
Measuring Spatial Extremal Dependence

Yong Bum Cho

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2016



c⃝2016

Yong Bum Cho

All Rights Reserved



ABSTRACT

Measuring Spatial Extremal Dependence

Yong Bum Cho

The focus of this thesis is extremal dependence among spatial observations. In particular,

this research extends the notion of the extremogram to the spatial process setting. Pro-

posed by Davis and Mikosch (2009), the extremogram measures extremal dependence for a

stationary time series. The versatility and flexibility of the concept made it well suited for

many time series applications including from finance and environmental science.

After defining the spatial extremogram, we investigate the asymptotic properties of the

empirical estimator of the spatial extremogram. To this end, two sampling scenarios are

considered: 1) observations are taken on the lattice Zd and 2) observations are taken on a

continuous region in Rd, in which the locations are points of a homogeneous Poisson point

process. For both cases, we establish the central limit theorem for the empirical spatial

extremogram under general mixing and dependence conditions. A high level overview is as

follows. When observations are observed on a lattice, the asymptotic results generalize those

obtained in Davis and Mikosch (2009). For non-lattice cases, we define a kernel estimator

of the empirical spatial extremogram and establish the central limit theorem provided the

bandwidth of the kernel gets smaller and the sampling region grows at proper speeds. We

illustrate the performance of the empirical spatial extremogram using simulation examples,

and then demonstrate the practical use of our results with a data set of rainfall in Florida

and ground-level ozone data in the eastern United States.

The second part of the thesis is devoted to bootstrapping and variance estimation with

a view towards constructing asymptotically correct confidence intervals. Even though the



empirical spatial extremogram is asymptotically normal, the limiting variance is intractable.

We consider three approaches: for lattice data, we use the circular bootstrap adapted to

spatial observations, jackknife variance estimation, and subsampling variance estimation.

For data sampled according to a Poisson process, we use subsampling methods to estimate

the variance of the empirical spatial extremogram. We establish the (conditional) asymp-

totic normality for the circular block bootstrap estimator for the spatial extremogram and

show L2 consistency of the variance estimated by jackknife and subsampling. Then, we

propose a χ2 based portmanteau style test to check the existence of extremal dependences

at multiple lags. The validity of confidence intervals produced from these approaches and

a χ2 based portmanteau style test are demonstrated through simulation examples. Finally,

we illustrate this methodology to two data sets. The first is the amount of rainfall over

a grid of locations in northern Florida. The second is ground-level ozone in the eastern

United States, which are recorded on an irregularly spaced set of stations.



Contents

List of Tables iv

List of Figures v

Acknowledgments vii

Chapter 1 Introduction 1

1.1 Backgrounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Regular variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 The extremogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Modeling spatial extremes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Findings and Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5

Chapter 2 Asymptotic properties of the empirical spatial extremogram 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Definitions and notation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Asymptotics of the ESE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Random fields on a lattice . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Random fields on Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Max Moving Average (MMA) . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Brown-Resnick process . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

i



2.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.1 Lattice case: rainfall in a region in Florida . . . . . . . . . . . . . . . 29

2.4.2 Non-lattice case: ground-level ozone in the eastern United States . . 32

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 Appendix A: Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . 37

2.6.2 Appendix B: Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . 43

2.6.3 Appendix C: Proof of Example 3 . . . . . . . . . . . . . . . . . . . . 55

2.6.4 Appendix D: the condition (2.16) with delta = 1 . . . . . . . . . . . 58

Chapter 3 Resampling methods for the empirical spatial extremogram 67

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Bootstrapped ESE and the variance estimation of the ESE . . . . . . . . . 70

3.2.1 Random fields on the lattice . . . . . . . . . . . . . . . . . . . . . . . 70

3.2.2 Random fields on Rd: subsampling variance estimator . . . . . . . . 77

3.3 The bias corrected confidence intervals and comparison of three approaches 80

3.3.1 The bias corrected confidence intervals . . . . . . . . . . . . . . . . . 81

3.3.2 Comparison of three approaches . . . . . . . . . . . . . . . . . . . . 82

3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.1 Max-Moving Average (MMA) . . . . . . . . . . . . . . . . . . . . . . 83

3.4.2 Brown-Resnick process . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.5 Portmanteau tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.6 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6.1 The lattice case: rainfall in a region in Florida . . . . . . . . . . . . 94

3.6.2 Non-lattice case: ground-level ozone in the eastern United States . . 97

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.8 Appendix: Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.8.1 Appendix A: Proof of Theorem 5 . . . . . . . . . . . . . . . . . . . . 100

3.8.2 Appendix B: Proof of Theorem 6 . . . . . . . . . . . . . . . . . . . . 109

3.8.3 Appendix C: Proof of Theorem 7. . . . . . . . . . . . . . . . . . . . 115

ii



Chapter 4 Conclusion and Future Directions 122

Bibliography 124

iii



List of Tables

3.1 Estimation results from the CBB, subsampling (sn = 10) and jackknife (jk =
10) for the MMA (1) with am = .98 quantile . . . . . . . . . . . . . . . . . . 85

3.2 Estimated variance - covariance matrix for the MMA (1) using subsampling
variance estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.3 95% confidence intervals from the CBB, subsampling (sn = 10) and jackknife
(jk = 10) for the MMA (1) with am = .98 quantile . . . . . . . . . . . . . . 85

3.4 Estimation results from the CBB, subsampling (sn = 10) and jackknife (jk =
10) for the BR process width am = .98 upper quantile . . . . . . . . . . . . 90

3.5 Estimated variance - covariance matrix for the Brown-Resnick process using
subsampling variance estimation (scaled by 100). . . . . . . . . . . . . . . . 90

3.6 95% confidence intervals from the CBB, subsampling (sn = 10) and jackknife
(jk = 10) for the BR process with am = .98 quantile . . . . . . . . . . . . . 91

3.7 The portmanteau test results for 20 hypothesis tests for the MMA(1). . . . 93

3.8 The test statistics (3.38) for am = 0.70 (top), 0.75 (middle) and 0.80 (bottom)
upper quantile. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.9 The cases that the null hypothesis is rejected. . . . . . . . . . . . . . . . . 96

3.10 The deviation of the ESE from subsample and the original data per different
subsampling ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

iv



List of Figures

2.1 The extremogram and the ESE for the MMA(1) measuring the right tail

dependence, with am = .97 (left) and am = (.90,.92,.95,.97) quantile (right). 18

2.2 The extremogram and the ESE for the Brown-Resnick process on lattice (left)

and non-lattice (right) with two different covariance structures. . . . . . . . 22

2.3 The distribution of the ESE for the MMA (1) and BR process on lattice (top),

and the BR process on non-lattice with two bandwidth choices (bottom). . 27

2.4 The region of Florida rainfall data. . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 The locations of extremes and the ESE using the 6 year maxima of Florida

rainfall data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 The ESE of the annual maxima of Florida rainfall from 1999 to 2004. . . . 32

2.7 The region of ozone monitoring station in the eastern United States with

extreme observations defined with different thresholds of .80, .90, .95, and

.97 upper quantiles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 QQ plot of the standard Gumbel and the empirical quantiles (dots) derived

from the empirical distribution of maxima over sets with cardinality K=2. . 34

2.9 The ESE of the maximum ozone data for 1997 with different choices of band-

widths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 The uncertainty of the pre-asymptotic extremogram and empirical spatial

extremogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.2 Overview of the spatial CBB in Z2. . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 The illustration of blocks of blocks jackknife with n = 40, M =10, L =5, b =3. 76

v



3.4 Visual comparison of three variance estimators in d=2. . . . . . . . . . . . . 82

3.5 The 95% bootstrap and the bias corrected confidence intervals the MMA(1). 83

3.6 The 95% confidence interval from the CBB (the bias correction), jackknife,

and subsampling for the MMA(1) . . . . . . . . . . . . . . . . . . . . . . . . 84

3.7 The 95% confidence interval from the CBB (the bias correction), jackknife,

and subsampling for the IMMA . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.8 The comparison of the bootstrap and the bias-corrected confidence interval

for the BR process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.9 The 95% confidence interval from the CBB (the bias correction), jackknife,

and subsampling for the BR process. . . . . . . . . . . . . . . . . . . . . . 89

3.10 The confidence bands for the ESE using the year of 2000 (top) and 2002

(bottom) annual maxima of Florida rainfall data with am = 0.70 (left), 0.75

(middle), 0.80 (right) upper quantiles. . . . . . . . . . . . . . . . . . . . . . 94

3.11 The region of ozone monitoring station in the eastern United States and

subsampling scheme illustration. . . . . . . . . . . . . . . . . . . . . . . . . 98

3.12 The ESE with the .97 upper quantile and c = 3 and 95% confidence interval

from subsampling variance estimators. . . . . . . . . . . . . . . . . . . . . . 99

vi



Acknowledgments

First and foremost, I would like to express my sincere and deepest gratitude to my advi-

sor Professor Richard A. Davis. Not only he has led me towards a better understanding

of subjects and suggested better ways to deliver ideas, but also offered me many incredi-

ble opportunities such as a summer program in Technische Universität München and the

Mathematics and Statistics of Quantitative Risk Management workshop at Oberwolfach.

Through these opportunities, I was able to meet many renowned scholars in person and dis-

cuss many interesting problems, which broadened my knowledge. Also, I am really grateful

to have opportunities to discuss many interesting topics beyond academia and experience a

part of American cultures such as Thanksgiving/Christmas dinner thanks to Richard and

Patti. This journey was impossible without his advice and mentoring, in and outside of the

realm of academia. These experiences, guidance, and advice will never be forgotten.

Without hesitation, I would also like to thank Dr. Souvik Ghosh for his kindness and

patience. I am tremendously grateful that he spent great amount of his time for helping me

to formulate these problems in the thesis, guiding me to solve issues when I was unable to,

and reviewing drafts for journal submissions. Through the entire process, he has encouraged

me so many times in so many ways. His encouragement has made me push my boundaries

of learning further. This dissertation would not have been possible without his support,

extremely helpful suggestions, and kindness.

I am also deeply indebted to Professors Blanchet, Professor Lall, and Professor Ying for

vii



agreeing to serve on my dissertation committee. Research papers by Professor Blanchet and

Professor Lall, and many enlightening discussions with Professor Ying during his classes,

help me to deepen my understanding in various topics related to my dissertation.

Prior to Columbia University, I was fortunate to learn from many professors at Seoul

National University. I thank Professor Byeong U. Park, Jongwoo Jeon, Sangyeol Lee, and

Yoon-Jae Whang for their guidance and support. They motivated me to pursue a doctoral

degree at Columbia.

At Columbia University, I was very fortunate to meet many good colleagues and friends.

Especially, I appreciate the advice and help from Tony Sit, Chien-Hsun Huang, Ivor Cribben,

Heng Lui, Megan O’Malley, Subhankar Sadhukhan, Emilio Seijo, Gongjun Xu, Xuan Yang,

Pengfei Zang, Zunyi Zhang,Christina Steinkohl, Vincenzo Ferrazzano, Vincent Dorie, Radka

Pickova, Ekaterina Vinkovskaya and Phyllis Wan. The memories we have shared and the

times we have spent together all along this journey will stay with me forever.

Many other friends in New York City and Seoul also have supported me in various ways.

I especially thank Eunhyuk Oh from Republic of Korea Army for helping me tremendously

during my first few years in New York and being a good buddy no matter what happened.

I am also very grateful for Youngbok Lee ad Jaegun Jason Kim for being my mentors and

big brothers. I thank for your supports when I went through a personally hard time. I

also thank Wonki Hong, Joonhan Lee, and Hyungrae Yea, who always inspire me. Also,

Edward Kang and Sangwon Park from Seoul National University Alumni Association are

great mentors to have. Thanks to all of you, my life in New York City extremely become

enjoyable and unforgettable. All of you have been very important part of my life over the

years.

Most importantly, I would like to thank my family for their unconditional and endless

support and encouragement. Without them, I would not have been able to achieve this goal

and overcome many difficulties during the journey.

viii



Dedicated to my family

ix



Chapter 1

Introduction

1.1 Backgrounds

There has been increasing interest in studying the behavior of extreme observations since

extreme events impact our lives in so many dimensions. Events like large swings in financial

markets or extreme weather conditions such as floods and hurricanes can cause not only

direct costs such as large financial/property losses and numerous casualties, but also indirect

costs like increased insurance premiums, food price, and maintenance costs. Extreme events

often appear to cluster and that has resulted in a growing interest in studying extremal

dependence in many areas including finance, insurance, and atmospheric science.

One such measure of extremal dependence for a stationary time series is the extremal

index θ ∈ (0, 1] proposed by Leadbetter (1983). The extremal index is a measure of cluster-

ing in the extremes corresponding to the reciprocal of the mean cluster size of extremes (i.e.,

the average size of neighboring excesses over a high threshold). For example, θ = 1 implies

that no clustering among extremes while θ < 1 indicates clustering. Davis and Mikosch

(2009) provided examples with different extremal dependence behaviors: the generalized

autoregressive conditional heteroscedastic (GARCH) process and the heavy-tailed stochas-

tic volatility (SV) process. Both processes posses similar stylized features (e.g., heavy-tailed

marginal distributions, dependent but uncorrelated, volatility clustering), but a GARCH

process has an extremal index θ < 1, while SV process has θ = 1. This suggests that
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identifying extremal dependence can be a critical step in the model selection phase.

Another commonly used measure of extremal dependence for random variables is the

(upper) tail dependence coefficient. For a 2-dimensional vector (X,Y ) with X
d
= Y , the tail

dependence coefficient is defined as

λ(X,Y ) = lim
x→∞

P (X > x|Y > x)

provided the limit exists. The tail dependence coefficient λ ∈ [0, 1] measures the strength of

dependence: λ = 0 if X and Y are independent or asymptotically independent and λ = 1

if X and Y are dependent or asymptotically dependent. The concept can be extended to

a stationary time series {Xt}. In this case, the h-lag tail dependence coefficient would be

λ(X0, Xh) that gives more information on the serial extremal dependence. This turns out

to be a special case of the extremogram.

1.2 Regular variation

In this thesis, we focus on strictly stationary random fields whose finite-dimensional distri-

butions have power law like tails. To be specific, it is assumed that the finite-dimensional

distributions have regularly varying distributions with a tail index α > 0. More formally,

let {Xs, s ∈ I} be a k-dimensional strictly stationary random process where I is either Rd

or Zd. For H = {h1, . . . ,ht} ⊂ I, t ≥ 1, we use XH to denote (Xh1 , . . . , Xht). The random

field is said to be regularly varying with index α > 0 if for any H, the radial part ∥XH∥

satisfies for all y > 0

(C1)
P
(
∥XH∥ > yx

)
P
(
∥XH∥ > x

) → y−α as x → ∞,

and the angular part XH
∥XH∥ is asymptotically independent of the radial part ∥XH∥ for large

values of ∥XH∥, i.e., there exists a random vector ΘH ∈ Stk−1, the unit sphere in Rtk with

respect to ∥ · ∥, such that

(C2) P

(
XH

∥XH∥
∈ ·
∣∣∣∥XH∥ > x

)
w−→ P (ΘH ∈ ·) as x → ∞,
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where
w−→ denotes weak convergence. The distribution of P (ΘH ∈ ·) is called the spectral

measure of XH .

An equivalent definition of regular variation is given as follows. There exists a sequence

an → ∞, α > 0 and a family of non-null Radon measures (µH) on the Borel σ-field of

R̄tk \ {0} such that nP (a−1
n XH ∈ ·) v−→ µH(·) for t ≥ 1, where the limiting measure satisfies

µH(y·) = y−αµH(·) for y > 0 . Here,
v−→ denotes vague convergence. The space of non-

negative and Radon measures becomes a complete separable metric space under the vague

metric. See Davis and Hsing (1995) and Section 6 of Resnick (2006) for more details.

1.3 The extremogram

Davis and Mikosch (2009) proposed the extremogram that is a versatile tool for assessing

extremal dependence in a stationary time series. Consider (Xt) a strictly stationary and

regularly varying sequence of Rd-valued random vectors. For sets A and B bounded away

from zero and an increasing sequence an, the extremogram is defined as

ρAB(h) = lim
n→∞

P (a−1
n Xh ∈ B|a−1

n X0 ∈ A).

It can be viewed as the extreme-value analog of the autocorrelation function of a stationary

time series, i.e., extremal dependence is expressed as a function of lag. In addition, it

allows for measuring dependence between random variables belonging in a large variety

of extremal sets. Depending on choices of sets, many of the commonly used extremal

dependence measures - right (or left) tail dependence or dependence among large absolute

values - can be treated as a special case of the extremogram. The flexibility coming from

arbitrary choices of extreme sets has made the extremogram especially well suited for time

series applications such as high-frequency foreign exchange rates (Davis and Mikosch (2009))

and cross-sectional stock indices (Davis et al. (2012) and Drees et al. (2015)).

The asymptotic normality of the empirical estimate of the extremogram is established

in Davis and Mikosch (2009), while the consistency of the bootstrapped empirical estimate

is discussed in Davis et al. (2012).
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1.4 Modeling spatial extremes

Until recently, statistical modeling of spatial extremes has been difficult due to the lack of

flexible models. The main approaches that have been proposed to overcome this problem

are based on latent variables, on extreme copulas, and on spatial max-stable processes. The

first approach introduces a latent process, conditional on which standard extreme models

are applied (Coles and Casson (1998) and Cooley et al. (2007)). The copula based approach

assumes that the marginal distributions are extreme value distributions, and then specifies a

copula to model the extremal behavior of the joint distributions. Such a copula is called an

extremal copula and one example is the extremal t copula (Demarta and McNeil (2005)).

Lastly, max-stable modeling is first suggested by de Haan (1984) and further developed

by, for example, Kabluchko et al. (2009) and Davis et al. (2013a). Max-stable modeling

accounts for spatial extremal depencey that is consistent with the classical extreme value

theory. Applications to rainfall data can be found in Davison et al. (2012), and to snow

data in Blanchet and Davison (2011).

Regarding these approaches, Davison et al. (2012) concluded that a better spatial mod-

eling of extremes seems to be based on appropriately-chosen copula or max-stable models

since latent variable modeling fits the joint distributions of extremes poorly even though it

offers a better fit to marginal distributions.

Given this discussion, we have been interested in a model identification tool for spatial

extremes. The empirical extremogram in Davis and Mikosch (2009) seems to be a good

starting point since it is a nonparametric estimate and it is capable to distinguishing different

extremal dependence among competing models for a stationary time series (i.e., GARCH

and SV processes). For example, one can compare models and empirical extremograms in

the model selection phase. Moreover, empirical extremograms can be applied to residuals to

check model performance: if significant extremal dependences among residuals are detected,

this implies that a selected model fails to capture extremal dependence.
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1.5 Findings and Outline of Thesis

This thesis generalizes the extremogram from a time series to a spatial setting. An empirical

extremogram is defined and its properties are studied. In particular, the central limit

theorem is established in the increasing domain setting, and we suggest a way to construct

a confidence interval for the extremogram, which builds on the previous studies such as Davis

and Mikosch (2009), Karr (1986), Politis and Romano (1991), Politis and Romano (1993),

and Politis and Sherman (2001). Through simulation examples and real data applications,

the empirical spatial extremogram appears to be a useful and practical tool to explore

spatial extremal dependence.

The thesis consists of two main chapters. Chapter 2 contains the results of the paper

Cho, Y., Davis, R.A., Ghosh, S., 2016. Asymptotic Properties of the Empirical Spatial

Extremogram, Scandinavian Journal of Statistics. 43. 757-773.

Chapter 2 introduces the spatial extremogram, and then investigates the asymptotic proper-

ties of the corresponding empirical extremogram under two sampling scenarios. For strictly

stationary random fields that are regularly spaced in Zd, d > 1, we generalize the idea in

Davis and Mikosch (2009). For irregularly spaced observations in Rd, d > 1, we show the

asymptotic normality for a kernel estimator of the spatial extremogram provided that the

bandwidth of the kernel and the sampling region are coordinated in the right fashion. This

approach adopts the idea of kernel based covariance estimators for irregularly spaced obser-

vations in Karr (1986) and Li et al. (2008). Chapter 2 also contains details of the examples,

simulation method descriptions, and proofs of the theorems.

Chapter 3 discusses the bootstrap and variance estimation procedures for the empirical

spatial extremogram. Chapter 3 is based on

Cho, Y., Davis, R.A., Ghosh, S., Resampling methods for the Empirical Spatial

Extremogram (in preparation).

Estimating the variance of the empirical extremogram is critical in order to make inferences

about extremal dependence. Unfortunately the limiting variance of the empirical spatial ex-

tremogram is intractable. To construct credible confidence intervals, we resort to bootstrap

5



procedures and other variance estimation techniques applied to the spatial setting. As in

Chapter 2, the results are presented for the lattice and non-lattice cases. For the lattice case,

the asymptotic (conditional) normality for a bootstrapped empirical spatial extremogram

is established under the circular block bootstrap adapted to spatial observations. The L2

consistency of the variance estimated by jackknife and subsampling are also proved. For

non-lattice cases, L2 consistency of the subsampling variance estimator is obtained. These

asymptotic properties are based on those established in Politis and Romano (1991), Politis

and Romano (1993), and Politis and Sherman (2001). The confidence intervals derived from

these approaches are compared using simulation examples. In addition, we propose a χ2

based portmanteau test to check the existence of the extremal dependence at multiple lags

and study the performance of this test with max-moving average of order 1.

Both chapters contain application sections, where the results of each chapter are applied

to two data sets. The first is rainfall data in a region of Florida and the second is ground-

level ozone in the eastern United States.
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Chapter 2

Asymptotic properties of the

empirical spatial extremogram

2.1 Introduction

Extreme events can affect our lives in many dimensions. Events like large swings in financial

markets or extreme weather conditions such as floods and hurricanes can cause not only

direct cost such as large financial/property losses and numerous casualties, but also indirect

cost like increased insurance premium, food price, and maintenance cost. Extreme events

often appear to cluster and that has resulted in a growing interest in measuring extremal

dependence in many areas including finance, insurance, and atmospheric science.

Extremal dependence between two random vectors X and Y can be viewed as the

probability that X is extreme given Y belongs to an extreme set. One of well-known

summary measure of extremal dependence is the tail dependence coefficient defined as

λ(X,Y ) = lim
x→∞

P (X > x|Y > x).

Davis and Mikosch (2009) proposed the extremogram that is a versatile tool for assessing

extremal dependence in a stationary time series. The extremogram has two main features:

• It can be viewed as the extreme-value analog of the autocorrelation function of a

stationary time series, i.e., extremal dependence is expressed as a function of lag.
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• It allows for measuring dependence between random variables belonging in a large

variety of extremal sets. Depending on choices of sets, many of the commonly used

extremal dependence measures - right (or left) tail dependence or dependence among

large absolute values - can be treated as a special case of the extremogram. The

flexibility coming from arbitrary choices of extreme sets has made it especially well

suited for time series applications such as high-frequency foreign exchange rates (Davis

and Mikosch (2009)), cross-sectional stock indices (Davis et al. (2012)), and credit

default swap spreads (Cont and Kan (2011)).

In this thesis, we will define the notion of the extremogram for random fields defined on

Rd for some d > 1 and investigate the asymptotic properties of its corresponding empirical

estimate. Let {Xs, s ∈ Rd} be a stationary Rk-valued random field. For measurable sets

A,B ⊂ Rk bounded away from 0, we define the spatial extremogram as

ρAB(h) = lim
x→∞

P (Xh ∈ xB|X0 ∈ xA), h ∈ Rd, (2.1)

provided the limit exists. We call (2.1) the spatial extremogram to emphasize that it is for

a random field in Rd. If one takes A = B = (1,∞) in the k = 1 case, we recover the tail

dependence coefficient between Xh and X0. For light tailed time series, such as stationary

Gaussian processes, ρAB(h) = 0 for h ̸= 0 in which case there is no extremal dependence.

However, for heavy tailed processes in either time or space, ρAB(h) is often non-zero for

many lags h ̸= 0 and for most choices of sets A and B bounded away from the origin.

We will consider estimates of ρAB(h) under two different sampling scenarios. In the

first, observations are taken on the lattice Zd. Analogous to Davis and Mikosch (2009), we

define the empirical spatial extremogram (ESE) as

ρ̂AB,m(h) =

∑
s,t∈Λn,s−t=h I{a−1

m Xs∈A,a−1
m Xt∈B}/n(h)∑

s∈Λn
I{a−1

m Xs∈A}/#Λn
, (2.2)

where

• Λn = {1, 2, . . . . , n}d is the d-dimensional cube with side length n,

• h ∈ Zd are observed lags in Λn,
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• m = mn is an increasing sequence satisfying m → ∞ and m/n → 0 as n → ∞,

• am is a sequence such that P (|X| > am) ∼ m−1,

• n(h) is the number of pairs in Λn with lag h, and

• #Λn is the cardinality of Λn.

The asymptotic normality of (2.2) is established under appropriate mixing/dependence

conditions, which is an extension of the results found for a stationary time series in Davis

and Mikosch (2009).

In the second case, the data are assumed to come from a stationary random field Xs,

where the locations {s1, ..., sN} are assumed to be points of a homogeneous Poisson point

process on Sn ⊂ Rd. Adapting ideas from Karr (1986) and Li et al. (2008), we define the

empirical spatial extremogram as a kernel estimator of ρAB(h), in the spirit of the esti-

mate of autocorrelation in space. Under suitable growth conditions on Sn and restrictions

on the kernel function, we show that the weighted estimator of ρAB(h) is consistent and

asymptotically normal.

The organization of the chapter is as follows: In Section 2.2, we present the asymp-

totic properties of the ESE for both cases described above. Section 2.3 provides examples

illustrating the results of Section 2.2 together with a simulation study demonstrating the

performance of the ESE. In Section 2.4, the spatial extremogram is applied to a spatial

rainfall data set in Florida and ground-level ozone data measured in the eastern United

States. The proofs of all the results are in Appendix.

2.1.1 Definitions and notation

Let {Xs, s ∈ I} be a k-dimensional strictly stationary random process where I is either Rd

or Zd. For H = {h1, . . . ,ht} ⊂ I, we use XH to denote (Xh1 , . . . , Xht). The random field

is said to be regularly varying with index α > 0 if for any H, the radial part ∥XH∥ satisfies

for all y > 0

(C1)
P
(
∥XH∥ > yx

)
P
(
∥XH∥ > x

) → y−α as x → ∞,
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and the angular part XH
∥XH∥ is asymptotically independent of the radial part ∥XH∥ for large

values of ∥XH∥, i.e., there exists a random vector ΘH ∈ Stk−1, the unit sphere in Rtk with

respect to ∥ · ∥, such that

(C2) P

(
XH

∥XH∥
∈ ·
∣∣∣∥XH∥ > x

)
w−→ P (ΘH ∈ ·) as x → ∞,

where
w−→ denotes weak convergence. The distribution of P (ΘH ∈ ·) is called the spectral

measure of XH .

An equivalent definition of regular variation is given as follows. There exists a sequence

an → ∞, α > 0 and a family of non-null Radon measures (µH) on the Borel σ-field of

R̄tk \ {0} such that nP (a−1
n XH ∈ ·) v−→ µH(·) for t ≥ 1, where the limiting measure satisfies

µH(y·) = y−αµH(·) for y > 0 . Here,
v−→ denotes vague convergence. Under the regularly

varying assumption, one can show that (2.1) is well defined. See Section 6.1 of Resnick

(2006) for more details.

2.2 Asymptotics of the ESE

2.2.1 Random fields on a lattice

Let {Xs, s ∈ Zd} be a strictly stationary random field and suppose we have observations

{Xs, s ∈ Λn = {1, ..., n}d}. Let d(·, ·) be a metric on Zd. We denote the α-mixing coefficient

by

αj,k(r) = sup
{
α
(
σ(Xs, s ∈ S), σ(Xs, s ∈ T )

)
: S, T ⊂ Zd,#S ≤ j,#T ≤ k, d(S, T ) ≥ r

}
,

where for any two σ-fields A and B,

α(A,B) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ A, B ∈ B}

and for any S, T ⊂ Zd, d(S, T ) = inf{d(s, t) : s ∈ S, t ∈ T}.

In order to study asymptotic properties of (2.2), we impose regularly varying and certain

mixing conditions in the random field. In particular, we use the big/small block argument,

thus the side length of big blocks (mn) and the distance between big blocks (rn) have to be

coordinated in the right fashion. To be precise, we assume the following conditions.
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(M1) Let Bγ be the ball of radius γ centered at 0, i.e., Bγ = {s ∈ Zd : d(s,0) ≤ γ},

and set c = #Bγ . For a fixed γ, assume that there exist mn, rn → ∞ with m2+2d
n /nd → 0,

rdn/mn → 0 such that

lim
k→∞

lim sup
n→∞

mn

∑
l∈Zd,k<d(0,l)≤rn

P

(
max
s∈Bγ

|Xs| > ϵam, max
s′∈Bγ+l

|Xs′ | > ϵam

)
= 0, for ∀ϵ > 0,

(2.3)

lim
n→∞

mn

∑
l∈Zd,rn<d(0,l)

αc,c(d(0, l)) = 0, (2.4)

∑
l∈Zd

αj1,j2(d(0, l)) < ∞ for 2c ≤ j1 + j2 ≤ 4c, (2.5)

lim
n→∞

nd/2m1/2
n αc,cnd(mn) = 0. (2.6)

The interpretation of conditions in (M1) are as follow:

• Condition (2.3) restricts the joint distributions for exceedance as two sets of points

become far apart,

• Conditions (2.4) - (2.6) impose restrictions on the decaying rate of the mixing functions

together with the level of the threshold specified by mn, and

• Conditions are adapted from Bolthausen (1982) and Davis and Mikosch (2009).

As in Davis and Mikosch (2009), ρ̂AB,m(h) is centered by the Pre-Asymptotic (PA) ex-

tremogram

ρAB,m(h) =
τAB,m(h)

pm(A)
, (2.7)

where τAB,m(h) = mnP (X0 ∈ amA,Xh ∈ amB) and pm(A) = mnP (X0 ∈ amA). Notice

that (2.7) is the ratio of the expected values of the numerator and denominator in (2.2).

Theorem 1. Suppose a strictly stationary regularly varying random field {Xs, s ∈ Zd} with

index α > 0 is observed on Λn = {1, ..., n}d. For any finite H ⊂ Zd which does not contain

0, assume (M1), where Bγ ⊇ H for some γ. Then√
nd

mn

[
ρ̂AB,m(h)− ρAB,m(h)

]
h∈H

d−→ N(0,Σ).
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where the matrix Σ in normal distribution is specified in Appendix A.

We present the proof of Theorem 1 in Appendix A. Examples of heavy-tailed processes

satisfying (M1) are presented in Section 2.3.

Remark 1. Theorem 1 recovers Corollary 3.4 in Davis and Mikosch (2009) when d = 1.

Remark 2. In Theorem 1, the PA extremogram ρAB,m(h) is replaced by the extremogram

ρAB(h) if

lim
n→∞

√
nd

mn
|ρAB,m(h)− ρAB(h)| = 0, for h ∈ H. (2.8)

Thus, if the bias condition (2.8) is met, the asymptotic normality of the ESE is achieved by

centering at its true value. Example 2 discusses a case for which (2.8) is not satisfied.

