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Abstract

Background: Many aspects of autoimmune disease are not well understood, including the specificities of autoimmune
targets, and patterns of co-morbidity and cross-heritability across diseases. Prior work has provided evidence that somatic
mutation caused by gene conversion and deletion at segmentally duplicated loci is relevant to several diseases. Simple
tandem repeat (STR) sequence is highly mutable, both somatically and in the germ-line, and somatic STR mutations are
observed under inflammation.

Results: Protein-coding genes spanning STRs having markers of mutability, including germ-line variability, high total length,
repeat count and/or repeat similarity, are evaluated in the context of autoimmunity. For the initiation of autoimmune
disease, antigens whose autoantibodies are the first observed in a disease, termed primary autoantigens, are informative.
Three primary autoantigens, thyroid peroxidase (TPO), phogrin (PTPRN2) and filaggrin (FLG), include STRs that are among
the eleven longest STRs spanned by protein-coding genes. This association of primary autoantigens with long STR sequence
is highly significant (pv3:0|10{7). Long STRs occur within twenty genes that are associated with sixteen common
autoimmune diseases and atherosclerosis. The repeat within the TTC34 gene is an outlier in terms of length and a link with
systemic lupus erythematosus is proposed.

Conclusions: The results support the hypothesis that many autoimmune diseases are triggered by immune responses to
proteins whose DNA sequence mutates somatically in a coherent, consistent fashion. Other autoimmune diseases may be
caused by coherent somatic mutations in immune cells. The coherent somatic mutation hypothesis has the potential to be a
comprehensive explanation for the initiation of many autoimmune diseases.
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Introduction

I have previously provided evidence that somatic gene

conversion and/or deletion in sequence harboring long segmental

duplications is correlated with disease [1]. According to this

hypothesis, autoimmunity is a response to novel (somatically

mutated) antigens. Others have proposed a role for somatic

mutation in autoimmunity [2,3]. The remarkable extent of

somatic mutation, including copy number variation and somatic

mosaicism, has recently been elucidated, with several proposed

links to neurological disease [4–9]. The connection between

somatic mutation and autoimmunity requires that somatic

mutations be coherent [1], i.e., that the same type of mutation

occur in many cells, to the point that the somatically mutated

protein either disrupts normal function or is noticed by the

immune system as non-self. A coherent mutation may be recurrent

(occuring independently in many cells) [10] or clonal (occuring

once and replicating many times).

Somatic Mutation of Tandem Repeat Sequence
Coherent somatic mutation of the haptoglobin gene (HP) has

been observed in vivo in humans [11]. Carriers of the HP2 allele

have a segmentally duplicated 1.7kb sequence fragment within the

gene that includes two additional exons beyond the shorter HP1

allele. In an HP2 homozygote, Asakawa et al [11]. found a shorter

DNA sequence corresponding to an exact excision of one copy of

the tandem repeat. In each of several HP2 homozygotes

subsequently tested, a small but measurable concentration of the

shorter sequence was identified. Asakawa et al. argued that rare

but regular somatic deletion events occur in vivo. In the mouse, a

similar kind of somatic mutation has been observed in vivo at a

longer 70 kb segmental duplication [12,13]. The mutation

frequency was much higher than for HP in humans, presumably

due to both the longer duplicon and the fact that phenotypic

measurement was performed in gene-expressing tissues where

mutations would be more common, rather than in blood cells

[11,14]. Somatic mutation at additional loci, mediated by inverted

repeats [15] or tandem repeats [16], has been observed in vivo in

humans.

Long segmental duplications are not the only repetitive

sequence subject to high mutation frequencies. Simple tandem

repeats (STRs), including microsatellites and minisatellites that are

highly mutable in germ-line cells, are also mutable in somatic cells

[17,18]. Some STRs encode proteins, and somatic mutations

would generate novel, potentially immunogenic proteins. While

not strictly an STR, such an effect has been observed at the La

antigen associated with Systemic Lupus Erythematosus (SLE) and

Sjogren’s Syndrome (SJ), where somatic mutations of an 8bp poly-

A sequence into a 7 bp mutant have been observed [19]. These

mutations correlate with autoimmunity, in that about 30% of La-
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reactive SLE/SJ patients respond specifically to the mutant

protein [19] and somatic mutant DNA can be detected in such

individuals [20].

Other STRs occur within introns, where changes in repeat

counts can change splicing behavior [21]. Altered splicing of

autoantigens has been proposed as a mechanism for generating

immunogenic protein variants [22]. In particular, inflammation

can lead to reduced levels of the splicing factor ASF/SF2 [22].

Low levels of ASF/SF2 are associated with DNA double strand

breaks and DNA rearrangements triggered by R loops between

DNA and transcribed RNA [23]. R loops promote instability in

GC-rich trinucleotide repeats [24], suggesting that transcribed

repetitive sequence may be particularly vulnerable to somatic

mutation induced by ASF/SF2 depletion.

Additionally, repeat mutations are often accompanied by

significant changes in methylation [25]. Demethylation can

potentially lead to aberrant transcription initiation in the middle

of the gene sequence [26]. Repetitive sequence is also an essential

factor in cellular mechanisms for methylating nearby sequence

[27,28]. Changes to the methylation pattern can also affect

splicing [29]. Altered methylation patterns have been observed in

several autoimmune diseases [30].

Yet another reason to focus on somatic repeat mutations in

autoimmune disease is the observation that somatic tandem repeat

mutations can be induced by inflammation typical of an immune

or autoimmune response [31,32]. This observation provides the

basis for a feedback loop. An initial immune response against a

pathogen could, as a side-effect of inflammation, trigger the initial

production of aberrant protein. The aberrant protein induces a

second immune response, with further inflammation and coherent

somatic mutation in nearby cells (or remote cells opsonized by

autoantibodies [33,34]) creating a cycle of autoimmunity. Anti-

inflammatory medications reduce rates of somatic mutation in

some cancers [35], further supporting a link between inflammation

and somatic mutation,

Human STR sequence is overabundant near telomeres [18,36].

Nevertheless, the germ-line variability of a minisatellite repeat in a

population does not depend on its chromosomal location [37].

Instead, the primary determinants of minisatellite variability are (a)

the number of repeat units it contains, and (b) the degree of

identity between different repeat units within the sequence [37].

Variability is a nonlinear function of these measures: Doubling the

copy number increases the probability of being variable about 15-

fold, and adding 10% to the repeat unit similarity increases the

probability of being variable about 18-fold [37]. A more recent

model also takes into account the size of the repeat unit [38]. The

total repeat length (i.e., the product of the repeat unit size and the

repeat count) is strongly correlated with variability [38]. For

segmental duplications, high sequence identity is most important

for structural variability, with high duplicon length and low

duplicon separation also playing a role [39].

While somatic and germ-line microsatellite mutation patterns

appear similar [18], somatic and germ-line mutation patterns

differ for minisatellites [40]. Germ-line minisatellite mutations

involve recombination-based repair of double strand breaks

(DSBs), while sponteneous somatic minisatellite mutations arise

by replication slippage or mitotic recombination [40]. For somatic

mutations induced by inflammation [31,32], DNA damage

appears to be critical, including DNA strand breaks [41]. The

resulting mutation patterns in STRs may therefore more closely

resemble germ-line mutations or somatic mutations in cancer [42]

than spontaneous somatic mutations. Structural mutations in

repetitive sequence are orders of magnitude more frequent than

point mutations [43]. Mitotic mutation rates of up to 2% have

been observed in the longest human tandem repeat sequences

[44].

Autoimmunity
Autoimmune diseases have overlapping features, including

shared susceptibility loci [45–48] and cross-heritability [49].

Nevertheless, each autoimmune disease has specific manifesta-

tions, causing damage to particular organs or systems. The central

enigma of autoimmune disease is why a relatively small set of

specific proteins are immunologically targeted [50]. Many, but not

all autoantigens in systemic autoimmune diseases are proteins that

are cleaved during apoptosis [51,52], but the reason for this

association is unclear given that T cell tolerization to such cleaved

proteins is expected [52,53]. Autoantigens appear to have longer

exons and harbor more SNPs than other genes [3,54], and they

are enriched in several biologically relevant categories [3].

The most prominent phenotype of autoimmune disease is the

presence of specific antibodies (Tables 1 and 2). While T-cell

epitopes are also implicated in autoimmunity, they are more

difficult to measure [55]. Mutant protein can induce antibodies to

wild-type protein, even when T-cell tolerance to wild-type protein

is maintained [56]. Thus, antibodies are likely to provide the most

robust signal about autoimmune targets.

A B cell epitope does not have to be from the same protein

molecule as the T cell epitope in order for the B cell to be activated

by a CD4+ (helper) T cell. A B cell that endocytoses a protein

complex by binding to one of its proteins can be activated by a

CD4+ T cell specific to another protein in the complex. Such a

mechanism has been used to explain anti-TG2 antibodies in celiac

disease, where a TG2-specific B cell is activated by a CD4+ T cell

specific to gliadin after endocytosis of a TG2-gliadin complex [57].

Thus, a protein is a candidate CD4+ T cell target either if it

elicits antibodies itself, or if an in-vivo binding partner of the

protein elicits antibodies. B cell specificities (and thus antibodies) to

multiple proteins can be supported by a single CD4+ T cell

epitope. I use the term peri-antigen to mean an in-vivo binding

partner of an autoantigen. A peri-antigen can potentially function

as a CD4+ T-cell target supporting B cell specificity to the

autoantigen.

