
Measuring and Improving the Quality of
Experience of Adaptive Rate Video

Hyunwoo Nam

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2016

c�2016

Hyunwoo Nam

All Rights Reserved

ABSTRACT

Measuring and Improving the Quality of
Experience of Adaptive Rate Video

Hyunwoo Nam

Today’s popular over-the-top (OTT) video streaming services such as YouTube, Netflix

and Hulu deliver video contents to viewers using adaptive bitrate (ABR) technologies. In

ABR streaming, a video player running on a viewer’s device adaptively changes bitrates

to match given network conditions. However, providing reliable streaming is challenging.

First, an ABR player may select an inappropriate bitrate during playback due to the lack

of direct knowledge of access networks, frequent user mobility and rapidly changing channel

conditions. Second, OTT content is delivered to viewers without any cooperation with

Internet service providers (ISPs). Last, there are no appropriate tools that evaluate the

performance of ABR streaming along with video quality of experience (QoE).

This thesis describes how to improve the video QoE of OTT video streaming services

using ABR technologies. Our analysis starts from understanding ABR heuristics. How does

ABR streaming work? What factors does an ABR player consider when switching bitrates

during a download? Then, we propose our solutions to improve existing ABR streaming

from the perspective of network operators who deliver video content through their networks

and video service providers who build ABR players running on viewers’ devices.

From the network operators’ point of view, we propose to find a better video content

server based on round trip times (RTTs) between an edge node of a wireless network and

available video content servers when a viewer requests a video. The edge node can be

an Internet Service Provider (ISP) router in a Wi-Fi network and a packet data network

gateway (P-GW) in a 4G network. During the experiments, our solution showed better

TCP performance (e.g., higher TCP throughput during playback) 146 times out of 200

experiments (73%) over Wi-Fi networks and 162 times out of 200 experiments (81%) over

3G networks. In addition, we claim that the wireless edge nodes can assist an ABR video

player in selecting the best available bitrate by controlling the available bandwidth in the

radio access network between a base station and a viewer’s device. In our Wi-Fi testbed, the

proposed solution saved up to 21% of radio bandwidth on mobile devices and enhanced the

viewing experience by reducing rebu↵erings during playback. Last, we assert that software-

defined networking (SDN) can improve video QoE by dynamically controlling routing paths

of video streaming flows based on the provisioned networking information collected from

SDN-enabled networking devices. Using an o↵-the-shelf SDN platform, we showed that

our proposed solution can reduce rebu↵erings by 50% and provide higher bitrates during a

download.

From the perspective of video service providers, higher video QoE can be achieved

by improving ABR heuristics implemented in an ABR player. To support this idea, we

investigated the role of playout bu↵er size in ABR streaming and its impact on video QoE.

Through our video QoE survey, we proved that a large bu↵er does not always outperform

a small bu↵er, especially under rapidly varying network conditions. Based on this finding,

we suggest to dynamically change the maximum bu↵er size in an ABR player depending

on the current capacity of its playout bu↵er for improving the QoE of viewers. During the

experiments, our proposed solution improved the viewing experience by o↵ering 15% higher

average played bitrate, 70% fewer bitrate changes and 50% shorter rebu↵ering duration.

Our experimental results show that even small changes of ABR heuristics and new fea-

tures of network systems can greatly a↵ect video QoE. However, it is still di�cult for video

service providers or network operators to evaluate new ABR heuristics or network system

changes due to lack of accurate QoE monitoring systems. In order to solve this issue, we

have developed YouSlow (“YouTube Too Slow!? - YouSlow”) as a new approach to monitor-

ing video QoE for the analysis of ABR performance. The lightweight web browser plug-in

and mobile application are designed to monitor various playback events (e.g., rebu↵ering

duration and frequency of bitrate changes) directly from within ABR video players and

calculate statistics along with video QoE. Using YouSlow, we investigate the impact of

the above playback events on video abandonment: about 10% of viewers abandoned the

YouTube videos when the pre-roll ads lasted for 15 seconds. Even increasing the bitrate can

annoy viewers; they prefer a high starting bitrate with no bitrate changes during playback.

Our regression analysis shows that bitrate changes do not a↵ect video abandonment signif-

icantly and the abandonment rate can be estimated accurately using the rebu↵ering ratio

and the number of rebu↵erings (R2=0.94).

The thesis includes four main contributions. First, we investigate today’s popular OTT

video streaming services (e.g., YouTube and Netflix) that use ABR streaming technologies.

Second, we propose to build QoS and QoE aware video streaming that can be implemented in

existing wireless networks (e.g., Wi-Fi, 3G and 4G) and in SDN-enabled networks. Third, we

propose to improve current ABR heuristics by dynamically changing the playout bu↵er size

under varying network conditions. Last, we designed and implemented a new monitoring

system for measuring video QoE.

Table of Contents

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Challenges . 3

1.2 Overview and main contributions . 4

I Prelude: Understanding OTT Video Streaming and ABR Streaming

Technologies 7

2 An Empirical Study of OTT Video Streaming 8

2.1 Introduction . 8

2.2 Online video delivery background . 9

2.2.1 Progressive download . 10

2.2.2 RTMP/RTSP chunk based delivery 10

2.2.3 ABR streaming . 11

2.3 Understanding ABR streaming technologies 11

2.3.1 Network tra�c behavior in ABR streaming 14

2.4 Understanding OTT video streaming platforms 16

2.4.1 An analysis of YouTube video streaming 16

2.4.2 An analysis of Netflix video streaming 20

2.4.3 Summary of key observations . 21

i

2.5 Conclusions . 22

II Intelligent Network Architecture for OTT Video Streaming 26

3 Towards Dynamic Network Condition-Aware Video Server Selection over

Wireless Networks 27

3.1 Introduction . 27

3.2 An analysis of YouTube video server selection algorithms 29

3.2.1 Requesting videos on di↵erent devices over Wi-Fi networks 30

3.2.2 Requesting videos on the same devices over Wi-Fi networks under

varying network conditions . 30

3.2.3 Requesting videos on the same devices via di↵erent wireless network

interfaces . 31

3.2.4 Requesting videos on the same devices from the same place over Wi-Fi

and 3G networks during a 24 hour period 32

3.3 YouTube often assigns video content servers with long RTTs 32

3.3.1 Finding locations of YouTube video content servers 32

3.3.2 Measuring RTTs between video content servers and viewers 33

3.3.3 Video content servers with long RTTs to viewers may degrade video

QoE . 35

3.4 RTT-based video server selection algorithms 35

3.4.1 Caching addresses of video content servers 37

3.4.2 Discovering a preferred video content server 37

3.5 Evaluation . 39

3.6 Related work . 41

3.7 Conclusions . 42

4 Towards Dynamic QoS-aware OTT Video Streaming 43

4.1 Introduction . 43

4.2 Poorly designed video players waste network bandwidth 45

4.2.1 Calculating discard ratio . 47

ii

4.2.2 Summary of key observations . 48

4.3 Improving OTT video content delivery in 4G networks 48

4.3.1 QoS in 4G networks . 49

4.3.2 Dynamic QoS-aware video content delivery in 4G networks 50

4.4 Performance evaluation of the dynamic QoS-aware video streaming platform 52

4.5 Related work . 57

4.6 Discussion . 58

4.7 Conclusions . 58

5 Towards QoE-aware Video Streaming using SDN 60

5.1 Introduction . 60

5.2 Problems on existing OTT video delivery system 62

5.3 QoE-aware video streaming using SDN . 62

5.3.1 Application-level video QoE metrics 64

5.3.2 Pinpointing a bottleneck using SDN 64

5.3.3 Dynamic network condition-aware path optimization with SDN . . . 65

5.4 Implementation . 67

5.5 Evaluation . 69

5.6 Related work . 71

5.7 Discussion . 72

5.8 Conclusions . 73

III ABR Streaming Heuristics 76

6 An Empirical Evaluation of Playout Bu↵er Dimensioning in ABR Stream-

ing 77

6.1 Introduction . 77

6.2 Motivation . 78

6.3 Analysis of the role of playout bu↵er size in ABR streaming 80

6.3.1 Testbed setups . 81

6.3.2 Analysis of experimental results . 83

iii

6.4 The impact of playout bu↵er size on video QoE in ABR streaming 92

6.4.1 Online crowdsourcing platform . 94

6.4.2 QoE survey results . 97

6.4.3 Summary of key observations . 99

6.5 Adaptive playout bu↵er size . 101

6.5.1 Evaluation . 103

6.6 Related work . 107

6.7 Conclusions . 107

IV Video QoE Monitoring Tool 110

7 QoE Matters More Than QoS:

Why People Stop Watching Cat Videos 111

7.1 Introduction . 111

7.2 YouSlow overview . 113

7.2.1 Implementation . 113

7.2.2 What factors can YouSlow measure? 115

7.3 YouTube measurements . 116

7.4 Video QoE analysis via YouSlow . 124

7.4.1 QoS and QoE methods for an analysis of video QoE 124

7.4.2 QoE analysis report . 126

7.4.3 Regression analysis . 139

7.4.4 Summary of key observations . 142

7.5 YouSlow challenges . 143

7.6 Future work . 144

7.7 Related work . 145

7.8 Conclusions . 146

iv

V Conclusions 148

VI Glossary 151

VII Bibliography 156

v

List of Figures

2.1 Finite state machine (FSM) of state change and bitrate switching behavior

of Microsoft’s SS players . 13

2.2 YouTube video streaming platform . 15

2.3 A testbed to analyze OTT video streaming services on mobile devices in

wireless networks . 17

2.4 Java-based VSPA tool . 18

2.5 TCP throughput while playing the same YouTube video on an iPad 3 and a

Nexus S 4G over Wi-Fi networks . 20

2.6 TCP sequence numbers with Netflix video trace over 4G networks 22

3.1 Video content server selection in OTT video streaming 29

3.2 ALTO-guidance within CDN request routing (DNS example) 36

3.3 Selecting a preferred video content server at a corresponding edge node . . 38

3.4 Monitoring downloaded video bytes while playing a sample YouTube video

on two PCs over a Wi-Fi network in the HTTP proxy server-based testbed

(one download) . 40

3.5 CDFs of video packet inter-arrival times measured while downloading a video

over a 3G network in the HTTP proxy server-based testbed 41

4.1 Video packet discard occurs when a timeout occurs during a download . . . 46

4.2 RTT vs. discard ratio (%) . 49

4.3 The impact of controlling TCP throughput on video QoE 50

4.4 P-GW selectively drops the potential wasted video packets 51

vi

4.5 Testbed setups for evaluation . 52

4.6 TCP throughput while playing a YouTube video on iPad 3 55

5.1 Video QoE-aware streaming platform using SDN 61

5.2 A simplified flowchart of a decision tree . 66

5.3 Junos Space architecture . 67

5.4 Implementing a testbed using Junos Space and WAN routers of Juniper Net-

works . 68

5.5 Available bandwidth capacity on LSPs in Scenario 1 70

5.6 Monitoring TCP throughput and period of bad viewing experience in non-

ABR streaming . 74

5.7 Monitoring TCP throughput and period of bad viewing experience in ABR

streaming . 75

6.1 Video bitrate changes during playback under fluctuating network conditions 79

6.2 Monitoring a playout bu↵er level and frame drop ratio under changing net-

work condition with large bandwidth variation 82

6.3 Monitoring selected bitrates and remaining bu↵er levels under High (10 s) -

Low (10 s) . 86

6.4 Monitoring selected bitrates and remaining bu↵er levels under High (30 s) -

Low (30 s) . 89

6.5 Monitoring selected bitrates and remaining bu↵er levels under High (20 s) -

Low (50 s) . 91

6.6 Monitoring selected bitrates and remaining bu↵er levels under Down and Up 93

6.7 Video sources for QoE experiments: selected bitrates with BS = 20 s and

BS = 100 s . 96

6.8 QoE survey results - MOS and preference in each set 98

6.9 Adaptive playout bu↵er size - dynamically switching between small and large

bu↵ers during playback . 102

6.10 Playback status and played bitrate changes depending on maximum playout

bu↵er size . 104

vii

6.11 Testbed setups for evaluation . 105

7.1 Chrome plug-in for YouTube analysis . 114

7.2 Start-up delay caused by initial bu↵ering and pre-roll ad 118

7.3 Video watching duration and video loaded fraction 119

7.4 Probability of number of bitrate changes . 120

7.5 Comparison of YouTube played bitrates . 122

7.6 Probability of total number of rebu↵erings 123

7.7 Cumulative probability of total rebu↵ering duration 123

7.8 Probability of total number of times a viewer moves a scrollbar during playback124

7.9 Abandonment rate (%) for unimpaired videos as video length increases . . . 127

7.10 Number of viewers (%) for unimpaired videos as playback ratio increases . . 128

7.11 Number of viewers (%) for unimpaired videos (> 5minutes) as playback

length increases . 128

7.12 Number of viewers (%) during pre-roll ads as ad duration increases 129

7.13 Two rebu↵ering (RB) intervals with three rebu↵erings 130

7.14 Plotting abandonments for videos with three rebu↵erings 130

7.15 Abandonment rates (%) for ad-free, non-initial bu↵ered and rebu↵ered videos

- the same rebu↵ering duration but with di↵erent playback durations 132

7.16 The impact of rebu↵ering on abandonment rates (%) for ad-free, non-initial

bu↵ered and rebu↵ered videos . 132

7.17 The same total rebu↵ering (RB) duration with di↵erent number of rebu↵erings133

7.18 Comparison of abandonment rates between a single rebu↵ering event and

multiple rebu↵erings for ad-free, non-initial bu↵ered and rebu↵ered videos . 134

7.19 Cumulative probability of number of abandonments for ad-free, initial bu↵ered

and rebu↵ered videos with di↵erent rebu↵ering start times 135

7.20 The impact of bitrate change on abandonment rates (%) for ad-free, non-

initial bu↵ered and non-rebu↵ered videos 136

7.21 The impact of positive and negative bitrate changes on abandonment rates

(%) for ad-free, non-initial bu↵ered and non-rebu↵ered videos 137

7.22 Fitted lines for multiple linear regression analysis 143

viii

List of Tables

2.1 iOS and Android mobile devices used for measurements 17

2.2 Analysis of YouTube and Netflix video streaming on mobile devices 23

2.3 ABR technologies comparison chart . 24

2.4 The State of MPEG-DASH 2016 . 25

3.1 A hundred YouTube videos were requested over Wi-Fi and 3G networks

during busy hours (13:00 - 15:00 and 19:00 - 20:00 EST) 34

4.1 Average and standard deviation of discard ratio (%) while playing YouTube

and Netflix videos on mobile devices over Wi-Fi, 3G and 4G networks under

fluctuating network conditions . 48

4.2 Discard ratio (%) on average while playing YouTube and Netflix videos on

mobile devices over Wi-Fi networks under fluctuating network conditions . 56

5.1 Required TCP throughput for CSPF-based path selection algorithms 65

5.2 ABR video bitrates chosen as fraction of time and period of bad viewing

experience while playing a video with 100minutes of length 71

6.1 Video bitrate settings - Big Buck Bunny . 81

6.2 Distribution (%) of played bitrates during playback 84

6.3 Video segment downloading statistics . 85

6.4 Compare average elapsed times (second) from 230 kb/s to 1,427 kb/s in Exp. 2 90

6.5 Video downloading statistics for QoE experiments 95

6.6 MOS for QoE experiments . 95

ix

6.7 Overview of playout bu↵er size experiments 100

6.8 Bu↵er thresholds used in our testbed . 103

6.9 Experimental results in our testbed . 109

7.1 YouSlow dataset . 117

7.2 YouTube bitrate setting . 120

7.3 YouTube played bitrates (%) . 120

7.4 Number of samples for rebu↵ering ratio analysis 133

7.5 Number of samples for bitrate change ratio analysis 136

7.6 The impact of a single bitrate (BR) change on video loaded fraction for ad-

free, non-initial bu↵ered and non-rebu↵ered videos with di↵erent starting

bitrates and total playback lengths . 138

7.7 The impact of bitrate (BR) change on video loaded fraction for ad-free, non-

initial bu↵ered and non-rebu↵ered videos with constant bitrate or multiple

bitrate changes . 139

7.8 Video playback statistics for regression analysis 140

7.9 Multiple linear regression analysis on abandonment rate using the number of

rebu↵erings (RBs) and bitrate (BR) changes 140

7.10 Multiple linear regression analysis on abandonment rate using the number of

rebu↵erings (RBs) and rebu↵ering / bitrate (BR) change ratios 142

x

Acknowledgments

First and foremost, I would like to express my deepest gratitude to my advisor, Prof.

Henning Schulzrinne for supporting me for the past five years. Under his insightful guidance,

I learned how to find problems systematically, pay attention to detail and be practical in

all the time of research. I could not ask for a better advisor in my Ph.D. journey.

I would like to thank my dissertation defense committee members: Prof. Shih-Fu Chang,

Prof. Vishal Misra, Prof. Gil Zussman and Dr. Doru Calin. Their criticisms and suggestions

for my Ph.D. thesis improved my research. I look forward to more of their insights as I

continue my research in the future.

I’m very glad to have worked with wonderful researchers from Bell Labs: Dr. Doru Calin

and Bongho Kim. I worked with them closely and we published many papers together during

my past internships at Bell Labs. Without their valuable research experiences, I would not

have been able to thrive in my doctoral program and balance my research.

I would also like to thank Hwa-jung Han and Jung Woo Lee from Verizon. They spon-

sored a part of my research and jump started my video streaming research with insightful

advices when I first began.

I want to thank all the members of the IRT group and my colleagues: Jae Woo Lee

(his enthusiasm and love for teaching is contagious), Se Gi Hong (I appreciate his career

advices and tips in life as well), Wonsang Song (helped me a lot during the early years of my

research), Jong Yul Kim (the most nice and friendly person I’ve worked with), Kyung-Wook

Hwang (helped me a lot during my Ph.D. years at Columbia), Kyung Hwa Kim (this guy

is the one I spent most of my time with for the past five years and I was very happy to be a

part of his wedding) and Jan Janak (the smartest and nicest guy, who I would go to when

I had questions). It would have been impossible for me to finish my dissertation without

them. Thank you.

xi

I would also like to thank my lovely cat, Benjamin, previously known as Captain Cat

during his shelter days. He was my first foster cat three years ago. Now weighting 18

pounds, he is my forever roommate and a professional couch potato.

I sincerely thank Jongmee Kim for sticking by my side. She is the only person who

enjoys and appreciates my sense of humor. With Benjamin, she was always there when I

needed. None of these mean much without her.

Last but not least, I especially want to thank my family, my mother Mija Shon, my

father Myung Bong Nam, my sister Hyuna Nam. They always told me, “take your time

as you need”. Sorry, it took a while. This thesis is possible because of their support and

patience.

xii

To my mother Mija Shon and my father Myung Bong Nam.

xiii

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Over-the-top (OTT) video refers to delivery of audio and video over the Internet with-

out any involvement of network operators [1; 2]. Example applications include Netflix,

YouTube, HBO Go and Hulu, which can be distinguished from other OTT services such as

Skype or Facetime for interactive voice and video calls, on the one hand, and WhatsApp,

Facebook messenger, KakaoTalk or WeChat for asynchronous instant messages on mobile

devices. Such OTT video streaming platform contrasts with the traditional billing models

- purchasing media services from an Internet service provider (ISP) such as Internet Pro-

tocol television (IPTV) or Pay-TV video on demand (VOD). The ISPs deliver the video

in best-e↵ort mode, thus they are not responsible for reliable delivery and viewing quality

while a video is being played [3].

The popularity of OTT video streaming is growing steadily. According to recent re-

ports [4; 5; 6; 7], video streaming tra�c accounts for more than 50% of total online data

consumption in 2014, and it is predicted to reach 66% by the end of 2015. The growth of

video streaming is boosted by the increasing number of viewers on mobile devices such as

smartphones and tablets. For example, 89 million U.S. viewers were watching online videos

on their mobile devices in 2014. In 2016, the number is predicted to reach 110 million, and

the total amount of tra�c is expected to exceed 50% of total mobile data consumption.

There are a number of video streaming protocols [8]. Real-time Transport Protocol

(RTP) [9] is used for transfer of streaming media over IP networks. The Real Time Stream-

ing Protocol (RTSP) [10] is designed to control media sessions between clients and servers.

CHAPTER 1. INTRODUCTION 2

Adobe’s Real Time Messaging Protocol (RTMP) [11] is a network protocol for delivering live

and on-demand streaming to Adobe Flash applications. Microsoft Media Server (MMS) [12]

is a Microsoft’s proprietary network streaming protocol to transfer unicast data in Windows

media services. Today’s OTT video service providers stream their videos to viewers over

HTTP or HTTPS. Such HTTP-based video streaming generally uses two di↵erent technolo-

gies: progressive download and adaptive bitrate (ABR1). In progressive download, a video

server streams only at a single bitrate [14] and viewers must watch the same video bitrate

regardless of their local network conditions. Therefore, it is possible for a viewer to fre-

quently experience rebu↵erings (i.e., a video is paused and then resumes playing repeatedly)

when the bitrate requires higher network bandwidth than what a network can handle. In

order to resolve the problem, several ABR technologies have been introduced, such as Apple

HTTP Live Streaming (HLS) [15], Microsoft IIS Smooth Streaming (SS) [16], Adobe HTTP

Dynamic Streaming (HDS) [17] and Dynamic Adaptive Streaming over HTTP (DASH) [18].

In ABR streaming, a video server contains several video files encoded in segments at mul-

tiple bitrates. The ABR player running on the viewer’s device adapts the best available

bitrate based on various factors such as estimated bandwidth in the network or hardware

specifications (e.g., smartphones or desktops) of the viewer’s device.

This thesis explores today’s popular OTT streaming services. How do they deliver video

content to the viewers? What factors are taken into account when switching bitrates and

when does an ABR player change bitrates? To achieve higher Quality of Service (QoS) and

Quality of Experience (QoE) of existing OTT video streaming, we propose to dynamically

select the best video content servers and control streaming flows based on changing network

conditions in mobile or software-defined networking (SDN) enabled networks. We suggest

that ABR players should adjust their playout bu↵er size depending on the remaining bu↵er

occupancy during a download. In addition, we designed and implemented a new video

monitoring system called YouSlow (“YouTube Too Slow!? - YouSlow”) that can evaluate

various QoE metrics while a video is being delivered to the viewer.

1The term of ABR used in this thesis denotes an adaptive bitrate streaming technology. It is di↵erent

from Available Bit Rate (ABR) services in Asynchronous Transfer Mode (ATM) networks [13], where ATM

switches use local network information to dynamically control the allowable rates among users in the network.

CHAPTER 1. INTRODUCTION 3

1.1 Challenges

In spite of the increasing popularity of VOD viewing and advanced ABR streaming technolo-

gies, we are still faced with several challenges when providing reliable streaming services:

The first challenge is that OTT video service providers stream their videos without any

cooperation with network operators. In order to provide quality of service (QoS) for video

streaming, however, network operators need to understand how video content is delivered

through their networks. For instance, they can apply di↵erent networking strategies (e.g.,

dynamic resource allocation in radio access networks and di↵erent queuing management on

routers) depending on various video bitrates and ABR heuristics that are used by di↵erent

OTT streaming services.

The second challenge from the perspective of video service providers is the di�culty of

building a better ABR media player without an in-depth analysis of ABR heuristics. The

performance of ABR streaming entirely relies on the ABR heuristics implemented in the

ABR player. Thus, to improve ABR streaming, we need to analyze what kind of factors

(e.g., bitrate, playout bu↵er status and screen size of a viewer’s device) are used in the ABR

heuristics, and understand how the factors a↵ect bitrate switching during a download. We

also note that an ABR player is designed to estimate available downloading throughput to

select the best bitrate while a video is being delivered to the viewer. Because the player

has no access to transit or last mile networks of viewers, it is necessary to estimate network

conditions accurately to find the right switching point among bitrates during playback.

The last challenge is the lack of appropriate monitoring and evaluation tools that can

analyze the performance of ABR streaming. Without knowing the impact of ABR heuristic

or network system changes on video quality of experience (QoE), it is di�cult for network

operators and video service providers to build better video streaming platform. Some

researchers [19; 20; 21] have used QoS metrics (e.g., monitoring throughput, goodput, packet

delay and jitter from network middle-boxes between viewers’ devices and video servers) to

estimate QoE of viewers. However, these metrics are typically used to pinpoint network

impairments, and do not accurately reflect the viewer’s watching experience.

CHAPTER 1. INTRODUCTION 4

1.2 Overview and main contributions

This thesis consists of four parts. Part I focuses on investigating OTT video streaming

platform using ABR technologies. We analyze how they deliver video contents to viewers

and how ABR streaming works. Hence, the analysis can be regarded as a prelude to the

following parts. Parts II and III, which consist of Chapters 3 to 6, explain our solutions

on improving current ABR streaming from the perspective of network operators and video

service providers. Part IV introduces our new video monitoring system that analyzes various

QoE metrics while a video is being delivered to the viewer. We briefly describe the main

contribution of each chapter:

Chapter 2 of Part I focuses on the analysis of ABR streaming [22; 23]. For an empirical

study, we analyze ABR streaming of YouTube and Netflix while playing the videos on iOS

and Android mobile devices via di↵erent access networks, namely Wi-Fi, 3G, and 4G. Next,

we investigate ABR heuristics that are used in bitrate switching during playback. We first

start from comparing two HTTP-based video streaming technologies: progressive download

and ABR. Based on the study of popular ABR technologies (Apple’s HLS, Microsoft’s SS,

and 3GPP/MPEG DASH), we found that the bitrate switching decision can vary depending

on current playout bu↵er level, network conditions and hardware specification of a viewer’s

device.

Chapter 3 of Part II presents a dynamic network condition-aware video content server

selection algorithm [24]. Our analysis shows that the YouTube delivery cloud typically

assigns a video content server in content delivery networks (CDNs) that is geographically

close to a viewer. However, the network conditions between a viewer and a video content

server can be unstable even if the video content server is located near the viewer. In order

to solve this problem, we propose to discover a video content server that o↵ers better

network conditions between a corresponding edge node of a wireless network and video

content servers. The edge node can be an ISP router in a Wi-Fi network, a Radio Network

Controller (RNC) node in a 3G network or a Packet Data Network Gateway (P-GW) in a

4G network. In our proposed architecture, an edge node selects a preferred video content

server based on measured round trip times (RTTs) when a viewer requests a video. Our

evaluation proves that a video content server chosen by our RTT-based video content server

CHAPTER 1. INTRODUCTION 5

selection algorithm typically provides more reliable viewing experiences during playback,

with higher TCP performance than location-based algorithms.

Chapter 4 introduces QoS-aware video streaming in wireless networks [23]. While un-

derstanding ABR streaming in Part I, we found that an ABR player may discard a large

part of video content even though it is successfully delivered to a viewer. This unwanted

behavior often occurs when the player changes the bitrates under fluctuating network con-

ditions and the playout bu↵er is full while downloading a video. Some of the measurements

show that the discarded data may exceed 35% of the total video content. In order to reduce

this waste of network resources and improve the QoE for viewers, our solution suggests

a selective packet discarding mechanism that can be placed in a wireless edge node (e.g.,

local ISP routers or P-GWs). In addition, our QoS-aware rules assist the ABR player in

selecting an appropriate bitrate by dynamically controlling the available bandwidth of the

streaming flow under changing network conditions. In our experimental setup, the pro-

posed platform shows up to 20% of improvement in saving down-link bandwidth as well as

reducing rebu↵ering events for improved QoE.

Chapter 5 introduces QoE-aware video streaming using software-defined networking

(SDN) [25]. To provide smooth streaming under congested network conditions, an ABR

player reduces the load by downgrading to lower bitrates. However, the low quality of

video can also interrupt viewing experience during playback. To resolve the root causes of

congestion problems and improve QoE, we propose to leverage an SDN platform in ABR

streaming. Our proposed SDN application monitors the network conditions of streaming

flows in real time and dynamically changes routing paths in wide area networks (WANs)

using multi-protocol label switching (MPLS) tra�c engineering (TE). We use an o↵-the-

shelf SDN platform (Juniper network’s Junos Space [26]) to show the feasibility of our

approach. In our testbed setup, the SDN controller automatically selects better routing

paths under congested networks to provide smoother streaming which leads to more than

50% reduction in rebu↵ering events.

Chapter 6 of Part III analyzes the impact of playout bu↵er size in ABR streaming on

video QoE. Through Part I, we showed that playout bu↵er size plays a key role in bitrate

switching during playback. In Chapter 6, we demonstrate that a large bu↵er typically

CHAPTER 1. INTRODUCTION 6

causes fewer bitrate changes and rebu↵erings compared to a small bu↵er. However, we also

observe that a small bu↵er may achieve higher QoE by providing high bitrate shortly than

a large bu↵er, especially under fast varying network conditions. To verify this, we conduct

subjective experiments collecting data from more than 200 participants using an online

crowdsourcing platform. Based on these findings, we propose that ABR players adaptively

change their maximum playout bu↵er size depending on the remaining bu↵er occupancy

during a download. In our testbed, we observe that an ABR player that dynamically

switches between small and large bu↵ers can reduce the number of bitrate changes up

to 70%, rebu↵ering duration up to 50% and increase average played bitrate up to 15%

compared to players with a fixed bu↵er size.

Chapter 7 of Part IV introduces YouSlow [27; 28; 29], an application that can detect var-

ious playback events (e.g., starting bitrate, start-up delay, rebu↵erings and bitrate changes)

directly from within video players embedded in web browsers or mobile applications. Using

YouSlow, we analyzed more than 1,400,000 YouTube views from more than 110 countries.

We investigate the impact of the above playback events on video abandonment: about 10%

of viewers abandoned the videos when the pre-roll ads lasted for 15 seconds in YouTube.

More viewer abandoned the videos when they su↵ered from multiple rebu↵erings than a sin-

gle rebu↵ering event, even if the total rebu↵ering duration is the same. Our analysis shows

that viewers prefer constant bitrate to increasing bitrate during playback. We show that

tracking rebu↵ering ratio during playback is useful to quantify abandonment rates for short

videos. Our regression analysis using the rebu↵ering ratio and the number of rebu↵erings

achieves an R-squared value of 0.94 in predicting the video abandonment rate in YouTube.

7

Part I

Prelude: Understanding OTT

Video Streaming and ABR

Streaming Technologies

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 8

Chapter 2

An Empirical Study of OTT Video

Streaming

2.1 Introduction

Today’s popular video streaming services (e.g., Netflix, Hulu and YouTube) stream video

contents to viewers over HTTP. To provide smooth streaming, they use ABR technolo-

gies such as Apple HTTP Live Streaming (HLS) [15], Microsoft IIS Smooth Streaming

(SS) [16], Adobe HTTP Dynamic Streaming [17] and Dynamic Adaptive Streaming over

HTTP (DASH) [18]. In ABR streaming, a video player is designed to dynamically adjust the

video bitrate based on estimated network conditions, bu↵er occupancy and hardware speci-

fications (e.g., smartphones vs. desktops) of viewers’ devices. Therefore, depending on how

appropriately the player selects the best available bitrate during playback, user-perceived

video quality can vary. As an example, a viewer may experience frequent rebu↵erings when

the player requests a higher bitrate than what is actually available in the network, or there

is also a possibility of being stuck with a low bitrate throughout the entire playback if the

network capacity is underestimated by the player. Thus, analyzing ABR technologies is the

first step to understanding OTT video streaming platforms.

This chapter focuses on the analysis of OTT video streaming platforms and ABR tech-

nologies. We make two contributions: First, we analyze ABR technologies and its funda-

mental heuristics. Our analysis starts from understanding ABR technologies compared to

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 9

progressive download. Then, we examine the existing ABR heuristics to answer the follow-

ing questions: How does ABR streaming work? When does an ABR player change bitrates

during a download? What factors are taken into account for a bitrate switching? Sec-

ond, for an empirical analysis, we investigate today’s two popular video streaming services,

namely YouTube and Netflix, while playing the videos on mobile devices (iOS and Android)

using their own applications (not by a web browser) over wireless networks (Wi-Fi, 3G and

4G) under varying network conditions. Our experimental results show that an ABR player

downloads video content by sending a series of HTTP GET messages during playback, and

the downloading tra�c behavior varies depending on the operating system (OS), the hard-

ware performance of a viewer’s device and the network condition. Compared to Android,

for example, YouTube video player for iOS sends more HTTP GET messages via new TCP

connections to download duplicate video content for a possible later re-play by the viewer.

We will explain the details in Section 2.4.

The remainder of the chapter is organized as follows. We briefly describe online video

delivery background in Section 2.2. In Section 2.3, we introduce ABR streaming technologies

and its heuristics. In Section 2.4, we analyze the YouTube and Netflix video streaming

platforms. We summarize our insights in Section 2.5.

2.2 Online video delivery background

During the early days of video streaming, proprietary protocols such as Microsoft Media

Server (MMS) [12] and Real Player’s Progressive Networks (PNM/PNA) [30] were developed

to stream video and audio data. These non-open protocols have largely been replaced by the

open standard protocols such as Real-time Transport Protocol (RTP) [9] and Real Time

Streaming Protocol (RTSP) [10]. RTP is a real-time end-to-end transport protocol that

transfers the actual video and audio data over multicast or unicast network services. It

typically runs on top of IP and UDP. RTSP is an application level network protocol to

manage multiple end-to-end media sessions, and allows a viewer to control the delivery of

streaming from a media server such as play, pause and fast forwarding during playback.

The main problem of using RTP is that its payload format is not codec agnostic. This

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 10

means that a new media codec cannot be easily supported in RTP unless a new playload

format standard is agreed upon [31]. In addition, firewalls and network address translation

(NAT) routers would block such UDP-based video delivery. Due to these problems, most

of today’s OTT streaming services have adopted HTTP-based streaming technologies such

as progressive download and ABR streaming. Below, we briefly describe three popular

streaming technologies; progressive download, RTMP/RTSP streaming and ABR streaming.

2.2.1 Progressive download

In progressive download, a video is delivered by a regular HTTP web server over HTTP

rather than a streaming server. This mechanism is easy to setup and cost-e↵ective since it

does not require any special streaming servers. When there is a video request, an HTTP

web server pushes the video content as quickly as it can. The playback can start as soon as

enough content has been downloaded and fast forwarding (skipping ahead) is only possible

for the downloaded content. There is a security concern since the player caches the video

content on the viewer’s device and it is easy to copy. To prevent this, Digital Rights

Management (DRM) can be used to protect the audio and video content [32]. Moreover,

progressive download provides no quality adjustment; no matter what download speed is

experienced and what devices are used, the player downloads the same quality of the video

file.

2.2.2 RTMP/RTSP chunk based delivery

This content delivery mechanism uses RTMP (Real Time Messaging Protocol) [33] and

RTSP [10] for streaming video and audio data between Flash servers and Flash players. A

special media server such as Flash Media Server [34] and Wowza [35] streams a series of

video chunks and a Flash player consumes the content instantly without any local caching.

The streaming server using dynamic RTMP [36] contains multiple bitrates for a single video

content and allows the player to automatically change the bitrates during playback based on

the network conditions. However, RTMP/RTSP streaming requires a special Flash-based

media server and the licensing cost is expensive.

