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ABSTRACT

Resource Allocation in Wireless Networks:
Theory and Applications

Jelena Marašević

Limited wireless resources, such as spectrum and maximum power, give rise to various

resource allocation problems that are interesting both from theoretical and application view-

points. While the problems in some of the wireless networking applications are amenable to

general resource allocation methods, others require a more specialized approach suited to

their unique structural characteristics. We study both types of the problems in this thesis.

We start with a general problem of α−fair packing, namely, the problem of maximizing
∑

j wjfα(xj), where wj > 0, ∀j, and (i) fα(xj) = ln(xj), if α = 1, (ii) fα(xj) =
xj

1−α

1−α , if

α 6= 1, α > 0, subject to positive linear constraints of the form Ax ≤ b, x ≥ 0, where A and b

are non-negative. This problem has broad applications within and outside wireless network-

ing. We present a distributed algorithm for general α that converges to an ε−approximate

solution in time (number of distributed iterations) that has an inverse polynomial depen-

dence on the approximation parameter ε and poly-logarithmic dependence on the problem

size. This is the first distributed algorithm for weighted α−fair packing with poly-logarithmic

convergence in the input size. We also obtain structural results that characterize α−fair

allocations as the value of α is varied. These results deepen our understanding of fairness

guarantees in α−fair packing allocations, and also provide insights into the behavior of

α−fair allocations in the asymptotic cases α→ 0, α→ 1, and α→∞.

With these general tools on hand, we consider an application in wireless networks where

fairness is of paramount importance: rate allocation and routing in energy-harvesting net-

works. We discuss the importance of fairness in such networks and cases where our results

on α−fair packing apply. We then turn our focus to rate allocation in energy harvesting

networks with highly variable energy sources and that are used for applications such as

monitoring and tracking. In such networks, it is essential to guarantee fairness over both

the network nodes and the time slots and to be as fair as possible – in particular, to re-



quire max-min fairness. We first develop an algorithm that obtains a max-min fair rate

assignment for any routing that is specified at the input. Then, we consider the problem

of determining a “good” routing. We consider various routing types and either provide

polynomial-time algorithms for finding such routings or prove that the problems are NP-

hard. Our results reveal an interesting trade-off between the complexities of computation

and implementation. The results can also be applied to other related fairness problems.

The second part of the thesis is devoted to the study of resource allocation problems

that require a specialized approach. The problems we focus on arise in wireless networks

employing full-duplex communication – the simultaneous transmission and reception on the

same frequency channel. Our primary goal is to understand the benefits and complexities

tied to using this novel wireless technology through the study of resource (power, time, and

channel) allocation problems. Towards that goal, we introduce a new realistic model of a

compact (e.g., smartphone) full-duplex receiver and demonstrate its accuracy via measure-

ments. First, we focus on the resource allocation problems with the objective of maximizing

the sum of uplink and downlink rates, possibly over multiple orthogonal channels. For the

single-channel case, we quantify the rate improvement as a function of the remaining self-

interference and signal-to-noise ratios and provide structural results that characterize the

sum of uplink and downlink rates on a full-duplex channel. Building on these results, we

consider the multi-channel case and develop a polynomial time algorithm which is nearly

optimal in practice under very mild restrictions. To reduce the running time, we develop

an efficient nearly-optimal algorithm under the high SINR approximation.

Then, we study the achievable capacity regions of full-duplex links in the single- and

multi-channel cases. We present analytical results that characterize the uplink and downlink

capacity region and efficient algorithms for computing rate pairs at the region’s boundary.

We also provide near-optimal and heuristic algorithms that “convexify” the capacity region

when it is not convex. The convexified region corresponds to a combination of a few full-

duplex rates (i.e., to time sharing between different operation modes). The analytical results

provide insights into the properties of the full-duplex capacity region and are essential

for future development of fair resource allocation and scheduling algorithms in Wi-Fi and

cellular networks incorporating full-duplex.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Most resources in wireless networks, such as spectrum, transmission power levels, and data

rates, are limited and shared between multiple users. As wireless users often have different

requirements and priorities, and the wireless networks themselves can be of different types

(e.g., commercial networks such as Wi-Fi and LTE, sensor networks, energy harvesting

networks), there is no unique notion of what “the best” way of allocating resources is.

Rather, what type of resource allocation is most desirable is determined by the application.

We start this chapter by highlighting the intuition behind different applications and

preferences leading to different resource allocations. We introduce a general class of fair

resource allocation problems that models many wireless networking scenarios and we also

comment on applications that do not fall into this category but require a specialized ap-

proach. We then summarize the thesis contributions in the context of these two categories,

and outline the contributions to the literature.

1.1 Background and Motivation

For intuition on how different applications can lead to very different preferences with respect

to the resource allocation, consider the following network example illustrated in Fig. 1.1,

where n routes in a network intersect over n − 1 capacitated links. We will assume here

that each of the routes may contain other links not illustrated in Fig. 1.1, but that those

links have large capacities and are thus non-restrictive. For simplicity, we will assume that
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…
…

x2 x3 xn

x1

x1+x2 1 x1+x3 1 x1+xn 1
Route 1

Route 2 Route 3 Route n

Figure 1.1: An example of a network for which different applications and fairness preferences

lead to very different resource allocations.

each link shown in Fig. 1.1 as the intersection of Route 1 and Routes 2, 3, ..., n has capacity

equal to 1. The resources that need to be allocated are (non-negative) rates x1, x2, ..., xn

on Routes 1, 2, ..., n, subject to the link capacity constraints: x1 + x2 ≤ 1, x1 + x3 ≤ 1,...,

x1 + xn ≤ 1. Consider the following three applications.

Application 1: the network illustrated in Fig. 1.1 is a multi-hop network in which all

the routes connect the same source-destination pair. Then, it is not important to send

data over all the routes, but rather to maximize the total rate between the source and the

destination. Such preferences give rise to a utilitarian resource allocation:

Definition 1.1. A resource allocation (x1, x2, ..., xn) is called utilitarian, if it maximizes

efficiency – i.e., if it maximizes the sum of allocated resources
∑n

j=1 xj.

In the example from Fig. 1.1, a utilitarian resource allocation would assign zero units of

rate to Route 1, and one unit of rate to each of the Routes 2, 3, ...n. The resource allocation

efficiency is therefore equal to n− 1, and while the network resources are fully utilized, the

sharing of the resources is unfair, as Route 1 gets zero rate.

Application 2: the network illustrated in Fig. 1.1 is a multi-hop sensor network in which

every route carries location-sensitive data. In this case, the utilitarian resource allocation

would be a very poor choice, as no data would be collected from the location corresponding

to Route 1. Instead, it is preferable that the resources (rates) are allocated as equally as

possible, i.e., according to the most-egalitarian – max-min fair – resource allocation [18]:

Definition 1.2. A resource allocation (x1, x2, ..., xn) is max-min fair, if any alternative

resource allocation (y1, y2, ..., yn) satisfies: if yj > xj for some j, then there exists k such
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that yk < xk ≤ xj.

In the max-min fair resource allocation for the problem from Fig. 1.1, all routes would

be assigned 1/2 units of rate. While clearly such a resource allocation is as fair as it can

be, the price paid for fairness is that the efficiency, now equal to n/2, is nearly halved.

Application 3: the network illustrated in Fig. 1.1 is a multi-hop communication network

in which each route corresponds to a different source-sink pair. Then, on one hand, all

the routes need to get some non-zero rate, but on the other some routes can be penalized

to allow for better overall network utilization. In particular, we can assign rates to routes

proportionally to the amount of resources they utilize. Such preferences give rise to the

proportionally fair resource allocation, defined as follows.

Definition 1.3. A resource allocation (x1, x2, ..., xn) is proportionally fair, if for any alter-

native resource allocation (y1, y2, ..., yn) it holds:
∑n

j=1
yj−xj
xj
≤ 0.

For the example network illustrated in Fig. 1.1, a proportionally fair resource allocation

would assign 1
n rate units to Route 1 and n−1

n rate units to Route 2, Route 3, ..., Route n. We

can observe that at the expense of reducing the rate of Route 1 (compared to Application

2), the efficiency increases to 1+(n−1)2

n , asymptotically approaching the efficiency of the

utilitarian resource allocation from Application 1 as the number of routes n increases.

The resource allocations described in Applications 1, 2, and 3 are all special cases of the

general class of (weighted) α−fair resource allocations, defined as follows.

Definition 1.4. [102] A resource allocation (x1, x2, ..., xn) is α−fair, if for any alternative

resource allocation (y1, y2, ..., yn) it holds:
∑n

j=1
yj−xj
xjα

≤ 0. Given a vector of positive

weights (w1, w2, ..., wn), (x1, x2, ..., xn) is weighted α−fair, if for any alternative resource

allocation (y1, y2, ..., yn) it holds:
∑n

j=1wj
yj−xj
xjα

≤ 0.

The special cases illustrated in Applications 1, 2, and 3 are obtained for the following

values of α: (i) for α = 0, we get the “unfair” utilitarian resource allocation illustrated by

Application 1, (ii) for α = 1, we get the proportionally fair resource allocation illustrated

by Application 2, and (iii) when α → ∞, we get the most egalitarian – max-min fair –

resource allocation illustrated by Application 3.

The trade-off between efficiency and fairness illustrated by the three applications is not
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specific to the network example from Fig. 1.1; this trade off exists in general: the higher

the α, the better the fairness guarantees and the lower the efficiency [8, 19,75].

What makes α−fair resource allocations particularly appealing is that they give rise to

the following concave utility functions, to which we will refer as the α−fair utilities:

fα(xj) =





ln(xj), if α = 1

x1−α
j

1−α , if α 6= 1

. (1.1)

In particular, the expression
∑n

j=1wj
yj−xj
xjα

≤ 0 from Definition 1.4 is the first-order opti-

mality condition for the concave objective of the form:

pα(x) =
n∑

j=1

wjfα(xj). (1.2)

Therefore, if we are only interested in finding an α−fair vector over some fixed convex and

compact feasible region R, then such a vector can be find through convex programming

[24,104], by solving the problem max{pα(x) : x ∈ R}.
We remark here that that even though α−fair resource allocation vector converges to

the max-min fair one as α tends to infinity, the problem of finding a max-min fair resource

allocation vector over some convex and compact feasible region cannot be expressed as a

convex program. The reason is that when α → ∞, fα(xj) becomes −∞ for xj ∈ [0, 1] and

zero for xj > 1, and, therefore, pα is not even continuous. However, max-min fair resource

allocation problems often have combinatorial structure and are amenable to polynomial-

time algorithms that do not fall into the category of convex programming algorithms.

Finally, we note that (α−fair or any other) resource allocation problems defined over

non-convex regions are generally hard to tackle with the techniques that are currently

known. In some special cases, it is possible to address these problems with algorithms that

are guaranteed to converge to a stationary point (a saddle point or a local maximum) in

polynomial time, and, moreover, such algorithms perform very well in practice. We will

discuss one such class of problems in the second part of the thesis, by closely examining the

structure of power allocation problems in full-duplex wireless networks.
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1.2 Summary of Contributions

1.2.1 α−Fair Resource Allocation

The first part of the thesis is devoted to the study of α−fair resource allocations for α > 0.

Chapter 2 describes a generic distributed algorithm for determining α−fair allocations over

the region determined by positive linear constraints of the form Ax ≤ b, x ≥ 0, where A

is a matrix with non-negative elements and b is a vector with strictly positive elements.

The algorithm’s convergence time (number of distributed iterations) is poly-logarithmic in

parameters describing the problem (i.e., poly-logarithmic in the input size), and polynomial

in ε−1, where ε is the accuracy parameter, for any α = O
(

poly−log(input size)
poly(ε)

)
.

The described algorithm is the first distributed algorithm for α−fair resource allocation

with the convergence time that is poly-logarithmic in the input size. Previous algorithms

such as [16, 103] are pseudo-polynomial and have convergence time that is at least linear

in some of the input parameters, such as number of variables, number of constraints, and

matrix width (the ratio between the largest and the smallest non-zero elements). Moreover,

the algorithm is stateless: it is self-stabilizing, allows asynchronous updates, and allows in-

cremental and local adjustments [10,11]. Statelessness is a desirable property of distributed

algorithms because such algorithms are fault-tolerant and do not require coordination be-

tween the distributed agents. Only few stateless algorithms are known, mainly for different

types of linear programming (LP) problems [9, 11,45].

In Chapter 3, we turn to one prominent application of fair resource allocation in wireless

networks, namely, to energy harvesting networks. An example of an energy harvesting net-

work is illustrated in Fig. 1.2. Such networks consist of small, ultra-low-powered recharge-

able wireless devices that can harvest energy such as e.g., energy from the indoor or outdoor

light, motion, and temperature gradient. The devices sense data from the environment and

forward them to a central computer. The available energy of the devices is primarily spent

on sensing, sending, and receiving the data. The described networks can be used for mon-

itoring information such as e.g., temperature, air pressure, or radiation levels over large

geographic areas, where it is difficult or impossible to replace sensor devices’ batteries, and

it is highly desirable that the network can operate perpetually.
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Figure 1.2: A simple energy harvesting network: the nodes sense the environment and

forward the data to a sink s. Each node has a battery of capacity B. At time t a node i’s

battery level is bi,t, it harvests ei,t units of energy, and senses at data rate λi,t.

We first motivate the fairness in wireless energy harvesting networks and comment

on the cases in which the algorithm described in Chapter 2 can be applied. Then, we

discuss the energy-harvesting network cases with high variability of energy sources, such

as, e.g., networks that harvest energy from outdoor light. In such networks, to ensure that

the sensing information is collected from all parts of the networks and that the nodes do

not run out of energy when there is no energy available for harvesting (e.g., overnight),

guaranteeing fairness over both nodes and time is extremely important. Therefore, we

consider the problem of max-min fair rate allocation and route assignment over sensor

nodes and time. Such a problem generalizes the classical, well-studied, fair network flow

problems, such as, e.g., [67, 100]. We perform a thorough study of max-min fair resource

allocation and routing problems in energy harvesting networks, providing complexity results

for problems that are NP-hard and polynomial-time algorithms for those that are not.

1.2.2 Resource Allocation in Full-Duplex Networks

The second part of the thesis is devoted to the study of resource allocation problems in

full-duplex networks. A full-duplex wireless node is a node that supports full-duplex com-

munication – namely, the simultaneous transmission and reception on the same frequency

channel. While the concept of full-duplex communication sounds quite simple, in practice

such a communication is hindered by numerous challenges. The basic challenge is the fea-

sibility of such a communication: in legacy wireless systems, such as Wi-Fi and LTE, the

transmitted signal is billions of times stronger than the useful signal at the receiver. Since

the transmitted signal cannot be perfectly isolated from the received signal, trying to re-

cover the useful signal at the receiver can be compared to trying to hear a person whispering
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in a different room while at the same time yelling from the top of your lungs.

The challenges related to full-duplex communication that are the main subject here are

those related to the resource allocation. The results we obtain are essential building blocks

for future scheduling and resource allocation algorithms for Wi-Fi and cellular networks that

support full-duplex operation and guarantee fairness between the new full-duplex users and

legacy half-duplex users. The fairness guarantees in these networks particularly play a role

in supporting various classes of traffic and guaranteeing Quality of Service (QoS).

Specifically, since it is extremely challenging to cancel self-interference to the extent that

it can be deemed negligible, the residual self-interference needs to be taken into account

when allocating wireless resources (time, power, and frequency channels) to users. For most

models of residual self-interference that are grounded in realistic full-duplex transceiver

models and implementations [20, 125, 127], the residual self-interference on any frequency

channel comprises a constant fraction of the transmitted signal on that channel, where the

“constant fraction” may be different for each channel. For small form-factor full-duplex

transceiver implementations (such as those that can be used in a smartphone), the residual

self-interference can vary wildly with the frequency. These characteristics of residual self-

interference give rise to several challenging non-convex resource allocation problems with

which we deal in the second part of the thesis.

We start by introducing the models of residual self-interference in Chapter 4, for large

form-factor full-duplex transceivers (such as those that can be used in a base station or an

access point) and small form-factor full-duplex transceivers, based on the work presented

in [127]. Based on these models, we consider resource (frequency, time, and transmission

power) allocation problems, with different objectives.

The basic use cases of full-duplex that we consider are illustrated in Fig. 1.3, where one

station is designated as the base station (BS), while the remaining stations are designated

as mobile stations (MS). The communication channel from an MS to the BS is referred to

as the uplink (UL), while the communication channel from the BS to an MS is referred to as

the downlink (DL). The use cases are: (i) a single-channel bidirectional link, where the BS

and the MS both communicate in full-duplex over a single frequency channel, (ii) two unidi-

rectional single-channel links, where only the BS operates in full-duplex, while the two MSs
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(a) (b) (c)

Figure 1.3: Some possible uses of full-duplex: (a) simultaneous UL and DL for one MS; (b)

UL and DL used by two different MSs and caused inter-node interference (red dashed line),

(c) simultaneous UL and DL over OFDM channels.

operate in half-duplex (i.e., the MSs either transmit or receive), with one MS transmitting

and the other receiving on a single frequency channel, and (iii) a multi-channel bidirec-

tional link, where the BS and the MS communicate in full-duplex over multiple orthogonal

frequency channels, as in, e.g., orthogonal frequency division multiplexing (OFDM).

In Chapter 5, we consider the problem of allocating power levels over, possibly multiple,

channels to maximize the sum of the UL and DL rates (i.e., to find a utilitarian allocation

of the rates). Even though the sum rate maximization problems for the three use cases

turn out be non-convex, we provide analytical results for the single-channel use cases ((i)

and (ii)) and address the multi-channel use case (iii) algorithmically. These results allow

us to determine under what settings for the residual self-interference and wireless channel

states the use of full-duplex improves the rates over legacy half-duplex. Our results also

quantify the achievable rate improvements. To illustrate the results, we provide numerical

evaluations throughout Chapter 5.

While the results from Chapter 5 provide quantification of the highest achievable rate

improvements together with the power allocation that leads to these improvements, they

are only valid for one particular pair of UL and DL rates: the one that maximizes the sum

of the rates. In practice, however, it is often the case that one of the two (UL and DL)

rates has higher requirements than the other. In such cases, it is in general not true that

the utilitarian rate allocation satisfies those asymmetric rate requirements.

To address the resource allocation problems under different UL and DL rate requirements

or priorities, in Chapter 6 we consider the problem of maximizing one of the UL and DL
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rates when the other rate is fixed, focusing on use cases (i) and (iii)1. While such resource

allocation problems are generally non-convex, we provide several analytic and algorithmic

results to address those problems by closely examining the problems’ structure.

The results for resource allocation that maximizes one of the rates when the other rate

is fixed allow us to construct the FD capacity region, namely, the region of all achievable

FD UL and DL rate pairs. These capacity regions are not convex in general. However, since

most legacy wireless systems rely on time sharing between the UL and the DL transmissions

to obtain different combinations of the UL and DL rates, it is possible to leverage the time

sharing to obtain different convex combinations of various FD rate pairs. The introduction

of time sharing into the FD systems effectively extends the FD capacity region to its convex

hull. We refer to the systems that combine time sharing with FD as time division full-

duplex (TDFD) systems, and to their capacity regions as TDFD capacity regions. Legacy

(half-duplex) time sharing systems are known as time division duplex (TDD) systems.

The possibility of maximizing one of the (UL and DL) rates while the other is fixed

provides a black-box representation of one of the rates as a function of the other, at the

boundary of the capacity region. As discussed above, in TDFD systems, such a function is

necessarily concave, since TDFD systems are always convex. The black-box representation

of one of the rates as the function of the other enables formulating resource allocation

problems with various objectives of the UL and DL rates as convex optimization problems.

As an example, using such a black-box representation makes it possible to find an α−fair

allocation of the UL and the DL rates through convex programming, for any α ∈ [0,∞).

1.3 Contributions to Literature

The work on α−fairness described in Chapter 2 was published in the proceedings of EATCS

ICALP’16 [90], while the full version of the paper is available on arXiv [91].

The results described in Chapter 3 were published in the proceedings of ACM Mobi-

Hoc’14 [85] and are to appear in Algorithmica [87]. The full version of the paper is available

1As we will see in Chapter 5, the UL and DL rates as functions of the transmission power levels are

equivalent in cases (i) and (ii), so any results for use case (i) also apply to use case (ii).
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on arXiv [86].

Modeling of the residual self-interference based on a flat-phase-and-amplitude compact

FD receiver implementation from [125, 127] described in Chapter 4 and the results from

Chapter 5 were presented at IEEE Power Amplifier Symposium [129] and published in

the proceedings of ACM SIGMETRICS’15 [92], while the journal version is to appear in

IEEE/ACM Transactions on Networking [93]. The full version of the paper [92, 93] is

available on arXiv [94].

The results described in Chapter 6 appeared in the proceedings of ACM MobiHoc’16 [95].

An extended version of the conference paper was recently submitted for journal publication

[96], while the full version of the paper is available on arXiv [97].

The work on full-duplex described in the thesis was performed as a part of FlexICoN

project at Columbia University. The overview of the results spanning the entire project

(including the work presented here) was submitted to IEEE Communications Magazine

[130], Asilomar’16 [72], and ACM HotWireless’16 [88] as invited papers. The joint work on

testbed development appeared as a demo in the proceedings of ACM MobiHoc’16 [31].

In addition to the thesis work, the author has also contributed to education through

the development of the first cellular networking teaching lab, the work that won the best

educational paper award and appeared in the proceedings of The Second GENI Research

and Educational Experiment Workshop (GREE2013) [89].
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Algorithms and Applications
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Chapter 2

Stateless and Distributed α−Fair

Packing

Over the past two decades, fair resource allocation problems have received considerable at-

tention in many application areas, including Internet congestion control [80], rate control in

software defined networks [98], scheduling in wireless networks [121], multi-resource alloca-

tion and scheduling in datacenters [23,47,56,60], and a variety of applications in operations

research, economics, and game theory [19,58]. In most of these applications, positive linear

(packing) constraints arise as a natural model of the allowable allocations.

We focus on the problem of finding an α-fair vector on the set determined by packing

constraints Ax ≤ 1, x ≥ 0 where all Aij ≥ 0.1 We refer to this problem as α−fair packing.