2.2.2 Random fields on Rd

Now consider the case of a random field defined on Rd and the sampling locations are given

by points of a Poisson process. In this case, we adopt the ideas from Karr (1986) and Li

et al. (2008) and use a kernel estimate of the extremogram. For convenience, we restrict

our attention to R2. The extension to Rd(d > 1) is straightforward, but notationally more

complex.

Let {Xs, s ∈ R2} be a stationary regularly varying random field with index α > 0.

Suppose N is a homogeneous 2-dimensional Poisson process with intensity parameter ν and

is independent of X. Define

N (2)(ds1, ds2) = N(ds1)N(ds2)I(s1 ̸= s2).

Now consider a sequence of compact and convex sets Sn ⊂ R2 with Lebesgue measure

|Sn| → ∞ as n → ∞. Assume that for each y ∈ R2

lim
n→∞

|Sn ∩ (Sn − y)|
|Sn|

= 1, (2.9)

where Sn − y = {x− y : x ∈ Sn} and that

|Sn| = O(n2), |∂Sn| = O(n). (2.10)
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Here, ∂Sn denotes the boundary of Sn.

The spatial extremogram in (2.1) is estimated by ρ̂AB,m(h) = τ̂AB,m(h)/p̂m(A), where

p̂m(A) =
mn

ν|Sn|

∫
Sn

I

(
Xs1

am
∈ A

)
N(ds1), (2.11)

and

τ̂AB,m(h) =
mn

ν2
1

|Sn|

∫
Sn

∫
Sn

wn(h+ s1 − s2) I

(
Xs1

am
∈ A

)
I

(
Xs2

am
∈ B

)
N (2)(ds1, ds2).

(2.12)

Note that wn(·) = 1
λ2
n
w( ·

λn
) is a sequence of weight functions, where w(·) on R2 is a positive,

bounded, isotropic probability density function and λn is the bandwidth satisfying λn → 0

and λ2
n|Sn| → ∞.

To establish a central limit theorem for ρ̂AB,m(h), we derive asymptotics of the denom-

inator p̂m(A) and numerator τ̂AB,m(h). In order to show consistency of p̂m(A), we assume

the following conditions, which are the non-lattice analogs of (2.3) and (2.4).

(M2) There exist an increasing sequence mn and rn with mn = o(n) and r2n = o(mn)

such that

lim
k→∞

lim sup
n→∞

∫
B[k,rn]

mnP (|Xy| > ϵam, |X0| > ϵam)dy = 0, for ∀ϵ > 0, (2.13)

lim
n→∞

∫
R2\B[0,rn)

mnα1,1(y)dy = 0, (2.14)∫
R2

τAA(y)dy < ∞, (2.15)

where B[a, b) = {s : a ≤ d(0, s) < b, s ∈ R2} and τAA(y) = lim
n→∞

τAA,m(y).

For a central limit theorem for τ̂AB,m(h), the following conditions are required.

(M3) Consider a cube Bn ⊂ Sn with |Bn| = O(n2α) and |∂Bn| = O(nα) for 0 < α < 1.

Assume that there exist an increasing sequence mn with mn = o(nα) and λ2
nmn → 0 such

that

sup
n

E


√

|Bn|λ2
n

mn

∣∣τ̂AB,m(h : Bn)− Eτ̂AB,m(h : Bn)
∣∣2+δ

 ≤ Cδ, δ > 0, Cδ < ∞ (2.16)
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where τ̂AB,m(h : Bn) is the quantity (2.12) with Bn instead of Sn. Further assume that∫
R2

τAB(y)dy < ∞ and

∫
R2

α2,2(d(0,y))dy < ∞, (2.17)

sup
l

αl,l(∥h∥)
l2

= O(∥h∥−ϵ) for some ϵ > 0. (2.18)

The condition (2.16) is required to apply Lyapunov’s condition. By choosing n,mn, λn and

a appropriately, one can show (M3) is satisfied. See Example 3.

Lastly, the proof requires some smoothness of the random field.

Definition 1. A stationary regularly varying random field {Xs, s ∈ Rd} satisfies a local

uniform negligibility condition (LUNC) if for an increasing sequence an satisfying P (|X| >

an) ∼ 1
n and for all ϵ, δ > 0, there exists δ′ > 0 such that

lim sup
n→∞

nP

(
sup

∥s∥<δ′

|Xs −X0|
an

> δ

)
< ϵ. (2.19)

Remark 3. If the process is regularly varying in the space of continuous functions in every

compact set, then LUNC is satisfied. See Hult and Lindskog (2006), Theorem 4.4.

Proposition 2 (Hult and Lindskog (2006)). Suppose the space M0 of measures on a com-

plete separable metric space C = C([0, 1] : Rd) of continuous functions [0, 1] → Rd with

the uniform topology given by the supremum norm and Bx,r = {y ∈ C : d(x, y) ≤ r}. Let

ν, µ ∈ M0(C) be nonzero and let {cn} be a regularly varying sequence of positive num-

bers. Then cnν(n·) → µ(·) in M0(C) as n → ∞ if and only if for each integer k ≥ 1 and

(t1, ..., tk) ∈ [0, 1]k

cnνπ
−1
t1,...,tk

(n·) → µπ−1
t1,...,tk

(·)

in M0(R
dk) as n → ∞, and for each r > 0 and each ϵ > 0

sup
n

cnν(n[C \B0,r]) < ∞,

lim
δ→0

sup
n

cnν(x : wx(δ) ≥ nϵ) = 0,

where wx(δ) = sup|s−t|≤δ |x(s)− x(t)|.
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Theorem 3. Let {Xs, s ∈ R2} be a stationary regularly varying random field with index

α > 0 satisfying LUNC. Assume N is a homogeneous 2-dimensional Poisson process with

intensity parameter ν and is independent of X. Consider a sequence of compact and convex

sets Sn ⊂ R2 satisfying |Sn| → ∞ as n → ∞. Assume conditions (M2) and (M3). Then

for any finite set of non-zero lags H in R2,√
|Sn|λ2

n

mn

[
ρ̂AB,m(h)− ρAB,m(h)

]
h∈H → N(0,Σ), (2.20)

where the matrix Σ is specified in the proof of Theorem 1.

We present the proof of Theorem 3 in Appendix B. As in Remark 2, ρAB,m(h) can be

replaced by ρAB(h) if ρAB,m(h) converges fast enough.

Remark 4. In (2.20), ρAB,m(h) can be replaced by ρAB(h) if

lim
n→∞

√
|Sn|λ2

n

mn
|ρAB,m(h)− ρAB(h)| = 0 for h ∈ H. (2.21)

Remark 5. Asymptotic normality of the non-parametric estimates of the extremogram

happens at some bandwidth dependent rate, which is consistent to the corresponding estimate

for the auto-covariance in Karr (1986).

2.3 Examples

As an example, two max-stable processes are provided to illustrate the results of Section

2.2.

As discussed in Davison et al. (2012), for spatial extremes, the main types of models

are based on latent variables, on a spatial copula, and on spatial max-stable processes.

The latent variable modeling does not fit the joint distributions of extremes well since

the approach postulate independence among extremes conditional on the latent process,

even though it has a better marginal distribution fit. Since max-stable modeling has the

potential advantage of considering for spatial extremal dependences that is consistent with

the classical extreme value theory, our examples focus on max-stable process.
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A max-stable process with unit Fréchet marginals Z(s) is a stochastic process satisfying

that for Z(s)i, i = 1, ..., n, that are independent copies of Z(s)

1

n
max

i=1,...,n
Z(s)i

d
= Z(s).

For more background on max-stable processes, see de Haan (1984) and de Haan and Ferreira

(2006). In order to check conditions on strong mixing coefficients, we need the result

from Dombry and Eyi-Minko (2012). We start with the concept of the extremal coefficient

function.

Definition 2 (The extremal coefficient function, Schlather and Tawn (2003)).

Consdier {Zs, s ∈ R2} a stationary max-stable spatial process with unit Fréchet marginals:

P (Zs < z) = exp

(
−
∫

max
s∈R2

g(x, s)

z
v(dx)

)
where g(·, ·) is a non-negative function such that

∫
g(x, s)v(dx) = 1 for s ∈ R2. Then,

P (Zs < z,Zs+h < z) = exp

(
−θ(h)

z

)
where θ(h) =

∫
max{g(x, s), g(x, sh)}v(dx) is defined as the extremal coefficient function.

The below result from Dombry and Eyi-Minko (2012) provides upper bound for α-mixing

coefficient for max-stable processes.

Proposition 2.3.1 (Dombry and Eyi-Minko (2012)). Suppose {Xs, s ∈ S} is a max-stable

random field with unit Fréchet marginals. If S1 and S2 are finite or countable disjoint closed

subsets of S, and S1 and S2 are σ-field generated by each set, then

β(S1,S2) ≤ 4
∑
s1∈S1

∑
s2∈S2

[2− θ(s1, s2)] (2.22)

where β(·, ·) is β−mixing coefficient and θ(·, ·) is the extremal coefficient function. From

Lemma 2, Davis et al. (2013b), the upper bound is equivalent to

4
∑
s1∈S1

∑
s2∈S2

ρ(1,∞)(1,∞)(∥s1 − s2∥).

Notice that (2.22) provides the upper bound for α-mixing coefficient since 2α(S1,S2) ≤

β(S1,S2). See Bradley (1993).
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2.3.1 Max Moving Average (MMA)

Let {Zs, s ∈ Z2} be an iid sequence of unit Fréchet random variables. The max-moving

average (MMA) process is defined by

Xt = max
s∈Z2

w(s)Zt−s, (2.23)

where w(s) > 0 and
∑

s∈Z2 w(s) < ∞. Note that the summability of w(·) implies the pro-

cess is well defined. Also, notice that am = O(m) since marginal distributions are Fréchet.

Consider the Euclidean metric d(·, ·) and write ∥l∥ = d(0, l) for notational convenience.

With w(s) = I(∥s∥ ≤ 1), the process (2.23) becomes the MMA(1)

Xt = max
∥t−s∥≤1

Zs.

Using A = B = (1,∞), the extremogram for the MMA(1) is

ρAB(h) = lim
n→∞

P (Xh > amn |X0 > amn) =



1 if ∥h∥ = 0,

2/5 if ∥h∥ = 1,
√
2,

1/5 if ∥h∥ = 2,

0 if ∥h∥ > 2.

(2.24)

Because the process is 2-dependent, conditions for Theorem 1 are easily checked.

Figure 2.1 (left) shows ρAB(h) and ρ̂AB,m(h) from a realization of MMA(1) generated by

rmaxstab in the SpatialExtremes package in R. We use 1600 points (Λn = {1, ..., 40}2 ∈ Z2)

and set A = B = (1,∞) and am = .97 quantile of the process. In the figure, the dots and the

bars correspond to ρAB(h) and ρ̂AB,m(h) for observed distances in the sample. The dashed

line corresponds to 0.03 (= 1− 0.97) and two horizontal lines are 95% random permutation

confidence bands to check the existence of extremal dependence. Since random permutation

breaks the spatial dependence, the ESE from such data would show no extremal dependency.

See Davis et al. (2012). The bands suggest

ρ(1,∞)(1,∞),m(∥h∥) = 0 for ∥h∥ > 2,

which is consistent with (2.24).
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Figure 2.1: The extremogram and the ESE for the MMA(1) measuring the right tail de-
pendence, with am = .97 (left) and am = (.90,.92,.95,.97) quantile (right).

Now consider w(s) = ϕ∥s∥ where 0 < ϕ < 1. Then the process (2.23) becomes

Xt = max
s∈Z2

ϕ∥s∥Zt−s for
∑
l∈Z2

ϕ∥l∥ =
∑

0≤∥l∥<∞

ϕ∥l∥p(∥l∥) < ∞, (2.25)

where p(∥l∥) = #{s ∈ Z2 : d(0, s) = ∥l∥}. Observe that the process (2.25) is istotropic and

that p(∥l∥) = O(∥l∥) from Lemma A.1 in Jenish and Prucha (2009), and

P (Xt ≤ x) = exp
{
− 1

x

∑
0≤∥l∥<∞

ϕ∥l∥p(∥l∥)
}
, (2.26)

P (X0 ≤ x,Xh ≤ x) = exp
{
− 1

x

∑
s∈Z2

max (ϕ∥s∥, ϕ∥h+s∥)
}

= exp
{
− 1

x

∑
0≤∥l∥<∞

ϕ∥l∥qh(∥l∥)
}
, (2.27)

where qh(∥l∥) = #{s ∈ Z2 : min(∥s∥ , ∥h+ s∥) = ∥l∥}, the number of pairs with minimum

distance to 0 or h equals ∥l∥. If ∥l∥ < ∥h∥ /2, then no point in Z2 is at the distance ∥l∥

from both the origin and h, thus qh(∥l∥) = 2p(∥l∥). On the other hand, qh(∥l∥)/p(∥l∥) → 1

as ∥l∥ → ∞. In other words,
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qh(∥l∥) = 2p(∥l∥) for ∥l∥ < ∥h∥
2 and lim

∥l∥→∞

qh(∥l∥)
p(∥l∥)

= 1.

Now we check the properties of (2.25). First, the max-stability can be easily checked from

P

(
max

i=1,...,n
Xi

t/n ≤ x

)
= P (Xi

t ≤ nx)n = exp

− n

nx

∑
0≤∥l∥<∞

ϕ∥l∥p(∥l∥)

 = P (Xt ≤ x).

For the extremogram with A = B = (1,∞), using the joint distribution in (2.27) and a

Taylor series expansion,

ρ(1,∞)(1,∞)(h) =

∑
∥h∥
2

≤∥l∥<∞ ϕ∥l∥[2p(∥l∥)− qh(∥l∥)]∑
0≤∥l∥<∞ ϕ∥l∥p(∥l∥)

. (2.28)

This is because

P (X0 > x,Xh > x) = 1− (P (X0 ≤ x) + P (Xh ≤ x)− P (X0 ≤ x,Xh ≤ x))

=
1

x

∑
0≤∥l∥<∞

ϕ∥l∥ [2p(∥l∥)− q(∥l∥)] +O

(
1

x2

)
.

Example 1. For the process (2.25), the conditions (2.3)-(2.6) in Theorem 1 are satisfied

if r2n = o(mn), logmn = o(rn) and log n = o(mn).

Proof. Observe that (2.25) is isotropic. By Lemma A.1 in Jenish and Prucha (2009),

p(∥l∥) = O(∥l∥). Thus, (2.22) implies that

αc,c(k) ≤ const (2− θ(0, k))

= const

(
2−

∑
0≤∥l∥<∞ ϕ∥l∥q(∥l∥)∑
0≤∥l∥∞ ϕ∥l∥p(∥l∥)

)

= const

 ∑
k
2
≤∥l∥<∞

ϕ∥l∥q(∥l∥)


≤ const

∫ ∞

k/2
jϕjdj

= O(kϕk)

for any k > 0. Then (2.4) is satisfied as

mn

∑
l∈Z2,rn≤∥l∥

αc,c(∥l∥) = mn

∑
rn≤∥l∥

p(∥l∥)αc,c(∥l∥)

= O
(
mn r3nϕ

rn
)

→ 0
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if logmn = o(rn).

Similarly, (2.5) can be shown. If log n = o(mn), (2.6) holds since (2.22) implies

nd/2m1/2
n αc,cnd(mn) ≤ const n3d/2m1/2

n mnϕ
mn .

Turning to (2.3), notice from (2.26) and (2.27) that

P

(
max
s∈Bγ

|Xs| > ϵam, max
s′∈Bγ+l

|Xs′ | > ϵam

)
≤
∑
s∈Bγ

∑
s′∈Bγ+l

P (Xs > ϵam, Xs′ > ϵam)

≤
∑
s∈Bγ

∑
s′∈Bγ+l

const
ϵam

∑
∥s−s′∥

2
≤j<∞

ϕjj +O

(
1

a2m

)
≤ const

ϕ∥l∥∥l∥2

ϵam
+O

(
1

a2m

)
.

Hence, the term in (2.3) is bounded by

lim sup
n→∞

mn

∑
l∈Z2,k<∥l∥≤rn

[
const

ϕ∥l∥2∥l∥
ϵam

+O

(
1

a2m

)]

=
∑

k<∥l∥<∞

const ϕ∥l∥∥l∥3 + lim sup
n→∞

O

(
mnr

2
n

a2m

)
,

where the second term is 0 as am = O(mn) and r2n = o(mn). Letting k → ∞, we obtain

(2.3).

Figure 2.1 (right) shows ρAB(h) and ρ̂AB,m(h) from a realization of the process (2.25)

with ϕ = 0.5. Here, A = B = (1,∞) and am = (.90,.92,.95,.97) quantiles. The dots are

ρAB(h) and the dashed lines are ρ̂AB,m(h) with different am. The ESE with am = .90 and

.92 quantiles are close to the extremogram for all observed distances while the ESE with

am = .95 and .97 quantiles decay faster for the observed distances greater than 3. The two

horizontal lines are 95% confidence bands based on random permutations.

2.3.2 Brown-Resnick process

We begin with the definition of the Brown-Resnick process with Fréchet marginals. Details

can be found in Kabluchko et al. (2009) or Davis et al. (2013a). Consider a stationary
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Gaussian process {Zs, s ∈ Rd} with mean 0 and variance 1. For the correlation function

ρ(h) = E[ZsZs+h], assume that there exist sequences dn → 0 such that

log(n){1− ρ(dnh)} → δ(h) > 0, as n → ∞.

Use {Zj
s, s ∈ Rd}, j ∈ 1, ..., n, to denote independent replications of {Zs, s ∈ Rd}. Let

(Γi)i≥1 be an increasing enumeration of a unit rate Poisson process, and suppose Y 1, Y 2, ...,

is an iid sequence of random fields on Rd independent of (Γi)i≥1.

Then, the random fields defined by

Xs(n) =
1

n

n∨
i=1

− 1

log (Φ(Zi
s))

, s ∈ Rd, n ∈ N,

converge weakly in the space of continuous function to the stationary Brown-Resnick process

Xs = sup
j≥1

Γ−1
j Y j

s = sup
j≥1

Γ−1
j exp{W j

s − δ(s)}, s ∈ Rd, (2.29)

where {W j
s , s ∈ Rd}, j ∈ N, are independent replications of a Gaussian random field with

stationary increments, W0 = 0 and E[Ws] = 0 and covariance function by cov(Ws1 ,Ws2) =

δ(s1) + δ(s2) − δ(s1 − s2). Here, Φ is the cumulative distribution function of N(0, 1). We

refer to Davis et al. (2013a).

Proposition 2.3.2 (Davis et al. (2013a)). Let {Zs, s ∈ Rd} be a space Gaussian process

with mean 0, variance 1 and correlation funciton ρ(·) which is smooth around the origin.

Use Zs(i), i = 1, 2, ... to denote independent copies of Zs. Assume that there are nonnegative

sequences of constants sn → 0 as n → ∞ and a non-negative function δ satisfying

logn(1− ρ(sn(s1 − s2)) → δ(s1 − s2) ∈ (0,∞), n → ∞ (2.30)

for all s1 ̸= s2, s1, s2 ∈ Rd.

If there exists a metric d on Rd such that

δ(s1 − s2) ≤ (d(s1, s2))
2

then

1

n

n∨
i=1

− 1

log (Φ (Zsns(i)))
(2.31)
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Figure 2.2: The extremogram and the ESE for the Brown-Resnick process on lattice (left)
and non-lattice (right) with two different covariance structures.

converges weakly to a space max-stable process whose bivariate function is given as

F (y1, y2)

:= P (X0 ≤ y1, Xh ≤ y2)

= exp

{
− 1

y1
Φ

(
log(y2/y1)√

2δ(h)
+

√
δ(h)

2

)
− 1

y2
Φ

(
log(y1/y2)√

2δ(h)
+

√
δ(h)

2

)}
. (2.32)

The extremogram for the Brown-Resnick process {Xs, s ∈ Rd} with A = (cA,∞) and
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B = (cB,∞) is

ρAB(h) = Φ̄cA,cB (δ(h)) +
cA
cB

Φ̄cB ,cA(δ(h)), (2.33)

where Φy1,y2 (δ(h)) = Φ

(
log(y2/y1)√

2δ(h)
+

√
δ(h)
2

)
. Here, Φ is the cumulative distribution func-

tion of N(0, 1) and Φ̄ represents the tail cumulative distribution function.

To see (2.33), recall (2.32) from Hüsler and Reiss (1989). As am = O(mn), we assume

without loss of generality that limn→∞
mn
am

= 1.

pm(A) = mn

(
1− e

− 1
cAam

)
=

mn

cAam
+O(

mn

a2m
)

→ 1

cA

= µ(A)

and

τAB,m(h) = mn

[
1− e

− 1
cAam − e

− 1
cBam + F (amcA, amcB)

]
→ 1

cA
Φ̄cA,cB (δ(h)) +

1

cB
Φ̄cB ,cA(δ(h)). (2.34)

Now we find the upper bound for α-mixing coefficient for the Brown-Resnick process.

Similar to Lemma 2 in Davis et al. (2013b), using Proposition 2.3.1, (2.33) and the inequality

Φ̄(x) ≤ 1√
2πx

e−x2/2 for x > 0, α-mixing coefficient of the process is bounded by

αm,n(∥h∥) ≤ 4mn sup
l≥∥h∥

Φ̄(
√

δ(l)/2)

≤ const sup
l≥∥h∥

1√
δ(l)

e−δ(l)/4. (2.35)

In the following examples, the correlation function ρ(h) of a Gaussian process {Zs, s ∈ Rd}

is assumed to have an expansion around zero as

ρ(∥h∥) = 1− θ∥h∥α +O(∥h∥α), h ∈ Rd, (2.36)

where α ∈ (0, 2] and θ > 0. For this choice of correlation function, we have δ(h) = θ∥h∥α

as in Davis et al. (2013b). Recall the condition for continuous sample path from Lindgren

(2012), Section 2.2.
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Proposition 2.3.3 (Lindgren (2012), Section 2.2). Any stationary process with

r(t) = r(0)− const |t|α + o(|t|α)

as t → 0, where r(·) is a covariance function, has continuous sample paths if 1 < α ≤ 2. If

it is a Gaussian process, it is continuous provided 0 < α ≤ 2.

Example 2. Consider the Brown-Resnick process {Xs, s ∈ Zd} with δ(h) = θ ∥h∥α for

0 < α ≤ 2 and θ > 0. The conditions of Theorem 1 hold if log n = o(mα
n), logmn = o(rαn)

and rdn/mn → 0. In this case, (2.8) is not satisfied for d > 0.

Proof. From (2.35), we have αc,c(∥h∥) ≤ const ∥h∥−α/2e−θ∥h∥α/2. If logmn = o(rαn), (2.4)

holds as

mn

∑
l∈Zd,rn≤∥l∥

αc,c(∥l∥) ≤ const mn

∑
rn≤∥l∥

∥l∥d−1αc,c(∥l∥)

≤ const mn

∑
rn≤∥l∥

∥l∥d−1−α/2e−θ∥l∥α/4

≤ const mnr
d−α/2
n e−θrαn/4

→ 0.

Similarly, (2.5) can be checked. For (2.6),

nd/2m1/2
n αc,cnd(mn) ≤ const n3d/2m(1−α)/2

n exp{−θmα
n/4}

which converges to 0 if log n = o(mα
n).

Showing (2.3) is similar to Example 1. From (2.34),

P

(
max
s∈Bγ

|Xs| > ϵam, max
s′∈Bγ+l

|Xs′ | > ϵam

)
≤ const

Φ̄1,1(δ(∥l∥))
ϵam

+O

(
1

a2m

)
.

Hence, the term in (2.3) is bounded by

lim sup
n→∞

∑
l∈Zd,k<∥l∥≤rn

[
const mn

Φ̄1,1(δ(∥l∥))
ϵam

+O

(
1

a2m

)]

≤ const
∑

k<∥l∥<∞

∥l∥d−1e−
θ∥l∥α

4 + lim sup
n→∞

O

(
rdnmn

a2m

)
,

where the second term is 0 since rdn = o(mn). Letting k → ∞, (2.3) is obtained
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Lastly, we show (2.8) does not hold for any d > 0. From (2.34),

|ρAB,m(h)− ρAB(h)| =
1 + o(1)

µ(A)
|τAB,m(h)µ(A)− τAB(h)pm(A)|

=
1 + o(1)

µ(A)
O(mn/a

2
m)

= O(1/mn).

Thus, nd

m3
n
→ 0 is required to have (2.8), which conflicts with the assumption m2+2d

n = o(nd).

Note that similar calculation was done in Lemma 5.4 in Davis et al. (2013b).

In Figure 2.2 (left), we have ρAB,m(h) and ρ̂AB,m(h) from a realization of the Brown-

Resnick process with δ(h) = 4
9 ∥h∥

2 (top) and ∥h∥2 (bottom). We use 1600 points ([1, 40]2 ∈

Z2) to compute the extremogram with A = B = (1,∞) and am = (.95, .97, .98, .99) upper

quantiles. The extremogram is marked by dots and the ESE with different line types

corresponding to various choices of am. From the figure, the ESE is not overly sensitive

to different am, but ρ̂(1,∞)(1,∞),m(h) with am = .97 quantile looks most robust. Also the

extremal dependence seems to disappear for ∥h∥ > 4 based on the random permutation

bands (two horizontal lines).

Example 3. Consider the Brown-Resnick process {Xs, s ∈ R2} with δ(h) = θ∥h∥α for

α ∈ (0, 2] and θ > 0. Assume that logmn = o(rαn) and

sup
n

λ2
nn

2a

mn
< ∞ and sup

n

mn

λ2
nn

2a
< ∞ for 0 < a < 1. (2.37)

Then LUNC, (M2), and (M3) can be verified (see Appendix C), so that Theorem 3 applies.

Furthermore, (2.21) holds if |Sn|λ2
n

m3
n

→ 0.

Remark 6. Using a similar change of variable technique, one can verify that condition

(2.37) satisfies (2.16) with δ = 1. See Appendix D. One of choices that satisfies condition

(2.37) and |Sn|λ2
n

m3
n

→ 0 is a = 7
12 , λn = n−1/3 and mn = n1/2.

To simulate the Brown-Resnick process in R2, we use RPbrownresnick in the Random-

Fields package in R for δ(h) = 4
9 ∥h∥

2 (top) and ∥h∥2 (bottom). In each simulation, first

we generate 1600 random locations in {1, ..., 40}2, where the process is simulated with the
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scale of (1/log(1600))1/a and ρ(·) = (1 + θ ∥·∥a)−1 with a = 2. For the ESE computation,

we use A = B = (1,∞), am = .97 upper quantile. We set w(·) = I[− 1
2
, 1
2
](·), and distances

∥h∥ = (0.5, 1, ..., 4.5, 5). In Figure 2.2 (right), the extremogram and ESE from one real-

ization are displayed. The extremogram ρAB(h) corresponds to connected solid circles and

ρ̂AB,m(h) for different bandwidths λn are displayed in different point types. As will be seen

in Section 2.3.3, smaller variances and larger biases are observed for a larger bandwidth.

The two horizontal lines are the random permutation bands.

2.3.3 Simulations

We use a simulation experiment to examine performances of the ESE. Samples are generated

from models with Fréchet marginals for both lattice and non-lattice cases. For lattice cases,

we consider MMA(1) and the Brown-Resnick process with δ(h) = ∥h∥2. In each simulation,

ρ̂AB,m(h) with A = B = (1,∞) and am = .97 upper quantile is calculated for observed

distances less or equal to 10. This is repeated 1000 times.

For the MMA(1), the steps of simulations are

Step 1: Generate unit Fréchet Zt, t ∈ {1, ..., 40}2 using rmaxstab in R.

Step 2: Construct the MMA(1) using Xt = max∥t−s∥≤1 Zs.

Step 3: Compute the ESE with A = B = (1,∞) and am = .97 upper quantile for ∥h∥ ≤ 10.

Figure 2.3 (upper left) shows the distributions of ρ̂AB,m(h) (box plots), ρAB(h) (red solid

squares) and ρAB,m(h) (blue solid circles) for the MMA(1). Observe that the distributions

is centered at ρAB,m(h), not ρAB(h). Notice that ρAB,m(h) is computed by

P (Xh > am|X0 > am) =
1− 2P (X0 ≤ am) + P (Xh ≤ am, X0 ≤ am)

P (X0 > am)

=
2
m − 1 + (1− 1

m)8/5

1/m
for ∥h∥ = 1,

√
2,

=
2
m − 1 + (1− 1

m)9/5

1/m
for ∥h∥ = 2,

=
1

m
for ∥h∥ > 2,

using P (X > am) = 1
m and P (X ≤ x) = exp−5/x for x > 0. For example, if we use am = .97
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Figure 2.3: The distribution of the ESE for the MMA (1) and BR process on lattice (top),
and the BR process on non-lattice with two bandwidth choices (bottom).

upper quantile, or equivalently m = 0.03−1, P (Xh > am|X0 > am) and the biases are

computed as below.

∥h∥ 1
√
2 2 2 <

PA extremogram 0.4145 0.4145 0.2216 0.03

Bias 0.0145 0.0145 0.0216 0.03

All numbers are rounded to four decimal place.

For the Brown-Resnick process on the lattice, the simulations are the same except Step

1 - Step 2 are replaced by

Step 1∗: Generate the Brown-Resnick process Xt, t ∈ {1, ..., 40}2 by RPbrownresnick in R.
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The upper right panel of the figure presents the distributions of the ESE with ρAB(h)

(solid squares) and ρAB,m(h) (solid circles) for the Brown-Resnick process on the lattice.

The derivation of ρ̂AB,m(h) is from (2.34). Again, the ESE is centered around the PA-

extremogram. In the figure, the PA-extremogram is approximated by

P (Xh > am|X0 > am) ∼
2Φ̄(

√
δ(h)/2)

am
+

2Φ(
√

δ(h)/2)2−1

(am)2

1− e−1/am

since

P (Xh > am|X0 > am)

=
1− 2e−1/am + e−(2Φ(

√
δ(h)/2))/am

1− e−1/am

=
1− 2

(
1− 1

xam
+ 1

2(
1
am

)2 +O(( 1
am

)3)
)

1− e−1/am

+

(
1− 1

am
2Φ(

√
δ(h)/2) + 1

2(
2Φ(

√
δ(h)/2)

am
)2 +O(( 1

am
)3)

)
1− e−1/am

=

2Φ̄(
√

δ(h)/2)

am
+

2Φ(
√

δ(h)/2)2−1

(am)2
+O(( 1

am
)3)

1− e−1/am
. (2.38)

Observe that (2.38) implies that

lim
m→∞

P (Xh > am|X0 > am) = 2Φ̄(
√

δ(h)/2),

which is consistent to (2.33). From the above, we see that ρAB,m(h) − ρAB(h) = O
(
1
m

)
since the right-hand side of (2.38) subtracted by 2Φ̄(

√
δ(h)/2) equals to

2Φ̄(
√

δ(h)/2)

am
+

2Φ(
√

δ(h)/2)2−1

(am)2
+O(( 1

am
)3)−

(
1− e−1/am

)
2Φ̄(

√
δ(h)/2)

1− e−1/am

=

2Φ̄(
√

δ(h)/2)

am
+

2Φ(
√

δ(h)/2)2−1

(am)2
+O(( 1

am
)3)

1− e−1/am

−

(
1
am

− 1
2(

1
am

)2 +O(( 1
am

)3)
)
2Φ̄(

√
δ(h)/2))

1− e−1/am

= O(1/a2m)/O(1/am).

