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ABSTRACT

Development of Data Analytics and Modeling Tools for Civil

Infrastructure Condition Monitoring Applications

Jinwoo Jang

This dissertation focuses on the development of data analytics approaches to two dis-

tinct important condition monitoring applications in civil infrastructure: structural

health monitoring and road surface monitoring. In the first part, measured vibra-

tion responses of a major long-span bridge are used to identify its modal properties.

Variations in natural frequencies over a daily cycle have been observed with mea-

sured data, which are probably due to environmental effects such as temperature and

traffic. With a focus on understanding the relationships between natural frequencies

and temperatures, a controlled simulation-based study is conducted with the use of

a full-scale finite element (FE) model and four regression models. In addition to the

temperature effect study, the identified modal properties and the FE model are used

to explore both deterministic and probabilistic model updating approaches. In the

deterministic approach (sensitivity-based model updating), the regularization tech-

nique is applied to deal with a trade-off between natural frequency and mode shape

agreements. Specific nonlinear constraints on mode shape agreements are suggested

here. Their capabilities to adjust mode shape agreements are validated with the

FE model. To the best of the author’s knowledge, the sensitivity-based clustering

technique, which enables one to determine efficient updating parameters based on a

sensitivity analysis, has not previously been applied to any civil structure. Therefore,

this technique is adapted and applied to a full-scale bridge model for the first time



to highlight its capability and robustness to select physically meaningful updating

parameters based on the sensitivity of natural frequencies with respect to both mass

and stiffness-related physical parameters. Efficient and physically meaningful updat-

ing parameters are determined by the sensitivity-based clustering technique, resulting

in an updated model that has a better agreement with measured data sets. When

it comes to the probabilistic approach, the application of Bayesian model updating

to large-scale civil structures based on real data is very rare and challenging due to

the high level of uncertainties associated with the complexity of a large-scale model

and variations in natural frequencies and mode shapes identified from real measured

data. In this dissertation, the full-scale FE model is updated via the Bayesian model

updating framework in an effort to explore the applicability of Bayesian model updat-

ing to a more complex and realistic problem. Uncertainties of updating parameters,

uncertainty reductions due to information provided by data sets, and uncertainty

propagations to modal properties of the FE model are estimated based on generated

posterior samples.

In the second part of this dissertation, a new innovative framework is developed

to collect pavement distress data via multiple vehicles. Vehicle vibration responses

are used to detect isolated pavement distress and rough road surfaces. GPS posi-

tioning data are used to localize identified road conditions. A real-time local data

logging algorithm is developed to increase the efficiency of data logging in each vehicle

client. Supervised machine learning algorithms are implemented to classify measured

dynamic responses into three categories. Since data are collected from multiple vehi-

cles, the trajectory clustering algorithm is introduced to integrate various trajectories

to provide a compact format of information about road surface conditions. The sug-

gested framework is tested and evaluated in real road networks.
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Chapter 1

Scope

In the last few decades, the advances in sensing and wireless technologies have enabled

one to measure a wide variety of data from infrastructure systems under operational

conditions. In-depth data analytics on a variety of measurements can lead to the

extraction of information about the current conditions of infrastructure, which can

be a practically valuable resource for the maintenance of infrastructure. Although

a great deal of attention has been paid to efforts to develop robust algorithms for

the assessment of infrastructure conditions, most of them have some limitations and

therefore more study is needed to further develop an existing methods or to introduce

a new innovative framework.

This dissertation explores data analytics approaches to vibration response mea-

surements from a bridge and road networks. Vibration responses measured from a

major long-span bridge are used to study temperature effects on natural frequencies

and to investigate both deterministic and probabilistic model updating approaches.

With the use of vibration responses of multiple vehicles over road conditions and GPS

positioning data, a new framework is developed to collect road surface condition data

for the pavement distress management system.
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1.1 Dissertation Outline

1.1.1 Structural Health Monitoring

Chapters 2, 3, 4, and 5 address the topic of structural health monitoring (SHM),

which is an emerging technology that diagnoses the state of health of civil structures

by leveraging homogeneous or heterogeneous measurements of structures. The pri-

mary goal of SHM is to detect, quantify, and/or localize structural damage which can

be caused by extreme loading conditions or the aging of structures. Many researchers

have made and are making a tremendous effort in developing a robust data analytics

approach to extract valuable information for structural management systems. One

of the popular approaches in SHM is a vibration-based damage detection technique,

which utilizes dynamic responses of structures to detect structural damage. The main

idea of this technique is that structural damage alters the global stiffness of structures

and thus changes the characteristic of the dynamic behavior of structures. When pro-

cessing vibration measurements, a major focus is, in general, placed on the extraction

of modal parameters such as natural frequencies, damping ratios, and mode shapes

since they characterize the dynamics of structures. Moreover, modal properties are

one of the widely-used damage sensitive features in vibration-based damage detection

techniques. It has been widely acknowledged that changes in natural frequencies pro-

vide useful information to detect structural damage and changes in mode shapes bear

useful information to localize structural damage (Balmès, Basseville, Mevel, & Nasser,

2009). In general, mathematical and/or computational models are incorporated with

measurements of structures to describe the dynamic behavior of a structure. These

models are also used to study the correlations between structural damage and struc-

tural dynamic behavior. They are also used to predict how structure will behave

2



under extreme loading conditions. The accuracy of models plays a significant role in

structural condition assessment and predictions of the dynamic behavior of structures.

In the last few decades, the model updating technique has gained a great deal

of attention in the SHM community due to its great potential to localize and quan-

tify structural damage. Model updating based on vibration response measurements

is a technique that reduces inherent modeling errors in a finite element (FE) model

that arise from simplifications, idealized connections, and uncertainties with regard

to material properties. An updated FE model, which has fewer discrepancies with

measurements, provides a more robust prediction of a structural behavior under op-

erating and hazardous conditions. In this dissertation, measured vibration responses

of a major long-span bridge and a full-scale FE model of the bridge are used to ex-

plore various model updating techniques and to study temperature effects on natural

frequencies.

Chapter 2 describes an ambient dynamic test conducted on a large suspension

bridge and the development of a full-scale FE model. In general, an ambient dynamic

test is the most feasible and therefore popular in many civil applications since a

specific input excitation device, which might induce damage during a test and would

lead to an added cost, is not necessary. In this chapter, operational modal analysis is

carried out based on real ambient vibration measurements to identify modal properties

of the bridge considered here. In addition to identified modal properties, a full-scale

FE model of the bridge is developed. The FE model is further modified via both

deterministic (Chapter 3) and probabilistic (Chapter 4) model updating approaches to

minimize discrepancies between the identified modal properties and those from the FE

model. An updated FE model, whose physical parameters are tuned to minimize the

discrepancies, is used to study temperature effects on natural frequencies in Chapter 5

since the variations in natural frequencies were observed with real measurements,
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which are mostly due to the environmental effects.

In Chapter 3, sensitivity-based model updating, which belongs to a deterministic

approach, is demonstrated with four model updating exercises. This chapter focuses

on the trade-off between natural frequency and mode shape agreements and param-

eterization of a full-scale FE model. A method that adjusts the level of mode shape

agreements is suggested, which imposes nonlinear constraints during an optimization

process. The innovative sensitivity-based clustering method for parameterization in a

model updating problem, which has not been used in any civil application, is adopted

and applied to a full-scale model to validate its robustness to determine efficient

and physically meaningful updating parameters. Updating parameters determined

by this method include physical parameters having similar effects on targeted nat-

ural frequencies. This chapter provides the interpretation of the physical meanings

of clustered parameters, which can be a practically-important finding for structural

engineers.

In Chapter 4, a full-scale FE model is updated using the Bayesian model updating

framework, one of the popular probabilistic model updating approaches. Bayesian

model updating of a full-scale FE model is challenging due to its large number of

degrees-of-freedom and physical parameters. Therefore, there are limited studies

that address Bayesian model updating of a full-scale FE model. However, in real-life

applications, a full-scale model is widely used in structural management systems. In

this chapter, an effort has been made to extend the applicability of Bayesian model

updating to a more complex and realistic updating problem. This chapter provides

the theoretical background of Bayesian model updating. In order to circumvent the

calculation of multi-dimensional integrations, which is involved during the Bayesian

model updating procedures, the hybrid Monte Carlo sampling method is used. This

sampling method has a robust capability to deal with the high dimensionality. Uncer-
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tainties of updating parameters and uncertainty propagations to natural frequencies

and mode shapes are estimated based on posterior samples.

Chapter 5 investigates temperature effects on natural frequencies. The variations

of the identified modal properties in Chapter 2, are observed, which have motivated

the study of temperature effects on natural frequencies. An updated FE model, whose

physical parameters are tuned using the sensitivity-based model updating method

(Chapter 3) and therefore having a better consistency with the measurements, is

used to conduct a controlled simulation-based study to investigate the effects of spa-

tial temperature variations on natural frequencies. An understanding of temperature

effects on natural frequencies is fundamentally important in vibration-based damage

detection techniques when modal properties are used as damage sensitive features.

Civil structures are subjected to various operational and environmental conditions.

Modal properties of structures also can be changed by operational and environmental

conditions in addition to structural damage. An understanding of how the modal

properties of structures are related to the environmental and operational conditions

can help improve the reliability of the vibration-based damage detection techniques by

discriminating normal changes of modal properties due to environmental conditions

from changes due to structural damage. In this chapter, a method that generates spa-

tial variations of temperatures over a bridge is developed. Thermal prestress modeling

is used to simulate thermal effects on natural frequencies. Based on simulated data

sets (frequencies versus temperatures), the relationships between natural frequencies

and temperatures are modeled using various regression models.
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1.1.2 Road Surface Monitoring

Chapters 6 and 7 introduce a new framework for pavement distress data collection. In

road surface condition monitoring, the current state-of-the-art technology uses data

collection vehicles that are equipped with various sensors to automatically collect

pavement distress data. These vehicles are able to collect network-level pavement data

in an operating condition and at highway speed. Laser, acoustic, infrared sensors are

used to obtain profiles of road surfaces. Area scanning, line scanning, and 3-D laser

imaging are used for pavement distress recording. Due to the high cost of the current

automated data collection practice, pavement distress data are collected periodically.

However, there is a practical need to collect data more frequently, especially for

street defects such as potholes and sunken manholes, which in general develop quickly

compared to the other pavement distresses such as cracking and rutting. A framework

of data acquisition and system integration introduced in Chapter 6 and 7 aims to

provide up-to-date information for pavement distress management. The proposed

system is of practical importance since it provides continuous information about road

conditions, which can be valuable for pavement management systems and/or public

safety.

Chapter 6 explains the architecture of the suggested system and embedded data

processing algorithms (data logging and street defect detection algorithms). In the

suggested system, vibration responses of vehicles and positioning data are collected

from mobile data collection kits mounted on multiple vehicles. In each mobile data

collection kit, a triaxial accelerometer and global positioning system (GPS) sensor

collect data that can be used for the detection of isolated pavement distresses and

rough road surfaces. A local data logging algorithm is embedded in each vehicle client

to increase the efficiency of a local data logging process and to perform a preliminary
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evaluation based on predetermined thresholds. At a back-end server, the street defect

detection algorithm, which relies on the supervised machine learning technique, is

implemented to classify collected data into three different categories of road surface

conditions.

Chapter 7 explains the trajectory clustering technique, which is a data mining

approach to extract compacted information from massive trajectory data. This tech-

nique is practically significant because there is a need to process tremendous trajectory

data which recently have become available due to the advances in sensing technology.

Trajectory clustering aims to group trajectory data based on their locations and mov-

ing directions using a specific inter-vector distance calculation. This chapter starts

with a brief overview of trajectory clustering. This is followed by detailed explana-

tions about how distances between trajectories are calculated and how representative

trajectories are estimated based on trajectories belonging to the same cluster. Then,

trajectory clustering is applied to the classification results demonstrated in Chapter 7,

which are indeed trajectory data since each collected data set consists of a classifica-

tion result and a sequence of GPS positioning data points. Trajectory clustering is

able to integrate the classification results from multiple vehicles and to draw compact

trajectory representations, which can be readily visualized and interpreted.
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Chapter 2

Operational Modal Analysis and a

Full-Scale FE Model of a Large

Suspension Bridge

When identifying model properties of structures, ambient dynamic testing is gener-

ally the most feasible and therefore popular test method since there is no need for

a specific excitation device which might induce damage and would lead to added

cost. Operational modal analysis (OMA), which is also known as an ambient modal

identification, is the identification of modal properties of structures under operational

conditions, where input forces are considered to be unknown. Modal properties such

as natural frequencies, damping ratios, and mode shapes are extracted from ambient

vibration responses in the time or frequency domain. Various OMA approaches have

been developed and have become available. Reynders (2012) has extensively reviewed

various OMA approaches and compared them with each other. This chapter starts

with an overview of the Enhanced Frequency Domain Decomposition method, which

is used in this study to identify modal properties of a large suspension bridge. This
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is followed by a description of an ambient dynamic test conducted on a bridge and

modal properties identified from ambient vibration measurements. Then, the devel-

opment of an initial FE model is demonstrated. This FE model is used to study the

model updating techniques in Chapters 3 and 4 and temperature effects on natural

frequencies in Chapter 5.

2.1 Overview of the Enhanced Frequency Domain

Decomposition Method

The Enhanced Frequency Domain Decomposition (EFDD) method (Brincker, Ven-

tura, & Andersen, 2001) is one of the popular Operational Modal Analysis (OMA)

techniques. It is used to identify the modal properties of structures vibrating due

to ambient forces such as traffic and wind. The main assumption of this methods is

that input forces are broadband random and structures are lightly damped. It is also

assumed that structures behave in an elastic range since the environmental forces are

not big enough to push structures into a plastic range. In order to more accurately

identify modal properties, monitoring is usually conducted for a long period of time

to have a large enough of data.

In this method, power spectral density (PSD) matrices Gyy(ω) are first computed

at all discrete frequency domains. Their diagonal elements are power spectral den-

sities. Their off-diagonals values are cross spectral densities (CSD). The size of the

PSD matrix is the same as the measured degrees-of-freedom (DOFs). Once PSD

matrices are estimated, the Singular Value Decomposition (SVD) method is applied

to the PSD matrices to orthogonalize dynamic modes. The PSD matrices can be
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expressed after the SVD as follows:

Gyy(ω) = ΦΣΦH , (2.1)

where the superscript H denotes a Hermitian transformation; Σ ∈ Rnm×nm is a sin-

gular value matrix; and Φ ∈ Cnm×nm is a singular vector unitary matrix. nm is the

number of measured DOFs. The singular value matrix Σ and the singular vector

matrix Φ are be expressed as:

Σ = diag(s1, s2, s3, . . . , snm)

Φ = [φ1, φ2, φ3, . . . , φnm ]

(2.2)

In the EFDD technique, a single-degree-of-freedom (SDOF) CSD function, which

corresponds to a single dynamic mode, is used to identify a natural frequency, a

damping ratio, and a mode shape. A SDOF CSD function is estimated based on

the Modal Assurance Criterion (MAC) values (Allemang & Brown, 1982) between

a singular vector corresponding to a peak value and singular vectors at all discrete

frequency points. The MAC value between φi and φj is defined as follows:

MAC(φi, φj) =
|φHi φj|2

φHi φi φ
H
j φj

. (2.3)

Then, the MAC rejection level is used to determine whether singular values belong

to the same dynamic mode. If the MAC values at some discrete frequency points are

bigger than the MAC rejection level, the singular values and vectors are assigned to

the same SDOF CSD function, which is also called a bell-shaped SDOF function. By

taking the inverse Fourier transformation of the SDOF CSD functions, SDOF auto-

correlation functions are obtained and used for the identification of model properties.

Natural frequencies are calculated based on the linear fitting of the zero crossing num-
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ber versus time. Damping ratios are obtained from the logarithmic decrement. Mode

shapes are the weighted average of the singular vectors belonging to the same SDOF

CSD function. The MAC values associated with singular vectors or corresponding

singular values (power density) can be weighting factors in the estimation of mode

shapes. Complex-numbered singular vectors are, in general, required to be rotated in

order to be situated along the real axis of a polar plot. The rotational angle can be

a value such that minimizes angular distances between the real axis and the singular

vector.

2.2 Ambient Dynamic Test on a Large Suspension

Bridge

An ambient dynamic test was conducted on a large suspension bridge. It was a

double-deck steel structure with two towers, three spans, and four suspension cables.

Its total length is 2089 m. The main span is 451 m long, and each suspension cable

is 982 m long. Tri-axial accelerometers were deployed at nine different locations,

recording data at a sampling frequency of 200 Hz. The total measured DOFs were

27. During the test, the bridge was in an operational condition and vibrated due to

the environmental forces. One sensor was placed at the top of the tower. Another

one was located at one of the side spans of the bridge. The other accelerometers

were placed on the main span. During a day, four hour-long data were selected to be

recorded per day. Data recording started at various representative timestamps during

a day, which are morning rush hours (8AM), evening rush hours (5PM), midday time

(12PM), and night time (3AM). These four time zones are selected because they can

be representative for different ambient excitation conditions such as temperature and
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amount of traffic. In this study, the four sets of measurements which were recorded on

the same day, but at four different time zones, are used. PSD matrices are calculated

using Welch’s method with a Hamming window envelope and 66.7% overlapping.

Then, PSD matrices are decomposed into singular values and vectors using the SVD

method. The first singular values corresponding to 3AM, 8AM, 12PM, and 5PM data

sets are shown in Figure 2.1.

The EFDD method (Brincker et al., 2001) was used to identify the modal prop-

erties of the structure under consideration here based on the first singular values and

vectors of the PSD matrices. More interest was placed on predominant global vi-

bration modes whose natural frequencies were below 1 Hz. The natural frequencies

and mode shapes corresponding to the first seven dynamic modes were defined as

targets in model updating exercises considered in Chapters 3 and 4. The identified

natural frequencies of these modes from the four different time zones are summarized

in Table 2.1. Variations in the identified natural frequencies were observed during a

single day, which were more dominant for the first few lower modes. The observed

frequency variations can be due to operational and environmental conditions such as

temperature and amount of traffic. Temperature effects on natural frequencies are

Table 2.1: Natural frequencies and damping ratios identified from the four data

sets.

Mode Natural Frequency [Hz]

3AM 8AM 12PM 5PM Mean

H1 First lateral 0.2060 0.1877 0.1969 0.1847 0.1938
V1 First vertical 0.2361 0.2232 0.2267 0.2214 0.2269
V2 Second vertical 0.3065 0.3000 0.3054 0.2993 0.3028
T1 First torsional 0.3740 0.3720 0.3731 0.3740 0.3733
SV1 First side-span vertical 0.3350 0.3390 0.3422 0.3335 0.3374
H2 Second lateral 0.4531 0.4501 0.4502 0.4475 0.4502
V3 Third vertical 0.5075 0.4950 0.4969 0.4990 0.4996
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Figure 2.1: The first singular values of the PSD matrices for four data sets: (a)

3AM data set; (b) 8AM data set; (c) 12PM data sets; and (d) 5PM data sets.
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demonstrated in Chapter 5.

The 3D representations of the identified mode shapes, which are the average of

the four sets of mode shapes from the different time zones, are plotted in Figure 2.2,

in which the red dots denote the locations of accelerometers. The magnitudes of the

mode shapes at the sensor locations were identified based on the real measured data.

The other magnitudes (the blue lines) were interpolated. The sensors on the symmet-

rical locations along the longitudinal direction were used to determine whether the

identified mode shapes were symmetric or not. The sensors placed on the both ends

of the deck along the same longitudinal location are used to see whether the mode

shapes of the deck had in-phase or out-of-phase motions. Based on the symmetricity

and in-phase or out-of-phase motions of the mode shapes, the modal displacements

at the sensor locations were projected to the other side of the bridge along the lon-

gitudinal and traversal directions. Then, the projected modal displacements, modal

displacements at the sensor locations, and the boundary conditions were used for the

interpolation of the identified mode shapes. In Figure 2.3, identified mode shapes

were presented in the polar plots. The identified mode shapes were mainly along the

real axises, which means there were no significant complex mode shapes. Figure 2.4

shows the AutoMAC matrix of the identified mode shapes to present the spatial

independence.

2.3 Initial FE Model of a Bridge

In addition to the identified modal properties, an FE model is developed to study

temperature effects on natural frequencies and the model updating techniques. Cre-

ating precise FE models of bridges is not in general an easy task. In order to have

a very precise model, reasonable assumptions and good engineering judgment are
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Figure 2.2: Identified mode shapes from the measured data.
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Figure 2.3: Polar plots for mode shapes.
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necessary. One must decide which element types should be used, how many degrees-

of-freedoms should be considered for each element, and whether the size of meshes

is dense enough or not. Since there are many bolted and welded connections be-

tween structural components, it is essential to decide whether pin-connections or

rigid connections are suitable for various connections in the FE model. A great deal

of information about the details of bridges such as the dimension of cross sections, the

geometry of structures, and the material property of structural components should

be provided to develop a precise FE model.

The initial FE model of the suspension bridge under consideration here was de-

veloped using ABAQUS (ABAQUS/CAE user’s manual : version 6.4 , 2003), which

is shown in Figure 2.5. Based on only partial design drawings of the bridge, the

geometry of the FE model was carefully prescribed. Since it was not modified during

updating, very careful attention was paid to its original definition in the FE model.

The information about the dimension of the cross sections was somewhat limited.

When information was lacking, reasonable guesses were made based on photographs.

For the structural components whose information was available, the cross-sectional

area and the bending moment of inertia of the steel sections were calculated based on

the drawings. For the physical parameters of the structural components, the material

Figure 2.5: Initial FE model of a large suspension bridge.
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properties of A36 steel was used. The mass density (ρ) was 7800 kg/m3. The Young’s

modulus (E) was 200 GPa. The Poisson’s ratio was 0.26.

For the element types in the FE model, the suspension cables and the suspenders

were modeled with truss elements with no capability of carrying compression forces.

Beam elements with six degrees-of-freedoms (DOFs) were used for chords, floor

beams, columns, trusses, and lateral bracings. In the FE model, there were 19632

beam elements, 1464 truss elements, and 18614 nodes. Nonstructural components

such as asphalt layers, pedestrian walks, and subway rails were not included. The

steel sections were connected by bolted and welded connections so that it was nec-

essary to decide whether they were pin-connected or rigidly connected in the model.

The suspenders were pin-connected to the bottom chords of the deck as mentioned

in the design drawings. Pinned-connections between the lateral bracing elements and

the chords were used. The columns and the floor beams were rigidly connected to

the chords.

The influence of the soil was taken into account in the FE model. Translational and

rotational linear springs in the three directions (vertical, transverse, and longitudinal)

were located at the bottom of the tower pylons and at the end of the deck. Only

translational springs in the longitudinal direction were applied to the end of the

suspension cables. Hinges were also included in the FE model to release some DOFs

due to thermal movement (Caltrans, 2012). A typical hinge model (Priestley, Seible,

& Calvi, 1996) was used to provide freedom to rotate about the transversal and

vertical direction. The longitudinal forces in the hinge elements were released in order

to give freedom to move when there was an out-of-phase movement in the expansion

joints. After releasing the DOFs, rotational springs were added at the hinge location.

The initial coefficients for the soil springs were 7.30 GN/m for translational springs

and 0.68 GN ·m/rad for the rotational springs. By trying several different numbers for
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the spring coefficients, the initial values were chosen such that the natural frequencies

of the FE model were reasonably close to the identified ones.

