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Abstract

Understanding Music Semantics and User Behavior

with Probabilistic Latent Variable Models

Dawen Liang

Bayesian probabilistic modeling provides a powerful framework for building flexible models

to incorporate latent structures through likelihood model and prior. When we specify a model,

we make certain assumptions about the underlying data-generating process with respect to

these latent structures. For example, the latent Dirichlet allocation (LDA) model assumes

that when generating a document, we first select a latent topic and then select a word that

often appears in the selected topic. We can uncover the latent structures conditioned on the

observed data via posterior inference. In this dissertation, we apply the tools of probabilistic

latent variable models and try to understand complex real-world data about music semantics

and user behavior.

We first look into the problem of automatic music tagging – inferring the semantic tags

(e.g., “jazz”, “piano”, “happy”, etc.) from the audio features. We treat music tagging as a

matrix completion problem and apply the Poisson matrix factorization model jointly on the

vector-quantized audio features and a “bag-of-tags” representation. This approach exploits

the shared latent structure between semantic tags and acoustic codewords. We present

experimental results on the Million Song Dataset for both annotation and retrieval tasks,

illustrating the steady improvement in performance as more data is used.

We then move to the intersection between music semantics and user behavior: music recom-

mendation. The leading performance in music recommendation is achieved by collaborative

filtering methods which exploit the similarity patterns in user’s listening history. We address



the fundamental cold-start problem of collaborative filtering: it cannot recommend new

songs that no one has listened to. We train a neural network on semantic tagging information

as a content model and use it as a prior in a collaborative filtering model. The proposed

system is evaluated on the Million Song Dataset and shows comparably better result than the

collaborative filtering approaches, in addition to the favorable performance in the cold-start

case.

Finally, we focus on general recommender systems. We examine two different types of data:

implicit and explicit feedback, and introduce the notion of user exposure (whether or not a

user is exposed to an item) as part of the data-generating process, which is latent for implicit

data and observed for explicit data. For implicit data, we propose a probabilistic matrix

factorization model and infer the user exposure from data. In the language of causal analysis

(Imbens and Rubin, 2015), user exposure has close connection to the assignment mechanism.

We leverage this connection more directly for explicit data and develop a causal inference

approach to recommender systems. We demonstrate that causal inference for recommender

systems leads to improved generalization to new data.

Exact posterior inference is generally intractable for latent variables models. Throughout

this thesis, we will design specific inference procedure to tractably analyze the large-scale

data encountered under each scenario.
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1

Chapter 1

Introduction

1.1 Motivation

Understanding complex real-world data is crucial as we are overwhelmed with the massive

amount of information that is constantly generated. For example, there are hundreds or even

thousands of new songs being released every day. Ideally we would like to get personalized

spot-on recommendation without browsing through every single one of them. This requires

understanding both the music semantics (“Is this song a standard upbeat pop tune or a 20-

minute multi-sectional epic progressive rock masterpiece?”) from acoustic waveform, as well

as our music preferences, which can be so subtle that sometimes even we cannot describe

precisely ourselves.

As another example, we consider arXiv.org1 where scholars upload the latest scientist dis-

covery everyday. For a field that is rapidly developing, like machine learning, there can be

tens or even hundreds of new papers being uploaded each day. Even though the papers on
1http://arxiv.org is a pre-print repository for scientific papers.

http://arxiv.org
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arXiv.org are categorized by subject, it is still impractical to even skim through every new

paper in the subject of our interests. On the other hand, we also do not want to miss the latest

scientific progress that is happening in our field. Ideally we would like to get personalized

recommendations from the massive amount of new papers. Similar to music recommendation,

this requires understanding both the content of the paper (“Is this paper about unsupervised

learning or reinforcement learning?”) from the text, as well as our preferences/fields of

interest.

In this dissertation, we aim to understand the complex real-world data (e.g., music, articles,

and user feedback) by applying the tools of Bayesian probabilistic models, or more precisely,

latent variable models. We give a high-level introduction to probabilistic latent variable

models below, and put everything into the context of music and paper recommendation

examples outlined above.

1.2 Probabilistic latent variable models

The basic idea behind probabilistic latent variable models is that we assume there exists

some process that stochastically generates the data we observe. We further assume that the

data-generating process is governed by some latent structures. As a concrete example, let’s

consider latent Dirichlet allocation model (Blei et al., 2003), a widely used probabilistic latent

variable model for documents. The model assumption is that when generating a document,

we first select a latent topic (e.g., business, sports, or politics), then select a word that often

appears in the selected topic (e.g., the word “election” will commonly appear in a topic about

politics), and repeat this process for every word. Here we do not observe the latent structures

(topics). However, when we make such assumption and fit the model with text data, we
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are able to discover the latent topics which help us organize, browse, and retrieve large text

corpus more easily and efficiently.

As mentioned above, when we design a model, we make certain assumptions about the latent

structures and data-generating process. The data-generating process does not have to be

absolutely correct. (In fact, they are never correct, as George E. P. Box once put it: “All models

are wrong, but some are useful.”) Related to both music and paper recommendation examples,

a commonly used probabilistic model for recommendation is matrix factorization (details in

Section 2.2.2.1). The general model assumption of matrix factorization for recommendation

is that a user’s feedback towards an item is generated by the combination of two latent

variables: user preference and item attribute. The item attribute can itself be generated

from a prior, or generated from a probabilistic model of the actual item content (acoustic

waveform or document text). This seems to be an overly-simplified data-generating process.

However, it proves effective in many scenarios and is widely used in commercial recommender

systems.

When we fit the model via posterior inference (we give details about general inference

procedure in Section 2.1), we uncover these latent structures. These latent structures reveal

interesting aspects of the data, e.g., we know for some users, they enjoy classical music and

papers about Bayesian statistics. Concretely, in Chapter 3, we fit a latent variable model to a

music collection of 370k tracks to predict music semantic tags (e.g., genre, instrumentation,

mood, etc.) from acoustic features. By exploring the model in Table 3.3, we can get an idea of

what portion of the acoustic space is being captured by the latent variables, and whether it is

musically coherent. In Chapter 5, we introduce the notation of user exposure (whether a user

is exposed to an item or not) in recommender systems as a latent variable. After fitting the

model, we are able to reason about if the model believes a user has been exposed to certain

items in Figure 5.2 and Figure 5.3. These exploratory studies can help us better understand
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the complex data at hand and provide insight into what the model is capturing.

1.3 Contributions

Belowwe outline the contributions of this dissertation. Since we address a number of different

problems in subsequent chapters, we provide more thorough literature reviews of specific

prior work in each chapter.

1.3.1 Music understanding and recommendation

Scalable music tagging with Poisson factorization. We develop scalable solution to

automatic music tagging – inferring the semantic tags from the audio features. We treat

music tagging as a matrix completion problem and apply the Poisson factorization model to

a large collection of music data. We explore the fitted model and identify what portion of the

acoustic codeword space is being captured by the latent variables.

Content-aware collaborative music recommendation. We address the fundamental cold-

start problem of collaborative filtering (it cannot recommend new songs that no one has

listened to) by pre-training a multi-layered neural network on semantic tagging information as

a content model and using it as a prior in a collaborative filtering model. The proposed system

shows comparably better result than the state-of-the-art collaborative filtering approaches, in

addition to the favorable performance in the cold-start case.
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1.3.2 Probabilistic models for recommender systems

Modeling user exposure in recommendation. We develop a probabilistic matrix factoriza-

tion model to capture the latent user exposure (whether or not a user is exposed to an item).

In doing so, we recover one of the most successful state-of-the-art approaches as a special

case of our model (Hu et al., 2008), and provide a plug-in method for conditioning exposure

on various forms of exposure covariates (e.g., topics in text, venue locations). In four datasets

from various domains, we show that our model outperforms existing benchmarks both with

and without exposure covariates.

Causal inference for recommendation. We develop a causal inference approach to recom-

mender systems. We use inverse propensity weighting to correct for the bias which exists

in observational recommendation data. Through extensive empirical study, we demonstrate

that this causal approach to recommender systems leads to improved generalization to new

data.

1.4 Related publications

The work presented in this dissertation is largely based on published articles in various

conference proceedings: Chapter 3 and Chapter 4 are based on papers presented in ISMIR

2014 (Liang et al., 2014) and ISMIR 2015 (Liang et al., 2015), respectively. Chapter 5 is

based on our paper presented in WWW 2016 (Liang et al., 2016b). Chapter 6 is based on

our paper which is currently in submission (Liang et al., 2016a).



6

Chapter 2

Background

In this chapter, we discuss some background knowledge and previous work helpful to un-

derstanding the rest of the dissertation. Broadly speaking, we will make use of inference

techniques for probabilistic modeling, collaborative filtering method for recommender sys-

tems, and causal inference. We give a high-level overview of the three fields and introduce

some necessary definitions that will be used in the subsequent chapters.

2.1 Probabilistic modeling and inference techniques

We begin by defining the general problem setup for probabilistic latent variable models. We

observe data x = {x1, . . . , xN}. We assume the data is generated stochastically by a model

p(x | z, θ) that is governed by some latent variables z = {z1, . . . , zN} as well as model

parameters θ1. We can also incorporate priors p(z, θ). We leave the dependency structure

of prior generic. This class of models covers a wide range of commonly used models, to
1The distinction between latent variables z and model parameters θ can be somewhat arbitrary. Here we

follow the convention that the dimensionality of the latent variables grows with the number of observations
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name a few: mixture models, hidden Markov models, probabilistic matrix factorization

(Salakhutdinov and Mnih, 2008), and mixed-membership models (e.g., latent Dirichlet

allocation (Blei et al., 2003), and stochastic blockmodels (Airoldi et al., 2008)).

Figure 2.1 demonstrates the graphical model representation for the general latent variable

models described above. Shaded nodes represent observed variables. Unshaded nodes

represent hidden (unobserved) variables. A directed edge from node a to node b denotes that

the variable b depends on the value of variable a. Plates denote replication by the value in

the lower corner of the plate. We use doted line to indicate that the dependency between

model parameters θ and latent variables z are optional – it depends on how the prior p(z, θ)

is specified.

xn

znθ

N

Figure 2.1: Graphical model representation for the general latent variable
models. Doted line is used to indicate that the dependency between model
parameters θ and latent variables z are optional – it depends on how the prior
p(z, θ) is specified.

In Bayesian inference, the goal is to reason about the posterior distribution over the model

parameters and latent variables conditioned on the data, which is given by Bayes’ rule:

p(θ, z | x) = p(x | z, θ)p(z, θ)

p(x)
=

p(x | z, θ)p(z, θ)∫
θ

∫
z p(x | z, θ)p(z, θ)dz dθ

(2.1)

Through posterior inference, we are able to uncover the latent structure induced by the model.

Except in very simple models, posterior p(θ, z | x) is generally intractable to compute due to

(hence both x and z are indexed by n), while that of model parameters does not. Latent variables and model
parameters loosely correspond to local variables and global variables in Hoffman et al. (2013)
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the normalizing constant p(x) which requires computing the integral in the denominator of

Eq. 2.1. In practice, people normally resort to Markov chain Monte Carlo (mcmc) methods

(Neal, 1993; Robert and Casella, 2013) to obtain samples from the posterior distribution

to form a Monte Carlo estimator about the predictive quantities. Despite the asymptotic

guarantees, mcmc methods are generally unable to analyze large-scale data. Scaling Bayesian

inference to large-scale data is an active research area (see Angelino et al. (2016) for an

extensive survey). In Section 2.1.2, we will introduce variational inference, a scalable

deterministic alternative to mcmc.

Alternatively, it is also possible (and computationally simpler) to only obtain a point estimate

of the parameters of interest instead of reasoning about the entire posterior via maximum

likelihood estimation (MLE) or maximum a posteriori (MAP):

θMLE = arg max
θ

log p(x | θ) = arg max
θ

log
∫

z
p(x, z | θ)dz (2.2)

θMAP = arg max
θ

log p(θ, z | x) = arg max
θ

log
∫

z
p(θ, z, x)dz (2.3)

For models with latent variables, expectation-maximization (em) (Dempster et al., 1977)

algorithm is usually required to obtain these point estimates, which we will turn to next.

2.1.1 Parameter estimation via expectation-maximization

In this section, we introduce the em algorithm for parameter estimation. There exist different

derivations of the algorithm in the literature. Here we choose to introduce it in the variational

framework to highlight its close connection to variational inference, which we will introduce
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in the following section. We derive the em algorithm for maximum likelihood estimation

(Eq. 2.2) – it only requires minor modification for maximum a posteriori (Eq. 2.3).

To obtain the maximum likelihood estimates, typically we write down the so-called observ-

able data log-likelihood log p(x | θ) and optimize it with respect to the model parameters

θ. One of the problems with directly optimizing the observable data log-likelihood for

models with latent variables z is that it requires to integrate over all the latent variables

log
∫

z p(x, z | θ)dz, which is generally intractable. As a workaround, we instead optimize

the complete data log-likelihood log p(x, z | θ) by introducing a variational distribution

q(z) and applying Jensen’s inequality:

log p(x | θ) = log
∫

z
p(x, z | θ)dz

= log
∫

z
q(z)

p(x, z | θ)
q(z)

dz

≥
∫

z
q(z) log

p(x, z | θ)
q(z)

dz

= Eq [log p(x, z | θ)]−Eq [log q(z)] .

(2.4)

We obtain a lower bound of the log-likelihood log p(x | θ) that we are interested in optimizing.

The tightness of this bound depends on the variational distribution q(z). We could of course

find out the optimal q(z) by exploring when the equality holds for Jensen’s inequality.

However, we will solve it from a different angle here. We first explore the slack by applying
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Jensen’s inequality:

∆ = log p(x | θ)−
∫

z
q(z) log

p(x, z | θ)
q(z)

dz

=
∫

z
q(z) log p(x | θ)−

∫
z

q(z) log
p(x, z | θ)

q(z)
dz

=
∫

z
q(z) log

p(x | θ)q(z)
p(x, z | θ) dz

=
∫

z
q(z) log

q(z)
p(z | x, θ)

dz ≡ KL(qz‖pz | x,θ)

(2.5)

Thus, the difference is the Kullback-Leibler (kl) divergence between the variational distri-

bution q(z) and the posterior distribution p(z | x, θ). We can re-write the log-likelihood

as:

log p(x | θ) = Eq [log p(x, z | θ)]−Eq [log q(z)]︸ ︷︷ ︸
L(q,θ)

+KL(qz‖pz | x,θ).

Since the kl-divergence KL(qz‖pz | x,θ) is non-negative and equals 0 only if q(z) =

p(z | x, θ), a.s., L(q, θ) acts as a tight lower-bound that equals log p(x | θ) when we set

q(z) to p(z | x, θ). em algorithm optimizes L(q, θ) by iteratively applying the following

E(xpectation) and M(aximization) steps:

E-step: By setting q(z) = p(z | x, θ), we obtain the optimal variational distribution, closing

the gap between log-likelihood log p(x | θ) and the lower bound L(q, θ).

M-step: We have q(z) fixed from E-step and optimize L(q, θ) with respect to the model

parameters θ, which is equivalent to the following:

θnew = arg max
θ

Eq [log p(x, z | θ)] ,
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since Eq [log q(z)] does not depend on θ.2 Unless we have reached a stationary point, the

lower bound L(q, θ) will increase with the new parameters θnew. The new parameters θnew

will also make the kl-divergence KL(qz‖pz | x,θ) greater than 0, which creates gap between

the log-likelihood and L(q, θ). This gap will be closed in the next E-step. Chapter 9 of

Bishop (2006) provides a clear illustrative demonstration of the em algorithm.

em algorithm is a typical example of coordinate ascent (Bertsekas, 1999), where in each E-

and M-step, we fix one of the variables of interest—θ in E-step and q(z) in M-step—and

optimize with respect to the other one.

2.1.2 Variational inference

Variational inference is a deterministic alternative to mcmc methods (Jordan et al., 1999;

Wainwright and Jordan, 2008; Blei et al., 2016). In Bayesian inference, we aim to reason

about the posterior p(z, θ | x) which is almost always intractable to compute. The basic idea

behind variational inference is to choose a tractable family of variational distributions q(z, θ)

to approximate the intractable posterior p(z, θ|x), so that the kl-divergence between the

variational distribution and the true posterior KL(qz,θ‖pz,θ | x) is minimized.

Variational inference turns the problem of Bayesian inference into a one of optimization,

which enables us to leverage the advances from optimization community, e.g., by making use

of stochastic optimization, we can scale variational inference to massive dataset (Hoffman

et al., 2013).
2In principle, θnew does not have to fully optimize the objective Eq [log p(x, z, | θ)], as long as the new

values increase it (e.g., by taking a few gradient steps). This is referred as generalized em (Neal and Hinton,
1998).
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To utilize variational inference for approximate Bayesian inference, we introduce the varia-

tional distribution q(z, θ) and lower bound the marginal likelihood, similar to Eq. 2.4:

log p(x) = log
∫

z,θ
p(x, z, θ)dz dθ

≥ Eq [log p(x, z, θ)]−Eq [log q(z, θ)] , L.
(2.6)

Here the model parameters θ are treated the same as latent variables z with some pre-specified

prior p(z, θ).3 L is usually referred as evidence lower bound (elbo), since it is a lower

bound of the model evidence log p(x). Based on derivation similar to Eq. 2.5 (omitted for

brevity), we can show that optimizing elbo is equivalent to minimizing the kl divergence

between the variational distribution q(z, θ) and the posterior of interest p(z, θ | x). Once

we obtain the approximating posterior that minimizes the kl-divergence, we can use it as a

proxy of the true posterior to form prediction.

So far we haven’t specified how to select the variational distribution q(z, θ). One popular

choice is themean-field familywhich is completely factorized: q(z, θ) = (∏d qd(zd)) (∏i qi(θi)).

With mean-field family, we can obtain the general form for the optimal variational distribu-

tions:

q∗d(zd) ∝ exp{Eq−d [log p(zd, x, z−d, θ)]}

q∗i (θi) ∝ exp{Eq−i [log p(θi, x, z, θ−i)]},
(2.7)

where z−d is used to index all of z except the dth dimension, and Eq−d [·] denotes tak-

ing expectation with respect to everything except qd(zd). (θ−i and Eq−i [·] are similarly

defined.)
3Variational inference can also be applied to the MLE/MAP case in Section 2.1.1 where we only marginalize

out latent variables z to obtain point estimates of model parameters θ. This happens in the E-step, when the
posterior p(z | x, θ) is intractable to compute exactly, which leads to the variational em algorithm (Beal, 2003).
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For conditional conjugate model where the complete conditionals p(zd | x, z−d, θ) and

p(θi | x, z, θ−i) are in exponential family, the distributional form of Eq. 2.7 can be com-

puted exactly. This leads to the standard coordinate ascent variational inference algorithm:

we iteratively set qd(zd) and qi(θi) to its optimal form while keeping everything else fixed

across the dimensions and repeat this procedure until convergence.

2.2 Recommender systems

Making good recommendations is an important problem on the web. In the recommendation

problem, we observe how a set of users interacts with a set of items, and our goal is to show

each user a set of previously unseen items that she will like. Broadly speaking, recommender

systems use historical data to infer users’ preferences, and then use the inferred preferences

to suggest items. Good recommender systems are essential as the web grows; users are

overwhelmed with choice.

2.2.1 Explicit and implicit feedback

Traditionally there are two modes of the recommendation problem: recommendation from

explicit data and recommendation from implicit data. With explicit data, users rate some

items (positively, negatively, or along a spectrum) and we can predict their missing ratings

(the task of rating prediction, popularized by the Netflix Prize4). This is called explicit data

because users’ preferences are expressed in an explicit fashion: positively rated items indicate

types of items that they like; negatively rated items indicate items that they do not like. For

explicit data, it is enough to only use the rated items to infer a user’s preferences as we have
4http://www.netflixprize.com/

http://www.netflixprize.com/
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both positive and negative examples. Explicit data is of great value, but it is often difficult to

obtain.

In implicit data, each user expresses a binary decision about items5—for example this can

be clicking, purchasing, viewing—and we aim to predict unclicked items that she would

want to click on. (We use the verb “click” throughout this dissertation for concreteness;

this can be any type of interaction, including “download,” “purchase,” “listen,” or “watch.”)

Unlike ratings data, implicit data is easily accessible. While ratings data requires action

on the part of the users, implicit data is often a natural byproduct of their behavior, e.g.,

browsing histories, click logs, and past purchases. Despite the ease of access, implicit data is

inherently noisy, as users’ preferences are expressed through implicit actions and we only

observe positive signals: we know users click on items they like, but we do not know why an

item is unclicked. We will explore recommender systems for both implicit and explicit data

in this dissertation in Chapter 5 and Chapter 6, respectively.

2.2.2 Collaborative filtering for recommender systems

Collaborative filtering is the workhorse of recommender systems. It is widely used in many

commercial websites, e.g., Amazon uses various collaborative filtering algorithms to suggest

products (“Customers Who Bought This Item Also Bought”), and Netflix uses collaborative

filtering algorithms extensively in their homepage to suggest new movies and TV shows to

watch.

Collaborative filtering analyzes user preferences for items by exploiting the similarity patterns

across users. There are two major classes of collaborative filtering algorithms: neighborhood-
5In principle, implicit data can go beyond binary: For example, the number of times a user listened to certain

songs can also be considered as implicit feedback. However, in practice we find that the binary indicator of
interaction tends to carry the most signal.
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based model (Sarwar et al., 2001) and the matrix factorization model (Koren et al., 2009).

In this dissertation, we will mainly focus on the matrix factorization for collaborative filter-

ing.

2.2.2.1 Matrix factorization for collaborative filtering

User-item preference data, whether explicit or implicit, can be encoded in a user by item

matrix. Throughout this dissertation, a user is indexed by u ∈ {1, . . . , U}, an item is

indexed by i ∈ {1, . . . , I}, and we will refer to this user by item matrix as the click matrix

or the interaction matrix. Given the observed entries in this matrix {yui : (u, i) ∈ O}, the

recommendation task is often framed as filling in the unobserved entries. Matrix factorization

models, which infer (latent) user preferences and item attributes by factorizing the click

matrix, are standard in recommender systems (Koren et al., 2009).

Figure 2.2 demonstrates the basic idea behind matrix factorization for collaborative filtering.6

In this illustrative example, we have three users and three items, where each user consumes

only one item. Matrix factorization aims to find a latent space to embed all of the users and

items. If a user consumes an item, this user and item pair will be embedded closer in this

latent space. The locations (coordinates) in this latent space correspond to the user and item

latent factors obtained by factorizing the click matrix. To make recommendations for each

user, we select the unconsumed items which have high dot products with the user’s latent

factor.