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 11

2.2.3 ABR streaming

Today’s popular video streaming services such as YouTube, Netflix, HBO GO and BBC

prefer ABR streaming technologies, having advantages of automatic quality switching and

ease of delivery over HTTP. There are four popular ABR technologies: Apple’s HLS [37],

Microsoft’s SS [16], Adobe’s HDS [17] and 3GPP/MPEG DASH [38]. In ABR streaming, a

video server contains multiple bitrates encoded for a single video content and each bitrate

file is chopped into small segments. A segment size is measured in seconds (not bytes) and

its length is typically between two and ten seconds. A manifest file contains the bitrate

information such as the index of segments and their location. Before playback, an ABR

player downloads the manifest file and it dynamically adapts the bitrate based on CPU

availability and network conditions while a video is being played. In ABR streaming,

viewers need to install various plug-ins depending on di↵erent types of devices (mobile

and desktop), OSs and ABR streaming technologies. For example, Adobe’s HDS requires

Flash plug-ins. For Microsoft’s SS, viewers need to install the Silverlight extensions in their

web browsers. Apple’s HLS supports all Apple’s devices but may not properly work on

old Android devices. Because of this, today’s OTT streaming services such as YouTube

and Netflix prefer HTML5 video that most web browsers (Safari 3+, Internet Explorer 9+,

Firefox 3.5+, Chrome 3+ and Opera 10.5+) support (Table 2.4). HTML5 enables MPEG

DASH native playback using Media Source Extensions (MSE) that allows JavaScript to

deliver media streams for playback within web browsers [39]. Using MSE, viewers can

dynamically change for a media stream without using plug-ins.

2.3 Understanding ABR streaming technologies

To better comprehend ABR streaming, we need to first understand how the video encoding

for ABR streaming di↵ers from the encoding for progressive download. To decode a video

properly, a player needs to download an I-frame (intra frame), also known as a key frame,

while a video is being played. In progressive download, an MPEG I-frame is inserted period-

ically (e.g., every ten seconds) into a single video file. In ABR streaming, a source video is

encoded into multiple di↵erent files, each at di↵erent bitrates, and each such file is divided

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 12

into a series of small segments. Each segment contains at least one key frame, preferably

at the beginning of the segment. Depending on encoding tools, a single segment may have

multiple key frames. For example, according to the technical note for Apple’s HLS [40], a

segment size is ten seconds and the key frame interval is three seconds.

A segment size is generally two and ten seconds long. Smaller segment sizes lead to

decreased encoding e�ciency in terms of GOP (group-of-pictures) frame size. Because of

the higher number of segments, more I-frames are needed in the final encoding. On the

other hand, longer segment sizes may cause frequent rebu↵erings under unreliable network

conditions. For example, let’s suppose that an ABR player is downloading a segment and

the network is congested. The segment size is ten seconds and uses a single key frame. We

note that an ABR player can switch bitrate only at an I frame. In this case, the player

is unable to select lower bitrates until the requested segment has been downloaded in full.

If the playout bu↵er is nearly empty, this may cause frequent rebu↵erings in the middle

of the download. To prevent this, the player may use a timer; when the timer expires, it

abandons current downloading segment and requests a low-quality segment. But, this may

cause frequent bitrate changes if the timer length is too short. If the segment size is shorter

(e.g., two or five seconds instead of ten seconds), the player can handle this situation better

by switching to lower bitrates more quickly.

In ABR streaming, a player uses a set of heuristics to find the best available bitrate

during playback. Based on our own analysis and technical overview of ABR streaming [41;

15], the following inputs are generally considered in the bitrate switching:

• real-time available network bandwidth and amount of video remaining in the playout

bu↵er during playback;

• screen resolution and video rendering capabilities of viewers’ devices;

• frame rate and viewers’ interactive actions (e.g., resizing the browser window) during

playback.

A player may experience frequent frame drops when a system is running multitasking

that requires significant RAM and CPU usage. When a large number of frames is dropped,

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 13

[(
)
< +,-	,/	01234]	 	

*(
)
≥ 9::;/ +

=>?

@

(7A

(
)
< 01234 	|	[7(]

|	[B7				&	(
)
< +,-]

: 3 ← F32

[B7 > (7
AHI

&	(
)
> 9::;/]

: 3 ← 3 + 1

[(
)
< +,-]

|[K3F;LMN]

: 3 ← 3 − 1

(
)
= 0

(
)
> 0

_

*	It	depends	on	ABR	configuration

Rebuffering Buffering Steady

Figure 2.1: Finite state machine (FSM) of state change and bitrate switching behavior of

Microsoft’s SS players

the player flushes its bu↵er and re-downloads the discarded segments at lower encoding

rates to provide a good video quality.

While a video is being played, the state of video player can be Buffering, Steady or

Rebuffering. We define Buffering state when an ABR player aggressively downloads

video content into its playout bu↵er. The player requests the next segment right after

it completely downloads the current segment (back-to-back HTTP requests) so that the

bu↵er can be filled as quickly as possible. When the playout bu↵er is above a configured

threshold, the player goes into Steady state. Instead of increasing the playout bu↵er level by

downloading the segments back-to-back, the player in Steady state tries to keep the bu↵er

full. In order to avoid bu↵er overflow, it requests a segment every segment duration. When

the playout bu↵er is running low, the state will switch to Buffering again. Rebuffering

is referred as bu↵er stalling or video bu↵ering. It occurs when there is no video content

available in the playout bu↵er during playback.

We examine the source code of the Silverlight extension, an ABR player for Microsoft’s

SS [42], and summarize the ABR player’s state change and bitrate switching behaviors in

Figure 2.1. The parameters are described as follows:

• B
t

represents how much video content is currently left in the playout bu↵er (in sec-

onds).

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 14

• BR
i

represents the video bitrate (in kb/s) selected by a player during playback, where

BR
min

 BR
i

 BR
max

. BR
min

indicates the minimum bitrate and BR
max

presents the

maximum bitrate among the available bitrates of the video.

• Panic, Low and Upper: An ABR player takes into account three pre-defined thresh-

olds when it changes state (Buffering or Steady) and picks the best available bi-

trate during playback. For example, when a bu↵er level becomes lower than the Low

threshold, the bitrate will be downgraded by one step (BR
i

‹ BR
i-1

). When the bu↵er

level is lower than the Panic threshold, it directly drops down to the lowest bitrate

(BR
i

‹ BR
min

). When the bu↵er level is higher than the Upper threshold and the mea-

sured network throughput is larger than the next bitrate, then the current bitrate

will be increased by one step (BR
i

‹ BR
i+1

). The bitrate can be increased or decreased

by multiple steps at a time (e.g., two or three steps) when the available bandwidth

is changing rapidly. Before the player attempts to increase the bitrate, it waits for

a certain amount of time such as three and five seconds to prevent frequent bitrate

changes. All these settings depend on the ABR configuration.

• TimeOut: The timer is set to estimate network conditions. It activates when the

elapsed time for downloading a requested segment is longer than the expected time.

In such case, the bitrate is decreased for the next request.

• DR denotes current downloading data rate measured by a bandwidth estimator in an

ABR player. DR– indicates that the available bandwidth in the network is decreasing.

The time period required for the estimator to analyze the network conditions depends

on the ABR configuration. For example, the estimator measures the average download

throughput over the most recent three or five segments.

2.3.1 Network tra�c behavior in ABR streaming

Based on extensive measurements, we first describe how videos are delivered to players

using ABR streaming. During our experiments, we used the YouTube mobile application on

various iOS and Android mobile devices over Wi-Fi networks. Figure 2.2 shows a simplified

video tra�c flow diagram between a video player and a YouTube’s video content server.

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 15

Viewer Video content serverImage server

Prior to playing
video

Play video

.

.

.

.

.

.

Web server

(e.g., www.youtube.com)

(e.g., www.youtube.com)
Web serverWeb server
(e.g., www.youtube.com)(e.g., www.youtube.com)

Figure 2.2: YouTube video streaming platform

Before a player connects to a video content server, the player sends an HTTP GET message

(step 1) to the web server that hosts the video streaming domain (e.g., www.youtube.com).

The GET URL includes the unique identification of the requested video, the selected bitrate

and user-agent information such as the OS and the video player version running on the

device. Then the server responds to the player with the IP addresses of a selected video

content server that contains the video content and a web content server where the player will

download background images from. The response message also includes a video manifest file

that contains the video information such as available bitrates and file names (step 2). The

player transmits a set of HTTP GET messages (step 3 and 4) in parallel with downloading

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 16

background images (step 5 and 6). The majority of these images consist of web page images

and key frames of other videos related to the requested video. When the viewer clicks the

player’s play button, the player starts downloading the video content from the assigned video

content server by sending an HTTP GET message (step 7, TCP source portA). Then, the

content server streams the video with the requested bitrate. If the connected video content

server does not contain the requested video, it responds with the HTTP 302 message to

redirect the request to other available servers. When the player changes the bitrate, it

sends a new HTTP GET message with a di↵erent TCP source port (step 10 and 13, TCP

source ports B andC). The player does not change the TCP destination port (80). We note

that the player does not establish multiple TCP connections at the same time to download

the video content in parallel. Rather, it first terminates the opened TCP connection before

establishing a new connection. We will analyze the downloading tra�c behavior on di↵erent

devices over di↵erent networks in the following section.

2.4 Understanding OTT video streaming platforms

We investigate the video streaming platforms of YouTube and Netflix. We conducted our

experiments while playing the videos on mobile devices (iOS and Android) over wireless

networks (Wi-Fi, 3G and 4G) under changing network conditions. As shown in Figure 2.3,

we have designed the Java-based Video Streaming Packet Analyzer (VSPA) tool to capture

and analyze TCP/IP and HTTP packets for video streaming between a viewer and a video

content server. The tool uses jpcap [43], a network packet capture library, to analyze video

packets in real time and tcpdump files (e.g., *.pcap) captured by Wireshark [44]. As shown

in Figure 2.4, it supports the analysis of YouTube, Netflix, and Verizon’s Redbox Instant.

Table 2.1 shows the hardware specifications of the selected iOS and Android mobile devices

that we used in our experiments.

2.4.1 An analysis of YouTube video streaming

YouTube uses Adobe’s Flash, Apple’s HLS and MPEG DASH to deliver H.264 videos. On

January 27, 2015, YouTube announced that HTML5 will be the default playback method

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 17

Internet

testbed

Base
station

Tethering

VSPA*

VSPA*

Access
point

networks

Wi-Fi

Wi-Fi
3G/LTE

Wi-Fi testbed

Video content servers in CDNs

3G / 4G
3G / 4G

*VSPA: Video Streaming Packet Analyzer

Figure 2.3: A testbed to analyze OTT video streaming services on mobile devices in wireless

networks

Table 2.1: iOS and Android mobile devices used for measurements

Device Operating system Screen resolution Memory

iPad 3 iOS 6.1.2 19205 1080 1024MB

iPhone 4S iOS 6.1.2 6405 960 512MB

iPhone 3G iOS 4.1.2 3205 480 128MB

Nexus 7 Android 4.2.1 12805 800 1GB

Nexus S 4G Android 4.1.1 4805 800 512MB

and deprecate its Flash embeds and APIs [45]. For live TV streaming, YouTube also uses

Apple’s HLS for iOS and Mac OS, and the segment duration is 5 seconds [46].

We analyzed how YouTube streams videos to mobile devices over wireless networks. For

our experiments, we played 450 videos on the mobile devices using its mobile application

(not by web browsers) under varying network conditions. The videos were randomly selected

in terms of the diversity in genre (animation, action movie, music video, live concert and

sports), length (from five minutes to two hours) and video quality (high quality - HQ

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 18

Figure 2.4: Java-based VSPA tool

360p and high definition - HD 720p). Our analysis of YouTube video streaming can be

summarized as follows:

Sending plain HTTP GET messages to request a video: YouTube video player uses

Apple’s HLS for mobile devices. It uses a plain HTTP GET request including a header field

that specifies the byte range of the video file (e.g., Range: bytes=10000 - 50000). The

video content server then responds with an HTTP 206 Partial Content message (status

code 206) and sends the requested range of the video. Unlike iOS, the video player for

Android only defines the starting point in the HTTP header (e.g., Range: bytes=10000 -).

Then, the video content server pushes the video from the requested starting point to the

end of the video file.

Selecting di↵erent bitrates based on hardware capabilities: The YouTube video

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 19

player selects di↵erent bitrates regardless of the OS and the radio interface, but it is closely

correlated to hardware performance. For instance, the players on iPad 3, Nexus 7 and iPhone

4S chose HD (720p) bitrates when they requested the videos. On the other hand, the players

on iPhone 3G and Nexus S 4G selected HQ (360p) bitrates due to the smaller size of the

display screen (Table 2.1).

Performing fast start downloading: As shown in Figure 2.5, we observe a high TCP

throughput at the beginning of playback. This is because a video player aggressively down-

loads video segments until its playout bu↵er becomes full (Buffering state). After then, it

periodically downloads a segment every time there is a space in the bu↵er (Steady state).

Sending a series of HTTP GET messages while downloading a video: The

YouTube video player repeats sending an HTTP GET message and receiving a video content

segment while playing a video. We found that the player establishes a new TCP connection

every time it sends a new HTTP GET message.

We address our findings below:

• Impact of OS: Our analysis shows that the YouTube tra�c behavior varies depend-

ing on OSs. For example, our experimental results show that the YouTube video

player for iOS typically sends more HTTP GET messages than the one for Android

during a download. As investigated by Yao Liu et al. [47], one of the reasons is that

the YouTube video player for iOS sends additional HTTP GET messages to request

duplicate video content after the video has been played. The redundant video content

is requested with the current playing bitrate and stored in the bu↵er for a possible

later re-play by the viewers. We see this additional tra�c on iOS devices (Figure 2.5b)

but do not observe it on Android devices (Figure 2.5a).

• Influence of network condition: Using netem [48], we intentionally shaped the

bandwidth in the network and added packet latency while playing the videos. We

found that when the network experienced congestion, the video player sent more

HTTP GET messages to change the bitrate, compared to stable network conditions.

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 20

0 50 100 150
0

1

2

3

4

5 x 106

Elapsed time (seconds)

TC
P

th
ro

ug
hp

ut

Android − Nexus S 4G

(a) Android (Nexus S 4G) - HQ 360p

0 50 100 150
0

1

2

3

4

5 x 106

Elapsed time (seconds)

TC
P

th
ro

ug
hp

ut

iOS − iPad3

(b) iOS (iPad 3) - HD 720p

Figure 2.5: TCP throughput while playing the same YouTube video on an iPad 3 and a

Nexus S 4G over Wi-Fi networks

2.4.2 An analysis of Netflix video streaming

We analyzed Netflix video packets while playing the videos on the mobile devices using its

mobile application. According to Netflix tech blog [49], Netflix develops its own adaptive

streaming technology. Today’s Netflix supports MPEG-DASH for HTML5 enabled web

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 21

browsers and Microsoft’s SS for the Internet Explorer web browser [50]. It also supports

Apple’s HLS for their mobile applications. When the Netflix video player requests a video, it

receives a manifest file containing the information of video bitrates over an SSL connection.

Therefore, our VSPA tool cannot retrieve the information via packet capturing. According

to Netflix [51], iOS and Android mobile devices support video streaming in 480p resolution,

and the HD (720p and 1080p) videos can be viewed on devices that are capable of higher

performance such as Sony PlayStation 3 and Apple TV. This indicates that the video bitrate

of Netflix is also selected based on the hardware specification of the viewer’s device.

We summarize our experimental results as follows:

Two separate TCP connections: Unlike YouTube, the Netflix video player simultane-

ously establishes two TCP connections with a video content server to download video and

audio files in parallel. Netflix supports H.264 (AVC), VC-1, H.263 and H.265 (HEVC) for

video and WMA, Dolby Digital, Dolby Digital Plus, AAC and Ogg Vorbis for audio [50].

Periodic HTTP GET messages: Our experiments show that the Netflix video player

generates periodic HTTP GET messages to download a video. The HTTP header in each

HTTP GET message specifies the short range of the video or audio files to be downloaded.

For example, Figure 2.6 shows the TCP sequence numbers during playback measured from

the iOS device. During the experiments, the player requested the video file every 10 seconds.

Unlike iOS, the tra�c behavior on Android is quite straightforward. The Netflix video player

for Android requests the whole video and audio files at once. It sends a new HTTP GET

message when it needs to change the bitrate.

2.4.3 Summary of key observations

Table 2.2 summarizes our analysis of YouTube and Netflix video streaming. Throughout

our experimental results, we show how a video player downloads video content in ABR

streaming by examining YouTube and Netflix. We conducted the same experiments via

di↵erent wireless access networks such as 3G and 4G. For instance, we conducted the same

experiments in 3G and 4G networks and did not find any di↵erences from the Wi-Fi ex-

perimental results. The same bitrate of video was played on the mobile devices, and the

video player downloaded the video in the same way regardless of the wireless interface. We

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 22

ϭ

^ĞƋƵĞŶĐĞ�ŶƵŵďĞƌ�ŝŶĐƌĞĂƐĞƐ͗�
ƚƌĂĨĨŝĐ�ŵŽǀĞƐ

^ĞƋƵĞŶĐĞ�ŶƵŵďĞƌ�ƐƚĂůůƐ͗�EŽ�
ƚƌĂĨĨŝĐ�ŵŽǀĞƐ�ĨŽƌ�ϭϬ�ƐĞĐ

6HTXHQFH
QXPEHU>.E\WHV@

�����

�����

�����

�����

��� ��� ��� ���
7LPH>V@

Time/Sequence Graph

Figure 2.6: TCP sequence numbers with Netflix video trace over 4G networks

conclude that an ABR player sends a series of HTTP GET messages while playing a video

and the tra�c behavior of downloading videos varies depending on the OS, the hardware

specification of the viewer’s device and the network condition during playback.

2.5 Conclusions

The goal of this chapter is to understand how today’s OTT video streaming work. We

analyzed YouTube and Netflix video streaming on mobile devices (iOS and Android) over

wireless networks (Wi-Fi, 3G and 4G) under varying network conditions. Through our

experimental results, we prove that the video tra�c behavior can vary depending on the

network condition, the OS and the hardware specification of a viewer’s device. The behavior

is entirely based on the ABR heuristics implemented in an ABR player. According to our

analysis, an ABR player dynamically changes bitrates based on various factors such as

real-time available network bandwidth, amount of video remaining in the playout bu↵er

and frame rate during playback, screen resolution and video rendering capabilities of the

viewing device.

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 23

T
ab

le
2.
2:

A
n
al
ys
is

of
Y
ou

T
u
b
e
an

d
N
et
fl
ix

vi
d
eo

st
re
am

in
g
on

m
ob

il
e
d
ev
ic
es

1

O
p
er
at
in
g

sy
st
em

s
A
B
R

N
u
m
.
of

co
n
cu

rr
en

t
T
C
P

co
n
n
ec
ti
on

s

w
h
il
e
p
la
y
in
g
a
v
id
eo

R
eq

u
es
te
d
si
ze

of
v
id
eo

p
er

a
T
C
P

co
n
n
ec
ti
on

Y
ou

T
u
b
e

iO
S

4
1

A
sm

al
l
se
gm

en
t
of

v
id
eo

re
q
u
es
te
d
in

p
er
io
d
ic

m
es
sa
ge
s

A
n
d
ro
id

4
1

E
n
ti
re

v
id
eo

fi
le

re
q
u
es
te
d
at

on
ce

N
et
fl
ix

iO
S

4
2
(v
id
eo

an
d
au

d
io

se
p
ar
at
e)

A
sm

al
l
se
gm

en
t
of

v
id
eo

re
q
u
es
te
d
in

p
er
io
d
ic

m
es
sa
ge
s

A
n
d
ro
id

4
2
(v
id
eo

an
d
au

d
io

se
p
ar
at
e)

E
n
ti
re

v
id
eo

fi
le

re
q
u
es
te
d
at

on
ce

1

Y
ou

T
u
b
e
u
se
s
A
p
p
le
’s
H
L
S
,
b
u
t
it
d
oe
s
n
ot

su
p
p
or
t
A
n
d
ro
id

d
ev
ic
es

b
ef
or
e
4.
0
(G

in
ge
rb
re
ad

or
H
on

ey
co
m
b
).

T
h
er
e
ar
e
st
il
l
in
co
n
si
st
en

ci
es

an
d
p
ro
b
le
m
s
on

A
n
d
ro
id

4.
x
an

d
ab

ov
e.

N
et
fl
ix

u
se
s
it
s
ow

n
ad

ap
ti
ve

st
re
am

in
g

te
ch
n
ol
og

y
fo
r
m
ob

il
e
d
ev
ic
es
.
W
e
n
ot
e
th
at

th
es
e
re
su
lt
s
ar
e
b
as
ed

on
th
e
ex
p
er
im

en
ts

th
at

w
e
co
n
d
u
ct
ed

in

20
13

an
d
20

14
.
T
h
ei
r
st
re
am

in
g
te
ch
n
ol
og

ie
s
an

d
A
B
R

h
eu

ri
st
ic
s
m
ay

h
av
e
ch
an

ge
d
.

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 24

T
ab

le
2.
3:

A
B
R

te
ch
n
ol
og

ie
s
co
m
p
ar
is
on

ch
ar
t1

A
d
ob

e’
s
H
D
S

M
ic
ro
so
ft
’s

S
S

A
p
p
le
’s

H
L
S

3G
P
P
/M

P
E
G

D
A
S
H

2

V
id
eo

co
d
ec

H
.2
64

,
V
P
6

H
.2
64

,
V
C
-1

H
.2
64

H
.2
64

+
ot
h
er
s
(a
gn

os
ti
c)

A
u
d
io

co
d
ec

A
A
C
,
M
P
3

A
A
C
,
W

M
A

A
A
C
,
M
P
3

A
A
C

+
ot
h
er
s
(a
gn

os
ti
c)

M
an

if
es
t
fi
le

.f
m
f

.i
sm

c
.m

3u
8

.m
p
d

P
ac
ka
ge

an
d
se
gm

en
t

fo
rm

at

.f
4f
,
.f
m
f

M
P
4
se
gm

en
ts

.i
sm

v

M
P
4
se
gm

en
ts

.t
s

M
P
E
G
-2

T
S

.m
p
4

M
P
4
se
gm

en
ts
+
M
P
E
G
-2

T
S

F
il
e
st
or
ag

e
on

se
rv
er

C
on

ti
gu

ou
s

C
on

ti
gu

ou
s

In
d
iv
id
u
al

fi
le

p
er

se
gm

en
t

C
on

ti
gu

ou
s
or

in
d
iv
id
u
al

fi
le
s
p
er

se
gm

en
t

S
eg
m
en
ta
ti
on

an
d
d
el
iv
er
y

A
d
ob

e
In
te
ra
ct
iv
e

S
er
ve
r

M
ic
ro
so
ft

In
te
rn
et

In
fo
rm

at
io
n
S
er
v
ic
es

M
u
lt
ip
le

ve
n
d
or
s.

S
ta
n
d
ar
d
H
T
T
P

or
st
re
am

in
g
se
rv
er
s

M
u
lt
ip
le

ve
n
d
or
s.

S
ta
n
d
ar
d
H
T
T
P

or
st
re
am

in
g
se
rv
er
s

P
la
y
b
ac
k

F
la
sh
,
A
ir

S
il
ve
rl
ig
h
t

A
p
p
le

iO
S
,
Q
u
ic
k
T
im

e
X

3G
P
P
-R

el
9
or

M
P
E
G

cl
ie
n
ts

P
ro
te
ct
io
n

F
la
sh

A
cc
es
s

P
la
y
R
ea
d
y

A
E
S
-1
28

en
cr
y
p
ti
on

F
le
x
ib
le

(e
.g
.,
O
M
A

[5
2]

or
U
V

[5
3]
)

D
ep

lo
y
m
en

t
on

or
d
in
ar
y

H
T
T
P

se
rv
er
s

N
o

N
o

Y
es

Y
es

H
T
M
L
5
su
p
p
or
t

N
o

N
o

N
o

Y
es

T
y
p
ic
al

se
gm

en
t
d
u
ra
ti
on

2
-4

se
co
n
d
s

2
-4

se
co
n
d
s

10
se
co
n
d
s

F
le
x
ib
le

1
T
h
e
co
n
te
n
t
in

th
e
ta
b
le

is
b
as
ed

on
th
e
re
p
or
t
p
ro
d
u
ce
d
b
y
th
e
In
te
rn
et

V
id
eo

A
rc
h
iv
e
(I
V
A
)
gr
ou

p
[5
4]
.

2
H
T
M
L
5
v
id
eo

p
la
ye
rs

u
se

M
S
E

[3
9]
.

CHAPTER 2. AN EMPIRICAL STUDY OF OTT VIDEO STREAMING 25

T
ab

le
2.
4:

T
h
e
S
ta
te

of
M
P
E
G
-D

A
S
H

20
16

1

W
eb

b
ro
w
se
r

O
p
er
at
in
g
sy
st
em

M
S
E

su
p
p
or
t

E
M
E

su
p
p
or
t2

C
h
ro
m
e
37

+
W

in
7+

,
O
S
X
Y
os
em

it
e+

m
p
4
A
V
C
,
w
eb

m
V
P
9
[5
5]

C
E
N
C
C
le
ar
K
ey

[5
6]
,
W

id
ev
in
e
[5
7]

C
h
ro
m
e
37

+
A
n
d
ro
id

4.
4.
4+

m
p
4
A
V
C
,
w
eb

m
V
P
9

C
E
N
C
C
le
ar
K
ey
,
W

id
ev
in
e

E
d
ge

W
in

10
m
p
4
A
V
C
,
w
eb

m
V
P
9

(p
as
st
h
ro
u
gh

co
d
ec
)

P
la
yR

ea
d
y

F
ir
ef
ox

42
+

W
in

7+
,
O
S
X
Y
os
em

it
e+

m
p
4
A
V
C

C
E
N
C
C
le
ar
K
ey

A
d
ob

e
P
ri
m
et
im

e

F
ir
ef
ox

42
+

A
n
d
ro
id

5.
0+

m
p
4
A
V
C

-

In
te
rn
et

E
xp

lo
re
r
11

W
in

8.
1

m
p
4
A
V
C

P
la
yR

ea
d
y

In
te
rn
et

E
xp

lo
re
r
11

W
in
P
h
on

e
8.
1

m
p
4
A
V
C

-

O
p
er
a
26

+
W

in
7+

,
O
S
X
M
av
er
ic
k+

m
p
4
A
V
C
,
w
eb

m
V
P
9

C
E
N
C
C
le
ar
K
ey

S
af
ar
i8
+

O
S
X
Y
os
em

it
e+

m
p
4
A
V
C
,
ts
A
V
C

F
ai
rP

la
y
(N

et
fl
ix

on
ly
)

S
af
ar
i
M
ob

il
e

iO
S

-
-

1

T
h
e
co
nt
en
t
in

th
e
ta
b
le

is
b
as
ed

on
th
e
re
p
or
t
p
ro
d
u
ce
d
by

th
e
S
tr
ea
m
in
g
M
ed

ia
m
ag

az
in
e
[5
8]
.

2

H
T
M
L
5
w
eb

b
ro
w
se
rs

u
se

E
n
cr
yp

te
d
M
ed

ia
E
xt
en

si
on

s
(E

M
E
)
to

su
p
p
or
t
d
ig
it
al

ri
gh

ts
m
an

ag
em

en
t
(D

R
M
)
fo
r

m
ed

ia
co
py

ri
gh

t
p
ro
te
ct
io
n
[5
9]
.

26

Part II

Intelligent Network Architecture

for OTT Video Streaming

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 27

Chapter 3

Towards Dynamic Network

Condition-Aware Video Server

Selection over Wireless Networks

3.1 Introduction

Today’s popular video content delivery systems deploy content delivery networks (CDNs).

Video service providers such as YouTube and Netflix stream videos to viewers through their

own CDNs or the CDNs provided by third parties such as Akamai [60] and Limelight [61].

When a viewer requests a video, a video service provider uses its own server selection

algorithms in order to decide which video content server the viewer downloads the video

from. The selection mechanisms and policies are designed for providing high availability,

server load-balancing and minimizing the cost for delivering video contents to viewers [62;

63].

In this chapter, we analyze YouTube’s video server selection algorithms. For an empiri-

cal study, we conducted our experiments while playing the videos on PCs and mobile devices

(smartphones and tablets) over wireless networks (Wi-Fi and 3G) under varying network

conditions. As we described in Figure 2.3, we use our VSPA tool to analyze video packets

during our experiments. Through measurements, we found out that a viewer downloads a

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 28

YouTube video from the same video content server regardless of the hardware specification,

the OSs and the video players running on the viewers’ devices. Instead, the network at-

tachment point regarding a viewer’s public IP address is considered as a key factor for the

video server selection algorithm of YouTube.

YouTube’s video server selection mechanism takes into account various factors such as

viewer proximity, server load and popularity of video content [63]. During our measure-

ments, we found that YouTube selects one among three or four available content servers

when a viewer requests a video. Most interestingly, we discovered that the video content

server assigned by YouTube may provide less reliable streaming with lower TCP perfor-

mance than other available content servers during playback. After carefully analyzing the

measurements, we surmise that YouTube’s DNS-based location awareness algorithms are

causing this problem. YouTube delivery cloud typically assigns a video content server that

is geographically close to a viewer [62; 63; 64]. However, the network conditions between a

viewer and a video content server can be unstable, even though the server is located near

the viewer.

We propose using the round-trip time (RTT) between an edge node of a wireless network

and video content servers to discover a better video content server when a video is requested.

The edge node can be an ISP router in a Wi-Fi network, a Radio Network Controller

(RNC) node in a 3G network or a packet data network gateway (P-GW) in a 4G network.

In our proposed architecture, the edge node caches IP addresses of video content servers

while videos are delivered through the node. When a viewer requests a video, it first

sorts the available content servers containing the requested video. Then, it measures TCP

establishment time to each content server and selects one that has the shortest RTT. To

show the feasibility of our approach, we compare the performance of YouTube streaming in

our testbed setup (Figure 2.3). The evaluation shows that a video content server chosen by

our proposed RTT-based video server selection algorithm outperforms the distance-based

algorithms by providing more reliable streaming during playback. It showed better TCP

performance 146 times out of 200 experiments (73%) over Wi-Fi networks and 162 times

out of 200 experiments (81%) over 3G networks.

The remainder of the chapter is organized as follows. In Section 3.2, we elaborate on the

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 29

Video content servers in CDNs

Clients Web server
(e.g., www.youtube.com)

1. HTTP GET - request a video

2. HTTP response - return a
host name of assigned video
content server

4. Video playback traffic over HTTP

DNS server

3. DNS request & reply

Figure 3.1: Video content server selection in OTT video streaming

analysis of YouTube’s video server selection algorithms. In Section 3.3, we focus on finding

problems that YouTube using location-based video server selection algorithms may assign

a non-preferred video content server to a viewer. Our proposed solutions are described in

Section 3.4. We evaluate our proposal in Section 3.5 and look at related work in Section 3.6.

Finally, we summarize our conclusions in Section 3.7.

3.2 An analysis of YouTube video server selection algorithms

Figure 3.1 briefly describes a general CDN-based streaming platform. A video player run-

ning on a viewer’s device sends an HTTP GET message (e.g., http://www.youtube.com/

watch?v=videoid) to a web server that hosts the domain names such as www.youtube.com

and www.netflix.com. The HTTP GET message contains a unique video identification

and OS information of the device such as Windows, Mac OS X, Linux, iOS and Android.

Then, the web server maps the video identification to the host name of the video content

server that can stream the video based on their own server selection algorithms. It returns

the host name (e.g., v1.lscache1.c.youtube.com) to the viewer. The host name is re-

solved to an IP address by the viewer via a DNS query to a DNS server. Finally, the viewer

sends another HTTP GET message to the assigned video content server to download the

video over HTTP or HTTPS. In our testbed setup (Figure 2.3), we monitored the network

response times from the viewer’s device to the web server and the selected video content

server and found that the response times are di↵erent.

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 30

According to recent studies [62; 63; 64], YouTube typically allocates multiple IP ad-

dresses to a single host name, and picks one of video servers that is geographically close

to a viewer. A viewer may be assigned to a farther location in order to avoid high tra�c

load on a particular video content server. In addition, YouTube uses an HTTP redirection

mechanism to dynamically redirect a viewer’s access to a non-busy video content server. In

this case, the assigned video content server sends an HTTP 302 message asking to download

the content from another server at the beginning of playback.

Using the testbed setups in Figure 2.3, our analysis takes into account various conditions

such as requesting videos on di↵erent devices such as PCs and mobile devices (Table 2.1),

using various applications running on diverse OSs (Windows, Mac OS X, Linux, iOS and

Android) over Wi-Fi and 3G networks. During the measurements, we played hundreds of

randomly selected YouTube videos from a diversity of genres (e.g., movie, music video, live

concert and sports), popularity, length (from ten minutes to one hour) and video quality

(SD and HD). Section 3.2.1 through Section 3.2.4 show our baseline analysis of YouTube’s

video server selection algorithms.

3.2.1 Requesting videos on di↵erent devices over Wi-Fi networks

We requested the 200 videos on the desktops and the selected mobile devices (Table 2.1)

at the same time and from the same place over Wi-Fi networks under the same network

condition. During the measurements, the devices were connected to the same Wi-Fi network

attachment point. We used the YouTube mobile application for mobile devices (iOS and

Android) and Chrome browsers for PCs where YouTube’s Flash or HTML5 players are

installed. We found that the addresses of video content servers chosen by YouTube remain

the same regardless of the hardware specifications and the OSs running on viewers’ devices.

3.2.2 Requesting videos on the same devices over Wi-Fi networks under

varying network conditions

We played the 200 videos on the same desktop and mobile devices over the same Wi-

Fi network under di↵erent network conditions: stable and unstable. In order to create

unstable network conditions, we intentionally injected additional tra�c to the network

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 31

using a common network-testing tool, Iperf [65]. We also placed home networking devices

that cause interference at 2.4GHz, such as baby monitors and cordless phones, between the

viewer and the Wi-Fi access point. The RTT between the viewers and the video content

servers was 16ms on average under stable network conditions, while it was 566ms under

fluctuating network conditions. Our experimental results show that network conditions

between a viewer and a Wi-Fi access point do not influence the video server selection

algorithms of YouTube. We found the same video IP addresses, regardless of the local

network conditions.

3.2.3 Requesting videos on the same devices via di↵erent wireless net-

work interfaces

We requested the 400 videos on the same desktops and mobile devices at the same time

and from the same place over Wi-Fi and 3G networks. We observe that the viewer via a 3G

network connected to a di↵erent video content server, compared to the viewer via a Wi-Fi

network. However, it is di�cult to confirm that YouTube considers the radio interfaces

for the video server selection process. When we analyzed the user-agent information in

the HTTP GET message, we did not find any di↵erences between Wi-Fi and 3G networks.

Instead, YouTube considers DNS-based location awareness [63]. When a video request

occurs, the local DNS server operated by a network service provider asks the YouTube DNS

server for the address of a video content server that the viewer downloads the video from.

