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Abstract
Development of myopia is associated with large-scale changes in ocular tissue gene

expression. Although differential expression of coding genes underlying development of

myopia has been a subject of intense investigation, the role of non-coding genes such as

microRNAs in the development of myopia is largely unknown. In this study, we explored

myopia-associated miRNA expression profiles in the retina and sclera of C57Bl/6J mice

with experimentally inducedmyopia using microarray technology. We found a total of 53 dif-

ferentially expressed miRNAs in the retina and no differences in miRNA expression in the

sclera of C57BL/6Jmice after 10 days of visual form deprivation, which induced -6.93 ±
2.44 D (p < 0.000001, n = 12) of myopia. We also identified their putative mRNA targets

amongmRNAs found to be differentially expressed in myopic retina and potential signaling

pathways involved in the development of form-deprivation myopia using miRNA-mRNA

interaction network analysis. Analysis of myopia-associated signaling pathways revealed

that myopic response to visual form deprivation in the retina is regulated by a small number

of highly integrated signaling pathways. Our findings highlighted that changes in microRNA

expression are involved in the regulation of refractive eye development and predicted how

they may be involved in the development of myopia by regulating retinal gene expression.
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Introduction
Myopia is the most common vision disorder and a leading cause of visual impairment world-
wide [1]. The prevalence of myopia has increased from 25% to 44% of the adult population in
the United States in the last 30 years [2], and reached more than 80% of young adults in many
parts of East Asia [3, 4]. In addition to its direct impact on visual acuity and quality of life,
myopia is a major risk factor for potentially blinding ocular disorders such as cataract, glau-
coma, retinal detachment, and myopic maculopathy, and represents one of the leading causes
of blindness [5–7].
Postnatal refractive eye development is a tightly coordinated process, which is regulated by

visual input [8]. Visual experiencemodulates ocular growth during early postnatal period and
drives it towards sharp vision (i.e., perfectmatch between the eye’s optical power and its axial
length) in a process called emmetropization [9]. During emmetropization, optical defocus
evokes a signaling cascade that originates in the retina, propagates through other ocular tissues
(i.e., retinal pigment epithelium and choroid), and results in scleral wall remodeling with
increased eye growth. This signaling is associated with large-scale changes in gene expression
in all ocular tissues, which was extensively studied at the mRNA level in several animal models
of myopia [10–17]. Although these studies established that modulation of gene expression
plays an important role in refractive eye development, non-coding transcriptome changes
underlying refractive eye development have been largely unexplored.
MicroRNAs (miRNAs) are small non-coding RNAs that direct post-transcriptional regu-

lation of gene expression by either facilitating degradation of their target mRNAs or sup-
pressing mRNA translation [18–20]. MiRNAs often serve as nodes in signaling networks
and modulate many cell activities, including cell proliferation, cell differentiation, metabo-
lism, and synaptic function [21–24]. The potential influence of miRNAs on various biologi-
cal processes is immense, as at least 50% of all coding genes are thought to be regulated by
1193 annotated miRNAs in mice and 1881 miRNAs in humans [22, 23, 25]. Insights into
the full range of biologic functions of miRNAs are recent, and their involvement in disease
has generated significant interest due to strong potential for therapeutic development
[24, 26, 27].
MiRNA transcriptomes have been profiled in several ocular tissues [28] and miRNAs have

been found to be expressed in the cornea, lens, retina, retinal pigment epithelium (RPE), and
sclera of both embryonic and adult eyes [29–36]. A growing number of studies have shown
that miRNAs play key roles in regulating both eye development and eye diseases [32, 34, 37–
55]. For example, miR-96, miR-183, miR-1, and miR-133 have been implicated in retinitis pig-
mentosa [49], while miR-31, miR-150, and miR-184 have been associated with choroidal neo-
vascularization [50] and diabetic retinopathy [51]. Mutations in miR-184 cause EDICT
syndrome, familial keratoconus with cataract, and sporadic keratoconus [52, 53]. Mutations in
the binding site of miR-328 within 3’-UTR of a myopia-causing gene Pax6 were also shown to
be associated with highmyopia in a Chinese cohort [54, 55], suggesting that miRNAs play an
important role in refractive eye development as well.
In the current study, we performed large-scalemiRNA expression profiling in a mouse

model of form-deprivationmyopia and discovered extensive changes in miRNA expression in
the myopic retina. The identified differentially expressed miRNAs were used to perform analy-
sis of the miRNA-mRNA interaction networks in the myopic retina using a database of
mRNAs differentially expressed in the myopic eye. This analysis revealedmultiple mRNA tar-
gets for differentially expressedmiRNAs and putative signaling pathways involved in the devel-
opment of myopia.
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Materials andMethods

Animals
C57BL/6J mice were obtained from the Jackson Laboratory (Bar Harbor, ME) and were main-
tained as an in-house breeding colony. C57BL/6J mice were recently shown not to have Rd8
mutation causing retinal degeneration in C57BL/6Nmice [56]; however, C57BL/6J mice are
known to have a relatively high incidence of microphthalmia, which affects from 4.4% to 10%
of animals [57, 58]. Therefore, animals were screened for the presence of microphthalmia and
other ophthalmic abnormalities such as corneal opacities and anterior polar cataracts often
associated with this condition [59]. Each animal was first examined visually, which is often suf-
ficient to identify animals with microphthalmia or cataract. If no anomalies are identified after
visual examination, eyes were examined under the dissectingmicroscope and using handmade
slit lamp. This was followed by the examination of the pupil image with the photorefractor.
Animals found to have microphthalmia, corneal opacities or cataract were removed from the
study (~10% in our colony). All procedures adhered to the ARVO Statement for the Use of
Animals in Ophthalmic and Vision Research and were approved by the Columbia University
Institutional Animal Care and Use Committee.