Testing the Coherent Somatic Mutation Hypothesis
I sought data to test the hypothesis that autoimmune disease is

associated with mutable repetitive sequence. Because of its

construction from long contigs [58], the reference human genome

has reliable sequence for most repetitive regions, although gaps

still remain. Because shorter reads were used, the Celera sequence

is missing the interiors of many repetitive elements [59]. Most

current sequencing technologies use short reads that must be

assembled into whole genomes. Both de-novo assembly and

alignment-based assembly are unreliable in highly repetitive

regions [60–62]. The reference human genome is therefore the

primary currently available source of robust repetitive sequence

throughout the genome.

Antibodies that develop early in disease progression provide the

strongest evidence for a causative role for the corresponding

antigen. A primary autoantigen is one whose antibodies have been

shown, in at least a subset of cases, to be the first disease-associated

antibodies to appear. A test of the coherent somatic mutation

hypothesis can be formulated as follows: Is there a statistical link

between primary autoantigens (and/or their peri-antigens) and

genes containing highly mutable sequence?

Once such a statistical link is established, a subsequent test of

the comprehensiveness of the coherent somatic mutation hypoth-

esis would consider other mutable (e.g., long STR) sequence. To
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what extent could somatic mutation at these loci explain other

autoimmune phenomena?

Results

Genes Containing Long Repeats Include Primary
Autoantigens for Common Autoimmune Diseases

Using the Tandem Repeat Finder [63] (TMRF) track of the

UCSC Genome Browser [64], I queried the database for protein-

coding genes whose DNA sequence spans STR sequence, and

filtered the results as described in the Methods. Figure 1 shows all

37 gene-internal repeats longer than 5 kb. NSUN6, TTC34, and

ANKRD36C each contain multiple long repeats, and thus appear

more than once. As previously discussed, high repeat length, high

repeat count, and high repeat identity are markers of repeat

mutability. Additionally, for intronic repeats, longer repeats are

more likely to induce long mutations that in turn are more likely to

alter methylation and splicing. At this scale, all repeats are

minisatellites with intermediate to long repeat units.

Among the eleven genes with longest repeat length are thyroid

peroxidase (TPO); protein-tyrosine phosphatase, receptor-type, n,

polypeptide 2 (PTPRN2); and filaggrin (FLG). TPO encodes a

primary autoantigen in both Hashimoto’s Thyroiditis (HT) and

Graves’ Disease (GD); PTPRN2, and FLG encode primary

autoantigens in Type-1 Diabetes (T1D) and Rheumatoid Arthritis

(RA) respectively (Table 1). The presence of three primary

autoantigens among the top eleven genes is highly significant

(pv3:0|10{7, see Methods).

Additionally, the tenth ranked gene, BRF1, encodes an RNA-

Polymerase-III (RNAP-III) initiation factor that binds to RNAP-

III [65]. RNAP-III is an autoantigen specific to Systemic Sclerosis

(SSc) (Table 1); BRF1 thus encodes a peri-antigen for SSc.

Table 1. Twenty-one of the most prevalent human autoimmune diseases, in approximately decreasing order of prevalence
[49,275].

Abbrev. Name PTPN22 Assn. B-cell Autoantigens Refs.

GD Graves’ Disease Yes [45] TPO, TG, TSHR [276]

RA Rheumatoid Arthritis Yes [143] FLG, VIM, FGA, FGB, ENO1, IgG (rheumatoid factor),
IFI16, ANXA1, PADI4

[169,178,277–282]

HT Hashimoto’s Thyroiditis Yes [143] TPO, TG [276,283]

CEL Celiac disease Unclear [284–286] TG2, HP, actin, CALR, TG3, ganglioside, collagen [57,287,288]

PSO Psoriasis No [143] PALLD, AGAP3, DSP, collagen-21, ATXN3 [289]

VIT Vitiligo Yes [290] TYR, TH, TYRP1, MCHR1, lamin A [291–293]

SJ Sjogren syndrome Unclear [294,295] SPTAN1, SPTBN1, Ro52(TRIM21), Ro60(TROVE2), La(SSB), CHRNA3,
IFI16, VIM, CHRM3

[178,296–302]

UC Ulcerative Colitis Yes [105] HMGB1, HMGB2, pANCA, tropomyosin [303–305]

AS Ankylosing Spondylitis No [306] multispecific [307]

T1D Type-1 diabetes Yes [143] PTPRN2, PTPRN, INS, GAD2, SLC30A8, VAMP2, NPY;
AMY2A (fulminant T1D)

[308–313]

AA Alopecia Areata Yes [314,315] TH, TCHH, KRT16 [316–318]

JIA Juvenile Idiopathic Arthritis Yes [319,320] DEK, HSP70, citrullinated peptides [321–324]

PA Pernicious Anemia Unknown ATP4A/ATP4B, pepsinogen A [325–327]

MS Multiple Sclerosis No [143] MAG � , MBP, PLP, MOG, CRYAB, CR1, neuronal antigens [150,151,328–332]

CD Crohn’s disease Opposite # [333] GP2, CUDZ1 [334]

SLE Systemic Lupus Erythematosus Yes [143] Ro60(TROVE2), SNRPA, APOH/cardiolipin-complex,
ribosomal P, VIM/cardiolipin-complex, La(SSB), Ro52(TRIM21),
ds-DNA, Sm, SNRNP70, SNRPC, chromatin/histones, Ku, CALR,
NCL, RF, CR1, IFI16, VIM, lamin B, F2, F2/Phosphatidylserine,
ANXA1, ANXA2, ANXA5, NPM1, HMGB1, LTF, SR proteins, others

[178,281,299,328,335–
352]

UV Uveitis No [353] CRALBP, CRYAA, CRYAB, CRYBB1 [354,355]

AD Addison’s disease Yes [356] CYP21A2 [357,358]

MG Myasthenia Gravis Yesz [359–362] AChR, MUSK, LRP4, AGRN, ColQ, TTN, KCNA1, RYR [363–365]

DM Dermatomyositis Yes [366] Mi-2-complex, IFIH1, TRIM33, MORC3, Ro52(TRIM21) [367,368]

SSc Systemic Sclerosis Yes [369,370] RNA Polymerase III, CENPB, CENPA, RNA Polymerase I,
RNA Polymerase II, TOP1, PM/Scl-complex, Ro52(TRIM21),
SNRNP70, NOR-90, Ku, Th/To, U3RNP/FBL, IFI16, ANXA5,
NPM1, HMGB1, HMGB2, Mitochondrial-M2

[211,281,299,371–375]

Autoantibodies to antigens in bold are known to be primary antibodies that occur early in disease progression, often prior to the appearance of symptoms. The
tryptophan allele of the Arg620Trp polymorphism at rs2476601 in the PTPN22 gene is associated with many autoimmune diseases, as indicated in the ‘‘PTPN22 Assn.’’
column. Atherosclerosis (CAD) is not universally considered an autoimmune disease, and is therefore not listed. Nevertheless, CAD does have autoimmune features
[376] and an association with PTPN22 [377–379]. �The initial pathology in some MS lesions is associated with MAG loss [329,380,381].
#The tryptophan PTPN22 allele is protective from CD [333].
z In MG, two studies conflict about whether PTPN22 is specifically associated with the subset of cases having anti-TTN antibodies.
doi:10.1371/journal.pone.0101093.t001
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Autoimmune Associations of Genes with Long High-
Identity Tandem Duplications

Motivated by known somatic mutation of HP, I looked for

examples of long tandem duplications with at least 96% identity

occuring within protein coding genes. Since the tandem repeat

finder algorithm limits repeat units to 2000 bp, and its coverage of

some longer units appears to be incomplete (e.g., it misses the

1.7 kb repeat in HP), such repeats may have been overlooked in

the earlier analysis. The segmental duplications track of the UCSC

database [64] was used as described in the Methods.

Table 3 shows all tandem duplications of total length at least

3400 bp where at least one duplicon occurs entirely within a

protein-coding gene locus, and the tandem duplicons have the

same orientation and are separated by at most 100 bp. Several

genes appearing in Figure 1 also appear in Table 3, having long

segments that are high identity tandem repeats. Of the remaining

genes, five are autoantigens: complement component receptor 1

(CR1) in SLE and multiple sclerosis (MS); pepsinogen 4, group I

(PGA4) in pernicious anemia (PA); titin (TTN) in myasthenia gravis

(MG); interferon-gamma-inducible protein 16 (IFI16) in RA, SLE,

SSc and SJ; and HP in celiac disease (CEL) (Table 1). The

presence of five autoantigens among the top 33 genes is statistically

significant (pv0:0004, see Methods).

Copy number variations in the 54.7 kb STR of CR1 (Table 3)

have been associated with SLE [66] and Alzheimer’s disease (ALZ)

[67]. The CR1-S allele has three repeats (as in the human reference

genome) and has a population frequency of about 15%, while the

shorter CR1-F allele has two repeats and a frequency of 83% [67].

The repeat length is functionally important, since the repeat

includes sequence that codes for complement binding sites [67]. In

both SLE and ALZ, the longer CR1-S allele is the high-risk variant

[66,67]. CR1 plays an important immunological role in various cell

types [68].