Turning to a non-lattice case, the simulations involve the below steps.

28



Step 1: Randomly generate 1600 locations using Uniform (0, 40)×Uniform (0, 40).

Step 2: Given locations, calculate pairwise distances, then compute δ(·).

Step 3: Simulate the Brown-Resnick process using RPbrownresnick and compute the ESE

with A = B = (1,∞) and am = .97 upper quantile.

Alternatively, one can generate spatial Gaussian process Wsi , i = 1, ..., 1600 from multivari-

ate normal distribution with mean 0 and variance Σ where Σ is derived from

cov(Ws1 ,Ws2) = δ(s1) + δ(s2)− δ(s1 − s2).

Then, repeat the above 100 times to derive the “approximated” max-stable process using

(2.31). Then, the ESE is computed on the “approximated” max-stable process.

The bottom panels of Figure 2.3 is the simulation results from the Brown-Resnick process

in the non-lattice case. For each simulation, 1600 points are generated from a Poisson

process in {1, ..., 40}2, then we compute ρ̂AB,m(h) for ∥h∥ = (0.5, 1, ..., 4.5, 5) using the

bandwidths λn = 1/log n and 5/ log n. This is repeated 100 times. Notice that the ESE

using λn = 1/logn has smaller biases but larger variances compared to the ESE using

λn = 5/log n for h ≤ 2. For longer distances, the differences is not apparent. This indicates

that the ESE with wider bandwidths tends to have smaller variance but larger biases.

2.4 Application

2.4.1 Lattice case: rainfall in a region in Florida

In this section, we apply the ESE to analyze geographical dependence of heavy rainfall in

a region in Florida. The source is Southwest Florida Water Management District. The raw

data is total rainfall in 15 minute intervals from 1999 to 2004, measured on a 120 × 120

(km)2 region containing 3600 grid locations. The region of the measurements is shown in

Figure 2.4.

Buhl and Klüppelberg (2016) studied the spatio-temporal process, constructed by taking

the spatial maximum over a non-overlapping block and daily maximum for each location

is studied and investigated the properties such as max-stability, anisotropy and etc. In
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Figure 2.4: The region of Florida rainfall data.

particular, it was found that 1) a Gumbel distribution fits a block-maxima data over time

for each location well, 2) there is not enough statistical evidence that the data set is not

generated from a max-stable process, and 3) there is little extremal temporal dependences

even for a daily frequency.

For our analysis, we focus on the spatial domain. For each fixed time, we first calculate

the spatial maximum over a non-overlapping block of size 10 × 10 (km)2, which provides

a 12 × 12 grid of spatial maxima. Then, we calculate the annual maxima from 1999 to

2004 and the 6 year maxima from the corresponding time series for each spatial maximum.

The 7 spatial data sets on a 12 × 12 grid under consideration consist of annual maxima

and 6 year maxima of spatial maxima. Following Buhl and Klüppelberg (2016), it is not

unreasonable to view these 6 spatial data sets as realizations from a max-stable process.

Moreover, the data are constructed as a maxima over a spatial grid of 25 locations and a

temporal resolution of 15 minutes intervals.

We first look at the spatial extremal dependence for 6 year maxima rainfall. In Figure

2.5, the locations of extremes (left) and the ESE (right) are displayed, where the ESE is

computed using A = B = (1,∞) and am = .70 (dotted line), .75 (dashed line) and .80 (solid

line) upper quantiles. Since the number of spatial locations is small (144), we chose modest

thresholds in order to ensure enough exceedances for estimation of the ESE. Such thresholds

should provide good estimates of the pre-asymptotic extremogram for a max-stable process.
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Figure 2.5: The locations of extremes and the ESE using the 6 year maxima of Florida
rainfall data.

The locations of extremes are marked corresponding to choices of am by .70 (empty circles),

.75 (empty squares) and .80 (solid circles) upper quantiles. For the ESE plot, the horizontal

lines are permutation based confidence bands. For example, if extreme events are defined

by any rainfall heavier than the .70 upper quantile of the maxima rainfall observed for the

entire periods, there is a significant extremal dependence between two clusters at distance

2. On the other hand, using the .80 upper quantile, the extremal dependence at the same

distance is no longer significant. In the case of 6 year maxima rainfall, the ESE from the .70

upper quantile indicates that no spatial extremal dependence for spatial lags larger than 3.

A small spike of the ESE at spatial lags around 4 may be the result of two extremal clusters

that are 4 units apart, as seen in the left panel of Figure 2.5.

By looking at the ESE of annual maxima rainfall from 1999 to 2004, we see year-over-

year changes in spatial extremal dependence. Figure 2.6 presents the locations of extremes

and the ESE from 1999 to 2004 (left to right, top to bottom). For example, the ESE

suggests that the spatial extremal dependence for lags less than 3 in 2000 is stronger than

at any other year between 1999 and 2004. Using the .80 upper quantile, there is significant

extremal dependence for spatial lag
√
8 in 2000, but not for any other years. In 2002, the

spatial extremal dependence is not significant at ∥h∥ =
√
8 using the .80 upper quantile.

Similarly, the year-to-year comparisons of the ESE with .70 and .75 upper quantiles confirm

31



that the spatial extremal dependence for spatial lags up to 3 is stronger in 2000 than in any

other years.
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Figure 2.6: The ESE of the annual maxima of Florida rainfall from 1999 to 2004.

2.4.2 Non-lattice case: ground-level ozone in the eastern United States

Now we apply the ESE to analyze geographical extremal dependence of ground-level ozone

in the eastern United States. The data is the maximum ozone reading of maximum daily

8-hour averages ozone levels in part per billion (ppb) from April to October 1997, measured
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Figure 2.7: The region of ozone monitoring station in the eastern United States with extreme
observations defined with different thresholds of .80, .90, .95, and .97 upper quantiles.

at 513 ozone monitoring stations. The source is Ozone4H in the extRemes package in R, but

the raw data source is the U.S. Environmental Protection Agency (EPA) National Ambient

Air Quality Standard (NAAQS).

The region of the measurements in the eastern United States is presented in Figure

2.7, where the locations of monitoring stations are denoted as circles. The range of the

maximum ozone reading observed from the region is from 56 ppb to 153 ppb. In the

figure, the station with ground-level ozone greater than the .80 (top left), .90 (top right),

.95 (bottom left), and .97 (bottom right) upper quantiles are marked with triangles. For

example, in the bottom right panel, the station with ground-level ozone greater than the

.97 upper quantile, corresponding to 136 ppb, is presented with triangles. One can see that

the extreme cluster is located on the north eastern part of the region and that the extreme

clusters do not spread until a low threshold, such as .80 quantile, is used.

Given only the maximum ozone reading is available, marginal distributional analysis

over time at a fixed location is not possible. However, some assumptions can bee justified.

First, we check if the data are from a max-stable process. Because the data are constructed

as a maxima over a temporal resolution of 8-hour averages for 6 month periods, it is not

unreasonable to view these data points as realizations from a max-stable process. How-
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Figure 2.8: QQ plot of the standard Gumbel and the empirical quantiles (dots) derived
from the empirical distribution of maxima over sets with cardinality K=2.

ever, we used the procedure outlined in Gabda et al. (2012) to check max-stability of the

bivariate distributions. This test is based on the idea that under the null hypothesis of

max-stability, maxima taken over sets follow the standard Gumbel distribution after lo-

cation shifts, where the latter can be estimated. Then one can graphically compare the

transformed sample maxima with the standard Gumbel distribution using a QQ plot. The

test showed no contradictory evidence of max-stability, as seen in Figure 2.8, where the

empirical distribution of maxima from bivariate distributions (dots) and 95% confidence

bands (two dashed lines) are presented. As one can see, the diagonal line is between the

confidence bands, indicating that there is no statistically significant evidence that the data is

not max-stable. For the convenience, the graphical results use 200 points that are randomly

selected from

(
513

2

)
pairs. We did not pursue higher dimensional distributions.

In terms of stationarity, it is often a reasonable assumption from the modeling perspec-

tive. Spatial stationarity is a difficult condition to verify from real data. For example, data

can often look stationary even when generated by stochastic volatility data. It is often

difficult to discriminate between regular variation and exact max-stable marginals from a

sample. So although max-stability is a simplifying assumption, it is not a bad first step in

modeling.

34



Figure 2.9: The ESE of the maximum ozone data for 1997 with different choices of band-
widths.

For the ESE, the great-circle distances are used as in Gilleland and Nychka (2005).

The shortest distance over the earth’s surface is calculated from longitude/latitude of the

stations using the haversine formula. The unit for distance is chosen as 100 mile. Then,

the ESE using A = B = (1,∞) and the .97 upper quantile with different bandwidths

λn = c/ log n for c = 1, 2, 3, 4, and 5 are calculated for every 25 miles interval, as shown in

Figure 2.9. It turns out that 1
logn in the bandwidth corresponds to 8 miles. For example,

ρ̂AB,m(1) with λn = 1
logn is estimated by using pairs of points whose distances are between

92 and 108 miles.

From the figure, it is noted that the ESE is robust with respect to bandwidths choices.

The extremal dependence of ground-level ozone is below 0.4 even for the short distance of 25

miles and it disappears for ∥h∥ > 100 miles, indicated by random permutation bands (two

horizontal lines). These observations are aligned with Gilleland and Nychka (2005) and

Gilleland et al. (2006), where the authors found that the spatial dependence in the fourth-

highest daily maximum 8-hour average ozone level fields is limited to a short distance less

than 100 miles. The dashed line corresponds to 0.03 (= 1− 0.97).
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2.5 Conclusion

In Chapter 2, we study the spatial extremogram that is defined as the extremogram for data

for higher dimensions. We also examine the asymptotic properties for the empiricial spatial

extremogram (the ESE) under two sampling scenarios - when the samples are from the

lattice and non-lattice. For the lattice case, the asymptotic results of the ESE can be viewed

as a generalization of the asymptotic results for a stationary time series in Davis and Mikosch

(2009). In particular, the limiting variance and the scaling term need to be coordinated

by a dimension to achieve the central limit theorem. For a non-lattice case, we consider

a kernal estimator following ideas in Karr (1986) and Li et al. (2008). We find that the

central limit theorem for the ESE holds when the growth rates of bandwidths and sampling

regions, and the decay rates of dependence and mixing functions are coordinated. The

performance of the ESE under both sampling schemes is demonstrated with the simulations,

which confirms that the ESE is capable of capturing theoretical aspects of the simulated

processes. Moreover, real data applications to a heavy rain fall data in a region of Florida

and ozone data in the eastern United States show that the ESE provides consistent results

with the existing literatures, thus it can be used as a tool to analyze the spatial extremal

dependency.

2.6 Appendix: Proofs

The following proposition presented by Li et al. (2008) is used in the proof. The proposition

is analogous to Theorem 17.2.1 in Ibragimov and Linnik (1971).

Proposition 2.6.1 (Lemma A.1. in Li et al. (2008)). Let U and V be two closed and

connected sets in Rd such that #U = #V ≤ b and d(U, V ) ≥ r for some constants b and r.

For a stationary process Xs, consider ξ and η measurable random variables with respect to

σ(Xs : s ∈ U) and σ(Xs : s ∈ V ) with |ξ| ≤ C1, |η| ≤ C2. Then |cov(ξ, η)| ≤ 4C1C2αb,b(r).
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Proof. Using the properties of conditional expectation,

|E(ξη)− EξEη| = |E(ξ[E(η|A)−E(η)])|

≤ C1E|E(η|A)− E(η)|

= C1E(ξ̃(E(η|A)− E(η)))

where ξ̃ = sgn{E(η|A)− E(η)}, measurable w.r.t. A and C1 is a constant. Thus,

|E(ξη)− EξEη| ≤ C1|E(ξ̃η)− E(ξ̃)E(η)|.

Similarly, define η̃ = sgn{E(ξ̃|B)− E(ξ̃)}, to give

|E(ξη)− EξEη| ≤ C1C2|E(ξ̃η̃)− E(ξ̃)E(η̃)|

where C2 is a constant. Now introduce the events C = {ξ̃ = 1} ∈ A and D = {η̃ = 1} ∈ B.

Then, |E(ξ̃η̃)− E(ξ̃)E(η̃)| is bounded by

|P (CD) + P (CcDc)− P (CcD)− P (CDc)− P (C)P (D)− P (Cc)P (Dc) + P (C)P (Dc) +

P (Cc)P (D)|

which is again bounded by 4αb,b(r)

2.6.1 Appendix A: Proof of Theorem 1

Theorem 1 is derived from Theorem 4. For notation, we suppress the dependence of m on

n and write m for mn. Define a vector valued random field by

Yt = XDt , where Dt = t+Bγ = {s ∈ Zd : d(t, s) ≤ γ}.

Theorem 4 will prove a central limit theorem for

P̂m(C) =
mn

nd

∑
t∈Λn

I{Yt/am∈C}

=
mn

nd

∑
t∈Λp

n

I{Yt/am∈C} +
mn

nd

∑
t∈Λn\Λp

n

I{Yt/am∈C}, (2.39)

where Λp
n = {t ∈ Λn|d(t, ∂Λn) ≥ p} and ∂· denotes the boundary. In fact, showing a central

limit theorem for the first term in (2.39) is sufficient as the second term is negligible as

n → ∞.
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Recall that pm(A) = mP (X0 ∈ amA) and τAB,m(h) = mP (X0 ∈ amA,Xh ∈ amB),

where A and B are sets bounded away from the origin. Write

µ(A) = lim
n→∞

pm(A),

τAB(h) = lim
n→∞

τAB,m(h),

µA(D0) = lim
x→∞

P

(
Yt

∥Yt∥
∈ A

∣∣∣∥Yt∥ > x

)
, and

τA×B(D0 ×Dl) = lim
x→∞

P

(
(Y0, Yl)

∥vec{Y0, Yl}∥
∈ A×B

∣∣∣∥vec{Y0, Yl}∥ > x

)
.

Theorem 4. Assume the conditions of Theorem 1. Let C be a set bounded away from zero

and a continuity set with respect to µ(·) and τ(h) for h ∈ Rd. Then

Sn =
(mn

nd

)1/2 ∑
s∈Λn

[
I

(
Ys
am

∈ C

)
− P

(
Ys
am

∈ C

)]
d−→ N(0, σ2

Y (C))

where σ2
Y (C) = µC(D0) +

∑
l̸=0∈Zd τC×C(D0 ×Dl).

Proof. We use ideas from Bolthausen (1982) and Davis and Mikosch (2009) to show the

central limit theorem for

P̂m(C) = mn
∑

s∈Λn
Is/|Λn| where Is = I{Xs/am∈C}.

The proof for the central limit theorem of Xs replaced by a vector valued random field Ys

in indicator is analogous.

Define H[a, b] = {d(s, t) : a ≤ d(s, t) ≤ b} and ∥l∥ = d(0, l) for convenience. Assume

that m2+2d
n = o(nd) and

lim
k→∞

lim sup
n→∞

mn

∑
l∈Zd,∥l∥∈H(k,rn]

P (|Xl| > εam, |X0| > εam) = 0, for ∀ϵ > 0, (2.40)

lim
n→∞

mn

∑
l∈Zd,∥l∥∈H(rn,∞)

α1,1(∥l∥) = 0, (2.41)

∑
l∈Zd

αj1,j2(∥l∥) < ∞ for 2 ≤ j1 + j2 ≤ 4, (2.42)

lim
n→∞

nd/2m1/2
n α1,nd(mn) = 0, (2.43)

which are univariate case analog of conditions (2.3) - (2.6).
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By the same arguments in Davis and Mikosch (2009),

EP̂m(C) → µ(C), (2.44)

var
(
P̂m(C)

)
∼ mn

nd

µ(C) +
∑

l̸=0∈Zd

τCC(l)

 =
mn

nd
σ2
X(C), (2.45)

where (2.44) is implied by the regularly varying assumption. To see (2.45), observe that

nd

mn
var

(
P̂m(C)

)
=

mn

nd

∑
s∈Λn

var(Is) +
mn

nd

∑
s,t∈Λn,s ̸=t

cov(Is, It)

= A1 +A2.

By the regularly varying assumption, A1 = pm(C)− (pm(C))2/mn → µ(C).

Turning to A2, for k ≥ 1 fixed, we have

A2 ∼ mn

nd

∑
l=(l1,...,ld )̸=0,∥l∥≤maxΛn

Πd
i=1(n− |li|)cov(I0, Il)

=
mn

nd

 ∑
l∈Zd,∥l∥∈H(0,k]

·+
∑

l∈Zd,∥l∥∈H(k,rn]

·+
∑

l∈Zd,∥l∥∈H(rn,maxΛn]

·


= A21 +A22 +A23,

where maxΛn = {max(d(s, t)) : s, t ∈ Λn}. Note that Πd
i=1(n − |li|) counts a number of

cubes with lag l in Λn.

From the regularly varying assumption, lim
k→∞

lim sup
n→∞

A21 =
∑

l̸=0∈Zd

τCC(l) since

lim sup
n→∞

A21 =
∑

l∈Zd,∥l∥∈H(0,k]

lim sup
n→∞

(
τCC,m(C)− pm(C)2

mn
+
(mn

n

))
=

∑
l∈Zd,∥l∥∈H(0,k]

τCC(l).

Thus, it is sufficient to show

lim
k→∞

lim sup
n→∞

(|A22|+ |A23|) = 0

to achieve (2.45). Recall that C is bounded away from the origin. Notice that

A22 ≤ const mn

∑
l∈Zd,∥l∥∈H(k,rn]

[
P (|Xl| > εam, |X0| > εam) +

(
pm(C)

mn

)2
]
,

A23 ≤ const mn

∑
l∈Zd,∥l∥∈H(rn,∞)

α1,1(∥l∥),
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so (2.45) holds assuming (2.40), (2.41) and rdn/mn → 0.

Now, we prove√
nd

mn
(P̂m(C)− pm(C)) =

√
mn

nd

∑
s∈Λn

Īs,
d−→ N(0, σ2

X(C)) (2.46)

where Īt = I
(

Xt
am

∈ C
)
− P

(
X
am

∈ C
)
. First, we infer from the argument showing (2.45)

that

mn

nd

∑
s,t∈Λn

|cov(Īs, Īt)| = |A1 +A2| < ∞. (2.47)

As the next step, define

Sα,n =
∑

β∈Λn,d(α,β)≤mn

√
mn

nd
Īβ,

vn =
∑
α∈Λn

E(

√
mn

nd
ĪαSα,n),

S̄n = v−1/2
n Sn,

S̄α,n = v−1/2
n Sα,n.

From the definition, vn ∼ var(Sn) → σ2
X(C). Now, we use Stein’s lemma to show (2.46) as

done in Bolthausen (1982) by checking limn→∞E((iλ− S̄n)e
iλS̄n) = 0 for all λ ∈ R. Write

(iλ− S̄n)e
iλS̄n = iλeiλS̄n(1− v−1

n

∑
α∈Λn

√
mn

nd
ĪαSα,n)

−v−1/2
n eiλS̄n

∑
α∈Λn

√
mn

nd
Īα[1− e−iλS̄α,n − iλS̄α,n]

−v−1/2
n

∑
α∈Λn

√
mn

nd
Īαe

−iλ(S̄n−S̄α,n)

= B1 +B2 +B3.

We will show E|B1|2 = λ2v−2
n

∑
α,α′,β,β′,d(α,β)≤mn,d(α′,β′)≤mn

m2
n

n2d cov(ĪαĪβ, Īα′ Īβ′) → 0.

From Proposition 2.6.1,

|cov(ĪαĪβ, Īα′ Īβ′)| ≤ 4 α2,2(d(α, α
′)− 2mn) if d(α, α′) ≥ 3mn.
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When d(α, α′) < 3mn, let j = min{d(α, α′), d(α, β′), d(β, α′), d(β, β′)}. Then

|cov(ĪαĪβ, Īα′ Īβ′)| ≤ 4 αp,q(j)

for 2 ≤ p + q ≤ 4. To see this, for d(α, α′) < 3mn, let min{d(α, α′), d(α, β), d(α, β′)} = j

and k = min{d(β, β′), d(β, α′)}. Then we have

|cov(ĪαĪβ, Īα′ Īβ′)| = |E(ĪαĪβ Īα′ Īβ′)−E(ĪαĪβ)E(Īα′ Īβ′)|

≤ |E(ĪαĪβ Īα′ Īβ′)−E(Īα)E(Īβ Īα′ Īβ′)|

+|E(Īα)E(Īβ Īα′ Īβ′)−E(Īα)E(Īβ)E(Īα′ Īβ′)|

+|E(Īα)E(Īβ)E(Īα′ Īβ′)− E(ĪαĪβ)E(Īα′ Īβ′)|

≤ α1,3(j) + α1,2(j) I (j ≤ k) + α1,2(k) I (j > k) + α1,1(j).

Provided m2+2d
n = o(nd), we have E|B1|2 → 0 since

E|B1|2 ≤ λ2

v2n

m2
n

n2d

∑
α∈Λn

∑
α′∈Λn∩{d(α,α′)>3mn}

∑
β,β′

∣∣cov(ĪαĪβ, Īα′ Īβ′)
∣∣

+
∑
α∈Λn

∑
α′∈Λn∩{d(α,α′)≤3mn}

∑
β,β′

∣∣cov(ĪαĪβ, Īα′ Īβ′)
∣∣

≤ λ2

v2n

m2
n

n2d
4

∑
α∈Λn

∑
α′∈Λn∩{d(α,α′)>3mn}

∑
β,β′

α2,2(d(α, α
′)− 2mn)

+
∑
α∈Λn

∑
α′∈Λn∩{d(α,α′)≤3mn}

∑
β,β′

αp,q(j)


≤ const

λ2

v2n

m2
n

n2d
ndm2d

n

 ∑
l∈Zd,∥l∥∈H(3mn,∞)

α2,2(∥l∥ − 2mn)

+
∑

l∈Zd,∥l∥∈H[0,3mn]

αp,q(∥l∥)

 (∗)

= O(m2+2d
n /nd).

Notice that in (*), ndm2d
n is from summing over α (giving nd), β (giving O(md

n)), and β′

(giving O(md
n)) for the first summation and α (giving nd), β (giving O(md

n)) and β′ (giving
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O(md
n)) or α

′ (giving O(md
n)) depending on the location of points for the second summation.

The last equation is from (2.42).

Now we show E|B2| → 0 if m2+2d
n = o(nd). Recall that |eix − 1− ix| ≤ 1

2x
2, then

E|B2| ≤ cv−1/2
n nd

√
mn

nd
ES̄2

α,n

= cv−1/2
n

√
mn

nd
mn

∑
β,β′,d(0,β)≤mn,d(0,β

′)≤mn

E(Īβ Īβ′)

≤ c

√
mn

nd
md+1

n

∑
l∈Λn

E(Ī0Īl)

= O

√m1+2d
n

nd


where mn

∑
l∈Λn

E(Ī0Īl) < ∞ is inferred from (2.47).

The condition (2.43) implies

|EB3| ≤ cv−1/2
n nd

√
mn

nd
α1,nd(mn)

= cnd/2m1/2
n α1,nd(mn)

→ 0.

Thus, Stein’s lemma is satisfied, which completes the proof.

Remark 7. P̂m(C) is a consistent estimator of µ(C). If µ(C) = 0, var (P̂m(C)) =

o(mn/n
d).

Remark 8. In fact, (2.3) - (2.6) are derived from (2.40) - (2.43) by replacing univariate

process (Xt) by vectorized process (Yt). In order to see (2.3) is derived from (2.40), for

example, consider Euclidean norm for (Yt) process. Then, the vectorized analog of (2.40) is

lim
k→∞

lim sup
n→∞

mn

∑
l∈Zd,∥l∥∈H(k,rn]

P (∥Y0∥ > ϵam, ∥Yl∥ > ϵam) = 0,

which holds under (2.3) by triangular inequality, i.e.,

P (∥Y0∥ > ϵam, ∥Yl∥ > ϵam) ≤ P (
∑
s∈D0

|Xs| > ϵam,
∑
s′∈Dl

|Xs′ | > ϵam)

≤ P

(
max
s∈D0

|Xs| >
ϵam
|D0|

, max
s′∈Dl

|Xs′ | >
ϵam
|Dl|

)
.
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The rest of the derivations are straightforward.

Proof of Theorem 1. Apply the Cramér-Wold device to Theorem 4 to achieve the multi-

variate central limit theorem, then use δ-method to obtain the central limit theorem for the

ESE. To specify the limiting variance Σ, redefine

µ(A) = lim
x→∞

P

(
Xt

∥Yt∥
∈ A

∣∣∣∥Yt∥ > x

)
.

Then, Σ = µ(A)−4FΠF t where

Πi,i = µSi
(D0) +

∑
l̸=0∈Zd

τSi×Si(D0 ×Dl)

Πi,j = µSi∩Sj
(D0) +

∑
l̸=0∈Zd

τSi×Sj (D0 ×Dl)

F =



µ(S(#H)+1) 0 0 ... 0 −µS1
(D0)

0 µ(S(#H)+1) 0 ... 0 −µS2
(D0)

. . . ... . .

. . . ... . .

0 0 0 ... µ(S(#H)+1) −µS(#H)
(D0)


,

where the sets Si are chosen such that {Yt ∈ Si} = {Xt ∈ A,Xs ∈ B : d(t, s) = hi} for

hi ∈ H and i = 1, ..., (#H) and {Yt ∈ S(#H)+1} = {Xt ∈ A}. For more details, see Davis

and Mikosch (2009).

2.6.2 Appendix B: Proof of Theorem 3

Theorem 3 is derived from Proposition 2.6.3 - 2.6.5. Before proceeding to Proposition 2.6.3,

we present the following result regarding LUNC.

Proposition 2.6.2. Consider a strictly stationary regularly varying random field {Xs, s ∈

Rd} with index α > 0 satisfying LUNC. For a positive integer k and λn → 0,

nP

(
X0

an
∈ A0,

Xs1+λn

an
∈ A1, · · · ,

Xsk+λn

an
∈ Ak

)
→ τA0,A1,··· ,Ak

(s1, · · · , sk)

provided A0×A1×· · ·×Ak is a continuity set of the limit measure τA0,A1,··· ,Ak
(s1, · · · , sk) =

limn→∞ nP (X0/an ∈ A0, Xs1/an ∈ A1, · · · , Xsk/an ∈ Ak) .

43



Proof. Let f be a continuous function with compact support on R̄k+1 \ {0}. Since f

has compact support, it is uniformly continuous and hence for every ϵ > 0 there exists

δ such that |f(x1, x2, · · · , xk+1) − f(y1, y2, · · · , yk+1)| < ϵ whenever |(x1, x2, · · · , xk+1) −

(y1, y2, · · · , yk+1)| < δ.

Let X̃n = (X0, Xs1+λn , · · · , Xsk+λn) and X̃ = (X0, Xs1 , · · · , Xsk). Notice that

nE

∣∣∣∣∣f
(
X̃n

an

)
− f

(
X̃

an

)∣∣∣∣∣ = nE| · |I
{ |X̃n−X̃|

an
>δ}

+ nE| · |I
{ |X̃n−X̃|

an
≤δ}

= A1 +A2.

Let M = max f
(

X
an

)
. By (2.19), there exists ϵ > 0 such that

lim sup
n

A1 ≤ lim sup
n

2Mn

[
P

(
|Xs1+λn −Xs1 | >

δan
k

)
+ · · ·

+P

(
|Xsk+λn −Xsk | >

δan
k

)]
< 2Mϵ

since |Xλn −X0| ≤ sup|s|<δ′ |Xs −X0| as n → ∞ for |λn| < δ′. For A2, since the support

of f ∈ {|X̃| > C} ⊂ {|X0| > C
k+1} ∪ · · · ∪ {|Xsk | > C

k+1}

lim sup
n

A2 ≤ lim sup
n

ϵn

[
P

(
|X̃n|
an

> C

)
+ P

(
|X̃|
an

> C

)]
= lim sup

n
ϵ n 2(k + 1) P (|X0| > anC/(k + 1))

= ϵ 2(k + 1)τBB(0) where B = {x : x > C/(k + 1)}.

Take ϵ small by choosing appropriate δ and δ′, then for a positive integer k and λn → 0,

nEf

(
X0, Xs1+λn , · · · , Xsk+λn

an

)
→
∫

f(u1, u2, · · · , uk)µ(du1, du2, · · · , duk)

for any continuous function with compact support f . Using Portmanteau theorem for vague

convergence, we complete the proof. See Theorem 3.2 in Resnick (2006).

We discuss asymptotics of the denominator and the numerator of the ESE in turn.

Proposition 2.6.3. Under the setting of Theorem 3 and condition (M2),

E(p̂m(A)) = pm(A) → µ(A) and
|Sn|
mn

var(p̂m(A)) → µ(A)

ν
+

∫
R2

τAA(y)dy.
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Hence, p̂m(A)
p−→ µ(A).

Proof. By the regularly varying property, E(p̂m(A)) = pm(A) → µ(A).

For var(p̂m(A)), recall that N (2)(ds1, ds2) = N(ds1)N(ds2)I(s1 ̸= s2) and observe that

E(p̂m(A)2)

=

(
mn

ν|Sn|

)2

E

[∫
Sn

I

(
Xs1

am
∈ A

)
N(ds1)

+

∫
Sn

∫
Sn

I

(
Xs1

am
∈ A,

Xs2

am
∈ A

)
N (2)(ds1, ds2)

]
=

(
mn

ν|Sn|

)2 [∫
Sn

pm(A)

mn
νds1

+

∫
Sn

∫
Sn

[
P

(
Xs1

am
∈ A,

Xs2

am
∈ A

)
− pm(A)2

m2
n

]
ν2ds1ds2

]
+ E(p̂m(A))2

=

(
mn

|Sn|

)[
E(p̂m(A))

ν
+

∫
Sn−Sn

mn

[
τAA,m(h)

mn
− pm(A)2

m2
n

]
|Sn ∩ (Sn − y)|

|Sn|
dy

]
+E(p̂m(A))2

where the change of variables s2−s1 = y is used in the last line. Using the above, we show

|Sn|
mn

var(p̂m(A)) =
E(p̂m(A))

ν
+

∫
Sn−Sn

mn

[
τAA,m(h)

mn
− pm(A)2

m2
n

]
|Sn ∩ (Sn − y)|

|Sn|
dy

→ µ(A)

ν
+

∫
R2

τAA(y)dy. (2.48)

To see (2.48), notice that for a fixed k > 0∫
Sn−Sn

mn

[
τAA,m(h)

mn
− pm(A)2

m2
n

]
|Sn ∩ (Sn − y)|

|Sn|
dy

=

∫
B[0,k)

[·]dy +

∫
B[k,rn]

[·]dy +

∫
Sn−Sn\B[0,rn]

[·]dy

= A1 +A2 +A3.

For each fixed k > 0, limnA1 =
∫
B[0,k) τAA(y)dy by Proposition 2.6.2. Now, we show

lim
k→∞

lim sup
n→∞

(|A2 +A3|) = 0.

