1, and HPTN

061, diversity assays were only required for 2, 16, and 13 samples,

respectively. For HIVNET 001/001.1, 1 of 16 samples was

identified as MAA negative by sequence ambiguity. For HPTN

061, 4 of 13 samples were identified as MAA negative by the

HRM diversity assay, and 3 of those 4 samples were identified as

MAA negative with sequence ambiguity (one sample failed

sequence analysis).

The cross-sectional incidence estimates obtained using the two

new MAAs are shown in Table 2. These estimates were nearly

identical to incidence estimates based on longitudinal cohort

follow-up (Table 2) [28,32,33]. For each cohort, the point

estimates of incidence obtained with the MAAs were within the

95% confidence intervals of the corresponding longitudinal

incidence estimates, further supporting the accuracy of the new

MAAs. All six of the MAA-derived incidence estimates differed by

,21% from the corresponding longitudinal incidence estimates

(percent difference, Table 2).

As a final step, we evaluated how inclusion of the diversity

measure (HRM score or sequence ambiguity) impacted the

performance of the MAAs. If the diversity measure was simply

removed from the MAA (leaving a non-optimized 3-assay MAA

with the same cutoffs for the other three assays), the proportion of

samples classified as MAA positive still approached zero (all of the

samples from individuals infected .8 years were classified as MAA

negative). However, some samples from individuals with long-term

infection (4–8 years) were classified as MAA positive (data not

shown). This is reflected in the longer mean window period (175

days) and longer shadow (411 days) of the non-optimized 3-assay

MAA compared to the two MAAs that include a diversity

measure. The shadow for this MAA means that incidence is being

assessed more than a year before sample collection, which does not

meet our pre-specified requirements for MAA performance. We

also compared the two new MAAs to an optimized 2-assay MAA

includes the BioRad-Avidity assay (cutoff,40%) and the LAg-

Avidity assay (cutoff,2.5 OD-n) [10]. The performance of this

MAA was not significantly impacted by the addition of viral load

[10]. As shown in Table 2, the 2-assay MAA has a shorter mean

window period than the two new MAAs (only 119 days; 95% CI:

94, 144) and a longer shadow (247 days, 95% CI: 160, 339 days).

The incidence estimates for the 2-assay MAA differed from the

longitudinal incidence estimates slightly more than the two new

MAAs. Furthermore, the shorter mean window period of the

optimized 2-assay MAA means that surveys would require larger

sample sizes to achieve the same level of precision in incidence

estimates as those obtained using the two new MAAs (see Table 2,

Relative survey size).

Discussion

This report demonstrates that HIV diversity is a useful

biomarker for cross-sectional HIV incidence estimation when

Table 1. Sample sizes used in calculating HIV incidence estimates for three clinical cohorts in the United States with two 4-assay
MAAs.