Distributed algorithms for α−fair packing are of particular interest, as many applica-

tions are inherently distributed (such as, e.g., network congestion control), while in others

parallelization is highly desirable due to the large problem size (as in, e.g., resource alloca-

tion in datacenters). We adopt the model of distributed computation commonly used in the

design of packing linear programming (LP) algorithms [6,11,14,73,81,108] and which gen-

eralizes the model from network congestion control [63]. In this model, an agent j controls

1Although in the network congestion control literature the constraint matrix A is commonly assumed

to be a 0-1 matrix [62, 63, 80, 102, 107, 121], important applications (such as, e.g., multi-resource allocation

in datacenters) are modeled by a more general constraint matrix A with arbitrary non-negative elements

[23,47,56,60].
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the variable xj and has information about: (i) the jth column of the m×n constraint matrix

A, (ii) the weight wj , (iii) upper bounds on the global problem parameters m,n,wmax, and

Amax, where wmax = maxj wj , and Amax = maxij Aij , and (iv) in each round, the relative

slack of each constraint i in which xj takes part.

Distributed algorithms for α−fair resource allocations have been most widely studied

in the network congestion control literature, using a control-theoretic approach [62, 63, 80,

102, 107, 121]. Such an approach yields continuous-time algorithms that converge after

“finite” time; however, the convergence time of these algorithms as a function of the input

size is poorly understood. Some other distributed pseudo-polynomial-time approximation

algorithms that can address α-fair packing are described in Table 2.1. These algorithms all

have convergence times that are at least linear in the parameters describing the problem.

No previous work has given truly fast (poly-log iterations) distributed algorithms for

the general case of α-fair packing. Only for the unfair α = 0 case (packing LPs), are such

algorithms known [6,11,14,73,81,122].

Our Results

We provide the first efficient, distributed, and stateless algorithm for weighted α-fair packing,

namely, for the problem

max{pα(x) : Ax ≤ 1, x ≥ 0},

where distributed agents update the values of xj ’s asynchronously and react only to the

current state of the constraints. We assume that all non-zero entries Aij of matrix A satisfy

Aij ≥ 1. Considering such a normalized form of the problem is without loss of generality

(see Appendix A.1).

The approximation provided by the algorithm, to which we refer as the ε-approximation,

is (i) (1 + ε)-multiplicative for α 6= 1, and (ii) Wε-additive2 for α = 1, where W =
∑

j wj .

The main results are summarized in the following theorem, where, to unify the statement

of the results, we treat α as a constant that is either equal to 1 or bounded away from 0

2Note that W cannot be avoided here, as additive approximation is not invariant to the scaling of the

objective.
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and 1, and we also loosen the bound in terms of ε−1, n,m,Rw = maxj,k wj/wk, and Amax.

For a more detailed statement, see Theorems 2.2 – 2.4.

Theorem 2.1. (Main Result) For a given weighted α-fair packing problem

pα(x) ≡ max
{∑

j

wjfα(xj) : Ax ≤ 1, x ≥ 0
}
,

where fα(xj) is given by (1.1), there exists a stateless and distributed algorithm (α-FairP-

Solver) that computes an ε-approximate solution in O(ε−5 ln4(RwnmAmaxε
−1)) rounds.

To the best of our knowledge, for any constant approximation parameter ε, our algorithm

is the first distributed algorithm for weighted α-fair packing problems with a poly-logarithmic

convergence time.

The algorithm is stateless according to the definition given by Awerbuch and Khan-

dekar [10, 11]: it starts from any initial state, the agents update the variables xj in a

cooperative but uncoordinated manner, reacting only to the current state of the constraints

that they observe, and without access to a global clock. Statelessness implies various desir-

able properties of a distributed algorithm, such as: asynchronous updates, self-stabilization,

and incremental and local adjustments [10, 11]. Such properties are essential for the appli-

cations where the distributed network changes dynamically and lacks coordination, such as,

e.g., Internet congestion control and wireless sensor and energy harvesting networks.

We also obtain the following structural results that characterize α−fair packing alloca-

tions as a function of the value of α:

• We derive a lower bound on the minimum coordinate of the α−fair packing allocation

as a function of α and the problem parameters (Lemma 2.30). This bound deepens our

understanding of how the fairness (a minimum allocated value) changes with α.

• We prove that for α ≤ ε/4
ln(nAmax/ε)

, α−fair packing can be O(ε)−approximated by any

ε−approximation packing LP solver (Lemma 2.31). This result allows us to focus on the

α > ε/4
ln(nAmax/ε)

cases.

• We show that for |α−1| = O(ε2/ln2(ε−1RwmnAmax)), α−fair allocation is ε−approximated

by a 1−fair allocation returned by our algorithm (Lemmas 2.32 and 2.33).

• We show that for α ≥ ln(RwnAmax)/ε, the α−fair packing allocation x∗ and the max-min
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fair allocation z∗ are ε-close to each other: (1− ε)z∗ ≤ x∗ ≤ (1 + ε)z∗ element-wise. This

result is especially interesting as (i) max-min fair packing is not a convex problem, but

rather a multi-objective problem (see, e.g., [68, 110]) and (ii) the result leads to the first

convex relaxation of max-min fair allocation problems with a 1± ε gap.

We now overview some of the main technical details of α-FairPSolver. In doing so,

we point out connections to the two main bodies of previous work, from packing LPs [11]

and network congestion control [62]. We also outline the new algorithmic ideas and proofs

that were needed to obtain the results.

The algorithm and KKT conditions

The algorithm maintains primal and dual feasible solutions and updates each primal vari-

able xj whenever a Karush-Kuhn-Tucker (KKT) condition xj
α
∑

i yiAij = wj is not ap-

proximately satisfied. In previous work, relevant update rules include: [62] (for α = 1),

where the update of each variable xj is proportional to the difference wj − xjα
∑

i yiAij ,

and [11] (for α = 0), where each xj is updated by a multiplicative factor 1 ± β, whenever

xj
α
∑

i yiAij = wj is not approximately satisfied. For our techniques (addressing a general

α) such rules do not suffice and we introduce the following modifications: (i) in the α < 1

case we use multiplicative updates by factors (1 + β1) and (1− β2), where β1 6= β2 and (ii)

we use additional threshold values δj to make sure that xj ’s do not become too small. These

thresholds guarantee that we maintain a feasible solution, but they significantly complicate

(compared to the linear case) the argument that each step makes a significant progress.

Dual Variables

In α-FairPSolver, a dual variable yi is an exponential function of the ith constraint’s

relative slack: yi(x) = C · eκ(
∑
j Aijxj−1), where C and κ are functions of global input

parameters α,wmax, n,m, and Amax. Packing LP algorithms [6, 11, 14, 43, 44, 71, 109] use

similar dual variables with C = 1. Our work requires choosing C to be a function of

α,wmax, n,m,Amax rather than a constant.
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Paper Number of Distributed Iterations3 Statelessness Notes

[33] Ω(ε−1nAmax) Semi-stateless4 Only for α = 1

[16] Ω(ε−1mnAmax
2) Not stateless

[103] poly(ε−1,m, n,Amax) Semi-stateless

[this work] O(ε−5ln4(RwmnAmax/ε)) Stateless

Table 2.1: Comparison among distributed algorithms for α−fair packing.

Convergence Argument

The convergence analysis of α-FairPSolver relies on the appropriately chosen concave

potential function that is bounded below and above for xj ∈ [δj , 1], ∀j, and that increases

with every primal update. The algorithm can also be interpreted as a gradient ascent

on a regularized objective function (the potential function), using a generalized entropy

regularizer (see [4, 6]). A similar potential function was used in many works on packing

and covering linear programs, such as, e.g., in [11] and (implicitly) in [122]. The Lyapunov

function from [62] is also equivalent to this potential function when yi(x) = C ·eκ(
∑
j Aijxj−1),

∀i. As in these works, the main idea in the analysis is to show that whenever a solution x is

not “close” to the optimal one, the potential function increases substantially. However, our

work requires several new ideas in the convergence proofs, the most notable being stationary

rounds. A stationary round is roughly a time when the variables xj do not change much and

are close to the optimum. Poly-logarithmic convergence time is then obtained by showing

that: (i) there is at most a poly-logarithmic number of non-stationary rounds where the

potential function increases additively and the increase is “large enough”, and (ii) in all the

remaining non-stationary rounds, the potential function increases multiplicatively.

3The convergence times in [16, 33, 103] are not stated only in terms of the input parameters, but also

in terms of intermediary parameters that depend on the problem structure. Stated here are our lowest

estimates of the worst-case convergence times.

4A distributed algorithm is semi-stateless, if all the updates depend only on the current state of the

constraints, the updates are performed in a cooperative but non-coordinated manner, and the updates need

to be synchronous [6].
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2.1 Related Work

Very little progress has been made in the design of efficient distributed algorithms for the

general class of α-fair objectives. Classical work on distributed rate control algorithms in the

networking literature uses a control-theoretic approach to optimize α-fair objectives. While

such an approach has been extensively studied and applied to various network settings

[62,63,80,102,107,121], it has never been proven to have polynomial convergence time (and

it is unclear whether such a result can be established).

Since α-fair objectives are concave, their optimization over a region determined by linear

constraints is solvable in polynomial time in a centralized setting through convex program-

ming (see, e.g., [24, 104]). Distributed gradient methods for network utility maximization

problems, such as e.g., [16, 103] summarized in Table 2.1, can be employed to address the

problem of α-fair packing. However, the convergence times of these algorithms depend on

the dual gradient’s Lipschitz constant to produce good approximations. While [16, 103]

provide a better dependence on the accuracy ε than our work, the dependence on the dual

gradient’s Lipschitz constant, in general, leads to at least linear convergence time as a

function of n, m, and Amax.

As mentioned before, some special cases have been addressed, particularly for max-

min fairness (α → ∞) and for packing LPs (α = 0). Relevant work on max-min fairness

includes [17,27,57,68,74,85,100], but none of these works have poly-logarithmic convergence

time. There is a long history of interesting work on packing LPs in both centralized and

distributed settings, e.g., [4, 6, 11, 14, 44, 45, 71, 73, 81, 109, 122]. Only a few of these works

are stateless, including the packing LP algorithm of Awerbuch and Khandekar [11], flow

control algorithm of Garg and Young [45], and the algorithm of Awerbuch, Azar, and

Khandekar [9] for the special case of load balancing in bipartite graphs. Additionally, the

packing LP algorithm of Allen-Zhu and Orecchia [6] is “semi-stateless”; the lacking property

to make it stateless is that it requires synchronous updates.

The α = 1 case of α-fair packing problems is equivalent to the problem of finding an

equilibrium allocation in Eisenberg-Gale markets with Leontief utilities (see [33]). Similar

to the aforementioned algorithms, the algorithm from [33] converges in time linear in ε−1

but also (at least) linear in the input size (see Table 1).
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In terms of the techniques, closest to our work is the work by Awerbuch and Khandekar

[11] and we now highlight the differences compared to this work. Some preliminaries of

the convergence proof follow closely those from [11]: mainly, Lemmas 2.5, 2.7, and 2.10

use similar arguments as corresponding lemmas in [11]. Some parts of the lemmas lower-

bounding the potential increase in α < 1, α = 1, and α > 1 cases (Lemmas 2.11, 2.17, and

2.23) use similar arguments as [11], however, even those parts require additional results due

to the existence of lower thresholds δj .

The similarity ends here, as the main convergence arguments are different than those

used in [11]. In particular, the convergence argument from [11] relying on stationary in-

tervals cannot be applied in the setting of α−fair objectives. More details about why this

argument cannot be applied and where it fails are provided in Section 2.4. As already men-

tioned, we rely on the appropriately chosen definition of a stationary round. To show that

in a stationary round a solution x is ε−approximate, we use Lagrangian duality and bound

the duality gap through an intricate case analysis. We remark that such an argument could

not have been used in [11], since in the packing LP case there is no guarantee that the

solution y is dual-feasible.

2.2 Preliminaries

Weighted α-Fair Packing

Consider the following optimization problem with positive linear (packing) constraints:

(Qα) = max{pα(x) ≡ ∑n
j=1wjfα(xj) : Ax ≤ b, x ≥ 0}, where fα(xj) is given by (1.1),

x = (x1, ..., xn) is the vector of variables, A is an m×n matrix with non-negative elements,

and b = (b1, ..., bm) is a vector with strictly positive5 elements. We refer to (Qα) as the

weighted α-fair packing.

As discussed in Introduction, the optimal solution to (Qα) is indeed the weighted α−fair

factor for weights (w1, w2, ..., wn) and the feasible region determine by the constraints from

(Qα) (see Definition 1.4). In the rest of the thesis, we will use the terms weighted α-fair

and α-fair interchangeably.

5If, for some i, bi = 0, then trivially xj = 0, for all j such that Aij 6= 0.
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Notice in (Qα) that since bi > 0, ∀i, and the partial derivative of the objective with

respect to any of the variables xj goes to ∞ as xj → 0, the optimal solution must lie

in the positive orthant. Moreover, since the objective is strictly concave and maximized

over a convex region, the optimal solution is unique and (Qα) satisfies strong duality (see,

e.g., [24]). The same observations are true for the scaled version of the problem denoted by

(Pα) and introduced in the following subsection.

Normalized Form

We consider the weighted α-fair packing problem in the normalized form:

(Pα) = max
{
pα(x) : Ax ≤ 1, x ≥ 0

}
,

where pα(x) =
∑n

j=1wjfα(xj), fα is defined by (1.1), w = (w1, ..., wn) is a vector of

positive weights, x = (x1, ..., xn) is the vector of variables, A is an m × n matrix with

non-negative entries, and 1 is a size-m vector of 1’s. We let Amax denote the maximum

element of the constraint matrix A, and assume that every entry Aij of A is non-negative,

and moreover, that Aij ≥ 1 whenever Aij 6= 0. The maximum weight is denoted by wmax

and the minimum weight is denoted by wmin. The sum of the weights is denoted by W

and the ratio wmax
wmin

by Rw. We remark that considering problem (Qα) in the normalized

form (Pα) is without loss of generality: any problem (Qα) can be scaled to this form by (i)

dividing both sides of each inequality i by bi and (ii) working with scaled variables c · xj ,
where c = min{1, min{i,j:Aij 6=0}

Aij
bi
}. Moreover, such scaling preserves the approximation

(see Appendix A.1).

KKT Conditions and Duality Gap

We will denote the Lagrange multipliers for (Pα) as y = (y1, ..., ym) and refer to them as

“dual variables”. The KKT conditions for (Pα) are (see Appendix A.2):

n∑
j=1

Aijxj ≤ 1, ∀i ∈ {1, ...,m}; xj ≥ 0, ∀j ∈ {1, ..., n} (primal feasibility) (K1)

yi ≥ 0, ∀i ∈ {1, ...,m} (dual feasibility) (K2)
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yi ·
( m∑
j=1

Aijxj − 1
)

= 0, ∀i ∈ {1, ...,m} (complementary slackness)

(K3)

xj
α
m∑
i=1

yiAij = wj , ∀j ∈ {1, ...,m} (gradient conditions) (K4)

The duality gap for α 6= 1 is (see Appendix A.2):

Gα(x, y) =
n∑
j=1

wj
xj

1−α

1− α
(
ξj

α−1
α − 1

)
+

m∑
i=1

yi −
n∑
j=1

wjx
1−α
j · ξj

α−1
α , (2.1)

where ξj =
xj
α
∑m
i=1 yiAij
wj

, while for α = 1:

G1(x, y) = −
n∑
j=1

wj ln
(xj

∑m
i=1yiAij
wj

)
+

m∑
i=1

yi −W. (2.2)

Model of Distributed Computation

We adopt the same model of distributed computation as [6, 11,14,73,81,108], described as

follows. We assume that for each j ∈ {1, ..., n}, an agent controls the variable xj . Agent j is

assumed to have information about the following problem parameters: (i) the jth column of

A, (ii) the weight wj , and (iii) (an upper bound on) m,n,wmax, and Amax. In each round,

agent j collects the relative slack6 1−∑n
j=1Aijxj of all constraints i for which Aij 6= 0.

This model of distributed computation is a generalization of the model considered in

network congestion control problems [63] where a variable xj corresponds to the rate of node

j, A is a 0-1 routing matrix, such that Aij = 1 if and only if a node j sends flow over link

i, and b is the vector of link capacities. Under this model, the knowledge about the relative

slack of each constraint corresponds to each node collecting (a function of) congestion on

each link that it utilizes. Such a model was used in network utility maximization problems

with α-fair objectives [62] and general strongly-concave objectives [16].

2.3 Algorithm

The pseudocode for the α-FairPSolver algorithm that is run at each node j is provided

in Fig 1. The basic intuition is that the algorithm keeps KKT conditions (K1) and (K2)

6The slack is “relative” because in a non-scaled version of the problem where one could have bi 6= 1,

agent j would need to have information about
bi−

∑n
j=1 Aijxj

bi
.
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satisfied and works towards (approximately) satisfying the remaining two KKT conditions

(K3) and (K4) to minimize the duality gap. The algorithm can run in the distributed setting

described in Section 3.2. In each round, an agent j updates the value of xj based on the

relative slack of all the constraints in which j takes part, as long as the KKT condition (K4)

is not approximately satisfied for j. The updates need not be synchronous: we will require

that all agents make updates at the same speed, but without access to a global clock.

α-FairPSolver(ε)

(Parameters δj , C, κ, γ, β1, and β2 are set as described in the text below the algorithm.)

In each round of the algorithm:

1: xj ← max{xj , δj}, xj = min{xj , 1}
2: Update the dual variables: yi = C · eκ(

∑n
j=1 Aijxj−1) ∀i ∈ {1, ...,m}

3: if
xj
α·

∑m
i=1 yiAij
wj

≤ (1− γ) then

4: xj ← xj · (1 + β1)

5: else

6: if
xj
α·

∑m
i=1 yiAij
wj

≥ (1 + γ) then

7: xj ← max{xj · (1− β2), δj}

Figure 2.1: Pseudocode of α-FairPSolver algorithm.

To allow for self-stabilization and dynamic changes, the algorithm runs forever at all the

agents, which is a standard requirement for self-stabilizing algorithms (see, e.g., [39]). The

convergence of the algorithm is measured as the number of rounds between the round in

which the algorithm starts from some initial solution and the round in which it reaches an

ε−approximate solution, assuming that there are no hard reset events or node/constraint

insertions/deletions in between.

Without loss of generality, we assume that the input parameter ε that determines the

approximation quality satisfies ε ≤ min{1
6 ,

9
10α} for any α, and ε ≤ 1−α

α for α < 1. The

parameters δj , C, κ, γ, β1, and β2 are set as follows. For technical reasons (mainly due to

reinforcing dominant multiplicative updates of the variables xj), we set the values of the

lower thresholds δj below the actual lower bound of the optimal solution that we derive in
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Lemma 2.30:

δj =

(
1

2
· wj
wmax

)1/α

·





(
1

m·n2·Amax

)1/α
, if 0 < α ≤ 1

1
m·n2Amax

2−1/α , if α > 1

.

We denote δmax ≡ maxj δj , δmin ≡ minj δj . The constant C that multiplies the exponent

in the dual variables yi is chosen as C = W∑n
j=1 δj

α . Because δj only depends on wj and on

global parameters, we also have C =
wj
δj
α , ∀j. The parameter κ that appears in the exponent

of the yi’s is chosen as κ = 1
ε ln

(
CmAmax
εwmin

)
. The “absolute error” of (K4) γ is set to ε/4. For

α ≥ 1, we set β1 = β2 = β, where the choice of β is described below. For α < 1, we set

β1 = β, β2 = β2(ln( 1
δmin

))−1.

Similar to [11], we choose the value of β so that if we set β1 = β2 = β, in any round the

value of each
xj
α
∑m
i=1 yi(x)Aij
wj

changes by a multiplicative factor of at most (1± γ/4). Since

the maximum increase over any xj in each iteration is by a factor 1 + β, and x is feasible

in each round (see Lemma 2.5), we have that
∑n

j=1Aijxj ≤ 1, and therefore, the maximum

increase in each yi is by a factor of eκβ. A similar argument holds for the maximum decrease.

Hence, we choose β so that:

(1 + β)αeκβ ≤ 1 + γ/4 and (1− β)αe−κβ ≥ 1− γ/4,

and it suffices to set:

β =





γ
5(κ+1) , if α ≤ 1

γ
5(κ+α) , if α > 1

.

Remark: In the α < 1 cases, since β2 = β2(ln(1/δmin))−1, the maximum decrease in

xj
α
∑
i yi(x)Aij
wj

is by a factor (1− (γ/4) · β(ln(1/δmin))−1), ∀j.

2.4 Convergence Analysis

In this section, we analyze the convergence time of α-FairPSolver. We first state our

main theorems and provide some general results that hold for all α > 0. We show that

starting from an arbitrary solution, the algorithm reaches a feasible solution within poly-

logarithmic (in the input size) number of rounds, and maintains a feasible solution forever

after. Similar to [11, 62, 122], we use a concave potential function that, for feasible x, is
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bounded below and above and increases with any algorithm update. Then, we analyze the

convergence time separately for three cases: α < 1, α = 1, and α > 1. With an appropriate

definition of a stationary round for each of the three cases, we show that in every stationary

round, x approximates “well” the optimal solution by bounding the duality gap. On the

other hand, for any non-stationary round, we show that the potential increases substantially.

This large increase in the potential then leads to the conclusion that there cannot be too

many non-stationary rounds, thus bounding the overall convergence time.

We make a few remarks here. First, we require that α be bounded away from zero. This

requirement is without loss of generality because we show that when α ≤ ε/4
ln(nAmax/ε)

, any

ε−approximation LP provides a 3ε−approximate solution to (Pα) (Lemma 2.31). Thus,

when α ≤ ε/4
ln(nAmax/ε)

we can switch to the algorithm of [11], and when α > ε/4
ln(nAmax/ε)

, the

convergence time remains poly-logarithmic in the input size and polynomial in ε−1. Second,

the assumption that ε ≤ 1−α
α in the α < 1 case is also without loss of generality, because we

show that when α is close to 1 (roughly, 1−O(ε2/ ln2(RwmnAmax/ε))), we can approximate

(Pα) by switching to the α = 1 case of the algorithm (Lemma 2.32). Finally, when α > 1, the

algorithm achieves an ε−approximation in time O(α4ε−4 ln2(RwnmAmaxε
−1)). We believe

that a polynomial dependence on α is difficult to avoid in this setting, because by increasing

α, the gradient of the α-fair utilities fα blows up on the interval (0, 1): as α increases, fα(x)

quickly starts approaching a step function that is equal to −∞ on the interval (0, 1] and

equal to 0 on the interval (1,∞]. To characterize the behavior of α−fair allocations as

α becomes large, we show that when α ≥ ε−1ln(RwnAmax), all the coordinates of the

α−fair vector are within a 1 ± ε multiplicative factor of the corresponding coordinates of

the max-min fair vector (Lemma 2.35).

