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Abstract

Aims: The concealed phase of arrhythmogenic right ventricular cardiomyopathy (ARVC) may initially manifest
electrophysiologically. No studies have examined dynamic conduction/repolarization kinetics to distinguish benign right
ventricular outflow tract ectopy (RVOT ectopy) from ARVC’s early phase. We investigated dynamic endocardial
electrophysiological changes that differentiate early ARVC disease expression from RVOT ectopy.

Methods: 22 ARVC (12 definite based upon family history and mutation carrier status, 10 probable) patients without right
ventricular structural anomalies underwent high-density non-contact mapping of the right ventricle. These were compared
to data from 14 RVOT ectopy and 12 patients with supraventricular tachycardias and normal hearts. Endocardial & surface
ECG conduction and repolarization parameters were assessed during a standard S1-S2 restitution protocol.

Results: Definite ARVC without RV structural disease could not be clearly distinguished from RVOT ectopy during sinus
rhythm or during steady state pacing. Delay in Activation Times at coupling intervals just above the ventricular effective
refractory period (VERP) increased in definite ARVC (43620 ms) more than RVOT ectopy patients (36614 ms, p = 0.03) or
Normals (25616 ms, p = 0.008) and a progressive separation of the repolarisation time curves between groups existed.
Repolarization time increases in the RVOT were also greatest in ARVC (definite ARVC: 18620 ms; RVOT ectopy: 5614,
Normal: 1618, p,0.05). Surface ECG correlates of these intracardiac measurements demonstrated an increase of greater
than 48 ms in stimulus to surface ECG J-point pre-ERP versus steady state, with an 88% specificity and 68% sensitivity in
distinguishing definite ARVC from the other groups. This technique could not distinguish patients with genetic
predisposition to ARVC only (probable ARVC) from controls.

Conclusions: Significant changes in dynamic conduction and repolarization are apparent in early ARVC before detectable
RV structural abnormalities, and were present to a lesser degree in probable ARVC patients. Investigation of dynamic
electrophysiological parameters may be useful to identify concealed ARVC in patients without disease pedigrees by using
endocardial electrogram or paced ECG parameters.
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Introduction

Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) is

a disease of cardiomyocyte adhesion; initial myocyte slippage and

loss of gap junction integrity is followed by more overt structural

changes, with characteristic fibrofatty replacement of cardiomyo-

cytes[1]. These early manifestations of ARVC pose an important

diagnostic challenge, especially in differentiating benign outflow

tract ventricular ectopy from ARVC, as sudden death may occur

in the concealed phase before structural changes appear and an
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early manifestation may simply be right ventricular (RV)

ectopy[2,3].

Pre-clinical work has highlighted putative mechanisms by which

arrhythmias in ARVC may occur. Genetically modified mice

deficient in plakophilin-2 exhibit slow conduction in the absence of

significant histological anomalies and heterozygous desmoplakin

knock out mice have impaired conduction reserve [4–6]. The

association of the cardiac sodium channel with the desmosome as

a functional unit has been proposed as a mechanism by which

these electrophysiological changes may arise without conventional

histological structural changes [7]. Furthermore, abnormalities in

myocyte lineage determination may arise from interactions

between mutant transcripts in ARVC and cell fate pathways [8].

Thus several elegant pathogenic mechanisms have been proposed

that can explain early arrhythmias in ARVC without overt

structural disease.

To date, clinical studies on the electrophysiology of patients

with ARVC have overwhelmingly concentrated on patients with

established ventricular macroscopic structural markers as a

principle feature of their disease. These studies have demonstrated

that patients with ARVC exhibit slow conduction within the right

ventricle and low endocardial bipolar voltages, indicative of

endocardial fibrosis[9,10]. Whether dynamic conduction slowing

is an important distinguishing feature of human disease in the

absence of structural anomalies remains to be fully explored.

We have demonstrated significant dynamic conduction and

repolarization differences between desmoplakin mutation carriers

and controls, but there has been no direct comparison of the

dynamic electrophysiological changes in early ARVC versus

patients with outflow tract ectopy (RVOT ectopy)[6]. This is an

important clinical issue as ARVC patients may initially present

with isolated outflow tract ectopy. In this study we specifically

investigated a population including patients who qualify as

‘‘definite ARVC’’ in the modified Task Force Criteria only because

of a definite family history/mutation carrier status without evidence of

significant structural disease such that they have earlier/milder disease

than customarily reported in ARVC. Patients with benign RV

outflow tract ectopy (RVOT ectopy) can be viewed as an

important control population as they may be expected to exhibit

secondary features & adaptations associated with frequent ectopy.

Differentiation between ARVC and RVOT ectopy groups will

highlight salient disease features rather than merely adaptations to

ectopy.

We hypothesized that patients with early ARVC would exhibit

slowing of conduction & repolarization changes compared to

RVOT ectopy patients under conditions of electrical stress, even

prior to detectable structural disease. Furthermore, we hypothe-

sized these myocardial electrophysiological changes would man-

ifest on the surface ECG which ultimately may be of value in the

development of a diagnostic test.