Based on the IP address of the DNS resolver, YouTube assigns a video content server that

is geographically close to the viewer. Hence, the addresses of video content servers can be

di↵erent, even though viewers accessing via Wi-Fi and 3G networks request an identical

video from the same time and place. For example, we requested a thousand randomly

selected YouTube videos on PCs and mobile devices via di↵erent network service providers

(e.g., AT&T, Verizon, Columbia University and Time Warner Cable) around the Columbia

University. We collected a total of 8,194 IP addresses of video content servers, and found

that viewers accessed di↵erent sets of video content servers via di↵erent networks for the

same video content.

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 32

3.2.4 Requesting videos on the same devices from the same place over

Wi-Fi and 3G networks during a 24 hour period

A hundred YouTube videos were requested on the same desktops and mobile devices from

the same place over Wi-Fi and 3G networks. We played the videos every ten minutes for

24 hours. For each video content server, we calculated the frequency of how many times it

was selected by YouTube when the viewer requested the video. Our experimental results

indicate that one or two video content servers are much more frequently selected than

others that also contain the same content. In the experiments, for example, most of the

video tra�c (99.9% via Wi-Fi networks and 85.4% via 3G networks) came from one or two

di↵erent video content servers for the same video content.

3.3 YouTube often assigns video content servers with long

RTTs

In this section, we point out that YouTube’s server selection algorithms frequently assign

video content servers with long RTTs to viewers, even if there exist other servers that de-

liver the same video content with shorter RTTs. Based on our extensive measurements,

we surmise that YouTube’s location-aware video server selection algorithms cause this un-

wanted behavior. According to other studies [62; 63; 64], YouTube typically assigns a video

content server that is geographically close to a viewer. The authors approximately found

the locations of YouTube video content servers based on the RTT-based measurements and

the analysis of DNS names of video content servers. However, our measurements show that

the RTT between a viewer and a video content server may not be the shortest even if it is

the geographically closest.

3.3.1 Finding locations of YouTube video content servers

We analyzed the geographical locations of YouTube video content servers. We first used

the IP-to-location database [66]. The experimental results indicate that most of the 8,194

collected YouTube video content servers (more than 97%) were located in Mountain View,

CA. However, as Torres et al. [63] discussed, the IP-to-location database does not return

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 33

accurate YouTube server locations. The main reason is that the companies may be hiding

the real locations of internal IPs for security reasons. They may also be on a large network

(central and OSPF-routed) such as using the same ASN. To prove this, Torres et al. [63]

measured the RTTs to the YouTube video content servers from several ISPs, and showed

that there was a lot of variation, even though the database reported that the servers were

located in the same place - Mountain View, California. Instead, according to Adhikari

et al. [67], YouTube video content servers are distributed over more than 45 cities in 25

di↵erent countries around the world.

To avoid this problem, we used traceroute to estimate the locations of the last hop

routers between the viewers and the YouTube network. Our measurements show that in

most cases there was not much of a di↵erence (less than 2ms) between the RTTs to the last

hop router and to the video content server from the viewer. Therefore, it is reasonable to

assume that the locations of the actual YouTube’s video content servers are geographically

close to the last hop routers. During the experiments, we collected the addresses of video

content servers while requesting a thousand random videos (popular and unpopular videos,

regardless of genre) from four places in Manhattan, New York: the Columbia University,

Upper West Side, and high population density areas such as Times Square and Penn. Station

where we expect network congestion during busy hours. In the experiments, we found that

most of the last hop routers of video content servers assigned by YouTube were located in

New York (68.5%) and California (17%), and some routers were placed in Michigan (5.2%),

Georgia (4.2%), Massachusetts (3%) and Florida (2.1%).

3.3.2 Measuring RTTs between video content servers and viewers

In order to examine the network conditions between viewers and video content servers

assigned by YouTube, we measured RTTs to video content servers from viewers when they

established TCP connections to the servers. We selected a hundred random videos, and

conducted the following experiments:

• Collecting addresses of video content servers: For each video, we first obtained

IP addresses of video content servers that contain the same video content. The IP ad-

dresses were collected while we requested a hundred random videos every five minutes

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 34

Table 3.1: A hundred YouTube videos were requested over Wi-Fi and 3G networks during

busy hours (13:00 - 15:00 and 19:00 - 20:00 EST)

Ratio (%) of being assigned to a non-preferred video server by YouTube

Networks ColumbiaUniversity UpperWest Side Times Square Penn. Station

Wi-Fi
97%

(Columbia network)

97%

(Verizon)

96%

(Time Warner Cable)

70%

(Time Warner Cable)

3G
44%

(AT&T)

33%

(AT&T and Verizon)

73%

(AT&T and Verizon)

47%

(AT&T)

for three days on PCs from the four selected places in New York. We observed four

or five unique IP addresses of video content servers for each video. They are mostly

located in New York and California.

• Comparing RTTs: We measured the RTT between the viewer and the video content

server assigned by YouTube. From a common place and time reference, we compared

it with the RTTs between the viewer and other collected servers that contain the

same video content. The RTTs were measured when the video player established

TCP connections with the video content servers.

We define two terms to identify video content servers: preferred and non-preferred. The

preferred video content server is a server that shows the shortest RTT among others that can

deliver the same video content when the video is requested. The non-preferred video content

servers are others, not defined as a preferred. We calculated the ratio of how many times

YouTube provided a non-preferred video content server out of the total number of requests.

Table 3.1 shows the experimental results. For Wi-Fi networks, we observed high ratios of

being assigned to a non-preferred video server from each location. For 3G networks, we

found that high popularity density areas such as Times Square and Penn. Station typically

show such high ratios. During the measurements, the average and standard deviation of

the RTT were 13ms and 9ms for Wi-Fi networks while they were 63ms and 21ms for 3G

networks. As a result, the ratio proves that YouTube frequently assigns a non-preferred

video content server to a viewer over Wi-Fi and 3G networks.

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 35

3.3.3 Video content servers with long RTTs to viewers may degrade video

QoE

After carefully analyzing the measurements, we conjecture that YouTube’s location-aware

server selection algorithms causes non-preferred video content servers to be chosen. One

may assume that this behavior is caused by YouTube’s server load-balancing policies. If this

assumption is true, we would have observed di↵erent video content servers being selected

over time in our measurements. However, we found that the IP addresses of video content

servers collected during the busy hours in Table 3.1 were almost the same with the IP

addresses that were assigned during the non-busy hours. The last hop routers of non-

preferred video content servers were located near New York. This suggests that YouTube’s

server selection algorithms take into account viewer-proximity more rather than the server

load.

We note that this unwanted behavior may degrade video QoE. For example, Equation 3.1

indicates the TCP average throughput [68] in terms of packet loss and RTT. TCP flows

with shorter RTTs gain a congestion window (CWND) advantage in the slow start phase.

When a loss occurs, for example, the slow start begins from its initial CWND. With a short

RTT, the CWND reaches the slow start threshold faster than a TCP flow with a longer

RTT. Therefore, a viewer may often experience rebu↵erings when the RTT is long and the

network conditions are fluctuating.

TCP
avg. throughput

=
1.22p
P
loss

⇤ MSS

RTT
(3.1)

Consequently, depending on network conditions in transit networks or server-side loads

in CDNs, video servers that are farther away geographically from a viewer may temporarily

provide a better viewing experience than video servers that are closer. We will elaborate

on the experimental results in the following section.

3.4 RTT-based video server selection algorithms

The key idea is how to assign an appropriate video content server to a viewer when there

is a video request. To achieve this, we could use a client-based mechanism that takes into

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 36

Web clients

ALTO server

Candidate caches

ALTO provisioning

ALTO guidance

ALTO client

ALTO client

DNS resolver

Authoritative DNS name server

Figure 3.2: ALTO-guidance within CDN request routing (DNS example)

account the network conditions between the viewer and video content servers. According to

Balachandran et al. [69], however, the viewer may not be able to e↵ectively track the network

conditions due to the lack of direct knowledge of access networks and up-link bandwidth

constraints. Niven-Jenkins et al. [70] and Jan Seedorf [71] have introduced the use cases for

Application-Layer Tra�c Optimization (ALTO) with CDNs. For example, Figure 3.2 shows

the request routing in CDN interconnection (CDNI) using ALTO [71]. In this scenario, a

CDN provider hosts an ALTO server that provides network map and cost information such

as geographical coverage, dynamic server load and packet loss rates to ALTO clients (DNS

resolver and server in Figure 3.2). Based on the ALTO information and the IP address of

the end user, the ALTO client chooses the best CDN server among the several candidates.

In this way, the ALTO system can be used for the video streaming providers to enhance

their video server selection in CDNs.

We propose to use a corresponding edge node of a wireless network in order to assist a

viewer connecting to a better video content server. The edge node can be an ISP router

in a Wi-Fi network, a RNC node in a 3G network and a P-GW in a 4G network. In our

proposed architecture, the edge node performs like an ALTO client. Instead of receiving

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 37

the network map and cost information from the ALTO servers operated by the ISPs or

the CDN providers, however, it directly measures the RTT to each video content server for

video server selection algorithms when a video is requested. The procedure is organized

into two parts: a) Caching addresses of video content servers when viewers download

videos through the edge node; b) Discovering a preferred video content server based on the

comparison of RTTs between the edge node and the analyzed video content servers. The

RTTs are measured while the edge node establishes TCP connection to the servers.

3.4.1 Caching addresses of video content servers

An edge node records addresses of video content servers when viewers watch videos through

the edge node. It locally caches a hash-based database that maps the video identification

to the addresses of assigned video content servers. The list of video content servers can be

categorized based on time, locations of assigned video content servers and network condi-

tions such as average TCP throughput, packet loss rates and RTTs which are measured

while videos are delivered to the viewers.

3.4.2 Discovering a preferred video content server

RTTs between an edge node and collected video content servers measured when a video

is requested are considered as key factors to find a preferred video content server. For

example, Figure 3.3 shows a simplified mobile video streaming transaction for our proposed

video server selection process.

1) When a video is requested, a web server returns the address of a selected video content

server using its own server selection algorithms (step 1 and 2).

2) Before handing the address over to the viewer, the edge node examines if other video

content servers cached on the list are able to provide more reliable streaming (step 3).

It first searches a group of video content servers on the list that contain the requested

video content. Secondly, it chooses a set of video content servers in the group that

were recently used in the previous video sessions. Then, the edge node measures the

current RTTs to the chosen video content servers and compares it with the one to the

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 38

3G / 4G
Wired

Networks

1. HTTP GET - video request

2. HTTP response - reply with a host name
of a video content server

5. Video playback traffic over HTTP

Viewer Edge node Web server
(e.g., www.youtube.com) Video content servers

List of video content servers

3.1 Check availability and
measure RTTs to video
servers that contain the
same video file.
3.2 Return a host name of
a preferred video server
with the shortest RTT

4. DNS request & reply

DNS server

Figure 3.3: Selecting a preferred video content server at a corresponding edge node

server assigned by the video service provider. The RTT can be measured during the

TCP establishment. The edge node returns an address of a preferred video content

server that shows the shortest RTT from the edge node.

3) Finally, the player resolves the host name and requests the video to the selected video

content server (step 4 and 5).

Our proposed method causes a slightly longer start-up latency for a viewer to start

downloading a video (2.1 seconds on average in our experiments), but the experimental

results below show that it can enhance video QoE with higher TCP performance while

playing a video.

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 39

3.5 Evaluation

To show the feasibility of our proposal, we have implemented our Video Streaming Packet

Analyzer (VSPA) tool acting as an HTTP proxy server. We described the tool in Sec-

tion 2.4. It manipulates HTTP headers to redirect a viewer’s access to a preferred video

content server chosen by our RTT-based video server selection algorithms. It can also an-

alyze TCP tra�c performance while downloading videos over cellular and Wi-Fi networks.

The specific experimental setup is described below: We played a hundred random YouTube

videos (360p resolution, video bitrate 0.5Mb/s) on PCs and mobile devices from two dif-

ferent places (Columbia University and Penn. Station) over Wi-Fi and 3G networks. For

each experiment, two viewers simultaneously requested the same video via the same net-

work. ViewerA downloaded the video from the video content server selected by YouTube,

and ViewerB accessed the video content server chosen by our RTT-based algorithm. Us-

ing netem, a networking emulation tool [72], we emulated network congestion between the

viewers and VSPA. We injected additional 2ms packet delay, 5% packet loss, 5% packet

duplication and 5% packet re-ordering rates during the experiments.

Video QoE experiments - Considering network delivery issues, we monitor rebu↵erings

to analyze the QoE of viewers. In order to measure this, we calculated the accumulated video

bytes as time elapsed and compared it with the required downloading data rate. Figure 3.4

shows one of our video QoE experimental results over Wi-Fi networks. In the experiment,

the length of the video was 253 seconds. The dotted blue line indicates the required data rate

to play the video without any viewing interruption. During the experiment, ViewerB (green

line) took only 222 seconds to complete downloading the entire video content while ViewerA

(red line) took 290 seconds. Since the red line for ViewerA falls below the blue line, this

indicates that ViewerA experienced rebu↵erings during playback. We conducted the same

experiment twenty times over Wi-Fi networks from each place. ViewerA experienced more

rebu↵erings than ViewerB thirteen times out of twenty experiments. ViewerB experienced

a slightly higher number of rebu↵erings two times and the same number of rebu↵erings

during the rest of the experiments. However, ViewerB with our dynamic server selection

algorithms experienced less rebu↵ering time compared to ViewerA, by an average of 15

seconds.

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 40

� �� ��� ��� ��� ��� ���
�

���

�

���

�[���
� �

(ODSVHG�WLPH��VHFRQG�

$
FF
XP

XO
DW
HG
�Y
LG
HR
�G
DW
D�
�E
\W
HV
�

�

�

5HTXLUHG�GDWD�UDWH

Viewer A
Viewer B

(shortest distance)(shortest distance)

(shortest RTT)(shortest RTT)

Figure 3.4: Monitoring downloaded video bytes while playing a sample YouTube video on

two PCs over a Wi-Fi network in the HTTP proxy server-based testbed (one download)

Comparing packet inter-arrival times while downloading a video - We measured

video packet inter-arrival times until the same video content was completely downloaded

from the two video content servers. Figure 3.5 compares the CDFs: the solid line represents

the results between ViewerA and the video content server selected by YouTube, and the

dotted line indicates the results between ViewerB and the video content server that showed

the shortest RTT when the video was requested. This experiment was conducted over 3G

networks on the Columbia University during the time period of 13:00 and 13:30 EST. The

experimental results indicate that our RTT-based video server selection algorithm provided

shorter inter-arrival times while downloading the videos compared to YouTube’s video server

selection algorithms.

Comparing TCP throughput - We further analyzed TCP performance from the two

di↵erent places (Columbia University and Penn. Station). From each place, we requested

one hundred videos both on PCs and mobile devices over Wi-Fi and 3G networks during

afternoon hours (12:00-17:00). We captured TCP/IP and HTTP packets using the VSPA,

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 41

� �� ��� ��� ���
�

���

���

���

���

�
�

�

�

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

3G - RTT based server selection
3G - YouTube server selection

Packet inter-arrival time (ms)

Figure 3.5: CDFs of video packet inter-arrival times measured while downloading a video

over a 3G network in the HTTP proxy server-based testbed

and analyzed the dump files using a TCP trace tool [73]. Our proposed algorithm showed

the higher TCP throughput 146 times out of 200 experiments (73%) over Wi-Fi networks

and 162 times out of 200 experiments (81%) over 3G networks. During the rest of the

experiments, our solution shows similar or slightly lower performance.

3.6 Related work

Several researchers have investigated video server selection algorithms that consider the

geographical locations of video servers. Torres et al. [63] found that a variety of factors

such as load-balancing, variations across DNS servers within a network and video popular-

ity may a↵ect the video content server selection process for YouTube. Adhikari et al. [64;

74; 67; 75] investigated the YouTube infrastructure by collecting video traces at ISP back-

bone networks. Analyzing the YouTube video distribution architecture, they found that

YouTube deploys a large number of video caching servers that vary in size and geograph-

ical locations in order to reduce cost and improve the end-user performance. Saxena et

CHAPTER 3. TOWARDS DYNAMIC NETWORK CONDITION-AWARE VIDEO
SERVER SELECTION OVER WIRELESS NETWORKS 42

al. [76] analyzed how three video service providers (YouTube, Dailymotion and Metacafe)

distribute their video streaming services and how the server selection takes into account

viewers’ geographical locations and video characteristics such as age and popularity.

Our approach di↵ers from the prior work in two aspects: Noticeably, in many cases, we

found that YouTube assigns a non-optimal video content server to a viewer. We suggest that

edge nodes of wireless networks should directly determine the best available video content

servers based on network conditions. We propose using the TCP RTT when videos are being

requested. The challenges of our approach is to install additional functions such as building

a database to store video information and measuring RTTs for all video connections on

the edge nodes. This causes the scalability concerns for large networks. In addition, our

approach may cause a long start-up delay depending on the network conditions when the

video is requested. This may degrade QoE of viewers. We will discuss the impact of start-up

latency on video QoE in Chapter 7.

As we described in Section 3.4, ALTO [71] can be used for the dynamic content server

selection in CDNs. It implements several ALTO clients and ALTO servers to find the

best content server based on various network map and cost information such as server load

and packet loss rates. Our future work is to empirically compare the performance between

ALTO-based platform and our approach for building a dynamic CDN server selection mech-

anism for OTT video streaming services.

3.7 Conclusions

We have analyzed the YouTube video server selection algorithm. We proved that the geo-

graphical location based on the network attachment point of a viewer is considered impor-

tant when YouTube assigns a video content server to a viewer. Our proposed dynamic net-

work conditions-aware approach that considers current RTTs to find a better video content

server achieves higher TCP performance than distance-based server selection algorithms,

which improves QoE of viewers during playback.

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 43

Chapter 4

Towards Dynamic QoS-aware OTT

Video Streaming

4.1 Introduction

ABR streaming is designed to provide viewers with the positive QoE for given network con-

ditions. However, an ABR player may select an inappropriate bitrate during playback due

to the lack of direct knowledge of access network performance, frequent user mobility and

rapidly changing channel conditions. To resolve this issue, we may periodically estimate

network capacity between a client and a video content server or a network access point, but

bandwidth constraints often limit the frequency of end-to-end feedback [69]. Alternatively,

SDN may enable video service providers to partially provision network resource in collab-

oration with network operators. However, the SDN infrastructure in WANs has not been

widely deployed [77].

Providing a seamless viewing experience is important for network operators to increase

the number of subscribers in their networks. To provide reliable streaming, we propose to

build a dynamic QoS-aware video streaming platform in a 4G network. From the viewpoint

of network operators, our proposed platform does not require any technical support from

video service providers. In this chapter, we first attempt to characterize the ine�ciency

of today’s ABR streaming approach and then improve the video content delivery in a 4G

network.

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 44

During our experiments, we observed that the ABR players frequently discard a large

number of successfully downloaded video packets. This unwanted behavior occurs when

the video player changes the quality level in unstable network conditions. For example,

when a timeout occurs during a download (Figure 2.1), the player terminates the open

TCP connection and requests lower bitrate by establishing a new TCP connection. The

packets in flight coming through the closed TCP connection will be discarded at the player.

In addition, this happens when a viewer abandons the video during playback. The video

player also discards some video packets when a viewer moves the playback slide bar before

completely downloading a requested video. Our analysis shows that the average video packet

discard is 10.1%, and that the discard may exceed 35% of the complete content. Needless

to say, this behavior consumes network resources and causes additional mobile data usage

paid by clients.

Our solution is to address this issue using the packet data network gateway (P-GW) in

a 4G network. The P-GW provides connectivity from a 4G user to external packet data

networks such as the Internet. It is responsible for performing policy enforcement, user

IP-address allocation, packet filtering and charging. In our proposed platform, the selec-

tive packet discarding mechanism in P-GW drops the potentially wasted video content in

advance before it is delivered to a viewer. It prevents unnecessary mobile data usage paid

by viewers and waste of the limited network resource over the air interface. In order to im-

prove video QoE for viewers, our proposed QoS rules in P-GW are designed to dynamically

manipulate QoS parameters such as Aggregate Maximum Bit Rate (AMBR) that controls

the maximum possible data rates, based on network conditions between a viewer and an

Evolved Node B (eNodeB), a base station in a 4G network. By throttling TCP throughput,

our QoS rules assist a video player to choose a proper bitrate under fluctuating network

conditions. Our contributions can be summarized as follows:

1) We discover the underlying causes of video packet discard on HTTP-based mobile

video streaming (Section 4.2).

2) Using network operator resources, we improve the existing OTT video delivery system.

Our evaluation shows up to 21% saving down-link bandwidth over the air interface,

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 45

and the proposed mechanism enhances the video watching experience by reducing

rebu↵erings during playback (Section 4.3 and 4.4).

The remainder of the chapter is organized as follows. In Section 4.2, we focus on

finding problems that cause the discarding of video data, and our proposed solutions are

described in Section 4.3. We evaluate our proposal in Section 4.4 and look at related work

in Section 4.5. Our discussion is addressed in Section 4.6. Finally, we summarize our

conclusions in Section 4.7.

4.2 Poorly designed video players waste network bandwidth

Our analysis on ABR streaming indicates that an ABR player sends a sequence of HTTP

GET messages while playing a video (Chapter 2). During the measurements, we discovered

that a large number of video packets can be discarded during a download. This unwanted

behavior occurs when a video player terminates an open TCP connection before completely

downloading the requested video segment.

As an example, Figure 4.1 shows a simplified video tra�c flow diagram between a viewer

and a YouTube video content server. When a viewer plays a video, the video player sends

an HTTP GET message (step 7, TCP source portA) to download the video file. The

video packets (step 9 and 10) are successfully delivered to the video player. However, before

receiving the next video packet (step 12), the video player closes the port number A and

transmits another HTTP GET message via a new TCP connection with the source port

number B (step 11). We often find this behavior when a timeout occurs during a download

(Figure 2.1). In the meantime, those video packets that were sent by the video content

server prior to noticing the termination continue to arrive at the TCP port A. A TCP RST

packet is sent to the video content server each time the video player receives a video packet

via the terminated TCP connection. Consequently, the video packets (step 12 to 14) are

discarded and not stored in the playout bu↵er. While experimenting, we found out that

the following three cases cause this problem:

1) When a timeout occurs during a download, an ABR player terminates the open TCP

connection and sends a new HTTP GET message. The player may receive the seg-

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 46

Viewer Video content serverImage server

Prior to playing
video

Discarded
Video
Traffic

Play video

TimeOut

TimeOut

Web server
(e.g., www.youtube.com)
Web serverWeb server
(e.g., www.youtube.com)(e.g., www.youtube.com)

Figure 4.1: Video packet discard occurs when a timeout occurs during a download

ments encoded at the previously requested bitrate before the newly requested GET

message arrives at the video content server. When such events occur, the video packets

through the terminated TCP port will be discarded.

2) When a viewer moves a playback slide bar while playing a video, an ABR player im-

mediately terminates the open TCP connection and sends a new HTTP GET message

that contains a newly requested range of bytes of the video. The player will no longer

accept the video packets that continue to arrive at the closed TCP connection.

3) When a viewer abandons the video during a download, the requested video segments

will be discarded at the video player.

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 47

4.2.1 Calculating discard ratio

Discard ratio = 1�
Goodput

Total throughput
(4.1)

Experimental setups - Using Equation 4.1, we calculated the discarded video tra�c ratio.

The specific experimental setups are:

• One hundred YouTube and Netflix videos were played on mobile devices via Wi-Fi,

3G and 4G networks in our testbed (Figure 2.3). During the experiments, the video

players selected a bitrate of either among HQ (360p) or HD (720p) based on their

own ABR heuristics.

• Using netem [72], we artificially manipulated packet delay (avg. 50ms± 10ms vari-

ance distribution), packet loss rate (avg. 5%), packet duplication rate (avg. 3%), packet

corruption rate (avg. 3%) and packet re-ordering rate (avg. 5%) between mobile de-

vices and our VSPA tool. Using iperf [65], we also generated a heavy TCP tra�c to

the same network to overload the network.

• We manually moved the slide bars of the video players during a download. For each

experiment, we moved the bar ten times to the unbu↵ered point and abandoned the

videos during playback.

Table 4.1 shows the experimental results. We did not experiment with the iPhone 3G

running iOS 4.1.2 for Netflix because Netflix only supports iOS 5 or later. Our analysis

shows that for YouTube, Android su↵ers form a lower discard ratio than iOS. That is

mainly because the YouTube video player for iOS sends more HTTP GET messages with

new TCP connections than the video player for Android, in order to download the redundant

video content for potential re-play activities 2.4.1. For Netflix, iOS shows a lower discard

ratios compared to Android. As we stated before, the video player for iOS periodically

requests a small chunk of video. On the other hand, the player for Android requests the

entire video file at one go. When it changes the quality level, it requests the entire file

(from the current playing point to the end) for the newly assigned bitrate. This causes a

large number of packets in flight that are discarded at the player. In addition, we found out

that the discard ratio is a↵ected by hardware performance of a viewer’s device. For Netflix,

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 48

Table 4.1: Average and standard deviation of discard ratio (%) while playing YouTube and

Netflix videos on mobile devices over Wi-Fi, 3G and 4G networks under fluctuating network

conditions

Device OS version YouTube Netflix

iPad 3 iOS 6.1.2 11.77% (1.23) 0.13% (0.09)

iPhone 4S iOS 6.1.2 11.25% (1.22) 0.5% (0.48)

iPhone 3G iOS 4.1.2 13.01% (9.02) Not available

Nexus 7 Android 4.1.2 1.79% (0.45) 11.11% (9.1)

Nexus S 4G Android 4.1.1 9.23% (1.81) 1.413% (0.68)

Nexus S 4G shows lower discard ratios compared to the Nexus 7. That is because only the

low video bitrates (smaller size than high bitrate) are selected on the Nexus S due to the

small size of the display screen.

4.2.2 Summary of key observations

Through our experimental results, our found out that discard ratio is closely related to

the performance of viewers’ devices and the network conditions while playing videos. For

instance, the large number of video packets which are sent by the video content server before

receiving a TCP RST packet will be discarded when the RTT between the server and the

viewer is long and the receiver TCP window size is large (Figure 4.2). As we described

before, the more HTTP GET messages via new TCP connections an ABR player sends, the

more delivered video packets is likely to be discarded. Also, if the network is congested, the

HTTP GET messages may get lost or retransmitted, which will further increase the discard

ratio.

4.3 Improving OTT video content delivery in 4G networks

Wireless network resources such as radio spectrum and backhaul transport between the base

station and the core network are limited and expensive. As described in Section 4.2, current

OTT video players may waste a large amount of network resources and cause additional

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 49

�

�

��

��

��

��

��

��

��

� �� �� �� �� ��� ��� ��� ���

D
is

ca
rd

 ra
tio

 (%
)

Standard deviation of RTT (ms)

Figure 4.2: RTT vs. discard ratio (%)

mobile data usage paid by the clients. In order to resolve the ine�ciency, we propose a

dynamic QoS-aware video streaming in 4G networks.

4.3.1 QoS in 4G networks

We first describe a brief background of how QoS in 4G networks would be implemented

on bearers1 between a client and P-GW. The QoS level determines how an IP packet flow

is handled at eNodeB when it experiences congestion, influencing scheduling policy, queue

management and rate shaping. There are two types of bearers; the dedicated bearer and the

default bearer. A default bearer is established when a client is connected to a 4G network,

and several dedicated bearers can be added when it needs QoS-enabled services such as

VoIP and video streaming.

There are two types of dedicated bearers; the Guaranteed Bit Rate (GBR) type and

the non-Guaranteed Bit Rate (non-GBR) type. In a GBR mode, it provides minimum and

maximum guaranteed data rate per an Evolved Packet System (EPS) bearer using GBR

and Maximum Bit Rate (MBR) parameters. In a non-GBR mode, on the other hand, a

bearer provides a best-e↵ort packet delivery. Even though non-GBR bearers do not provide

1A bearer means a virtual pipe line connecting two or more points in a 4G network.

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 50

���S ���S ���S ���S ���S ���S ���S

���S ���S

���S ���S ���S ���S ���S ���S

���S

Rebuffering: throttled TCP throughput > required bitrate for 360p

Rebuffering

Elapsed time

TC
P

 th
ro

ug
hp

ut

Avail. TCP throughput over air interface

Throttle TCP throughput until
the network becomes stable

Case 1: Requested bitrate by an ABR player

Case 2: Requested bitrate by an ABR player with QoS-aware approach

Figure 4.3: The impact of controlling TCP throughput on video QoE

a guaranteed data rate, LTE still enables managing QoS by using the A-AMBR and the

UE-AMBR parameters:

• A-AMBR: This indicates the maximum possible data rate for all best e↵ort services

for all clients connected to a specific access point name (APN).

• UE-AMBR: This represents the maximum possible data rate for all of best e↵ort

services for a particular client. It prevents a client from taking all the available

bandwidth from the other 4G clients over the same air interface.

The 3GPP standards have defined nine QoS class identifiers (QCIs) in total which are

characterized by priority, packet delay budget and packet error loss rate. According to the

standardized QCIs in 4G networks [78], bu↵ered video streaming is assigned to QCI 6, 8

and 9, which indicate non-GBR type, 300ms packet delay tolerance and 10-6 acceptable

packet error loss rate.

4.3.2 Dynamic QoS-aware video content delivery in 4G networks

When network conditions are fluctuating, ABR players may repeatedly switch bitrates while

playing a video. This may result in frequent rebu↵erings and a large amount of packet dis-

card, as shown in Figure 4.3 (Case 1). To solve this problem, we propose di↵erentiated QoS

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 51

'URSSHG

Viewer P-GW Video content server

Figure 4.4: P-GW selectively drops the potential wasted video packets

solutions that dynamically change QoS parameters based on network conditions between

viewers and eNodeBs. The proposed architecture requires no changes by either a server or

a client. It is designed to perform the following two objectives:

1) Swiftly downgrading QoS parameters based on network capacity over the

air interface - An ABR player specifies the requested video bitrate in the HTTP GET

message. P-GW can inspect the URL and obtain the requested bitrate information

selected by the player. For example, it typically requires at least 0.8Mb/s for HQ

(360p) videos and 5.4Mb/s for HD (720p) videos. In our proposed architecture,

P-GW controls the maximum possible data rate of the video streaming flow under

varying network conditions. This prevents frequent bitrate changes by the player and

assists the player in selecting an appropriate bitrate for a smooth streaming. As a

result, this can improve QoE of viewers (Case 2 in Figure 4.3). We describe the

experimental results in Section 4.4.

2) Discarding potential wasted video content in advance before being deliv-

ered to viewers - In the previous section, we described that an ABR player sends

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 52

Viewer A

Viewer B

eNodeB

Feedback

P-GW

QoS rules

Internet

Video content server

Figure 4.5: Testbed setups for evaluation

a TCP RST segment each time it receives an unexpected video packet via the termi-

nated TCP port. We intend to drop the unnecessary video packets in advance before

delivering them to the viewer over the air interface. In our proposed architecture,

P-GW acts as a firewall that performs TCP header inspection and discards the un-

wanted tra�c. When it captures the TCP FIN or RST segments sent from the video

player, it starts discarding the video packets destined for the closed TCP port (Fig-

ure 4.4). This has the advantage of saving downstream bandwidth from the P-GW to

the viewer.

4.4 Performance evaluation of the dynamic QoS-aware video

streaming platform

In this section, we evaluate our dynamic QoS-aware video streaming platform. We measure

the QoE of viewers and compare the discard ratio while playing YouTube and Netflix videos

on mobile devices over Wi-Fi networks.

Building a testbed in Wi-Fi - Instead of using simulators such as MATLAB [79] and

OPNET [80], we have designed a testbed using Wi-Fi to take realistic OTT video streaming

tra�c into account. As shown in Figure 4.5, in our prototype, a Wi-Fi access point and a

proxy server, respectively, act as an eNodeB and P-GW. All the video packets between a

viewer and a video content server pass through the proxy server.

We designed a set of QoS rules (Algorithm 1) to control the video streaming flows. These

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 53

Algorithm 1

1: if an HTTP GET msg received from a video player then

2: if BR

req.

� BW

avail.

or

SNR

avg.

 N

thr.

then

3: (Step 1) Throttle TCP throughput of the video streaming flow until the network

conditions become stable

4: end if

5: end if

6: if TCP RST or FIN received from a video player then

7: SET

closed

 TCP

srcport

8: end if

9: if a video pkt received from a video server then

10: if TCP

dstport

in SET

closed

then

11: (Step 2) Discard the video packet

12: else

13: Pass the video packet to the video player

14: end if

15: end if

rules are designed to implement our proposed QoS-aware video streaming platform in 4G

networks. Let BR

req.

be the requested bitrate selected by the video player. BW

avail.

and

SNR

avg.

respectively denote the available bandwidth to the video stream and the signal-to-

noise ratio (SNR) over the air interface. During the experiments, we calculated the average

of SNR every five seconds, and compared the value with the predefined SNR noise threshold

(N
thr.

) to decide if the network was fluctuating or not. We note that the proxy server acting

as P-GW only throttles TCP throughput when the video player requests an inappropriate

bitrate for the given network conditions. It will decrease the maximum allowable TCP

throughput on the video streaming flow, which leads the video player to switch to lower

bitrates quickly.

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 54

The testbed was set up as follows: A hundred YouTube and Netflix videos were ran-

domly selected. During the experiments, the average playing time of each video was about

10 minutes. Two viewers (ViewerA andB) on iPads requested the same video in the same

network. We only applied our QoS algorithm to ViewerB and compared the performance

against the baseline measured through ViewerA. The video players dynamically selected

bitrate among 360p, 480p and 720p based on their own ABR heuristics. We installed a

Linksys WRT54GL (802.11b/g - 54Mb/s) Wi-Fi access point [81], and installed an open-

source firmware, DD-WRT [82], on it. We wrote a script on the access point to periodically

(every five seconds) report feedback on the network conditions to the proxy server. The

feedback contains the transferred RX and TX bytes (used to calculate the available band-

width) and SNR (dBm) on the air interface. To make the network fluctuate, we periodically

turned on and o↵ home networking devices (baby monitors and cordless telephones) that

cause Wi-Fi interference at 2.4GHz. To load the network, we also intentionally added the

TCP tra�c using a network testing tool iperf [65]. During the experiments, we measured

the SDN on the access point. The average SNR was 47 dBm in the clean environment, but

it went down to 18 dBm with interference. Based on the measurements, the SNR noise

threshold (N
thr.

) was set to 25 dBm. When the network condition is unstable (step 1 in Al-

gorithm 1), using netem on the proxy server we set the maximum available TCP throughput

0.2MB/s, 0.4MB/s and 0.7MB/s for 360p, 480p and 720p bitrate, respectively. The proxy

server discarded the packets destined for the closed the TCP connection using netfilter

and iptables [83] (step 2 in Algorithm 1).