How would this work? Consider a metalhead who has listened to a lot ofMetallica but not

Iron Maiden. It is reasonable to assume that there are many other users with similar tastes

listened to songs from both bands, which makes the latent factors for songs by bothMetallica
6This figure is only an illustrative example: typical matrix factorization models use inner products, not

Euclidean distance, to measure similarity.
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Items

Users

Figure 2.2: An illustrative example of matrix factorization for collaborative
filtering. Matrix factorization aims to find a latent preference space to embed
both users and items such that if a user consumes an item, they will be
embedded closer in this latent space.

and Iron Maiden very close in the latent space. Therefore, when making recommendations

for this user, the songs from Iron Maiden will likely have higher dot products, which will be

recommended by the learned matrix factorization model.

From a generative modeling perspective, the model can be understood as first drawing user

and item latent factors corresponding, respectively, to user preferences and item attributes.

Then drawing observations from a specific distribution (e.g., a Poisson or a Gaussian) with

its mean parametrized by the dot product between the user and the item factors. Formally,
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Gaussian matrix factorization is (Salakhutdinov and Mnih, 2008):

θu ∼ N (0, λ−1
θ IK) for u = 1, . . . , U,

βi ∼ N (0, λ−1
β IK) for i = 1, . . . , I,

yui ∼ N (θ>u βi, λ−1
y ) for (u, i) ∈ O,

(2.8)

where θu and βi represent user u’s latent preferences and item i’s attributes respectively. We

use the mean and (co)variance to parametrize the Gaussian distribution. λθ , λβ, and λy can

be treated as hyperparameters, or be given priors for a full Bayesian treatment. IK stands for

the identity matrix of dimension K. A graphical model representation of the Gaussian matrix

factorization model is shown in Figure 2.3.

yui

θu βi

λy

λθ
λβ

I

U

Figure 2.3: Graphical model representation for the Gaussian matrix factor-
ization.

We derive coordinate updates to obtain the maximum a posteriori estimates of the Gaussian

matrix factorization model, as they are closely related to the model inference we develop in

the later chapters. Since we are only obtaining point estimates of the model parameters, we

can always scale λθ and λβ by λy to obtain the same solution. Without loss of generality, we

set λy = 1. The complete log-likelihood of the model is:
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L = − ∑
(u,i)∈O

1
2
(yui − θ>u βi)

2 − λθ

2 ∑
u
‖θu‖2

2 −
λβ

2 ∑
i
‖βi‖2

2. (2.9)

As we can see, the maximum a posteriori estimates of the Gaussian matrix factorization

model is equivalent to the solution of minimizing the squared loss between the estimated and

actual preferences ∑(u,i)∈O(yui − θ>u βi)
2 with `2 regularization on the latent factors.

The basic idea of the coordinate updates for the Gaussian matrix factorization model is to

only update one of the user or item factor (θu or βi) at a time when keeping everything else

fixed. Taking the gradient of the complete log-likelihood (Eq. 2.9) with respect to one of the

latent factors and setting it to 0, we obtain the following updates:

θnew
u ← ( ∑

i:(u,i)∈O
βiβ

>
i + λθIK)

−1( ∑
i:(u,i)∈O

yuiβi) (2.10)

βnew
i ← ( ∑

u:(u,i)∈O
θuθ>u + λβIK)

−1( ∑
u:(u,i)∈O

yuiθu) (2.11)

Every single update resembles that of ridge regression (Hastie et al., 2009) where the re-

sponses are yui and the covariates are the latent factors. Therefore, the coordinate updates

for the Gaussian matrix factorization is often called alternating least squares (ALS). The

full algorithm is summarized in Algorithm 1. Note that the updates are embarrassingly

parallelizable across users and items.

2.2.2.2 Collaborative filtering for implicit data

The model described in Eq. 2.8 can be equally applied to both explicit and implicit data. The

real difference is how to define the observed set O: For explicit data, it can simply be the
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Algorithm 1: ALS Alternating least squares for the Gaussian matrix factorization

Input: A set of observed entires in the click matrix {yui : (u, i) ∈ O}, regularization
parameters λθ and λβ

Output: A set of user latent factors θ1:U and item latent factors β1:I
Randomly initialize θ1:U , β1:I
while not converged do

for u← 1 to U do
Update user factor θu (Eq. 2.10)

end
for i← 1 to I do

Update item factor βi (Eq. 2.11)
end

end
return θ1:U , β1:I

user-item pairs where user u has clicked on (rated) item i. However, we can not copy the same

definition for implicit data. The reason is that the data is binary and thus, when inferring

a user’s preferences, we must use unclicked items (otherwise, it would be like training a

classifier with only positive labels7), i.e., O contains all the entires in the click matrix.

Mirroring methods for explicit data, many methods treat unclicked items as those a user

does not like. But this assumption is mistaken, and overestimates the effect of the unclicked

items. Some of these items—many of them, in large-scale settings—are unclicked because

the user didn’t see them, rather than because she chose not to click them. This is the crux of

the problem of analyzing implicit data: we know users click on items they like, but we do

not know why an item is unclicked.

Weighted matrix factorization (wmf), the standard factorization model for implicit data,

selectively downweights evidence from the click matrix (Hu et al., 2008). wmf uses a simple

heuristic where all unobserved user-item interactions are equally downweighted vis-a-vis the
7Recommendation from implicit data is also known as one-class collaborative filtering (Pan et al., 2008).
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observed interactions. Under wmf an observation is generated from:

yui ∼ N (θ>u βi, c−1
yui
),

where the “confidence” c is set such that c1 > c0. This dependency between a click and

itself is unorthodox; because of it wmf is not a generative model. As we will describe in

Chapter 5 we obtain a proper generative model by adding an exposure latent variable.

The maximum a posteriori estimates of wmf can also be obtained via ALS with minor

modification. For notational convenience, we define cui , cyui . The complete log-likelihood

for wmf is (recall that observed set O contains all the entries in the click matrix):

L = −∑
u,i

cui

2
(yui − θ>u βi)

2 − λθ

2 ∑
u
‖θu‖2

2 −
λβ

2 ∑
i
‖βi‖2

2

Again, we take the gradient with respect to one of the factors and set it to 0, which leads to

the following ALS updates:

θnew
u ← (∑

i
cuiβiβ

>
i + λθIK)

−1(∑
i

cuiyuiβi) (2.12)

βnew
i ← (∑

u
cuiθuθ>u + λβIK)

−1(∑
u

cuiyuiθu) (2.13)

However, unlike Eq. 2.10 and Eq. 2.11, the summation inside of the matrix inversion is over

all the users or items, which can be computationally challenging, especially considering that

we will have to do this computation for every single factor update (there are in total U + I

factors to be updated in one iteration). Hu et al. (2008) propose a clever trick to speed up the

computation substantially by breaking up the summation into two parts as follows (here we

only demonstrate the case for updating the user factor θu, the same can be applied to item
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factor βi):

(∑
i

cuiβiβ
>
i + λθIK)

−1(∑
i

cuiyuiβi)

= (∑
i
(cui − c0)βiβ

>
i + ∑

i
c0βiβ

>
i + λθIK︸ ︷︷ ︸

precompute once per iteration

)−1(∑
i

cuiyuiβi).

The second part ∑i c0βiβ
>
i + λθIK is shared across all the user factor updates, thus can be

precomputed once per iteration. The first part ∑i(cui − c0)βiβ
>
i can be efficiently computed

because cui − c0 is non-zero only when yui = 1 and normally the click matrix is highly

sparse. Furthermore, just like ALS for the Gaussian matrix factorization, all the updates are

embarrassingly parallelizable across users and items. The full algorithm of ALS for wmf is

summarized in Algorithm 2. With the speed-up trick and embarrassing parallelization, ALS

for wmf can be easily applied to datasets with millions of users and items.

Algorithm 2: W-ALS Alternating least squares for wmf

Input: Click matrix yui, the confidence for clicked c1 and unclicked c0, regularization
parameters λθ and λβ

Output: A set of user latent factors θ1:U and item latent factors β1:I
Randomly initialize θ1:U , β1:I
while not converged do

Precompute ∑i c0βiβ
>
i + λθIK

for u← 1 to U do
Update user factor θu (Eq. 2.12)

end
Precompute ∑u c0θuθ>u + λβIK

for i← 1 to I do
Update item factor βi (Eq. 2.13)

end
end
return θ1:U , β1:I

wmf treats the collaborative filtering problem with implicit data as a regression problem.
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Concretely, consumed user-item pairs are assigned a value of one and unobserved user-item

pairs are assigned a value of zero. Bayesian personalized ranking (BPR) (Rendle et al., 2009;

Rendle and Freudenthaler, 2014) instead treats the problem as a one of ranking consumed

user-item pairs above unobserved pairs. In a similar vein, the weighted approximate-ranking

pairwise (WARP) loss proposed inWeston et al. (2011) approximately optimizes Precision@k.

To deal with the non-differentiable nature of the ranking loss, these methods typically design

specific (stochastic optimization) methods for parameter estimation.

2.3 Causal inference

Causal inference is aiming to answer the cause-and-effect question: does X cause Y? If so,

how much is the effect of X on Y? Causal inference helps us learn about how things work

and predict what happens when certain things change (Morgan and Winship, 2014; Imbens

and Rubin, 2015). In this section, we review some basic concepts of causal inference that

will be used in the later chapters of this dissertation when we make a connection between

causal inference and recommendation.

2.3.1 Potential outcome framework

The potential outcome framework of causal inference (Rubin, 1974) is the most widely

used causality formulation. We use random variable A = a as an indicator of treatment

assignment and assume the treatment is binary, i.e., a is either 1 (assigned the treatment) or 0

(not assigned the treatment). In this framework, each individual has two potential outcomes

Y(a) depending on the value of a. For example, in a medical trial, for each patient, we assume
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there is a potential outcome Y(1) if she receives the treatment and Y(0) if she receives the

placebo.

One measurement of the causal effect is the average difference (over individuals) between

those potential outcomes. It is formally formulated as the average treatment effect (ate):

E [δ] = E [Y(1)]−E [Y(0)], where the expectation is taken over the whole population of

interest. In the language of graphical models (Pearl, 2009), this is framed as evaluating the

impact of an intervention on random variables in a probabilistic graph. The difficulty of

causal inference is that we can only observe one realization of all the potential outcomes

Y(a), for a ∈ {0, 1}.

2.3.2 Randomized experiments and observational studies

There are two types of data commonly encountered in causal analysis: data collected from

randomized experiments and data collected from observational studies.

Randomized experiments are the experiments that each unit receives treatment randomly (e.g.,

a medical trial where a random proportion of patients receives treatment). They allow the

great reliability and validity of statistical estimates of causal effects. A naive ate estimator

of the difference between the treated and untreated with data from randomized experiments

is unbiased. Such data is of great quality, but sometimes it is impossible to obtain.

Observational data, on the other hand, is collected from an observational study where we

have no control over the assignment mechanism. This can happen when it is impractical to

perform a randomized experiment (e.g., for ethical reasons) or whenwe cannot control the data

collecting process. Special care is required when making causal statement with observational

data, since the naive ate estimator is generally biased. Despite such difficulty, observational

data is easily accessible comparing to data collected from randomized experiments.
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If we treat recommending an item to a user as assigning a treatment, the data collected

from a typical recommender system is an example of observational data. We leverage this

connection in Chapter 6 to develop a causal inference approach to recommendation.
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Chapter 3

Scalable Music Tagging with Poisson

Factorization

Automatic music tagging is an important but challenging problem within Music Information

Retrieval (mir). In this chapter, we treat music tagging as a matrix completion problem. We

apply the Poisson matrix factorization model jointly on the vector-quantized audio features

and a “bag-of-tags” representation. This approach exploits the shared latent structure between

semantic tags and acoustic codewords. Leveraging the stochastic variational inference, the

model can tractably analyze massive music collections. We present experimental results on

the CAL500 dataset and the Million Song Dataset for both annotation and retrieval tasks,

illustrating the steady improvement in performance as more data is used.
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3.1 Introduction

Automatic music tagging is the task of analyzing the audio content (waveform) of a music

recording and assigning to it human-relevant semantic tags (Turnbull et al., 2008) – which

may relate to style, genre, instrumentation, or more subtle aspects of the music, such as those

contributed by users on social media sites. Such “autotagging” (Eck et al., 2007) relies on

labeled training examples for each tag, and performance typically improves with the number

of training examples consumed, although training schemes also take longer to complete. In

the era of “Big Data”, it is necessary to develop models which can rapidly handle massive

amount of data; a starting point for music data is the Million Song Dataset (Bertin-Mahieux

et al., 2011), which includes user tags from Last.fm.

In this chapter, we treat the automatic music tagging as a matrix completion problem, and

use the techniques of stochastic variational inference to be able to learn from large amounts

of data presented in an online fashion (Hoffman et al., 2013). The “matrix completion”

problem treats each track as a row in a matrix, where the elements describe both the acoustic

properties (represented, for instance, as a histogram of occurrences of vector-quantized

acoustic features) and the relevance of a large vocabulary of tags (we describe the details

about data representation in Section 3.2): We can regard the tag information as incomplete

or missing for some of the rows, and seek to “complete” these rows based on information

inferred from the complete, present rows.

3.1.1 Related work

There have been a large number of papers on automatic tagging of music audio in recent years.

In addition to the papers mentioned above, work particularly relevant to this paper includes

the Codeword Bernoulli Average (CBA) approach of Hoffman et al. (2009), which uses a
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similar vector-quantization (VQ) histogram representation of the audio to build a simple

but effective probabilistic model for each tag in a discriminative fashion. Xie et al. (2011)

directly fits a regularized logistic regression model to the normalized acoustic codeword

histograms to predict each tag and achieves state-of-the-art results, and Ellis et al. (2013)

further improves tagging accuracy by employing multiple generative models that capture

different characteristics of a music piece, which are combined in an optimized “bag-of-

systems”.

Much of the previous work has been performed on the CAL500 dataset (Turnbull et al., 2008)

of 502 Western popular music tracks that were carefully labeled by at least three human anno-

tators with their relevance to 149 distinct labels spanning instrumentation, genre, emotions,

vocal characteristics, and use cases. This small dataset tends to reward approaches that can

maximize the information extracted from the sparse data regardless of the computational cost.

A relatively larger dataset in this domain is CAL10k (Tingle et al., 2010) with over 10,000

tracks described by over 500 tags, mined from Pandora’s website1. However, neither of these

datasets can be considered industrial scale, which implies handling millions of tracks and

tens of thousands of tags.

Matrix factorization techniques, in particular, nonnegative matrix factorization (nmf), have

been widely used to analyze music signals (Hoffman et al., 2010; Liang et al., 2013) in the

context of source separation. Paisley et al. (2015) derived scalable Bayesian nmf for topic

modeling, which we develop here. To our knowledge, this is the first application of matrix

factorization to VQ acoustic features for automatic music tagging.
1http://www.pandora.com/

http://www.pandora.com/
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3.2 Data representation

We first describe the data that is used in the matrix completion problem. For our automatic

tagging system, the data comes from two sources: vector-quantized audio features and a

“bag-of-tags” representation.

• Vector-quantized audio features. Instead of directly working with audio features, we

vector quantize all the features following the standard procedure: We run the k-means

algorithm on a subset of randomly selected training data to learn J cluster centroids

(codewords). Then for each song, we assign each frame to the cluster with the smallest

Euclidean distance to the centroid. We form the VQ feature yVQ ∈ NJ by counting

the number of assignments to each cluster across the entire song.

• Bag-of-tags. Similar to the bag-of-words representation, which is commonly used

to represent documents, we represent the tagging information (whether or not the tag

applies to a song) with a binary bag-of-tags vector yBoT ∈ {0, 1}|V|, where V is the

set of all tags.

For each song, we will simply concatenate the VQ feature yVQ and the bag-of-tags vector

yBoT, thus the dimension of the data is D = J + |V|. Figure 3.1 demonstrates the workflow

of the proposed automatic tagging system. The data (left) consists of both acoustic features

and bag-of-tags vectors. When we apply the matrix factorization model to this data, the latent

factors we learn (rightmost) will exploit the shared latent structure between semantic tags

and acoustic codewords. Therefore, we can utilize the shared latent structure to predict tags

when only given the audio features.
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Figure 3.1: The workflow of the proposed automatic tagging system. The
data (left) consists of both acoustic features and bag-of-tags vectors. When
we apply the matrix factorization model to this data, the latent factors we
learn (rightmost) will exploit the shared latent structure between semantic
tags and acoustic codewords.

3.3 Poisson matrix factorization

We adopt the notational convention that bold letters (e.g. y, θ, β) denote matrices. i ∈

{1, · · · , I} is used to index songs. d ∈ {1, · · · , D} is used to index feature dimensions.

k ∈ {1, · · · , K} is used to index latent factors from the matrix factorization model. Given

the data y ∈ NI×D as described in Section 3.2, the Poisson matrix factorization model is

formulated as follows:

θik ∼ Gam(a, ac),

βkd ∼ Gam(b, b),

yid ∼ Pois(
K

∑
k=1

θikβkd),

(3.1)
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where βk , [βk1, . . . , βkD]
> ∈ RD

+ denote the kth latent factor and θi , [θi1, . . . , θiK]
> ∈

RK
+ denote the weights for song i. a and b are model hyperparameters. c is a scalar on the

weights that we tune to maximize the likelihood. A graphical model representation for the

Poisson matrix factorization is shown in Figure 3.2.

yid

θik βkd

K

D

I

Figure 3.2: Graphical model representation for the Poisson matrix factoriza-
tion.

There are a couple of reasons to choose a Poisson model over a more traditional Gaussian

model (Salakhutdinov and Mnih, 2008). First, the Poisson distribution is a more natural

choice to model count data. Secondly, real-world tagging data is extremely noisy and sparse.

If a tag is not associated with a song in the data, it could be either because that tag does not

apply to the song, or simply because no one has labeled the song with the tag yet. The Poisson

matrix factorization model has the desirable property that it does not penalize values of 0 as

strongly as the Gaussian distribution (Paisley et al., 2015; Gopalan et al., 2015). Therefore,

even weakly labeled data can be used to learn the Poisson model.

3.4 Variational inference

To learn the latent factors β and the corresponding decomposition weights θ from the training

data y, we need to compute the posterior distribution p(θ, β|y). However, no closed-form
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expression exists for this hierarchical model. We therefore employ mean-field variational

inference to approximate this posterior as described in Section 2.1.2.

We choose a fully-factorized family of variational distributions,

q(θ, β) =
K

∏
k=1

( I

∏
i=1

qik(θik)
)( D

∏
d=1

qkd(βkd)
)

,

to approximate the posterior p(θ, β|y), so that the kl-divergence between the variational

distribution and the true posterior is minimized. Following a further approximation discussed

in the next section, the factorized distribution allows for a closed-form expression of this

variational objective, and thus tractable inference. Here we choose variational distributions

from the same family as the prior (we use the shape and rate parametrization for gamma

distribution):

qik(θik) = Gam(θik; γik, χik),

qkd(βkd) = Gam(βkd; νkd, λkd).

Minimizing the kl-divergence is equivalent to maximizing the following variational objective

(elbo):

L = Eq [ln p(y, θ, β)] + H(q),

where H(q) is the entropy of the variational distribution q. We can optimize the variational

objective using coordinate ascent via two approaches: batch inference, which requires

processing of the entire dataset for every iteration; or stochastic inference, which only needs

a small batch of data for each iteration and can be potentially scale to much larger datasets

where batch inference is no longer computationally feasible.
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3.4.1 Batch inference

Although the model in Eq. 3.1 is not conditionally conjugate by itself, as demonstrated in

Cemgil (2009), we can introduce latent auxiliary random variables zidk ∼ Poisson(θikβkd)

(yid = ∑k zidk) with the variational distribution being q(zidk) = Mult(zid; φid), where

zid ∈NK, φidk ≥ 0 and ∑k φidk = 1. This makes the model conditionally conjugate, which

means that closed-form coordinate ascent updates are available.

Following the standard results of variational inference for conditionally conjugate model (e.g.

Hoffman et al. (2013)), we can obtain the updates for θik:

γik = a +
D

∑
d=1

yidφidk,

χik = ac +
D

∑
d=1

Eq [βkd] .

(3.2)

The scale c is updated as:

c−1 =
1

IK ∑
i,k

Eq[θik].

Similarly, we can obtain the updates for βkd:

νkd = b +
I

∑
i=1

yidφidk,

λkd = b +
I

∑
i=1

Eq[θik].

(3.3)

Finally, for the auxiliary variables zidk, the following update is applied:

φidk ∝ exp{Eq[ln θikβkd]}.
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Note that this update should be applied after either updating θik or βkd. The necessary

expectations for θik are:

Eq[θik] = γik/χik,

Eq[ln θik] = ψ(γik)− ln χik,

where ψ(·) is the digamma function. The expectations for βkd have the same form, but use

νkd and λkd. The full algorithm of batch inference for the Poisson matrix factorization is

summarized in Algorithm 3.

3.4.2 Stochastic inference

Batch inference will alternate between updating θ and β using the entire data at each iteration

until convergence to a local optimum, which could be computationally intensive for large

datasets. We can instead adopt stochastic optimization by selecting a subset (mini-batch) of

the data at iteration t, indexed by Bt ⊂ {1, · · · , I}, and optimizing over a noisy version of

the variational objective L:

Lt =
I
|Bt| ∑

i∈Bt

Eq [ln p(yi, θi|β)] + Eq [ln p(β)] + H(q). (3.4)

By optimizing Lt, we are optimizing L in expectation.

The updates for weights θik and auxiliary variables zidk are essentially the same as those of

batch inference, except that now we are only inferring weights for the mini-batch of data for

i ∈ Bt. The optimal scale c is updated accordingly:

c−1 =
1
|Bt|K ∑

i∈Bt,k
Eq[θik].
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Algorithm 3: BatchVI Batch variational inference for the Poisson matrix factorization

Input: Acoustic features and bag-of-tags vectors y, hyperparameters a and b
Output: Variatioanl parameters γ, χ, ν, λ
Randomly initialize variational parameters γ, χ, ν, λ
while not converged do

for (i, d) : yid > 0 do
for k← 1 to K do

Update auxiliary variables φidk ∝ exp{Eq[ln θikβkd]}.
end

end
for i← 1 to I do

for k← 1 to K do
Update variational parameters γik and χik for weights θik (Eq. 3.2)

end
end
Update scale c−1 = 1

IK ∑i,k Eq[θik]
for (i, d) : yid > 0 do

for k← 1 to K do
Update auxiliary variables φidk ∝ exp{Eq[ln θikβkd]}.

end
end
for d← 1 to D do

for k← 1 to K do
Update variational parameters νkd and λkd for latent factors βkd (Eq. 3.3)

end
end

end
return γ, χ, ν, λ
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After alternating between updating weights θik and latent variables zidk until convergence,

we can take a gradient step, preconditioned by the inverse Fisher information matrix of

variational distribution qkd(βkd), to optimize βkd (see Hoffman et al. (2013) for more technical

details),

ν
(t)
kd = (1− ρt)ν

(t−1)
kd + ρt

(
b +

I
|Bt| ∑

i∈Bt

yidφidk

)
,

λ
(t)
kd = (1− ρt)λ

(t−1)
kd + ρt

(
b +

I
|Bt| ∑

i∈Bt

Eq[θik]

)
,

where ρt > 0 is a step size at iteration t. To ensure convergence (Bottou, 1998), the following

conditions must be satisfied:

∑∞
t=1 ρt = ∞, ∑∞

t=1 ρ2
t < ∞.