PGA4 is one of three genes in the human reference genome

coding for highly similar (but not identical) versions of pepsinogen

A, an autoantigen in PA. Low levels of pepsinogen A are specific in

diagnosing PA [69]. Variant alleles observed in the population

contain three, two or one pepsinogen A gene [70]. The other

major autoantigen in PA is ATP4A/ATP4B (Table 1), which both

interacts with and colocalizes with pepsinogen A on the parietal

cell surface [71].

The HP gene that has been observed in vivo to be somatically

mutated [11] also codes for zonulin in individuals carrying the

HP2 allele [72]. The functions of haptoglobulin and zonulin are

diverse, including some specific immunological capabilities con-

ferred by the HP2 allele [72,73]. HP2 alleles are overrepresented

in several autoimmune diseases, coronary artery disease, and

mental disorders [73–77].

Additional Long Repeats Obtained from Self-Chain
Alignments

To ensure completeness of the long repeat dataset, I queried the

self-chain track of the UCSC database as described in the

Methods. These alignments capture tandem repeats that may be

slightly imperfect, i.e., there may be gaps between segments in the

alignments, as well as repeats whose unit length is above the 2 kb

threshold for TMRF. The results, shown in Table 4, are largely in

agreement with Figure 1 and Table 3. Table 4 includes the

following additional genes with alignments over 13 kb and

exhibiting germ-line structural variation (File S1): LPA, DMBT1,

MGAM, KIR3DL1, KATNAL2.

TTC34 is a Candidate CD4+ T Cell Antigen for Systemic
Lupus Erythematosus

The gene TTC34 is an outlier in Figure 1, both in terms of the

length of the repetitive segment (an underestimate because the

repeat is terminated by a gap in the human reference assembly) as

well as the number of repeat units. TTC34 encodes an

uncharacterized protein that binds to PPP4C [78]. In support of

a functional role for TTC34/PPP4C binding, RNAi depletion of

either protein induces a common elongated cell phenotype [79].

If somatic mutation of TTC34 induces autoimmunity, then

antibodies to binding partners of TTC34/PPP4C would be

expected. PPP4C is a ubiquitous serine/threonine phosphatase

that regulates a variety of cellular functions [80]. Based on the

localization of those cellular functions, I hypothesize that TTC34

mutation underlies the initial pathenogenesis of SLE. Table 5

shows that many autoantigens in SLE, including known primary

SLE autoantigens, associate with PPP4C. Under this hypothesis,

the broad array of autoantigens in SLE is a consequence of the

many functions of PPP4C, together with secondary immunoge-

nicity caused by the aberrant clearance of apoptotic cells [52,81].

The long TTC34 STR appears (with shorter length) in several

primate species, but not in more distantly related species whose

genomes have been sequenced [64]. Surprisingly, a 12 kb long

STR has independently evolved in the mouse (GRCm38) genome,

3.2 kb upstream of the mouse Ttc34 start site [82]. The mouse

Table 2. Autoantigens for selected low-prevalence autoimmune diseases.

Abbrev. Name Autoantigens Refs.

PV Pemphigus Vulgaris DSG3, DSG1, HLA-DRA, DSC3, DSC1, ATP2C1, PKP3, CHRM3, COL21A1, ANXA8L1,
CD88, CHRNE

[382,383]

RHF Rheumatic Fever VIM, MYBPC3, tropomyosin, collagen [186,384]

LEMS Lambert-Eaton Myasthenic Syndrome CACNA1A, CACNB2 [385,386]

AH1 Autoimmune Hepatitis (type 1) HMGB1, HMGB2 [387]

AH2 Autoimmune Hepatitis (type 2) CYP2D6, CES1, PDIA3 [388,389]

HA Autoimmune hemolytic anemia RHD, GYPA [390]

AP Autoimmune pancreatitis AMY2A, CA2, LTF, HSP10, plasminogen-binding protein, trypsinogens, SPINK1 [313,391]

PBC Primary Biliary Cirrhosis Mitochondrial-M2, SP100, PML, NUP210, Ro52(TRIM21), CENPB, SUMO2, SUMO1, CHRM3 [210,392,393]

NMO Neuromyelitis Optica AQP4 [329]

GPS Goodpasture’s Syndrome COL4A3 [394]

doi:10.1371/journal.pone.0101093.t002
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repeat unit length is 37, similar to the unit length of 40 in the

human repeat. As for humans, the 12 kb mouse repeat is an outlier

within the mouse genome: among all STRs that overlap a protein-

coding gene locus, including a 5 kb segment upstream of the gene,

the Ttc34 repeat is the fifth longest (Table 6). The independent

evolution of such a similar long repeat argues strongly for a

functional role.

If the TTC34 repeat mutates under inflammation [31], then the

desired functional role would be one where changes in TTC34

expression and/or PPP4C activity would be adaptive under

inflammation. PPP4C depletion makes T cells resistant to

apoptosis [83]. The association of apoptosis reduction with

inflammation is biologically plausible, since T cells in inflamma-

tory environments would be expected to receive survival signals

during normal immune responses.

LPA in Atherogenesis
LPA encodes a protein that binds to ApoB-100 in LDL particles

to form Lp(a) lipoprotein particles containing lipids, phospholipids

and cholesterol [84]. In coronary artery disease (CAD) ApoB-100

and LDL are immune targets of T cells and antibodies [85],

meaning that LPA encodes a peri-antigen for CAD. Under the

coherent somatic mutation hypothesis, rare but regular somatic

mutation to LPA would occur, analogously to that observed for HP

[11]. Epitopes of the mutant protein would be presented by

immune cells in blood vessels, leading to activation of immune

cells in atherosclerotic lesions [85] and autoimmune responses

against other components of Lp(a) lipoprotein particles. LPA is

central to CAD pathenogenesis, since an elevated plasma Lp(a)

lipoprotein level predicts stroke and vascular disease, particularly

in men [86,87]. SNPs in LPA have the largest known effect on

CAD risk [88], including an odds ratio of 1.74 for the minor allele

of rs3798220.

ABCG8 in Hypercholesterolemia
ABCG8 contains a long (10.8 kb) intronic repeat, part of a larger

compound repeat separated by a LINE insertion (Figure 2).

ABCG8 encodes a cholesterol transporter that has been implicated

in CAD [88,89] and in gallstone formation [90]. SNPs rs41360247

and rs4245791 in ABCG8 are associated with both CAD risk and

LDL cholesterol levels [89]. Additionally, the SNP rs4952688 was

shown to influence the mRNA expression of both ABCG8 and its

co-transporter ABCG5 in liver cells [91]. rs4952688 is located

within the compound repeat sequence (Figure 2), implicating this

repeat sequence (or nearby linked sequence) in the expression

levels of these two cholesterol transporters.

The normal function of ABCG8 and ABCG5 in liver cells is to

excrete cholesterol into the bile [92]. Disruption of this process

could lead to hypercholesterolemia, the initial manifestation of

atherosclerosis. ABCG8 variants can also influence cholesterol

Figure 1. Genes with long internal repeats. The x-axis denotes the total length of the tandem repeat (log-scale), and the y-axis represents the
number of repeat units within the tandem repeat (log-scale). The degree of repeat identity reported by TMRF is indicated by the color of the data
point. Genes in bold have exonic sequence overlapping the repeat. Genes containing multiple disjoint long repeats appear more than once.
doi:10.1371/journal.pone.0101093.g001
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levels by modulating cholesterol absorption [93]. Somatic repeat

mutations accumulating over time could change expression levels

of these proteins, thereby altering the rate of cholesterol excretion/

absorption. Germ-line mutations in these genes are associated with

premature atherosclerosis [91,94], as are mutations in other

cholesterol transporters such as APOE [95,96].

In principle, somatic repeat mutations could induce the

production of aberrant ABCG8 protein variants that would be

immunogenic, as previously argued for autoimmune disease.

Antibodies to such variants could interfere with cholesterol

excretion, but ABCG8-specific antibodies have not been docu-

mented in CAD. The molecular mechanisms by which the

proteins encoded by ABCG8 and ABCG5 transport cholesterol are

not fully understood [97]. If the ABCG5/ABCG8 complex binds

to LDL, then ABCG8 would encode a peri-antigen for CAD since

oxidized LDL is an autoantigen [85].

DMBT1, FCGBP, and the Mucins MUC4, MUC5B, MUC12
and MUC17

Mucins including MUC4, MUC12 and MUC17 are important

for intestinal integrity and have previously been associated with

both ulcerative colitis (UC) and Crohn’s disease (CD) [98–100].

MUC17 depletion increases epithelial permeability in the face of

E. coli exposure [101]. FCGBP is a component of the mucus layer

coating of the intestinal tract [102], and expression is higher in

several autoimmune diseases [103]. The DMBT1 protein also

provides mucosal protection of the intestine, and expression levels

correlate with disease activity in CD and UC [104]. Host-microbe

interactions appear to be central to the pathogenesis of UC and

CD [105]. CD, UC, psoriasis (PSO) and ankylosing spondylitis

(AS) have common features [105,106] that suggest a cluster of

diseases with related etiology. AS has been associated with the gut

microbiome [107], and PSO has been associated with intestinal

yeast infections [108].