Improving QoE of viewers - To evaluate the video QoE, we measured how long the viewer

experienced rebu↵erings while watching a video. ViewerB with our QoS-aware approach

experienced an average of 32 seconds less rebu↵ering compared to ViewerA. For example,

Figure 4.6 shows the TCP throughput while playing the same YouTube video on the two

iPad 3 devices in our testbed. We measured the TCP throughput until the video players on

ViewerA and B fully downloaded the video files under the fluctuating network conditions.

As depicted in Figure 4.6a, ViewerA experienced many rebu↵erings during playback (72

seconds out of 225 seconds). During the experiment, it sent 100 HTTP GET messages

in total and the discard ratio was 11.6%. On the other hand, while employing our QoS-

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 55

0"

5"

10"

15"

20"

25"

0" 50" 100" 150" 200" 250"

M
b/
s"

Elapsed"0me"(seconds)"

360p 720p 720p 360p

Rebuffering

(a) ViewerA without a dynamic QoS-aware approach

0"
0.5"
1"

1.5"
2"

2.5"
3"

3.5"
4"

4.5"
5"

0" 20" 40" 60" 80" 100" 120" 140"

M
b/
s"

Elapsed"5me"(seconds)"

360p 720p

Rebuffering

(b) ViewerB with a dynamic QoS-aware approach

Figure 4.6: TCP throughput while playing a YouTube video on iPad 3

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 56

Table 4.2: Discard ratio (%) on average while playing YouTube and Netflix videos on mobile

devices over Wi-Fi networks under fluctuating network conditions

Devices
YouTube Netflix

ViewerA ViewerB ViewerA ViewerB

iPad 3 13.54% 0.87% 0.16% 0.01%

iPhone 4S 12.72% 0.03% 0.5% 0.38%

iPhone 3G 20.72% 0.14% Not Avail. Not Avail.

Nexus 7 2.16% 0.49% 14.86% 0.13%

Nexus S 4G 8.54% 0.01% 11.25% 0.15%

aware algorithm (Figure 4.6b), the TCP throughput of the video streaming on ViewerB was

adjusted to better cope with the measured fluctuations in the channel quality. After the

TCP throughput was congested at time 9 due to the baby monitor and the cordless phone,

it took only 10 seconds for the video playerB to change the quality. As the low bitrate

was selected, it played the video with much fewer rebu↵erings. Consequently, ViewerB

experienced rebu↵erings only 15 seconds out of 132 seconds until it fully downloaded the

entire video file. Unlike ViewerA, it only sent 12 HTTP GET messages, and showed a

discard ratio of 0.41%.

We may achieve this by improving ABR heuristics in an ABR player. For example, given

the fluctuating network conditions, a more conservative bandwidth adjustment approach

can avoid the frequent bitrate changes as shown in Figure 4.6a. We elaborate the details in

Chapter 6.

Saving bandwidth over the air interface - We analyzed a TCP dump file for each

experiment, and calculated the discard ratio to compare the performance. As shown in

Table 4.2, employing our dynamic QoS-aware algorithm yields lower discard ratio. For

instance, our proposed solution reduced the discard ratio up to 20.58% (case of iPhone 3G

and YouTube), compared to the baseline.

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 57

4.5 Related work

Several researchers have characterized HTTP-based video streaming. In 2011, Finamore

et al. [84] focused on analyzing the di↵erences between the network tra�c patterns when

accessed from PCs over wired networks and from mobile devices over Wi-Fi networks.

They showed that the video delivery mechanism of YouTube is more e�cient for PCs than

for mobile devices due to the limited capabilities of the mobile devices. In 2008, Zink et

al. [85] analyzed YouTube tra�c in a university campus network. By analyzing TCP/IP

and HTTP packets, they characterized the duration and popularity of YouTube videos, and

access patterns for YouTube video streaming. Based on their measurements, they proposed

proxy-caches for video streaming to save network tra�c and enhance the QoE of viewers.

In 2011, Rao et al. [86] identified the streaming strategies used by YouTube and Netflix

when using Wi-Fi. They showed that the streaming strategies vary depending on the

video players and the types of container (e.g., ogg, mkv, and avi) used for delivering video

content to a viewer. Hoque et al. [87] conducted a measurement study of three popular

video streaming services (YouTube, Dailymotion and Vimeo) on mobile devices over Wi-Fi

and 3G networks. They analyzed the energy e�ciency of the five di↵erent video streaming

techniques used by the mobile video streaming services. In 2013, Liu et al. [47] analyzed and

compared the performance of YouTube video streaming between Android and iOS mobile

devices. They showed that Android and iOS use di↵erent approaches for downloading a

video. After analyzing the tra�c patterns of YouTube and di↵erent bu↵er management

methods, they found out that iOS devices receive more duplicate YouTube video content

than Android devices do. The duplicate video content a↵ects the discard ratio as described

in Chapter 4.2. In 2012 and 2013, Huang et al. [88; 89] have shown that many factors such

as the size of a video chunk, dynamic TCP congestion control algorithm and competing

flows in the same network make it hard to pick a proper bitrate on viewers. To resolve

the issue, they have introduced playout bu↵er-based rate adaptation for HTTP-based video

streaming.

In addition to studying the characteristics of ABR streaming, we focus on finding the

root cause of video packet discard on mobile devices over Wi-Fi, 3G and 4G networks. No-

ticeably, in some cases, a significant amount of video content may be discarded by a video

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 58

player after transferring content over the bandwidth limited air interface, resulting in unde-

sirable waste of resources. To mitigate the misuse of network resources, we strengthen the

4G architecture evolved with our selective packet discarding mechanism. We also designed

a dynamic QoS algorithm to improve video QoE.

4.6 Discussion

The general proxy-based approaches [90] are similar in spirit to our approach. In a 4G

network, we can achieve this using Deep Packet Inspection (DPI) on P-GW such as Cisco’s

multimedia core platform [91] instead of deploying additional proxy servers between the

mobile network and the video content servers in CDNs. In addition, our solutions can be

compared to various split-TCP approaches that separate the volatile wireless link from the

more-stable long-haul link [92]. Under unreliable wireless network conditions, the middlebox

relays the video data to the viewer at a steady rate (by controlling the TCP throughput)

in order to prevent frequent bitrate changes at the video player. Our future work is to

empirically compare the performance of these techniques depending on various network

conditions.

The limitation of our approach is that the proposed solution may not work properly

for an encrypted HTTP connection. To detect video streaming tra�c, we may use a DPI-

based method that matches regular expressions based on the Server Name Indication (SNI)

information [93]. However, it is di�cult to monitor all the TCP source port numbers

in HTTPS GET messages generated from the viewers’ devices during a playback for our

selective packet discarding mechanism. In this case, using Deep Packet Inspection of Secure

Socket Layer (DPI-SSL) on a P-GW would be a possible option to address this issue [94;

95].

4.7 Conclusions

This chapter explored and analyzed two of the most popular OTT streaming services

(YouTube and Netflix) on mobile devices (iOS and Android) over three wireless networks

(Wi-Fi, 3G and 4G). While delivering a video to a viewer over HTTP, we observed that a

CHAPTER 4. TOWARDS DYNAMIC QOS-AWARE OTT VIDEO STREAMING 59

noticeable amount of video packets gets discarded without being stored in the video play-

out bu↵er, after the successful delivery to the viewer’s device. The discarded video content

occurs when a TCP connection is repeatedly terminated and established. In such cases, the

video packets that arrived via the terminated TCP connection get discarded.

To reduce the waste of network tra�c and enhance video QoE for viewers, we propose

a dynamic QoS-aware video streaming platform in 4G networks. Based on the feedback

of network conditions over the air interface, P-GW is designed to assist a video player in

selecting a proper bitrate under fluctuating network conditions, by dynamically throttling

the maximum allowable TCP throughput on the video streaming flow. By monitoring

TCP/IP and HTTP packets in real time, it also enables to discard the unnecessary video

packets in advance before being delivered to the viewer. Our experimental results show that

the proposed solution can save a significant downlink bandwidth (up to 21% improvement)

over the air interface, and provide a better viewing experience on mobile devices.

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 60

Chapter 5

Towards QoE-aware Video

Streaming using SDN

5.1 Introduction

Video service providers use CDNs to speed up the delivery of their contents to viewers.

Today’s CDN-based streaming assigns a geographically close content server to a viewer.

However, even if the content server is located near the viewer, it does not always guarantee

stable network conditions (Chapter 3). To improve video QoE, they use ABR technologies

where an ABR player automatically adjusts bitrates based on the network condition. How-

ever, this client-side mechanism is not helpful in discovering the bottleneck that degrades

the video quality during playback.

To mitigate the issue, we suggest to implement an SDN-based video streaming platform.

Figure 5.1 shows our proposed architecture. Network operators deploy their own SDN

controllers in their network domains and obtain network information on WAN routers in

real time using OpenFlow [96]. Our video optimization server communicates with the SDN

controllers via northbound APIs and video service providers to update video information

(e.g., bitrate setting and addresses of video content servers in CDNs). The optimization

server finds the best available content server depending on network conditions provisioned

via the SDN controllers when a viewer requests a video. Based on various QoE metrics

reported from video players, it enables dynamically changing routes in WANs using MPLS-

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 61

CDN A

SDN Controller

CSPF based
MPLS-TE

Network
Monitoring Configuration

Video
Database

Video optimization server

CDN B CDN C

Web server
(e.g., www.youtube.com)

Video player

Figure 5.1: Video QoE-aware streaming platform using SDN

TE. When rebu↵ering events occur, for example, it sends queries to the SDN controllers to

analyze network conditions (e.g., TCP throughput and packet loss rate) on the streaming

flow and change the route if applicable.

We implement our SDN solutions using Junos Space SDK [26] that can monitor and con-

trol networking devices of Juniper Networks. In our testbed, we have created a lightweight

plug-in in an HTML5 video player to monitor various QoE factors (e.g., rebu↵ering sta-

tus and video bitrate) to analyze user-perceived experience when a video is playing. Our

WAN tra�c monitoring system is designed to communicate with the SDN controllers using

RESTful APIs to visualize the network information in real time.

The remainder of the chapter is organized as follows. In Section 5.2, we briefly address

problems on existing OTT video delivery systems. Our proposed SDN platform is described

in Section 5.3. We explain our implementation in Section 5.4 and evaluate our solution in

Section 5.5. We look at related work in Section 5.6. The challenges of our approach are

addressed in Section 5.7. Finally, we summarize our conclusions in Section 5.8.

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 62

5.2 Problems on existing OTT video delivery system

OTT video delivery can be challenging because viewers, video service providers (e.g., YouTube

and Netflix) and network operators (e.g., ISPs) involved do not have a global view of the

end-to-end network condition. In this case, a video service provider does not have access

to both the transit ISPs and the last mile network that actually reaches the viewer. Once

a viewer is connected to a content server in a CDN operated by a third party, it is di�cult

for the service provider to track the network condition during playback. In addition, the

content server is rarely switched to another node after the video starts. Thus, it is possible

for the viewers to experience frequent rebu↵erings until the end of the video if the network

is unstable. Even if the viewers pay for HD videos, they can end up watching low bitrates

due to the Internet-side or CDN-side network problems.

In order to mitigate these problems, today’s OTT video service providers take advantage

of ABR technologies where a video player automatically adjusts bitrates depending on the

network conditions (Chapter 2). Even though the streaming technologies are designed to

provide smooth streaming, it does not resolve the root cause of the congestion. For instance,

if the main problem is due to the link congestion in wide area networks (WANs) or the

content server’s malfunction, changing the bitrate is not the best way to improve video

QoE. Furthermore, according to our analysis of video selection algorithms in Chapter 3, a

geographically close content server is assigned to the viewer. Even though a cache server

located near a viewer typically provides fast delivery, the network condition can be unstable

and in such case, other content servers that are located further away may be able to provide

a more reliable streaming experience.

5.3 QoE-aware video streaming using SDN

We leverage SDN to assist video service providers in selecting the best content servers when

viewers request videos. In addition, we propose a Constrained Shortest Path First (CSPF)

path selection algorithm over MPLS in order to find the best route for each streaming

flow in WANs. As shown in Figure 5.1, our proposed SDN-based video streaming platform

consists of a video optimization server, a video web server, distributed content servers in

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 63

CDNs and a viewer. Taking into account scalability and performance issues, operators

may deploy multiple SDN controllers in their network. Using an SDN controller, our video

optimization server (as an SDN application) monitors network conditions and updates the

routing tables of WAN routers in the network. A typical utility scenario proceeds as follows:

1) A viewer sends a video request to a video web server (e.g., www.youtube.com).

2) The web server sends our video optimization server a list of available content servers

that can stream the requested video at the moment.

3) Our SDN application analyzes the network conditions of each connected link on the

paths to the viewer. The proposed measurements for video streaming include available

bandwidths, packet loss rates and jitter. It chooses the best available content server

and stores the connection information such as IP addresses of the viewer and the

selected content server, an assigned MPLS label and selected video bitrate in the

video database.

4) Once the connection is established, the video player running on the viewer’s device

periodically reports video QoE metrics to the video content server (Section 5.3.1).

5) When a rebu↵ering occurs, our video optimization server tries to pinpoint a bottleneck

(Section 5.3.2). It is designed to find the best available routing path based on the

CSPF algorithm over MPLS (Section 5.3.3).

6) We dynamically change the content server if all available paths from the assigned

node experience congestions. In this case, the first assigned content server sends

an HTTP redirection message to the video player, and has the viewer connected to

another available content server that can provide the content with higher networking

performance. The address of newly assigned content server can be obtained directly

from the video optimization server. Once the viewer is connected to the new content

server, the video player continues to play the rest of the video.

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 64

5.3.1 Application-level video QoE metrics

Video service providers typically do not have any access to last mile networks (e.g., local

ISPs) of viewers. We propose to measure end-to-end network conditions between a video

player and a content server. In our proposed architecture, the content server is designed

to periodically receive various QoE measurements directly from within the video player in

order to analyze user-perceived video quality.

Existing QoS metrics such as packet loss rate, goodput, delay, jitter and throughput

are used to indicate the impact on the video quality from the network operator’s point of

view, but do not present the user-perceived video quality. Moreover, it is di�cult to use the

traditional Peak Signal to Noise Ratio (PSNR) [97] where received frames and referenced

frames of an original video are compared to measure video QoE. However, such frame-to-

frame comparison mechanism does not directly reflect the common QoE metrics such as

video start-up latency, rebu↵ering rate and playout bu↵er status [98; 99].

5.3.2 Pinpointing a bottleneck using SDN

Our video optimization server is capable of catching rebu↵erings based on the feedback

directly from a content server that obtains the QoE metrics from a video player. It is

straightforward to find the bottleneck link in an SDN-enabled network. When a rebu↵ering

occurs, it first obtains the flow information from the video database (Figure 5.1) such as

source and destination IP addresses, routing paths (selected MPLS labels) and requested

video bitrate. Then, it sends queries to collect the current data rate of the video streaming

flow on each connected link on the path (e.g., obtaining network statistics of an individual

flow using OpenFlow [96]). There is a recommended downloading bitrate that represents

the amount of bitrate required to play the selected bitrate without any viewing interference.

For example, YouTube requires 2.5Mb/s for 720p and 725 kb/s for 360p. If a link provides

lower data rate than what is required for the current streaming flow, we define this link as

a bottleneck, which may be the cause of rebu↵erings on the viewer’s device.

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 65

Table 5.1: Required TCP throughput for CSPF-based path selection algorithms

Selected bitrate Required TCP throughput

1080p 5Mb/s

720p 2.5Mb/s

480p 1Mb/s

360p 725 kb/s

240p 325 kb/s

5.3.3 Dynamic network condition-aware path optimization with SDN

We use MPLS-TE over SDN to control video streaming flow [100; 101]. MPLS enables ISPs

to provide QoS in layer 3 networks. In an MPLS network, routers perform packet-forwarding

decisions based only on the labels assigned on data packets instead of inspecting an IP

address of each packet. Di↵erent MPLS labels are assigned to corresponding Labeled Switch

Paths (LSPs). Typically, those labels are attached to IP packets or removed from the packets

at Label Switch Routers (LSRs) and label swapping can be performed on the intermediate

routers. From a QoS standpoint, MPLS-TE allows network operators to e�ciently manage

di↵erent kinds of data streams based on service plans and speed up network tra�c flow.

According to recent studies [100; 101], the MPLS-TE architecture can be more flexible and

simpler on a SDN platform compared to the traditional implementation, by separating the

control plane from the data plane. In this chapter, we apply it to the video streaming use

case and build a prototype to show the feasibility of developing MPLS-TE over SDN.

We implement a CSPF algorithm over MPLS-TE in order to select the best available

route from a content server to a viewer. It runs the shortest path algorithm after selecting

links that meet a given set of constraints. In our case, we take account of three constraints

(current available TCP bandwidth, packet loss rate and jitter) that are typically considered

important for video streaming. When a viewer experiences a rebu↵ering, for example,

our optimization server collects network conditions on the connected links and runs the

CSPF algorithm with the required bandwidth in Table 5.1 to find the best available LSP.

We consider packet loss rate (< 5%) for bu↵ered video streaming and put more weight on

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 66

Problems

Change a route

Yes

No

•  QoE metrics
from video player

Problems on last mile
networks

Received a video
request

•  Based on the provisioned
network conditions using SDN

Rebuffering?

Yes
•  Analysis of WANs

using SDN

Problems
on links?

Yes

No
Change a delivery node

•  MPLS-TE with CSPF

Dynamic condition-
aware 1) delivery node
selection & 2) routing
path selection

in WANs?

Figure 5.2: A simplified flowchart of a decision tree

packet jitter (< 20ms) for UDP-based live streaming.

Basic CSPF algorithms where a set of video streaming requirements is considered to

select the best LSP may encounter load-balancing problems on WAN links. For instance, if

multiple viewers request to change routes from the same time and place, the current CSPF

algorithms may lead all the viewers to take the same LSP. If the selected link is running at

80% - 90% utilization and sudden spikes of network tra�c arise (e.g., during busy hours),

the link may become overwhelmed and start to drop packets, which eventually leads to poor

video QoE. Taking into account the load-balancing on WAN links, our CSPF algorithm has

the following rules:

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 67

Network-aware	appNetwork-aware	app
Junos	Space

Web	app	server

Network-aware	app

RESTful	web	service

Device	management	interface

Network-aware	app

Junos	Space
REST	API

Network-aware	appNetwork-aware	appMashup	app

REST	API

Routers,	switches,	security	devices
Data	packets

Network	abstraction	layer Network	configuration

Figure 5.3: Junos Space architecture

1) Prune WAN links that do not satisfy the required bandwidth, packet loss rate and

jitter.

2) If multiple LSPs that meet the requirements are available, select the LSP with the

lowest link utilization.

3) If several LSPs have the same link utilization, select the LSP with the smallest number

of hops.

In summary, Figure 5.2 shows our simplified flowchart of a decision tree in our proposed

SDN-based video streaming platform.

5.4 Implementation

As a proof of concept, we have implemented our SDN-based video streaming architecture us-

ing Junos Space that is a comprehensive network management solution developed by Juniper

Networks [26; 102]. It provides a centralized management plane across Juniper’s switching,

routing and security networking devices (Figure 5.3). The platform allows third parties

to control the devices through standards-based Representational State Transfer (RESTful)

APIs. Our proposed platform is designed to improve network utilization and user-perceived

video quality under dynamic network conditions. In order to achieve this, we have imple-

mented server and client-side applications over SDN.

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 68

LSP 1 LSP 2

LSP 3 LSP 4

Video content
server VM Client VM

NY Miami Dallas SF

Chi

LA Hou Tampa

Figure 5.4: Implementing a testbed using Junos Space and WAN routers of Juniper Net-

works

• Server-side application: This is a video optimization server that determines the

best routes and updates MPLS labels in real time based on our CSPF-based algorithm.

It communicates with the SDN controller using RESTful APIs. It also provides GUI

in order to visualize network topology and networking statistics.

• Client-side application: This is a lightweight plug-in embedded in an HTML5

video player. It is designed to identify the video bitrate selected by a viewer and

periodically report user-perceived quality to a content server. The QoE metrics include

the player’s state (e.g., playing, paused and finished) and the status of video playout

bu↵er while downloading a video. The information is periodically delivered to the

connected content server over HTTP POST messages.

Figure 5.4 shows our testbed network1. A network control machine using the Junos

Space SDN platform is connected to eight Juniper edge routers. The routers use MPLS to

deliver video packets. Each router references the MPLS short label to decide a LSP route

of tra�c flow instead of performing an IP address lookup. The video packets are delivered

from the server located in SF to the viewer located in NY via one of the four predefined

LSPs.

1All edge routers are placed in the lab in New Jersey. We use the di↵erent location labels and emulate

WAN network conditions.

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 69

5.5 Evaluation

Due to the di�culties of creating real WAN tra�c and in order to test our routing algorithms

extensively in various scenarios, we have created a simulation tool that reflects the same

network topology as in our testbed. In our simulated network, video packets are delivered

from virtual hosts (video servers and viewers) via the links that are connected among

virtual WAN routers. The video player running on the client-side has been designed to

adjust bitrates based on downloading TCP throughput of streaming flow in the network.

We assume that links with 100Mb/s bandwidth capacity are running between 80% and

90% utilization during busy hours. In order to simulate real network conditions, we take

into account recent mobile streaming statistics [103] indicating that most viewers watch low

or medium bitrates, and about 1% of total mobile subscribers watch high definition (e.g.,

720p and 1080p) videos. Based on the information, we inject background tra�c flows on

each link that follow a Poisson distribution where 200 viewers on average request a video per

minute from each router and 99% of total streaming flows generate 0.5Mb/s on average and

1% of total flows consume 2.5Mb/s bandwidth on average. In order to show the feasibility

of our approach, we measured the following two scenarios:

1) Non-ABR streaming: A non-ABR video player does not switch bitrates during a

download. Without our solution, a viewer continues to watch a video with 1080p via

LSP 2 that has minimum number of hops among LSPs. In QoE-aware streaming, the

player downloads the same video via dynamically changing LSPs based on our CSPF

algorithm.

2) ABR streaming: An ABR player automatically adjusts bitrates based on network

conditions (Chapter 2). Without our solution, the player switches bitrates but does

not change LSPs. In QoE-aware streaming, the player downloads the 1080p video via

dynamically changing LSPs. It only degrades bitrates if there are no available LSPs

that meet the required TCP throughput (e.g., 5Mb/s for 1080p).

We experimented each scenario five times and evaluated the performance. Figure 5.5

shows the available bandwidth on each LSP in Scenario 1 (one download). For the first 20

minutes, there are no good LSPs with more than 5Mb/s of available bandwidth. Figure 5.6

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 70

�� ��� ��� ��� ��� �������

�

�

�

�

��

��

��
�� ��� ��� ��� ��� �������

�

�

�

�

��

��

��
�� ��� ��� ��� ��� �������

�

�

�

�

��

��

��
�� ��� ��� ��� ��� �������

�

�

�

�

��

��

��

����S ����S ����S ����S

Elapsed time (minute) Elapsed time (minute) Elapsed time (minute) Elapsed time (minute)

M
b/
s

M
b/
s

M
b/
s

M
b/
sLSP1 LSP2 LSP3 LSP4

Figure 5.5: Available bandwidth capacity on LSPs in Scenario 1

shows the experimental results in Scenario 1. The abscissa represents the elapsed time

and ordinate indicates the downloading data rate at client-side. We measured the data

until the player completely downloaded the video content. We monitored the accumulated

received bytes every minute and compared the downloading data rate with the required

bitrate of the selected bitrate. We put a square box if the video player experienced bad

networking conditions (downloading data rate< required bitrate) for at least five seconds

during the sampling period. In such unstable network conditions, there is a high possibility

of experiencing rebu↵erings at the client-side.

For non-ABR streaming without our solution, the video player had bad viewing expe-

rience for 52minutes out of 100minutes (the total length of square box) due to tra�c, via

LSP 2. It took 111minutes to download the full size of the video. The video player with

our QoE-aware mechanism over SDN experienced unstable networking conditions for only

21minutes in total. At the beginning, the SDN controller switched the path from LSP2 to

LSP3 since it was the best one among all the others, and then it changed to LSP 1 at time

t = 39minutes to provide a fast delivery. As shown in Figure 5.6b, it took only 63minutes

to download the entire size of the video.

For ABR streaming, we played a 1080p movie lasting 100minutes long. We measured

how often the video player switched bitrates while playing the video. Figure 5.7 shows

our experimental results. The ordinate represents the video bitrate selected by the video

player. As we see in Figure 5.7a, the video player often changed bitrates and su↵ered

from more periods with bad viewing experience, compared to the one in Figure 5.7b. In

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 71

Table 5.2: ABR video bitrates chosen as fraction of time and period of bad viewing expe-

rience while playing a video with 100minutes of length

Static route Our QoE-aware solution

Avg. bad viewing experience

period out of 100minutes
10.4minutes 4.6minutes

1080p 69% 77%

720p 20% 16%

480p 11% 7%

this experiment, the video player with a static route played 1080p, 720p and 480p bitrate

for 50minutes, 24minutes and 26minutes, respectively. On the other hand, the video

player with our QoE-aware mechanism downloaded the 1080p video most of the time. We

conducted the same experiment a hundred times and calculated the statistics. As shown

in Table 5.2, our QoE-aware mechanism over SDN reduces the bad viewing experience by

5.8minutes on average, and provides higher bitrates while the video player downloaded the

content.

5.6 Related work

Traditionally, QoS routing has been studied to compute the best network routes for the

requested QoS parameters and improve the network resource utilization. Shigang et al. [104].

have addressed the overview of QoS routing algorithms such as source routing, distributed

routing and hierarchical routing. They have presented the strengths and the weaknesses

of di↵erent routing algorithms. Vitoria [105] has described a practical architecture for

implementing a QoS-enabled IP network. In the article, she has addressed several IP and

QoS technologies such as MPLS, IPSec, tra�c shaping and VPNs in WANs to build end-

to-end QoS for VoIP.

Several researchers have investigated an application-aware SDN platform and WAN

routing control using SDN. Zafar et al. [106] focus on a mobile application detection frame-

work. They use a tra�c classification technique based on machine learning to identify the

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 72

application types in SDN. Ali et al. [100] have introduced MPLS-TE and MPLS VPNs with

OpenFlow. They have shown a demo where MPLS control plane features are implemented

on an SDN platform. Saurav et al. [101] have demonstrated application-aware aggregation

and tra�c engineering in a packet circuit network. Using a NOX SDN controller [107], they

dynamically controlled packet flows based on di↵erent application types.

Michael et al. [108] have shown SDN-based application-aware networking for YouTube

video streaming. They have conducted a performance test of several path selection mecha-

nisms such as round-robin, bandwidth-based, deep packet inspection-based and application-

aware in an SDN-enabled network. The Aricent group [109] has introduced application-

aware routing with SDN as a business model. They address that SDN-based routing con-

trol allows service providers to lower operating expenses and improve the overall end-user

experience.

5.7 Discussion

Our approach di↵ers from the prior work in two aspects: First, we focus on video streaming.

Unlike other approaches that introduce application-aware SDN platform, we have designed

our solution from the perspective of video service provider. With the support of SDN

platform, we dynamically control video streaming routes in WANs and change video content

servers based on real-time network conditions. Secondly, we have implemented our solutions

using a commercial o↵-the-shelf SDN platform, Juniper network’s Junos Space [26], to show

the feasibility of our approaches.

Some researchers address challenges and limitations on building the SDN platform in

WANs [110; 111; 112; 113]. First, it is necessary to create a standardized northbound API

above the SDN controllers. In our proposed architecture, ISPs operate their own SDN

platform and share various networking information in real time using the northbound APIs

such as RESTful. Therefore, they need to decide what types of networking parameters

the controllers should pass through the APIs or how the controllers communicate among

each others. Secondly, an application-aware routing approach has scalability concerns.

Unlike traditional routing protocols that compute the best paths for a given destination

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 73

using simplistic metrics such as hop count and cost, the application-aware approach assigns

di↵erent paths for a given application such as video or VoIP. To achieve this, the SDN

controllers need to track all the tra�c characteristics, analyze network conditions, compute

the best paths and share the routing information with others in real time. This may cause a

large volume of signaling messages in WANs and may take a long time to decide the routing

paths for all the individual flows for large networks.

5.8 Conclusions

In today’s OTT video delivery platform, it is di�cult to track QoE of viewers once a content

server has been connected to a viewer. Without changing routing paths and content servers,

only switching bitrates at client-side may not resolve the bottleneck problems that degrade

video QoE. For instance, it is possible that the routing paths between the assigned content

server and the viewer experience congestion at the moment.

To resolve this issue, we propose to use MPLS-TE over SDN in WANs. To monitor

watching experience of a viewer in real time, we propose to measure video QoE metrics (e.g.,

rebu↵ering status and video player state) directly from within the video players during a

download. Based on the end-to-end feedback, our video optimization server selects the best

available content server that can stream the content with more reliable network conditions

than others presently and dynamically change routes among WAN routers using MPLS-

TE. In our testbed setups, our proposed QoE-aware mechanism shows 56% improvement

on enhancing viewing experience especially during busy hours. It selects better routing

paths to provide higher bitrates during playback.

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 74

� �� �� �� ��� ���
�

�

�

�

�

��

��

��

����S

Bad viewing experience

Elapsed time (minute)

M
b/
s

(a) Non-ABR streaming with a static route

� �� �� �� ��� ���
�

�

�

�

�

��

��

��

����SM
b/
s

Elapsed time (minute)

Bad viewing experience

(b) Non-ABR streaming with our QoE-aware solution

Figure 5.6: Monitoring TCP throughput and period of bad viewing experience in non-ABR

streaming

CHAPTER 5. TOWARDS QOE-AWARE VIDEO STREAMING USING SDN 75

� �� �� �� �� ���

����S

���S

���S

S
el

ec
te

d
bi

tra
te

Elapsed timeElapsed timeElapsed timeElapsed time

Elapsed time (minute)

Bad viewing experience

(a) ABR streaming with a static route

� �� �� �� �� ���

����S

���S

���S

S
el

ec
te

d
bi

tra
te

Bad viewing experience

Elapsed time (minute)

(b) ABR streaming with our QoE-aware solution

Figure 5.7: Monitoring TCP throughput and period of bad viewing experience in ABR

streaming

76

Part III

ABR Streaming Heuristics

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 77

Chapter 6

An Empirical Evaluation of

Playout Bu↵er Dimensioning in

ABR Streaming

6.1 Introduction

We analyzed the playout bu↵er size in ABR video streaming and its impact on video QoE. As

we described in Chapter 2, an ABR player can avoid frequent bitrate changes and rebu↵er-

ings by storing video data in the bu↵er up to its maximum bu↵er size. Therefore, it may

be reasonable to assume that a larger bu↵er always achieves a better viewing experience.

To test this hypothesis, we first implemented several Microsoft’s Smooth Streaming (SS)

players [114] with di↵erent playout bu↵er sizes, and compared the ABR performance under

the same controlled network conditions. Through our experimental results, we observe that

not only the remaining playout bu↵er level but also its maximum bu↵er size a↵ects bitrate

switching behaviors in ABR streaming. Even though the current bu↵er level is the same,

for instance, the player selects bitrates di↵erently depending on its maximum playout bu↵er

size. To figure out how much it can a↵ect QoE of the viewers, we conducted a survey using

an online crowdsourcing platform. More than 200 participants watched our short video clips

that show distinct bitrate switching behaviors referenced by di↵erent playout bu↵er sizes,

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 78

and scored their viewing experience for evaluation. Our QoE survey reveals that, in gen-

eral, a large bu↵er outperforms a small bu↵er by causing fewer bitrate changes and su↵ering

from fewer rebu↵erings under slowly varying network conditions. But, interestingly, we also

observe that a small bu↵er can achieve higher QoE than a large bu↵er, especially under

fast varying network conditions. When available throughput increases after low bandwidth

periods, a small bu↵er reaches higher bitrates more quickly than a large bu↵er that pauses

downloading the high bitrates until the player consumes all the low bitrates in its large

bu↵er.

Based on these findings, we suggest an ABR player to not only change bitrates but

also switch its maximum playout bu↵er size adaptively depending on the remaining bu↵er

occupancy. The key idea is to store video segments with high bitrates as much as it can

when network bandwidth is su�cient, and reach the high bitrates quickly while the network

stabilizes after congestion. Our experimental results show that instead of using a fixed bu↵er

size (e.g., small or large), an ABR player dynamically switching between small and large

bu↵ers can o↵er 15% higher played bitrate, 70% of fewer bitrate changes and 50% shorter

rebu↵ering duration under varying network conditions.

The remainder of the chapter is organized as follows. Our motivation is described in

Section 6.2. In Section 6.3, we analyze the relationship between playout bu↵er size and

bitrate switching behavior in ABR streaming, and our QoE survey results are presented in

Section 6.4. Our proposed solutions are described in Section 6.5. We look at the related

work and summarize our conclusions in Section 6.6 and 6.7, respectively.

6.2 Motivation

The purpose of using ABR technologies is to provide smooth streaming in the highest pos-

sible bitrate. In our earlier technical report [115], we analyzed ABR performance of two

video streaming services (Netflix and Redbox Instant) under varying network conditions.

Even though they use the same ABR technology (Microsoft’s SS), we observed di↵erent

behaviors in bitrate switching. This is a result of each streaming service using their own

ABR configurations such as di↵erent size of playout bu↵er and segment duration. To com-

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 79

0 50 100 150 200 250 300 3500

1000

2000

3000

4000

5000

Elapsed time (second)

Se
le

ct
ed

 v
id

eo
 b

itr
at

es
 (K

b/
s)

Avail. throughput
Netflix
Redbox Instant

Figure 6.1: Video bitrate changes during playback under fluctuating network conditions

pare their bitrate switching behaviors, we arbitrarily throttled and increased the available

bandwidth in the network between the video players and the Internet access point. The

experimental results are shown in Figure 6.1. Under the fluctuating network conditions in

the experiments, the Netflix player causes fewer bitrate changes than the Redbox Instant’s

player. We also observed Netflix downloading lower bitrates, even though there is enough

network bandwidth available at elapsed time between t = 80 s and t = 110 s. This inspires

our following questions: what factor could cause this di↵erent behavior? Although their

video segments are similar in size (4 s for Netflix and 5 s for Redbox Instant), we noticed

apparent di↵erences in their playout bu↵er sizes. We tracked the playout bu↵er sizes while

the videos were downloaded. We observed that Netflix uses a 245 s bu↵er size while Redbox

Instant uses 29 s. So, could the answers be related to di↵erent size of playout bu↵er in the

players?

According to other work [116; 14], remaining bu↵er space is important for an ABR

player in deciding between increasing, decreasing or keeping the current bitrate for the

next segment. For example, if there is enough content in the bu↵er, the player will not

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 80

necessarily downgrade the bitrate due to the risk of changing bitrates under fluctuating

network conditions. But if the bu↵er is running low, the player will quickly switch to a lower

bitrate in order to avoid potential rebu↵erings. After considering this behavior, however,

we are still left with these questions: if this is indeed the main reason, why do some video

streaming services continue to use small bu↵ers? Are there any trade-o↵s between playout

bu↵er size and video QoE?