Finally, we note that the main convergence argument from [11] that uses an appropri-

ate definition of stationary intervals does not extend to our setting. The proof from [11]

“breaks” in the part that shows that the solution is ε−approximate throughout any station-

ary interval, stated as Lemma 3.7 in [11]. The proof of Lemma 3.7 in [11] is by contradiction:

assuming that the solution is not ε−approximate, the proof proceeds by showing that at

least one of the variables would increase in each round of the stationary interval, thus even-

tually making the solution infeasible and contradicting one of the preliminary lemmas. For
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α ≥ 1, unlike the linear objective in [11], α-fair objectives are negative, and the assumption

that the solution is not ε−approximate does not lead to any conclusive information. For

α < 1, adapting the proof of Lemma 3.7 from [11] leads to the conclusion that for at least

one j, in each round t of the stationary interval
(x∗j )α

∑
i yi(x

t)Aij
wj

≤ 1 − γ, where x∗ is the

optimal solution, and xt is the solution at round t. In [11], where α = 0, this implies that

xj increases in each round of the stationary interval, while in our setting (α > 0) it is not

possible to draw such a conclusion.

Main Results. Our main results are summarized in the following three theorems. The

objective is denoted by pα(x), xt denotes the solution at the beginning of round t, and x∗

denotes the optimal solution.

Theorem 2.2. (Convergence for α < 1) α-FairPSolver solves (Pα) approximately for

α < 1 in time that is polynomial in ln(nmAmax)
αε . In particular, after at most

O
(
α−2ε−5 ln2 (RwmnAmax) ln2

(
ε−1RwmnAmax

))
(2.3)

rounds, there exists at least one round t such that pα(x∗)−pα(xt) ≤ εpα(xt). Moreover, the

total number of rounds s in which pα(x∗)− pα(xs) > εpα(xs) is also bounded by (2.3).

Theorem 2.3. (Convergence for α = 1) α-FairPSolver solves (P1) approximately in

time that is polynomial in ε−1 ln(RwnmAmax). In particular, after at most

O
(
ε−5 ln2 (RwnmAmax) ln2

(
ε−1RwnmAmax

))
(2.4)

rounds, there exists at least one round t such that p(x∗)− p(xt) ≤ εW . Moreover, the total

number of rounds s in which p(x∗)− p(xs) > εW is also bounded by (2.4).

Theorem 2.4. (Convergence for α > 1) α-FairPSolver solves (Pα) approximately for

α > 1 in time that is polynomial in ε−1 ln(nmAmax). In particular, after at most:

O
(
α4ε−4 ln (RwnmAmax) ln

(
ε−1RwnmAmax

))
(2.5)

rounds, there exists at least one round t such that pα(x∗)− pα(xt) ≤ ε(−pα(xt)). Moreover,

the total number of rounds s in which pα(x∗) − pα(xs) > ε(−pα(xs)) is also bounded by

(2.5).
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Feasibility and Approximate Complementary Slackness. The following three lem-

mas are preliminaries for the convergence time analysis. Lemma 2.5 shows that starting

from a feasible solution, the algorithm always maintains a feasible solution. Lemma 2.6

shows that any violated constraint becomes feasible within poly-logarithmic number of

rounds, and remains feasible forever after. Combined with Lemma 2.5, Lemma 2.6 allows

us to focus only on the rounds with feasible solutions x. Lemma 2.7 shows that after a

poly-logarithmic number of rounds, approximate complementary slackness (KKT condition

(K3)) holds in an aggregate sense:
∑m

i=1 yi(x)
(∑n

j=1Aijxj − 1
)
≈ 0.

Lemma 2.5. If the algorithm starts from a feasible solution, then the algorithm maintains

a feasible solution x: xj ≥ 0, ∀j and
∑n

j=1Aijxj ≤ 1, ∀i, in each round.

Proof. By the statement of the lemma, the solution is feasible initially. From the way that

the algorithm makes updates to the variables xj , it is always true that xj ≥ 0, ∀j.
Now assume that x becomes infeasible in some round, and let x0 denote the (feasible)

solution before that round, x1 denote the (infeasible) solution after the round. We have:

n∑

`=1

Ai`x
0
` ≤ 1, ∀i ∈ {1, ...,m}, and

n∑

`=1

Ak`x
1
` > 1, for some k ∈ {1, ...,m}.

For this to be true, x must have increased over at least one coordinate j such that Akj 6= 0.

For such a change to be triggered by the algorithm, it must also be true that:

(x0
j )
α

m∑

i=1

yi(x
0)Aij ≤ wj (1− γ) .

Since, by the choice of β1 = β, this term can increase by a factor of at most 1 + γ/4, it

follows that:

(x1
j )
α

m∑

i=1

yi(x
1)Aij ≤ wj(1− γ)

(
1 +

γ

4

)
< wj .

This further implies:

(x1
j )
αyk(x

1)Akj < wj ,

and since whenever Akj 6= 0 we also have Akj ≥ 1, we get:

(x1
j )
αyk(x

1) < wj . (2.6)



CHAPTER 2. STATELESS AND DISTRIBUTED α−FAIR PACKING 26

On the other hand, since x1
j ≥ δj , δjα =

wj
C , and

∑n
j=1Akjx

1
j > 1:

(x1
j )
αyk(x

1) ≥ wj
C
· C · eκ(

∑n
j=1 Akjx

1
j−1) > wj ,

which contradicts (2.6).

Lemma 2.6. If for any i:
∑n

j=1Aijxj > 1, then after at most τ1 = O( 1
β2

ln(nAmax))

rounds, it is always true that
∑n

j=1Aijxj ≤ 1.

Proof. Suppose that
∑n

j=1Aijxj > 1 for some i. Then yi > C, and for every xj with

Aij 6= 0:

xj
α

m∑

l=1

yl(x)Alj ≥ xjαyi(x)Aij ≥ δjαC ≥ wj > wj(1− γ),

and therefore, none of the variables that appear in i increases.

Since
∑n

j=1Aijxj > 1, there exists at least one xk with Aik 6= 0 such that xk ≥∑n
j=1 Aijxj
Aikn

> 1
nAmax

. For each such xk, since C ≥ 2wmaxnAmax:

xk
α

m∑

l=1

yl(x)Alj ≥ C
1

nAmax
≥ 2wmax > wk(1 + γ),

and therefore, xk decreases (by a factor (1−β2)). As xk ≤ 1, after at most O( 1
β2

ln(nAmax))

rounds in which
∑n

j=1Aijxj > 1, we must have xk ≤ 1
nAmax

, and therefore,
∑n

j=1Aijxj ≤ 1.

Using the same arguments as in the proof of Lemma 2.5, the constraint i never gets

violated again.

Lemma 2.7. If the algorithm starts from a feasible solution, then after at most τ0 =

1
β ln

(
1

δmin

)
rounds, it is always true that:

1. There exists at least one approximately tight constraint: maxi
{∑n

j=1Aijxj
}
≥ 1 −

(1 + 1/κ)ε,

2.
∑m

i=1 yi ≤ (1 + 3ε)
∑n

j=1 xj
∑m

i=1 yiAij, and

3. (1− 3ε)
∑m

i=1 yi ≤
∑n

j=1 xj
∑m

i=1 yiAij ≤
∑m

i=1 yi.

Proof. Suppose that maxi
∑n

j=1Aijxj < 1− ε. Then for each yi we have:

yi ≤ C · e−κε = C · εwmin

CmAmax
=

εwmin

mAmax
.
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Due to Lemma 2.5, we have that x is feasible in every round, which implies that xj ≤ 1 ∀j.
This further gives:

xj
α

m∑

i=1

yiAij ≤ wjε ≤ wj(1− γ),

and, therefore, all variables xj increase by a factor 1 + β. From Lemma 2.5, since the

solution always remains feasible, none of the variables can increase to a value larger than

1. Therefore, after at most τ0 = log1+β

(
1

δmax

)
≤ 1

β ln
(

1
δmax

)
rounds, there must exist at

least one i such that
∑n

j=1Aijxj ≥ 1 − ε. If in any round maxi
∑n

j=1Aijxj decreases, it

can decrease by at most β2
∑n

j=1Aijxj ≤ β
∑n

j=1Aijxj ≤ β < ε
5κ . Therefore, in every

subsequent round

max
i

n∑

j=1

Aijxj > 1−
(

1 +
1

5κ

)
ε.

For the second part of the lemma, let S = {i :
∑n

j=1Aijxj < maxk∈{1,...,m}
∑n

j=1Akjxj−
κ−1
5κ ε} be the set of constraints that are at least “κ−1

5κ ε-looser” than the tightest constraint.

Then for i ∈ S we have

yi ≤ e−
κ−1

5
ε max
k∈{1,...,m}

yk <
ε

m
eε/5 max

k∈{1,...,m}
yk < 1.2

ε

m
max

k∈{1,...,m}
yk.

This further gives:
m∑

i=1

yi =
∑

i∈S
yi +

∑

k/∈S

yk < (1 + 1.2ε)
∑

i/∈S

yi.

Moreover, for each i /∈ S we have yi
∑n

j=1Aijxj ≥ (1− 1.2ε)yi, since for i /∈ S:

n∑

j=1

Aijxj ≥ max
k∈{1,...,m}

Akjxj −
κ− 1

5κ
ε ≥ 1−

(
1 +

1

5κ
+
κ− 1

5κ

)
ε = 1− 1.2ε.

Therefore:
m∑

i=1

yi <
1 + 1.2ε

1− 1.2ε

∑

i/∈S

yi

n∑

j=1

Aijxj

≤ (1 + 3ε)
∑

i/∈S

yi

n∑

j=1

Aijxj (from ε ≤ 1/6)

≤ (1 + 3ε)

m∑

i=1

yi

n∑

j=1

Aijxj .

Interchanging the order of summation in the last line, we reach the desired inequality.

The proof of the last part of the lemma follows from feasibility:
∑

j Aijxj ≤ 1, ∀i
(Lemma 2.5), and from 1

1+3ε ≥ 1− 3ε.



CHAPTER 2. STATELESS AND DISTRIBUTED α−FAIR PACKING 28

Lemmas analogous to 2.5 and 2.7 also appear in [11]. However, the proofs of Lemmas

2.5 and 2.7 require new ideas compared to the proofs of the corresponding lemmas in [11].

We need to be much more careful in our choice of lower thresholds δj and constant C in

the dual variables, particularly by choosing C as a function of several variables, rather than

as a constant. The choice of δj ’s is also sensitive as smaller δj ’s would make the potential

function range too large, while larger δj ’s would cause more frequent decrease of “small”

variables. In either case, the convergence time would increase.

Decrease of Small Variables. The following lemma is also needed for the convergence

analysis. It shows that if some variable xj decreases by less than a multiplicative factor

(1−β2), i.e., xj <
δj

1−β2
and xj decreases, then xj must be part of at least one approximately

tight constraint. This lemma will be used later to show that in any round the increase in the

potential due to the decrease of “small” variables is dominated by the decrease of “large”

variables (i.e., the variables that decrease by a multiplicative factor (1− β2)).

Lemma 2.8. Consider the rounds that happen after the initial τ1 = O( 1
β2

ln(nAmax))

rounds. If in some round there is a variable xj <
δj

1−β2
that decreases, then in the same

round for some i with Aij 6= 0 it holds that: yi(x) ≥
∑m
l=1 Aljyl(x)
mAmax

and
∑n

k=1Aikxk > 1− ε
2 .

Proof. Suppose that some xj <
δj

1−β2
triggers a decrease over the jth coordinate. The first

part of the Lemma is easy to show, simply by using the argument that at least one term of

a summation must be higher than the average, i.e., there exists at least one i with Aij 6= 0

such that:

yi(x)Aij ≥
∑m

l=1Aljyl(x)

m
⇒ yi ≥

∑m
l=1Aljyl(x)

mAmax
.

For the second part, as xj <
δj

1−β2
, we have that:

xj
αyi(x) ≥ xj

α
∑m

l=1Aljyl(x)

mAmax
⇒ yi(x) >

(1− β2)α

δj
α

xj
α
∑m

l=1Aljyl(x)

mAmax
.

Since xj decreases, we have that xj
α
∑m

l=1 yi(x)Alj ≥ wj(1 + γ), and therefore yi(x) >

wj
δj
α

(1+γ)(1−β2)α

mAmax
. Moreover, as yi(x) = C · eκ(

∑n
k=1 Aikxk−1), and C =

wj
δj
α , it follows that:

eκ(
∑n
k=1 Aikxk−1) >

(1 + γ)(1− β2)α

mAmax
. (2.7)
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Observe that for α ≤ 1:

(1 + γ)(1− β2)α ≥ (1 + γ)(1− β2) >
(

1 +
ε

4

)(
1− ε

20(κ+ 1)

)
> 1 >

√
ε, (2.8)

while for α > 1, since εα ≤ 9
10 :

(1 + γ)(1− β2)α ≥ (1 + γ)(1− αβ2) ≥ (1 + γ)
(

1− γεα

5

)
≥ 1 >

√
ε, (2.9)

where we have used the generalized Bernoulli’s inequality for (1 − β2)α ≥ (1 − αβ2) [101],

and then β2 = β = γ
5(κ+α) <

γε
5 . Recalling that κ =

1

ε
ln

(
CmAmax

εwmin

)
, and combining (2.7)

with (2.8) and (2.9):
(

εwmin

CmAmax

) 1−
∑n
k=1 Aikxk
ε

>

√
ε

mAmax
.

Finally, as C ≥ 2wmaxnmAmax, it follows that wminε
CmAmax

≤ εwmin

2wmaxnm2Amax
2 <

( √
ε

mAmax

)2
< 1,

which gives:
1−∑n

k=1Aikxk
ε

<
1

2
⇔

n∑

k=1

Aikxk > 1− ε

2
.

Potential. We use the following potential function to analyze the convergence time:

Φ(x) = pα(x)− 1

κ

m∑

i=1

yi(x),

where pα(x) =
∑n

j=1wjfα(xj) and fα is defined by (1.1). The potential function is strictly

concave and its partial derivative with respect to any variable xj is:

∂Φ(x)

∂xj
=

wj
xjα
−

m∑

i=1

yi(x)Aij =
wj
xjα

(
1− xj

α
∑m

i=1 yi(x)Aij
wj

)
. (2.10)

The following fact (given in a similar form in [11]), which follows directly from the Taylor

series representation of concave functions, will be useful for the potential increase analysis:

Fact 2.9. For a differentiable concave function f : Rn → R and any two points x0, x1 ∈ Rn:

n∑

j=1

∂f(x0)

∂xj
(x1
j − x0

j ) ≥ f(x1)− f(x0) ≥
n∑

j=1

∂f(x1)

∂xj
(x1
j − x0

j ).

Using Fact 2.9 and (2.10), we show the following lemma:
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Lemma 2.10. Starting with a feasible solution and throughout the course of the algorithm,

the potential function Φ(x) never decreases. Letting x0 and x1 denote the values of x before

and after a round update, respectively, the potential function increase is lower-bounded as:

Φ(x1)− Φ(x0) ≥
n∑

j=1

wj

∣∣x1
j − x0

j

∣∣
(x1
j )
α

∣∣∣1−
(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj

∣∣∣.

Proof. Since Φ is concave, using Fact 2.9 and (2.10) it follows that:

Φ(x1)− Φ(x0) ≥
n∑

j=1

wj
x1
j − x0

j

(x1
j )
α

(
1−

(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj

)
. (2.11)

If x1
j = x0

j , then the term in the summation (2.11) corresponding to the change in xj is

equal to zero, and xj has no contribution to the sum in (2.11).

If x1
j−x0

j > 0, then, as xj increases over the observed round, it must be
(x0
j )
α
∑m
i=1 yi(x

0)Aij
wj

≤
1 − γ. By the choice of the parameters,

(x1
j )
α
∑m
i=1 yi(x

1)Aij
wj

≤
(
1 + γ

4

) ( (x0
j )
α
∑m
i=1 yi(x

0)Aij
wj

)
,

and therefore

(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj
≤
(

1 +
γ

4

)
(1− γ) = 1− 3

4
γ − γ2

4
< 1− 3

4
γ. (2.12)

It follows that 1− (x1
j )
α
∑m
i=1 yi(x

1)Aij
wj

> 3
4γ > 0, and therefore

wj
x1
j − x0

j

(x1
j )
α

(
1−

(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj

)
= wj

∣∣x1
j − x0

j

∣∣
(x1
j )
α

∣∣∣∣∣1−
(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj

∣∣∣∣∣.

Finally, if x1
j − x0

j < 0, then it must be
(x0
j )
α
∑m
i=1 yi(x

0)Aij
wj

≥ 1 + γ. By the choice of the

parameters,
(x1
j )
α
∑m
i=1 yi(x

1)Aij
wj

≥
(
1− γ

4

) ( (x0
j )
α
∑m
i=1 yi(x

0)Aij
wj

)
, implying

(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj
≥
(

1− γ

4

)
(1 + γ) = 1 +

3

4
γ − γ2

4
> 1 +

1

2
γ. (2.13)

We get that 1− (x1
j )
α
∑m
i=1 yi(x

1)Aij
wj

< −1
2γ < 0, and therefore

wj
x1
j − x0

j

(x1
j )
α

(
1−

(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj

)
= wj

∣∣x1
j − x0

j

∣∣
(x1
j )
α

∣∣∣∣∣1−
(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj

∣∣∣∣∣ ,

completing the proof.
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2.4.1 Proof of Theorem 2.2

The outline of the proof is as follows. We first derive a lower bound on the potential

increase (Lemma 2.11), which will motivate the definition of a stationary round. Then, for

the appropriate definition of a stationary round we will first show that in any stationary

round, solution is O(ε)−approximate. Then, to complete the proof, we will show in any

non-stationary round there is a sufficiently large increase in the potential function, which,

combined with the bounds on the potential value will yield the result.

The following lemma lower-bounds the increase in the potential function in any round

of the algorithm.

Lemma 2.11. If α < 1 and Φ(x0), x0, y(x0) and Φ(x1), x1, y(x1) denote the values of Φ,

x, and y before and after a round, respectively, and S− = {j : xj decreases}, then if x0 is

feasible:

1. Φ(x1)− Φ(x0) ≥ Ω(β2γ/ ln(1/δmin))
∑

j∈S− wj
(x0
j )

1−α

1−α ;

2. Φ(x1)− Φ(x0) ≥ Ω(β)
(

(1− γ)
∑n

j=1wj(x
0
j )

1−α −∑m
i=1 yi(x

0)
∑n

j=1Aijx
0
j

)
;

3. Φ(x1)− Φ(x0) ≥ Ω
(

β2

ln(1/δmin)

)(∑m
i=1 yi(x

0)
∑n

j=1Aijx
0
j − (1 + γ)

∑n
j=1wj(x

0
j )

1−α
)

.

Proof.

Proof of 1. Observe that for j ∈ S−, x1
j = max{δj , (1−β2)x0

j}. From the proof of Lemma

2.10, we have that:

Φ(x1)− Φ(x0) ≥
∑

j∈S−
wj
x0
j − x1

j

(x1
j )
α

(
(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj
− 1

)
.

The proof that

∑

j∈S−
wj(x

0
j )

1−α
(

(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj
− 1

)

= Θ

( ∑

{j∈S−:x0
j≥

δj
1−β2

}

wj(x
0
j )

1−α
(

(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj
− 1

))

is implied by the proof of part 3 of this lemma (see below). For each j ∈ S−, we have that:
(

(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj
− 1

)
≥ (1 + γ)(1− γ/4)− 1 > γ/2,
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Therefore:

Φ(x1)− Φ(x0) ≥ Ω(γ)
∑

j∈S−
wj

β2x
0
j

(1− β2)(x0
j )
α

= Ω

(
β2γ

1− β2

) ∑

j∈S−
wj(x

0
j )

1−α
.

Proof of 2. Let S+ denote the set of j’s such that xj increases in the current round. Then,

recalling that for j ∈ S+ (x0
j )
α
∑m
i=1 yi(x

0)Aij
wj

≤ 1− γ and that from the choice of parameters
(x1
j )
α
∑m
i=1 yi(x

1)Aij
wj

≤ (1 + γ/4)
(x0
j )
α
∑m
i=1 yi(x

0)Aij
wj

:

Φ(x1)− Φ(x0) ≥
n∑

j=1

wj
x1
j − x0

j

(x1
j )
α

(
1−

(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj

)

≥
∑

j∈S+

wj
x1
j − x0

j

(x1
j )
α

(
1−

(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj

)

≥
∑

j∈S+

wj
x1
j − x0

j

(x1
j )
α

(
1− (1 + γ/4)

(x0
j )
α
∑m

i=1 yi(x
0)Aij

wj

)

≥
∑

j∈S+

wj
x1
j − x0

j

(x1
j )
α

(
(1− γ)−

(x0
j )
α
∑m

i=1 yi(x
0)Aij

wj

)
.

Since j ∈ S+, x1
j = (1 + β)x0

j , it follows that

Φ(x1)− Φ(x0) ≥ β

(1 + β)α

∑

j∈S+

wj(x
0
j )
−α

(
(1− γ)−

(x0
j )
α
∑m

i=1 yi(x
0)Aij

wj

)
.

Observing that for any xj /∈ S+ we have that (1− γ)− (x0
j )
α
∑m
i=1 yi(x

0)Aij
wj

< 0, we get:

Φ(x1)− Φ(x0) ≥ β

(1 + β)α

n∑

j=1

wj(x
0
j )

1−α

(
(1− γ)−

(x0
j )
α
∑m

i=1 yi(x
0)Aij

wj

)

= Ω(β)


(1− γ)

n∑

j=1

wj(x
0
j )

1−α −
n∑

j=1

x0
j

m∑

i=1

yi(x
0)Aij


 .