One possible choice of ρt is ρt = (t0 + t)−κ for t0 > 0 and κ ∈ (0.5, 1]. It has been shown

(Hoffman et al., 2013) that this update corresponds to stochastic optimization with a natural

gradient step, which better fits the geometry of the parameter space for probability distribu-

tions. The full algorithm for stochastic variational inference is summarized in Algorithm 4.

Note that unlike Algorithm 3 where the variational parameters for weights γ and χ are also

returned, here we only return the learned variational parameters for latent factors ν and λ to

demonstrate the “online” natural of the stochastic variational inference algorithm: the data is

processed in mini-batches and there is no need to keep track of any old data that has been

already analyzed.
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Algorithm 4: SVI Stochastic variational inference for the Poisson matrix factorization

Input: Acoustic features and bag-of-tags vectors y, hyperparameters a, b, t0, κ, and
mini-batch size

Output: Variatioanl parameters ν, λ
Randomly initialize variational parameters ν, λ
for t← 1, . . . do

Subsample a mini-batch of data Bt
while not converged do

for (i, d) : i ∈ Bt and yid > 0 do
for k← 1 to K do

Update auxiliary variables φidk ∝ exp{Eq[ln θikβkd]}.
end

end
for i ∈ Bt do

for k← 1 to K do
Update variational parameters γik and χik for weights θik (Eq. 3.2)

end
end
Update scale c−1 = 1

|Bt|K ∑i∈Bt,k Eq[θik]

end
Set step size ρt = (t0 + t)−κ

for d← 1 to D do
for k← 1 to K do

Take natural gradient steps for latent factors:

ν
(t)
kd = (1− ρt)ν

(t−1)
kd + ρt

(
b + I

|Bt| ∑i∈Bt
yidφidk

)
λ
(t)
kd = (1− ρt)λ

(t−1)
kd + ρt

(
b + I

|Bt| ∑i∈Bt
Eq[θik]

)
end

end
end
return ν, λ
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3.4.3 Generalizing to new songs

Once the latent factor β ∈ RK×D
+ is inferred, we can naturally divide it into two blocks:

the VQ part βVQ ∈ R
K×J
+ , and the bag-of-tags part βBoT ∈ R

K×|V|
+ . See the rightmost of

Figure 3.1 for an illustration.

Given a new song, we can first obtain the VQ feature yVQ and fit it with βVQ to compute pos-

terior of the weights p(θ|yVQ, βVQ). We can approximate this posterior with the variational

inference algorithm in Section 3.4.1 with β fixed. Then to predict tags, we can compute

the expectation of the dot product between the weights θ and βBoT under the variational

distribution:

ŷBoT = Eq

[
θT βBoT

]
. (3.5)

Since for different songs the weights θ may be scaled differently, before computing the dot

product we normalize Eq [θ] so that it lives on the probability simplex. To do automatic

tagging, we could annotate the song with top M tags according to ŷBoT. To compensate for a

lack of diversity in the annotations, we adopt the same heuristic used in Hoffman et al. (2009)

by introducing a “diversity factor” d: For each predicted score, we subtract d times the mean

score for that tag. In our system, we set d = 3.

3.5 Evaluation

We evaluate the model’s performance on an annotation task and a retrieval task using CAL500

(Turnbull et al., 2008) andMillion Song Dataset (MSD) (Bertin-Mahieux et al., 2011). Unlike

the CAL500 dataset where tracks are carefully-annotated, the Last.fm dataset associated with

MSD comes from real-world user tagging, and thus contains only weakly labeled data with a

tagging vocabulary that is much larger and more diverse.
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We compare our results on these tasks with two other sets of codebook-based methods:

Codeword Bernoulli Average (CBA) (Hoffman et al., 2009) and `2-regularized logistic

regression (Xie et al., 2011). Like the Poisson matrix factorization model, both methods

are easy to train and can scale to relatively large dataset on a single machine. However,

since both methods perform optimization in a batch fashion, we will later refer to them

as “batch algorithms”, along with the Poisson model with batch inference described in

Section 3.4.1.

For the hyperparameters of the Poisson matrix factorization model, we set a = b = 0.1,

and the number of latent factors K = 100. To learn the latent factors β, we followed the

procedure in Algorithm 3 for batch inference until the relative increase on the elbo is less

than 0.05%. For stochastic inference, we followed the procedure in Algorithm 4 and used a

mini-batch size |Bt| = 1, 000 unless otherwise specified and took a full pass of the randomly

permuted data. As for the learning rate, we set t0 = 1 and κ = 0.6. All the source code in

Python is available online2.

3.5.1 Annotation task

The purpose of annotation task is to automatically tag unlabeled songs. To evaluate the

model’s ability for annotation, we computed the average per-tag precision, recall, and F-score

on a test set. Per-tag precision is defined as the average fraction of songs that the model

annotates with tag v that are actually labeled v. Per-tag recall is defined as the average

fraction of songs that are actually labeled v that the model also annotates with tag v. F-

score is the harmonic mean of precision and recall, and is one overall metric for annotation

performance.
2http://github.com/dawenl/stochastic_PMF

http://github.com/dawenl/stochastic_PMF
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3.5.2 Retrieval task

The purpose of the retrieval task is, when given a query tag v, to provide a list of songs

which are related to tag v. To evaluate the models’ retrieval performance, for each tag in

the vocabulary we ranked each song in the test set by the predicted score from Eq. 3.5. We

evaluated the area under the receiver-operator curve (AROC) and mean average precision

(MAP) for each ranking. AROC is defined as the area under the curve, which plots the true

positive rate against the false positive rate, and MAP is defined as the mean of the average

precision (AP) for each tag, which is the average of the precisions at each possible level of

recall.

3.5.3 Results on CAL500

Following the procedure similar to that described in Hoffman et al. (2009); Xie et al. (2011),

we performed a 5-fold cross-validation to evaluate the annotation and retrieval performance

on CAL500. We selected the top 78 tags, which are annotated more than 50 times in the

dataset, and learned a codebook of size J = 2000. For the annotation task, we labeled each

song with the top 10 tags based on the predicted score. Since CAL500 is a relatively small

dataset, we only performed batch inference for the Poisson matrix factorization model.

The results are reported in Table 3.1, which shows that the Poisson model has comparable

performance on the annotation task, and does slightly worse on the retrieval task. As

mentioned in Section 3.3, the Poisson matrix factorization model is particularly suitable

for noisy and sparse data where 0’s are not necessarily interpreted as explicit observations.

However, this may not be the case for CAL500, as the vocabulary was well-chosen and the

data was collected from a survey where the tagging quality is understandably higher than

the actual tagging data in the real world, like the one from Last.fm. Therefore, this task
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Model Prec Recall F-score AROC MAP

CBA 0.41 0.24 0.29 0.69 0.47
`2 LogRegr 0.48 0.26 0.34 0.72 0.50
PMF-Batch 0.42 0.23 0.30 0.67 0.45

Table 3.1: Results for the top 78 popular tags on CAL500, for Codeword
Bernoulli Average (CBA), `2 regularized logistic regression (`2 LogRegr),
and Poisson matrix factorization with batch inference (PMF-Batch). The
results for CBA and `2 LogRegr are directly copied from Xie et al. (2011).

cannot fully exploit the advantage brought by the Poisson model. Meanwhile, the amount of

data in CAL500 is fairly small – the data y fit to the model is simply a 502-by-2078 matrix.

This prevents us from adopting stochastic inference, which will be shown being much more

effective than batch inference even on a 10,000-song dataset in Section 3.5.4.

3.5.4 Results on MSD

To demonstrate the scalability of the Poisson matrix factorization model, we conducted

experiments using MSD and the associated Last.fm dataset. To our knowledge, there has not

been any previous work where music tagging results are reported on the MSD.

Since the Last.fm dataset contains 522,366 unique tags, it is not realistic to build the model

with all of them. We first selected the tags with more than 1,000 appearances and removed

those which do not carry discriminative information (e.g. “my favorite”, “awesome”, “seen

live”, etc.). Then we ran the stemming algorithm implemented in NLTK3 to further reduce

the potential duplications and correct for alternate spellings (e.g. “pop-rock” v.s. “pop rock”,

“love song” v.s. “love songs”), which gave us a vocabulary of 561 tags. Using the default

train/test artist split from MSD, we filtered out the songs which have been labeled with tags

from the selected vocabulary. This gave us 371,209 songs for training. For test set, we further
3http://www.nltk.org/

http://www.nltk.org/
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selected those which have at least 20 tags (otherwise, it is likely that this song is very weakly

labeled). This gave us a test set of 2,757 songs. The feature we used is the Echo Nest’s timbre

feature, which is very similar to MFCC.

We randomly selected 10,000 songs as the data which can fit into the memory nicely for

all the batch algorithms, and trained the following models with different codebook sizes

J ∈ {256, 512, 1024, 2048}: Codeword Bernoulli Average (CBA), `2-regularized logistic

regression (`2 LogRegr), Poisson matrix factorization with batch inference (PMF-Batch) and

stochastic inference by a single pass of the data (PMF-Stoc-10K). Here we used batch size

|Bt| = 500 for PMF-Stoc-10K, as otherwise there will only be 10 mini-batches from the

subset. However, given enough data, in general larger batch size will lead to relatively superior

performance, since the variance of the noisy variational objective in Eq. 3.4 is smaller. To

demonstrate the effectiveness of the Poisson model on massive amount of data (exploiting

the stochastic algorithm’s ability to run without loading the entire dataset into memory), we

also trained the model with the full training set with stochastic inference (PMF-Stoc-full).

For the annotation task, we labeled each song with the top 20 tags based on the predicted

score.

The results are reported in Table 3.2. In general, the performance of Poisson matrix fac-

torization is comparably better for smaller codebook size J. Specifically, for stochastic

inference, even if the amount of training data is relatively small, it is not only significantly

faster than batch inference, but can also help improve the performance by quite a large margin.

Finally, not surprisingly, PMF-Stoc-full dominates all the metrics, regardless of the size of

the codebook, because it is able to learn from more data.

Figure 3.3 illustrates how the metrics improve as more data becomes available for the Poisson

matrix factorization model, showing how the F-score, AROC, and MAP improve with the

number of (1000-element) mini-batches consumed up to the entire 371k training set. We see
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Figure 3.3: Improvement in performance with the number of mini-batches
consumed for the PMF-Stoc-full system with J = 512. Red lines indicate the
performance of PMF-Batch which is trained on 10k examples; that system’s
performance is exceeded after fewer than 5 mini-batches.

that initial growth is rapid, thanks to the natural gradient, with much of the benefit obtained

after just 50 batches. However, we see continued improvement beyond this; it is reasonable

to believe that if more data becomes available, the performance can be further improved. On

the other hand, we also observe that the performance is limited by the modeling capacity of

a (bi-)linear factorization model. In Chapter 4, we show that superior performance can be

achieved with a deep neural net.

Table 3.3 contains information on the qualitative performance of our model. The tagging

model works by capturing correlations between semantic tags and acoustic codewords in

each latent factor βk. As discussed, when a new song arrives with missing tag information,

only the portion of βk corresponding to acoustic codewords is used, and the semantic tag

portion of βk is used to make predictions of the missing tags. Similar to related topic models

(Hoffman et al., 2013), we can therefore look at the highly probable tags for each βk to

understand what portion of the acoustic codeword space is being captured by that factor,

and whether it is musically coherent. We show an example of this in Table 3.3, where we

list the top 7 tags from 9 latent factors βk learned by our model with J = 512. We sort

the tags according to expected relevance under the variational distribution Eq [βkd]. This

shows which tags are considered to have high probability for a song that has the given factor

expressed. As is evident, each factor corresponds to a particular aspect of a music genre. We
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note that other factors contained similarly coherent tag information.

3.6 Summary

We present a codebook-based scalable music tagging model with Poisson matrix factorization.

The system learns the joint behavior of acoustic features and semantic tags, which can be used

to infer the most appropriate tags given the audio alone. The Poisson model is naturally less

sensitive to zero values than some alternatives, making it a good match to “noisy” training

examples derived from real users’ taggings, where the fact that no user has applied a tag does

not necessarily imply that the term is irrelevant. By learning this model using stochastic

variational inference, we are able to efficiently exploit much larger training sets than are

tractable using batch approaches, making it feasible to learn from an entire set of over 370k

tagged examples. Although much of the improvement comes in the earlier iterations, we

see continued improvement implying this approach can benefit from much larger, effectively

unlimited sources of tagged examples, as might be available on a commercial music service

with millions of users.

There are a few areas where our model can be easily developed. For example, stochastic

variational inference requires we set the learning rate parameters t0 and κ, which is application-

dependent. By using adaptive learning rates for stochastic variational inference (Ranganath

et al., 2013), model inference can converge faster and to a better local optimal solution. From

a modeling perspective, currently the hyperparameters for weights θ are fixed, indicating that

the sparsity level of the weight for each song is assumed to be the same a priori. Alternatively

we could put song-dependent hyper-priors on the hyperparameters of θ to encode the intuition

that some of the songs might have denser weights because more tagging information is

available. This would offer more flexibility to the current model.
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Chapter 4

Content-Aware Collaborative Music

Recommendation

Although content is fundamental to our music listening preferences (or at least we believe

so), the leading performance in music recommendation is achieved by collaborative filtering

methods which exploit the similarity patterns in user’s listening history rather than the audio

content of songs. Meanwhile, collaborative filtering has the well-known “cold-start” problem,

i.e., it is unable to work with new songs that no one has listened to. Efforts on incorporating

content information into collaborative filtering methods have shown success in many non-

musical applications, such as scientific article recommendation. Inspired by the related work,

we train a neural network on semantic tagging information as a content model and use it as

a prior in a collaborative filtering model. Such a system still allows the user listening data

to “speak for itself”. The proposed system is evaluated on the Million Song Dataset and

shows comparably better result than the collaborative filtering approaches, in addition to the

favorable performance in the cold-start case.
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4.1 Introduction

Music recommendation is an important yet difficult task in mir. A recommendation system

that accurately predicts users’ listening preferences bears enormous commercial value. How-

ever, the high complexity and dimensionality of music data and the scarcity of user feedback

makes it difficulty to create a successful music recommendation system.

Two primary approaches exist in recommendation1: collaborative filtering and content-based

methods. For music, the state-of-the-art recommendation results have been achieved by

collaborative filtering methods (e.g., all the top-ranked submissions to the Kaggle Million

Song Dataset Challenge2 are based on collaborative filtering even though the dataset also

comes with content features and meta-data), which requires only information on users’

listening history rather than the musical content for recommendation. The central assumption

of this model is that a user is likely to accept a song that is liked by users who have similar

taste. A major category of collaborative filtering approaches is based on latent factor (matrix

factorization) model. It assumes that a low-dimensional representation exists for both users

and songs such that the compatibility between a user and a song, modeled as their inner

product in this latent space, predicts the user’s fondness of the song. As discussed in

Section 2.2.1, in the case that user feedback is implicit (e.g., whether or not the user has

listened to a particular song), wmf (Hu et al., 2008) works particularly well. wmf is described

in Section 2.2.2.2.

On the other hand, modeling musical content for the purpose of taste prediction is difficult due

to the structural complexity present in music data which is hard to capture by simple models.

Deep learning has shown its power in various pattern recognition tasks with its capability of
1Collective intelligence also plays a huge role in commercial recommender systems. However, it is beyond

the scope of this dissertation.
2https://www.kaggle.com/c/msdchallenge

https://www.kaggle.com/c/msdchallenge
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extracting hierarchical representations from raw data. In music recommendation, van den

Oord et al. (2013) have experimented with neural networks on predicting the song latent

representation from musical content.

It is natural to combine collaborative filtering and content models in recommendation to

utilize different sources of information. A successful attempt from Wang and Blei (2011),

which joins a content model on article with collaborative filtering, achieves good performance

on scientific article recommendation.

Inspired by these mentioned above, we create a content-aware collaborative music recom-

mendation system. As the name suggests, the system has two components: the content model

and the collaborative filtering model. To obtain a powerful content model, we pre-train a

multi-layer neural network to predict semantic tags from vector-quantized acoustic feature.

The output of the last hidden layer is treated as a high-level representation of the musical

content, which is used as a prior for the song latent representation in collaborative filtering.

We evaluate our system on the Million Song Dataset and show competitive performance to

the state-of-the-art system.

4.2 Related work

In this section we review two closely relevant models: collaborative topic model for article

recommendation and deep content-based music recommendation. We also review other

related work which hybridizes content and collaborative filtering models.
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4.2.1 Collaborative topic model

As reviewed in Section 2.2.2, a widely used approach to recommender systems is collaborative

filtering, where items are recommended to a user based on other users with similar patterns

of item consumption. Matrix factorization models (Hu et al., 2008; Koren et al., 2009) are

among the most successful collaborative filtering methods. In the case of the Gaussian

matrix factorization (Salakhutdinov and Mnih, 2008), efficient alternating least squares

update (Algorithms 1 and 2) exists for scalable inference, makes it an attractive option for

commercial recommender systems.

Due to its content-free nature, collaborative filtering approaches can be applied in a wide range

of domains. They perform well on what is called in-matrix predictions, i.e., recommending

items that have been consumed by some users. However, this approach suffers from the

well-known problem that it is unable to recommend new items that no user has consumed, or

making out-of-matrix predictions, where content-based models are better suited. Figure 4.1

provides illustrative examples for both in-matrix and out-of-matrix predictions. Many efforts

have been made to incorporate content into collaborative filtering. Wang and Blei (2011)

propose the ctr model for scientific article recommendation, which is particularly relevant

to our proposed method.

There are two components in ctr: a matrix factorization collaborative filtering model (wmf

as described in Section 2.2.2.2) and a latent Dirichlet allocation (lda) article content model.

lda (Blei et al., 2003) is a mixed-membership model on documents. Assuming there are K

topics Φ = φ1:K, each of which is a distribution over a fixed set of vocabulary, lda treats

each document as a mixture of these topics where the topic proportion πi is inferred from the

data. One can understand lda as representing documents in a low-dimensional “topic” space

with the topic proportion being their coordinates. With this interpretation, the generative
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article is of strong interest to computer vision researchers. If enough
researchers use such services, these variables might also give an
alternative measure of the impact of an article within a field.

With these criteria in mind, we develop a machine learning al-
gorithm for recommending scientific articles to users in an online
scientific community. Our algorithm uses two types of data—the
other users’ libraries and the content of the articles—to form its
recommendations. For each user, our algorithm can finds both older
papers that are important to other similar users and newly written pa-
pers whose content reflects the user’s specific interests. Finally, our
algorithm gives interpretable representations of users and articles.

Our approach combines ideas from collaborative filtering based
on latent factor models [17, 18, 13, 1, 22] and content analysis
based on probabilistic topic modeling [7, 8, 20, 2]. Like latent
factor models, our algorithm uses information from other users’
libraries. For a particular user, it can recommend articles from other
users who liked similar articles. Latent factor models work well for
recommending known articles, but cannot generalize to previously
unseen articles.

To generalize to unseen articles, our algorithm uses topic mod-
eling. Topic modeling provides a representation of the articles in
terms of latent themes discovered from the collection. When used in
our recommender system, this component can recommend articles
that have similar content to other articles that a user likes. The topic
representation of articles allows the algorithm to make meaningful
recommendations about articles before anyone has rated them.

We combine these approaches in a probabilistic model, where
making a recommendation for a particular user is akin to computing
a conditional expectation of hidden variables. We will show how
the algorithm for computing these expectations naturally balances
the influence of the content of the articles and the libraries of the
other users. An article that has not been seen by many will be
recommended based more on its content; an article that has been
widely seen will be recommended based more on the other users.

We studied our algorithm with data from CiteULike: 5, 551 users,
16, 980 articles, and 204, 986 bibliography entries. We will demon-
strate that combining content-based and collaborative-based meth-
ods works well for recommending scientific articles. Our method
provides better performance than matrix factorization methods alone,
indicating that content can improve recommendation systems. Fur-
ther, while traditional collaborative filtering cannot suggest articles
before anyone has rated them, our method can use the content of
new articles to make predictions about who will like them.

2. BACKGROUND
We first give some background. We describe two types of recom-

mendation problems we address; we describe the classical matrix
factorization solution to recommendation; and we review latent
Dirichlet allocation (LDA) for topic modeling of text corpora.

2.1 Recommendation Tasks
The two elements in a recommender system are users and items.

In our problem, items are scientific articles and users are researchers.
We will assume I users and J items. The rating variable rij 2
{0, 1} denotes whether user i includes article j in her library [12].
If it is in the library, this means that user i is interested in article j.
(This differs from some other systems where users explicitly rate
items on a scale.) Note that rij = 0 can be interpreted into two
ways. One way is that user i is not interested in article j; the other
is that user i does not know about article j.

For each user, our task is to recommend articles that are not in
her library but are potentially interesting. There are two types of

Figure 1: Illustration of the two tasks for scientific article rec-
ommendation systems, where

p
indicates “like”, ⇥ “dislike”

and ? “unknown”.

recommendation: in-matrix prediction and out-of-matrix prediction.
Figure 1 illustrates the idea.

In-matrix prediction. Figure 1 (a) illustrates in-matrix predic-
tion. This refers to the problem of making recommendations about
those articles that have been rated by at least one user in the system.
This is the task that traditional collaborative filtering can address.

Out-of-matrix prediction. Figure 1 (b) illustrates out-of-matrix
prediction, where articles 4 and 5 have never been rated. (This is
sometimes called “cold start recommendation.”) Traditional col-
laborative filtering algorithms cannot make predictions about these
articles because those algorithms only use information about other
users’ ratings. This task is important for online scientific archives,
however, because users want to see new articles in their fields. A
recommender system that cannot handle out-of-matrix prediction
cannot recommend newly published papers to its users.