HPTN 064 HIVNET 001 HPTN 061

Length of follow-up (months)a 6 or 12b 18 12

# HIV negative 1,947 4,175 872

# HIV positivec 33 79d 246

Assays/Test results

1. BioRad-Avidity assay # evaluated 33 79 246

# ,85% 3 24 30

2. LAg-Avidity assay # evaluated 3 24 30

# ,2.9 OD-n 3 20 24

3. Viral load # evaluated 3 20 24

# .400 copies/mL 2 16 13

4. HRM diversity assay # evaluated 2 16 13

# ,4.5 (# MAA positive) 2 16e 9f

4. Sequence ambiguity # evaluated 2 16 12g

# ,0.5 (# MAA positive) 2 15e 9f

Abbreviations: HPTN: HIV Prevention Trials Network; HIVNET: HIV Network for Prevention Trials; MAA: multi-assay algorithm; LAg-Avidity: limited antigen avidity assay;
BioRad-Avidity: avidity assay based on the BioRad 1/2+O EIA; HRM: high resolution melting.
aCross-sectional HIV incidence estimates were obtained by testing samples collected at the end of follow-up in three clinical cohorts: HPTN 064, HIVNET 001, and HPTN
061. The number of HIV-infected vs. HIV-uninfected individuals included in the cross-sectional survey is shown.
bParticipants in HPTN 064 were followed for either 6 or 12 months.
cFor HPTN 064, 33 study participants had samples available for analysis; 28 were seropositive at enrollment, one had acute HIV infection at enrollment, and four
acquired HIV infection during the study. For HIVNET 001, 79 of 90 HIV-infected study participants had samples available for analysis; all 79 participants were HIV-
uninfected at study enrollment. For HPTN 061, 246 participants had samples available for analysis; 218 were seropositive at study enrollment, three had acute HIV
infection at enrollment, and 25 acquired HIV infection during the study.
d73 of these 79 samples were among the 808 samples from HIVNET 001 that were used to determine the window periods and shadows for the MAAs (see Figures 1 and
2).
eOne specimen classed as MAA positive by the HRM-based MAA was classified as MAA negative by the ambiguity-based MAA.
fOne specimen that was classified as MAA negative by the HRM-based MAA was classified as MAA positive by the ambiguity-based MAA.
gOne specimen failed analysis with sequence ambiguity. Because the MAA could not be completed, this specimen was excluded from incidence calculations.
doi:10.1371/journal.pone.0101043.t001
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combined with other assays in a MAA. The HIV incidence

estimates generated for three clinical cohorts using the two MAAs

described in this report were nearly identical to point estimates of

HIV incidence based on longitudinal follow-up. An advantage of

these MAAs is that they do not include CD4 cell count data, which

may be difficult to obtain in cross-sectional surveys. Therefore,

these MAAs allow the entire incidence assessment to be conducted

using stored plasma or serum samples.

In these MAAs, a hierarchical approach is used for testing.

Serologic assays, which are less costly and easier to perform, are

performed first, followed by HIV viral load. HIV diversity

assessments are required only for the small subset of samples with

results that fall below the assay cutoffs for the two serologic assays

and above the cutoff for HIV viral load. The cutoffs used for the

serologic assays (optimized in a previous MAA [10]) are higher

than the cutoffs recommended when the LAg-Avidity and BioRad-

Avidity assays are used in a single-assay format for HIV incidence

estimation. In those cases, assay cutoffs are selected to balance

detection of incident infections with exclusion of long-term

infections. In contrast, in the MAAs presented in this report,

higher cutoffs are used for the serologic assays to maximize

detection of incident infections. Specificity is achieved by using the

two serologic assays in combination, by excluding samples with

low viral load, and by excluding samples with high diversity. The

order in which the two serologic assays are performed impacts the

cost of incidence estimation using these MAAs. Because the

BioRad-Avidity assay identifies a higher proportion of the test

samples as MAA negative than the LAg-Avidity assay (using

cutoffs of ,85% and ,2.9 OD-n, respectively), fewer serologic

assays may be required when the BioRad-Avidity assay is

performed first.

In the MAAs described in this report, samples with viral loads ,

400 copies/mL are classified as MAA negative. Viral suppression

is associated with misclassification by the LAg-Avidity assay [34]

but has not been associated with misclassification using the

BioRad-Avidity assay [35]. Inclusion of viral load in the MAAs is

also helpful, since samples with very low HIV RNA levels are not

likely to be evaluable using the HRM diversity assay or sequence-

based assays, which require a minimal level of HIV RNA for

reverse transcription and PCR amplification (RT/PCR). In

samples that are amplifiable, one should also consider that low

viral load may impact diversity measures due to bottlenecking if

very few HIV RNA copies are used for RT/PCR. A previous

study demonstrated that the HRM diversity assay is only affected

by viral load if the number of copies of HIV RNA used for HRM

analysis is very low (e.g., ,50 copies input HIV RNA,

corresponding to a viral load of ,500 copies/mL for the methods

used in this report) [17]. Therefore, low viral load is not likely to

Table 2. Performance characteristics of MAAs and comparison of cross-sectional incidence estimates to longitudinal incidence
estimates obtained for three clinical cohorts.

