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ABSTRACT 

Molecular Mechanism of Synaptic Vesicle Degradation 

Patricia Sheehan 

 
Neurons rely on precise spatial and temporal control of neurotransmitter release to ensure proper 

communication. Neurotransmission occurs when synaptic vesicles in the presynaptic 

compartment fuse with the plasma membrane and release their contents into the synaptic cleft, 

where neurotransmitters bind to receptors on the postsynaptic neuron. Synaptic vesicle pools 

must maintain a functional repertoire of proteins in order to efficiently release neurotransmitter. 

Indeed, the accumulation of old or damaged proteins on synaptic vesicle membranes is linked to 

synaptic dysfunction and neurodegeneration. Despite the importance of synaptic vesicle protein 

turnover for neuronal health, the molecular mechanisms underlying this process are unknown. In 

this thesis, we present work that uncovers key components that regulate synaptic vesicle 

degradation.  Specifically, we identify a pathway that mediates the activity-dependent turnover 

of a subset of synaptic vesicle membrane proteins in mammalian neurons. This pathway requires 

the synaptic vesicle-associated GTPase Rab35, the ESCRT machinery, and synaptic vesicle 

protein ubiquitination. We further demonstrate that neuronal activity stimulates synaptic vesicle 

protein turnover by inducing Rab35 activation and binding to the ESCRT-0 component Hrs, 

which we have identified as a novel Rab35 effector. These actions recruit the downstream 

ESCRT machinery to synaptic vesicle pools, thereby initiating synaptic vesicle protein 

degradation via the ESCRT pathway. Interestingly, we find that not all synaptic vesicle proteins 

are degraded by this mechanism, suggesting that synaptic vesicles are not degraded as units, but 

rather that SV proteins are degraded individually or in subsets. Moreover, we find that lysine-63 



	
  

ubiquitination of VAMP2 is required for its degradation, and we identify an E3 ubiquitin ligase, 

RNF167, that is responsible for this activity. Our findings show that RNF167 and the 

Rab35/ESCRT pathway facilitate the removal of specific proteins from synaptic vesicle pools, 

thereby maintaining presynaptic protein homeostasis. Overall, our studies provide novel 

mechanistic insight into the coupling of neuronal activity with synaptic vesicle protein 

degradation, and implicate ubiquitination as a major regulator in maintaining functional synaptic 

vesicle pools. These findings will facilitate future studies determining the effects of perturbations 

to synaptic homeostasis in neuronal dysfunction and degeneration.
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Chapter 1 - Introduction  

Neuronal Communication 

Neurons have a highly unique morphology that underlies their functionality. They consist of a 

cell soma, dendrites, and axons. The soma is largely responsible for protein synthesis while the 

dendrites and axons extend away from the soma and form connections with other neurons. These 

connections, called synapses, are specialized compartments of neurons that mediate neuronal 

communication. Most classically these are formed between an axonal presynaptic bouton and a 

dendritic postsynaptic spine. On the presynaptic side, neuronal synapses translate electric 

impulses (action potentials) into the regulated release of neurotransmitter from synaptic vesicles 

(SVs) in order to communicate with connecting neurons. These neurotransmitters bind to 

receptors on the postsynaptic neuron, opening ion channels and functioning to create an electrical 

change in postsynaptic membrane potential. If this change in membrane potential reaches a 

threshold, the postsynaptic neuron will fire an action potential and propagate the signal to its 

connecting neurons. 

Synaptic Vesicle Cycle 

The presynaptic bouton is an area of particularly high protein and membrane flux. SVs release 

neurotransmitter by fusing with the neuronal membrane (exocytosis). SV fusion is followed by 

membrane recycling (endocytosis), allowing for SV re-formation and additional rounds of 

neurotransmitter release (Figure 1.1). SV exocytosis and endocytosis depend upon precise 

protein-protein interactions that are carefully regulated in time and space (Li and Chin, 2003; 

Sudhof, 2004). 
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Exocytosis 

The exocytosis of SVs is a multi-step process that involves the docking, priming, and fusion of 

SVs with the plasma membrane. In order to be released, SVs filled with neurotransmitter are 

translocated to the presynaptic active zone where they are docked, in a manner that is not well 

understood but is thought to involve Rab3, Munc-18 and a variety of active zone proteins 

(Dulubova et al., 1999; Geppert et al., 1994; Hata et al., 1993). Docking ensures spatial 

regulation of neurotransmitter release by preparing SVs for neurotransmitter release at the active 

zone. Then, the priming machinery, including Munc-13, RIM, and RIM binding proteins, 

functions to promote the partial formation of the soluble NSF attachment protein receptor 

(SNARE) complex (Brose et al., 1995; Wang et al., 1997; Wang et al., 2000). This SNARE 

complex includes the vesicular-SNARE VAMP2 and target-SNAREs syntaxin-1 and SNAP-25 

Figure 1.1 - The synaptic vesicle cycle 
Synaptic vesicles (SVs) filled with neurotransmitter are translocated to the presynaptic active zone where 
they undergo docking and priming. Following an action potential, calcium enters the presynaptic bouton, 
causing vesicles to fuse with the plasma membrane and release neurotransmitter. SV proteins are then 
endocytosed and either recycled for use in another round of exocytosis, or sorted for degradation.  
 
	
  



 3	
  

(Sollner et al., 1993). This priming step prepares the SNARE complex in a manner that ensures 

quick temporal reaction upon an action potential reaching the synapse. The SNARE mediated 

fusion between an SV and the plasma membrane is driven by calcium influx into the presynaptic 

terminal. Calcium binds to the SV integral membrane protein, Synaptotagmin-1, which promotes 

the full zippering of the SNARE complex (Katz and Miledi, 1967; Shao et al., 1998). This 

zippering releases energy which causes SV fusion with the plasma membrane allowing 

neurotransmitter to be released into the synaptic cleft (see (Sudhof, 2004)).  

Endocytosis  

Following exocytosis, it is conventionally believed that SVs fully collapse into the plasma 

membrane. SV proteins and lipids then intermix with plasma membrane components and 

undergo endocytosis to retrieve vesicle constituents. Various forms of endocytosis have been 

observed including clathrin mediated endocytosis (CME), bulk endocytosis, ultra-fast 

endocytosis and “kiss-and-run” endocytosis. CME is the most-studied form of endocytosis and 

occurs in all cell types. Indeed, budding clathrin-coated pits can be observed by electron 

microscopy at the plasma membrane as well as at endosomal cisternae (Heuser and Reese, 1973; 

Miller and Heuser, 1984). However, it has been shown that under high frequency stimulation 

another form of endocytosis, deemed bulk endocytosis, can be observed. This is seen as large 

membrane enfoldings and the formation of endosome-like compartments near the presynaptic 

active zone (Clayton and Cousin, 2008; Miller and Heuser, 1984; Rizzoli and Betz, 2005). It is 

believed that this form of endocytosis allows for quick reversal of membrane expansion under 

high frequency stimulation whereby CME would be rate limiting under these conditions. From 

these bulk endosomal-like structures, SVs can bud off and reform to repopulate the vesicle pool. 

Most recently, another form of endocytosis has been observed in which 100 ms after stimulation, 
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endocytosing vesicles are observed just outside of the active zone (Watanabe et al., 2014). This 

process has been named ultra-fast endocytosis and is believed to represent a mechanism whereby 

plasma membrane expansion by exocytosis is immediately compensated for by endocytosis. 

 Additionally, some evidence supports another model of endocytosis whereby SVs do not 

fully collapse into the plasma membrane but instead form a small transient fusion pore through 

which neurotransmitter is released (Fesce et al., 1994). This differs from ultra-fast endocytosis in 

that it allows for the retention of SV identity and the direct reformation of SVs. Overall, there are 

many models by which SV endocytosis can occur suggesting that different stimuli/activity 

paradigms invoke different mechanisms to compensate for changes in SV exocytosis.  

Endosomal Sorting of Synaptic Vesicles  

For many decades, controversy has surrounded the post-endocytic cycling and reformation of 

SVs. In the early 1970s, two independent studies applied extracellular tracers to neurons of the 

frog neuromuscular junction in order to examine the cycling of SVs. The conflicting findings of 

these studies initiated the controversy surrounding the role of endosomes in SV recycling. 

Heuser and Reese applied high frequency stimulation (10 Hz for 1-15 minutes) to nerve 

terminals and found that the number of SVs per terminal was reduced. This reduction occurred 

together with the formation of large cisternal membranes. Both phenotypes were reversed upon 

rest, suggesting that these cisternae were the precursors to SV replenishment (Heuser and Reese, 

1973). A later study found that clathrin coated vesicles could be observed budding from these 

cisternae, suggesting that endosomes play an intermediary role in reforming SVs after 

endocytosis (Miller and Heuser, 1984). However, another study performed by Ceccarelli et al. 

offered opposing results. While tracer was observed being taken up by synaptic vesicles upon 

stimulation, no reduction in number of SVs and no formation of cisternal structures were 
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observed, suggesting no role for endosomal intermediates in SV recycling (Ceccarelli et al., 

1973). The important difference between these two studies comes down to the stimulation 

paradigm. While Heuser and Reese used high frequency stimulation, Ceccarelli et al. used low 

frequency stimulation (2 Hz for up to 4 hours). The findings from these studies therefore 

suggested that different stimulation paradigms could invoke different forms of endocytosis, 

which varied with regards to their reliance on an endosomal intermediate.  

 Another prominent argument against endosomal sorting in the SV cycle came from a 

study using FM1-43 dye uptake, where it was noted that the amount of FM uptake per vesicle 

was equal to the amount released per vesicle upon exocytosis (Murthy and Stevens, 1998). This 

suggested that no diffusion of dye occurred via the fusion of SVs to an endosomal intermediate. 

However, this study did not address the possibility that other, non-recycling pools of vesicles 

may exchange their membrane with an endosome, nor did it address the idea that SVs may 

undergo homotypic fusion to form synaptic endosomes. This type of fusion is common in non-

neuronal cells, where incoming vesicles fuse to form endosomes (Scita and Di Fiore, 2010) and 

importantly, such fusion would not lead to a dilution of dye. It has been shown in vitro and 

possibly in vivo (Rizzoli et al., 2006; Shimizu et al., 2003) that SVs can undergo homotypic 

fusion, suggesting that SVs can form endosomes. Furthermore, the Ceccarelli study did not 

investigate the cycling of SVs under high activity demands, and therefore did not address the 

idea that synaptic endosomes only form under such stimulation. Indeed, the existence of synaptic 

endosomes has been shown in vivo by immuno-EM at the Calyx of Held synapse and the 

neuromuscular junction (Uytterhoeven et al., 2011; Wucherpfennig et al., 2003). However, these 

endosomes have been shown to be fairly rare and extremely dynamic. Indeed, within mouse 

hippocampal neurons, the large endocytic vesicles formed by ultrafast endocytosis resolve back 
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into SVs within six seconds of stimulation (Watanabe et al., 2014). Though the study by 

Ciccarelli et al. disregarded many potential interpretations, its findings managed to further fuel 

the controversy surrounding the endosomal sorting of SVs.    

 More recent investigations into the composition of SVs have revealed the presence of a 

large number of endosomal proteins on SVs such as diverse endosomal Rab GTPases, endosomal 

SNAREs, endosome-derived coat proteins (Takamori et al., 2006). The presence of these 

proteins on SVs suggests that endosomes do have a role in the SV cycle. Furthermore, 

perturbations in a variety of these proteins lead to changes in neurotransmission and the structure 

and composition of SVs, some of which will be discussed in more detail. Overall these findings 

suggest that endosomal sorting is an important regulatory step in maintaining the fidelity of 

neurotransmission. Although it is now accepted that an endosomal intermediate can play a role in 

the cycling of SVs under certain conditions, the signals and pathways responsible for regulating 

the trafficking and sorting of SV proteins through the endosomal pathway remain poorly 

understood. 

Synaptic Protein Turnover 

While SV endosomal sorting and reformation is becoming better characterized, little remains 

known about the pathways responsible for SV protein degradation. Furthermore, another 

fundamental but unexplored question is how SVs are targeted for degradation. Ubiquitination 

serves as the signal for degradation of soluble proteins by the proteasome, and is also used by 

lysosomal degradation pathways for membrane-bound cargo recognition (Clague and Urbe, 

2010). Intriguingly, a recent study reported that SV membrane proteins are among the most 

highly ubiquitinated neuronal proteins (Na et al., 2012), suggesting that this modification may 

play an important role in their degradation. However, ubiquitination also regulates many non-
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degradative protein trafficking events (i.e. endocytosis, protein-protein interactions), and its role 

in SV protein trafficking/degradation is completely unexplored. 

Ubiquitination 

Ubiquitin is a small protein that is covalently attached to other proteins as a post-translation 

modification to signal for their intracellular transport and degradation. Ubiquitin is conjugated to 

lysine residues on target proteins by a series of enzymes deemed E1, E2, and E3 enzymes. E1s 

are ubiquitin-activating enzymes that transfer ubiquitin to ubiquitin-conjugating enzymes, E2s, 

which then bind the target protein and a ubiquitin-ligase, E3. E3s then covalently attach ubiquitin 

to the target protein by transferring ubiquitin from the E2 to lysine residues on the target 

substrate (Figure 1.2) (Haas et al., 1982; Hershko et al., 1983). Different E3 enzymes are 

responsible for different ubiquitin chain linkages. Both the length of the ubiquitin chain and the 

lysine residue on which the ubiquitin molecule or chain is attached signal for different trafficking 

events ranging from intracellular signaling to degradation (Chau et al., 1989; Hicke and Dunn, 

2003). A variety of proteins responsible for the regulation of protein degradation and trafficking 

contain domains capable of recognizing ubiquitination. These include ubiquitin-interacting 

motifs (UIM), ubiquitin E2-variant (UEV), ubiquitin-associated (UBA), ubiquitin-like (UBL), 

and CUE domains. Finally, ubiquitin must be removed from target proteins in order to maintain a 

pool of free ubiquitin and allow target substrates entrance into degradative structures. This task is 

carried out by deubiquitinating enzymes (DUBs) that cleave ubiquitin at the G76 isopeptide bond 

(see (Helton and Ehlers, 2008)). There are two degradative pathways that recognize ubiquitinated 

proteins: the ubiquitin-proteasome system (UPS) and the Endosomal Sorting Complex Required 

for Transport (ESCRT) pathway.  
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Ubiquitin-Proteasome System 

The proteasome is an incredibly abundant structure comprising more than 1% of the total cellular 

protein. Furthermore, they can be found in all neuronal compartments including the presynaptic 

terminal. The eukaryotic proteasome is comprised of two multimeric complexes, the catalytic 

20S core particle and two 19S regulatory complexes. Four heptameric rings that contain various 

proteolytic sites form a cylinder that is the 20S core particle. Each 19S regulatory complex is 

made up of eight subunits and a ring of 6 AAA family ATPases that gate the lumen of the 20S 

core and regulate the energy-dependent unfolding of proteins necessary for entrance into the core 

(see (Tanaka, 2009)). Multiple components of the 19S regulatory complex are capable of 

ubiquitin recognition on target proteins (Lam et al., 2002). Specifically, lysine 48-linked poly-

ubiquitination is known to serve as a signal for protein degradation by the proteasome. Typically, 

Figure 1.2 – Ubiquitination 
Ubiquitination is a post-translation modification that occurs via the covalent attachment of ubiquitin to target 
proteins. Ubiquitin is activated by an E1 enzyme and then conjugated to an E2 enzyme. An E3 ligase then 
simultaneously binds the E2 enzyme and the target protein, and functions to transfer ubiquitin from the E2 to the 
target protein.  
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at least four lysine-48 linked ubiquitin molecules are necessary to bind the proteasome (Kish-

Trier and Hill, 2013).  

Roles of UPS at the Synapse  

The UPS plays an intimate role in both synapse formation and in the regulation of synaptic 

function. Dysregulation in the ubiquitination and degradation of a variety of proteins can lead to 

defects in synapse formation and elimination as well as axonal growth, steering and pruning. In 

mature neurons, the UPS continues to play an important role in regulating neurotransmitter 

release, the composition of the postsynaptic density (PSD), and synaptic plasticity. Intriguingly, 

many of these processes are tightly linked to neuronal activity (Alvarez-Castelao and Schuman, 

2015) suggesting a coupling between neuronal activity and UPS function.  

 Indeed, ubiquitination and degradation of certain postsynaptic proteins can occur in an 

activity-dependent manner (Ehlers, 2003; Lussier et al., 2011; Schwarz et al., 2010; Scudder et 

al., 2014). Specifically, the abundance of various PSD proteins changes in response to changes in 

neuronal activity levels in a proteasome-dependent manner (Ehlers, 2003). Furthermore, the 

global ubiquitination state of the PSD increases with increasing neuronal activity and decreases 

with neuronal silencing, suggesting that ubiquitination of these proteins is tightly linked to 

neuronal activity (Ehlers, 2003). While few studies have examined the relationship between 

activity and presynaptic protein turnover, it has been reported that silencing neurons leads to the 

down regulation of presynaptic scaffolding protein levels (e.g. Piccolo/Bassoon, Munc13, RIM) 

that is partially restored by blocking the proteasome. Interestingly, this silencing also leads to an 

accumulation of SV proteins (i.e. SV2B, synaptotagmin-1, vGlut1), suggesting that presynaptic 

proteins levels are differentially regulated by changes in neuronal activity (Lazarevic et al., 

2011). 
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Ubiquitin-Mediated Endosomal Sorting 

Ubiquitination also serves as a signal for sorting through the endocytic pathway. Endocytosed 

proteins can be sent to endosomes where they are then sorted for recycling back to the plasma 

membrane, retrograde transport to the secretory pathway, or degradation by the lysosome. Multi-

monoubiquitination and Lysine-63 (K63)-linked polyubiquitination target proteins for 

degradation through interactions with the ESCRT pathway.  The ESCRT pathway is comprised 

of a series of protein complexes (ESCRT-0, –I, –II, -III) that are sequentially recruited to the 

endosomal membrane. It is believed that the ESCRT-0 protein, Hrs, is first recruited to the 

endosomal membrane through its FYVE domain, a lipid-binding domain that preferentially 

interacts with phosphoinositol 3-phosphate (PI3P) the phosphoinositide enriched on early 

endosomes. Proteins of the ESCRT-0, -I and -II complexes contain various ubiquitin recognition 

motifs and function to sort and retain ubiquitinated proteins in microdomains on the endosomal 

membrane (Figure 1.3). The ESCRT-III complex functions to form intraluminal vesicles (ILVs) 

by inducing membrane deformation and recruiting accessory proteins for the budding and 

abscission of ILVs from the endosomal membrane. Once an endosome contains two or more 

ILVs, it is deemed a multivesicular body (MVB). The cargo contained within the ILVs is 

destined for lysosomal degradation (see (Raiborg and Stenmark, 2009)).  

Figure 1.3 - Recognition of ubiquitination by the ESCRT pathway 
The various ubiquitin recognition motifs in ESCRT-0 (Hrs, STAM) and ESCRT-I (TSG101, MVB12A,B) 
components.  
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Axonal transport of MVBs  

Lysosomes are rarely detected in axons and presynaptic boutons. Although LysoTracker and 

LAMP1 positive structures can be localized to axons, it is becoming increasing evident that these 

structures are not fully mature functional lysosomes. Indeed, a recent study has determined that 

there are distinct populations of lysosomes in neurons and that those located in axons are 

strikingly deficient in lysosomal proteases (Gowrishankar et al., 2015). This finding corroborates 

those of others who have shown that endocytic and autophagosomal vesicles mature via 

increasing acidification concomitantly with their retrograde transport (Hollenbeck, 1993; Maday 

et al., 2012; Overly and Hollenbeck, 1996).  

 Although MVBs are major intermediates in the endo-lysosomal pathway, little is known 

regarding the dynamics of MVB formation and transport within axons. A plethora of work has 

shown that various cargos, including cannabinoids, tracers, and SV markers, can be found within 

MVBs in axons (Lees et al., 1981; Vitalis et al., 2008), suggesting that MVBs are responsible for 

the retrograde transport of these cargo. Interestingly, other cargo that is seen to accumulate in 

somatic MVBs, such as trophic factors, are not detected in axonal MVBs, suggesting that other 

endocytic vesicles are responsible for this transport (Altick et al., 2009). Together, these studies 

suggest that the endocytic vesicles for retrograde transport are cargo-specific. 

Interestingly, MVBs can be detected in presynaptic boutons by electron microscopy (EM) 

(Ceccarelli et al., 1973; LaVail and LaVail, 1975; Teichberg et al., 1975) and often appear 

following neuronal stimulation (Teichberg et al., 1975), suggesting that their formation may be 

activity-dependent. However, so far the studies addressing synaptic and axonal MVBs employ 

static imaging techniques, namely EM, and fail to give a dynamic picture of MVB formation and 
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transport. Additionally, the proteins responsible for regulating cargo sorting and vesicular 

trafficking through the endolysosomal pathway are largely uncharacterized in neurons.   

Rab GTPases 

The Rab family of small GTPases are important regulators of membrane trafficking in all 

eukaryotic cells. Rab GTPases act as “molecular switches” that cycle between ‘active’ (GTP-

bound) and ‘inactive’ (GDP-bound) states. Although Rab GTPases have intrinsic GTPase 

activity, the hydrolysis of GTP to GDP is further aided by GTPase activating proteins (GAPs), 

which facilitate the inactivation of Rabs. On the other hand, the activation of Rabs is catalyzed 

by guanine nucleotide exchange factors (GEFs), which release GDP and allow Rabs to bind 

cytosolic GTP. GTP-bound Rabs in turn recruit effectors that specifically recognize activated 

Rabs, and catalyze downstream events such as membrane fusion (i.e. SNARE proteins) and 

vesicle trafficking (i.e. motor proteins, Figure 1.4) (see (Stenmark, 2009)). Thus, regulation of 

Rab activation/inactivation by GEFs and GAPs allows for spatiotemporal coordination of critical 

membrane trafficking events.  