In this chapter, we investigate the role of playout bu↵er size in ABR streaming and try

to answer the following questions:

• How di↵erent sizes of playout bu↵ers a↵ect bitrate switching behaviors in ABR stream-

ing?

• Does a large bu↵er always achieve higher QoE than a small bu↵er?

• What factors can be used to analyze the impact of playout bu↵er size on video QoE?

In some cases, measuring network QoS parameters (e.g., downloading throughput, video

packet jitter and latency) is useful in representing the impact on video quality level from the

network operators’ perspective. However, these measurements cannot accurately pinpoint

the video quality perceived by the viewer. So as a way to analyze QoE of viewers, we measure

various playback events (e.g., bitrate changes and rebu↵erings) directly from within video

players using existing ABR streaming platform instead of using QoS metrics.

6.3 Analysis of the role of playout bu↵er size in ABR stream-

ing

In ABR streaming, a playout bu↵er is used to store video data ahead of playing time to

avoid unnecessary bitrate changes and rebu↵erings when networks experience congestion.

Our first step is to understand the role of playout bu↵er size embedded in an ABR player.

In order to analyze the fundamental of ABR heuristics related to the playout bu↵er size, we

implemented customized ABR players and a streaming server using Microsoft’s SS platform.

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 81

Table 6.1: Video bitrate settings - Big Buck Bunny

No. Bitrate Resolution File size

1 2,962 kb/s 12805 720 221MB

2 2,056 kb/s 9925 560 157MB

3 1,427 kb/s 7685 432 113MB

4 991 kb/s 5925 332 81.7MB

5 688 kb/s 4485 252 60.2MB

6 477 kb/s 3685 208 45.2MB

7 331 kb/s 2845 160 34.8MB

8 230 kb/s 2245 128 27.6MB

6.3.1 Testbed setups

Building ABR players and server: We use Microsoft’s Internet Information Services

(IIS) SS APIs [117], also known as Microsoft’s SS player development kit, to build an ABR

player on Microsoft’s Silverlight platform [114]. As a test video, “Big Buck Bunny 720p HD”

was chosen, which is available from the Microsoft o�cial website [118] and last 10minutes

35 s. Microsoft expression encoder was used to encode this video into eight di↵erent bitrates.

The settings for each bitrate are described in Table 6.1. The playback duration of a segment

is two seconds. Using the tool kit, we developed four ABR players, customized with di↵erent

playout bu↵er sizes: BS = 20 s, BS = 30 s, BS = 40 s and BS = 100 s, where BS = t s

denotes the maximum playout bu↵er size with t s. In other words, the player can store video

data up to t s in the playout bu↵er. During the experiments, the players downloaded the

test video from our IIS SS web server on Windows desktops. In order to control network

condition as much as possible, we placed the ABR players and the server in the same

campus network. We note that the RTT is less than 2ms between the players and the

server. Using the IIS logging platform, we retrieved various playback statistics such as

rebu↵erings, initial start-up delay, bitrate changes and remaining bu↵er level in real time.

In addition, we analyzed TCP/IP and HTTP packets generated from the players using

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 82

10Mb/s

0 50 100 150 2000

20

40

60

80

100

120

Elapsed time (second)

Pl
ay

ou
t b

uf
fe

r l
ev

el
 (s

ec
on

d)

100kb/s

0 50 100 150 200 0

10

20

30

40

50

60

N
um

be
r o

f d
ro

pp
ed

 fr
am

e

Buffer level
Frame drop

Figure 6.2: Monitoring a playout bu↵er level and frame drop ratio under changing network

condition with large bandwidth variation

Wireshark, to compare the requested bitrates that are contained in HTTP GET messages

with the actually played bitrates during a download.

Emulating networking conditions: During the experiments, we control the available

throughput using networking emulation tools (e.g., NetLimiter [119] and Fiddler [120]),

allowing full control of incoming and outgoing Internet bandwidth over applications. We

emulate the following network conditions:

• Long-term High and Low cycle: We periodically throttle and increase available

bandwidth in the network for long periods of time (e.g., 10 s, 20 s, 30 s and 50 s). It

is common for mobile users such as 3G and 4G to confront such long-term bandwidth

changes. For example, nomadic users in mobile networks may experience slowly vary-

ing or disconnected network conditions especially during handover between base sta-

tions [121]. Further, the same situation can occur when a mobile user on high-speed

railway is passing through a tunnel. The user will experience the lack of available

bandwidth until the mobile device finds a strong signal again.

• Short-term Up and Down spikes: Short-term spikes (e.g., a few seconds of avail-

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 83

able bandwidth variation) are common in practice over wireless networks, in particular

Wi-Fi [14]. It is commonly caused by home networking devices that cause signal in-

terference at 2.4GHz (e.g., baby monitors, microwave ovens and cordless phones) or

by channel contention caused by neighboring Wi-Fi access points [122]. From the

application’s point of view, this problem appears as short-term Down spikes where

available bandwidth is repeatedly throttled down for few seconds and then becomes

stable again.

The above network conditions are set up to observe the bitrate switching behaviors along

with di↵erent playout bu↵er sizes. We emulate fluctuating network conditions by throttling

(down to 400 kb/s) and increasing (up to 2,100 kb/s) the available bandwidth in the network.

6.3.2 Analysis of experimental results

In this section, we present our experimental results and summarize key findings. As a result,

an ABR player is shown to have a distinct behavior of bitrate switching depending on its

maximum playout bu↵er size.

Analysis methodology and metrics: As shown in Figure 6.3 through 6.6, we plotted the

bitrates selected by the ABR players and remaining bu↵er levels during the download. For

example, in Figure 6.3a, the dotted line represents the available incoming throughput on

the viewer’s device in accordance with the pre-defined High (2,100 kb/s) and Low (400 kb/s)

bandwidth cap. The selected bitrates are marked every time the players requested the video

segments during playback. Figure 6.3c shows the remaining playout bu↵er level as time

elapsed1, and each mark is plotted every second. Each experiment has been conducted

thirty times and the average playback statistics are calculated in Table 6.2 and 6.3. We

calculated the average played bitrate (fourth column in Table 6.3) and bitrate changes (the

last column in Table 6.3) using the following equations:

Avg. played bitrate (kb/s) =

P
n

i=1

B
i

⇥D
iP

n

i=1

D
i

+T
total

(6.1)

1We used the Microsoft’s Internet Information Services (IIS) SS APIs [117] to track the playout bu↵er

level in real time.

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 84

Table 6.2: Distribution (%) of played bitrates during playback

Cycle Max.BS
2,056

kb/s

1,427

kb/s

991

kb/s

688

kb/s

477

kb/s

331

kb/s

230

kb/s

High 20 s 0 11.1 42.2 31.1 6.7 4.4 4.4

(10 s) 30 s 0 11.6 7 55.8 11.6 4.7 9.3

Low 40 s 0 11.2 7.2 56.3 11.5 4.6 9.2

(10 s) 100 s 0 11.8 7.1 50.6 21.2 4.7 4.7

High 20 s 8 27.4 10.4 17.9 15.4 6.5 14.4

(30 s) 30 s 2.4 37.8 18.7 15.8 10.5 5.7 9.1

Low 40 s 0.5 43.4 11.3 19.3 12.3 5.7 7.5

(30 s) 100 s 0.5 38.3 12.4 18.7 15.8 4.8 9.6

High 20 s 0 14.4 8.1 8.1 4.5 13.4 51.4

(20 s) 30 s 0 18.6 11.5 11.5 7.1 17.5 33.7

Low 40 s 0 17.8 13.3 13.3 16.9 13.8 24.9

(50 s) 100 s 0 16.9 16 11.6 16 16.9 22.7

Down All 0 40.3 52.9 3.4 0 0 3.4

20 s 0 0 0 0 31 29.3 39.7

Up
30 s 0 0 0 7.1 35.7 16.1 41.1

40 s 0 0 0 16.6 28.4 14.2 40.8

100 s 0 0 0 17.1 31.1 12.1 39.7

Avg. BR changes (kb/s) =

P
n

i=2

|B
i

� B
i�1

|
Total number of bitrate changes (n� 1)

(6.2)

B

i

denotes i

th

bitrate that actually played during playback. The duration of each B

i

is

represented as D

i

, and T

total

indicates the total duration of rebu↵erings in video session.

Equation 6.2 shows how much bitrate increases or decreases in kb/s on average whenever

a bitrate changes during a download. We note that the results from Equation 6.1 and 6.2

do not reflect the impact of frequency and duration of bitrate switching. For instance, let’s

suppose that there is a case where a bitrate changes from 100 kb/s (30 s) ‹ 200 kb/s (30 s) in

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 85

Table 6.3: Video segment downloading statistics

Cycle Max.BS
Num. of

segments

Avg. bitrate

(kb/s)

Num. of bitrate changes

: length (second)

Avg. variance

(kb/s)

High 20 s 55 872 13:7 376

(10 s) 30 s 59 680 9:9.9 363

Low 40 s 64 672 8:10 354

(10 s) 100 s 66 672 7:10.1 341

High 20 s 115 856 27:7.9 442

(30 s) 30 s 120 968 21:9.6 391

Low 40 s 128 952 21:10.2 324

(30 s) 100 s 131 952 20:11.1 321

High 20 s 123 504 32:7.2 271

(20 s) 30 s 129 616 31:7.4 273

Low 40 s 129 648 27:8.5 282

(50 s) 100 s 130 648 26:9 278

Down All 75 1,128 4:30 408

20 s 65 328 9:12.7 146

Up
30 s 70 496 9:12.2 172

40 s 74 552 10:11.5 194

100 s 78 552 12:11 194

60 s. There is another case where the bitrate changes from 100 kb/s (10 s) ‹ 200 kb/s (10 s)

‹ 100 kb/s (10 s) ‹ 200 kb/s (10 s) ‹ 100 kb/s (10 s) ‹ 200 kb/s (10 s) in 60 s. For both

cases, the average played bitrate and number of bitrate changes are the same. Regarding

video QoE, however, the first case is better because of the smaller number of bitrate changes.

To clearly represent the di↵erences, the total number of bitrate changes and the average

length of played time before the bitrate switches are taken into consideration in the fifth

column in Table 6.3.

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 86

0 20 40 60 800

500

1000

1500

2000

2500

Elapsed time (sec)

Se
le

ct
ed

 b
itr

at
e

(k
b/

s)

Avail. throughput
BS = 20s
BS = 30s

During Fast Start

(a) [High (10 s) -Low (10 s)] Selected bitrates with BS = 20 s and BS = 30 s

0 20 40 60 800

500

1000

1500

2000

2500

Elapsed time (sec)

Se
le

ct
ed

 b
itr

at
e

(k
b/

s)

Avail. throughput
BS = 40s
BS = 100s

During Fast Start

(b) [High (10 s) -Low (10 s)] Selected bitrates with BS = 40 s and BS = 100 s

0 20 40 60 800

5

10

15

20

25

30

35

40

45

Elapsed time (sec)

Pl
ay

ou
t b

uf
fe

r l
ev

el
 (s

ec
)

BS=20s
BS=30s
BS=40s
BS=100s

Rebuffering

(c) [High (10 s) -Low (10 s)] Remaining bu↵er level (second) as time elapsed

Figure 6.3: Monitoring selected bitrates and remaining bu↵er levels under High (10 s) -

Low (10 s)

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 87

Exp. 1) High (10 s) and Low (10 s) cycle: First, we observe that a rebu↵ering appears

only at the end of the first cycle around elapsed time t = 20 s in Figure 6.3c. After that, no

additional rebu↵erings occur for the rest of the playback. We observe this behavior because

the video player rapidly reaches the high bitrates in the first few seconds (e.g., less than

5 s based on Figure 6.3a and 6.3b), regardless of the remaining playout bu↵er level. Since

it downloads high bitrates before saving enough video data in the bu↵er, the player most

likely goes through rebu↵erings after the available bandwidth is throttled at t = 10 s. For

this reason, all players experience short rebu↵erings at t = 20 s as shown in Figure 6.3c.

Based on the High (10 s) and Low (10 s) results in Table 6.3, we observe that a large bu↵er

shows fewer bitrate switches and lower average bitrate changes (the last column in Ta-

ble 6.3). According to Table 6.2, the player with BS = 20 s downloaded more segments

with 991 kb/s compared to other players with BS = 30 s, 40 s and 100 s. The players with

large bu↵ers tried to fill up the bu↵ers quickly by requesting lower bitrates (e.g., 688 kb/s

or 477 kb/s) after experiencing the throttled network conditions. Since bu↵er is time-based,

in other words, the low bitrates allows the player to fill seconds of bu↵er space more quickly

for the same bandwidth. We observe this behavior at every bandwidth cycle (around time

t = 20 s, 40 s, 60 s and 80 s). It explains why the players with large bu↵ers downloaded

more segments but provided lower average played bitrate (fourth column in Table 6.3). For

instance, the large bu↵er downloaded two segments (B = 477 kb/s) while the small bu↵er

was downloading the single segment with 991 kb/s for the same period of time. This reflects

the experimental results in Figure 6.3c where the remaining bu↵er levels of three cases, ex-

cept BS = 20 s, increase as time elapsed. The players with large bu↵ers tried to fill up the

bu↵ers as much as they could with lower bitrate segments during the High period.

There are two possible reasons to why large bu↵ers download such low bitrates during play-

back. The first is that 10 s of High period may not be su�cient for the large bu↵ers to reach

the Upper threshold2. On the other hand, 10 s of a high-bandwidth time period is enough

for BS = 20 s to save data above the Upper threshold in the bu↵er and allow the player

to increase the bitrate more quickly than the players with large bu↵ers (Figure 6.3a). The

2According to Chapter 2, an ABR player takes into account three pre-defined thresholds (Upper, Lower,

and Panic) when it changes state (Buffering or Steady) and picks the best available bitrate during playback.

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 88

second is that the bandwidth estimator may prevent the player from increasing bitrate de-

spite the large remaining bu↵er. As described in Figure 2.1, the player increases the bitrate

when the estimated network bandwidth is larger than the next-higher bitrate. During the

experiments, we find that a large bu↵er uses longer time periods to measure the network

bandwidth than a small bu↵er. In the middle of the measurement by the bandwidth esti-

mator, the available throughput is suddenly throttled. The average download speed during

the period is lower than the next-higher bitrate and the player does not increase the bitrate.

Exp. 2) High (30 s) and Low (30 s) cycle: During the experiment, we find that the player

with BS = 20 s leads to a lower average played bitrate and a higher number of average

bitrate changes, compared to the players with larger bu↵ers (Table 6.3). The reasons can

be explained as follows. We first observe that the player with BS = 20 s often requested

2,056 kb/s during the High period (Figure 6.4a). As we pointed out in Exp. 1, 30 s is

su�cient for the player to fill up the data above the Upper threshold and decide whether

to increase or decrease the bitrate regarding the current playout bu↵er level. We clearly

observe this behavior in Figure 6.4c. The player with BS = 20 s gets into Steady state

around elapsed time t = 70 s, 130 s and 190 s, showing a relatively flat line on each edge.

During Steady state, it periodically (every two seconds) requested a video segment with

2,056 kb/s. In the middle of the download, the available bandwidth was throttled around

elapsed time t = 90 s and 150 s. To downgrade the bitrate, the player had to wait until

the requested segment with 2,056 kb/s was completely downloaded. However, the player

consumed most data in the bu↵er before it downloaded the entire segment. As a result,

it failed to fill up the bu↵er with new data due to the lack of available bandwidth. This

behavior led to repeated rebu↵erings at every cycle (around elapsed time t = 120 s and

180 s in Figure 6.4c). When it experienced such rebu↵erings, it directly switched to the

lowest bitrate (233 kb/s). Overall, this is the cause of the lower average played bitrate

and the higher bitrate changes for BS = 20 s. Even if the players with BS = 40 s and

BS = 100 s request for 1,427 kb/s, the 30 s of High period is not long enough to reach

2,056 kb/s (Figure 6.4b) owing to the same reasons described in the previous experiment.

Further, we find that the Microsoft’s SS player requests the high bitrates at the beginning of

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 89

0 50 100 150 2000

500

1000

1500

2000

2500

Elapsed time (sec)

Se
le

ct
ed

 b
itr

at
e

(k
b/

s)

Avail. throughput
BS = 20s
BS = 30s

(a) [High (30 s) -Low (30 s)] Selected bitrates with BS = 20 s and BS = 30 s

0 50 100 150 2000

500

1000

1500

2000

2500

Elapsed time (sec)

Se
le

ct
ed

 b
itr

at
e

(k
b/

s)

Avail. throughput
BS = 40s
BS = 100s

(b) [High (30 s) -Low (30 s)] Selected bitrates with BS = 40 s and BS = 100 s

0 50 100 150 2000

5

10

15

20

25

30

35

40

45

Elapsed time (sec)

Pl
ay

ou
t b

uf
fe

r l
ev

el
 (s

ec
)

BS=20s
BS=30s

BS=40s
BS=100s

Steady state

(c) [High (30 s) -Low (30 s)] Remaining bu↵er level (second) as time elapsed

Figure 6.4: Monitoring selected bitrates and remaining bu↵er levels under High (30 s) -

Low (30 s)

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 90

Table 6.4: Compare average elapsed times (second) from 230 kb/s to 1,427 kb/s in Exp. 2

MaximumBS First cycle Rest of the cycles

20 s 5.08 s 15.29 s

30 s 4.19 s 14.06 s

40 s 4.07 s 13.02 s

100 s 4.33 s 12.38 s

a playback. This causes rebu↵erings around elapsed time t = 50 s as shown in Figure 6.4c.

To verify this, we compared the elapsed times until the bitrate changed to 1,427 kb/s from

230 kb/s at the beginning of each High period. The experimental results in Table 6.4 show

that the elapsed time for the first bandwidth cycle is relatively shorter than the times for

next cycles. Also, we observe that the increased speed of the remaining bu↵er level in the

first cycle is relatively slower than the speed in other bandwidth cycles (Figure 6.4c). This

indicates that the ABR player is reaching higher bitrates quickly at the beginning of a

playback while it focuses more on filling up the playout bu↵er by requesting low bitrates

during the rest of High cycles. This behavior may cause unnecessary rebu↵erings at the

beginning of a playback. As an example, Figure 6.3c shows a single rebu↵ering event

occurring only at the end of the first cycle. Then no rebu↵erings appear again throughout

the rest of the cycles.

Exp. 3) Asymmetric High (20 s) and Low (50 s) cycle: In Figure 6.5a, the player with

BS = 30 s gradually downgrades the bitrate since it has already stored enough data in the

bu↵er. However, to maintain a full bu↵er, the player with BS = 20 s decreases the bitrate

a bit more quickly, responding to the suddenly throttled network conditions. On the other

hand, when the network condition switches from Low to High period, the player with

BS = 30 s gets to the high bitrate in slightly shorter time than the player with BS = 20 s.

This contrasts with the previous experiments where a large bu↵er is reluctant to increase

bitrate to fill up its bu↵er by requesting lower bitrates. The main reason is that the player

has already stored enough video data with lower bitrates during the 50 s of Low period. The

total amount of video content in the bu↵er is su�ciently large for the player to promptly

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 91

0 50 100 150 2000

500

1000

1500

2000

2500

Elapsed time (sec)

Se
le

ct
ed

 b
itr

at
e

(k
b/

s)

Avail. throughput
BS = 20s
BS = 30s

(a) [High (20 s) -Low (50 s)] Selected bitrates with BS = 20 s and BS = 30 s

0 50 100 150 2000

500

1000

1500

2000

2500

Elapsed time (sec)

Se
le

ct
ed

 b
itr

at
e

(k
b/

s)

Avail. throughput
BS = 40s
BS = 100s

(b) [High (20 s) -Low (50 s)] Selected bitrates with BS = 40 s and BS = 100 s

0 50 100 150 2000

10

20

30

40

50

Elapsed time (sec)

Pl
ay

ou
t b

uf
fe

r s
iz

e
(s

ec
)

BS=20s
BS=30s
BS=40s
BS=100s

(c) [High (20 s) -Low (50 s)] Remaining bu↵er level (second) as time elapsed

Figure 6.5: Monitoring selected bitrates and remaining bu↵er levels under High (20 s) -

Low (50 s)

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 92

increase bitrate when the available bandwidth is suddenly increased. It will play the high

bitrate after it consumes all the low bitrate segments.

Exp. 4) Short-term Up and Down spikes: We created short-term spikes of available

bandwidth, where positive (Up) or negative (Down) spikes occur for a few seconds (e.g.,

3 s, 5 s and 7 s as shown in Figure 6.6a and 6.6b). For Down spikes, all video players show

the same behavior regardless of its playout bu↵er size (Figure 6.6a). They do not rapidly

throttle down the bitrate since the remaining bu↵er levels are su�ciently large during the

Down spikes. For Up spikes, the player with a large bu↵er (e.g., BS = 40 s and BS = 100 s)

is more likely to download a higher bitrate. The reason for this behavior is that the large

bu↵er has stored enough video data in the first 30 s at the beginning (Figure 6.6c), and

the measured network throughput by the bandwidth estimator is larger than 688 kb/s or

991 kb/s. Thus, it does not need to keep the low bitrate responding to the Up spikes. On

the other hand, the player with a small bu↵er (e.g., BS = 20 s and BS = 30 s) does not

try to take the risk (Figure 6.6b). To keep a full bu↵er, a small bu↵er seldom increases the

bitrate during the Up spikes. This behavior causes a slightly increased number of bitrate

changes for a large bu↵er (e.g., BS = 40 s and BS = 100 s), as described in Table 6.3.

During the Up spike experiment, we find that all video players experience about 3 s of re-

bu↵ering at the beginning of the playback, regardless of its playout bu↵er size (Figure 6.6c).

Unlike the prior experiments where the available bandwidth is su�ciently large, this ex-

periment shows that the throttled network conditions at the beginning prevent the players

from quickly filling up initial bu↵ers and increasing bitrates. At the beginning of a play-

back, this leads to a series of short rebu↵erings between elapsed time t = 1 s and t = 15 s

in Figure 6.6c.

6.4 The impact of playout bu↵er size on video QoE in ABR

streaming

Through Section 6.3, we observe that a bitrate switching behavior in ABR streaming varies

based on the remaining bu↵er level and the maximum playout bu↵er size in the player. We

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 93

0 20 40 60 80 100 1200

500

1000

1500

2000

2500

Elapsed time (sec)

Se
le

ct
ed

 b
itr

at
e

(k
b/

s)

Avail. throughput
BS = 20s
BS = 100s

3sec 5sec 7sec 3sec 5sec 7sec

(a) [Down spikes] Selected bitrates with BS = 20 s and BS = 100 s

0 20 40 60 80 100 1200

500

1000

1500

2000

2500

Elapsed time (sec)

Se
le

ct
ed

 b
itr

at
e

(k
b/

s)

Avail. throughput
BS = 20s
BS = 100s

3sec 5sec 7sec

(b) [Up spikes] Selected bitrates with BS = 20 s and BS = 100 s

0 20 40 60 80 100 1200

10

20

30

40

50

Elapsed time (sec)

Pl
ay

ou
t b

uf
fe

r l
ev

el
 (s

ec
)

BS=20s
BS=30s
BS=40s
BS=100s

Rebuffering

(c) [Up spikes] Remaining bu↵er level (second) as time elapsed

Figure 6.6: Monitoring selected bitrates and remaining bu↵er levels under Down and Up

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 94

use an online crowdsourcing platform to analyze the impact of playout bu↵er size on human

perception of video quality.

6.4.1 Online crowdsourcing platform

We performed a video QoE survey using Amazon’s Mechanical Turk [123]. The survey was

classified by Columbia University’s IRB as human subjects research (IRB-AAAO5906). The

Mechanical Turk system gives employers (called requesters) a way to post human intelligence

tasks on the Internet for employees (called workers) to tackle in exchange for a wage. For

our QoE experiments, the participants were required to watch our recorded videos and took

a survey about their viewing experience during playback.

Video sources: One possible way of monitoring video QoE is to operate our own streaming

server and require participants to download videos from the server using ABR players with

di↵erent playout bu↵er sizes. But this can cause unexpected results due to uncontrolled last

mile network conditions of the participants during playback. So instead, we first recorded

the video screen in our laboratory while the players played the test video (Table 6.1) under

the same network conditions. Every video was recorded as high resolution and each recorded

video reflected distinct playback behavior (e.g., rebu↵erings and bitrate changes) regarding

the maximum playout bu↵er size that we figured out in Section 6.3. Then, we uploaded three

sets of video files to the crowdsourcing platform. During the survey, one set was randomly

assigned to each participant, and the sequence of the videos was also randomly ordered.

All participants were required to download the videos locally on their computers before

the survey and after watching the videos, they answered questions regarding their viewing

experience using general video players (e.g., PotPlayer, GomPlayer and VLC). Table 6.5

and Figure 6.7 show the bitrate switching behaviors and video downloading statistics of the

recorded videos used in our QoE survey.

Participants: 215 people participated in our QoE survey. They are categorized into two

groups. 177 people in the first group were randomly recruited via Amazon’s Mechanical

Turk. In order to avoid inaccurate data from participants who did not pay attention during

the playback, we included questions that only the participants who followed the instructions

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 95

Table 6.5: Video downloading statistics for QoE experiments

No. Max.BS
Num. of

segments

Avg. bitrate

(kb/s)

Num. of bitrate changes

: length (second)

Avg. variance

(kb/s)

Set 1
20s 56 816 11:10 375

100s 71 696 8:11.3 301

Set 2

20s 114 832 29:7 420

30s 117 920 20:10.4 325

100s 127 917 18:11.5 321

Set 3
20s 62 296 10:11.2 126

100s 81 568 11:10.9 194

Table 6.6: MOS for QoE experiments

Score Description

5 Perfect, watched without any viewing interference

4 Good, but imperfections are perceived

3 Slightly annoying

2 Annoying

1 Very annoying, nearly impossible to watch

and watched the videos carefully could answer. Those who failed to give correct answers to

these specific questions were not included in the total number of participants. The second

group is consist of 38 engineers, and some of them specialize in video streaming. This group

gave us more comprehensive feedback on our video QoE experiments through our website3.

In addition to the MOS question described in Table 6.6, we asked these participants which

factor (e.g., rebu↵erings and bitrate changes) interrupted their viewing experiences the most

during playback.

3We created a website for the QoE survey. It is no longer available.

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 96

0 20 40 60 800

500

1000

1500

2000

2500

Elapsed time (sec)

Se
le

ct
ed

 b
itr

at
e

(k
b/

s)

Avail. throughput
BS=20s
BS=100s

(a) [Set 1] Under High (10 s) -Low (10 s)

0 50 100 150 2000

500

1000

1500

2000

2500

Elapsed time (sec)

Se
le

ct
ed

 b
itr

at
e

(k
b/

s)

Avail. throughput
BS=20s
BS=100s

(b) [Set 2] Under High (30 s) -Low (30 s)

0 20 40 60 80 100 1200

500

1000

1500

2000

2500

Elapsed time (sec)

Se
le

ct
ed

 b
itr

at
e

(k
b/

s)

Avail. throughput
BS=20s
BS=100s

(c) [Set 3] Under short-term Up spikes

Figure 6.7: Video sources for QoE experiments: selected bitrates with BS = 20 s and

BS = 100 s

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 97

6.4.2 QoE survey results

We first note that there is no significant di↵erence between the results collected from the

two groups. Through our QoE survey, we focus on finding the root cause of the participants’

disturbed viewing experience and the impact of playout bu↵er size under the given network

conditions.

Set 1) High (10 s) and Low (10 s) cycle: Data was collected from 62 participants. In

Set 1, there are two di↵erent playout bu↵er sizes (BS = 20 s and BS = 100 s). As described

in Figure 6.7a and Table 6.5, the video player with BS = 20 s tries to download a higher

bitrate and switches bitrate more often, compared to the player with BS = 100 s. There are

no significant rebu↵erings for both cases (less than 1 s). A rebu↵ering only occurs right after

the first cycle around time t = 20s (Finding 1 in Section 6.4.3). After the first bandwidth

cycle, the BS = 20 s configuration often switches between 688 kb/s and 991 kb/s while the

BS = 100 s setting maintains 688 kb/s to the end. We assumed that the frequent bitrate

changes by the BS = 20 s setting would lead more severe viewing interruption. However,

interestingly, the bitrate changes caused by BS = 20 s are ignored by many participants,

and they preferred BS = 20 s over BS = 100 s (Set 1 results in Figure 6.8b). In this case, a

small number of bitrate changes in the middle of the playback did not degrade video QoE,

and the higher bitrate provided by BS = 20 s led to slightly better viewing experience.

Set 2) High (30 s) and Low (30 s) cycle: 75 people participated in Set 2. Unlike the

previous experiment, we uploaded three videos with BS = 20 s, 30s and 100s. For BS =

20 s, the 20 s of playout bu↵er size is not enough to avoid rebu↵erings during 30 s of Low

period. As a result, it causes 7 s of rebu↵erings during the entire playback. The frequent

bitrate changes also annoyed the participants, but the participants gave the lowest score

to the video played with BS = 20 s due to the rebu↵erings, (Figure 6.8a). BS = 30 s

and BS = 100 s cause a relatively shorter period of rebu↵erings (less than 0.5 s) and show

similar behaviors regarding the number of bitrate changes and its average bitrate changes

(Table 6.5). As shown in Figure 6.8a and 6.8b, most participants did not recognize the

di↵erence between BS = 30 s and BS = 100 s.

Set 3) Short-term Up spikes: The total number of participants for Set 3 is 78. Both

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 98

(a) What is your score for viewing the video?

(b) Overall, which video o↵ered you the best viewing experience in each set?

Figure 6.8: QoE survey results - MOS and preference in each set

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 99

BS = 20 s and BS = 100 s are too conservative to request high bitrates such as 1,427 kb/s

and 2,056 kb/s (Figure 6.7c). The players cause short periods of rebu↵erings at the be-

ginning (3 s for both BS = 20 s and BS = 100 s) due to the throttled network conditions

when they start downloading the video. Then, there are no more rebu↵erings until the end.

This causes some participants to complain about the long start-up delay. During the experi-

ments, BS = 100 s switches bitrates mostly between 688 kb/s and 477 kb/s while BS = 20 s

switches between 477 kb/s and 331 kb/s, reacting to the short spikes (Figure 6.7c). Accord-

ing to our QoE survey (Figure 6.8b), the higher played bitrate caused by BS = 100 s results

in slightly better video QoE. Compared to the previous experiments, the participants in

Set 3 provide relatively low scores owing to the lower average experienced bitrates.

6.4.3 Summary of key observations

Table 6.7 briefly shows the comparison of the performance between small and large bu↵ers

based on the experimental results in Section 6.3. We note that the terms (small, large,

High, Medium and Low) used in Table 6.7 are relative values and not absolute. The fast

varying network conditions represent the cases where the duration of bandwidth shortage

is less than the maximum size of playout bu↵er. On the other hand, the slowly varying

network conditions indicate the cases where the duration of bandwidth shortage is longer

than the maximum size of playout bu↵er. For instance, the player with BS = 20 s experi-

enced frequent rebu↵erings under slowly varying network conditions such as High (30 s) and

Low (30 s). In the short-term Up spike experiments, we observe frequent short rebu↵erings

at the beginning of playback (Exp. 4 in Section 6.3) because the player requested the high

bitrates that require higher bandwidth than what is available in the network. In general, we

find no rebu↵erings for all bu↵er sizes under such short-term spikes. Below, we summarize

our key findings:

Finding 1: The Microsoft’s SS player may cause unnecessary rebu↵erings by

requesting high bitrates at the beginning of a playback. As shown in Table 6.4, the

ABR player tries to increase bitrates quickly at the beginning of a playback. This may cause

unnecessary rebu↵erings in a short period of time when the network experiences congestion.

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 100

Table 6.7: Overview of playout bu↵er size experiments

Under fast varying network conditions:

Small BS> duration of bandwidth shortage

BS Rebu↵ering Avg. bitrate Num. of bitrate changes Avg. variance

Small No High Medium High

Large No Medium Low Medium

Under slowly varying network conditions:

Small BS< duration of bandwidth shortage<LargeBS

BS Rebu↵ering Avg. bitrate Num. of bitrate changes Avg. variance

Small Yes Medium High High

Large No High Medium Medium

Under short-termDown spikes

Small BS� duration of bandwidth shortage

BS Rebu↵ering Avg. bitrate Num. of bitrate changes Avg. variance

Both No Medium Low Low

Under short-termUp spikes

Small BS� duration of bandwidth shortage

BS Rebu↵ering Avg. bitrate Num. of bitrate changes Avg. variance

Small No Low Medium Low

Large No Medium Medium Medium

Finding 2: The time periods to estimate download speed by bandwidth estima-

tors vary depending on the maximum playout bu↵er size. The bandwidth estimator

measures available throughput during a download and its result directly a↵ects the bitrate

switching behaviors in ABR streaming. As we described in Section 6.3, the estimator in the

player using a large bu↵er uses a larger window size to measure the throughput than the one

with a small bu↵er. Therefore, it is likely to avoid frequent bitrate changes under fluctuat-

ing network conditions. However, it may also prevent the players from switching to higher

bitrates quickly even if it has enough content in the bu↵er (Exp. 1 and 2 in Section 6.3).

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 101

Finding 3: A large bu↵er does not always achieve higher QoE especially when

available throughput increases after bandwidth shortages. During the experiments,

we show that a large bu↵er typically provides fewer bitrate changes and rebu↵erings than

a small bu↵er. However, our study shows that a small bu↵er can achieve higher QoE by

providing higher played bitrates more quickly than a large bu↵er when available throughput

increases after bandwidth shortages. In this case, a small bu↵er can reach the Upper

threshold more quickly than a large bu↵er. On the other hand, the large bu↵er tries to

fill up its bu↵er by requesting lower bitrates to reach the Upper threshold. This switching

behavior is followed by the large bu↵er causing lower average played bitrate during playback

(Table 6.5), and resultantly degrading video QoE (Figure 6.8a and 6.8b).

6.5 Adaptive playout bu↵er size

Throughout Section 6.3 and 6.4, we observe that a large bu↵er reduces the number of re-

bu↵erings and achieves higher QoE (Set 2 in QoE survey) under slowly varying network con-

ditions. On the contrary, during fast varying network conditions we find that a small bu↵er

can achieve higher QoE by o↵ering higher played bitrates, despite slightly higher amplitude

and increased number of bitrate changes (Set 1 in QoE survey). As other researchers [19;

124; 125; 126] agree, our experimental results indicate that rebu↵erings should be avoided

all times to enhance viewing experiences. Some papers [127; 128] address that constant

bitrate is typically preferred to frequent bitrates changes. However, the number of bitrate

changes can be less significant when the player provides higher bitrates quickly after band-

width shortages. According to our QoE survey results (Figure 6.8), the viewers preferred

this behavior rather than being stuck with lower bitrates for a long time.