Longitudinal cohort HRM-based MAA Sequence ambiguity-based MAA
2-assay MAA (no diversity
measure)*

Method description Gold standarda This report This report Previous report

Mean window period – 141 (113, 168) 131 (103, 156) 119 (94, 144)

Shadow – 177 (132, 250) 172 (122, 251) 247 (160, 339)

Incidence estimate

HPTN 064 0.24% (0.07, 0.62) 0.27% (0.03, 0.98) 0.29% (0.03, 1.07) 0.32% (0.04, 1.17)

HIVNET 001 1.04% (0.70, 1.55) 1.13% (0.63, 1.93) 1.14% (0.62, 1.98) 0.92% (0.45, 1.73)

HPTN 061 3.02% (2.01, 4.37) 2.67% (1.20, 5.28) 2.88% (1.29, 5.70) 4.57% (2.37, 8.24)

Percent differenceb

HPTN 064 – 12.50% 20.83% 33.33%

HIVNET 001 – 8.65% 9.62% 11.54%

HPTN 061 – 11.59% 4.64% 51.32%

Relative survey sizec 0.84 0.91 1.00 (Reference)

*Includes only LAg-Avidity and BioRad avidity assays; addition of viral load did not impact MAA performance.
Abbreviations: HRM: high resolution melting; MAA: multi-assay algorithm; HPTN: HIV Prevention Trials Network; HIVNET: HIV Network for Prevention Trials.
The table compares performance characteristics of the HRM-based MAA (Figure 1), the sequence-ambiguity-based MAA (Figure 1), and a 2-assay MAA described in a
previous report [10]. The 2-assay MAA includes the LAg-Avidity assay (cutoff,2.8 OD-n) and the BioRad-Avidity assay (cutoff,40%); addition of HIV viral load to this
MAA did not improve assay performance [10]. For each MAA, the table shows the mean window period, the shadow, and the cross-sectional incidence estimates
obtained for each cohort. Methods used to calculate cross-sectional incidence estimates and confidence intervals have been described previously [13]. For each
incidence estimate, data presented include the point estimate of incidence (bolded) and the 95% confidence intervals for the incidence estimate (parentheses).
aLongitudinal incidence estimates were obtained previously for the three cohorts, where longitudinal HIV incidence = (number of seroconversion events)/(number of
person-years of follow-up) [28,32,33]. For HPTN 064 (low incidence cohort), longitudinal incidence was assessed over 6–12 months of follow-up (1,639 person/years);
four seroconverters were identified. For HIVNET 001 (medium incidence cohort), longitudinal incidence was assessed between the 12- and 18-month follow-up visits
(2,304 person years); 24 seroconverters were identified. For HPTN 061 (high incidence cohort), longitudinal incidence was assessed over 12 months of follow-up (926
person years); 28 seroconverters were identified.
bThe cross-sectional incidence estimates obtained for each MAA were compared to the longitudinal incidence estimates. The percent difference was calculated by the
following equation: [(absolute value of the cross-sectional incidence estimate minus the longitudinal incidence estimate)6(100)]/(the longitudinal incidence estimate).
cThe relative survey size shows the size of a cross-sectional survey that would be needed for each of the two new MAAs to obtain the same precision that would be
achieved using the previously optimized 2-assay MAA. Because both numbers are ,1, a smaller survey would be needed using either of the two new MAAs.
doi:10.1371/journal.pone.0101043.t002
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impact incidence estimates obtained using the HRM-based MAA.

HIV diversity can also be impacted by clinical and biologic factors.

For example, genetic bottlenecking can occur in vivo in individuals

with advanced HIV disease [7,8,16] and in individuals with

prolonged exposure to a non-suppressive antiretroviral drug

regimen [36]. Higher levels of HIV diversity may also be observed

early in infection if the multiplicity of infection is high (e.g., in

persons who inject drugs) [37] or in cases of dual subtype HIV

infection [38]. These factors should be considered when HIV

diversity is used to assess HIV incidence.