Recall that set A is bounded away from the origin. Using (2.13) and r2n = o(mn),

|A2| ≤
∫
B[k,rn]

mnP (|Xy| > ϵam, |X0| > ϵam)dy + const r2n
pm(A)2

mn

→ 0.
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From (2.14), lim
n

|A3| ≤ lim
n

∫
R2\B[0,rn)

mnα1,1(y)dy = 0. This completes the proof.

Proposition 2.6.4. Assume that a stationary regularly varying random field satisfies LUNC.

Further, assume the conditions of Proposition 2.6.3, and (2.17) in (M3). Then

(i) Eτ̂AB,m(h) → τAB(h),

(ii)
|Sn|λ2

n

mn
cov (τ̂AB,m(h1), τ̂AB,m(h2))

→
∫
R2 w(y)

2dy

ν2
[
τAB(h1) I{h1=h2} + τA∩BA∩B(h1) I{h1=−h2}

]
,

(iii)

(
|Sn|λ2

n

mn

)
var (τ̂AB,m(h)) → 1

ν2

(∫
R2

w(y)2dy

)
τAB(h).

Proof. (i) From (2.12) and stationarity of {Xs, s ∈ R2},

Eτ̂AB,m(h) =
mn

ν2
1

|Sn|

∫
Sn

∫
Sn

wn(h+ s1 − s2) P

(
X0

am
∈ A,

Xs2−s1

am
∈ B

)
ν2ds1ds2

which after making the transformation h+s1−s2
λn

= y and s2 = u becomes

1

|Sn|

∫
Sn−Sn+h

λn

∫
Sn∩(Sn−λny+h)

w(y) τAB,m(h− yλn)dudy

=

∫
Sn−Sn+h

λn

w(y) τAB,m(h− yλn)
|Sn ∩ (Sn − λny + h)|

|Sn|
dy

→ τAB(h).

The limit in the last line follows from the dominated convergence theorem since

τAB,m(h− yλn)
|Sn ∩ (Sn − λny + h)|

|Sn|
≤ pm(A)

and ∫
R2

w(y) pm(A)dy < ∞.

(ii) For sets A and B let τ∗m(s1, s2, s3, s4) = mnP
(
Xs1
am

∈ A,
Xs2
am

∈ B,
Xs3
am

∈ A,
Xs4
am

∈ B
)
.
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Then,

|Sn|λ2
n

mn
E (τ̂AB,m(h1)τ̂AB,m(h2)) (2.49)

=
mnλ

2
n

ν4|Sn|

∫∫∫∫
S4
n

wn(h1 + s1 − s2)wn(h2 + s3 − s4)

τ∗m(s1, s2, s3, s4)

mn
E[N (2)(ds1, ds2)N

(2)(ds3, ds4)],

where N (2)(ds1, ds2) = N(ds1)N(ds2)I(s1 ̸= s2). From Karr (1986)

E[N (2)(ds1, ds2)N
(2)(ds3, ds4)]

= ν4ds1ds2ds3ds4

+ν3ds1ds2εs1(ds3)ds4 + ν3ds1ds2εs2(ds3)ds4

+ν3ds1ds2ds3εs1(ds4) + ν3ds1ds2ds3εs2(ds4)

+ν2ds1ds2εs1(ds3)εs2(ds4) + ν2ds1ds2εs1(ds4)εs2(ds3). (2.50)

Now, let Ii, for i = 1, ..., 7, be the integral in (2.49) corresponding to these seven scenarios

of E[N (2)(ds1, ds2)N
(2)(ds3, ds4)]. The only cases that contribute to a non-zero limit are

I1, I6, and I7. For example, if h1 = h2,

I6 =
mnλ

2
n

ν4|Sn|

∫∫∫∫
S4
n

wn(h1 + s1 − s2)wn(h2 + s3 − s4)

τ∗m(s1, s2, s3, s4)

mn
ν2ds1ds2εs1(ds3)εs2(ds4)

=
λ2
n

ν2|Sn|

∫∫
S2
n

wn(h1 + s1 − s2)wn(h1 + s1 − s2)τAB,m(s2 − s1)ds1ds2 (2.51)

=
λ2
n

ν2

∫
Sn−Sn+h1

λn

1

λ2
n

w(y)2τAB,m(h1 − λny)
|Sn ∩ (Sn + h1 − λny)|

|Sn|
dy

→ 1

ν2

(∫
R2

w(y)2dy

)
τAB(h1)

by taking y = h1+s1−s2
λn

and u = s2 in the last equation. The convergence is from the

dominated convergence theorem. On the other hand, if h1 ̸= h2, I6 has the order of

λ2
n

ν2

∫
Sn−Sn+h1

λn

1

λ2
n

w(y)w

(
y +

h2 − h1

λn

)
τAB,m(h1 − λny)

|Sn ∩ (Sn + h1 − λny)|
|Sn|

dy

→ 0.
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Similarly,

I7 →
1

ν2

(∫
R2

w(y)2dy

)
τA∩BA∩B(h1). (2.52)

Turning to I1, we claim∣∣∣∣I1 − |Sn|λ2
n

mn
E (τ̂AB,m(h1))E (τ̂AB,m(h2))

∣∣∣∣→ 0. (2.53)

To see this, observe that the left-hand side in (2.53) is bounded by

mnλ
2
n

ν4|Sn|

∫∫∫∫
S4
n

wn(h1 + s1 − s2)wn(h2 + s3 − s4)

∣∣∣∣τ∗m(0, s2 − s1, s3 − s1, s4 − s1)

mn
−

τAB,m(s2 − s1)

mn

τAB,m(s4 − s3)

mn

∣∣∣∣ ν4ds1ds2ds3ds4
≤ λ2

nmn

∫∫∫
(Sn−Sn)3

wn(h1 − v1)wn(h2 − (v3 − v2))

∣∣∣∣τ∗m(0,v1,v2,v3)

mn
−

τAB,m(v1)

mn

τAB,m(v3 − v2)

mn

∣∣∣∣ dv1dv2dv3,
where the change of variables v1 = s2 − s1,v2 = s3 − s1, and v3 = s4 − s1 are used. By

taking u = v2,y1 = h1−v1
λn

and y2 = h2−(v3−v2)
λn

, the right-hand side of the inequality is

equivalent to

λ2
nmn

∫
(Sn−Sn)−(Sn−Sn)+h2

λn

∫
Sn−Sn+h1

λn

∫
Sn−Sn

w(y1)w(y2)∣∣∣∣τ∗m(0,h1 − y1λn, u, u+ h2 − y2λn)

mn
−

τAB,m(h1 − y1λn)

mn

τAB,m(h2 − y2λn)

mn

∣∣∣∣ dudy1dy2

= λ2
nmn O

(∫
R2

α2,2(∥y∥)dy
)
. (2.54)

To see (2.54), observe that

min d({0,h1 − y1λn}{u, u+ h2 − y2λn})

≤ ∥u∥+ ∥u− h1 + y1λn∥+ ∥u+ h2 − y2λn∥+ ∥u+ h2 − y2λn − h1 + y1λn∥.
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Thus, the integral in (2.54) is bounded by∫
R2

α2,2(∥u∥)du
(∫

R2

w(y1)dy1

)2

+

∫
Sn−Sn+h1

λn

∫
Sn−Sn

w(y1)α2,2(∥u− h1 + y1λn∥)dudy1

∫
R2

w(y2)dy2

+

∫
Sn−Sn+h2

λn

∫
Sn−Sn

w(y2)α2,2(∥u− h2 + y2λn∥)dudy2

∫
R2

w(y1)dy1

+

∫
Sn−Sn+h2

λn

∫
Sn−Sn+h1

λn

∫
Sn−Sn

w(y1)w(y2)α2,2(∥u+ h2 − h1 − y2λn + y1λn∥)dudy1dy2

= A1 +A2 +A3 +A4.

Notice that A1 =
∫
R2 α2,2(∥u∥)du. Also, by taking x = u− h1 + y1λn,

A2 ≤
∫

Sn−Sn+h1
λn

∫
R2

w(y1)α2,2(∥x∥)dxdy1

≤
∫
R2

α2,2(∥x∥)dx
∫
R2

w(y1)dy1

=

∫
R2

α2,2(∥x∥)dx.

Similarly A3 ≤
∫
R2 α2,2(∥x∥)dx can be shown. Using the similar change of variable tech-

nique,

A4 ≤
∫

Sn−Sn+h2
λn

∫
Sn−Sn+h1

λn

∫
Sn−Sn+h2−h1−y2λn+y1λn

w(y1)w(y2)α2,2(∥x∥)dxdy1dy2

≤
∫
R2

α2,2(∥x∥)dx.

Hence, (2.54) is verified and (2.53) is proved.

Lastly, using the same argument in Lemma A.4. in Li et al. (2008), we have

Ij → 0, if j = 2, 3, 4, 5.

In fact,

Ij = O(λ2
n)

for j = 2, 3, 4, 5. To see this, take one example of I2, equivalent to

mnλ
2
n

ν4|Sn|

∫
Sn

∫
Sn

∫
Sn

wn(h1 + s1 − s2)wn(h2 + s1 − s4)
τA,B,B,m(s2 − s1, s4 − s1)

mn
ν3ds1ds2ds4.
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After considering the change of variables of s2 − s1 = v1, s4 − s1 = v2, then consider

h1−v1
λn

= y1,
h2−v2
λn

= y2. Then,

I2 ≤ pm(A)λ2
n

ν|Sn|

∫
Sn−Sn

∫
Sn−Sn

∫
Sn

wn(h1 − v1)wn(h2 − v2)dudv1dv2

≤ pm(A)λ2
n

ν

(∫
R2

w(y1)dy1

)2

= O(λ2
n).

Other cases can be shown in the same way. Thus, we conclude

Ij → 0, if j = 2, 3, 4, 5.

Combining the result (2.51)-(2.53), (ii) is proved, which completes the proof.

Next, we establish the asymptotic normality for τ̂AB,m(h).

Proposition 2.6.5. Assume that the conditions of Proposition 2.6.4 and (M3) hold. Then√
|Sn|λ2

n

mn
(τ̂AB,m(h)− Eτ̂AB,m(h)) → N(0, σ2),

where σ2 = 1
ν2

(∫
R2 w(y)

2d(y
)
τAB(h). Furthermore,√

|Sn|λ2
n

mn
(τ̂AB,m(h)− τAB(h)) → N(0, σ2)

if Eτ̂AB,m(h)− τAB(h) = o

((
|Sn|λ2

n
mn

)−1/2
)
.

Proof. We follow Li et al. (2008) with focusing our attention to R2 and using a classical

blocking technique. Let Di
n be non-overlapping cubes that divide Sn for i = 1, ..., kn,

where kn = |Sn|/|Di
n|. Within each Di

n, B
i
n is an inner cube sharing the same center and

d(∂Di
n, B

i
n) ≥ nη. Let |Di

n| = n2α and |Bi
n| = (nα − nη)2 where 6/(2 + ϵ) < η < α < 1 for

some ϵ > 2+4α
η . Let k′n be the additional number of cubes to cover Sn. From Lemma A.3.

in Li et al. (2008),

kn = O(n2(1−α)), k′n = O(n1−α). (2.55)
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Now define

An =

√
mnλ

2
n

|Sn|
1

ν2

∫∫
Sn×Sn

wn(h+ s1 − s2) I

(
Xs1

am
∈ A

)
I

(
Xs2

am
∈ B

)
N (2)(ds1, ds2),

ani =

√
mnλ

2
n

|Sn|
1

ν2

∫∫
Bi

n×Bi
n

wn(h+ s1 − s2) I

(
Xs1

am
∈ A

)
I

(
Xs2

am
∈ B

)
N (2)(ds1, ds2),

=
1√
kn

√
mnλ

2
n

|Bi
n|

1

ν2

∫∫
Bi

n×Bi
n

wn(h+ s1 − s2) I

(
Xs1

am
∈ A

)
I

(
Xs2

am
∈ B

)
N (2)(ds1, ds2),

Ãn = An − EAn, ãni = ani − Eani, an =

kn∑
i=1

ani, ãn =

kn∑
i=1

ãni, and ã′n =

kn∑
i=1

ã′ni,

where ã′ni denotes an independent copy of ãni.

Step 1. Show var(Ãn − ãn) → 0.

We will prove Step 1 by showing:

i) var(Ãn) → 1
ν2

(∫
R2 w(y)

2dy
)
τAB(h),

ii) cov(Ãn, ãn) → 1
ν2

(∫
R2 w(y)

2dy
)
τAB(h), and

iii) var(ãn) → 1
ν2

(∫
R2 w(y)

2dy
)
τAB(h).

i) This follows from Proposition 2.6.4 (iii).

ii) Recall τ∗m(s1, s2, s3, s4) defined in Proposition 2.6.4 (ii). Then

E (Anan)

=
λ2
n

ν4|Sn|

kn∑
i=1

∫∫∫∫
Sn×Sn×Bi

n×Bi
n

wn(h+ s1 − s2) wn(h+ s3 − s4)

τ∗m(s1, s2, s3, s4)E[N (2)(ds1, ds2)N
(2)(ds3, ds4)]

=
λ2
n

ν4|Sn|

kn∑
i=1

 ∫∫∫∫
Sn\Bi

n×Sn\Bi
n×Bi

n×Bi
n

·+
∫∫∫∫

Sn\Bi
n×Bi

n×Bi
n×Bi

n

·+
∫∫∫∫

Bi
n×Sn\Bi

n×Bi
n×Bi

n

·+
∫∫∫∫
(Bi

n)
4

·


= D1 +D2 +D3 +D4

=
4∑

i=1

7∑
j=1

Dj
i ,

whereDj
i be the integral inDi corresponding to seven cases of E[N (2)(ds1, ds2)N

(2)(ds3, ds4)]

as in (2.50) for i = 1, ..., 4 and j = 1, ..., 7. As shown in the proof of Proposition 2.6.4 (ii),

non-zero contributions only arise when j = 1, 6, and 7. By the similar arguments in (2.53),

51



|
∑4

i=1D
j
i − E(An)E(an)| → 0.

Since j = 6 and 7 only occur when s1, s2, s3, s4 ∈ Bi
n, we only consider D6

4 + D7
4 which

equals to

λ2
n

ν4|Sn|

kn∑
i=1

∫∫
(Bi

n)
2

[
wn(h+ s1 − s2)

2 + wn(h+ s1 − s2)wn(h+ s2 − s1)
]

τAB,m(s2 − s1)ν
2ds1ds2

=
mnλ

2
n

ν2|B1
n|

∫∫
(B1

n)
2

[
wn(h+ s1 − s2)

2 + wn(h+ s1 − s2)wn(h+ s2 − s1)
]

τAB,m(s2 − s1)ds1ds2

→ 1

v2

∫
R2

w(y)2dy τAB(h).

The convergence is derived from arguments in (2.51) and (2.53). Thus, we conclude

cov(Ãn, ãn) =

 4∑
i=1

7∑
j=1

Dj
i

− E(An)E(an)

= D6
4 +D7

4 + o(1)

→ 1

ν2

(∫
R2

w(y)2dy

)
τAB(h).

iii) Let var(ãn) =
∑kn

i=1 var(ãni) +
∑

1≤i ̸=j≤kn
cov(ãni, ãnj) . Note from Proposition 2.6.4

(iii) that

kn∑
i=1

var(ãni) = knvar(an1) →
1

ν2

(∫
R2

w(y)2dy

)
τAB(h).

Also note that since ãni and ãnj are integrals over disjoint sets for i ̸= j and Xs is

independent of N , E[ãni|N ] and E[ãnj |N ] are independent. Thus,

∑
1≤i̸=j≤kn

|cov(ãni, ãnj)| =
∑

1≤i̸=j≤kn

|E{cov(ãni, ãnj |N)}+ cov{E(ãni|N), E(ãnj |N)}|

=
∑

1≤i̸=j≤kn

|E{cov(ãni, ãnj |N)}|.
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Notice from Proposition 2.6.1 and |ani| ≤
√

mnλ
2
n

|Sn| |B
i
n| that

E{cov(ãni, ãnj |N)} ≤ const
mnλ

2
n

|Sn|
|Bi

n||Bj
n| |E(αM,M (nη)|N)|

≤ const
mnλ

2
n

|Sn|
|B1

n|2 E(M2)n−ϵη

where M = max{N(Bi
n), N(Bj

n)} and the last inequality is from (2.18). Since kn =

|Sn|/|D1
n| where |Sn| = n2, |D1

n| = n2α, |B1
n| = O(n2α),∑

1≤i̸=j≤kn

|cov(ãni, ãnj)| ≤ const k2n
mnλ

2
n

|Sn|
|B1

n|2 |B1
n|2n−ϵη

= O
(
mnλ

2
nn

2+4α−ϵη
)

which converges to 0 as mnλ
2
n → 0 and ϵ > 2+4α

η .

Step 2. Show |ϕn(x)−ϕ′
n(x)| → 0 where ϕn(x) and ϕ′

n(x) are the characteristic functions

of ãn and ã′n.

Analogously to the idea presented in (6.2) in Davis and Mikosch (2009),

|ϕn(x)− ϕ′
n(x)| =

∣∣∣∣∣
kn∑
l=1

EΠl−1
j=1e

ix
ãnj√
kn

(
e
ix

ãnl√
kn − e

ix
ã′nl√
kn

)
Πkn

j=l+1e
ix

ã′nj√
kn

∣∣∣∣∣
≤

kn∑
l=1

∣∣∣∣cov(Πl−1
j=1e

ix
ãnj√
kn , e

ix
ãnl√
kn )

∣∣∣∣ .
Using the same technique in Step 1 iii),∣∣∣∣cov(Πl−1

j=1e
ix

ãnj√
kn , e

ix
ãnl√
kn )

∣∣∣∣ ≤ |E cov(Πl−1
j=1e

ix
ãnj√
kn , e

ix
ãnl√
kn |N)|

≤ c E (αM,M (nη))

≤ c E
(
M2
)
n−ϵη

≤ c l2|n2α|2n−ϵη,

whereM = N(∪l
j=1B

j
n). The second and the last inequality is from (2.18) and |B1

n| = O(n2α)

respectively. Hence, from kn = n2−2α, we have

|ϕn(x)− ϕ′
n(x)| ≤ const

kn∑
l=1

l2|n2α|2n−ϵη

≤ O(n6−2α−ϵη)
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which converges to 0 by setting 6/(2 + ϵ) < η < α < 1.

Step 3. Show the central limit theorem holds for ã′n.

Let Ini =
∫
Bi

n

∫
Bi

n
wn(h + s1 − s2) I

(
Xs1
am

∈ A
)
I
(
Xs2
am

∈ B
)
N (2)(ds1, ds2). By (2.16), we

have

E|
√

knã
′
ni|2+δ = E

∣∣∣∣∣∣
√

mnλ
2
n

|Bi
n|

1

ν2
[Ini − E(Ini)]

∣∣∣∣∣∣
2+δ

= E

∣∣∣∣∣∣
√

|Bi
n|λ2

n

mn

[
τ̂AB,m(h : Bi

n)− E(τ̂AB,m(h : Bi
n))
]∣∣∣∣∣∣

2+δ

< Cδ.

As (ã′ni) is triangular array of independent random variables with var(
∑kn

i=1 ã
′
ni) = σ2

n → σ2,∑kn
i=1E|ã′ni|2+δ

(σn)2+δ
≤ knk

−(1+δ/2)
n Cδ

(σn)2+δ
→ 0.

Thus, Lyapunov’s condition is satisfied and hence the central limit theorem holds.

From the results of Proposition 2.6.3 - 2.6.5, Theorem 3 is proved.

Proof of Theorem 3. Proposition 2.6.3 implies that

p̂m(A)
p−→ µ(A).

By Slutsky’s theorem and Proposition 2.6.5,√
|Sn|λ2

n

mn

(
τ̂AB,m(h)

p̂m(A)
−

τAB,m(h)

p̂m(A)

)
=

√
|Sn|λ2

n

mn

(
ρ̂AB,m(h)−

τAB,m(h)

p̂m(A)

)
→ N(0, σ2/µ(A)2).

Recall from Proposition 2.6.3 that var(p̂m(A)) = O (mn/|Sn|), thus√
|Sn|λ2

n

mn

(
ρ̂AB,m(h)−

τAB,m(h)

p̂m(A)

)
=

√
|Sn|λ2

n

mn

(
ρ̂AB,m(h)− ρAB,m(h)

)
+ op(1).

Thus, the central limit theorem for

√
|Sn|λ2

n
mn

(
ρ̂AB,m(h)− ρAB,m(h)

)
is proved. The joint

normality (2.20) is established using the Cramér-Wold device.
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2.6.3 Appendix C: Proof of Example 3

First, we show that Xs satisfies LUNC in (2.19). Notice that the process has continuous

sample paths a.s. since the Gaussian process {Ws − δ(s), s ∈ R2} in (2.29) has continuous

sample paths. Notice from Lindgren (2012), Section 2.2, that a Gaussian process with a

continuous correlation function satisfying (2.36) has continuous sample paths.

From (2.29), let Xs = U1
s ∨ U2

s , where U1
s = Γ−1

1 Y 1
s and U2

s = supj≥2 Γ
−1
j Y j

s . Then

nP

(
sup

∥s∥<δ′

|Xs −X0|
an

> δ

)

= nP

(
sup

∥s∥<δ′
|U1

s ∨ U2
s − U1

0 ∨ U2
0 | > anδ

)

≤ nP

(
sup

∥s∥<δ′
|U1

s − U1
0 | >

anδ

2

)
+ nP

(
sup

∥s∥<δ′
|U2

s − U2
0 | >

anδ

2

)
= A1 +A2.

Since E| sup∥s∥<δ′ |Y (s)|| < ∞ (see Proposition 13 in Kabluchko et al. (2009)), we can apply

the dominated convergence theorem to obtain

A1 = nP

(
Γ1 <

2 sup∥s∥<δ′ |Y 1
s − Y 1

0 |
δan

)

= n

∫ (
1− e−z/δan

)
g(Z)dZ

→
2E(sup∥s∥<δ′ |Ys − Y0|)

δ

→ 0,

where Z = 2 sup∥s∥<δ′ |Ys − Y0|.
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To show A2 → 0, we follow the arguments in Davis and Mikosch (2008).

A2 = nP

 sup
∥s∥<δ′

∞∨
j≥2

Γ−1
j |Y j

s − Y j
s | >

anδ

2


≤ n

∞∑
j=2

P

(
2 sup
∥s∥<δ′

|Ys| > Γjδan/2

)

= n

∫  ∞∑
j≥2

P (4y > Γjδan)

P

(
sup

∥s∥<δ′
|Ys| ∈ dy

)

= n

∫ ∞

0

(
4y

δan
−
(
1− e−

4y
δan

))
P

(
sup

∥s∥<δ′
|Ys| ∈ dy

)

The last line is from ET [0, 4y
δan

] =
∑∞

j=1 P
(
Γj <

4y
δan

)
= 4y

δan
, where T =

∑∞
j=1 ϵΓj is

a homogeneous point process. The dominated convergence theorem applies as fn(y) =

n
(

4y
δan

− (1− e−
4y
δan )

)
≤ cy for some c > 0, all y > 0 and fn(y) → 0 as n → 0, and

Esup∥s∥<δ′ |Ys| < ∞ from Kabluchko et al. (2009).

Now we check conditions (2.13)- (2.18). Recall from (2.35) that

αc,c(h) ≤ const 1√
∥h∥α

e−θ∥h∥α/2

holds for the process. For convenience in the calculations, set g(h) = 1√
∥h∥α

e−θ∥h∥α/2. We

will find the sufficient conditions for (2.13)- (2.18). For (2.13),∫
R2

g(y)dy < ∞ (2.56)

is sufficient. To see this, infer from (2.34) that

mnP (Xy > ϵam, X0 > ϵam) = mn

[
1− 2e−1/am + e−2Φ(

√
δ(h)/2)/am

]
=

2mn

am
Φ̄(
√
δ(h)/2) +O

(
mn

a2m

)
.

Thus,

mn

∫
B[k,rn]

P (Xy > ϵam, X0 > ϵam)dy =

∫
B[k,rn]

2mn

am
Φ̄(
√

δ(y)/2)dy +O

(
r2n
mn

)
≤ const

∫
B[k,∞]

g(y)dy + o(1),

56



where the last inequality is from (2.35).

Using (2.35), condition (2.14) is satisfied if∫
R2\B[0,rn)

mng(y)dy → 0. (2.57)

Similarly, using (2.35), the second condition in (2.17) is implied if (2.56) holds. The condi-

tion (2.18) is checked immediately from (2.22) as

sup
l

αl,l(∥h∥)
l2

≤ c
1√
∥h∥α

e−θ∥h∥α/2 = O(∥h∥−ϵ).

The condition (2.16) with δ = 1 is satisfied if (2.37) is assumed. See Appendix D in Section

2.6.4. Hence, it suffices to find conditions under which (2.56) - (2.57) hold.

Proposition 2.6.6. For Example 3, the conditions (2.56) - (2.57) hold if logmn = o(ran).

Proof. First, (2.56) is satisfied for a ∈ (0, 2] since∫
R2

g(y)dy < Γ

(
1

a
+

1

2

)
< ∞

which can be shown using change of variables to polar coordinates and ra/2 = t:∫
R2

g(y)dy ≤ const

∫
R2

∥y∥−a/2e−∥y∥a/2dy

≤ const

∫ ∞

0
r1−a/2e−ra/2dr

= const

∫ ∞

0
t
1
a
− 1

2 e−tdt

= const Γ

(
1

a
+

1

2

)
< ∞

for a ∈ (0, 2].

For (2.57), notice that δ(rn) ≥ 1 for sufficiently large n. Thus, mng(rn) ≤ mne
−θrαn/2 =

o(1) provided logmn = o(ran). This completes the proof.

Finally, we find the condition under which (2.21) holds.

Proposition 2.6.7. For the Brown-Resnick process, (2.21) holds if |Sn|λ2
n

m3
n

→ 0.
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Proof. From (2.34),

|ρAB,m(h)− ρAB(h)| =
1 + o(1)

µ(A)
|τAB,m(h)µ(A)− τAB(h)pm(A)|

=
1 + o(1)

µ(h)
O(mn/a

2
m)

= O(1/mn).

Therefore, (2.21) holds if |Sn|λ2
n

m3
n

→ 0.

2.6.4 Appendix D: the condition (2.16) with delta = 1

Here, we show

E|
√

knã
′
ni|3 < ∞ (2.58)

under the following assumptions.

λ2
nn

2a

mn
= O(1),

∫
R2

τAA,m(y)dy < ∞, and

∫
R2

τAB,m(y)dy < ∞.

The first condition is derived from combining the following conditions

sup
n

λ2
n|Bi

n|
mn

< ∞ and sup
n

mn

λ2
n|Bi

n|
< ∞,

where |Bi
n| = n2a for 0 < a < 1.
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To see (2.58), first observe that

E|
√

knã
′
ni|3

=

√mnλ
2
n

|Bi
n|

1

ν2

3

E

[∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2) I

(
Xs1

am
∈ A

)
I

(
Xs2

am
∈ B

)
N (2)(ds1, ds2)

−
∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)
τAB,m(s2 − s1)

mn
ν2ds1ds2

]3

=

√mnλ
2
n

|Bi
n|

1

ν2

3

E [A− E(A)]3

=

√mnλ
2
n

|Bi
n|

1

ν2

3

[EA3 − 3EA2E(A) + 2E(A)3]

= A1 − 3A2 + 2A3.

Step 1: Show A3 < ∞ if sup
n

λ2
n|Bi

n|
mn

< ∞.

Note that

A3 =

√mnλ
2
n

|Bi
n|

1

ν2

3(∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)
τAB,m(s2 − s1)

mn
ν2ds1ds2

)3

=

√ λ2
n

|Bi
n|mn

3

|Bi
n|3

(
1

|Bi
n|

∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)τAB,m(s2 − s1)ds1ds2

)3

=

√λ2
n|Bi

n|
mn

3  (·)3 .

To show (·) is bounded, we use the change of variable technique. As the same techinque is

used later repeatedly, we decide to describe the detailed step here.

Claim 2.6.1. Using the change of variables with h+s1−s2
λn

, the below holds.

1

|Bi
n|

∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)τAB,m(s2 − s1)ds1ds2 ≤ ∞. (2.59)
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Proof. Let h+s1−s2
λn

= y and s1 = u. Then, the left-hand side of (2.59) is bounded since

1

|Bi
n|

∫
Bi

n

∫
h+Bi

n−Bi
n

λn

w(y)τAB,m(h− yλn)dydu ≤ 1

|Bi
n|

∫
Bi

n

∫
h+Bi

n−Bi
n

λn

w(y)pm(A)dydu

≤ 1

|Bi
n|

∫
Bi

n

∫
R2

w(y)pm(A)dydu

≤ pm(A)

|Bi
n|

∫
Bi

n

du

< ∞.

This completes the proof.

Using Claim 2.6.1, we conclude that A3 is finite provided sup
n

λ2
n|Bi

n|
mn

< ∞.

Step 2: Show A2 < ∞ if sup
n

λ2
n|Bi

n|
mn

< ∞ and
∫
R2 τAB,m(y)dy < ∞.

By the similar idea in (2.53), we consider the seven cases of E[N (2)(ds1, ds2)N
(2)(ds3, ds4)]

for EA2 as in (2.50). Say Ai
2, i = 1, ...7.

Case 1) Ai
2, i = 6, 7.

Using the similar technique in Claim 2.6.1,

A6
2 =

√mnλ
2
n

|Bi
n|

1

ν2

3 ∫
Bi

n

∫
Bi

n

∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)
2wn(h+ s3 − s4)

τAB,m(s2 − s1)

mn

τAB,m(s4 − s3)

mn
ν4ds1ds2ds3ds4

=

√ λ2
n

|Bi
n|

3(
1

ν2
√
mn

)∫
Bi

n

∫
Bi

n

∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)
2wn(h+ s3 − s4)

τAB,m(s2 − s1)τAB,m(s4 − s3)ds1ds2ds3ds4

≤ const

√ λ2
n

|Bi
n|

3

|Bi
n|2

ν2
√
mnλ

2
n

.
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Now take h+s1−s2
λn

= y1, s1 = u1,
h+s3−s4

λn
= y2, and s4 = u2, then∫

Bi
n

∫
Bi

n

∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)
2wn(h+ s3 − s4)

τAB,m(s2 − s1)τAB,m(s4 − s3)ds1ds2ds3ds4

=

∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)
2τAB,m(s2 − s1)ds1ds2∫

Bi
n

∫
Bi

n

wn(h+ s3 − s4)τAB,m(s4 − s3)ds3ds4

which is bounded by∫
Bi

n

∫
R2

w(y1)
2

λ2
n

pm(A)dy1du1 |Bi
n| ≤

|Bi
n|2

λ2
n

∫
R2

w(y1)
2dy1 ≤ const

|Bi
n|2

λ2
n

,

where the first and the second inequality are the direct application of the logic of Claim

2.6.1 to the two double integrals. Hence, the term is is finite if sup
n

λ2
n|Bi

n|
mn

< ∞. The same

argument is applied for A7
2, so we skip this.