Proof of 3. Let S− denote the set of j’s such that xj decreases in the current round.

In this case not all the xj ’s with j ∈ S− decrease by a multiplicative factor (1 − β2),

since for j ∈ S−: x1
j = max{(1 − β2)x0

j , δj}. We will first lower-bound the potential

increase over xj ’s that decrease multiplicatively: {j : j ∈ S− ∧ x0
j (1 − β2) ≥ δj}, so that
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x1
j = x0

j (1−β2). Recall that for j ∈ S−:
(x0
j )
α
∑m
i=1 yi(x

0)Aij
wj

≥ 1+γ and
(x1
j )
α
∑m
i=1 yi(x

1)Aij
wj

≥
(1− γ/4 β

ln(1/δmin))
(x0
j )
α
∑m
i=1 yi(x

0)Aij
wj

≥ (1− γ/4)
(x0
j )
α
∑m
i=1 yi(x

0)Aij
wj

. It follows that:

Φ(x1)− Φ(x0) ≥ β2

(1− β2)α

∑

{j:j∈S−∧x0
j (1−β)≥δj}

wj(x
0
j )

1−α

(
(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj
− 1

)

≥ β2

∑

{j:j∈S−∧x0
j (1−β2)≥δj}

wj(x
0
j )

1−α

(
(1− γ/4)

(x0
j )
α
∑m

i=1 yi(x
0)Aij

wj
− 1

)

= Ω(β2)
∑

{j:j∈S−∧x0
j (1−β2)≥δj}

wj(x
0
j )

1−α

(
(x0
j )
α
∑m

i=1 yi(x
0)Aij

wj
− (1 + γ)

)
.

(2.14)

Next, we prove that the potential increase due to decrease of xj such that {j : j ∈ S−∧x0
j (1−

β2) < δj} is dominated by the potential increase due to xk’s that decrease multiplicatively

by the factor (1− β2).

Choose any xj such that {j : j ∈ S−∧x0
j (1−β2) < δj}, and let ξj(x

0) =
(x0
j )
α
∑m
l=1 Aljyi(x

0)

wj
.

From Lemma 2.8, there exists at least one i with Aij 6= 0, such that:

yi ≥
wj(x

0
j )
α

wj(x0
j )
α
·
∑m

i=1 yi(x
0)Aij

mAmax
>

1

mAmax

wj(1− β2)α

δj
α ξj(x

0) ≥ 1− β2

mAmax

wj
δj
α ξj(x

0), (2.15)

n∑

k=1

Aikx
0
k > 1− ε

2
. (2.16)

From (2.16), there exists at least one p such that Aip 6= 0 and

Aipx
0
p >

1− ε
2

n
. (2.17)

Since x0
p ∈ (0, 1] and α ∈ (0, 1), using (2.17), we have that Aip(x

0
p)
α ≥ Aipx

0
p >

1− ε
2

n .

Recalling (2.15):

(x0
p)
α

m∑

l=1

Alpyl(x
0) ≥ (x0

p)
αAipyi(x

0)

≥ 1− ε
2

n
· 1− β2

mAmax

wj
δj
α ξj(x

0).

Recalling that
wj
δj
α = C ≥ 2wmaxn

2mAmax, it further follows that:

(x0
p)
α

m∑

l=1

Alpyl(x
0) ≥ 2

(
1− ε

2

)
(1− β2) · n · wmax · ξj(x0). (2.18)
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Because ε ≤ 1
6 and β2 < β = γ

5(κ+1) = ε
20(κ+1) <

ε
20 , it follows that 2

(
1− ε

2

)
(1 − β2) > 1.

Therefore:

(x0
p)
α
∑m

l=1Alpyl(x
0)

wp
≥

(x0
p)
α
∑m

l=1Alpyl(x
0)

wmax
> n · ξj(x0) = n ·

(x0
j )
α
∑m

l=1Aljyi(x
0)

wj
.

(2.19)

As α < 1, we have that δj
α > δj , and

wj
δj

>
wj
δj
α = C. Similar to (2.15), we can

lower-bound yi as:

yi(x) ≥ 1− β2

mAmax
· wj
δj
·
x0
j

∑
i yi(x)Aij

wj
>

1− β2

mAmax
· wj
δj
α ·

x0
j

∑
i yi(x)Aij

wj
. (2.20)

Then, recalling Aipx
0
p >

1− ε
2

n , and using (2.20), it is simple to show that:

x0
p

∑

l

yl(x
0)Alp > n · x0

j

m∑

l=1

Aljyl(x
0). (2.21)

As ξj(x
0) ≥ (1 + γ) and x0

p >
δp

1−β2
, it immediately follows from (2.19) that xp decreases by

a factor (1− β2).

In the rest of the proof we show that (2.19) and (2.21) imply that the increase in the

potential due to the decrease of variable xp dominates the increase in the potential due to

the decrease of variable xj by at least a factor n. This result then further implies that the

increase in the potential due to the decrease of variable xp dominates the increase in the

potential due to the decrease of all small xk’s that appear in the constraint i (xk’s are such

that Aik 6= 0, x0
k <

δk
1−β2

, and
(x0
k)α

∑
l yl(x)Alk
wk

≥ 1 + γ).

Consider the following two cases: wp(x
0
p)

1−α ≥ (wjx
0
j )

1−α and wp(x
0
p)

1−α < (wjx
0
j )

1−α.

Case 1: wp(x
0
p)

1−α ≥ (wjx
0
j )

1−α. Then, using (2.19):

wp(x
0
p)

1−α

(
(x0
p)
α
∑m

l=1Alpyl(x
0)

wp
− (1 + γ)

)

≥ (wjx
0
j )

1−α

(
(x0
p)
α
∑m

l=1Alpyl(x
0)

wp
− (1 + γ)

)

≥ (wjx
0
j )

1−α

(
n ·

(x0
j )
α
∑m

l=1Aljyl(x
0)

wj
− (1 + γ)

)

≥ n · (wjx0
j )

1−α

(
(x0
j )
α
∑m

l=1Aljyl(x
0)

wj
− (1 + γ)

)
. (2.22)
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Case 2: wp(x
0
p)

1−α < (wjx
0
j )

1−α. Then, using (2.21):

wp(x
0
p)

1−α

(
(x0
p)
α
∑m

l=1Alpyl(x
0)

wp
− (1 + γ)

)

= x0
p

m∑

l=1

Alpyl(x
0)− (1 + γ)wp(x

0
p)

1−α

≥ x0
p

m∑

l=1

Alpyl(x
0)− (1 + γ)wj(x

0
j )

1−α

≥ n · x0
j

m∑

l=1

Aljyl(x
0)− (1 + γ)wj(x

0
j )

1−α

≥ n · (wjx0
j )

1−α

(
(x0
j )
α
∑m

l=1Aljyl(x
0)

wj
− (1 + γ)

)
. (2.23)

Combining (2.22) and (2.23) with (2.14), it follows that:

Φ(x1)− Φ(x0) ≥ Ω(β2)
∑

j∈S−
wj(x

0
j )

1−α

(
(x0
j )
α
∑m

i=1 yi(x
0)Aij

wj
− (1 + γ)

)
.

Finally, since for j /∈ S−:

(
(x0
j )
α
∑m
i=1 yi(x

0)Aij
wj

− (1 + γ)

)
< 0:

Φ(x1)− Φ(x0) ≥ Ω(β2)
n∑

j=1

wj(x
0
j )

1−α

(
(x0
j )
α
∑m

i=1 yi(x
0)Aij

wj
− (1 + γ)

)

= Ω
( β2

ln(1/δmin)

)



n∑

j=1

x0
j

m∑

i=1

yi(x
0)Aij − (1 + γ)

n∑

j=1

wj(x
0
j )

1−α


 ,

completing the proof.

Parts 2 and 3 of Lemma [11] appear in a somewhat similar form in [11]. However, part

3 requires significant additional results for bounding the potential change due to decrease

of small xj ’s (i.e., xj ’s that are smaller than
δj

1−β ) that were not needed in [11]. The rest of

the results in this thesis are new.

Consider the following definition of a stationary round:

Definition 2.12. (Stationary round.) Let S− = {j : xj decreases}. A round is stationary

if it happens after the initial τ0 + τ1 rounds, where τ0 = 1
β ln( 1

δmin
) and τ1 = 1

β2
ln(nAmax),

and both of the following two conditions hold:

1.
∑

j∈S− wjxj
1−α ≤ γ∑n

j=1wjxj
1−α, and
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2.
∑n

j=1 xj
∑m

i=1 yi(x)Aij ≤ (1 + 5γ/4)
∑n

j=1wjxj
1−α.

In the rest of the proof, we first show that in any stationary round, we have an

O(ε)−approximate solution, while in any non-stationary round, the potential function in-

creases substantially.

We first prove the following lemma, which we will then be used in bounding the duality

gap.

Lemma 2.13. After the initial τ0+τ1 rounds, where τ0 = 1
β ln( 1

δmin
) and τ1 = 1

β2
ln(nAmax),

in each round of the algorithm: ξj(x) ≡ xj
α
∑
i yi(x)Aij
wj

> 1− 5γ
4 , ∀j.

Proof. Suppose without loss of generality that the algorithm starts with a feasible solution.

This assumption is w.l.o.g. because, from Lemma 2.6, after at most τ1 rounds the algorithm

reaches a feasible solution, and from Lemma 2.5, once the algorithm reaches a feasible

solution, it always maintains a feasible solution.

Choose any j. Using the same argument as in the proof of Lemma 2.5, after at most

1
β ln( 1

δj
) ≤ τ0 rounds, there exists at least one round in which ξj(x) > 1 − γ (otherwise

xj > 1, which is a contradiction).

Observe that in any round for which ξj(x) ≤ 1−γ, xj increases by a factor 1+β1 = 1+β.

Therefore, the maximum number of consecutive rounds in which ξj(x) ≤ 1 − γ is at most

1
β ln( 1

δj
) ≤ τ0, otherwise xj would increase to a value larger than 1, making x infeasible,

which is a contradiction due to Lemma 2.5. The maximum amount by which ξj(x) can

decrease in any round is bounded by a factor 1− γ
4 ·

β
ln(1/δmin) = 1− γ

4 · 1
τ0

. Therefore, using

the generalized Bernoulli’s inequality, it follows that in any round:

ξj(x) ≥ (1− γ) ·
(

1− γ

4
· 1

τ0

)τ0 ≥ (1− γ) ·
(

1− γ

4

)
> 1− 5γ

4
.

A simple corollary of Lemma 2.13 is that:

Corollary 2.14. After the initial τ0+τ1 rounds, where τ0 = 1
β ln( 1

δmin
) and τ1 = 1

β2
ln(nAmax),

in each round of the algorithm:
∑

j xj
∑

i yi(x)Aij >
(
1− 5γ

4

)∑
j wjxj

1−α.

Proof. From Lemma 2.13, after the initial τ0+τ1 rounds, it always holds ξj(x) ≡ xj
α
∑
i yi(x)Aij
wj

≥
1 − 5γ

4 , ∀j. Multiplying both sides of the inequality by wjxj
1−α, ∀j and summing over j,
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the result follows.

Recall that pα(x) ≡ ∑j wjfα(xj) denotes the primal objective. The following lemma

states that any stationary round holds an (1 + 6ε)-approximate solution.

Lemma 2.15. In any stationary round: p(x∗) ≤ (1 + 6ε)p(x), where x∗ is the optimal

solution to (Pα).

Proof. Since, by definition, a stationary round can only happen after the initial τ0 + τ1

rounds, we have that x in that round is feasible, and also from Lemma 2.7:
∑

i yi ≤
(1 + 3ε)

∑
j xj

∑
i yi(x)Aij . Therefore, recalling Eq. (2.1) for the duality gap and denoting

ξj(x) =
xj
α
∑
i yi(x)Aij
wj

, we have that:

p(x∗)− p(x) ≤ G(x, y(x)) =
∑

j

wj
xj

1−α

1− α

(
ξ
− 1−α

α
j − 1

)
+
∑

i

yi(x)−
∑

j

wjxj
1−αξ

− 1−α
α

j

=
∑

j

wj
xj

1−α

1− α

(
αξ
− 1−α

α
j − 1

)
+
∑

i

yi(x)

≤
∑

j

wj
xj

1−α

1− α

(
αξ
− 1−α

α
j − 1

)
+ (1 + 3ε)

∑

j

xj
∑

i

yi(x)Aij .

(2.24)

From Lemma 2.13, ξj > 1− 5γ
4 , ∀j. Partition the indices of all the variables as follows:

S1 =

{
j : ξj ∈

(
1− 5γ

4
, 1 +

5γ

4

)}
, S2 =

{
j : ξj ≥ 1 +

5γ

4

}
.

Then, using (2.24):

p(x∗)− p(x) ≤ G1(x) +G2(x),

where:

G1(x) =
∑

j∈S1

wj
xj

1−α

1− α

(
αξ
− 1−α

α
j − 1

)
+ (1 + 3ε)

∑

j∈S1

xj
∑

i

yi(x)Aij

and

G2(x) =
∑

j∈S2

wj
xj

1−α

1− α

(
αξ
− 1−α

α
j − 1

)
+ (1 + 3ε)

∑

j∈S2

xj
∑

i

yi(x)Aij .

The rest of the proof follows by upper-bounding G1(x) and G2(x).

Bounding G1(x). Observing that ∀j: xj
∑

i yi(x)Aij = wjxj
1−αξj , we can write G1(x) as:

G1(x) =
∑

j∈S1

wj
xj

1−α

1− α

(
αξ
− 1−α

α
j + (1 + 3ε)(1− α)ξj − 1

)
. (2.25)
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Denote r(ξj) = αξ
− 1−α

α
j + (1 + 3ε)(1 − α)ξj − 1. It is simple to verify that r(ξj) is a

convex function. Since ξj ∈
(

1− 5γ
4 , 1 + 5γ

4

)
, ∀j ∈ S1, it follows that r(ξj) < max{r(1 −

5γ/4), r(1 + 5γ/4)}. Now:

r(1− 5γ/4) = α
(

1− 5γ

4

)− 1−α
α

+ (1− α)(1 + 3ε)
(

1− 5γ

4

)
− 1

< α
(

1− 5γ

4

)− 1−α
α

+ (1− α)(1 + 3ε)− 1.

If 1−α
α ≤ 1, then as (1 − 5γ/4)−1 ≤ (1 + 2γ), it follows that (1 − 5γ/4)−

1−α
α ≤ 1 + 2γ.

Therefore:

r(1− 5γ/4) < α(1 + 2γ) + (1− α)(1 + 3ε)− 1

= 2γα+ 3 · (1− α)ε = α
ε

2
+ 3 · (1− α)ε

= 3ε

(
1− 5

6
α

)
. (2.26)

If 1−α
α > 1, then (using generalized Bernoulli’s inequality and ε ≤ α

1−α):

r(1− 5γ/4) < α
1

(1− 5γ/4)
1−α
α

+ (1− α)(1 + 3ε)− 1

≤ α 1

1− 5γ
4 · 1−α

α

+ (1− α)(1 + 3ε)− 1

≤ α
(

1 +
5γ

4
· 1− α

α

)
+ (1− α)(1 + 3ε)− 1

≤ (1− α)
(5γ

4
+ 3ε

)

< 4ε(1− α). (2.27)

On the other hand:

r(1 + 5γ) = α
(

1 +
5γ

4

)− 1−α
α

+ (1− α)(1 + 3ε)
(

1 +
5γ

4

)
− 1

< α+ (1− α)(1 + 4ε)− 1

= 4ε(1− α). (2.28)

Combining (2.26)–(2.28) with (2.25):

G1(x) < 4ε ·
∑

j∈S1

wj
xj

1−α

1− α . (2.29)
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Bounding G2(x). Because the round is stationary and S2 ⊆ S−, we have that:
∑

j∈S2
wjxj

1−α ≤
γ
∑n

j=1wjxj
1−α. Using the second part of the stationary round definition and that (from

Lemma 2.13)
∑

j∈S2
xj
∑m

i=1 yi(x)Aij > (1− 5γ/4)
∑

j∈S2
wjxj

1−α, we have:

∑

j∈S2

xj

m∑

i=1

yi(x)Aij =
m∑

k=1

xk

m∑

i=1

yi(x)Aik −
∑

l /∈S2

xl

m∑

l=1

yl(x)Alk

≤ (1 + 5γ/4)

n∑

k=1

wkxk
1−α − (1− 5γ/4)

∑

l /∈S2

wlxl
1−α

≤ (1 + 5γ/4)
∑

j∈S2

wjxj
1−α +

5γ

2

∑

l /∈S2

wlxl
1−α

≤ γ(1 + 5γ/4)

n∑

k=1

wkxk
1−α +

5γ

2

n∑

k=1

wkxk
1−α

< 4γ

n∑

k=1

wkxk
1−α = ε

n∑

k=1

wkxk
1−α. (2.30)

Above, first inequality follows from
∑m

k=1 xk
∑m

i=1 yi(x)Aik ≤ (1 + 5γ/4)
∑n

k=1wkxk
1−α

(part 2 of the stationary round definition) and Corollary 2.14. Second inequality follows by

breaking the left summation into two summations: those with j ∈ S2 and those with l /∈ S2.

The third inequality follows from S2 ⊆ S and part 1 of the stationary round definition.

Observe that as ξj ≥ 1 + 5γ/4 > 1, we have that ξ
− 1−α

α
j < 1. Using (2.30), it follows

that:

G2(x) =
∑

j∈S2

wj
xj

1−α

1− α

(
αξ
− 1−α

α
j − 1

)
+ (1 + 3ε)

∑

j∈S2

xj
∑

i

yi(x)Aij

< (α− 1)
∑

j∈S2

wj
xj

1−α

1− α + (1 + 3ε)
∑

j∈S2

xj
∑

i

yi(x)Aij

≤ (α− 1)
∑

j∈S2

wj
xj

1−α

1− α + ε(1 + 3ε)

n∑

k=1

wkxk
1−α

≤ −(1− α)
∑

j∈S2

wj
xj

1−α

1− α +
3

2
ε(1− α)

n∑

k=1

wk
xk

1−α

1− α

<
3

2
ε(1− α)

n∑

k=1

wk
xk

1−α

1− α

< 2ε

n∑

k=1

wk
xk

1−α

1− α . (2.31)
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Finally, combining (2.29) and (2.31):

p(x∗)− p(x) <
(

4ε+ 2ε
) ∑

j∈S1

wj
xj

1−α

1− α

= 6εp(x).

Proof of Theorem 2.2. From Lemma 2.15, in any stationary round: p(x∗) ≤ p(x)(1+6ε).

Therefore, to prove the theorem, it suffices to show that there are at most

O

(
1

α2ε5
ln2 (RwmnAmax) ln2

(
Rw

mnAmax

ε

))

non-stationary rounds in total, where Rw = wmax/wmin, because we can always run the

algorithm for ε′ = ε/6 to get an ε−approximation, and this would only affect the constant

in the convergence time.

To bound the number of non-stationary rounds, we will show that the potential increases

by a “large enough” multiplicative value in all the non-stationary rounds in which the

potential is not too “small”. For the non-stationary rounds in which the value of the

potential is “small”, we show that the potential increases by a large enough value so that

there can be only few such rounds.

In the rest of the proof, we assume that the initial τ0 + τ1 rounds have passed, so that x

is feasible, and the statement of Lemma 2.7 holds. This does not affect the overall bound

on the convergence time, as

τ0 + τ1 =
1

β
ln
( 1

δmin

)
+

1

β2
ln(nAmax) = O

(
1

β2
ln(nAmax) ln

( 1

δmin

))

= O

(
1

αε4
ln(nAmax) ln2

(
Rw

mnAmax

ε

)
ln (RwmnAmax)

)
. (2.32)

To bound the minimum and the maximum values of the potential Φ, we will bound
∑

j wj
xj

1−α

1−α and 1
κ

∑
i yi(x). Recall that Φ(x) =

∑
j wj

xj
1−α

1−α − 1
κ

∑
i yi(x).

Since δj =
(

wj
2wmaxn2mAmax

) 1
α ≥

(
wmin

2wmaxn2mAmax

) 1
α

, x is always feasible, and xj ≤ 1, ∀j,
we have that:

W

1− α ·
(

wmin

2wmaxn2mAmax

) 1−α
α

≤
∑

j

wj
xj

1−α

1− α ≤
W

1− α, (2.33)
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and

0 <
1

κ

∑

i

yi(x) ≤ Cm

κ
. (2.34)

Thus, we have:

Φmin ≥ −
1

κ

∑

i

yi(x)

≥ −1

κ
·m · C

≥ −O(m2n2Amaxwmax), (2.35)

and

Φmax ≤
n∑

j=1

wj
1

1− α =
W

1− α. (2.36)

Recall from Lemma 2.10 that the potential never decreases. We consider the following

three cases for the value of the potential:

Case 1: Φmin ≤ Φ ≤ −Θ( wmin
Amax

). Since in this case Φ < 0, we have that
∑

i yi(x) >

κ
∑

j wj
xj

1−α

1−α . From Lemma 2.7,
∑

j xj
∑

i yi(x)Aij ≥ (1− 3ε)
∑

j wj
xj

1−α

1−α , thus implying:

∑

j

xj
∑

i

yi(x)Aij ≥
1− 3ε

κ

∑

j

wj
xj

1−α

1− α ≥ 2 ·
∑

j

wj
xj

1−α

1− α , (2.37)

as κ ≥ 1
ε and ε ≤ 1

6 . Combining Part 3 of Lemma 2.11 and (2.37), the potential increases

by at least:

Ω

(
β2

ln(1/δmin)

)∑

j

xj
∑

i

yi(x)Aij =

(
β2

ln(1/δmin)

)∑

i

yi(x) =

(
β2

ln(1/δmin)
· κ
)

(−Φ(x))

= Ω

(
γ2

κ ln(1/δmin)

)
(−Φ(x)).

Since the potential never decreases, there can be at most

O

(
κ ln(1/δmin)

γ2
ln

( −Φmin

wmin/Amax

))
= O

(
1

α

1

ε3
ln2 (RwnmAmax) ln

(
Rw

nmAmax

ε

))

Case 1 rounds.