A critical clue is provided by the PTPN22 rs6679677 C/A

polymorphism that is in high linkage disequilibrium with the

rs2476601 C/T polymorphism associated with many autoimmune

diseases [109]. At rs6679677, the A allele appears to be a risk allele

for UC (as for most other autoimmune diseases) but protective for

CD [105]. In the context of the coherent somatic mutation

hypothesis, one could interpret this opposite PTPN22 association

in terms of alternative responses to somatic mutation. UC would

be caused by an autoimmune response against the mutant protein,

while CD would be caused by the failure of the mutant protein’s

function, in the absence of a direct immune response against that

protein. This interpretation is consistent with a clear role for MHC

alleles in UC but not CD [105,110], and with a reduction in

mucus quantity and/or goblet cell density specifically in UC

[111,112].

CD and UC have opposite risk alleles for NOD2 polymorphisms

[105]; NOD2 variation modulates adaptive immune responses to

microbial antigens [113], and regulates DMBT1 expression in CD

[114]. Significantly, short alleles of the DMBT1 tandem repeat

that encode fewer bacterial recognition sites are overrepresented in

CD but not UC [104]. DMBT1 has high protein homology with

the CD autoantigen CUZD1 [115], potentially leading to cross-

reactive antibodies. Further, DMBT1 -coded protein binds to

pancreatic amylase [116,117] that in turn binds to the CD

autoantigen GP2 [118], meaning that DMBT1 encodes a peri-

antigen for CD.

In Sjogren’s sydrome, a primary initiating change is the

dysregulation of mucins [119], including the aberrant exocytosis

of MUC5B [120]. MUC4 is an interesting somatic mutation

candidate because its expression pattern in the eye, vagina,

ectocervix, trachea, and salivary gland [121] closely aligns with

locations where symptoms occur [122]. MUC5B is expressed in

many of these tissues [123], but not in the tear fluid [124].

Somatically mutated mucins could induce an immune response

against the mutant protein. Alternatively, aberrant mucin protein

may offer reduced protection of epithelial cells, making them

vulnerable to infection. Apoptosis of the epithelial cell could

trigger the induction of antibodies to apoptotically generated

proteins in Sjogren’s syndrome.

Table 3. Long tandem duplications with at least 96% identity
that occur within a gene locus.

Gene Length Copies Gap Coding

NBPF20 76181 2# 55 Y

NBPF8 65137 2 0 Y

CR1 54708 3 0 Y

ANKRD30A 47663 2 2 Y

RBMY1A1 47081 3 0 Y

NBPF12 44119 2# 31 Y

PGA4 37662 2 0 Y

TRPM3 35986 2 0 N

FCGBP 31945 2� 0 Y

NEB 31782 3 0 N

NKG2-E z 30864 2 0 Y

TBC1D3C/TBC1D3H 27063 2 0 N

HCAR1 26136 2 14 Y

TTC34 22675 2# 22 N

DAZ1 21690 2 0 Y

NBPF1 12620 2 17 Y

NBPF12 12568 2# 4 Y

BRF1 11321 2# 0 N

C2orf78 10103 2 58 Y

CLEC17A 8924 2 0 Y

TTN 8521 2 0 Y

SNTG2 8383 2# 1 N

IFI16 8282 2 0 Y

MUC5B 7627 2# 1 Y

SPDYE3 7020 5 0 Y

ERC1 5850 2# 23 N

HRNR 5637 2# 0 Y

ACRC 4289 2 66 Y

SPRN 4144 2 0 N

TMEM132D 3907 2# 12 N

HP/HPR 3431 2 4 Y

Duplications were identified as described in the Methods. The length indicates
the total length of the high-identity tandem duplicons. The gap is the
separation between the two highest-identity (long) duplicons, which was
required to be less than 100 bp. The duplication is ‘‘coding’’ if a duplicon
overlaps at least one exon.
�FCGBP has a third duplicon, but with less than 96% identity.
#These genes have duplicons that are themselves STRs of lower fidelity; only
the copy number for the high-identity long tandem duplication is reported in
this table.
zThe segmental duplication containing NKG2-E overlaps the three genes
KLRC1, KLRC2 and KLRC3.
doi:10.1371/journal.pone.0101093.t003
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Long Repeats Reside in Genes Expressed in Immune Cells
and Implicated in Autoimmunity

KIR3DL1 encodes an inhibitory receptor expressed on natural

killer (NK) cells and T cells [125]. There is a high degree of copy

number variation of the KIR genes around this locus, and some

haplotypes do not possess KIR3DL1 [126]. HLA-Bw4 is the ligand

for KIR3DL1, and is protective in MS [125] and primary

sclerosing cholangitis [127]. The presence of KIR3DL1 is

protective for AS [128], particularly AS with uveitis (UV) [129].

Somatic mutations to KIR3DL1 could reduce inhibition of NK

cells and/or T cells, leading to selective activation and clonal

expansion.

The segmental duplication at the NKG2-E locus overlaps the

genes KLRC1, KLRC2 and KLRC3. Copy number variation at

NKG2-E (manifested as a deletion of KLRC2) is associated with

psoriasis susceptibility [130]. Reduced KLRC2 expression in T cells

is observed in PSO [131], and enhanced expression of KLRC2 on

CD4+ T cells is observed in MS [132]. KLRC1 encodes a critical

receptor on NK cells, regulating the elimination of autoreactive

CD4+ T cells in animal models of MS [133]. KLRC1 plays a

critical role in tolerization by regulatory T cells [134], and is

downregulated in PSO [135].

KIR3DL1 and KLRC1 encode NK cell receptors. NK cells and

their receptors regulate autoimmunity in MS [136], and NK cell

populations rise and fall in ways that correlate with the

development of lesions in relapsing-remitting MS [137,138]. NK

cells are found in psoriatic plaques, and circulating NK cells are

reduced in PSO, MS, SLE and T1D [139,140].

The segmental duplication within the long HCAR1 repeat

identified in Tables 3 and 4 covers the two genes HCAR2 and

HCAR3. HCAR2 codes for a niacin receptor that is expressed on

antigen presenting cells and functions in a tolerization pathway for

T cells [141]. Niacin administration ameliorates an animal model

of MS through this pathway [141].

Summary: Long Simple Tandem Repeats in
Autoimmunity

Table 7 summarizes the autoimmune associations of genes with

long STRs. This key table shows that long STRs within twenty

genes are associated with sixteen common autoimmune diseases

and atherosclerosis. Each of these putatively mutable STRs

exhibits germ-line structural variation (File S1), consistent with a

somatically mutable locus. The coherent somatic mutation

hypothesis thus has the potential to be a comprehensive

explanation for many autoimmune diseases.

With the exception of MS and possibly PA and SJ, each of the

diseases associated with an autoantigen or peri-antigen in Table 7

is influenced by the functional rs2476601 single-nucleotide

polymorphism in the PTPN22 gene (Table 1). This polymorphism

specifically influences T cell signaling [142,143], B cell signaling

[144,145], autoreactive B cell generation [144], and T cell and

dendritic cell hyper-responsiveness [146]. The role of PTPN22 in

some but not all autoimmune diseases suggests a common

Table 4. Long (w5 kb) regions of self-alignment within protein-coding genes.

Gene Length Gene Length

NBPF10 45133 MTUS2 10090

ANKRD30A 40083 ANKRD36 8739

NBPF20 39623 PTPRN2 8649

DAZ2 38211 FAM153A 8495

DAZ1 36567 TTC34 8343

LPA 35017 FAM153B 7969

NBPF12 32343 FLG 7934

FCGBP 30167 BRF1 7650

DMBT1 26579 ST3GAL4 6583

MGAM 24595 TTN 6447

DAZ4 23181 MUC12 6346

KIR3DL1 22943 MUC5B 6303

NEB 20252 GALNT9 6290

ANKRD30B 18603 TRHDE 6161

NBPF8 14249 ERC1 5794

TBC1D3C 13432 ROBO2 5789

TBC1D3H 13432 TM4SF2 5498

NBPF1 13424 NBPF14 5345

KATNAL2 13368 CACNG7 5304

CR1 12971 SNTG2 5229

HCAR1 12648 TNXB 5227

POTEJ 12480 MAGEA4 5091

DAZ3 12115 ASMT 5021

Sequences with a self-similarity score of 60 or above having both query and target mapped within a protein-coding gene locus were obtained from the self-alignment
track [267] of the UCSC database as described in the Methods, and ranked by match-length. In this table, the match length corresponds to the length of identity
between the two duplicons. Note that self-aligned duplicons may overlap.
doi:10.1371/journal.pone.0101093.t004
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underlying pathway for this subset of diseases [45,143] that may be

related to STR length and/or mutability.

Table 8 shows that the conditions associated with autoantigens/

peri-antigens above have a high degree of co-morbidity and/or

familial association. Taken together, the data support the following

model for this subset of diseases:

N For each gene containing a mutable repeat locus, individuals

have a small population of somatically mutant cells.

N Under normal conditions, these mutant cells either induce

peripheral tolerance or are too rare to trigger an immune

response.

N Under inflammatory conditions (e.g., during an infection) the

population of mutant cells increases, concurrently with

immune system stimulation.

N In individuals with impaired tolerance or with sensitive B-cell or

T-cell activation thresholds, reactions against mutant cells occur.

N Inflammation caused by immune reponses induces new

coherent mutation in neighboring cells, and creates a cycle

of autoimmunity.