2.2 Recommendation by Matrix Factorization
The traditional approach to recommendation is collaborative fil-

tering (CF), where items are recommended to a user based on other
users with similar patterns of selected items. (Note that collaborative
filtering does not use the content of the items.) Most successful rec-
ommendation methods are latent factor models [17, 18, 13, 1, 22],
which provide better recommendation results than the neighborhood
methods [11, 13]. In this paper, we focus on latent factor models.

Among latent factor methods, matrix factorization performs well [13].
In matrix factorization, we represent users and items in a shared
latent low-dimensional space of dimension K—user i is represented
by a latent vector ui 2 RK and item j by a latent vector vj 2 RK .
We form the prediction of whether user i will like item j with the
inner product between their latent representations,

r̂ij = uT
i vj . (1)

Biases for different users and items can also be incorporated [13].
To use matrix factorization, we must compute the latent represen-

tations of the users and items given an observed matrix of ratings.
The common approach is to minimize the regularized squared error
loss with respect to U = (ui)

I
i=1 and V = (vj)

J
j=1,

minU,V

P
i,j(rij � uT

i vj)
2 + �u||ui||2 + �v||vj ||2, (2)

where �u and �v are regularization parameters.
This matrix factorization for collaborative filtering can be gener-

alized as a probabilistic model [18]. In probabilistic matrix factor-
ization (PMF), we assume the following generative process,

1. For each user i, draw user latent vector ui ⇠ N (0, ��1
u IK).

2. For each item j, draw item latent vector vj ⇠ N (0, ��1
v IK).

Figure 4.1: An illustration of the in-matrix (left) and out-of-matrix (right)
predictions, whereX indicates “like”, x indicates “dislike”, and ? indicates
“unknown”. The goal of both predictions is to predict the values of ?’s. (Copied
from Wang and Blei (2011))

process of ctr is as follows:

• For user u = 1, . . . , U, draw user latent factor: θu ∼ N (0, λ−1
θ IK),

• For document i = 1, . . . , I,

– Draw topic proportion πi ∼ Dir(α),

– For word n in document i,

∗ Draw topic assignment zin ∼ Discrete(πi),

∗ Draw word win ∼ Discrete(φzin),

– Draw latent factor βi ∼ N (πi, λ−1
β IK),

• For user-document pair (u, i), draw feedback: rui ∼ N (θ>u βi, c−1
ui ).
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Here the confidence cui is set the same as in wmf. We can see ctr differs from wmf in

that ctr assumes that the item latent factor βi is close to the topic proportion πi but could

deviate from it if necessary. This allows the user-item interaction data to “speak for itself”.

An attractive characteristic of ctr is its capability of making out-of-matrix predictions. This

is done by using the topic proportion πi alone as the item latent factor: r̂ui = θ>u πi, which

is not possible in the traditional collaborative filtering model.

Although ctr achieves better recommendation performance than wmf, it does not scale well

with large data. Since the model is not conditionally conjugate: the prior on βi comes from a

Dirichlet-distributed random variable πi, topic proportion πi cannot be updated analytically

and slower numerical optimization method is required. To address this problem, Gopalan et al.

(2014) propose the collaborative topic Poisson factorization (ctpf). This model replaces the

Gaussian likelihood and Gaussian prior in ctr with Poisson likelihood and gamma prior,

thus becoming conditionally conjugate with closed-form updates. Experiments on large-scale

scientific article recommendation demonstrate that ctpf performs significantly better than

ctr.

The main difference that sets our method apart from collaborative topic model is the content

model. As a feature extractor, lda can only produce linear factors due to its bilinear nature.

On the other hand, multi-layer neural network used by in our system is capable of capturing

the non-linearities in the feature space.

4.2.2 Deep content-based music recommendation

Previous attempts on content-based music recommendation have achieved promising results.

van den Oord et al. (2013) utilize a neural network to map acoustic features to the song latent

factors learned from wmf. As a result, given a new song that no one has ever listened to, a
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latent factor can still be predicted from the network and recommendation can be done in the

same fashion as with a regular collaborative filtering model.

Our method is very similar to this approach, but we will point out twomajor differences:

• First, the neural network is used for different purposes. We use it as a content fea-

ture extractor, just like lda in the collaborative topic model. The neural network in

van den Oord et al. (2013) maps content directly to the latent factors learned from

pure collaborative filtering, and the resulting model is expected to operate similarly to

collaborative filtering even when usage data is absent.

• Since the neural network is trained to map content to the latent factors learned from

wmf, the performance of van den Oord et al. (2013) is unlikely to surpass that of wmf.

What we propose in this paper, on the other hand, uses content as an addition to wmf,

in a similar manner as the collaborative topic model described in Section 4.2.1. As we

show in the experiment, we are able to achieve better result than wmf when we only

have limited amount of user feedback.

Other approaches that hybridize content and collaborative models include Yoshii et al. (2006),

McFee et al. (2010), and Wang and Wang (2014). Yoshii et al. (2006) train a three-way

probabilistic model that joins user, item, and content by a latent “topic” variable; the model

focuses on explicit feedback (user ratings). McFee et al. (2010) take a similar approach to

van den Oord et al. (2013) and learn a content-based similarity function from collaborative

filtering via metric learning. Wang and Wang (2014) also use a neural network to incorporate

music content into the collaborative filtering model. The major difference is that in Wang

and Wang (2014) the output of the neural network is treated as item latent factor and the

neural network is trained to minimize a loss function that is based on collaborative filtering.

Therefore the content model itself does not have explicit musicological meaning, as opposed
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to neural network in our system which is trained to predict semantic music tags.

4.3 Content-aware music recommendation

Adopting the same structure as that of CTR, our system consists of two components: a content

model which is based on a pre-trained neural network and a collaborative filtering model

based on matrix factorization.

4.3.1 Supervised pre-training

Inspired by the success of transfer learning in computer vision which exploits deep convo-

lutional neural networks (Krizhevsky et al., 2012), in our system we pre-train a multi-layer

neural network in a supervised semantic tagging prediction task and use it as the content

model.

Our training data is the same from Section 3.5 which consists of 370k tracks from the Million

Song Dataset and the pre-processed Last.fm data with a vocabulary of 561 tags, including

genre, mood, instrumentation, etc. We use the Echonest’s timbre feature, which is very

similar to MFCC. To get the song-level features, we vector-quantize all the timbre features

following the standard procedure: We run the k-means algorithm on a subset of randomly

selected training data to learn V = 1024 cluster centroids (codewords). Then for each song,

we assign each segment (frame) to the cluster with the smallest Euclidean distance to the

centroid. We aggregate the VQ feature of song i (xi ∈ RV
+) by counting the number of

assignments to each cluster across the entire song and then normalize it to have unit `1 norm

to account for the various lengths.
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We treat music tagging as a binary classification problem: For each tag, we make independent

predictions on whether the song is tagged with it or not. We fit the output of the network

f (xi) ∈ R561 into logistic regression classifiers with independent cross entropy loss. There-

fore, given tag labels yit ∈ {−1, 1} for song i and tag t, the network is trained to minimize

the following objective:

Ltag = ∑
i,t

log(1 + exp(−yit ft(xi))

Here we use a network with three fully-connected hidden layers and rectified linear units

(ReLU) activations with dropout (p = 0.5) (Srivastava et al., 2014). Each layer has 1,200

neurons. Stochastic gradient descent with mini-batch of size 100 is used with AdaGrad

(Duchi et al., 2011) for adjusting the learning rate3. We notice that both dropout and Ada-

Grad are crucial for getting the good performance. The tagging performance is reported in

Section 4.4.1.

4.3.2 Content-aware collaborative filtering

We can interpret the output of the last hidden layer hi ∈ RFh (here Fh = 1200) as a latent

content representation of song i. Because of the way the network is trained, this latent

representation is supposed to be highly correlated to the semantic tags (“topics” of music).

Therefore, we can take a similar approach to the collaborative topic model and use this

representation in a collaborative filtering model.

The generative process for the proposed model is as follows:

• For user u = 1, . . . , U, draw user latent factor: θu ∼ N (0, λ−1
θ IK).

3The source code for training the neural network is available at: https://github.com/dawenl/deep_
tagging

https://github.com/dawenl/deep_tagging
https://github.com/dawenl/deep_tagging
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• For each song i = 1, . . . , I, draw song latent factor: βi ∼ N (W>hi, λ−1
β IK).

• For each user-song pair (u, i), draw implicit feedback (whether user u listened to song

i): rui ∼ N (θ>u βi, c−1
ui ).

Since the dimensionality of hi is generally much higher than that of the song latent factor βi,

we use a weight matrix W ∈ RFh×K that transforms the learned content representation from

the neural networks into the collaborative filtering latent space via W>hi. The precision

parameter λβ balances how the song latent vector βi deviates from the content feature: larger

λβ will force the song latent factors to stay close to the content feature. We set the confidence

cui following the same way as in Hu et al. (2008):

cui = 1 + α log(1 + rui/ε)

where α and ε are tunable hyperparameters. A graphical model representation of the content-

aware collaborative filtering model is shown in Figure 4.2. We use f (·) to indicate that the

content feature hi comes from the pre-trained neural network.

yui

θu

βi

λθ

hi W

λβ

f (·)

I

U

Figure 4.2: Graphical model representation for the content-aware collabora-
tive filtering model.

We want to emphasize that our proposed model is content-aware instead of content-based.
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Just like collaborative topic model, our proposed model is still fundamentally based on

collaborative filtering (wmf, to be more precise). The content model is only used as a prior

and can be deviated if the model thinks it is necessary to explain the data. As a matter of fact,

with sufficient amount of feedback data, the model will almost always choose to derivate

from the content feature, because the collaborative filtering part of the model will find it

better at explaining the feedback data.

Inference. We estimate the model parameters {θ1:U , β1:I , W} via maximum a posteriori

since it enables us to tractably fit the model to large-scale datasets. The complete log-

likelihood of the model is written as:

L =−∑
u,i

cui

2
(rui − θ>u βi)

2 − λθ

2 ∑
u
‖θu‖2

2 −
λβ

2 ∑
i
‖βi −W>hi‖2

2.

From this objective, we can also interpret the model as regularizing the song latent factors βi

towards something musicologically meaningful (hi), instead of 0. Taking the gradient of the

complete log-likelihood with respect to the model parameters θu, βi, and W , and setting it

to 0, respectively, we can obtain the following closed-form coordinate updates:

θnew
u ← (∑

i
cuiβiβ

>
i + λθIK)

−1(∑
i

cuiruiβi) (4.1)

βnew
i ← (∑

u
cuiθuθ>u + λβIK)

−1(∑
u

cuiruiθu + λβW>hi) (4.2)

Wnew ← (∑
i

hih>i + λWIFh)
−1(∑

i
hiβ
>
i ) (4.3)

When updating W , we add a small ridge term λW to the diagonal of the matrix to regularize

and avoid numerical problems when inverting. These updates are very similar to alternating

least squares (ALS) of wmf. The main difference is in how we update βi in the proposed

model. We can view each update of ALS as a weighted ridge regression. Therefore, the update
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for βi is collectively performing ridge regression with two sources of information: the click

data rui and the (transformed) content featureW>hi. Alternating between updating θ1:U , β1:I ,

and W , we are guaranteed to reach a stationary point of the complete log-likelihood.

The same technique used in Hu et al. (2008) to speed up computation (described in Sec-

tion 2.2.2.2) can be applied here. This enables us to apply our model to large-scale music

corpus and user-item interaction, which is not possible for ctr. The full algorithm is

summarized in Algorithm 5.

Algorithm 5: CA-ALS Content-aware collaborative filtering inference

Input: Click matrix rui, the confidence for clicked c1 and unclicked c0, regularization
parameters λθ , λβ and λW

Output: User latent factors θ1:U , item latent factors β1:I , and weight matrix W
Randomly initialize θ1:U , β1:I , and W
while not converged do

Precompute ∑i c0βiβ
>
i + λθIK

for u← 1 to U do
Update user factor θu (Eq. 4.1)

end
Precompute ∑u c0θuθ>u + λβIK

for i← 1 to I do
Update item factor βi (Eq. 4.2)

end
Update weight matrix W (Eq. 4.3)

end
return θ1:U , β1:I , W

Prediction. After the model is trained, we can make in-matrix prediction by r̂ui = θ>u βi.

Similar to the collaborative topic model, we can also make out-of-matrix prediction for songs

that no one has listened to by only using the content r̂ui = θ>u (Whi).
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4.4 Evaluation

We first evaluate our system on the pre-training tag prediction task to ensure the quality of

the extracted features, and then measure its recommendation performance in comparison

with related models4.

4.4.1 Tag prediction

Evaluation tasks and metrics. We evaluate the pre-trained neural network on semantic

tags with an annotation task and a retrieval task. We use the same dataset in Section 3.5

from the Million Song Dataset (Bertin-Mahieux et al., 2011) and compare with the result

in Section 3.5 which, to our knowledge, is the state-of-the-art performance on large-scale

tag prediction. Note that we only use tag prediction as a proxy to measure the quality of

the content model and do not argue for our approach as an optimal one to automatic music

tagging.

For the annotation task we seek to automatically tag unlabeled songs. To evaluate the model’s

ability to annotate songs, we compute the average per-tag precision, recall, and F-score on

the held-out test set. For the retrieval task, given a query tag we seek to provide a list of

songs which are related to that tag. To evaluate retrieval performance, for each tag in the

vocabulary we ranked each song in the test set by the predicted probability. We then calculate

the area under the receiver-operator curve (AROC) and mean average precision (MAP) for

each ranking. The detailed description of the metrics can be found in Section 3.5.

Tagging performance and discussion. The results are reported in Table 4.1, which shows

that the pre-trained neural network performs significantly better than the approach based on
4https://github.com/dawenl/content_wmf contains the source code for training the proposed model

and reproducing the experimental results for recommendation in Section 4.4.2.

https://github.com/dawenl/content_wmf
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Model Prec Recall F-score AROC MAP

SPMF 0.127 0.146 0.136 0.712 0.120
NNet 0.184 0.207 0.195 0.781 0.178

Table 4.1: Annotation and retrieval performance on the Million Song Dataset
from Poisson matrix factorization with stochastic inference (SPMF) (de-
scribed in Chapter 3) and the pre-trained neural network (NNet) described in
Section 4.3.1. The standard error is on the order of 0.01, thus not included
here.

Poisson matrix factorization in Chapter 3. This is not surprising for two reasons: 1) Here

we treat tag prediction as a supervised task and train a multi-layer neural network, while

in Chapter 3 the problem is formulated as an unsupervised learning task to account for the

uncertainty in the user-generated tags (which incidentally can be considered as a typical

example of implicit feedback). 2) Similar to lda, Poisson matrix factorization can only

capture linear factor, whose expressive power is much weaker than that of a multi-layer neural

network.

Nevertheless, the results confirm that our pre-trained neural network can be considered as an

effective content feature extractor and we will use the output of the last hidden layer as the

content feature.

Note that our neural network has relatively simple structure and does not directly use raw

acoustic features (e.g., log-mel spectrograms) as input. It is reasonable to believe that with a

more complex network structure and low-level acoustic feature, we should be able to achieve

better tagging performance and obtain a more powerful content feature extractor, which could

further boost the performance of our proposed recommendation method.
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4.4.2 Recommendation

Data preparation. We use the Taste Profile Subset which is part of the Million Song Dataset

to evaluate the recommendation performance. It contains listening history in the form of play

counts from one million users with more than 40 million (user, song, play count) triplets. We

first binarize all the play counts5 and create two complementary subsets, a dense one (DEN)

and a sparse one (SPR):

For the dense subset (DEN), we intend to create a subset that is reasonably dense so that the

traditional collaborative filtering model will have good performance. We remove the users

who have less than 20 songs in their listening history and songs that are listened to by less

than 50 users, obtaining a subset with 613,682 users and 97,414 songs with more than 38

million user-song pairs (sparsity level 0.064%). For the sparse subset (SPR), on the contrary,

we only keep the users who have less than 20 songs in their listening history and songs that

are listened to by less than 50 users, yielding a highly sparse (0.002%) subset with 564,437

users and 260,345 songs.

We select 5% of the songs from DEN (4,871) for out-of-matrix prediction. For both subsets

we split 20% and 10% as test and validation sets, respectively. Validation set is used to select

hyperparameters, as well as monitor convergence by computing predictive likelihood.

Competing methods. We compare our proposed method (denoted as CF + deep) with wmf

(Hu et al., 2008), as well as the following three methods:

• CF + shallow: A simple baseline where we directly use the normalized VQ feature xi

in place of the feature extracted from the neural network hi. This baseline is mainly
5In practice, we find that the performances using actual play counts and binarized indicators are very close

for our model.
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used to demonstrate the necessity of an effective feature extractor for out-of-matrix

prediction.

• Poisson matrix factorization (pmf) (Gopalan et al., 2015): Just like wmf, pmf is a

matrix factorization model for collaborative filtering. Instead of Gaussian likelihood

and priors on the latent factors, it utilizes Poisson likelihood model and gamma priors

to learn nonnegative embeddings for both users and items. Concretely, it follows the

following generative process:

– For user u = 1, . . . , U, draw user latent factor θuk ∼ Gam(a, b),

– For item i = 1, . . . , I, draw item latent factor βki ∼ Gam(c, d),

– For each user-item pair (u, i), draw feedback: rui ∼ Pois(θ>u βi).

The biggest advantage of pmf is computational. As shown in Gopalan et al. (2015), the

inference algorithm has complexity that scales linearly with the number of non-zero

entries in the user-item matrix, which is the same as that of wmf.

• ctpf (Gopalan et al., 2014): As mentioned in Section 4.2.1, ctr cannot scale to large

datasets due to the non-conjugacy of the model. ctpf is proposed as a workaround: it

incorporates the content information into pmf in the same way as ctr incorporates

the content into wmf. The generative process is (recall V = 1024 is the size of the

codebook for vector-quantization and we use v ∈ {1, . . . , V} to index codeword):

– For topic k = 1, . . . , K, draw topic γvk ∼ Gam(c, d),

– For user u = 1, . . . , U, draw user latent factor θuk ∼ Gam(a, b),

– For item i = 1, . . . , I,
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∗ Draw topic intensities: βik ∼ Gam(e, f ),

∗ Draw additive offset εik ∼ Gam(g, h),

∗ Draw codeword count civ ∼ Pois(β>i γv),

– For each user-item pair (u, i), draw feedback: rui ∼ Pois(θ>u (βi + εi)).

Additionally, it is conditionally conjugate with closed-form variational inference up-

dates and enjoys the same computational efficiency as pmf. Therefore, it can be applied

to large-scale dataset without delicate engineering.

Based on our argument in Section 4.2.2, we do not directly compare with van den Oord et al.

(2013) because it is sufficient to compare with wmf. For out-of-matrix recommendation

evaluation, we compare with ctpf and CF + shallow. In all the experiments, the dimension-

ality of the latent space K = 50. We select α = 2 and ε = 10−6 to compute the confidence

cui. For wmf, CF + shallow, and CF + deep, the model parameters θ1:U , β1:I and W (if any)

are randomly initialized to the same values.

Evaluation metrics. To evaluate different algorithms, we produce a ranked list of all the

songs (excluding those in the training and validation sets) for each user based on the predicted

preference r̂ui for i ∈ {1, . . . , I}.

Precision and recall are commonly used evaluation metrics. However, for implicit feedback

data, the zeros can mean either the user is not interested in the song or more likely, the user

is not aware of the song. This makes the precision less interpretable. However, since the non-

zero rui’s are known to be true positive, we instead report Recall@M, which only considers

songs within the top M in the ranked list. For each user, the definition of Recall@M is

Recall@M =
# of songs that the user listened to in top M
total # of songs the user has listened to

.
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Model R@40 R@80 R@120 R@160 R@200 NDCG

pmf (Gopalan et al., 2015) 0.1021 0.1533 0.1908 0.2206 0.2456 0.2419
ctpf (Gopalan et al., 2014) 0.1031 0.1511 0.1861 0.2138 0.2370 0.2395

wmf (Hu et al., 2008) 0.1722 0.2367 0.2803 0.3133 0.3397 0.2881
CF + shallow 0.1724 0.2368 0.2803 0.3131 0.3396 0.2883
CF + deep 0.1722 0.2365 0.2800 0.3129 0.3394 0.2882

Table 4.2: In-matrix performance on the DEN subset with proposed and
competing methods. We can see that with sufficient amount of user feedback,
there is almost no difference in terms of recommendation performance among
WMF, CF + shallow, and CF + deep.

In addition to Recall@M, we also report (untruncated) normalized discounted cumulative

gain (NDCG) (Järvelin and Kekäläinen, 2002). Unlike Recall@M which only focuses on

top M songs in the predicted list, NDCG measures the global quality of recommendation.

In the meantime, it also prefers algorithms that place held-out test items higher in the list

by applying a discounted weight. Given a ranked list of songs from the recommendation

algorithm, for each user NDCG can be computed as follows:

DCG =
I

∑
i=1

2reli − 1
log2(i + 1)

; NDCG =
DCG
IDCG

.

Given our binarized data, the reverence reli is also binary: 1 if song i is in the held-out

user listening history and 0 otherwise. IDCG is the optimal DCG score where all the held-

out test songs are ranked top in the list. Therefore, larger NDCG values indicate better

performance.

Results on the DEN subset. The model hyperparameters λθ = λW = 10 and λβ =

100 are selected from the validation set based on NDCG. The in-matrix and out-of-matrix

performances are reported in Tables 4.2 and 4.3, respectively. All the metrics are averaged

across 612,232 users in the held-out test user-item pairs.
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Model R@40 R@80 R@120 R@160 R@200 NDCG

ctpf (Gopalan et al., 2014) 0.0256 0.0700 0.1440 0.1869 0.2086 0.1271
CF + shallow 0.0503 0.0894 0.1218 0.1514 0.1778 0.1429
CF + deep 0.0910 0.1461 0.1881 0.2241 0.2550 0.1605

Table 4.3: Out-of-matrix performance on the DEN subset with proposed and
competing methods. We can see a larger margin between CF + deep and CF
+ shallow, as compared to their close performance on in-matrix predictions in
Table 4.2. This suggests the importance of a powerful feature extractor in the
absence of usage data.

We can see that with sufficient amount of user feedback, there is almost no difference in

performance among wmf, CF + shallow, and CF + deep6 – there is not a single model which

is consistently better. This is understandable, since both CF + shallow and CF + deep are

fundamentally collaborative filtering models. With enough user feedback, the model is able

to produce meaningful recommendation without resorting to the content features. Moreover,

CF + shallow, which has access to more content information, does slightly better than CF +

deep.