Figure 1.4 - Rab GTPase cycle 
Rab GEFs function to activate Rab proteins by catalyzing the exchange of GDP for GTP. Active Rabs then 
recruit effectors to mediate downstream trafficking events. Rab GAPs function to inactivate Rab proteins by 
hydrolyzing GTP to GDP. 
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As key regulators of vesicle trafficking, Rab GTPases are hypothesized to regulate 

multiple steps of the SV life cycle, from biogenesis to recycling and degradation. Among the >60 

Rabs in mammalian brain, at least 30 are reported to associate with SV pools (Pavlos and Jahn, 

2011; Takamori et al., 2006). However, only a few of these (e.g. Rab3, Rab27) have well-

established roles in the SV cycle (Mahoney et al., 2006; Pavlos et al., 2010; Schluter et al., 2004; 

Schluter et al., 1999; Yu et al., 2008). While Rab3 has a well-characterized role in exocytosis 

(see (Regazzi, 2007)) in non-neuronal cells and is found on synaptic vesicles, its genetic loss-of-

function was found to have minimal effects on synaptic transmission (Geppert et al., 1994). 

However, it was later found that Rab3 GEFs also act on Rab27, suggesting Rab27 can 

compensate for Rab3 in SV exocytosis. Indeed, the loss of both Rab3 and Rab27 leads to a 

dramatic decrease in SV exocytosis (Mahoney et al., 2006). These findings suggest that the Rab 

GTPases have critical regulatory roles in the SV cycle. 

Endocytic SV-associated Rab GTPases 

Lending credence to the proposed role of endosomal sorting in the SV cycle, many of the SV-

associated Rabs identified have known endocytic functions in non-neuronal cells (Hoopmann et 

al., 2010; Rizzoli et al., 2006; Takamori et al., 2006; Uytterhoeven et al., 2011; Wucherpfennig 

et al., 2003), though many questions remain regarding their roles in neurons. For example, it is 

not known how and where specific Rab GTPases act at the synapse to mediate SV protein sorting, 

although recent evidence implicates presynaptic endosomes as important sites of Rab-mediated 

SV protein sorting (Hoopmann et al., 2010; Rizzoli et al., 2006; Shimizu et al., 2003; Takamori 

et al., 2006; Uytterhoeven et al., 2011; Wucherpfennig et al., 2003). As mentioned previously, 

the early endosome-associated Rab5 is present on recycling SVs (Hoopmann et al., 2010; Pavlos 

et al., 2010; Shimizu et al., 2003; Takamori et al., 2006; Wucherpfennig et al., 2003) and Rab5 
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loss-of-function has been shown to impair SV recycling and neurotransmitter release in 

Drosophila (Shimizu et al., 2003; Wucherpfennig et al., 2003).  

Another study in Drosophila has demonstrated that endosomal sorting and replenishment 

of SV proteins is necessary to maintain a releasable pool of SVs, and that this process requires 

Rab35 (Uytterhoeven et al., 2011). The ESCRT system and the pre-lysosomal homotypic fusion 

and vacuole protein sorting (HOPS) complex were also identified through genetic interactions as 

components of this pathway (Fernandes et al., 2014; Uytterhoeven et al., 2011). Specifically, 

these studies have demonstrated that loss-of-function of Skywalker/TBC1D24, a Rab GAP, leads 

to Rab35 over-activation and the excessive endosomal sorting and replenishment of SV proteins 

in Drosophila. Additionally, alterations in Rab7 and Rab11 activation have been reported to 

affect neurotransmission at the neuromuscular junction (Uytterhoeven et al., 2011), suggesting 

that the trafficking routes of SVs are complex and highly dependent upon the Rab GTPases.  

Interestingly, some of these SV-associated Rabs (i.e. 5, 11, 26) are implicated in 

macroautophagy (Ao et al., 2014; Binotti et al., 2015), another lysosomal degradative pathway 

that may also be important for SV protein turnover. Macroautophagy begins with the de novo 

synthesis of a pre-autophagosomal structure (PAS). This membrane expands to engulf 

cytoplasmic contents, which can include protein aggregates and whole organelles. Eventually, 

the membrane closes and forms a double membrane structure referred to as an autophagosome 

(see (Feng et al., 2014)). Autophagosomes can then fuse with compartments of the endocytic 

pathway (i.e. early endosomes, MVBs) to form an intermediate structure called an amphisome, 

which will then fuse with lysosomes, or autophagosomes can directly fuse with lysosomes (see 

(Fader and Colombo, 2009)). While autophagy functions at a basal level to degrade cellular 
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contents, it can also be highly upregulated in response to stress such as nutrient deprivation (see 

(Russell et al., 2014)). 

 Indeed, macroautophagy has been shown to mediate the degradation of SVs under 

certain conditions (Hernandez et al., 2012). In neurons, stimulating autophagy with rapamycin 

was shown to reduce SV pool size and evoked neurotransmission in dopaminergic neurons 

(Hernandez et al., 2012). Moreover, another SV-associated Rab (Rab26) appears to link SV 

clusters to the macroautophagy machinery by recruiting Atg16L1, a component of pre-

autophagosomes (Binotti et al., 2015). In addition, a forward genetic screen in Drosophila 

recently identified presynaptic voltage-gated calcium channels as key regulators of 

autophagosome-lysosome fusion, indicating that components of the presynaptic SV release 

machinery also function in autophagic degradation (Tian et al., 2015). These studies provide 

evidence that macroautophagy can regulate SV pool size, but it is unclear whether this pathway 

is essential for the basal turnover/degradation of SV proteins. Thus, the pathway(s) for SV 

protein degradation, and the roles of SV-associated Rabs in regulating this process, remain 

unresolved. 

Protein Homeostasis in Neuronal Health 

A clear connection between a variety of neurodegenerative diseases and synaptic protein 

homeostasis has led to a great interest in understanding the basic mechanisms involved in this 

process. While all cells must degrade damaged or dysfunctional proteins, the structure and 

function of neurons and their synapses necessitates specialized mechanisms to maintain healthy 

proteins throughout the lifetime of an organism. Whereas other cell types can undergo complete 

turnover, the embedded nature of neurons within a network and the specialization of synapses to 

encode specific information precludes this possibility. Although there is the potential for entire 
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synapses to turnover, this has only been observed in the barrel cortex and at neuromuscular 

junctions (Grillo et al., 2013; Shi et al., 2012; Zuo et al., 2005). 

The presynaptic compartment in particular is an area of high membrane dynamics. In 

order for neurons to maintain efficient neurotransmission, SVs must undergo repeated cycles of 

exocytosis, endocytosis, and vesicle reformation. These processes depend upon SV-associated 

proteins whose proper conformation and function are of paramount importance to neuronal 

health (Bezprozvanny and Hiesinger, 2013; Wang et al., 2013). Indeed, the buildup of damaged 

or misfolded SV proteins can lead to synaptic dysfunction and neurodegeneration (Garden and 

La Spada, 2008; Scott et al., 2010; Uytterhoeven et al., 2011). However, despite the importance 

of SV protein turnover for neuronal health, the molecular mechanisms underlying this process 

are largely unknown. 
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Chapter 2 - Materials and Methods  

Cell Culture 

Cultured rat neurons 

Timed-pregnant Sprague Dawley rats were housed, handled, and euthanized using methods 

consistent with recommendations from the Guide for the Care and Use of Laboratory Animals 

prepared by the National Research Council, and with the Columbia University Medical Center 

Institutional Animal Care and Use Committee. Hippocampal neurons were prepared from rat 

brains (E18) using a modified Banker culture protocol (Banker and Goslin, 1998; Waites et al., 

2009). Briefly, neurons were dissociated in TrypLE Express (Fisher/Life Technologies) for 20 

minutes, washed with Hank’s Balanced Salt Solution (Sigma) and plated in Neurobasal medium 

with B27 supplement and Glutamax (all Life Technologies) at a density of 250,000 neurons per 

well (12 well plates) or coverslip (22x22 mm square).  

Microfluidic culturing 

Primary hippocampal neurons were plated in two adjacent channels of a three-channel 

microfluidic chamber at a density of 60,000 neurons in the larger channel and 40,000 neurons in 

the smaller channel. Half the media of all channels was changed every 48 hours. On 7 days in 

vitro (DIV), fluidic isolation was performed to preferentially transduce neurons in the larger 

channel with mCh-Hrs virus. A volume difference of 60 µl was maintained between the 

transduced and untransduced channels (Park et al., 2006). Prior to imaging, fluorescence was 

examined in all channels to ensure fluidic isolation was successful.   

Molecular techniques 

Constructs, shRNAs 
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Sources of the constructs used are listed in Table 2.1. For shRNAs, target sequences for rat 

Rab35, Hrs, and TSG101 were modified from published work or designed using siDirect 

(sidirect2.rnai.jp). Target sequences are as follows:  Rab35: 5’- 

GGGCAGATGGGGATCCAGC-3’ (nucleotides 418-436)(Allaire et al., 2010) Hrs: 5’-

GAACTACTGGGAGAAGAAA-3’ (nucleotides 996-1014), TSG101: 5’- 

GGATGAAGGAGGAAATGGA-3’ (nucleotides 725-743), RNF167: 5’-

CCAAAGAGCAACTGAAACA-3’ (nucleotides 626-644). shRNAs were sub-cloned into pZOff 

2.0 and subsequently into the modified FUGW H1 vector as described previously (Leal-Ortiz et 

al., 2008). To evaluate shRNA knockdown efficiency, neurons were transduced with lentivirus 

on 3-7 DIV, collected on 12-16 DIV, and processed for immunoblotting as described below. 

Protein intensity was measured and compared to that in neurons expressing a scrambled hairpin 

(scRNA). Transduction was timed to achieve the highest knockdown efficacy without noticeable 

toxicity (assessed by bright field microscopy). To create shRab35-resistant Rab35, the following 

mutations (shown in italics) were made to rat Rab35 5’-GGCCAAATGGGCATTCAAC-3’ 

(nucleotides 418-436). Neurons were transduced with either scRNA or shRab35 on 3 DIV then 

on 9 DIV with sh-resistant Rab35. 

qPCR 

RNA was isolated from 14 DIV primary hippocampal neurons using Qiagen RNeasy Micro kit. 

Reverse transcription was then performed using SuperScript VILO master mix (Invitrogen) 

followed by qPCR using TaqMan primers to RNF167, GAPDH, and actin. Each reaction was 

performed in triplicate and quantified using the ΔΔCt method (Livak and Schmittgen, 2001). 

RNF167 RNA levels were normalized to actin RNA and to GAPDH RNA levels. The average 
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normalized RNF167 RNA value was calculated and compared between soluble-GFP expressing 

control neurons and shRNF167 expressing neuron.   

Lentivirus production, transduction, and DNA transfection 

Lentivirus was produced as previously described (Leal-Ortiz et al., 2008; Lois et al., 2002) 

except that Calfectin (SignaGen Laboratories) was used for transfection of HEK293T cells. HEK 

medium was replaced with Neurobasal medium 18-24 hours after transfection, and this medium 

(viral supernatant) was harvested 24 hours later. Neurons were transduced with 50-200 µl 

lentiviral supernatant/well (6 or 12 well plates) between 3-10 DIV depending on the experiment 

(see Results), and processed for immunoblotting or immunocytochemistry between 14-15 DIV. 

For biochemical experiments, high viral titer producing >80% infectivity was ensured by 

transducing test wells of neurons with varying amounts of virus, and calculating of the number of 

infected cells divided by the number of DAPI-positive nuclei (DAPI VectaShield, Vector 

Laboratories) per field of view using fluorescence microscopy.  

 Neurons were transfected using Lipofectamine 2000 (Life Technologies) on 7-10 DIV. 

For each 22x22 mm coverslip, 2.5 µl Lipofectamine was incubated with 62.5 µl Neurobasal for 5 

minutes, combined with 1-2.5 µg DNA diluted in 62.5 µl Neurobasal for 20 minutes, then added 

to neurons for 45 minutes at 37ºC. Neurons were transfected in Neurobasal medium containing 

50 µM AP5 and 10 µM CNQX, and returned to their original dishes and medium following 

transfection. Neurons were fixed for immunofluorescence microscopy on 12-16 DIV.   

Pharmacological treatments  

Pharmacological agents were used in the following concentrations and time courses: 

cycloheximide (Calbiochem, 0.2 µg/µl, 24hrs), bicuculline (Sigma, 40 µM, 12-24hrs), 4-

aminopyridine (Tocris, 50 µM, 12-24hrs), AP5 (Tocris, 50 µM, 24 hrs), CNQX (Tocris, 10 µM, 
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24hrs), tetrodotoxin (Tocris, 0.5 µM, 24hrs), GDP (Sigma, 5 mM), GTPγs (Sigma, 5 mM), PR-

619 (LifeSensors, 50 µM, 6hrs).  

Electrophysiology 

Changes in neuronal activity in the presence of bicuculline/4-aminopyridine or 

CNQX/APV/TTX were measured using whole-cell voltage clamp electrophysiology. Dissociated 

hippocampal neurons were recorded on 15 DIV at room temperature using a Multiclamp 700B 

amplifier (Molecular Devices) and a 1550A Digidata digitizer (Molecular Devices) interfaced to 

a computer equipped with Clampex 10 software (Molecular Devices). Neurons were 

continuously perfused with extracellular solution (140 mM NaCl, 2.4 mM KCl, 10 mM HEPES, 

10 mM glucose, 4 mM CaCl2, 4 mM MgCl2; pH 7.35, 300 mOsm) via a gravity-based perfusion 

system. Patch pipettes pulled from borosilicate glass (World Precision Instruments) had 

resistances of 4-5 MΩ when filled with intracellular solution (135 mM K-gluconate, 10 mM 

HEPES, 1 mM EGTA, 4.6 mM MgCl2, 4 mM Na-ATP, 15 mM creatine phosphate; pH 7.35, 320 

mOsm). The series resistance was <15 MΩ and experienced minimal change (<15 %) from the 

start of the recording to the end of the recording. The membrane potential was clamped at -70 

mV. Following baseline activity recordings for 4 minutes, either 40 µM bicuculline/50 µM 4-

aminopyridine or 10 µM CNQX/50 µM APV/0.5 µM TTX was perfused onto the neurons and 

recording continued for a further 6 minutes. Traces were analyzed using MiniAnalysis software. 

Activity was measured as the frequency of spontaneous events during the first 4 minutes 

(baseline) and the last 4 minutes (with drug) of the trace. 

Imaging techniques  

Immunofluorescence microscopy 
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Primary antibodies are listed in Table 2.2. Alexa 488- or Alexa 647-conjugated secondary 

antibodies (Life Technologies) were used at 1:800 or 1:400, respectively. Neurons were 

immunostained as described previously (Leal-Ortiz et al., 2008). Briefly, coverslips were fixed 

with Lorene’s fix (60 mM PIPES, 25 mM HEPES, 10 mM EGTA, 2 mM MgCl2, 0.12 M 

Sucrose, 4% formaldehyde) for 15 minutes, primary and secondary antibody incubations were 

performed in blocking buffer (2% glycine, 2% BSA, 0.2% gelatin, 50 mM NH4Cl in 1X PBS) for 

1-2 hours at room temperature or overnight at 4oC, and all washes were done with PBS. 

Coverslips were mounted with DAPI VectaShield (Vector Laboratories) and sealed with clear 

nail polish. Images were acquired with a 40X objective (Neofluar, NA 1.3) or a 63X objective 

(Neofluar, NA 1.4) on an epifluorescence microscope (Axio Observer Z1, Zeiss) with Colibri 

LED light source, EMCCD camera (Hamamatsu) and Zen 2012 (blue edition) software.   

Confocal microscopy 

Super-resolution imaging was performed with a Zeiss LSM 800 confocal microscope equipped 

with Airyscan module, using a 63x objective (Plan-Apochromat, NA 1.4). Images were obtained 

and processed using Zen Blue 2.1 software.  

SNAP-labeling 

SNAP-Cell Oregon Green (New England BioLabs) was diluted in Neurobasal media to a final 

concentration of 10 µM. 13 DIV neurons were incubated for 30 minutes at 37ºC, washed 3 times 

with Neurobasal media, incubated for 30 minutes at 37ºC in fresh media, washed once more, and 

returned to the original media (adapted from (Bodor et al., 2012)). 15 hrs and 2 days after SNAP 

labeling, neurons were fixed, immunostained using anti-Flag antibody, and imaged as described 

above.  

Super-Ecliptic pHluorin imaging 
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Neurons were lentivirally transduced with super-ecliptic pHluorin (SEP)-tagged WT or K/R 

mutant VAMP2 or synaptophysin on 2-3 DIV, and imaging experiments performed between 13-

16 DIV. SEP fluorescence is quenched inside acidic SVs, increased upon exposure to the neutral 

extracellular pH during stimulation, and re-quenched after endocytosis, thus enabling us to 

visualize the kinetics of SV exo/endocytosis via changes in SEP fluorescence, as in (Burrone et 

al., 2006; Voglmaier et al., 2006). Images were acquired every 5 seconds for 5 cycles prior to 

stimulation, 6 cycles during 10Hz, 30 sec stimulation, and 49 cycles following stimulation. At 

the end of each experiment, NH4Cl Tyrodes was added to de-acidify neurons, allowing us to 

visualize total SEP fluorescence and to measure the size of the recycling pool of SVs (maximum 

SEP fluorescence during stimulation) as a fraction of total SV pool (SEP fluorescence after 

NH4Cl Tyrodes treatment). To plot SV exo/endocytosis curves, fluorescence changes of 

individual SEP puncta over time were measured with an ImageJ plugin (Time Series Analyzer v2, 

author Balaji), and normalized to initial fluorescence intensity. For each coverslip, an average 

curve was calculated from individual punctum intensity values. These curves were combined to 

plot average curves for each condition. 

Live Imaging  

Neurons were plated in microfluidic chambers on glass bottom dishes. On 7 DIV, neurons were 

lentivirally transduced with mCh-Hrs virus. On 10 DIV, time series images taken every 5 

seconds for 50 frames were acquired with a 40X objective (Zeiss Neofluar, NA 1.3) on an 

epifluorescence microscope (Axio Observer Z1, Zeiss) with Colibri LED light source, EMCCD 

camera (Hamamatsu) and Zen 2012 (blue edition) software. Neurons were treated with 

bicuculline and 4-AP to increase neuronal activity for 1 hour. Puncta direction and velocity were 

analyzed using the Manual Tracking plugin (Frabrice Cordeli) in ImageJ. Average velocity was 
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calculated for all puncta in a given axon. Puncta were classified as primarily moving if any 

movement was observed in >45% of frames. The directionality of moving puncta was further 

classified as primarily anterograde or primarily retrograde if a puncta moved in a given direction 

for >45% of frames or bidirectional if neither direction was favored in >45% of frames.  

Electron Microscopy 

On 14 DIV, neurons plated on Lab-Tek chamber slides (Nunc) were treated with bicuculline and 

4-AP for 12 hours. Following this treatment, cells were then fixed with glutaraldehyde and then 

dehydrated, embedded, sectioned, stained and subjected to electron microscopy at Columbia 

University’s Pathology Imaging Core. 

Biochemical techniques 

Co-immunoprecipitation and pull-down assays 

For co-immunoprecipitation studies, HEK293T cells were transfected using Calfectin according 

to manufacturer’s protocol (SignaGen Laboratories). Cell lysates were collected 48 hours after 

transfection in lysis buffer (50 mM Tris-Base, 150 mM NaCl, 1% Triton X-100, 0.5% 

deoxycholic acid) with protease inhibitor cocktail (Roche) and clarified by centrifugation at high 

speed (20000 rcf). For neuronal co-immunoprecipitation and pull-down studies, neurons were 

transduced between 7-10 DIV and collected in lysis buffer on 14-15 DIV. Neuronal lysates were 

centrifuged at low speed (1000 rcf) to pellet nuclei. Resulting supernatant from HEK293T cells 

or neurons was incubated with Dynabeads (Life Technologies) coupled to anti-Flag 

(monoclonal; Sigma), anti-mCherry (polyclonal; Biovision), anti-HA (monoclonal; Santa Cruz), 

anti-VAMP2 (monoclonal; Synaptic Systems), or anti-GTP-Rab35 (NewEast Biosciences) 

antibodies. For all studies, lysates were incubated at 4ºC under constant rotation for 1-2 hours. 

Beads were washed 2-3 times with PBS containing 0.05% Triton (PBST) then once with PBS. 
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Bound proteins were eluted using sample buffer (Bio-Rad) and subject to SDS-PAGE 

immunoblotting as described below. For active GTP-Rab35 immunoprecipitation experiments, 

2.5 mM MgCl2 was added to all buffers. 

For co-immunoprecipitation studies assessing the nucleotide dependence of the Rab35-

Hrs interaction, lysates from HEK293T cells co-transfected with Flag-Hrs and HA-Rab35 were 

collected and clarified as above. The resulting supernatant was divided equally and treated with 

either 5 mM GDP or 5 mM GTPγs. Lysates were incubated at 37ºC with agitation for 30 minutes 

to facilitate nucleotide exchange. Lysates were briefly chilled on ice, treated with 60 mM MgCl2 

to lock Rab35 in either the GDP or GTP bound state, and then subjected to immunoprecipitation 

with anti-Flag coated Dynabeads. Bound proteins were washed as described with wash buffer 

containing 2.5 mM MgCl2, then eluted in sample buffer.  

Ubiquitination assay for VAMP2  

HA-ubiquitin was co-transfected with either untagged WT VAMP2 or untagged KR VAMP2 in 

HEK293T cells. For RNF167 ubiquitination assays, HA-ubiquitin was co-transfected with 

untagged WT VAMP2 and either soluble mCh or mCh-RNF167. Prior to collection, cells were 

incubated with 50 µM PR-619 (LifeSensors), a deubiquitination inhibitor, for 6 hours. Cell 

lysates were collected and clarified as described in above. Resulting supernatant from HEK293T 

cells was incubated with Dynabeads (Life Technologies) coupled to anti-VAMP2 (monoclonal; 

Synaptic Systems) antibodies. Lysates were incubated for 12 hours at 4ºC under constant rotation. 

Beads were washed 3 times with PBS. Bound proteins were eluted using sample buffer (Bio-

Rad) and subject to SDS-PAGE immunoblotting as described.  