Our experimental results tell us that playout bu↵er size directly a↵ects bitrate switching

behaviors. This inspires the following question: can we find an optimal bu↵er size? However,

we believe that modeling an optimal bu↵er size for video streaming is di�cult since various

QoE metrics need to be monitored during the entire playback. For instance, it can vary

depending on when or how long rebu↵erings appear, when or how much the bitrate is

increased or decreased and how long the viewer watches the video. As Garcia et al. [129]

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 102

Low

ܮܤ

ܮܤ

Small BS Large BS

<

== Max. Small BS

Figure 6.9: Adaptive playout bu↵er size - dynamically switching between small and large

bu↵ers during playback

summarize in their paper, there are no quantitative metrics that take into account all

the above metrics for QoE evaluation. Instead, we propose that an ABR player should

adapt its playout bu↵er size (e.g., between small and large bu↵ers) while a video is being

played. Therefore, the question is, how does the player track network conditions (e.g., fast or

slowly varying) accurately and change the bu↵er size properly? For better channel capacity

estimation, the player needs to precisely measure the incoming throughput and its variation

during a download. But, due to estimating errors caused by the competing TCP flows [88]

and TCP slow start [130], it is di�cult to monitor the available throughput accurately with

a bandwidth estimator. In addition, there are challenges to finding the optimal window

size for the estimator to analyze the network conditions [130]. For these reasons, instead

of relying on the bandwidth estimator, we suggest to monitor a playout bu↵er level in

real time for the analysis of network conditions during playback. Other papers [131; 116;

132] propose that players should mainly use the remaining bu↵er occupancy to decide

whether to increase or decrease the bitrate during playback. The key idea is to find the

proper switching point for bu↵ers of fixed size. However, their implementation and the

parameters used in the switching mechanism can be very complicated depending on the

player’s maximum bu↵er size. As we observed in Section 6.3 and 6.4, for example, even

though the remaining bu↵er level is the same, we may set up di↵erent ABR heuristics based

on the player’s maximum bu↵er size to better handle the network conditions.

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 103

Table 6.8: Bu↵er thresholds used in our testbed

BS Panic Low Upper Max

Small 7 s 12 s 17 s 20 s

Large 7 s 15 s 25 s 100 s

In our proposed platform, an ABR player tries to reach high bitrates quickly and store

the video segments as much as it can to protect against possible bandwidth shortage. To

more easily describe our solution, we demonstrate the possible scenarios in Figure 6.10. The

player first starts with a small bu↵er to reach the Upper threshold and provide high bitrates

more quickly. When the playout bu↵er level becomes full, it switches to a large bu↵er

to store more segments in the bu↵er to guard against possible bandwidth shortages later.

The player maintains the large bu↵er since it typically provides fewer bitrate changes and

rebu↵erings under fluctuating network conditions. When there is a long-term bandwidth

shortage that causes rebu↵erings or the current bu↵er level is below the Low threshold, it

changes the bu↵er size to small again. Figure 6.9 shows the FSM of bu↵er size switching

behavior in our proposed platform.

6.5.1 Evaluation

The existing Microsoft’s SS platform does not allow to flexibly change the playout bu↵er

size and the bu↵er thresholds while a video is being played. To show the feasibility of

our approaches, we created our own video players that are capable of downloading video

segments from the IIS streaming server, but they cannot actually play the video on the

screen because they do not have any decoding functionalities used in Microsoft’s SS. The

players are designed to follow the same bitrate switching rules described in Figure 2.1.

Figure 6.11 shows our testbed setups in Wi-Fi networks. During the experiments, we

tested the three players with di↵erent playout bu↵er sizes (small, large or dynamically

switching among two bu↵ers) separately. The bu↵er thresholds for small and large bu↵ers

are described in Table 6.8. The bandwidth estimator for the player with the small bu↵er

measured the network throughput over the last three segments while the estimator for the

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 104

RB#H" L" M" H" M"

Playback"status"and"video"quality:"Low"(L),"Medium"(M),"High"(H)"and"Rebuffering"(RB)"

Small"BS"

L"

Upper"threshold"
Buffer"full"

Buffer"level"

Small"buffer"during"enFre"playback"

Available"bandwidth"

L" M"

Lower"threshold"

Playback"Fme"

(a) Small bu↵er

Playback()me(

H(M(L(H(

Playback(status(and(video(quality:(Low((L),(Medium((M),(High((H)(and(Rebuffering((RB)(

Large(BS(

L(

Upper(threshold(
Buffer(level(

M(

Large(buffer(during(en)re(playback(

L(RB#

Available(bandwidth(

Lower(threshold(

(b) Large bu↵er

RB#L" H"M" L" M"

Playback"status"and"video"quality:"Low"(L),"Medium"(M),"High"(H)"and"Rebuffering"(RB)"

Available"bandwidth"

Small"BS" Large"BS" Small"BS" Large"BS"

Dynamic"playout"buffer"size"

L"

Upper"threshold"(BS"="Small)"
Buffer"full"(BS"="Small)"

Buffer"level"

Lower"threshold"(BS"="Large)"

Playback"Jme"

H"

(c) Switching between small and large bu↵ers during playback

Figure 6.10: Playback status and played bitrate changes depending on maximum playout

bu↵er size

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 105

IIS#streaming#server#Proxy#server#

AP#

End5user#

Campus#
Network#

802.11#b/g#

Wi5Fi#interference#

Networking#emulaHon#tools#

355m#

Figure 6.11: Testbed setups for evaluation

large bu↵er measured it over the last five segments during playback. We note that the

bu↵er thresholds and parameters are used in existing Microsoft’s SS players and obtained

from the experimental results in Section 6.3 and 6.4. Depending on network conditions,

the small and large bu↵ers show distinct behaviors that we summarized in Table 6.7. The

players switched among three di↵erent bitrates (Low - 331 kb/s, Medium - 688 kb/s, and

High - 2,056 kb/s) during the download, and the playback duration of each segment is two

seconds.

We emulated two di↵erent network conditions: short-term Down spikes and fast or

slowly varying network conditions. To create the real short-term Down spikes, we periodi-

cally turned on and o↵ home networking devices (e.g., baby monitors and microwave ovens)

while the players downloaded the segments for 120 s. We separately tested each player ten

times, and the average playback statistics are shown in Table 6.9. All players displayed

similar behaviors regardless of their maximum bu↵er sizes - no rebu↵erings, few bitrate

changes and downloading medium bitrates most against the short-term Down spikes. This

reflects our experimental results in Section 6.3.

In addition, we measured the playback statistics while the players downloaded the video

for 600 s under fast or slowly varying network conditions. During the download, we ran-

domly selected and switched the network conditions every 120 s (e.g., fast ‹ slow ‹ slow ‹

fast ‹ fast). To emulate the varying network conditions, we periodically throttled (less than

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 106

Low bitrate) and released (higher than High bitrate) the available throughput in the network

using NetLimiter [119] and Fiddler [120]. Under fast varying network conditions, the dura-

tion of bandwidth shortage did not last longer than the small bu↵er size (< 20 s). For slowly

varying network conditions, the bandwidth shortage duration was randomly set to between

20 to 70 s. Therefore, if the remaining bu↵er level is higher than the shortage duration, the

large bu↵er may provide smooth streaming while the small bu↵er experiences rebu↵erings.

Each player separately downloaded the video twenty times. As shown in Table 6.9, the

small bu↵er caused longer rebu↵ering durations and more bitrate changes during the down-

load. Both the large and adaptive bu↵ers o↵ered shorter duration of rebu↵erings since they

accumulated a large amount of segments in the bu↵ers before the available throughput was

throttled. During the experiments, the adaptive bu↵er downloaded the High bitrate 4.5 s

earlier than the large bu↵er when the available throughput increased after the bandwidth

shortages. This results in more than 15% higher average downloaded bitrate.

We note that the experimental results can vary regarding the segment duration. As

we described in Chapter 2.4, the players may not properly switch the bitrate on time with

larger sized segments (e.g., five or ten seconds). For example, let’s suppose that the network

bandwidth is throttled while the player is downloading a ten second segment. The player

cannot switch to lower bitrates until it completely downloads the entire segment or the

time-out will occur (Figure 2.1). For this reason, more improvements can be achieved if the

segment size is larger than two seconds used in the current testbed setups. Other bu↵er-

aware ABR algorithms [131; 132] that try to find the proper switching point with the finite

bu↵er size may provide more flexible control in bitrate switching. However, our solution is

simpler to implement in practice by easily switching playout bu↵er size during playback.

In our testbed setups, an ABR player adaptively changing its maximum playout bu↵er size

depending on the remaining bu↵er occupancy outperforms the player with finite bu↵er size,

by o↵ering 15% of higher average played bitrate, 70% fewer bitrate changes and 50% shorter

rebu↵ering duration.

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 107

6.6 Related work

We address the recent studies on the analysis of ABR streaming performance along with

playout bu↵er size. Tian et al. [131] propose client-side video adaptation algorithms that

use a bu↵er and a PID controller to better estimate network capacity and balance the needs

for video rate smoothness and bandwidth utilization in DASH streaming. Huang et al. [116]

suggest to find the best appropriate bitrate based on remaining bu↵er occupancy and use

the bandwidth capacity estimation when it is necessary. Cicco et al. [132] propose ELASTIC

(fEedback Linearization AdaptIve STreamIng Controller) that filters network capacity and

computes the video bitrates to drive the bu↵er to a set point in bitrate switching.

The prior works agree on the fact that monitoring playout bu↵er occupancy is useful to

estimate network conditions and improve the bitrate switching behaviors in ABR streaming.

They track the bu↵er level to find the right switching point among bitrates in the bu↵er

with fixed size. Our solution is to dynamically change the maximum bu↵er size depending

on the current bu↵er level during playback. Similarly, we may achieve this by dynamically

changing the predefined bu↵er thresholds (Upper, Lower, and Panic) in the fixed bu↵er size.

Our future work is to empirically compare these techniques depending on various factors

such as di↵erent segment durations and network conditions.

6.7 Conclusions

We evaluate the impact of playout bu↵er size in ABR streaming along with video QoE.

Throughout our experimental results, we show that bitrate switching behaviors in ABR

streaming is dependent not only on the remaining bu↵er occupancy during playback but

also the maximum playout bu↵er size. Our analysis shows that a large bu↵er provides

relatively higher QoE under slowly varying network conditions. As a key observation, we

find that a small bu↵er can outperform a large bu↵er by o↵ering higher played bitrates

more quickly especially under fast varying network conditions. Based on these findings, we

propose an ABR player to not only change bitrates but also switch its maximum playout

bu↵er size adaptively depending on remaining bu↵er occupancy during a download. In our

testbed, we show that an ABR player dynamically switching among small and large bu↵ers

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 108

can enhance video QoE by providing higher average played bitrate, fewer bitrate changes

and shorter rebu↵ering duration, compared to the players with fixed bu↵er size.

CHAPTER 6. AN EMPIRICAL EVALUATION OF PLAYOUT BUFFER
DIMENSIONING IN ABR STREAMING 109

T
ab

le
6.
9:

E
xp

er
im

en
ta
l
re
su
lt
s
in

ou
r
te
st
b
ed

N
et
w
or
k
co
n
d
it
io
n
s

B
S

N
u
m
b
er

of
d
ow

n
lo
ad

ed
se
gm

en
ts

R
eb
u
↵
er
in
g
d
u
ra
ti
on

A
vg

.
b
it
ra
te

N
u
m
b
er

of
b
it
ra
te

ch
an

ge
s

L
o
w

M
e
d
i
u
m

H
i
g
h

(s
ec
on

d
)

(k
b
/s
)

S
h
or
t-
te
rm

D
ow

n

sp
ik
es

S
m
al
l

8
32

20
0

54
8

5

L
ar
ge

9
30

21
0

55
6

4

A
d
ap

ti
ve

8
31

21
0

56
0

4

F
as
t
or

sl
ow

ly

va
ry
in
g
n
et
w
or
ks

S
m
al
l

91
21

14
9

78
58
0

20

L
ar
ge

61
11

20
9

38
76
2

6

A
d
ap

ti
ve

20
11

25
0

38
88
0

6

110

Part IV

Video QoE Monitoring Tool

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 111

Chapter 7

QoE Matters More Than QoS:

Why People Stop Watching Cat

Videos

7.1 Introduction

Today’s popular video streaming services such as Netflix, Hulu and YouTube stream video

contents to viewers over HTTP or HTTPS. To provide smooth streaming, they use adaptive

bitrate (ABR) streaming technologies such as Apple’s HTTP Live Streaming (HLS) [37],

Microsoft’s Smooth Streaming (SS) [16], Adobe’s HTTP Dynamic Streaming (HDS) [17]

and Dynamic Adaptive Streaming over HTTP (DASH) [38]. In ABR streaming, a video

player dynamically adjusts video bitrates based on estimated network conditions, bu↵er oc-

cupancy and hardware specifications of viewers’ devices, for example, distinguishing smart-

phones from desktops. Therefore, user-perceived video quality can vary depending on how

appropriately the player selects the best available bitrate during a download. As an ex-

ample, a viewer may experience frequent rebu↵erings, where the video is paused and then

resumes playing repeatedly, when the player requests a higher bitrate than what is actually

available in the network. It is also possible for the viewer to be stuck with a low bitrate

during the entire playback if the network capacity is underestimated by the player. Hence,

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 112

from over-the-top (OTT) video service provider’s viewpoint, improving ABR heuristics is a

key factor to enhancing video QoE.

To improve ABR streaming, it is important to analyze how changing ABR heuristics

influences QoE. While traditional quality of service (QoS) based metrics, such as measuring

TCP throughput, video packet delay and jitter, can be used to pinpoint network impair-

ments, the metrics do not accurately reflect the viewer’s watching experience. Thus, we

believe that the QoE monitoring system should focus on application-layer events instead

of transport-layer events. To achieve this, we suggest monitoring live playback events di-

rectly from within video players rather than network elements such as routers. As a proof

of concept, we have developed YouSlow (“YouTube Too Slow!?”), a new QoE monitoring

system for OTT streaming services. This lightweight web browser plug-in can monitor var-

ious playback events such as start-up delay, rebu↵erings and bitrate changes directly from

within ABR players while viewers watch videos on the YouTube web site. So far, YouSlow

has collected over 1,400,000 YouTube views from more than 1,000 viewers located in more

than 110 countries.

In this paper, we evaluate various QoE metrics by analyzing video abandonment rates

in YouTube. An abandonment occurs if a viewer closes the video during playback, either

due to lack of interest or because they are annoyed by viewing interruptions such as long

start-up delay, frequent rebu↵erings and bitrate changes. Below, we summarize our key

findings and contributions:

• Development of an analysis tool for video QoE: YouSlow is designed to detect

various playback events while a video is being played. Compared to prior approaches

using survey-based metrics, YouSlow saves video researchers time and e↵ort, partic-

ularly for large sample sizes. In addition, our QoE monitoring system allows viewers

to track their viewing experiences such as average played bitrates and rebu↵erings in

real time.

• An analysis of video QoE in YouTube: We observe that about 10% of viewers

abandoned the videos when the pre-roll ads lasted for 15 seconds. We confirm that

the initial bu↵ering has more impact on the video abandonment than the rebu↵erings

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 113

in the middle of a playback. Our analysis shows that viewers prefer constant bitrate

to increasing bitrate during playback even if the abandonment rate is not significantly

di↵erent. We show that tracking the rebu↵ering ratio during playback is useful to

quantify abandonment rates for short videos. Our regression analysis using the re-

bu↵ering ratio and the number of rebu↵erings achieves an R-squared value of 0.94 in

predicting the video abandonment rate in YouTube.

The remainder of this paper is organized as follows. Section 7.2 describes the overview of

YouSlow and its implementation. Then, we present our analysis of YouTube in Section 7.3.

Our QoE analysis report is described in Section 7.4. We address challenges of YouSlow

platform in Section 7.5 and discuss future work in Section 7.6. Finally, we look at the

related work and summarize our conclusions in Section 7.7 and 7.8, respectively.

7.2 YouSlow overview

YouSlow can monitor various playback events directly from within an ABR player for

an analysis of video QoE. Currently, YouSlow only supports YouTube, but other players’

JavaScript APIs such as Vimeo [133] could be easily added to YouSlow.

7.2.1 Implementation

YouSlow supports three di↵erent platforms: The Chrome web browsers, iOS and Android.

We have recently released the beta versions of iOS and Android applications on the YouSlow

web site1. For desktops and laptops, we created a lightweight Chrome plug-in, also known

as a Chrome extension [134]. We distribute the YouSlow applications via Chrome web

store2. The source code is available in GitHub3.

Figure 7.1 shows the architecture of the Chrome plug-in for YouTube analysis. YouSlow

runs in the background of the Chrome browser, and injects our QoE monitoring scripts into

the web page whenever a viewer watches a video on the YouTube web site, www.youtube.

1YouSlow - https://dyswis.cs.columbia.edu/youslow/

2Chrome web store - http://goo.gl/AIOED3

3YouSlow GitHub - https://github.com/leftdal/youslow

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 114

Monitoring server

Internet&

YouTube'player'

Background&
scripts&

Chrome&
local&storage&

Chrome&

Core&content&
scripts&

Viewer's Chrome browser

YouSlow extension

webRequest

Monitoring server

Figure 7.1: Chrome plug-in for YouTube analysis

com. The YouSlow scripts contain YouTube player’s iframe and JavaScript APIs [135] to

access and monitor playback events of HTML5 and Flash video players. When a viewer

ends a video session, the extension automatically reports the measurements to our monitor-

ing server1. The collected data is analyzed and then marked on Google maps. For privacy

reasons, the extension does not collect any information regarding the viewer’s YouTube

account, video URLs or video titles. Through our monitoring system1, viewers can monitor

various metrics about their YouTube watching experiences, such as how often they expe-

rience rebu↵erings and what video bitrates they typically watch. Using this information,

they may compare the performance of their own ISPs with other local ISPs. Additionally,

YouSlow outputs can be useful to video service providers to improve their ABR streaming

services. For example, they can monitor and compare the rebu↵ering statistics every time

there is a change in their ABR heuristics.

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 115

7.2.2 What factors can YouSlow measure?

YouTube deprecated its JavaScript Player API and Flash <object> embeds on January

27th, 2015 [136]. YouTube mainly uses the iframe API to serve an HTML5 video player

using MPEG-DASH (Table 2.4) and avoids a Flash player for mobile devices that do not

support Flash [135]. The iframe API allows viewers to control the YouTube player in the web

browser: play, pause and stop videos, adjust the player volume, retrieve the information

about playback speed and quality changes. YouSlow uses the following functions of the

player API:

• getPlayerState returns the state of the player such as unstarted, ended, playing,

paused, bu↵ering and video cued.

• getVideoLoadedFraction shows the percentage of the video that the player shows

as bu↵ered.

• getPlaybackQuality retrieves the current playing video bitrate.

• getAvailableQualityLevels returns the list of video bitrates for the current video.

Additionally, we created the following functions for our YouSlow measurements:

• getNumOfRebu↵erings returns the number of rebu↵erings that occur in the middle

of playback.

• getRebu↵eringDuration returns the total duration of rebu↵erings (in seconds) that

occur in the middle of playback.

• getResolutionChanges returns the list of selected bitrates during playback.

• getPlaybackTime returns the total amount of time (in seconds) a viewer stays in

the video session.

• getInitialBu↵eringDuration returns the total duration of bu↵ering (in seconds) a

viewer experiences at the beginning of playback.

• getAbandonmentStatus returns the status of video abandonment, true or false.

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 116

• getAvgHttpLatency returns average HTTP latency (in milliseconds) measured

while a video is being downloaded. We monitor the HTTP request / response time

when the ABR player requests a segment via HTTP.

• getVideoChunks returns the number of segments that the ABR player has down-

loaded during playback.

• getVideoBytes returns the total amount of video bytes that the ABR player has

downloaded during playback.

• getAdBlockStatus returns the status of adBlock plug-in installation, true or false.

To detect the adBlock extension on the Chrome web browser, we arbitrarily inject the

ad-similar scripts into the web page and check whether the adBlock extension blocks

the scripts or not.

7.3 YouTube measurements

We analyzed 1,471,958 YouTube views collected between February 2015 and July 2016 from

more than 1,000 viewers in 117 countries. We note that the dataset only includes the video

sessions where the viewers watched videos through YouTube web site using the Chrome

browser on desktops or laptops. Table 7.1a shows the top ten countries along with the total

number of reported views. We also compare and analyze the measurements for di↵erent

U.S. ISPs (Table 7.1b).

7.3.0.1 Start-up delay

We measure the elapsed time from when a play button is clicked to when the main video

starts. There are two factors that contribute to start-up delay: initial bu↵ering and pre-

roll ads. For initial bu↵ering, an ABR player typically downloads a few segments (two or

three) before it starts to begin playback. The required number of segments depends on

ABR configuration. For example, the player may store a larger number of segments (five or

ten) to avoid future bandwidth fluctuations at the beginning of playback [137]. Secondly,

an ABR player does not play the selected video until viewers have watched the pre-roll

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 117

Table 7.1: YouSlow dataset

(a) Top 10 countries

Country Total number of reported views

United States 461,557

South Korea 55,559

United Kingdom 100,748

Indonesia 46,218

India 96,801

Canada 43,864

Malaysia 72,477

Philippines 31,238

Germany 57,876

Italy 29,998

(b) Top 8 U.S. ISPs

U.S. ISP Total number of reported views

Comcast 92,660

Time Warner Cable 41,873

AT&T 91,231

Qwest Communications 18,708

Verizon 61,141

Century Link 13,396

Charter Communications 49,401

Frontier Communications 13,145

video ad. YouTube’s advertising policies [138] describes two types of video ads: skippable

and non-skippable. Skippable video ads allow viewers to skip the ad after five seconds.

Non-skippable video ads must be watched to view the main video and they are usually

15-20 seconds long [139]. Both types of ad can appear before, during or after the main

video. YouSlow is not able to distinguish if the ads are skippable or non-skippable. The ad

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 118

0 10 20 30 400

0.2

0.4

0.6

0.8

1

Initial buffering (seconds)

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

(a) Initial bu↵ering duration

0 30 60 90 120 150 1800

0.2

0.4

0.6

0.8

1

Pre−roll ads duration (seconds)

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

(b) Pre-roll ad length

Figure 7.2: Start-up delay caused by initial bu↵ering and pre-roll ad

length recommended by YouTube is less than 3minutes. The post-roll ads are typically not

e↵ective because most viewers close videos once they have watched the main content. The

viewers who use an ad-block extension [140] may be able to watch the entire video without

ads. We observe that the player uses di↵erent URL parameters for downloading the video

ads and the main video. To distinguish them, we use the Chrome webRequest API [141].

Currently, YouSlow focuses on the analysis of pre-roll ads in YouTube.

Figure 7.2a presents the cumulative probability of the initial bu↵ering duration. Fig-

ure 7.2b shows the cumulative probability of how long the viewers watched the pre-roll ads

before the main content. Compared to the pre-roll ads, the initial bu↵ering has a relatively

shorter duration.

7.3.0.2 Video watching duration

We measure how long a viewer stays in each video session. The watching duration also

includes rebu↵ering and start-up latency. Based on the experimental results in Figure 7.3a,

we observe that the average of watching duration is 6:36minutes per video session and the

median is 2:39minutes.

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 119

0 1000 2000 3000 40000

0.2

0.4

0.6

0.8

1

Watching duration (seconds)

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

(a) YouTube watching duration

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

Video loaded fraction
(b) Video loaded fraction

Figure 7.3: Video watching duration and video loaded fraction

7.3.0.3 Video loaded fraction

We measure video engagement by monitoring the video loaded fraction described in Sec-

tion 7.2. According to Figure 7.3b, more than 40% of viewers closed YouTube videos in the

middle of the playback. They may have lost their interest in the videos or su↵ered from

unexpected viewing interruptions such as video ads, rebu↵erings and bitrate changes.

7.3.0.4 Bitrate changes

We observe that most video sessions (> 99%) experience fewer than four bitrate changes

during playback. Figure 7.4 shows the probability mass function (PMF) of bitrate changes

in the dataset. 83% of video sessions in YouTube did not change bitrates during the entire

playback.

7.3.0.5 Played bitrates

According to YouTube’s encoding policies [142], YouTube streams eight di↵erent bitrates:

highres, hd1440, hd1080, hd720, large, medium, small and tiny. We describe each

bitrate setting in Table 7.2, and measured the distribution of played bitrates in Table 7.3.

These measurements indicate that most viewers on desktops or laptops watched YouTube

videos with large (33.1%) or medium (23.7%) bitrates. We also observed a few hd1440 and

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 120

0 1 2 3 > 3
0

0.2

0.4

0.6

0.8

1

0.83

0.11
0.04

Number of bitrate changes

Pr
ob

ab
ilit

y

0.01 0.01

Figure 7.4: Probability of number of bitrate changes

Table 7.2: YouTube bitrate setting

Type Video bitrate Resolution

highres 35 - 45Mb/s 38405 2160

hd1440 10Mb/s 25605 1440

hd1080 8,000 kb/s 19205 1080

hd720 5,000 kb/s 12805 720

large 2,500 kb/s 8545 480

medium 1,000 kb/s 6405 360

small 400 kb/s 4265 240

tiny 80 kb/s 2565 144

Table 7.3: YouTube played bitrates (%)

hd1080 hd720 large medium small tiny

6.8% 18.2% 33.1% 23.7% 13.3% 4.9%

highres videos, but the probability is much smaller (< 0.1%).

In Figure 7.5a, we compare the distributions of played bitrates across countries. For

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 121

example, viewers in the United States and South Korea experienced higher bitrates in

comparison to the ones in India and Egypt. Figure 7.5b shows the distributions of played

bitrates for di↵erent ISPs in United States. For more details, we compare the distributions

depending on di↵erent types of Internet connections such as fiber to the home (FTTH),

hybrid fiber-coaxial (HFC) and digital subscriber line (DSL). We collected 7,074 samples in

total for FTTH from Verizon’s FiOS Internet service, and 6,618 samples for HFC from Time

Warner Cable, Charter Communications, Cox Communications, Comcast and AT&T’s U-

verse (formerly Project Lightspeed). For DSL, we obtained 2,384 samples from Verizon

(non-FiOS), AT&T (non-U-verse) and Qwest Communications. YouSlow can distinguish

these by comparing the hostnames of the Internet service providers of the viewers using

the IP geo-location database3. For example, Verizon hosts consistent domain names (e.g.,

x.x.fios.verizon.net) for their FiOS users. Through the measurements, we observe that

the viewers using FTTH watched more videos at HD bitrates (36.8%) than the ones using

HFC (25.3%) or DSL (14.4%).

7.3.0.6 Rebu↵erings

Figure 7.6 shows the PMF graph of total number of rebu↵erings. In the dataset, we find

that more than 99% of video sessions su↵ered from fewer than six rebu↵erings and 67%

of viewers experienced no rebu↵erings during the entire playback. Figure 7.7 shows the

cumulative probability of total rebu↵ering duration per video session. Our experimental

results show that only 10% of rebu↵erings exceeds 10 seconds in total.

7.3.0.7 AdBlock extension

The YouSlow Chrome extension (version 1.2.8) is able to detect if a viewer uses an adBlock

extension [140] on the Chrome web browser while a video is being played. Using the

extension, a viewer may watch the YouTube videos without experiencing ads during entire

playback. The extension investigates the URLs and HTML elements on the web page and

blocks them if they are known as advertisement. We analyzed a total of 124,744 video

sessions and found that 84,698 (67.9%) videos were watched on the Chrome web browsers

using the adBlock extension.

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 122

0

20

40

60

80

100

Countries

D
is

tri
bu

tio
n

of
 b

itr
at

es

tiny small medium large hd720 hd1080

United States
South Korea

Australia
India

Egypt

(a) Countries

0

20

40

60

80

100

U.S. ISPs

D
is

tri
bu

tio
n

of
 b

itr
at

es

Verizon
Time Warner Cable

Charter Comm.
Comcast

AT&T

tiny small medium large hd720 hd1080

(b) U.S. ISPs

0

20

40

60

80

100

D
is

tri
bu

tio
n

of
 b

itr
at

es

Fiber HFC DSL
Internet connections

tiny small medium large hd720 hd1080

(c) Di↵erent types of Internet connections

Figure 7.5: Comparison of YouTube played bitrates

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 123

0 1 2 3 4 5 6 > 6
0

0.2

0.4

0.6

0.8

1

0.67

0.19

0.06 0.03 0.02 0.01 0.01 0.01

Total number of rebufferings

Pr
ob

ab
ilit

y

Figure 7.6: Probability of total number of rebu↵erings

0 20 40 600

0.2

0.4

0.6

0.8

1

Total rebuffering duration (seconds)

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

Figure 7.7: Cumulative probability of total rebu↵ering duration

7.3.0.8 Moving a scrollbar of YouTube player during playback

The YouSlow Chrome extension (version 1.2.8) is able to detect if a viewer is moving the

scrollbar of YouTube player forwards or backwards during playback. We analyzed a total

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 124

0 1 2 3 4 5 > 5
0

10

20

30

40

50

60

49.3%

21.5%

7.1%
4.2% 3.0% 2.2%

12.8%

Number of times a viewer moves a scrollbar during playback

Pr
ob

ab
ilit

y
(%

)

Figure 7.8: Probability of total number of times a viewer moves a scrollbar during playback

of 125,277 video sessions. Figure 7.8 shows our experimental results.

7.4 Video QoE analysis via YouSlow

In this section, we describe our analysis of video QoE based on YouSlow measurements. We

are trying to answer the following questions:

• How do start-up delay, rebu↵erings and bitrate changes a↵ect viewing interruption?

• What metrics can we use to analyze the impact of the above playback events on video

QoE?

7.4.1 QoS and QoE methods for an analysis of video QoE

7.4.1.1 QoS methods

Several researchers [19; 20; 21] have used QoS-based metrics such as monitoring throughput,

goodput, packet delay and jitter from intermediate nodes such as routers between viewers’

devices and video servers, to analyze the performance of video streaming. This approach

typically focuses on finding network impairments, but there are challenges to estimating

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 125

QoE for bu↵ered video streaming. As an example, periods of low TCP throughput do not

always interrupt a viewer’s watching experience if an ABR player has downloaded enough

data into the playout bu↵er. The QoS-based metrics are unable to detect the impact of low-

throughput period since they cannot accurately track the playout bu↵er level from within

the network routers.

Today’s popular video streaming services such as YouTube and Netflix provide a video

quality report to viewers [143; 144]. They simply measure the download speed from their

own video content servers or video applications and rate the video streaming quality for dif-

ferent ISPs and geographical location of viewers. However, the output does not provide any

QoE metrics to viewers, such as how often they experience bitrate changes and rebu↵erings.

7.4.1.2 QoE methods

In terms of the QoE definitions by ITU-T [145], it is the overall acceptability of an ap-

plication or service, as perceived subjectively by the end-user. For video QoE, it is a

perceptual measure that reflects viewers satisfaction with their video streaming experience.

The common approach is a subjective method, hiring a group of people, having them watch

short video clips, and scoring their viewing experiences under the laboratory or the crowd-

sourcing environments [146; 147; 148]. However, such survey-based metrics are typically

costly and time-consuming. In addition, it is di�cult to automate and control the testing

environments during the evaluation. To avoid high cost of subjective methods, objective

methods are developed to estimate QoE of viewers [149; 150; 151]. This method focuses on

building a statistical model based on various input QoS parameters measured from network

or service layers such as packet loss, throughput, bitrate and video frame loss. However,

it is hard to develop such QoE prediction models. For example, any modification made

to current models such as adding or removing input parameters may require new tests to

create new models. For evaluation, it also requires the survey-based methods. Due to the

above limitations, today’s many video researchers focus on the data-driven analysis [152;

153; 154; 155]. The common approach is from quality of “experience” such as happiness or

satisfaction to quality of “engagement” such as video abandonment and failure [153]. The

user-engagement metrics can be easily quantified and measured since it does not require

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 126

direct user-involvement such as the mean opinion score (MOS) metrics that most subjective

methods use.

7.4.1.3 Our analysis methodology and metrics

YouSlow is able to detect the video abandonment event directly from within the video player.

Since the video rendering quality and level of interest are independent, we believe that our

results are relatively insensitive to changes in how we define QoE-driven abandonment. We

compute QoE abandonment ratio by dividing the number of sessions abandoned due to

viewing interruptions such as rebu↵erings and bitrate changes by the total number of video

sessions. For instance, we calculate an abandonment rate depending on how long viewers

su↵er from pre-roll ads and rebu↵erings and analyze the impact of bitrate changes on

abandonment by comparing with constant bitrate videos. With a large number of samples,

we believe that monitoring abandonment rates gives us practical and reliable outputs to

analyze viewing interruptions in online video streaming.

7.4.2 QoE analysis report

Below, we summarize our QoE analysis based on YouSlow measurements in YouTube. The

video samples are grouped and analyzed using the following notations:

• Unimpaired videos: The viewers watched the videos without any viewing interrup-

tions such as video ads, long initial bu↵ering (> 1 second), rebu↵erings and bitrate

changes.

• Ad-free videos: The viewers watched the videos without experiencing pre-roll ads

before the main content.

• Rebu↵ered videos: The viewers su↵ered from rebu↵erings int the middle of play-

back.

• Initial bu↵ered videos: The viewers experienced long initial bu↵ering (> 1 second)

at the beginning of playback.

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 127

0

10

20

30

40

50

60

70

80

14.4%
20.6%

27.4%27.1%
30.5%

37%
41.4%

45%47.2%49.1%

62.5%

Ab
an

do
nm

en
t r

at
e

(%
)

Video duration (minutes)

0-1min
1-2min

2-3min
3-4min

4-5min
5-6min

6-7min
7-8min

8-9min
9-10min

>10min

Figure 7.9: Abandonment rate (%) for unimpaired videos as video length increases

7.4.2.1 Video length

As a baseline analysis, we analyzed the abandonment rate depending on the video length.

Concentrating on the impact of video length, we analyzed the unimpaired video sessions

only. Figure 7.9 shows our experimental results. We find that an abandonment rate rises as

video length increases. Most viewers decide whether or not they want to watch the video at

the beginning of playback [156]. Figure 7.10 shows how many viewers stayed in the video

sessions as the playback ratio increased for di↵erent video lengths. The playback ratio

shows the ratio of content that has played in a video. For the videos that are longer than

10minutes, for instance, we find that only 60% of viewers stayed in the video sessions when

the playback ratio is 0.2. In addition, we analyzed the number of viewers as the playback

duration (in seconds) increased for the videos that are longer than 5minutes. As shown in

Figure 7.11, about 44% of viewers abandoned the videos during the initial 60 seconds and

then they started to abandon at slower rates.