One observation from Table 4.2 is that adding content features does not necessarily improve

the recommendation performance. Unlike CF + deep, ctpf falls behind its content-free

counterpart pmf on both Recall@M and NDCG. This is possibly due to the insufficient

feature extraction capability of the topic model (lda) on the rich musical data.

The superiority of CF + deep is more obvious on the out-of-matrix predictions performance

shown in Table 4.3. We can see a larger margin between CF + deep and CF + shallow, as

compared to their close performance on in-matrix predictions. This suggests the importance

of a powerful feature extractor in the absence of usage data. Even a simple linear lda model

in ctpf can be more effective than CF + shallow at predicting songs that the users listened to
6There is little point in arguing for the statistical significance of the difference, since given the number of

users to average over, the standard error is vanishingly small.
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Model R@40 R@80 R@120 R@160 R@200 NDCG

wmf (Hu et al., 2008) 0.1137 0.1286 0.1378 0.1449 0.1505 0.1415
CF + shallow 0.1138 0.1286 0.1377 0.1449 0.1504 0.1416
CF + deep 0.1140 0.1289 0.1378 0.1451 0.1507 0.1417

Table 4.4: In-matrix performance on the SPR subset with proposed and
competing methods. With very limited user feedback, both CF + shallow and
CF + deep outperform the content-free WMF.

in the held-out test set.

Results on the SPR subset. We repeat the in-matrix evaluation on the highly sparse SPR

subset. The model hyperparameters λθ = λW = 10−2 and λβ = 1 are selected from the

validation set. The performance is reported in Table 4.4. All the metrics are averaged across

564,437 users in the held-out test user-item pairs.

Again, the overall differences among all three methods are relatively minor. However, with

very limited user feedback, both CF + shallow and CF + deep outperform the content-free

wmf. More importantly, CF + deep consistently improves over CF + shallow, which indicates

the importance of an effective feature extractor.

4.5 Summary

In this chapter we present a content-aware collaborative music recommendation system that

joins a multi-layer neural network content model with a collaborative filtering model. The

system achieves the state-of-the-art performance in music recommendation given content

and implicit feedback data.

A possible future direction is to incorporate ranking-based loss function, e.g., the weighted

approximate-rank pairwise (WARP) loss in Weston et al. (2011) into the collaborative
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filtering model. We normally evaluate recommendation algorithms using ranking-based

metrics (e.g. Recall@M and NDCG), but the model is trained using squared loss function.

This discrepancy can be problematic sometimes, as it can mislead the learning algorithm to

focus on optimizing unimportant portion of the model. It would be more natural to directly

optimize a ranking-based loss function.
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Chapter 5

Modeling User Exposure in

Recommendation

In this chapter and the next chapter, we will focus on general models for recommender

systems. Collaborative filtering analyzes user preferences for items (e.g., books, movies,

restaurants, academic papers) by exploiting the similarity patterns across users. In implicit

feedback settings, all the items, including the ones that a user did not consume, are taken into

consideration. But this assumption does not accord with the common sense understanding

that users have a limited scope and awareness of items. For example, a user might not

have heard of a certain paper, or might live too far away from a restaurant to experience it.

In the language of causal analysis (Imbens and Rubin, 2015), the assignment mechanism

(i.e., the items that a user is exposed to) is a latent variable that may change for various

user/item combinations. In this paper, we propose a new probabilistic approach that directly

incorporates user exposure to items into collaborative filtering. The exposure is modeled

as a latent variable and the model infers its value from data. In doing so, we recover one
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of the most successful state-of-the-art approaches wmf as a special case of our model (Hu

et al., 2008), and provide a plug-in method for conditioning exposure on various forms of

exposure covariates (e.g., topics in text, venue locations). We show that our scalable inference

algorithm outperforms existing benchmarks in four different domains both with and without

exposure covariates.

5.1 Introduction

As motivated in Section 2.2, it is crucial to make good recommendation on the web, as users

are overwhelmed with choice. In this chapter, we focus on recommendation with implicit

data (see Section 2.2.1 for definition).

Existing approaches account for this by downweighting the unclicked items. In wmf (Hu

et al., 2008) the data about unclicked items are given a lower “confidence”, expressed through

the variance of a Gaussian random variable. In Bayesian personalized ranking (Rendle et al.,

2009), the unclicked items are artificially subsampled at a lower rate in order to reduce their

influence on the estimation. These methods are effective, but they involve heuristic alterations

to the data.

We take a direct approach to solving this problem. We develop a probabilistic model for

recommendation called Exposure MF (abbreviated as ExpoMF) that separately captures

whether a user has been exposed to an item from whether a user has ultimately decided to

click on it. This leads to an algorithm that iterates between estimating the user preferences

and estimating the exposure, i.e., why the unclicked items were unclicked. When estimating

preferences, it naturally downweights the unclicked items that it expected the user will like,

because it imagines that she was not exposed to them.
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Concretely, imagine a music listener with a strong preference for alternative rock bands such

as Radiohead. Imagine that, in a dataset, there are some Radiohead tracks that this user has

not listened to. There are different reasons which may explain unlistened tracks (e.g., the

user has a limited listening budget, a particular song is too recent or is unavailable from a

particular online service). According to that user’s listening history these unlistened tracks

would likely make for good recommendations. In this situation our model would assume

that the user does not know about these tracks—she has not been exposed to them—and

downweight their (negative) contribution when inferring that user’s preferences.

Further, by separating the two sides of the problem, our approach enables new innovations

in implicit recommendation models. Specifically, we can build models of users’ exposure

that are guided by additional information such as item content, if exposure to the items

typically happens via search, or user/item location, if the users and items are geographically

organized.

As an example imagine a recommender system for diners in New York City and diners

in Las Vegas. New Yorkers are only exposed to restaurants in New York City. From our

model’s perspective, unvisited restaurants in New York are therefore more informative

in deriving a New Yorker’s preferences compared to unvisited restaurants in Las Vegas.

Accordingly for New York users our model will upweight unvisited restaurants in New York

while downweighting unvisited Las Vegas restaurants.

We studied our method with user listening history from a music intelligence company, clicks

from a scientific e-print server, user bookmarks from an online reference manager, and user

checkins at venues from a location-based social network. In all cases, ExpoMF matches or

surpasses the state-of-the-art method of wmf (Hu et al., 2008). Furthermore, when available,

we use extra information to inform our user exposure model. In those cases using the extra

information outperforms the simple ExpoMF model. Further, when using document content
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information our model also outperforms a method specially developed for recommending

documents using content and user click information (Wang and Blei, 2011). We illustrate

the alternative-rock-listener and the New-York-dinner examples using real data fit with our

models in Figure 5.2 and Figure 5.3. Finally, we demonstrate the versatility of ExpoMF by

showcasing a couple of examples which incorporate exposure from different sources (e.g.,

the authors of a paper, or the friends in a social network).

5.2 Exposure matrix factorization

We present exposure matrix factorization (ExpoMF). In Section 5.2.1, we describe the main

model. In Section 5.2.2 we discuss several ways of incorporating external information into

ExpoMF (i.e., topics from text, locations). We derive inference procedures for our model

(and variants) in Section 5.2.3. Finally we discuss how to make predictions given our model

in Section 5.2.4.

5.2.1 Model description

For every combination of users u = 1, . . . , U and items i = 1, . . . , I, consider two sets of

variables. The first matrix A = {aui} indicates whether user u has been exposed to item i

(exposure matrix). The second matrix Y = {yui} indicates whether or not user u clicked on

item i (click matrix).

Whether a user is exposed to an item comes from a Bernoulli. Conditional on being exposed,

user’s preference comes from a Gaussian matrix factorization model, which factorizes this
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conditional distribution to K user preferences θi,1:K and K item attributes βu,1:K,

θu ∼ N (0, λ−1
θ IK)

βi ∼ N (0, λ−1
β IK)

aui ∼ Bernoulli(µui)

yui | aui = 1 ∼ N (θ>u βi, λ−1
y )

yui | aui = 0 ∼ δ0,

(5.1)

where δ0 denotes that p(yui = 0 | aui = 0) = 1, and we introduced a set of hyperparameters

denoting the inverse variance (λθ , λβ, λy). µui is the prior probability of exposure, we discuss

various ways of setting or learning it in subsequent sections. A graphical representation of

the model in Eq. 5.1 is given in Figure 5.1a.

We observe the complete click matrix Y . These have a special structure. When yui > 0, we

know that aui = 1. When yui = 0, then aui is latent. The user might have been exposed to

item i and decided not to click (i.e., aui = 1, yui = 0); or she may have never seen the item

(i.e., aui = 0, yui = 0). We note that since Y is usually sparse in practice, most aui will be

latent.

The model described in Eq. 5.1 leads to the following log joint probability1 of exposures and

clicks for user u and item i,

log p(aui, yui | µui, θu, βi, λ−1
y )

= log Bernoulli(aui | µui) + aui logN (yui | θ>u βi, λ−1
y )

+ (1− aui) log I[yui = 0],

(5.2)

where I[b] is the indicator function that evaluates to 1 when b is true, and 0 otherwise.
1N.B., we follow the convention that 0 log 0 = 0 to allow the log joint to be defined when yui > 0.
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What does the distribution in Eq. 5.2 say about the model’s exposure beliefs when no clicks

are observed? When the predicted preference is high (i.e., when θ>u βi is high) then the

log-likelihood of no clicks logN (0 | θ>u βi, λ−1
y ) is low and likely non-positive. This feature

penalizes the model for placing probability mass on aui = 1, forcing us to believe that user

u is not exposed to item i. (The converse argument also holds for low values of θ>u βi).

Interestingly, a low value of aui downweights the evidence for θu and βi (this is clear by

considering extreme values: when aui = 0, the user and item factors do not affect the log

joint in Eq. 5.2 at all; when aui = 1, we recover standard matrix factorization). Like wmf

(Hu et al., 2008), ExpoMF shares the same feature of selectively downweighting evidence

from the click matrix.

In ExpoMF, fixing the entries of the exposure matrix to a single value (e.g., aui = 1, ∀u, i)

recovers Gaussian probabilistic matrix factorization (Salakhutdinov and Mnih (2008), see

Section 2.2.2.1). wmf is also a special case of our model which can be obtained by fixing

ExpoMF’s exposure matrix using the confidence c0 and c1 (see Section 2.2.2.2).

The intuitions we developed for user exposure from the joint probability do not yet involve

µui, the prior belief on exposure. As we noted earlier, there are a rich set of choices available

in the modeling of µui. We discuss several of these next.

5.2.2 Hierarchical modeling of exposure

We now discuss methods for choosing and learning µui. One could fix µui at some global

value for all users and items, meaning that the user factors, item factors, and clicks would

wholly determine exposure (conditioned on variance hyperparameters). One could also fix

µui for specific values of u and i. This can be done when there is specific extra information

that informs us about exposure (denoted as exposure covariates), e.g. the location of a
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(a) Exposure MF.
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(b) Exposure MF with exposure covariates.

Figure 5.1: Graphical representation of the exposure MF model (both with
and without exposure covariates). The lightly shaded node aui indicates that
it is partially observed (i.e., it is observed when yui = 1 and unobserved
otherwise).
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restaurant, the content of a paper. However, we found that empirical performance is highly

sensitive to this choice, motivating the need to place models on the prior for µui with flexible

parameters.

We introduce observed exposure covariates xi and exposure model parameters ψu and

condition µui |ψu, xi according to some domain-specific structure. The extended graphical

model with exposure covariates is shown in Figure 5.1b. Whatever this exposure model

looks like, conditional independence between the priors for exposure and the more standard

collaborative filtering parameters (given exposure) ensures that the updates for the model we

introduced in Section 5.2.1 will be the same for many popular inference procedures (e.g.,

expectation-maximization, variational inference, Gibbs sampling), making the extension to

exposure covariates a plug-in procedure. We discuss two possible choices of exposure model

next.

Per-item µi. A direct way to encode exposure is via item popularity: if a song is popular,

it is more likely that you have been exposed to it. Therefore, we choose an item-dependent

conjugate prior on µi ∼ Beta(α1, α2). This model does not use any external information

(beyond clicks).

Text topics or locations as exposure covariates. In the domain of recommending text

documents, we consider the exposure covariates as the set of words for each document. In

the domain of location-based recommendation, the exposure covariates are the locations of

the venues being recommended. We treat both in a similar way.

Consider a L-dimensional (L does not necessarily equal the latent space dimension K in the

matrix factorization model) representation xi of the content of document i obtained through

natural language processing (e.g., word embeddings (Mikolov et al., 2013), latent Dirichlet

allocation (Blei et al., 2003)), or the position of venue i obtained by first clustering all the
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venues in the data set then finding the expected assignment to L clusters for each venue. In

both cases, xi is all positive and normalizes to 1. Denoting σ(·) as the sigmoid function, we

set

µui = σ(ψ>u xi),

where we learn the coefficients ψu for each user u. Furthermore, we can include intercepts

with various levels and interactions (Gelman and Hill, 2006).

How to interpret the coefficients ψu? The first interpretation is that of logistic regression,

where the independent variables are xi, the dependent binary variables are aui, and the

coefficients to learn are ψu.

The second interpretation is from a recommender systems perspective: ψu represents the

topics (or geographical points of interest) that a user is usually exposed to, restricting the

choice set to documents and venues that match ψu. For example, if the lth topic represents

neural networks, and xil is high, then the user must be an avid consumer of neural network

papers (i.e., ψul must be high) for the model to include an academic paper i in the exposure

set of u. In the location domain if the lth cluster represents Brooklyn, and xil is high, then

the user must live in or visit Brooklyn often for the model to include venues near there in the

exposure set of u.

5.2.3 Inference

We use em algorithm to find the maximum a posteriori estimates of the unknown parameters

of the model (see Section 2.1.1).2 The algorithm is summarized in Algorithm 6.
2There are various other inference methods we could have used, such as mcmc (Neal, 1993; Robert and

Casella, 2013) or variational inference (Jordan et al., 1999; Wainwright and Jordan, 2008). We chose em for
reasons of efficiency and simplicity, and find that it performs well in practice.
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The em inference procedure for the basic model, ExpoMF, can be found by writing out the

full log-likelihood of the model, then alternating between finding the expectations of missing

data (exposure) in the E(xpectation)-step and finding maximum of the likelihood with respect

to the parameters in the M(aximization)-step. This procedure is analytical for our model

because it is conditionally conjugate, meaning that the posterior distribution of each random

variable is in the same family as its prior in the model.

Furthermore, as we mentioned in Section 5.2.2, conditional independence between the priors

for µui and the rest of the model (given µui) means that the update for the latent exposure

variables and user and item factors are not altered for any exposure model we use. We present

these general updates first.

E-step. In the E-step, we compute expectation of the exposure latent variable E [aui] for

all user and item combinations (u, i) for which there are no observed clicks (recall that the

presence of clicks yui > 0 means that aui = 1 deterministically),

E [aui | θu, βi, µui, yui = 0] =
µui · N (0|θ>u βi, λ−1

y )

µui · N (0|θ>u βi, λ−1
y ) + (1− µui)

. (5.3)

where N (0 | θ>u βi, λ−1
y ) stands for the probability density function of N (θ>u βi, λ−1

y ) evalu-

ated at 0.

M-step. For notational convenience, we define pui = E [aui | θu, βi, µui, yui = 0] computed

from the E-step. Without loss of generality, we define pui = 1 if yui = 1. The update for the

latent collaborative filtering factors is:

θnew
u ← (λy ∑

i
puiβiβ

>
i + λθ IK)

−1(∑
i

λy puiyuiβi) (5.4)

βnew
i ← (λy ∑

u
puiθuθ>u + λβ IK)

−1(∑
u

λy puiyuiθu), (5.5)
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Again, this looks very similar to the alternating least squares update of wmf, which reveals

the close connection between ExpoMF and wmf.

5.2.3.1 Inference for the exposure prior µui

We now present inference for the hierarchical variants of ExpoMF. In particular we highlight

the updates to µui under the various models we presented in Section 5.2.2.

Update for per-item µi. Maximizing the log-likelihood with respect to µi is equivalent to

finding the mode of the complete conditional Beta(α1 + ∑u pui, α2 + U −∑u pui), which

is:

µi ←
α1 + ∑u pui − 1
α1 + α2 + U − 2

(5.6)

Update for exposure covariates (topics, location). Setting µui = σ(ψ>u xi), where xi is

given by pre-processing (topic analysis or location clustering), presents us with the challenge

of maximizing the log-likelihood with respect to exposure model parameters ψu. Since

there is no analytical solution for the mode, we resort to following the gradients of the

log-likelihood with respect to ψu,

ψnew
u ← ψu + η∇ψuL, (5.7)

for some learning rate η, where

∇ψuL =
1
I ∑

i
(pui − σ(ψ>u xi))xi.

This can be computationally challenging especially for large item-set sizes I. Therefore, we

perform (mini-batch) stochastic gradient descent: at each iteration t, we randomly subsample
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a small batch of items Bt and take a noisy gradient steps:

ψnew
u ← ψu + ηt g̃t (5.8)

for some learning rate ηt, where

g̃t =
1
|Bt| ∑

i∈Bt

(pui − σ(ψ>u xi))xi.

For each em iteration, we found it sufficient to do a single update to the exposure model

parameter ψu (as opposed to updating until it reaches convergence). This partial M-step

(Neal and Hinton, 1998) is much faster in practice.

Algorithm 6: Expo-ALS Inference for ExpoMF

Input: Click matrix Y , exposure covariates x1:I (topics or locations, optional)
Output: User latent factors θ1:U , item latent factors β1:I , exposure priors µ1:I (for per-item

µi), OR exposure model parameters ψ1:U (with exposure model)
Random initialization: θ1:U , β1:I , µ1:I , OR ψ1:U
while performance on validation set increases do

Compute expected exposure A (Eq. 5.3)
Update user factors θ1:U (Eq. 5.4)
Update item factors β1:I (Eq. 5.5)
if ExpoMF with per-item µi then

Update priors µi (Eq. 5.6)
end
if ExpoMF with exposure model µui = σ(ψ>u xi) then

Update coefficients ψu (Eq. 5.7 or Eq. 5.8)
end

end
return θ1:U , β1:I , µ1:I , OR ψ1:U
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5.2.3.2 Complexity and implementation details

A naive implementation of the wmf has the same complexity as ExpoMF in terms of updating

the user and item factors. However, the trick that is used to speed up computations in wmf

described in Section 2.2.2.2 cannot be applied to ExpoMF due to the non-uniformness of

the exposure latent variable aui. On the other hand, the factor updates are still independent

across users and items. These updates can therefore easily be parallelized.

In ExpoMF’s implementation, explicitly storing the exposure matrix A is impractical for

even medium-sized datasets. As an alternative, we perform the E-step on the fly: only the

necessary part of the exposure matrix A is constructed for the updates of the user/item factors

and exposure priors µui. As shown in Section 5.4, with parallelization and the on-the-fly

E-step, ExpoMF can be easily fit to medium-to-large datasets.3

5.2.4 Prediction

In matrix factorization collaborative filtering the prediction of yui is given by the dot product

between the inferred user and item factors θ>u βi. This corresponds to the predictive density

of ExpoMF p(yui |Y) using point mass approximations to the posterior given by the em

algorithm4. However, ExpoMF can also make predictions by integrating out the uncertainty
3The source code to reproduce all the experimental results is available at: https://github.com/dawenl/

expo-mf.
4This quantity is also the treatment effect E [yui | aui = 1, θu, βi]−E [yui | aui = 0, θu, βi] in the potential

outcomes framework (see Section 2.3.1), since aui = 0 deterministically ensures yui = 0.

https://github.com/dawenl/expo-mf
https://github.com/dawenl/expo-mf
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from the exposure latent variable aui:

Ey[yui | θu, βi] = Ea
[
Ey[yui | θu, βi, aui]

]
= ∑

aui∈{0,1}
P(aui)Ey[yui | θu, βi, aui]

= µui · θ>u βi

We experimented with both predictions in our study and found that the simple dot prod-

uct works better for ExpoMF with per-item µi while E [yui | θu, βi] works better for Ex-

poMF with exposure covariates. We provide further insights about this difference in Sec-

tion 5.4.6.1.

5.3 Related work

In this section we highlight connections between ExpoMF and other similar research direc-

tions.

Causal inference. Our work borrows ideas from the field of causal inference (Pearl, 2009;

Imbens and Rubin, 2015). Causal inference aims at understanding and explaining the effect

of one variable on another.

One particular aim of causal inference is to answer counterfactual questions. For example,

“would this new recommendation engine increase user click through rate?”. While online

studies may answer such a question, they are typically expensive even for large electronic

commerce companies. Obtaining answers to such questions using observational data alone

(e.g., log data) is therefore of important practical interest (Bottou et al., 2013; Li et al., 2010;

Swaminathan and Joachims, 2015).
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We establish a connection with the potential outcome framework of Rubin (1974). In this

framework one differentiates the assignment mechanism, whether a user is exposed to an

item, from the potential outcome, whether a user consumes an item. In potential outcome

terminology our work can thus be understood as a form a latent assignment model. In

particular, while consumption implies exposure, we do not know which items users have

seen but not consumed. Further the questions of interest to us, personalized recommendation,

depart from traditional work in causal inference which aims at quantifying the effect of a

particular treatment (e.g., the efficacy of a new drug).

Biased CF models. Authors have recognized that typical observational data describing user

rating items is biased toward items of interest. Although this observation is somewhat orthog-

onal to our investigation, models that emerged from this line of work share commonalities

with our approach. Specifically, Marlin et al. (2007); Ling et al. (2012) separate the selection

model (the exposure matrix) from the data model (the matrix factorization). However, their

interpretation, rooted in the theory of missing data (Little and Rubin, 1986), leads to a much

different interpretation of the selection model. They hypothesize that the value of a rating

influences whether or not a user will report the rating (this implicitly captures the effect that

users mostly consume items they like a priori). This approach is also specific to explicit

feedback data. In contrast, we model how (the value of) the exposure matrix affects user

rating or consumption.

Modeling exposure with random graphs. The user-item interaction can also be encoded

as a bipartite graph. Paquet and Koenigstein (2013) model exposure using a hidden consider

graph. This graph plays a similar role as our exposure variable. One important difference

is that during inference, instead of directly inferring the posterior as in ExpoMF (which

is computationally more demanding), an approximation is developed whereby a random

consider graph is stochastically sampled.
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Exposure in other contexts. In zero-inflated Poisson regression, a latent binary random

variable, similar to our exposure variable is introduced to “explain away” the structural zeros,

such that the underlying Poisson model can better capture the count data (Lambert, 1992).

This type of model is common in Economics where it is used to account for overly frequent

zero-valued observations.