Case 2) Ai
2, i = 2, 3, 4, and 5.

We will only consider i = 2 since Ai
2, i = 3, 4, and 5 can be shown similarly.

A2
2 =

√mnλ
2
n

|Bi
n|

1

ν2

3(∫
Bi

n

∫
Bi

n

wn(h+ s5 − s6)
τAB,m(s6 − s5)

mn
ν2ds5ds6

)
∫
Bi

n

∫
Bi

n

∫
Bi

n

wn(h1 + s1 − s2)wn(h2 + s1 − s4)

τA,B,B,m(s2 − s1, s4 − s1)

mn
ν3ds1ds2ds4

≤

√ λ2
n

|Bi
n|

3(
1

ν
√
mn

)
|Bi

n|∫
Bi

n

∫
Bi

n

∫
Bi

n

wn(h1 + s1 − s2)wn(h2 + s1 − s4)τA,B,B,m(s2 − s1, s4 − s1)ds1ds2ds4.

The right-hand side is bounded by

(√
λ2
n

|Bi
n|

)3 (
1

ν
√
mn

)
|Bi

n|2, where |Bi
n| in the first in-

equality is from applying Claim 2.6.1 to the double integral. Similarly, the last inequality is

from the change of variables with h+s1−s2
λn

= y1,
h+s1−s4

λn
= y2, and s1 = u. Hence, A2

2 < ∞

if sup
n

λ2
n|Bi

n|
mn

< ∞.
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Case 3) A1
2.

A1
2 =

√mnλ
2
n

|Bi
n|

1

ν2

3(∫
Bi

n

∫
Bi

n

wn(h+ s5 − s6)
τAB,m(s6 − s5)

mn
ν2ds5ds6

)
∫
Bi

n

∫
Bi

n

∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)wn(h+ s3 − s4)

τAB,m(s2 − s1, s3 − s1, s4 − s1)

mn
ν4ds1ds2ds3ds4

=

(√
λ2
n

)3
(

1√
|Bi

n|3mn

)(∫
Bi

n

∫
Bi

n

wn(h+ s5 − s6) τAB,m(s6 − s5)ds5ds6

)
∫
Bi

n

∫
Bi

n

∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)wn(h+ s3 − s4)

τAB,m(s2 − s1, s3 − s1, s4 − s1)ds1ds2ds3ds4

≤
(√

λ2
n

)3
(

1√
|Bi

n|3mn

)
|Bi

n|∫
Bi

n

∫
Bi

n

∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)wn(h+ s3 − s4)

τAB,m(s2 − s1, s3 − s1, s4 − s1)ds1ds2ds3ds4

≤
(√

λ2
n

)3
(

1√
|Bi

n|3mn

)
|Bi

n|2
∫
R2

τAB,m(y)dy

≤ const

√
λ6
n|Bi

n|
mn

.

Notice that the technique in Claim 2.6.1 is repeatedly used for each inequality.

Step 3: Show A1 < ∞.

This step involves E[N (2)(ds1, ds2)N
(2)(ds3, ds4)N

(2)(ds5, ds6)]. As done in Step 2, we

consider each scenarios. We need to consider the following 5 representative cases:

• ν6ds1ds2ds3ds4ds5ds6,

• ν5ds1ds2ds3ds4ds5εs1(ds6) or any other combinations involving ν5,

• ν4ds1ds2ds3ds4εs1(ds5)εs2(ds6) or any other combinations involving ν4,

• ν3ds1ds2ds3εs2(ds4)εs1(ds5)εs2(ds6) or any other combinations involving ν3, and

• ν2ds1ds2εs1(ds3)εs2(ds4)εs1(ds5)εs2(ds6) or any other combinations involving ν2.

62



Case 1) ν2ds1ds2εs1(ds3)εs2(ds4)εs1(ds5)εs2(ds6) or other combinations involving ν2.

In this case, the corresponding integral becomes√mnλ
2
n

|Bi
n|

1

ν2

3 ∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)
3 τAB,m(s2 − s1)

mn
ν2ds1ds2

=

√ λ2
n

|Bi
n|

3(√
mn

ν4

)∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)
3 τAB,m(s2 − s1)ds1ds2

≤ const

√λ6
nmn

|Bi
n|3

 1

λ4
n

|Bi
n|

≤ const

(√
mn

|Bi
n|λ2

n

)
,

where the change of variable of h+s1−s2
λn

= t, s2 = u are used for the first inequality as

Claim 2.6.1. Therefore, the right-hand side is finite if supn
mn

λ2
n|Bi

n|
< ∞.

Case 2) ν3ds1ds2εs1(ds3)ds4εs1(ds5)εs2(ds6) or other combinations involving ν3.

In this case, the corresponding integral becomes√mnλ
2
n

|Bi
n|

1

ν2

3 ∫
Bi

n

∫
Bi

n

∫
Bi

n

wn(h1 + s1 − s2)
2wn(h2 + s1 − s4)

τA,B,B,m(s2 − s1, s4 − s1)

mn
ν3ds1ds2ds4

=

√ mnλ
6
n

|Bi
n|3ν6

∫
Bi

n

∫
Bi

n

∫
Bi

n

wn(h1 + s1 − s2)
2wn(h2 + s1 − s4)

τA,B,B,m(s2 − s1, s4 − s1)ds1ds2ds4

≤ const

√ mnλ
6
n

|Bi
n|3ν6

 |Bi
n|

λ2
n

,

where the last inequality is from Claim 2.6.1. The right-hand side is finite if supn
mnλ

2
n

|Bi
n|

< ∞.

Other cases of card{s1, s2, s3, s4, s5, s6} = 3 can be considered similarly.

Case 3) ν4ds1ds2ds3ds4εs1(ds5)εs2(ds6) or other combinations involving ν4.

Let τ∗ = τAB,m(s2 − s1, s3 − s1, s4 − s1). The corresponding integral is
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√mnλ
2
n

|Bi
n|

1

ν2

3 ∫
Bi

n

∫
Bi

n

∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)
2

wn(h+ s3 − s4)
τ∗

mn
ν4ds1ds2ds3ds4

=

√ λ2
n

|Bi
n|

3(√
mn

ν2

)∫
Bi

n

∫
Bi

n

∫
Bi

n

∫
Bi

n

wn(h+ s1 − s2)
2

wn(h+ s3 − s4) τ
∗ds1ds2ds3ds4

after the change of variables which is bounded by√ λ2
n

|Bi
n|

3(√
mn

ν4

)
|Bi

n|
λ2
n

∫
R2

w(y1)
2dy1

∫
R2

w(y2)
2dy2

∫
R2

τAB,m(y3)dy3.

Thus, the corresponding integral is finite if supn
mnλ

2
n

|Bi
n|

< ∞ and
∫
R2 τAB,m(y)dy < ∞.

Other cases involving ν4 are considered similarly.

Case 4) ν5ds1ds2ds3ds4ds5εs1(ds6) or other combinations involving ν5.

This case has smaller order than the case with ν6ds1ds2ds3ds4ds5ds6. So we skip this part.

Case 5) If card{s1, s2, s3, s4, s5, s6} = 6. For the convenience, let τ∗ = τAB,m(s2 −

s1, s3 − s1, s4 − s1, s5 − s1, s6 − s1). Then the corresponding integral is equivalent to√mnλ
2
n

|Bi
n|

1

ν2

3 ∫
Bi

n

· · ·
∫
Bi

n

wn(h+ s1 − s2)wn(h+ s3 − s4)

wn(h+ s5 − s6)
τ∗

mn
ν6ds1 · · · ds6

=

√ λ2
n

|Bi
n|

3

√
mn

∫
Bi

n

· · ·
∫
Bi

n

wn(h+ s1 − s2)wn(h+ s3 − s4)

wn(h+ s5 − s6) τ
∗ds1 · · · ds6.

Consider the change of variable with v1 = s2 − s1,v2 = s3 − s1,v3 = s4 − s1,v4 =

s5 − s1,v5 = s6 − s1, and s1 = u1 and let τ∗∗ = τAB,m(v1,v2,v3,v4,v5). Then the
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right-hand side of the above equation becomes

=

√ λ2
n

|Bi
n|

3

√
mn

∫
Bi

n

∫∫
(Bi

n−Bi
n)

2

∫∫∫
(Bi

n−Bi
n)

3

wn(h− v1)wn(h− (v3 − v2))

wn(h− (v5 − v4)) τ
∗∗dv1 · · · dv5du1

=

√ λ2
n

|Bi
n|

3

√
mn

∫
Bi

n

∫∫
(Bi

n−Bi
n)

2

∫∫∫
(

h+Bi
n−Bi

n
λn

)3

w(y1)w(y2)w(y3) τ
∗∗∗dy1dy2dy3du2du3du1,

where the line is by the change of variables h−v1
λn

= y1,
h−(v3−v2)

λn
= y2,

h−(v5−v4)
λn

= y3,v2 =

u2, and v4 = u3 and τ∗∗∗ = τAB,m(h− y1λn,u2,h− y2λn + u2,u3,h− y3λn + u3). From∫
R2

w(y)dy = 1,
∫
R2

τAB,m(y)dy < ∞ and |Bi
n−Bi

n| = O(|Bi
n|), the right-hand side is bounded

√ λ2
n

|Bi
n|

3

√
mn

∫
Bi

n

∫∫
(Bi

n−Bi
n)

2

∫∫∫
(

h+Bi
n−Bi

n
λn

)3

w(y1)w(y2)w(y3)

τAB,m(u2,u3)dy1dy2dy3du2du3du1

≤

√ λ2
n

|Bi
n|

3

√
mn

(∫
R2

w(y)dy

)3 ∫
Bi

n

∫∫
(Bi

n−Bi
n)

2

τAB,m(u2,u3)du2du3du1

≤

√ λ2
n

|Bi
n|

3

√
mn

∫
R2

w(y)dy

3∫
R2

τAB,m(y)dy

 |Bi
n −Bi

n||Bi
n|

≤ const λ6
nmn|Bi

n|.

Thus, λ6
nmn|Bi

n| → 0 is required.

In conclusion, E|
√
knã

′
ni|3 < ∞ if

sup
n

λ2
nn

2a

mn
< ∞, sup

n

mn

λ2
nn

2a
< ∞, sup

n

mnλ
2
n

n2a
< ∞,

λ6
nmnn

2a → 0, and

∫
R2

τAB,m(y)dy < ∞.

Notice that the third condition is implied by the second condition since λn → 0 as n → 0

and the fourth condition is inferred by the first two conditions and λ2
nmn → 0 in condition
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(M3) as λ6
nmnn

2a ∼ λ4
nm

2
n → 0. Hence, E|

√
knã

′
ni|3 < ∞ if

sup
n

λ2
nn

2a

mn
< ∞, sup

n

mn

λ2
nn

2a
< ∞ and

∫
R2

τAB,m(y)dy < ∞.
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Chapter 3

Resampling methods for the

empirical spatial extremogram

3.1 Introduction

In Chapter 2, we introduce the concept of the spatial extremogram and propose its empirical

estimator under two different sampling schemes: the lattice and non-lattice case. The

asymptotic normality for the empirical spatial extremogram (ESE) is well established for

both cases, but unfortunately the limiting variance is intractable since it is a function of an

infinite sum of unknown quantities.

Estimating the variance of the empirical spatial extremogram is critical in order to make

inferences about spatial extremal dependence. To construct credible confidence intervals,

one can resort to bootstrap procedures or other variance estimation techniques applied to

the spatial setting. We establish consistency properties of a bootstrapped and a subsampling

variance estimator to facilitate the use of the ESE in practice. This is the main motivation

of this chapter.

Figure 3.1 illustrates the variability of the PA-extremogram and the ESE. Using 100

simulations of max-stable process described in Smith (1990), we plot the extremogram (dark

black solid line), PA-extremogram (darker gray lines), and ESE (lighter gray lines) using

A = B = (1,∞) and am = .95 upper quantile. The uncertainty in the PA-extremogram
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Figure 3.1: The uncertainty of the pre-asymptotic extremogram and empirical spatial ex-
tremogram.

and ESE suggests that it is more reasonable to consider an interval estimation rather than

a point estimate.

By now, there are many methods for applying the bootstrap to stationary time series.

The non-overlapping block bootstrap by Carlstein (1986), the moving block bootstrap by

Künsch (1989), the circular block bootstrap by Politis and Romano (1991), and the sta-

tionary bootstrap by Politis and Romano (1994) are just a few options. These bootstrap

methods can be categorized by overlapping or non-overlapping of data, using fixed or ran-

dom bootstrap block size, and wrapping or non-wrapping the sample data. To begin with,

we review bootstrap methods for stationary time series data.

• The moving block bootstrap (MBB) by Künsch (1989) uses the fixed block sizes,

where blocks can overlap.

• The non-overlapping block bootstrap (NBB) inspired by Carlstein (1986) uses the

fixed block sizes, where blocks do not overlap.

• The circular block bootstrap (CBB) by Politis and Romano (1991) uses the fixed block
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sizes in the wrapped data, where blocks can overlap.

• The stationary bootstrap (SB) by Politis and Romano (1994) uses random block sizes

by geometric distribution in the wrapped data, where blocks can overlap.

Regarding the properties of these methods, the MBB and CBB estimators have the smallest

variances of bias and have the smallest mean square error, as mentioned in Lahiri (1999).

On the other hand, Politis and Romano (1994) finds that pseudo-time series from the SB is

stationary conditioned on the original data, but random block size increases the variances

of bias. For the theoretical aspects of these methods, we refer to Lahiri (1999). For the

bootstrapped ESE for a stationary time series, Davis et al. (2012) shows the (conditional)

central limit theorem under the stationary bootstrap.

Other variance estimation schemes can be used to construct confidence intervals for the

ESE. Politis and Romano (1993) proposes the blocks of blocks resampling scheme, such

as jackknife, for random fields on the lattice. For irregularly spaced observations, Politis

and Sherman (2001) shows L2 consistency of the subsampling estimators of the moments

of general statistics. These results are directly applicable to the ESE under appropriate

assumptions.

For a variance estimation for the ESE, two sampling schemes are considered as in the

previous chapter. When samples are from the lattice, three methods are considered:

• the circular block bootstrap (or “CBB”) by Politis and Romano (1991),

• ‘blocks of blocks’ jackknife variance estimator by Politis and Romano (1993), and

• subsampling variance estimator by Politis and Sherman (2001).

We choose the CBB since it is easy to implement in space. In particular, the spatially

adapted CBB creates pseudo-space data that allows unbiased estimator of the sample mean.

Under the same setting, we estimate variance of the ESE by the blocks of blocks jackknife

and subsamplig variance estimator.

For the non-lattice case, the data {Xs1 , ..., XsN } is assumed to be from a stationary

random field, where the locations {s1, ..., sN} are points of a homogeneous Poisson point
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process on Rd. In this case, we devise the subsampling to estimate the variance in order

to provide confidence intervals for the ESE following Politis and Sherman (2001). This will

allow us to construct confidence intervals for the ESE. The CBB may be possible, but it

is more complex in the non-lattice setting, thus it is difficult to implement in practice and

establish asymptotic results.

The organization of the chapter is as follows. In Section 3.2.1, we present the asymptotic

results for the bootstrapped ESE and the variance estimated by jackknife and subsampling

when the underlying data is observed on a d-dimensional lattice. We also consider in Section

3.2.2 subsampling for variance estimation when the data is observed at Poisson points in Rd.

The latter resampling method can be used to provide a portmanteau style test for extremal

dependence at multiple lags. In Section 3.4, these results are applied and compared through

simulation examples. Section 3.5 explores portmanteau test ideas to check the existence of

extremal dependences at multiple lags. In Section 3.6, these methods are applied to two

data sets: the first is rainfall in Florida and the second is ground-level ozone in the eastern

United States. The proofs of all results are given in Section 3.8.

3.2 Bootstrapped ESE and the variance estimation of the

ESE

3.2.1 Random fields on the lattice

In this section, we assume that observations are from the lattice. Consider an increasing

sequence m := mn and am such that mn/n → 0 as n → ∞ and P (|X| > am) ∼ 1
mn

, which

will be assumed throughout the rest of the thesis. Following Chapter 2, define the ESE

from a set E ⊂ Zd by

ρ̂AB,m(h, E) =

∑
s,t∈E,s−t=h I{a−1

m Xs∈A,a−1
m Xt∈B}/n(h)∑

s∈E I{a−1
m Xs∈A}/#E

, (3.1)

given the numerator is non-zero. In (3.1), h ∈ Zd are observed lags in E, n(h) is the

number of pairs in E with lag h, and #E is the cardinality of E. When the numerator

in (3.1) is zero, ρ̂AB,m(h, E) is defined to be 0, so is the PA-extremogram (2.7). Since the
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Figure 3.2: Overview of the spatial CBB in Z2.

generalization would be straightforward, we focus on the case of d=2.

3.2.1.1 The bootstrapped ESE using the circular block bootstrap (CBB)

For a stationary time series, Davis et al. (2012) establishes the central limit theorem for the

bootstrapped extremogram under proper dependence and mixing conditions. In this section,

we establish the central limit theorem for the bootstrapped ESE under the space-adapted

CBB, which can be viewed as the extension of Davis et al. (2012).

For the ESE variance estimation, we choose the CBB since it creates pseudo-space data

which allows unbiased estimator of sample mean. To see this, note that the CBB wraps the

data before blocking them, which enables each point to have the equal probability of being

selected. Also, for a stationary time series, it produces the smallest variance of bias and

the smallest mean square error, which may remain true for spatial data, which is inferred

from Lahiri (1999). Lastly, it is easy to implement. For example, the implementation of the

SB in space is challenging since reconstructing the original sample dimension with random

block sizes is difficult. On the other hand, the CBB uses a fixed block size, thus it can be

easily applied to a higher dimension.
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Now we illustrates the CBB. Suppose the data are observed on Λn = {1, ..., n}2 ∈ Z2

and bn be a bootstrap block length. The space-adapted CBB consists of the following steps.

First, the original data is wrapped to get the extended region {1, ..., n+ bn}2. For example,

the data on {1, ..., n}×{1, ..., bn} is copied and pasted to {1, ..., n}×{n+1, ..., n+ bn}. The

same procedure is repeated for {1, ..., bn} × {1, ..., n} and {1, ..., bn} × {1, ..., bn} to achieve

the extended region. Then, a sub block of dimensions bn× bn is scooped randomly from the

extended region and filled into the re-sample space. This is repeated until the re-sample

space becomes {1, ..., n}2. Notice that the direction of reconstructing the pseudo sample

does not matter since each bootstrap block is independent conditioned on the data. Figure

3.2 has as an illustration with n = 20 and bn = 5. To be specific, the space-adapted CBB

is implemented as

• {1, ..., 5} × {1, ..., 20} is wrapped to {21, ..., 20 + 5} × {1, ..., 20},

• {1, ..., 20} × {1, ..., 5} is wrapped to {1, ..., 20} × {21, ..., 20 + 5}, and

• {1, ..., 5} × {1, ..., 5} is wrapped to {21, ..., 20 + 5} × {21, ..., 20 + 5}.

For example, {(1, 1), (2, 1)} (solid black dots on the left bottom corner) are wrapped to

three locations of {(21, 1), (22, 1)}, {(1, 21), (2, 21)} and {(21, 21), (22, 21)}. If {(1, 1), (2, 1)}

is randomly chosen, the bootstrap block (blue box in the lower left) is constructed from the

chosen point as an anchoring point and copied to the pseudo data. This is repeated until

the pseudo data is filled.

The central limit theorem is established for the bootstrapped ESE conditioned on the

sample under the spatially adapted CBB. In the theorem, we use P ∗ and ρ̂∗AB,m(h,Λn) to

denote the probability measure generated by the CBB and the ESE under P ∗, respectively.

Theorem 5. Consider a strictly stationary regularly varying random field {Xs, s ∈ Z2}

with index α > 0 is observed on Λn = {1, ..., n}2. Define Bγ = {s ∈ Z2 : d(0, s) ≤ γ},

where γ is an observed distance in a bootstrapped block E with the block length bn. Suppose

there exists an increasing sequence mn with mn = o(n) and bn = o(n). For any finite set of
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non-zero lags H = {h1, ...,ht} in Z2, where H ⊂ Bγ, assume√
b2n
mn

[
ρ̂AB,mn

(h, E)− ρAB,mn
(h)
]
h∈H

d−→ N(0,Σ) (3.2)

holds, where the asymptotic variance Σ is specified in Theorem 2.1, Chapter 2. Further,

assume that

mnb
4
n = o(n2), (3.3)

m7
n = o(b2n), and lim

n→∞
m2

nb
2
n

∑
l∈Z2\Bmn

αi,j(d(0, l)) = 0 (3.4)

for 2c ≤ i+ j ≤ 4c, where c = #Bγ. Then

P ∗(|ρ̂∗AB,m(h,Λn)− ρAB,m(h,Λn)| > δ)
P−→ 0, δ > 0, (3.5)

and the central limit theorem holds

P ∗((n2/mn)
1/2(ρ̂∗AB,m(h,Λn)− ρ̂AB,m(h,Λn))h∈H ∈ C)

P−→ Φ0,
∑(C), (3.6)

where C is any continuity set of Φ0,
∑, the normal distribution with mean zero and covari-

ance
∑

.

Proof. See Appendix A.

Remark 9. Theorem 5 implies that the bootstrapped ESE, ρ̂∗AB,m(h), is asymptotically

correct to estimate ρ̂AB,m(h). Moreover, Theorem 5 can be extended to dimension d > 2,

as mentioned in Corollary 3.8.2.

Remark 10. Condition (3.2) indicates that Theorem 2.1 in Chapter 2 is applicable to each

bootstrapped block with block length bn. Conditions (3.3)-(3.4) impose restrictions on the

decaying rate of the mixing functions together with the level of the threshold specified by mn

and the bootstrap block length bn.

3.2.1.2 Blocks of blocks jackknife variance estimator

In this section, we use the blocks of blocks jackknife variance estimator proposed by Politis

and Romano (1993) to construct a confidence interval for the ESE. The method in Politis
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and Romano (1993) extends the idea of Künsch (1989) to have asymptotically valid confi-

dence intervals for parametric in the whole distribution under suitable mixing and moment

conditions. We borrow notation from Politis and Romano (1993), but assume rectangu-

lar blocking for the convenience. The extension to non-rectangular case is mentioned in

Appendix B.

Consider observations on Λn = {1, ..., n}2 ∈ Z2. Let M ∈ N be a side length of block

and L ∈ N be a window lag between blocks, thus overlapping between adjacent blocks is

(M − L). For Q = [(n−M)/L+ 1] , there are Q2 blocks with the side length of M , which

we index using column and row of {1, ..., Q}2

ΛQ = {i = (i1, i2) : 1 ≤ ik ≤ Q for k = 1 and 2}.

Then the set of indices inside of the block indexed by i ∈ ΛQ is defined as

Ei = {(s1, s2) : (ik − 1)L+ 1 ≤ sk ≤ (ik − 1)L+M for k = 1 and 2}.

Now blocks of blocks are defined by stacking neighboring blocks indexed by i ∈ ΛQ. Let b

be a number of blocks to be stacked both vertically and horizontally and w be a window

lag between blocks of blocks. For q = [(Q− b)/w + 1], we index blocks of blocks using the

column and row of {1, ..., q}2

Λb
q = {j = (j1, j2) : 1 ≤ jk ≤ q for k = 1 and 2}.

Then the set of the block indices belongs to the blocks of blocks indexed by j is defined by

Eb
j = {i = (i1, i2) : (jk − 1)w + 1 ≤ ik ≤ (jk − 1)w + b for k = 1 and 2}.

Figure 3.3 illustrates blocks of blocks jackknife with n = 40, M =10, L =5, and b =3. Each

block is 10 × 10 square and indexed by (i1, i2) for 1 ≤ i1, i2 ≤ 7. With the choice of b=3,

a block of blocks consists of 9 blocks. For example, the block of blocks indexed by (1, 3)

consists of indices from Ei1,i2 for 1 ≤ i1 ≤ 3 and 5 ≤ i2 ≤ 7, total 9 blocks, as presented in

the upper left corner of the figure.

Now consider the ESE computed from observations from Ei

Ti(h) =

√
M2

mM

(
ρ̂AB,mM

(h, Ei)− ρAB,m(h)
)
, (3.7)
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where mM satisfies that mM → ∞ and mM/M → 0 as n → ∞. Note that the central limit

theorem for (3.7) is established in Chapter 2, Theorem 2.1. Then the jackknife variance

estimator for the ESE can be defined as

V̂ (
√

Q2T̄ (h)) =
b2

q2

∑
j∈Λb

q

(Jj − T̄ (h))2 (3.8)

where Jj = 1
b2
∑

i∈Eb
j
Ti(h) and T̄ = 1

Q2

∑
i∈ΛQ

Ti(h). The L2 consistency of (3.8) follows

from Theorem 1 in Politis and Romano (1993), which will be discussed in the following

theorem. In the theorem, we use αT to denote α-mixing associated with Ti(h).

Theorem 6. Suppose that a strictly stationary regularly varying random field {Xs, s ∈ Z2}

with α > 0 is observed on Λn = {1, ..., n}2. Use Bγ = {s ∈ Z2 : d(0, s) ≤ γ} to denote

the ball with the radius γ. For a non-zero lag h ∈ Bγ and increasing sequences M and mM

satisfying mM/M → 0 and M/n → 0, assume

Ti(h)
d−→ N(0, σ2). (3.9)

For some p > 2 and δ, k > 0 and k1, k2 > 0 with k1+k2 ≤ 12, and c = #Bγ, further assume

that

∑
l∈Z2

αk2,k2(∥l∥)
p−2
p < ∞, (3.10)

m3
M/M → 0,

∑
l∈Z2

αc,c(∥l∥) < ∞,m6
MM10

∑
l∈Z2\BmM

αk1c,k2c(∥l∥) → 0, (3.11)

(
M2

m2
M

)∑
l∈Z2

α(Mb)2,(Mb)2(∥l∥)
p−2
p < ∞ and

(
M2

m2
M

) ∑
l∈Z2\BL

α(Mb)2,(Mb)2(∥l∥)
p−2
p → 0,

(3.12)∑
l∈Z2

∥l∥ αT
k1,k2(∥l∥) < ∞, αT

1,∞(∥l∥) = o(∥l∥−2), and
∑
l∈Z2

∥l∥ αT
1,1(∥l∥)δ/(2+δ) < ∞,

(3.13)

n2mM/M4 → 0, (3.14)

L/M → a1 ∈ (0, 1], w/b → a2 > 0, b → ∞ and b = o(Q). (3.15)
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Figure 3.3: The illustration of blocks of blocks jackknife with n = 40, M =10, L =5, b =3.

Then

EV̂ (
√

Q2T̄ (h)) = var

 1√
b2

∑
i∈Eb

j

Ti(h)

+O(b2/Q2) and var(V̂ (
√

Q2T̄ (h))) = O(b2/Q2).

(3.16)

Also it is followed that

E(V̂ (
√

Q2T̄ (h))− σ2
∞)2 → 0,

where σ2
∞ = lim

n→∞
var(

√
Q2T̄ (h)) > 0.

Proof. All necessary conditions of Theorem 1 in Politis and Romano (1993) are satisfied by

(3.9)-(3.15). Thus, the L2 consistency is proved. See Appendix B for the details.

Remark 11. Note that blocks of blocks jackknife estimator (3.8) has two scaling factors:

the block size 1/
√
b and 1/

√
q used in triangular arrays. In the theorem, the conditions

(3.10) and (3.11) are required to apply Theorem 1 in Politis and Romano (1993).

Remark 12. Theorem 1 in Politis and Romano (1993) assumes√
Q2(T̄ (h)−ET̄ (h))

d−→ N(0, σ2
∞),
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which is verified under (3.12) and (3.13). See Lemma 3.8.3 in Appendix B. Using Theorem

6, the 100(1− α)% confidence intervals for the PA-extremogram is derived as

ρAB,m(h) ∈

 1

Q2

∑
i∈ΛQ

ρ̂AB,mM
(h, Ei)±

√
Q−2 σ̂∞ Φ−1

1−α/2

 ,

where Φ−1
1−α/2 indicates the inverse cumulative distribution function of the standard normal

and

σ̂2
∞ =

(
b2

q2
∑

j∈Λb
q

(
1
b2
∑

i∈Eb
j
ρ̂AB,mM

(h, Ei)− 1
Q2

∑
i∈ΛQ

ρ̂AB,mM
(h, Ei)

)2)
.

3.2.1.3 Random fields on Zd: subsampling the variance of the ESE

Subsampling variance estimator for the lattice case is presented in the next section since its

derivation is analogous to Theorem 7.

3.2.2 Random fields on Rd: subsampling variance estimator

Now consider observations are from Rd. We borrow the settings of Karr (1986) and restrict

our attention to R2. Let {Xs, s ∈ R2} be a stationary regularly varying random field with

index α > 0. Suppose N is a homogeneous 2-dimensional Poisson process with intensity

parameter ν and is independent of X. Define

N (2)(ds1, ds2) = N(ds1)N(ds2)I(s1 ̸= s2).

Consider a sequence of compact and convex sets Λn ⊂ R2 with Lebesgue measure |Λn| =

O(n2) and |∂Λn| = O(n), where ∂· denotes the boundary. Define Λn−y = {x−y : x ∈ Λn}

and suppose that for each y ∈ R2

lim
n→∞

|Λn ∩ (Λn − y)|
|Λn|

= 1.
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Under this setting, the central limit theorem for ρ̂AB,m(h,Λn) = τ̂AB,m(h,Λn)/p̂m(A),

where

p̂m(A) =
mn

ν|Λn|

∫
Λn

I

(
Xs1

am
∈ A

)
N(ds1), (3.17)

τ̂AB,m(h,Λn)

=
mn

ν2
1

|Λn|

∫
Λn

∫
Λn

wn(h+ s1 − s2) I

(
Xs1

am
∈ A

)
I

(
Xs2

am
∈ B

)
N (2)(ds1, ds2),

(3.18)

is established in Theorem 2.3 in Chapter 2. Recall that mn is an increasing sequence such

that mn = o(n) and wn(·) = 1
λ2
n
w( ·

λn
) is a sequence of weight functions, where w(·) on

R2 is a positive, bounded, isotropic probability density function and λn is the bandwidth

satisfying λn → 0 and λ2
n|Λn| → ∞.

For variance estimator, we follow Politis and Sherman (2001). Consider a subsampling

region Bn = (0, cn]2, where c = cn :=
√

|Bn|/|Λn| ∈ (0, 1) is a scaling factor. Use Bn + y =

{s+ y : s ∈ Bn} and Λ1−c
n = {s : Bn + s ∈ Λn} to denote a y−shifted subsampling region

and a set of anchoring points in Λn. The subsampling variance and covariance estimator

for the ESE for non-zero lag h,h1 and h2, are defined as

Σ̂n(h) =

(
|Bn|λ2

n

mn|Λ1−c
n |

)∫
Λ1−c
n

(
ρ̂AB,m(h, Bn + y)− ρ̄AB,m(h, Bn)

)2
dy, (3.19)

Σ̂n(h
1,h2) (3.20)

=

(
|Bn|λ2

n

mn|Λ1−c
n |

)∫
Λ1−c
n

(ρ̂AB,m(h1, Bn + y)− ρ̄AB,m(h1, Bn))

(ρ̂AB,m(h2, Bn + y)− ρ̄AB,m(h2, Bn))dy,

where ρ̄AB(h, Bn) =
1

|Λ1−c
n |

∫
Λ1−c
n

ρ̂AB,m(h, Bn+y)dy. It will be shown that (3.19) and (3.20)

are L2 consistent by Theorem 2 in Politis and Sherman (2001).