Case 2: −O
(
wmin
Amax

)
< Φ ≤ O

(
W

1−α ·
(

wmin
2wmaxn2mAmax

) 1−α
α

)
. From Lemma 2.7, there exists

at least one i such that
∑

j Aijxj ≥ 1 − (1 + 1/κ)ε. Since Aij ≤ Amax ∀i, j, it is also true

that
∑

j xj ≥
1−(1+1/κ)ε

Amax
, and as xj

1−α ≥ xj and κ ≥ 1
ε , it follows that

∑
j wjxj

1−α ≥
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(1− ε(1 + ε))
(
wmin
Amax

)
. From (2.33), we also have

∑
j wj

xj
1−α

1−α ≥ W
1−α ·

(
wmin

2wmaxn2mAmax

) 1−α
α

.

Therefore:

∑

j

wj
xj

1−α

1− α ≥ max

{
(1− ε(1 + ε))

1

1− α ·
wmin

Amax
,

W

1− α ·
(

wmin

2wmaxn2mAmax

) 1−α
α

}
.

(2.38)

If Φ ≤ 1
10 ·max

{
(1− ε(1 + ε)) 1

1−α · wmin
Amax

, W
1−α ·

(
wmin

2wmaxn2mAmax

) 1−α
α

}
, then

∑

i

yi(x) ≥ 9

10
κ · 1

1− α
∑

j

wjxj
α

≥ 9

10
κ ·max

{
(1− ε(1 + ε))

1

1− α
wmin

Amax
,

W

1− α ·
(

wmin

2wmaxn2mAmax

) 1−α
α

}
.

From Lemma 2.7,

∑

i

yi(x)
∑

j

Aijxj ≥ (1− 3ε)
∑

i

yi(x)

≥ (1− 3ε)
9

10
κ ·max

{
(1− ε(1 + ε))

1

1− α ·
wmin

Amax
,

W

1− α ·
(

wmin

2wmaxn2mAmax

) 1−α
α

}
.

From the third part of Lemma 2.11, the potential increases additively by at least

Ω

(
β2κ

ln(1/δmin)

)
·max

{
1

1− α ·
wmin

Amax
,

W

1− α ·
(

wmin

2wmaxn2mAmax

) 1−α
α

}
,

and, therefore, Φ = Ω
(

W
1−α ·

(
wmin

2wmaxn2mAmax

) 1−α
α

)
after at most

O

(
ln(1/δmin)κ

γ2

)
= O

(
1

α

1

ε3
ln (RwnmAmax) ln

(
Rw

nmAmax

ε

))

rounds.

Case 3: Ω
(

W
1−α ·

(
wmin

2wmaxn2mAmax

) 1−α
α

)
≤ Φ ≤ W

1−α . In this case, Φ = O
(∑

j wj
xj

1−α

1−α

)
. If

the round is stationary, then from Lemma 2.15, p(x∗) ≤ (1 + 6ε)p(x). If the round is not

stationary, then from Definition 2.12, either:

1.
∑

k∈S− wkxk
1−α > γ

∑n
j=1wjxj

1−α, or

2.
∑n

j=1 xj
∑m

i=1 yi(x)Aij > (1 + 5γ
4 )
∑n

j=1wjxj
1−α.
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If the former is true, then using the first part of Lemma 2.11, the potential increases by at

least Ω
(

β2γ
ln(1/δmin)

)
·∑j wjxj

1−α = Ω
(

β2γ
ln(1/δmin)

)
· (1 − α)Φ. If the latter is true, from the

third part of Lemma 2.11, the potential increases by at least Ω
(

β2γ
ln(1/δmin)

)
·∑j wjxj

1−α =

Ω
(

β2γ
ln(1/δmin)

)
· (1− α)Φ. It follows that there are at most

O


 1

1− α ·
ln(1/δmin)

β2γ
ln




W
1−α

W
1−α ·

(
wmin

2wmaxn2mAmax

) 1−α
α






= O

(
1

α2

1

ε5
ln2 (Rw ·mnAmax) ln2

(
Rw ·

mnAmax

ε

))

non-stationary Case 3 rounds.

Combining the three cases with the bound on τ0 + τ1 (2.32), the total convergence time

is at most:

O

(
1

α2ε5
ln2 (RwmnAmax) ln2

(
Rw ·

mnAmax

ε

))

rounds, as claimed.

2.4.2 Proof of Theorem 2.3

The proof outline for the convergence of α-FairPSolver in the α = 1 case is as follows.

First, we show that in any round it cannot be the case that only “small” xj ’s (i.e., xj ’s

that are smaller than
δj

1−β ) decrease. In fact, we show that the increase in the potential due

to updates of “small” variables is dominated by the increase in the potential due to those

variables that decrease multiplicatively by a factor (1 − β2) = (1 − β) (Lemmas 2.16 and

2.17). We then define a stationary round and show that: (i) in any non-stationary round

the potential increases significantly, and (ii) in any stationary round, the solution x at the

beginning of the round provides an additive 5Wε–approximation.

Lemma 2.16. Starting with a feasible solution, in any round of the algorithm:

1.
∑
{k∈S−:xk≥

δk
1−β }

xk
∑m

i=1 yi(x)Aik ≥ 1
2

∑
j∈S− xj

∑m
i=1 yi(x)Aij.

2.
∑
{k∈S−:xk≥

δk
1−β }

xk
∑m
i=1 yi(x)Aik
wk

≥ 1
2

∑
j∈S−

xj
∑m
i=1 yi(x)Aij
wj

.

Proof. Fix any round, and let x0, y(x0) and x1, y(x1) denote the values of x, y at the begin-

ning and at the end of the round, respectively. If for all j ∈ S− x0
j ≥

δj
1−β , there is nothing
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to prove. Suppose that there exists some x0
j <

δj
1−β that decreases. Then from Lemma 2.8

there exists at least one i ∈ {1, ...,m} such that Aij 6= 0, and:

• ∑n
k=1Aikx

0
k > 1− ε

2 , and

• yi(x) ≥
∑m
l=1 yl(x

0)Alj
mAmax

> (1− β)
wj
δj

1
mAmax

x0
j

∑m
l=1 yl(x

0)Alj
wj

.

Since
∑n

k=1Aikx
0
k > 1 − ε

2 , there exists at least one p such that Aipx
0
p >

1− ε
2

n . Recalling

that C =
wj
δj
≥ 2wmaxn

2mAmax:

(x0
p)Aipyi(x

0) > C · (1− β)

mAmax
· 1− ε

2

n
·
x0
j

∑m
l=1 yl(x

0)Alj

wj

> 2wmaxn
2mAmax ·

(1− β)

mAmax
· 1− ε

2

n
·
x0
j

∑m
l=1 yl(x

0)Alj

wj

≥ 2nwmax(1− β)
(

1− ε

2

)
·
x0
j

∑m
l=1 yl(x

0)Alj

wj

≥ nwmax

x0
j

∑m
l=1 yl(x

0)Alj

wj
. (2.39)

Since xj decreases, it must be
x0
j

∑m
l=1 yl(x

0)Alj
wj

≥ 1 + γ. Using (2.39):

x0
p

∑m
l=1 yl(x

0)Alp

wp
≥

(x0
p)Aipyi(x

0)

wmax
≥ n

x0
j

∑m
l=1 yl(x

0)Alj

wj
≥ 1 + γ,

and, therefore, xp decreases as well. Moreover, since (2.39) implies

x0
p

m∑

l=1

yl(x
0)Alp ≥

∑

{j∈S−:xj<
δj

1−β∧Aij 6=0}

wmax

wj
x0
j

m∑

l=1

yl(x
0)Alj

≥
∑

{j∈S−:xj<
δj

1−β∧Aij 6=0}

x0
j

m∑

l=1

yl(x
0)Alj ,

the proof of the first part of the lemma follows.

The second part follows from (2.39) as well, since:

x0
p

∑m
l=1 yl(x

0)Alp

wp
≥

(x0
p)Aipyi(x

0)

wmax

≥ n
x0
j

∑m
l=1 yl(x

0)Alj

wj
,
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which, given that xj was chosen arbitrarily, implies:

x0
p

∑m
l=1 yl(x

0)Alp

wp
≥

∑

{j∈S−:xk<
δk

1−β∧Aik 6=0}

x0
k

∑m
l=1 yl(x

0)Alj
wk

.

Lemma 2.17. Let x0, y(x0) and x1, y(x1) denote the values of x, y at the beginning and at

the end of any fixed round, respectively. If x0 is feasible, then the potential increase in the

round is at least:

1. Φ(x1)− Φ(x0) ≥ Ω(βγ)
∑

j∈S+ wj;

2. Φ(x1)− Φ(x0) ≥ Ω(β)
(

(1− γ)W −∑n
j=1 x

0
j

∑m
i=1 yi(x

0)Aij

)
.

3. Φ(x1)− Φ(x0) ≥ Ω(β)
(∑n

j=1 x
0
j

∑m
i=1 yi(x

0)Aij − (1 + γ)W
)

.

Proof.

Proof of 1: Recall that:

Φ(x1)− Φ(x0) ≥
n∑

j=1

wj
x1
j − x0

j

x1
j

(
1−

x1
j

∑m
i=1 yi(x

1)Aij

wj

)

≥
∑

j∈S+

wj
x1
j − x0

j

x1
j

(
1−

x1
j

∑m
i=1 yi(x

1)Aij

wj

)
.

Let ξj(x
1) =

x1
j

∑m
i=1 yi(x

1)Aij
wj

, ξj(x
0) =

x0
j

∑m
i=1 yi(x

0)Aij
wj

.

If j ∈ S+, then x1
j = (1+β)x0

j and ξj(x
0) ≤ 1−γ. Since from the choice of parameters ξj

increases by at most a factor of 1 + γ/4, it follows that: ξj(x
1) ≤ (1− γ)(1 + γ/4) ≤ 1− 3

4γ,

which gives 1− ξj(x1) ≥ 3
4γ. Therefore:

Φ(x1)− Φ(x0) ≥ β

1 + β
· 3

4
γ ·
∑

j∈S+

wj .

Proof of 2: The proof is equivalent to the proof of the second part of Lemma 2.11 and is

omitted.
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Proof of 3: Using that for j ∈ S− we have that
x0
j

∑m
i=1 yi(x

0)Aij
wj

≥ 1 + γ and x1
j =

max{(1− β)x0
j , δj}, we can lower bound the increase in the potential as:

Φ(x1)− Φ(x0) ≥
∑

{j∈S−:x0
j≥

δj
1−β }

wj
x1
j − x0

j

x1
j

(
1−

x1
j

∑m
i=1 yi(x

1)Aij

wj

)

=
β

1− β
∑

{j∈S−:x0
j≥

δj
1−β }

wj

(x1
j

∑m
i=1 yi(x

1)Aij

wj
− 1
)

≥ β

1− β
∑

{j∈S−:x0
j≥

δj
1−β }

wj

(
(1− γ/4)

x0
j

∑m
i=1 yi(x

0)Aij

wj
− 1
)

≥ β

1− β (1− γ/4)
∑

{j∈S−:x0
j≥

δj
1−β }

wj

(x0
j

∑m
i=1 yi(x

0)Aij

wj
− (1 + γ)

)
. (2.40)

Now consider k ∈ S− such that x0
k <

δk
1−β . From the proof of Lemma 2.16, for each such xk

there exists a constraint i and a variable xp ≥ δp
1−β with p ∈ S− such that Aik 6= 0, Aip 6=0,

x0
p

∑
l yl(x

0)Alp ≥ n · x0
k

∑
l yl(x

0)Alk, and
x0
p

∑
l yl(x

0)Alp
wp

≥ n · x
0
k

∑
l yl(x

0)Akp
wk

. If wk ≤ wp

then

wp

(x0
p

∑
l yl(x

0)Alp

wp
− (1 + γ)

)
≥ wk

(
n · x

0
k

∑
l yl(x

0)Akp
wk

− (1 + γ)
)

≥ n · wk
(x0

k

∑
l yl(x

0)Akp
wk

− (1 + γ)
)
.

On the other hand, if wk > wp, then:

wp

(x0
p

∑
l yl(x

0)Alp

wp
− (1 + γ)

)
= (x0

p

∑

l

yl(x
0)Alp − (1 + γ)wp)

> n · x0
k

∑

l

yl(x
0)Akp − (1 + γ)wk

≥ n · wk
(x0

k

∑
l yl(x

0)Akp
wk

− (1 + γ)
)
.

It follows from (2.40) that:

Φ(x1)− Φ(x0) ≥ β

1− β
1− γ/4

2

∑

j∈S−
wj

(x0
j

∑m
i=1 yi(x

0)Aij

wj
− (1 + γ)

)
.
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Finally, since for j /∈ S− we have that
x0
j

∑m
i=1 yi(x

0)Aij
wj

< 1 + γ:

Φ(x1)− Φ(x0) ≥ β

1− β
1− γ/4

2

n∑

j=1

wj

(x0
j

∑m
i=1 yi(x

0)Aij

wj
− (1 + γ)

)

= Ω(β)
( n∑

j=1

x0
j

m∑

i=1

yi(x
0)Aij − (1 + γ)

n∑

j=1

wj

)
.

Consider the following definition of a stationary round:

Definition 2.18. A round is stationary if it happens after the initial τ0 + τ1 rounds, where

τ0 = 1
β ln(1/δmin), τ1 = 1

β ln(nAmax) and if both of the following conditions hold:

• ∑j∈S+ wj ≤W/τ0;

• (1− 2γ)W ≤∑n
j=1 xj

∑m
i=1 y(x)Aij ≤ (1 + 2γ)W .

We first show that in any non-stationary round there is a sufficient progress towards the

ε−approximate solution.

Lemma 2.19. In any non-stationary round the potential function increases by at least

Ω(βγ ·W/τ0).

Proof. A round is non-stationary if either of the two conditions from Definition 2.18 does

not hold. If the first condition does not hold, then from the first part of Lemma 2.17, the

potential increases by Ω(βγ ·W/τ0). If the second condition does not hold, then from either

the second or the third part of Lemma 2.17 the potential increases by at least Ω(βγW ) ≥
Ω(βγ ·W/τ0).

Before proving that in every non-stationary round, the solution is O(ε)−approximate,

we will need the following intermediary lemma.

Lemma 2.20. Starting with a feasible solution and after at most τ0 = 1
β ln

(
1

δmin

)
rounds,

in any round of the algorithm:

min
j

xj
∑m

i=1 yi(x)Aij
wj

≥ (1− γ)τ0 .
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Proof. First, we claim that after the algorithm reaches a feasible solution it takes at most

τ0 + 1 additional rounds for each agent j to reach a round in which
xj

∑m
i=1 yi(x)Aij
wj

> 1− γ.

Suppose not, and pick any agent k for which in each of the τ0 + 1 rounds following the first

round that holds a feasible solution:
xk

∑m
i=1 yi(x)Aik
wk

≤ 1 − γ. Then xk increases in each of

the rounds and after 1
β ln( 1

δk
) ≤ τ0 rounds we have xk ≥ 1. Therefore, after at most τ0 + 1

rounds the solution becomes infeasible, which is a contradiction (due to Lemma 2.5).

Now choose any xj and observe ξj =
xj

∑m
i=1 yi(x)Aij
wj

over the rounds that happen after

the first τ0 + 1 rounds. The maximum number of consecutive rounds for which ξj ≤ 1− γ
is τj = 1

β ln( 1
δj

) ≤ τ0, otherwise we would have xj > 1, a contradiction. Since in any

round, due to the choice of the algorithm parameters, ξj decreases by at most a factor of

1 − γ/4, the minimum value that ξj can take is at least (1 − γ)(1 − γ/4)τj/2 > (1 − γ)τ0 ,

thus completing the proof.

Now we are ready to prove that a solution in a stationary round is O(ε)−approximate.

Lemma 2.21. In any stationary round: p1(x∗) − p1(x) ≤ 5εW , where x∗ is the optimal

solution.

Proof. Since, due to Definition 2.18, a stationary round can only happen after the initial

τ0 + τ1 rounds, we have that in any stationary round the solution is feasible (Lemmas 2.5

and 2.6) and approximate complementary slackness (Lemma 2.7) holds.

Recall the expression for the duality gap:

G1(x, y) = −
n∑

j=1

wj ln

(
xj
∑m

i=1 yiAij
wj

)
+

m∑

i=1

yi −W.

From the second part of Lemma 2.7:

m∑

i=1

yi ≤ (1 + 3ε)

n∑

j=1

xj

m∑

i=1

yiAij .

Therefore:

G1(x, y) ≤ −
n∑

j=1

wj ln

(
xj
∑m

i=1 yiAij
wj

)
+ (1 + 3ε)

n∑

j=1

xj

m∑

i=1

yiAij −W.

Since the round is stationary, we have that
∑n

j=1 xj
∑m

i=1 yiAij ≤ (1 + 2γ)W , which gives:

G1(x, y) ≤ −
n∑

j=1

wj ln

(
xj
∑m

i=1 yiAij
wj

)
+ 4εW. (2.41)
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Let ξj =
xj

∑m
i=1 yiAij
wj

. The remaining part of the proof is to bound −∑n
j=1wj ln(ξj) ≤

−∑j:ξj<1wj ln(ξj). For ξj ∈ (1 − γ, 1), we have that −wj ln(ξj) ≤ γwj . To bound the

remaining terms, we will use Lemma 2.20 and the bound of the sum of the weights wj for

which ξj ∈ S+ (that is, ξj ≤ 1− γ). It follows that:

−
n∑

j=1

wj ln(ξj) ≤ −
∑

k:ξk∈(1−γ,1)

wk ln(ξk)−
∑

l∈S+

wl ln(ξl)

≤ γ
∑

k:ξk∈(1−γ,1)

wk − ln
(

(1− γ)τ0
)
·
∑

l∈S+

wl (from Lemma 2.20)

≤ γW + τ0γ ·
W

τ0

= 2γW

=
ε

2
W. (2.42)

Combining (2.41) and (2.42), and recalling that p1(x∗) − p1(x) ≤ G1(x, y(x)), the result

follows.

Proof of Theorem 2.3. Consider the values of the potential in the rounds following the

initial τ0 + τ1 rounds, where τ0 = 1
β ln(1/δmin), τ1 = 1

β ln(nAmax) (so that the solution x is

feasible in each round and the approximate complementary slackness holds). Observe that

τ0 + τ1 = o
(

ln2(nmAmaxRw) ln2(nmAmax
ε

Rw)
ε5

)
.

We start by bounding the minimum and the maximum values that the potential can

take. Recall (from Lemma 2.10) that the potential never decreases.

Due to Lemma 2.5, xj ∈ [δj , 1], ∀j, and therefore we can bound the two summations in

the potential as:

∑

j

wj ln(xj) ≥
∑

j

wj ln(δj) = −O
(
W · ln

(wmax

wmin
nmAmax

))
, (2.43)

∑

j

wj ln(xj) ≤
∑

j

wj ln(1) ≤ 0, (2.44)

− 1

κ

∑

i

yi(x) ≥ −mC
κ
· e0 > −mC = −O(wmaxn

2m2Amax), (2.45)

and

− 1

κ

∑

i

yi(x) < −mC
κ
· e−κ < 0. (2.46)
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From (2.43) and (2.45):

Φmin ≥ −O(wmaxn
2m2Amax). (2.47)

On the other hand, from (2.44) and (2.46):

Φmax < 0. (2.48)

Consider the following two cases:

Case 1: 1
κ

∑
i yi(x) ≥ W · ln

(
e · wmax

wmin
nmAmax

)
. Then 1

κ

∑
i yi(x) ≤ −Φ(x) ≤ 2

κ

∑
i yi(x)

and 1
κ

∑
i yi(x) ≥W . From the third part of Lemma 2.7, we have that

∑
j xj

∑
i yi(x)Aij ≥

(1 − 3ε)
∑

i yi(x) ≥ 2W . Thus using the Part 2 of Lemma 2.17, we get that the potential

increases by

Ω(β) ·
∑

j

xj
∑

i

yi(x)Aij = Ω

(
β ·
∑

i

yi(x)

)
= Ω(βκ) · (−Φ(x)).

Finally, since βκ = Θ(γ), there can be at most O
(

1
γ ln

(
RwnmAmax

W ln(RwnmAmax)

))
Case 1 rounds.

Case 2: 1
κ

∑
i yi(x) < W · ln

(
e · wmax

wmin
nmAmax

)
. Then −2W · ln

(
e · wmax

wmin
nmAmax

)
<

Φ(x) < 0. From Lemma 2.21, if a round is stationary, then p(x∗) − p(x) ≤ 5εW . If a

round is non-stationary, from Lemma 2.19, the potential increases (additively) by at least

Ω(βγ ·W/τ0). Therefore, the maximum number of non-stationary rounds is at most:

O

(
W ln(nmAmaxwmax/wmin)

βγW/τ0

)
= O

(
1

β2γ
· ln2 (RwnmAmax)

)

= O

(
ln2 (RwnmAmax) ln2

(
Rw

nmAmax
ε

)

ε5

)
.

Combining the results for the Case 1 and Case 2, the theorem follows by invoking α-

FairPSolver for the approximation parameter ε′ = ε/5.

2.4.3 Proof of Theorem 2.4

The outline of the proof of Theorem 2.4 is as follows. First, we show that in any round of

the algorithm the variables that decrease by a multiplicative factor (1 − β2) dominate the

potential increase due to all the variables that decrease (Lemma 2.22). This result is then

used in Lemma 2.23 to show the appropriate lower bound on the potential increase. Observe
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that for α > 1 the objective function pα(x), and, consequently, the potential function Φ(x)

is negative for any feasible x. To yield a poly-logarithmic convergence time in Rw,m, n, and

Amax, the idea is to show that the negative potential −Φ(x) decreases by some multiplicative

factor whenever x is not a “good” approximation to x∗ – the optimal solution to (Pα). This

idea, combined with the fact that the potential never decreases (and therefore −Φ(x) never

increases) and with upper and lower bounds on the potential then leads to the desired

convergence time.

Lemma 2.22. In any round of the algorithm in which the solution x0 at the beginning of

the round is feasible:

∑
{
j:j∈S−∧x0

j≥
δj

1−β

}x0
j

m∑

i=1

yi(x
0)Aij ≥

1

2

∑

j∈S−
x0
j

m∑

i=1

yi(x
0)Aij ;

and

∑
{
j:j∈S−∧x0

j≥
δj

1−β

}
(
x0
j

m∑

i=1

yi(x
0)Aij − (1 + γ)wj(x

0
j )

1−α

)

≥ 1

2

∑

j∈S−

(
x0
j

m∑

i=1

yi(x
0)Aij − (1 + γ)wj(x

0
j )

1−α

)
.