ExpoMF can also be considered as an instance of a spike-and-slab model (Ishwaran and Rao,

2005) where the “spike” comes from the exposure variables and the matrix factorization

component forms the flat “slab” part.

Versatile CF models. As we show in Section 5.2.2, ExpoMF’s exposure matrix can be used

to model external information describing user and item interactions. This is in contrast to

most CF models which are crafted to model a single type of data (e.g., document content

when recommendation scientific papers (Wang and Blei, 2011)). An exception is factorization

machines (FM) of Rendle (2010). FM models all types of (numeric) user, item or user-item

features. FM considers the interaction between all features and learns specific parameters for

each interaction.

5.4 Empirical study

In this section we study the recommendation performance of ExpoMF by fitting the model to

several datasets. We provide further insights into ExpoMF’s performance by exploring the

resulting model fits. We highlight that:

• ExpoMF performs comparably better than the state-of-the-art wmf Hu et al. (2008)

on four datasets representing user clicks, checkins, bookmarks and listening behavior.
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TPS Mendeley Gowalla ArXiv

# of users 221,830 45,293 57,629 37,893
# of items 22,781 76,237 47,198 44,715

# interactions 14.0M 2.4M 2.3M 2.5M
% interactions 0.29% 0.07% 0.09% 0.15%

Table 5.1: Attributes of datasets after pre-processing. Interactions are non-
zero entries (listening counts, clicks, and checkins). % interactions refers to
the density of the user-item click matrix (Y).

• When augmenting ExpoMF with exposure covariates its performance is further im-

proved. ExpoMF with location covariates and ExpoMF with content covariates both

outperform the simpler ExpoMF with per-item µi. Furthermore, ExpoMF with con-

tent covariates outperforms ctr (Wang and Blei, 2011), a state-of-the-art document

recommendation model.

• Through posterior exploration we provide insights into ExpoMF’s user-exposure mod-

eling.

5.4.1 Datasets

Throughout this study we use four medium to large-scale user-item consumption datasets from

various domains: 1) taste profile subset (TPS) of the million song dataset (Bertin-Mahieux

et al., 2011); 2) scientific articles data from arXiv; 3) user bookmarks from Mendeley5; and

4) check-in data from the Gowalla dataset (Cho et al., 2011). In more details:

• Taste Profile Subset (TPS): contains user-song play counts collected by the music

intelligence company Echo Nest.6 We binarize the play counts and interpret them as

implicit preference. We further pre-process the dataset by only keeping the users with
5http://mendeley.com
6http://the.echonest.com

http://mendeley.com
http://the.echonest.com
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at least 20 songs in their listening history and songs that are listened to by at least 50

users.

• ArXiv: contains user-paper clicks derived from log data collected in 2012 by the arXiv

pre-print server. Multiple clicks by the same user on the same paper are considered

to be a single click. We pre-process the data to ensure that all users and items have a

minimum of 10 clicks.

• Mendeley: contains user-paper bookmarks as provided by the Mendeley service, a

“reference manager”. The behavior data is filtered such that each user has at least 10

papers in her library and the papers that are bookmarked by at least 20 users are kept.

In addition this dataset contains the content of the papers which we pre-process using

standard techniques to yield a 10K words vocabulary. In Section 5.4.6.1 we make use

of paper content to inform ExpoMF’s exposure model.

• Gowalla: contains user-venue checkins from a location-based social network. We

pre-process the data such that all users and venues have a minimum of 20 checkins.

Furthermore, this dataset also contains locations for the venues which we will use to

guide location-based recommendation (Section 5.4.6.2).

The important attributes of these datasets are summarized in Table 5.1.

5.4.2 Experimental setup

For each dataset we randomly split the observed user-item interactions into training/test/vali-

dation sets with 70/20/10 proportions. In all the experiments, the dimension of the latent

space for collaborative filtering model K is 100. The model is trained following the inference

algorithm described in Algorithm 6. We monitor the convergence of the algorithm using the
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truncated normalized discounted cumulative gain (NDCG@100, see below for details) on

the validation set. Hyper-parameters for ExpoMF-based models and baseline models are also

selected according to the same criterion.

To make predictions, for each user u, we rank each item using its predicted preference

y∗ui = θ>u βi, i = 1, · · · , I. We then exclude items from the training and validation sets and

calculate all the metrics based on the resulting ordered list. Further when using ExpoMF

with exposure covariates we found that performance was improved by predicting missing

preferences according to E[yui|θu, βi] (see Section 5.2.4 for details).

5.4.3 Performance measures

To evaluate the recommendation performance, we report both Recall@k, a standard infor-

mation retrieval measure, as well as two ranking-specific metrics: mean average precision

(MAP@k) and NDCG@k.

We denote rank(u, i) as the rank of item i in user u’s predicted list and ytest
u as the set of

items in the heldout test set for user u.

• Recall@k: For each user u, Recall@k is computed as follows:

Recall@k = ∑
i∈ytest

u

I{rank(u, i) ≤ k}
min(k, |ytest

u |)

where I{·} is the indicator function. In all our experiments we report both k = 20

and k = 50. This is slightly different from the metric we used in Section 4.4.2: the

expression in the denominator evaluates to the minimum between k and the number of

items consumed by user u. In this way, Recall@k is normalized to have a maximum

of 1. This corresponds to successfully retrieving all the relevant items in top k of the
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list. We do not report Precision@k due to the noisy nature of the implicit feedback

data: even if an item i /∈ ytest
u , it is possible that the user will consume it in the future.

This makes Precision@k less interpretable since it is prone to fluctuations.

• MAP@k: Mean average precision calculates the mean of users’ average precision. The

(truncated) average precision for user u is:

Average Precision@k =
k

∑
n=1

Precision@n
min(n, |ytest

u |)
.

• NDCG@k: Similar to the untruncated NDCG that we used in Section 4.4.2, it empha-

sizes the importance of the top ranks by logarithmically discounting ranks. NDCG@k

for each user is computed as follows:

DCG@k =
k

∑
i=1

2reli − 1
log2(i + 1)

; NDCG@k =
DCG@k
IDCG@k

IDCG@k is a normalization factor that ensures NDCG lies between zero and one

(perfect ranking). In the implicit feedback case the relevance is binary: reli = 1 if

i ∈ ytest
u , and 0 otherwise. In our study we always report the averaged NDCG across

users.

For the ranking-based measure in all the experiments we set k = 100 which is a reasonable

number of items to consider for a user. Results are consistent when using other values of

k.
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5.4.4 Baselines

We compare ExpoMF to wmf, the standard state-of-the-art method for collaborative filtering

with implicit data (Hu et al., 2008).

We also experimented with Bayesian personalized ranking (BPR) (Rendle et al., 2009), a

ranking model for implicit collaborative filtering which approximately optimizes the area

under the ROC curve (AUC). However preliminary results were not competitive with other

approaches. BPR is trained using stochastic optimization which can be sensible to hyper-

parameter values (especially hyper-parameters related to the optimization procedure). A

more exhaustive search over hyper-parameters could yield more competitive results.

We describe specific baselines relevant to modeling exposure covariates in their dedicated

subsections.

5.4.5 Studying ExpoMF

Empirical evaluation. Results comparing ExpoMF to wmf on our four datasets are given

in Table 5.2. Each metric is averaged across all the users. We notice that ExpoMF performs

comparably better than wmf on most datasets (the standard errors are on the order of 10−4)

though the difference in performance is small. In addition, higher values of NDCG@100 and

MAP@100 (even when Recall@50 is lower) indicate that the top-ranked items by ExpoMF

tend to be more relevant to users’ interests.

Exploratory analysis. We now explore the posterior distributions of the exposure latent

variables of two specific users from the TSP dataset. This exploration provides insights into

how ExpoMF infers user exposure.
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TPS Mendeley Gowalla ArXiv
WMF ExpoMF WMF ExpoMF WMF ExpoMF WMF ExpoMF

Recall@20 0.195 0.201 0.128 0.139 0.122 0.118 0.143 0.147
Recall@50 0.293 0.286 0.210 0.221 0.192 0.186 0.237 0.236
NDCG@100 0.255 0.263 0.149 0.159 0.118 0.116 0.154 0.157
MAP@100 0.092 0.109 0.048 0.055 0.044 0.043 0.051 0.054

Table 5.2: Comparison between WMF (Hu et al., 2008) and ExpoMF. While
the differences in performance are generally small, ExpoMF performs com-
parably better than WMF across datasets.

The top figure of Figure 5.2 shows the inferred exposure latent variable E[aui] corresponding

to yui = 0 for user A. E[aui] is plotted along with the empirical item popularity (measured

by number of times a song was listened to in the training set). We also plot the interpolated

per-item exposure prior µi learned using Eq. 5.6. There is a strong relationship between song

popularity and consideration (this is true across users). User A’s training data revealed that

she has only listened to songs from either Radiohead or Interpol (both are alternative rock

bands). Therefore, for most songs, the model infers that the probability of user A considering

them is higher than the inferred prior, i.e., it is more likely that user A did not want to listen

to them (they are true zeros). However, as pointed out by the rectangular box, there are a few

“outliers” which mostly contain songs from Radiohead and Interpol that user A did not listen

to (some of them are in fact held out in the test set). Effectively, a lower posterior E[aui]

than the prior indicates that the model downweights these unlistened songs more. In contrast,

wmf downweights all songs uniformly.

A second example is shown in the bottom figure of Figure 5.2. User B mostly listens to indie

rock bands (e.g. Florence and the Machine, Arctic Monkeys, and The Kills). “Dog Days are

Over” by Florence and the Machine is the second most popular song in this dataset, behind

“Fireworks” by Katy Perry. These two songs correspond to the two rightmost dots on the

figure. Given the user’s listening history, the model clearly differentiates these two similarly
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Figure 5.2: We compare the inferred posteriors of the exposure matrix for
two users (denoted by blue dots) and compare against the prior probability
for exposure (red dashed lined). On the top, user A is a fan of the bands
Radiohead and Interpol. Accordingly, the model downweights unlistened
songs from these two bands. User B has broader interests and notably enjoys
listening to the very popular band Florence and the Machine. Similarly as for
user A, unlistened tracks of Florence and the Machine get downweighted in
the posterior.

popular songs. The fact that user B did not listen to “Dog Days are Over” (again in the test

set) is more likely due to her not having been exposed to it. In contrast the model infers that

the user probably did not like “Fireworks” even though it is popular.

5.4.6 Incorporating exposure covariates

Figure 5.2 demonstrates that ExpoMF strongly associates user exposure to item popularity.

This is partly due to the fact that the model’s prior is parametrized with a per-item term µi.

(This also explains why it is not a good idea to make a prediction with E[yui | θu, βi] =

µui · θ>u βi for ExpoMF without exposure covariates because it will be highly biased towards
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popular items.) Here we are interested in using exposure covariates to provide additional

information about the (likely) exposure of users to items (see Figure 5.1b).

Recall that the role of these exposure covariates is to allow the matrix factorization component

to focus on items that the user has been exposed to. In particular this can be done in

the model by upweighting (increasing their probability of exposure) items that users were

(likely) exposed to and downweighting items that were not. A motivating example with

restaurant recommendations and New York City versus Las Vegas diners was discussed in

Section 5.1.

In the coming subsections we compare content-aware and location-aware versions of ExpoMF

which we refer to as Content ExpoMF and Location ExpoMF respectively. Studying each

model in its respective domain we demonstrate that the exposure covariates improve the

quality of the recommendations compared to ExpoMF with per-item µi.

5.4.6.1 Content covariates

Scientists—whether through a search engine, a personal recommendation or other means—

have a higher likelihood of being exposed to papers specific to their own discipline. In this

section we study the problem of using the content of papers as a way to guide inference of

the exposure component of ExpoMF.

In this use case, we model the user exposure based on the topics of articles. We use lda (Blei

et al., 2003), a model of document collections, to model article content. lda was briefly

reviewed in Section 4.2.1.
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ExpoMF Content ExpoMF ctr (Wang and Blei, 2011)

Recall@20 0.139 0.144 0.127
Recall@50 0.221 0.229 0.210
NDCG@100 0.159 0.165 0.150
MAP@100 0.055 0.056 0.049

Table 5.3: Comparison between Content ExpoMF and ExpoMF onMendeley.
We also compare with ctr (Wang and Blei, 2011), a model makes use of
the same additional information as Content ExpoMF. (ctr is reviewed in
Section 4.2.1.)

We use the topic proportion xi learned from the Mendeley dataset as exposure covariates.

Following the notation of Section 5.2.2, our hierarchical ExpoMF is:

µui = σ(ψ>u xi + γu)

where we include a per-user bias term γu. Under this model, a molecular biology paper

and a computer science paper that a computer scientist has not read will likely be treated

differently: the model will consider the computer scientist has been exposed to the computer

science paper, thus higher E[aui], yet not to the molecular biology paper (hence lower E[aui]).

The matrix factorization component of the model will focus on modeling computer science

papers since that are more likely to be have been exposed.

Our model, Content ExpoMF, is trained following the algorithm in Algorithm 6. For updating

exposure-related model parameters ψu and γu, we take mini-batch gradient steps with a

batch-size of 10 users and a constant step size of 0.5 for 10 epochs.

Study. We evaluate the empirical performance of Content ExpoMF and report results in

Table 5.3. We compare to ctr, a state-of-the-art method for recommending scientific papers
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(Wang and Blei, 2011) combining both lda and wmf.7 We did not compare with the more

recent and scalable ctpf (Gopalan et al., 2014) since the resulting performance differences

may have been the result of ctpf Poisson likelihood (versus Gaussian likelihood for both

ExpoMF and wmf). Both ctr and ctpf were reviewed in Chapter 4.

We note that ctr’s performance falls in-between the performance of ExpoMF and wmf

(from Table 5.1). ctr is particularly well suited to the cold-start case which is not the data

regime we focus on in this study (i.e., recall that we have only kept papers that have been

bookmarked by at least 20 users).

Figure 5.3 highlights the behavior of Content ExpoMF compared to that of regular ExpoMF.

Two users are selected: User A (left column) is interested in statistical machine learning

and Bayesian statistics. User B (right column) is interested in computer systems. Neither of

them have read “Latent Dirichlet Allocation” (lda), a seminal paper that falls within user

A’s interests. On the top row we show the posterior of the exposure latent variables E[aui]

for two users (user A and user B) inferred from ExpoMF with per-item µi. lda is shown

using a white dot. Overall both users’ estimated exposures are dominated by the empirical

item popularity.

In contrast, on the bottom row we plot the results of Content ExpoMF. Allowing the model

to use the documents’ content to infer user exposure offers greater flexibility compared to the

simple ExpoMF model. This extra flexibility may also explain why there is an advantage in

using inferred exposure to predict missing observations (see Section 5.2.4). Namely when

exposure covariates are available the model can better capture the underlying user exposures

to items. In contrast using the inferred exposure to predict with the simple ExpoMF model

performs worse.
7Note that to train ctr we first learned a document topic model, fixed it and then learned the user preference

model. It was suggested by its authors that this learning procedure provided computational advantages while not
hindering performance significantly (Wang and Blei, 2011).
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Figure 5.3: We compare the inferred exposure posterior of ExpoMF (top
row) and Content ExpoMF (bottom row). On the left are the posteriors of user
A who is interested in statistical machine learning while on the right user B is
interested in computer system research. Neither users have read the “Latent
Dirichlet Allocation” paper. ExpoMF infers that both users have about equal
probability of having been exposed to it. As we discussed in Section 5.4.5
(and demonstrated in Figure 5.2) this is mostly based on the popularity of this
paper. In contrast, Content ExpoMF infers that user A has more likely been
exposed to this paper because of the closeness between that paper’s content
and user A’s interest. Content ExpoMF therefore upweights the paper. Given
user B’s interests the paper is correctly downweighted by the model.

5.4.6.2 Location covariates

When studying the Gowalla dataset we can use venue location as exposure covariates.

Recall from Section 5.2.2 that location exposure covariates are created by first clustering all

venues (using k-means) and then finding the representation of each venue in this clustering

space. Similarly as in Content ExpoMF (Section 5.4.6.1), Location ExpoMF departs from

ExpoMF:

µui = σ(ψ>u xi + γu)
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WMF ExpoMF Location ExpoMF

Recall@20 0.122 0.118 0.129
Recall@50 0.192 0.186 0.199
NDCG@100 0.118 0.116 0.125
MAP@100 0.044 0.043 0.048

Table 5.4: Comparison between Location ExpoMF and ExpoMF with per-
item µi on Gowalla. Using location exposure covariates outperforms the
simpler ExpoMF and WMF according to all metrics.

where xik is the venue i’s expected assignment to cluster k andγu is a per-user bias term.8

Study. We train Location ExpoMF following the same procedure as Content ExpoMF.

We report the empirical comparison between wmf, ExpoMF and Location ExpoMF in

Table 5.4. We note that Location ExpoMF outperforms both wmf and the simpler version of

ExpoMF.

For comparison purposes we also developed a simple baseline Filterwmf which makes use

of the location covariates. Filterwmf filters out venues recommended by wmf that are

inaccessible (too far) to the user. Since user location is not directly available in the dataset,

we estimate it using the geometric median of all the venues the user has checked into. The

median is preferable to the mean because it is better at handling outliers and is more likely to

choose a typical visit location. However, the results of this simple Filterwmf baseline are

worse than the results of the regular WMF. We attribute this performance to the fact that

having a single focus of location is too strong an assumption to capture visit behavior of

users well. In addition, since we randomly split the data, it is possible that a user’s checkins

at city A and city B are split between the training and test set. We leave the exploration of

better location-aware baselines to future work.
8We named Content ExpoMF and Location ExpoMF differently to make it clear to the reader that they

condition on content and location features respectively. Both models are in fact mathematically equivalent.
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5.5 Extensions

Besides the Content and Location ExpoMF from Section 5.4, in this section we further

demonstrate the versatility of the proposed ExpoMF model by incorporating exposure from

various sources: 1) authors of a paper; 2) friends in a social network. We also demonstrate

the “plug-in” nature of ExpoMF, showing how inference can be performed without much

modification from the algorithm we developed in Section 5.2.3.

5.5.1 Author exposure

In Section 5.4.6.1, we assume that whether or not a scientist is exposed to a particular paper

depends on the content of the paper. Here we make a different assumption: the exposure

is dependent on the authors who wrote the paper – this is a reasonable assumption, as

understandably more famous authors can get more attention because of their frames.

A straightforward model of author exposure would be to consider the author-paper matrix

C ∈ {0, 1}A×I , where A is the total number of unique authors: cai = 1 if author a is included

in the author list of paper i and cai = 0 otherwise. We treat each column ci ∈ {0, 1}A as an

exposure covariates vector. Then we can fit this model in the same fashion as Content and

Location ExpoMF, where we learn ψ1:U for user’s exposure to authors.

However, there are two problems with this simple model: 1) Even though the inference is

straightforward following Algorithm 6, it is almost impractical as it requires to store and

constantly update a U × A dense exposure coefficient matrix ψ1:U where A can be as large

as tens of thousands. 2) More importantly, this model does not take into account the influence

from co-authorship. For example, imagine Dave and John have written many papers together.

If a user only read Dave’s papers, then the above-mentioned exposure model will not consider
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a paper by John more likely to be exposed comparing to the papers from some other random

authors.

To overcome the second problem, we can learn a latent representation for each author by

factorizing the author-paper matrix C. Back to our example above, with this setup John and

Dave will end up being close in this learned latent space because of the similarity among co-

authors. Consequently, the user who only read Dave’s papers will also have higher likelihood

of being exposed to John’s papers.9

Let’s assume we have learned author latent representation xa (a = 1, · · · , A) from author-

paper matrix C. The author-aware version of ExpoMF (we refer to as Author ExpoMF)

is specified with the following hierarchical exposure prior (following the notation of Sec-

tion 5.2.2):

µui = σ((
1
|Ai| ∑

a∈Ai

xa)
>ψu + γu),

where Ai is the set of authors of paper i and γu is again a user-dependent bias term. Here we

take the average of the author latent representations to account for various amount of authors

per paper: for ArXiv dataset that we analyzed, the number of authors per paper ranges from

one to more than 150.

Model inference for Author Exposure is similar to that of Content and Location ExpoMF,

as we can treat 1
|Ai | ∑a∈Ai

xa as the exposure covariates. We use the same ArXiv dataset

in Section 5.4 and pre-process the author-paper matrix C by only keeping the authors with

at least 2 papers, which gives us A = 38, 627 unique authors. We learn the author latent

representation xa with theGaussianmatrix factorization (Section 2.2.2.1) only on the observed

1’s in the author-paper matrix C.
9This could potentially help with the same author with different name spellings, which is very common in the

ArXiv dataset.
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ExpoMF Author ExpoMF

Recall@20 0.143 0.151
Recall@50 0.236 0.231
NDCG@100 0.157 0.160
MAP@100 0.054 0.058

Table 5.5: Comparison between Author ExpoMF and ExpoMF on ArXiv.
We can see that incorporating author exposure improves the recommendation
performance over the simple ExpoMF.

Quantitative results. We report the recommendation performance of Author ExpoMF in

Table 5.5. We also compare to ExpoMF (the results are copied from Table 5.2). For Author

ExpoMF, we predict the missing preferences according to E [yui | θu, βi]. As we can see,

incorporating author exposure improves the metrics over the simple ExpoMF, even though

the difference in performance is generally small. We note that by filtering out inactive authors,

some papers will be considered having “zero” authors, i.e., xa = 0 for ∀a ∈ Ai. This means

that its exposure will be solely dependent on the user-dependent bias term γu, which could

be restrictive.

Exploratory analysis. To help develop intuition on how Author ExpoMF helps with

recommendation by making use of the author exposure, we look into a particular user who

has read a couple of papers about network analysis and social networks by Mark Newman.

From the dataset, we can see that Aaron Clauset has published quite a few papers with

Mark Newman on the same topics, of which this user hasn’t read any. The author latent

representation xa for Mark Newman and Aaron Clauset are very close with a cosine similarity

of 0.85. Therefore, understandably Author ExpoMF recommends some of Aaron Clauset’s

papers on top of the recommended list. Furthermore, among these papers also include the

ones that Aaron Clauset wrote with authors other than Mark Newman. For comparison,

ExpoMF does not recommend any single paper from Aaron Clauset (except the one that he

co-authored with Mark Newman) among the top 50.
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5.5.2 Social network exposure

Users in a social network can be naturally influenced by their friends, e.g., we will be more

likely to try out a song if a friend we trust recommends it. There have been many collaborative

filtering models which exploits trust among friends in a social network (Ma et al., 2008, 2009,

2011; Guo et al., 2015; Chaney et al., 2015). In this section, we develop a social-network-

aware version of ExpoMF (Social ExpoMF) where users’ exposure to items is influenced by

their social friends.