Induction of Form-DeprivationMyopia
Visual form deprivation (VFD) was induced in 12 mice by applying a unilateral frosted hemi-
spherical plastic diffusers over the right eyes as previously described [60]. Briefly, frosted hemi-
spherical plastic diffuserswere hand-made using caps from 0.2 ml PCR tubes (Molecular
BioProducts, San Diego, CA) and rings made frommedical tape (inner diameter 6 mm; outer
diameter 8 mm). A cap was frosted with fine sandpaper and attached to a ring with Loctite™
Super Glue (Henkel Consumer Adhesives, Avon, OH). On the first day of the experiment
(P24), animals were anesthetized via intraperitoneal injection of ketamine (90 mg/kg) and xyla-
zine (10 mg/kg), and diffuserswere attached to the skin surrounding the right eye with several
stitches using size 5–0 ETHILON™microsurgical sutures (Ethicon, Somerville,NJ) and rein-
forced with Vetbond™ glue (3M Animal Care Products, St. Paul, MN). The contralateral
untreated left eyes were used as control. Toenails were covered with adhesive tape to prevent
mice from removing the diffusers.Animals recovered on a warming pad and were then housed
in transparent plastic cages for the duration of the experiment (10 days). A control group com-
prised of 8 age-matched C57BL/6J mice was maintained under the same experimental condi-
tions as experimental group, but without VFD.

RNA Extraction
After 10 days of visual form deprivation, mice were euthanized following the approved experi-
mental protocol. Bothmyopic and control eyes were enucleated, cleaned by removing sur-
rounding tissues and the crystalline lens, retina and sclera were dissected, snap-frozen in liquid
nitrogen and stored in RNAlater1-ICE (Life Technologies, Grand Island, NY). In order to
obtain sufficient amount of tissue for RNA isolation, the retinas or scleras from three myopic
or control eyes were pooled for RNA extraction. Three replicates (3 eyes per replicate) were
processed in parallel. Total RNA was isolated from the retina and sclera samples using mirVa-
naTM miRNA isolation kit (Life Technologies, Grand Island, NY) according to the manufactur-
er’s instructions. RNA concentration was measured using NanoDrop 8000 spectrophotometer
(Thermo Scientific,Wilmington, DE). The quality of the total RNA was assessed using Agilent
RNA 6000 Nano kit and 2100 Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA) fol-
lowing the manufacturer’s instructions.
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MicroRNAexpression profiling and microarray data analysis
MiRNA expression profiling was carried out at the Microarray Core Facility of the Duke Uni-
versity Institute for Genome Sciences and Policy (IGSP) using Agilent Mouse microRNA
Microarray (release 15.0) (Agilent Technologies, Santa Clara, CA). MiRNA labeling, hybridiza-
tion and washing were carried out according to the manufacturer’s recommendations. Follow-
ing hybridization, microarrays were scanned on a DNA microarray scanner (Agilent
G2565BA) and features were extracted using the Agilent Feature Extraction (AFE) image anal-
ysis tool (version A.9.5.3) with default protocols and settings. Gene expression data were ana-
lyzed using Partek Genomics Suit 6.6. Data were adjusted to bring the minimal signal to 0.5,
normalized using quantile normalization procedure, and log2-transformed. This was followed
by the removal of absent features and outliers. The normalized data were then analyzed using
ANOVA to identify the differences in miRNA expression levels betweenmyopic and control
eyes. Differentially expressedmiRNAs were identified using an FDR-adjusted P-value thresh-
old of 0.05 and a cutoff of 2-fold change in expression. Differential expression was calculated as
fold change (FC, myopic samples vs control).

Analysis of miRNA-mRNASignaling Pathways
To identify biologically relevant miRNA-regulated genetic networks, differentially expressed
miRNAs were analyzed using QIAGEN’s Ingenuity Pathway Analysis (IPA1) software and
database (QIAGEN, RedwoodCity, CA). Putative mRNA targets were identified for the differ-
entially expressedmiRNAs, and then the mRNAs were filtered using published datasets of
mRNAs differentially expressed in the myopic retina [10, 13, 14, 61, 62]. Mouse orthologs of
mRNAs found to be differentially expressed in the species other than mouse were identified
using Ensembl Compara [63]. The list of miRNAs and their associated target mRNAs were
then subjected to core functional analysis in IPA1 that uses ~1.5 millionmicroRNA targeting
interactions from sources including miRecords, TarBase, TargetScan, Ingenuity Expert find-
ings and Ingenuity ExpertAssist findings to identify the miRNA-mRNA target relationships.
Specifically, TargetScanMouse 6.2 [64], which was integrated with the latest versions of miR-
Base [65] and RefSeq [66, 67] databases, was used to identifymRNA targets. The stringency
level for miRNA-mRNA interactions was set at “High (predicted)” or “Experimentally
Observed”. “High (predicted)” confidence level was assigned to the relationships between a
highly conservedmicroRNA and at least one conserved site on the targeted mRNA with the
total TargetScan context score of -0.4 or less, which indicated that the microRNA was predicted
to repress the expression of its mRNA target to at least 40% of the "normal" level. The “Experi-
mentally Observed” targeting interactions were high quality manually curatedmiRNA-mRNA
interactions with documented experimental support for each interaction. The homolog adjust-
ment was applied to all miRNAs, which represent the miRNA families that share the same seed
region, and IPA1mouse miRNA cluster symbols were used in the network images for each
miRNA. Significant and enriched networks and Gene Ontology categories were obtained using
the Fisher's exact test with a P-value threshold of 0.05.

Results

MicroRNAexpression profiling in the mouse form-deprivationmyopia
To examine potential involvement of miRNAs in the development of myopia, we analyzed
miRNA expression in a mouse model of myopia. Twelve P24 C57BL/6J mice were subjected to
monocular visual form deprivation (VFD). After 10 days of VFD, we detected a myopic shift in
refraction in the deprived eyes of -6.93 ± 2.44 D (p< 0.000001, n = 12) relative to the control
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eyes (Fig 1). The difference in the interocular difference (OD-OS) between the VFD group and
control group was also statistically significant (F(1, 18) = 49.936, p< 0.000001). A large-scale
miRNA expression profiling was performed in the retina and sclera of the VFDmice using Agi-
lent mouse microRNA microarrays which contained 627 mature mouse and 39 mouse viral
miRNAs. This profiling revealed that a total of 53 miRNAs were differentially expressed
(FC� 2.0; FDR-adjusted p< 0.05) in the myopic retina compared to the contralateral control
retina, whereas no differentially expressedmiRNAs were identified in the sclera (Fig 2;
Table 1). Thirty seven out of the 53 miRNAs were up-regulated and 16 out of the 53 miRNAs
were down-regulated in the myopic retina (Fig 2; Table 1). Analysis of differential expression
of these 53 miRNAs in the retina versus sclera revealed that 18 miRNAs were equally expressed
in both retina and sclera, whereas 20 miRNAs were upregulated in the retina versus sclera and
15 were upregulated in the sclera versus retina (Fig 3; S1 Fig; S1 Table). Although the majority
of the differentially expressed miRNAs originated from different miRNA clusters, mmu-miR-
429-3p and mmu-miR-200a-5p belonged to the same cluster (MID< 5 kb) on chromosome 4
and were both up-regulated in myopic retina, while mmu-miR-145-5p and mmu-miR-143-3p
localizedwithin the same cluster (MID< 5 kb) on chromosome 18 and were both down-regu-
lated in myopic retina (Table 1) [68]. SeveralmiRNAs exhibited more than 10-fold change in
expression in the myopic retina (Table 1), including mmu-miR-1947-5p (FC = 31.5,
p = 1.47 × 10−04), mmu-miR-200a-5p (FC = 18.8, p = 9.46 × 10−05), mmu-miR-141-5p
(FC = 13.9, p = 4.75 × 10−06), mmu-miR-465b-5p (FC = 12.8, p = 5.93 × 10−04), mmu-miR-
214-5p (FC = 12.6, p = 8.27 × 10−03), mmu-miR-1936 (FC = 12.3, p = 9.56 × 10−06), mmu-
miR-466f-5p (FC = 11.5, p = 3.85 × 10−03), mmu-miR-669o-5p (FC = 10.9, p = 2.18 × 10−03),
mmu-miR-18b-5p (FC = 10.1, p = 1.79 × 10−03), and mmu-miR-145-5p (FC = -10.5,
p = 8.87 × 10−09). These data suggest that development of form-deprivation myopia is associ-
ated with large-scale changes in miRNA expression in the retina.