Methods

Ethics statement
The research was approved by University College London

Hospitals Ethics Committee A (08/H0714/97), prior written

informed consent to participate in this study was obtained from all

participants.

Patient selection
Patients aged 18–65 years with definite or probable ARVC by

modified task force criteria (including familial or genetic criteria)

were prospectively recruited to participate in the study and

informed consent was obtained. All patients underwent detailed

imaging assessment including echocardiography/MRI and were

only included in this study if they did not have major imaging

criteria for ARVC (i.e.: severe RV dilatation, RV aneurysms,

severe segmental RV dilatation)[11]. Different aspects of the

electrophysiology of the patients who carry desmoplakin mutations

have been published elsewhere[6]. Benign right ventricular

outflow tract ectopy (RVOT ectopy group) or supraventricular

tachycardia patients (Normal group) were compared. The RVOT

ectopy group had normal resting and signal averaged ECGs, only

unifocal ectopy, structurally normal hearts on echocardiogram/

CMR and no family history of sudden cardiac death. All

supraventricular tachycardia control patients had normal resting

ECGs and normal echocardiograms. In order to minimize the

likelihood of a patient with their first presentation of hitherto

clinically silent ARVC being misassigned a diagnosis of benign

RVOT ectopy, RVOT ectopy patients were excluded if they had a

recurrence of ventricular ectopy/tachycardia post ablation, all

patients had at least 18 months of follow up.

Genetic testing
10 ml whole blood samples were obtained from ARVC patients

and family members. Genomic DNA was extracted using a

commercially available DNA extraction kit (QIAamp DNA Blood

mini kit, Qiagen). Index cases were part of a larger patient cohort

comprehensively screened for mutations in desmoplakin, plako-

globin, plakophilin-2, desmoglein-2 and desmocollin-2. Primer

pairs for DSP exons were designed in flanking intronic sequences

and are available on request. Polymerase chain reaction (PCR)

amplification and direct sequencing on an ABI 3130 Genetic

Analyzer were performed using standard protocols as previously

described [12-14]. A total of 300 unrelated healthy, ethnically

matched Caucasian volunteers served as controls.

Electrophysiological mapping
The procedure for non-contact mapping has been previously

described in detail elsewhere [15–17]. In brief, the non-contact

array (St Jude Medical, USA) was placed in the right ventricular

outflow tract via the left femoral vein under conscious sedation.

The non-contact array consists of a basket catheter containing 64

electrodes which is placed within a cardiac chamber. Changes in

relative electrode impedance are used to sense the 3D relative

positions of a separate roving catheter, and in this way a 3D

representation of the chamber endocardial geometry is created.

The Ensite system then employs an inverse-Laplacian solution to

the field electrograms, sensed by the array and calculates ‘‘virtual’’

unipolar electrograms over the entire endocardial geometrical

surface. It thus reconstructs the electrical activity on the wall at any

user-designated point. The geometry of the right ventricular

endocardium was created with a steerable quadrapolar mapping

or ablation catheter. Programmed ventricular stimulation was

performed from the right ventricular apex. 3 minutes of steady

state pacing at 400 ms coupling intervals was followed by a S1S2

restitution protocol. This protocol consisted of performing 8 beat

trains of pulses (S1) at 400 ms coupling intervals followed by a

single, premature stimulus (S2). The S1S2 coupling interval was

reduced sequentially from 400 ms by 20 ms until 300 ms, then by

5 ms intervals until failure to elicit a ventricular response

(refractoriness) was reached. The S1S2 interval was increased by

8 ms and then further reduced by 2 ms steps to establish the

Ventricular Effective Refractory Period (VERP) and proximal end

of the restitution curve. Two-second intervals were left between

trains. 12 lead electrocardiograms were recorded throughout the

procedure.
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Offline analyses
Analysis of electrograms. 24 ‘‘virtual’’ unipolar electro-

grams were placed in 4 columns of 6 across the RV chamber on

the Ensite console. Global data was thus acquired from the entire

geometry (Figure 1) and good spatial resolution achieved without

giving overwhelming quantities of data. Electrograms were

exported and analysed using semi-automated custom software

running in Matlab (The Mathworks Inc., MA, USA). Activation

recovery interval (ARI), a well-validated approximation of action

potential duration, was defined as the time between AT and

repolarization time and measured as previously described

(Figure 2) [18]. The slope of ARI restitution was calculated using

the least mean squares method [19]. All electrograms, and the

results of semi-automated analyses, were manually checked by MF

& AA, who were blinded to clinical diagnosis at the time of signal

analysis. Reproducibility of electrogram analysis results were

confirmed by repeating analyses, with intra-operator variability

(Cronbach’s alpha) 0.95 for repolarization and 0.96 for activation

time measurements.

In sinus rhythm, the time from the earliest electrogram recorded

within the right ventricle (RV) to the steepest negative deflection

(dV/dtmin) was used as the local activation time (AT, figure 1). The

sinus rhythm AT of the RV was taken as the time from earliest to

latest recorded RV activation. During pacing, the time from

pacing artifact to dV/dtmin was used as the local AT.