Natural frequencies calculated from the initial FE model are shown in Table 2.2.

Initially, the natural frequencies of the initial FE model were mostly higher than the

identified natural frequencies. This could be due to the omission of non-structural

components, the idealization of connections, and/or incorrect values of the initial

physical parameters. Furthermore, the information about the dimensions of cross

sections was somewhat limited, thus producing more modeling errors in the initial

FE model. In practice, it is desirable to develop an initial FE model as precisely as

possible to achieve the best model updating result because such a model can provide

a better starting point for a given updating problem. The MAC value is used here

to show the correlation between the identified mode shapes and those from the FE

model. The MAC value ranges from 0 to 1, and when two mode shapes are identical,

the MAC value becomes unity. The MAC values between the identified and computed

mode shapes are shown in Table 2.2.

Table 2.2: Natural frequencies computed from the initial FE model and the MAC

values between the identified and computed mode shapes.

Mode Natural Frequency MAC value

Hz

Initial FE model 3AM 8AM 12PM 5PM

H1 First lateral 0.2340 0.9826 0.9821 0.9818 0.9755
V1 First vertical 0.2940 0.9641 0.9665 0.9554 0.9679
V2 Second vertical 0.3520 0.9435 0.9553 0.9509 0.9428
T1 First torsional 0.3840 0.7429 0.8082 0.7720 0.7824

SV1 First side-span vertical 0.4520 0.8448 0.8234 0.8674 0.8186
H2 Second lateral 0.5390 0.8502 0.8343 0.8467 0.8562
V3 Third vertical 0.5980 0.8683 0.8561 0.8584 0.8622
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Chapter 3

Sensitivity-based Model Updating

FE models are widely used in structure management systems to simulate the dynamic

behavior of structures not only under day-to-day operating conditions, but also under

extreme and hazardous loading conditions. However, the dynamic characteristic of

an FE model might differ from those identified from measurements of a structure. An

FE model whose dynamic characteristic is different from a real structure might fail

to produce a reliable prediction. As can be seen in Chapter 2, the modal properties

of an initial FE model are quite different from the identified natural frequencies since

the FE model is developed based on only partial design drawings. The primary focus

of model updating is to identify physical properties of an FE model which minimize

discrepancies between the measurements of a real structure and the corresponding

outputs of an FE model. An updated FE model, which has less discrepancies with

measurements, can provide more physically meaningful insights for the physical pa-

rameters of structural components and can make more reliable predictions under

various loading conditions.
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3.1 Introduction

FE models are widely used to predict the dynamic behavior of structures. However,

the performance of the prediction is questionable when there are relatively large dif-

ferences in modal properties (natural frequencies, damping ratios, and mode shapes)

between an FE model and a real structure. Although an FE model may be carefully

developed based on precise technical design data and best engineering judgment, there

are inevitable modeling errors in an FE model due to simplifications and idealized

connections. Uncertain geometry, material properties, and boundary conditions also

present challenges in developing a highly accurate FE model.

Model updating is a technique that tunes FE models to match with measured

data. It is of significant practical importance due to the need for decreasing inevitable

modeling errors in FE models and the potential possibility of detecting damage in

structures. Although it was originally developed in the mechanical and aerospace

engineering fields, in the last decade it has been applied to civil structures such as

bridges (Q. Zhang, Chang, & Chang, 2001; Brownjohn & Xia, 2000; Brownjohn,

Moyo, Omenzetter, & Lu, 2003; Reynders, Teughels, & De Roeck, 2010; Teughels &

De Roeck, 2004; Mosquera, Smyth, & Betti, 2012), footbridges (Živanović, Pavic, &

Reynolds, 2006, 2007; Moaveni & Behmanesh, 2012), and buildings (Moaveni, Conte,

& Hemez, 2009; Bakir, Reynders, & De Roeck, 2007, 2008). In these applications, it

has been very successful at tuning the physical parameters of FE models to produce

fewer discrepancies between updated and identified modal properties. It subsequently

becomes possible to more reliably predict the dynamic behavior of structures. Some

authors (Reynders et al., 2010; Teughels & De Roeck, 2004; Bakir et al., 2007) have

successfully pinpointed the location of the damage based on their damage scenarios

by model updating. A summery for model updating can be found in (Mottershead,
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Link, & Friswell, 2011).

Model updating techniques can be classified into two categories (one-step meth-

ods and iterative methods) (Levin & Lieven, 1998). One-step methods, which are

also called global methods, directly modify the global mass and stiffness matrices.

One of the drawbacks of this methods is that the symmetry, positive-definiteness,

and sparseness of the global matrices are often violated. The other drawback can

be that such an approach is not appropriate when mass and stiffness matrices are

coupled (Q. Zhang et al., 2001). For example, it is not suitable for a suspension

bridge because the weight of the suspension bridge is related to both mass and global

stiffness. In iterative methods (local methods), the physical parameters of FE mod-

els are tuned so that FE models can preserve the above-mentioned characteristics

of the global mass and stiffness matrices. As a result, FE models remain physically

meaningful.

Sensitivity-based model updating is one of the most popular and successful model

updating methods (Mottershead et al., 2011), which belongs to the iterative methods.

The main benefit of this method is that the relationship between modal properties

and physical parameters becomes more clear through an in-depth sensitivity analysis.

During a sensitivity analysis, it can be determined which physical parameters have

a significant effect on the dynamic characteristics of structures and which natural

frequencies are altered with respect to certain physical parameters.

Model updating is typically framed as an optimization problem in which dis-

crepancies between an FE model and a real structure are minimized. One should

carefully consider which optimization algorithm is appropriate a problem based on

the smoothness and nonlinearity of objective functions. The interior point method

can be a suitable solver because objective functions in model updating are usually

smooth and convex near optimal solutions (Moaveni & Behmanesh, 2012). It also has
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the desirable capacity to deal with not only the nonlinearity of objective functions,

but also the nonlinearity of constraint equations in an optimization problem. Com-

pared to global optimization algorithms, it is not computationally expansive since it

is a gradient-based optimization.

The ideas of using the regularization (Friswell, Mottershead, & Ahmadian, 2001)

and parameter clustering (Shahverdi, Mares, Wang, & Mottershead, 2009) techniques

in model updating are adapted and applied to an updating problem of a bridge

model. In this paper, nonlinear constraints are placed on agreements between iden-

tified mode shapes and computed ones from an FE model to control those agree-

ments. The sensitivity-based clustering method, which is developed by Shahverdi et

al. (Shahverdi et al., 2009) for parameterization in model updating, is applied to a

bridge model to find efficient and physically meaningful updating parameters based

on the sensitivities of natural frequencies with respect to both mass and stiffness-

related physical parameters. The physical meanings of selected updating parameters

are also demonstrated.

This chapter is focused on improving mode shape matches with a nonlinear in-

equality constraint equation and selecting more efficient updating parameters based

on sensitivities of natural frequencies corresponding to physical parameters. The

chapter is organized as follows. In Section 3.2, the theoretical background of model

updating is explained. Section 3.3 provides an overview of the interior point method

that is used in this chapter to solve an optimization problem in model updating. In

Section 3.4, the FE model of the large suspension bridge is developed and tuned to

match the identified modal properties from the dynamic test. In Section 3.5, a nonlin-

ear constraint equation is introduced to regulate the errors in updated mode shapes.

In Section 3.6, cluster analysis is conducted to find a better updating parameter. In

Section 3.7, conclusions are made.
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3.2 Sensitivity-based Model Updating Procedures

In model updating, physical parameters in a FE model are tuned so that natural

frequencies and mode shapes from an FE model match with those from measured

data. Physical parameters can be Young’s modulus, mass density of the materials,

and/or spring coefficients. They directly impact natural frequencies and mode shapes

of an FE model. The relative changes in the physical parameters are selected as

updating parameters. In each element e, the modified physical parameter (Xe) of

element e is defined as:

Xe = Xe
0 (1− θe) , (3.1)

where Xe
0 is an initial value for a physical parameter of element e and θe is an up-

dating parameter for element e. Model updating is here an inverse problem in which

the optimal values of updating parameters are computed to minimize the errors in

natural frequencies and mode shapes between an FE model and a real structure. The

objective function in this optimization problem includes the residual vectors of nat-

ural frequencies and mode shapes. The objective function to be used here in model

updating is defined as:

min
θ

f(θ) =
1

2

(
‖rf (θ)‖+ ‖rs(θ)‖

)2

, (3.2)

where f : Rnp → R, rf : Rnp → Rnt , rs : Rnp → Rnm and ‖ · ‖ denotes the Euclidean

norm. rf is a natural frequency residual vector. rs is a mode shape residual vector.

np and nt are the number of updating parameters and of dynamic modes considered

in updating (targeted dynamic modes), respectively. nm is equal to the product of

the number of targeted dynamic modes and the number of degrees-of-freedoms of the

25



mode shapes. The natural frequency residual vector (rf ) represents the relative errors

in natural frequencies. It is defined as:

rif (θ) =
fi(θ)− f̃i

f̃i
, (3.3)

where f̃i and fi are identified and computed natural frequencies in Hz, respectively.

The residual mode shape vector (rs) is expressed as:

rs
i = MSF

(
φi(θ),

φ̃i

φ̃i
r

)
φi(θ)−

φ̃i

φ̃i
r , (3.4)

where φ̃i and φi(θ) are respectively identified and computed mode shape vectors. φ̃i
r

is

a reference value, which is the maximum component of the vector φ̃i. Since computed

mode shapes have a different scale compared to identified mode shapes, the modal

scale factor (MSF) is used to change the scale of the computed mode shapes φi(θ) to

minimize the difference with the maximum normalized identified mode shapes in a

least-squares sense (Allemang & Brown, 1982). The MSF is defined as:

MSF
(
φi(θ), φ̃i

)
=
φ∗i (θ) φ̃i
‖φi(θ)‖2

, (3.5)

where �∗ denotes a complex conjugate transpose. When calculating the residual

vectors, it is important to make sure that comparison made between computed and

identified natural frequencies were made with frequencies corresponding to the same

dynamic mode (Mottershead et al., 2011). This procedure is called as mode paring.

The MAC value (Allemang & Brown, 1982) is used in mode paring.

Sensitivity analysis is performed to determine how physical parameters in an FE

model affect natural frequencies and mode shapes. Sensitivity analysis can be useful

when choosing which updating parameters should be considered in the modification
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of FE models. The modal sensitivity matrix with respect to the updating parameter

θk can be analytically determined by the formulas of Fox and Kapoor (Fox & Kapoor,

1968).

∂λj
∂θk

= φT
j

[
−λj

∂M

∂θk
+

∂K

∂θk

]
φj

∂φj
∂θk

=
H∑

h=1

ajkhφh,

(3.6)

where H is the number of dynamic modes which are taken into account in calculat-

ing the approximation of mode-shape sensitivities. M and K are the FE mass and

stiffness matrices. λj is jth eigenvalue (λj = ω2
j ). The factor ajkh is defined as:

ajkh =





φTh

(
−λj ∂M∂θk + ∂K

∂θk

)
φj

(λj−λh) if h 6= j

−1
2
φTj

(
∂M
∂θk

)
φj if h = j

(3.7)

The sensitivity matrix can also be calculate numerically by perturbing updating pa-

rameters with a small number and determining the differences in the predicted natural

frequencies and mode shapes.

3.3 Overview of the Interior Point Method for Op-

timization

The interior point method (Byrd, Hribar, & Nocedal, 1999) is used to solve the opti-

mization problem in model updating. It is a powerful tool to deal with large nonlinear

programming problems. Model updating is a constrained optimization problem be-

cause bounds are established for physical parameters to remain in a realistic range.

For example, it is unrealistic to have negative Young’s modulus or mass density. As a
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result, it is necessary to choose an optimization algorithm which can efficiently han-

dle bounds. The interior point method can be appropriate. It can deal with bounds

for parameters in an optimization because it includes a trust region method in the

algorithm. Furthermore, it is able to handle nonlinearity in constraint equations and

objective functions since it incorporates Sequential Quadratic Programming (SQP).

One of the drawbacks of gradient-based methods can be that the result of optimiza-

tions can depend on initial points. This means that solutions might be caught in local

minima and not able to find global minima. However, initial points in model updating

are in general not that far away from an optimum solution because initial FE models

whose modal properties are not vastly different from identified modal properties are

used as initial points. Since the objective functions in model updating are usually

smooth and convex near global minima (Moaveni & Behmanesh, 2012), solutions can

converge to an optimum solution.

An overview of the interior point method for an optimization problem is provided

here. A constrained nonlinear optimization problem can be expressed as

minimize
x

F (x)

subject to H(x) = 0

G(x) ≤ 0 ,

(3.8)

where F : Rr → R, H : Rr → Rp, G : Rr → Rq. r is the number of variables. p and

q are the number of the equality constraints and the inequality constraints, respec-

tively. F (x) is an objective function. H(x) is an equality constraint equation. G(x)

is an inequality constraint equation. After applying a logarithmic barrier function
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associated with the inequality constraint, the equation above becomes:

minimize
x,s

F (x)− µ
q∑

i=1

ln si

subject to H(x) = 0

G(x) + s = 0,

(3.9)

where µ and s are a barrier parameter and a slack variable, respectively. The optimal

value x∗ for the problem can be obtain by minimizing the Lagrangian defined as:

L(x, s,Γh,Γg) = F (x)− µ
q∑

i=1

ln si + ΓThH(x) + ΓTg (G(x) + s), (3.10)

where Γh ∈ Rp and Γg ∈ Rq are the Lagrange multipliers for the equality constraints

and the inequality constraints, respectively. The interior point method is an iterative

method, where an approximated solution (xk) converges to an optimal value x∗ as

more iterations are performed. At each iteration, subproblems are solved to obtain

step vectors (dx,k = xk+1− xk and ds,k = sk+1− sk) from the current iterates (xk and

sk) and the Lagrange multipliers for the next iteration (Γ+
h and Γ+

g ). dx, ds,Γ
+
h and

Γ+
g are computed by solving the subproblem defined as:




∇2
xxLk 0 Ah(xk) Ag(xk)

0 Σk 0 I

ATh (xk) 0 0 0

ATg (xk) I 0 0







dx

ds

Γ+
h

Γ+
g




=




−∇F (xk)

µS−1k e

−H(xk)

−G(xk)− sk




. (3.11)

In the matrix above, e = [1, . . . , 1]T and S = diag(s1, . . . , sq). Ah(xk) ∈ Rp×r and

Ag(xk) ∈ Rq×r are the gradients of the constraints. ∇F (x) ∈ Rr is the gradient

of the objective function F (x). The Hessian matrix of the Lagrangian with respect
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to dx is defined to be ∇2
xxLk ∈ Rr×r. Σk = ∇2

ssLk ∈ Rq×q is the Hessian of the

Lagrangian with respect to ds. It is also approximated as Σk = µS−2k (primal method)

or Σk = S−1k Λg (primal-dual system), where Λg = diag(Γ1
g, . . . ,Γ

q
g). ∇2

xxLk+1 is

calculated using Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula:

∇xxLk+1 = ∇xxLk +
qk q

T
k

qTk dx(xk)
− ∇xxLk dx(xk) dTx (xk) ∇xxLk

dTx (xk) ∇xxLkdx(xk)
, (3.12)

where qk = ∇xLk+1 −∇xLk.

3.4 Application of Model Updating and the Re-

sults

It is necessary to determine which dynamic modes are to be included in the model

updating process. Lower dynamic modes are generally sufficient to describe the global

behavior of structures. In contrast, higher dynamic modes are generally more related

to the local behavior of structures. Since more interest was placed on the matching of

the global behavior of the structure, the first several dynamic modes are considered

in the model updating process. In the model updating process of the bridge, three

main-span vertical modes (V1, V2, and V3), two main-span lateral modes (H1 and

H2), one main-span torsional mode (T1), and one side-span vertical mode (SV1)

are taken into account. In this Chapter, the FE model is updated by targeting the

mean of the identified natural frequencies and mode shapes, which is summarized in

Table 2.1 and Figure 2.2, respectively.

The choice of the updating parameters is a crucial factor in the success of model

updating (Brownjohn & Xia, 2000). It would be ideal for every physical parameters

to be adjusted so that the FE model can perfectly match data from a real structure.
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However, having too many updating parameters can ultimately yield an unreliable

updating result (Hjelmstad, Banan, & Banan, 1995). Consequently, the physical

parameters of structural components in an FE model are grouped based on their

types, locations, and uncertainties. In the model updating for the bridge, the mass

densities were adjusted because the exclusion of the nonstructural components would

contribute to a miscalculation of the mass. It was assumed that the mass densities of

the structural components located on the main span did not vary along the deck. One

updating parameter was used for the mass densities of the main span components.

Similarly, two different updating parameters were assigned for the mass densities

of the side spans and of the towers. For the selection of the updating parameters

associated with the Young’s moduli of the superstructure, the global locations of the

structural components such as the main span, side spans, and the towers were taken

into account. It was also considered whether the structural components are located

on the upper or lower deck since the bridge is a double-deck bridge. Moreover, their

structural types such as chords, floor beams, columns, lateral bracings, and trusses

were also taken into consideration. In addition to the updating parameters for the

superstructure, all of the soil and hinge springs in the FE model were included for

the updating process because the spring coefficients in the initial FE model were

determined by trial and error. The physical parameters associated with the suspension

cables were assumed to be fixed, i.e., no corresponding updating parameters. At the

end, the total number of the updating parameters was 32. There were 17 and 15

updating parameters for the superstructure and the soil springs, respectively. The

selected updating parameters are summarized in Table 3.1.

The interior method was used to minimize the differences between the FE model

and the bridge by using the MATLAB optimization toolbox (MATLAB, 2013). The

lower and upper bounds for the updating parameters θe were chosen to be in the range
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between -2 and 0.8. These bounds for the updating parameters θe are equivalent to a

80% decrease and 200% increase in the physical parameters Xe. The lower bound (a

80% decrease) for the physical parameters, which was actually calculated by the upper

bound of the updating parameters θe, was designed to make sure that the physical

parameters remained in the realistic range (positive number for material properties).

The upper bound of the physical parameters Xe, which was related to the lower bound

of the updating parameters θe, was determined based on the fact that some dynamic

modes started disappearing from the FE model when the physical parameters became

close to the bound. The initial updating parameters θ0 in the optimization were set

to zero, which means the initial FE model was the starting point of the updating

process. The stopping criteria was defined such that the functional tolerance was 1e-

3 and the maximum number of iterations was 30. A flowchart of the model updating

procedure considered in this Chapter is demonstrated in Figure 3.1.

The initial model was updated as described in Section 3.2. In Table 3.1, the op-

timized updating parameters (updated parameters) are shown. Figure 3.2 shows the

values of the updating parameters versus the iterations of the optimization process.

As mentioned in Section 2.3, the initial information about all of the structural com-

ponents was somewhat vague, resulting in modifications of physical parameters by

up to 52.2%. In order to offset the miscalculation of the mass of the structure due

to the omission of the non-structural components and limited information, the mass

density of the towers, the main-span, and the side-spans increased by 4.9%, 38.2%,

and 52.5%, respectively. Since the technical drawings were quite limited especially

for the trusses and chords in the side span, the modifications of those physical pa-

rameters were made over a large range within the updating process. The stiffness of

the chords and the trusses in the side span seemed overestimated in the initial FE

model. As a result, the Young’s moduli for these components were reduced between
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Iterative optimization scheme
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ABAQUS

MATLAB

YES

NO

Figure 3.1: Flowchart of the model updating procedure.
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Table 3.1: Physical parameters selected for the model updating for the bridge

and the optimized updating parameters.

Number Location Structural type Type Updated parameter

1
Tower

Density ρ -0.049
2 Pylons E -0.003
3 Bracings E -0.071
4

Main span

Density ρ -0.382
5 Chords E 0.023
6 Floor beams E -0.064
7 Columns E -0.057
8 Bottom lateral bracings E 0.044
9 Top lateral bracings E -0.055
10 Trusses E 0.018
11

Side span

Density ρ -0.525
12 Chords E 0.271
13 Floor beams E -0.064
14 Columns E -0.048
15 Bottom lateral bracings E -0.089
16 Top lateral bracings E -0.059
17 Trusses E 0.300
18

Hinge
Between towers and main span k -0.060

19 Between towers and side span k -0.058
20

Deck

Suspension cables k -0.060
21 Translational spring in longitudinal k -0.047
22 Deck translational spring in vertical k -0.061
23 Translational spring in transversal k -0.061
24 Rotational spring in longitudinal k -0.062
25 Rotational spring in vertical k -0.062
26 Rotational spring in transversal k -0.057
27

Tower leg

Translational spring in longitudial k -0.061
28 Translational spring in vertical k -0.068
29 Translational spring in transversal k -0.062
30 Rotational spring in longitudinal k -0.064
31 Rotational spring in vertical k -0.059
32 Rotational spring in transversal k -0.061
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Figure 3.2: Convergence of the updating parameters during the optimization

procedure.

27.1% and 30%, respectively. It is noteworthy that, except for above-mentioned phys-

ical parameters, parameter modifications were limited to less than 10% including the

spring coefficients. These modifications of the mass densities and the Young’s moduli

permitted the natural frequency of the updated FE model to decrease so that they

became closer to the natural frequencies identified from the real measured data.

The updated natural frequencies are summarized in Table 3.2. The MAC paring

matrix is shown in Figure 3.3. After updating, the total relative errors dropped down

from 59.23 % to 15.77%. Except for the first torsional mode (T1), the differences

between the updated and identified natural frequencies were all reduced to below 5%.

The reason that the natural frequency of the first torsional mode was not correctly

adjusted might be due to the modeling errors which were not modified in the updating

such as the geometry of the structure. The MAC values (Allemang & Brown, 1982)

between the updated and identified mode shapes were used as an indicator of the

35



H1 V1 V2 T1 SV1 H2 V3

H1

V1

V2

T1

SV1

H2

V3

 

Updated mode shape

 

Id
en

ti
fi

ed
 m

o
d
e 

sh
ap

e

0

0.2

0.4

0.6

0.8

1

Figure 3.3: MAC pairing matrix between the identified mode shapes and updated

mode shapes.

correlation between the two mode shapes. The MAC values are shown in Table 3.2.

These MAC values are also shown in the diagonal of the pairing matrix in Figure 3.3.

Most of the MAC values improved after the updating, especially for the higher mode

shapes. The maximum increase in the MAC values, which corresponded to the third

vertical mode (V3), was from 0.735 to 0.828. However, there is a drop in the MAC

values of the first side span vertical mode (SV1).
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Table 3.2: Identified, initial, and updated natural frequencies and the MAC

values between the identified and updated mode shapes.