Identificationof putative targetmRNAs for the miRNAs differentially
expressed in myopic retina
In order to explore potential signaling pathways regulated by the identified differentially
expressed miRNAs during the development of form-deprivation myopia in mice, we per-
formed miRNA-mRNA interaction network analyses using a custom database of mRNAs
differentially expressed in the retina upon induction of experimental myopia (S2 Table)
[10, 13, 14, 61, 62] using IPA1. This analysis identified a total of 135 mRNA targets for 21
out of 53 differentially expressed miRNAs (Table 2), whereas no target mRNAs were found
for the remaining 32 miRNAs among 611 mRNAs, which were found to be differentially
expressed in the myopic retina (S3 Table). Gene ontology analysis of the target mRNAs
revealed that these mRNAs encode proteins primarily involved in cellular growth, prolifer-
ation, nervous and visual systems development (Fig 4). The miRNA-mRNA networks
within these gene ontology categories were characterized by complex combinatorial in-
teractions with one miRNA targeting multiple mRNAs and one mRNA often being
targeted by several miRNAs. For example, mmu-miR-145-5p, which was strongly
down-regulated in myopic retina (FC = -10.5, p = 8.87 × 10−09), targeted 25 mRNAs (the
largest number among all 21 miRNAs) (Table 2); while mmu-miR-429-3p (FC = 7.8,
p = 2.05 × 10−03), mmu-miR-143-3p (FC = -2.0, p = 1.43 × 10−03), mmu-miR-223-3p (FC =
-2.7, p = 4.84 × 10−04) and mmu-miR-146a-5p (FC = -3.2, p = 2.70 × 10−05) targeted 17, 17,
16 and 14 mRNAs respectively. The average number of mRNAs targeted by one miRNA
was 9.0 ± 6.2. On the other hand, each mRNA was targeted by only 1.4 ± 0.7 miRNAs and
maximum by 4 miRNAs.
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Analysis of miRNA-regulatedsignaling pathways in the mouse form-
deprivationmyopia
Our initial analysis revealed that each differentially expressedmiRNA regulates an extended
network of protein-coding genes within a limited number of gene ontology categories, there-
fore we then explored interactions between 21 differentially expressedmiRNAs and 135
mRNAs which were targeted by these miRNAs. This analysis revealed that these miRNAs and
mRNAs are organized into 9 overlapping miRNA-mRNA signaling pathways (Fig 5; S2–S10
Figs). Myopia pathways (MP) 1 and 2 (MP1 and MP2) were the largest pathways, which com-
prised 16 miRNAs, followed by MP3 (15 miRNAs), MP4 (14 miRNAs), MP5 (14 miRNAs),
MP6 (13 miRNAs), MP7 (12 miRNAs), MP8 (4 miRNAs) and MP9 (1 miRNA). MP1, MP2,
MP3, MP4, MP5, MP6 and MP7 had a common core comprised of mmu-miR-1-3p, mmu-
miR-145-5p, mmu-miR-18a-5p, mmu-miR-199a-5p, mmu-miR-200b-3p, mmu-miR-223-3p,
mmu-miR-291a-3p, mmu-miR-34a-5p and their target mRNAs. Two of these miRNAs, i.e.,
mmu-miR-145-5p and mmu-miR-200b-3p, served as a common core for all pathways except
for MP9. MP9 comprised only 1 miRNA (mmu-miR-1903) and 3 mRNAs (Ascl1, Dcx and
Notch2), but was linked to 6 larger pathways, i.e., MP1, MP2, MP3, MP4, MP5 and MP7, via
Notch2 (indirect target of mmu-miR-1903). In all pathways, miRNAs played a role of major
regulatory hubs targeting transcription factors and/or regulatory proteins. The absolute major-
ity of miRNAs targeted at least one transcription factor while the average number of transcrip-
tion factors targeted by each differentially expressedmiRNA was 1.7 ± 1.2 (Table 2). At the
same time, several transcription factors were targeted by multiple often overlapping miRNAs.
For example, Hlf was targeted by mmu-miR-18b-5p, mmu-miR-429-3p and mmu-miR-291a-
3p; Cnot6 and Zfp91 were targeted by mmu-miR-206-3p and mmu-miR-291a-3p; Rbfox2 was
targeted by mmu-miR-429-3p and mmu-miR-449c-5p; Aebp2 was targeted by mmu-miR-
125a-3p, mmu-miR-223-3p and mmu-miR-496-3p; Nfya was targeted by mmu-miR-199a-5p,
mmu-miR-216b-5p and mmu-miR-671-5p; Nucks1 was targeted by mmu-miR-142-3p, mmu-
miR-146a-5p and mmu-miR-223-3p; Notch2 was targeted by mmu-miR-146a-5p and indi-
rectly via Ascl1 by mmu-miR-1903. Interestingly, mmu-miR-145-5p and mmu-miR-429-3p
(mmu-miR-200b-3p cluster), which formed a common core of all pathways, were among the
most differential miRNAs and targeted the largest number of mRNAs. Mmu-miR-145-5p was
strongly down-regulated in myopic retina (FC = -10.5, p = 8.87 × 10−09) and targeted 25
mRNAs, while mmu-miR-429-3p was strongly up-regulated in myopic retina (FC = 7.8,
p = 2.05 × 10−03) and targeted 17 mRNAs (Table 2).
Among the mRNAs targeted by differentially expressed miRNAs, there were several