Two methods have been used to measure repolarization times

during non-contact mapping, termed the classical (Wyatt) method

and the alternative method. Both have come under intense

theoretical and experimental scrutiny, and here we present results

using the classical method [20–23]. Though numerical values

differed between the two methods, overall results are similar[18].

Activation repolarization interval (ARI), a well-validated approx-

imation of action potential duration, was defined as the time

between AT and repolarization time and measured as previously

described (figure 2). The slope of ARI restitution was calculated

using the least mean squares method. The RV was divided into 16

anatomic segments, activation and repolarization dynamics were

studied in the apex, RV body and outflow tract [19].

Fractionation of activation was determined by counting the

number of deflections in the differential of the unipolar

electrogram [6,17]. A 30-250Hz filter removed low and high-

frequency interference, and a signal-to-noise ratio cutoff of 0.4Hz

was applied prior to counting. Analysis was performed in sinus

rhythm, steady state pacing and following premature stimulus

2 ms above the ventricular effective refractory period (pre-VERP).

Endocardial regional delay and endocardial local

activation delay. Mean Increase of Delay is a convenient

surrogate measure of conduction velocity restitution. In brief, the

activation time is plotted against coupling interval during a

restitution curve pacing sequence. Mean Increase in Delay refers

to the mean increase in activation time as the coupling interval is

reduced to ERP, and is expressed as millisecond increase in delay

per millisecond reduction in coupling interval (ms/ms). This was

calculated as previously described [6,17,24]. Areas of local

Figure 1. Sinus rhythm electrogram analysis (A) and 3D virtual electrode locations on reconstructed RV shell (B). A) Activation time in
sinus rhythm is taken from the earliest discernable ventricular activation (i.e. start of QRS complex) in any lead, and is measured to the local activation
from the unipolar electrogram (most negative dV/dt, red circle). Local repolarization is given as the sharpest upstroke of the T wave, as with paced
measurements. Time for activation of the RV is thus calculated as the difference between the local AT of the earliest activating electrode (ATearly) to
the local AT of the latest activating electrode (ATlate). B) Virtual electrodes were placed in four rows corresponding to anterior, lateral, medial and
posterior aspects of the RV. They thus covered apex (8 electrodes, 4 segments), outflow tract (8 electrodes, 4 segments) and mid-ventricle (8
electrodes, 8 segments). This enabled global electrograms to be collected without overwhelming quantities of data.
doi:10.1371/journal.pone.0099125.g001
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activation delay during sinus rhythm were determined using

activation gradient quantification as previously described [25].

This technique uses an automated algorithm to calculate of the

slowest progression of an activation wavefront through the cardiac

chamber, and the consistency in the activation wavefront

propagation is expressed as a linear determinant r2 (the closer

the value to 1, the greater the beat to beat consistency).

Paced surface electrocardiogram (ECG) analysis. 12-

lead ECGs were recorded simultaneously during the S1-S2

protocol. Signals were filtered with bandpass settings of 0.1 –

50Hz. Measurements were performed manually using on-screen

calipers at 200 mm/sec (MF & AS) blinded to the patient

diagnosis. Timings were measured from the pacing stimulus to a)

the earliest sharp component of the QRS complex, b) the peak of

the QRS complex c) the end of the QRS complex (i.e. the J-point),

d) the peak of the T-wave and e) the end of the T-wave (figure 3).

These measurements were most consistent throughout the limb

leads. Electrical noise was apparent in a high proportion of chest

lead recordings during 3D mapping, results are thus presented

from limb lead measurements only. Measurements were repeated

3x and the median value used for comparisons. Values presented

represent the median value across the patient’s limb leads.

Intraclass correlation coefficients were 0.98 for intra-observer

variability and 0.96 for inter-observer variability of ECG

measures. Absolute measurements of surface ECG inscriptions

might be very sensitive to the patient-specific placement of the

pacing electrode, our analysis focused on measurements of change

from steady state pacing following premature stimuli (i.e.

hysteresis), guided by the observations of significant changes in

intracardiac activation and repolarization.

Statistical analyses
All statistical computing was performed in R software (R v

2.1.14, R Foundation for Statistical Computing, Vienna [26]).

Continuous parametric data are presented as mean6standard

deviation or, in the case of non-parametric data, median

[interquartile range], unless otherwise specified. Comparisons in

which a single measurement was taken for each subject

(ventricular effective refractory period, dispersion of repolarization

time, activation gradient (r2) and mean increase in delay) were

made using student’s t-test with correction for multiple compar-

isons. Continuous parametric data derived from electrogram data

were modeled using mixed-effects linear regression and statistical

significance was inferred from the model[27].

Mixed-effects logistical regression was used to construct

predictive models aiming to differentiate patient groups based on

electrogram data[28]. Data acquired from electrogram analysis

was added to a logistic regression models, resultant receiver-

operator curves (ROC) were generated and examined for

diagnostic ability. A mixed-effects logistic was created and

covariates removed in a stepwise manner to optimise model fit.