Proof. If x0
j ≥

δj
1−β , ∀j, there is nothing to prove, so assume that there exists at least one j

with x0
j <

δj
1−β . The proof proceeds as follows. First, we show that for each j for which xj

decreases by a factor less than (1− β) there exists at least one xp that appears in at least

one constraint i in which xj appears and decreases by a factor (1− β). We then proceed to

show that xp is in fact such that

x0
p

m∑

l=1

yl(x
0)Alp = Ω(n)x0

j

m∑

l=1

yl(x
0)Alj

and

x0
p

m∑

l=1

yl(x
0)Alp − (1 + γ)wp(x

0
p)

1−α = Ω(n)

(
x0
j

m∑

l=1

yl(x
0)Alj − (1 + γ)wj(x

0
j )

1−α

)
.

This will then imply that the terms x0
p

∑m
l=1 yl(x

0)Alp and x0
p

∑m
l=1 yl(x

0)Alp−(1+γ)wp(x
0
p)

1−α

dominate the sum of all the terms corresponding to xj ’s with Aij 6= 0 and xj <
δj

1−β , thus

completing the proof.
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From Lemma 2.8, for each j ∈ S− with xj <
δj

1−β there exists at least one constraint i

such that:

• ∑n
k=1Aikx

0
k > 1− ε

2 , and

• yi(x0) ≥
∑m
l=1 yl(x

0)Alj
mAmax

⇒ yi(x
0) > (1− β)α 1

mAmax

wj
δj
α

(x0
j )
α
∑m
l=1 yi(x

0)Alj
wj

.

Therefore, there exists at least one xp with Aip 6= 0 such that Aipx
0
p >

1− ε
2

n , which further

gives Aip(x
0
p)
α >

(1− ε
2

)α

nα ·Aip1−α ≥ (1− ε
2

)α

nα ·Amax
1−α, where the last inequality follows from

1 ≤ Aip ≤ Amax and α > 1. Combining the inequality for Aip(x
0
p)
α with the inequality for

yi(x
0) above:

(x0
p)
α

m∑

l=1

yl(x
0)Alp ≥ (x0

p)
αAipyi(x

0)

≥ (1− ε
2)α

nα
·Amax

1−α(1− β)α
1

mAmax

wj
δj
α

(x0
j )
α
∑m

l=1 yl(x
0)Alj

wj

= C · (1− ε
2)α

nαmAmax
α (1− β)α

(x0
j )
α
∑m

l=1 yl(x
0)Alj

wj
(from C =

wj
δαj

)

≥ 2nwmax(1− β)α
(

1− ε

2

)α (x0
j )
α
∑m

l=1 yl(x
0)Alj

wj
,

as C ≥ 2wmaxn
α+1mAmax

2α−1.

Using the generalized Bernoulli’s inequality:
(
1− ε

2

)α
> 1− εα

2 and (1−β)α > (1−βα)

[101], and recalling that εα ≤ 9
10 , β ≤ γε

5 = ε2

20 ≤ ε
120 , we further get:

(x0
p)
α

m∑

l=1

yl(x
0)Alp ≥ 2nwmax

(
1− 9

10 · 120

)(
1− 9

20

)
·

(x0
j )
α
∑m

l=1 yl(x
0)Alj

wj

≥ nwmax

(x0
j )
α
∑m

l=1 yl(x
0)Alj

wj
,

which further implies:

(x0
p)
α
∑m

l=1 yl(x
0)Alp

wp
≥ n ·

(x0
j )
α
∑m

l=1 yl(x
0)Alj

wj
, (2.49)

as wp ≤ wmax. Since xj decreases,
(x0
j )
α
∑m
l=1 yl(x

0)Alj
wj

≥ 1 + γ, and therefore xp decreases as

well.

Using similar arguments, asAipx
0
p >

1− ε
2

n and recalling that yi(x
0) ≥ 1

mAmax

∑m
l=1Aljyl(x

0) >

1
mAmax

1−β
δj
· x0

j

∑m
l=1Aljyl(x

0):
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x0
p

m∑

l=1

yl(x
0)Alp ≥ x0

pAipyi(x
0) ≥ 1− ε

2

n

1

mAmax

1− β
δj
· x0

j

m∑

l=1

Aljyl(x
0)

≥ nx0
j

m∑

l=1

Aljyl(x
0), (2.50)

as δj ≤ 1
21/αn2mAmax

and 21/α(1− ε
2)(1− β) ≥ 2

10
9
ε(1− ε

2)(1− ε2

20) ≥ 1 (since ε ∈ (0, 1/6]).

From (2.50), it follows that

x0
p

m∑

l=1

yl(x
0)Alp ≥

∑

{k∈S−:xk<
δk

1−β∧Aik 6=0}

x0
k

m∑

l=1

yl(x
0)Alk,

which further implies the first part of the lemma.

For the second part, consider the following two cases:

Case 1: wp(x
0
p)

1−α ≥ wj(x0
j )

1−α. Then (using (2.49)):

x0
p

m∑

l=1

yl(x
0)Alp − (1 + γ)wp(x

0
p)

1−α = wp(x
0
p)

1−α

(
(x0
p)
α
∑m

l=1 yl(x
0)Alp

wp
− (1 + γ)

)

≥ wj(x0
j )

1−α

(
(x0
p)
α
∑m

l=1 yl(x
0)Alp

wp
− (1 + γ)

)

≥ wj(x0
j )

1−α

(
n

(x0
j )
α
∑m

l=1 yl(x
0)Alj

wj
− (1 + γ)

)

≥ nwj(x0
j )

1−α

(
(x0
j )
α
∑m

l=1 yl(x
0)Alj

wj
− (1 + γ)

)

= n

(
x0
j

m∑

l=1

yl(x
0)Alj − (1 + γ)wj(x

0
j )

1−α

)
,

implying the second part of the lemma.

Case 2: wp(x
0
p)

1−α < wj(x
0
j )

1−α. Then:

x0
p

m∑

l=1

yl(x
0)Alp − (1 + γ)wp(x

0
p)

1−α > x0
p

m∑

l=1

yl(x
0)Alp − (1 + γ)wj(x

0
j )

1−α

≥ nx0
j

m∑

l=1

yl(x
0)Alj − (1 + γ)wj(x

0
j )

1−α (from (2.50))

≥ n
(
x0
j

m∑

l=1

yl(x
0)Alj − (1 + γ)wj(x

0
j )

1−α

)
,

thus implying the second part of the lemma and completing the proof.
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The following lemma lower-bounds the increase in the potential, in each round.

Lemma 2.23. Let x0 and x1 denote the values of x before and after any fixed round,

respectively, and let S+ = {j : x1
j > x0

j}, S− = {j : x1
j < x0

j}. The potential increase in the

round is lower bounded as:

1. Φ(x1)− Φ(x0) ≥ Ω(βγ)
∑

j∈{S+∪S−} x
0
j

∑m
i=1 yi(x

0)Aij;

2. Φ(x1)− Φ(x0) ≥ Ω
(

β
(1−β)α

)(∑n
j=1 x

0
j

∑m
i=1 yi(x

0)− (1 + γ)
∑n

j=1wj(x
0
j )

1−α
)

;

3. Φ(x1)− Φ(x0) ≥ Ω
(

β
(1+β)α

)(
(1− γ)

∑n
j=1wj(x

0
j )

1−α −∑n
j=1 x

0
j

∑m
i=1 yi(x

0)
)

.

Proof.

Proof of 1. From Lemma 2.10:

Φ(x1)− Φ(x0) ≥
n∑

j=1

wj
|x1
j − x0

j |
(x1
j )
α

∣∣∣∣∣1−
(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj

∣∣∣∣∣ .

Let ξj(x
1) =

(x1
j )
α
∑m
i=1 yi(x

1)Aij
wj

. From the proof of Lemma 2.10, if x1
j − x0

j > 0, then 1 −
ξj(x

1) ≥ 3
4γ ≥ 3

4γξj(x
1), as 0 < ξj(x

1) ≤ 1− 3
4γ. If x1

j−x0
j < 0, then 1−ξj(x1) ≤ −γ

2 , which

implies 1 ≤ ξj(x1)(1 + γ
2 )−1, and thus 1− ξj(x1) ≤ ξj(x1)((1 + γ/2)−1− 1) = ξj(x

1) −γ/21+γ/2 <

−ξj(x1)γ/23/2 = −γ
3 ξj(x

1). Therefore: |1 − ξj(x1)| ≥ γ
3 ξj(x

1) ⇔
∣∣∣∣1−

(x1
j )
α
∑m
i=1 yi(x

1)Aij
wj

∣∣∣∣ ≥
γ
3

(x1
j )
α
∑m
i=1 yi(x

1)Aij
wj

, which further gives:

Φ(x1)− Φ(x0) ≥
n∑

j=1

wj
|x1
j − x0

j |
(x1
j )
α

(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj
≥ γ

3

n∑

j=1

|x1
j − x0

j | ·
m∑

i=1

yi(x
1)Aij .

If j ∈ S+, then x1
j = (1 + β)x0

j , and therefore

|x1
j − x0

j | ·
m∑

i=1

yi(x
1)Aij =

(
1− 1

1 + β

)
x1
j

m∑

i=1

yi(x
1)Aij ≥

(
1− γ

4

) β

1 + β
x0
j

m∑

i=1

yi(x
0)Aij .

Similarly, if j ∈ S− and x0
j ≥

δj
1−β , then x1

j = (1 − β)x0
j , and therefore |x1

j − x0
j | ·

∑m
i=1 yi(x

1)Aij =
(

1
1−β − 1

)
x1
j

∑m
i=1 yi(x

1)Aij ≥
(
1− γ

4

) β
1−βx

0
j

∑m
i=1 yi(x

0)Aij . Using

part 1 of Lemma 2.22:

Φ(x1)− Φ(x0) ≥ γ

6

β

1 + β

∑

j∈{S+∪S−}

x0
j

m∑

i=1

yi(x
0)Aij .
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Proof of 2: Consider j ∈ S− such that x0
j ≥

δj
1−β . Then x1

j = (1−β)x0
j ,

(x1
j )
α
∑m
i=1 yi(x

1)Aij
wj

≥
(1 + γ), and using Lemma 2.10:

Φ(x1)− Φ(x0) ≥
∑

{j∈S−:x0
j≥

δj
1−β }

wj
|x1
j − x0

j |
(x1
j )
α

∣∣∣∣∣1−
(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj

∣∣∣∣∣

≥
∑

{j∈S−:x0
j≥

δj
1−β }

wj
β

(1− β)α
(x0
j )

1−α

(
(x1
j )
α
∑m

i=1 yi(x
1)Aij

wj
− 1

)

≥ β

(1− β)α

∑

{j∈S−:x0
j≥

δj
1−β }

wj(x
0
j )

1−α

(
(1− γ/4)

(x0
j )
α
∑m

i=1 yi(x
0)Aij

wj
− 1

)

≥ (1− γ/4)
β

(1− β)α

∑

{j∈S−:x0
j≥

δj
1−β }

(
x0
j

m∑

i=1

yi(x
0)− (1 + γ)wj(x

0
j )

1−α

)
.

Using the second part of Lemma 2.22 and the fact that for k /∈ S−:
(x0
k)α

∑m
i=1 yi(x

0)Aik
wk

<

(1 + γ), we get the desired result:

Φ(x1)− Φ(x0) ≥ 1

2
(1− γ/4)

β

(1− β)α




n∑

j=1

x0
j

m∑

i=1

yi(x
0)− (1 + γ)

n∑

j=1

wj(x
0
j )

1−α


 .

Proof of 3: The proof is equivalent to the proof of Lemma 2.11, part 2, and is omitted for

brevity.

Consider the following definition of a stationary round:

Definition 2.24. (Stationary round.) A round is stationary, if both:

1.
∑

j∈{S+∪S−} x
0
j

∑m
i=1 yi(x)Aij ≤ γ

∑n
j=1wj(x

0
j )

1−α
, and

2. (1− 2γ)
∑n

j=1wj(x
0
j )

1−α ≤∑n
j=1 x

0
j

∑m
i=1 yi(x

0)Aij

hold, where S+ = {j : x1
j > x0

j}, S− = {j : x1
j < x0

j}. Otherwise, the round is non-

stationary.

The following two technical propositions are used in Lemma 2.27 for bounding the

duality gap in stationary rounds.

Proposition 2.25. After the initial the initial τ0 + τ1 rounds, where τ0 = 1
β ln(1/δmin),

τ1 = 1
β ln(nAmax), it is always true that Gα(x, y(x)) ≤∑n

j=1wj
x1−α
j

α−1

(
1+(1+3ε)(α−1)ξj−

αξ
α−1
α

j

)
, where ξj =

xαj
∑
i yi(x)Aij
wj

.
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Proof. Recall from (2.1) that the duality gap for x, y in (Pα) is given as:

Gα(x, y) =
n∑

j=1

wj
x1−α
j

1− α

((
wj

xjα
∑m

i=1 yiAij

) 1−α
α

− 1

)

+
m∑

i=1

yi −
n∑

j=1

wjx
1−α
j ·

(
xj
α
∑n

j=1Aijyi

wj

)α−1
α

.

From Lemma 2.7, after at most initial τ0 + τ1 rounds:

m∑

i=1

yi ≤ (1 + 3ε)

n∑

j=1

xj

m∑

i=1

yiAij

= (1 + 3ε)
n∑

j=1

wjxj
1−α ·

(
xj
α
∑m

i=1 yiAij
wj

)
,

and letting ξj =
xj
α
∑m
i=1 yiAij
wj

, we get:

Gα(x, y) ≤
n∑

j=1

wj
x1−α
j

1− α

(
ξ
α−1
α

j − 1 + (1 + 3ε)(1− α)ξj − (1− α)ξ
α−1
α

j

)

=
n∑

j=1

wj
x1−α
j

1− α

(
αξ

α−1
α

j + (1 + 3ε)(1− α)ξj − 1

)

=
n∑

j=1

wj
x1−α
j

α− 1

(
1 + (1 + 3ε)(α− 1)ξj − αξ

α−1
α

j

)
.

Proposition 2.26. Let rα(ξj) =

(
1 + (1 + 3ε)(α− 1)ξj − αξ

α−1
α

j

)
, where ξj =

xj
α
∑m
i=1 yiAij
wj

.

If α > 1 and ξj ∈ (1− γ, 1 + γ) ∀j ∈ {1, ..., n}, then rα(ξj) ≤ ε(3α− 2).

Proof. Observe the first and the second derivative of rα(ξj):

drα(ξj)

dξj
= (α− 1)(1 + 3ε− ξ−1/α

j );

d2rα(ξj)

dξj
2 =

1

α
(α− 1)ξj

−1/α−1.

As ξj > 0, r(ξj) is convex for α > 1, and therefore: r(ξj) ≤ max{r(1 − γ), r(1 + γ)}. We
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have (using that (1 + ε/4)1/α ≥ 1 + ε/(4α)):

r(1− γ) = r(1− ε/4) = 1−
(

1− ε

4

)
((1− α)(1 + 3ε) + α(1− ε/4)−1/α)

≤ 1−
(

1− ε

4

)
(1− α+ 3ε(1− α) + α(1 + ε/4)1/α)

≤ 1−
(

1− ε

4

)
(1 + ε/4 + 3ε(1− α))

= 1− 1− ε

4
+ 3ε(α− 1) +

ε

4
(1 + ε/4− 3ε(α− 1))

=
ε2

16
+ 3ε(α− 1)

(
1− ε

4

)

≤ ε(3α− 2).

On the other hand:

r(1 + γ) = r(1 + ε/4) = 1−
(

1 +
ε

4

)
((1− α)(1 + 3ε) + α(1 + ε/4)−1/α)

≤ 1−
(

1 +
ε

4

)
(1− α+ 3ε− 3εα+ α(1− ε/4)1/α)

≤ 1−
(

1 +
ε

4

)(
1 +

11

4
ε− 3εα

)

≤ 1−
(

1 +
11

4
ε− 3εα

)

≤ ε(3α− 2),

completing the proof.

The following lemma states that in any stationary round current solution is an (1 +

ε(4α− 1))-approximate solution.

Lemma 2.27. In any stationary round that happens after the initial the initial τ0 + τ1

rounds, where τ0 = 1
β ln(1/δmin), τ1 = 1

β ln(nAmax), we have that pα(x∗)− pα(x) ≤ ε(4α −
1)(−pα(x)), where x∗ is the optimal solution to (Pα) and x is the solution at the beginning

of the round.

Proof. Observe that for any k /∈ {S+ ∪ S−} (by the definition of S+ and S−) we have that

1− γ < xαk
∑m
i=1 yi(x)Aik
wk

< 1 + γ, which is equivalent to:

(1− γ)wkx
1−α
k < xk

m∑

i=1

yi(x)Aik < (1 + γ)wkx
1−α
k ∀k /∈ {S+ ∪ S−}. (2.51)
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Using stationarity and (2.51):

(1− 2γ)

n∑

j=1

wjx
1−α
j ≤

n∑

j=1

xj

n∑

i=1

yi(x)Aij

=
∑

l∈{S+∪S−}

xl

n∑

i=1

yi(x)Ail +
∑

k/∈{S+∪S−}

xk

n∑

i=1

yi(x)Aik

< γ

n∑

j=1

wjx
1−α
j + (1 + γ)

∑

k/∈{S+∪S−}

wkx
1−α
k . (2.52)

Since
∑

l∈{S+∪S−}wlx
1−α
l =

∑n
j=1wjx

1−α
j −∑k/∈{S+∪S−}wkx

1−α
k , using (2.52):

(1− 2γ)
∑

l∈{S+∪S−}

wlx
1−α
l

< γ
n∑

j=1

wjx
1−α
j + (1 + γ)

∑

k/∈{S+∪S−}

wkx
1−α
k − (1− 2γ)

∑

k/∈{S+∪S−}

wkx
1−α
k

= γ
n∑

j=1

wjx
1−α
j + 3γ

∑

k/∈{S+∪S−}

wkx
1−α
k

≤ 4γ
n∑

j=1

wjx
1−α
j ,

and therefore:

∑

l∈{S+∪S−}

wlx
1−α
l <

4γ

1− 2γ

n∑

j=1

wjx
1−α
j < 5γ

n∑

j=1

wjx
1−α
j , (2.53)

as γ = ε
4 and ε ≤ 1

6 .

As pα(x∗)− pα(x) ≤ G(x, y(x)), from Proposition 2.25:

pα(x∗)− pα(x) ≤
n∑

j=1

wj
x1−α
j

α− 1

(
1 + (1 + 3ε)(α− 1)ξj − αξ

α−1
α

j

)

=
∑

k/∈{S+∪S−}

wk
x1−α
k

α− 1

(
1 + (1 + 3ε)(α− 1)ξk − αξ

α−1
α

k

)

+
∑

l∈{S+∪S−}

wl
x1−α
l

α− 1

(
1 + (1 + 3ε)(α− 1)ξl − αξ

α−1
α

l

)
.
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From Proposition 2.26:

∑

k/∈{S+∪S−}

wk
x1−α
k

α− 1

(
1 + (1 + 3ε)(α− 1)ξk − αξ

α−1
α

k

)
≤ ε(3α− 2)

∑

k/∈{S+∪S−}

wk
x1−α
k

α− 1

≤ ε(3α− 2)
n∑

j=1

wj
x1−α
j

α− 1

= ε(3α− 2)(−pα(x)). (2.54)

Observe
∑

l∈{S+∪S−}wl
x1−α
l
α−1

(
1 + (1 + 3ε)(α− 1)ξl − αξ

α−1
α

l

)
. Since α > 1, each wl

x1−α
l
α−1 >

0, and therefore:

∑

l∈{S+∪S−}

wl
x1−α
l

α− 1

(
1 + (1 + 3ε)(α− 1)ξl − αξ

α−1
α

l

)

≤
∑

l∈{S+∪S−}

wl
x1−α
l

α− 1
((1 + 3ε)(α− 1)ξl + 1)

=
∑

l∈{S+∪S−}

wl
x1−α
l

α− 1

(
(1 + 3ε)(α− 1)

xαl
∑m

i=1 yi(x)Ail
wl

+ 1

)

= (1 + 3ε)
∑

l∈{S+∪S−}

xl

m∑

i=1

yi(x)Ail +
∑

l∈{S+∪S−}

wl
x1−α
l

α− 1
.

Now, from stationarity
∑

l∈{S+∪S−} xl
∑m

i=1 yi(x)Ail < γ
∑n

j=1wjx
1−α
j and using (2.53) we

get:

∑

l∈{S+∪S−}

wl
x1−α
l

α− 1

(
1 + (1 + 3ε)(α− 1)ξj − αξ

α−1
α

j

)
<

n∑

j=1

wj
x1−α
j

α− 1
(γ(1 + 3ε)(α− 1) + 5γ)

≤ −pα(x)

(
3ε

8
α+ ε

)
. (2.55)

Finally, combining (2.54) and (2.55): pα(x∗)− pα(x) < ε(4α− 1)(−pα(x)).

The following two lemmas are used for lower-bounding the potential increase in non-

stationary rounds.

Lemma 2.28. Consider any non-stationary round that happens after the initial τ0 + τ1

rounds, where τ0 = 1
β ln(1/δmin), τ1 = 1

β ln(nAmax). Let x0 and x1 denote the values of x

before and after the round update. If 1
κ

∑
i y(x

0) ≥ −∑j wj
(x0
j )

1−α

1−α , then Φ(x1) − Φ(x0) ≥
Ω(γ3)(−Φ(x0)).
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Proof. Observe that as 1
κ

∑
i y(x

0) ≥ −∑j wj
(x0
j )

1−α

1−α ,

−Φ(x0) ≤ 2 · 1

κ

∑

i

y(x
0) ≤ 2(1− 3ε)

κ

∑

j=1

x0
j

m∑

i=1

yi(x
0)Aij ,

where the last inequality follows from Lemma 2.7.