(Prkar1a, Rims2, Map2, Gabarapl1, Htr7, Add3, Erc1, Nlgn1) which were involved in synapse
formation and function suggesting that synaptic functionwas one of the biological processes
affected in form-deprivationmyopia. However, IPA gene ontology analysis revealed that the
most prominent biological processes associated with the 21 differentially expressedmiRNAs
and their target mRNAs were quantity of neurons (p = 1.08 × 10−4, activation z-score (z) =
2.04), migration of neurons (p = 2.24 × 10−6, z = 1.33), growth of axons (p = 7.21 × 10−4,
z = 1.10), outgrowth of neurites (p = 1.83 × 10−5, z = 0.74), growth of neurites (p = 8.51 × 10−7,
z = 0.54), neuritogenesis (p = 1.03 × 10−6, z = 0.41), proliferation of neuronal cells
(p = 9.93 × 10−7, z = 0.33) and differentiation of neurons (p = 1.45 × 10−3, z = 0.17) (S4 Table).
Therefore, we have analyzed the overlap between all 9 pathways and GO categories linked to

Fig 1. Form-deprivationmyopia in C57BL/6J mice.Form-deprivationmyopia was induced in C57BL/6J mice by applying a
diffuser to the right eye of P24 animals. Ten days of visual form deprivation induced -6.93 ± 2.44 D (p < 0.000001, n = 12) of
myopia in the right eyes compared to the contralateral control eyes.

doi:10.1371/journal.pone.0162541.g001
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neurogenesis.We found that each pathway was indeed involved in regulation of neurogenesis
and had a net positive effect on neurogenesis-associatedprocesses (S2–S10 Figs). Thus, path-
way analysis suggests that miRNAs serve as key regulators of several signaling cascades under-
lying development of form-deprivationmyopia.

Discussion
Development of myopia is associated with remodeling of several ocular tissues, including the
retina, RPE, choroid and sclera [14, 69–72]. Several studies analyzed gene expression in various
animal models of myopia using oligonucleotide-basedmicroarrays and each identified between
15 and 280 differentially expressed genes [10–14, 61, 62], including a total of 611 mRNAs in
the retina [10, 13, 14, 61, 62]. Although involvement of coding genes in myopia is a well-estab-
lished fact, to date only 1 miRNA was shown to be associated with myopia development. It was
reported that a SNP located within the miR-328 binding site in the 3’-UTR of PAX6 reduced
PAX6 protein levels and was significantly associated with extrememyopia in a Chinese cohort
[54, 55]. Considering that miRNAs often serve as regulatory hubs in many signaling pathways
[21–24] and provide higher-order coordination of signaling pathways underlying the same bio-
logical process [68, 73], understanding the role of miRNAs in refractive eye development is
critical for the understanding of myopia development.
In this work, we sought to identify miRNAs differentially expressed during the development

of form-deprivation myopia in the mouse model and to explore miRNA-mRNA genetic net-
works underlyingmyopia. Considering that mice are most susceptible to visually-guidedmyo-
pia during active phase of ocular growth from P21 through P40 [60, 74], we analyzed early
changes in miRNA expression in the retina and sclera in P34 mice 10 days after induction of
form-deprivationmyopia. Ten days of visual form deprivation induced -6.93 ± 2.44 diopters of
myopia and large-scale changes in miRNA expression in the retina indicating that early retinal
response in visually-guidedmyopia is associated with substantial changes in retinal signaling.
Surprisingly, we did not find differences in miRNA expression in the sclera, which suggests
that early myopia-associated scleral remodeling in response to visual form deprivation may not
involve miRNAs, or that changes in miRNA expression are very subtle at this early stage of
myopia development. In the retina, we identified 53 differentially expressed miRNAs, includ-
ing 19 miRNAs with more than 5-fold change in expression. Importantly, 18 of these highly
differential miRNAs were upregulated in the myopic retina and only 1 was down-regulated
suggesting that the “net effect” may be the down-regulation of the corresponding target genes
in myopia. Seven of the up-regulatedmiRNAs (miR-465b, miR-466f, miR-669o, miR-18b,

Fig 2. Hierarchical cluster analysis of 53 miRNAsdifferentially expressed in themyopic retina versus
control retina.Logarithmic values (base 2) of Agilent total gene signal for differentially expressed miRNAs
(cutoff: FC > 2, FDR-adjusted p-value < 0.05) were quantile normalized, shifted to mean of zero, scaled to
standard deviation of 1.0 and subjected to hierarchical clusteringusing Euclidean dissimilarity and average
linkage. The color scale indicates transcript abundance relative to themean of zero: red identifies an increase
in relative miRNA abundance; blue identifies a decrease in relative miRNA abundance. Columns show
individual samples, whereas rows show individualmiRNAs. Control samples c1, c2, and c3 correspond to
myopic samplesm1,m2, andm3 respectively. The “co-clustering” of the control sample c1 andmyopic
samplem3 resulted from the clusteringalgorithm that was used to generate the cluster and reflects individual
differences in gene expression as well as differences in the myopic response to visual form deprivation
between animals. It appears that themyopic response in the animals comprising experimental group 1
(samples c1 andm1) was the weakest among the 3 groups. However, the relationship between control
sample c1 and the corresponding myopic samplem1 follows the same patternas in the other two
experimental groups even though samples c1 andm1 fall within the same color scheme. Consistent up- or
down-regulation of the specific miRNAs in themyopic eyes versus corresponding control eyes across all
samples is reflected by the low p-values shown in Table 1.

doi:10.1371/journal.pone.0162541.g002
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Table 1. MiRNAsdifferentially expressed inmyopic retina versus control retina.

miRBase ID miRNA name miRNA cluster Fold change P-value

MIMAT0009413 mmu-miR-1947-5p miR-1947-5p (miRNAsw/seedGGACGAG) 31.5 1.47 × 10−04

MIMAT0004619 mmu-miR-200a-5p miR-200a-5p (and other miRNAs w/seed AUCUUAC) 18.8 9.46 × 10−05