In this study, similar performance was observed for the MAA

that includes the HRM diversity assay and the MAA that includes

sequence ambiguity. The characteristics of these two laboratory

methods are shown in Table S2. Several factors should be

considered when choosing an HIV diversity assay for inclusion in a

MAA. The HRM diversity assay is easier, faster, and less costly to

perform than HIV sequencing. Software has been developed that

automates calculation of single numeric HRM scores from melting

curve data, reducing the effort and variability associated with

manual HRM score calculation [29]. In contrast, the use of

sequencing data to quantify HIV diversity requires more complex

sample and data analysis protocols. The HRM diversity assay uses

the LightScanner instrument, which provides high resolution

melting curves with a high degree of temperature stability. While

DNA melting curve data can be obtained using other instruments

(e.g., those designed for real-time PCR), those instruments

typically provide lower resolution data and greater temperature

variability [39], and data from those instruments have not been

evaluated in MAAs for incidence determination. An advantage of

using sequence ambiguity to quantify HIV diversity is that many

laboratories perform HIV genotyping for resistance testing. The

HIV genotyping system used in this report (the ViroSeq HIV-1

Genotyping System) is commercially available and is used in many

laboratories in the US and elsewhere. In addition to providing

information on antiretroviral drug resistance, sequences generated

using the ViroSeq system can be used for phylogenetic analysis of

HIV in the MAA-positive samples.

Regardless of the method use to quantify viral diversity for HIV

incidence estimation, it is important to note that the level of

genetic diversity varies considerably in different regions of the HIV

genome [40]. The sequence ambiguity-based MAA described in

this report uses sequence ambiguity measures from a defined

portion of the HIV pol region. This region was selected for

convenience since pol data from this region are generated when the

ViroSeq HIV-1 Genotyping System is used for HIV resistance

testing. The region used for analysis with the HRM diversity assay

(ENV1) was selected in a previous study that compared the

performance of eight different regions for inclusion in MAAs for

HIV incidence estimation [13]. Performance of MAAs that

include sequence ambiguity is likely to be different than the

MAA described in this report if a different region were analyzed

(e.g., a different portion of the pol gene or another gene).

The sequence ambiguity measure used in the MAA in this

report is based on the percentage of mixed base positions detected

in a consensus sequence derived from population sequencing.

Detection of mixed base positions is impacted by numerous

factors, including the methods and platform used for sequence

analysis [41,42]. Detection of mixed bases is also impacted by the

amount of HIV RNA used for analysis and the efficiency of the

reverse transcription and amplification steps used to generate

amplicons for sequencing. Furthermore, even when the same

platform and methods are used to generate consensus sequences

(e.g., the ViroSeq HIV-1 Genotyping System used in this report),

the percentage of mixed base positions detected may be impacted

by variation in manual sequence editing, which involves subjective

interpretation of electropherogram data. Different users may

employ different approaches for sequence editing, and results may

vary from user to user [41]. Quality control measures are required

to minimize variation in HIV sequence data analysis that could

impact sequence ambiguity measures [43,44]. Increased cost and

labor and more complex data management protocols would be

required if next generation sequencing were used to generate

diversity measures for cross-sectional incidence studies. Regardless

of the method used to obtain diversity measures for cross-sectional

incidence analysis, strict quality control is needed to ensure the

reproducibility of the data. Furthermore, if the methods used to

quantify HIV diversity are different from those used in this report

(e.g., different genomic region, different sequencing platform, or

alternate sequencing approach) the assay or MAA would need to

be validated using large sample sets, similar to the approach used

in this report.

Both the HRM diversity assay and the sequence ambiguity

assay use DNA primers for reverse transcription and PCR. The

ViroSeq system also uses DNA primers for HIV sequencing. The

HRM diversity assay has been used successfully for analysis of

subtype A, B, C, and D HIV with relatively few assay failures [14],

and the ViroSeq system performs well across a wide range of HIV

subtypes [45]. In this report, which was based on analysis of

subtype B HIV, very few samples failed analysis with either assay.

This study only included samples from the US, which are likely

to be from individuals with subtype B infection. Further studies are

needed to evaluate the performance of HIV diversity-based MAAs

in populations infected with other HIV subtypes since serologic

assays may perform differently in some subtypes [46,47,48].

Additionally, the majority of the samples in this study were from

MSM. The viral populations in MSM may differ from those in

individuals infected through heterosexual contact or injection drug

use [37,49], impacting HIV diversity measures. It is noteworthy

that a previous study demonstrated that HRM scores were similar

in a US cohort (subtype B, MSM) and a cohort from Malawi

(subtype C, women), suggesting that HRM score results may not

be substantially impacted by differences in mode of infection,

subtype, or gender [16].

In summary, this report describes novel MAAs for cross-

sectional HIV incidence estimation in US populations. Future

studies will explore the use of HIV diversity-based MAAs for

analysis of HIV incidence in populations with other HIV subtypes.

Supporting Information
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