Since the round is not stationary, we have that either:

1.
∑

j∈S−∪S+ x0
j

∑
i yi(x)Aij > γ

∑n
j=1wj(x

0
j )

1−α, or

2. (1− 2γ)
∑n

j=1wj(x
0
j )

1−α >
∑n

j=1 x
0
j

∑m
i=1 yi(x

0)Aij .

Case 1:
∑

j∈S−∪S+ x0
j

∑
i yi(x)Aij > γ

∑n
j=1wj(x

0
j )

1−α. If:

n∑

j=1

x0
j

m∑

i=1

yi(x
0) ≤ (1 + 2γ)

n∑

j=1

wj(x
0
j )

1−α,

then

∑

j∈S−∪S+

x0
j

∑

i

yi(x)Aij >
γ

1 + 2γ

∑

j=1

x0
j

m∑

i=1

yi(x
0)Aij = Ω(γ)

∑

j=1

x0
j

m∑

i=1

yi(x
0)Aij ,

and, from the first part of Lemma 2.23, the potential increase is lower bounded as:

Φ(x1)− Φ(x0) ≥ Ω(βγ2)
∑

j=1

x0
j

m∑

i=1

yi(x
0)Aij

= Ω(βκγ2)(−Φ(x0))

= Ω(γ3)(−Φ(x0)).

On the other hand, if:

n∑

j=1

x0
j

m∑

i=1

yi(x
0) > (1 + 2γ)

n∑

j=1

wj(x
0
j )

1−α,

then, from the second part of Lemma 2.23:

Φ(x1)− Φ(x0) ≥ Ω(βγ)
∑

j=1

x0
j

m∑

i=1

yi(x
0)Aij

= Ω(βγκ)(−Φ(x0))

= Ω(γ2)(−Φ(x0)).
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Case 2: (1 − 2γ)
∑n

j=1wj(x
0
j )

1−α >
∑n

j=1 x
0
j

∑m
i=1 yi(x

0)Aij. Then, using the third part

of Lemma 2.23:

Φ(x1)− Φ(x0) ≥ Ω

(
β

(1 + β)α
γ

)∑

j=1

x0
j

m∑

i=1

yi(x
0)Aij

= Ω (βγ)
∑

j=1

x0
j

m∑

i=1

yi(x
0)Aij

= Ω(βγκ)(−Φ(x0))

= Ω(γ2)(−Φ(x0)),

where in the second line we have used that β
(1+β)α = Θ(β). This can be shown using the

generalized Bernoulli’s inequality and εα ≤ 9
10 as follows:

1

(1 + β)α
≥ (1− 2β)α ≥ 1− 2αβ = 1− α

k + α
· ε

10
≥ 1− 9

100
= Θ(1).

Lemma 2.29. Consider any non-stationary round that happens after the initial τ0 + τ1

rounds, where τ0 = 1
β ln(1/δmin), τ1 = 1

β ln(nAmax). Let x0 and x1 denote the values of x

before and after the round update. If 1
κ

∑
i y(x

0) < −∑j wj
(x0
j )

1−α

1−α , then Φ(x1) − Φ(x0) ≥
Ω
(
βγ2

)
(α− 1)(−Φ(x0)).

Proof. Observe that as 1
κ

∑
i y(x

0) < −∑j wj
(x0
j )

1−α

1−α ,

−Φ(x0) ≤ −2
∑

j

wj
(x0
j )

1−α

1− α =
2

α− 1

∑

j

wj(x
0
j )

1−α
.

From the definition of a stationary round, we have either of the following two cases:

Case 1:
∑

j∈{S+∪S−} xj
∑m

i=1 yi(x)Aij > γ
∑n

j=1wjx
1−α
j . From the first part of Lemma

2.23, the increase in the potential is: Φ(x1)−Φ(x0) ≥ Ω
(
βγ2

)∑n
j=1wjx

1−α
j . As −Φ(x0) ≤

2
α−1

∑
j wj(x

0
j )

1−α
, the increase in the potential is at least:

Φ(x1)− Φ(x0) ≥ Ω(βγ2)(α− 1)(−Φ(x0)).

Case 2: (1− 2γ)
∑n

j=1wjx
1−α
j >

∑n
j=1 xj

∑m
i=1 yi(x)Aij . Using part 3 of Lemma 2.23, the

increase in the potential is then Φ(x1) − Φ(x0) ≥ Ω
(

β
(1+β)αγ

)∑n
j=1wjx

1−α
j . Therefore,
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using that β
(1+β)α = Θ(β) as in the proof of Lemma 2.28:

Φ(x1)− Φ(x0) ≥ Ω(βγ)(α− 1)(−Φ(x0)).

Proof of Theorem 2.4. We will bound the total number of non-stationary rounds that

happen after the initial τ0 + τ1 rounds, where τ0 = 1
β ln(1/δmin), τ1 = 1

β ln(nAmax). The

total convergence time is then at most the sum of τ0 + τ1 rounds and the number of non-

stationary rounds that happen after the initial τ0 + τ1 rounds, since, from Lemma 2.27, in

any stationary round: p(x∗)− p(x) ≤ ε(4α− 1)(−p(x)).

Consider the non-stationary rounds that happen after the initial τ0 + τ1 rounds. As

xj ∈ [δj , 1], ∀j, it is simple to show that:

W

α− 1
≤
∑

j

wj
xj

1−α

α− 1
≤ W

α− 1
· 2Rw

α−1
α n2(α−1)mα−1Amax

2α−1, (2.56)

and

0 <
1

κ

∑

i

yi(x) ≤ mC

κ
≤ εmC. (2.57)

Recall that Φ(x) = −∑j wj
xj

1−α

α−1 − 1
κ

∑
i yi(x) and that the potential Φ(x) never de-

creases.

There can be two cases of non-stationary rounds: those in which
∑

j wj
xj

1−α

α−1 dominates

in the absolute value of the potential, and those in which 1
κ

∑
i yi(x) dominates in the

absolute value of the potential. We bound the total number of the non-stationary rounds

in such cases as follows.

Case 1: 1
κ

∑
i yi(x) ≥∑j wj

xj
1−α

α−1 . From (2.56) and (2.57), in any such round, the negative

potential is bounded as:

Ω

(
W

α− 1

)
≤ −Φ(x) ≤ O (εmC) .

Moreover, from Lemma 2.28, in each round, the potential increases by at least Ω(γ3)(−Φ(x)).

It immediately follows that there can be at most:

O

(
1

γ3
ln

(
εmC
W
α−1

))
= O

(
1

γ3
ln ((α− 1)εRwnmAmax)

)

= O

(
1

ε3
ln (RwnmAmax)

)
(2.58)
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Case 1 non-stationary rounds, as (α− 1)ε < αε ≤ 9
10 .

Case 2: 1
κ

∑
i yi(x) <

∑
j wj

xj
1−α

α−1 . From (2.56) and (2.57), in any such round, the negative

potential is bounded as:

Ω

(
W

α− 1

)
≤ −Φ(x) ≤ O

(
W

α− 1
·Rw

α−1
α n2(α−1)mα−1Amax

2α−1

)
.

Moreover, from Lemma 2.22, in each such non-stationary round the potential increases by

at least Ω
(
βγ2

)
(α− 1)(−Φ(x0)). Therefore, there can be at most:

O

(
1

βγ2(α− 1)
ln

(
W
α−1 ·Rw

α−1
α n2(α−1)mα−1Amax

2α−1

W
α−1

))
= O

(
1

βγ2
ln(Rw

1
αnmAmax)

)

= O

(
1

ε4
ln(RwnmAmax) ln

(
Rw ·

nmAmax

ε

))
(2.59)

Case 2 non-stationary rounds.

The total number of initial τ0 + τ1 rounds can be bounded as:

τ0 + τ1 =
1

β
ln(1/δmin) +

1

β
ln(nAmax)

= O

(
1

ε2
ln (RwnmAmax) ln

(
Rw ·

nmAmax

ε

))
. (2.60)

Combining (2.58), (2.59), and (2.60), the total convergence time is at most:

O

(
1

ε4
ln (Rw · nmAmax) ln

(
Rw ·

nmAmax

ε

))
.

Finally, running α-FairPSolver for the approximation parameter ε′ = ε/(4α− 1), we

get that in any stationary round pα(x∗) − pα(x) ≤ −εpα(x), while the total number of

non-stationary rounds is at most:

O

(
α4

ε4
ln (Rw · nmAmax) ln

(
Rw ·

nmAmax

ε

))
.

2.4.4 Structural Properties of α−Fair Allocations

Lower Bound on the Minimum Allocated Value. Recall (from Section 3.2) that

the optimal solution x∗ to (Pα) must lie in the positive orthant. We show in Lemma 2.30

that not only does x∗ lie in the positive orthant, but the minimum element of x∗ can be

bounded below as a function of the problem parameters. This lemma motivates the choice

of parameters δj in α-FairPSolver (Section 2.3).
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Lemma 2.30. Let x∗ = (x∗1, ..., x
∗
n) be the optimal solution to (Pα). Then ∀j ∈ {1, ..., n}:

• x∗j ≥
( wj
wmaxM

mini:Aij 6=0
1

niAij

)1/α
, if 0 < α ≤ 1,

• x∗j ≥ Amax
(1−α)/α

( wj
wmaxM

)1/α
mini:Aij 6=0

1
niAij

, if α > 1,

where ni =
∑n

j=1 1{Aij 6=0}
7 is the number of non-zero elements in the ith row of the con-

straint matrix A, and M = min{m,n}.

Proof. Fix α. Let:

µj(α) =





(
wj

wmaxM
mini:Aij 6=0

1
niAij

)1/α
, if α ≤ 1

Amax
(1−α)/α

(
wj

wmaxM

)1/α
mini:Aij 6=0

1
niAij

, if α > 1

.

For the purpose of contradiction, suppose that x∗ = (x∗1, ..., x
∗
n) is the optimal solution

to (Pα), and x∗j < µj(α) for some fixed j ∈ {1, ..., n}.
To establish the desired result, we will need to introduce additional notation. We first

break the set of (the indices of) constraints of the form Ax ≤ 1 in which variable xj appears

with a non-zero coefficient into two sets, U and T :

• Let U denote the set of the constraints from (Pα) that are not tight at the given

optimal solution x∗, and are such that Au,j 6= 0 for u ∈ U . Let su = 1−∑n
k=1Aukxk

denote the slack of the constraint u ∈ U .

• Let T denote the set of tight constraints from (Pα) that are such that Atj 6= 0 for

t ∈ T . Observe that since x∗ is assumed to be optimal, T 6= ∅.

Let εj = min
{
µj(α)− x∗j ,minu∈U su/Auj

}
. Notice that by increasing xj to x∗j +εj none

of the constraints from U can be violated (although all the constraints in T will; we deal

with these violations in what follows).

In each constraint t ∈ T , there must exist at least one variable xk such that x∗k >
1

ntAtk
,

because
∑n

l=1Atlx
∗
l = 1, as each t ∈ T is tight, and x∗j < µj(α) ≤ mini:Aij 6=0

1
niAij

≤ 1
ntAtj

.

Select one such xk in each constraint t ∈ T , and denote by K the set of indices of selected

7With the abuse of notation, 1{e} is the indicator function of the expression e, i.e., 1 if e holds, and 0

otherwise.
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variables. Observe that |K| ≤ |T | (≤ M), since an xk can appear in more than one

constraint.

For each k ∈ K, let Tk denote the constraints in which xk is selected, and let

εk = max
t∈Tk:Atk 6=0

Atjεj
Atk

. (2.61)

If we increase xj by εj and decrease xk by εk ∀k ∈ K, each of the constraints t ∈ T will be

satisfied since, from (2.61) and from the fact that only one xk gets selected per constraint

t ∈ T , εjAtj −
∑

k∈K εkAtk ≤ 0. Therefore, to construct an alternative feasible solution x′,

we set x′j = x∗j + εj , x
′
k = x∗k − εk for k ∈ K, and x′l = x∗l for all the remaining coordinates

l ∈ {1, ..., n}\(K ∪ {j}).
Since j is the only coordinate over which x gets increased in x′, all the constraints

Ax′ ≤ 1 are satisfied. For x′ to be feasible, we must have in addition that x′k ≥ 0 for k ∈ K.

We show that x′k = x∗k − εk ≥ 0 as follows:

εk = εj · max
t∈Tk:Atk 6=0

Atj
Atk

≤ µj(α) · max
t∈Tk:Atk 6=0

Atj
Atk

≤ min
i:Aij 6=0

1

niAij
· max
t∈Tk:Atk 6=0

Atj
Atk

≤ max
t∈Tk:Atk 6=0

1

ntAtj

Atj
Atk

≤ max
t∈Tk:Atk 6=0

1

ntAtk

< x∗k,

where the second line follows from εj ≤ µj(α)− x∗j ≤ µj(α), and the last line follows from

the choice of xk.

The last part of the proof is to show that
∑n

l=1wl
x′l−x

∗
l

x∗l
α > 0, which contradicts the initial

assumption that x∗ is optimal, by the definition of α-fairness from Section 3.2. We have

that:

n∑

l=1

wl
x′l − x∗l
x∗l
α = wj

εj
x∗j
α −

∑

k∈K
wk

εk
x∗k

α

=
∑

k∈K

(
wj

εj
x∗j
α|K| − wk

εk
x∗k

α

)
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=
∑

k∈K

(
wjεjx

∗
k
α − wkεkx∗jα|K|
x∗j
αx∗k

α|K|

)
. (2.62)

Consider one term from the summation (2.62). From the choice of εk’s, we know that for

each εk there exist t ∈ T such that εk =
εjAtj
Atk

, and at the same time (by the choice of xk)

we have x∗k >
1

ntAtk
, so that

wjεjx
∗
k
α > wj

εkAtk
Atj

(
1

Atknt

)α
>
wkwjεk
wmax

Atk
Atj

(
1

Atknt

)α
. (2.63)

Case 1. Suppose first that α ≤ 1. Then x∗k
α >

(
1

Atknt

)α
≥ 1

Atknt
, as Atk 6= 0 ⇒ Atk ≥ 1.

Plugging into (2.63), we have:

wjεjx
∗
k
α >

wkwjεk
wmax

1

ntAtj
. (2.64)

By the initial assumption, x∗j < µj(α) =
(

wj
wmaxM

mini:Aij 6=0
1

niAij

)1/α
, and therefore

wkεkx
∗
j
α|K| < wkwjεk

wmax

|K|
M

min
i:Aij 6=0

1

niAij
≤ wkwjεk

wmax

1

ntAtj
, (2.65)

since it must be |K| ≤ M (= min{m,n}). From (2.64) and (2.65), we get that every term

in the summation (2.62) is strictly positive, which implies:

n∑

l=1

wl
x′l − x∗l
x∗l
α > 0,

and therefore x∗ is not optimal.

Case 2. Now suppose that α > 1. Then

x∗j < µj(α) = Amax
(1−α)/α

(
wj

wmaxM

)1/α

min
i:Aij 6=0

1

niAij
≤ Amax

(1−α)/α

(
wj

wmaxM

)1/α 1

ntAtj
.

Therefore:

wkεkx
∗
j
α|K| < wkεk

wj
wmaxM

Amax
1−α

(
1

ntAtj

)α
|K|

≤ wk
wj
wmax

Amax
1−αεk

(
1

Atknt

)α Atkα
Atj

α

= wk
wj
wmax

εkAtk
Atj

· (Atk/Atj)
α−1

Amax
α−1

(
1

Atknt

)α

≤ wk
wj
wmax

εkAtk
Atj

(
1

Atknt

)α
, (2.66)
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as |K| ≤M , and Atk
Atj
≤ Amax (since for any i, j: 1 ≤ Aij ≤ Amax).

Finally, from (2.63) and (2.66) we get that every term in the summation (2.62) is positive,

which yields a contradiction.

Asymptotics of α−Fair Allocations The following lemma states that for sufficiently

small (but not too small) α, the values of the linear and the α−fair objectives at their

respective optimal solutions are approximately the same. This statement will then lead to

a conclusion that to ε−approximately solve an α−fair packing problem for a very small α,

one can always use an ε−approximation packing LP algorithm.

Lemma 2.31. Let (Pα) be an α−fair packing problem with optimal solution x∗, and (P0) be

the LP with the same constraints and the same weights w as (Pα) and an optimal solution

z∗. Then if α ≤ ε/4
ln(nAmax/ε)

, we have that
∑

j wjz
∗
j ≥ (1−3ε)

∑
j

(x∗j )1−α

1−α , where ε ∈ (0, 1/6].

Proof. The proof outline is as follows. First, we show that the α−fair objective pα(x∗) can

be upper-bounded by a linear objective as pα(x∗) ≡ ∑j wj
x∗j

1−α

1−α ≤ (1 + O(ε))
∑

j wjx
∗
j .

Then, to complete the proof, we use the optimality of z∗ for the LP:
∑

j wjz
∗
j ≥

∑
j wjx

∗
j

(≥ (1−O(ε))
∑

j wj
x∗j

1−α

1−α from the first part of the proof).

Let g(xj) =
xj

1−α

1−α − (1 + ε)xj . Consider the case when g(xj) ≤ 0. Solving g(xj) ≤ 0 for

xj , we get that it should be

xj ≥
( 1

1− α
)1/α

·
( 1

1 + ε

)1/α
. (2.67)

Choose α so that 1
(1+ε)1/α ≤

( ε/4
nAmax

)
, which is equivalent to α ≤ ln(1+ε)

ln(4nAmax/ε)
. Then to

have g(xj) ≤ 0, it suffices to have xj ≥ ε
nAmax

, because (i)
(

1
1−α

)1/α ∈ [e, 4] for α ∈ [0, 1/2],

where e is the base of the natural logarithm, and (ii) 1
(1+ε)1/α ≤

( ε/4
nAmax

)
by the choice of α.

Now, as α ≤ ln(1+ε)
ln(4nAmax/ε)

, summing over j such that x∗j ≥ ε
nAmax

we have:

∑

j:x∗j≥
ε

nAmax

wj
(x∗j )

1−α

1− α − (1 + ε)
∑

j:x∗j≥
ε

nAmax

wjx
∗
j =

∑

j:x∗j≥
ε

nAmax

wjg(x∗j ) ≤ 0 (2.68)

Now we bound the rest of the terms in pα(x∗), i.e., we consider j : x∗j <
ε

nAmax
. Observe

that since xj = 1
nAmax

for j = {1, ..., n} is a feasible solution to (Pα) and x∗ is the optimal
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solution to (Pα), we have that
∑

j wj
(1/nAmax)1−α

1−α ≤∑j wj
(x∗j )1−α

1−α , which gives:

∑

j:x∗j<
ε

nAmax

wj
(x∗j )

1−α

1− α < ε1−α
∑

j:x∗j<
ε

nAmax

wj
(1/nAmax)1−α

1− α

< ε1−α
n∑

j=1

wj
(x∗j )

1−α

1− α

≤ 2ε

n∑

j=1

wj
(x∗j )

1−α

1− α .

Therefore:

∑

j:x∗j≥
ε

nAmax

wj
(x∗j )

1−α

1− α > (1− 2ε)

n∑

j=1

wj
(x∗j )

1−α

1− α . (2.69)

Combining (2.68) and (2.69), we now get:

n∑

j=1

wj
(x∗j )

1−α

1− α <
1 + ε

1− 2ε
·

∑

j:x∗j≥
ε

nAmax

wjx
∗
j . (2.70)

Finally, since z∗ optimally solves (P0) (which has the same constraints and weights as (Pα)),

we have that x∗ is feasible for (P0), and using (2.70) and optimality of z∗, it follows that:

n∑

j=1

wjz
∗
j ≥

n∑

j=1

wjx
∗
j

≥ 1− 2ε

1 + ε

n∑

j=1

wj
(x∗j )

1−α

1− α

≥ (1− 3ε)
n∑

j=1

wj
(x∗j )

1−α

1− α ,

as claimed.

Observing that for any α ∈ (0, 1),
(z∗j )1−α

1−α ≥ z∗j (since, due to the scaling, z∗j ∈ [0, 1]),

a simple corollary of Lemma 2.31 is that an ε−approximation z to (P0) (
∑

j wjzj ≥
(1 − ε)

∑
j wjz

∗
j ) is also an O(ε)−approximation to (Pα), for α ≤ ε/4

ln(nAmax/ε)
. Thus, to

find an ε−approximate solution for α ≤ ε/4
ln(nAmax/ε)

, the packing LP algorithm of [11]

can be run, which means that there is a stateless distributed algorithm that converges

in poly(ln(ε−1RwmnAmax)/ε) time for α arbitrarily close to zero.

The following two lemmas show that when α is sufficiently close to 1, (Pα) can be

ε−approximated by ε−approximately solving (P1) with the same constraints and weights.
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Lemma 2.32. Let x be an ε−approximate solution to a 1-fair packing problem (P1) returned

by α-FairPSolver. Then, for any α ∈ [1− 1/τ0, 1), where τ0 = 1
β ln( 1

δmin
), x is also a

2ε−approximate solution to (Pα), where the only difference between (P1) and (Pα) is in the

value of α in the objective.

Proof. Suppose that x is a solution in some stationary round, provided by α-FairPSolver

run for α = 1. Fix that round. It is clear that if x is feasible in (P1), it is also feasible in

(Pα), since all the constraints in (P1) and (Pα) are the same by the initial assumption. All

that is required for a dual solution y to be feasible is that yi ≥ 0, for all i, and therefore y(x)

is a feasible dual solution for (Pα). The rest of the proof follows by bounding the duality

gap Gα(x, y(x)). Recall from (2.1) that:

Gα(x, y(x)) =

n∑

j=1

wj
x1−α
j

1− α

((xjα
∑m

i=1 yiAij
wj

)α−1
α − 1

)

+
m∑

i=1

yi −
n∑

j=1

wjx
1−α
j ·

(xjα
∑m

i=1Aijyi
wj

)α−1
α
. (2.71)

Since x is a solution from a stationary round, from the second part of the definition of

a stationary round (Definition 2.18), we have that:

n∑

j=1

xj

n∑

i=1

yi(x)Aij ≤ (1 + 2γ)
n∑

k=1

wk.