Mode Frequency [Hz] MAC value

Measured FEM model

Initial Relative error Updated Relative error Initial Updated

H1 0.194 0.236 0.218 0.195 0.006 0.984 0.984
V1 0.227 0.294 0.296 0.238 0.049 0.966 0.963
V2 0.303 0.356 0.176 0.311 0.027 0.979 0.949
T1 0.373 0.384 0.029 0.324 0.132 0.740 0.732
SV1 0.337 0.453 0.343 0.347 0.028 0.880 0.758
H2 0.450 0.539 0.197 0.470 0.044 0.838 0.898
V3 0.500 0.596 0.193 0.519 0.039 0.735 0.828

Total L2 norm error [%] 60.00 15.77

3.5 Regularization: Implementation of a Nonlin-

ear Constraint Equation in Model Updating

3.5.1 Multi objectives in model updating

When defining an objective function in the optimization problem in model updating,

it is suggested to consider errors in both natural frequencies and mode shapes. Both

natural frequencies and mode shapes are in general sensitive to physical parameters

in an FE model. Moreover, some physical parameters can have more dominant effects

on mode shapes than natural frequencies or vice versa. Not only that, when model

updating is used for damage detection, natural frequencies can be an indicator for

whether damage occurs or not; mode shapes can give more details about the local-

ization of damage (Bakir et al., 2007; Teughels & De Roeck, 2004). Both natural

frequencies and mode shapes play a significant role in tuning an FE model.

The objective cost function is calculated based on both the natural frequency
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residual vectors and the mode shape residual vectors. Different selections of weighting

factors for those two residual vectors can result in different model updating results.

Well-balanced weights should be determined and applied to the residual vectors to

provide acceptable results in both natural frequency and mode shape matches. If the

natural frequency residual vectors have too much weight compared to the mode shape

residual vectors, updating parameters are forced to have a good match in natural

frequencies, making updated mode shapes in an FE model unacceptable. In contrast,

if mode shape residual vectors receive more weight, computed natural frequencies

can differ from identified ones. As a result, natural frequency residual vectors and

mode shape residual vectors should be well-balanced in order to obtain a desirable

agreement in both natural frequencies and mode shapes. It is good to notice that the

frequency and mode shape residual vectors are equally weighted in Section 3.4.

At the same time, the need for the application of model updating can be also

taken into account for the determination of the weights for the natural frequency

and mode shape residual vectors. If the application for the FE model is more asso-

ciated with mode shapes, more weight should be assigned for mode shape residual

vectors. If natural frequencies of the FE model are of more interest, natural fre-

quency residual vectors should be more weighted in objective functions. It is also

possible that users of updated FE models want to have a threshold for mode shape

matches based on the MAC values. To find a model updating result which has MAC

values above a predetermined thresholds, many different combinations of weights for

natural frequency and mode shape residual vectors can be tried. Multiple model up-

dating results with respect to various weight values can be found by multi-objective

optimization schemes, which are well summarized in (Marler & Arora, 2004). The

effectiveness and applicability of the multi-objective optimization approaches for a

model updating problem are demonstrated by Papadimitriou, Ntotsios, Giagopoulos,
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and Natsiavas (2012).

3.5.2 Regularization on a mode shape agreement

Instead of performing multiple optimizations with different weights for frequency and

mode shape residual vectors, the regularization technique, which is also known as

parameter constraints, is applied to a model updating problem considered here to

find a model updating result whose MAC values are above predetermined thresholds.

Originally, the use of the regularization technique in model updating is suggested

and developed by Friswell et al. (Friswell et al., 2001) in an effort to treat ill-posed

parameter estimation problem, which is often encountered in model updating. This

technique is adopted and modified to put constraint equations on mode shape agree-

ments. Therefore, the residual vectors of natural frequencies and mode shapes are

separately considered in an objective function and a constraint equation, respectively.

The agreement of natural frequencies is the primary goal of the model updating pro-

cess so that natural frequency residual vectors are defined in the objective function.

Instead of considering mode shape residual vectors in the objective function, the MAC

values between identified mode shapes and computed mode shapes are forced to re-

main higher than specific MAC values in the constraint equation. It becomes possible

to prevent modified mode shapes in an FE model from having low MAC values af-

ter updating. When structures consist of many structural components or parts with

complicated connections or when FE models have large initial modeling errors, some

MAC values between updated and observed mode shapes might fail to remain in an

desirable range. This problem can be observed in (Mottershead et al., 2011), where

the challenging updating problem associated with many components and connections

was tackled and some MAC values between the updated and observed modes are
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less than 0.6, a level generally considered to be low. The reason for those low MAC

values can be that in their model updating process the relative errors in the natural

frequencies and the modification of the updating parameters are minimized, i.e., the

MAC values or the errors in the mode shapes are not constrained to be optimized.

The regularization technique can help improve a mode shape match when some MAC

values are relatively low. The newly defined optimization problem with nonlinear

constraints is presented as follows:

minimize
θ

f(θ)

subject to g(θ) ≤ 0 (inequality constraint),

(3.13)

where f : Rnp → R, g : Rnp → Rnt . np and nt are the number of updating parameters

and targeted dynamic modes, respectively. θ are updating parameters, which are the

same as the ones used in Section 3.4. The objective function f(θ) and the inequality

constraint equation g(θ) are defined as:

f(θ) =
1

2
‖rf (θ)‖2

gj(θ) = dj −MACj(θ),

(3.14)

where rf (θ) is the natural frequency residual vector defined in the Eq. 3.3. MACj(θ)

is the MAC value between identified and computed mode shapes corresponding to the

jth dynamic mode; dj is a desired MAC level for MACj(θ). By putting the inequality

constraint equation g(θ) into Eq (3.13), the optimization problem can be restated as:

minimize
θ

f(θ)

subject to MACj(θ) ≥ dj (inequality constraint)

(3.15)

The FE model of the bridge was updated based on the objective function with
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the constraint equation. The differences between the identified natural frequencies

and those from updated FE model were minimized by defining them in the objective

function. At the same time, the MAC values between the identified mode shapes and

those computed from updated FE model were regulated to remain above a desired

MAC level. The two desired MAC levels used here were defined as 0.7 and 0.8

(dj = 0.7 and 0.8 ). The desired MAC levels were equally applied to the first seven

dynamic modes. Different desired MAC levels can be applied for different dynamic

modes when more importance is placed on certain modes.

3.5.3 Updating results with nonlinear constrains

The results of the model updating based on the suggested method are summarized

in Table 3.3. The MAC paring matrices between the identified and updated mode

shapes associated with the desired MAC levels 0.7 and 0.8 are presented in Figures

3.4ab, respectively. Figure 3.5 shows the values of the updating parameters versus

the iterations of the optimization process with two levels of the MAC constraints.

Figure 3.6 shows a comparison between the two sets of optimized updating parameters

with respect to the corresponding desired MAC levels and the one that is obtained

in Section 3.4. When the desired MAC level 0.7 was used in the constraint equation,

the optimization result was quite similar to the updating result in Section 3.4. This

is because the MAC values in Section 3.4 were already higher than 0.7. When the

desired MAC level of 0.8 was applied, all of the MAC values increased so that they

became higher than 0.8. The mode shape of the first torsional mode was significantly

improved. However, more total relative errors in the natural frequencies were observed

when the desired MAC level increased from 0.7 to 0.8. The total norm error in the

natural frequencies increased from 15.85 to 18.77% as the desired MAC level increased.
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The biggest change in the frequency error happened in the first vertical mode (V1).

After increasing the desired MAC level, the frequency error in V1 became 12.8%.

Although there was a trade-off between the natural frequencies and mode shapes,

the presence of the inequality constraint equations can be a powerful mechanism

to regulate the agreement in mode shapes without trying multiple combinations of

different weights for the natural frequency and mode shape residual vectors, especially

when some mode shapes failed to have an acceptable match or when more interest

was place on mode shape matching.

Table 3.3: Updated natural frequencies and MAC values between the identified

and updated mode shapes with the two desired MAC levels (0.7 and 0.8).

Mode Frequency [Hz] MAC value

Measured FEM model

MAC 0.7 Relative error MAC 0.8 Relative error MAC 0.7 MAC 0.8
constraint constraint constraint constraint

H1 0.194 0.189 0.025 0.181 0.066 0.988 0.991
V1 0.227 0.241 0.062 0.253 0.115 0.963 0.964
V2 0.303 0.307 0.014 0.296 0.022 0.963 0.976
T1 0.373 0.323 0.135 0.332 0.111 0.756 0.801
SV1 0.337 0.349 0.034 0.365 0.082 0.814 0.873
H2 0.450 0.459 0.020 0.434 0.036 0.922 0.940
V3 0.500 0.513 0.027 0.501 0.003 0.829 0.818

Total L2 norm error [%] 15.85 19.58
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Figure 3.4: MAC pairing matrices between the identified mode shapes and the

mode shapes of the updated models with the MAC constraints: (a) MAC level 0.7;

and (b) MAC level 0.8.
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Figure 3.5: Convergence of the updating parameters during the optimization

procedure with two levels of the MAC constraints:(a) MAC level 0.7; and (b) MAC

level 0.8.
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3.6 Sensitivity-based Clustering for Parameteriza-

tion in Model Updating

3.6.1 Importance of parameterization in model updating

Selecting very efficient updating parameters from physical parameters is very impor-

tant to achieving a satisfactory model updating result since they are directly related

to the change of the modal properties of FE models. One updating parameter here

includes many physical parameters of structural components since there are a large

number of physical parameters in the model and it is unrealistic to modify physical

parameters piece by piece. In this application, there are 21,096 elements (19,632 beam

elements + 1464 truss elements) and each element has a Young’s modulus and mass

density. This means that there are 42,192 physical parameters. A limited number of

updating parameters should be selected from 42,192 physical parameters. The more

updating parameters which are included, the bigger the gradient matrices (Jacobian

and Hessian matrix) which are computed. The problem is that bigger gradient matri-

ces tend to become ill-conditioned. When the gradient matrices are ill-conditioned,

the result of the gradient-based optimization is not reliable. Moreover, the compu-

tational cost of the numerical calculation of the gradient matrices linearly increases

with the dimension of the updating parameters.

There are some considerations to determine updating parameters. It is obvious

that uncertain physical parameters in FE models should be included in the modifica-

tion during the updating process. Topological and technical consideration in model

updating also should be taken into account for the selection of updating parameters.

In addition, a further in-depth sensitivity analysis can be carried out to provide more
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information about how physical parameters affect natural frequencies of a structure.

Shaverdi et al. (Shahverdi et al., 2009) have developed the innovative sensitivity-based

clustering method, which leverages clustering analysis and parameter sensitivities,

and have validated its benefits with an example of a helicopter airframe. The major

benefit of this method is that each updating parameter can have a physical insight

since it includes physical parameters whose effects to natural frequencies are similar.

In this work, the sensitivity-based clustering method is applied to a full-scaled FE

model to systematically determine a more effective selection of updating parameters

for the bridge model. Furthermore, the physical meanings of updating parameters

selected from the sensitivity-based clustering method are demonstrated, which pro-

vides fundamental knowledge of the relationship between natural frequencies and the

physical properties of structural components.

3.6.2 Sensitivity analysis on decomposed structural compo-

nents

The structural components of the FE model were decomposed into the 132 subgroups

based on the location and structural type. The main span was partitioned into eight

segments along the longitudinal direction. Each side span was divided into four seg-

ments along the longitudinal direction. Then, each segment was further decomposed

into subgroups based on the structural element type. The towers were divided into

three segments along the vertical direction and each segment was divided into the

bracing and pylon elements. Both mass densities and Young’s moduli of the decom-

posed 132 subgroup were considered in the analysis. All of the soil and hinge springs

(15 spring coefficients) in the FE model were also included for the cluster analysis.

279 physical parameters (132 masses + 132 Young’s moduli + 15 spring coefficients)
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Figure 3.7: Sensitivity to the mass densities and Young’s moduli of the de-

composed structural components and spring coefficients: 70 out of the 279 physical

parameters.

were formed after the decomposition of the FE model.

Then, the sensitivities of natural frequencies corresponding to those 279 physical

parameters were calculated as follows:

∂fp
∂Xq

, (3.16)

where fp is the natural frequencies of pth mode and Xq is qth physical parameters.

q = 1, . . . , 7 and q = 1, . . . , 279. For general visualization purposes only, every 4th

column of the sensitivity matrix is shown in Figure 3.7. Along the horizontal axis,

the indices of the decomposed subgroups are shown with respect to the targeted

dynamic modes. The height of the bars is the sensitivity of the natural frequency

with respect to the physical parameters. Since perturbing the mass density in the FE

model had an opposite effect to the natural frequencies compared to perturbing the

Young’s modulus and spring coefficient, two parallel cluster analyses were carried out
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based on the calculated sensitivities. The first cluster analysis is for the sensitivities

associated with the mass densities of the decomposed subgroups. The second is for

the sensitivities corresponding to the stiffness-related parameters (Young’s moduli

and spring coefficients of the decomposed subgroups).

3.6.3 Hierarchical clustering for the sensitivities of natural

frequencies

The purpose of cluster analysis is to group closely-spaced sensitivities into a cluster,

which means that the distance function should be defined in order to compute the

proximity between sensitivities. The distance function used here is the dissimilarity of

the sensitivity matrices corresponding to the physical parameters. In other words, two

near (short) distanced sensitivities means that the sensitivity matrices corresponding

to the physical parameters are similar, i.e., the physical parameters have similar effects

to the targeted natural frequencies. Cosine distance (Salton & Buckley, 1988) is used

to evaluate the dissimilarity between pairs of sensitivities (α, β), which was defined

as:

cosine distance(α, β) = 1− αTβ√
αTα · βTβ

(3.17)

After defining the distance function, it was necessary to choose an appropriate

clustering algorithm that was applicable to the problem. Many clustering algo-

rithms were available such as hierarchical (Everitt, Landau, Leese, & Stahl, 2011),

k-means (Hartigan & Wong, 1979), and DBSCAN (Ester, Kriegel, Sander, & Xu,

1996). The hierarchical clustering algorithm was used here because it enabled one

to determine final clusters only based on the maximum distance between the sensi-

tivities which are grouped into the same cluster. k-means clustering was not feasible
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because the total number of clusters (k) would need to be predefined in advance.

The DBSCAN algorithm would exclude some sensitivities as outliers based on a pre-

specified input variable, which is the number of points required to create a cluster.

However, the hierarchical clustering algorithm would permit each sensitivity to be

grouped into clusters. In the hierarchical clustering, all of the pairwise distances be-

tween sensitivities were initially calculated. Then, the sensitivities were grouped into

binary clusters based on the proximity of their distance, i.e., based on the similarities

of the sensitivities. The binary clusters also became larger by including the closest

(the most similar) sensitivities or another binary cluster. This was repeated until a

hierarchical tree (one big binary cluster) was formed. Final clusters were determined

from a hierarchical tree by specifying the maximum distance between the sensitivities

in the same cluster.

The hierarchical binary trees associated with the sensitivities of the physical pa-

rameters of the subgroups are shown in Figure 3.8. The vertical line (height) repre-

sents the distance between the merged binary clusters. In the horizontal axis, there are

30 leaf nodes, representing binary clusters into which the sensitivities of the subgroups

are already grouped. The final clusters are determined by cutting each hierarchical

tree at the distance 0.2, which means all of the dissimilarities of the sensitivities in the

same final cluster are less than 0.2. At the end, the 279 sensitivities corresponding to

the physical parameters of the decomposed subgroups are grouped into 22 clusters.

5 clusters included sensitivities with respect to the mass densities of the subgroups.

17 clusters included the sensitivities corresponding to Young’s moduli and/or spring

coefficients. Each cluster was defined as a updating parameter defined in Eq. 3.1,

which means that 22 updating parameters were selected from the sensitivity-based

cluster analysis. The first five updating parameters (θ1− θ5) are mass densities. The

other updating parameters (θ6 − θ22) are stiffness-related parameters.
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Figure 3.8: Hierarchical binary cluster tree with 30 leaf nodes: (a) Young’s

modulus & spring coefficient; and (b) Mass density.
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3.6.4 Updating parameters selected by the sensitivity-based

clustering and the interpretation of their physical mean-

ings

To visualize the difference between mass clusters and stiffness-related clusters (Young’s

modulus and spring coefficient), the locations of the structural components cor-

responding to the physical parameters and the respective sensitivity matrices are

shown in Figures 3.9 and 3.9. The sensitivities corresponding to the mass densities

were grouped mainly based on the longitudinal location of the structural components

along the bridge, rather than their structural type. As shown in Figure 3.9, the

mass clusters included the mass densities of all structural components regardless of

their structural types. In contrast, the stiffness-related clusters grouped the similar

sensitivities depending on both the longitudinal locations and the structural types.

The structural components that correspond to the physical parameters grouped into

cluster 6, 7 and 22 were presented respectively in Figure 3.10. The corresponding

sensitivity matrices grouped into cluster 6, 7, and 22 are shown in Figures 3.10bdf,

respectively. The Young’s moduli of the trusses and chords located at the main span

were included in cluster 6, which means that the types of structural components af-

fected the result of the clustering. It is noteworthy that spring elements were included

in these clusters. In cluster 6, the hinges (rotational spring) between the main-span

deck and the towers were included. In cluster 22, the soil springs located at the end

of the deck (the translational spring in the longitudinal direction and the rotational

spring in the transversal direction) and the hinges connecting towers with the side

span were included.

It was quite clear to see that the physical parameters grouped into the same cluster
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Figure 3.9: Cluster analysis result of mass densities: the locations of the structural

components in the clusters and the corresponding sensitivity matrices: (a) topological

locations of cluster 2; (b) sensitivity matrix of cluster 2; (c) topological locations of

cluster 3; (d) sensitivity matrix of cluster 3; (e) topological locations of cluster 5; and

(f) sensitivity matrix of cluster 5.
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Figure 3.10: Cluster analysis result of stiffness-related parameters: the locations

of the structural components in the clusters and the sensitivity matrices: (a) topolog-

ical locations of cluster 6; (b) sensitivity matrix of cluster 6; (c) topological locations

of cluster 7; (d) sensitivity matrix of cluster 7; (e) topological locations of cluster 22;

and (f) sensitivity matrix of cluster 22.
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had similar effects on the targeted natural frequencies. Although the clusters were

determined only based on the numerical values of the sensitivities, without providing

any information of the corresponding locations of the structural components, the

grouped physical parameters were physically meaningful. The physical parameters

in cluster 6 had more dominant effects on the natural frequencies of the second and

third vertical modes (V2 and V3) since the Young’s moduli of the chords and trusses

located at the main span were included for this cluster. The structural components

in cluster 22 were likely to affect the natural frequencies of the first side-span vertical

mode (SV1) and the first vertical mode (V1) because the physical parameters of the

structural components mainly located at the side spans.

Based on the sensitivity matrix shown in Figure 3.7, it was found that the most

sensitive structural types were chords (TC and BC), lateral bracing (LM and BS),

trusses (TR), and towers (TW). When it came to the soil springs at the bottom of

the tower pylons, the translational springs in the vertical direction (SP TW2) and

the rotational spring in the longitudinal direction (SP TW4) dominantly affected the

natural frequencies. Among the soil springs at the end of the deck, the translational

springs in the longitudinal direction (SP DCK1) and the rotational springs in the

transversal direction (SP DCK6) were sensitive. Furthermore, if the structural com-

ponents were in symmetrical locations, they had almost identical sensitivities due to

the symmetry of the bridge. This phenomenon can be observed in Figures 3.9 and

3.10. For example, the sensitivity of the trusses at the left side span (TR01, TR02,

TR03, and TR04) were identical to the sensitivity of the ones at the right side span

(TR16, TR15, TR14, TR13) because 01, 02, 03, and 04 were respectively the symmet-

rical locations with 16, 15, 14, and 13. Similarly, the bottom chords at the main-span

that were close to the left tower (BC05) were also identical to the counterpart in the

right side (BC12).
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Figure 3.11: Sensitivity matrix of clusters.

The sensitivity matrix of the clusters is represented in Figure 3.11. The cluster

numbers are shown in the horizontal axis with respect to the targeted natural fre-

quencies. As mentioned before, cluster 6 is more sensitivity to the second and third

vertical modes (V2 and V3). Cluster 22 is more likely to change the natural frequen-

cies of the first side-span vertical (SV1) and the first vertical (V1) modes. Cluster

15 dominantly affects the natural frequency of the second lateral mode (H2). The

physical parameters in this cluster are the Young’s moduli of the lateral bracings at

the middle of the main span, the lower parts of the towers, and some soil springs at

the tower leg. Cluster 17 includes the Young’s moduli of the chords and the trusses

located at the quarter point of the main span so that it has more effect on the third

vertical mode (V3). When it comes to the mass clusters (from cluster 1 to 5), the
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effects on the targeted frequencies change based on the longitudinal location along

the bridge.

3.6.5 Updating results with sensitivity-based clustering

Compared to the updating parameters defined in Section 3.4, sensitivity-based cluster

analysis yielded fewer updating parameters, but was more efficient since each updating

parameter included the physical parameters whose effects on the targeted natural

frequencies were similar. In Table 3.4, the model updating results with two different

sets of the updating parameters were compared. Figure 3.12 shows the values of

the updating parameters, which are determined by the sensitivity-based clustering

method, with respect to the iterations of the optimization process. The MAC pairing

matrix between the identified and updated mode shapes was shown in Figure 3.13.

The updating parameters determined by the sensitivity-based cluster analysis led

to a decrease in the total L2 norm error from 15.77 to 14.62%. The better MAC

values were achieved with the updating parameters from the cluster analysis. The

significant improvement was achieved for the third vertical mode (V3), where the

MAC value increased from 0.828 to 0.947. The only MAC value which did not in-

crease was the second lateral mode (H2). However, the values remained quite similar

to the result without the cluster analysis. The MAC values were high enough to pro-

vide a reasonably good correlation with the identified mode shapes. Although fewer

updating parameters were used, the improvement in the updated natural frequency

was possible because the cluster analysis permitted each updating parameter to have

a similar effect on the targeted natural frequencies.
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Table 3.4: Comparison of the results in updating with cluster analysis and

without cluster analysis.

Mode Frequency [Hz] MAC value

Measured FE modela Error FE modelb Error FE modela FE modelb

H1 0.194 0.195 0.006 0.192 0.009 0.984 0.984
V1 0.227 0.238 0.049 0.243 0.071 0.963 0.967
V2 0.303 0.311 0.027 0.295 0.026 0.949 0.978
T1 0.373 0.324 0.132 0.330 0.116 0.732 0.751
SV1 0.337 0.347 0.028 0.349 0.034 0.758 0.834
H2 0.450 0.470 0.044 0.451 0.002 0.898 0.873
V3 0.500 0.519 0.039 0.515 0.031 0.828 0.947

Total L2 norm error [%] 15.77 14.62
a The updated model with updating parameters defined in Section 3.4
b The updated model with updating parameters chosen by the sensitivity-based cluster

analysis
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Figure 3.12: Convergence of the updating parameters, which are determined by

the sensitivity-based clustering method.
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3.7 Conclusions

3.7.1 Importance of system identification technique in model

updating

In model updating, it is assumed that identified modal properties from dynamic

tests are correct because the FE models of structures are tuned to match them. Since

model updating techniques cannot be a remedy for a observational deficiency, the most

careful attention should be paid when identifying modal properties from measure data.

Moreover, when vibration data measured from an ambient dynamic test of a bridge are

used for system identification, measurement noise and environmental effects should

be properly considered during a monitoring period. Through the model updating

exercises visited in this chapter, unsatisfactory updating results were observed with

the first torsional mode. This can be because the three torsional modes of the bridge

deck were identified, but they had different in-phase or out-of-phase motions with the

suspension cables and different interactions with main span and side spans as well.