A disjoint subset of diseases, including MS, PSO, UV, and AS

have no association with the PTPN22 gene polymorphism

(Table 1). All four of these conditions are associated with

immune-cell expressed genes spanning long repeats. Somatic

mutation in those genes, rather than in antigenic genes, may be

the critical step for such diseases.

A Repeat Constituting 97% of the Intron Sequence within
an Autoantigen for Pemphigus Vulgaris

Somatic repeat mutations in introns could be particularly

disruptive when the intron is almost exclusively tandem repeat

Table 5. Correspondence of PPP4C localization with many known SLE autoantigens.

Autoantigen(s) Putative PPP4C function/localization

SNRPA, SNRPC, SNRNP70, Sm These are spliceosome proteins. PPP4C is involved in spliceosome assembly [80,395].

SR proteins SR proteins associate with the spliceosome [396]. See SNRPA, SNRPC, SNRNP70, Sm.

chromatin/histones PPP4C binds to HDAC3, a histone deacetylase [397]. A PPP4C complex dephosphorylates c-H2AX histones [398].

ds-DNA Stabilisation of stalled replication forks [80], histone deacetylation [397], histone dephosphorylation [398].

Ku70, Ku80 Ku70 and Ku80 associate with c-H2AX histones during double strand break repair, mediated by DNA [399,400]. A
PPP4C complex dephosphorylates c-H2AX histones [398].

PARP1 PARP1 binds with Ku [401]. See Ku.

ribosomal P dephosphorylated during apoptosis by a caspase-induced phosphatase [402].

La(SSB) La is dephosphorylated during apoptosis by a caspase-induced PP2A-like phosphatase [403].

Ro60(TROVE2) See La; Ro60 and La are components of a common protein/RNA complex [404].

APOH/cardio-lipin-complex APOH (coding for beta 2 glycoprotein I) associates with ANXA2/TLR4/CALR/NCL complexes [405]. Anti-APOH
antibodies target bound APOH, triggering NF-Kappa B activation in a TRAF6/MyD88 dependent fashion in endothelial
cells [405-407]. PPP4C physically interacts with TRAF6, and is recruited to the TLR4 complex on lipopolysaccharide
(LPS) stimulation [408]. Further, LPS stimulation induces expression of PPP4C [408].

VIM/cardiolipin-complex, VIM Vimentin is also observed in analysis of APOH/ANXA2/TLR4/CALR/NCL complexes [405]

NPM1 NPM1 binds cardiolipin [350]. See APOH/cardiolipin-complex.

CALR CALR may be dephosphorylated by an okadaic-acid-sensitive protein phosphatase [409]. See La; CALR interacts with
the Ro60/La/RNA complex [410]. See also APOH/cardiolipin-complex.

Ro52(TRIM21) See CALR; Ro52 and CALR are binding partners [410].

NCL See APOH/cardiolipin-complex.

ANXA2 See APOH/cardiolipin-complex.

F2/Phosphatidyl-serine, F2 Phosphatidylserine bound by ANXA2 [411]. See ANXA2.

ANXA1 Binds ANXA2 [412], phosphatidylserine [413], and colocalizes with ANXA5 [413]. See ANXA2, F2/Phosphatidylserine.

ANXA5 Binds phosphatidylserine as a monomer or dimer [414] and colocalizes with ANXA1 [413]. See ANXA1, F2/
Phosphatidylserine.

HMGB1 Binds phosphatidylserine [415]. See F2/Phosphatidylserine.

LTF Binds to TLR4 and activates the TRAF6/MyD88 pathway [416]. See APOH/cardiolipin-complex.

Primary autoantigens are in bold.
doi:10.1371/journal.pone.0101093.t005

Table 6. Murine long (w8 kb) STRs overlapping protein-
coding RefSeq gene loci, including 5 kb upstream of the gene
start site.

Gene Largest Repeat length (bp) Smallest unit size

Ulk4 19480 10

St3gal4� 19106 1236

Dmd 18426 734

Flg2 16228 234

Ttc34 12289 37

Hrnr 8023 513

The smallest repeat unit for each region is given together with the total STR
length. The Ttc34 repeat ends 3.2 kb upstream of the gene start site.
�Two adjacent repeats reported by TMRF have similar repeat structure, and
have been combined.
doi:10.1371/journal.pone.0101093.t006
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sequence. I therefore queried the reference genome for genes

containing introns where a single tandem repeat occupies a large

fraction of the intron (Table 9). The top-ranked gene in this

analysis is PKP3, containing a 2310 bp repeat occupying over 97%

of the eighth intron. There is germ-line structural variation at this

locus in the HapMap population, with deletion variants encom-

passing almost the entire STR sequence [147].

PKP3 encodes an autoantigen in pemphigus vulgaris (Table 2).

Furthermore, PKP3 binds in vivo to several other primary

pemphigus vulgaris autoantigens including DSG3, DSG1,

DSC1, and DSC3 [148]. Aberrant PKP3 could therefore serve

as a CD4+ T cell antigen in the induction of antibodies to these

other proteins. The p value for the top gene being an autoantigen

is 0:02 (see Methods).

Genes with High Copy-Number Internal Repeats Include
Autoantigens for Multiple Sclerosis and Myasthenia
Gravis

Figure 3 shows repeats of length up to 5 kb with repeat counts

of at least 700 units. At this scale, all repeats are microsatellites

with short repeat units. The genes with the eleventh and twelfth

highest repeat counts genomewide are MUSK and MAG respec-

tively. MUSK encodes an autoantigen in myasthenia gravis

(Table 1). MAG encodes a multiple scleroisis autoantigen that

binds in vivo to MBP and PLP [149], two other MS autoantigens

(Table 1). Anti-MAG antibodies have also been observed in

various polyneuropathies [150–152]. The presence of two

autoantigens among the top twelve is statistically significant

(pv0:022, see Methods). On the other hand, the STRs in MAG

and MUSK do not exhibit germ-line structural variation at 50 bp

resolution (File S1); germ-line variation would be expected for a

somatically mutable locus.

Discussion

Somatic mutation has been overlooked or discounted as a cause

of autoimmunity, primarily because ‘‘random’’ mutation would

not lead to consistent and specific disease characteristics [153].

However, many kinds of somatic mutation are nonrandom, caused

by mechanisms that yield coherent mutation patterns both within

and across individuals. Coherent somatic mutation is a unifying

and biologically plausible hypothesis to explain the specific targets

of autoimmune disease.

Longer-Range Segmental Duplications
Long high-identity segmental duplications that are not strict

tandem repeats may still lead to somatic protein changes via

deletion or duplication if they partially overlap genes. Examples of

this pattern include: RHD and GYPA, autoantigens in autoim-

mune hemolytic anemia; AMY2A, an autoantigen in autoimmune

pancreatitis and fulminant T1D, and a binding partner of the CD

autoantigen GP2 [118]; CES1 and PDIA3, autoantigens in type-2

autoimmune hepatitis; TYR, an autoantigen in vitiligo; and

CHRNA7, an autoantigen observed in schizophrenia (Tables 1

and 2, [154]). The genomic structure of TYR makes it particularly

susceptible to gene conversion and deletion (Figure 4).

The human genome contains segmental duplications that span

whole genes, and copy number variation in these tandem repeats is

likely to affect gene dosage [155]. These duplications are not

considered in the primary anaylsis since repeat-dependent somatic

mutation via deletion and/or duplication is less likely to induce

altered protein. Nevertheless, the potential for altered protein

exists through gene conversion or other processes that combine

sequence from multiple instances of the gene. The primary

autoantigen in Addison’s disease is encoded by CYP21A2 (Table 1),

which resides within a segmentally duplicated region and is a

known locus of germ-line gene conversion [156].

A five gene cluster (GH1, GH2, CSH1, CSHL1, CSH2) on

chromosome 17 resides in a region characterized by complex

segmental duplications with identity ranging from 92% to 96%.

This cluster is a hot-spot for germ-line gene conversion [157].

Variations in these genes are associated with metabolic syndrome

later in life [158]. Anti-pituitary antibodies are observed in

conjunction with type-2 diabetes [159,160] and GH1 is one of the

autoantigens [161]. GH1 codes for human growth hormone, and

growth impairment is observed in celiac disease in conjunction

with anti-pituitary antibodies [162].

Mechanisms of Coherent Somatic Mutation
PTPRN2 is an outlier not just in the length of its repetitive

sequence; it has the most predicted sites of R loop formation in the

whole genome [163]. The R loop sites do not overlap the 12 kb

repeat in PTPRN2, but several long R loop sites occur about 20 kb

upstream of this repeat. These R loops may contribute to the

instability of the repeat region, and implicate mis-splicing [22] of

PTPRN2 in T1D.

Coherent somatic mutation can occur through a variety of

mechanisms besides repeat instability and gene conversion,

discussed below and summarized in Table 10.

RAG-mediated Somatic Recombination and Rheumatoid
Factor

Cancer studies provide valuable information about coherent

somatic mutation in vivo. Many cancers elicit antibodies that are

also found in autoimmune disease [164], further supporting a role

for somatic mutation in autoimmunity. A striking example of

coherent somatic mutation in cancer is the gene IKZF1. Internal

IKZF1 deletions occur in over 80% of cases of BCR-ABL1 acute

lymphoblastic leukemia (ALL) [165]. Consistent breakpoints

suggest aberrant RAG-mediated recombination [165]. The

mutations coincide with a transition in the cancer from Chronic

Lymphocytic Leukemia (CLL) to ALL.