MIMAT0004533 mmu-miR-141-5p miR-141-5p (and other miRNAs w/seed AUCUUCC) 13.9 4.75 × 10−06

MIMAT0004871 mmu-miR-465b-5p miR-465b-5p (and other miRNAs w/seed AUUUAGA) 12.8 5.93 × 10−04

MIMAT0004664 mmu-miR-214-5p miR-214-5p (miRNAsw/seedGCCUGUC) 12.6 8.27 × 10−03

MIMAT0009400 mmu-miR-1936 miR-1936 (miRNAsw/seed AACUGAC) 12.3 9.56 × 10−06

MIMAT0004881 mmu-miR-466f-5p miR-466f-5p (miRNAsw/seed ACGUGUG) 11.5 3.85 × 10−03

MIMAT0009421 mmu-miR-669o-5p miR-669o-5p (miRNAsw/seed AGUUGUG) 10.9 2.18 × 10−03

MIMAT0004858 mmu-miR-18b-5p miR-18a-5p (and other miRNAs w/seed AAGGUGC) 10.1 1.79 × 10−03

MIMAT0009411 mmu-miR-1306-3p miR-1306-3p (miRNAsw/seed CGUUGGC) 9.3 3.67 × 10−03

MIMAT0000368 mmu-miR-291a-3p miR-291a-3p (and other miRNAs w/seed AAGUGCU) 9.2 3.22 × 10−04

MIMAT0003483 mmu-miR-696 miR-696 (miRNAs w/seed CGUGUGC) 9.0 1.28 × 10−03

MIMAT0004628 mmu-miR-21-3p miR-21-3p (and other miRNAs w/seed AACAGCA) 8.9 8.01 × 10−05

MIMAT0004824 mmu-miR-673-3p miR-673-3p (and other miRNAs w/seed CCGGGGC) 8.4 1.65 × 10−05

MIMAT0001537 mmu-miR-429-3p miR-200b-3p (and other miRNAs w/seed AAUACUG) 7.8 2.05 × 10−03

MIMAT0011212 mmu-miR-2136 miR-2136 (miRNAsw/seed UGGGUGU) 6.3 5.02 × 10−04

MIMAT0004841 mmu-miR-871-5p miR-743a-5p (and other miRNAs w/seed AUUCAGA) 5.8 5.51 × 10−04

MIMAT0004526 mmu-miR-101a-5p miR-101a-5p (miRNAsw/seed CAGUUAU) 5.1 1.88 × 10−04

MIMAT0007873 mmu-miR-1896 miR-1896 (miRNAsw/seed UCUCUGA) 4.9 1.66 × 10−03

MIMAT0004885 mmu-miR-467c-5p miR-467c-5p (and other miRNAs w/seed AAGUGCG) 4.6 1.68 × 10−04

MIMAT0004884 mmu-miR-466h-5p miR-669m-5p (and other miRNAs w/seedGUGUGCA) 4.3 1.29 × 10−03

MIMAT0003476 mmu-miR-669b-5p miR-669b-5p (miRNAsw/seedGUUUUGU) 4.3 1.02 × 10−03

MIMAT0005853 mmu-miR-669e-5p miR-331-5p (and other miRNAs w/seedGUCUUGU) 4.2 2.41 × 10−03

MIMAT0004856 mmu-miR-105 miR-105 (miRNAs w/seed CAAGUGC) 4.2 1.83 × 10−04

MIMAT0003494 mmu-miR-704 miR-704 (miRNAs w/seedGACAUGU) 4.0 3.00 × 10−04

MIMAT0000372 mmu-miR-294-3p miR-291a-3p (and other miRNAs w/seed AAGUGCU) 3.9 3.79 × 10−03

MIMAT0004626 mmu-miR-18a-3p miR-18a-3p (and other miRNAs w/seed CUGCCCU) 3.9 6.01 × 10−04

MIMAT0003169 mmu-miR-539-5p miR-539-5p (miRNAsw/seedGAGAAAU) 3.5 3.47 × 10−04

MIMAT0009427 mmu-miR-669n miR-5010-3p (and other miRNAs w/seed UUUGUGU) 3.3 7.22 × 10−03

MIMAT0004647 mmu-miR-338-5p miR-338-5p (miRNAsw/seed ACAAUAU) 3.2 4.09 × 10−04

MIMAT0003460 mmu-miR-449c-5p miR-34a-5p (and other miRNAs w/seedGGCAGUG) 2.6 1.41 × 10−04

MIMAT0000239 mmu-miR-206-3p miR-1-3p (and other miRNAs w/seedGGAAUGU) 2.5 4.14 × 10−04

MIMAT0007868 mmu-miR-1903 miR-1903 (and other miRNAs w/seed CUUCUUC) 2.4 5.95 × 10−04

MIMAT0000380 mmu-miR-302a-3p miR-291a-3p (and other miRNAs w/seed AAGUGCU) 2.4 5.27 × 10−04

MIMAT0014816 mmu-miR-3099-3p miR-3099 (and other miRNAs w/seed AGGCUAG) 2.4 7.47 × 10−03

MIMAT0003507 mmu-miR-500-3p miR-501-3p (and other miRNAs w/seed AUGCACC) 2.2 4.14 × 10−03

MIMAT0000246 mmu-miR-122-5p miR-122-5p (miRNAsw/seedGGAGUGU) 2.0 8.09 × 10−04

MIMAT0000247 mmu-miR-143-3p miR-143-3p (and other miRNAs w/seedGAGAUGA) -2.0 1.43 × 10−03

MIMAT0003738 mmu-miR-496-3p miR-503-3p (and other miRNAs w/seedGAGUAUU) -2.1 8.01 × 10−10

MIMAT0001418 mmu-miR-431-5p miR-431-5p (and other miRNAs w/seedGUCUUGC) -2.1 7.76 × 10−04

MIMAT0000137 mmu-miR-126-5p miR-126a-5p (and other miRNAs w/seed AUUAUUA) -2.3 3.67 × 10−03

MIMAT0004572 mmu-miR-290-3p miR-467a-5p (and other miRNAs w/seed AAGUGCC) -2.4 6.43 × 10−03

MIMAT0003731 mmu-miR-671-5p miR-671-5p (miRNAsw/seedGGAAGCC) -2.6 2.30 × 10−03

MIMAT0003729 mmu-miR-216b-5p miR-216b-5p (miRNAsw/seed AAUCUCU) -2.6 1.51 × 10−05

MIMAT0000665 mmu-miR-223-3p miR-223-3p (miRNAsw/seedGUCAGUU) -2.7 4.84 × 10−04

MIMAT0003782 mmu-miR-676-3p miR-676 (and other miRNAs w/seed CGUCCUG) -2.7 9.35 × 10−04

MIMAT0004640 mmu-miR-325-3p miR-325-3p (miRNAsw/seed UUAUUGA) -2.8 5.59 × 10−04

(Continued)
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miR-291a, miR-696, miR-101a) were also much more (� 5 fold) expressed in the retina com-
pared to the sclera suggesting that they might be involved in the regulation of retina-specific
processes. The down-regulatedmiR-145 was 25.4 times less abundant in the retina versus
sclera suggesting that it is likely to be expressed in a very small population of retinal cells.