GST Pull-down  
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GST and GST-Rab35 protein purification and pull-down were performed as described previously 

(Brymora et al., 2004) with minor changes. Specifically, protein expression was induced with 0.4 

mM IPTG overnight at 25ºC, bacterial cell pellets were resuspended in a solution containing 50 

mM Tris, 150 mM NaCl, 2.5 mM MgCl2 with protease inhibitors at pH 7.4, and cells were 

subsequently lysed in the same buffer with 0.5% Triton X added. GST, GST-Rab35-GDP or 

GST-Rab35-GTPγs were coupled to agarose beads, then incubated with HEK293T lysate 

expressing Flag-Hrs for 2 hours at 4ºC under constant rotation. Beads were then washed 3 times 

in 50 mM Tris, 150 mM NaCl, 2.5 mM MgCl2, 0.5% Triton X with protease inhibitors and once 

in the same buffer without Triton. Proteins were eluted directly in 2X SDS sample buffer (Bio-

Rad) and processed for immunoblotting as described below. For all co-immunoprecipitation and 

pull-down assays, 1-5% of lysate applied to the beads was run as ‘input’. 

Immunoblotting 

For all other immunoblotting experiments, neurons were collected directly in 2X SDS sample 

buffer (Bio-Rad). Samples were subjected to SDS-PAGE, transferred to nitrocellulose 

membranes, probed with primary antibody (Table 2.2) in 5% BSA/PBS+0.05% Tween-20 

overnight at 4oC, followed by DyLight 680 or 800 anti-rabbit, anti-mouse, or anti-goat secondary 

antibodies (Thermo Scientific) for 1 hour. Membranes were imaged using an Odyssey Infrared 

Imager (Model 9120, LI-COR Biosciences). Protein intensity was measured using the ‘Gels’ 

function in ImageJ.  

Analysis 

Fold-change calculation 

For cycloheximide-chase experiments, the normalized intensity of protein remaining after 24 

hours of treatment was reported as a fraction of the normalized intensity of that protein in lysates 
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from the same condition with DMSO treatment. Protein levels were first normalized to the 

intensity of tubulin. Next, the fractional amount of degradation that occurred for each protein 

over the 24-hour period was calculated by dividing its intensity with cycloheximide treatment 

(chx) to its intensity with DMSO control treatment (c)(Table 3.1). These fractional amounts of 

degradation were further normalized to “fold change in degradation vs. control” by dividing the 

perturbation condition (i.e. blockers, Bic/4AP, shRNA) by the control condition (i.e. DMSO, 

scRNA).  

Image Analyses 

Colocalization analyses of Hrs and CHMP2B with VAMP2 were performed manually in ImageJ 

using the Time Series Analyzer V2 plugin (Balaji) to create ROIs (8x8, oval) over Hrs or 

CHMP2B puncta. ROIs with VAMP2 immunostaining above a threshold value (determined 

empirically, typically <5% in Threshold window) were counted and expressed as a fraction of 

the total. Puncta intensity analyses were performed in ImageJ by creating a selection in the Rab 

channel and applying it to the VAMP2 channel. Mean intensity values of VAMP2 puncta (‘gray 

values’) were then measured using the ‘Analyze Particles’ function. The experimental condition 

was reported as a fraction of the control condition by dividing intensity values from three 

experimental images by the average of three images from the control condition. In experiments 

coexpressing shHrs or scrambled shRNAs with mCh-Rab35, VAMP2 intensity was measured in 

OpenView (written by Noam Ziv, Technion Institute, Haifa, Israel) as described previously 

(Waites et al., 2011). Briefly, VAMP2 puncta were selected from processes expressing both 

EGFP and mCh-Rab protein, mean intensity values were measured, and average intensity 

calculated and reported as in the ImageJ analyses. Puncta per unit length (measured in arbitrary 

units) was calculated in ImageJ using the ‘freehand line’ tool to trace and measure Tau positive 
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axons containing Hrs puncta. To measure BG-Oregon Green colocalization with Flag, the 

ImageJ colocalization plug-in (Pierre Bourdoncle) was used. BG-Oregon Green and Flag puncta 

above a threshold value were determined empirically, total vs. colocalized puncta counts were 

measured using the ‘Analyze Particles’ function, and the fraction of colocalized puncta over total 

Flag puncta calculated. OpenView was used to measure BG-Oregon Green intensity as described 

above.    

Evaluation of neuronal health 

14 DIV hippocampal neurons on coverslips were treated with 0.2 µg/µl cycloheximide for 24-36 

hours, fixed in Lorene’s Fix, and processed for immunostaining against Tau (polyclonal; 

Synaptic Systems) and MAP2 (monoclonal; Sigma), mounted with DAPI Vectashield (Vector 

Laboratories), and images acquired as described (Immunofluorescence Microscopy section). The 

following features were scored per field of view: condensed nuclei (DAPI staining in MAP2 

positive neurons), enlarged cell bodies (DAPI/MAP2 area), blebbing dendrites (based on MAP2 

staining), and axonal beading (punctate Tau staining). In control conditions, <15% of neurons 

exhibited one or more of these features.  

Statistical analyses 

Graphing and statistics were performed using Prism (GraphPad). Unpaired, two-tailed t-tests 

were used to calculate p-values for all bar graph analyses.  

 

 
 
 
 
 
 
 
 



 28	
  

Table 2.1 - List of DNA constructs  
 
name of 
protein 

species accession # source Vector and cloning information 

Rab35 rat NM_001013046.1 
  
 
 

Genewiz, 
Inc. gene 
synthesis 

Subcloned into pEGFP/mCh-C2 
and pKH3 vectors at EcoRI site, 
moved into FUGWm with 
MfeI/NheI and EcoRI/XbaI 
(FUGWm), PCR into pGEX-4T2 at 
SalI/NotI sites  

Rab3 human   
 

Gift from 
C. Garner 

Received in pEGFP vector 
subcloned mCh at AgeI/BsrGI sites, 
moved into FUGWm using 
MfeI/NheI and EcoRI/XbaI 
(FUGWm) 

Rab5 human  Gift from 
G. DiPaolo 
 

Received in pEGFP, subcloned 
mCh at AgeI/BsrGI sites, moved 
into FUGW using MfeI/NheI, PCR 
into pKH3 at BamHI/ClaI sites 

Rab10 rat NM_017359.2 
 

Genewiz, 
Inc. 
gene 
synthesis 

Subcloned into pEGFP/mCh-C2 
and pKH3 vector at EcoRI site, 
moved into FUGWm with 
MfeI/NheI and EcoRI/XbaI 
(FUGWm) 

Rab14 rat NM_053589.1 
  
 

Genewiz, 
Inc. 
gene 
synthesis 

Subcloned into pEGFP/mCh-C2 
and pKH3 vector at EcoRI site, 
moved into FUGWm with 
MfeI/NheI and EcoRI/XbaI 
(FUGWm) 

Rab21 rat NM_001004238.1 Genewiz, 
Inc. 
gene 
synthesis 

Subcloned into pKH3 vector at 
EcoRI site 

Hrs human  Addgene 
#29685 
 

Received in RFP vector, moved into 
FUGWm using MfeI/NheI, PCR 
into pCS2-FLAG at XhoI/XbaI sites 

TSG101 human  Addgene 
#38318 
 

Received in mCh vector, used as is 

STAM human  Addgene 
#21499 
 

Subcloned into pmCh N1 at 
XhoI/HindIII sites 

CHMP2B human  Gift from 
C. Garner 

Received in pmCh-C2 vector, used 
as is 

Connecdenn1/ 
DENND1A 

rat NM_001191747.1 
  

Genewiz, 
Inc. gene 

Subcloned into pEGFP-C1 at EcoRI 
site 
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 synthesis 
VAMP2 rat NM_012663.2 

 
Genewiz, 
Inc. gene 
synthesis 

Subcloned into pEGFP/SEP-N1 
vectors at EcoRI site, moved into 
FUGWm with MfeI/NheI and 
EcoRI/XbaI (FUGWm) 

KR VAMP2 rat NM_012663.2 
 

Genewiz, 
Inc. gene 
synthesis 

Subcloned into pEGFP/SEP-N1 
vectors at EcoRI site, moved into 
FUGWm with MfeI/NheI and 
EcoRI/XbaI (FUGWm) 

HA-Ubiquitin human  Addgene 
#18712 

Used as is 
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Table 2.2 - List of antibodies  

 

 

 

 

Antibody Source Species Catalog number 
VAMP2 Synaptic Systems rabbit 104202 
VAMP2 Synaptic Systems mouse 104211 

SV2 Developmental 
Studies Hybridoma 

Bank 

mouse  

Tubulin Abcam rabbit ab4074 
Tubulin Sigma mouse t9026 
mCherry Biovision rabbit 5993 

Hrs Santa Cruz rabbit m-79 sc30221 
Rab35 Gift from Peter 

McPherson 
rabbit  

Synaptotagmin 1 Synaptic Systems rabbit 105012 
Snap-25 Synaptic Systems mouse 111011 
Rim1α Synaptic Systems rabbit 140003 

Munc-13 Synaptic Systems rabbit 126102 
Synaptophysin Santa Cruz rabbit h-93 sc9116 

HA Santa Cruz rabbit y-11 sc805 
HA Santa Cruz mouse f-7 sc7392 
Flag Sigma mouse clone m2 f3165 

TSG101 Santa Cruz mouse c-2 sc7964 
Tau Santa Cruz rabbit v-20 sc1996 

MAP2 Sigma mouse ap-20 m1406 
Synapsin 1 Synaptic Systems mouse 106001 

Rab3 Synaptic Systems mouse 107111 
Rab5 Santa Cruz mouse D-11 sc-46692 
Rab10 Santa Cruz goat C-18 sc-6564 
Rab14 Santa Cruz rabbit H-55 sc-98610 

Active Rab35 NewEast 
Biosciences 

mouse 26922 
 

Rab35 Proteintech rabbit 11329-2-AP 
GST Abcam rabbit ab9085 

Homer 1 Syanptic Systems rabbit 160003 
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Chapter 3: A subset of SV proteins undergo activity-dependent degradation by the ESCRT 

pathway 

Rationale  

 The release of chemical neurotransmitter from synaptic vesicles (SVs) is essential for 

synaptic communication. In order for neurons to maintain rapid, efficient neurotransmission, SVs 

must undergo repeated cycles of fusion with the plasma membrane (exocytosis), followed by 

membrane retrieval (endocytosis) and vesicle reformation. These processes are mediated by a 

group of SV-associated proteins whose proper conformation and function are critical for synaptic 

health (see (Bezprozvanny and Hiesinger, 2013; Wang et al., 2013)). Indeed, without proper 

maintenance of SV pools, synapses become dysfunctional over time, leading to the loss of 

neuronal communication and ultimately to neurodegeneration (Garden and La Spada, 2008; Scott 

et al., 2010; Uytterhoeven et al., 2011). However, while the molecules that mediate SV 

exocytosis and endocytosis have been well characterized, very little is known about the 

molecular pathways responsible for SV protein turnover and degradation.  

In addition to its role in cellular homeostasis, protein degradation is also essential for 

synaptic plasticity and synapse formation/elimination, processes tightly linked to neuronal 

activity (see (Alvarez-Castelao and Schuman, 2015)). While the ability of neuronal activity to 

regulate postsynaptic protein degradation has been demonstrated (Ehlers, 2003; Lussier et al., 

2011; Schwarz et al., 2010; Scudder et al., 2014), few studies have examined the relationship 

between activity and presynaptic protein turnover. It has been reported that silencing neurons 

leads to the accumulation of presynaptic proteins (Lazarevic et al., 2011), suggesting that their 

turnover is slowed in the absence of activity; however, the direct effects of neuronal activity on 

SV protein degradation have not been investigated. In this chapter, we discover that the 
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degradation of a subset of SV proteins is regulated by neuronal activity. Further, we find that 

neuronal activity functions to recruit proteins of the ESCRT pathway to synapses to initiate 

endolysosomal degradation.  

Results 

SV integral membrane proteins turn over at different rates 

We first developed an assay to monitor the degradation of SV integral membrane proteins. A 

previous study used the protein synthesis inhibitor cycloheximide to monitor protein degradation 

in neurons (Sharma et al., 2011), and we tested this approach in hippocampal neurons cultured 

for 14 days in vitro (DIV), using DMSO (vehicle control) or cycloheximide (chx) to block 

protein synthesis for 24 or 36 hours. We performed immunostaining against Tau (axonal protein) 

and MAP2 (dendritic protein), and counterstained with the nuclear label DAPI to evaluate 

whether this long-term chx treatment caused neuronal toxicity, reflected by enlarged cell bodies, 

dendritic blebbing, axonal beading, and nuclear chromatin condensation (Figure 3.1A,B). We 

found that 36 hours of chx treatment led to one or more of these phenotypes in >60% of the 

fields of view scored, but that 24 hours of chx did not cause any detectable changes in neuronal 

health versus DMSO treatment alone (Figure 3.1A,B). Given this 24-hour chx treatment window, 

we next assessed whether it was possible to detect SV protein degradation during this time 

period. Lysates from neurons treated for 24 hours with DMSO or chx were collected and 

subjected to immunoblotting with antibodies against SV integral membrane proteins (VGLUT1, 

synaptophysin (Syp), SV2, synaptotagmin1 (Syt1), VAMP2) and the plasma membrane-

associated SNARE protein SNAP-25. Resulting immunoblots were imaged using the Odyssey 

Imaging System (LI-COR), which acquires images in the linear range without saturation or over-

exposure of protein bands, enabling very accurate quantification of protein levels. For each  
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protein, the fractional amount of degradation that occurred over 24 hours was expressed as a 

ratio of its intensity with chx treatment to its intensity with DMSO control treatment (c) (Figure 

3.1C,D), and normalized to tubulin. Since tubulin is a very stable protein, its levels were nearly 

always unchanged over the 24-hour time course. However, we found that the levels of SV2, Syt1, 

VAMP2 and SNAP-25 all decreased by approximately 20-35% within this time frame, while 

VGLUT1 and Syp levels were not significantly altered (Figure 3.1C,D). These findings indicate 

Figure 3.1: SV proteins exhibit different fractional amounts of degradation after protein synthesis inhibition. A) 
Representative images from 14 DIV neurons treated with DMSO or chx for 24 or 36 hours, immunostained with Tau 
antibodies to label axons (green), MAP2 antibodies to label dendrites (red), and mounted with DAPI to label nuclei 
(blue). Arrows in 36 hr panel denote the characteristics of cell health that were scored for B, including enlarged cell 
bodies, blebbing dendrites, and axonal beading. Note that Tau immunostaining becomes weaker following chx treatment 
due to protein synthesis inhibition. White scale bar=10µm. B) Quantification of cell health based on nuclear and process 
morphology (see Methods for details; n=5-7 fields of view/condition, *p<0.05, two-tailed t-test). C) Representative 
immunoblots of SV membrane proteins (VGLUT1, Synaptophysin (Syp), SV2, Synaptotagmin 1 (Syt 1), VAMP2) and 
the plasma membrane-associated SNAP-25, from lysates of 14 DIV neurons treated for 24 hours with either DMSO (c) 
or cycloheximide (chx). D) Quantification of protein intensity after 24 hrs chx treatment, normalized to tubulin and 
reported as a fraction of the DMSO control intensity (starting material). Averages are denoted by colored lines; each 
triangle represents one experiment. Black dotted line denotes no change in fractional degradation.  
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that SV membrane proteins do not all turn over at the same rate, and therefore that SVs may not 

be degraded as discrete units. 

Neuronal activity stimulates the degradation of specific SV membrane proteins  

For those SV proteins whose levels were reduced following 24-hour chx treatment, we next 

evaluated whether their degradation was influenced by neuronal activity. Neurons were again 

treated for 24 hours with DMSO or cycloheximide, this time in the presence of commonly used 

pharmacological agents that either block neuronal activity (the Na+ channel blocker tetrodotoxin 

(TTX), the NMDA receptor blocker APV, and the AMPA receptor blocker CNQX), or increase 

activity (the GABA receptor antagonist bicuculline and the voltage-gated K+ channel blocker 4-

aminopyridine; Bic/4AP)(Ehlers, 2003; Tauskela et al., 2008; Wijayatunge et al., 2014). The 

efficacy of these agents was verified in 14 DIV neurons by recording and quantifying the 

frequency of spontaneous excitatory postsynaptic currents before and after drug application. We 

found that TTX, APV, and CNQX (blockers) significantly decreased this number, while Bic/4AP 

significantly increased it (Figure 3.2A,B). The amounts of protein degradation were expressed as 

“fold change in degradation vs. control” by dividing the activity conditions (blockers, Bic/4AP) 

by the DMSO control condition (see Chapter 2 for details). Faster protein degradation was 

expressed as an increase in fold change (>1), and slower degradation by a decrease in fold 

change (<1; Figure 3.2C-E). While the amounts of protein degradation were not significantly 

different between the DMSO control and blocker conditions (Figure 3.2C,E, Table 3.1), we 

found that Bic/4AP treatment significantly sped SV2 and VAMP2 degradation during the 24-

hour time course (by ~2-fold), but did not alter Syt1 or SNAP-25 degradation (Figure 3.2D,E). 

These interesting findings indicate that a subset of SV membrane proteins (VAMP2, SV2) is 

degraded in an activity-dependent manner. Such use-dependent turnover could be essential for 
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removing SV proteins that become damaged/misfolded through repeated cycles of SV 

exo/endocytosis, yet the underlying molecular mechanisms are unknown. 

 
 

  

 
 

Figure 3.2 - Neuronal activity drives the degradation of a subset of SV-associated proteins. A) 
Representative traces of 14 DIV neurons before and after application (indicated by black line) of 50µM 
AP5/10µM CNQX/0.5µM tetrodotoxin (blockers) to inhibit activity, or 40µM bicuculline/50µM 4-AP (bic/4AP) 
to stimulate activity. B) Quantification of spontaneous excitatory postsynaptic current frequency pre- and post-
treatment with blockers or bic/4AP. C) Representative immunoblots from 14 DIV neurons treated for 24 hours 
with DMSO (c) or chx in the presence of additional DMSO or blockers. Blots probed for SV2 and Syt1, or 
VAMP2 and SNAP-25, are shown with corresponding tubulin loading controls. D) Representative immunoblots 
from 14 DIV neurons treated for 24 hours with DMSO (c) or chx in the presence of additional DMSO or 
bic/4AP to stimulate neuronal activity, and probed for the same proteins as in C. E) Quantification of protein 
degradation in each condition, expressed as the fold change versus DMSO control. Treatments that speed protein 
degradation are represented by an increase in fold change (>1). Black dotted line denotes fractional degradation 
in the presence of DMSO control (black bar). For this and all subsequent bar graphs, mean ± SEM is shown, and 
student’s two-tailed t-tests are used to calculate significance of each experimental condition vs. control (n≥3, 
**=p<0.01). 
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Table 3.1 - Fractional protein degradation in a 24-hour period, based on neuronal activity 
levels.  
 

Protein DMSO APV/CNQX/TTX Bic/4AP 
VGLUT1 1.04 ± 0.08 N/A N/A 

Synaptophysin 0.98 ± 0.08 N/A N/A 
SV2 0.811± 0.029 0.854 ± 0.042 0.669 ± 0.026** 

VAMP2 0.813 ± 0.031 0.840 ± 0.047 0.647 ± 0.048** 
Synaptotagmin-1 0.691 ± 0.021 0.614 ± 0.012 0.657 ± 0.052 

SNAP-25 0.723 ± 0.042 0.732 ± 0.044 0.628 ± 0.076 
 
The fractional amount of degradation that occurred over 24 hours was expressed as a ratio of 
protein intensity with cycloheximide treatment to its intensity with DMSO control treatment. 
Numbers represent the average plus or minus the standard error of the mean. Student’s two-tailed 
t-tests were used to calculate significance of each experimental condition vs. DMSO control. 
Significantly different values are indicated (**=p<0.01).  
 

The ESCRT pathway is required for activity-dependent SV protein degradation 

To identify the cellular pathway responsible for activity-dependent degradation of SV2 and 

VAMP2, we initially focused on the ESCRT pathway. The ESCRT pathway comprises a series 

of protein complexes (ESCRT-0, -I, -II, -III, and Vps4) that catalyze the formation of MVBs and 

the sorting of cargo into MVBs for delivery to lysosomes (Raiborg and Stenmark, 2009). To 

confirm that this pathway has a role in SV protein degradation, as previously reported 

(Fernandes et al., 2014; Uytterhoeven et al., 2011), we examined the fold change in SV2 and 

VAMP2 degradation in the presence of an shRNA against the ESCRT-0 component Hrs (shHrs). 