CD5 expression on B cells is a common feature of both RA and

CLL [166], CD5 expression correlates with RAG activity in B cells

Figure 2. Structure of the long ABCG8 repeat in the human reference genome. A 10.8 kb repeat and a 4.1 kb repeat have closely related
repeat unit sequence, and are separated by a 1.4 kb LINE insertion. The SNP rs4952688 occurs in the middle of the 4.1 kb repeat.
doi:10.1371/journal.pone.0101093.g002
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of people with autoimmune disease [167], and RAG is expressed

in B cells in the RA synovium [168]. In RA, the appearance of

rheumatoid factor (RF, an antibody to Fc-IgG) correlates with the

hypogalactosylation of IgG, occuring roughly two years after the

appearance of antibodies to citrullinated proteins, but two years

before RA diagnosis [169]. RF is detected in several other

autoimmune and infectious diseases [170].

If the RAG-dependent IKZF1 mutations that consistently occur

in ALL also occur in RA B cells, possibly followed by clonal

expansion, then aberrant glycosylation would be explained

because IKZF1 appears to be critical for proper IgG glycosylation

[171]. The improperly glycosylated IgG would be immunogenic.

In the context of a normal immune response to a pathogen, a

somatic mutation to IZKF1 could be adaptive, because it would

lead to RF production and potentially enhanced clearance of

Table 7. Known links between genes with long STRs and human autoimmune diseases.

Gene(s) Disease Antigen type CNV Expr. changes

FLG RA Autoantigen

TPO HT Autoantigen

TPO GD Autoantigen

PTPRN2 T1D Autoantigen

CR1 SLE Autoantigen Yes Yes

CR1 MS Autoantigen

PGA4 PA Autoantigen Yes

TTN MG Autoantigen

IFI16 SLE, SSc, RA, SJ Autoantigen Yes

HP CEL Autoantigen Yes Yes

BRF1 SSc Peri-antigen

TTC34 SLE Peri-antigen�

LPA CAD Peri-antigen Yes Yes

ABCG8 CAD Peri-antigen? Yes

DMBT1 CD Peri-antigen Yes Yes

DMBT1 UC Yes

MUC4, MUC12, MUC17 CD, UC Yes

MUC5B SJ Yes

HP RA, SLE, CD, CAD, SSc Yes

HP T1D Yes Yes

FCGBP several Yes

KLRC2 PSO Yes Yes

KLRC2 MS Yes

KIR3DL1 AS, UV Yes

Genes with long STRs come from Figure 1, Table 3 and Table 4. A bold autoantigen label corresponds to a known primary autoantigen. The CNV column indicates
whether a germ-line STR length variant is associated with the disease. Gene expression changes during disease are also shown.
�While many genes qualify as encoding peri-antigens in SLE, TTC34 encodes a peri-antigen for many autoantigens (Table 5).
doi:10.1371/journal.pone.0101093.t007

Table 8. Co-morbidity and/or familial associations between six autoimmune diseases and atherosclerosis.

GD RA T1D SLE SSc CAD

HT [417] [49,418,419] [49,418] [49,419,420] [419] [421]

GD [417] [422] [417] [423] [421]�

RA [49,418,424] [49,424] [49] [421,425]

T1D [424] [426]

SLE [49] [421,425]

SSc [421,425]

Comorbidity may reflect common susceptibility factors or secondary disease effects, such as inflammation in RA contributing to CAD risk [427]. Comorbidities with some
of these diseases exist for alopecia areata [428,429], vitiligo [430,430,431], juvenile idiopathic arthritis [432], myasthenia gravis [433,434], and Addison’s disease [435], five
additional PTPN22 -associated diseases, as well as celiac disease [436,437] and pernicious anemia [438,439].
�A link between GD and CAD is potentially confounded by the anti-atherogenic properties of thyroid hormones [440].
doi:10.1371/journal.pone.0101093.t008
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immune complexes [172]. However, in the context of an

autoimmune response, RF production could increase the severity

of disease [172]. RF is also found in SLE [173], and reduced

IKZF1 expression has been associated with SLE [174,175].

Mutagens and Oxidative Stress
Cigarette smoking is mutagenic, and appears to be selectively

associated with antibodies to the primary autoantigens encoded by

ENO1 [176], VIM [177], and FGB [177] in RA. VIM mutations

induced by oxidative stress influence antigenicity [178]. The

association of RA with smoking is strong only among individuals

with particular HLA alleles. A similar phenomenon occurs in MS

[179]. This interaction of mutagen, autoantigen and HLA suggests

that mutation is pathogenic primarily when the mutant epitope is

well-presented by the corresponding antigen presenting molecules.

Clonal Expansion Following Somatic Mutation
Somatic mutations in the TSHR gene are relatively common

[180] and can induce activation and clonal expansion in thyroid

tissue [181,182], potentially explaining TSHR-antigenicity in GD.

Paraneoplastic autoimmunity [164,183,184] is a related phenom-

enon in which an immune response to a tumor expressing mutant

antigens also affects normal tissues expressing wild-type proteins.

Pathogen-Induced Protein Binding and Modification
A pathogen-expressed protein that binds with an endogenous

protein complex could serve as a CD4+ T cell target, providing

help to B cells generating antibodies to proteins in the protein

complex. A pathogen-modified endogenous protein could behave

in a similar fashion

Rheumatic Fever (RHF) is a condition characterized by

autoimmune attack against cardiac muscle, usually associated

with group A streptococcal infections [185]. There is some in-vitro

evidence of cross-reactivity of antibodies to streptococcal proteins

and autoantigens in RHF [186]. Nevertheless, there is also

evidence that mimicry may not be an important feature of RHF

[187]. Autoreactivity to collagen in RHF has been proposed to

result from collagen binding to streptococcal proteins [187].

The RHF autoantigens vimentin, myosin, and tropomyosin

(Table 2) form part of the calcium-bound sarcomere protein

complex [188]. Two lines of evidence implicate vimentin as an

initiating autoimmune target (and peri-antigen) in RHF. First,

vimentin is modified (ADP-ribosylated) by the group A strepto-

coccal protein SpyA in a way that alters both its sequence and its

organization [189]. Second, group A streptococci are known to

bind to vimentin, particularly at sites of muscle injury [190].

Apoptotic Cleavage
Adaptive immune reponses require the joint participation and

mutual activation of CD4+ T cells and antigen-presenting cells

such as B cells. B cells become anergic under chronic low-level

exposure to antigen with limited costimulation [191]. Neverthe-

less, even anergic B cells can be activated with sufficient

stimulation [191]. Protein that is post-translationally modified

only upon apoptosis would presumably generate only low-level

exposure to B cells. A post-translationally modified protein that

forms part of a protein complex containing a somatic mutant is

liable to trigger B cell/T cell co-activation. In such a case, a CD4+
T cell specific to the mutant peri-antigen could activate a

previously anergic B cell clone. Such a mechanism could explain

why post-translationally modified proteins, particularly those

geneated during apoptosis, would be over-represented among B

cell autoantigens [51,52,192].
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Retrotransposition
An additional potential mechanism of coherent somatic

mutation is retrotransposition. Retrovirus [193,194] and retro-

transposon [195] integration hotspots exist, independent of

selective pressure for cell growth/survival. This form of mutation

could be relevant to Bout Onset Multiple Sclerosis (BOMS) in

which an endogenous retrovirus has been implicated [196,197], as

well as schizophrenia [198] and amyotrophic lateral sclerosis

[199]. Alternatively, retroviral expression could be a driver of

neuroinflammation [200], leading to somatic mutation at other

mutable repeat sequence.

Figure 3. Genes with high copy number internal repeats. The x-axis denotes the total length of the tandem repeat (log-scale), and the y-axis
represents the number of repeat units within the tandem repeat (log-scale). The degree of homology between repeat units is indicated by the color
of the data point. All repeats in this diagram reside in introns. Genes containing multiple disjoint repeats appear more than once.
doi:10.1371/journal.pone.0101093.g003

Figure 4. Structure of the TYR -related tandem duplications in the human reference genome. The long, high-identity duplicons make the
region susceptible to gene conversion [274].
doi:10.1371/journal.pone.0101093.g004
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Dysregulation of Protein Modification Pathways
In SSc, the presence of one antibody type is generally exclusive

of the others [201,202], suggesting several subtypes of SSc with

different mechanisms of induction. Chromosomal abnormalities

are found at high frequency in the lymphocytes of patients with

anti-centromere or anti-TOP1 antibodies, but at normal frequen-

cy in patients with anti-RNAPIII antibodies [203]. In SSc

fibroblasts, increased sumoylation of TOP1 induces deficits in

TOP1-mediated supercoiled-DNA relaxation [204] and disruption

of TOP1 is known to cause chromosomal aberrations [203].

Inhibition of sumoylation improves TOP1 function in fibroblasts

[203] and reduces fibrosis [205]. One interpretation of this data is

that anti-TOP1 SSc is a sumoylation disorder. Hyper-sumoylated

TOP1 could induce cell death via chromosomal aberrations, and

at the same time trigger an immune response. Because the post-

translationally modified protein would not be normally presented

to immature B or T cells, tolerization to modified TOP1 would not

occur. The centromere protein and SSc autoantigen CENPB is

also a sumoylation target [206–209].