Table 1. (Continued)

miRBase ID miRNA name miRNA cluster Fold change P-value

MIMAT0003742 mmu-miR-455-3p miR-455-3p (miRNAsw/seed CAGUCCA) -3.1 1.74 × 10−03

MIMAT0000229 mmu-miR-199a-5p miR-199a-5p (and other miRNAs w/seed CCAGUGU) -3.2 6.65 × 10−03

MIMAT0000158 mmu-miR-146a-5p miR-146a-5p (and other miRNAs w/seedGAGAACU) -3.2 2.70 × 10−05

MIMAT0000155 mmu-miR-142-3p miR-142-3p (and other miRNAs w/seedGUAGUGU) -3.3 2.13 × 10−03

MIMAT0004528 mmu-miR-125a-3p miR-125a-3p (miRNAsw/seed CAGGUGA) -3.4 1.21 × 10−03

MIMAT0000157 mmu-miR-145-5p miR-145-5p (and other miRNAs w/seed UCCAGUU) -10.5 8.87 × 10−09

doi:10.1371/journal.pone.0162541.t001

Fig 3. Overlap betweenmiRNAs differentially expressed in themyopic retina andmiRNAs differentially expressed in the retina
versus sclera.Venn diagram shows overlap between 53 miRNAs, which were differentially expressed in themyopic retina, 136
miRNAs, which were up-regulated in the retina versus sclera, and 109miRNAs, which were up-regulated in the sclera versus retina.
Eighteen differentialmiRNAswere equally expressed in both retina and sclera, 20 differentialmiRNAswere up-regulated in the retina
versus sclera and 15 differential miRNAswere down-regulated in the retina versus sclera.

doi:10.1371/journal.pone.0162541.g003
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Table 2. MiRNAs and their targetmRNAs differentially expressed inmyopic retina versus control
retina.

miRNA name miRNA fold
change

Target mRNA name and fold change

mmu-miR-
18b-5p

10.1 BRWD3 (-2.5); NOS1 (-2.0); CTGF (-2.0); NXT2 (-1.7);HLF (-1.6);
TMEM2 (-1.6)

mmu-miR-
1306-3p

9.3 DUSP4 (-2.5)

mmu-miR-
291a-3p

9.2 CNOT6 (-2.2); RAB11A (-2.0); CUL3 (-1.7); CLIP4 (-1.6);HLF (-1.6);
BAZ1A (-1.6); ZC3H13 (-1.2);ZFP91 (-1.0)

mmu-miR-
429-3p

7.8 ZEB2 (-3.5); ATP11B (-2.7); PRKAR1A (-2.6); BRWD3 (-2.5); RIMS2
(-1.9);RBFOX2 (-1.8); SENP5 (-1.8); ARIH1 (-1.7);MAPK9 (-1.7);
COMMD3 (-1.7);HLF (-1.6); SLC30A5 (-1.6); TAOK3 (-1.6);ETV5 (-1.5);
NEGR1 (-1.5);MPRIP (-1.2);MAP2 (-1.2)

mmu-miR-
539-5p

3.5 RAB11A (-2.0); SENP5 (-1.8);WNK1 (-1.8); NPL (-1.7); ZSWIM5 (-1.7);
MAP2 (-1.2)

mmu-miR-
449c-5p

2.6 NOS1 (-2.0);RBFOX2 (-1.8);MRPL17 (-1.7); COPS7B (-1.7); ZSWIM5
(-1.7);TCF12 (-1.6)

mmu-miR-
206-3p

2.5 CNOT6 (-2.2);MAN1C1 (-1.8); ARIH1 (-1.7); NXT2 (-1.7); RICTOR
(-1.7); TAOK3 (-1.6); FAM101B (-1.6); KLHL5 (-1.5);ZFP91 (-1.0)

mmu-miR-
1903

2.4 ASCL1 (-1.6)

mmu-miR-
500-3p

2.2 OLFM4 (-3.5)

mmu-miR-
122-5p

2.0 DUSP4 (-2.5);UBAP2 (-1.9); NEGR1 (-1.5)

mmu-miR-
143-3p

-2.0 FUT4 (1.2); COX18 (1.2); CHST10 (1.2); BCL2 (1.2); PPP2R3A (1.3);
GABARAPL1 (1.3); DCLK1 (1.3); HTR7 (1.3);LBH (1.3); GXYLT1 (1.3);
ADD3 (1.5);ZNF275 (1.5);MAP1B (1.6); DCX (1.6); PRKCE (1.8);
RNF165 (1.8); TPM3 (1.9)

mmu-miR-
496-3p

-2.1 CSRNP3 (1.2); CNOT2 (1.2);AEBP2 (1.2); INSIG1 (1.3); PRKCE (1.8);
NT5C2 (6.3)

mmu-miR-
431-5p

-2.1 PTPRF (1.1); AKAP12 (1.3); ZAK (1.6); THUMPD1 (1.6); CELF2 (1.8)

mmu-miR-
671-5p

-2.6 MPEG1 (1.0); ANKS1A (1.2); RBMS3 (1.2);NFYA (1.3);MYOM3 (1.4);
KIAA0430 (1.5); ATXN7L1 (1.6); SEPP1 (1.7); SAMD12 (1.8); SPTBN1
(2.9)

mmu-miR-
216b-5p

-2.6 E2F4 (1.1); NRK (1.2); MCM4 (1.2);NFYA (1.3); FBXO8 (1.3); CHMP1B
(1.5); GLTSCR1L (1.5); SDHC (1.6); SAR1B (1.6); CELF2 (1.8); TPM3
(1.9); SPTBN1 (2.9); GFRA1 (3.8)