Hrs, the initial component of the ESCRT-0 complex that binds and recruits ubiquitinated protein 

substrates, appears to be required for the initiation of MVB formation (see (Schmidt and Teis, 

2012)). When expressed between 7-14 DIV, we found that shHrs led to a 67.8+/-0.10% 

knockdown of Hrs protein (Figure 3.3A) without any observable toxicity. Further, shHrs 

significantly attenuated SV2 and VAMP2 degradation compared to scRNA control (Figure 

3.3B,C), indicating that basal degradation of these proteins occurs through the ESCRT pathway.  
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Figure 3.3 - The ESCRT pathway is required for basal and activity-dependent SV protein degradation. 
A) Representative immunoblots of Hrs, TSG101, and corresponding tubulin loading controls from 14 DIV 
neurons transduced with scRNA, shHrs, or shTSG101. Knockdown efficacy is 67.8+/-0.1% of scRNA control 
for shHrs, and 58.2+/-0.04% of control for shTSG101.  B) Immunoblots from 14 DIV neurons transduced with 
scRNA or shHrs, treated for 24 hours with DMSO (c) or chx, and probed for SV2, VAMP2 and tubulin. C) 
Quantification of the fold change in degradation of SV2 and VAMP2 compared to scRNA control (n=4; 
**=p<0.01). D) Immunoblots from 14 DIV neurons transduced with scRNA or shTSG101, treated for 24 hours 
with DMSO (c) or chx, and probed for SV2, VAMP2 and tubulin. E) Quantification of fold change in 
degradation of SV2 and VAMP2 compared to scRNA control (n=4; *=p<0.05). F) Immunoblots from 14 DIV 
neurons transduced with scRNA or shHrs and treated for 24 hours with DMSO (c) or chx in the presence of 
additional DMSO or bic/4AP, and probed for SV2, VAMP2 and tubulin. G) Quantification of fold change in 
degradation of SV2 and VAMP2 in the presence of scRNA or shHrs, +/- activity. DMSO control is set to 1 for 
each condition (scRNA black bars, shHrs blue bars), and bic/4AP treatment is expressed as fold change vs. 
DMSO control for that condition (n=6; *=p<0.05). 
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To bolster this finding, we repeated this experiment with an shRNA against TSG101, a 

component of the ESCRT-I complex that acts downstream of Hrs. Like shHrs, shTSG101 led to 

a relatively efficient 58.2+/-0.04% knockdown of TSG101 (Figure 3.3A) and attenuated SV2 and 

VAMP2 degradation (Figure 3.3D,E), indicating that the ESCRT pathway, and not just Hrs or 

the ESCRT-0 complex, facilitates the degradation of SV proteins. To assess whether this 

pathway also mediates the activity-dependent turnover of SV2 and VAMP2, neurons expressing 

scRNA or shHrs were treated with Bic/4AP or DMSO vehicle control, and changes in protein 

degradation measured after 24-hour chx treatment. We found that Bic/4AP treatment again 

increased the degradation of SV2 and VAMP2 by nearly two-fold in scRNA-expressing neurons 

(Figure 3.3F,G). In contrast, shHrs-expressing neurons exhibited no Bic/4AP-mediated increases 

in SV2 or VAMP2 degradation (Figure 3.3F,G). These findings indicate that the ESCRT 

pathway is essential for basal and activity-dependent turnover of these SV proteins. 

ESCRT proteins undergo activity-dependent recruitment to SV pools  

Although the ESCRT pathway has previously been linked to SV protein turnover (Fernandes et 

al., 2014; Uytterhoeven et al., 2011), the localization of ESCRT proteins in axons, and their 

behavior in response to neuronal activity, has not been investigated. Based on our findings, we 

hypothesized that ESCRT proteins would localize to axons and associate with SV pools, and that 

neuronal activity would increase this association. To test this concept, we transduced neurons 

with mCh-tagged Hrs (ESCRT-0 complex) or CHMP2B (ESCRT-III complex; MVB marker) on 

9 DIV, and treated neurons with either DMSO or Bic/4AP for 12 hours on 14 DIV. Neurons 

were then fixed and immunostained for VAMP2 to label SV pools. The percent colocalization of 

mCh-Hrs or CHMP2B-mCh puncta with VAMP2, and the number of puncta per unit length of 

axon, were quantified and compared in the presence or absence of Bic/4AP. While  
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approximately 40% of mCh-Hrs puncta colocalized with VAMP2 at baseline, treatment with 

Bic/4AP increased this value to nearly 75% (Figure 3.4AC). At the same time, increased 

neuronal activity led to nearly four times as many mCh-Hrs puncta/unit length axon compared to 

control neurons (Figure 3.4A,D). We also observed a striking change in the localization of 

CHMP2B-mCh following Bic/4AP treatment. In control neurons, CHMP2B-mCh puncta rarely 

appeared in axons. However, following Bic/4AP treatment, multiple CHMP2B-mCh puncta were 

present in axons, and ~35% of these colocalized with VAMP2 (Figure 3.4B,C). Together, these 

data show that neuronal activity dramatically increases the entry of ESCRT proteins into axons 

and their association with SV pools.  

To determine whether these SV pools were synaptic, and to examine the precise 

localization of the ESCRT proteins relative to SV pools, we performed high-resolution imaging 

of neurons transduced with mCh-Hrs or CHMP2B-mCh, treated with Bic/4AP, and 

immunostained with VAMP2 and the postsynaptic protein Homer1. Hrs and CHMP2B puncta 

associated with both synaptic and non-synaptic VAMP2 clusters, with nearly twice as many 

Figure 3.4 - Neuronal activity recruits ESCRT proteins to synaptic vesicle pools. 
A) Images of neurons transduced with mCh-Hrs, treated with DMSO or bic/4AP for 12 hours, then fixed and 
immunostained against VAMP2 (green) and Tau (blue). Arrows represent VAMP2 puncta that colocalize with 
mCh-Hrs in axons. Scale bar=10µm. B) Images of neurons transduced with CHMP2B-mCh, treated with DMSO 
or bic/4AP for 12 hours, then fixed and immunostained against VAMP2 (green) and Tau (blue). Arrows 
represent VAMP2 puncta that colocalize with CHMP2B-mCh in axons. Scale bar=10mm. C) Quantification of 
the fraction of Hrs or CHMP2B puncta colocalized with VAMP2 (For Hrs: n=4 DMSO, n=8 bic/4AP from 3 
replicate weeks, ~30 puncta/image; *=p<0.05. For CHMP2B: n=5 for DMSO, n=8 for bic/4AP from 2 replicate 
weeks, ~10 puncta/image; **=p<0.01). D) Quantification of the number of Hrs puncta per unit length of axon 
(arbitrary units; n=4 DMSO, n=5 bic/4AP, *=p<0.05, ~30 puncta/image, similar results obtained for 3 
independent experiments). E) Super-resolution images of neurons transduced with mCh-Hrs, treated as in A and 
immunostained against VAMP2 and Homer1. Arrowhead indicates non-synaptic mCh-Hrs puncta, and arrows 
indicate synaptic puncta based on colocalization with Homer1. Inset shows higher magnification view of a 
synaptic site. F) Super-resolution images of neurons transduced with CHMP2B-mCh, treated as in A and 
immunostained against VAMP2 and Homer1. Arrowheads indicate non-synaptic CHMP2B-mCh puncta and 
arrows indicate synaptic puncta. Inset shows higher magnification view of a synaptic site. Scale bar=5µm, 2.5µm 
for inset. G) Quantification of the synaptic and non-synaptic fractions of Hrs and CHMP2B puncta in axons 
following neuronal activity (~200 puncta for Hrs, ~120 puncta for CHMP2B). 
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puncta at synaptic clusters based on their colocalization with Homer1 (67% synaptic vs. 33% 

non-synaptic for Hrs, 68% synaptic vs. 32% non-synaptic for CHMP2B; Figure 3.4E-G). 

Moreover, Hrs and CHMP2B puncta typically exhibited partial but not complete overlap with 

VAMP2 clusters (Figure 3.4E,F), suggesting that they could represent distinct vesicle 

populations or associate with subsets of SVs.  

 To further characterize the effect of neuronal activity on the localization of the ESCRT 

pathway, we performed live imaging of mCh-Hrs following activity treatment in microfluidic 

chambers. The use of these chambers allowed us to preferentially examine Hrs movement within 

axons and eased the ability to discern the directionality of these movements. We recorded time 

lapse movies of mCh-Hrs movement every 5 seconds for 50 frames. First, we generated 

kymographs in which a stationary particle appears as a straight line while anterograde or 

retrograde movements appear as diagonal lines to the left or right, respectively (Figure 3.5A). In 

DMSO treated neurons, Hrs puncta were primarily stationary with very few anterograde or 

retrograde events, whereas in Bic/4AP treated neurons, the majority of particles show movement 

in one or both directions (Figure 3.5A). Quantification of these events revealed that 

approximately 20% of Hrs puncta in DMSO treated neurons could be classified as ‘moving’, 

defined as showing any movement in >45% of the frames. As early as 1 hour after Bic/4AP 

treatment, a significant increase was observed, wherein nearly 70% of puncta were moving 

(Figure 3.5B). We next examined the directionality of the moving puncta, classifying their 

movement as primarily anterograde or retrograde, based on movement in the given direction for 

>45% of the frames, or as bidirectional. We found a trend towards increased retrograde 

movement (p=0.07), and a similar trend for increased bidirectional movement (p=0.055), though 

these values did not reach significance (Figure 3.5C). Additionally, the average velocity of all 
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Hrs puncta increased nearly 4 fold following treatment with Bic/4AP (Figure 3.5D). These 

results show that neuronal activity serves as cue to initiate Hrs transport within axons. Further 

work examining the dynamics of Hrs movement over an expanded timeframe of activity 

treatment, along with an examination of the co-trafficking of SV proteins over this timeframe, 

will be necessary to elucidate the activity-dependent changes in ESCRT-mediated SV trafficking.  

 

Figure 3.5 - Neuronal activity changes Hrs trafficking dynamics.  
A) Representative kymographs of mCh-Hrs puncta from 10 DIV neurons treated with DMSO or Bic/4AP for 1 
hour prior to imaging. Images were acquired every 5 seconds over an approximately four-minute time course. B) 
Quantification of stationary vs. moving mCh-Hrs puncta based on their behavior in >45% of the frames in each 
condition. Significantly more puncta were moving in neurons treated with Bic/4AP vs. DMSO control 
(**=p<0.01, n=5-6 neurons.50 frames each). C) Quantification of the directionality of moving mCh-Hrs puncta. 
A trend towards increased retrograde (p=0.07) and bidirectional (p=0.055) movement was observed in neurons 
treated with Bic/4AP (n=5-6 neurons). Quantification of the average velocity of mCh-Hrs puncta in each 
condition. mCh-Hrs puncta in neurons treated with Bic/4AP moved three-fold faster on average (**=p<0.01, 
n=5-6 neurons).   
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We next attempted to directly address the question of whether neuronal activity drives 

MVB formation at synapses by performing electron microscopy. Neurons were treated for 12 

hours with Bic/4AP or DMSO, then fixed, sectioned, stained and subjected to electron 

microscopy. Though MVBs have been identified in axons and presynaptic compartments, these 

MVBs have very diverse morphologies (Altick et al., 2009; Kadota et al., 1994; Von Bartheld 

and Altick, 2011) and have primarily been characterized in motor neurons and neuromuscular 

junctions, not small central synapses. Thus, while we see a number of MVB-like structures that 

may represent distinct types of MVBs, or MVBs at different stages of formation (Figure 3.6A,B), 

we cannot definitively categorize them as MVBs. Further characterization of these structures in 

conjunction with MVB marker labeling or 3D reconstruction will be necessary to determine 

whether neuronal activity drives their formation.  

 

Figure 3.6 - Ultrastructural analysis of presynaptic boutons 
A-B) EM micrographs of presynaptic boutons from 14 DIV neurons treated with Bic/4AP for 12 hours. Multiple 
endosomal structures can be seen, potentially representing sorting/recycling endosomes or MVBs at various 
stages of maturation (arrows; A). B) A large (200 nm) vesicular structure potentially representing an MVB 
(arrowhead; B). Scale bar=100nm. 
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Discussion  

In this chapter, we find that a subset of SV proteins, SV2 and VAMP2, undergo activity-

dependent degradation. Furthermore, we show that the degradation of these proteins relies on the 

ESCRT pathway, suggesting that they are sorted from an early endosomal structure, packaged 

into MVBs, and transported to the lysosome for degradation. Finally, we find that neuronal 

activity functions to recruit proteins of the ESCRT pathway into axons and specifically to pools 

of synaptic vesicles, suggesting that the initiation of degradation occurs locally at these sites.  

Mechanisms of SV protein turnover   

Mechanisms of SV protein degradation are poorly understood, and our study is among the first to 

investigate them. For instance, the fundamental question of whether SV membrane proteins turn 

over individually or as a group has not been resolved. In our cycloheximide assays, we observed 

that some membrane proteins (i.e. VGLUT1, synaptophysin) were long-lived, showing no 

significant change within the 24-hour time course, while others (i.e. SV2, synaptotagmin1) 

underwent a ~35% reduction compared to starting material. Another recent study that utilized 

SILAC and proteomics to measure synaptic protein turnover also found variation in the basal 

half-lives of different SV proteins, and calculated these half-lives to be on the order of 1-4 days, 

or ~2-40 molecules per hour per synapse (Cohen et al., 2013). Together, these findings indicate 

that SV protein turnover occurs through the regulated degradation of specific proteins as opposed 

to the degradation of entire SVs. They also demonstrate that SV protein degradation is an active, 

ongoing process, in contrast to earlier reports that estimated SV protein turnover to be extremely 

slow, with half-lives on the order of 20 days (Morris et al., 1971).   

  We also observed variability in the dependence of SV-associated protein degradation on 

neuronal activity, with SV2 and VAMP degradation increased by activity and Synaptotagmin1 
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and SNAP-25 degradation unchanged. Why this variability occurs remains an open question. 

One possibility is that cellular surveillance mechanisms (i.e. molecular chaperones, 

ubiquitinating enzymes) are coupled to activity in order to efficiently remove reactive or 

structurally complex proteins that are susceptible to damage from continuous SV recycling. 

VAMP2 and SV2 may have structural motifs that are particularly vulnerable to misfolding or 

oxidation. Alternatively, the specific functions of these proteins (i.e. VAMP2 as the primary v-

SNARE in the brain, SV2 as a chaperone for Synaptotagmin1 (Zhang et al., 2015) may require 

particularly vigilant control mechanisms that are tightly linked to neuronal activity. Interestingly, 

several groups have shown that specific postsynaptic proteins are ubiquitinated and degraded in 

an activity-dependent manner while others are not (Ehlers, 2003; Lussier et al., 2011; Schwarz et 

al., 2010). Moreover, the ubiquitinating enzymes responsible for the ubiquitination/degradation 

of postsynaptic glutamate receptors are regulated by neuronal activity (Scudder et al., 2014), and 

such a mechanism could also link activity with SV2 or VAMP2 ubiquitination and degradation. 

An intriguing possibility is that they accumulate ubiquitin moieties through cycles of exo- and 

endocytosis, and that these cumulative linkages target heavily-used SV proteins for degradation. 

However, the identities of the ubiquitinating enzymes responsible for this activity, the signals 

that regulate these enzymes, and the specific SV proteins that are ubiquitinated in response to 

activity remain largely unknown and will be investigated in Chapter 5.  

ESCRT pathway in SV protein homeostasis 

Our studies show that the ESCRT pathway is responsible for the basal and activity-dependent 

turnover of SV2 and VAMP2. This finding lends further support to the growing evidence of the 

importance of endosomes in the SV life cycle. Our study implicating the ESCRT pathway as an 

essential component of SV protein degradation points to a role of endosomes in the removal of 
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dysfunctional or damaged proteins. Indeed, studies in Drosophila have also identified 

components of the ESCRT pathway as essential in preserving a healthy and functional readily 

releasable pool of SVs (Fernandes et al., 2014; Uytterhoeven et al., 2011). Together with our 

studies, these findings suggest that maintaining SV protein homeostasis is crucial to retaining 

proper neuronal communication and thus neuronal health, an idea we will further explore in 

Chapter 5.  

 One of the most interesting aspects of our findings is that neuronal activity functions as a 

cue to initiate ESCRT dependent degradation of SV2 and VAMP2 at synapses. Although we 

cannot conclude that MVBs form at the synapse, our data do suggest that ESCRT components 

are recruited to synapses in response to increases in neuronal activity. While these studies do not 

preclude the involvement of macroautophagy in presynaptic protein degradation, they do offer an 

intriguing possibility that different degradative pathways may be activated in response to specific 

signals. Perhaps neuronal activity activates certain proteins or signaling cascades that specifically 

interact with ESCRT proteins and lead to their synaptic recruitment. This idea will be further 

investigated in Chapter 4.  
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Chapter 4: Rab35 regulates activity-dependent degradation of SV2 and VAMP2 through 

its effector, Hrs 

Rationale 

In the previous chapter, we discovered that specific SV proteins are degraded in a use-dependent 

manner that relies on the ESCRT pathway. Further, we found that proteins of the ESCRT 

pathway are recruited into axons and to synaptic vesicle pools by neuronal activity. In this 

chapter, we investigate how this striking axonal recruitment of ESCRT proteins occurs. Based on 

their key roles in trafficking proteins into the endocytic pathway (Stenmark, 2009), we 

hypothesized that Rab GTPases might play a role in this process. More than half of the 60 

mammalian Rabs can be co-purified with SV pools (Pavlos and Jahn, 2011; Takamori et al., 

2006), and several of these (Rabs 5, 10, 14, 21, 35) associate with early and recycling endosomes 

in neurons and other cell types (Babbey et al., 2006; Fischer von Mollard et al., 1994; Junutula et 

al., 2004; Pavlos and Jahn, 2011; Sato et al., 2008; Uytterhoeven et al., 2011). Given their 

putative and reported roles in the endocytic pathway, we hypothesized that one or more of these 

would mediate SV protein degradation. Moreover, Hrs also localizes to early endosomes 

(Komada and Soriano, 1999; Sato et al., 2008) and is the initial component of the ESCRT 

pathway, leading us to further hypothesize that it could interact with one or more of the 

endocytic Rabs to mediate SV protein degradation.  

Results        

Rab35 interacts with Hrs and stimulates SV protein degradation 

To test for Hrs/Rab interactions, we performed co-immunoprecipitation assays in HEK293T cells 

expressing Flag-Hrs and HA-tagged Rabs 5, 10, 14, 21, or 35. Interestingly, we found that Rabs 

10, 14, and 35 were efficiently co-immunoprecipitated by Flag-Hrs, while Rabs 5 and 21 were  
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Figure 4.1 - A subset of endocytic Rabs interact with Hrs and/or drive SV protein degradation. 
A) Immunoblot of HEK cell lysates expressing HA-Rab5, 10, 14, 21 or 35 and Flag-Hrs, subject to IP with Flag 
antibody and probed with HA or Flag antibodies. B) Quantification of HA-Rab intensity in the eluate, normalized 
to input intensity and Flag-Hrs intensity in the eluate (n=3, **p<0.01). C) Representative images from 14 DIV 
neurons transduced with mCh-tagged Rab3, Rab5, Rab10, Rab14, or Rab35 and immunostained with VAMP2 
antibodies. Arrows represent VAMP2 puncta (green) in axons expressing mCh-Rab (purple). Scale bar=10 µm. D) 
Immunoblots from 14 DIV neurons transduced with mCh-tagged Rab3, Rab5, Rab10, Rab14, or Rab35, and 
probed for the respective Rab. E) Quantification of mCh-tagged Rab intensity, expressed as fold change vs. 
endogenous Rab level (n=3). F) Immunoblots from 14 DIV neurons untransduced or transduced with mCh-Rab3, 
treated for 24 hrs with either DMSO (c) or chx, and probed for SV2 or VAMP2 and tubulin. G) Quantification of 
SV2 or VAMP2 intensity from each condition, normalized as in Figure 3.1, showing that Rab3 overexpression 
does not speed SV2 protein degradation (n=3). 
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not (Figure 4.1A,B). These findings demonstrate that a subset of endocytic Rabs interact with 

Hrs, and may participate in SV protein degradation.  

We next tested whether overexpression of any of these endocytic Rabs could stimulate 

SV2 and VAMP2 degradation in hippocampal neurons. Multiple groups have reported that 

overexpression of wild-type small GTPases induces phenotypes that reflect their activation 

(Brondyk et al., 1993; Li and Stahl, 1993; McCaffrey et al., 2001; Ravikumar et al., 2008).  

Furthermore, it was recently demonstrated that the conventional ‘constitutively-active’ mutants 

are not active for all Rabs, including Rab35 (Langemeyer et al., 2014). We therefore used wild-

type rather than constitutively-active Rabs for our studies, anticipating that their relatively 

modest overexpression by lentivirus would lead to phenotypes reflecting their activated states, 

while at the same time minimizing the toxicity often associated with Rab overexpression (Star et 

al., 2005). Indeed, when neurons were transduced with mCherry-tagged Rabs (5, 10, 14, or 35) 

for four days prior to cycloheximide-chase experiments, we found that they localized to axons 

and presynaptic boutons, and were overexpressed to similar degrees (Figure 4.1C-E) with no 

observable toxicity. Lysates from Rab-expressing neurons were collected and immunoblotted for 

SV2 and VAMP2, and the fold change in protein degradation calculated for each Rab. Rab3, an 

SV-associated Rab with a well-characterized role in SV exocytosis (Pavlos and Jahn, 2011; Yu 

et al., 2008), served as our control in these studies as its overexpression did not alter SV protein 

degradation compared to untransduced neurons (Figure 4.1F,G).  Similarly, we found that Rabs 

10 and 14 did not alter SV2 or VAMP2 degradation over the 24-hour period (Figure 4.2A,B). In 

contrast, overexpression of Rabs 5 and 35 increased the amount of SV2 and VAMP2 degradation 

by greater than two-fold (Figure 4.2A,B). Both of these Rabs were previously reported to have 

roles in SV recycling (Shimizu et al., 2003; Uytterhoeven et al., 2011; Wucherpfennig et al., 
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2003) and Rab35 was recently implicated in the turnover/replenishment of SV proteins at the 

Drosophila neuromuscular junction (Fernandes et al., 2014; Uytterhoeven et al., 2011). However, 

as Rab35 interacts with Hrs and Rab5 does not (Figure 4.1A,B), we investigated the specificity 

of these Rabs for SV integral membrane protein degradation. We found that Rab5 

overexpression sped the degradation of several presynaptic proteins, including SNAP-25 (a 

plasma membrane-associated protein) and Munc13 (an active zone protein), while Rab35 only 

sped the degradation of SV2 and VAMP2 (Figure 4.2C,D). These findings suggest that the 

Rab35/Hrs interaction is important for defining the specificity of the degradative pathway for SV 

integral membrane proteins.  

Since the degradation of SV proteins and membranes has been reported to occur via 

lysosomes (Fernandes et al., 2014; Haberman et al., 2012; Tian et al., 2015), we assessed 

whether Rab35-mediated protein degradation required this organelle. Rab35-expressing neurons 

were treated with proteasome or lysosome inhibitors (200 nM epoxomicin or 100 mM 

chloroquine/leupeptin, respectively) for the last 18 hours of their 24-hour incubation with 

cycloheximide.  As anticipated, we found that Rab35-mediated degradation of SV2 and VAMP2 

was completely unaffected by epoxomicin, but significantly attenuated by chloroquine/leupeptin 

(Figure 4.2E-F), demonstrating that Rab35 acts in a lysosome-dependent degradative pathway.  