Social ExpoMF takes a similar approach to SocialPF (Chaney et al., 2015) with the following

generative process:

θu ∼ N (0, λ−1
θ IK)

βi ∼ N (0, λ−1
β IK)

ãui ∼ Pois(λui)

aui = I{ãui > 0}

yui | aui = 1 ∼ N (θ>u βi, λ−1
y )

yui | aui = 0 ∼ δ0,

where λui = ∑v∈N(u) τuvyvi + γu + αi. N(u) is the set of users who are social friends with

user u. τuv can be interpreted as user v’s influence on user u, which is learned as part of the

inference procedure. We also include user- and item-dependent bias terms γu and αi. We

constrain exposure coefficients τuv, γu, and αi to be nonnegative, so that the rate λui to the

Poisson-distributed random variable ãui is also nonnegative.

How to interpret Social ExpoMF model? If τuv is high for user u, that means user u is more

likely to be exposed to the items that user v (a social friend of user u) clicked on. Equivalently,
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a small value of τuv indicates that the items user v clicked on will not likely expose to user u.

If user u and v do not have any social overlap, then τuv = 0. It is reasonable to assume the

entire coefficient matrix τ = {τuv} ∈ RU×U
+ is very sparse in practice. Consequently, we

add bias terms γ = {γu} ∈ RU
+ and α = {αi} ∈ RI

+ to capture the user- and item-level

exposure patterns beyond the influence from social friends.

Here we use a Poisson exposure model instead of the Bernoulli-logistic model that has been

applied to other ExpoMF variations. This is mostly for computational concerns, as the social

network data can be computationally demanding to work with. Gopalan et al. (2015) and

Chaney et al. (2015) have demonstrated that Poisson model has the computational advantages

especially on sparse data.

5.5.2.1 A variational EM algorithm

The inference for Social ExpoMF is more complicated due to the censored Poisson exposure

model. We develop a variational em algorithm for efficient model inference, where in the E-

step we compute (approximate) the posterior of aui and in the M-step we update the exposure

coefficients τuv, γu, and αi via maximum likelihood estimation.

If we follow the general procedure of em algorithm in Section 2.1.1 and write down the

objective function, there will be a problematic term log P(aui = 1) = log(1− e−λui) which

prevents us from deriving closed-form coordinate updates. To work around it, we present a

model augmentation strategy.10

Wefirst observe that 1− e−λ is the cumulative distribution function (cdf) of theExponential(λ)

distribution evaluated at 1. Therefore, we can define an exponential distribution truncated at
10The augmentation strategy presented here comes from an unpublished note by Matthew D. Hoffman.
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1:

Exponential1(t; λ) =
λ

1− e−λ
e−λt, t ∈ [0, 1]

Furthermore, we define Exponential1(t; 0) = Unif[0, 1]. We augment the model with

tui | aui ∼ Exponential1(tui; auiλui). Now the joint log-likelihood of aui and tui is:

log p(aui, tui) = aui(log λui − tuiλui)− λui(1− aui),

where the problematic term log(1− e−λui) gets canceled.

E-step. The complete data log-likelihood is

L = ∑
u,i

aui logN (yui | θ>u βi, λ−1
y ) + aui(log λui − tuiλui)− λui(1− aui) + priors.

In the E-step, we use a variational distribution q(aui, tui) to approximate the true posterior.

Since we can compute the posterior expectation of aui exactly:

E [aui | θu, βi, λui, yui = 0] =
(1− e−λui) · N (0|θ>u βi, λ−1

y )

(1− e−λui) · N (0|θ>u βi, λ−1
y ) + e−λui

, (5.9)

we will only specify variational distribution for tui as q(tui) = Exponential1(tui; ρui).

Define pui = E [aui | θu, βi, λui, yui = 0] and without loss of generality, we set pui = 1 if

yui > 0. We tune the variational parameters ρ = {ρui} ∈ RU×I
+ to optimize the variational

objective (elbo) for tui:

LVI
ui = −puiEq[tui]λui + ρuiEq[tui]− log ρui + log(1− e−ρui) + const.
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where the necessary expectation is Eq[tui] =
1

ρui
− 1

eρui−1 . Take the derivative of elbo with

respect to ρui and set it to 0, we get the following updates for the variational parameters:

ρui ← puiλui (5.10)

M-step. The objective in the M-step is the expected complete data log-likelihood under the

variational distribution:

Eq[L] = ∑
u,i

pui logN (yui | θ>u βi, λ−1
y )+ pui(log λui−Eq[tui]λui)−λui(1− pui)+ const..

The updates for collaborative filtering latent factors θu and βi are identical to all the previous

models (Eq. 5.4 and Eq. 5.5) because of the conditional independence between the exposure

prior and the matrix factorization part of the model (given exposure).

The updates for exposure coefficients τuv, γu, and αi are more difficult because of the

problematic term log λui = log(∑v∈N(u) τuvyvi +γu + αi). We follow the standard strategy

to lower bound it via Jensen’s inequality:

log( ∑
v∈N(u)

τuvyvi + γu + αi) ≥ ∑
v∈N(u)

φτ
uiv(log τuvyvi − log φτ

uiv)

+ φ
γ
ui(log γu − log φ

γ
ui) + φα

ui(log αi − log φα
ui)

where φτ
uiv ≥ 0, φ

γ
ui ≥ 0, φα

ui ≥ 0, and ∑v∈N(u) φτ
uiv + φ

γ
ui + φα

ui = 1. To tighten the

lower bound, we update φτ
uiv = τuvyvi

λui
, φ

γ
ui =

γu
λui

, and φα
ui =

αi
λui

. After lower-bounding the

objective, we take the gradients with respect to τuv, γu, and αi and set them to 0, which leads
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to the following multiplicative updates:

τuv ←
∑i φτ

uiv pui

∑i yvi
(
1− pui(1−Eq[tui])

)
γu ←

∑i φ
γ
ui pui

∑i
(
1− pui(1−Eq[tui])

)
αi ←

∑u φα
ui pui

∑u
(
1− pui(1−Eq[tui])

)
(5.11)

These updates closely resemble those of nmf with generalized kl-divergence loss function

(Lee and Seung, 2001). The full algorithm for Social ExpoMF is summarized in Algorithm 7.

In actual implementation, we perform on-the-fly E-step, similar to what was described in

Section 5.2.3.2, for both aui and tui, as well as parallelization when updating both latent

factors (θ1:U , β1:I) and exposure coefficients (τ, γ, α). This enables Social ExpoMF to

tractably analyze large-scale user-item interaction data with social networks.

Algorithm 7: Social-Expo-ALS Inference for Social ExpoMF

Input: Click matrix Y , social network N(u) for u = 1, . . . , U
Output: User latent factors θ1:U , item latent factors β1:I , exposure coefficients τ, γ, and α
Random initialization: θ1:U , β1:I , τ, γ, α
while performance on validation set increases do

Compute expected exposure P = {pui} (Eq. 5.9)
Update variational parameter ρ = {ρui} (Eq. 5.10)
Update user factors θ1:U (Eq. 5.4)
Update item factors β1:I (Eq. 5.5)
Update exposure coefficients τ, γ, and α (Eq. 5.11)

end
return θ1:U , β1:I , τ, γ, α

Data. Weevaluate Social ExpoMF onDouban dataset (Ma et al., 2011). Douban (douban.com)

is a Chinese social service where users record ratings for music, movies, and books. It con-

tains 129K users and 57K items with 16M user-item interactions in the form of ratings on a

1-5 scale. The social network is undirected (i.e., if user v is user u’s social friend, then the
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ExpoMF Social ExpoMF

Recall@20 0.205 0.208
Recall@50 0.306 0.320
NDCG@100 0.225 0.230
MAP@100 0.087 0.086

Table 5.6: Comparison between Social ExpoMF and ExpoMF on Douban
dataset. We can see that incorporating social network exposure improves the
recommendation performance over the simple ExpoMF.

reverse is true) with 1.3M network connections. Following the experimental setup in Chaney

et al. (2015), we remove network connections where the users have no items in common.

Furthermore, we binarize the explicit ratings by only keeping ratings greater than or equal to

4 and treat them as implicit preferences.

Quantitative results. We evaluate the empirical performance of Social ExpoMF and report

results in Table 5.6. We compare to the ExpoMF with per-item µi exposure prior. We can

see that Social ExpoMF outperforms ExpoMF except on MAP@100. This indicates that

incorporating exposure based on social network provides additional benefits on top of simple

popularity-based exposure model. Unfortunately due to privacy reasons, most of the public

user-item interaction datasets with social network do not have meta-data information about

users and/or items, which prevents us from exploring the resulting model fit.

5.6 Summary

In this chapter, we presented a novel collaborative filtering mechanism that takes into ac-

count user exposure to items. In doing so, we theoretically justify existing approaches that

downweight unclicked items for recommendation, and provide an extendable framework for

specifying more elaborate models of exposure based on logistic regression. In empirical
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studies we found that the additional flexibility of our model helps it outperform existing ap-

proaches to matrix factorization on four datasets from various domains. We also demonstrate

the versatility of our model by incorporating other sources of exposure, e.g., the authors of a

paper, or the friends in a social network.

There are several promising avenues for future work. Consider a reader who keeps himself up

to date with the “what’s new” pages of a website, or a tourist visiting a new city looking for a

restaurant recommendation. The exposure processes are more dynamic in these scenarios and

may be different during training and test time. We therefore seek newways to capture exposure

that include ever more realistic assumptions about how users interact with items.

Finally, we would like to evaluate our proposed model in a more realistic setting, e.g., in an

online environment with user interactions. It would be instructive to evaluate the performance

of ExpoMF in environments where it may be possible to observe items which users have

been exposed to.
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Chapter 6

Causal Inference for

Recommendation

In this chapter, we move from implicit data to explicit data and develop a causal inference

approach to recommender systems. Observational recommendation data contains two sources

of information: which items each user decided to look at and which of those items each user

liked. We assume these two types of information come from different models—the exposure

data comes from a model by which users discover items to consider; the click data comes from

a model by which users decide which items they like. Traditionally, recommender systems

use the click data alone (or ratings data) to infer the user preferences. But this inference

is biased by the exposure data, i.e., that users do not consider each item independently at

random. We use causal inference to correct for this bias. On real-world data, we demonstrate

that causal inference for recommender systems leads to improved generalization to new

data.
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6.1 Introduction

The goal of recommender systems is to infer users’ preferences for items and then to predict

items that users will like. We develop a causal inference approach to this problem.

Here is the idea. Observational recommendation data contains two sources of information

(see the definition of observational data in Section 2.3.2): which items each user decided to

look at and which of those items each user liked. For example, one of the data sets we analyze

contains which movies each user watched and which of them each liked; another contains

which scientific abstracts each user saw and which PDFs each decided to download.

We assume these two types of information come from different models—the exposure data

comes from a model by which users discover items to consider; the click data comes from a

model by which users decide which items they like. Traditionally, recommender systems

use the click data alone (or ratings data) to infer the user preferences. But this inference

is biased by the exposure data, i.e., that users do not consider each item independently at

random.

We use causal inference to correct for this bias. First, we estimate the exposure model from

the exposure data, a model of which items each user is likely to consider. Then we fit the

preferences with weighted click data, where each click (or skip) is weighted by the inverse

probability of exposure (from the exposure model). This is a propensity weighting approach

to causal inference (Imbens and Rubin, 2015), i.e., we warp the observational click data as

though it came from an “experiment” where users are randomly shown items. We study

several variants of this strategy.

Why might this work? Consider the film enthusiast (from our data) who mostly watches

popular drama but has also enjoyed a couple of documentaries (“Crumb” and “The Cruise”).
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A classical recommendation system will infer film preferences that center around drama. Our

causal method detects a preference for drama too, but further up-weights the preference for

documentaries. The reason is that the history of the user indicates that she is unlikely to

have been exposed to many documentaries; the method values its signal from the two she

did like. Consequently, when we recommend from among the unwatched films, our method

promotes documentaries (“Fast, Cheap & Out of Control” and “Paris Is Burning”) that the

user (in held-out data) also liked. Across users, on real-world data, we demonstrate that causal

inference for recommender systems leads to improved generalization to new data.

6.1.1 Related work

Marlin and Zemel (2009) first formalized statistical models for correcting rating-selection

bias. They posit that a user’s decision to rate an item depends on the user’s opinion of the item.

They propose a mechanism to correct for this self-selection bias, based first on generating

a rating and then conditionally on whether the rating is observed. Others have proposed

different rating models using this same mechanism (Ling et al., 2012; Hernández-Lobato

et al., 2014). In contrast, our model (similar to ExpoMF (Liang et al., 2016b) from Chapter 5)

first generates each user’s exposure to an item and then her rating. Unlike ExpoMF, we

work with explicit click data in this chapter. Thus we can use causal inference to de-bias the

resulting inference of user preferences.

Solving recommendations using causality has been explored in the multi-arm bandit litera-

ture (e.g., Li et al. (2010); Vanchinathan et al. (2014); Zhao et al. (2013); Li et al. (2015)).

They focus on unbiased evaluation of a recommendation policy, though using biased data

(e.g., data collected in web log). This work typically uses importance sampling, weight-

ing the probability of each observed click under the logging policy and under the (new)

recommendation policy. We use the same tools for data re-weighting—propensity score
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weighting is equivalent to importance sampling—but we reason about preferences rather

than recommendation policies. Further we work in a batch learning setting (as opposed to

online learning).

The recent work of Schnabel et al. (2016) is closest to what we present in this chapter. The

authors propose a causal inference approach to learning unbiased estimators from biased rating

data. One important difference with our work is that their propensity weights depend on user

preferences (either directly through ratings or indirectly through user and item covariates)—a

process known as self-selection—rather than reflecting exposure, as in our work. Their

formalization of the problem also differs: they appeal to empirical risk minimization while

we take a Bayesian perspective.

6.2 A causal model for recommendation

In this section we develop our method. We describe explicit recommendation data, a joint

model of exposure and clicks, how we do prediction, and how we do causal inference.

6.2.1 Data

Our data are explicit data: we know which items each user saw and which of those items

each clicked (liked) or skipped (disliked). For example, in Section 6.4 we analyze a large

collection of click data from arXiv.org. We know which arXiv abstracts a user has viewed

and, among those, which PDFs she has downloaded. Our goal is to infer each user’s latent

preferences for items and then to use those preferences in a recommendation system.
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We begin with notation for the data. There are two types of observations. The exposure

data is aui, whether user u had the opportunity to click on item i. The click data is yui, an

indicator of whether user u clicked on item i (liked) or decided to skip the item (disliked).

This is the explicit counterpart of the setup in Chapter 5.

These data capture the users’ clicks. There are some items which a user was exposed to

(aui = 1) but did not click on (yui = 0); there are other items that a user was exposed to

(aui = 1) and did click on (yui = 1); finally, there are items that a user was not exposed to

(aui = 0) and, by definition, did not click on (yui = 0). A user cannot click on an item she is

not exposed to.

6.2.2 Joint models of exposure and clicks

We build a joint model of the data described in Section 6.2.1: an exposure model of what

the user sees and a click model of what the user clicks on, conditional on her seeing it. The

key idea behind our approach is this. Given observational data, i.e., data collected by users

exploring information and clicking on items, classical inference of the click model—of the

user’s preferences for clicking on items that she is exposed to—is incorrect because of the

biases induced by the exposure model. We take a causal inference approach to this problem:

we infer the user’s preferences from an imagined experiment where each item is exposed

with equal probability.

We first describe the observation joint, from which we observe our data set.

aui ∼ f (· |πui)

yui | aui = 0 ∼ δ0(·)

yui | aui = 1 ∼ g(· | µui).
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Here the exposure and click models are generic. Each is governed by the exposure parameter

πui and click parameter µui, respectively.

For example, one exposure model we study is a Bernoulli with an item-specific parameter.

We call this the popularity exposure because it allows some items to be more likely to be

exposed (across users) than others,

aui ∼ Bernoulli(ρi). (Popularity exposure) (6.1)

Alternatively, the exposure model can capture a user’s preferences for seeking out items. We

will also study Poisson factorization,

aui ∼ Poisson(π>u γi), (Poisson factorization exposure) (6.2)

which finds non-negative embeddings for users and items (Gopalan et al., 2015).1

For the click model, we use classical probabilistic matrix factorization (Salakhutdinov and

Mnih, 2008) in Section 2.2.2.1. Conditional on being exposed, the click comes from a normal

distribution, yui | aui = 1 ∼ N (θ>u βi, λ−1
y ). Here θu is a latent K-vector of user preferences

and βi is a latent K-vector of item attributes. In all models, the conditional distribution of a

click yui given that a user is not exposed to the item (aui = 0) is a point mass at zero.

6.2.3 Forming predictions

Our goal is to use this model to form future predictions about the users. We are given observed

data D = {(aui, yui)} of what each user was exposed to and what each user clicked on. We
1Though Poisson models capture count data, they are effective for binary data with many items (Gopalan

et al., 2015).
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want to predict what we should expose them to in the future, i.e., what they would like to

see.

We will study two ways of predicting. One is to form conditional predictions as the probability

that a user clicks on an item given that she is exposed to it,

E [yui | aui = 1,D] . (Conditional prediction) (6.3)

Alternatively, we use marginal predictions, where we marginalize out the exposure vari-

able

E [yui | D] = p(aui | µui,D)E [yui | aui = 1,D] . (Marginal prediction) (6.4)

The marginal prediction uses that yui = 0 when aui = 0. It is apt when the exposure model

also contains information about the user, i.e., information about what the user is likely to

seek out.

Note that these methods require approximating the posterior predictive distribution of yui

and aui given the data. We now turn to this inference problem.

6.2.4 Causal inference for recommendation

One way to solve the inference problem is with classical Bayesian inference, where we

condition on the observed data and then use posterior prediction to recommend items. But

there is an issue with using classical Bayesian inference to form recommendations: the data

we observe Dobs is not the data from which we would like to infer the user’s preferences and

item attributes, i.e., the click model. The reason is that the exposure model—the distribution

that governs what each user sees—biases our inference about the click model. Items that
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users are likely to be exposed exert too much of an influence; items that users are rarely

exposed to have too little influence.

Ideally, we would infer preferences from an experiment, a model that randomly exposed each

user to items and then recorded which items each one click on. We call this the intervention

joint,

aui ∼ Bernoulli(π)

yui | aui = 0 ∼ δ0(·)

yui | aui = 1 ∼ g(· | µui).

In this model, we have intervened on the mechanism from which users are exposed to items.

(This is the “mutilated model” (Pearl, 2009).) Data from this model leads to better estimates

of the click model (i.e., their preferences) and better generalization to the items that they will

want to click on.

This is a causal approach to the problem. The observation joint is the model of how we

collected the data; the intervention joint is a model of a randomized experiment that would

(in theory) help us make the inferences that we need. The challenge is to use data from the

observation joint to perform inference in the intervention joint.

How do we solve this problem? Assume for now that the exposure model is known and is the

popularity model, i.e., aui ∼ Bernoulli(ρi). We will use inverse propensity weighting (Im-

bens and Rubin, 2015), which takes samples from the observation joint and weights them to

look like samples from the intervention joint; this is essentially an importance sampling tech-

nique. Specifically, we weight each observation (aui, yui) by 1/ρi to estimate θu. (Because

of the click model, this estimate only relies on those data where aui = 1.) When inferring

a user’s preferences, this down-weights the influence of popular items and up-weights the
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influence of unpopular items.

More formally, our goal is to obtain a data set D = {(aui, yui)} from the intervention joint

and then estimate p(θu | D). We define the “do dataset” to be the observed data embellished

with weights, Ddo = {(aui, yui, wui)}. The posterior is

p(θu | Ddo) ∝ p(θu)∏
i

p(yui | aui)
wui (6.5)

Intuitively, this assumes that we see each data point “wui times”, and that the clicks are

conditionally independent given the preferences.

How is this different from standard causality? One way is that, in typical causal settings,

we have a single causal question (Imbens and Rubin, 2015). Here we have many causal

questions (one per user-item pair). What is crucial is that the causal outcomes are related,

each governed by the same set of parameters.

6.3 Inference

We first estimate the exposure model from the observed data. This can be the popularity

model or Poisson factorization. Then, we use the fitted exposure model to weight the data (by

the inverse probability) and fit the click model. Finally we use the posterior distribution of

the exposure model and (causal) posterior distribution of the click model to form predictions.

This procedure generalizes better than Bayesian inference, especially under intervention, i.e.,

when we change the distribution of which items a user is exposed to.
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6.3.1 Fitting exposure model

Popularity model. For popularity exposure model aui ∼ Bernoulli(ρi), we obtain the

maximum likelihood estimate ρ̂i by counting the portion of the users who have been exposed

to item i. The propensity score in this case is fixed across users:

πui = ρ̂i, ∀u ∈ {1, . . . , U}. (6.6)

Poisson factorization model. For Poisson factorization exposure model aui ∼ Pois(π>u γi)

with gamma prior on the latent embeddings πu and γi, we perform standard variational infer-

ence (Gopalan et al., 2015) on the exposure data aui. After obtaining the optimal variational

distribution q on πu and γi at convergence, we compute the propensity score,

πui = 1−P{aui = 0} = 1− exp{−Eq

[
π>u γi

]
}. (6.7)

6.3.2 Fitting click model

The click model is a matrix factorization yui | aui = 1 ∼ N (θ>u βi, λ−1
y ). Following

Section 2.2.2.1, we place a diagonal normal prior on both user preference θu ∼ N (0, λ−1
θ IK)

and item attributes βi ∼ N (0, λ−1
β IK). To fit the model, we compute the maximum a

posteriori estimates of the parameters θu and βi. Concretely, the objective for the inverse

propensity weighted Gaussian matrix factorization model (Eq. 6.5) is:

L = − ∑
(u,i)∈O

1
2πui

(yui − θ>u βi)
2 − λθ

2 ∑
u
‖θu‖2

2 −
λβ

2 ∑
i
‖βi‖2

2,
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where the propensity score πui can be obtained by either Eq. 6.6 or Eq. 6.7. The observed

set O contains all the entries with aui = 1. Similar to wmf, we can obtain the following

coordinate updates by taking the gradients with respect to θu and βi and setting them to

0:

θnew
u ← ( ∑

i:(u,i)∈O

1
πui

βiβ
>
i + λθIK)

−1( ∑
i:(u,i)∈O

1
πui

yuiβi) (6.8)

βnew
i ← ( ∑

u:(u,i)∈O

1
πui

θuθ>u + λβIK)
−1( ∑

u:(u,i)∈O

1
πui

yuiθu) (6.9)

The full algorithm for the inverse propensity weighted Gaussian matrix factorization is

summarized in Algorithm 8. Note that this algorithm only includes options for fitting the

model causally (Eq. 6.5). In Section 6.4, we empirically explore different combinations of

the exposure model, prediction method, and fitting procedures.