A similar neoantigen-creating role for sumoylation in a subset of

patients with primary biliary cirrhosis (PBC) has previously been

proposed [210]. In patients with antibodies to PML or SP100, two

sumoylation target proteins [206–209], antibodies to SUMO2 and

SUMO1 have been observed [210]. CENPB is also an autoantigen

in PBC (Table 2). SSc and PBC are comorbid, with anti-CENPB

as a common risk factor [211,212], suggesting a shared etiology.

Schizophrenia and Autism
Schizophrenia and autism have prominent immunological

features, including HLA associations, comorbidity with autoim-

mune diseases, and associations with viral triggers and maternal

infections during pregnancy (Table 11). Immunological theories of

schizophrenia have been proposed [213].

A clue that somatic repeat mutation may contribute to

schizophrenia comes from a twin study in which a genomewide

measure of somatic trinucleotide repeat mutation was obtained

[214]. A high somatic trinucleotide mutation rate associated

selectively with the schizophrenic proband in monozygotic twins

discordant for disease [214].

Four NBPF family genes are among the top twelve in Figure 1,

including the two longest STR sequences. The four NBPF genes in

Figure 1 are located between positions 145.2 M and 148.3 M on

chromosome 1, overlapping the 1q21.1 region. NBPF genes

contain many copies of the DUF1220 element; DUF1220 copy

number is closely related to brain size, and humans have many

more copies than other primate species [215,216]. In humans,

high DUF1220 copy number correlates with macrocephaly, and

low copy number correlates with microcephaly [217,218]. Germ-

line deletions within the 1q21.1 region are associated with

schizophrenia [219,220], while duplications are associated with

autism [217]. Somatic genomic instability is likely in such highly

repetitive regions [217]. Somatic mutations early in embryonic

development [221], suggested by the link to maternal infections

during pregnancy, could lead to effects that mirror those of germ-

line mutations. Early somatic mutation also creates the possibility

that the thymus and brain express different haplotypes, preventing

thymic deletion of T cells reactive to proteins coded by a brain-

specific haplotype.

Other schizophrenia-associated genes among those in Figure 1

include IL3RA [222] and CACNG7 [223]. IL3RA encodes a

receptor for IL3 that is expressed in neurons, and IL3 expression is

correlated with brain volume [222]. CACNG7 modulates neurite

growth [224] and regulates AMPA receptor gating [225].

Several autism-related genes appear in Figure 1 and Table 4.

SNTG2 binds to neuroligins 3 and 4, genes that have been

associated with autism, and known autism-related mutations in

those neuroligins weaken the binding with SNTG2 [226]. ROBO2

is an axon-guidance protein with significantly reduced expression

in autistic brains [227]. ASMT encodes the last enzyme in the

melatonin biosynthesis pathway, low melatonin expression is

observed in autism spectrum disorders, and rare ASMT mutations

are associated with autism [228–230]. MGAM is a gene involved in

starch metabolism, with dysregulated mRNA expression in autism

[231]. Germ line loss-of-function mutations in KATNAL2 have

been associated with autism [232].

Additional autism related genes appear in Figure 3 and exhibit

structural variation in their STR sequence (File S1). Like ROBO2,

PLXNA4 is an axon-guidance protein with significantly reduced

expression in autistic brains [227]. ASMTL binds with TDO2

[233]; TDO2 is the rate-limiting enzyme in the catabolism of

tryptophan, the precursor of serotonin, which is known to be

elevated in 30% of autism cases [234].

There is a high concentration of autism-related genes among a

relatively small set of putatively mutable genes. In light of the

autoimmune features of autism (Table 11), this concentration

suggests that somatic repeat mutation may contribute to the

etiology of autism.

Table 10. Multiple mechanisms generating coherent somatic mutation, and possible examples where autoimmunity results.

Mechanism Possible Examples

Mutations at long tandem repeats T1D, HT, RA, SLE, …

Gene conversion at segmental duplications AD

Clonal expansion Paraneoplastic autoimmune diseases, GD

Oxidative stress VIM mutation in RA

RAG-dependent somatic mutation IKZF1 in RA

Pathogen Binding/Modification VIM in RHF

Retrotransposition BOMS

Apoptotic protein cleavage Many cleaved proteins are autoantigens

Dysregulation of protein modification Anti-TOP1 SSc

Environmental mutagens ENO1, VIM, FGB in RA

doi:10.1371/journal.pone.0101093.t010
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Explaining Autoimmunity
A satisfying feature of the coherent somatic mutation hypothesis

is that it provides a parsimonious yet comprehensive account of

autoimmunity. The initiation of most diseases is attributed to a

single mutable locus. A handful of diseases having several known

subtypes include more than one corresponding mutable locus.

Only four of the top sixteen genes in Figure 1 (ANKRD36C,

ANKRD36, AHNAK2, NSUN6) do not have a link with an

autoimmune disease, an autoimmune-associated mental disorder,

or atherosclerosis. These relatively uncharacterized genes are

promising candidates for future study.

The most prominent prior theory of autoimmunity is molecular

mimicry, the hypothesis that peptides similar to host proteins are

expressed by host-resident microbes, sometimes inducing an

autoimmune reaction against the host proteins. The attractive

feature of molecular mimicry has been that it provides a plausible

explanation for the known link between infection and autoimmu-

nity [235,236]. However, despite decades of research, no human

autoimmune diseases have been clearly attributed to molecular

mimicry [235,237,238].

Autoimmune diseases have historically been categorized as

organ-specific or systemic, with some diseases hard to categorize

[239]. Under the coherent somatic mutation hypothesis, both

kinds of disease have a common etiology, with the phenotype

dependent on the expression patterns of the autoantigen. A

narrow expression pattern (such as PTPRN2) leads to an organ-

specific disease (T1D), while a widely expressed protein complex

(TTC34/PPP4C as proposed in this report) leads to a systemic

disease (SLE).

The incidence of each of several autoimmune diseases has been

rising in recent years [240], as has the apparent incidence of

autism [241]. The ‘‘hygiene hypothesis’’ states that autoimmune

disease is linked to the absence of infections, through one of several

possible immunoregulatory mechanisms [240]. Some infections

that are protective if they occur early in development are possible

triggers of autoimmunity if they occur later [240]. The present

theory is consistent with a variant of the hygiene hypothesis in

which tolerance to coherently mutated antigens is dependent on

the early generation of such mutants. Infections or other

inflammatory stimuli would increase the rate of somatic mutation,

allowing for more efficient induction of peripheral tolerance. In

the absence of peripheral tolerance, late generation of somatic

mutants could induce autoimmunity. Alternative hypotheses based

on increasing exposure to environmental mutagens [242,243] are

also consistent with an etiology dependent on somatic mutation.

Autoinflammatory Disease
Several non-autoimmune diseases may also be caused by

somatic mutation of highly mutable repeat sequence in the

context of inflammation. Atopic dermatitis and icthyosis vulgaris

are inflammatory skin conditions caused by inactivating germ-line

mutations of the FLG gene in some cases [244,245]. Somatic

inactivating mutations of the 10.8 kb coding tandem repeat in

FLG, reinforced by local inflammation, could contribute to the

pathogenesis of these conditions. An accumulation of somatic

mutations in PTPRN2 (without autoimmunity) could lead to

glucose intolerance [246]. Similar mechanisms could underlie

various autoinflammatory conditions [247].

Genetics
Our study is limited by its reliance on a single human genome

for long repetitive sequence. Some reference alleles are much

shorter than those typically observed in the population (e.g.,

MUC1 [248,249]). It is likely that long repetitive sequence is highly

variable in the population [37,38,250], and that variations in

germ-line sequence would modulate disease risk as seen for CR1,

LPA, HP and DMBT1. Nevertheless, primary autoantigens whose

genes contain long repeats were identified in a presumably healthy

random individual, suggesting that, at least for those genes, all

humans have some degree of somatic mutation and risk for

disease.

Linkage based analysis of sequence variation in a population

would not identify mutable repetitive regions because the high

germ-line mutation rate would rapidly eliminate any linkage

disequilibrium with adjacent sequence [157]. In contrast, there are

likely to be few germ-line mutations within a pedigree, meaning

that estimates of heritability [251] will include any effects of

commonly inherited mutable sequence. Together, these effects

could explain at least some of the missing heritability observed in

many genomewide association studies [252–254].

Immunological Aspects
Not all somatic mutation is likely to be immunogenic, even in

protein-coding sequence. Somatic mosaicism observed in triplet

repeat expansion diseases [255] would not generate immunogenic

protein if the repeat length is longer than the fragment expressible

in MHC molecules (8–10 amino acids for MHC-I, 15–24 amino

acids for MHC-II). On the other hand, a long triplet repeat could

be vulnerable to somatic deletions, yielding a short, potentially

immunogenic peptide repeat.