 
 We next wanted to determine whether Rab35-mediated SV protein degradation targeted 

the synaptic/axonal pool of proteins. To do this, we measured the levels of presynaptic/axonal 

VAMP2 by quantitative immunofluorescence microscopy.  We compared the steady-state levels 

and the levels of VAMP2 remaining after 24 hours of chx treatment in axons from 14 DIV 

neurons expressing mCh-Rab35 versus mCh-Rab3 control. Average fluorescence intensities of 

VAMP2 puncta in axons expressing Rab3 or Rab35 were quantified and presented as a fraction  
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Figure 4.2 - A subset of endocytic Rabs drive SV protein degradation. 
A) Immunoblots from 14 DIV neurons transduced with mCh-tagged Rab3, Rab5, Rab10, Rab14, or Rab35, 
treated for 24 hrs with either DMSO (c) or chx, and probed for SV2, VAMP2 and tubulin. B) Quantification of 
the fold change in degradation of SV2 and VAMP2 for each Rab vs. Rab3 control (n=3-4 independent 
experiments, *=p<0.05). C) Immunoblots from 14 DIV neurons transduced with mCh-Rab3, -Rab5, or -Rab35, 
treated for 24 hours with DMSO (c) or chx and probed for SNAP-25, Munc-13, and tubulin. D) Quantification of 
the fold change in degradation of SNAP-25 and Munc-13 intensity for each Rab vs. Rab3 control (n=3; 
*=p<0.05). E) Immunoblots from 14 DIV neurons transduced with mCh-Rab35, treated for 24 hours with 
DMSO (c) or chx, and further incubated with DMSO vehicle (Rab35), 200 nM epoxomycin (+Epox), or 100 mm 
chloroquine and 100 mm leupeptin (+CL) for 18 hours. Blots were probed for SV2, VAMP2 and tubulin. F) 
Quantification of the fold change in degradation of SV2 and VAMP2 from each condition (n=3; **=p<0.01). 
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of the average intensity in Rab3-expressing axons. We found that the steady-state levels of 

VAMP2 puncta were not significantly different between Rab3 and Rab35-expressing neurons 

(Figure 4.2A,B), indicating that this assay was not sensitive enough to detect subtle changes in 

VAMP2 steady-state levels. However, similar to our immunoblot experiments, we found that 

VAMP2 levels were significantly lower 24 hours after chx treatment in axons expressing Rab35 

compared to those expressing Rab3 (Figure 4.2A,B). To further confirm these findings, we used 

the SNAP-tag system for quantitative fluorescence pulse-chase analysis (Bodor et al., 2012). The 

SNAP-tag is a self-labeling enzyme that allows for covalent attachment of an exogenously 

applied fluorescent compound to a protein of interest. We designed a dual SNAP- and Flag-

tagged VAMP2, which was co-expressed in neurons with either mCh-Rab3 or mCh-Rab35. On 

13 DIV, neurons were incubated for 30 minutes with the SNAP-tag substrate benzylguanine-

Oregon Green (BG-OG, New England Biolabs), washed, and then returned to normal media. 

Neurons were subsequently fixed at two time points after labeling (15 and 48 hrs) and 

immunostained with anti-Flag antibody, allowing us to measure both the “pulsed” fraction of 

VAMP2-SNAP (via BG-OG intensity) and the total pool of VAMP2-SNAP (via Flag intensity) 

present at each time. After 15 hours, we saw no significant differences in the intensity of BG-OG 

labeling, the intensity of Flag immunostaining, or the colocalization of BG-OG with Flag 

immunostaining in Rab3 versus Rab35-expressing neurons, though there was a trend towards 

decreased BG-OG/Flag colocalization in Rab35-expressing neurons (Figure 4.3C,D). These 

results indicate that Rab35 expression does not lead to lower levels of VAMP2-SNAP expression 

or initial BG-OG labeling. However, after 48 hours, both the intensity of BG-OG labeling and 

the colocalization of BG-OG with Flag immunostaining were significantly reduced in Rab35-

expressing neurons compared to Rab3 controls, while total VAMP2-SNAP levels were not 	
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altered (Figure 4.3C,E). These data confirm that Rab35 stimulates degradation of the synaptic 

pool of SV proteins.  
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Rab35 is necessary for activity-dependent SV protein degradation upstream of the ESCRT 

pathway  

Our data so far demonstrate that Rab35 overexpression is sufficient to drive SV2 and VAMP2 

degradation via lysosomes. To determine if Rab35 is also necessary for the degradation of SV 

membrane proteins, we again utilized 24-hour cycloheximide treatment in conjunction with 

quantitative immunoblotting and immunofluorescence microscopy, this time in neurons 

expressing an shRNA against Rab35 (shRab35). This published shRNA (Allaire et al., 2010) 

efficiently reduced Rab35 protein levels by ~65% (Figure 4.4A). We first performed functional 

imaging studies in neurons co-expressing shRab35 and super-ecliptic pHluorin (SEP)-tagged 

synaptophysin, and found that knockdown of Rab35 between 3-14 DIV did not affect neuronal 

health, the ability of SVs to undergo exo/endocytosis, or the size of the total recycling pool of 

SVs (Figure 4.4B,C). Using the same time course as in previous experiments, we found that 

shRab35 significantly attenuated the degradation of SV2 and VAMP2 (by ~15%) compared to a 

scrambled control shRNA (scRNA), and did not alter the degradation of SNAP-25 or the active  

zone protein RIM1a (Figure 4.4D,E). Co-expression of shRNA-resistant Rab35 rescued this  

Figure 4.3 - Rab35 drives SV protein degradation at synapses.  
A) Representative images from 14 DIV neurons transduced with either mCh-Rab3 or -Rab35, treated for 24 
hours with DMSO or chx and immunostained with VAMP2 antibodies. Arrows represent VAMP2 puncta 
(green) in axons expressing mCh-Rab3 or mCh-Rab35 (purple). Scale bar=10 µm. B) Quantification of the 
average fluorescence intensity of VAMP2 puncta, normalized to Rab3 (n=9 images/condition; 3 replicate weeks, 
each with 3 images/condition, ~100 puncta/image; *=p<0.05). C) Representative images from neurons 
expressing VAMP2-SNAP and either mCh-Rab3 or mCh-Rab35, fixed 15 or 48 hours after BG-Oregon Green 
(BG-OG) labeling and immunostained with Flag antibodies. Arrows represent VAMP2 puncta detected with 
Flag (blue) in axons expressing mCh-Rab3 or mCh-Rab35 (red). Scale bar=10 µm. D) Quantification of the 
average fluorescence intensity of Flag staining (n=5; ~100 puncta/image), BG-OG labeling (n=10; ~100 
puncta/image), and the fraction of BG-OG puncta that colocalize with Flag (n=6 for Rab3, n=5 for Rab35; ~75 
puncta/image) in each condition normalized to Rab3 at the 15 hour time point. Student’s two-tailed t-tests with a 
hypothetical value of 1.0 were performed. E) Quantification as in D for Flag staining (n=5; ~100 puncta/image), 
BG-OG labeling (n=7 images/condition; ~100 puncta/image; similar results obtained for 3 independent 
experiments; **=p<0.01), and BG-OG puncta colocalization (n=19 images/condition from 3 replicate weeks, 
~75 puncta/image; **=p<0.01) for the 48 hour time point.  
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Figure 4.4 - Rab35 is necessary for SV membrane protein degradation 

A) Immunoblot from 14 DIV neurons transduced with scRNA or shRab35 and probed for Rab35 and tubulin. 
Knockdown efficacy of Rab35 is 64.7+/-0.04% of scRNA control.  B) Sample traces of synaptophysin-SEP 
fluorescence from 14 DIV neurons co-transfected with scRNA or shRab35 and synaptophysin-SEP, expressed as 
change in initial fluorescence over time. Images were acquired every 5 seconds before, during (black bar), and after 
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10 Hz, 30 seconds stimulation to elicit SV exo/endocytosis, as described in supplemental methods (n=3 
experiments/condition). C) Quantification of the size of the recycling pool of synaptic vesicles in scRNA and 
shRab35-expressing neurons, measured as the fraction of peak fluorescence intensity of synaptophysin-SEP during 
stimulation (at ~t=50 sec in B) versus its intensity following deacidification with NH4Cl to visualize the entire SV 
pool. Values are normalized to scRNA control (n≥13). D) Immunoblots from 14 DIV neurons transduced with 
scRNA or shRab35, treated for 24 hours with DMSO (c) or chx and probed for SV2, VAMP2, SNAP-25, Rim1a and 
tubulin. Several immunoblots represent the same experiment and therefore have the same tubulin image. E) 
Quantification of the fold change in degradation of SV2, VAMP2, SNAP-25, and Rim1a for each condition (n=3-4, 
*=p<0.05). F) Immunoblots from 14 DIV neurons transduced with scRNA, shRab35, or shRab35+sh-resistant 
Rab35 (rRab35) treated for 24 hours with either DMSO (c) or cycloheximide (chx) and probed for SV2, VAMP2 
and tubulin. G) Quantification of the fold change in degradation of SV2 and VAMP2 for shRab35 vs. scRNA 
control (n=4, *=p<0.05).	
  
	
  
attenuation of SV protein degradation by shRab35 (Figure 4.4F,G). Together, these results 

demonstrate that Rab35 is both sufficient and necessary for the degradation of SV integral 

membrane proteins.    

We subsequently examined whether Rab35 was necessary for activity-dependent SV 

protein degradation. As in the previous chapter, neurons expressing scRNA and shRab35 were 

treated with Bic/4AP to increase activity, and protein degradation was monitored after 24-hour 

chx treatment. Remarkably, we found that the ability of Bic/4AP to stimulate SV2 and VAMP2 

degradation was nearly abolished in neurons expressing shRab35 (Figure 4.5A,B). Furthermore, 

Rab35 does not stimulate SV protein degradation by increasing neuronal activity, as blocking 

activity in Rab35-expressing neurons did not significantly alter the degradation of SV2 and 

VAMP2 compared to Rab35 overexpression alone (Figure 4.5C,D). These findings demonstrate 

that activity-dependent SV protein turnover is dependent on Rab35.  

 To determine if Rab35 acts upstream of the ESCRT pathway, we measured the 

degradation of SV2 and VAMP2 in neurons co-expressing scRNA or shHrs and mCh-Rab35. As 

anticipated, Rab35-mediated degradation of SV2 and VAMP2 was significantly attenuated in 

shHrs-expressing neurons (Figure 4.6A,B). Moreover, average VAMP2 immunofluorescence 

intensity was increased by 40% in the presence of shHrs/mCh-Rab35 vs. scRNA/mCh-Rab35 

(Figure 4.6C,D). We also performed these experiments in neurons expressing mCh-Rab35 and 
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scRNA or shTSG101 and found similar results by immunoblotting and quantitative 

immunofluorescence (Figure 4.6E-H). Together, these data demonstrate that Rab35 acts 

upstream of the ESCRT pathway to mediate degradation of SV proteins. 

 

Figure 4.5 - Knockdown of Rab35 inhibits activity-dependent SV protein degradation. 
A) Immunoblots from 14 DIV neurons transduced with scRNA or shRab35 and treated for 24 hours with DMSO 
(c) or chx in the presence of additional DMSO or bic/4AP, and probed for SV2, VAMP2 and tubulin. B) 
Quantification of fold change in degradation of SV2 and VAMP2 in the presence of scRNA or shRab35, +/- 
activity. As in Fig. 3.3, DMSO control is set to 1 for each condition (scRNA black bars, shRab35 red bars), and 
bic/4AP treatment is expressed as fold change vs. DMSO control for that condition (n=8; *=p<0.05). C) 
Immunoblots from 14 DIV neurons transduced with mCh-Rab35 and treated for 24 hours with DMSO (c) or chx 
in the presence of additional DMSO or APV/CNQX/TTX to inhibit neuronal activity (blockers). Blots were 
probed for SV2, VAMP2 and tubulin. D) Quantification of the fold change in degradation of SV2 and VAMP2 
for Rab35 + blockers vs. Rab35 DMSO control (n=3).  
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Hrs is an effector of Rab35 

Our co-immunoprecipitation experiments demonstrated an interaction between Rab35 and Hrs 

(Figure 4.1A,B). To further characterize the specificity of this interaction, we co-expressed 

EGFP-Rab35 together with a series of mCh-tagged ESCRT proteins in HEK293T cells. We 

found that EGFP-Rab35 robustly co-localized with Hrs, but not with TSG101 or CHMP2B 

(Figure 4.7A). Next, we performed co-immunoprecipitation assays in HEK293T cells expressing 

HA-Rab35 together with a similar series of mCh-tagged ESCRT proteins. HA-Rab35 co-

precipitated with Hrs, but not with STAM (another ESCRT-0 component), TSG101, or 

CHMP2B (Figure 4.7B). Given the specificity of the Rab35-Hrs interaction, we next investigated 

whether Hrs was a direct effector of Rab35. Effectors are recruited by active (GTP-bound) Rabs 

to carry out the relevant downstream vesicle sorting, uncoating, trafficking, tethering, or fusion 

steps (Stenmark, 2009) Here, we performed co-immunoprecipitation assays in HEK cell lysates 

expressing HA-Rab35 and Flag-Hrs, and subsequently incubated with either GDP or GTPγS. We 

observed that significantly more HA-Rab35 was co-precipitated by Flag-Hrs in the presence of 

GTPγS than GDP, as expected if Hrs is a Rab35 effector (Figure 4.7C,D). To confirm these 

findings, we performed pull-down experiments with GST-Rab loaded with GDP or GTPγS, 

Figure 4.6 - The ESCRT pathway functions downstream of Rab35 to mediate SV protein degradation.  
A) Immunoblots from 14 DIV neurons transduced with mCh-Rab35 and either scRNA or shHrs, treated for 24 
hours with DMSO (c) or chx and probed for SV2, VAMP2 and tubulin. B) Quantification of the fold change in 
degradation of SV2 and VAMP2 for Rab35/shHrs vs. Rab35/scRNA control (n=3; **=p<0.01). C) Images from 
14 DIV neurons transduced with mCh-Rab35 and either scRNA or shHrs, fixed 24 hours after chx treatment, and 
immunostained against VAMP2. Arrows represent VAMP2 puncta in axons expressing Rab35 and either scRNA 
or shHrs. Scale bar=10 µm. D) Quantification of the average fluorescence intensity of VAMP2 puncta, 
normalized to Rab35 + scRNA control (n=6 images/condition from 2 replicate weeks, ~100 puncta/image; 
**=p<0.01). E) Immunoblots from 14 DIV neurons transduced with mCh-Rab35 and either scRNA or 
shTSG101, treated for 24 hours with DMSO (c) or chx and probed for SV2, VAMP2 and tubulin. F) 
Quantification of the fold change in degradation of SV2 and VAMP2 for Rab35/shTSG vs. Rab35/scRNA (n=3, 
*=p<0.05). G) Images from 14 DIV neurons transduced with mCh-Rab35 and either scRNA or shTSG101, fixed 
24 hours after chx treatment and immunostained against VAMP2. Arrows represent VAMP2 puncta in axons 
expressing Rab35 and either scRNA or shTSG101. Scale bar=10 µm. H) Quantification of the average 
fluorescence intensity of VAMP2 puncta, normalized to Rab35 + scRNA control (n=3 images/condition, ~100 
puncta/image, similar results obtained for 2 independent experiments; *=p<0.05). 
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coupled to glutathione-agarose beads, and incubated with HEK cell lysate expressing Flag-Hrs. 

We again found that GST-Rab35-GTP pulled down significantly more Flag-Hrs (Figure 4.7E,F),  
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consistent with the co-immunoprecipitation results. Thus, our data clearly show that Hrs is an 

effector of Rab35, providing a direct mechanistic link between Rab35 and the ESCRT pathway.  

 Based on this finding, we hypothesized that Rab35 would recruit Hrs to SV pools in order 

to initiate ESCRT complex formation. Since the available antibodies against Rab35 and Hrs are 

not suitable for immunofluorescence microscopy in neurons, we tested this prediction by co-

transfecting neurons with mCh-Hrs and either soluble EGFP or EGFP-Rab35. Neurons were 

subsequently fixed and immunostained for VAMP2, and the percent colocalization of mCh-Hrs 

puncta with VAMP2 puncta was quantified and compared in the presence or absence of EGFP-

Rab35. We found that while approximately 40% of mCh-Hrs puncta colocalized with VAMP2 at 

baseline, co-expression of EGFP-Rab35 increased this value to nearly 70% (Figure 4.8A,C), 

similar to neuronal activity (Figure 3.4A,C). These data confirm that Rab35 is able to effectively 

recruit Hrs to SV pools in axons. Similar results were seen with CHMP2B (Figure 4.8B,C), 

suggesting that Rab35 recruits Hrs to initiate formation of MVBs in axons. 

To better visualize the spatial relationship between Rab35 and ESCRT pathway proteins in axons, 

we acquired super-resolution images of neurons co-transfected with EGFP-Rab35 and mCh-Hrs 

or CHMP2B-mCh. EGFP-Rab35 was observed along axons in small puncta and, more rarely, 

enlarged endosomal structures (Figure 4.8D,E), on which we focused in order to resolve the 

spatial distribution of Rab35 and the ESCRT proteins. EGFP-Rab35 and mCh-Hrs exhibited a 

high degree of colocalization on these enlarged endosomes (Figure 4.8D), indicating that they  

Figure 4.7 - ESCRT-0 component Hrs is an effector of Rab35.  
A) Images of HEK293T cells co-expressing EGFP-Rab35 and the indicated mCh-tagged ESCRT proteins. Scale 
bar=10 µm. B) Immunoblot of lysates from HEK293T cells expressing HA-Rab35 and either mCh-Hrs, -STAM, -
TSG101, or –CHMP2B, immunoprecipitated (IP) with mCherry antibody and probed with HA or mCherry 
antibodies. C) Immunoblot of HEK cell lysates expressing HA-Rab35 and Flag-Hrs, incubated with either GDP or 
GTPγs, subject to IP with Flag antibody, and probed with HA and Flag antibodies. D) Quantification of HA-Rab35 
intensity normalized to Flag-Hrs intensity in the eluate and reported as a fraction of the amount in the GDP 
condition. Student’s two-tailed t-tests with a hypothetical value of 1.0 were performed (n=5; *=p<0.05). E) 
Immunoblot of HEK cell lysates expressing Flag-Hrs, subject to pull-down with GST, GST-Rab35-GDP or GST-
Rab35-GTPgs and probed with GST and Flag antibodies. F) Quantification of Flag-Hrs intensity, normalized to 
GST-Rab35 intensity in the eluate (n=4; **p<0.01).  
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Figure 4.8 - Rab35 recruits ESCRT proteins to synaptic vesicle pools. 
A) Images of neurons co-transfected with mCh-Hrs and either soluble EGFP or EGFP-Rab35, fixed and 
immunostained against VAMP2. Arrows represent mCh-Hrs puncta that colocalize with VAMP2 in axons 
expressing either soluble EGFP or EGFP-Rab35. Scale bar=10 µm. B) Images of neurons co-transfected with 
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CHMP2B-mCh and either soluble EGFP or EGFP-Rab35, fixed and immunostained against VAMP2. Arrows 
represent CHMP2B-mCh puncta that colocalize with VAMP2 in axons expressing either soluble EGFP or EGFP-
Rab35. Scale bar=10 µm. C) Quantification of the fraction of Hrs and CHMP2B puncta that colocalize with VAMP2 
in each condition (for Hrs: n=15 for control, n=19 for Rab35 from 3 replicate weeks, each with ~25 puncta/image. 
For CHMP2B: n=5 for control, n=8 for Rab35 from 2 replicate weeks, ~15 puncta/image; **=p<0.01). D) Super-
resolution images of neurons co-transfected with EGFP-Rab35 and mCh-Hrs. Inset shows higher magnification 
view of Hrs/Rab35 colocalization on an enlarged endosome created by Rab35 overexpression. E) Super-resolution 
images of neurons co-transfected with Rab35 and CHMP2B-mCh. Outline of axon is shown. Inset shows higher 
magnification view of a Rab35-positive endosome and juxtaposed CHMP2B-mCh puncta. Scale bar=5µm, 2.5µm 
for inset. 
 
 
interact on endosomal membranes. In contrast, CHMP2B-mCh puncta were typically smaller and 

immediately adjacent Rab35-positive endosomes (Figure 4.8D), potentially representing a later 

stage of MVB formation. Together with our findings in HEK cells, these results indicate that  

Rab35 colocalizes precisely with the ESCRT-0 component Hrs but much less with later ESCRT 

pathway components such as CHMP2B.  

Neuronal activity stimulates Rab35 activation 

The ability of Rab35 to initiate ESCRT protein recruitment suggests that neuronal activity serves 

as a signal to activate Rab35 itself. We tested this hypothesis with an antibody that specifically 

immunoprecipitates active, GTP-bound Rab35. To verify its specificity, we co-expressed HA-

Rab35 in HEK293T cells together with soluble EGFP or EGFP-Connecdenn1, a GEF that 

activates Rab35 (Allaire et al., 2010; Marat and McPherson, 2010). Indeed, Rab35 was more 

robustly precipitated by the GTP-Rab35 antibody in lysates from cells expressing Connecdenn1 

versus soluble EGFP (Figure 4.9A). To determine if Rab35 was activated by neuronal activity, 

we next compared the levels of GTP-Rab35 in neurons treated with DMSO or Bic/4AP. 

Remarkably, we found that the GTP-Rab35 antibody precipitated nearly two times more Rab35 

from Bic/4AP-treated neurons than from control neurons (Figure 4.9B,C), suggesting that 

increased neuronal activity promotes Rab35 activation/GTP binding.  
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 Since Rab35 and Hrs interact in a GTP-dependent manner, neuronal activity should also 

enhance their binding. To test this, we immunoprecipitated mCh-Hrs from neurons treated for 12 

hours with Bic/4AP. Again, significantly more endogenous Rab35 was co-precipitated with Hrs 

following treatment with Bic/4AP versus DMSO (Figure 4.9D,E), indicating that neuronal 

activity increases the association between Rab35 and Hrs. This activity-dependent association 

likely catalyzes the recruitment of ESCRT proteins to SV pools, where they can initiate the 

formation of MVBs for SV protein degradation (Figure 4.9F).  