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 128

0 20 40 60 80 10020

40

60

80

100

Playback ratio (%)

N
um

be
r o

f v
ie

w
er

s
(%

)

< 1min
1−2min
2−3min
3−5min
5−10min
> 10min

Figure 7.10: Number of viewers (%) for unimpaired videos as playback ratio increases

0
40

50

60

70

80

90

100

N
um

be
r o

f v
ie

w
er

s
(%

)

> 5min

Playback duration (seconds)
60s 120s 180s 240s 300s

72.9%

66.1% 62%

59%
56.7%

54.7%
52.8%

51%
49.3%

47.2%

Figure 7.11: Number of viewers (%) for unimpaired videos (> 5minutes) as playback length

increases

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 129

0 5 10 15 20 25 3080

85

90

95

100

Pre−roll ads duration (seconds)

N
um

be
r o

f v
ie

w
er

s
(%

)

97.1%

92.3%

89.3%

83.4%

86.2%
84.5%

Figure 7.12: Number of viewers (%) during pre-roll ads as ad duration increases

7.4.2.2 Pre-roll ads

We have recently added a pre-roll ad analysis function to our Chrome extension (version

1.2.7). We analyzed a total of 11,038 video sessions where the viewers experienced the pre-

roll ads. Among them, 2,635 videos were abandoned during the ads. Based on this analysis,

the abandonment ratio for pre-roll ads is about 23.9%. Figure 7.12 shows how many the

viewers stayed during the pre-roll ads as the ad length increased. We conjecture that most

of the abandonment in Figure 7.12 took place during the non-skippable ads. Otherwise, the

viewer may skip the ads instead of abandoning the videos. Non-skippable ads are usually

15-20 seconds long. Our experimental results show that about 10% of viewers abandoned

the videos when the ads lasted for 15 seconds in YouTube.

7.4.2.3 Rebu↵ering

Most recent studies on video QoE [19; 126; 124; 157; 125] agree that rebu↵erings should be

avoided if at all possible in order to enhance video QoE. In addition, they show that QoE

of viewers can vary depending on the rebu↵ering pattern, i.e., how many or how often re-

bu↵erings appear during playback. We try to understand how viewers react to such di↵erent

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 130

RB RB

Rebuffering+ intervals

Video+plays abandoned

1st 2nd

RB

Figure 7.13: Two rebu↵ering (RB) intervals with three rebu↵erings

0 20 40 60 80 100
0

20

40

60

80

100

1st interval between rebufferings (seconds)

2n
d

in
te

rv
al

 b
et

w
ee

n
re

bu
ffe

rin
gs

 (s
ec

on
ds

)

60%

Figure 7.14: Plotting abandonments for videos with three rebu↵erings

rebu↵ering patterns in YouTube, along with abandonment rates. As a baseline analysis, we

extract the video sessions from the dataset where the total number of rebu↵erings is three

(Figure 7.13), and plot the abandonments based on the rebu↵ering intervals (Figure 7.14).

In Figure 7.14, we observe 60% of abandonments when the rebu↵erings intervals are

less than 20 seconds. We frequently observe such short rebu↵ering intervals when an ABR

player requests a higher bitrate than what a network can handle. In this case, the video play

has to be paused until the player stores at least one segment in the bu↵er, which can cause

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 131

a series of short-term rebu↵erings. Furthermore, we observe that an abandonment pattern

varies depending on rebu↵ering intervals. For instance, let’s suppose that we have a certain

range of first rebu↵ering interval between 0 and 20 seconds in Figure 7.14. Depending on the

second interval, we clearly see that the distribution of abandonments varies. The question

is, how do we normalize the impact of rebu↵ering intervals and correlate the results with

QoE assessments such as MOS? If we take into account a higher number of rebu↵erings or

additional factors such as rebu↵ering duration and total playback length, QoE modeling

will be much more complicated. To avoid such complexity, we consider a simpler metric

below and analyze how will the metric predict the abandonment rate.

Rebu↵ering ratio: The total rebu↵ering duration is not su�cient for modeling QoE

metrics since it does not take into account the total duration of playback. For example,

viewers may experience watching interruptions di↵erently depending on total playback du-

ration, even if the video session has the same duration of total rebu↵ering. As an example,

we calculate the abandonment rates for the video sessions where the total rebu↵ering du-

ration is between 10 and 15 seconds but they have di↵erent total playback durations (20

through 100 seconds). Figure 7.15 shows our experimental results. We clearly see that the

abandonment rate decreases when the playback duration increases.

RB ratio =
Rebu↵ering duration (second)

Total playback duration (second)
(7.1)

To reflect this, we analyze the impact of rebu↵erings on abandonment rates using the

rebu↵ering (RB) ratio in Equation 7.1. The ratio is defined as the fraction of time when a

viewer experiences rebu↵erings while watching a video. As an example, rebu↵erings occur

for ten seconds while a viewer stays in the video session for 100 seconds. In this case, the

rebu↵ering ratio will be 10/100=0.1. Depending on the rebu↵ering ratio, we calculate the

abandonment rate. To avoid the video abandonment due to the lack of interest at the

beginning of playback, we analyze the video sessions where the viewers watched the videos

for at least 60 seconds. Figure 7.16 shows average abandonment rate as rebu↵ering ratio

increases. We plot the results with the error bars based on the standard error of the mean

(SEM), but the error values are less than 0.2% for each rebu↵ering ratio. We subtracted

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 132

40

50

60

70

80

90

100

86%

82%

72%

66%
65%

59%
53%

50%

Ab
an

do
nm

en
t r

at
e

(%
)

20-30s 40-50s 60-70s 80-90s
Playback duration (seconds)

Figure 7.15: Abandonment rates (%) for ad-free, non-initial bu↵ered and rebu↵ered videos

- the same rebu↵ering duration but with di↵erent playback durations

0

20

40

60

80

Ab
an

do
nm

en
t r

at
e

(%
)

Rebuffering ratio
>0.5

0-0.02 0.04-0.06 0.08-0.1 0.2-0.3 0.4-0.5
0.02-0.04 0.06-0.08 0.1-0.2 0.3-0.4

2%

15%
19% 22%

23%

27% 34%

43% 47%

68%

Figure 7.16: The impact of rebu↵ering on abandonment rates (%) for ad-free, non-initial

bu↵ered and rebu↵ered videos

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 133

Table 7.4: Number of samples for rebu↵ering ratio analysis

Rebu↵ering ratio Number of samples

0 - 0.02 143,799

0.02 - 0.04 19,584

0.04 - 0.06 8,998

0.06 - 0.08 5,210

0.08 - 0.1 3,403

0.1 - 0.2 6,776

0.2 - 0.3 2,521

0.3 - 0.4 1,462

0.4 - 0.5 984

> 0.5 6,649

RB# RB# RB#

The#same#dura-on#of#total#rebuffering#

N=1# N=2#

Figure 7.17: The same total rebu↵ering (RB) duration with di↵erent number of rebu↵erings

the unimpaired rate (RB ratio= 0) from the impaired rates. The abscissa indicates a range

of rebu↵ering ratio (x� y represents x< ratio y). Table 7.4 shows the number of samples

for each rebu↵ering ratio. The results tell us that more viewers abandoned the videos as

the rebu↵ering ratio increased.

We note that the rebu↵ering ratio does not take the number of rebu↵erings into account.

As shown in Figure 7.17, for instance, it is possible that the number of rebu↵erings can vary

although the total rebu↵ering duration is the same. This can a↵ect video QoE di↵erently.

To prove it, we compare the impact of a single rebu↵ering event and multiple rebu↵erings

by comparing the abandonment rates along with rebu↵ering ratio. Figure 7.18 shows our

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 134

0

20

40

60

80

Ab
an

do
nm

en
t r

at
e

(%
)

A single rebuffering
Multiple rebufferings

0-0.02 0.04-0.06 0.08-0.1 0.2-0.3 0.4-0.5
0.02-0.04 0.06-0.08 0.1-0.2 0.3-0.4

Rebuffering ratio

Figure 7.18: Comparison of abandonment rates between a single rebu↵ering event and

multiple rebu↵erings for ad-free, non-initial bu↵ered and rebu↵ered videos

experimental results. We clearly see that multiple rebu↵erings cause higher abandonment

rates than a single rebu↵ering event.

Rebu↵ering early vs. later: We analyzed the impact of rebu↵ering start time on

video abandonment. We collected the number of video sessions with abandonment due to

rebu↵erings or initial bu↵ering and counted the number of abandonment depending on the

rebu↵ering start times. Figure 7.19 shows our experimental results. During the experiment,

we analyze the video sessions with a single rebu↵ering event to avoid the impact of multiple

rebu↵erings. We observe that the viewers were more likely to close the videos when they

experience the initial bu↵ering at the beginning of a playback. The initial bu↵ering is

related to the ABR heuristics of selecting bitrates and the network conditions when the

video starts. For example, an ABR player may request high bitrate segments when it starts

downloading a video. If the high bandwidth is available, it can play such high quality of

video instantly, increasing the video QoE. However, it may experience a long initial bu↵ering

at the beginning of a playback if the network is congested.

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 135

0 100 200 3000

0.2

0.4

0.6

0.8

1

Rebuffering start time (seconds)

C
um

ul
at

iv
e

pr
ob

ab
ilit

y

Figure 7.19: Cumulative probability of number of abandonments for ad-free, initial bu↵ered

and rebu↵ered videos with di↵erent rebu↵ering start times

7.4.2.4 Bitrate switching

Some papers [158; 128; 159; 127; 160] investigate the impact of bitrate changes on video

QoE. They claim that providing a bitrate as high as possible does not necessarily lead to the

highest QoE [128]. They agree that it is di�cult to create a metric that takes into account

of all the bitrate switching events, such as the number of bitrate changes, their amplitude

(i.e., by how much bitrate increases or decreases) and the duration of each bitrate. Below,

we try to find a simple metric that can properly reflect and quantify the impact of bitrate

changes on abandonment rates in YouTube.

Bitrate change ratio: To find the impact of bitrate changes on abandonment rates, we

use the following equation:

BR change ratio =

P
Num. of BR changes

i=1

|log(BR
i

/BR
i�1

)|
Num. of BR changes

(7.2)

BR

i

and BR

i�1

denote the newly selected bitrate and the previous bitrate (in kb/s),

respectively. Using the above equation, we calculate the abandonment rates. To remove

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 136

0

1

2

3

4

5

Ab
an

do
nm

en
t r

at
e

(%
)

All

0.4−0.6 0.8−1 1.2−1.4 1.6−1.8

Bitrate change ratio
0.6−0.8 1−1.2 1.4−1.6 1.8−2

Figure 7.20: The impact of bitrate change on abandonment rates (%) for ad-free, non-initial

bu↵ered and non-rebu↵ered videos

the influence of other factors such as rebu↵erings and ads, we first collect the video sessions

with bitrate changes only. To avoid counting the cases where a video is closed due to

lack of interest, we only considered the videos as abandoned when they were watched at

least 60 seconds and closed within five seconds after the bitrate was changed in the middle

of a playback. Figure 7.20 shows our experimental results. We plot the results with the

error bars based on the standard error of the mean (SEM). Table 7.5 shows the number of

samples for each bitrate change ratio. The analysis indicates that the viewers were more

likely to close the videos when the bitrate change ratio increased (Figure 7.20). However,

the abandonment rate is not significantly di↵erent (< 2%).

Table 7.5: Number of samples for bitrate change ratio analysis

0.4 - 0.6 0.6 - 0.8 0.8 - 1 1 - 1.2 1.2 - 1.4 1.4 - 1.6 1.6 - 1.8 1.8 - 2

All bitrate changes 6,684 16,200 20,780 3,359 1,478 198 7,009 3,690

Positive bitrate changes 3,883 9,596 10,561 1,522 515 14 3,484 1,918

Negative bitrate changes 1,425 2,862 4,546 963 45 6 1,284 1,440

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 137

0

1

2

3

4

5

Ab
an

do
nm

en
t r

at
e

(%
)

Positive BR change
Negative BR change

0.4−0.6 0.8−1 1.2−1.4 1.6−1.8

Bitrate change ratio
0.6−0.8 1−1.2 1.4−1.6 1.8−2

Figure 7.21: The impact of positive and negative bitrate changes on abandonment rates

(%) for ad-free, non-initial bu↵ered and non-rebu↵ered videos

The above result leads to the following question: does switching to a higher bitrate

during playback also increase abandonment rate? To figure this out, we analyzed the video

sessions with positive or negative bitrate changes separately. In Figure 7.21, positive bitrate

changes present the views where there was only bitrate increase during video playback

(e.g., BR

i

-BR

i�1

> 0) and negative bitrate changes present the views where there was only

bitrate decrease during playback (e.g., BR

i

-BR

i�1

< 0). We clearly observe that decreasing

bitrate causes higher abandonment rate than increasing bitrate during playback. Note that

we have collected a small number of samples for the bitrate change ratio between 1.4 and

1.6 (Table 7.5) and all the viewers for the range completely watched the videos until the

end.

The impact of bitrate changes on video loaded fraction: We compare the impact

of positive and negative bitrate changes on the video loaded fraction. To remove the impact

of multiple bitrate changes, we analyzed the video sessions that experienced a single bitrate

change only. We split the dataset into three groups depending on di↵erent starting bitrates

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 138

Table 7.6: The impact of a single bitrate (BR) change on video loaded fraction for ad-

free, non-initial bu↵ered and non-rebu↵ered videos with di↵erent starting bitrates and total

playback lengths

tiny or small 0 - 60 s 60 - 120 s 120 - 180 s > 180 s

No BR changes 0.41 0.78 0.9 0.94

Positive BR change 0.38 0.69 0.85 0.9

Negative BR change 0.24 0.63 0.83 0.89

medium or large 0 - 60 s 60 - 120 s 120 - 180 s > 180 s

No BR changes 0.44 0.83 0.92 0.95

Positive BR change 0.43 0.77 0.87 0.92

Negative BR change 0.33 0.7 0.83 0.9

hd or highres 0 - 60 s 60 - 120 s 120 - 180 s > 180 s

No BR changes 0.48 0.8 0.91 0.94

Positive BR change 0.43 0.74 0.86 0.92

Negative BR change 0.4 0.7 0.83 0.89

such as tiny / small, medium / large and hd / highres. Table 7.6 shows the average of video

loaded fraction based on the total playback length. We observe low video loaded fraction

for short playback duration (0 - 60 seconds). This typically happens when the videos are not

what the viewers expected in YouTube. In this cases, the videos are easily abandoned at

the beginning of playback, which results in the low loaded fraction. The viewers typically

stayed longer in the video sessions when they watched high (medium or above) bitrates at

the beginning of a playback. In addition, the viewers were likely to abandon videos early

when the bitrates decreased, but the video loaded fraction is not significantly di↵erent.

Interestingly, we also observe that more viewers abandoned the videos early even when the

players increased the bitrates regardless of starting bitrate and playback length.

We analyze the impact of bitrate changes depending on the average played bitrate. For

instance, let’s suppose that two viewers watch the same video. The first one experiences

frequent bitrate changes between 1Mb/s and 3Mb/s during playback and the average played

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 139

Table 7.7: The impact of bitrate (BR) change on video loaded fraction for ad-free, non-initial

bu↵ered and non-rebu↵ered videos with constant bitrate or multiple bitrate changes

Avg. played bitrate (kb/s) Constant BR Multiple BR changes

350 - 450 kb/s 0.9 0.81

900 - 1100 kb/s 0.92 0.83

2400 - 2600 kb/s 0.93 0.82

bitrate is 2Mb/s. On the other hand, the second viewer watch the video with 2Mb/s without

any bitrate changes. The average played bitrate is the same. How does this di↵erence a↵ect

the viewing experience? Based on the experimental results in Table 7.7, we confirm that

viewers prefer high starting bitrates with no bitrate changes.

7.4.3 Regression analysis

Throughout the previous experimental results, we find that viewers experience interruptions

di↵erently depending on total playback time, rebu↵ering duration, number of rebu↵erings

and bitrate changes during playback. Based on our YouSlow dataset, we conduct multiple

linear regression analysis to investigate the relationship between the abandonment rate and

the two viewing interruptions, rebu↵erings and bitrate changes. To concentrate on the

impact of rebu↵erings and bitrate changes, we omit the video sessions that experienced

pre-roll ads and long initial bu↵ering (> 1 second). To reduce the oscillation due to the

viewers who abandoned videos during the beginning of playback, we analyze the sessions

where the viewers watched the videos for at least 60 seconds (Figure 7.11). In the dataset,

we found a small number of exceptional cases (< 1%) where the viewers watched the videos

to the end even if they su↵ered from a very long initial bu↵ering or rebu↵erings throughout

the entire playback. We considered these samples as falsely reported and removed them

from the dataset. Considering the outliers, Table 7.8 shows the statistics of video session

for our regression analysis.

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 140

Table 7.8: Video playback statistics for regression analysis

Term Min. Max.

Playback length 60 s 1,000 s

Num. of rebu↵erings 0 6

Total rebu↵ering duration 0 25 s

Num. of bitrate changes 0 3

Table 7.9: Multiple linear regression analysis on abandonment rate using the number of

rebu↵erings (RBs) and bitrate (BR) changes

Predictor variable S R-sq R-sq (adj)

(1) only 0.047 59.6% 57.6%

(2) only 0.061 32.6% 29.2%

(1) and (2) 0.033 81.4% 79.4%

(1) Num. of RBs (2) Num. of BR changes

(a) Model summary

Source DF Adj SS Adj MS F-Value P-Value

Regression 2 0.091 0.045 41.52 < 0.0001

Error 19 0.02 0.001

Total 21 0.112

(b) Analysis of variance

Term Coef SE Coef T-value P-value VIF

Constant 0.1821 0.018 9.92 < 0.0001

Num. of RBs 0.0246 0.003 7.06 < 0.0001 1.02

Num. of BR changes 0.0374 0.008 4.71 0.0002 1.02

(c) Coe�cients

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 141

7.4.3.1 Using the number of rebu↵erings and bitrate changes

Can we find a strong linear relationship between the abandonment rate and the num-

ber of rebu↵erings and bitrate changes? We conduct the regression analysis between the

abandonment rates and the two factors. Our experimental results are shown in Table 7.9.

We note that the Pearson correlation coe�cient of two factors is 0.141 (P-value= 0.531).

This indicates that the two factors are not highly correlated. According to the ANOVA

(analysis of variance) results in Table 7.9b, two factors predict the abandonment rate sig-

nificantly, F (2, 19)= 41.52, p< 0.0001. The fitted regression model found from the analysis

is (Abandonment rate) = 0.1821 + 0.0246 ⇤ Num. of RBs + 0.0374 ⇤ Num. of BR changes.

The p-values in Table 7.9c tell us that the number of rebu↵erings has more impact on the

abandonment rate than the number of bitrate changes. We can see the high value of R-

squared, 0.814 of the explained variability in abandonment rate. In general, the higher the

R-squared, the better the model fits the data.

7.4.3.2 Using the number of rebu↵erings and rebu↵ering / bitrate change ratios

We categorize the dataset into several groups depending on three predictors, the number

of rebu↵erings and the rebu↵ering and bitrate change ratios using Equation 7.1 and 7.2.

For the rebu↵ering ratio, we first counted the number of sessions with the same rebu↵ering

ratio and tried to calculate the abandonment rate. However, the total playback time varies

between 60 seconds and 1,000 seconds. So, it is di�cult to gather a su�ciently large number

of samples for each rebu↵ering ratio for the analysis of the abandonment rate. To address

this, we split the dataset into multiple subsets depending on the normalized rebu↵ering

and bitrate change ratios. We divided sessions into 0.1 intervals of rebu↵ering ratio. For

instance, we consider the sessions with the same range of rebu↵ering ratio between 0.1

and 0.2 as the session that has 0.15 of rebu↵ering ratio. For the bitrate change ratio, we

divided the sessions into 0.2 intervals. Table 7.10 shows our regression analysis. Figure 7.22

presents the fitted lines between the abandonment rate and each predictor. Among the

three predictors, the rebu↵ering ratio has the most impact on the abandonment rate while

the bitrate change ratio has the least impact (Table 7.10a). Using the rebu↵ering ratio and

the number of the rebu↵erings, we can achieve the highest R-squared value (R2=0.94).

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 142

Table 7.10: Multiple linear regression analysis on abandonment rate using the number of

rebu↵erings (RBs) and rebu↵ering / bitrate (BR) change ratios

Predictor variable S R-sq R-sq (adj)

(1) only 0.06 91.3% 90.9%

(3) only 0.122 64.3% 62.7%

(1) and (3) 0.049 94.6% 94.0%

(1) and (2) 0.0615 91.4% 90.5%

(1), (2) and (3) 0.05 94.6% 93.7%

(1) RB ratio (2) BR change ratio (3) Num. of RBs

(a) Model summary

Source DF Adj SS Adj MS F-Value P-Value

Regression 3 0.872 0.29 115.92 < 0.0001

Error 20 0.05 0.002

Total 23 0.922

(b) Analysis of variance

Term Coef SE Coef T-value P-value VIF

Constant 0.142 0.033 4.28 0.0004

RB ratio 2.156 0.212 10.17 < 0.0001 2.13

BR change ratio 0.001 0.027 0.07 0.9483 1.32

Num. of RBs 0.031 0.009 3.43 0.0027 2.04

(c) Coe�cients

7.4.4 Summary of key observations

These are the key findings from our QoE experimental results:

Finding 1: Our measurements show that about 10% of viewers abandoned the YouTube

videos when the pre-roll ads lasted for 15 seconds (Figure 7.12).

Finding 2: We observe that viewers are more likely to abandon videos with multiple

rebu↵erings compared to a single rebu↵ering event even if the rebu↵ering ratio is the same

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 143

0 0.1 0.20

0.5

1
Ab

an
do

nm
en

t r
at

e

0 1 20

0.5

1

0 3 60

0.5

1

RB ratio BR change ratio Num. of RBs

Figure 7.22: Fitted lines for multiple linear regression analysis

(Figure 7.18). We confirm that the initial bu↵ering has more impact on the video aban-

donment than the rebu↵erings in the middle of a playback (Figure 7.19). In addition, we

observe that viewers prefer constant bitrate to increasing bitrate during playback, but the

abandonment rate is not significantly di↵erent (Figure 7.20 and 7.21).

Finding 3: We find that monitoring the number of rebu↵erings and the rebu↵ering ratio

is a good metric to quantify video abandonment rates for short videos such as YouTube.

Compared to the rebu↵ering impact, the bitrate change does not a↵ect the video abandon-

ment significantly. To estimate the abandonment rate in YouTube, we can create a strong

linear regression model (R2=0.81) using the number of rebu↵erings and bitrate changes

only (Table 7.9). We can increase the R-squared value up to 0.94 with the combination of

the rebu↵ering ratio and the number of rebu↵erings (Table 7.10).

7.5 YouSlow challenges

Below, we address YouSlow challenges:

Scalability: We currently operate a single database server that collects about 3,500

YouTube views every day. As the number of YouSlow users increases, we plan to deploy

multiple servers on the cloud platform.

Video player APIs: YouSlow relies on the YouTube player API [135]. Thus, any mod-

ification made to current APIs can a↵ect our measurements. To avoid this issue, we track

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 144

its revision history and try to reflect every change to existing YouSlow platform.

Geolocation database update: YouSlow uses the MaxMind geolocation database that

maps the public IP address to the ISP information such as hostname and location. The

database needs to update periodically. Depending on ISPs, there is a possibility we may fail

to find approximate ISP location. For example, when we watch YouTube videos in public

places such as co↵ee shops or book stores, some local ISPs in New York such as AT&T and

Time Warner Cable lead us to the wrong place (e.g., Butler, Kansas, US), instead of their

real locations.

Development of iOS and Android mobile applications: We currently focus on the

YouSlow Chrome extension. We released our mobile applications via YouSlow homepage.

We plan to publish them in the Apple’s App or Google Play store.

7.6 Future work

Adding other streaming services to YouSlow: As we noted, YouSlow platform can

be easily implemented for other streaming services such as Netflix4 and Hulu if they provide

any player APIs. In this case, we can monitor and compare behaviors of video watching

viewers, between short video clips such as music videos and sports highlights in YouTube

and long videos such as movies and TV shows in Netflix [152]. In addition, YouSlow can be

used to analyze video ads in social networks. For example, Facebook recently began allowing

embedded videos to play automatically when users scroll to that page. Using YouSlow, we

expect to investigate the impact of video ads on user behavior in Facebook and compare

the results with YouTube.

Time and space consistency analysis for di↵erent ISPs: YouSlow analyzes video

QoE depending on the location of viewers and the ISPs that the viewers are connected to.

Based on the measurements, we can track the time and space consistency of various video

playback events such as average played bitrate and rebu↵ering ratio in YouTube for di↵erent

4As of Nov. 14th, 2014, public API developers are no longer able to access Netflix content. Netflix is

taking its API private [161].

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 145

ISPs. This approach is similar with other video QoE reports by Google [143], Netflix [144]

and the Measuring Broadband America (MBA) program by the Federal Communications

Commission (FCC)5 [162]. We plan to develop the YouSlow APIs that allow end-users to

retrieve and analyze the information over time and space.

Adding network troubleshooting functions to YouSlow: We plan to add various

network testing and troubleshooting functions to the YouSlow Chrome extension. When

rebu↵erings occur during playback, for example, YouSlow diagnoses common network con-

nection issues by measuring ping and download speed and provide the measurements to the

viewers via the extension.

Fixed vs. mobile devices: We can compare video abandonment when viewers watch

videos on desktops / laptops or mobile devices. Due to lack of reports from mobile devices,

we leave this for future work.

7.7 Related work

Video QoE analysis: Dobrian et al. [152] at Conviva monitored user-engagement based

on various playback events measured from video players. The methodology used for data

collection is similar to our approach. They focused on the analysis of initial bu↵ering

and rebu↵ering ratio, not bitrate switching. They found that the rebu↵ering ratio has the

largest impact on video abandonment and the impact is quantitatively di↵erent depend-

ing on content types. They argued that initial bu↵ering has significantly lower impact

on video abandonment, diverging from our findings as shown in Figure 7.19. Unlike their

approach, our platform allows viewers and video service providers to monitor various play-

back statistics in real time via our QoE monitoring system. In addition, we suggest simpler

metrics (e.g., monitoring rebu↵ering ratio, number of rebu↵erings, bitrate change ratio over

playback time) that can be implemented at video players to estimate abandonment rates.

Shafiq et al. [154] monitored video abandonment by inspecting video packets from the ISPs’

viewpoint, but the method is more complicated compared to our web browser plug-in that

5The Measuring Broadband America (MBA) program uses the FCC speed test application that measure

fixed or mobile broadband performance such as upload and download speed, latency and packet loss.

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 146

can detect such abandonments directly from within video players. Hossefeld et al. [124]

investigated the impact of rebu↵ering patterns (i.e., how many and often rebu↵erings ap-

pear during playback) on video QoE. They found that it is di�cult to estimate video QoE

by considering the total rebu↵ering duration only. Krishnan et al. [155] investigated the

e↵ectiveness of video ads by monitoring their completion and abandonment rates. They

found that an ad for long-term videos such as TV shows and movies is about 4% more

likely to complete than the same ad for the short-term videos such as YouTube’s video

clips. They also observed that the viewers abandoned more quickly in the beginning of the

ad and abandoned at slower rates as the ad progressed.

Collecting measurement data from a web browser plug-in: For analyzing network

performance issues such as page loading times, Dhawan et al. [163] introduce Fathom, a

browser-based network measurement platform. As a proof of concept, they have built a

Firefox plug-in that allows web sites or other parties to program network measurements

using JavaScript. Barbara et al. [164] have built a YouTube monitoring tool (YoMo) that

analyzes the amount of playtime bu↵ered by the YouTube player. The Firefox plug-in

focuses on the Flash-based streaming in YouTube and monitors TCP flows at the client

in order to estimate the time when the YouTube player is stalling. They focused on the

analysis of bu↵ering status of YouTube player, but did not investigate QoE metrics in video

streaming.

7.8 Conclusions

We introduced YouSlow as a new video QoE analysis tool for video QoE. Our experimental

results show that monitoring the rebu↵ering ratio and counting the number of rebu↵erings

during playback are proper QoE metrics to analyze abandonment rates for short videos

such as YouTube. As key observations, we find that about 10% of viewers closed the videos

during the pre-roll ads when the ads lasted for 15 seconds. Further, our analysis shows

that viewers prefer constant bitrate to increasing bitrate during playback. Our regression

analysis shows that the rebu↵ering ratio has the most significant impact on the abandonment

rate compared to the bitrate change ratio and the number of rebu↵erings. We believe that

CHAPTER 7. QOE MATTERS MORE THAN QOS:
WHY PEOPLE STOP WATCHING CAT VIDEOS 147

our proposed QoE metrics and experimental results give us an insight to improving ABR

heuristics in ABR players and enhancing viewing experiences.

148

Part V

Conclusions

149

This thesis investigated OTT video streaming services using ABR technologies. In

ABR streaming, a video player running on a viewer’s device adapts bitrates to match given

network conditions. Even though such self-adjusting mechanism is designed to improve

video QoE, there are still many challenges in providing a reliable streaming experience

due to the lack of direct knowledge of access network channels, frequent user mobility and

di�culty of monitoring the watching experiences of viewers. The primary contribution of

this thesis lies in addressing those challenges.

First, this thesis introduces dynamic network condition-aware video server selection

algorithms. In today’s CDN-based video streaming, the video service providers typically

assign video content servers that are geographically close to viewers. However, it is possible

that the network conditions can be unstable even if the content server is located near the

viewer. To resolve this issue, we suggest to discover a better video content server on wireless

edge nodes (e.g., RNC in a 3G network and P-GW in a 4G network) based on measured

RTTs when a viewer requests a video. Through an empirical analysis of YouTube, we prove

that our solutions outperform the existing location-based algorithms by providing higher

TCP performance.

Second, this thesis presents QoS-aware video streaming in wireless networks. In our

proposed platform, wireless edge node supports an ABR player in selecting a proper bitrate

by dynamically controlling the maximum allowable TCP throughput on the video streaming

flow based on the changing network conditions over the air interface. By monitoring TCP/IP

and HTTP packets in real time, it also discards unnecessary video packets in advance before

they are being delivered to the viewer.

Third, this thesis presents QoE-aware video streaming using SDN. Our proposed SDN

application monitors the status of streaming flows (e.g., downloading throughput and video

QoE factors from viewer’s device) in real time and dynamically changes routing paths in

WANs using MPLS-TE. Instead of using simulation or emulation tools, we experimented

with an o↵-the-shelf SDN platform (Juniper network’s Junos Space [26]) to show the feasi-

bility of our approach.

Fourth, this thesis investigates the impact of playout bu↵er size in ABR streaming on

video QoE. To measure the viewer’s watching experience, we conducted subjective video

150

experiments, collecting data from more than 200 participants using an online crowdsourcing

platform. Our survey results show that a small bu↵er can achieve higher QoE by yielding

more high bitrate intervals than a large bu↵er especially under fast varying network condi-

tions. Based on these findings, we suggest that an ABR player should change its maximum

playout bu↵er size depending on the remaining bu↵er occupancy during playback. In our

testbed, we demonstrated that an ABR player dynamically switching between small and

large bu↵ers outperforms the player with fixed bu↵ers by providing fewer rebu↵erings and

higher played bitrates during a download.

Finally, this thesis introduces YouSlow, a video QoE monitoring tool that can evaluate

existing OTT video streaming services. The key idea is to monitor video abandonments and

quantify the results for playback events such as starting bitrate, start-up latency, rebu↵er-

ings and bitrate changes. The YouSlow tool has collected more than 1,400,000 YouTube

views from more than 110 countries. We measured the impact of these playback events on

video abandonment and found that about 10% of viewers abandoned the YouTube videos

when the pre-roll ads lasted for 15 seconds. Even increasing the bitrate can annoy viewers;

they prefer a high starting bitrate with no bitrate changes during playback. Our regression

analysis shows that the rebu↵ering ratio has the most significant impact on the abandon-

ment rate and the abandonment rate can be estimated accurately using the rebu↵ering ratio

and the number of rebu↵erings (R2=0.94).

This thesis proposes various solutions that can support network operators and video

service providers to resolve the ine�ciency of today’s OTT video streaming. The solutions

have been experimentally validated on real networking equipment such as Wi-Fi access

points and SDN controllers. However, there is a di�culty in implementing and testing the

ideas on wireless edge nodes in real mobile networks (e.g., 3G and 4G), which we leave for

our future work. Despite the limited resource for evaluation, we believe that our proposed

solutions and experimental results will be a stepping stone to how we improve today’s OTT

streaming in future networks, such as 5G networks.

151

Part VI

Glossary

152

720p, 1080p and 1440p. High-definition (HD) videos that have 720, 1080 and 1440 lines

of vertical resolution, respectively. The p refers to progressive scan HD video.

ABR streaming. It represents adaptive bitrate streaming. The video streaming technol-

ogy is described in Part I.

A-AMBR. APN Aggregate Maximum Bit Rate (A-AMBR) is the maximum allowed total

non-GBR throughput to specific APN.

APN. An Access Point Name (APN) is the name of a gateway between a GSM, GPRS,

3G or 4G mobile network and another computer network, frequently the public Internet.

Bu↵er. In streaming applications, bu↵ers store video or audio data until there is enough

information for the stream to be composed.

Bitrate. The number of bits per second (bps) at which a video stream is delivered. For

ABR streaming the bitrate will change based on a request from the video player on an

end-user’s device.

DASH. Dynamic Adaptive Streaming via HTTP, one of ABR streaming technologies de-

veloped by the Motion Picture Experts Group (MPEG).

DD-WRT. It is a Linux based alternative OpenSource firmware suitable for a variety of

WLAN routers and embedded systems.

Encoding. Converting content from one form of video signal to another, either in real-time

for live streaming or in non-real-time for further manipulation.

EPC. The Evolved Packet Core (EPC) defined in 3GPP Rel-8 [78].

EPS. 3GPP term referring to a complete end-to-end system, that is UE, E-UTRAN and

EPC.

E-UTRAN. The radio access network that implements LTE radio interface technology.

EPS bearer. A bearer is a virtual pipe line connecting two or more points in the com-

munication system in which data tra�c follow through. An Evolved Packet System (EPS)

bearer is a pipe line between an UE and a P-GW in an LTE network.

153

Frame rate. The number of frames per second (FPS) for video. Generally, 24 p is used for

transferring a video signal to film and 50/60 p is used for High-definition television (HDTV).

Fast start. In video streaming, fast start is represents a technique that tries to fill-up

the playout bu↵er of a streaming client at the beginning of a presentation and starts the

presentation faster, hence improving user experience.

GBR. The minimum guaranteed bit rate per EPS bearer in an LTE network.

Goodput. The application level throughput. It counts the number of useful bits delivered

through the network for a certain time period to determine the network e�ciency.

HDS. It is Adobe’s method for ABR streaming.

High definition. Often referred to as HD, resolutions of 10245 720 or 19205 1080.

HLS. HLS stands for HTTP Live Streaming, one of ABR streaming technologies developed

by Apple.

I frame. Intra picture frame, or I-frame, compression is a shorthand way of referring

to intraframe compression. It can also be used as the basis for interframe compression,

if predictive (P frames) can reference a key frame (which is always an I frame) and then

predict movement across multiple P frames.

Last mile technology. The technology that carries signals from the broad telecommuni-

cation backbone to and from the home or business.

MBR. The maximum guaranteed bit rate per EPS bearer in an LTE network.

Meta-data. Meta-data carries what a file contains such as file location, bitrates, time and

date.

MOS. Mean opinion score is a metric that has been used for decades in telephony networks

to obtain the human user’s view of the quality of the network, typically on a scale of 1 to 5.