Those interactions were revealed by accurate GPS sensors installed on the bridge,

which is not used for the study here. However, the FE model considered here was not

able to produce all those three modes since the interactions between the suspension

cables and the deck (nonlinear geometry) was not modeled. Therefore, one of the

identified torsional modes was set as a target in the model updating process, which

led to unsatisfactory updating results with the first torsional mode. It was concluded

that modeling error due to unmodeled physical properties cannot be recovered by the

model updating practice.
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3.7.2 Nonlinear constraints in balancing between natural fre-

quencies and mode shapes

The regularization technique has been adopted and applied to the model updating of

a bridge model to control the agreements between mode shapes from measurements

and ones from an FE model. By forcing the MAC values to remain above a certain

level, nonlinear inequality constraint equations prevent computed mode shapes from

unacceptably deviating from identified mode shapes. Two model updating exercises

using the regularization technique were carried out with the full-scaled bridge model.

The use of the nonlinear constraints in the optimization process was successful in

maintaining the MAC values between the computed mode shapes and the identified

mode shapes within a prescribed desirable range. Although there is a trade-off in

the natural frequencies versus the mode shapes, this method can be useful when

some updated mode shapes do not have a relatively good match. The placement of

constraints on a mode shape agreement also can be practically beneficial when a priori

knowledge is given on the the quality of mode shape measurements due to limited

sensor placements and/or measurement noise level. In this chapter, the ability of

the regularization technique to constraint mode shape agreements is demonstrated

using a full-scaled FE model and real measured data. More study should be done to

understand what level of overall agreements can be achieved by the use of nonlinear

MAC constraints when a model updating problem is subjected to different levels

of modeling errors, different configurations of sensor placements, and different noise

levels.
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3.7.3 The selection of the modal parameters sensitivity-based

clustering analysis

Sensitivity-based clustering analysis was conducted to determine the efficient sets of

the updating parameters. The physical parameters grouped in the same updating

parameter had similar effects on the targeted natural frequencies. The more efficient

selection of the updating parameters led to the better model updating result, com-

pared to the result with the updating parameters selected using engineering judgment.

It was observed that the sensitivity-based clustering method grouped physical param-

eters that are located in the symmetrical positions along the longitudinal direction

into the same updating parameter. However, modeling errors do not necessary to be

the same for those symmetrically-positioned physical parameters, e.g., damage can be

propagated into one side of a structure. When the model updating techniques is used

for structural damage detection, grouping symmetrically-positioned physical parame-

ters into the same parameter is not preferred since it can pose a difficulty in localizing

possible structural damage. This behavior of the sensitivity-based clustering analysis,

which groups physical parameters without taking their structural spatial information

into consideration, can be a drawback of this method. Therefore, the sensitivity-based

clustering method should be developed further to overcome its possible drawback.

3.7.4 The results of four model updating exercises

In this chapter, four model updating exercises with the regularization and sensitivity-

based clustering techniques are visited. The performances of the updated models are

evaluated based on the error estimates in the natural frequencies and the MAC values.

The performances of the updated model should not be generalized only based on those
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error estimates since neither measure data and a model cannot be unique. When it

comes to choosing the best model among possible candidates, engineering judgment

is still required. The prediction capability of an updated model estimated by the

cross validation technique also can be taken into consideration of model selection.
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Chapter 4

Bayesian Model Updating

This chapter explores the Bayesian model updating approach, which belongs to a

probabilistic scheme in model updating. Compared to the deterministic approach,

which is addressed in the previous chapter, the probabilistic model updating approach

has some advantages. The probabilistic approach has a more robust capability to deal

with uncertainties associated with an updating problem and ability to provide distri-

butions of physical parameters of a model. However, the Bayesian model updating of

a full-scale FE model based on real measurements is rare due to the complexity of a

model and the uncertainties of measurements. This chapter explores the applicability

of Bayesian model updating to a full-scale model.

4.1 Introduction

In general, model updating can be classified into two approaches: deterministic model

updating and stochastic model updating. The first approach determines a unique so-

lution by solving an optimization problem, which minimizes discrepancies in modal

properties or structural responses between FE models and real structures. Various
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optimization algorithms such as the Gauss-Newton algorithm with a trust region,

interior point algorithm, and genetic algorithm are used to solve optimization prob-

lems associated with model updating (Moaveni & Behmanesh, 2012; Bakir et al.,

2007; Mosquera et al., 2012). The second approach finds multiple solutions based

on a probabilistic scheme. There are several advantages of having multiple solutions.

Multiple solutions permit the determination of whether problems are globally identi-

fiable, locally identifiable or unidentifiable cases. In globally and locally identifiable

cases, solutions can be obtained from the dominant peaks of the posterior probabil-

ity distributions of updated parameters. In unidentifiable cases, invariant parameter

regions can be identified based on flat regions in posterior distributions. Further-

more, multiple solutions not only enable the evaluation of the uncertainties of the FE

model’s updated parameters, but also quantify the propagation of these updating pa-

rameters’ uncertainties into modal properties and/or structural responses. Estimated

statistical information plays an important role in the prediction of future responses

and reliability of structures.

Many uncertainties arise in model updating because of possible modeling assump-

tions in the development of FE models and variations in measured data. These

uncertainties should be properly considered and managed during the updating pro-

cess to produce a more accurate updated FE model. In general, there are two types of

uncertainties: epistemic and aleatory. Epistemic uncertainties account for unknowns

due to the lack of knowledge. In model updating, these uncertainties include uncer-

tain material properties and geometry because of limited knowledge, as well as joint

stiffness, boundary conditions, and unmodeled nonlinear behavior arising from the

simplification of FE models. Deterministic model updating methods are the appro-

priate choice only when dealing with epistemic uncertainties. Aleatoric uncertainties

represent unknowns that can only be determined by statistical measurement. These
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unknowns might differ for each repetition of the same experiment or measurement

such that their physical outcomes are best described using statistical measures such

as mean, variance, and higher-order statistical moments. The engineering tolerance

associated with the physical properties of structural components is incorporated into

aleatoric uncertainties. Moreover, variations in natural frequencies and mode shapes

that are identified from real measured data are good examples of aleatoric uncertain-

ties. Variations of identified modal properties due to environmental effects such as

temperature (Peeters & De Roeck, 2001; Sohn, 2007) and traffic (Brewick & Smyth,

2013) are commonly observed during structural dynamic tests. Stochastic model

updating methods can more efficiently manage aleatoric uncertainties.

Bayesian model updating is a popular stochastic model updating method. It has

a significant advantage because of its robustness in dealing with uncertainties and

ability to provide distributions of updating parameters. The statistical framework of

Bayesian model updating was developed by (J. Beck & Arnold, 1977; J. L. Beck &

Katafygiotis, 1998) and employed later by (J. L. Beck & Au, 2002) using the adaptive

simulation method. Bayesian model updating necessitates solving multi-dimensional

integration problems, which might be analytically challenging, especially when many

updating parameters are modified during an updating process. The Markov chain

Monte Carlo (MCMC) method, which is a stochastic simulation method, is widely

used to numerically solve a multi-dimensional integration problem by generating a

series of random samples that target a posterior probability density function (PDF)

(Robert & Casella, 2005; Ching, Muto, & Beck, 2006; Muto & Beck, 2008). In MCMC

simulations, many sampling techniques have been developed such as Metropolis Hast-

ings (MH) (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Hastings,

1970), transitional Markov chain Monte Carlo (TMCMC) (Ching & Chen, 2007), and

hybrid Monte Carlo (HMC) (Duane, Kennedy, Pendleton, & Roweth, 1987) methods.
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Although Bayesian model updating provides several advantages, in the research

literature it is mostly applied to problems with numerically simulated data and rela-

tively simple models. For research, simulated data and simple models are preferred

because they allow researchers to have more control over problems with respect to

the level of measurement noise and modeling errors. In contrast, full-scale FE mod-

els are widely used in industry to more precisely study structural behaviors under

extreme loading conditions such as during earthquakes and hurricanes, as well as

day-to-day operating conditions. However, the application of Bayesian model up-

dating to large-scale operational civil structures with real data is very rare because

of existing challenges (Behmanesh & Moaveni, 2015). The application of Bayesian

model updating to full-scale and real measured data is more challenging because the

level of uncertainties associated with modeling errors increases when many idealized

connections, boundary conditions, and unknown material properties are included in

FE models. In addition to the complexity of full-scale models, real measured data

pose challenges because of unknown measurement noise and variations in identified

natural frequencies and mode shapes.

In this chapter, Bayesian model updating of a full-scale FE model is conducted in

an effort to expand its application to more practical and real problem. Specifically,

the target is to minimize discrepancies in natural frequencies and mode shapes be-

tween the FE model and real measured data. 22 updating parameters, each of which

modifies physical parameters whose effects on target natural frequencies are similar,

are determined using sensitivity-based clustering. To generate samples for the pos-

terior PDF, the HMC method is used since it is a powerful method for dealing with

a high-dimensional parameter space and highly-correlated parameters. Then, the

uncertainties of the updated parameters and the propagation of those uncertainties

into the natural frequencies and mode shapes of the updated model are investigated.

67



Confidence intervals for the updated parameters and modal properties of the updated

model are estimated at the end.

The chapter is organized as follows. Section 4.2 overviews the theoretical back-

ground of Bayesian model updating. In Section 4.3, HMC simulation is explained.

Section 4.4 addresses the results of the Bayesian model updating of the full-scale FE

model. In Section 4.5, the conclusions of the study are presented.

4.2 Overview of the Bayesian Model Updating Frame-

work

In the Bayesian approach, the plausibility that each model class M is associated

with data D is quantified by a joint probability density function, which is known as

a posterior PDF. By Bayes’ theorem, the posterior PDF is expressed as

p (θ | D,M) = c−1p (D | θ,M) p (θ | M) , (4.1)

where θ is an updating parameter vector, and c = p (D | M) is a normalizing constant

that makes the integration of a posterior PDF over the parameter space become unity.

p (θ | M) is the prior PDF that provides the initial plausibility of the parameters θ

associated with model class M. In other words, the prior PDF is an assumed initial

distribution of the updating parameters θ. p (D | θ,M) is the likelihood function,

which is generally an error estimate (measure-of-fit) in model updating. The data

D provides information about the updating parameters θ so that the estimation of

the probability of the updating parameters θ becomes more accurate based on the

given data D. In this application, D represents the identified natural frequencies and

mode shapes determined from the real measured data. The more data included in the
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likelihood function in model updating, the more accurate is the model update result

that can be achieved (Behmanesh & Moaveni, 2015). The posterior PDF p (θ | D,M)

accounts for an updated distribution of parameters θ based on the assumed prior PDF

and the given data D.

Bayesian model updating requires that a multidimensional integration problem be

solved. As an example, the normalizing constant c in Eq. 4.1 necessitates a multidi-

mensional integration over the parameters space, which is defined as follows:

c = p(D|M) =

∫
p(D|θ,M)p(θ|M)dθ. (4.2)

Since only one FE model is considered here, the model class M is dropped here-

after. Multidimensional integrations are also involved with the calculations of the

marginal probability distributions of the updating parameters θ and the predictive

PDF. When the dimensions of the parameter space becomes large, multidimensional

integrations may be challenging when using an analytical approach. One solution is

to use Laplace’s method of asymptotic approximation. However, this requires a Gaus-

sian assumption for the posterior PDF, which might not be reasonable in some cases.

The most popular method for dealing with multidimensional integration problems is

the stochastic simulation method. MCMC is a robust and efficient simulation tech-

nique for Bayesian model updating problems. MCMC generates sequence samples (a

Markov Chain) that are consistent with a target posterior PDF. The main advantage

of the MCMC method is that posterior samples can be generated by targeting an

unnormalized posterior PDF, which means that the posterior PDF can be estimated

without knowing the scaling factor, e.g., the normalizing constant c, of the posterior

distribution. In the model updating problem, high probability regions of the posterior

PDF are usually observed, where high probability is concentrated into a small volume
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of the parameter space. This requires that posterior samples in the high probability

regions be sufficiently generated by the MCMC methods to accurately estimate the

posterior PDF.

The most well-known MCMC method is the MH method (Metropolis et al., 1953;

Hastings, 1970). The drawbacks of this method are that the generation of samples

can be inefficient in high probability regions, as well as in high dimensional problems.

To overcome these drawbacks, the TMCMC method was introduced (Ching & Chen,

2007), which uses a sequence of intermediate PDFs that converge to a targeted PDF

as the iterations continue. In each iteration, reweighting and resampling is performed

to generate samples for an intermediate PDF, which can be used for the next itera-

tion. For generating samples in a high probability region, the TMCMC method has

advantage over the MH method due to its use of a sequence of intermediate PDFs.

Furthermore, the TMCMC method is able to estimate a normalized constant c. How-

ever, the TMCMC method also has the potential to experience problems in higher

dimensions (Cheung & Beck, 2009).

4.3 Overview of Hybrid Monte Carlo Simulations

The HMC method (Duane et al., 1987), which is also known as the Hamiltonian Monte

Carlo, is the MCMC method that is most robust in dealing with high-dimensional

problems (Cheung & Beck, 2009; Hanson, 2001). Many MCMC methods rely on

a random-walk proposal distribution to generate the next consecutive sample from

current samples in the Markov chain, which results in a slow exploration of the target

PDF. For example, the MH method requires a prohibitively large number of samples

to precisely construct the proposal PDF. The HMC method adopts a molecular dy-

namic (MD) trajectory in combination with the acceptance rule from the MH method.
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The use of a dynamic trajectory enables the HMC method to avoid the random-walk

behavior in samples, which is its major advantage. The avoidance of random-walk

behavior permits the Markov chain to more efficiently search for a target distribution.

The advantage of the HMC method becomes even more pronounced when parameters

are highly correlated and the problem is highly dimensional.

In the HMC method, a fictitious dynamical system describes an object’s motion in

terms of its location θ ∈ RN and momentum p ∈ RN at a certain state t. The location

θ values are the uncertain parameters within the targeted distribution π(θ), which is

the posterior PDF in the model updating. The total energy of the dynamical system

is conserved over time and is known as the Hamiltonian H(θ,p), which is the sum

of the potential energy U(θ) = − lnπ(θ) and the kinetic energy K(p) = pTM−1p/2.

The mass matrix M ∈ RN×N is a positive definite matrix.

A canonical distribution is used to relate the target PDF π(θ) to the Hamiltonian

function H(θ,p). The canonical distribution for the Hamiltonian energy becomes

p(θ,p) ∝ exp(−H(θ,p)) = exp(−U(θ))exp(−K(p)) = π(θ)exp(pTM−1p/2). (4.3)

As shown in Eq. 4.3, π(θ) is independent of the distribution for the momentum p.

This also means that Hamiltonian dynamics can be used to generate samples targeting

the joint canonical distribution p(θ,p) because π(θ) is proportional to p(θ,p). A

common choice for the distribution of p is a zero-mean Gaussian distribution with

a covariance matrix M. Furthermore, the target distribution π(θ) also can be an

unscaled probability distribution since π(θ) is proportional to the joint distribution

p(θ,p).

Hamiltonian dynamics are used as a proposal function for a Markov chain to

generate samples that are consistent with the target PDF. According to Hamilton’s
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equations, the changes of θ and p over time t are determined by the partial derivatives

of the Hamiltonian, which are:

dp

dt
= −∂H

∂θ
= −∇U(θ), (4.4)

dθ

dt
=
∂H

∂p
= ∇K(p) = M−1p. (4.5)

For any time interval δt, the evolutions of θ and p can be numerically solved by

Euler’s method, a modified Euler’s method, or the leapfrog method (Van Gunsteren

& Berendsen, 1988). The leapfrog method is generally preferable and yields a better

result in HMC simulations, as compared to the other methods (Neal, 2011), and is

defined as follows:

p

(
t+

δt

2

)
= p(t)− δt

2
∇U (θ(t)) , (4.6)

θ(t+ δt) = θ(t) + δtM−1p

(
t+

δt

2

)
, (4.7)

p (t+ δt) = p

(
t+

δt

2

)
− δt

2
∇U (θ(t+ δt)) . (4.8)

The algorithm of the HMC method is summarized in Figure 4.1. In each iteration,

the momentum variable p is randomly generated from a predetermined distribution.

In this application, the momentum variable p follows N (0,M), where M = diag(0.3).

It is worth mentioning that p is introduced as an auxiliary variable in order to fa-

cilitate the Markov chain path. One practical difficulty associated with the HMC

method is the need for selecting suitable values for the step-size δt and the number of
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Algorithm: Hybrid Monte Carlo

Input : Predetermined π(θ),M, δt, and L,N
Output: N samples of θ

initialization: Set an initial location state θ0, i = 1 and j = 1;
while i < N do

Sample p(t) ∼ N (0,M);
θ(t) = θi and ;
Repeat the leapfrog method L times with the step-size δt, starting from the
current state (θ(t),p(t));
Obtain proposed states θ∗ = θ(t+ Lδt) and p∗ = p(t+ Lδt);
Draw a random number x ∼ U(0, 1);
if x ≤ min(1, exp(H(θ(t),p)−H(θ∗,p∗)) then

θi = θ∗;
i = i+ 1;

else
θrejected,j = θ∗;
j = j + 1

end

end

Figure 4.1: Algorithm for the HMC method.
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leapfrog steps L. The length of the trajectory at each iteration, represented as Lδt,

should permit samples to efficiently explore all of the distribution domain, rather

than conduct a random walk. The two hyper-parameters mentioned above can be

determined by considering an acceptance rate for the proposed states as well as the

convergence of samples into a stationarity. Like the MH method, the HMC method

also has an acceptance rule for a candidate sample. The optimal acceptance rate

for the HMC method was proven to be 65% (Neal, 2011), which is higher than the

optimal 23% acceptance rate for the MH method. Since it is practically challenging

to identify δt and L such that the acceptance rate of the samples is identical to the

optimal acceptance rate, an interval between 60% and 70% can be a reasonable range

for an acceptance rate when L > 1. Computational expenses increases significantly

with an increasing number of parameters θ and a value of L, due to the need to

calculate partial derivatives.

4.4 Bayesian Model Updating of a Full-scale FE

Model

4.4.1 Likelihood function and prior PDF

The updating parameter θ considered for Bayesian model updating here is the ones

that determined by the sensitivity-based clustering method, which is defined in Sec-

tion 3.6. In the likelihood p (D | θ), the error function is modeled as a Gaussian

distribution with a zero mean and an unknown variance σ2. It is assumed that the

errors in the natural frequencies and mode shapes are independent and the errors

from different dynamic modes are also independent. The likelihood function used in
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this application becomes

p(D | θ) =
1

(2πσ2)NmN0/2
exp

(
− 1

2σ2

No∑

j=1

Nm∑

i=1

Ji(θ,Dj)
)
, (4.9)

where Nm is the number of dynamic modes considered in the updating process and

No is the quantities of data set D included in the analysis. In this updating problem,

the nm value is 7 and N0 is 4. It is noteworthy that the terms involving the unknown

variance σ2 in Eq. 4.9 are scaling factors of the posterior PDF. Without knowing the

exact values of σ, posterior samples can be generated by the MCMC method since

an unscaled distribution can be targeted to construct samples for the posterior PDF.

The error (measure-of-fit) function J(θ,D) is defined as the discrepancy between

the identified natural frequencies and mode shapes from the measured data and those

from FE models. Instead of matching the measured responses with the predicted ones

from the FE model, which requires running many iterations of the FE model with

respect to the number of response data points, the natural frequencies and mode

shapes are used in the error estimation because this requires only one iteration of the

FE model to evaluate an error function. However, when modal properties are used as

targets in model updating, mode pairing should be properly carried out, which means

that comparisons of modal properties obtained from measured data and FE models

should be made only when they correspond to the same dynamic mode. Ji(θ|Dj) is

an error function with respect to the ith mode and jth set of data, which is defined as

follows:

Ji(θ,Dj) = rif
2
(θ,Dj) + rs

i(θ,Dj)T rs
i(θ,Dj). (4.10)

rf : Rnp → Rnt , rs : Rn → Rm. rf is a natural frequency residual vector. rs is a mode

shape residual vector. np and nt are the number of updating parameters and of the
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dynamic modes considered in updating (targeted dynamic modes). nm is equal to

the product of the number of targeted dynamic modes and the number of DOFs of

the mode shapes. The natural frequency residual vector rif (θ,Dj) represents relative

errors in the natural frequencies with respect to the ith dynamic mode and the data

set Dj, and is defined as

rif (θ,Dj) =
fi(θ)− f̃i,j

f̃i
. (4.11)

f̃i,j and fi(θ) are the identified and computed natural frequencies of the ith mode,

respectively. The residual mode shape vector rs
i(θ,Dj) is

rs
i(θ,Dj) = MSF

(
φi(θ),

φ̃i

φ̃i
r

)
φi(θ)−

φ̃i

φ̃i
r , (4.12)

where φ̃i and φi(θ) are respectively the identified and computed mode shape vector.

φ̃i
r

is a reference value, which is the maximum component of the vector φ̃i. Since the

computed mode shapes have a different scale than the identified mode shapes, a modal

scale factor (MSF) is used to change the scale of the computed mode shapes φi(θ) in a

such way that the difference with the maximum normalized identified mode shapes is

minimized, with respect to the least-squares perspective (Allemang & Brown, 1982).

The MSF is defined as

MSF
(
φi(θ), φ̃i

)
=
φ∗i (θ) φ̃i
‖φi(θ)‖2

, (4.13)

where �∗ denotes a complex conjugate transpose.

The prior PDF p (θ) is assumed to be an independent Gaussian distribution, and

the means are equal to the values that minimize −ln(p(D|θ)). The standard deviation

is 0.3, such that the prior PDF can reflect higher uncertainties for the updating
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parameters. It is worth noting that the updating parameter θc cannot be less than

-1, where the corresponding physical parameter Xc becomes negative, such as the

Young’s modulus, spring coefficient, and mass density. Negative physical parameters

lead to an FE model that does not remain in a physically meaningful range. In this

model updating, the bounds that ensure the updating parameters remain physically

meaningful are taken into consideration. The likelihood function becomes zero when

θ < 1. This condition is equivalent to one in which there is zero probability of having

negative values for the physical parameters after model updating.

4.4.2 Generated posterior samples by the HMC simulation

The HMC simulation generates 2000 posterior samples that are consistent with the

unscaled posterior PDF, which is proportional to the product of the likelihood func-

tion and the prior PDF. In the simulation, the initial location state θ0 is determined

in a such way that it minimizes potential energy U(θ). This initial state enables the

Markov chain to start around a high probability region of the target PDF, making

the exploration of the target PDF more efficient (Cheung & Beck, 2009). The interior

point method (Byrd et al., 1999) solves the optimization problem of finding the initial

state θ0. In the leapfrog method, the gradient of the potential energy with respect to

θ is calculated numerically to determine a proposal state. The two hyper-parameters

L and δt in the HMC simulation are selected to be 2 and 0.1, respectively. These

selected hyper-parameters lead to an average acceptance rate of 70%, which is within

the reasonable interval [60% to 70%]. The posterior 2000 samples are the accepted

samples, as based on the acceptance rule of the HMC method. Accepted posterior

samples (θ1 - θ22) are shown in Figure 4.2. The y-axes of the plots are the updating

parameters defined in Eq. 3.1.
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Figure 4.2: Posterior samples (θ1 - θ12) generated by HMC simulation.

78



Moving means and standard deviations of the samples are calculated to verify

the convergence of the Markov chain to stationarity. A window length of 400 data

points was used in the calculation of the moving means and standard deviations. The

moving means and standard deviations associated with θ3, θ6, and θ22 are shown in

Figure 4.3. The y-axes of Figures 4.3ab are an updating parameter defined by Eq. 3.1

and a standard deviation. The first 200 samples are in the burn-in period where the

samples converge to stationarity. After the burn-in period, the mean values converge

to parameters that minimize the error between the measured data and the FE model.