Mixed-effects modeling allowed individual-patient random factors

to be accounted for and included in calculations.

Recursive partitioning (a.k.a. classification and regression trees,

CART) was applied to surface ECG data to determine optimum

cut-offs attempting to distinguish ARVC from a mixed group of

patients. This is a decision-learning technique that enables optimal

splits in a group formed on different observations to occur[29].

Once a split is made, the same process in run on the child groups

until no further gains can be made (hence recursive). Discovery of

optimum decision strategies and cutoffs is rapid, and the outputs

Figure 2. Intracardiac signal analysis. Unipolar electrograms showing the three final activations following a S1S2 train are shown. Timings of
stimulus artifact are indicated by S1, S2. The moment of local activation (A) is taken as the steepest downsloping point of the electrogram complex (A0

– A2). Repolarisation time (RT) is calculated as the time from stimulus to activation. Local repolarization is taken as the most rapid upstroke of the
unipolar T-wave (R0 - R2) and repolarization time is calculated as the time from stimulus to local repolarization. The ARI is the time between activation
and repolarization. Diastolic interval was calculated as A1A2 – A0R0 (i.e. local activation interval minus the steady state ARI). AT: Activation Time, RT,
Repolarization Time, ARI: Activation Repolarisation Index.
doi:10.1371/journal.pone.0099125.g002
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are easily understandable and testable. A p value of ,0.05 was

regarded as statistically significant. The authors had full access to

and take full responsibility for the integrity of the data. All authors

have read and agree to the manuscript as written.

Results

Patient demographics
22 patients with definite (12 pts) or probable (10 pts) ARVC

were studied (mean age 46611 years)[11]. The patients had no

major structural features of ARVC with only 2 demonstrating

minor modified Task Force imaging criteria. Only 6 patients had

T wave inversion in leads V1-V3 and one a slurred S wave on

ECG. The signal averaged ECG was positive in 11 cases (5

mutation positive[14,30,31]). Twelve definite ARVC patients met

the criteria because of their mutation carrier/family history status

and therefore represent a group of patients with very early disease

preceding the development of diagnostic structural abnormalities.

Detailed demographic details are given in Table 1.

25 consecutive patients with monomophic ventricular ectopy

(965268444 beats/24 h), structural normal hearts and normal

resting ECGs underwent non-contact mapping and EP studies. 14

of these patients had .18 m follow-up with no recurrence of

ventricular ectopy off antiarrhythmic medication, and no features

suggestive of ARVC. These patients were analyzed as the RVOT

ectopy group (age 45614 years). Twelve further patients

undergoing electrophysiological studies 6 ablation for supraven-

tricular tachycardia with structurally normal hearts acted as

Normal controls (age 43618 years).

Intracardiac measurements
Sinus rhythm: activation and repolarization. No signifi-

cant differences in RV activation times, ARI or repolarization time

were observed between groups (Table 2).

Quantification of regional and local conduction

delay. Differences in slowest measured activation gradient (a

measure of slowest endocardial conduction in sinus rhythm)

between groups did not reach statistical significance, although

activation gradients in ARVC and RVOT ectopy groups were

20% lower than controls (definite ARVC 0.41617 mm/ms,

probable ARVC 0.41618 mm/ms, RVOT ectopy

0.40616 mm/ms, Normals 0.51613 mm/ms, all p.0.05). r2, a

measure of uniformity of conduction, was higher in both ARVC

groups and in normal controls than in the RVOT ectopy patients

(definite ARVC: 0.9460.07, probable ARVC 0.9460.05, RVOT

ectopy 0.8560.12, Normals:0.9460.07, p,0.05 vs RVOT

ectopy). There were no differences between either of the ARVC

or normal control groups.

Steady state pacing: activation and repolarization. In

steady state pacing, RV activation took significantly longer in

probable ARVC patients than in RVOT ectopy subjects

(98622 ms vs 77622 ms, p = 0.01), but this did not reach

statistical significance in the definite ARVC group (91621 ms)

or normal controls (94628 ms). There was a trend to longer

repolarization times in the ARVC groups when compared to the

RVOT ectopy group (definite ARVC: 308619 p = 0.07, probable

ARVC: 307616 ms p = 0.05, RVOT ectopy: 299632 ms), but no

group was significantly different from normal (303642 ms).

Premature extrastimuli: activation and repolariza-

tion. Examples of restitution curves are illustrated in Figure

S1. Ventricular effective refractory periods (VERPs) were similar

Figure 3. Paced ECG analysis. The final three paced limb-lead ECG complexes following a S1S2 train are shown, with the measurements taken
marked. Stim: Stimulus.
doi:10.1371/journal.pone.0099125.g003
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across groups. Activation times were increased more in the definite

ARVC patients at S1S2 coupling intervals just longer than VERP

(pre-VERP) than in other groups (increase in activation time:

definite ARVC 48612 ms, probable ARVC 37621 ms, RVOT

ectopy 34614 ms, Normal 26616 ms, p,0.001, Figure 4a). The

absolute activation time pre-VERP was also longer in definite

ARVC patients than in RVOT ectopy patients (definite ARVC:

123630 ms, 116635 ms, RVOT ectopy 92628 ms, p,0.001

(Figure 4b). There was a trend towards longer absolute activation

times in ARVC pre-VERP when compared to Normal controls

(104633 ms, p = 0.1).