mmu-miR-
223-3p

-2.7 NUCKS1 (1.1); EBNA1BP2 (1.2); PARP1 (1.2); CNOT2 (1.2); ATG7
(1.2);AEBP2 (1.2); SYNCRIP (1.3); DDIT4 (1.3); FBXO8 (1.3); NUP210
(1.4); ARFIP1 (1.6); ATXN7L1 (1.6);WDR77 (1.6); PRR14L (1.8);
PRKCE (1.8); ERC1 (4.8)

mmu-miR-
199a-5p

-3.2 TOX3 (1.3);NFYA (1.3);MCFD2 (1.3); CCNJ (1.3); NUP210 (1.4);
ARHGEF12 (1.5); ADD3 (1.5); RALGAPA1 (1.5); ATXN7L1 (1.6); CELF2
(1.8)

mmu-miR-
146a-5p

-3.2 CAMSAP1 (1.1);NUCKS1 (1.1); CCNA2 (1.2); LFNG (1.2); ATG7 (1.2);
CCNJ (1.3); NAIF1 (1.3); EDNRB (1.5); NLGN1 (1.6); CELF2 (1.8);
PRKCE (1.8);NOTCH2 (2.0); SBSPON (2.0);STAT1 (2.7)

mmu-miR-
142-3p

-3.3 NUCKS1 (1.1); ANKS1A (1.2); HGS (1.2);MORF4L2 (1.2); ZCCHC24
(1.3); CCNJ (1.3); ARHGEF12 (1.5); MYLK (1.7); SAMD12 (1.8); ERC1
(4.8)

mmu-miR-
125a-3p

-3.4 MAPK1IP1L (1.2);AEBP2 (1.2); SWAP70 (1.4); FYCO1 (1.8); RAB22A
(2.2)

(Continued)
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Several of the highly differential miRNAs were previously shown to be key regulators of various
developmental processes. For example, miR-200a, miR-429 and miR-141 were shown to play
important roles in neurogenesis, epithelial-to-mesenchymal transition and Notch signaling
[73, 75–84], miR-214 was found to be overexpressed in fetal sclera versus adult sclera and
shown to play important role in brain and retina development and function [36, 85–89], miR-
18b, miR-21, miR-101a, miR-200a and miR-429 were found to be involved in stem cell func-
tion and differentiation [90–100], miR-1306 negatively regulated Alzheimer’s disease gene

Table 2. (Continued)

miRNAname miRNA fold
change

Target mRNA name and fold change

mmu-miR-
145-5p

-10.5 CCNA2 (1.2); SMC1A (1.2); DENND4B (1.2); KIAA0930 (1.2); KATNBL1
(1.2); PPP2R3A (1.3); GABARAPL1 (1.3);HABP4 (1.3); PTGR2 (1.3);
GCLM (1.3); AKAP12 (1.3); GXYLT1 (1.3); SWAP70 (1.4); VSTM4 (1.4);
ARHGEF12 (1.5); ADD3 (1.5); PHACTR2 (1.6); DOK6 (1.6); ATXN7L1
(1.6); QSER1 (1.8);COMMD5 (1.9); TPM3 (1.9); ANKRD28 (1.9);
ANGPT2 (2.7); GFRA1 (3.8)

Transcription factors are shown in bold; genes involved in synapse formation or function are underlined.

doi:10.1371/journal.pone.0162541.t002

Fig 4. Gene ontology categories affected inmyopic retina.Graph shows top 18 biological processeswhich
were modified in the myopic retina.

doi:10.1371/journal.pone.0162541.g004
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ADAM10 [101]. MicroRNA miR-145 regulates stem cell, smoothmuscle cell, corneal epithe-
lium and mesenchymal stem cell differentiation [102–107], as well as intestine and neural crest
development [108, 109]. MiR-145 was also shown to regulate L-DOPA decarboxylase [110],
which is one of the key enzymes synthesizing dopamine in the dopaminergic amacrine cells in
the retina [111]. Thus, differential expression of these microRNAs suggests that form-depriva-
tion myopia is associated with changes in neurogenesis, as well as in neuronal and synaptic
functions.
Analysis of the mRNAs targeted by the differentially expressedmiRNAs revealed that puta-

tive mRNA targets could be found for 21 out of 53 differential miRNAs (i.e., for 40% of all dif-
ferential miRNAs), suggesting that the currently available list of mRNAs differentially
expressed in the myopic retina is not complete and many retinal mRNAs underlyingmyopia
are still unknown.However, the 21 differential miRNAs and their associated targets provided a
sufficient foundation for the analysis of main biological processes and pathways associated
with myopia development. Gene ontology analysis revealed that such biological processes as
generation of new neurons, migration of neurons, growth of axons, outgrowth of neurites,

Fig 5. Overlap betweenmiRNA-regulated signalingpathways affected inmyopic retina.Diagram depicts
miRNA contributions to the 9 miRNA-mRNA signaling cascades associatedwith form-deprivationmyopia in mice.

doi:10.1371/journal.pone.0162541.g005
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cellular growth and proliferation, nervous and visual systems development, which were sug-
gested to be affected based on the analysis of the most differential miRNAs, were significantly
enhanced in myopic retina. Interestingly, this finding is consistent with the recent report that
form-deprivationmyopia in primates is associated with increased proliferation of retinal pro-
genitor cells and retinal growth [14], thus, providing an outline of the putative molecular net-
work underlying retinal growth associated with myopia development. Several target mRNAs
were also linked to synaptic structure and function, which is consistent with the observations
in animal models that synaptic signaling at the level of amacrine cells is involved in myopia
development [112–123]. Remarkably, analysis of the miRNA-mRNA networks formed by the
differential miRNAs and their targets revealed that myopia development is, in fact, regulated
by a small number of highly integrated signaling pathways. MicroRNAs played a role of master
regulators, which targeted large number of mRNAs often involved in the same biological pro-
cess. Furthermore, miRNAs often had common transcription factors among the targets, which
provides an additional level of integration. Interestingly, two miRNAs miR-145 and miR-200b
seemed to play a role of the integrative core for all pathways.
Taken together, our findings suggest that the miRNAs differentially expressed in the retina