The standard deviation also converges to a certain value depending on the reduction

of the uncertainty after model updating. The burn-in samples are excluded in the

estimation of the posterior PDFs. Furthermore, there is no random walk behavior

in the generated samples, i.e., there is no significant zig-zag behavior in the moving

means, which, as mentioned above, is the main benefit of using the HMC method.

The samples from the HMC method are more efficient and robust since they have

relatively stable moving means and standard deviations.

4.4.3 Correlation between updating parameters

The correlation between the updating parameters is also studied based on the gen-

erated posterior samples. It is found that all updating parameters are uncorrelated,

which is the same as the assumption of independent distributions in the prior PDFs.

Three examples of the pairwise posterior samples are shown in Figure 4.4 to demon-

strate that the three updated parameters (posterior samples) θ3, θ6, and θ22 are

uncorrelated. It can be clearly seen that there is no linear or nonlinear relationship

between these two parameters. The correlation coefficient matrix for all the updating

parameters is shown in Figure 4.5. In the figure, the x and y−axes are indexes of
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Figure 4.3: Convergence to stationarity for selected updating parameters (θ3, θ6,

and θ22): (a) moving averages; and (b) moving standard deviation.
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the updating parameters. All off-diagonal values of the correlation coefficient matrix

are less than 0.1, which means that the updated parameters are uncorrelated with

each other. It is noteworthy that an assumption that is made for the prior PDFs

(independent Gaussian distributions in this study) does not necessarily lead to un-

correlated updating parameters (posterior samples). For example, in the study done

by (Cheung & Beck, 2009), it was observed with the posterior PDFs that some stiff-

ness parameters were highly correlated and non-Gaussian, which were different from

the independent Gaussian prior PDFs. The ability of Bayesian model updating to

capture correlations between updating parameters can provide meaningful physical

insights for a proper parameterization in model updating.

4.4.4 Probabilities of the updated parameters and the vari-

ations of the natural frequencies and mode shapes of

the FE model

The posterior samples, excluding the burn-in samples, are used to estimate the proba-

bilities of the updated parameters. Histograms of the updated parameters θ3, θ6, and

θ22 are shown in Figure 4.6. Kernel density estimation with a normal kernel function

is carried out to obtain the marginal PDFs and the cumulative distribution functions

(CDFs) of the updated parameters. The estimated marginal PDFs and CDFs of the

updated parameters θ3, θ6, and θ22 are shown in Figure 4.7. It is obvious that some

updated parameters (the posterior PDFs) do not exactly follow a Gaussian distri-

bution although Gaussian assumptions are made in the likelihood function and the

prior PDF. Bayesian updating using Laplace’s asymptotic approximation (J. L. Beck

& Katafygiotis, 1998), which assumes a Gaussian distribution for the posterior PDFs,

cannot be appropriate for this problem since the estimated marginal posterior PDFs
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Figure 4.4: Pairwise plots for selected posterior samples (θ3, θ6, and θ22).
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Figure 4.5: Pairwise plots for selected posterior samples (θ3, θ6, and θ22).
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are non-Gaussian. Understanding the non-Gaussian behavior of the posterior PDF is

important for making robust predictions of structural responses and reliabilities.

Based on the estimated marginal CDFs, 95% confidence intervals are calculated

for the updated parameters (posterior samples), as shown in Figure 4.8. The mean

values of the updated parameters are marked with circles. The x−axis of the figure

is the index of the updating parameter θ. The y−axis is the values of the updated

parameters, which are defined by Eq. 3.1. The updating parameters whose values

are equal to zero account for the initial physical parameters of the FE model. The

negative values of the updated parameters mean that the corresponding physical

parameter values increase during the modification.

After the Bayesian model updating, a reduction in the uncertainties associated

with the updating parameters is observed. The standard deviations of the updated

parameters are summarized in Table 4.1. Compared to the prior uncertainties, the

posterior uncertainties (standard deviations) are reduced, since the data sets D in

the likelihood function provide information about the distribution of the parameters

θ. The uncertainties of the updated parameters θ6, θ15, and θ22 are reduced more

than those of the other parameters. The parameters that have greater reductions

in their uncertainties are the stiffness-related parameters, which also make compara-

tively more dominant contributions to the target natural frequencies, i.e., the natural

frequencies of the FE model are more sensitive to those parameters. The sensitivi-

ties of the natural frequencies corresponding to the updating parameters are shown

in Figure 4.9. Some of the mass density updating parameters (θ1 − θ5) also have a

dominant effect on the target natural frequencies. However, the uncertainty reduc-

tion associated with the mass densities is relativity low, despite the sensitivity of the

natural frequencies to the mass densities. A relatively smaller degree of reduction in

the mass parameters was also observed in (Cheung & Beck, 2009).
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Figure 4.6: Histograms of the updated parameters (posterior samples) θ1 - θ22.
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Figure 4.7: Kernel density estimation: PDFs of updated parameter θ1 - θ22
estimated by KDE.
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Figure 4.8: 95% confidence intervals for the updated parameters (posterior

samples).

Table 4.1: Statistical results of the posterior samples and uncertainty reductions

after Bayesian model updating (the standard deviations of the prior PDFs is 0.3).

Parameter Mean STD MAP Parameter Mean STD MAP

θ1 -0.025 0.311 0.025 θ12 -0.495 0.300 -0.532
θ2 0.169 0.300 0.254 θ13 -0.551 0.307 -0.494
θ3 -0.256 0.300 -0.258 θ14 -0.435 0.296 -0.398
θ4 -1.507 0.298 -1.453 θ15 -0.017 0.267 0.015
θ5 -1.449 0.296 -1.427 θ16 -0.548 0.306 -0.576
θ6 0.053 0.278 -0.043 θ17 -0.428 0.292 -0.442
θ7 -0.314 0.301 -0.250 θ18 -0.452 0.307 -0.388
θ8 -1.946 0.291 -1.920 θ19 -0.596 0.313 -0.570
θ9 -0.708 0.299 -0.625 θ20 -0.507 0.305 -0.601
θ10 -0.455 0.299 -0.431 θ21 -0.040 0.304 0.034
θ11 -0.314 0.297 -0.280 θ22 -0.031 0.272 0.050
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parameters θ (more uncertainty reductions for θ6, θ15, and θ22 as shown in Table 4.1).
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The generated posterior samples are also used to study how the uncertainties of

the updated parameters are propagated into the uncertainties of the natural frequen-

cies and mode shapes of the FE model. The ability to compute the propagation of

the uncertainties (the variabilities of the modal properties of the model) is one of the

advantages of the multiple solutions of Bayesian model updating. Figure 4.10 shows

histograms of the natural frequencies computed from the FE model and the corre-

sponding marginal PDFs obtained by the kernel density estimation. The x−axis is

the natural frequencies of the FE model. Two y−axes are shown in the figure: one is

the number of the samples and the other is a probability based on the kernel density

estimation. Figure 4.11 shows histograms and the marginal PDFs associated with the

MAC values between the identified mode shapes and those computed from the FE

model. Relatively fewer variations in the natural frequencies and the mode shapes are

observed in the lower dynamic modes because the higher dynamic modes are more

sensitive to the perturbation of the parameters.

4.4.5 Modeling error reductions after Bayesian model updat-

ing

Maximum a posteriori (MAP) estimation is carried out to select the updating pa-

rameters that minimize the modeling errors of the initial FE model. The maximum

values of the marginal posterior PDFs, which are the MAP estimates, are summa-

rized in Table 4.1. Table 4.2 compares the natural frequencies and the MAC values

between the initial FE model and the updated model based on the MAP estimates.

The second column of the table shows the mean values of the identified natural fre-

quencies from the measured data. The third and fifth columns of the table are the

natural frequencies from the initial FE model and the updated FE model, respec-
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Figure 4.10: Variation of the natural frequencies of the FE model for selected

modes (H1, V1, V2, T1, SV1, H2, and V3): histograms and PDFs estimated by KDE.
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Figure 4.11: Variation of the MAC values between the identified model shapes

and those from the FE model for selected modes (H1, V1, V2, T1, SV1, H2, and V3):

histograms and PDFs estimated by KDE.
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tively. It is clear that most of the initial discrepancies in the natural frequencies

significantly decrease during the model updating process, although the match in the

natural frequencies of the first torsional mode is not satisfactory. An unsatisfactory

updating result with the first torsional mode is also observed with the deterministic

model updating of the same bridge model under considered here; a possible reason

for the unsatisfactory updating result is provided in Section 3.7. The means of the

MAC values calculated between the four identified mode shapes and those from the

initial FE model are summarized in the seventh column of the table. Compared to

the initial MAC values, the mode shape matches are also improved during the model

updating process, especially for the higher modes.

Table 4.2: Natural frequencies and the MAC values of the FE model after

Bayesian model updating.

Mode Frequency MAC value

Hz

Identified Initial FE Relative error MAP Relative error Initial FE MAP

H1 0.194 0.2340 0.207 0.197 0.017 0.981 0.968
V1 0.227 0.2940 0.296 0.241 0.063 0.963 0.969
V2 0.303 0.3520 0.162 0.303 0.001 0.948 0.962
T1 0.373 0.3840 0.029 0.335 0.103 0.776 0.746
SV1 0.337 0.4520 0.340 0.341 0.012 0.839 0.763
H2 0.450 0.5390 0.197 0.456 0.013 0.847 0.867
V3 0.500 0.5980 0.197 0.524 0.049 0.861 0.986

Total relative error 1.428 0.256

4.5 Conclusions

In this study, a full-scale FE model with 22 updating parameters is updated us-

ing the Bayesian model updating scheme. The sensitivity-based cluster analysis is
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a robust method for selecting an efficient set of updating parameters based only on

the physical definition of the parameters. The updating parameters selected by the

analysis enabled the grouping of the physical parameters whose effects on the tar-

get frequencies are similar. The HMC simulation successfully generated samples for

the high-dimensional problem under consideration here. Furthermore, the posterior

samples from the HMC simulation were more effective since there is no random walk

behavior in the samples.

The multiple solutions obtained by Bayesian model updating permit the estima-

tion of not only the probabilistic measures of the updated parameters, but also the

uncertainty propagation of those parameters to the natural frequencies and mode

shapes of the FE model. In general, providing multiple solutions to users of FE mod-

els is beneficial, since the best solution for meeting the particular application needs

and technical considerations can be chosen between a number of possible solutions

given by the Bayesian model updating. The MAP estimates of the updating param-

eters (posterior samples) lead to an FE model whose natural frequencies and mode

shapes are in better agreement with those from measured data.

In the Bayesian model updating here, four measured data sets provided informa-

tion about the distributions of the updating parameters. Although the estimation of

the probabilities of the updating parameters and the variabilities of the modal prop-

erties of the FE model can be improved by including more data into the problem, this

was not able to do here so due to the limited availability of measured data. Also, the

assumed prior PDF in this study depended on the optimization solution of the error

function to yield a better assumptions about the updating parameters, because of the

limited measured data and the large initial modeling error. A different assumption

for the prior PDF, such as a uniform distribution, can be used to compare an updat-

ing result for a different selection of assumptions. Furthermore, a Bayesian two-stage
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formulation (Au & Zhang, 2016; F.-L. Zhang & Au, 2016), which has the capability

of considering structural modeling errors during an updating process can be applied

to the FE model updating practice.
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Chapter 5

Temperature Effects on Natural

Frequencies

In real-world applications of vibration-based damage detection methods, it becomes

fundamentally very important to distinguish changes in the dynamics of structures

due to structural damage from those due to the environmental effects. Modal proper-

ties of structures are widely used as damage sensitive features which indicate changes

in physical properties due to structural damage or degradation. However, civil struc-

tures are under various operational and environmental conditions, such as traffic,

wind, humidity, and most importantly temperature, which also change modal prop-

erties of structures in addition to structural damage. Changes in natural frequencies

due to the environmental effects have also been observed with the identified natu-

ral frequencies of the bridge considered here, which are demonstrated in Section 2.2.

Changes in modal properties caused by the environmental effects can mask coun-

terparts due to structural damage, resulting in an unreliable structural damage as-

sessment. Therefore, it is fundamentally important to understand the relationships

between the environmental effects and modal properties.
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5.1 Background

Variations in modal properties due to environmental and operational conditions such

as wind, traffic, humidity, and temperature have been rigorously investigated in the

last few decades (Peeters & De Roeck, 2001; Kim, Yun, & Yi, 2003; Sohn, 2007; Moser

& Moaveni, 2011; Magalhaes, Cunha, & Caetano, 2009; Macdonald & Daniell, 2005;

Xu, Chen, Ng, Wong, & Chan, 2010). Among those environmental and operational

effects, temperature is, in general, the most influential source for the variations in

natural frequencies of structures (Zhou, Ni, & Ko, 2010; Moser & Moaveni, 2011). The

variations in natural frequencies due to temperature have been widely observed with

real measured data over daily and annual cycles. The first three natural frequencies

of the Alamosa Canyon Bridge varied about 5% over 24 hours (Cornwell, Farrar,

Doebling, & Sohn, 1999). The natural frequencies of the Ting Kau Bridge fluctuated

in the range of 1.7 and 6.7% over a year period as temperature changed between 3

and 53°C (Zhou et al., 2010; Hua, Ni, Ko, & Wong, 2007; Ni, Hua, Fan, & Ko, 2005).

The first six natural frequencies of the Dowling Hall Foot Bridge varied by 4-8%

over a 16 week period as temperature ranged from -14 to 39°C (Moser & Moaveni,

2011). During a sixteen-day monitoring of the Tianjin Yonghe Bridge, the natural

frequencies of the first and fourth bending modes fluctuated by 3.155 and 1.470%,

respectively, when ambient temperature ranged from -11.5 to 3.7°C (Li, Yao, Yao, &

Xu, 2010). A bilinear behavior in the relationship between temperature and natural

frequencies, where a kink is located around 0°C, is observed in data sets measured from

the Z24 Bridge (Peeters & De Roeck, 2001) and the Dowling Hall Footbridge (Moser

& Moaveni, 2011). The temperature effect on natural frequencies is also observed

from a laboratory test. Xia, Hao, Zanardo, and Deeks (2006) conducted an ambient

dynamic test on a reinforced concrete slab for nearly two years and found that natural
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frequencies of bending modes decreased 0.13 - 0.23% as temperature increased by 1°C.

Kim, Park, and Lee (2007) carried out a series of forced vibration tests on a small-scale

bridge model subjected to various temperature and found that the first four natural

frequencies decreased by 0.64, 0.33, 0.44, and 0.22%, respectively when temperature

increased per unit degree. Balmès et al. (2008) performed a laboratory test with a

clamped beam within a climatic chamber and demonstrated that the first four natural

frequencies increased by 16, 8, 5, 3% as an ambient temperature decreased by 17°C.

Regression analysis has been conducted to understand the relationships between

natural frequencies and temperature changes. Linear, nonlinear, and machine learn-

ing models have been used to model the temperature effects on natural frequencies.

Sohn et al. (1999) presented an adaptive filter consisting of multiple linear regression

models and demonstrated its applicability using data measured from the Alamosa

Canyon Bridge. Xia et al. (2006) applied a linear regression model to temperature

versus natural frequency data obtained from a laboratory test and observed that there

was a good linear correlation between average temperature and natural frequencies.

Peeters and De Roeck (2001) applied an autoregressive model with exogenous inputs

(ARX) model to one-year continuous monitoring data of the Z24 Bridge in an effort

to consider time-dependent temperature effects on natural frequencies such thermal

dynamics. Moser and Moaveni (2011) compared the performances of linear, bilinear,

ARX, and polynomial models based on continuous monitoring data sets of the Dowl-

ing Hall Footbridge and concluded that a fourth-order polynomial model without

cross terms performed the best. Ni et al. (2005) and Ni, Zhou, and Ko (2009) applied

the support vector machine (SVM) and neural network models, which are machine

learning models, to long-tern monitoring data of the Ting Kau Bridge and intensively

studied their generalization capabilities.

In this section, the full-scale FE model, which is described in Section 2.3, is used
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to conduct a controlled simulation-based study on temperature effects on natural

frequencies. Thermal prestress induced due to temperature changes is used to model

temperature effects on natural frequencies. A method that randomly generates spatial

temperature variations over a bridge model is introduced. With randomly generated

temperature variations and prestress modeling, data sets of natural frequencies with

respect to various spatial temperature variations are obtained by the FE model. Based

on simulated data sets (temperatures versus natural frequencies), linear regression and

three machine learning methods (SVM, neural network, and random forest) have been

used to describe the relationships between temperatures and natural frequencies.

5.2 Modeling of thermal effects on natural frequen-

cies

Temperature changes in structural components affect local and global stiffness ma-

trices of a structure and thus cause natural frequency fluctuations over different tem-

perature conditions. Modeling how temperatures alter the stiffness of a structure

is required to simulate temperature effects on the natural frequencies. One of ways

to model this is through the use of a temperature-dependent modulus of elasticity,

which is adapted in a simulation of a simple bridge model conducted by Yan, Ker-

schen, De Boe, and Golinval (2005). In this approach, the relationships between an

elasticity modulus (Young’s modulus) of a material and temperature are assumed.

Then, elasticity moduli of structural components of an FE model are calculated and

changed with respect to the corresponding temperatures of structural components.

The other approach to model temperature effects on natural frequencies is through

imposing thermal prestresses to structural components. The temperature effect mod-
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eling using thermal prestress is demonstrated by Balmès, Corus, Siegert, et al. (2006).

In this approach, changes in the temperatures of structural components generate a

thermal expansion of structural materials based on the thermal expansion coefficient

α and a temperature change ∆T . If boundary conditions of structural components

are fixed, a thermal expansion induces thermal stress.

As an example, free vibrations of a prestressed Euler-Bernoulli beam are governed

by the partial differential equation shown as

EI
∂4W (x, t)

∂x4
+m

∂2W (x, t)

∂t2
−N ∂2W (x, t)

∂x2
= 0, (5.1)

where x ∈ [0, l]; E is the modulus of elasticity; I is the second moment of area for the

cross section; W (x, t) is the deflection of the beam; m is the mass per unit length;

and N is the quasistatic axial load. When a beam has a simple support at both ends,

the boundary conditions become

W (x, t)|x=0,l = 0. (5.2)

Since the boundaries are constrained and the beam cannot expand, the axial load N

can be induced due to the temperature change ∆T , which is given as follows:

N = AσT , σT = EεT , εT = α∆T, ∆T = Tref − T, (5.3)

where A is cross sectional area; σT is the thermal stress; εT is the thermal strain; and

Tref is the reference temperature that is measured when no prestress is imposed. The

third term of the left-hand side of Eq. 5.1 accounts for the contribution of prestress

(axial load) for the beam formulation. By solving Eq. 5.1 with the boundary condi-

tions (Eq. 5.2), one can obtain the ith eigenvalue w2
i of the prestressed beam, which
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is

w2
i =

√
EI(iπ/L)4 +N(iπ/L)2

m
. (5.4)

It is clear to see that the natural frequency w is the function of the axial load N

which is calculated from the thermal stress σT .

To include the modeling of thermal effects using thermal prestress in the FE model

under consideration here, thermal prestress σT for each element of the FE model

is calculated based on the thermal expansion coefficient α and the corresponding

temperature T . Tref is set to be the mean of air temperatures corresponding to the

identified natural frequencies demonstrated in Section 2.2. The thermal coefficient α

is defined to be 1.1×10−5. Then, calculated prestresses for all structural components

of the FE model are defined as initial conditions. Since thermal stress causes the P-

Delta effect, geometrical nonlinearity needs to be considered in this simulation. The

modeling of the temperature effects on natural frequencies using thermal prestress is

verified with an FE model of a simply supported prestressed beam by comparing its

natural frequencies with analytic solutions which is given in Eq. 5.4.

The modeling of the thermal effects on the natural frequencies using thermal

prestress is compared with one using temperature-dependent Young’s modulus. In

this comparison, the temperatures of the deck of the FE model are uniformly changed

from 0°C to 40°C with an increment of 1°C. When it comes to the modeling of the

thermal effects using the temperature-dependent Young’s modulus, it is assumed that

the Young’s modulus of each element of the FE model is to linearly change due to

the temperature change ∆T . The Young’s modulus of each element Ee is calculated

as:

Ee = Eref (1− β∆T ), (5.5)
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where Eref is the Young’s modulus corresponding the reference temperature Tref

and β is the reduction factor, which is assumed to be 2.521 × 10−4 based on ASME

B31.b (ASME, 2007). The natural frequencies of the FE model are calculated based

on the temperature-dependent Young’s moduli estimated from the temperature changes

∆T . For the modeling of the thermal effects using thermal prestress, prestress σT for

each element due to the thermal expansion is calculated by Eq. 5.3 and is defined as

an initial condition in the FE model analysis. By taking the thermal prestress field

into account, the corresponding natural frequencies are evaluated with respect to the

spatially-uniform temperature changes from 0°C to 40°C.

Table 5.1 summarizes the variations in the natural frequencies associated with the

two modeling approaches when the FE model is subjected to the spatially-uniform

temperature changes of the deck, as well as the variations in the identified natural

frequencies. It was found that the relationships between the uniformly-distributed

deck temperatures and the natural frequencies are fairly linear. Thus, the natural

frequencies corresponding to 0 and 40°C are summarized in the table. The second and

third columns demonstrate the results of the modeling using thermal prestress. The

fifth and sixth columns show the results using the temperature-dependent Young’s

modulus. The maximum relative changes versus natural frequencies at the reference

temperature Tref are shown in the fourth and seventh columns of the table. The

variations in the identified natural frequencies are calculated versus their means. It

is noteworthy that the variations in the identified natural frequencies are not only

due to temperatures, but also due to traffic. No significant variations in the mode

shapes are observed with the simulations using both modeling approaches. This is

also observed with real measured data in the other studies (Xia et al., 2006; Moser &

Moaveni, 2011; Balmès et al., 2008).

The thermal prestress modeling provides a more reasonable result, compared to
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Table 5.1: Variation in the natural frequencies associated with the thermal effects

using thermal prestress and temperature-dependent Young’s modulus.

Mode Theraml prestress Temperature-dependent Young’s modulus Identified

Frequency [Hz] Variation [%] Frequency [Hz] Variation [%] Variation [%]

40°C 0°C 40°C 0°C

H1 0.1918 0.2022 3.1900 0.1976 0.1983 0.2524 6.2814
V1 0.2428 0.2547 2.8920 0.2494 0.2504 0.2400 4.0776
V2 0.2843 0.3046 4.1660 0.2958 0.2972 0.3033 1.2219
T1 0.3172 0.3260 1.6770 0.3217 0.3230 0.2790 0.3416
SV1 0.3352 0.3495 2.5240 0.3428 0.3445 0.3199 1.4151
H2 0.4564 0.4679 1.5150 0.4623 0.4639 0.2374 0.6386
V3 0.5083 0.5259 2.0860 0.5179 0.5198 0.2312 1.5813

the one using the temperature-dependent Young’s modulus. This is due to two follow-

ing reasons. First, it produces a more realistic magnitudes of the frequency variations.