The activation delay curves were plotted for each electrode in

every patient. Mean increase in delay, a measure of cumulative

delay in activation times over all coupling intervals, were greater in

the ARVC patients (definite ARVC: Median 7.0 [Interquartile

range 3.6–9.3] vs 3.1 [0–5.1] ms2, probable ARVC: 6.3 [3.3–9.5]

ms2) than in RVOT ectopy patients (4.3 [1.4–7.1] ms2, p,0.01) or

Normal controls (3.4 [0–5.2] ms2, p,0.001).

Repolarisation times were compared in a similar manner. The

change in repolarisation time pre-VERP compared to steady state

was +15630 ms in the definite ARVC group, whereas it was

shorter in other groups (probable ARVC +1619 ms, RVOT

ectopy -2623 ms p = 0.01, Normal 27622 ms p,0.01)(Figure 5).
ARI restitution slopes. The maximum slopes of ARI

restitution curves were marginally steeper in the probable ARVC

and RVOT groups compared to normal, but there was no

statistically significant difference between the definite ARVC

group and any other group (definite ARVC: 0.7760.40, probable

ARVC: 0.8760.48, RVOT ectopy: 0.83641, Normal:

0.6860.41; p,0.05). There were no significant differences in the

odds ratio of having a maximum ARI restitution slope of .1 in

any segment between patient groups.

Fractionated electrograms. In sinus rhythm, more frac-

tionation was observed in RVOT ectopy patients than in definite

or probable ARVC or normal controls. However, during pacing at

steady state, RVOT ectopy and both ARVC groups had more

fractionation than normal controls (Figures 6 & 7). At coupling

intervals approaching VERP, the RVOT ectopy group &

probable ARVC groups appeared more fractionated than the

definite ARVC group (p,0.05), which in turn remained more

fractionated than controls (p,0.001).

Logistic models and the paced-surface ECG
Single intracardiac electrophysiological predictors were gener-

ally poor at differentiating definite ARVC from RVOT ectopy,

but an increase in the local activation time of .47 ms at ERP

compared to in steady state pacing gave a sensitivity of 70% and a

specificity of 74% in predicting definite ARVC over RVOT

ectopy. A mixed-effects logistic regression model was created to

explore the predictive potential of combining intracardiac

variables. The resultant model has an area under the curve of

0.85 (Figure 8, Table 3) for differentiating definite ARVC and

RVOT ectopy groups indicating a good level of predictive

accuracy when changes in activation, repolarisation time and

fractionation parameters were included. We considered the

Table 2. Endocardial Conduction and Repolarization Parameters.

Normal RVOT Ectopy Definite ARVC Probable ARVC

n = 12 n = 14 n = 12 n = 10

Baseline Heart Rate 81617 92618 8569 94611

VERP 212623 210613 205616 214618

Sinus Activation Time (ms) 71619 76625 81619 80619

Sinus Repolarization Time (ms) 302644 311649 320640 317642*

Sinus ARI (ms) 230649 235644 239638 237638

Steady State AT (ms) 79629{ 58624* 75622{ 79628{

Steady State ARI (ms) 194625 201620 203623 204619

Steady State Repolarisation Time (ms) 273646 260632 278635 282639{

Mean AT pre-VERP (ms) 104633 92629 123630{{ 117635{

Mean ARI pre-VERP (ms) 161626 166626 170628 167626

Mean RT pre-VERP (ms) 265651 258644 293650{ 284652

Change in AT pre-VERP (ms) 26616 34614 48621***{ 38621*

Change in RT pre-VERP (ms) 27622 22622 15629*{ 1629

Maximum ARI Restitution Slope (ms) 0.6860.41 0.8360.41 0.7760.4 0.8760.48

Fractionation at pre-VERP 2.460.5 3.461.1 361*{ 3.161.1

Fractionation in Steady State 2.560.6 3.460.9 3.161.1* 3.361*

Fractionation in Sinus Rhythm 361.4 3.4461.66 2.8461.31{ 2.9161.1{

Mean Increase In Delay 3.7610.3 4.165.6 6.565.6*{ 7.4615.4

Significance codes:
* p,0.05 vs Normals.
** p,0.01 vs Normals.
***p,0.0001 vs Normals.
{p,0.05 vs RVOT Ectopy.
{{p,0.01 vs RVOT Ectopy.
Note: Activation and Repolarization times are given as means6SD for all measurements throughout ventricle.
HR: Heart Rate, ERP: effective refractory period, ARI: Activation Recovery Index, AT: Activation Time, RT: Repolarization Time.
doi:10.1371/journal.pone.0099125.t002
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intracardiac mapping protocol too complex to recommend as a

practical clinical test however, and sought simpler markers that

may be of diagnostic value. We therefore examined the surface

ECG for discriminators analogous to our intracardiac measure-

ments.