of myopic eyes play important regulatory roles in the development of myopia by regulating a
highly integrated genetic network.We analyzed expression of 56% of mouse miRNAs depos-
ited in the miRBase database and identified 53 miRNAs differentially expressed in the retina
during development of form-deprivationmyopia. We also identified 135 target genes for 21 of
these miRNAs and reconstructed putative miRNA-mRNA pathways underlying key biological
processes associated with development of form-deprivationmyopia. These results expand our
understanding of the molecularmechanisms of myopia and demonstrate that the development
of myopia is associated with large-scale changes in expression of both coding and none-coding
RNAs. The power of our analysis was limited by the cellular complexity of the retina as well as
some differences in cell composition of the retina in different species. Although it was shown
that processing of defocus and refractive eye development are regulated by a relatively small
subset of retinal cells (i.e., amacrine cells) [112–123], detecting small changes in gene expres-
sion might be challenging in heterogeneous tissues such as retina, resulting in an underestimate
of miRNA influences. It is also a challenge to place differential miRNAs and their correspond-
ing target mRNAs in the proper cellular context when analyzing gene expression in complex
tissues. Future studies of the signaling pathways underlyingmyopia development at the single-
cell level should provide more accurate information. Our data also suggest that more compre-
hensive genome-wide approaches should be applied to reconstruct signaling pathways underly-
ing myopia in their entirety. This study lays a strong foundation for such future studies and
provides a framework for the development of potential novel microRNA-based therapies for
myopia.

Supporting Information
S1 Fig. Hierarchical cluster analysis of 245 miRNAs differentially expressed in the retina
versus sclera.Logarithmic values (base 2) of Agilent total gene signal for differentially
expressedmiRNAs (cutoff: FC> 2, FDR-adjusted p-value< 0.05) were quantile normalized,
shifted to mean zero, scaled to standard deviation of 1.0 and subjected to hierarchical clustering
using Euclidean dissimilarity and average linkage. The color scale indicates transcript abun-
dance: red identifies an increase in relative miRNA abundance; blue identifies a decrease in rel-
ative miRNA abundance. Columns show individual samples, whereas rows show individual
miRNAs.
(TIF)
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S2 Fig. MiRNA-mRNA signaling pathway #1. (A) Diagram showing interactions between
miRNAs differentially expressed in myopic retina and their target mRNAs. Arrows show rela-
tionships between different miRNAs and mRNAs. (B) Overlap between signaling pathway #1
and top gene ontology categories. Red identifies genes/categories which are up-regulated in
myopic retina, whereas green identifies genes/categories which are down-regulated in myopic
retina.
(TIF)

S3 Fig. MiRNA-mRNA signaling pathway #2. (A) Diagram showing interactions between
miRNAs differentially expressed in myopic retina and their target mRNAs. Arrows show rela-
tionships between different miRNAs and mRNAs. (B) Overlap between signaling pathway #2
and top gene ontology categories. Red identifies genes/categories which are up-regulated in
myopic retina, whereas green identifies genes/categories which are down-regulated in myopic
retina.
(TIF)

S4 Fig. MiRNA-mRNA signaling pathway #3. (A) Diagram showing interactions between
miRNAs differentially expressed in myopic retina and their target mRNAs. Arrows show rela-
tionships between different miRNAs and mRNAs. (B) Overlap between signaling pathway #3
and top gene ontology categories. Red identifies genes/categories which are up-regulated in
myopic retina, whereas green identifies genes/categories which are down-regulated in myopic
retina.
(TIF)

S5 Fig. MiRNA-mRNA signaling pathway #4. (A) Diagram showing interactions between
miRNAs differentially expressed in myopic retina and their target mRNAs. Arrows show rela-
tionships between different miRNAs and mRNAs. (B) Overlap between signaling pathway #4
and top gene ontology categories. Red identifies genes/categories which are up-regulated in
myopic retina, whereas green identifies genes/categories which are down-regulated in myopic
retina.
(TIF)

S6 Fig. MiRNA-mRNA signaling pathway #5. (A) Diagram showing interactions between
miRNAs differentially expressed in myopic retina and their target mRNAs. Arrows show rela-
tionships between different miRNAs and mRNAs. (B) Overlap between signaling pathway #5
and top gene ontology categories. Red identifies genes/categories which are up-regulated in
myopic retina, whereas green identifies genes/categories which are down-regulated in myopic
retina.
(TIF)

S7 Fig. MiRNA-mRNA signaling pathway #6. (A) Diagram showing interactions between
miRNAs differentially expressed in myopic retina and their target mRNAs. Arrows show rela-
tionships between different miRNAs and mRNAs. (B) Overlap between signaling pathway #6
and top gene ontology categories. Red identifies genes/categories which are up-regulated in
myopic retina, whereas green identifies genes/categories which are down-regulated in myopic
retina.
(TIF)

S8 Fig. MiRNA-mRNA signaling pathway #7. (A) Diagram showing interactions between
miRNAs differentially expressed in myopic retina and their target mRNAs. Arrows show rela-
tionships between different miRNAs and mRNAs. (B) Overlap between signaling pathway #7
and top gene ontology categories. Red identifies genes/categories which are up-regulated in
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myopic retina, whereas green identifies genes/categories which are down-regulated in myopic
retina.
(TIF)

S9 Fig. MiRNA-mRNA signaling pathway #8. (A) Diagram showing interactions between
miRNAs differentially expressed in myopic retina and their target mRNAs. Arrows show rela-
tionships between different miRNAs and mRNAs. (B) Overlap between signaling pathway #8
and top gene ontology categories. Red identifies genes/categories which are up-regulated in
myopic retina, whereas green identifies genes/categories which are down-regulated in myopic
retina.
(TIF)

S10 Fig. MiRNA-mRNA signaling pathway #9. (A) Diagram showing interactions between
miRNAs differentially expressed in myopic retina and their target mRNAs. Arrows show rela-
tionships between different miRNAs and mRNAs. (B) Overlap between signaling pathway #9
and top gene ontology categories. Red identifies genes/categories which are up-regulated in
myopic retina, whereas green identifies genes/categories which are down-regulated in myopic
retina.
(TIF)

S1 Table. MiRNAs differentially expressed in myopic retina versus control retina and their
expression between retina and sclera.
(XLSX)

S2 Table. Messenger RNAs differentially expressed in myopic retina.
(XLSX)

S3 Table. MiRNAs without target mRNAs differentially expressed in myopic retina versus
control retina.
(DOCX)

S4 Table. Top gene ontology categories associatedwith 21 miRNAs differentially expressed
in the mouse form-deprivationmyopia.
(XLSX)
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