In contrast, the magnitudes of the frequency variations obtained by the modeling with

the temperature-dependent Young’s modulus are too small to account for the ther-

mal effects on the natural frequencies. Furthermore, the other reason is that the

thermal prestress modeling provides more meaningful variations for dynamic modes.

From the identified natural frequencies, the first torsional (T1) and the second lat-

eral mode (H2) have relatively fewer variations, compared to the other modes. This

phenomenon is also observed with the simulated results using the thermal prestress

modeling, which means that the natural frequency variations obtained by the thermal

prestress modeling are more representative of the observed variations in the natural

frequencies. Therefore, the thermal prestress is used for the modeling of the thermal

effects on the natural frequencies hereafter.
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5.3 Spatial variations in temperatures over the bridge

When studying the temperature effects on natural frequencies, it is important to

properly consider the spatial variations of temperatures across a bridge. The tem-

peratures of structural components can be different with respect to their structural

locations and the orientation of the sun. The bridge under consideration here is

roughly oriented from east to west. During the morning, the east side of the bridge

can receive the larger amount of solar radiation, compared to the other side of the

bridge, resulting in higher temperatures on the east side. In the afternoon, this can

be opposite (higher temperatures on the west side of the bridge). It is also possible

to have relatively higher temperatures on the main span based on the orientation of

the sun. Temperature distributions across the bridge also can be similar when there

is no significant sunlight on the bridge due to weather conditions or at night. The

spatial variations of temperatures have been widely observed with real measurements

of temperatures (Moser & Moaveni, 2011; Zhou et al., 2010). Zhou et al. (2010)

observed that the maximum temperature difference across the deck of the Ting Kau

Bridge was 22.49°C.

In this study, no direct measurements of temperatures of the structural com-

ponents are available. Therefore, the temperatures distributions of the structural

components are randomly generated so that temperature versus natural frequency

data can be obtained by the FE model analysis with the thermal prestress modeling.

To consider more realistic spatial temperature variations across the bridge model, 22

parameters (T1−T22) for temperature distributions are defined along the longitudinal

direction of the bridge. Figure 2.5 shows the topological locations of the parameters

T1 − T22. It is assumed that temperatures of the structural components that are

assigned to the same parameter are identical.
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Figure 5.1: Locations of 22 parameters for temperatures of the structural com-

ponents (T1 − T22).

The objective of the random generation of temperature fields is to obtain a

physically-meaningful gradient across the bridge model. In other words, some tem-

perature parameters T can have higher values than the others or they can have

similar values. At the same time, it is desired to have some correlations between

adjacent temperature parameters. First, it is assumed that a random temperature

field T1 − T22 follows N (µT ,ΣT ), where N denotes a multivariate Gaussian distribu-

tion; µT ∈ RnT is a vector containing mean values; ΣT ∈ RnT×nT is the covariance

matrix; and nT is the number of the randomly generated temperature fields (here,

nT = 22). In each realization, the mean values µT is randomly generated. First,

µT8 , which is the mean value corresponding to T8, is drawn by the uniform distri-

bution ranging between 0 and 40°C. Then, µT1 and µT16 are drawn by the Gaussian

distribution whose mean is µT8 and standard deviation is 4°C, which are the mean

values for the both ends of the bridge. Based on randomly drawn µT1 , µT8 , and µT16 ,

µTi (i = 2, . . . , 7, 9, . . . , 15, 17, . . . , 22) is interpolated along the longitudinal direction.

The diagonal values of ΣT is set to be 2°C and the off-diagonal values are 0.75°C if

the corresponding temperature parameters are adjacent to each other; otherwise it

becomes zero. The off-diagonal values of the covariance matrix ΣT are determined

to consider the correlation between temperatures of structural components that are

within close proximity. As an example, T18 is correlated with T4, T5, T17, and T19.

10,000 realizations of temperature distributions over the bridge model are gener-
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Figure 5.2: Realization of temperature fields: (a) five realizations of the temper-

ature field Ti; (b) histogram of the maximum differences in the realization; and (c)

correlation matrix of the generated temperature fields.
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Figure 5.3: Variance of the temperature fields explained by principal components.

ated based on the suggested method mentioned in the previous paragraph. Fig 5.2a

shows five examples of the randomly-generated temperature distributions Ti. The

various patterns of the temperature variations across the bridge are successfully gen-

erated. Fig 5.2b shows the histogram of the maximum difference in each realization.

The correlation matrix of the generated temperature distributions is shown in Fig 5.2c.

It can be seen that each temperature parameter on the deck is highly correlated with

nearby counterparts. The correlations between temperature parameters gradually

decrease as the distance between the corresponding structural components increases.

The temperatures of the towers are more correlated with the near-neighboring deck

components. For example, the temperatures of the one side of the tower (T17 − T19)

exhibit more correlation with the temperatures of the deck components within close

proximity (T1 − T8) then the other side of the deck.

Principal component analysis (PCA) has been applied to further understand the

patterns of the variances in the generated temperature distributions. It transforms an
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original set of variables into a set of uncorrelated variables with respect to the orthog-

onal bases, which are known as principal components. The first principal component

accounts for the largest variance of data. The second largest variance is explained by

the second principal component, and so on. The amount of variance explained by the

ith principal component is estimated by the ith eigenvalue of the covariance matrix

of data divided by the total sum of all eigenvalues. For the PCA of the randomly

generated temperature distributions, all variables are scaled to have a mean of zero

and a standard deviation of one. Fig. 5.3 shows a percentage of variance explained

by each principal component. The first and second principal components explain

96.11% and 2.18% of the overall variability of the generated temperature distribu-

tions. This is quite similar to what is observed in a study with measured temperature

data conducted by Hua et al. (2007), where the first and second principal components

explain 94.7% and 4.4% of the variance of measured temperature data of the Ting

Kau Bridge, respectively. This indicates that temperature distributions generated by

the suggested method have a similar pattern of the variability with real measured

data.

The natural frequencies that are affected by various temperatures distributions

are calculated by the FE model. All of the structural components that correspond

to the same temperature parameter Ti are assumed to have the same temperatures.

The temperature changes ∆T are calculated based on the temperature parameters

T and the reference temperatures Tref , which are further used for the calculation of

prestress distributions for all structural components. It is worth noting that structural

components located in the same region can have different prestresses if they have

different Young’s moduli. The prestress fields of the FE model are calculated with

respect to the generated temperature distributions and defined as initial conditions.

Then, the natural frequencies corresponding to each realization of the temperature
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distributions are evaluated by taking prestress fields into account. In this work, the

natural frequencies of the first seven dynamic modes are considered to study the

temperature effects.

5.4 Regression analysis

Regression analyses were conducted for two cases: one where no noise was added to

the input parameters and output targets and the other where 1% noise was added to

the output targets. The input parameters and output targets were linearly scaled to

range between -1 and 1. For the cross validation purpose, the data sets were randomly

divided into training data and validation data sets, which were 70% and 30% of the

whole data, respectively. The training data set was only used for training purposes.

The validation data set was used to evaluate the generalization performance of a

trained model, which means a trained model should have the same performance for

unseen data (validation data). If a trained model was overfitted to training data, it

may produce poor prediction for validation data. Linear regression, Random Forest,

SVM, and neural network were applied to the input parameters and output targets

with no noise and 1% noise to provide comprehensive comparisons between linear and

machine learning models for the regression problem considered here.

5.4.1 Learning model: random forest, neural network, and

SVM

The random forest technique (Breiman, 2001), an ensemble machine learning method,

consists of multiple regression trees. Although this technique requires much less com-

putational cost in the training of a model, data preprocessing, and tunning model
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parameters, it is known to have a robust prediction and generalization performance.

However, this technique has not been used to model the relationship between tempera-

tures and natural frequencies. Therefore, random forest is considered in the modeling

of temperature effects and compared with two popular machine learning methods in

this study. A prediction by the random forest technique is determined by taking the

average of the predictions from multiple trees. The training of each individual tree is

conducted based on the subset of the training data, which is randomly selected with

replacement, and a different subset of input parameters. In this application, 70% of

the training data were randomly selected and eight input parameters were used for

the training of each individual regression tree. The random forests here included 50

trees.

Feedforward neural networks here consist of input, hidden, and output layers. Sig-

moid and linear functions are transfer functions for the hidden layer and output layer,

respectively. The Bayesian regularization technique, which can produce a smoother

fit to the training data and therefore improves the generation performance, is used

for the training of the neural networks. One hidden layer, which has fourteen and

one nodes for the no noise and 1% noise output target cases, respectively, is located

between the input layer (22 nodes) and the output layer (7 nodes). The Akaike

information criterion (AIC) (Akaike, 1974) based on the variation data is used to

determine the optimal structure of the neural networks.

The SVM (Cortes & Vapnik, 1995) method, where a loss function is adopted to

improve generalization performance, is also implemented in this study. It uses the

kernel methods that transform data into a higher-dimensional feature space to deal

with a nonlinear regression problem. An ε-insensitive loss function and radial-based

kernel function were used. Three hyperparameters (the penalty factor C, kernel

parameter γ, and margin of tolerance ε) were optimally selected by grid search based
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on prediction performances estimated by cross validation.

5.4.2 Result of regression analysis

A linear regression model and the three learning models were trained based on the

training data set with no noise and 1% noise output targets. The performance of

the four models was evaluated based on root mean square (RMS) errors between the

predictions of the models and output target values using the validation data set. The

second column of Table 2 accounts for the case where there is no noise in the output

targets. In this case, the neural networks and SVM model perform relatively better

than the others. The third and fourth columns of Table 2 summarize the performances

of the models that are trained with respect to 1% noise output targets. The RMS

errors shown in the third and fourth columns are calculated versus 1% noise and no

noise output targets, respectively. The RMS errors in the fourth column demonstrate

the generalization performance of the four models. Since the RMS errors versus no

noise targets (the 4th column) are lower than those versus 1% noise targets (the 3rd

column), all of the trained models do not overfit the training data set, which means

overfitting of the noise is prevented. Although the prediction capabilities of the four

models with 1% noise output targets are similar, the fourth column indicates that

the linear and neural network models have a better generalization performance. This

can be because there may be no significant nonlinearity between temperature and the

natural frequencies based on the simulated data under consideration here. Moreover,

the mean of the generated temperature distributions was also investigated as an input

parameter for the modeling of temperature effects on natural frequencies with similar

results; this also indicates that the relationship between the mean temperature and

natural frequencies is fairly linear in this study. The reason that the neural network
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model produces a slightly better performance compared to the other machine learning

methods can be that the neural network (one node for the hidden layer) is relatively

simpler, which also indicates that the level of nonlinearity in the relationship is not

that significant.
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Part II

Road Surface Monitoring

111



Chapter 6

Framework of Road Surface

Monitoring to Detect Pavement

Distress via Multiple Vehicles

In road surface condition monitoring, the current automated pavement distress data

collections system provides a reliable resources for road condition management sys-

tems. However, the current data collection practice is conducted periodically due to

its high cost. There is a practical need to monitor road surface conditions continu-

ously since some pavement distresses such as potholes develop quickly. This chapter

presents an innovative data collection framework, which leverages the vibration mea-

surements of multiple vehicles and GPS positioning data.

6.1 Introduction

Smart Growth America and Taxpayers for Common Sense (2014) reported that $16.5

billion was annually spent on repairing the road network from 2009 to 2011 in the
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United States. Despite the efforts to provide reliable and safer mobility for motorists,

there is still a need to improve the maintenance of road surface conditions. As an

example, 37 percent of New York’s major roads and highways were rated to being in

poor condition (TRIP, 2015). Roads rated in poor condition may include pavement

surface distress such as cracks, raveling, shoving, and potholes, which can occur due

to material properties of pavement, weather conditions, the amount of traffic, and/or

road construction conditions. Especially for a pothole, the four main causes are

insufficient thickness of roads, poor drainage system, failures at utility trenches and

casting, and miscellaneous paving defects and cracks (Eaton, 1989).

Deteriorated roads also result in New York motorists spending $6.3 bilion annually

on extra vehicle operating costs (VOC), which include accelerated vehicle deprecia-

tion, additional repair costs, increased fuel consumption, and tire wear (TRIP, 2015).

For New York City, this amount is equivalent to $694 per motorists. Defective roads

can also cause serious accidents for drivers and pedestrians. Moreover, claims are

made against municipalities due to accidents and/on property damage caused by de-

fective roads. As an example, 12,286 property damage defective roadway claims were

submitted to New York City between Fiscal Years 2010 and 2015 and 1,549 claims

were settled at a cost of nearly $1.5 million (Stringer, 2015). 552 claims were submit-

ted to Cleveland, Ohio in 2013 for the vehicle accidents due to street defects. The

city paid $28,760 for the accepted 101 claims out of 552 (Atassi, 2014).

The current state-of-the-art technology uses data collection vehicles equipped with

various sensors to automate the data acquisition process and to acquire data in an

operating condition. A review of automated pavement distress collection techniques

is carried out by McGhee (2004). Profilers, which are instrumented with a laser,

acoustic, or infrared sensors, are used to measure profiles of road surfaces. Then,

measured profiles are used to determine the International Roughness Index (IRI), a
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widely-used and standard pavement condition metric for serviceability (ride-quality).

For the maintenance of pavement surface distress, imaging technologies such as area

scanning, line scanning, and 3-D laser imaging are used for the distress recording. 3-D

laser-sensing imaging sensors are used to map cracking, rutting, shoving, and pot-

holes (Bursanescu, Bursanescu, Hamdi, Lardigue, & Paiement, 2001; Chang, Chang,

& Liu, 2005; Li et al., 2010). The images collected by the line scan camera are au-

tomatically processed to detect cracks (Gavilán et al., 2011). Area scanning and line

scanning cameras are used to reconstruct 3D surfaces via sterovision (Hou, Wang,

& Gong, 2007). Pavement video data are used for the automated pothole detec-

tion (Koch & Brilakis, 2011; Koch, Jog, & Brilakis, 2012). Data collection vehicles

equipped with downward, forward, side, and/or rear-facing cameras collect video; this

forms a continuous record of pavement surfaces and is used as part of the distress

rating process (Pierce, McGovern, & Zimmerman, 2013).

The current state-of-the-art data collection practice using imaging technologies is

able to detect all pavement surface distress such as faulting, rutting, and cracking,

providing a reliable data source for the standard rating system used in the road

surface maintenance. However, the evaluation of pavement distress by the current

automated data collection method is in general conducted periodically due to its high

cost. For example, The combined costs of imaging and sensor data range from $24 to

$85 per mile (McGhee, 2004). Some pavement distress such as cracking and rutting,

in general, develop slowly. Therefore, the current data collection practice which can

identify all types of pavement distress can be conducted periodically based on the

aging of road surfaces. However, there are street defects which develop more quickly,

which might need a more frequent and/or continuous data acquisition approach.

To meet the need to collect data for quickly developing street defects in real-

time or near real-time, vibration-based approaches have been suggested (De Zoysa,
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Table 6.1: Comparison between the vibration-based and image-based approaches.

Vibration-based approach Image (video)-based approach

Size of data Small Big
Coverage Area along a lane Limited to wheel path Full coverage
Detectable pavement distress Limited to ones that cause

vibrations to vehicles
Most pavement distresses

Computational cost
(Storage and processor)

Low High

Amount of data to produce
a reliable data source

Multiple measurement One-time measurement

Post-processing Online or near real-time Usually Batch mode
Data update Continuous Periodic

Keppitiyagama, Seneviratne, & Shihan, 2007; Yu & Yu, 2006; Eriksson et al., 2008) to

be complementary to the current state-of-the-art data collection practice. Table 6.1

compares the advantages and limitations of the vibration-based and image-based

approaches. Although a coverage area of the vibration-based approach is limited to

the wheel path of vehicles since tires must hit street defects to capture vibration

responses, its main advantage is the small size of the recorded data. The small size

of acceleration data permits one to reduce the storage requirements for data logging.

Importantly, it also reduces computational expense for data processing, which makes

real-time data processing possible. The vibrations of vehicles can be influenced not

only by road surface conditions, but also by the dynamic system of the vehicles

themselves such as the suspension system, total mass, and vehicle speed. Therefore,

a one-time measurement might not be enough to provide a reliable result. A large

amount of data is needed to be collected and integrated to improve the reliability

of a vibration-based approach. Recently, the potential of vibration-based approaches

using connected vehicles have been rigorously investigated. Eriksson et al. (2008)

collected data from taxis via a delay tolerant network. The potholes were detected

by integrating the results from the patrol vehicles based on locations. Vibration data
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collected from the smartphones mounted on vehicles were used to predict a three

and a five level gradation of road roughness as defined by the IRI scale (Belzowski

& Ekstrom, 2015). The acceleration and suspension deflection data measured from

fleet vehicles with aftermarket accelerometers were used to estimate the IRI and to

detect potholes (Mixon, Garrett, & Krueger, 2012).

In this study, a framework of the data acquisition and data integration for the

vibration-based road surface monitoring is suggested to detect isolated street defects

and rough road conditions, which leverages a low-cost sensor and connected vehi-

cle. A mobile data collection kit (also called a vehicle client), which can be simply

mounted on any vehicle, has been developed to collect vibration and GPS positioning

data. Also, the local data logging algorithm is developed to improve the data storage

efficiency in each vehicle client by logging only the data which contain useful informa-

tion on road surface conditions. Once Internet connection is available, each vehicle

client uploads the collected data to a back-end server, where a more precise street

defect classification algorithm and a trajectory clustering algorithm are located. The

trajectory clustering algorithm is suggested to integrate data from vehicle clients not

only based on location, but also based on direction. Data sets that are grouped by

the trajectory clustering algorithm can be practically valuable since they can be used

to improve a street defect classifier once the corresponding ground truth data become

available. The developed system and algorithms are tested on real roads.

In this chapter, the overview of the proposed road surface monitoring system is

presented in the next section, followed by the details of the data logging algorithm

in each vehicle client. Then, the street defect detection algorithm running at the

back-end server is demonstrated. At the end, conclusions are made.
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Multiple sensor-equipped vehicles

(vehicle client)

Back-end server

Figure 6.1: Architecture of the proposed road surface monitoring system.

6.2 Road Surface Monitoring System

The architecture of the proposed road surface monitoring system with multiple sensor-

equipped vehicles is illustrated in Figure 6.1. It consists of two parts: a vehicle client

and a back-end server. In each vehicle client, a triaxial accelerometer, GPS sensor,

micro computer, and local storage are included. Since a vehicle client may not have

continuous Internet connection, collected data are first cached on local storage by a

data logging algorithm embedded in a micro computer. When Internet connection

is available, data logged in local storage are transmitted to a back-end server, where

data from multiple vehicle clients are combined to identify road surface conditions

based on a street defect detection and a trajectory clustering algorithm.

6.2.1 Sensor package with micro computer

In each vehicle client, a triaxial accelerometer and GPS sensor are equipped to collect

data. The accelerometer measures the acceleration responses of a vehicle due to

road conditions in three spatial directions with a sampling frequency of 125 Hz. The

maximum acceleration measurement is ±8 g. Acceleration measurement resolution
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is 976.7 ug. Acceleration white noise standard deviation is 2.8 mg. The driving

direction, sideways, and vertical direction are denoted as x, y, and z-axes, respectively.

The acceleration responses in the y and z directions are more significantly affected

by street defects, therefore they are used for the road surface monitoring here. Those

in the x direction are excluded because the accelerations of a vehicle itself have a

dominant effect on that direction. The GPS device records time, positioning data,

and the speed of the vehicle with a sampling frequency of 10 Hz. The GPS positioning

errors are mostly less than three meters. A more detailed description of the positioning

errors is provided later. The GPS positioning data enable the localization of street

defects. The recorded time provides the information of when the defects are found.

Knowing the speed of a vehicle is also important since higher vehicle speeds can

cause higher peak values in acceleration responses. Each vehicle client also includes

a microcomputer with memory, CPU, local storage, and wireless connectivity. The

computational resources are used in the preliminary process of the collected data,

which runs in an online fashion. Local data storage spaces are used to cache data

until they are transmitted to a back-end server. Wireless connectivity permits the

local computer to communicate not only with a back-end server, but also with a smart

phone and tablet computer.

6.3 Data Logging Algorithm in Vehicle Clients

Collected data should be cached on local data storage until Internet connection be-

comes available. However, local data storage space in vehicle clients is limited. This

requires the development of an efficient data logging algorithm to manage local stor-

age. When local storage space becomes full, a vehicle client will fail to cache new data

until logged data are transmitted into a back-end server. In fact, logging all of the
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measured data into local storage cannot be very efficient because only some of col-

lected data contain meaningful information for the detection of street defects. As an

example, data that are recorded from smooth road conditions do not have significant

excitations in measured signals and are not very useful for detecting street defects.

The logging of those data should be minimized to efficiently use local storage.

A data logging algorithm was designed that runs on each vehicle client to increase

the efficiency of the data logging to local storage. It is an online algorithm, which

means that it processes an incoming data point piece-by-piece in a serial fashion. The

purpose of the algorithm is to minimize the amount of unnecessary data logging by

each vehicle client. There are two main considerations in developing the local algo-

rithm. The first is that it is computationally light since the computational resources

of the micro computer are somewhat limited. The second is that the data recorded

when passing over street defects must be logged, i.e., only the data collected from

smooth roads should be filtered out.

6.3.1 Signal processing of measured data

First, the acceleration data are preprocessed in the microcomputer in order to cor-

rect the mean-shifting caused by vehicle movements. The vibration responses that

are measured from the sensor-equipped vehicle are not only due to the roughness of

road surfaces and street defects, but also due to the movement of the vehicle itself.

Since the accelerometer used here measures down to 0 Hz, i.e., can measure constant

gravitational accelerations, it is sensitive to the orientation of the axes and gravita-

tional forces. When a vehicle makes a sudden turn or lane change, an inertia force is

placed on the accelerometer and produces a mean-shifting in the responses. Driving

up or down hills also slightly changes the orientation of the sensor, which accounts
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for the slow shifting of the mean values of the recorded accelerations. Those accelera-

tion responses caused by vehicle movements themselves have lower-frequency signals,

compared to the responses due to the conditions of road surfaces.
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Figure 6.2: Means shifting correction by removing EMA values: (a) acceleration

responses in the y direction with the EMA values; and (b) EMA removed acceleration

responses in the y direction.

It is important to separate the vibration signals due to the vehicle movements from

ones due to road surface conditions. The exponential moving average (EMA) values

are calculated and taken out from the original signals. This signal processing performs

in an online fashion, which means that a incoming data points are processed piece-

by-piece. The EMA values are related to lower-frequency vibration signals, which

account for the slow mean-shifting due to the vehicle movement. Removing the EMA

values from the acceleration data is equivalent to removing the vibration signal due

to the vehicle movement. Although many high-pass filters such as the Butterworth

and Chebyshev are available to remove the lower-frequency vibration, the removal of

the EMA values is used here to minimize computational expense on a vehicle client

since the computational resources of a microcomputer are not as powerful as a regular

laptop or computer. In Figure 6.2a, the recorded acceleration data in the y direction
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are shown with the EMA values (the black line), which account for the low frequency

responses due to the movement of vehicles. By taking out the EMA values, the

responses due to the vehicle movements are extracted. The high-passed acceleration

data is shown in Figure 6.2b.