Discussion 

Our findings demonstrate that Rab35 mediates the use-dependent degradation of SV membrane 

proteins in mammalian neurons through the ESCRT pathway. Specifically, we find that activity 

induces the activation of Rab35, thereby promoting Hrs binding and recruitment to SV pools. 

These events in turn recruit the downstream ESCRT machinery, thereby initiating the formation 

of MVBs for delivery of specific SV proteins to lysosomes (Figure 4.9F). Together with our 

findings in chapter 3, we have identified a novel pathway that maintains SV integrity, by 

enabling neurons to replace proteins that become damaged or misfolded during SV recycling. 

Rab GTPases as coordinators of SV protein turnover 

In this chapter, we found that two Rab GTPases (Rabs 5 and 35) are capable of driving VAMP2 

and SV2 degradation. While Rab35 interacts with Hrs and specifically mediates the degradation 

of SV integral membrane proteins, Rab5 does not interact with Hrs, and stimulates the turnover 

of multiple presynaptic proteins (plasma membrane and active zone-associated), suggesting that 

it activates a broader degradative program. One possibility, based on Rab5’s link to the 

autophagic pathway (Dou et al., 2013; Ravikumar et al., 2008; Su et al., 2011), is that its 

overexpression in neurons activates macroautophagy. Indeed, previous studies have shown that 
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stimulating macroautophagy in neurons can induce the engulfment of SVs, cytoplasmic proteins, 

and other organelles by autophagosomes (Hernandez et al., 2012; Maday et al., 2014; Sanchez-

Varo et al., 2011). Interestingly, a recent study has linked the SV-associated Rab26 to the 

autophagic pathway, showing that Rab26 overexpression induces SV clustering and engulfment  

by autophagosomes (Binotti et al., 2015). Although our findings indicate that basal and activity-

dependent SV protein turnover occur through Rab35 and the ESCRT pathway, it is likely that 

specific stimuli and developmental programs (e.g. oxidative stress, protein aggregation, synapse 

elimination/pruning) can activate macroautophagy in order to degrade SVs and other synaptic 

components under certain conditions. Additional studies are needed to investigate the conditions 

under which the ESCRT pathway and macroautophagy are utilized for SV protein degradation. 

 Two other SV-associated Rab GTPases that we evaluated (Rabs 10 and 14) do not alter 

SV protein degradation, but do interact with Hrs. We hypothesize that these Rabs also participate 

in trafficking in the endolysosomal pathway, but target different classes of membrane-associated 

proteins. Gain and loss-of-function studies combined with stable isotope labeling with amino 

acids and mass spectrometry are likely to yield insights into the proteins targeted by these Rabs.  

While many of the SV-associated Rabs have been implicated in endosomal recycling in 

other cell types (Babbey et al., 2006; Junutula et al., 2004), little is known about their roles in 

neurons. We hypothesize that these may participate in the sorting process that directs SV 

proteins for reuse/recycling versus degradation. Such sorting typically occurs in early or 

recycling endosomes of non-neuronal cells, and may occur within endosomes that form 

immediately upon SV endocytosis in presynaptic boutons (Watanabe et al., 2014). Gain and loss-

of-function studies with these SV-associated Rabs, in combination with recently developed 

‘flash-and-freeze’ fixation techniques (Watanabe et al., 2014), are likely to yield insights into 
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their roles in SV protein sorting, and may help identify signals that target SV proteins for 

recycling vs. degradation.  
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Rab35 links SV protein degradation to the ESCRT pathway through its effector Hrs 

Previous studies identified Rab35 as an important regulator of the endosomal sorting and 

turnover of SV proteins (Fernandes et al., 2014; Uytterhoeven et al., 2011). Here, we provide 

mechanistic insight into how Rab35 mediates the degradation of SV proteins, by directly linking 

Rab35 to the ESCRT-0 component Hrs. The GTP-dependent Rab35/Hrs binding interaction 

implicates the ESCRT pathway as a critical mediator of SV protein degradation downstream of 

Rab35. Not only is the ESCRT pathway essential for recruiting ubiquitinated membrane proteins 

destined for degradation, but it also catalyzes the formation of MVBs to deliver this cargo to 

lysosomes. Previous work has shown that MVBs often appear in EM micrographs of presynaptic 

boutons following neuronal stimulation (Teichberg et al., 1975), suggestive of activity-dependent 

formation. Although our EM studies could not definitely show this, the concept is consistent with 

our data showing that neuronal activity stimulates protein turnover and the recruitment of 

ESCRT proteins to SV pools (Chapter 3).  

Neuronal activity 

We also provide the first example of neuronal activity as a signal for Rab GTPase activation. 

Though the GAPs and GEFs for many Rabs have been characterized (see (Barr and Lambright, 

Figure 4.9 - Neuronal activity activates Rab35 and stimulates Rab35-Hrs binding. 
A) Lysates from HEK293T cells co-transfected with HA-Rab35 and either soluble GFP or Connecdenn1-GFP, 
subject to IP with GTP-Rab35 specific antibody. Bound proteins and input were probed with HA antibody to 
detect Rab35. B) Immunoblots from 15 DIV neurons treated with DMSO or bic/4AP for 12 hours, then lysed 
and subject to IP with mouse GTP-Rab35 specific antibody and probed with rabbit Rab35 antibody. C) 
Quantification of Rab35 intensity in the eluate, normalized to input intensity and reported as a fraction of the 
DMSO control condition. Student’s two-tailed t-tests with a hypothetical value of 1.0 were performed (n=7, 
*=p<0.05). D) Immunoblots from neurons transduced with mCh-Hrs and treated with DMSO or bic/4AP for 12 
hours, then lysed and subject to IP with anti-mCherry antibody. Bound proteins and input were probed with 
Rab35 and mCherry antibodies. E) Quantification of Rab35 intensity in the eluate, normalized to input intensity 
and Hrs intensity in the eluate. Bic/4AP condition is reported as a fraction of the DMSO control condition. 
Student’s two-tailed t-tests with a hypothetical value of 1.0 were performed (n=3, *=p<0.05). F) Putative 
pathway for activity-dependent SV protein degradation. Neuronal activity (lightning bolt) serves to activate 
Rab35, which then recruits its effector, Hrs, to presynaptic endosomes. This recruitment is hypothesized to 
initiate MVB formation, leading to retrograde transport and delivery of specific SV proteins (SV2 and VAMP2) 
to somatic lysosomes for degradation. 
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2010)), few studies have addressed the signals responsible for Rab activation/inactivation. A 

recent study found that CnrF, a Rab11a GAP protein, is activated by calcium release through 

vacuolar P2XA ion channels (Parkinson et al., 2014). This signal functions to inactivate Rab11a 

in response to P2XA channel activation. Similarly, neuronal activity may induce activation or 

inactivation of Rab35 GEF or GAP proteins, respectively, thereby stabilizing Rab35 in its GTP-

bound conformation. Candidate GEFs and GAPs to regulate synaptic Rab35 activation include 

Connecdenn1, a presynaptically enriched GEF that interacts with clathrin to mediate SV 

recycling (Allaire et al., 2006), and TBC1D24/skywalker, a GAP shown to negatively regulate 

Rab35 activity in presynaptic terminals of Drosophila (Uytterhoeven et al., 2011). Whether and 

how these molecules regulate Rab35 activation in response to synaptic activity or other stimuli is 

an interesting topic for future studies. 
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Chapter 5 - Ubiquitination serves as a signal for VAMP2 degradation 

Rationale 

Entry of SV proteins into the degradative pathway is hypothesized to require a specific 

targeting signal. Ubiquitination is a post-translational modification that targets soluble proteins 

for degradation by the proteasome. However, its role in the degradation of integral membrane 

proteins, which are typically degraded by lysosomes, is less clear. Intriguingly, a recent study 

reported that SV membrane proteins are among the most highly ubiquitinated neuronal proteins 

(Na et al., 2012), suggesting that this modification may play an important role in their 

degradation. However, ubiquitination also regulates many non-degradative protein trafficking 

events (i.e. endocytosis, protein-protein interactions), and its role in SV protein 

trafficking/degradation is largely unexplored.  

We have determined that specific SV proteins (VAMP2 and SV2) undergo activity-

dependent degradation (Chapter 3). Given that neuronal activity has been shown to regulate 

ubiquitination (Ehlers, 2003) and to influence the protein composition of the postsynaptic density 

(Ehlers, 2003) and presynaptic active zone (Lazarevic et al., 2011), we examined whether 

ubiquitination acts as a signal for SV protein degradation. In this chapter, we demonstrate that 

ubiquitination is required for the basal and activity-dependent degradation of VAMP2. Further, 

we identify the E3 ligase, RNF167 as a major regulator of VAMP2 ubiquitination.  

Results 

Ubiquitination of VAMP2 is required for its basal and activity-dependent degradation 

In previous experiments, we found that the SV integral membrane proteins SV2 and VAMP2 

undergo activity-dependent degradation (Chapter 3). Here, we explore the function of 

ubiquitination in targeting VAMP2 to the degradative pathway. We created a ubiquitination-
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resistant version of VAMP2 by replacing its seven lysine residues with arginine (KR VAMP2; 

Figure 5.1A). We verified that KR VAMP2 localized properly to synapses, recycled with normal 

kinetics, and exhibited dramatically reduced ubiquitin immunoreactivity compared to wild-type 

VAMP2 (WT VAMP2; Figure 5.1B-D).   

 
 
Figure 5.1 - KR VAMP2 localizes to synapses and exhibits normal recycling kinetics but reduced 
ubiquitination.  A) Amino acid sequence of VAMP2 from Rattus norvegicus, showing the cytoplasmic N-terminal 
domain (shaded) and lysines (red) mutated to arginines in the KR VAMP2 construct. B) Representative images from 
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14 DIV neurons transduced with either WT VAMP2-SEP or KR VAMP2-SEP (green), and immunostained with 
synaptophysin (red) and synapsin (blue) antibodies to label SV pools. C) Sample traces of VAMP-SEP fluorescence 
from neurons transfected with WT VAMP2-SEP or KR VAMP2-SEP. D) Immunoblots of lysates from HEK293T 
cells co-expressing HA-ubiquitin and untagged WT VAMP2 or KR VAMP2, incubated for 4 hours with de-
ubiquitinating enzyme inhibitors and subject to immunoprecipitation (IP) with VAMP2 antibody followed by 
probing with HA or VAMP2 antibodies.  
 

To determine whether ubiquitination is necessary for the degradation of VAMP2, we 

transduced 7 DIV hippocampal neurons with either WT or KR VAMP2-SEP and assessed 

VAMP2 degradation using our cycloheximide-chase assay as previously described (Chapter 3). 

Interestingly, we observed a significant decrease in the degradation of KR VAMP2 compared to 

WT VAMP2 over the 24-hour time course (Figure 5.2A,B). Since we previously found VAMP2 

to undergo activity-dependent degradation (Chapter 3), we asked whether KR VAMP2 

degradation could be similarly sped with bicuculline/4AP (Bic/4AP) treatment (Chapter 3). 

Intriguingly, we found that while Bic/4AP significantly increased the degradation of WT 

VAMP2 compared to DMSO control, this treatment did not alter the degradation of KR VAMP2 

(Figure 5.2C,D), suggesting that ubiquitination of VAMP2 is necessary for both its basal and 

activity-dependent degradation. Moreover, we noticed that the steady-state levels of KR VAMP2 

were significantly higher than those of WT VAMP2 (Figure 5.2A,C), consistent with its lack of 

degradation and build-up over time. The functional effects of this KR VAMP2 build-up will be 

investigated in future experiments.  

K63-linked poly-ubiquitination of VAMP2 is required for its degradation 

We next tested which type of ubiquitination was required for VAMP2 degradation. While K48 

poly-ubiquitination serves as a signal for proteasomal degradation, multi-mono-ubiquitination 

and/or K63 linkages serve as the signal for ESCRT-mediated degradation. Since we found the 

ESCRT pathway to be necessary for activity-dependent VAMP2 degradation (Chapters 3 & 4),  
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Figure 5.2 - Ubiquitination is required for basal and activity-driven degradation of VAMP2. 
A) Immunoblots from 14 DIV neurons transduced with either WT or KR VAMP2-SEP, treated for 24 hours with 
DMSO (c) or chx and probed for VAMP2 and tubulin. B) Quantification of the fold change in degradation of 
VAMP2 for each condition (n=4, *=p<0.05). C) Representative immunoblots from 14 DIV neurons expressing 
WT or KR VAMP2-SEP, treated for 24 hours with DMSO (c) or chx in the presence of additional DMSO or 
Bic/4AP to stimulate neuronal activity, and probed for the same proteins as in A. D) Quantification of protein 
degradation in each condition, expressed as the fold change versus DMSO control (n=6, *=p<0.05). E) 
Representative immunoblots from 14 DIV neurons transduced with mCh-WT, K48R, K63R, or K0 ubiquitin 
treated for 24 hours with DMSO (c) or chx and probed for VAMP2 and tubulin. F) Quantification of the fold 
change in degradation of VAMP2 for each condition (n=7-14, *=p<0.05). 
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we hypothesized that multi-mono- or K63-ubiquitination would be required for VAMP2 

degradation. To test this prediction, we transduced neurons with ubiquitin constructs containing  

K to R mutations that render them incapable of forming specific ubiquitin linkages. We 

compared the degradation of VAMP2 in the presence of wild-type ubiquitin (Ub-WT) vs. K48R, 

K63R, and K0 (in which all lysines are mutated to arginine such that only mono or multi-mono-

ubiquitin linkages can form) ubiquitin mutants. Specifically, 10 DIV neurons were transduced 

with Ub-WT, Ub-K48R, Ub-K63R, or Ub-K0. On 14 DIV, neurons were treated with 

cycloheximide for 24 hours, then collected and subjected to immunoblotting against VAMP2.  

The expression of Ub-K48R did not significantly alter VAMP2 degradation compared to Ub-WT, 

while that of Ub-K63R and Ub-K0 significantly impaired VAMP2 degradation, suggesting the 

VAMP2 requires lysine-63 linked poly-ubiquitination for its degradation (Figure 5.2E,F).  

Ubiquitination of VAMP2 is required for its degradation by Rab35 

Our findings show that Rab35 is sufficient to drive VAMP2 degradation, and necessary for the 

basal and activity-dependent degradation of VAMP2. Therefore, we next asked if ubiquitination 

of VAMP2 is an important signal in the Rab35 pathway. For these experiments, neurons were 

co-transduced with mCh-Rab35 and either WT or KR VAMP2-SEP. As before, 24-hour 

cycloheximide treatment was used to measure the degradation of these proteins by both 

quantitative immunoblotting and immunofluorescence microscopy. Consistent with the role of 

ubiquitination as a degradative signal, we found that KR VAMP2 was resistant to Rab35-

mediated degradation, exhibiting significantly less degradation than WT VAMP2 based on 

quantitative immunoblotting, and significantly greater intensity in axons by quantitative 

immunofluorescence (Figure 5.3A-D). These data suggest that ubiquitination is an important 

signal for SV protein degradation via the Rab35 pathway.  
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Figure 5.3 - Ubiquitination of VAMP2 is required for its Rab35-mediated degradation.  
A) Immunoblots from 14 DIV neurons transduced with mCh-Rab35 and either SEP-WT or KR VAMP2, treated for 
24 hours with DMSO (c) or chx and probed for VAMP2 and tubulin. B) Quantification of VAMP2 intensity in each 
condition, expressed as the fold change versus DMSO control (n=5, *=p<0.05). C) Images from 14 DIV neurons 
transduced with mCh-Rab35 and either SEP-WT or KR VAMP2, then fixed 24 hours after chx treatment. Arrows 
represent VAMP2 puncta (green) in axons expressing Rab35 (purple), scale bar=10 µm. D) Quantification of the 
average fluorescence intensity of VAMP2 puncta, normalized to WT condition (2 replicate weeks, each with 3 
images/condition, ~75 puncta/image, n=6, **=p<0.01).  
 

RNF167 ubiquitinates VAMP2  

Given the importance of ubiquitination for VAMP2 degradation, we next wanted to identify the 

specific enzymes responsible for ubiquitinating VAMP2. A series of E1, E2, and E3 enzymes are 

required to carry out the ubiquitination of target proteins. It was previously shown that another 

VAMP, VAMP3, was ubiquitinated by the RING domain ligase Goliath/RNF167 in Drosophila  

(Yamazaki et al., 2013). The lysine residues of VAMP3 are highly homologous to those of 

VAMP2 (Figure 5.4A), suggesting that RNF167 may also function in the ubiquitination of 

VAMP2. To test if RNF167 is capable of ubiquitinating VAMP2, we performed ubiquitination 
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assays in HEK293T cells expressing soluble-mCh or mCh-RNF167 along with HA-Ubiquitin 

and VAMP2. Significantly more HA-ubiquitin immunoreactivity was detected in VAMP2 

immunoprecipitated from cells expressing RNF167 compared to soluble-mCh (Figure 5.4B,C), 

demonstrating that RNF167 can function as an E3 ligase for VAMP2.   

RNF167 is necessary for the degradation of VAMP2 

We next sought to determine if RNF167 is necessary for the ubiquitination and degradation of 

VAMP2 in neurons. To do so, we designed an shRNA against RNF167 (shRNF167) that led to 

an 80% reduction in RNF167 mRNA levels when expressed between 3-14 DIV (Figure 5.4 D). 

We subsequently used quantitative immunofluorescence microscopy to examine the degradation 

of VAMP2 in neurons expressing shRNF167. Specifically, 14 DIV neurons expressing soluble-

EGFP or shRNF167 were treated with DMSO or cycloheximide for 24 hours, fixed, and 

immunostained for VAMP2. Average fluorescence intensities of VAMP2 puncta in axons 

expressing soluble-EGFP or shRNF167 were quantified and presented as a fraction of the 

average intensity in DMSO treated controls. We found that VAMP2 levels were increased by 

25% in axons expressing shRNF167 compared to those expressing soluble-EGFP (Figure 

5.4E,F), indicating that RNF167 is necessary for VAMP2 degradation.  

Discussion 

In this chapter, we show that ubiquitination of VAMP2 is necessary for its basal and activity-

dependent degradation. Further, we identify the E3 ligase RNF167 as a ubiquitinating enzyme 

necessary for the degradation of VAMP2. These studies suggest that activity-dependent 

ubiquitination of VAMP2 is required for its degradation, though more work is needed to clarify 

whether and how RNF167 mediates this activity–dependent turnover.  
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Figure 5.4 - RNF167 ubiquitinates VAMP2 and is necessary for its degradation.  
A) Amino acid sequences of VAMP2 and VAMP3 from Rattus norvegicus. Lysine residues are shown in red with 
those demonstrated to be ubiquitinated by RNF167 underlined. B) Immunoblot of HEK cell lysates expressing either 
soluble-mCh or mCh-RNF167, HA-ubiquitin and untagged VAMP2, subject to IP with VAMP2 antibody and 
probed with HA or VAMP2 antibodies. C) Quantification of HA-ubiquitin intensity in the eluate, normalized to 
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VAMP2 intensity in the eluate (n=3, **p<0.01). D) Quantification of mRNA levels from 14 DIV neurons 
expressing soluble-EGFP or EGFP-shRNF167 determined by qPCR with primers to RNF167, GAPDH, and actin 
(n=3, **p<0.01). E) Images from 14 DIV neurons transduced with either soluble-EGFP or EGFP/shRNF167, fixed 
24 hours after chx treatment, and immunostained against VAMP2. Arrows represent VAMP2 puncta (purple) in 
axons expressing EGFP +/- shRNA (green). Scale bar=10 µm. F) Quantification of the fluorescence intensity of 
VAMP2 puncta, normalized to soluble-EGFP control condition (6 replicate weeks, each with 2-3 images/condition, 
~250 puncta/image, n=6, *=p<0.05).  
 

Ubiquitination as a signal for SV protein degradation 

SV membrane proteins are reported to be highly ubiquitinated (Na et al., 2012), although the role 

of ubiquitination in their trafficking and turnover has not been explored. Our study is the first to 

demonstrate that ubiquitination serves as a signal for SV membrane protein degradation, as 

ubiquitin-resistant KR VAMP2 cannot be efficiently degraded (Figure 5.2A,B). Previous studies 

have shown that artificially ubiquitinated VAMP2 (Ub-VAMP2) binds to Hrs and is a substrate 

for ESCRT-dependent degradation (Takahashi et al., 2015; Uytterhoeven et al., 2011). Since our 

previous data (Chapter 3) also demonstrate that SV protein degradation is ESCRT-dependent, we 

hypothesize that ubiquitination is a signal for the recognition of SV membrane proteins by 

ubiquitin-binding components of the ESCRT pathway. Most studies indicate that multi-mono-

ubiquitination and/or K63 linkages serve as the signal for ESCRT-mediated degradation, but this 

is an ongoing area of investigation (see (Shields and Piper, 2011)). Our results show that lysine-

63 linked poly-ubiquitination is necessary for VAMP2 degradation (Figure 5.2E-F). Given the 

high prevalence of ubiquitinated SV proteins in neurons, it is conceivable that different ubiquitin 

linkages mediate different protein trafficking events, in addition to protein degradation. Indeed, 

more work is needed to determine the potential roles of other ubiquitin linkages in SV protein 

trafficking.   

RNF167 is an E3 ligase for VAMP2 

Although we find that RNF167 is necessary for the degradation of VAMP2, more work is needed 

to determine if RNF167-mediated ubiquitination of VAMP2 lies upstream of the Rab35/ESCRT 
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pathway for degradation. Future studies will examine whether RNF167 is necessary for the 

activity-dependent degradation of VAMP2 using methods analogous to those used in Chapters 3 

& 4. Briefly, we will treat shRNF167-transduced neurons with Bic/4AP to increase neuronal 

activity, and examine whether activity-dependent VAMP2 degradation is attenuated. Further, we 

will examine whether VAMP2 ubiquitination levels increase following neuronal activity. An 

intriguing possibility is that VAMP2 accumulates ubiquitin moieties through cycles of exo- and 

endocytosis, and that these cumulative linkages target VAMP2 and other heavily-used SV 

proteins for degradation. This mechanism could function to counteract any misfolding or damage 

accrued by proteins during rounds of SV cycling. Indeed, we have observed that long-term 

expression of KR VAMP2 leads to neuronal toxicity, suggesting that KR VAMP2 accumulates 

over time and potentially become damaged/misfolded in a way that compromises neuronal health. 