Theorem 7. Consider a strictly stationary regularly varying random field {Xs, s ∈ Rd}

with α > 0. Suppose the locations are generated by a Poisson process N and observed in

the compact set Λn = (0, n]2 ∈ Rd. Assume that there exist increasing sequences mn and n,
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a decreasing sequence c = cn, and Bn = (0, cn]2 such that

g(h,Λn) =

√
|Λn|λ2

n

mn
[ρ̂AB,m(h,Λn)− ρAB,m(h)] → N(0, σ2) and

g(h, Bn + y) =

√
|Bn|λ2

n

mn
[ρ̂AB,m(h, Bn + y)− ρAB,m(h)] → N(0, σ2) (3.21)

as n → ∞. Further assume that

cn → ∞ and mn/cn → 0, (3.22)

αk2,k2(k) → 0 as k → ∞, (3.23)

λ8
nn

6m4
n = O(1), and (3.24)∫

R2

α1,k(y)dy < ∞ for k = 1, ..., 5. (3.25)

Then

Σ̂n(h)
L2−→ lim

n→∞
var (g(h,Λn)) and Σ̂n(h

1,h2)
L2−→ lim

n→∞
cov
(
g(h1,Λn), g(h

2,Λn)
)
.

(3.26)

Proof. The proof follows Theorem 2 of Politis and Sherman (2001). See Appendix C.

Remark 13. Theorem 2 in Politis and Sherman (2001) is applicable to the ESE given

additional conditions on the bandwidth, (3.24), and mixing, (3.25).

Remark 14. Using Theorem 7, the confidence interval for ρAB,m(h) is constructed. From

Theorem 2.3 in Chapter 2, we have√
|Λn|λ2

n

mn
(ρ̂AB,m(h,Λn)− ρAB,m(h))

d−→ N(0, σ2).

Since Σ̂n(h)
L2−→ σ2, it follows that

ρAB,m(h) ∈

[
ρ̂AB,m(h,Λn)±

(
mn

|Λn|λ2
n

Σ̂n(h)

)1/2

Φ−1
1−α/2

]
(3.27)

is asymptotic 100(1− α)% confidence interval for ρAB,m(h).

Now, the lattice case analog of Theorem 7 is discussed.
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Theorem 8. Consider a strictly stationary regularly varying random field {Xs, s ∈ Z2}

with index α > 0 observed on Λn = {1, ..., n}2. Assume that there exist increasing sequences

mn and n, a decreasing sequence c = cn, and Bn = (0, cn]2. For any finite set of non-zero

lags H = (h1, ...,ht) in Z2, where H ⊂ Bγ := {s ∈ Z2 : d(0, s) ≤ γ} and γ is an observed

distance in a subsampling block Bn, assume

[g(h,Λn)]h∈H → N(0,Σ) and [g(h, Bn + y)]h∈H → N(0,Σ)

as n → ∞, where ρ̂AB,m(h, ·) as defined in (3.1) and

g(h,Λn) =

√
|Λn|
mn

[ρ̂AB,m(h,Λn)− ρAB,m(h)],

g(h, Bn + y) =

√
|Bn|
mn

[ρ̂AB,m(h, Bn + y)− ρAB,m(h)].

Further assume that (3.22), (3.23), m3
n = o(n), and limn→∞m4

nn
6
∑

l∈Z2\Bmn
αi,j(d(0, l)) =

0 for 2c ≤ i+ j ≤ 8c, where c = #Bγ. Then (3.26) holds, where

Σ̂n(h) =

(
|Bn|

mn|Λ1−c
n |

) ∑
y∈Λ1−c

n

(
ρ̂AB,m(h, Bn + y)− ρ̄AB,m(h, Bn)

)2
,

Σ̂n(h
1,h2)

=

(
|Bn|

mn|Λ1−c
n |

) ∑
y∈Λ1−c

n

(ρ̂AB,m(h1, Bn + y)− ρ̄AB,m(h1, Bn))

(ρ̂AB,m(h2, Bn + y)− ρ̄AB,m(h2, Bn)).

Proof. The proof follows Theorem 7 and the techniques in Remark 16. See Appendix C.

3.3 The bias corrected confidence intervals and comparison

of three approaches

Before discussing examples and applications, we introduce bias corrected confidence inter-

vals proposed by Efron (1981) and compare three variance methods.
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3.3.1 The bias corrected confidence intervals

Often a bias is observed when a ratio estimator is estimated through bootstraps. For exam-

ple, skewness of sampling distribution is observed when a sample correlation is estimated

through bootstrap. Since the ESE is a ratio estimator as well, we suspect the existence of

bias when constructing confidence intervals.

Without bias correction, one assumes the distribution of ρ̂∗AB,m(h)− ρ̂AB,m(h) is similar

to that of ρ̂AB,m(h)−ρAB,m(h), thus the 100(1−α)% bootstrap confidence interval for the

PA-extremogram is

[2ρ̂AB,m(h)− ρ̂∗AB,m(h)1−α/2, 2ρ̂AB,m(h)− ρ̂∗AB,m(h)α/2].

Efron (1981) proposed the bias corrected confidence intervals to resolve the issue of bias.

For example, the bias corrected 100(1− α)% confidence intervals for the ESE is

[ĈDF−1(Φ(2z0 − zα/2)), ĈDF−1(Φ(2z0 + zα/2))], (3.28)

where Φ(z) is the cumulative distribution function of N(0, 1), ĈDF is the empirical cumu-

lative distribution function of ρ̂∗AB,m(h), and z0 = Φ−1
[
ĈDF (ρ̂AB,m(h))

]
. The main idea

of (3.28) is that there is a monotone increasing transformation that allows the transformed

random variable to follow a normal distribution and that the bias can be carried through

the transformation.

To see (3.28), assume that there is a monotonic increasing function g(·) such that

ϕ = g(ρAB,m(h)), ϕ̂ = g(ρ̂AB,m(h)), and ϕ̂
∗
= g(ρ̂∗AB,m(h)).

Then

ϕ̂− ϕ ∼ N(−z0σ, σ
2) and ϕ̂

∗ − ϕ̂ ∼∗ N(−z0σ, σ
2).

Let ĈDG be the empirical CDF of ϕ̂
∗
. By the monotonicity of g,

ĈDG(ϕ̂) = ĈDF (ρ̂AB,m(h)) = Φ(z0) and

ĈDG(ϕ̂+ z0σ ± zα/2σ) = P (ϕ̂ ≤ ϕ+ z0σ ± zα/2σ) = Φ(2z0 ± zα/2),
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Figure 3.4: Visual comparison of three variance estimators in d=2.

which implies that

g−1(ϕ̂+ z0σ ± zα/2σ) = g−1ĈDG
−1

[Φ(2z0 ± zα/2)] = ĈDF
−1

[Φ(2z0 ± zα/2)].

Since the 100(1 − α)% confidence interval for ϕ is [ϕ̂ + z0σ − zα/2σ, ϕ̂ + z0σ + zα/2σ], the

bias corrected confidence interval (3.28) is derived. See Efron (1981) for more.

3.3.2 Comparison of three approaches

Here, we provide graphical comparison the CBB, blocks of blocks jackknife, and subsampling

variance estimators to highlight their differences. See Figure 3.4. Subsampling variance

estimator is a sample variance of ρ̂AB,m(h) from all subsample boxes (solid boxes). On the

other hand, blocks of blocks jackknife variance estimator is a sample variance of ρ̂AB,m(h)

from blocks of subsample boxes (bigger boxes). Lastly, the CBB estimates a variance from

re-samples constructed from the wrapped original data.

All three methods use a fixed block size, but the difference is that the CBB wraps the

original data. This allows the anchoring points to be selected from the entire original data,

while subsampling and blocks of blocks jackknife do not.

3.4 Examples

We revisit examples discussed in Chapter 2.
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Figure 3.5: The 95% bootstrap and the bias corrected confidence intervals the MMA(1).

3.4.1 Max-Moving Average (MMA)

Recall that the max-moving average (MMA) process is defined as

Xt = max
s∈Z2

w(s)Zt−s, (3.29)

where {Zs, s ∈ Z2} is an iid sequence of unit Fréchet random variables, w(s) > 0 and∑
s∈Z2 w(s) < ∞. With w(s) = I(∥s∥ ≤ 1) the process (3.29) becomes the MMA(1).

ρ(1,∞)(1,∞)(h) = lim
n→∞

P (Xh > amn |X0 > amn) =



1, if ∥h∥ = 0,

2/5, if ∥h∥ = 1,
√
2,

1/5, if ∥h∥ = 2,

0, if ∥h∥ > 2.

(3.30)

Since the process is 2-dependent, conditions for Theorem 5, 6, and 7 are easily checked.

We use rmaxstab in SpatialExtremes package in R to generate the MMA(1) for Λn =

{1, ..., 40}2 ∈ Z2. For the ESE, we use A = B = (1,∞) and am = .98 upper quantile. Figure

3.5 shows the confidence interval from the CBB (left) and the bias corrected confidence

interval using Efron (1981) (right). In the figure, the bars and dots correspond to ρAB(h)

and ρ̂AB,m(h), respectively. The solid lines around the dots are 95% confidence intervals.
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Figure 3.6: The 95% confidence interval from the CBB (the bias correction), jackknife, and
subsampling for the MMA(1)

Observe that the bias corrected confidence bands are more symmetric and do not include

negative value for all distance. The dotted line corresponds to P (X0 > am) = 0.02.

Figure 3.6 compares confidence intervals from bootstrap and two variance estimators.

The PA-extremogram (triangles), ESE (circles), and confidence intervals from the CBB

(solid line), blocks of blocks jackknife (dotted line), and subsampling (dashed line with

diamonds) are presented. For the CBB, we use a block size of 10 and 1000 simulations,

then compute the bias corrected confidence interval. For jackknife, 36 blocks are created

by choosing the block length of 35 and window length of 1. Then, 9 blocks of blocks are

formed by stacking 4 blocks horizontally and vertically. For subsampling, a subsampling

block size of 30 is used. Three methods give similar confidence band widths for ∥h∥ ≤ 2.

Table 3.1 - Table 3.3 present statistics and the 95% confidence interval estimated from

the three methods. For example, to get the confidence interval of (0.385, 0.421) for ∥h∥ = 1

based on subsampling, recall (3.27). Then

(0.40293− 1.96×
√

|Bn|/|Λn| ×
√
0.00141, 0.40293 + 1.96×

√
|Bn|/|Λn| ×

√
0.00141)

= (0.40293− 1.96× 0.25×
√
0.00141, 0.40293 + 1.96× 0.25×

√
0.00141).
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∥h∥ ρ(∥h∥) ρ̂(∥h∥) CBB SS JK ∥h∥ SS (var) JK (var)

1 0.40 0.40 0.36 0.38 0.39 1 0.00141 0.00080√
2 0.40 0.38 0.30 0.34 0.36

√
2 0.00567 0.00264

2 0.20 0.19 0.15 0.17 0.18 2 0.00117 0.00066√
10 0.02 0.01 0.02 0.03 0.03

√
10 0.00007 0.00038√

13 0.02 0.03 0.03 0.09 0.09
√
13 0.00040 0.00337

4 0.02 0.04 0.05 0.12 0.12 4 0.00088 0.00604

Table 3.1: Estimation results from the CBB, subsampling (sn = 10) and jackknife (jk = 10)
for the MMA (1) with am = .98 quantile

The rest of confidence bands are derived in the same fashion. Using the subsampling

variance estimation, the variance-covariance matrix can be estimated as shone in Table 3.2.

From the permutation bands in Figure 3.6, one can infer that the extremal dependence

for spatial lags greater than 2 is not significant. Thus, only the first 3 × 3 of the variance

covariance matrix are considered.

∥h∥ 1
√
2 2

1 0.00141 0.00202 0.00013√
2 0.00202 0.00567 0.00077
2 0.00013 0.00077 0.00117

Table 3.2: Estimated variance - covariance matrix for the MMA (1) using subsampling
variance estimation

∥h∥ CBB (lower) CBB (upper) SS (l) SS (u) JK (l) JK (u)

1 0.401 0.410 0.385 0.421 0.389 0.417√
2 0.362 0.421 0.339 0.413 0.351 0.401
2 0.181 0.218 0.171 0.205 0.175 0.201

Table 3.3: 95% confidence intervals from the CBB, subsampling (sn = 10) and jackknife
(jk = 10) for the MMA (1) with am = .98 quantile

Now we consider another example, the process (3.29) with w(s) = ϕ∥s∥, where 0 < ϕ < 1.

Then

Xt = max
s∈Z2

ϕ∥s∥Zt−s for
∑
l∈Z2

ϕ∥l∥ =
∑

0≤∥l∥<∞

ϕ∥l∥p(∥l∥) < ∞, (3.31)

where p(∥l∥) = #{s ∈ Z2 : d(0, s) = ∥l∥}. The extremogram with A = B = (1,∞) is
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Figure 3.7: The 95% confidence interval from the CBB (the bias correction), jackknife, and
subsampling for the IMMA

derived as

ρ(1,∞)(1,∞)(h) =

∑
∥h∥
2

≤∥l∥<∞ ϕ∥l∥[2p(∥l∥)− qh(∥l∥)]∑
0≤∥l∥<∞ ϕ∥l∥p(∥l∥)

, (3.32)

where qh(∥l∥) = #{s ∈ Z2 : min(∥s∥ , ∥h+ s∥) = ∥l∥}, the number of pairs with minimum

distance to 0 or h equals ∥l∥. For the derivation of (3.32), we refer to Chapter 2.

Figure 3.7 presents confidence intervals computed from bootstrap and subsampling vari-

ance estimators for the process (3.31). The setting for the resampling methods and repre-

sentation in the figure are same as Figure 3.6 except that am = .90 upper quantile is used.

Two confidence intervals suggest that there is no extremal dependence for ∥h∥ > 7.

Example 4. The process (3.31) satisfies conditions in Theorem 5 if bn = n2/5 and mn =

n1/10.

Proof. From Theorem 2.1 in Chapter 2 (3.2) is checked since the choice of bn,mn, and the

selection of rn = n1/25 satisfy necessary conditions of the theorem. Other conditions in

Theorem 5, such as bn = o(n), (3.3), and m7
n/b

2
n → 0 in (3.4), are easily verified. Lastly,
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the mixing condition in (3.4) can be checked by Corollary 2.2 in Dombry and Eyi-Minko

(2012) since

m2
nb

2
n

∑
l∈Z2\Bmn

αi,j(d(0, l)) = O
(
m4

nb
2
nϕ

mn
)
.

The right-hand side converges to 0 as n → ∞ since 0 < ϕ < 1. See Example 3.2 in Chapter

2.

Example 5. The process (3.31) satisfies conditions in Theorem 6 if M = n9/10 and mM =

n1/5.

Proof. The proof is analogous to Example 4. One can check the selected M,mM and the

choice of rn = n1/25 satisfy the conditions of Theorem 2.1 in Chapter 2, thus (3.9) follows.

Growth rates conditions on mM ,M and n in (3.11) and (3.14) are easily verified. To show

(3.10), recall (3.32), p(∥l∥) = O(∥l∥), and |ϕ| < 1. Then by Corollary 2.2 in Dombry and

Eyi-Minko (2012),∑
l∈Z2

αk2,k2(d(0, l))
p−2
p ≤ const

∑
l∈Z2

α1,1(d(0, l))
p−2
p ≤ const

∑
l∈Z2

∥l∥
p−2
p ϕ

∥l∥ p−2
p < ∞.

Other mixing conditions (3.11)-(3.13) are shown in a similar fashion. In particular, the

second condition in (3.13) requires Corollary 2.2 in Dombry and Eyi-Minko (2012), or

Lemma 2 in Davis et al. (2013b),

α1,∞(∥l∥) ≤
∑
k≥∥l∥

ρ(1,∞)(1,∞)(k) = O
(
ϕ∥l∥/2

)
(3.33)

and αT
1,∞(k) = αc,∞(k) for sufficiently large k, where c = #Ei.

3.4.2 Brown-Resnick process

For the definition of the Brown-Resnick process, we refer to Chapter 2 or Kabluchko et al.

(2009). As done in Chapter 2, the extremogram for the Brown-Resnick process {Xs, s ∈ Rd}

with A = (cA,∞) and B = (cB,∞) is

ρAB(h) = Φ̄cA,cB (δ(h)) +
cA
cB

Φ̄cB ,cA (δ(h)) , (3.34)
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Figure 3.8: The comparison of the bootstrap and the bias-corrected confidence interval for
the BR process.

where δ(h) is associated with the covariance of a underlying Gaussian random fields for the

Brown-Resnick process and Φy1,y2 (δ(h)) = Φ

(
log(y2/y1)√

2δ(h)
+

√
δ(h)
2

)
.

Figure 3.8 compares the bootstrap confidence interval (left) and the bias-corrected con-

fidence interval (right) for ρ(1,∞),(1,∞),.98(∥h∥) for the Brown-Resnick process. The solid

circles correspond to the ESE and two horizontal solid lines are permutation based confi-

dence bands which confirms the extremal dependence is not significant when spatial lags

are greater than 4. The bias-corrected confidence intervals are less asymmetric and all

non-negative. Sample region is (0, 40]2, the bootstrap block size 10, and 1000 simulations.

Figure 3.9 shows the 95% confidence interval for ρ̂(1,∞)(1,∞),m(h) from the Brown-

Resnick process with δ(h) =
√

4/9 ∥h∥ and Λn = {1, ..., 40}2 ∈ Z2. For the ESE, we

use am = .98 upper quantile. In the figure, the PA-extremogram (triangles), ESE (circles),

and confidence intervals from the CBB with the bias correction (solid line), blocks of blocks

jackknife (dotted line), and subsampling (dashed line with diamonds) are shown, where the

setting are the same as the MMA(1) in Figure 3.6. Table 3.4 - Table 3.6 present inference

results regarding confidence intervals.

Example 6. Consider the Brown-Resnick process {Xs, s ∈ Z2} with δ(h) = θ ∥h∥α for α ∈
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Figure 3.9: The 95% confidence interval from the CBB (the bias correction), jackknife, and
subsampling for the BR process.

(0, 2] and θ > 0. The process satisfies conditions in Theorem 5 if bn = n2/5 and mn = n1/10.

Proof. The proof is identical to Example 4 except that the mixing condition in (3.4) satisfies

m2
nb

2
n

∑
l∈Z2\Bmn

αi,j(d(0, l)) = O

m2
nb

2
n

∑
l∈Z2\Bmn

∥l∥1−α/2 e−θ∥l∥α/4

 ,

where αi,j(d(0, l)) ≤ const ij ∥l∥−α/2 e−θ∥l∥α/4 is from Corollary 2.2 in Dombry and Eyi-

Minko (2012). The right-hand side converge to 0 as n → ∞ under the imposed conditions.

Example 7. Consider the Brown-Resnick process {Xs, s ∈ Z2} with δ(h) = θ ∥h∥α for

α ∈ (0, 2] and θ > 0. The process satisfies conditions in Theorem 6 if M = n9/10 and mM =

n1/5.

Proof. The proof is identical to Example 5 except that α-mixing coefficient has different

upper bound, i.e.,∑
l∈Z2

αk2,k2(d(0, l))
p−2
p ≤ const

∑
l∈Z2

(
∥l∥−α/2 e−θ∥l∥α/4

) p−2
p

< ∞.
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∥h∥ ρ(∥h∥) ρ̂(∥h∥) SS (var) JK (var)

1.000 0.649 0.657 0.05013 0.05070
1.414 0.522 0.510 0.05016 0.01866
2.000 0.370 0.329 0.02429 0.01610
2.236 0.319 0.295 0.02716 0.00204
2.828 0.216 0.208 0.01159 0.00141
3.000 0.193 0.169 0.00695 0.00225
3.162 0.173 0.156 0.00773 0.00178
3.606 0.129 0.107 0.00374 0.00034
4.000 0.101 0.069 0.00131 0.00045
4.123 0.094 0.053 0.00079 0.00062
4.243 0.088 0.037 0.00052 0.00016
4.472 0.078 0.018 0.00018 0.00187

Table 3.4: Estimation results from the CBB, subsampling (sn = 10) and jackknife (jk = 10)
for the BR process width am = .98 upper quantile

∥h∥ 1
√
2 2

√
5

√
8 3

√
10

√
13 4

1 5.013 -0.188 0.159 -0.112 0.025 0.063 0.179 -0.079 -0.027√
2 -0.188 5.016 0.241 -0.062 0.050 0.105 0.043 -0.035 -0.007
2 0.159 0.241 2.429 1.186 0.004 0.319 0.214 -0.064 0.051√
5 -0.112 -0.062 1.186 2.716 0.184 0.656 0.682 -0.017 0.049√
8 0.025 0.050 0.004 0.184 1.159 -0.057 0.171 0.364 -0.044
3 0.063 0.105 0.319 0.656 -0.057 0.695 0.385 -0.067 0.072√
10 0.179 0.043 0.214 0.682 0.171 0.385 0.773 0.031 0.085√
13 -0.079 -0.035 -0.064 -0.017 0.364 -0.067 0.031 0.374 -0.054
4 -0.027 -0.007 0.051 0.049 -0.044 0.072 0.085 -0.054 0.131

Table 3.5: Estimated variance - covariance matrix for the Brown-Resnick process using
subsampling variance estimation (scaled by 100).

Example 8. Consider the Brown-Resnick process {Xs, s ∈ R2} with δ(h) = θ ∥h∥α for

α ∈ (0, 2] and θ > 0. Theorem 7 holds if c = cn = n−1/35,mn = n1/9, and λn = n−8/9 are

chosen.

Proof. Following Example 3.4 in Chapter 2, (3.21) hold if

logmn = o(rαn), supn
λ2
n(cn)

2a

mn
< ∞ and supn

mn

λ2
n(cn)

2a < ∞ for 0 < a < 1,

which are satisfied with a = 35/36. Also (3.22) and (3.24) are verified by the proposed rates.
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∥h∥ CBB (lower) CBB (upper) SS (l) SS (u) JK (l) JK (u)

1.000 0.586 0.700 0.547 0.767 0.551 0.763
1.414 0.401 0.575 0.400 0.619 0.399 0.620
2.000 0.155 0.452 0.253 0.405 0.262 0.396
2.236 0.140 0.392 0.214 0.376 0.233 0.357
2.828 0.089 0.294 0.155 0.261 0.186 0.230
3.000 0.064 0.253 0.128 0.210 0.151 0.187
3.162 0.057 0.230 0.113 0.199 0.133 0.179
3.606 0.033 0.178 0.077 0.137 0.086 0.127
4.000 0.030 0.130 0.052 0.087 0.060 0.079
4.123 0.019 0.106 0.040 0.067 0.043 0.064
4.243 0.009 0.110 0.025 0.048 0.024 0.049
4.472 0.004 0.067 0.012 0.025 0.012 0.024

Table 3.6: 95% confidence intervals from the CBB, subsampling (sn = 10) and jackknife
(jk = 10) for the BR process with am = .98 quantile

Other condition (3.23) and (3.25) are checked by Corollary 2.2 in Dombry and Eyi-Minko

(2012). For example,

αk2,k2(k) = O
(
k4−α/2e−θkα/4

)
= o(1).

3.5 Portmanteau tests

Often, one is interested in lack of spatial dependences. Since the extremal dependence tend

to decay as the distance between two points are further apart, one may be interested in

portmanteau tests lead-in from time series analysis,

H0 : ρAB,m(hi) ≤ 1/m for i = 1, ..., k vs. H1 :̸= H0. (3.35)

Using the L2 consistency of the variance/covariance estimators in Theorem 7, we suggest

χ2 based test.

Proposition 9. Assume the condition of Theorem 7 and√
n2λ2

n

mn
[ρ̂AB,m(hi)− ρAB,m(hi)]i=1,...,k

d−→ N(0,Σ), (3.36)
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where Σ indicates the variance-covariance matrix. Under H0 in (3.35),

k∑
i=1

L̂−1 [ρ̂AB,m(hi)− 1/m]√
D̂i

n

2

∼ χ2(k), (3.37)

where L̂ and D̂i
n are from Cholesky decomposition of mn

n2λ2
n
Σ.

Proof. By Cholesky decomposition, we have

Σ = LDLt and mn

n2λ2
n
Σ = LDnL

t,

where both D and Dn = mn

n2λ2
n
D are diagonal matrices. Use Di

n to denote i-th diagonal

element of Dn. Under H0 in (3.35),√
n2λ2

n
mn

L−1[ρ̂AB,m(hi)− 1
m ]i=1,...,k

d−→ N(0, D),

thus it follows that

k∑
i=1

(
L−1 [ρ̂AB,m(hi)− 1

m ]√
Di

n

)2

∼ χ2(k).

Recall from Theorem 7 that the subsampling variance/covariance estimators (3.19) and

(3.20) are consistent in L2. Write Σ̂ to denote the matrix consists of (3.19) and (3.20) for

diagonal and off-diagonal entries, and L̂ and D̂ to denote terms from Cholesky decomposi-

tion of Σ̂. Then, by replacing L and D by L̂ and D̂, we conclude (3.37).

The performance of portmanteau test in Proposition 9 is tested with the MMA(1) gen-

erated from {1, ..., 40} ∈ Z2. Since the MMA(1) has no spatial dependence for ∥h∥ > 2, we

focus on cases ∥h∥ ≤ 5. In the simulated data it turns out that the observed distances less

or equal to 5 are {1,
√
2, 2,

√
10,

√
13, 4,

√
17,

√
18,

√
20, 5}. In Table 3.7, 20 hypothesis tests

with the structure of (3.35) using am=.98 upper quantile are listed. The first four columns

provide information on (3.35). For example, Test 1 is the simple hypothesis test of

H0 : ρAB,m(1) ≤ 0.02 vs. H1 :̸= H0.

On the other hand, Test 11 is the multiple hypothesis test of

H0 : ρAB,m(
∥∥hi
∥∥) ≤ 0.02 for i = {1, ..., 10} vs. H1 :̸= H0.
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Test
∥∥h1

∥∥ ∥∥hk
∥∥ k χ2 α = 0.05 α = 0.01 theory df 0.05 0.01

1 1 1 1 103.98 R R R 1 3.84 6.64

2
√
2

√
2 1 22.31 R R R 2 5.99 9.21

3 2 2 1 24.02 R R R 3 7.82 11.35

4
√
10

√
10 1 1.49 A A A 4 9.49 13.28

5
√
13

√
13 1 0.27 A A A 5 11.07 15.09

6 4 4 1 0.44 A A A 6 12.59 16.81

7
√
17

√
17 1 0.60 A A A 7 14.07 18.48

8
√
18

√
18 1 1.72 A A A 8 15.51 20.09

9
√
20

√
20 1 5.35 R A A 9 16.92 21.67

10 5 5 1 1.11 A A A 10 18.31 23.21
11 1 5 10 190.41 R R R 11 19.68 24.73

12
√
2 5 9 52.17 R R R 12 21.03 26.22

13 2 5 8 36.27 R R R 13 22.36 27.69

14
√
10 5 7 12.29 A A A 14 23.69 29.14

15
√
13 5 6 9.88 A A A 15 25 30.58

16 4 5 5 9.49 A A A 16 26.3 32

17
√
17 5 4 8.23 A A A 17 27.59 33.41

18
√
18 5 3 8.23 A A A 18 28.87 34.81

19
√
20 5 2 6.38 A A A 19 30.14 36.19

20 1 2 3 146.67 R R R 20 31.41 37.57

Table 3.7: The portmanteau test results for 20 hypothesis tests for the MMA(1).

In Table 3.7, the fifth column shows χ2 statistics proposed in (3.37). Using the degrees of

freedom and χ2 distribution table (in the last three columns), H0 is accepted or rejected

as indicated in the sixth (seventh) columns for α = 0.05 (0.01). The column labeled as

“theory” is the expectation based on ρ(1,∞)(1,∞)(∥h∥) = 0 for ∥h∥ > 2. For example, the

valid test should reject H0 in Test 13, but accept it for Test 14 since the MMA(1) has

extremal dependence at ∥h∥ = 2. As seen in the table, the expectation is consistent with

the χ2 based tests for both α = 0.01 and 0.05.

Remark 15. Proposition 9 assumes that the diagonal entry of Σ are non-zeros and that

no bias exists. Hence, the χ2 based test may fail if any of these assumptions is violated.

3.6 Application

In this section, we revisit the applications considered in Chapter 2.
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Figure 3.10: The confidence bands for the ESE using the year of 2000 (top) and 2002
(bottom) annual maxima of Florida rainfall data with am = 0.70 (left), 0.75 (middle), 0.80
(right) upper quantiles.

3.6.1 The lattice case: rainfall in a region in Florida

In this section, the bootstrapped ESE and the subsampling variance estimator for the ESE

are applied to a heavy rainfall in a region in Florida. Recall from Chapter 2 that the raw

data is total rainfall in 15 minute intervals from 1999 to 2004, measured on a 120 × 120

(km)2 region containing 3600 grid locations and that the 6 spatial data sets are created

on a 12 × 12 grid under consideration consist of annual maxima of spatial maxima. Most

assumptions such as max-stability are already discussed in Chapter 2.

We compute the ESE using A = B = (1,∞) and am = 0.70, 0.75, and 0.80 upper

quantile. The modest thresholds were chosen to ensure enough exceedances for the ESE

estimation due to the small sample size. In order to measure uncertainty, we apply the CBB

and subsampling variance estimators with the block size of 4. The choice of the block size

is based on the preliminary analysis showing that the ESE becomes insignificant beyond a

spatial lag 3.

Figure 3.10 presents the confidence intervals for the ESE using 2000 annual maxima
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(top), and 2002 annual maxima rainfall (bottom), where am = 0.70 (left), 0.75 (middle),

and 0.80 (right) upper quantiles, respectively. In each panel, the ESE (dots) and the

confidence intervals from the CBB (solid lines) and subsampling (dashed lines) are plotted.

Based on these confidence intervals, one can check whether the extremal dependence at

a certain lag is significant or not. For example, using the 0.80 upper quantile from 2002

data, one can conclude that there is a significant extremal dependence at lag 1 since the

confidence interval at that lag is above 0.02 (= P (|X| > am)). On the other hand, there is

no statistical evidence that extremal dependence is significant at lag 2 since the confidence

intervals includes 0.2.

Another application of the variance estimation is a hypothesis testing. Observe from

Figure 3.10 that the extremal dependence in 2000 is higher than 2002 overall. Thus, one

may be interested to test whether the ESE from two different years are statistically the

same or not. To be specific, consider

H0 : ρAB,m(h)y1 = ρAB,m(h)y2 vs. H1 : ρAB,m(h)y1 ̸= ρAB,m(h)y2 ,

where ρAB,m(h)y represents the PA-extremogram for the year y. We assume the indepen-

dence of events in different years, which is not unreasonable given the data has little extremal

temporal dependence even for daily frequency, as discussed in Buhl and Klüppelberg (2016).