6.3.2 Data Logging Mechanism Based on the Level of Vibra-

tions

Since street defects generally produce more vibrations of vehicles, compared to smooth

road surfaces, the level of vibrations measured in a specified duration is used for the

minimization of data logged from smooth road surfaces. In other words, when the

sensor-equipped vehicle vibrates above a certain threshold level, all of the incoming

data points are logged to local storage. When the vibrations of a vehicle are less than

the threshold level, only some of the incoming data are cached in order to efficiently

manage local storage space. The data logging mechanism improves the efficiency of

the local data logging. The root mean square (RMS) values are used to calculate the

level of vibrations in a specified time window. It is defined as follows:

xrms =

√
1

n
(x21 + x22 + · · ·+ x2n), (6.1)

where n is the number of points used for the calculation of the RMS value. n is

100 here, which is equivalent to 0.8 seconds. It is noteworthy that the current RMS

values are calculated from the previous 0.8 second acceleration data. The RMS values

in the y and z directions, which are respectively denoted as RMSy and RMSz, are

calculated from the acceleration responses whose EMA values are removed.

The data logging algorithm depends on the triggering condition, which is defined
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Figure 6.3: Determination of the thresholds based on the preselected actual 23

street defects.

as follows:

Triggering condition: RMSy ≥ 0.08 g and RMSz ≥ 0.06 g. (6.2)

The triggering condition is based on two thresholds for RMSy and RMSz. They

are determined based on a priori knowledge of actual road surface conditions. One

of the considerations for the local data logging algorithm is that data sets that may

contain useful information for the detection of street defects should be logged, i.e.,

the development of the local algorithm is more focused on minimizing missing data

(a type II error). To select thresholds in a conservative way, 23 actual street defects

were carefully selected including both severe and moderate ones. Then, data while

passing over these street defects were collected. The thresholds for RMSy and RMSz

versus the number of the data sets that are above the corresponding thresholds are

shown in Figure 6.3. When the triggering condition defined in Eq. 6.2 is applied, all
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Figure 6.4: Flowchart of the local data logging algorithm.

of the 23 prespecified defects are logged. As the thresholds increase from 0.08 g and

0.06 g for RMSy and RMSz, respectively, the local data logging algorithm starts to

miss the data logging of the 23 defects. Exceedances of these thresholds correspond

to vibrations which are perceptible to the vehicle driver. Since the thresholds are

conservatively determined, some data over smooth road surfaces can have RMS values

which are slightly above the thresholds and satisfy the triggering condition, which is

known as a type I error. This phenomenon can be influenced by the noise level in the

acceleration data. In the next section, a trained classifier is applied to deal with the

type I error, which is the case of data that are logged over smooth road surfaces, but

satisfy the triggering condition.

The flowchart of the local data logging algorithm is shown in FIG 6.4. The data

types logged into the local database are preprocessed acceleration responses, GPS

positioning data, and the speed of vehicles. The data logging to local storage starts

from the 100 data points prior to the data point where the RMSy and RMSz began to

satisfy the triggering condition. It is important to save those data points because they
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are used for the calculation of the RMS values that are above the thresholds. Then,

incoming data are recorded while the RMS values remain above the thresholds. Once

the RMS values drop below the thresholds, the additional 100 data points from the last

data point that satisfies the triggering condition are also recorded. The additional

data points have RMS values which are less than the thresholds and account for

the vibration responses recorded from the smooth road conditions just after passing

possible street defects. The comparison between the additional data points and the

data points whose RMS values are above the thresholds permits one to evaluate how

much energy is generated due to street defects. After finishing the logging of the

additional data points, the data set that is initiated by the triggering condition is

defined as a data segment. However, the RMS values can exceed the thresholds again

while recording the additional 100 data points. In this case, data are continuously

recorded until another additional 100 data points whose RMS values are below the

thresholds are logged. The extension of the local data logging happens when there

are consecutive street defects on roads. It means that one data segment can contain

multiple street defect records. In Figure 6.5, one of the logged data segments is

shown. This data segment does not have the extension of the data logging. At the

0.8 seconds, the RMSy and RMSz values start to go above the thresholds. In the

region between the 0.8 and 1.5 seconds, the RMSy and RMSz values are bigger than

the thresholds. After the 1.5 seconds, the RMSy and RMSz values fall below the

thresholds. These last additional data points from 1.5 seconds to the end stop the

logging process for this one data segment.

When vehicles travel on smooth roads, there are in general no significant excita-

tions of vehicles and the RMS values are usually less than the thresholds. It is not

necessary to log all of the data whose RMS values are below the thresholds into local

storage. However, due to the need for tracking of the roads that have been covered
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Figure 6.5: Example of a logged data segment: (a) acceleration in the y direction;

(b) acceleration in the z direction; (c) RMSy; and (d) RMSz.
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by the sensor-equipped vehicles, the data that do not satisfy the triggering conditions

are logged only once every 0.8 seconds and defined as a smooth data. In Figure 6.6,

the red lines represent the data segments that are logged based on the data logging

mechanism which is explained in the previous paragraph. The blue dots are the

smooth data. 6906 and 170 data points for the red and blue dots, respectably, are

logged to cover the path shown in Figure 6.6 using the local data logging algorithm.

Without the local data logging algorithm, 28,156 data points would be required to

cover the path. In this case, the data reduction ratio due to the local data logging

algorithm is 75%. The data reduction ratio is also subjected to road surface condi-

tions. In other words, roads that have more smooth surfaces correspond to a higher

filtered-out ratio. The suggested data logging method is very efficient in reducing the

amount of logged data in the local database. It performs preliminary evaluation of

road conditions based on the predetermined thresholds, which partitions the recorded

data into data segments or smooth data.

6.4 Street Defect Classifier at Back-end Server

The data segments from multiple sensor-equipped vehicles are gathered at a back-end

server. A street defect algorithm is applied to each data segment in order to classify

them into the different types of street defects.

6.4.1 Division of logged data into smaller fragments

As mentioned in the previous section, each data segment can capture more than one

street-defect response. It is necessary to divide data segments into smaller pieces with

respect to the number of the defects, which are defined as data fragments. The division

of a data segment is performed based on the number of the dominant peaks of the RMS
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Figure 6.6: GPS locations of the data segments.

values. In Figure 6.7, the measured acceleration responses and the corresponding

RMS values in the y and z directions are demonstrated. In this example, the data

segment is divided into two data fragments since two dominant peaks are shown in

the RMS values. The first and second data fragments are represented as red and black

lines, respectively. The last part of the data segment (the blue line) has RMS values

which are less than the predetermined thresholds. It accounts for the additional 100

data points that stop the record of the data segment, which is defined as a smooth

data fragment. The smooth data fragment provides information on the responses just

after passing over street defects. The smooth data fragment is compared with the

data fragments belonging to the same data segment. In the data segment shown in

Figure 6.7 the smooth data fragment is compared with the data fragment 1 and 2 to

know how the acceleration responses are affected by two possible consecutive street

defects.
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Figure 6.7: Fragmentation of the logged data segment : (a) acceleration responses

in the y direction; (b) acceleration responses in the z direction; (c) RMS values in

the y direction; and (d) RMS values in the z direction.
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6.4.2 Output categories of a classifier

At the back-end server, a supervised machine learning technique is applied to classify

collected data fragments into three different categories (impulse, rough, and smooth

classes). These three categories are determined based on the dynamic characteris-

tic of vehicle responses over street defects, not based on a street defect type and/or

severity. While looking at the dynamic responses of the collected data fragments, the

three categories are distinct and therefore used as the output classes of a classifier.

Dennis, Hong, Wallace, Tansil, and Smith (2014) mentioned that detecting acute dis-

tress events (e.g., potholes) and rough ride events could potentially be obtained with

existing technology and infrastructures within 3-5 years. An impulse class accounts

for sudden impulse-like vibrations of vehicles. Isolated street defects such as potholes

and sunken manholes can be categorized into this class since they produce a jarring

experience to vehicles. One example of the acceleration responses classified into the

impulse class is shown in Figure 6.8a. A narrow and tall spike, where a certain am-

plitude is reached during a short period of time, can be observed in the response for

the impulse class. Unlike the impulse class, a rough class includes an event where

vehicles experience a comparatively continuous vibration, which accounts for a rough

ride. The rough ride event can be due to street defects that are not isolated in a small

area along the road surface such as defective street cuts, raveling, and shoving. The

acceleration responses of the rough class are shown in Figure 6.8b, where the vehicle

experiences one-second sustained vibrations. The last one is a smooth class, where no

significant vibrations are present in the acceleration responses. As mentioned in the

previous section, data over smooth road surfaces might satisfy the triggering condi-

tion and be logged as a data segment. A smooth class is defined to account for those

data. One example of those data segments is shown in Figure 6.8c.
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Figure 6.8: Three classes of street defects: (a) impulse class; (b) rough class; and

(c) smooth class.
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6.4.3 Selection of the input parameters for a supervised ma-

chine learning and the manually labeled data for the

training of classifiers

The selection of inputs for classification problems is critical to achieving an acceptable

result since input parameters are directly related to output classes. A total of 14

inputs are carefully determined for the classification problem under consideration

here. The acceleration responses of vehicles are affected not only by road surfaces, but

also by the dynamic systems of the vehicles themselves such as the suspension system

and total mass. Amador-Jiménez and Matout (2014) show not surprisingly that

vehicle sizes have an effect on acceleration responses over the same road surfaces. It is

assumed that vehicles that are categorized into the same vehicle type have a relatively

similar dynamic system. Since many different types of vehicles such as compact

SUVs, mid-size sedans, and buses can be used for the data collection, a vehicle type

is chosen as an input. Even when the mobile data collection kits are mounted on the

same type of vehicles, they can be placed at the different locations on the vehicle.

The acceleration responses of vehicles can be subjected to the transversal and vertical

placements with respect to the lane of roads. Eriksson et al. (2008) mentioned that the

placement of accelerometers can affect the quality of acceleration signals. Therefore,

the mounting location of the mobile data collection kits is also chosen as an input.

The two inputs above are categorical inputs. During the real road test, it is also

observed that the peaks of the acceleration responses are correlated with the speed

of the vehicles. In general, higher vehicle speed produces higher amplitude in the

acceleration responses since vehicles traveling at a higher speed have more kinetic

energy that produces higher amplitudes over a street defect. The effect of vehicle
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speed on acceleration responses is also observed in many studies (Eriksson et al.,

2008; Dawkins & Powell, 2011; Mixon et al., 2012; Amador-Jiménez & Matout, 2014;

Belzowski & Ekstrom, 2015). As a result, the speed of a vehicle is selected as a numeric

input. The length of each data fragment is included to represent the duration of the

responses. More inputs are selected from the low-passed acceleration responses of each

data fragment. The low-pass filter with a 1 HZ cutoff frequency is applied to remove

high-frequency components caused by noise. The maximum absolute values of the

acceleration, jerk, RMS, and zero crossing in the y and z direction are also included.

The jerk values are the first time derivative of accelerations. The maximum values of

accelerations in the y and z directions just after passing street defects (smooth data

fragment in each data segment) are added.

6.4.4 Principal component analysis on numeric input param-

eters

Each numeric input should have sufficient variability to obtain a reliable classification

result. Thus, principal component analysis (PCA) (Jolliffe, 2005) is conducted for

the manually labeled data fragments to check whether the selected numeric inputs

have reasonable variabilities. Each labeled data fragment consists of 12 numeric

inputs, whose high-dimensional data space presents difficulties in visualizing their

variances in a lower-dimensional space. PCA is carried out to provide an informative

viewpoint with the orthogonal lower-dimensional axises. Since the numeric inputs

have different units, they are unit-normalized for the analysis. The numeric inputs

are converted into the linearly uncorrelated principal components via an orthogonal

transformation. The 421 inputs are shown in Fig. 6.9 with respect to the first two

principal components. The blue lines account for the contributions of the inputs

132



to the two principal components. The maximum values of jerk, acceleration, and

RMS have a greater contribution to the first principal component. The maximum

accelerations just after passing street defects as well as vehicle speeds are more likely

to affect the second principal component, which is orthogonal to the first principal

component. The lengths of the blue lines show the amount of variation to the principal

components. The maximum jerk and acceleration values have dominant variations to

the first principal component. The maximum acceleration values just after passing

street defects is the largest coefficient in the second principal components.

A classifier is trained in advance so that it can categorize street defects with respect

to the inputs extracted from the collected data fragments. For the purpose of training,

the 421 data fragments with manually-labeled output classes are used. These data

fragments are collected from the already-known actual street defects, which means a

prior knowledge of the input parameters and the output categories is given for the

training. 141, 82, and 198 data fragments are assigned to the classes of impulse,

rough, and smooth, respectively. Based on the inputs and the corresponding output

classes of the 421 data fragments, a classifier is trained.

6.4.5 Multilayer neural network for the classification

Multilayer feedforward neural networks (Haykin, 1998) are used to classify the data

fragments into the three categories of street defects. Figure 6.11 shows the structure

of feedforward neural networks. The neural networks consist of the input, hidden, and

output layers. The number of nodes for the input and the output layers is 14 and 3,

respectively. There are two hidden layers. The first and second hidden layers consist

of 10 and 7 nodes, respectively. The sigmoid transfer function (Cybenko, 1989) is used

for each node in the hidden layers. The manually labeled data fragments are divided
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Figure 6.9: Principal component analysis for manually labeled inputs.
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into the training and validation data sets, and represent the 70% and 30% of the

entire set of data fragments, respectively. The back-propagation algorithm is used for

the training of the model. During the training, the adjustable network parameters

such as weights and biases are tuned so as to optimize the network performance.

The validation confusion matrices for the neural network are shown in Figure 6.10,

representing the performance of the trained neural network model. The rows of

the matrices are the predicted classes from the trained neural network model. The

columns of the matrices represent the actual classes. The prediction accuracy of the

trained model is 81.4%, 85.7%, and 87.1% for the impulse, rough, and smooth classes,

respectively.

6.4.6 Random forest for the classification

For purposes of comparison, Random forest (Breiman, 2001), which belongs to an

ensemble learning method, is also carried out to the classification problem here. Ran-

dom forest consists of multiple decision trees, which is shown in Figure 6.12. Mul-

tiple decision trees are trained based on the subsets of the training data set, which

are randomly selected with replacement. This procedure is called as bagging. Be-

cause classification results are determined by multiple decision trees, over-fitting to

the training data set can be prevented. Another great advantage of random forest is

the random selection of input parameters at each splitting of nodes, i.e., a random

subset of input parameters becomes a candidates for each splitting of nodes. When

determining the subset of input parameters, strong predictors that substantially af-

fect a result of classification are more likely to be selected. The bagging idea of input

parameters for each decision tree leads to a better classification result although some

inputs are not strong predictors for output classes. In this method, output classes
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Figure 6.10: Validation confusion matrices of the neural network.
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Figure 6.11: Structure of feedforward neural networks.
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are determined by taking the majority votes from multiple decision trees.

The same training and validation data sets that are used in the neural network

model are used for the random forest model. 50 decision trees are trained with respect

to the training data set. The validation confusion matrix associated with the random

forest method is shown in Figure 6.13. Compared to the trained neural network

model, the predicting accuracies of the random forest are quite similar in the impulse

and smooth classes. However, the performance of the neural network is slightly

better in predicting the rough class. Furthermore, predictor (variable) importance,

which is a measure of the importance of inputs in the decision of output classes, is

estimated by the Random forest technique. The estimation of predictor importance

shows that the two most significant inputs are the length of data segments and the

maximum values of accelerations in the y direction. The speed of vehicles and the zero

crossing in the both direction have a relatively lower level of predictor importance,

compared to the other inputs. Although the estimation of predictor importance is

not rigorously carried out for the trained neural networks since it is not a primary

focus of this study, several approaches are available for the neural network to estimate

predictor importance (Gavilán et al., 2011). Since the neural network has a slightly

better performance than the random forest by comparing their validation confusion

matrices, the random forest is not used as a classifier hereafter.

6.4.7 Results of the classification

Three different vehicles collect new data sets to validate the classifiers for street

defects. Unlike the training data sets, the output classes of the new data sets are

unknown and predicted by the trained neural network. The trained neural network

model is applied to categorize the types of street defects. The GPS position data
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Figure 6.13: Validation confusion matrices of the random forest.
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corresponding to the data fragments are used for the localization of the classified

street defects. The predicted classes are shown in Figure 6.14 with respect to their

locations. The red, orange and green lines respectively represent the rough, impulse,

and smooth classes predicted from the trained model.

Some driving routes are examined by more than one vehicle. The comparison

of the classification results on the route is made in Figure 6.15, where two different

vehicles have driven from North to South. Three locations are marked with anno-

tations, which refer to the corresponding ground truth. For these three locations,

the two vehicles have traveled on the same lane because there is only one lane in

each direction. The initial points of the three locations, which are the Northern parts

of the locations, are a quite similar. In the area that is annotated as “Pothole +

Rough”, there was a pothole and followed by a rough road surface. The vehicle 1

successfully classified them as the impulse and rough classes. Although the rough

road was correctly classified by the vehicle 2, the pothole was misclassified as the

rough class. The acceleration responses corresponding to these ground truths are

shown in Figures 6.16ab. The next validated ground truth is marked as “Manhole

+ Raveling”, where the sunken manhole was located close to the centerline of the

road and the raveling was on the shoulder of the road. The vehicle 1 hit the sunken

manhole and went over a smooth road, classifying them as the impulse and smooth

classes. The vehicle 2 drove closer to the shoulder and classified the raveling as the

rough class, while missing the sunken manhole. The corresponding acceleration re-

sponses are shown Figures 6.16cd. The ground truth, annotated as “Rough surface”,

was accurately classified by the two vehicles as the rough class and the acceleration

responses are shown in Figures 6.16ef.

As shown in Figure 6.15, the locations of the classification results that do not have

annotations are not identical. The differences in their locations can occur when the
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Figure 6.14: Detected street defects based on the data collected from three

different vehicles: (a) result from the vehicle 1; (b) result from the vehicle 2; and (c)

result from the vehicle 3.
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Figure 6.15: Identified road surface conditions on the overlapping route: (a)

result from the vehicle 1, and (b) result from the vehicle 3.
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vehicles travel in different lanes and/or different directions. It can also occur when

some drivers may try to avoid street defects while still traveling in the same lane

and direction. To increase the performance of the road surface monitoring system,

the conditions of the road surfaces should be evaluated by integrating classification

results from multiple vehicles. How to integrate the results based on their locations

and moving directions is explained in the following section.

Most street defects classified into the impulse class are either potholes or sunken

manholes. Some pavement joints are also detected as part of the impulse class. The

acceleration responses due to a pothole and a sunken manhole generally differ from

the ones due to a pavement joint. A pothole and a sunken manhole are usually hit

by one side of a vehicle, causing a higher amplitude in the y direction. However, a

pavement joint usually produces a higher amplitude in the z direction since it is hit

by two tires (the front two and then the back two) at the same time. The defects

classified into the rough class include a patch deterioration, shoving, and raveling.

6.5 Discussion

The framework of the data acquisition and integration for the detection of isolated

street defects and rough road conditions is demonstrated. Since the sensor package

is developed using low-cost off-the-shelf products, its low cost enables one to deploy

many connected vehicles for data collection. The cost effectiveness of the suggested

method can become more pronounced when it is integrated within an existing fleet

management system. Since a fleet data management system in general consists of on-

board processors, data storage, data transmission, and GPS sensors, the suggested

method can be implemented with a low incremental cost by adding an accelerometer

module on fleet vehicles. The suggested method can provide a complementary data
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Figure 6.16: Classification results on the overlapping route: (a) result from

the vehicle 1 and the ”Pothole + Rough” ground truth; (b) result from the vehicle

3 and the ”Pothole + Rough” ground truth; (c) result from the vehicle 1 and the

”Manhole + Raveling” ground truth; (d) result from the vehicle 3 and the ”Manhole

+ Raveling” ground truth;(e) result from the vehicle 1 and the ”Uneven surface”

ground truth; and (f) result from the vehicle 3 and the ”Uneven surface” ground

truth.
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source for pavement distress management. The compact native of the acceleration

data and the local data logging algorithm permit less frequent data transmission

to the backend server. If vehicles are dispatched and come back to a base station

such as a parking lot on a regular basis, a Wi-Fi hotspot can be installed at a base

station. If cellular data transmission is used instead of the delay tolerant network

and the trajectory clustering analysis is carried out in an online fashion, a result of

the suggested system can be updated in real-time.

To make the suggested method more practically useful, a more robust classifier

should be trained to predict more specific output categories. The output categories

used here are determined based on the dynamic responses of vehicles, not based on

street defect types or their severity levels. In the future, output categories should

be more specifically determined based on both pavement distress types and severity

levels which are summarized by Miller and Bellinger (2014). It could be possible to

distinguish a pothole and a joint because acceleration responses due to a pothole and

a pavement joint are different as mentioned before. A moderate pothole, a severe

pothole, a normal joint, and damaged joint can be used instead of the impulse class.

If a classifier is able to categorize a street defect based on its type and severity level,

the street defect rating for the representative trajectory can become more practically

meaningful since each trajectory can vote for the rating based on the type and severity

level. For example, a pothole with a high severity level, which may necessitate a

priority for treatment, would have a higher score than a moderate pothole. A higher

score can be assigned to successive street defects to improve the rating system for the

representative trajectories. In addition to neural networks and random forests, other

learning algorithms such as support vector machines and logistic regression also can

be used for the suggested system. A comparison between different learning algorithms

should be done based on a large enough data set and various performance metrics.
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The characteristics of different learning methods also can be taken into account based

on the need of applications. To develop a more robust classifier, more training data

sets are needed. They can be collected from a controlled test. They also can be

collected by the suggested method. One of the advantages of the suggested method

is that data sets are structurally formatted by the local data logging algorithm and

grouped based on their locations and directions by the trajectory clustering algorithm.

Those grouped data can be valuable since they have a potential to be used as training

data sets when the corresponding types and severity levels of street defects become

known. For example, one day a crew finds a pothole and reports its diameter and

depth. Then, a large amount of already-grouped data that correspond to the reported

pothole can be used as training data sets not only to update an existing classifier to

improve a prediction accuracy, but also to develop a new classifier to predict more

specific output categories.

Data collected from various vehicles exhibit a curtain level of variation. Accel-

eration responses of vehicles over the same street defect can vary due to different

suspension systems, different total masses, and different vehicle speeds. The accel-

eration responses of vehicles can also vary due to road surface types (Belzowski &

Ekstrom, 2015). Those variations due to the above-mentioned factors should be prop-

erly studied based on a large volume of data. The understanding of the variations is

very important in the vibration-based approach and will help develop a more robust

algorithm for the pavement distress detection and/or the evaluation of road surfaces

roughness. In addition, large enough data sets from various vehicles are also required

to study the reliability of the suggested method. It will be important to determine

how many data samples over the same street defect are needed to produce a reliable

result. What level of reliability can be provided by integrating results from various

vehicles, compared to the current rating system such as PASER (Walker, Entine,
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& Kumer, 2002) and/or the IRI. Recently, many researchers have studied the rela-

tionship between data from various vehicles and the current standard rating system.

Dawkins and Powell (2011) related the acceleration data measured from the on-board

sensors of the probe vehicles with the IRI and recommended the RMS values in the

vertical direction as the primary means for IRI estimation. Mixon et al. (2012) com-

pared the data measured from aftermarket accelerometers mounted on fleet vehicles

with a road surface profiles obtained from the profilometry van equipped with single-

point lasers and band-type profilometers. They concluded that it may be possible

with sufficiently large data sets to correlate a given vehicle and device’s characteris-

tic responses to other pavement condition measures like the IRI and PASER rating.