Additionally, this finding suggests that the build-up of excess protein and subsequent disruption 

of protein homeostasis is deleterious to neuronal health. These topics will be explored in future 

studies to more thoroughly understand the mechanisms behind VAMP2 ubiquitination and the 

consequences of its accumulation.  
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Chapter 6 - General Discussion and Future Directions 

Our findings demonstrate that Rab35 and the ESCRT machinery are essential components of the 

pathway for use-dependent turnover of SV2 and VAMP2 in mammalian neurons. Additionally, 

we find that RNF167-mediated ubiquitination is essential for the degradation of VAMP2. While 

previous studies have linked Rab35 and the ESCRT pathway to SV protein recycling and 

turnover in Drosophila (Fernandes et al., 2014; Uytterhoeven et al., 2011), our study is the first 

to demonstrate a direct mechanistic link between Rab35 and the ESCRT pathway through Hrs, 

and the first to show that turnover of specific SV proteins is regulated by neuronal activity in a 

Rab35- and ESCRT-dependent manner. Specifically, we find that activity induces the activation 

of Rab35, thereby promoting its binding to Hrs and the localization of Hrs to SV pools. These 

events in turn recruit the downstream ESCRT machinery to presynaptic boutons, and are 

hypothesized to catalyze the formation of MVBs for delivery of ubiquitinated SV proteins to 

lysosomes. Furthermore, our study is the first to establish a role for RNF167-mediated 

ubiquitination in the degradation of VAMP2. Together, our studies identify a novel pathway that 

maintains SV integrity and presynaptic fitness, by enabling neurons to replace proteins that 

become damaged or misfolded during repeated cycles of SV exo/endocytosis. 

Mechanisms of SV protein turnover   

Although several studies have examined the mechanisms of SV protein degradation, many 

outstanding questions remain regarding this process. For instance, it is currently not known 

whether SV protein turnover is stochastic, with some constant number of proteins being 

degraded at any given moment, or specific, with particular proteins singled out for degradation 

based upon their age or conformational state. A previous study in Drosophila examined this 

question by investigating the turnover of young versus old VAMP2 using fluorescent timer 
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proteins that change from blue to red emission over time (Fernandes et al., 2014; Subach et al., 

2009). In this study, older VAMP2 proteins were found to be preferentially degraded. Together 

with our findings that ubiquitination of VAMP2 is necessary for its degradation, these data 

support the idea that SV turnover is not stochastic, but rather that specific proteins are sorted out 

of the SV cycle and sent for degradation.  

Use-dependent turnover of SV proteins 

One of the most intriguing aspects of the Rab35/ESCRT degradative pathway is its regulation by 

neuronal activity. Not only are our studies the first to directly link neuronal activity to SV protein 

turnover, but they are also the first to link it to activation of a Rab GTPase. While we find that 

SV2 and VAMP2 undergo activity-dependent degradation, the degradation of Syt1 is unaffected 

by changes in activity levels (Chapter 3). Though we currently do not understand the 

mechanisms controlling this differential degradation, an interesting possibility is that different 

regulatory proteins (i.e. E3 ligases, Rab GTPases and/or chaperones) respond to certain stimuli 

and affect the stability of specific proteins. Indeed, we find that multiple Rab GTPases bind to 

Hrs, but do not affect SV2 and VAMP2 degradation (Chapter 4). These data suggest that while 

Rab35 is activated by neuronal activity to drive SV2 and VAMP2 degradation, other Rabs may 

be activated by different cues to regulate the degradation of other SV proteins. Indeed, it will be 

interesting to examine the degradation of other SV proteins in the presence of these Rabs to form 

a more comprehensive picture of the Rab-mediated regulation of SV protein degradation. 

Additionally, with the increasing development of GTP-bound, conformation specific Rab 

antibodies, it will be possible to test how different stimuli affect the activation of various Rab 

proteins.  

Roles of ubiquitination at the synapse 
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We are just beginning to understand the mechanisms underlying SV protein ubiquitination. 

Several groups have shown that postsynaptic proteins are ubiquitinated and degraded in an 

activity-dependent manner (Ehlers, 2003; Lussier et al., 2011; Schwarz et al., 2010), and that 

ubiquitinating enzymes themselves are regulated by activity (Scudder et al., 2014), providing a 

mechanism for coupling neuronal activity with postsynaptic protein ubiquitination and 

degradation. In contrast, very few studies have explored the relationship between activity and 

presynaptic protein ubiquitination, although it has been reported that silencing neurons leads to 

the accumulation of SV and other presynaptic proteins (Lazarevic et al., 2011). One intriguing 

possibility is that ubiquitinating enzymes are activated or recruited to SV pools upon neuronal 

activity. We will examine this possibility in future studies assessing the role of RNF167 in the 

activity-dependent turnover of VAMP2. As we have shown that ubiquitination of VAMP2 is 

necessary for its activity-dependent degradation, we hypothesize that RNF167 is a critical 

component of this process. First, we will determine whether RNF167 is a necessary component 

of the activity-dependent turnover of VAMP2. As discussed in Chapter 5, we will use similar 

methods to our studies with Hrs and Rab35 in this process (Chapters 3 & 4). Further, we will 

examine whether RNF167 undergoes activity-dependent recruitment to synapses through live 

imaging and immunofluorescence microscopy. Specifically, we will examine whether the 

colocalization of RNF167 with VAMP2 is induced by increases in neuronal activity analogous to 

our studies with ESCRT proteins in Chapter 3. Additionally, it will be interesting to determine if 

RNF167 also functions as an E3 ligase for SV2 or other SV proteins, and if ubiquitination is a 

general mechanism for basal and activity-dependent degradation of SV membrane proteins.  

Ubiquitin moieties can be attached to proteins singly or as poly-ubiquitin linkages built 

upon specific lysine residues (i.e. K6, K11, K29, K48, K63); thus, it is likely that synaptic 
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proteins can be modified by ubiquitination for a variety of reasons. Indeed, an assortment of 

ubiquitination events can be detected on the same protein (Bhat et al., 2014; Nonaka et al., 2005), 

suggesting that not only does the ubiquitination of these proteins affect their function but also 

that differential ubiquitination of the same protein may produce distinct functional outcomes. For 

example, studies have shown a role for dynamic ubiquitination in processes such as 

neurotransmission (Chen et al., 2003; Rinetti and Schweizer, 2010). Specifically, Rinetti & 

Schweizer found that application of the E1 activating enzyme inhibitor Ziram for as little as ten 

minutes led to an increase in the frequency of miniature excitatory postsynaptic currents. No 

protein accumulation was seen within this time frame, suggesting that the changes observed were 

not due to protein build-up, but instead to alterations in the dynamic ubiquitination state of 

presynaptic proteins. Since we are only just beginning to unravel the intricacies of the various 

roles of ubiquitination in presynaptic function, this will be an interesting and important subject 

for future investigations.  

A role for endosomal sorting in SV protein degradation 

Our findings contribute to the large body of evidence that SVs use synaptic endosomes as sorting 

stations to remove specific proteins from the SV cycle. We provide evidence that endosomes are 

important not only under high activity conditions, but also in the basal degradation of specific 

SV proteins (Chapter 3). Though we implicate the recruitment of both early and late components 

of the ESCRT pathway to SV pools, our findings cannot definitely conclude that MVB formation 

occurs within the presynaptic compartment. Future studies employing electron microscopy with 

more specific MVB labeling will be necessary to discern the exact localization of MVB 

formation in axons. 
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 Additionally, we have begun to explore ESCRT protein dynamics in axons under both 

basal and high-activity conditions. Our preliminary studies show that the velocity of Hrs puncta 

increases dramatically in response to neuronal activity; however, much is left to explore 

regarding ESCRT protein and SV protein dynamics. For instance, it will be interesting to observe 

the dynamics of other ESCRT proteins and determine whether their dynamics also change in 

response to activity. Additionally, it will be interesting to determine the necessity of Rab35 in 

activity-dependent ESCRT protein trafficking. We have also begun to explore the dynamics of 

SV proteins in response to activity, and are interested in determining whether ubiquitination is 

required for the transport of VAMP2 out of synapses.  

SV protein homeostasis and neurodegeneration 

An inability to maintain SV protein homeostasis is implicated as a causative factor in 

neurodegenerative diseases. Indeed, the accumulation of damaged or misfolded SV-associated 

proteins can induce neurodegeneration in animal models and humans (Burgoyne and Morgan, 

2015; Peng et al., 2013; Rozas et al., 2012; Sharma et al., 2012a; Sharma et al., 2012b; 

Williamson and Neale, 1998). Moreover, SV loss occurs in mouse models of neurodegenerative 

diseases, including Alzheimer’s, Parkinson’s, and lysosomal storage disorder, often prior to the 

emergence of other phenotypes (Esposito et al., 2012; Sanchez-Varo et al., 2011; Scott et al., 

2010; Virmani et al., 2005). These findings suggest that maintaining functional SV pools is 

critical for synaptic and neuronal health, and that disruption of SV protein homeostasis 

mechanisms can trigger broader neurodegenerative processes. Interestingly, loss-of-function 

mutations in TBC1D24/skywalker and the ESCRT proteins Hrs and CHMP2b cause 

neurodegeneration in mice and Drosophila as well as humans (Fernandes et al., 2014; Guven and 

Tolun, 2013; Lee et al., 2007; Lee et al., 2009; Tamai et al., 2008), implicating this highly 
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conserved pathway in the etiology of neurodegenerative disease. While TBC1D24/skywalker 

mutations promote Rab35 over-activation and SV protein degradation, ESCRT mutations impair 

this process, leading to the accumulation of ubiquitinated proteins and degradative structures 

(Fernandes et al., 2014; Guven and Tolun, 2013; Lee et al., 2007; Lee et al., 2009; Tamai et al., 

2008). Additionally, it was recently discovered that mice expressing artificially ubiquitinated 

VAMP2 (Ub-VAMP2) develop progressive degeneration of nerve terminals with obvious loss of 

SV density and the accumulation of tubulovesicular structures (Liu et al., 2015). Furthermore, in 

preliminary studies we observe toxicity with long-term expression of KR VAMP2. Our future 

work will characterize the nature of this toxicity to determine whether the lack of degradation of 

KR VAMP2 inhibits lysosomal function or interferes with the turnover of other SV proteins. All 

together, these intriguing findings suggest that both the exuberant, unregulated degradation of 

proteins and the accumulation of dysfunctional proteins are harmful to neurons. Thus, further 

study of SV protein ubiquitination and the Rab35/ESCRT pathway will not only provide insight 

into how SV protein turnover and homeostasis are regulated, but will also facilitate the 

identification of factors that promote or inhibit protein degradation, and could therefore serve as 

therapeutic targets for the treatment of neurodegenerative disease. 

 

 

 

 

 
 

 



 85	
  

References 

Allaire, P.D., Marat, A.L., Dall'Armi, C., Di Paolo, G., McPherson, P.S., and Ritter, B. (2010). 
The Connecdenn DENN domain: a GEF for Rab35 mediating cargo-specific exit from early 
endosomes. Molecular cell 37, 370-382. 

Allaire, P.D., Ritter, B., Thomas, S., Burman, J.L., Denisov, A.Y., Legendre-Guillemin, V., 
Harper, S.Q., Davidson, B.L., Gehring, K., and McPherson, P.S. (2006). Connecdenn, a novel 
DENN domain-containing protein of neuronal clathrin-coated vesicles functioning in synaptic 
vesicle endocytosis. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 26, 13202-13212. 

Altick, A.L., Baryshnikova, L.M., Vu, T.Q., and von Bartheld, C.S. (2009). Quantitative analysis 
of multivesicular bodies (MVBs) in the hypoglossal nerve: evidence that neurotrophic factors do 
not use MVBs for retrograde axonal transport. The Journal of comparative neurology 514, 641-
657. 

Alvarez-Castelao, B., and Schuman, E.M. (2015). The Regulation of Synaptic Protein Turnover. 
The Journal of biological chemistry. 

Ao, X., Zou, L., and Wu, Y. (2014). Regulation of autophagy by the Rab GTPase network. Cell 
death and differentiation 21, 348-358. 

Babbey, C.M., Ahktar, N., Wang, E., Chen, C.C., Grant, B.D., and Dunn, K.W. (2006). Rab10 
regulates membrane transport through early endosomes of polarized Madin-Darby canine kidney 
cells. Molecular biology of the cell 17, 3156-3175. 

Banker, G., and Goslin, K. (1998). Culturing Nerve Cells (Second Edition) (Cambridge, MA: 
MIT Press). 

Barr, F., and Lambright, D.G. (2010). Rab GEFs and GAPs. Current opinion in cell biology 22, 
461-470. 

Bezprozvanny, I., and Hiesinger, P.R. (2013). The synaptic maintenance problem: membrane 
recycling, Ca2+ homeostasis and late onset degeneration. Molecular Neurodegeneration 8. 

Bhat, K.P., Yan, S., Wang, C.E., Li, S., and Li, X.J. (2014). Differential ubiquitination and 
degradation of huntingtin fragments modulated by ubiquitin-protein ligase E3A. Proc Natl Acad 
Sci U S A 111, 5706-5711. 

Binotti, B., Pavlos, N.J., Riedel, D., Wenzel, D., Vorbruggen, G., Schalk, A.M., Kuhnel, K., 
Boyken, J., Erck, C., Martens, H., et al. (2015). The GTPase Rab26 links synaptic vesicles to the 
autophagy pathway. eLife 4, e05597. 

Bodor, D.L., Rodriguez, M.G., Moreno, N., and Jansen, L.E. (2012). Analysis of protein 
turnover by quantitative SNAP-based pulse-chase imaging. Current protocols in cell biology / 
editorial board, Juan S Bonifacino  [et al] Chapter 8, Unit8 8. 



 86	
  

Brondyk, W.H., McKiernan, C.J., Burstein, E.S., and Macara, I.G. (1993). Mutants of Rab3A 
analogous to oncogenic Ras mutants. Sensitivity to Rab3A-GTPase activating protein and 
Rab3A-guanine nucleotide releasing factor. The Journal of biological chemistry 268, 9410-9415. 

Brose, N., Hofmann, K., Hata, Y., and Sudhof, T.C. (1995). Mammalian homologues of 
Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. The Journal of 
biological chemistry 270, 25273-25280. 

Brymora, A., Valova, V.A., and Robinson, P.J. (2004). Protein-protein interactions identified by 
pull-down experiments and mass spectrometry. Current protocols in cell biology / editorial board, 
Juan S Bonifacino  [et al] Chapter 17, Unit 17 15. 

Burgoyne, R.D., and Morgan, A. (2015). Cysteine string protein (CSP) and its role in preventing 
neurodegeneration. Seminars in cell & developmental biology. 

Burrone, J., Li, Z., and Murthy, V.N. (2006). Studying vesicle cycling in presynaptic terminals 
using the genetically encoded probe synaptopHluorin. Nature protocols 1, 2970-2978. 

Ceccarelli, B., Hurlbut, W.P., and Mauro, A. (1973). Turnover of transmitter and synaptic 
vesicles at the frog neuromuscular junction. The Journal of cell biology 57, 499-524. 

Chau, V., Tobias, J.W., Bachmair, A., Marriott, D., Ecker, D.J., Gonda, D.K., and Varshavsky, A. 
(1989). A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. 
Science 243, 1576-1583. 

Chen, H., Polo, S., Di Fiore, P.P., and De Camilli, P.V. (2003). Rapid Ca2+-dependent decrease 
of protein ubiquitination at synapses. Proc Natl Acad Sci U S A 100, 14908-14913. 

Clague, M.J., and Urbe, S. (2010). Ubiquitin: same molecule, different degradation pathways. 
Cell 143, 682-685. 

Clayton, E.L., and Cousin, M.A. (2008). Differential labelling of bulk endocytosis in nerve 
terminals by FM dyes. Neurochem Int 53, 51-55. 

Cohen, L.D., Zuchman, R., Sorokina, O., Muller, A., Dieterich, D.C., Armstrong, J.D., Ziv, T., 
and Ziv, N.E. (2013). Metabolic turnover of synaptic proteins: kinetics, interdependencies and 
implications for synaptic maintenance. PLoS One 8, e63191. 

Dou, Z., Pan, J.A., Dbouk, H.A., Ballou, L.M., DeLeon, J.L., Fan, Y., Chen, J.S., Liang, Z., Li, 
G., Backer, J.M., et al. (2013). Class IA PI3K p110beta subunit promotes autophagy through 
Rab5 small GTPase in response to growth factor limitation. Molecular cell 50, 29-42. 

Dulubova, I., Sugita, S., Hill, S., Hosaka, M., Fernandez, I., Sudhof, T.C., and Rizo, J. (1999). A 
conformational switch in syntaxin during exocytosis: role of munc18. The EMBO journal 18, 
4372-4382. 

Ehlers, M.D. (2003). Activity level controls postsynaptic composition and signaling via the 
ubiquitin-proteasome system. Nat Neurosci 6, 231-242. 



 87	
  

Esposito, G., Ana Clara, F., and Verstreken, P. (2012). Synaptic vesicle trafficking and 
Parkinson's disease. Developmental neurobiology 72, 134-144. 

Fader, C.M., and Colombo, M.I. (2009). Autophagy and multivesicular bodies: two closely 
related partners. Cell death and differentiation 16, 70-78. 

Feng, Y., He, D., Yao, Z., and Klionsky, D.J. (2014). The machinery of macroautophagy. Cell 
research 24, 24-41. 

Fernandes, A.C., Uytterhoeven, V., Kuenen, S., Wang, Y.C., Slabbaert, J.R., Swerts, J., 
Kasprowicz, J., Aerts, S., and Verstreken, P. (2014). Reduced synaptic vesicle protein 
degradation at lysosomes curbs TBC1D24/sky-induced neurodegeneration. The Journal of cell 
biology 207, 453-462. 

Fesce, R., Grohovaz, F., Valtorta, F., and Meldolesi, J. (1994). Neurotransmitter release: fusion 
or 'kiss-and-run'? Trends Cell Biol 4, 1-4. 

Fischer von Mollard, G., Stahl, B., Walch-Solimena, C., Takei, K., Daniels, L., Khoklatchev, A., 
De Camilli, P., Sudhof, T.C., and Jahn, R. (1994). Localization of Rab5 to synaptic vesicles 
identifies endosomal intermediate in synaptic vesicle recycling pathway. Eur J Cell Biol 65, 319-
326. 

Garden, G.A., and La Spada, A.R. (2008). Molecular pathogenesis and cellular pathology of 
spinocerebellar ataxia type 7 neurodegeneration. Cerebellum 7, 138-149. 

Geppert, M., Bolshakov, V.Y., Siegelbaum, S.A., Takei, K., De Camilli, P., Hammer, R.E., and 
Sudhof, T.C. (1994). The role of Rab3A in neurotransmitter release. Nature 369, 493-497. 

Gowrishankar, S., Yuan, P., Wu, Y., Schrag, M., Paradise, S., Grutzendler, J., De Camilli, P., 
and Ferguson, S.M. (2015). Massive accumulation of luminal protease-deficient axonal 
lysosomes at Alzheimer's disease amyloid plaques. Proc Natl Acad Sci U S A 112, E3699-3708. 

Grillo, F.W., Song, S., Teles-Grilo Ruivo, L.M., Huang, L., Gao, G., Knott, G.W., Maco, B., 
Ferretti, V., Thompson, D., Little, G.E., et al. (2013). Increased axonal bouton dynamics in the 
aging mouse cortex. Proc Natl Acad Sci U S A 110, E1514-1523. 

Guven, A., and Tolun, A. (2013). TBC1D24 truncating mutation resulting in severe 
neurodegeneration. Journal of medical genetics 50, 199-202. 

Haas, A.L., Warms, J.V., Hershko, A., and Rose, I.A. (1982). Ubiquitin-activating enzyme. 
Mechanism and role in protein-ubiquitin conjugation. The Journal of biological chemistry 257, 
2543-2548. 

Haberman, A., Williamson, W.R., Epstein, D., Wang, D., Rina, S., Meinertzhagen, I.A., and 
Hiesinger, P.R. (2012). The synaptic vesicle SNARE neuronal Synaptobrevin promotes 
endolysosomal degradation and prevents neurodegeneration. The Journal of cell biology 196, 
261-276. 



 88	
  

Helton, T.D. and Ehlers, M.D. (2008). "Ubiquitin and Protein Degradation in Synapse Function". 
Structural and Functional Organization of the Synapse. Hell, J.W. and Ehlers, M.D. (eds). 
Springer Science and Business Media, 2008. 553-600. Print. 

Hata, Y., Slaughter, C.A., and Sudhof, T.C. (1993). Synaptic vesicle fusion complex contains 
unc-18 homologue bound to syntaxin. Nature 366, 347-351. 

Hernandez, D., Torres, C.A., Setlik, W., Cebrian, C., Mosharov, E.V., Tang, G., Cheng, H.C., 
Kholodilov, N., Yarygina, O., Burke, R.E., et al. (2012). Regulation of presynaptic 
neurotransmission by macroautophagy. Neuron 74, 277-284. 

Hershko, A., Heller, H., Elias, S., and Ciechanover, A. (1983). Components of ubiquitin-protein 
ligase system. Resolution, affinity purification, and role in protein breakdown. The Journal of 
biological chemistry 258, 8206-8214. 

Heuser, J.E., and Reese, T.S. (1973). Evidence for recycling of synaptic vesicle membrane 
during transmitter release at the frog neuromuscular junction. The Journal of cell biology 57, 
315-344. 

Hicke, L., and Dunn, R. (2003). Regulation of membrane protein transport by ubiquitin and 
ubiquitin-binding proteins. Annual review of cell and developmental biology 19, 141-172. 

Hollenbeck, P.J. (1993). Products of endocytosis and autophagy are retrieved from axons by 
regulated retrograde organelle transport. The Journal of cell biology 121, 305-315. 