Then, the hypothesis can be tested with the test statistic

ρ̂AB,m(h)y1 − ρ̂AB,m(h)y2√
σ̂2(h)y1 + σ̂2(h)y2

∼ N(0, 1), (3.38)

where σ̂2(h)y1 and σ̂2(h)y2 are the estimated sample variances of the ESE using the CBB.

Table 3.8 presents the test statistics (3.38) computed with am = 0.70 (top), 0.75 (middle)

and 0.80 (bottom) upper quantile. For example, the second column of the table represents

the statistics (3.38), where y1 = 1999 and y2 = 2000. The rest of the table can be read in

a similar fashion.

From Table 3.8 and 3.9, one can observe that test statistics with am = 0.70 quantile

are within (Φ−1
0.025,Φ

−1
0.975) except 4 cases, which can be explained by 5% significance level.

On the other hand, H0 is rejected 7 and 8 times out of 90 tests when am = 0.75 and 0.80
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is used for thee ESE calculation, respectively. This seems higher than α = 5%, but these

cases are mostly associated with ∥h∥ =
√
8 in 2001. In fact, ρ̂AB,m(

√
8)2001 = 0.06 (and

0.05) for am = 0.75 (and 0.80), which is significantly lower than 0.25 (and 0.2). No other

years shows such low level of extremal dependency. Hence, we draw a conclusion that the

extremal spatial dependence in 1999-2004 are not different with 5% significance level for

the spatial lag of 1, ..., 3 with the exception of ∥h∥ =
√
8 in 2001.

∥h∥ 99-00 99-01 99-02 99-03 99-04 00-01 00-02 00-03 00-04 01-02 01-03 01-04

1 -0.11 1.06 1.43 0.65 0.79 0.92 1.18 0.61 0.68 0.25 -0.35 -0.40√
2 -0.46 0.27 0.63 0.00 0.14 0.63 0.91 0.42 0.53 0.27 -0.24 -0.12
2 -0.25 0.98 1.71 0.28 -0.15 1.10 1.71 0.49 0.13 0.60 -0.69 -1.19√
5 0.00 1.01 0.78 0.54 0.09 0.71 0.50 0.39 0.06 -0.36 -0.36 -0.88√
8 0.00 3.11 0.40 1.02 1.07 2.27 0.31 0.87 0.90 -3.12 -1.15 -1.23
3 -0.38 0.15 -0.46 -0.39 -1.24 0.53 0.00 0.00 -0.70 -0.66 -0.55 -1.50

lag 99-00 99-01 99-02 99-03 99-04 00-01 00-02 00-03 00-04 01-02 01-03 01-04

1 -1.00 0.00 0.49 0.20 0.00 0.98 1.39 1.07 0.99 0.48 0.19 0.00√
2 -0.64 -0.15 0.17 0.07 0.15 0.52 0.83 0.69 0.77 0.34 0.22 0.31
2 -0.81 0.51 1.71 0.47 -0.73 1.17 2.21 1.15 0.15 0.91 -0.06 -1.12√
5 -0.61 0.67 0.62 0.39 -0.19 1.24 1.23 0.96 0.43 -0.11 -0.26 -0.86√
8 -0.75 2.94 0.19 1.25 0.56 3.93 0.94 2.09 1.29 -2.69 -1.93 -2.06
3 -0.65 -0.38 -0.96 -0.61 -1.48 0.32 -0.16 0.10 -0.63 -0.56 -0.25 -1.09

lag 99-00 99-01 99-02 99-03 99-04 00-01 00-02 00-03 00-04 01-02 01-03 01-04

1 -1.45 -0.37 0.00 0.21 -0.78 0.91 1.30 1.50 1.05 0.33 0.51 -0.14√
2 -1.33 -0.38 -1.62 -0.23 -0.87 0.79 0.42 1.06 0.65 -0.63 0.18 -0.28
2 -1.52 0.00 0.85 0.00 -1.91 1.50 2.47 1.43 0.13 0.84 0.00 -1.87√
5 -1.30 0.29 0.17 0.13 -1.47 1.40 1.44 1.20 -0.13 -0.14 -0.12 -1.55√
8 -1.47 2.77 -0.26 0.27 0.25 5.21 1.07 1.66 2.12 -2.70 -2.13 -4.26
3 -0.71 -0.55 -1.10 -0.26 -1.25 0.22 -0.22 0.42 -0.30 -0.50 0.24 -0.61

Table 3.8: The test statistics (3.38) for am = 0.70 (top), 0.75 (middle) and 0.80 (bottom)
upper quantile.

am y1 y2 ∥h∥ am y1 y2 ∥h∥ am y1 y2 ∥h∥
0.7 1999 2001

√
8 0.75 1999 2001

√
8 0.8 1999 2001

√
8

0.7 2000 2001
√
8 0.75 2000 2001

√
8 0.8 2000 2001

√
8

0.7 2001 2002
√
8 0.75 2000 2002 2 0.8 2000 2002 2

0.7 2002 2004 2 0.75 2000 2003
√
8 0.8 2000 2004

√
8

0.75 2001 2002
√
8 0.8 2001 2002

√
8

0.75 2001 2004
√
8 0.8 2001 2003

√
8

0.75 2002 2004 2 0.8 2001 2004
√
8

0.8 2002 2004 2

Table 3.9: The cases that the null hypothesis is rejected.
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3.6.2 Non-lattice case: ground-level ozone in the eastern United States

In this section, we revisit ground-level ozone in the eastern United States using the ESE.

Recall that the data is the maximum ozone reading of maximum daily 8-hour averages

ozone levels in part per billion (ppb) from April to October 1997, measured at 513 ozone

monitoring stations, as appeared in Figure 3.11 (left). In the figure, the locations of mon-

itoring stations are marked with circles. Triangles indicate the stations with ground-level

ozone greater than the .97 upper quantile, corresponding to 136 ppb. One can observe that

the north eastern part of the region has the extreme cluster. The range of the maximum

ozone reading observed from the region is (56,153) ppb. Also, note that we have discussed

max-stability and stationarity in Chapter 2.

For subsampling variance estimator for non-lattice data, we follow Politis et al. (1998), as

illustrated in the right panel of Figure 3.11. First we consider the shape of the region that

includes all monitoring stations (outer line, rectangle trapezoid). Then the subsampling

region anchoring points are chosen in a way that the subsampling region (smaller rectangle

trapezoid) starting from one of these points does not exceed the original shape (bigger

rectangle trapezoid). For our analysis, we pick the subsampling region ratio of 0.7. In

other words, the ratio of the long base of the subsamling region to that of the region is 0.6,

which gives 92 subsampling regions. It will be shown later that the inference conclusion is

indifferent to the subsampling ratio of 0.6, 0.65, 0.7, 0.75, and 0.8.

For the ESE computation, the great-circle distances are used as in Gilleland and Ny-

chka (2005). Using the haversine formula, the shortest distance over the earth’s surface is

calculated from longitude/latitude of the stations. Recall from Chapter 2 that we choose

100 mile as a unit distance and calculate the ESE with A = B = (1,∞), am = .97 upper

quantile and that the ESE is robust with respect to bandwidths choices of λn = c/ log n for

c = 1, 2, 3, 4, and 5 . In the estimation, 1
logn in the bandwidth corresponds to 6 miles.

For the choice of the subsample size, Politis and Sherman (2001) suggested the algorithm

to minimize

1

Nm

Nm∑
i=1

(
ρ̂AB,m(∥h∥)ci − ρ̂AB,m(∥h∥)

)2
, (3.39)
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Figure 3.11: The region of ozone monitoring station in the eastern United States and
subsampling scheme illustration.

where Nm is the number of subsamples, ρ̂AB,m(∥h∥)ci is the ESE computed from each

subsample and ρAB,m(∥h∥) is the ESE from the original data. Table 3.10 shows (3.39) for

c = 0.6, 0.65, 0.7, 0.75, and 0.8. The case that c > 0.8 is not considered since it gives too few

subsampling regions. As one can see from the table, the subsample ratio choice of c = 0.7

minimizes the deviation from the ESE across different lags.

For the following analysis, we pick bandwidths λn = 3/ log n for every 25 miles interval

and calculate the confidence intervals from subsampling variance estimators (dashed lines)

as presented in Fig 3.12. Two dashed lines correspond to c = 0.6 (red) and c = 0.7 (blue).

The dotted line corresponds to 0.03 (= 1 − 0.97). Notice that both random permutation

bands (two horizontal lines) and the confidence intervals suggest that the extremal depen-

dence disappears for ∥h∥ > 100 miles. This finding is aligned with Gilleland and Nychka

(2005) and Gilleland et al. (2006), where the authors concluded that the spatial dependence

in the fourth-highest daily maximum 8-hour average ozone level fields is limited to distance

less than 100 miles.
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∥h∥ 0.6 0.65 0.7 0.75 0.8

0.25 0.048 0.034 0.032 0.045 0.044
0.5 0.045 0.034 0.032 0.029 0.034
0.75 0.008 0.008 0.007 0.007 0.008
1 0.004 0.004 0.003 0.003 0.002

1.25 0.002 0.002 0.002 0.002 0.001

Nm 92 60 21 12 8

Table 3.10: The deviation of the ESE from subsample and the original data per different
subsampling ratio.

Figure 3.12: The ESE with the .97 upper quantile and c = 3 and 95% confidence interval
from subsampling variance estimators.

3.7 Conclusion

In Chapter 3, we explore bootstrapped and variance estimator for the ESE. We study the

asymptotic properties for the spatially adapted circular block bootstrapped estimator, and

jackknife and subsampling variance estimators. When the samples are from the lattice,

all three methods are investigated while only subsampling method is studied for a non-

lattice case. Then, we propose χ2 based statistics that can be used for testing the lack of

extremal dependence for multiple lags. The performance of the multiple test is examined

through the MMA (1) simulations, which confirms that the test is robust. In addition, real

data applications to a heavy rain fall data and ozone data suggest that these methodologies
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measuring an uncertainty in the ESE estimation allow us to make more interesting inference

regarding the extremal spatial dependence. Thus, together with the ESE, the bootstrapped

ESE and variance estimators for the ESE can be used as a informative summary tool for

the dependence structures among spatial extremes.

3.8 Appendix: Proofs

3.8.1 Appendix A: Proof of Theorem 5

For the proof of Theorem 5, we introduce notation. Recall that Λn = {1, ..., n}2 and bn a

bootstrap block size. Define Is = I(Xs/am ∈ C), Ī = 1
n2

∑
s∈Λn

Is, and

P̂m(C) =
mn

n2

∑
s∈Λn

Is,

and recall that the limit exist for the numerator and denominator in the PA-extremogram,

i.e.,

pm(A) = mP (X0 ∈ amA) → µ(A),

τAB,m(h) = mP (X0 ∈ amA,Xh ∈ amB) → τAB(h)

by the regularly varying assumption, where A and B are sets bounded away from the origin.

Use P ∗, E∗ and var∗ to denote the probability measure generated by the bootstrap

scheme, the expected value and variance from P ∗, respectively, and let (I∗s) be a bootstrap

sequence generated from the sample (Is, s ∈ Λn) by the CBB. For the bootstrap block,

write B(t, bn) = {(u1, u2) : t = (t1, t2) and ti ≤ ui ≤ ti + bn for i = 1, 2} a bootstrap block

with the anchoring point t. Notice that a re-sampled pseudo space consists of B(ti, bn),

where ti ∈ Z2 for i = {1, ..., n2/b2n}, is the i-th randomly selected anchoring point by the

bootstrap.

The proof of Theorem 5 consists of three steps:

1. Establish the conditional central limit theorem of

P̂ ∗
m(C) =

b2n
n2

∑
i=1,...,n2/b2n

mn

b2n

∑
s∈B(ti,bn)

I∗s =
mn

n2

∑
s∈Λn

I∗s , (3.40)

where I∗s = I(X∗
s/am ∈ C).
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2. Extend the result in Step 1 to the vectorized processes.

3. Apply the Cramér-Wold device to achieve the multivariate central limit theorem, then

use δ-method to obtain the central limit theorem for the bootstrapped ESE.

Step 1: Show the conditional central limit theorem of P̂ ∗
m(C)

Theorem 10 implies that the bootstrap estimator P̂ ∗
m(C) of P̂m(C) is asymptotically correct.

In the proof, we assume n2/b2n to be an integer and write P̂m = P̂m(C) and P̂ ∗
m = P̂ ∗

m(C)

for the convenience.

Theorem 10. Suppose a strictly stationary regularly varying random field {Xs, s ∈ Z2}

with α > 0 is observed on Λn = {1, ..., n}2. Assume (3.2) and (3.3). Further assume that

sup
n

E

∣∣∣∣∣∣
√

mn

b2n

∑
s∈B(t,bn)

(Is − p0)

∣∣∣∣∣∣
4

< ∞, (3.41)

where p0 = E(Is). Then

E∗(P̂ ∗
m)

P−→ µ(C), and (3.42)

var∗

√ n2

mn
P̂ ∗
m

 P−→ σ2(C), (3.43)

which implies P ∗(|P̂ ∗
m − µ(C)| > δ)

P−→ 0, δ > 0. Also the central limit theorem holds

sup
x

∣∣∣∣∣P ∗

(√
n2

mns2n
(P̂ ∗

m − P̂m) ≤ x

)
− Φ(x)

∣∣∣∣∣ P−→ 0, (3.44)

where s2n = var∗
(√

n2

mn
P̂ ∗
m

)
.

Proof. For (3.42), we have E(P̂m) → µ(C) and var(P̂m) → 0 from (5.6) and (5.7) in Chapter

2, thus P̂m
P−→ µ(C). As the CBB allows each point to be selected equally,

E∗(P̂ ∗
m) =

mn

n2

∑
s∈Λn

E∗(I∗s) =
mn

n2

∑
s∈Λn

Is = P̂m
P−→ µ(C).

Turning to (3.43), recall that bootstrap blocks are conditionally independent. From

(3.40),

var∗

√ n2

mn
P̂ ∗
m

 =
mn

b2n
var∗

 ∑
s∈B(t,bn)

I∗s

 =
mn

b2n

 1

n2

∑
t∈Λn

 ∑
s∈B(t,bn)

(Is − Ī)

2 .
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Thus,

E

var∗
√ n2

mn
P̂ ∗
m

 =
mn

b2n
E

 ∑
s∈B(t,bn)

(Is − p0)− b2n(Ī − p0)

2
= E

√mn

b2n

∑
s∈B(t,bn)

(Is − p0)−
√

b2n
n2

mn

n2

∑
s∈Λn

(Is − p0)

2
= E[(J1 − J2)

2]. (3.45)

We have J2 = o(1) since √
mn

n2

∑
s∈Λn

(Is − p0)
d−→ N(0, σ2(C))

by Theorem 5.2 in Chapter 2 and b2n/n
2 → 0.

For J1, the condition (3.2) implies J1
d−→ N(0, σ2(C)), thus E(J1)

2 → σ2(C). Moreover,

J2
1 is uniformly integrable by (3.41). Thus,

E
(
J2
1 − σ2(C)

)2
= E

[(
J2
1 − σ2(C)

)2
I
(
|J2

1 − σ2(C)| ≤ m
)]

+E
[(
J2
1 − σ2(C)

)2
I
(
|J2

1 − σ2(C)| > m
)]

≤ mE
[(
J2
1 − σ2(C)

)]
+ E

[(
J2
1 − σ2(C)

)2
I
(
|J2

1 − σ2(C)| > m
)]

→ 0. (3.46)

To show (3.44), it suffices to check conditional versions of the Lyapunov condition by

Theorem 8 of Rao (2009) since P̂ ∗
m is the sum of n2/b2n independent blocks conditional on

a sample (Xs). Write√
n2

mn
(P̂ ∗

m − P̂m) =

√
mn

n2

∑
k=1,...,

(
n
bn

)2

∑
s∈B(tk,bn)

(I∗s − Ī) =
∑

k=1,...,
(

n
bn

)2

Ynk,

where Ynk =
√

mn
n2

∑
s∈B(tk,bn)

(I∗s − Ī) are independent for different k ∈ {1, ..., (n/bn)2}

condition on a sample. Observe that

E∗[Ynk] =

√
mn

n2

∑
s∈B(tk,bn)

(E∗(I∗s)− Ī) = 0.
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For the second moment we will verify

n2

b2n
E∗ [Y 2

nk

] P−→ σ2(C). (3.47)

To see (3.47) notice that n2

b2n
E∗ [Y 2

nk

]
becomes

mn

b2n
E∗

 ∑
s∈B(tk,bn)

(I∗s − Ī)

2

=
mn

b2n

1

n2

∑
tk∈Λn

 ∑
s∈B(tk,bn)

(Is − p0)− b2n(Ī − p0)

2

=
1

n2

∑
tk∈Λn

[(Jk
1 )

2 − 2Jk
1 J2 + J2

2 ], (3.48)

where Jk
1 =

√
mn
b2n

∑
s∈B(tk,bn)

(Is − p0) and J2 =
√

mnb2n(Ī − p0) that is defined in (3.45).

Since J2 is ignorable and E(Jk
1 )

2 P−→ σ2(C) for all k, the independence between different

bootstrap blocks (conditionally) implies that the right-hand side of (3.48) converges to

σ2(C) in probability. This verifies (3.47).

Hence, s2n =
∑n2/b2n

tk,k=1
E∗[|Ynk|2]

P−→ σ2(C). From |Ynk| ≤
√

mn
n2 b

2
n and (3.3),

n2/b2n∑
k=1

1

s3n
E∗[|Ynk|3] ≤

√
mn
n2 b

2
n

sn
=

√
mnb4n
n2

1

sn
→ 0.

This shows Lyapunov condition (conditional on a sample) is satisfied, which completes the

proof.

Step 2: Asymptotics of P̂ ∗
m based on a vectorized process in space

Define the vectorized process Yt = XDt with Dt = {s ∈ Zd : d(t, s) ≤ p} for a fixed p.

Write µA(D0) = limx P
(

Yt
∥Yt∥ ∈ A

∣∣∣∥Yt∥ > x
)
and

τA×B(D0 ×Dl) = lim
x

P

(
(Y0, Yl)

∥vec{Y0, Yl}∥
∈ A×B

∣∣∣∥vec{Y0, Yl}∥ > x

)
.

Then Theorem 10 can be extended to the vectorized process by replacing Xs by Ys. For

example,

P̂ ∗
m(C) =

mn

n2

∑
s∈Λn

I∗(Ys/am ∈ C). (3.49)

Some of vectorized process Ys may stack (conditionally) independent data together, which

can be categorized into two cases: 1) anchoring points are near the boundary of Λn or 2)
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Ys is constructed by random fields from the different blocks. These cases are ignorable as

n → ∞ for a fixed p. Thus, {Ys} can be treated as {Xs} in Theorem 10. In other words, if

the conditions of Theorem 10 hold for a strictly stationary regularly varying random vectors

(Ys, s ∈ Z2), then (3.42) - (3.44) hold for P̂ ∗
m(C) defined in (3.49).

Step 3: Apply the Cramér-Wold device

The following Corollary 3.8.1 shows that the application of the Cramér-Wold device on

Theorem 10 to random vectors (Ys). To this end, we redefine

µ(A) = lim
x→∞

P

(
Xt

∥Yt∥
∈ A

∣∣∣∥Yt∥ > x

)
.

The corollary implies that the multivariate central limit theorem holds. The central limit

theorem for the bootstrapped ESE follows by δ-method, which is analogous to the proof of

Theorem 1 in Chapter 2. For the convenience, we consider d = 2 for Corollary 3.8.1, but

the extension to general cases is straightforward.

Corollary 3.8.1. Assume that the conditions of Theorem 10 hold for a strictly stationary

regularly varying random vectors {Ys, s ∈ Z2} with α > 0. For sets A1, A2 bounded away

from 0 with µ(A2) > 0, assume that

sup
n

E

∣∣∣∣∣∣mb2n 1

n2

∑
t∈Λn

∑
s∈B(t,bn)

(Is(A1)− p0(A1))(Is(A2)− p0(A2))

∣∣∣∣∣∣
2

< ∞, and

sup
n

E

∣∣∣∣∣∣mb2n 1

n2

∑
t∈Λn

∑
s1 ̸=s2∈B(t,bn)

(Is1(A1)− p0(A1))(Is2(A2)− p0(A2))

∣∣∣∣∣∣
2

< ∞,

(3.50)

where Is(A) = I (Ys/am ∈ A) and p0(A) = P (Ys/am ∈ A). Then

Sn =

√
n2

mn
[P̂ ∗

m(Ai)− P̂m(Ai)]i=1,2
d−→ N(0,Σ),

where Σ is the asymptotic covariance matrix with

Σii = µAi
(D0) +

∑
l̸=0∈Z2

τAi×Ai(D0 ×Dl) for i = 1, 2, and

Σij = µAi∩Aj
(D0) +

∑
l̸=0∈Z2

τAi×Aj (D0 ×Dl) for 1 ≤ i ̸= j ≤ 2.
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Proof. By the Cramér-Wold device, it suffices to show that

z′Sn
d−→ N(0, z′Σz), z ∈ R2.

One can easily check E∗(z′Sn) = 0. With the definition of P̃ ∗
m(·) = P̂ ∗

m(·)− P̂m(·), we will

verify

var∗(z′Sn)

= (n2/m)
[
z21 var∗(P̃ ∗

m(A1)) + z22 var∗(P̃ ∗
m(A2)) + 2z1z2 cov

∗(P̃ ∗
m(A1), P̃

∗
m(A2))

]
P−→ z′Σz.

Notice from Theorem 10 that var∗
(√

n2

m P̃ ∗
m(Ai)

)
P−→ Σii for i = 1, 2. For the cross-product

term, cov∗
(√

n2

m P̃ ∗
m(A1),

√
n2

m P̃ ∗
m(A2)

)
equals

E∗

(√
n2

m
P̃ ∗
m(A1)

√
n2

m
P̃ ∗
m(A2)

)

=
m

n2
E∗


( n

bn
)2∑

i=1

∑
s∈B(ti,bn)

(I∗s(A1)− Ī(A1))


( n

bn
)2∑

i=1

∑
s∈B(ti,bn)

(I∗s(A2)− Ī(A2))


 .

Due to the conditional independence among bootstrap blocks, the right-hand side is equiv-

alent to

m

b2n
E∗

 ∑
s∈B(ti,bn)

(I∗s(A1)− Ī(A1))

 ∑
s∈B(ti,bn)

(I∗s(A2)− Ī(A2))

 = E1 + E2,

where

E1 =
m

b2n

1

n2

∑
t∈Λn

∑
s∈B(t,bn)

(Is(A1)− Ī(A1))(Is(A2)− Ī(A2)) and

E2 =
m

b2n

1

n2

∑
t∈Λn

∑
s1 ̸=s2∈B(t,bn)

(Is1(A1)− Ī(A1))(Is2(A2)− Ī(A2)).

We will show

E1
P−→ µA1∩A2

(D0) and E2
P−→
∑

l̸=0∈Z2 τA1×A2(D0 ×Dl).
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For E1, write

E1 =
m

b2n

1

n2

∑
t∈Λn

∑
s∈B(t,bn)

(Is(A1)− Ī(A1))(Is(A2)− Ī(A2))

=
m

b2n

1

n2

∑
t∈Λn

∑
s∈B(t,bn)

[(Is(A1)− p0(A1)) + (p0(A1)− Ī(A1))]

[(Is(A2)− p0(A2)) + (p0(A2)− Ī(A2))]

∼ m

b2n

1

n2

∑
t∈Λn

∑
s∈B(t,bn)

[(Is(A1)− p0(A1))(Is(A2)− p0(A2))].

Hence, E(E1) ∼ mP (Y0/am ∈ A1 ∩A2) → µA1∩A2
(D0). For the second moment, note from

(3.50) that E1 is uniformly integrable, thus by the same argument in (3.46)

E
(
E1 − µA1∩A2

(D0)
)2 → 0.

Similarly, E2 →
∑

l̸=0∈Z2 τA1×A2(D0 ×Dl) and E
(
E2 −

∑
l̸=0∈Z2 τA1×A2(D0 ×Dl)

)2
→ 0

can be shown. Hence, we verify

cov∗
(√

n2

m P̂ ∗
m(A1),

√
n2

m P̂ ∗
m(A2)

)
P−→ Σ12.

Lastly, we show the asymptotic normality. Observe that z′Sn can be viewed as the sum of

(n/bn)
2 conditionally independent random variables. Thus, it suffices to apply the Lyapunov

condition with the order 3, conditional on (Is). Write

z′Sn =

√
mn

n2

∑
k=1,...,

(
n
bn

)2

∑
s∈B(tk,bn)

[
z1(I

∗
s(D1)− Ī(D1)) + z2(I

∗
s(D2)− Ī(D2))

]
=

∑
k=1,...,

(
n
bn

)2

Ynk,

where Ynk =
√

mn
n2

∑
s∈B(tk,bn)

[
z1(I

∗
s(D1)− Ī(D1)) + z2(I

∗
s(D2)− Ī(D2))

]
. Recall that

{Ynk} are conditionally independent and satisfy

|Ynk| ≤ 2max(z1, z2)
√
mnb4n/n

2.

Since s2n =
∑n2/b2n

tk,k=1
E∗(Ynk)

2 P−→ z′Σz and (3.3),

n2/b2n∑
k=1

1

s3n
E∗[|Ynk|3] ≤

const
√

mnb4n/n
2

sn
→ 0,
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which shows Lyapunov condition (conditional on {Is}) is satisfied. This completes the

proof.

Remark 16. One can show the condition (3.4) implies (3.41) by using the argument in

Lemma 18.5.2 in Ibragimov and Linnik (1971), where the authors calculated E (
∑n

i=1Xj)
4 =

o(n3) for stationary time series {Xj , j ∈ N}.

To see this, let Ĩs = I(Ys/am ∈ C)− P (Ys/am ∈ C). Then

E

∣∣∣∣∣∣
√

mn

b2n

∑
s∈B(t,bn)

Ĩs

∣∣∣∣∣∣
4

=
m2

n

b4n
E

 ∑
s∈B(t,bn)

(Ĩs)
4 +

∑
s1 ̸=s2∈B(t,bn)

(Ĩs1)
3Ĩs2 +

∑
s1 ̸=s2∈B(t,bn)

(Ĩs1)
2(Ĩs2)

2

+
∑

s1 ̸=s2 ̸=s3∈B(t,bn)

(Ĩs1)
2Ĩs2 Ĩs3 +

∑
s1 ̸=s2 ̸=s3 ̸=s4∈B(t,bn)

Ĩs1 Ĩs2 Ĩs3 Ĩs4


= A1 +A2 +A3 +A4 +A5.

As stated in Ibragimov and Linnik (1971), it suffices to estimate the last sum since the

number of terms in other sums are smaller order. However, we will show that A1, ..., A5 → 0

as n → ∞ for the completeness.

For A1, note that |Ĩs| ≤ 2 and #|B(t, bn)| = b2n. Thus, A1 = O
(
m2

nb
2
n/b

4
n

)
= O

(
m2

n/b
2
n

)
.

For the sums with two indices, for example for A2,

m2
n

b4n

∑
s1 ̸=s2∈B(t,bn)

(Ĩs1)
3Ĩs2 = O

m2
n

b4n

∑
s1 ̸=s2∈B(t,bn)

E
∣∣∣(Ĩs1)3Ĩs2∣∣∣


= O

m2
n

b4n

∑
s1 ̸=s2∈B(t,bn)

αc,c(|s2 − s1|)


which becomes O

(
m2

n
b4n

)
. The same argument holds for A3.
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For A4, let j = min{d(s1, s2), d(s1, s3), d(s2, s3)}. Then, the quantity becomes

m2
n

b4n

∑
s1 ̸=s2 ̸=s3∈B(t,bn)

E|(Ĩs1)2Ĩs2 Ĩs3 |

=
m2

n

b4n

 ∑
j≤mn,s1 ̸=s2 ̸=s3∈B(t,bn)

E| · |+
∑

j>mn,s1 ̸=s2 ̸=s3∈B(t,bn)

E| · |


= O

(
m5

n

b2n

)
+O

m2
n

∑
j>mn

αc,2c(j)

 .

To see the last equation, observe that s1, s2 and s3 are within mn distance in the first term.

Then fixing s1 (giving b2n), then s2 and s3 (giving m4
n), using mnp0 = O(1) produces the

first term. For the second term, notice that #|B(t, bn) ∩ {s : d(s, t) > mn}| = O(b2n) since

mn/bn → 0. Also note that

E|(Ĩs1)2Ĩs2 Ĩs3 | ≤ const (αc,2c(j) + p0 αc,c(j)) .

The same logic can be applied to derive A5 = O
(
m7

n/b
2
n

)
+O

(
m2

nb
2
n

∑
j>mn

αc,3c(j)
)
, which

converges to 0 under (3.4).

The next corollary generalizes Theorem 10 to dimension d ≥ 2. We skip the proof as it

is analogous.

Corollary 3.8.2. Suppose a strictly stationary regularly varying random vector {Ys, s ∈ Zd}

with index α > 0 is observed on Λn = {1, ..., n}d. For any finite H ∈ Zd which does not

include 0 and sets A1, A2 bounded away from 0 with µ(A2) > 0, assume that√
bdn
mn

[
ρ̂AB,mn

(h, E)− ρAB,mn
(h)
]
h∈H

d−→ N(0,Σ).

Further assume that
mnb

2d
n

nd
,
m2+3d−1

n

bdn
→ 0, and lim

n
m2

nb
d
n

∑
l∈Zd\Bmn

αi,j(d(0, l)) = 0 for 2c ≤

i+ j ≤ 4c, where c = #Bγ, the ball of radius γ in Zd. Then

sup
x

∣∣∣∣∣P ∗

(√
nd

mns2n
(P̂ ∗

m − P̂m) ≤ x

)
− Φ(x)

∣∣∣∣∣ P−→ 0,

where P̂ ∗
m = mn

nd

∑
s∈Λn

I∗s and s2n = var∗
(√

nd/mnP̂
∗
m

)
. Also,
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P ∗(|ρ̂∗AB,m(h)− ρ̂AB,m(h)| > δ)
P−→ 0, δ > 0, and

P ∗((nd/mn)
1/2(ρ̂∗AB,m(h)− ρ̂AB,m(h))h∈H ∈ C)

P−→ Φ(0,Σ)(C)

hold, where C is any continuity set of the normal distribution Φ(0,Σ).

3.8.2 Appendix B: Proof of Theorem 6

The proof of Theorem 6 uses the lemmas, under which the conditions of Theorem 1 of

Politis and Romano (1993) hold. In particular, Theorem 1 of Politis and Romano (1993)

assumes (3.10),(3.15),

E |Ti(h)|2p+δ < ∞, where p is an integer such that p > 2, and 0 < δ ≤ 2, (3.52)

ETi(h) = o(Q−1), and (3.53)√
Q2(T̄ (h)− ET̄ (h))

d−→ N(0, σ2
∞), where σ2

∞ = lim
n→∞

var(
√

Q2T̄ (h)) > 0. (3.54)

The following lemmas (Lemma 3.8.1 - 3.8.3) provide sufficient conditions for (3.52) - (3.54).