Absolute surface ECG measurements of activation and repo-

larization did not distinguish between RVOT ectopy and ARVC

groups at baseline and pre-VERP. However, significant differences

in paced ECG parameters were identified (Figure 9 & 10A,

Table 4). A greater increase in activation time at ERP by

36613%compared to steady-state was observed in the definite

ARVC group than in the other groups (probable ARVC 21610%,

Normal 21611%, RVOT ectopy 17616%, figure 8B), measured

as an increase in time from pacing artifact to QRS onset (latency),

pacing artifact to nadir of S wave and pacing artifact to end of

QRS complex (J-point). No significant change was observed in

other groups. Application of the model to the combined probable/

definite group gave an AUC of 0.73 (p,0.001) and optimal

sensitivity and specificity of 65% and 67%.

Time from pacing artifact to the end of the T-wave was used as

a surrogate marker of complete repolarization of the ventricles.

This interval increased in definite ARVC patients more than in

either RVOT ectopy patients or the probable ARVC group.

Diagnostic utility of paced ECG changes (CART analysis)
(Figures 7 & 8)

A prolongation in the time from the pacing artifact to the end of

the QRS complex of .48 ms (pre-VERP minus steady state) gave

a sensitivity of 67% and specificity of 88% in the diagnosis of

definite ARVC (figure 10). A reduction in QRS duration of -6 ms

or less was insensitive (sensitivity 50%) but specific (specificity 85%)

for RVOT ectopy. Further partitioning based on a shortening in

the time from stimulus to the peak of the T-wave of greater than -

11 ms distinguished possible ARVC and normal groups, with

sensitivity and specificity at distinguishing these two groups from

one another of 71% and 59% respectively.

Discussion

This is the first study to compare differences in conduction and

repolarization kinetics in an ARVC population with earlier disease

than customarily reported with benign RVOT ectopy cases. The

key findings include: 1) Marked conduction delay in patients with

early ARVC when pacing at short coupling intervals, which was

not evident in sinus rhythm. This exists on a spectrum, with

definite ARVC exhibiting more conduction delay than probable

ARVC patients compared to normals. 2), Progressively longer

local repolarization times as coupling intervals decrease towards

Figure 4. Dynamic changes in activation time. A. Example 3D colormaps showing activation times in steady state and pre-VERP. The change in
activation delay in ARVC patients is greater than in Normal Controls & RVOT Ectopy (RVOTE) patients. Color scale represents local activation time
relative to pacing stimulus. B. Notched box plot of change in activation times from steady state to ERP. Values are normalized to steady state. Notches
indicate approx. 95% confidence intervals.
doi:10.1371/journal.pone.0099125.g004

Dynamic Conduction in Early ARVC vs RVOT Tachycardia

PLOS ONE | www.plosone.org 8 July 2014 | Volume 9 | Issue 7 | e99125



VERP in definite ARVC patients versus normal controls &

RVOT ectopy subjects. 3) Marked differences in fractionation at

short coupling intervals pre-VERP throughout the right ventricle

between patient groups, with more fractionation in both ARVC

and RVOT ectopy patients. 4) Surface ECG biomarkers of

conduction/repolarization dynamics provide diagnostic informa-

tion - an increase in the time from pacing stimulus to full

ventricular activation (defined as the end of the QRS complex i.e.

the ‘‘J-point’’) of greater than 48 ms gave an 88% specificity and

68% sensitivity of distinguishing definite ARVC from other

groups.

Previous clinical studies have demonstrated electrophysiological

abnormalities in established ARVC with significant structural

disease, including prolonged RV activation times in sinus rhythm

and low endocardial bipolar electrogram voltages [9,32]. Howev-

er, this has not been validated for the clinical differentiation of

benign RVOT ectopy or VT from early ARVC. At least 40%

fibro-fatty replacement is required before detectable attenuation of

endocardial voltages occurs and thus disease expression in the

early, concealed phase is missed [32,33]. Although 12 lead ECG

anomalies may precede structural changes, these can be transient

or non-specific [34]. The problem of recognising early ARVC is

reflected in recent amendments to the consensus diagnostic

criteria, which highlight the increasing importance of familial

disease and genetic markers so that a definite diagnosis can be

made utilizing genetic status or a family history of the disease [11].

This means the diagnosis can be made in the absence of obvious

structural disease. Early recognition of disease has potentially

important management implications; including avoidance of

exercise training, ICD prophylaxis and targeted family screening.