However, in this study, the data sets used here are insufficient to study the varia-

tion of data and the reliability of the results from the suggested method. More data

should be collected from various vehicles and different road conditions to explore the

variation and reliability of data. Processing big data might need an computationally

efficient algorithm and/or a great deal of computational resources.

6.6 Conclusions and Future Work

The suggested monitoring system can be complementary to the current data collection

practice by providing a continuous data source for isolated pavement distress and

rough roads. The monitoring system consists of the vehicle clients and the back-

end server. A local data logging algorithm embedded in the vehicle clients improves

the efficiency of the use of local storage and provides preliminarily evaluation of the

road surface conditions based on the predetermined thresholds. The data cached

in local storage are sent back to the server, where the trained classifier categorizes

the transmitted data into the three classes. The suggested framework enhances the
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efficiency of the data logging process. Furthermore, the reliability of the suggested

monitoring system is improved by having the dual detectors (the threshold-based

filtering and the trained classifier).
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Chapter 7

Trajectory Clustering: Application

to Road Surface Monitoring

The suggested framework of a data collection system for pavement distress manage-

ment, which is presented in the previous chapter, utilizes multiple connected vehicles.

In order to provide a more reliable data resource for the road surface condition mon-

itoring, it is necessary to integrate road conditions evaluated from multiple vehicles.

Trajectory clustering is such a technique that groups trajectory data, which are the

sequence of GPS positioning data with respect to time, based on the proximity of

locations and moving directions. This chapter introduces the trajectory clustering

technique and how it is applied to the suggested framework as a data integration

scheme.

7.1 Introduction

Recently, a huge volume of trajectory data have become available due to the devel-

opment of satellite systems and tracking facilities. vehicle tracking, storm path, and
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animal movement data are examples of trajectory data. In order to analyze various

trajectory data sets, trajectory clustering algorithms have been developed and de-

veloping in the field of data mining in computer science. The trajectory clustering

algorithm using the regression mixture model and the maximum likelihood principle

is developed (S. Gaffney & Smyth, 1999; S. J. Gaffney, Robertson, Smyth, Camargo,

& Ghil, 2007). The partition-and-group framework is proposed for trajectory clus-

tering (Lee, Han, & Whang, 2007). Since the latter method can produce common

sub-trajectories (representative trajectories), it is adapted and modified to become

applicable to the proposed road surface monitoring system.

Figure 7.1 shows a schematic of the trajectory clustering analysis. Trajectories

are the sequence of GPS positioning data with respect to time. The method under

consideration here is used to group trajectory data not only based on their locations,

but also based on their moving directions. Since moving directions are taken into

account for the trajectory clustering analysis, the main advantage of this analysis

is the capability of analyzing a moving trend of massive trajectory data sets. The

suggested trajectory clustering analysis consists of two parts. The first part is to group

trajectories based on a predefined inter-vector distance calculation. Once certain

groups of trajectories, which are also known as clusters, are formed, a representative

trajectory is calculated for each cluster by considering trajectories belonging to the

corresponding cluster.
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Figure 7.1: Trajectory clustering.

7.2 Trajectory Clustering analysis

7.2.1 Inter-vector distance function

A distance function is defined in order to calculate the locational and directional dif-

ference between two trajectories. The distance function consists of three components:

(i) the perpendicular distance (d⊥), parallel distance (d‖), and angular distance (dθ).

The first two are the distances for proximity. The last is to evaluate the directional

difference. The distance between two trajectories is shown in Figure 7.2. The longer

and shorter trajectories are defined as Li (−→siei) and Lj (−−→sjej), respectively. ps and pe

are the projection points of sj and ej onto Li. The projection points ps and pe can

be calculated using vector operations, which is defined as follows:

ps = si + u1 · −→siei, pe = si + u2 · −→siei, (7.1)

where u1 and u2 are defined as:

u1 =
−−→sisj · −→siei
‖−→siei‖

2

, u2 =
−−→siej · −→siei
‖−→siei‖

2

(7.2)
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which is defined as follows:392

ps = si + u1 · −→siei, pe = si + u2 · −→siei, (3)393

where u1 and u2 are defined as:394

u1 =
−−→sisj · −→siei
‖−→siei‖

2

, u2 =
−−→siej · −→siei
‖−→siei‖

2

(4)395
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FIG. 12: Distance function for two trajectory.

The perpendicular distance (d⊥) between Li and Lj is defined as the Lehmer mean of396

order two. It becomes:397

d⊥(Li, Lj) =
l2⊥1 + l2⊥2

l⊥1 + l⊥2
, (5)398

where l⊥1 and l⊥2 are the Euclidean distances from sj and ej to ps and pe, respectively. The399

parallel distance between Li and Lj is defined as a minimum value of l‖1 and l‖2, which are400

the Euclidean distances from ps and pe to the nearest si or ei, respectively. The parallel401

distance is:402

d‖(Li, Lj) = min(l‖1, l‖2). (6)403

The angular distance between two trajectories is defined as:404

dθ(Li, Lj) =





‖Lj‖ × sin(θ) if 0◦ ≤ θ ≤ 90◦

‖Lj‖ × (1 + sin(θ − 90◦)) if 90◦ ≤ θ ≤ 180◦,

(7)405

20 Jang, December 15, 2015

Figure 7.2: Distance function for two trajectory.

The perpendicular distance (d⊥) between Li and Lj is defined as the Lehmer mean

of order two. It becomes:

d⊥(Li, Lj) =
l2⊥1 + l2⊥2
l⊥1 + l⊥2

, (7.3)

where l⊥1 and l⊥2 are the Euclidean distances from sj and ej to ps and pe, respectively.

The parallel distance between Li and Lj is defined as a minimum value of l‖1 and l‖2,

which are the Euclidean distances from ps and pe to the nearest si or ei, respectively.

The parallel distance is:

d‖(Li, Lj) = min(l‖1, l‖2). (7.4)

The angular distance between two trajectories is defined as:

dθ(Li, Lj) =





‖Lj‖ × sin(θ) if 0° ≤ θ ≤ 90°

‖Lj‖ × (1 + sin(θ − 90°)) if 90° ≤ θ ≤ 180°,

(7.5)
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where θ is calculated as follows:

cos(θ) =
−→siei · −−→sjej
‖−→siei‖‖−−→sjej‖

(7.6)

A distance between two trajectories is a weighted sum of above three distances.

w⊥, w‖, and wθ are weights for the perpendicular, parallel, and angular distance,

respectively. Since the direction of trajectories should be properly considered in the

trajectory clustering, more weight is placed on the angular distance. The weights are

defined as follows:

w⊥ = w‖ = 1, wθ = dcut
2×fragmin ,

(7.7)

where dcut is a cutoff distance in the clustering (the maximum distance between the

trajectories in the same cluster) and fragmin is the smallest travel distance of data

fragments. The distance function between two trajectories becomes:

dist(Li, Lj) = w⊥ · d⊥(Li, Lj) + w‖ · d‖(Li, Lj) + wθ · dθ(Li, Lj). (7.8)

7.2.2 Hierarchical clustering

Based on the distances calculated by Eq. 7.8, the hierarchical clustering algorithm

(Murtagh, 1983) is used for the trajectory clustering analysis. The hierarchical clus-

tering algorithm is suitable for this application since it includes all trajectories into

an analysis. More interest is placed on knowing the road condition with an emphasis

on the location precision, which means the size of clusters should be constant. There-

fore, complete linkage clustering is used for the linkage criterion, which can prevent

a chaining phenomenon (Defays, 1977). The trajectories are grouped into the final

clusters in such way that the trajectories in the same cluster have distances which are
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less than a specified distance threshold, which is 35 meters in this application. Since

the higher weight factors are assigned for the angular distance, nearby trajectories

with the different directions are clustered into the different clusters.

7.2.3 Representative trajectories
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FIG. 13: Representative trajectory.

representative trajectory. The method used here is a weighted averaging mechanism. The453

data trajectories that are grouped into the same cluster vote for a road condition associated454

with a representative trajectory of that cluster. For each data fragment, a traveling distance455

is also calculated based on a vehicle speed and recorded time. Traveling distances and the456

predicted street defect classes of the data fragments evaluate the road condition level for a457

representative trajectory. The score of each data fragment can be assigned depending on458

the application needs. In this application, the score equals to unity when the predicted class459

of a trajectory is either the rough or the impulse class. For the smooth class, a zero score460

is assigned. It is possible to assign different scores for the street defect classes when more461

interest is placed on knowing a specific class. As an example, if one is more interested in462

the identification of potholes, a higher score can be assigned to the impulse class. The levels463

of road conditions for representative trajectories are determined based on scores and travel464

distances corresponding to data trajectories in the same cluster. They are calculated as465

follows:466

Road condition level =
n∑

i=1

scorei × travel distancei
travel distancei

. (12)467

The road condition level ranges from 0 to 1. The zero level denotes a smooth road468

surface. The level one indicates a poor road surface. Ten different colors from green to red469

23 Jang, December 15, 2015

Figure 7.3: Representative trajectory.

A representative trajectory is calculated for each cluster. It represents the overall

movement of the trajectories in the same cluster. Instead of showing all trajectories

with corresponding street defect classes on a map, the extracted information of the

trajectories helps represent the conditions of road surfaces in a more compendious

way. The algorithm of generating the representative trajectories is developed in (Lee

et al., 2007). Each representative trajectory consists of a sequence of points, which

are determined by a sweep line approach. The sweeping of a vertical line is performed

in the direction of a average vector. In Figure 7.3, the representative trajectory (the

red arrow) and the vertical sweeping lines (the dotted lines) are illustrated with the
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trajectories (the black arrows) grouped into the same cluster. After calculating the

angle of the average direction vector θavg, the axes (X and Y ) are rotated by θavg

so that the average direction vector becomes parallel to the X ′ axis. In the rotated

coordinate system, vertical line sweeping is performed along the X ′ axis. At the start-

ing and end points of all trajectories, the coordinates of the representative trajectory

are calculated only when the number of points of intersection of the trajectories and

the vertical sweeping line is bigger than two. The coordinates of the representative

trajectory is the average of the intersecting points with each vertical sweeping line.

The nth point of the representative trajectory can be calculated in the X ′ and Y ′

coordinate system, which is defined as follow:

(x′n, y
′
n) =


x′n,

Noverlap∑

m=1

y′nm
Noverlap


 , (7.9)

where Noverlap is the number of the intersecting points for the nth vertical sweeping

line.

7.2.4 Robustness of the trajectory clustering for measure-

ment noise

The trajectory clustering analysis can be robust for the measurement noise due to

its averaging routine in the calculation for representative trajectories. To verify its

robustness for measurement noise, 360 trajectories are simulated. Then, Gaussian

noise is added to the simulated trajectories. The histogram of measurement errors (the

radial distances between the original data points and the noisy data points in meters)

is shown in Figure 7.4a. The noise level that is added to the original trajectories is

much higher than the noise level that is expected for the GPS module used in this
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study (less than 3 m). Figure 7.4b shows the original and noisy trajectories, in which

the blue lines correspond to the original simulated trajectories (no noise) and the

red lines represent the noisy ones. The trajectory clustering method is applied to

those two trajectory data sets. Then, representative trajectories are drawn for the

original and noisy trajectory data sets. Figure 7.4c shows the calculated representative

trajectories for those two data sets. The blue representative trajectories are calculated

based on the original (no noise) trajectories. The red representative trajectories are

drawn based on the noisy trajectories. It can be seen that there is a quite good

agreement between those two sets of the representative trajectories despite the high

level of measurement noise that was added to the original data set.

7.3 Application: Integration of the Result of Road

Surface Monitoring System

7.3.1 The rating of road surface conditions for each trajec-

tory cluster

As it is shown in Figure 7.1, each collected data fragment is in fact a trajectory since

its GPS positioning data track the movement of the vehicle. It is worth noting that

each trajectory is a data fragment whose RMS values satisfy the triggering condition

defined by Eq. 6.2. Each trajectory has a predicted class from the trained neural net-

work and a travel distance. The data sets that do not satisfy the triggering condition

have no contribution to the trajectory clustering analysis. During the analysis, data

fragments are grouped with respect to both their proximity and directions. Then, a

representative trajectory for each cluster is drawn to show the average movement of
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Figure 7.4: Trajectory clustering on simulated data sets: (a) The histogram

of measurement errors in meter; (b) simulated trajectories; and (b) corresponding

representative trajectories.
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the trajectories grouped into the same cluster and to represent an integrated classifi-

cation result.

Each data trajectory has a respective predicted class of street defects from the

trained classifier. The trajectories included in the same cluster can have different pre-

dicted classes. As a result, the identification of street defects for each representative

trajectory should be evaluated by integrating the predicted classes of trajectories that

are used to draw a representative trajectory. The method used here is a weighted

averaging mechanism. The data trajectories that are grouped into the same cluster

vote for a road condition associated with a representative trajectory of that cluster.

For each data fragment, a traveling distance is also calculated based on a vehicle

speed and recorded time. Traveling distances and the predicted street defect classes

of the data fragments evaluate the street defect level for a representative trajectory.

The score of each data fragment can be assigned depending on the application needs.

In this application, the score equals to unity when the predicted class of a trajectory

is either the rough or the impulse class. For the smooth class, a zero score is assigned.

It is possible to assign different scores for the street defect classes when more interest

is placed on knowing a specific class. As an example, if one is more interested in

the identification of potholes, a higher score can be assigned to the impulse class.

The levels of street defects for representative trajectories are determined based on

scores and travel distances corresponding to data trajectories in the same cluster. It

is noteworthy that the data fragments, whose RMS values pass the thresholds defined

in Eq. 6.2, only affect the evaluation of road conditions. A road condition level is

calculated as follows:

Street defect level =
n∑

i=1

scorei × travel distancei∑n
j=1 travel distancej

, (7.10)

157



where n is the number of trajectories included in the same cluster, i.e., the number

of the trajectories to draw a representative trajectory. The street defect level ranges

from 0 to 1. The level 0 denotes a pavement surface where no significant street defects

are detected. The level 1 indicates a high level of chances to hit street defects. The

trajectory data in Figure 6.14 are clustered based on the previously-mentioned tra-

jectory clustering method. The representative trajectories and the street defect levels

are calculated. Ten different colors from green to red are used for each representative

trajectory to visualize an estimated street defect level. The level 0 calculated by

Eq. 7.10 is shown as a green representative trajectory. The level 1 is marked with a

red representative trajectory.

The representative trajectories in the small road network mentioned in the previ-

ous section are shown in Figure 7.5a. The representative trajectories corresponding

to “Pothole + Rough”, “ Manhole + Raveling”, and “Rough surface” are shown

in Figures 7.5bcd, respectively. As shown in the small road networks, the trajectory

clustering method successfully partitions the trajectories that are located within close

proximity with different moving directions into different clusters. The trajectory clus-

tering method has applied to the 2554 trajectories collected from the overall tested

road networks and found 1128 clusters (representative trajectories). This clustering

method can provide a much simpler format of data as representative trajectories,

which are much easier to visualize and interpolate identified street defect levels. Fur-

thermore, if more data are collected from the same road networks, the size of the

final clusters (the total number of representative trajectories) should not significantly

increase since newly-collected data are expected be grouped into already existing

clusters. The trajectory clustering results are also visualized on online maps (Google

Maps, 2015). Figure 7.6a shows the representative trajectories demonstrated in Fig-

ure 7.5. The overall tested road networks are shown in Figure 7.6b. Although it was
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practically challenging to compare the the numerical quantity (identified street defect

levels) with manual survey results, which can be subjective, the overall preliminary

results were reasonably correlated with the observed road conditions. Moreover, some

road networks that were identified as being in poor condition were resurfaced after

this study.

7.3.2 GPS accuracy

The accuracy of the GPS positioning data plays a significant role in the trajectory

clustering analysis since it can affect the positions of the representative trajectories

and the corresponding ratings for street defects. The positioning errors (measurement

noise) are mostly less than 3 meters when there is no significant object between the

GPS module and satellites. The suggested trajectory clustering method is robust

to those errors due to its averaging routine, which has been verified with simulated

data. As shown in Figure7.6a, the representative trajectories are reasonably posi-

tioned since the satellite communication was fairly good around that area. When the

satellite communication is blocked by an object such as a high-rise building and a

civil structure, the GPS module performs jammer detection and reduction as well as

multi-path detection and compensation to improve positioning data. It is observed

that some representative trajectories are positioned such that they slightly deviate

from the geometry of road. In this case, the GPS positioning errors are in the mag-

nitude of 20 meters when an object moderately blocks the satellite communication.

It is also observed that the GPS positioning errors increase up to 30 meters when

the satellite communication is mostly blocked by a tunnel. If trajectory data are

misplaced on a wrong road due to the positioning error, it becomes possible that

misplaced trajectories can have a negative effect on the position and rating of the
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Figure 7.5: Results of the trajectory clustering analysis: (a) representative

trajectories in the small area; (b) representative trajectories for “Pothole + Rough”;

(c) representative trajectories for “ Manhole + Raveling”; and (d) representative

trajectories for “Uneven surface”.
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(a)

(b)

Figure 7.6: Results of the trajectory clustering analysis on online map: (a)

representative trajectories in the small area (b) overall trajectory clustering result.
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representative trajectory that they belong to. A more accurate GPS module can be

used to improve the quality of positioning data. It can be also improved by applying

the data snapping method suggested by Pack, Ogale, and Carceroni (2014) and/or by

Kalman filtering (Sasiadek, Wang, & Zeremba, 2000) since the positions of vehicles

are tracked with respect to time.

7.4 Conclusions

After classifying the collected data fragments, the trajectory clustering method en-

ables the classification results to be integrated with respect to not only their locations,

but also their moving directions. The representative trajectories are also drawn to vi-

sualize the integrated ratings with the different color scales. The trajectory clustering

analysis helps to evaluate road conditions by multiple sensor equipped vehicles.

The data used in this study are collected from three different vehicles over limited

road networks. In order to further develop a robust classifier and a rating system for

representative trajectories, a large volume of data from various vehicles and different

road conditions are required. Those large data also can help investigate the reliability

of the data source provided by the suggested method. In the future research, more

study should be conducted to understand the correlation between integrated results

and the current rating system for pavement distress to provide more reliable and useful

data sources. GPS data refinement methods can be implemented to improve the

accuracy of the GPS positioning data which might affect the results of the trajectory

clustering analysis. Processing a large volume of trajectory data can be challenging

since pairwise inter-vector distances between all possible combination of trajectories

are required. An efficient approach to deal with a large amount of trajectory data

should be developed in the future.
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Part III

Conclusions
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Chapter 8

Conclusions

This dissertation has explored data analytics on various monitoring data collected

from infrastructure. By leveraging real monitoring data, an effort was made to pro-

vide practically meaningful information and/or knowledge for the infrastructure man-

agement systems, especially for a large suspension bridge and pavement distress.

Acceleration responses measured on a large suspension bridge are used to explore

the topics of temperature effects on natural frequencies and FE model updating. In

the study of temperature effects on natural frequencies, an FE model is used to sim-

ulate temperature distribution effects on modal frequencies. The modeling of the

thermal effects on natural frequencies and a method that generates random tempera-

ture distributions are demonstrated. A comprehensive comparison between linear and

machine learning models is made for the temperature effects. For the thermal effects

on the natural frequencies of the particular structure considered here, it is concluded

that there is no significant improvement with machine learning models compared to

a linear model. An in-depth understanding of the relationships between tempera-

ture distributions and natural frequencies can be fundamentally important in the

vibration-based damage detection techniques since it can normalized out frequency
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variations due to temperature from observed variations: damage detection algorithms

applied to normalized frequency variations can provide a more reliable result.

In this study, both deterministic and probabilistic model updating approaches are

covered. Moreover, a sophisticated full-scale FE model and real measured data are

used to investigate the feasibility and applicabilities of various existing model updat-

ing techniques. In the deterministic (sensitivity-based) approach, the regularization

technique is adopted and applied to deal with mode shapes agreements by placing

nonlinear constraints on the MAC values between identified mode shapes and ones

from an FE model. The suggested MAC constrains can be added to a model updat-

ing routine to find an optimal solution whose MAC values are above a predetermined

threshold with a single optimization run. The suggested method can be further de-

veloped to deal with a problem in which mode shapes have more errors compared to

natural frequencies due to a limited set of measurements and high noise levels. The

sensitivity-based clustering method is first applied to the parameterization of a bridge

model updating. This method determines an effective set of updating parameters by

grouping similar sensitivities of natural frequencies with respect to mass densities

and stiffness-related parameters of decomposed structural components. Each updat-

ing parameter includes the physical properties of structural components which have

a similar effect on natural frequencies, which leads to a better updating result. The

sensitivity analysis on updating parameters also provides structural engineers with

fundamental knowledge that clarifies the relationship between structural components

and natural frequencies.

In the probabilistic approach, the Bayesian model updating framework is used to

update a full-scale FE model to match with measurements in an effort to study its

feasibility to a more practical and complex problem. The Bayesian model updating

technique has been mostly used with simple models and simulated data since a con-
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trolled simulation-based study is preferred to validate whether a new method can lead

to a benefit and a reasonable result. This study has made an effort to extend the

application of the Bayesian model updating technique to a practical problem since

a sophisticated full-scale model is, in general, used in industry. The HMC method,

which is used in this study to generate posterior samples, provides a robust capabil-

ity to deal with the comparatively large number of updating parameters. Generated

posterior samples are further used to analyze uncertainty propagations to natural fre-

quencies and mode shapes of an FE model. More work can be done as an extension

of the Bayesian model updating such as a model selection problem with different sets

of updating parameters using the Bayesian scheme. Surrogate models can replace an

FE model to significantly reduce computational expenses. The two-stage Bayesian

formulation (Au & Zhang, 2016; F.-L. Zhang & Au, 2016) also can be implemented

in a Bayesian model updating problem to take the uncertainty of modeling errors into

account.

Measured dynamic responses and positioning data from vehicles are used to de-

velop a framework of data collection and integration for the detection of pavement

distress. The suggested road condition monitoring system takes advantage of sensing

technology, wireless data transmission, and an innovative data mining algorithm to

detect isolated street defects and rough road surfaces. The local data logging algo-

rithm is developed and embedded in each vehicle client to increase the efficiency of

data logging. The trajectory clustering method is introduced as a mean of grouping

trajectory data and the corresponding classification results based on their locations

and moving directions. The suggested monitoring system can continuously provide

complementary data sources for the current pavement data collection system, which

can be valuable information for the management of quickly-developing pavement dis-

tresses. The introduced trajectory clustering analysis can be used by researchers to
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condense a large volume of trajectory data into highly-compact representative trajec-

tories, which are much easier to interpret and extract meaningful trends from within

massive numbers of trajectories. The main challenge of the trajectory analysis on big

data is that it necessitates a great deal of computational resources when processing

data in a batch mode. For example, huge memory is needed for pairwise inter-vector

distances between all possible combinations of trajectories. One of ways to circum-

vent tremendous computational requirements can be to process data incrementally,

which means that representative trajectories are updated piece-by-piece when a new

trajectory is added to an analysis. The incremental trajectory clustering method can

be further used to process streaming trajectory data in an online fashion, which can

be practically useful in an application that needs to obtain a real-time result. Future

investigation is planned to develop the incremental trajectory clustering technique

and apply it to massive trajectory data to highlight the advantage of this innovative

data analytic method.
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