Lemma 3.8.1. For a vectorized process Ys, let Ĩs = I(Ys/am ∈ C) − P (Ys/am ∈ C). If

(3.11) holds, we have

E

∣∣∣∣∣∣
√

mM

M2

∑
s∈Ei

Ĩs

∣∣∣∣∣∣
12

< ∞ (3.55)

and it follows that

E |Ti|7 = E

∣∣∣∣∣∣
√

M2

mM

(
ρ̂AB,mM

(h, Ei)− ρAB,m(h)
)∣∣∣∣∣∣

7

< ∞. (3.56)

Thus, (3.52) with p = 3 and δ = 1 is satisfied.

Proof. To show (3.55), we adapt the technique from Lemma 18.5.2 in Ibragimov and Linnik
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(1971), as in Remark 16. Observe that

E

√mM

M2

∑
s∈Ei

Ĩs

12

=
m6

M

M12

E
∑

s∈Ei

(Ĩs)
12 +

∑
s1 ̸=s2∈Ei

(Ĩs1)
11Ĩs2 +

∑
s1 ̸=s2∈Ei

(Ĩs1)
10(Ĩs2)

2 + · · ·

+
∑

s1 ̸=s2 ̸=s3∈Ei

(Ĩs1)
10Ĩs2 Ĩs3 +

∑
s1 ̸=s2 ̸=s3∈Ei

(Ĩs1)
9(Ĩs2)

2Ĩs3 + · · ·

+
∑

s1 ̸=s2 ̸=s3 ̸=s4∈Ei

(Ĩs1)
9Ĩs2 Ĩs3 Ĩs4 + · · ·

+
∑

si ̸=sj∈Ei,1≤i,j≤11

(
Ĩs1
)2 11∏

j=2

(
Ĩsj
)
+
∑

sj∈Ei

12∏
j=1

(
Ĩsj
)

From Remark 16, it suffices to estimate the last sum, but we show two other terms as

illustrations.

For the first sum, note that |Ĩs| ≤ 2 and #|Ei| = M2. Thus, it is bounded by

212
(
m6

M/M12
)
M2 = O

(
m6

M/M10
)
.

For the sums with four indices, let j = min1≤i ̸=j≤4{d(si, sj)}. Then, for example,

m6
M

M12

∑
s1 ̸=s2 ̸=s3 ̸=s4∈Ei

E|(Ĩs1)9Ĩs2 Ĩs3 Ĩs4 |

=
m6

M

M12

 ∑
j≤mM ,s1 ̸=s2 ̸=s3 ̸=s4∈Ei

E| · |+
∑

j>mM ,s1 ̸=s2 ̸=s3 ̸=s4∈Ei

E| · |


= O

(
m12

M

M10

)
+O

m6
M

M6

∑
j>mM

αk1c,k2c(j)

 .

For the first term, notice that s1 − s4 are within mM distance. The second term is from

E|Ĩs1 Ĩs2 Ĩs3 Ĩs4 | = O (αk1c,k2c(j))

for 1 ≤ k1, k2 ≤ 3 with k1 + k2 = 4 and c = #Bγ .

The same logic can be applied to other terms, and the last sum becomes

O
(

m28
M

M10

)
+O

(
m6

MM10
∑

j>mM
αk1c,k2c(j)

)
,
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for 1 ≤ k1, k2 ≤ 11 with k1 + k2 = 12, which completes the proof for (3.55).

Turning to (3.56), recall pm(A) = mMP (X0 ∈ amA), τAB,m(h) = mMP (X0 ∈ amA,Xh ∈

amB), p̂m(A) = mM

∑
s∈Ei

I{a−1
m Xs∈A}/M

2, and

τ̂AB,m(h) = mM

∑
s,t∈Ei,s−t=h

I{a−1
m Xs∈A,a−1

m Xt∈B}/M(h),

where M(h) denotes the number of h lag pairs in Ei, thus M(h) = O(M2). For the

convenience, we compress m,h and A. Now, observe that

ρ̂AB,mM
(h, Ei) =

∑
s,t∈Ei,s−t=h I{Xs/am∈A,Xt/am∈B}/M(h)∑

s∈Ei
I{Xs/am∈A}/M2

≤
∑

s∈Ei
I{Xs/am∈A} p(h)/M(h)∑

s∈Ei
I{Xs/am∈A}/M2

= O(1),

where p(h) indicates the number of p distance pairs from the origin. Then

E |Ti|7 = E

∣∣∣∣∣∣
√

M2

mM

(
τ̂

p̂
− τ

p

)∣∣∣∣∣∣
7

= E

∣∣∣∣∣∣
√

M2

mM

(
τ̂(p− p̂)

p̂p
− (τ − τ̂)

p

)∣∣∣∣∣∣
7

= O

 ∑
0≤k≤7

∣∣∣EZk
1Z

7−k
2

∣∣∣
 ,

where Z1 =
√

M2

mM

τ̂(p−p̂)
p̂p and Z2 =

√
M2

mM

(τ−τ̂)
p . Observe that each summand is bounded

by (3.55),

EZ7
1 = E

(√
M2

mM

(
ρ̂AB(p−p̂)

p

))7
= O

(
E
(√

M2

mM

(
(p−p̂)

p

))7)
< ∞.

Similarly, EZ7
2 < ∞ can be verified by setting Ys = vec(X0, Xh). The rest of terms are

bounded by Cauchy-Schwarz inequality and (3.55).

Lemma 3.8.2. For a strictly stationary regularly varying random fields {Xs, s ∈ Z2}, ob-

served in Λn = {1, .., n}2 in the lattice, assume (3.9) holds. For ρ̂AB,m(h) = τ̂AB,m(h)/p̂(A),

E(ρ̂AB,m(h))− ρAB,m(h) = O(mn/M
2). (3.57)
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Furthermore, if n2mM/M4 → 0, then (3.53) holds.

Proof. Recall that by definition in (3.1) both ρ̂AB,m(h) and ρAB,m(h) are zero when p̂(A) =

0. Thus, we focus on the case when p̂(A) > 0.

Consider g(U, V ) = V/U and µ = (µU , µV ). By Taylor expansion,

g(U, V ) = g(µ) + (U − µU )
∂g

∂u
(µ) + (V − µV )

∂g

∂v
(µ)

+
1

2
(U − µU )

2 ∂
2g

∂u2
(µ) + (U − µU )(V − µV )

∂2g

∂u∂v
(µ) +R,(3.58)

where R = 1
3!

(
6

(U∗)3 (U − µU )
2(V − µV )− 6V ∗

(U∗)4 (U − µU )
3
)
. U∗ and V ∗ are values between

U and µU , and V and µV , respectively. Notice that
∂kg
∂vk

(µ) = 0 and ∂k+1g
∂u∂vk

(µ) = 0 for k > 1.

Taking the expectation in (3.58) gives us

E(ρ̂AB,m(h)) = ρAB,m(h) +

(
τAB,m(h)

m2
M p0(A)3

)
var (U)

−
(

1

m2
M p0(A)2

)
cov (U, V ) + E(R), (3.59)

where

• U = Un := mM
∑

s∈Ei
I{Xs/am∈A}/M

2,

• V = Vn := mM
∑

s,t∈Ei,s−t=h I{Xs/am∈A,Xt/am∈B}/M(h),

• µU := mMp0(A) = mMP (X0/am ∈ A), and

• µV := mMτAB,m(h) = mMP (X0/am ∈ A,Xh/am ∈ B).

To see (3.59), recall U is assumed to be positive. Thus, U∗ is positive as well.

For the second term in (3.59), the variance calculation in Theorem 2.1 in Chapter 2

implies that

(mM

M2

) ρAB,m(h)

m2
M p0(A)2

 ∑
l∈Λn−Λn

mMτAB,m(l)

− ρAB,m(h) = O
(
mM/M2

)
− ρAB,m(h).

(3.60)
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Similarly, the third term is equivalent to

−
(

mM

M(h)

) [∑
l∈Λn

mM P (X0
am

∈ A, Xl
am

∈ B,
Xl+h

am
∈ A)

m2
M p0(A)2

]
+ ρAB,m(h)

= O
(
mM/M2

)
+ ρAB,m(h). (3.61)

since M(h) = O(M2) and

∑
l∈Λn

mM P

(
X0

am
∈ A,

Xl

am
∈ B,

Xl+h

am
∈ A

)
= O

∑
l∈Λn

mM τAB,m(l)

 .

Lastly, R = Op

((
mM
M2

)3/2)
. To see this, note that µU = O(1) and µV = O(1) by the

regularly varying assumption. Also

U
p−→ lim

n→∞
µU and

√
M2

mM
(U − µU ) = Op (1)

by Theorem 2.1, Chapter 2, and Prohorov’s theorem. Similarly

V
p−→ lim

n→∞
µV and

√
M2

mM
(V − µV ) = Op (1) .

Thus, it follows that U∗ p−→ lim
n→∞

µU and V ∗ p−→ lim
n→∞

µV , and once can conclude that

R = Op

((
mM
M2

)3/2)
. Combined with (3.60) and (3.61), (3.59) gives us(

M2

mM

)
(E(ρ̂AB,m(h))− ρAB,m(h)) =

(
M2

mM

) [
O
(
mM/M2

)
+ E(R)

]
= O(1) +

√
mM

M2
E(Op(1)) = O(1),

which verifies (3.57). Hence, (3.53) holds if n2mM/M4 → 0 since

Q [ETi(h)] = QO

(√
mM

M2

)
= O

(√
n2mM

M4

)
.

Lemma 3.8.3. Assume the conditions of Lemma 3.8.1 hold. Assume that there exists an

increasing sequence n,M, and mM such that M = o(n) and mM = o(M) and that satisfy

(3.12) and (3.13). Then, (3.54) holds, i.e.,√
Q2(T̄ (h)−ET̄ (h))

d−→ N(0, σ2
∞),

where σ2
∞ = limn→∞ var(

√
Q2T̄ (h)) > 0.
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Proof. For the second moment, we will show

var
(√

Q2(T̄ (h)− ET̄ (h))
)
→ σ2

∞ = σ2 +
∑

h<BC

cov (T0, Th) < ∞, (3.62)

where BC is the ball of radius C. Here, limn→∞(M/L+ 1) = C.

To see (3.62), observe that the left-hand side of it is

1

Q2

∑
i∈ΛQ

var(Ti) +
1

Q2

∑
i,j∈ΛQ

cov(Ti, Tj)

= σ2 +
∑
h∈ΛQ

cov(T0, Th)

= σ2 +
∑

d(0,h)<M
L
+1,h∈ΛQ

cov(T0, Th) +
∑

d(0,h)≥M
L
+1,h∈ΛQ

cov(T0, Th)

≤ σ2 + const

(
M

L
+ 1

)2

+ const
M2

mM

∑
h∈Z2,d(0,h)≥L

α(Mb)2,(Mb)2(d(0,h))
p−2
p ,

for p > 2. To see the inequality, for the first term in the inequality, note from (3.56) that

|cov(T0, Th)| < ∞. For the second term, Theorem 3 in Doukhan (1994) gives

|cov(T0, Th)| ≤ const
[
αT (∥h∥)

](p−2)/p ∥T0∥p ∥Th∥p for p > 2, (3.63)

where αT be α-mixing coefficient is associated with Ti. From (31) and Lemma 1 in Politis

and Romano (1993),

αT (s) ≤ α(Mb)2,(Mb)2(sL−M) for s ≥ M/L+ 1 (3.64)

and ∥T0∥p ≤
√

M2/mM . Given (3.12), the dominated convergence theorem implies (3.62).

The central limit theorem follows from Theorem in Bolthausen (1982) as (3.13) is assumed.

Proof of Theorem 6. Theorem 1 in Politis and Romano (1993) is directly applicable

since all conditions required are satisfied by Lemma 3.8.1 - 3.8.3.

Remark 17. Theorem 6 can be extended to non-rectangular cases if a growth rate of blocks

has the same order for all directions, as mentioned in conditions (i) and (ii) of Theorem 1

in Politis and Romano (1993).
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3.8.3 Appendix C: Proof of Theorem 7.

For Theorem 7, we introduce lemma to provide sufficient conditions for

E[|g(h, Bn)|4+δ] < ∞, (3.65)

for some δ > 0. The condition (3.65), together with (3.21), (3.22), and (3.23), implies

that var(g(h, Bn)) → σ2, which is assumed by Theorem 2 in Politis and Sherman (2001).

Similarly, L2 consistency for the covariance estimator requires

E[g(h1, Bn)
2+δg(h2, Bn)

2+δ] < ∞ for h1 ̸= h2. (3.66)

Notice that (3.66) is implied by (3.65).

Lemma 3.8.4. Assume λ8
nn

6m4
n = O(1),mn = O(n1/3) and

∫
R2 α1,k(y)dy < ∞ for k =

1, ..., 5. Then

sup
n

E

∣∣∣∣∣∣
√

n2λ2
n

mn
(p̂m(A)− pm(A))

∣∣∣∣∣∣
8

< ∞ and sup
n

E

∣∣∣∣∣∣
√

n2λ2
n

mn
τ̂AB,m(h,Λn)

∣∣∣∣∣∣
8

< ∞.

(3.67)

Proof. Write pm = pm(A) for our convenience. Note that E

∣∣∣∣√n2λ2
n/mn (p̂m − pm)

∣∣∣∣8 is

equivalent to(
n8λ8

n

m4
n

)
O

(
8∑

i=0

E(p̂m)ip8−i
m

)
=

(
n8λ8

n

m4
n

)
O

(
8∑

i=1

Ci

[
E(p̂m)ip8−i

m − E(p̂m)i−1p9−i
m

])

= O

(
8∑

i=1

Ci Ai

)
(3.68)

for some constant Ci. To show the finiteness, the similar techniques presented in Lemma

16 following the argument in Lemma 18.5.2 in Ibragimov and Linnik (1971) are used. In

the proof, we focus on Ai, i = 1, ..., 8.

First, observe that A1 = 0 since, from E(p̂m) = pm = O(1),

E(p̂m)p7m − p8m = p7m(E(p̂m)− pm) = 0.

One can derive A2 = O
(
n6λ8

n/m
3
n

)
= o(1) since (5.13) in Chapter 2 implies
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E(p̂m)2 − E(p̂m) pm = var (p̂m) = O
(
mn/n

2
)
.

For A3, we have

A3 = O
(
n4λ8

n/m
2
n

)
+O

(
n4λ8

n/mn

∫
R2

α1,1(y)dy

)
+O

(
n6λ8

n/mn

∫
R2

α1,2(y)dy

)
.

(3.69)

To see the above, notice that

E(p̂m)3

=
(mn

νn2

)3
E

[∫
Λn

I

(
Xs1

am
∈ A

)
N(ds1)

+

∫
Λn

∫
Λn

I

(
Xs1

am
∈ A

)
I

(
Xs2

am
∈ A

)
N(ds1)N(ds2)

+

∫
Λn

∫
Λn

∫
Λn

I

(
Xs1

am
∈ A

)
I

(
Xs2

am
∈ A

)
I

(
Xs3

am
∈ A

)
N(ds1)N(ds2)N(ds3)

]
=

(mn

νn2

)3 [( pm
mn

)
νn2 +

∫
Λn

∫
Λn

P

(
Xs1

am
∈ A,

Xs2

am
∈ A

)
ν2ds1ds2

+

∫
Λn

∫
Λn

∫
Λn

P

(
Xs1

am
∈ A,

Xs2

am
∈ A,

Xs3

am
∈ A

)
ν3ds1ds2ds3

]
, and

E(p̂m)2 pm =
(mn

νn2

)2 [( pm
mn

)
νn2 +

∫
Λn

∫
Λn

P

(
Xs1

am
∈ A,

Xs2

am
∈ A

)
ν2ds1ds2

]
pm.

Thus, E(p̂m)3 − E(p̂m)2 pm becomes

m2
n

ν2n4
pm +

m3
n

νn6

∫
Λn

∫
Λn

[
P

(
Xs1

am
∈ A,

Xs2

am
∈ A

)
−
(
pm
mn

)2
]
ds1ds2

+
m3

n

n6

∫
Λn

∫
Λn

∫
Λn

[
P

(
Xs1

am
∈ A,

Xs2

am
∈ A,

Xs3

am
∈ A

)
−P

(
Xs1

am
∈ A,

Xs2

am
∈ A

)(
pm
mn

)]
ds1ds2ds3,

where the second and the third term are bounded as below.∫
Λn

∫
Λn

∣∣∣∣∣P
(
Xs1

am
∈ A,

Xs2

am
∈ A

)
−
(
pm
mn

)2
∣∣∣∣∣ ds1ds2 ≤ n2

∫
R2

α1,1(y)dy, and∫
Λn

∫
Λn

∫
Λn

∣∣∣∣P (Xs1

am
∈ A,

Xs2

am
∈ A,

Xs3

am
∈ A

)
−P

(
Xs1

am
∈ A,

Xs2

am
∈ A

)(
pm
mn

)∣∣∣∣ ds1ds2ds3 ≤ n4

∫
R2

α1,2(y)dy.
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Hence, we have (3.69). The similar techniques are used for A4 −A8.

A4 = O

(
λ6
nn

2

mn

)
+O

(
λ6
nn

2

∫
R2

α1,1(y)dy

)
+O

(
λ8
nn

4

∫
R2

α1,2(y)dy

)
+O

(
λ8
nn

6

∫
R2

α1,3(y)dy

)
,

A5 = O
(
λ8
n

)
+O

(
λ8
nmn

∫
R2

α1,1(y)dy

)
+O

(
λ8
nmnn

2

∫
R2

α1,2(y)dy

)
+O

(
λ8
nmnn

4

∫
R2

α1,3(y)dy

)
+O

(
λ8
nmnn

6

∫
R2

α1,4(y)dy

)
,

A6 = O

(
λ8
nmn

n2

)
+O

(
λ8
nm

2
n

n2

∫
R2

α1,1(y)dy

)
+O

(
λ8
nm

2
n

∫
R2

α1,2(y)dy

)
+O

(
λ8
nm

2
nn

2

∫
R2

α1,3(y)dy

)
+O

(
λ8
nm

2
nn

4

∫
R2

α1,4(y)dy

)
+O

(
λ8
nm

2
nn

6

∫
R2

α1,5(y)dy

)
,

A7 = O

(
λ8
nm

2
n

n4

)
+O

(
λ8
nm

3
n

n4

∫
R2

α1,1(y)dy

)
+O

(
λ8
nm

3
n

n2

∫
R2

α1,2(y)dy

)
+O

(
λ8
nm

3
n

∫
R2

α1,3(y)dy

)
+O

(
λ8
nm

3
nn

2

∫
R2

α1,4(y)dy

)
+O

(
λ8
nm

3
nn

4

∫
R2

α1,5(y)dy

)
+O

(
λ8
nm

3
nn

6

∫
R2

α1,6(y)dy

)
, and

A8 = O

(
λ8
nm

3
n

n6

)
+O

(
λ8
nm

4
n

n6

∫
R2

α1,1(y)dy

)
+O

(
λ8
nm

4
n

n4

∫
R2

α1,2(y)dy

)
+O

(
λ8
nm

4
n

n2

∫
R2

α1,3(y)dy

)
+O

(
λ8
nm

4
n

∫
R2

α1,4(y)dy

)
+O

(
λ8
nm

4
nn

2

∫
R2

α1,5(y)dy

)
+O

(
λ8
nm

4
nn

4

∫
R2

α1,6(y)dy

)
+O

(
λ8
nm

4
nn

6

∫
R2

α1,7(y)dy

)
.

117



These can be derived from

E(p̂m)4 − E(p̂m)3 pm

=
m3

n

ν3n6
pm +

m4
n

ν2n8

∫ ∫
Λn

[
Ps1,s2 −

(
pm
mn

)2
]
ds1ds2

+
m4

n

νn8

∫ ∫ ∫
Λn

[
Ps1,s2,s3 − Ps1,s2

(
pm
mn

)]
ds1ds2ds3

+
m4

n

n8

∫ ∫ ∫ ∫
Λn

[
Ps1,s2,s3,s4 − Ps1,s2,s3

(
pm
mn

)]
ds1ds2ds3ds4,

E(p̂m)5 − E(p̂m)4 pm

=
m4

n

ν4n8
pm +

m5
n

ν3n10

∫ ∫
Λn

[
Ps1,s2 −

(
pm
mn

)2
]
ds1ds2

+
m5

n

ν2n10

∫ ∫ ∫
Λn

[
Ps1,s2,s3 − Ps1,s2

(
pm
mn

)]
ds1ds2ds3

+
m5

n

νn10

∫ ∫ ∫ ∫
Λn

[
Ps1,s2,s3,s4 − Ps1,s2,s3

(
pm
mn

)]
ds1ds2ds3ds4

+
m5

n

n10

∫ ∫ ∫ ∫ ∫
Λn

[
Ps1,s2,s3,s4,s5 − Ps1,s2,s3,s4

(
pm
mn

)]
ds1ds2ds3ds4ds5, and

E(p̂m)6 − E(p̂m)5 pm

=
m5

n

ν5n10
pm +

m6
n

ν4n12

∫ ∫
Λn

[
Ps1,s2 −

(
pm
mn

)2
]
ds1ds2

+
m6

n

ν3n12

∫ ∫ ∫
Λn

[
Ps1,s2,s3 − Ps1,s2

(
pm
mn

)]
ds1ds2ds3

+
m6

n

ν2n12

∫ ∫ ∫ ∫
Λn

[
Ps1,s2,s3,s4 − Ps1,s2,s3

(
pm
mn

)]
ds1ds2ds3ds4

+
m6

n

νn12

∫ ∫ ∫ ∫ ∫
Λn

[
Ps1,s2,s3,s4,s5 − Ps1,s2,s3,s4

(
pm
mn

)]
ds1ds2ds3ds4ds5

+
m6

n

n12

∫ ∫ ∫ ∫ ∫ ∫
Λn

[
Ps1,s2,s3,s4,s5,s6 − Ps1,s2,s3,s4,s5

(
pm
mn

)]
ds1ds2ds3ds4dsds6,

where Ps1,...,sk = P (Xs1/am ∈ A, · · · , Xsk/am ∈ A) . Hence, (3.68) is shown.

Notice that E

∣∣∣∣√n2λ2
n

mn
p̂m(A)

∣∣∣∣8 < ∞ implies E

∣∣∣∣√n2λ2
n

mn
τ̂AB,m(h,Λn)

∣∣∣∣8 < ∞. This is

118



because

|τ̂AB,m(h,Λn)|

≤ mn

ν2
1

|Λn|

∣∣∣∣∫
Λn

∫
Λn

wn(h+ s1 − s2) I

(
Xs1

am
∈ A

)
I

(
Xs2

am
∈ B

)
N (2)(ds1, ds2)

∣∣∣∣
=

mn

ν2
1

|Λn|

∣∣∣∣∣
∫
Λn

∫
h+Λn−Λn

λn

w(t) I

(
Xu

am
∈ A

)
I

(
Xh+u−tλn

am
∈ B

)
N(du)N(dt)

∣∣∣∣∣
≤ mn

ν2
1

|Λn|

∣∣∣∣∫
Λn

I

(
Xu

am
∈ A

)
N(du)

∫
R2

w(t)N(dt)

∣∣∣∣
= O (p̂m(A)) ,

where the change of variable of h+s1−s2

λn
= t and s1 = u are used in the first equality.

Hence, (3.67) is shown, which completes the proof.

Remark 18. Notice that it is sufficient to check the second condition in (3.67) to show

sup
n

E

∣∣∣∣∣∣
√

n2λ2
n

mn
(τ̂AB,m(h,Λn)− τAB,m(h,Λn))

∣∣∣∣∣∣
8

< ∞

because |τAB,m(h,Λn)| ≤ 1 and

√
n2λ2

n
mn

= O(1). The latter is implied by λ2
nn

2 → ∞, λ8
nn

6m4
n =

O(1) and mn = O(n1/3). The same logic applies to the first condition in (3.67) and

sup
n

E

∣∣∣∣∣∣
√

n2λ2
n

mn
p̂m(A)

∣∣∣∣∣∣
8

< ∞.

This explains the last argument in the proof of Lemma 3.8.4.

Proof of Theorem 7. From Lemma 3.8.4, (3.65) and (3.66) with δ = 1 can be shown

using the argument in Remark 16 and the Cauchy-Schwartz inequality. Thus, Theorem 2 in

Politis and Sherman (2001) is directly applicable since all conditions required are satisfied.

Proof of Theorem 8.

Proof. The proof is analogous to that of Theorem 7 and the techniques in Remark 16.

Recall from Theorem 8 that n2/mn is the normalizing term for ρ̂AB,m(h,Λn). Thus, the

lattice analog of (3.67) becomes

sup
n

E

∣∣∣∣∣∣
√

n2

mn
(p̂m(A)− pm(A))

∣∣∣∣∣∣
8

< ∞ and sup
n

E

∣∣∣∣∣∣
√

n2

mn
τ̂AB,m(h,Λn)

∣∣∣∣∣∣
8

< ∞. (3.70)
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Now we apply the techniques presented in Remark 16, following Ibragimov and Linnik

(1971). Let Ĩs = I(Ys/am ∈ A)−P (Ys/am ∈ A). Then the first term in (3.70) is equivalent

to

E

∣∣∣∣∣∣
√

mn

n2

∑
s∈B(t,n)

Ĩs

∣∣∣∣∣∣
8

=
m4

n

n8
E

 ∑
s∈B(t,n)

(Ĩs)
8 +

∑
s1 ̸=s2∈B(t,n)

(Ĩs1)
7Ĩs2 +

∑
s1 ̸=s2∈B(t,n)

(Ĩs1)
6(Ĩs2)

2

+ · · ·+
∑

s1 ̸=s2 ̸=···≠s7 ̸=s8∈B(t,n)

Ĩs1 · · · Ĩs8


= A1 +A2 +A3 +A4 +A5 +A6 +A7 +A8.

As discussed earlier, it suffices to check the last term, but we will select four terms and

verify necessary conditions.

ForA1, note that |Ĩs| ≤ 2 and #|B(t, n)| = n2. Thus, A1 = O
(
m4

nn
2/n8

)
= O

(
m4

n/n
6
)
.

For the sums with two indices, like A2,
m4

n
n8 E

(∑
s1 ̸=s2∈B(t,n)(Ĩs1)

3Ĩs2
)
equals

O

m4
n

n8

∑
s1 ̸=s2∈B(t,n)

E
∣∣∣(Ĩs1)7Ĩs2∣∣∣

 = O

m4
n

n6

∑
s1 ̸=s2∈B(t,n)

αc,c(|s2 − s1|)

 = O

(
m4

n

n6

)
.

The same argument holds for A3.

For A4, let j = min{d(s1, s2), d(s1, s3), d(s2, s3)}. Then, the term becomes

m4
n

n8

∑
s1 ̸=s2 ̸=s3∈B(t,n)

E|(Ĩs1)2Ĩs2 Ĩs3 |

=
m4

n

n8

 ∑
j≤mn,s1 ̸=s2 ̸=s3∈B(t,n)

E| · |+
∑

j>mn,s1 ̸=s2 ̸=s3∈B(t,n)

E| · |


= O

(
m7

n

n6

)
+O

m4
n

n4

∑
j>mn

αc,2c(j)

 .

To see the last equation, recall that s1, s2 and s3 are within mn distance in the first term.

Thus, fixing s1 (giving n2), then s2 and s3 (giving m4
n), using mnp0 = O(1) produces the

first term. For the second term, note that #|B(t, n) ∩ {s : d(s, t) > mn}| = O(n2) since

mn/n → 0 and that E|(Ĩs1)2Ĩs2 Ĩs3 | ≤ const (αc,2c(j) + p0 αc,c(j)) .
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The same logic can be applied to find the upper bound for A5, ..., A8. In particular, we

have A8 = O
(
m17

n /n2
)
+ O

(
m4

nn
6
∑

j>mn
αkc,lc(j)

)
for 1 ≤ k, l ≤ 7 and k + l ≤ 8, which

converges to 0 under the mixing conditions of Theorem 8.
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Chapter 4

Conclusion and Future Directions

In this thesis, the notion of the extremogram that is originally defined for stationary time

series has been extended to spatial observations. This includes introducing the empirical

spatial extremogram (ESE) that is defined to reflect different sampling schemes and studying

the asymptotic properties of it. For irregularly spaced data, for example, we define the kernel

estimate of the extremogram.

Chapter 2 examines the asymptotic normality of the ESE under two sampling scenarios:

the lattice and non-lattice. For the lattice case, the asymptotic results of the ESE can be

viewed as a generalization of the asymptotic results for a stationary time series in Davis

and Mikosch (2009). In particular, the limiting variance and the scaling term need to be

coordinated by a dimension to achieve the central limit theorem. For non-lattice cases, a

kernal estimator following ideas in Karr (1986) and Li et al. (2008) is considered. When the

growth rates of sampling regions, and the decay rates of bandwidths and mixing coefficients

are coordinated, the central limit theorem for the ESE holds.

Chapter 3 explores resampling methods to construct asymptotically correct confidence

intervals. When the samples are from the lattice, the validity of the circular block boot-

strapped ESE is shown under suitable assumptions on the rates of the size of the bootstrap

block and the decaying rates of mixing functions. In the same setting, L2 consistency is

proved for the variance estimated by jackknife and subsampling methods. For a non-lattice

observation, it is shown that subsampling the variance of the ESE is consistent in L2. Based
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on these resampling methods, a χ2 based portmanteau style test is proposed to check the

lack of extremal dependence for multiple lags.

The performance of these results are investigated through simulation examples such as

max-moving average of order 1, the infinite max moving average, and the Brown-Resnick

process. This study shows that the ESE is capable of capturing theoretical aspects for at

least these processes. Moreover, real data applications consisting of a rainfall in a region of

Florida and ozone data in the eastern United States show that the ESE provides consistent

results with the existing literature. Also, the bootstrapped ESE and the variance of the ESE

estimated by jackknife or subsampling allow one to construct credible confidence intervals,

which facilitates the use of the ESE in practice.

In the future, there are a number of directions in which to expand this current work.

• Extension to space-time: Extension to spatial-temporal setting is necessary since

many real data have such structure. In fact, this extension has been discussed by Davis

et al. (2013b), Davis et al. (2013a), and Buhl and Klüppelberg (2016). One should

consider not only an increasing spatial-temporal setting, but also a fixed space and

increasing temporal setting since many applications have the fixed spatial locations

with multiple observations over time.

• Consider wider classes of random fields: The distributional assumption in the

thesis is that random field is regularly varying. So, one may investigate the possibility

to weaken such distributional assumptions. This can be done in some cases such as

light tailed distributions, asymptotically independent cases, and distributions posses

hidden regular variation.

• Bias analysis: Since the ESE is the ratio estimator, it is susceptible to bias. This

also explains why the bias corrected confidence interval proposed by Efron (1981)

works well. Hence, it would be interesting to explore the “bias corrected” ESE and

see how much enhancement can be made.

• More data applications: The thesis considers two data applications: rainfall in

Florida and ground-level ozone in the eastern United States. Even though these
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applications show the usage of the ESE as a tool to discover the spatial extremal

dependence, it does not cast light on how the ESE can be used in selecting competing

models or checking the goodness of the fit of models. It will be interesting to find

some applications where the ESE plays a important role as a tool to select/validate

different models.
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