An earlier study of desmoplakin mutation carriers demonstrated

that these patients have significantly greater mean increases in

delay during an S1-S2 restitution protocol, particularly in the

outflow tract compared to SVT controls[6].The question arose as

to whether these changes in conduction and repolarization

dynamics are a universal feature of ARVC. This would be

consistent with pre-clinical studies implying arrhythmia mecha-

nisms independent of defined scar. If so, these criteria could be

utilised to differentiate benign RVOT tachycardia from concealed

ARVC. We therefore investigated cases with little or no imaging

abnormalities plus patients classed as borderline ARVC using

updated consensus criteria.

Our observation of an increase in induced conduction slowing

with premature extrastimuli can be regarded as evidence of a lack

of conduction reserve. This is consistent with data implying a

sodium current deficit in murine models of ARVC [4,7,35], and

cross-over between Brugada syndrome and ARVC in the

mechanisms of arrhythmia [5].

Figure 5. Dynamic changes in repolarization time. A. Loess regression plots of Absolute Repolarisation times within the right ventricle are
shown, plotted against coupling interval. There is a marked increase in repolarization times throughout the ventricle at short coupling intervals in the
definite ARVC group compared to other groups. B. Change in repolarization time at ERP compared to steady state. There is a significantly greater
change in definite ARVC groups than in other groups.
doi:10.1371/journal.pone.0099125.g005
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Importantly, it was primarily the family history of ARVC or

mutation carrier status that allocated these patients to the

‘‘Definite ARVC’’ group in our study. In the absence of gene

testing, 4/12 of the definite ARVC cases would be regarded as

borderline. This implies that in a population of combined

probable and definite cases the predictive accuracy of this

partitioning method may be increased. Indeed, when both groups

are combined, the classification tree was able to distinguish any

Figure 6. Global fractionation. Panel A shows a notched boxplot of global mean fractionation index. Fractionation is significantly increased in
RVOT ectopy and ARVC patients compared to normals. Panel B shows example electrograms (light grey) and their mathematical differentials, from
which fractionation index (FI) was calculated. Panel C shows three example colormaps of distribution of fractionation. Higher levels of fractionation
are seen in both RVOT ectopy (RVOTE) and ARVC.
doi:10.1371/journal.pone.0099125.g006

Figure 7. 3D color maps of fractionation measured pre-ERP-distribution in Normal individuals, RVOTE and definite ARVC. There is a
patchy distribution of fractionated electrograms in both RVOTE and in ARVC ventricles.
doi:10.1371/journal.pone.0099125.g007
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ARVC patient from a combined group of RVOT/Normals with a

sensitivity of 67% and specificity of 84%.

We can speculate why a disparity may exist in the degree of

induced activation delays between these two groups. Six patients

in the definite ARVC group exhibited a surface 12-lead ECG

feature of disease at rest, versus none in the probable ARVC group

(Table 1). Lack of conduction reserve would both become more

apparent during the pacing protocol and unmask features seen on

the 12-lead ECG. Both the demographic data and mapping results

imply that the electrical phenotype in our definite ARVC patients

was more severe than in probable ARVC patients.

Even the patients with more advanced disease did not

demonstrate global RV activation delays in sinus rhythm, but it

was more marked at short coupling intervals during RV pacing.

The dynamics of repolarization were also significantly affected,

amplifying effects of conduction delay in ARVC and creating

significantly more prolonged repolarization times pre-VERP than

steady state versus controls and RVOT ectopy patients. Digital

examination of the signal averaged ECG may yet reveal previously

hidden features of conduction delay in these patients, but this fell

outside of the scope of this study.

Figure 8. Receiver-operator characteristic (ROC) curves derived from logistic models of electrophysiological criteria. ROC curves are
shown for the individual determinants of the most predictive model for definite ARVC derived from electrogram data. AT: Activation time, VERP:
Ventricular effective refractory period, Repol Time: Repolarisation Time.
doi:10.1371/journal.pone.0099125.g008

Table 3. Mixed Effects Logistic Regression Model coefficients.

Estimate Std. Error z p

Random Effects

Location 0.2660.51

Fixed Effects

(Intercept) 3.57 0.78 4.57 ,0.0001

Change in AT pre-VERP 20.03 0.01 25.83 ,0.0001

Fractionation in Sinus Rhythm 0.37 0.06 6.11 ,0.0001

Fractionation at VERP 0.40 0.08 4.76 ,0.0001

Repolarization time in Sinus Rhythm 20.01 0.00 23.12 ,0.001

Steady State AT 20.05 0.00 210.1 ,0.0001

doi:10.1371/journal.pone.0099125.t003
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The partitioning tests identified stimulus to T-wave peak

interval as a potential distinguishing feature between normal and

probable ARVC patients. This measure reflects a composite of

activation and repolarisation phenomena, and could be seen as a

surface ECG marker of the intracardiac repolarisation time

changes observed (figure 5).