OTT. Over-the-top (OTT) is the delivery of film and TV content via the Internet, without

requiring users to subscribe to traditional cable or satellite pay-TV services.

154

P-GW. A Packet Data Network Gateway (P-GW) is a gateway between the LTE network

and other packet data networks, such as the Internet or SIP-based IMS networks.

Progressive download. A method for streaming non-live video to the user for immediate

playback. Supported in the user’s media player, progressive download employs HTTP, the

protocol used to download everything from the web.

Player. A handheld device or an application running on PCs or mobile devices, that plays

videos.

QCI. QoS Class Identifier (QCI) is a mechanism used in LTE networks to ensure bearer

tra�c is allocated appropriate QoS. Nine di↵erent QCI values are standardized to reference

specific QoS characteristics regarding resource type (GBR or non-GBR), priority (1 9),

packet delay budget (from 50ms to 300ms), packet error loss rate (from 10�2 to 10�6).

QoE. Quality of Experience is a measure of the overall level of customer satisfaction with

vendors, services or products. QoE expresses user-satisfaction both objectively and subjec-

tively.

QoS. As per ITU-T Recommendation E.800 [146], quality of service is totality of character-

istics of a telecommunications service that bear on its ability to satisfy stated and implied

needs of the user of the service.

Rebu↵ering. Rebu↵ering occurs in the middle of a playback when the available bandwidth

falls short of the presentation’s required bandwidth. The play will be paused until there is

enough data for the stream to be stored in the bu↵er.

SDN. Software-defined networking is an approach to networking in which control is decou-

pled from the physical infrastructure, allowing network administrators to manage network

services through abstraction of lower-level functionality.

Smooth streaming. Microsoft’s proprietary ABR streaming technology.

Standard definition. Often referred to as SD, resolutions of 7205 576 or 7205 480.

Transit network. Transit networks connect other networks, but do not serve end-users.

155

UE. In the UMTS and the LTE networks, user equipment (UE) is any device used directly

by an end-user to communicate.

UE-AMBR. UE Aggregate Maximum Bit Rate (UE-AMBR) is the maximum allowed

total non-GBR throughput among all APN to a specific UE.

UMTS. The Universal Mobile Telecommunications System (UMTS) is a third generation

mobile cellular system.

Viewer. A person who watches videos, or a device that downloads and plays videos.

156

Part VII

Bibliography

BIBLIOGRAPHY 157

Bibliography

[1] FCC Adopts 15th Report on the Status of Competition in the Market for the Deliv-

ery of Video Programming. Retrieved August 12, 2015 from https://www.fcc.gov/

document/fcc-adopts-15th-report-video-competition-0.

[2] Maggie MacDonald. Comcast vs. Netflix: Why the FCC Should Redefine Multi-

Channel Video Programming Distributors to Include over-the-Top Video Providers.

Colo. Tech. LJ, 12:479, 2014.

[3] Nitin Narang, What is the Di↵erence between OTT and IPTV? Retrieved August

12, 2015 from http://www.mediaentertainmentinfo.com/2013/04/2-concept-

series-what-is-the-difference-between-ott-and-iptv.html/.

[4] Cisco, Visual Networking Index: Forecast and Methodology 20152020. Retrieved

June 29, 2016 from http://www.cisco.com/c/en/us/solutions/collateral/

service-provider/visual-networking-index-vni/complete-white-paper-

c11-481360.html.

[5] Citrix, Bytemobile Mobile Analytics Report. Retrieved June 12, 2015 from https:

//www.citrix.com/.

[6] Adobe Digital Index, U.S. Digital Video Benchmark Q4 2015. Retrieved June 29,

2016 from http://www.cmo.com/.

[7] Ooyala, Global Video Index Q4 2015. Retrieved June 29, 2016 from http://

go.ooyala.com/wf-video-index-q4-2015.html.

BIBLIOGRAPHY 158

[8] Making Sense of Video Streaming Protocols. Retrieved June 21, 2016 from

https://www.linkedin.com/pulse/making-sense-video-streaming-protocols-

dr-brijesh-kumar.

[9] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Jacobson. RTP: A

Transport Protocol for Real-Time Applications. IETF Draft, July 2003.

[10] Henning Schulzrinne, Anup Rao, Rob Lanphier, Magnus Westerlund, and Martin

Stiemerling. Real Time Streaming Protocol 2.0 (RTSP). IETF Draft, February 2014.

[11] Real-Time Messaging Protocol (RTMP) specification. Retrieved June 21, 2016 from

http://www.adobe.com/devnet/rtmp.html.

[12] Microsoft Media Server Protocol. Retrieved June 21, 2016 from https://

msdn.microsoft.com/en-us/library/cc239490.aspx.

[13] Raj Jain. Data Flies Standby with ABR Service. Computing Research Repository

(CoRR), cs.NI/9809100, 1998.

[14] Saamer Akhshabi, Ali C. Begen, and Constantine Dovrolis. An Experimental Evalu-

ation of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP. In Proceed-

ings of ACM MMSys, San Jose, CA, USA, February 2011.

[15] Apple HTTP Live Streaming. Retrieved June 12, 2015 from https://

developer.apple.com/streaming/.

[16] Microsoft IIS Smooth Streaming. Retrieved June 12, 2015 from http://www.iis.net/

downloads/microsoft/smooth-streaming.

[17] Adobe HTTP Dynamic Streaming. Retrieved June 12, 2015 from http://

www.adobe.com/products/hds-dynamic-streaming.html.

[18] Dynamic Adaptive Streaming over HTTP. Retrieved June 12, 2015 from http://

mpeg.chiariglione.org/standards/mpeg-dash.

BIBLIOGRAPHY 159

[19] Ricky K. P. Mok, Edmond W. W. Chan, and Kuang-Chiung Chang. Measuring the

Quality of Experience of HTTP Video Streaming. In Proceedings of IFIP/IEEE IM,

Dublin, Ireland, May 2011.

[20] Kuan-Ta Chen, Chi-Jui Chang, Chen-Chi Wu, Yu-Chun Chang, and Chin-Laung Lei.

Quadrant of Euphoria: A Crowdsourcing Platform for QoE Assessment. Journal of

IEEE Network, 24(2):28–35, March 2010.

[21] Pedro Casas, Raimund Schatz, and Tobias Hossfeld. Monitoring YouTube QoE: Is

Your Mobile Network Delivering the Right Experience to your Customers? In Pro-

ceedings of IEEE WCNC, Sanghai, China, April 2013.

[22] Hyunwoo Nam, Bong Ho Kim, Doru Calin, and Henning Schulzrinne. A Mobile Video

Tra�c Analysis: Badly Designed Video Clients Can Waste Network Bandwidth. In

Proceedings of IEEE Globecom CTEMD Workshop, Atlanta, USA, December 2013.

[23] Hyunwoo Nam, Kyung-Hwa Kim, Bong Ho Kim, Doru Calin, and Henning

Schulzrinne. Towards Dynamic QoS-aware Over-The-Top Video Streaming. In Pro-

ceedings of IEEE WoWMoM, Sydney, Australia, June 2014.

[24] Hyunwoo Nam, Kyung Hwa Kim, Doru Calin, and Henning Schulzrinne. Towards

Dynamic Network Condition-Aware Video Server Selection Algorithms over Wireless

Networks. In Proceedings of IEEE ISCC, Madeira, Portugal, June 2014.

[25] Hyunwoo Nam, Kyung-Hwa Kim, Jong Yul Kim, and H. Schulzrinne. Towards QoE-

aware Video Streaming Using SDN. In Proceedings of IEEE Globecom, December

2014.

[26] Juniper Network’s Junos Space. Retrieved June 16, 2015 from https://

www.juniper.net/assets/us/en/local/pdf/datasheets/1000297-en.pdf.

[27] Hyunwoo Nam, Kyung-Hwa Kim, Doru Calin, and Henning Schulzrinne. YouSlow:

A Performance Analysis Tool for Adaptive Bitrate Video Streaming. In Proceedings

of ACM SIGCOMM, Chicago, Illinois, USA, August 2014.

BIBLIOGRAPHY 160

[28] Hyunwoo Nam, Kyung-Hwa Kim, and Henning Schulzrinne. QoE Matters More Than

QoS: Why People Stop Watching Cat Videos. In Proceedings of IEEE INFOCOM,

San Francisco, California, USA, April 2016.

[29] Mart́ın Varela, Hyunwoo Nam, Henning Schulzrinne, and Toni Mäki. Generating

Realistic Youtube-like Stall Patterns for Http Video Streaming Assessment. In Pro-

ceedings of IEEE QOMEX, Lisbon, Portugal, June 2016.

[30] Recording media streamed through PNM protocol. Retrieved July 12,

2016 from http://all-streaming-media.com/streaming-media-faq/faq-pnm-

protocol.htm.

[31] Haakon Riiser. Adaptive Bitrate Video Streaming over HTTP in Mobile Wireless

Networks. PhD thesis, University of Oslo, Oslo, Norway, June 2013.

[32] An Overview of Digital Rights Management. Retrieved July 12, 2016 from http:

//www.encoding.com/digital-rights-management-drm/.

[33] Michael C. Thornburgh. Adobe’s Secure Real-Time Media Flow Protocol. IETF

Draft, July 2013.

[34] Adobe Media Server family. Retrieved July 1, 2016 from http://www.adobe.com/

products/adobe-media-server-family.html.

[35] Wowza media systems. Retrieved July 1, 2016 from https://www.wowza.com/.

[36] Dynamic RTMP Streaming. Retrieved July 1, 2016 from https:

//support.jwplayer.com/customer/portal/articles/1430398-dynamic-rtmp-

streaming.

[37] Roger Pantos and Jr. William May. HTTP Live Streaming. IETF Draft, April 2015.

[38] Stefan Lederer, Christopher Müller, and Christian Timmerer. Dynamic Adaptive

Streaming over HTTP Dataset. In Proceedings of ACM MMSys, Chapel Hill, North

Carolina, USA, February 2012.

BIBLIOGRAPHY 161

[39] W3C - Media Source Extensions. Retrieved September 2, 2015 from http://

w3c.github.io/media-source/.

[40] Technical Note TN2224: Best Practices for Creating and Deploying HTTP Live

Streaming Media for the iPhone and iPad. Retrieved June 22, 2016 from https:

//developer.apple.com/library/ios/technotes/tn2224/ index.html.

[41] IIS Smooth Streaming Technical Overview. Retrieved April 14,

2015 from http://www.bogotobogo.com/VideoStreaming/Files/iis8/

IIS Smooth Streaming Technical Overview.pdf.

[42] Source code of Silverlight extensions. Retrieved August 31, 2015 from http:

//slextensions.codeplex.com/SourceControl/latest#trunk/SLExtensions/

AdaptiveStreaming/Heuristics/NetworkHeuristicsParams.cs.

[43] jpcap – a network packet capture library. Retrieved September 2, 2015 from http:

//jpcap.sourceforge.net/.

[44] The Wireshark Network Analyzer. Retrieved September 2, 2015 from https:

//www.wireshark.org/.

[45] YouTube says HTML5 video ready for primetime, makes it default. Retrieved June 29,

2016 from http://arstechnica.com/gadgets/2015/01/youtube-declares-html5-

video-ready-for-primetime-makes-it-default/.

[46] Ricky Yang and Harrison J. Son. YouTube’s Live TV Streaming in Mobile Devices -

HLS & Adaptive. Technical report, Netmanias, October 2013.

[47] Yao Liu, Fei Li, Lei Guo, Bo Shen, and Songqing Chen. A Comparative Study of

Android and iOS for Accessing Internet Streaming Services. In Proceedings of PAM,

PAM, Hong Kong, China, March 2013.

[48] Netem. Retrieved August 31, 2015 from http://www.linuxfoundation.org/

collaborate/workgroups/networking/netem.

[49] Netflix Tech Blog. Retrieved June 22, 2016 from http://techblog.netflix.com/.

BIBLIOGRAPHY 162

[50] David Ronca. A Brief History of Netflix Streaming. Technical report, Netflix, May

2013.

[51] Netflix Tchnical Center. Retrieved June 19, 2015 from https://www.netflix.com/.

[52] OMA Digital Rights Management. Retrieved August 31, 2015 from http:

//technical.openmobilealliance.org/Technical/technical-information/

release-program/current-releases/drm-v2-0.

[53] UltraViolet. Retrieved August 31, 2015 from https://www.myuv.com/en/us.

[54] Internet video archive - Adaptive Bitrate Comparison Chart. Retrieved June

25, 2015 from http://www.internetvideoarchive.com/documentation/video-

api/progressive-download-vs-adaptive-bitrate/.

[55] VP9 Video Codec. Retrieved July 5, 2016 from http://www.webmproject.org/vp9/.

[56] Cenc Initialization Data Format. Retrieved July 5, 2016 from https://www.w3.org/

TR/eme-initdata-cenc/#bib-CENC.

[57] Widevine DRM. Retrieved July 5, 2016 from http://www.widevine.com/

wv drm.html.

[58] The State of MPEG-DASH 2016. Retrieved July 1, 2016 from http:

//www.streamingmedia.com/Articles/Editorial/Featured-Articles/The-

State-of-MPEG-DASH-2016-110099.aspx.

[59] Encrypted Media Extensions. Retrieved July 1, 2016 from https://w3c.github.io/

encrypted-media/.

[60] Akamai. Retrieved June 19, 2015 from http://www.akamai.com/.

[61] Limelight. Retrieved June 19, 2015 from http://www.limelight.com/.

[62] Sungsu Kim, Sin-Seok Seo, Joon-Myung Kang, Guy Pujolle, and James Won-Ki Hong.

Autonomic Resource Allocation for Video Streaming Services in Content Delivery

Networks. In Proceedings IEEE of GIIS, Choroni, Venezuela, December 2012.

BIBLIOGRAPHY 163

[63] Ruben Torres, Alessandro Finamore, Jin Ryong Kim, Marco Mellia, and Sanjay

Munafo, Maurizio M.and Rao. Dissecting Video Server Selection Strategies in the

YouTube CDN. In Proceedings of IEEE ICDCS, Minneapolis, Minnesota, USA, June

2011.

[64] Vijay Kumar Adhikari, Sourabh Jain, Yingying Chen, and Zhi-Li Zhang. Reverse-

Engineering the YouTube Video Delivery Cloud. In Proceedings of IEEE ICME

HotMD Workshop, Barcelona, Spain, July 2011.

[65] Iperf. Retrieved June 19, 2015 from https://iperf.sourceforge.net/.

[66] MaxMind - GeoIP databases and Web services. Retrieved June 19, 2015 from http:

//dev.maxmind.com/.

[67] Vijay Kumar Adhikari, Sourabh Jain, and Zhi-Li Zhang. Where Do You “Tube”?

Uncovering YouTube Server Selection Strategy. In Proceedings of IEEE ICCCN, Maui,

Hawaii, July 2011.

[68] James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach

(6th Edition). Pearson, 6th edition, 2012.

[69] Krishna Balachandran, Doru Calin, Eunyoung Kim, and Kiran M. Rege. Clearmedia:

A Proxy-based Architecture for Streaming Media Services over Wireless Networks. In

Proceedings IEEE of PIMRC, Athens, Greece, September 2007.

[70] Ben Niven-Jenkins, Grant Watson, and Nabil Bitar. Use Cases for ALTO within

CDNs. IETF Draft, April 2011.

[71] Jan Seedorf. Infrastructure-to-application information exposure from an ALTO-CDNI

Perspective. IETF Draft, March 2012.

[72] Audrius Jurgelionis, Jukka-Pekka Laulajainen, Matti Hirvonen, and Alf Inge Wang.

An Empirical Study of Netem Network Emulation Functionalities. In Proceedings of

IEEE ICCCN, Maui, Hawaii, July 2011.

[73] Tcptrace. Retrieved June 19, 2015 from http://www.tcptrace.org/.

BIBLIOGRAPHY 164

[74] Vijay Kumar Adhikari, Sourabh Jain, and Zhi-Li Zhang. YouTube Tra�c Dynamics

and Its Interplay with a Tier-1 ISP: An ISP Perspective. In Proceedings of ACM

SIGCOMM IMC, New Delhi, India, September 2010.

[75] Vijay Kumar Adhikari, Sourabh Jain, Gyan Ranjan, and Zhi-Li Zhang. Understanding

Data-center Driven Content Distribution. In Proceedings of ACM CoNEXT Student

Workshop, Philadelphia, Pennsylvania, November 2010.

[76] Mohit Saxena, Umang Sharan, and Sonia Fahmy. Analyzing Video Services in Web

2.0: A Global Perspective. In Proceedings of ACM MMSys NOSSDAV Workshop,

Braunschweig, Germany, May 2008.

[77] Li Erran Li, Z. Morley Mao, and Jennifer Rexford. Toward Software-Defined Cellular

Networks. In Proceedings of IEEE EWSDN, Darmstadt, Germany, October 2012.

[78] 3GPP. 3GPP TS 23.203 v8.3.1, Technical Specication, Policy and charging control

architecture (Release 8). Technical report, 3GPP, September 2008.

[79] MathWork - LTE System Toolbox. Retrieved April 14, 2015 from http://

www.mathworks.com/products/lte-system/.

[80] OPNET - application and network performance. Retrieved April 14, 2015 from http:

//www.opnet.com/.

[81] Linksys WRT54GL Wireless-G Router. Retrieved June 26, 2015 from http://

www.linksys.com/us/p/P-WRT54GL/.

[82] DD-WRT - a Linux based alternative OpenSource firmware. Retrieved June 26, 2015

from http://www.dd-wrt.com/.

[83] The netfilter.org project. Retrieved June 19, 2015 from http://www.netfilter.org/.

[84] Alessandro Finamore, Marco Mellia, Maurizio M. Munafò, Ruben Torres, and San-

jay G. Rao. YouTube Everywhere: Impact of Device and Infrastructure Synergies on

User Experience. In Proceedings of ACM SIGCOMM IMC, Berlin, Germany, Novem-

ber 2011.

BIBLIOGRAPHY 165

[85] Michael Zink, Kyoungwon Suh, Yu Gu, and Jim Kurose. Watch Global, Cache Local:

YouTube Network Tra�c at a Campus Network - Measurements and Implications.

Computer Science Department Faculty Publication Series.Paper 177, 2008.

[86] Ashwin Rao, Arnaud Legout, Yeon-sup Lim, Don Towsley, Chadi Barakat, and Walid

Dabbous. Network Characteristics of Video Streaming Tra�c. In Proceedings of ACM

CoNext, CoNEXT, Tokyo, Japan, December 2011.

[87] Mohammad Ashraful Hoque, Matti Siekkinen, Jukka K. Nurminen, and Mika Aalto.

Investigating Streaming Techniques and Energy E�ciency of Mobile Video Services.

Computing Research Repository - arXiv:1209.2855, 2012.

[88] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh Jo-

hari. Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard. In

Proceedings of ACM SIGCOMM IMC, Boston, Massachusetts, USA, November 2012.

[89] Te-Yuan Huang, Ramesh Johari, and Nick McKeown. Downton Abbey Without the

Hiccups: Bu↵er-based Rate Adaptation for HTTP Video Streaming. In Proceedings

of ACM SIGCOMM FhMN Workshop, Hong Kong, China, August 2013.

[90] Xing Xu, Yurong Jiang, Tobias Flach, Ethan Katz-Bassett, David Cho↵nes, and

Ramesh Govindan. Investigating Transparent Web Proxies in Cellular Networks.

Technical Report 14-944, University of Southern California, April 2014.

[91] Cisco ASR 5000 Multimedia Core Platform. Retrieved June 25, 2016

from http://www.cisco.com/c/en/us/products/collateral/wireless/asr-5000-

series/data sheet c78-606223.html.

[92] Franck Le, Erich Nahum, Vasilis Pappas, Maroun Touma, and Dinesh Verma. Experi-

ences Deploying a Transparent Split TCP Middlebox and the Implications for NFV. In

Proceedings of ACM SIGCOMM Workshop on HotMiddlebox, London, United King-

dom, August 2015.

[93] Arash Molavi Kakhki, Fangfan Li, David Cho↵nes, Alan Mislove, and Ethan Katz-

Bassett. BingeOn Under the Microscope: Understanding T-Mobile’s Zero-Rating

BIBLIOGRAPHY 166

Implementation. In Proceedings of ACM SIGCOMM Workshop on Internet-QoE,

Florianópolis, Brazil, August 2016.

[94] Justine Sherry, Chang Lan, Raluca Ada Popa, and Sylvia Ratnasamy. BlindBox:

Deep Packet Inspection over Encrypted Tra�c. In Proceedings of ACM SIGCOMM,

London, United Kingdom, August 2015.

[95] Visibility into Encrypted Tra�c. Retrieved June 24, 2016 from https:

//www.plixer.com/blog/network-security-forensics/visibility-encrypted-

traffic/#more-28770.

[96] OpenFlow Switch Specification Version 1.4.0. Retrieved June 19, 2015 from https:

//www.opennetworking.org/.

[97] Yubing Wang. Survey of Objective Video Quality Measurements. Technical report,

EMC Corporation Hopkinton, 2006.

[98] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and

Hui Zhang. A Quest for an Internet Video Quality-of-experience Metric. In Proceed-

ings of ACM HotNets Workshop, Redmond, WA, USA, October 2012.

[99] René Serral-Gracià, Eduardo Cerqueira, Maŕılia Curado, Marcelo Yannuzzi, Edmundo

Monteiro, and Xavier Masip-Bruin. An Overview of Quality of Experience Measure-

ment Challenges for Video Applications in IP Networks. In Proceedings of WWIC,

Lulea, Sweden, June 2010.

[100] Ali Reza Sharafat, Saurav Das, Guru Parulkar, and Nick McKeown. MPLS-TE and

MPLS VPNS with Openflow. In Proceedings of ACM SIGCOMM, Toronto, Ontario,

Canada, August 2011.

[101] Saurav Das, Yiannis Yiakoumis, Guru Parulkar, Nick McKeown, Preeti Singh, Daniel

Getachew, and Premal Dinesh Desai. Application-aware Aggregation and Traf-

fic Engineering in a Converged Packet-Circuit Network. In Proceedings of IEEE

OFC/NFOEC, Los Angeles, USA, March 2011.

BIBLIOGRAPHY 167

[102] Hidetsugu Sugiyama. Programmable Network Systems: Through the Junos SDK and

Junos Space SDK. In Proceedings of IEEE WTC, Miyazaki, Japan, March 2012.

[103] Citrix. Bytemobile Mobile Analytics Report. Technical report, Citrix Systems, May

2012.

[104] Shigang Chen and Klara Nahrstedt. An Overview of Quality-of-Service Routing for

the Next Generation HighSpeed Networks: Problems and Solutions. IEEE Network,

12(6):64–79, November 1998.

[105] Victoria Fineberg. A Practical Architecture for Implementing End-to-End QoS in an

IP Network. IEEE Communications Magazine, 40(1):122–130, Jan 2002.

[106] Zafar Ayyub Qazi, Jeongkeun Lee, Tao Jin, Gowtham Bellala, Manfred Arndt, and

Guevara Noubir. Application-awareness in SDN. In Proceedings of ACM SIGCOMM,

Hong Kong, China, August 2013.

[107] About NOX. Retrieved June 19, 2015 from http://www.noxrepo.org/.

[108] Michael Jarschel, Florian Wamser, Thomas Höhn, Thomas Zinner, and Phuoc Tran-

Gia. SDN-based Application-Aware Networking on the Example of YouTube Video

Streaming. In Proceedings of IEEE EWSDN, Berlin, Germany, October 2013.

[109] Application-aware Routing in Software-defined Networks. Retrieved

June 19, 2015 from http://www.aricent.com/pdf/Aricent Whitepaper -

Application Aware Routing in SDN.pdf.

[110] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun

Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon Zolla, Urs

Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a Globally-deployed

Software Defined Wan. In Proceedings of ACM SIGCOMM, August 2013.

[111] Shuhao Liu and Baochun Li. On scaling software-Defined Networking in wide-area

networks. Tsinghua Science and Technology, 20(3):221–232, June 2015.

BIBLIOGRAPHY 168

[112] Henrique Rodrigues, Inder Monga, Abhinava Sadasivarao, Sharfuddin Syed, Chin

Guok, Eric Pouyoul, Chris Liou, and Tajana Rosing. Tra�c Optimization in Multi-

layered WANs Using SDN. In Proceedings of IEEE HOTI, California, USA, August

2014.

[113] Hesham Mekky, Fang Hao, Sarit Mukherjee, Zhi-Li Zhang, and T.V. Lakshman.

Application-aware Data Plane Processing in SDN. In Proceedings of ACM SIGCOMM

Workshop on HotSDN, Chicago, Illinois, USA, August 2014.

[114] Micorsoft Silverlight. Retrieved November 2, 2014 from http://www.microsoft.com/

silverlight/.

[115] Video Streaming Analysis Report. Retrieved November 12, 2014 from http://goo.gl/

u0qL3T.

[116] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Wat-

son. A Bu↵er-based Approach to Rate Adaptation: Evidence from a Large Video

Streaming Service. In Proceedings of ACM SIGCOMM, Chicago, Illinois, USA, Au-

gust 2014.

[117] IIS Smooth Streaming. Retrieved November 12, 2014 from http://www.iis.net/

downloads/microsoft/smooth-streaming/.

[118] IIS smooth streaming HD sample content. Retrieved July 2, 2015 from https://

www.microsoft.com/en-us/download/details.aspx?id=18199.

[119] Netlimiter. Retrieved November 2, 2014 from http://www.netlimiter.com/.

[120] Fiddler - Connection Simulator. Retrieved November 2, 2014 from http://logic-

worx.com/tools-and-apps/fiddler-connection-simulator/.

[121] Ouldooz Baghban Karimi, Jiangchuan Liu, and Chonggang Wang. Seamless Wireless

Connectivity for Multimedia Services in High Speed Trains. IEEE Journal on Selected

Areas in Communications, 30(4):729–739, May 2012.

BIBLIOGRAPHY 169

[122] Kyung-Hwa Kim, Hyunwoo Nam, and H. Schulzrinne. WiSlow: A Wi-Fi Network

Performance Troubleshooting Tool for End Users. In Proceedings of IEEE INFOCOM,

Toronto, Canada, April 2014.

[123] Amazon Mechanical Turk. Retrieved November 12, 2014 from https://

www.mturk.com/mturk/welcome.

[124] Tobias Hossfeld, Dominik Strohmeier, Alexander Raake, and Raimund Schatz. Pippi

Longstocking Calculus for Temporal Stimuli Pattern on YouTube QoE: 1+1=3 and

1·46=4·1. In Proceedings of ACM MMSys MoVid Workshop, Oslo, Norway, February

2013.

[125] Toon De Pessemier, Katrien De Moor, Wout Joseph, Lieven De Marez, and Luc

Martens. Quantifying the Influence of Rebu↵ering Interruptions on the User’s Quality

of Experience During Mobile Video Watching. Broadcasting, IEEE Transactions on,

59(1):47–61, March 2013.

[126] Alessandro Floris, Luigi Atzori, Giaime Ginesu, and Daniele D. Giusto. QoE Assess-

ment of Multimedia Video Consumption on Tablet Devices. In Proceedings of IEEE

Globecom QoEMC Workshop, Anaheim, California, December 2012.

[127] Pengpeng Ni, Ragnhild Eg, Alexander Eichhorn, Carsten Griwodz, and P̊al Halvorsen.

Flicker E↵ects in Adaptive Video Streaming to Handheld Devices. In Proceedings of

ACM Multimedia, Scottsdale, Arizona, USA, November 2011.

[128] Ricky K. P. Mok, Xiapu Luo, EdmondW.W. Chan, and Rocky K. C. Chang. QDASH:

A QoE-aware DASH System. In Proceedings of ACM MMSys, Chapel Hill, North

Carolina, February 2012.

[129] Marie-Neige Garcia, Francesca De Simone, Samira Tavakoli, Nicolas Staelens, Se-

bastian Egger, Kjell Brunnström, and Alexander Raake. Quality of Experience and

HTTP Adaptive Streaming: A Review of Subjective Studies. In Proceedings of IEEE

QoMEX, Singapore, Sep 2014.

BIBLIOGRAPHY 170

[130] Jong-Min Jeong and Jong-Deok Kim. E↵ective bandwidth measurement for Dynamic

Adaptive Streaming over HTTP. In Proceedings of IEEE ICOIN, Siem Reap, Cam-

bodia, January 2015.

[131] Guibin Tian and Yong Liu. Towards Agile and Smooth Video Adaptation in Dynamic

HTTP Streaming. In Proceedings of ACM CoNEXT, Nice, France, December 2012.

[132] Luca De Cicco, Vito Caldaralo, Vittorio Palmisano, and Saverio Mascolo. ELASTIC:

A Client-Side Controller for Dynamic Adaptive Streaming over HTTP (DASH). In

Proceedings of IEEE PV, San Jose, California, USA, December 2013.

[133] Vimeo Player API. Retrieved July 1, 2016 from https://developer.vimeo.com/

player.

[134] Chrome extensions. Retrieved April 20, 2015 from https://developer.chrome.com/

extensions.

[135] YouTube IFrame Player APIs. Retrieved April 21, 2015 from https://

developers.google.com/youtube/iframe api reference.

[136] YouTube JavaScript Player API Reference. Retrieved August 31, 2016 from https:

//developers.google.com/youtube/js api reference.

[137] K. M. Chan and Jack Y. B. Lee. Improving adaptive http streaming performance with

predictive transmission and cross-layer client bu↵er estimation. Multimedia Tools and

Applications, 75(10):5917–5937, 2016.

[138] YouTube video ads. Retrieved April 14, 2015 from https://support.google.com/

displayspecs/answer/6244541?hl=en&rd=2&ref topic=6244532.

[139] Non-skippable in-stream ads in YouTube. Retrieved June 19, 2015 from https:

//support.google.com/youtube/answer/188038?hl=en.

[140] Chrome and Safari AdBlock. Retrieved April 16, 2015 from https://

getadblock.com/.

BIBLIOGRAPHY 171

[141] Chrome extensions - webRequest API. Retrieved April 20, 2015 from https:

//developer.chrome.com/extensions/webRequest.

[142] YouTube live encoder settings, bitrates and resolutions. Retrieved April 14, 2015 from

https://support.google.com/youtube/answer/2853702?hl=en.

[143] Google Video Quality Report. Retrieved July 24, 2015 from http://www.google.com/

get/videoqualityreport/.

[144] Netflix ISP speed index. Retrieved July 12, 2016 from https://

ispspeedindex.netflix.com/.

[145] ITU-T P.10/G.100 Amendment 1: New Appendix I Definition of Quality of Experi-

ence (QoE). Retrieved June 29, 2016 from https://www.itu.int/rec/T-REC-P.10-

200701-S!Amd1.

[146] ITU-T Recommendation E.800 Definitions of terms related to quality of service. Re-

trieved June 29, 2016 from http://www.itu.int/rec/T-REC-E.800-200809-I.

[147] ITU-T Recommendation BT.500-13 Methodology for the subjective assessment of the

quality of television pictures. Retrieved June 29, 2016 from https://www.itu.int/

rec/R-REC-BT.500-13-201201-I/en.

[148] ITU-T P.910 Subjective video quality assessment methods for multimedia appli-

cations. Retrieved June 29, 2016 from https://www.itu.int/rec/T-REC-P.910-

200804-I/en.

[149] ITU-T G.107 The E-model: a computational model for use in transmission planning.

Retrieved June 29, 2016 from https://www.itu.int/rec/T-REC-G.107.

[150] ITU-T P.862 Perceptual evaluation of speech quality (PESQ): An objective method for

end-to-end speech quality assessment of narrow-band telephone networks and speech

codecs. Retrieved June 29, 2016 from http://www.itu.int/rec/T-REC-P.862.

[151] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei. Quantifying

Skype User Satisfaction. In Proceedings of ACM SIGCOMM, Pisa, Italy, September

2006.

BIBLIOGRAPHY 172

[152] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,

Jibin Zhan, and Hui Zhang. Understanding the Impact of Video Quality on User

Engagement. In Proceedings of ACM SIGCOMM, Toronto, Ontario, Canada, August

2011.

[153] Yanjiao Chen, Kaishun Wu, and Qian Zhang. From QoS to QoE: A Tutorial on

Video Quality Assessment. IEEE Communications Surveys Tutorials, 17(2):1126–

1165, Secondquarter 2015.

[154] Muhammad Zubair Shafiq, Je↵rey Erman, Lusheng Ji, Alex X. Liu, Je↵rey Pang, and

Jia Wang. Understanding the Impact of Network Dynamics on Mobile Video User

Engagement. In Proceedings of ACM SIGMETRICS, Austin, Texas, USA, June 2014.

[155] S. Shunmuga Krishnan and Ramesh K. Sitaraman. Understanding the E↵ectiveness

of Video Ads: A Measurement Study. In Proceedings of ACM IMC, Barcelona, Spain,

October 2013.

[156] 3 Things You Need to Know About Making a Marketing Video Convert. Retrieved

June 19, 2016 from http://www.sailthru.com/marketing-blog/3-things-need-

know-making-marketing-video-convert/.

[157] Tobias Hossfeld, Sebastian Egger, Raimund Schatz, Markus Fiedler, Kathrin Masuch,

and Charlott Lorentzen. Initial Delay vs. Interruptions: Between the Devil and the

Deep Blue Sea. In Proceedings of IEEE QoMEX, Melbourne, Australia, July 2012.

[158] Liu Yitong, Shen Yun, Mao Yinian, Liu Jing, Lin Qi, and Yang Dacheng. A Study on

Quality of Experience for Adaptive Streaming Service. In Proceedings of IEEE ICC,

Budapest, Hungary, June 2013.

[159] Abdul Rehman and Zhou Wang. Perceptual Experience of Time-varying Video Qual-

ity. In Proceedings of IEEE QoMEX, Klagenfurt, Austria, July 2013.

[160] David C. Robinson, Yves Jutras, and Viorel Craciun. Subjective Video Quality As-

sessment of HTTP Adaptive Streaming Technologies. Bell Labs Technical Journal,

16(4):5–23, 2012.

BIBLIOGRAPHY 173

[161] Netflix is shutting down its public APIs. Retrieved April 26, 2015 from https://

gigaom.com/2014/11/14/netflix-is-shutting-down-its-public-api-today/.

[162] FCC Measuring Broadband America. Retrieved April 21, 2015 from http://

www.fcc.gov/measuring-broadband-america.

[163] Mohan Dhawan, Justin Samuel, Renata Teixeira, Christian Kreibich, Mark Allman,

Nicholas Weaver, and Vern Paxson. Fathom: A Browser-based Network Measurement

Platform. In Proceedings of ACM IMC, Boston, Massachusetts, USA, November 2012.

[164] Barbara Staehle, Matthias Hirth, Rastin Pries, Dirk Staehle, Barbara Staehle,

Matthias Hirth, Rastin Pries, and Dirk Staehle. YoMo: A YouTube Application Com-

fort Monitoring Tool. Retrieved July 1, 2016 from http://citeseerx.ist.psu.edu/

viewdoc/summary?doi=10.1.1.163.3983.