Keratinocytes express FLG [256] and are non-professional

antigen presenting cells (APCs) [257]. Pancreatic beta cells express

PTPRN2, and thyroid epithelial cells express TPO; both of these

cell types are also non-professional APCs. The purpose of antigen

presentation by such cells is assumed to be tolerization in the

absence of costimulatory molecules [258], which seems appropri-

ate in the case of three primary (and putatively mutable)

autoantigens. The presence of antigen presentation on these cell

types may have allowed the evolution of mutable genes without

significant risk of abrogating tolerance. Alternatively, antigen

presentation within these cell types may have evolved as a response

to selective pressure for longer repeat sequences in these genes.

While T cell tolerance can be induced by the administration of

peptides [259,260], attempts to induce tolerance in humans

suffering from autoimmune disease have been largely unsuccessful

[261]. Nevertheless, the success of these attempts is critically

dependent on the peptide sequence used. The coherent somatic

mutation hypothesis suggests that for intronic repeats, the initial

immunogenic proteins may be mis-spliced or truncated forms of a

native protein. Peptides covering the splice or truncation

boundaries of putative mutant protein would be natural candi-

dates for tolerance induction.

Validation
Many of the high prevalence diseases in Table 1 have been

specifically associated with mutable antigens or peri-antigens in the

present report. Some more speculative hypotheses for the

involvement of somatic mutation in other diseases are presented

in File S1. The proposed associations should be considered

tentative, and subject to experimental validation. For reasons

described previously and below, experimental validation may be

technically difficult.

Recent sequencing advances have the potential to accurately

sequence long repetitive regions [250]. Accurately sequencing

many cells in search of rare somatic mutants will require

significantly more effort, although new technologies will help [6].

Obtaining putatively mutated cells from sites of autoimmune
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damage is challenging, since such cells would be subject to

immunological destruction as soon as the mutation occurs.

Conclusions

The coherent somatic mutation hypothesis states that recurrent

or clonal somatic mutation underlies the initiation of autoimmune

disease. Long STR sequence is likely to be somatically mutable in

vivo, motivating the present study. A highly significant association

between three primary autoantigens (covering four autoimmune

diseases) and long STR sequence was established. Additional

autoantigens and peri-antigens were identified among genes

spanning long STR sequence, and among genes with other

known markers of somatic mutation. The work presented here

could lead to a partial resolution of the mystery of why particular

proteins are targets of autoimmune destruction [50]. Experimental

validation of the specific predictions made here is the next step.

Materials and Methods

Genome coordinates use the GRCh37 (hg19) sequence. Gene

names use HGNC approved nomenclature. Queries were

submitted to the UCSC MySQL database server [64] and

processed as described below. The SQL queries can be found in

File S1. Gene transcripts were required to be protein-coding

according to GENCODE version 17 [262] or (for Queries 2 and 6)

RefSeq [263].

Identifying Genes with Intragenic Repeats
Query 1 was submitted to obtain genes containing long or

frequent repeats. The output from this query was edited as follows:

N Genes not on the reference chromosomes were removed. Only

one such gene (MGC39584/AC018692.2 on chr4_gl000193_

random) had length over 5 kb and none had a repeat count

over 100.

N For genes occurring on both the X and Y chromosomes, only

the X chromosome instance was retained.

N TMRF often generated multiple repeat candidates for a region

with the periods of the candidates being multiples of the

shortest period. In such cases, only the shortest-period

candidate with the highest repeat-unit count was kept, even

if it spanned a slightly smaller region.

N When TMRF generated a consensus repeat unit that was itself

repetitive (e.g., AGTTAGTTAGTT) the TMRF entry was

replaced by one with a shorter repeat unit (e.g., AGTT) and a

higher repeat-unit count, retaining the degree of identity from

the longer sequence. Examples include VPS53 (in which a

96 bp repeat is itself made of 3 instances of a 32 bp repeat),

MUC4 (in which a 96 bp repeat consists of two consecutive

instances of a 48 bp repeat), and MAL (with an 8 bp

AGTGAGTG repeat).

N In a small number of cases, TMRF generated multiple

essentially contiguous repeats with the same period and

consensus sequence. The only such case where the repeat

was either more than 5 kb long or contained more than 600

repeat units was PTPRN2 (chr7:158122660–158135328) where

the contiguous repeat records were combined into a single

longer 12.6 kb repeat.

To see whether the output was dependent on the source of the

gene annotations, I reformulated the query as Query 2 using

RefSeq [263]. The following differences were noted for repeats

longer than 5 kb:

N There was some discrepant labeling of the NBPF genes. The

NBPF repeat sequences were the same, with the exception of

one NBPF10 repeat (see below).

N The following genes/repeat-lengths were identified by GEN-

CODE but not RefSeq: ANKRD36C/49539; FAM230A,

USP1/7516; PLEKHB2/6521; ANKRD36C/6410; FAM182B/

6292.

N The following genes/repeat-lengths were identified by RefSeq

but not GENCODE: NBPF10/15997; ANKRD36B/25486;

MUC19/8607.

N A large majority of repeats were common to the two

annotations, with the differences mentioned above largely

due to differences in the labeling of a gene transcript as protein

coding.

The differences between the two annotations appear to be

small. The MUC19 transcript identified by RefSeq may have

immunological significance given the association of MUC19 with

Crohn’s disease and ulcerative colitis [105,264,265].

Genes that span gaps in the human assembly where the gaps are

presumed to include repetitive sequence (e.g., MUC5AC [250]) are

absent from the query result. Applying the tandem repeat finder

algorithm [63] to the MUC5AC exon 31 sequence reported by Guo

et al [250] revealed a longest tandem repeat of 1.6 kb.

Table 11. Immunological features of autism and schizophrenia.

Feature Autism Schizophrenia

HLA Association Yes [441,442] Yes [442,443]

Co-morbidity with autoimmune disease Yes [441,444–446] Yes [447–449]

Viral triggers for disease Yes [450] Yes [450,451]

Association with maternal infection
during pregnancy.

Yes [441] Yes [452]

Autoantibodies Brain-specific antibodies in mothers and probands
[441,446,453,454]; Anti-nuclear antibodies [446,455]

Yes [456]

Other Gene expression changes reminiscent of
autoimmunity [457]; NK cell dysregulation [458];
Amelioration of aberrant behaviors during fever [459]

Various immunological abnormalities [460–462];
differentially expressed genes involve immune pathways
[463]

doi:10.1371/journal.pone.0101093.t011
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Identifying Genes Spanning Long Segmental
Duplications

Query 3 was used to identify a preliminary set of segmental

duplications occuring within protein-coding genes, using the

segmental duplication track [266] of the UCSC MySQL database

server [64]. At least one duplicon was required to occur entirely

within the gene sequence. The structure of the identified

segmental duplications was examined using the UCSC genome

browser. Where more than two contiguous tandem duplications

exist (CR1, NEB, SPDYE3), the records for the gene were

combined into a single record for the longer compound tandem

repeat. When multiple segmental duplications overlapped (TTC34)

only the longer duplication was retained.

Additional Queries
Query 4 was used to identify long self-alignments (score at least

60) within protein-coding genes, using the self-alignment track

[267] of the UCSC MySQL database server [64]. Query 5 was

used to identify repeats constituting almost an entire intron within

a gene. Query 6 was used to identify long repeats in the mouse

genome; repeats are required to overlap a protein-coding RefSeq

gene, including 5 kb of sequence upstream of the gene start site.

Query 7 was used to identify pairs of long repeats where the

second repeat unit is the reverse complement of the first. The

purpose of this analysis is to understand the genomewide

significance of this feature of the NSUN6 repeats (File S1). The

output of this query was filtered to remove sequences on unplaced

chromosomes and rows in which the two repeat sequences are not

reverse complements. Queries 8 through 12 identify structural

variation at STR loci utilizing information from the DGV

database [268–270] (File S1).

Significance of Autoantigen Over-Representation in Gene
Lists

Primary Autoantigens. To determine the statistical signifi-

cance of a set of primary autoantigens within a gene list, an

estimate of the number of known primary autoantigens for

common autoimmune diseases is required. Based on Table 1,

there are nineteen known primary autoantigens for those diseases.

This number includes pANCA, a category covering five proteins

in UC [271], and ribosomal P (3 proteins), so a more precise

estimate of the number of genes is 25. The null hypothesis H0

states that each gene associated with a primary autoantigen is

equally likely to appear anywhere in the ranked list of genes. There

are 20,330 protein-coding genes in GENCODE V17 [272].

Choosing the top eleven genes is therefore well approximated by a

binomial process, where a selected gene has a 25=20330&0:0012
probability of being a primary autoantigen under the null

hypothesis.

I apply an exact one-sided binomial test of goodness of fit. The

p-value for 3 or more of the top 11 genes being primary

autoantigens under the null hypothesis is 3:0|10{7: The

significance is robust to the size of the prefix of the gene list. For

example, taking the top 35 genes rather than the top 11 yields

pv1:2|10{5: One can therefore reject the null hypothesis and

conclude that the overrepresentation of primary autoantigens near

the top of the list is highly significant.

Autoantigens. Determining the significance of a set of

autoantigens within a gene list requires an estimate of the total

number of autoantigens. Stadler et al. [54] tabulate 348 known

autoantigens, but this list is incomplete (e.g., it does not include

FLG or PKP3). For the purposes of determining a p value, 400

autoantigens and 20,330 protein-coding genes [272] are assumed

for a one-sided binomial goodness of fit test. All p values calculated

above remain significant at pv0:05 even if an estimate of 600

autoantigens was used.

Supporting Information

File S1

(PDF)
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