Endocardial electrophysiological changes in RVOT ectopy
Two phenomena were observed in the RVOT ectopy patients:

consistently shorter repolarisation times versus supraventricular

tachycardia patients and ARVC, cases and increased fractionation

compared to control cases. The shorter repolarisation times may

reflect a memory phenomenon induced by the high ventricular

ectopic burden. A shortening in ARI occurs and with it a

reduction in refractory period, thus allowing local myocytes to be

more susceptible to activation. The high degree of fractionation in

benign RVOT ectopy patients similar to that seen in ARVC also

deserves comment. Conduction delay and fractionation occurs in

ARVC due to fibrofatty replacement and/or dissociation of

preferentially conducting myocardial pathways through reduced

gap junction coupling and Na channel downregulation [4-

6,35,36]. However, the conduction delays measured in benign

RVOT ectopy patients were indistinguishable from normal hearts,

yet significantly more fractionation existed. A single plane of

fibroblasts could explain this by facilitating ectopic formation

through source-sink mismatching & fractionation in one direction

of activation, but preserving conduction in another [37,38]. This

hypothesis could be tested using differential pacing in a future

study. In the ARVC patients, higher r2 values indicating

uniformity of conduction were observed compared to RVOT

ectopy cases. Similarly, we have reported more uniform conduc-

tion in Brugada Syndrome versus controls [17] suggesting that

diseases that promote dissociation of the myocardial layers

whether due to structural or ion channel differences reduce the

contribution of activation from the Purkinje network breaking

through the endocardium to allow more homogeneous &

consistent endocardial activation & wavefront propagation.

Taken together, features of conduction delay, increased

repolarization times and mild fractionation at short coupling

intervals pre-VERP would support a diagnosis of early ARVC

over that of a benign RVOT ectopy, with a logistic model

demonstrating a positive predictive value of 80% from the

presented data. These differences can also be identified simply

using paced-QRS-T-wave parameters.

This study confirms that reduced conduction reserve develops

early in ARVC before detectable structural RV changes on

conventional imaging ensue. This has important implications since

sudden cardiac death can occur in patients with minimal

histological changes in the sub-clinical phase of ARVC and thus

a more sophisticated clinical evaluation using dynamic conduc-

tion-repolarization changes is required [3]. In a recent study, a

positive signal averaged ECG correlated with the size of reduced

Figure 9. Typical ECG examples of J-point hysteresis. Three representative paced ECGs are shown with stimulus to J-point timings of steady
state and pre-VERP beats. The ARVC patient has a markedly extended J-point hysteresis pre-VERP than either normal patient or the RVOT ectopy
patient.
doi:10.1371/journal.pone.0099125.g009
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endocardial voltage regions and histological evidence of cardiomyo-

pathic disease but had a low sensitivity; 21% cases studied still had

evidence of major RV structural abnormalities on imaging, indicating

that static surface ECG markers may be too insensitive in the concealed

phase [39]. In a study examining ventricular ectopic morphology in

ARVC, the extent of structural disease was not described [40]. This

study illustrates that dynamic surface ECG conduction-repolarization

parameters may be of diagnostic value in early disease.

Study limitations
The human mapping technique evaluates endocardial electro-

physiology and thus mid-myocardial and epicardial effects of

ARVC could not be assessed. This is important since structural

changes manifest epicardially prior to progressing endocardially

[40]. Although differences in myocardial electrophysiology between

benign RVOT ectopy patients followed for .18 months post

ablation and ARVC were identified, a prospective long-term follow-

up study of this patient cohort would be required to confirm these

observations. As with any novel disease marker, validation in a de

novo population will be required for an impartial assessment of the

diagnostic utility of paced J-point hysteresis. Logistical regression

models can highlight the differences between groups in this study,

but cannot be taken as a diagnostic test based on the data presented.

The probable ARVC group still represents a diagnostic

dilemma as a gold standard test is lacking, yet our data has

important pathophysiological implications for the understanding

of the development of arrhythmias in this population. Disease

progression in increasingly understood as initially an epicardial

phenomenon, we were not able to examine epicardial effects with

our mapping or pacing strategy. Non-contact mapping may be

insensitive at identifying low-voltage fractionation in small areas.

Conclusions

Early ARVC exhibits greater conduction delay and dispersion

of repolarization, particularly at short coupling intervals, than

either normal hearts or benign RVOT ectopy. Fractionation is

mildly increased in early ARVC, but also significantly in benign

RVOT ectopy. The dynamic differences in conduction, repolar-

ization and fractionation are manifest on the surface paced ECG

& could help refine the early identification of early concealed

ARVC patients from those with benign outflow tract ectopy.

Figure 10. CART analysis. Panel A shows the optimum recursive partition tree. An increase in the time from the stimulus to the end of the paced
QRS complex (J-point) of .48 ms gave a sensitivity of 67% and specificity of 88% for definite ARVC. B and C show raw data for the principal branches.
These measurements were able to distinguish any ARVC patient from RVOT ectopy (RVOTE)/Normal patients with a sensitivity of 67% and specificity
of 84%.
doi:10.1371/journal.pone.0099125.g010
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Supporting Information

Figure S1 Examples of restitution curves from a patient
with ARVC and from a normal control. Repolarisation time,

ARI and activation time are plotted against coupling interval.

Points represent means of four repeated measurements. Early

activated sites are shown in red, late in blue.
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