Algorithm 8: IPW-ALS Alternating least squares for the inverse propensity weighted Gaus-
sian matrix factorization

Input: A set of observed entires in the click matrix {yui : (u, i) ∈ O}, regularization
parameters λθ and λβ

Output: A set of user latent factors θ1:U and item latent factors β1:I
Fit exposure model to compute the propensity score (Eq. 6.6 or Eq. 6.7)
Randomly initialize θ1:U , β1:I
while not converged do

for u← 1 to U do
Update user factor θu (Eq. 6.8)

end
for i← 1 to I do

Update item factor βi (Eq. 6.9)
end

end
return θ1:U , β1:I
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6.4 Empirical study

We studied causal recommender systems on several data sets. We compared models trained

observationally with models trained causally; we compared predictions made marginally and

those made conditional on exposure; we studied and evaluated different exposure models,

both those based on popularity and based on personalized preferences; and we studied typical

test sets and test sets that focus on rare items.

We highlight the following results:

• Poisson factorization (Eq. 6.2) is a better exposure model than the one based on item

popularity (Eq. 6.1). We evaluate the exposure model both as a standalone model to

predict held-out exposure and as a component in the whole recommender system.

• When the test set focuses on rare items, fitting causally (Eq. 6.5) gives better gener-

alization than classical inference. Causal inference is important for generalizing to

situations that we do not see in training.

• Accounting for exposure is important when making prediction—recommendation with

marginal prediction (Eq. 6.4) significantly boosts the ranking-based recommendation

performance.

We give details below. We describe the data, methods, metrics, and results.

6.4.1 Datasets

We study three types of data (and four data sets):
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• MovieLens (ML-1M and ML-10M). User-movie ratings collected from a movie recom-

mendation service.2 The ratings are on a 1–5 scale.

• Yahoo-R3. Music ratings collected from Yahoo! Music services (Marlin and Zemel,

2009). The ratings are 1–5.

• ArXiv. User-paper clicks from the 2012 log-data of the arXiv pre-print server. The

data are binarized: multiple clicks by the same user on the same paper are considered

to be a single click. This data contains which papers a user downloaded and which she

only read the abstract.

For ML-1M, ML-10M, and Yahoo-R3, we denote exposure aui = 1 as user u having rated

item i. These three datasets are typically used for rating prediction. Because our end goal

is recommendation, we binarize the ratings and encode preferences as being either positive

or negative (yui = 1 if rating is greater than or equal to 3 and yui = 0 otherwise). This

type of binarization gives better recommendation performance than directly using predicted

ratings (Hu et al., 2008).3

In ArXiv we denote exposure aui = 1 as user u having viewed the abstract of paper i. Among

papers that a user is exposed to, we set yui = 1 if she downloaded the paper and yui = 0

otherwise.

Table 6.1 summarizes the important attributes of our four datasets.

Data pre-processing. For each dataset, we create two training/validation/test splits: regular

(REG) and skewed (SKEW). We create a regular split by randomly selecting the exposed

items for each user into training/validation/test sets, following 70/10/20 proportions. In the
2http://grouplens.org/datasets/movielens/
3We note that the Yahoo! data set also contains a random test set, where a subset of the users are given 10

randomly selected songs to rate. But most of the ratings for this random test set are below 3. Rather, we created a
skewed test set.

http://grouplens.org/datasets/movielens/
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ML-1M ML-10M Yahoo-R3 ArXiv

# of users 6,040 69,878 15,400 26,541
# of items 3,706 10,677 1,000 80,082
# of exposures 1.0M 10.0M 0.3M 1.9M
% of exposures 4.47% 1.34% 2.02% 0.09%

Table 6.1: Attributes of the data. # of exposures is the number of entries
with aui = 1 (rated an item, viewed an abstract). % of exposure refers to the
density of the user-item exposure matrix.

regular split, the test set has the same exposure distribution as the training and validation

sets. This is how researchers typically evaluate recommendation models (with observational

data).

The skewed split rebalances the splits to better approximate an intervention. We create it

by first sampling a test set with roughly 20% of the total exposures, such that each item

has uniform probability. Training and validation sets are then created from the remaining

data (as in a regular split) with 70/10 proportions. For a skewed split, the test set will

have a completely different exposure distribution from the training and validation sets. We

use this split to demonstrate that causal inference for recommendation leads to improved

generalization performance.

Figure 6.1 shows the scatter plots of the training exposure distribution (reflected by the

empirical item popularity) against the test exposure distribution on regular and skewed splits

of the ML-1M dataset. The empirical item popularity is computed by counting the number of

users who have been exposed to each item. The skewed split has a roughly uniform exposure

distribution across items, while in the regular split, both training and test sets follow similar

exposure patterns.
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Figure 6.1: Scatter plots of the training exposure distribution (reflected by
the empirical item popularity) against the test exposure distribution on REG
(left) and SKEW (right) splits for ML-1M dataset. SKEW split has a roughly
uniform exposure distribution across items, while in REG split both training
and test sets follow similar exposure patterns.

6.4.2 Methods

There are several choices in the proposed method. We explored combinations of the exposure

model, prediction method, and fitting procedure. The different choices are summarized

below:

• Exposure model. Popularity (Pop, Eq. 6.1) or Poisson factorization (PF, Eq. 6.2).

• Prediction. Conditional prediction (Cond, Eq. 6.3) or marginal prediction (Mar,

Eq. 6.4).

• Model fitting. Train the click model causally (CAU, Eq. 6.5), with inverse propensity

weighting, or observationally (OBS), with classical inference.

Among these methods are two baselines. The models that are trained observationally (OBS)

with conditional prediction (Cond) correspond to classical matrix factorization (Salakhutdinov

and Mnih, 2008). The models that are trained causally (CAU) with conditional prediction

(Cond) correspond to inverse propensity weighted matrix factorization proposed in Schnabel
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et al. (2016).4 We note that this approach significantly outperformed the previous state-of-

the-art model proposed in Hernández-Lobato et al. (2014) for the task of rating prediction

(though the main focus of this chapter is on recommendation).

Hyperparameters. We perform grid search using λθ ∈ {10−4, . . . , 104} and λβ ∈

{10−4, . . . , 104} to select hyperparameters based on the normalized discounted cumula-

tive gain (NDCG) (Järvelin and Kekäläinen, 2002) of the validation set.

We set the dimension of the latent space K to 30 and use the same random initialization of

θu and βi in all settings. For the coordinate updates algorithm in Section 6.3, we declare

convergence when the mean squared error on the validation set increases.

6.4.3 Metrics

We separately evaluate the exposure model, how well we predict which items a user will

see, and the click model, which items a user will like. Note that causal inference of the click

model uses the exposure model to compute the propensity score. Further, marginal prediction

of clicks also uses the exposure model.

We evaluate the exposure model using model fitness to the data (predictive log-likelihood).

We evaluate the click model with recommendation metrics, both a likelihood-based metric (a

tail probability) and a ranking-based metric (mean average rank (Charlin et al., 2015)).5 We

describe the recommendation metrics in turn.
4Even though Schnabel et al. (2016) derive the model from empirical risk minimization framework, the

model objective closely resembles the joint log-likelihood of the causally trained model (CAU) with conditional
prediction (Cond).

5NDCG (Järvelin and Kekäläinen, 2002) is another commonly used ranking-based metric. It emphasizes
the importance of the top ranks by logarithmically discounting ranks. MAR, on the other hand, makes no such
discounting.
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Predictive log tail probability (PLP). For yui in the heldout test set, we compute the pre-

dictive log-probability based on its value and whether we predict conditionally or marginally

(see Eq. 6.4).

Conditional prediction usesE[yui | aui = 1,D]. If yui = 1, we compute right-tail conditional

predictive log-probability for positively preferred items,

log P(ypredui > 1 | aui = 1,D).

Otherwise we compute left-tail conditional predictive log-probability

log P(ypredui ≤ 0 | aui = 1,D).

Both correspond to Gaussian tail probability for matrix factorization.

Marginal prediction uses E[yui | D]. If yui = 1, we compute right-tail marginal predictive

log-probability,

log P(ypredui > 1 | D) = log πui + log P(ypred > 1|aui = 1,D)

(Recall that πui is the probability that user u is exposed to item i.) Otherwise we compute

left-tail marginal predictive log-probability

log P(ypredui ≤ 0 | D) = log
(
πuiP(ypredui ≤ 0 | aui = 1,D) + (1− πui)

)
.

The intuition behind PLP is that we would like to have 0’s and 1’s in the heldout set well-

separated. This is different from the commonly used metrics for rating prediction, e.g., mean

squared error or mean absolute error, both of which penalize the model unless it predicts
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with a perfect 0 and 1. We report average PLP over all the heldout yui in the test set.

Mean Average Rank. We compute MAR as follows. For user u we calculate the ranking

of all the items i ∈ {1, 2, . . . , I} by sorting the predictions and excluding the items from

the training and validation sets. Define rank(u, i) as the predicted rank of item i for user u:

rank(u, i) = 0 if item i is ranked first for user u and rank(u, i) = I − 1 if ranked last. For

items within a set Iu,

MARu =
1
|Iu| ∑

i∈Iu

rank(u, i).

In our studies, Iu is the item set in the heldout set with yui = 1, i.e., the items that user u

rated positively or the papers that user u downloaded after looking at the abstract. Since

the value of MAR depends on the size of the item set I, we report the normalized MAR

percentile instead as MARu/I. This also corresponds to the expected percentile ranking

proposed in Hu et al. (2008) with binary feedback data. The interpretation of MAR is on

average at what percentile a heldout item will be ranked (smaller is better). The reported

MAR averages over all users.

6.4.4 Results

We report our studies on all data. We evaluate both the exposure model alone and the

recommender model, which uses the exposure model to improve its recommendations.

Evaluating the exposure model. We first compare two different exposure models used in

this chapter: Poisson factorization (PF) and the popularity model (Pop). We use the training

set created in Section 6.4.1 to train the model (for PF, we use the validation set to monitor
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ML-1M ML-10M Yahoo-R3 ArXiv

REG SKEW REG SKEW REG SKEW REG SKEW

Pop -1.39 -2.07 -1.64 -2.76 -1.81 -2.74 -3.83 -3.95
PF -0.97 -1.51 -1.08 -2.06 -1.58 -2.35 -2.71 -2.80

Table 6.2: Heldout predictive log-likelihood for Poisson factorization (PF)
exposure model and popularity exposure model (Pop). PF outperforms Pop
across datasets. The predictive log-likelihood is generally lower on SKEW
than REG.

convergence). We randomly sample the same number of entries with aui = 0 as those with

aui = 1 and report the average heldout predictive log-likelihood in Table 6.2.

PF always outperforms Pop. Further, the predictive log-likelihood is always lower on skewed

test sets than on regular test sets. This is expected because skewed test sets follow a different

exposure distribution from the training and validation sets. This makes it harder for the

exposure model to correctly predict its values.

Evaluating the recommender model. We summarize the log probability (PLP) and mean

average rank (MAR) (described in Section 6.4.3) in Table 6.3a and Table 6.3b, respectively.

The table reports eight different model configurations based on which exposure model is

used, how the model is fit, and how predictions are formed.6

From Table 6.3, we make the following observations.

1. Poisson factorization (PF) gives better performance in terms of both PLP and MAR than

the popularity exposure model (Pop). (Pop configurations are on the top half of each table;

PF configurations are on the bottom half.)
6There are seven distinct configurations, as the ones that are trained observationally (OBS) with conditional

prediction (Cond) will not depend on the exposure model. We keep all eight configurations in Table 6.3 for easy
comparison.
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ML-1M ML-10M Yahoo-R3 ArXiv

REG SKEW REG SKEW REG SKEW REG SKEW

Pop
Cond OBS -1.50 -2.07 -1.62 -2.59 -1.58 -1.75 -1.61 -1.65

CAU -1.61 -1.95 -1.67 -1.89 -1.51 -1.56 -1.74 -1.76

Mar OBS -3.17 -4.29 -3.56 -5.63 -2.98 -3.53 -3.93 -4.21
CAU -3.21 -4.25 -3.60 -5.24 -2.84 -3.53 -3.94 -4.15

PF
Cond OBS -1.50 -2.07 -1.62 -2.59 -1.58 -1.75 -1.61 -1.65

CAU -1.48 -1.84 -1.51 -1.96 -1.49 -1.55 -1.60 -1.62

Mar OBS -2.62 -3.87 -2.69 -4.61 -2.71 -3.40 -3.05 -3.32
CAU -2.60 -3.57 -2.69 -4.42 -2.59 -3.14 -3.04 -3.33

(a) Predictive log tail probability (bigger is better)

ML-1M ML-10M Yahoo-R3 ArXiv

REG SKEW REG SKEW REG SKEW REG SKEW

Pop
Cond OBS 13.0% 25.6% 5.4% 18.3% 15.1% 36.1% 18.4% 23.6%

CAU 17.3% 27.1% 8.0% 18.4% 21.5% 31.7% 32.1% 35.7%

Mar OBS 11.8% 26.6% 5.1% 18.9% 15.6% 36.9% 22.5% 33.8%
CAU 12.3% 26.9% 5.3% 18.7% 15.8% 36.6% 30.0% 42.9%

PF
Cond OBS 13.0% 25.6% 5.4% 18.3% 15.1% 36.1% 18.4% 23.6%

CAU 16.9% 26.6% 7.8% 17.1% 16.6% 29.2% 30.7% 33.9%

Mar OBS 6.9% 19.1% 2.9% 14.2% 10.2% 28.9% 7.5% 13.0%
CAU 6.9% 18.4% 3.1% 14.2% 9.9% 25.9% 11.2% 13.1%

(b) Mean average rank (smaller is better)

Table 6.3: Predictive log tail probability (PLP) and mean average rank (MAR)
for the recommendation model on different datasets. The results are organized
by the exposure model (Pop or PF), how to fit the model (OBS or CAU), and
how to make prediction (Cond or Mar). The OBS-Cond models correspond
to the classical matrix factorization (Salakhutdinov and Mnih, 2008). The
CAU-Cond models correspond to Schnabel et al. (2016). See main text for
detailed analysis.
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2. If the test set exposure comes from the same distribution as the training set (regular split),

training the model observationally or causally does not make a difference in terms of PLP.

As for MAR, we can make the same observation (with marginal prediction), but ArXiv is

an exception.

On the other hand, if the test set exposure distribution is different (the skewed split),

training the model causally gives more robust generalization performance. Even on

ArXiv, we can see that moving from regular to skewed severely degrades the performance

of observationally-trained models, as opposed to causally-trained models, where the

degradation is comparably weaker.

Furthermore, we computed the mean average rank of heldout rare items, those only rated

by few users. We found the percentile of held-out rare items are much smaller with

causally trained models. This indicates that fitting the model causally corrects for the

popularity bias induced by the exposure process. (These numbers not reported.)

3. Marginal prediction gives the best overall performance in terms of both metrics. When

we predict whether a user will like an item, we should consider her preference as well as

how likely she is to seek out the item.

4. In Schnabel et al. (2016), the authors use a naive Bayes propensity score estimator. Our

results show that a more flexible propensity model (e.g., Poisson factorization) tends to

give better recommendation performance.

5. We notice that the results with causally-trained models (CAU) on ArXiv are less stable than

those from the other three datasets. ArXiv is more than one order of magnitude sparser

than the other datasets and less popularity-biased—even considering abstract views, most

of the papers are only viewed and downloaded by a small number of users. Therefore, the

estimated propensity score could contain extreme values, a common problem for methods
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involving propensity score (Morgan and Winship, 2014). As part of the future work, we

will investigate different propensity score smoothing techniques.

6.5 Summary

In this chapter, we develop a causal inference approach to recommendation with explicit

data. We separately model two sources of information: the exposure data (which items each

user decided to look at) and click data (which of those items each user liked). Exposure data

introduces bias when we estimate parameters of a recommendation model from the click

data, as rare items do not get as much exposure as popular ones. We use inverse propensity

weighting to correct for this bias. Through extensive empirical study, we demonstrate that this

causal approach to recommender systems leads to improved generalization to new data.

As future work, we can develop similar methodology for implicit data. The main difficulty in

implicit data is that we do not know which items a user has been exposed to. The ExpoMF

model and its variations we developed in Chapter 5 could help with that.
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Chapter 7

Conclusion

In this dissertation, we apply the tools of probabilistic latent variable models and try to

understand complex real-world data about music semantics and user behavior.

Scalable music tagging with Poisson factorization. We develop scalable solution to

automatic music tagging – inferring the semantic tags (e.g., “jazz”, “piano”, “happy”, etc.)

from the audio features. We treat music tagging as a matrix completion problem and apply

the Poisson matrix factorization model jointly on the vector-quantized audio features and

a “bag-of-tags” representation. This approach exploits the shared latent structure between

semantic tags and acoustic codewords. The experimental results on the Million Song Dataset

for both annotation and retrieval tasks demonstrate the steady improvement in performance

as more data is used. Furthermore, we can look at the highly probable tags for each learned

latent factor to understand what portion of the acoustic codeword space is being captured,

and whether it is musically coherent.

Content-aware collaborative music recommendation. We address the fundamental

cold-start problem of collaborative filtering: it cannot recommend new songs that no one
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has listened to. We train a multi-layered neural network on semantic tagging information

as a content model and use it as a prior in a collaborative filtering model. The model

is able to balance between the user feedback and the content features, allowing the data

to “speak for itself”. The proposed system is evaluated on the Million Song Dataset and

shows comparably better result than the collaborative filtering approaches, in addition to the

favorable performance in the cold-start case.

Modeling user exposure in recommendation. We develop a probabilistic matrix factoriza-

tion model ExpoMF to capture the latent user exposure (whether or not a user is exposed

to an item) in implicit feedback data. In doing so, we recover one of the most successful

state-of-the-art approaches wmf as a special case of our model (Hu et al., 2008), and provide

a plug-in method for conditioning exposure on various forms of exposure covariates (e.g.,

topics in text, venue locations). We show that our scalable inference algorithm outperforms

existing benchmarks in four different domains both with and without exposure covariates. We

further demonstrate the versatility of ExpoMF by incorporating other sources of exposure:

1) the authors of a paper; and 2) the friends in a social network.

Causal inference for recommendation. In the language of causal analysis (Imbens and

Rubin, 2015), user exposure has close connection to the assignment mechanism. We leverage

this connection for explicit data and develop a causal inference approach to recommender

systems. Observational recommendation data contains two sources of information: exposure

data (which items each user decided to look at) and click data (which of those items each user

liked). Exposure data introduces bias when we estimate parameters of a recommendation

model from the click data, as rare items do not get as much exposure as popular ones.

We use inverse propensity weighting to correct for this bias. Through extensive empirical

study, we demonstrate that this causal approach to recommender systems leads to improved

generalization to new data.
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7.1 Future directions

We present immediate next steps at the end of each chapter that can extend the work. In this

section, we present some long-term directions that can be explored.

Generic inference algorithm for probabilistic latent variables models. Exact posterior

inference is generally intractable for latent variables models. We develop specific inference

procedures to tractably analyze the large-scale data throughout this dissertation. However, this

whole process of deriving problem-specific inference algorithm can be tedious and it requires

a lot of modification once the model is revised. Black-box variational inference (Ranganath

et al., 2014; Kucukelbir et al., 2015) and stochastic gradient variational Bayes (Kingma

and Welling, 2013; Rezende et al., 2014) are two promising avenues for generic inference

algorithm that is applicable to a wide variety of models. These black-box approaches will

also enable us to build models with more complex structures beyond the simple bi-linear

factors in this dissertation without worrying (too much) about fitting the model.

With generic inference algorithm, we would like to automate the Box’s loop of model

development (Box, 1976; Blei, 2014): build the model, fit the model, criticize (evaluate)

the model, and revise the model (if necessary). Edward (Tran et al., 2016) is a software

framework that is currently under active development with this goal in mind.

Stochastic optimization for sparse user feedback data. The models presented in this

dissertation are mostly bi-linear factor models, which have limited modeling capacity. To

leverage the advances of more powerful models (e.g., deep neural networks), the convenient

closed-form coordinate updates are generally unavailable and it is normal to resort to stochastic

optimization for model inference. User feedback data, whether explicit or implicit, is often

very sparse (for implicit data, it is common to have> 99.9% of 0’s). This presents additional

challenge for stochastic optimization, as naively subsampling random user-item interaction
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will very likely over-emphasize the 0’s in the data.1 This problem is also closely related to

generic inference algorithm mentioned above, as most of these black-box approaches heavily

reply on stochastic optimization.

Gopalan and Blei (2013) address the similar sparsity issue with network data by subsampling

0’s in a biased way, down-weighting their influence, then correcting the introduced bias to

make sure the noisy stochastic objective matches the true objective in expectation. Rendle

and Freudenthaler (2014) propose to subsample 0’s more intelligently by choosing the 0’s

with bigger gradient (i.e., the negative examples which the model is more uncertain about)

so that the learning procedure can make progress more rapidly. Similar idea has also been

explored in fast inference for network data (Raftery et al., 2012).

The recent success of work embedding models (e.g., skip-gram word2vec (Mikolov et al.,

2013)) demonstrates the effectiveness of negative sampling. One can view negative sampling

as a way to battle the overwhelming negative examples in sparse data. It also has intimate

connection with the exposure and propensity weights presented in Chapter 5 and Chapter 6,

respectively: both of them are down-weighting the gradients of the negative examples in a

principled way. Exploring the deeper connection among these work and developing general-

purpose stochastic subsampling schemes for sparse user feedback data would be a valuable

future direction.

Bridging Bayesian inference and causal inference for recommender systems. Our attempt

at developing a causal inference approach to recommendation with Bayesian inference in

Chapter 6 is only a small step of bringing these two fields together. There are still some

fundamental problems that need to be theoretically justified, e.g., how to use inverse propensity

weighting with Bayesian inference. Our explanation of “seeing each data point multiple
1Training the model with stochastic gradient descent by uniformly subsampling user-item interactions will

usually lead to a weaker baseline.
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times” suffices for doing a point estimate. But more rigorous formulation is required if we

want a fully Bayesian treatment. Rubin (1978) formulate the problem of estimating the causal

effect as a Bayesian inference problem—given observed data, specify a joint model over

all the random variables (observed and latent), compute the predictive density for different

potential outcomes—and present conditions under which the inference is “valid” with only

observed data. It would be worthwhile to follow the similar procedure but we should also be

cautious about validating the necessary assumptions.
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