Hoopmann, P., Punge, A., Barysch, S.V., Westphal, V., Buckers, J., Opazo, F., Bethani, I., 
Lauterbach, M.A., Hell, S.W., and Rizzoli, S.O. (2010). Endosomal sorting of readily releasable 
synaptic vesicles. Proceedings of the National Academy of Sciences of the United States of 
America 107, 19055-19060. 

Junutula, J.R., De Maziere, A.M., Peden, A.A., Ervin, K.E., Advani, R.J., van Dijk, S.M., 
Klumperman, J., and Scheller, R.H. (2004). Rab14 is involved in membrane trafficking between 
the Golgi complex and endosomes. Molecular biology of the cell 15, 2218-2229. 

Kadota, T., Mizote, M., and Kadota, K. (1994). Dynamics of presynaptic endosomes produced 
during transmitter release. J Electron Microsc (Tokyo) 43, 62-71. 

Katz, B., and Miledi, R. (1967). Ionic requirements of synaptic transmitter release. Nature 215, 
651. 

Kish-Trier, E., and Hill, C.P. (2013). Structural biology of the proteasome. Annu Rev Biophys 
42, 29-49. 

Komada, M., and Soriano, P. (1999). Hrs, a FYVE finger protein localized to early endosomes, 
is implicated in vesicular traffic and required for ventral folding morphogenesis. Genes & 
development 13, 1475-1485. 



 89	
  

Lam, Y.A., Lawson, T.G., Velayutham, M., Zweier, J.L., and Pickart, C.M. (2002). A 
proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416, 763-
767. 

Langemeyer, L., Nunes Bastos, R., Cai, Y., Itzen, A., Reinisch, K.M., and Barr, F.A. (2014). 
Diversity and plasticity in Rab GTPase nucleotide release mechanism has consequences for Rab 
activation and inactivation. eLife 3, e01623. 

LaVail, M.M., and LaVail, J.H. (1975). Retrograde intraaxonal transport of horseradish 
peroxidase in retinal ganglion cells of the chick. Brain research 85, 273-280. 

Lazarevic, V., Schone, C., Heine, M., Gundelfinger, E.D., and Fejtova, A. (2011). Extensive 
remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity 
silencing. The Journal of neuroscience : the official journal of the Society for Neuroscience 31, 
10189-10200. 

Leal-Ortiz, S., Waites, C.L., Terry-Lorenzo, R., Zamorano, P., Gundelfinger, E.D., and Garner, 
C.C. (2008). Piccolo modulation of Synapsin1a dynamics regulates synaptic vesicle exocytosis. 
The Journal of cell biology 181, 831-846. 

Lee, J.A., Beigneux, A., Ahmad, S.T., Young, S.G., and Gao, F.B. (2007). ESCRT-III 
dysfunction causes autophagosome accumulation and neurodegeneration. Current biology : CB 
17, 1561-1567. 

Lee, J.A., Liu, L., and Gao, F.B. (2009). Autophagy defects contribute to neurodegeneration 
induced by dysfunctional ESCRT-III. Autophagy 5, 1070-1072. 

Lees, G.J., Geffen, L.B., and Rush, R.A. (1981). Phentolamine increases neuronal binding and 
retrograde transport of dopamine beta-hydroxylase antibodies. Neurosci Lett 22, 115-118. 

Li, G., and Stahl, P.D. (1993). Structure-function relationship of the small GTPase rab5. The 
Journal of biological chemistry 268, 24475-24480. 

Li, L., and Chin, L.S. (2003). The molecular machinery of synaptic vesicle exocytosis. Cellular 
and molecular life sciences : CMLS 60, 942-960. 

Liu, Y., Li, H., Sugiura, Y., Han, W., Gallardo, G., Khvotchev, M., Zhang, Y., Kavalali, E.T., 
Sudhof, T.C., and Lin, W. (2015). Ubiquitin-Synaptobrevin Fusion Protein Causes Degeneration 
of Presynaptic Motor Terminals in Mice. The Journal of neuroscience : the official journal of the 
Society for Neuroscience 35, 11514-11531. 

Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-
time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. 

Lois, C., Hong, E.J., Pease, S., Brown, E.J., and Baltimore, D. (2002). Germline transmission 
and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868-872. 



 90	
  

Lussier, M.P., Nasu-Nishimura, Y., and Roche, K.W. (2011). Activity-dependent ubiquitination 
of the AMPA receptor subunit GluA2. The Journal of neuroscience : the official journal of the 
Society for Neuroscience 31, 3077-3081. 

Maday, S., Twelvetrees, A.E., Moughamian, A.J., and Holzbaur, E.L. (2014). Axonal transport: 
cargo-specific mechanisms of motility and regulation. Neuron 84, 292-309. 

Maday, S., Wallace, K.E., and Holzbaur, E.L. (2012). Autophagosomes initiate distally and 
mature during transport toward the cell soma in primary neurons. The Journal of cell biology 196, 
407-417. 

Mahoney, T.R., Liu, Q., Itoh, T., Luo, S., Hadwiger, G., Vincent, R., Wang, Z.W., Fukuda, M., 
and Nonet, M.L. (2006). Regulation of synaptic transmission by RAB-3 and RAB-27 in 
Caenorhabditis elegans. Molecular biology of the cell 17, 2617-2625. 

Marat, A.L., and McPherson, P.S. (2010). The connecdenn family, Rab35 guanine nucleotide 
exchange factors interfacing with the clathrin machinery. The Journal of biological chemistry 
285, 10627-10637. 

McCaffrey, M.W., Bielli, A., Cantalupo, G., Mora, S., Roberti, V., Santillo, M., Drummond, F., 
and Bucci, C. (2001). Rab4 affects both recycling and degradative endosomal trafficking. FEBS 
letters 495, 21-30. 

Miller, T.M., and Heuser, J.E. (1984). Endocytosis of synaptic vesicle membrane at the frog 
neuromuscular junction. J Cell Biol 98, 685-698. 

Morris, S.J., Ralston, H.J., 3rd, and Shooter, E.M. (1971). Studies on the turnover of mouse brain 
synaptosomal proteins. Journal of neurochemistry 18, 2279-2290. 

Murthy, V.N., and Stevens, C.F. (1998). Synaptic vesicles retain their identity through the 
endocytic cycle. Nature 392, 497-501. 

Na, C.H., Jones, D.R., Yang, Y., Wang, X., Xu, Y., and Peng, J. (2012). Synaptic protein 
ubiquitination in rat brain revealed by antibody-based ubiquitome analysis. Journal of proteome 
research 11, 4722-4732. 

Nonaka, T., Iwatsubo, T., and Hasegawa, M. (2005). Ubiquitination of alpha-synuclein. 
Biochemistry 44, 361-368. 

Overly, C.C., and Hollenbeck, P.J. (1996). Dynamic organization of endocytic pathways in 
axons of cultured sympathetic neurons. The Journal of neuroscience : the official journal of the 
Society for Neuroscience 16, 6056-6064. 

Park, J.W., Vahidi, B., Taylor, A.M., Rhee, S.W., and Jeon, N.L. (2006). Microfluidic culture 
platform for neuroscience research. Nat Protoc 1, 2128-2136. 



 91	
  

Parkinson, K., Baines, A.E., Keller, T., Gruenheit, N., Bragg, L., North, R.A., and Thompson, 
C.R. (2014). Calcium-dependent regulation of Rab activation and vesicle fusion by an 
intracellular P2X ion channel. Nature cell biology 16, 87-98. 

Pavlos, N.J., Gronborg, M., Riedel, D., Chua, J.J., Boyken, J., Kloepper, T.H., Urlaub, H., 
Rizzoli, S.O., and Jahn, R. (2010). Quantitative analysis of synaptic vesicle Rabs uncovers 
distinct yet overlapping roles for Rab3a and Rab27b in Ca2+-triggered exocytosis. The Journal 
of neuroscience : the official journal of the Society for Neuroscience 30, 13441-13453. 

Pavlos, N.J., and Jahn, R. (2011). Distinct yet overlapping roles of Rab GTPases on synaptic 
vesicles. Small GTPases 2, 77-81. 

Peng, L., Liu, H., Ruan, H., Tepp, W.H., Stoothoff, W.H., Brown, R.H., Johnson, E.A., Yao, 
W.D., Zhang, S.C., and Dong, M. (2013). Cytotoxicity of botulinum neurotoxins reveals a direct 
role of syntaxin 1 and SNAP-25 in neuron survival. Nature communications 4, 1472. 

Raiborg, C., and Stenmark, H. (2009). The ESCRT machinery in endosomal sorting of 
ubiquitylated membrane proteins. Nature 458, 445-452. 

Regazzi, R. (2007). “Rab GTPases and Their Role in the Control of Exocytosis”. Molecular 
Mechanisms of Exocytosis. Regazzi R. (ed). Landes Bioscience and Springer Science and 
Business Media, 2007. 28-41. Print. 
 
Ravikumar, B., Imarisio, S., Sarkar, S., O'Kane, C.J., and Rubinsztein, D.C. (2008). Rab5 
modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly 
models of Huntington disease. Journal of cell science 121, 1649-1660. 

Rinetti, G.V., and Schweizer, F.E. (2010). Ubiquitination acutely regulates presynaptic 
neurotransmitter release in mammalian neurons. The Journal of neuroscience : the official 
journal of the Society for Neuroscience 30, 3157-3166. 

Rizzoli, S.O., Bethani, I., Zwilling, D., Wenzel, D., Siddiqui, T.J., Brandhorst, D., and Jahn, R. 
(2006). Evidence for early endosome-like fusion of recently endocytosed synaptic vesicles. 
Traffic 7, 1163-1176. 

Rizzoli, S.O., and Betz, W.J. (2005). Synaptic vesicle pools. Nat Rev Neurosci 6, 57-69. 

Rozas, J.L., Gomez-Sanchez, L., Mircheski, J., Linares-Clemente, P., Nieto-Gonzalez, J.L., 
Vazquez, M.E., Lujan, R., and Fernandez-Chacon, R. (2012). Motorneurons require cysteine 
string protein-alpha to maintain the readily releasable vesicular pool and synaptic vesicle 
recycling. Neuron 74, 151-165. 

Russell, R.C., Yuan, H.X., and Guan, K.L. (2014). Autophagy regulation by nutrient signaling. 
Cell research 24, 42-57. 

Sanchez-Varo, R., Trujillo-Estrada, L., Sanchez-Mejias, E., Torres, M., Baglietto-Vargas, D., 
Moreno-Gonzalez, I., De Castro, V., Jimenez, S., Ruano, D., Vizuete, M., et al. (2011). 



 92	
  

Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in 
young Alzheimer's mice hippocampus. Acta neuropathologica. 

Sato, M., Sato, K., Liou, W., Pant, S., Harada, A., and Grant, B.D. (2008). Regulation of 
endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. The 
EMBO journal 27, 1183-1196. 

Schluter, O.M., Schmitz, F., Jahn, R., Rosenmund, C., and Sudhof, T.C. (2004). A complete 
genetic analysis of neuronal Rab3 function. The Journal of neuroscience : the official journal of 
the Society for Neuroscience 24, 6629-6637. 

Schluter, O.M., Schnell, E., Verhage, M., Tzonopoulos, T., Nicoll, R.A., Janz, R., Malenka, R.C., 
Geppert, M., and Sudhof, T.C. (1999). Rabphilin knock-out mice reveal that rabphilin is not 
required for rab3 function in regulating neurotransmitter release. The Journal of neuroscience : 
the official journal of the Society for Neuroscience 19, 5834-5846. 

Schmidt, O., and Teis, D. (2012). The ESCRT machinery. Current biology : CB 22, R116-120. 

Schwarz, L.A., Hall, B.J., and Patrick, G.N. (2010). Activity-dependent ubiquitination of GluA1 
mediates a distinct AMPA receptor endocytosis and sorting pathway. The Journal of 
neuroscience : the official journal of the Society for Neuroscience 30, 16718-16729. 

Scita, G., and Di Fiore, P.P. (2010). The endocytic matrix. Nature 463, 464-473. 

Scott, D.A., Tabarean, I., Tang, Y., Cartier, A., Masliah, E., and Roy, S. (2010). A pathologic 
cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. The 
Journal of neuroscience : the official journal of the Society for Neuroscience 30, 8083-8095. 

Scudder, S.L., Goo, M.S., Cartier, A.E., Molteni, A., Schwarz, L.A., Wright, R., and Patrick, 
G.N. (2014). Synaptic strength is bidirectionally controlled by opposing activity-dependent 
regulation of Nedd4-1 and USP8. The Journal of neuroscience : the official journal of the Society 
for Neuroscience 34, 16637-16649. 

Shao, X., Fernandez, I., Sudhof, T.C., and Rizo, J. (1998). Solution structures of the Ca2+-free 
and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? 
Biochemistry 37, 16106-16115. 

Sharma, M., Burre, J., Bronk, P., Zhang, Y., Xu, W., and Sudhof, T.C. (2012a). CSPalpha 
knockout causes neurodegeneration by impairing SNAP-25 function. The EMBO journal 31, 
829-841. 

Sharma, M., Burre, J., and Sudhof, T.C. (2011). CSPalpha promotes SNARE-complex assembly 
by chaperoning SNAP-25 during synaptic activity. Nature cell biology 13, 30-39. 

Sharma, M., Burre, J., and Sudhof, T.C. (2012b). Proteasome inhibition alleviates SNARE-
dependent neurodegeneration. Science translational medicine 4, 147ra113. 



 93	
  

Shi, L., Fu, A.K., and Ip, N.Y. (2012). Molecular mechanisms underlying maturation and 
maintenance of the vertebrate neuromuscular junction. Trends Neurosci 35, 441-453. 

Shields, S.B., and Piper, R.C. (2011). How ubiquitin functions with ESCRTs. Traffic 12, 1306-
1317. 

Shimizu, H., Kawamura, S., and Ozaki, K. (2003). An essential role of Rab5 in uniformity of 
synaptic vesicle size. Journal of cell science 116, 3583-3590. 

Sollner, T., Bennett, M.K., Whiteheart, S.W., Scheller, R.H., and Rothman, J.E. (1993). A 
protein assembly-disassembly pathway in vitro that may correspond to sequential steps of 
synaptic vesicle docking, activation, and fusion. Cell 75, 409-418. 

Star, E.N., Newton, A.J., and Murthy, V.N. (2005). Real-time imaging of Rab3a and Rab5a 
reveals differential roles in presynaptic function. The Journal of physiology 569, 103-117. 

Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nature reviews Molecular 
cell biology 10, 513-525. 

Su, W.C., Chao, T.C., Huang, Y.L., Weng, S.C., Jeng, K.S., and Lai, M.M. (2011). Rab5 and 
class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced 
autophagy. Journal of virology 85, 10561-10571. 

Subach, F.V., Subach, O.M., Gundorov, I.S., Morozova, K.S., Piatkevich, K.D., Cuervo, A.M., 
and Verkhusha, V.V. (2009). Monomeric fluorescent timers that change color from blue to red 
report on cellular trafficking. Nat Chem Biol 5, 118-126. 

Sudhof, T.C. (2004). The synaptic vesicle cycle. Annu Rev Neurosci 27, 509-547. 

Takahashi, H., Mayers, J.R., Wang, L., Edwardson, J.M., and Audhya, A. (2015). Hrs and 
STAM function synergistically to bind ubiquitin-modified cargoes in vitro. Biophysical journal 
108, 76-84. 

Takamori, S., Holt, M., Stenius, K., Lemke, E.A., Gronborg, M., Riedel, D., Urlaub, H., Schenck, 
S., Brugger, B., Ringler, P., et al. (2006). Molecular anatomy of a trafficking organelle. Cell 127, 
831-846. 

Tamai, K., Toyoshima, M., Tanaka, N., Yamamoto, N., Owada, Y., Kiyonari, H., Murata, K., 
Ueno, Y., Ono, M., Shimosegawa, T., et al. (2008). Loss of hrs in the central nervous system 
causes accumulation of ubiquitinated proteins and neurodegeneration. The American journal of 
pathology 173, 1806-1817. 

Tanaka, K. (2009). The proteasome: overview of structure and functions. Proceedings of the 
Japan Academy Series B, Physical and biological sciences 85, 12-36. 

Tauskela, J.S., Fang, H., Hewitt, M., Brunette, E., Ahuja, T., Thivierge, J.P., Comas, T., and 
Mealing, G.A. (2008). Elevated synaptic activity preconditions neurons against an in vitro model 
of ischemia. The Journal of biological chemistry 283, 34667-34676. 



 94	
  

Teichberg, S., Holtzman, E., Crain, S.M., and Peterson, E.R. (1975). Circulation and turnover of 
synaptic vesicle membrane in cultured fetal mammalian spinal cord neurons. The Journal of cell 
biology 67, 215-230. 

Tian, X., Gala, U., Zhang, Y., Shang, W., Nagarkar Jaiswal, S., di Ronza, A., Jaiswal, M., 
Yamamoto, S., Sandoval, H., Duraine, L., et al. (2015). A voltage-gated calcium channel 
regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal 
homeostasis. PLoS biology 13, e1002103. 

Uytterhoeven, V., Kuenen, S., Kasprowicz, J., Miskiewicz, K., and Verstreken, P. (2011). Loss 
of skywalker reveals synaptic endosomes as sorting stations for synaptic vesicle proteins. Cell 
145, 117-132. 

Virmani, T., Gupta, P., Liu, X., Kavalali, E.T., and Hofmann, S.L. (2005). Progressively reduced 
synaptic vesicle pool size in cultured neurons derived from neuronal ceroid lipofuscinosis-1 
knockout mice. Neurobiol Dis 20, 314-323. 

Vitalis, T., Laine, J., Simon, A., Roland, A., Leterrier, C., and Lenkei, Z. (2008). The type 1 
cannabinoid receptor is highly expressed in embryonic cortical projection neurons and negatively 
regulates neurite growth in vitro. Eur J Neurosci 28, 1705-1718. 

Voglmaier, S.M., Kam, K., Yang, H., Fortin, D.L., Hua, Z., Nicoll, R.A., and Edwards, R.H. 
(2006). Distinct endocytic pathways control the rate and extent of synaptic vesicle protein 
recycling. Neuron 51, 71-84. 

Von Bartheld, C.S., and Altick, A.L. (2011). Multivesicular bodies in neurons: distribution, 
protein content, and trafficking functions. Prog Neurobiol 93, 313-340. 

Waites, C.L., Leal-Ortiz, S.A., Andlauer, T.F., Sigrist, S.J., and Garner, C.C. (2011). Piccolo 
regulates the dynamic assembly of presynaptic F-actin. The Journal of neuroscience : the official 
journal of the Society for Neuroscience 31, 14250-14263. 

Waites, C.L., Specht, C.G., Hartel, K., Leal-Ortiz, S., Genoux, D., Li, D., Drisdel, R.C., Jeyifous, 
O., Cheyne, J.E., Green, W.N., et al. (2009). Synaptic SAP97 isoforms regulate AMPA receptor 
dynamics and access to presynaptic glutamate. The Journal of neuroscience : the official journal 
of the Society for Neuroscience 29, 4332-4345. 

Wang, D., Chan, C.C., Cherry, S., and Hiesinger, P.R. (2013). Membrane trafficking in neuronal 
maintenance and degeneration. Cellular and molecular life sciences : CMLS 70, 2919-2934. 

Wang, Y., Okamoto, M., Schmitz, F., Hofmann, K., and Sudhof, T.C. (1997). Rim is a putative 
Rab3 effector in regulating synaptic-vesicle fusion. Nature 388, 593-598. 

Wang, Y., Sugita, S., and Sudhof, T.C. (2000). The RIM/NIM family of neuronal C2 domain 
proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins. The 
Journal of biological chemistry 275, 20033-20044. 



 95	
  

Watanabe, S., Trimbuch, T., Camacho-Perez, M., Rost, B.R., Brokowski, B., Sohl-Kielczynski, 
B., Felies, A., Davis, M.W., Rosenmund, C., and Jorgensen, E.M. (2014). Clathrin regenerates 
synaptic vesicles from endosomes. Nature 515, 228-233. 

Wijayatunge, R., Chen, L.F., Cha, Y.M., Zannas, A.S., Frank, C.L., and West, A.E. (2014). The 
histone lysine demethylase Kdm6b is required for activity-dependent preconditioning of 
hippocampal neuronal survival. Molecular and cellular neurosciences 61, 187-200. 

Williamson, L.C., and Neale, E.A. (1998). Syntaxin and 25-kDa synaptosomal-associated 
protein: differential effects of botulinum neurotoxins C1 and A on neuronal survival. Journal of 
neuroscience research 52, 569-583. 

Wucherpfennig, T., Wilsch-Brauninger, M., and Gonzalez-Gaitan, M. (2003). Role of 
Drosophila Rab5 during endosomal trafficking at the synapse and evoked neurotransmitter 
release. The Journal of cell biology 161, 609-624. 

Yamazaki, Y., Schonherr, C., Varshney, G.K., Dogru, M., Hallberg, B., and Palmer, R.H. (2013). 
Goliath family E3 ligases regulate the recycling endosome pathway via VAMP3 ubiquitylation. 
The EMBO journal 32, 524-537. 

Yu, E., Kanno, E., Choi, S., Sugimori, M., Moreira, J.E., Llinas, R.R., and Fukuda, M. (2008). 
Role of Rab27 in synaptic transmission at the squid giant synapse. Proceedings of the National 
Academy of Sciences of the United States of America 105, 16003-16008. 

Zhang, N., Gordon, S.L., Fritsch, M.J., Esoof, N., Campbell, D.G., Gourlay, R., Velupillai, S., 
Macartney, T., Peggie, M., van Aalten, D.M., et al. (2015). Phosphorylation of synaptic vesicle 
protein 2A at Thr84 by casein kinase 1 family kinases controls the specific retrieval of 
synaptotagmin-1. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 35, 2492-2507. 

Zuo, Y., Yang, G., Kwon, E., and Gan, W.B. (2005). Long-term sensory deprivation prevents 
dendritic spine loss in primary somatosensory cortex. Nature 436, 261-265. 
 
 