Further, from Lemma 2.7:

m∑

i=1

yi(x) ≤ (1 + 3ε)

n∑

j=1

xj

n∑

i=1

yi(x)Aij ≤ (1 + 3ε)(1 + 2γ)

n∑

k=1

wk. (2.72)

Next, we show that:

xj
1−α ≥ 1− γ, ∀j. (2.73)

Rearranging the terms and taking logarithms of both sides in (2.73), we obtain the equivalent

inequality 1−α ≤ ln(1/(1−γ))
ln(1/xj)

. Recall from α-FairPSolver that in every (except for, maybe,

the first) round xj ≥ δj ≥ δmin. As ln(1/(1 − γ)) ≥ γ, it therefore suffices to show that

1 − α ≤ γ
ln(1/δmin) . But from the statement of the lemma, 1 − α ≤ 1/τ0 < γ

ln(1/δmin) ,

completing the proof of (2.73).
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Combining (2.72) and (2.73), we get that:

m∑

i=1

yi(x) ≤ (1 + 3ε)(1 + 2γ)

1− γ
n∑

j=1

wjxj
1−α ≤ (1 + 5ε)

n∑

j=1

wjxj
1−α, (2.74)

where the second inequality follows from ε ≤ 1/6, γ = ε/4.

Using (2.74), we can bound the duality gap (Eq. (2.71)) as:

Gα(x, y(x)) ≤
n∑

j=1

wj
xj

1−α

1− α

(
α
(xjα

∑m
i=1 yiAij
wj

)α−1
α − 1 + (1− α)(1 + 5ε)

)
. (2.75)

To complete the proof, recall from Lemma 2.20 that in any round of the algorithm, for all

j:
xj

∑m
i=1 yi(x)Aij
wj

≥ (1− γ)τ0 . As α < 1 and xj ∈ [0, 1], ∀j, it holds that xj
α ≥ xj , ∀j, and

therefore:

xj
α
∑m

i=1 yi(x)Aij
wj

≥ (1− γ)τ0 , ∀j. (2.76)

Finally, recalling that 1− α ≤ 1/τ0, and combining (2.76) with (2.75), we get:

Gα(x, y(x)) ≤
n∑

j=1

wj
xj

1−α

1− α

(
α
( 1

1− γ
)1/α

− 1 + (1− α)(1 + 5ε)

)

≤
n∑

j=1

wj
xj

1−α

1− α ((1 + 2γ)1/α − 1 + (1− α)(1 + 5ε))

≤
n∑

j=1

wj
xj

1−α

1− α (1 + ε− 1 + (1− α)(1 + 5ε))

≤ 2ε

n∑

j=1

wj
xj

1−α

1− α ,

where the third inequality follows from α ≥ 1 − 1/τ0 ≥ 1 − γε
5 ≥ 1 − ε2

20 , and the fourth

inequality follows from 1− α < ε/2 and ε ≤ 1/6.

Lemma 2.33. Let x be an ε−approximate solution to a 1-fair packing problem (P1) returned

by α-FairPSolver. Then, for any α ∈ (1, 1 + 1/τ0], where τ0 = 1
β ln( 1

δmin
), x is also a

2ε−approximate solution to (Pα), where the only difference between (P1) and (Pα) is in the

value of α in the objective.

Proof. Similar to the proof of Lemma 2.32, we will fix an x from some stationary round of α-

FairPSolver run on (P1), and argue that the same x 2ε−approximates (Pα) by bounding
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the duality gap Gα(x, y(x)), although we will need to use a different set of inequalities since

now α > 1. Similar to the proof of Lemma 2.32, as x is (primal-)feasible for (P1), x and

y(x) are primal- and dual-feasible for (Pα).

By the same token as in the proof of Lemma 2.32:

m∑

i=1

yi(x) ≤ (1 + 3ε)(1 + 2γ)

n∑

j=1

wj .

As α > 1 and xj ∈ (0, 1], ∀j, we have that xj
1−α ≥ 1, ∀j, and therefore:

m∑

i=1

yi(x) ≤ (1 + 3ε)(1 + 2γ)

n∑

j=1

wjxj
1−α ≤ (1 + 4ε)

n∑

j=1

wjxj
1−α. (2.77)

Therefore, we can write for the duality gap:

Gα(x, y(x)) ≤
n∑

j=1

wj
xj

1−α

1− α

(
α
(xjα

∑m
i=1 yiAij
wj

)α−1
α − 1 + (1− α)(1 + 4ε)

)
(2.78)

= −
n∑

j=1

wj
xj

1−α

1− α

(
−α
(xjα

∑m
i=1 yiAij
wj

)α−1
α

+ 1 + (α− 1)(1 + 4ε)

)
. (2.79)

Notice that, as α > 1, the objective for (Pα),
∑n

j=1wj
xj

1−α

1−α , is now negative.

Using the same arguments as in the proof of Lemma 2.32, it is straightforward to show

that xj
α−1 ≥ 1− γ, ∀j. From Lemma 2.20, we have that

xj
∑
i yi(x)Aij
wj

≥ (1− γ)τ0 , ∀j, and

therefore:

xj
α
∑m

i=1 yi(x)Aij
wj

=
xj

1−α · xj
∑m

i=1 yi(x)Aij
wj

≥ (1− γ)τ0+1. (2.80)

Recalling that α− 1 ≤ 1/τ0 (by the statement of the lemma) and using (2.80), we have:

(xjα
∑m

i=1 yiAij
wj

)α−1
α ≥ (1− γ)(τ0+1)/(τ0(1+1/τ0))

= (1− γ). (2.81)
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Finally, plugging (2.81) into (2.79), we have:

Gα(x, y(x)) ≤ −
n∑

j=1

wj
xj

1−α

1− α (−α(1− γ) + 1 + (α− 1)(1 + 4ε))

= −
n∑

j=1

wj
xj

1−α

1− α

(
α · 1

4
ε+ 4ε(α− 1)

)

≤ −ε
n∑

j=1

wj
xj

1−α

1− α , (2.82)

where the equality follows from γ = ε
4 , and the last inequality follows from α − 1 ≤ 1

τ0
<

ε
20 .

Finally, we consider the asymptotics of α−fair allocations, as α becomes large. This

result complements the result from [102] that states that α−fair allocations approach the

max-min fair one as α → ∞ by showing how fast the max-min fair allocation is reached

as a function of α,Rw, n, and Amax. First, for completeness, we provide the definition of

max-min fairness.

Definition 2.34. (Max-min fairness [17].) Let R ⊂ Rn+ be a compact and convex set. A

vector x ∈ R is max-min fair on R if for any vector z ∈ R it holds that: if for some

j ∈ {1, ..., n} zj > xj, then there exists k ∈ {1, ..., n} such that zk < xk and xk ≤ xj.

On a compact and convex set R ⊂ Rn, the max-min fair vector is unique (see, e.g.,

[110, 116]). The following lemma shows that for α ≥ ε−1 ln(RwnAmax), the α−fair vector

and the max-min fair vector are ε−close to each other. Notice that because of a very

large gradient of pα(x) as α becomes large, the max-min fair solution provides only an

O(εα)−approximation to (Pα).

Lemma 2.35. Let x∗ be the optimal solution to (Pα) = max{pα(x) : Ax ≤ 1, x ≥ 0}, z∗

be the max-min fair solution for the convex and compact set determined by the constraints

from (Pα). Then if α ≥ ε−1 ln (RwnAmax), we have that:

1. pα(x∗) ≤ (1− ε(α − 1))pα(z∗), i.e., z∗ is an ε(α − 1)−approximate solution to (Pα),

and

2. (1− ε)z∗j ≤ x∗j ≤ (1 + ε)z∗j , for all j ∈ {1, ..., n}.
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Proof. Suppose that, starting with z∗, we want to construct a solution z that is feasible in

(Pα) and is such that pα(z) > pα(z∗). Then we need to increase at least one coordinate j

of z∗. Suppose that we increase a coordinate j by a factor 1 + ε, so that zj = (1 + ε)z∗j .

Since z∗ is the max-min fair vector, to keep z feasible, the increase over the jth coordinate

must be at the expense of decreasing some other coordinates k that satisfy z∗k ≤ z∗j . We will

assume that whenever we decrease the coordinates to keep the solution feasible, we keep the

solution Pareto optimal (i.e., we decrease the selected coordinates by a minimum amount).

Using Fact 2.9, we have:

pα(z)− pα(z∗) ≤
n∑

l=1

wl
zl − z∗l
(z∗l )α

< wj
zj − z∗j
(z∗j )α

= ε · wj(z∗j )1−α. (2.83)

Now, suppose that we want to further increase the jth coordinate by some small δ. Call

that new solution z1. Then, the total amount by which other coordinates must decrease to

keep the solution feasible is at least δ
Amax

, since the feasible region is determined by packing

constraints and it must be Az ≤ 1, where 1 ≤ Aij ≤ Amax, ∀i, j. Moreover, since z∗ is

max-min fair, each coordinate k that gets decreased must satisfy z∗k ≤ z∗j . It follows that:

p(z1)− p(z) ≤
n∑

l=1

wl
z1
l − zl
(zl)α

= wj
δ

(1 + ε)α(z∗j )α
+

∑

k:z1
k<zk

wk
z1
k − zk
(zk)α

≤ wmax
δ

(1 + ε)α(z∗j )α
− wmin

δ/Amax

(z∗j )α

=
δ(wmax − (1 + ε)αwmin/Amax)

(1 + ε)α(z∗j )α

≤ 0. (2.84)

The last inequality can be verified by solving the inequality wmax− (1 + ε)αwmin/Amax ≤ 0

for α, and verifying that it is implied by the initial assumption that α ≥ ε−1 ln(RwnAmax).

Therefore, the maximum amount by which any coordinate of z∗ can be increased to

improve the value of the objective pα(.) is by a multiplicative factor of at most (1 + ε).

Since we can construct x∗, the optimal solution to (Pα), starting with z∗ and by choosing

a set of coordinates j that we want to increase and by only decreasing coordinates k such

that z∗k ≤ z∗j whenever coordinate j is increased, it follows that x∗j ≤ (1 + ε)z∗j , ∀j.
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Moreover, from (2.83) and (2.84):

pα(z1)− pα(z∗) = p(z1)− p(z) + p(z)− p(z∗) < ε · wj(z∗j )1−α,

and we can conclude that:

pα(x∗)− pα(z∗) <

n∑

j=1

ε · wj(z∗j )1−α = ε(1− α) · pα(z∗),

which means that z∗ is an ε(α− 1)−approximate solution to (Pα).

Now consider the coordinates we need to decrease when we construct a solution z from

z∗, such that pα(z) > pα(z∗). Suppose that to increase some other coordinates, a coordinate

k is decreased by a factor (1− ε): zk = (1− ε)z∗k. As z∗ is max-min fair, only coordinates

larger than z∗k can increase at the expense of decreasing z∗k. Suppose now that we decrease

the kth coordinate further by some small δ. Call that solution z1. Then the maximum

number of other coordinates j that can further increase is min{n − 1,m} < n. Moreover,

each coordinate j that gets increased satisfies z∗j ≥ z∗k, and can be increased by at most

Amaxδ. Using Fact 2.9, it follows that:

pα(z1)− pα(z) ≤
n∑

l=1

wl
z1
l − zl
(zl)α

= −wk
δ

(1− ε)α(z∗k)α
+

∑

j:z1
j>zj

wj
z1
j − zj
(z∗j )α

< −wmin
δ

(1− ε)α(z∗k)α
+ nwmax

Amaxδ

(z∗k)α

=
δ(nwmaxAmax(1− ε)α − wmin)

(1− ε)α(z∗k)α

≤ 0, (2.85)

where the last inequality follows from (1 − ε)α ≤ (RwnAmax)−1, which is implied by the

initial assumption that α ≥ ε−1ln(RwnAmax).

Therefore, using (2.85), the kth coordinate can decrease by at most a multiplicative

factor (1 − ε). Using similar arguments as for increasing the coordinates, it follows that

x∗j ≥ (1− ε)z∗j , ∀j.
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Chapter 3

Max-Min Fair Resource Allocation

and Applications in Energy

Harvesting Networks

In this chapter, we focus on an application where fair resource allocation plays a crucial

role: energy harvesting networks. Recent advances in the development of ultra-low-power

transceivers and energy harvesting devices (e.g., solar cells) will enable self-sustainable

wireless networks [38, 49, 50]. In contrast to legacy wireless sensor networks, where the

available energy only decreases as the nodes sense and forward data, in energy harvesting

networks the available energy can also increase through a replenishment process. This

added energy replenishment results in significantly more complex variations of the available

energy, which poses challenges in the design of resource allocation and routing algorithms.

The problems of resource allocation, scheduling, and routing in energy harvesting net-

works have received considerable attention [12, 22, 29, 46, 48, 51, 54, 55, 78, 79, 106, 115, 118].

Most existing work considers simple networks consisting of a single node or a link [12,

22, 48, 51, 106, 118]. Moreover, fair rate assignment has not been thoroughly studied,

and most of the work either focuses on maximizing the total (or average) throughput

[12, 22, 29, 46, 55, 78, 84, 106, 115, 118], or considers fairness either only over nodes [79] or

only over time [48, 51]. An exception is [54], which requires fairness over both the nodes
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and the time, but is limited to two nodes.

We study the max-min fair rate assignment and routing problems for general network

topologies, requiring fairness over both nodes and time slots, and with the goal of design-

ing optimal and efficient algorithms. Following [29, 48, 51, 54, 78, 79], we assume that the

harvested energy is known for each node over a finite time horizon T . Such a setting cor-

responds to a highly-predictable energy profile, and can also be used as a benchmark for

evaluating algorithms designed for unpredictable energy profiles. We consider an energy

harvesting sensor network with a single sink node, and network connectivity modeled by

a directed graph (Fig. 1.2). Each node senses some data from its surrounding (e.g., air

pressure, temperature, radiation level), and sends it to the sink. The nodes spend their

energy on sensing, sending, and receiving data.

Fairness Motivation

Two natural conditions that a network should satisfy are:

(i) balanced data acquisition across the entire network, and

(ii) persistent operation (i.e., even when the environmental energy is not available for

harvesting).

Figure 3.1: An example of a network

in which throughput maximization

can result in a very unfair rate al-

location among the nodes.

Condition (i) is commonly maintained by requir-

ing fairness of the sensing rates over the nodes in

each time slot. We note that in the considered net-

work model, due to different energy costs for send-

ing, sensing, and receiving data, throughput maxi-

mization can be inherently unfair even in the case

of single-slot time horizon. For example, consider a

simple network with two energy harvesting nodes x

and y and a sink s as illustrated in Fig. 3.1. Assume that x has one unit of energy available,

and y has two units of energy. Let cst denote the joint cost of sensing and sending a unit

flow, and let crt denote the joint cost for receiving and sending a unit flow. Let λx and

λy denote the sensing rates assigned to the nodes x and y, respectively. Suppose that the

objective is to maximize λx+λy. If cst = 1, crt = 2, then in the optimal solution λx = 1 and
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λy = 0. Conversely, if cst = 2, crt = 1, then in the optimal solution λx = 0 and λy = 1. This

example easily extends to more general degenerate cases in which maximum-throughput so-

lution assigns non-zero sensing rates only to one part of the network, whereas the remaining

nodes do not send any data to the sink.

One approach to achieving (ii) is by assigning constant sensing rates to the nodes.

However, this approach can result in underutilization of the available energy. As a simple

example, consider a node that harvests outdoor light energy over a 24-hour time horizon. If

the battery capacity is small, then the sensing rate must be low to prevent battery depletion

during the nighttime. However, during the daytime, when the harvesting rates are high, a

low sensing rate prevents full utilization of the energy that can be harvested. Therefore,

it is advantageous to vary the sensing rates over time. However, fairness must be required

over time slots to prevent the rate assignment algorithm from assigning high rates during

periods of high energy availability, and zero rates when no energy is available for harvesting.

To guarantee (i) and (ii), we seek a lexicographically maximum rate assignment Λ =

{λi,t}, where i ∈ {1, ..., n} indexes nodes, while t ∈ {1, ..., T} indexes time slots. Informally,

a rate assignment Λ = {λi,t} is lexicographically maximum if it is feasible, and for any

alternative rate assignment Λ′ = {λ′i,t}, by traversing the elements of Λ and Λ′ in non-

decreasing order either all the elements from Λ and Λ′ are equal, or in the first pair of

non-equal elements the greater element is from Λ. Such lexicographically maximum rate

assignment is equivalent to the most egalitarian rate assignment – namely, the max-min

fair rate assignment – whenever a max-min fair rate assignment exists. Formal definitions

of max-min fairness and lexicographical ordering of vectors are provided in Section 3.2.1.

Routing Types

We consider three different routing types that can be used in any fixed time slot: (i) a

routing tree, (ii) unsplittable (single-path) routing, and (iii) fractional (multi-path routing),

illustrated in Fig. 3.2. During one time slot, the routing and the assigned rates are fixed.

A routing tree is the simplest routing: every node i (except for the sink) has a single

parent node to which it sends all the flow that i either generates through sensing or receives

from other nodes. Unsplittable (or single-path) routing is a generalization of the routing
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(a) Routing tree. (b) Unsplittable routing. (c) Fractional routing.

Figure 3.2: Routing types: (a) a routing tree, (b) unsplittable routing: each node sends its

data over one path, (c) fractional routing: nodes can send their data over multiple paths.

Paths are represented by dashed lines.

tree, where every node has a single path to the sink over which it sends all the flow it

generates. Finally, fractional (or multi-path) routing is the most general form of routing in

which every node can split the generated flow over arbitrarily many paths to the sink.

The routing tree is a special case of the unsplittable routing, and the unsplittable routing

is a special case of the fractional routing. Therefore, it is clear that (under any reasonable

comparison criteria) on any input graph out of the three routing types the routing trees

support the “lowest” rates, while the fractional routings support the “highest” rates. We

illustrate the effect of the routing type on the minimum rate assigned in a max-min fair

rate assignment in Fig. 3.3 and Fig. 3.4.

We will refer to a routing as time-invariable, if in every time slot each node i uses the

same set of paths to send its flow to the sink, and, moreover, for each path used by i the

fraction of flow sent by i does not change over time slots.1 Otherwise, the routing is time-

variable. For example, we will say that a routing is a time-variable routing tree, if the most

complex routing used in any time slot is a routing tree. As any time-invariable routing

is a special case of the corresponding time-variable routing, the time-variable routings in

general provide higher rates. We illustrate the effect of the time variance of a routing on

the minimum rate assigned to any node in a max-min fair rate assignment in Fig. 3.5.

It is natural to ask why should any simpler routing type be preferred over time-variable

fractional routing – the most general one. The answer lies in the practical implementation of

1Note that node i’s sensing rate (generated flow) can change over time, even though the routing does not

change.
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Figure 3.3: A network example in which unsplittable routing provides minimum sensing

rate that is Ω(n) times higher than for any routing tree. Assume cst = crt = 1 and T = 1.

Available energy levels at all the nodes xi, i ∈ {1, ..., k} are equal to 1, as shown in the box

next to the nodes. Other nodes have energy levels that are high enough so that they are

not constraining. In any routing tree, y has some xi as its parent, so λxi = λy = λz1 = ... =

λzk−1
= 1/(k+1) and λxj = 1 for j 6= i. In an unsplittable routing with paths pxi = {xi, s},

pzi = {zi, y, xi, s}, and py = {y, xk, s}, all the rates are equal to 1/2. As k = Θ(n), the

minimum rate improves by Ω((k + 1)/2) = Ω(n).

a routing: in general, more complex routing types are more difficult to maintain and require

more control information that consumes energy thus effectively lowering the achievable

sensing rates [50].

General α−Fair Rate Allocation and Routing

For some examples of energy-harvesting networks, such as those with a less variable en-

ergy source (e.g., indoor light) and short distances between the sensor nodes and the sink,

different trade-offs between fairness and efficiency may be preferred, and we can consider

more general values of α (as opposed to focusing on max-min fairness – i.e., α → ∞). In

such cases, the results from Chapter 2 apply whenever the routing is specified at the input.

The reason is that when the routing is specified, all the constraints can be expressed as

the packing constraints (see Section 3.3). When the routing is not specified, this is not

true anymore due to the flow conservation constraints which cannot be expressed as packing

constraints. We note, however, that as with α−fair objectives for α ∈ [0,∞) the problem

of α−fair rate allocation and fractional routing is convex2, it can be addressed with convex

2see Section 3.2.3 for a detailed description of the considered problems.
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Figure 3.4: A network example in which a fractional routing provides minimum sensing rate

that is 2
1+1/(n−1) ≈ 2 times higher than in any unsplittable routing. Assume cst = crt = 1

and T = 1. Available energy levels at all the nodes are equal to 1, as shown in the box next

to the nodes. In any unsplittable routing, y sends all its flow through one xi, so λxi = λy = 1
2

and λxj = 1 for j 6= i. In a fractional routing, y can split its flow over all xi’s, so that

λy
n−1 + λxi = bxi , for all i. To maximize minimum assigned rate, λy = λxi = 1

1+1/(n−1) .

Therefore, the minimum assigned rate improves by a factor of 2
1+1/(n−1) .

Figure 3.5: A network example in which a time-variable routing solution provides minimum

sensing rate that is Ω(n) times higher than in any time-invariable routing. The batteries of

x1 and x2 are initially empty, and the battery capacity at all the nodes is B = 1. Harvested

energy values over time slots for nodes x1 and x2 are shown in the box next to them. Other

nodes are assumed not to be energy constraining. In any time-invariable routing, at least

one of x1, x2 has Ω(k) = Ω(n) descendants, forcing its rate to the value of 1/Ω(n) in the slots

in which the harvested energy value is equal to 1. In a routing in which y sends the data

only through x1 in odd slots and only through x2 in even slots: λy = λz1 = ... = λzk−1
= 1.
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Table 3.1: Our results for determining a max-min fair routing.

Routing Computational Complexity

Routing tree NP-hard to approximate within O(log(n)) even for T = 1.

Unsplittable routing NP-hard to determine even for T = 1.

Time-variable frac-

tional routing

Can be determined with an Õ(nT (T 2ε−2 · (nT +MCF (n,m) +

LP (mT, nT )))-time algorithm, where MCF (n,m) is the run-

ning time of an algorithm that solves the min-cost flow problem

on a graph with n nodes and m edges and LP (mT, nT ) is the

running time of an algorithm that solves a linear program with

mT variables and nT constraints.

Time-invariable frac-

tional routing with

time-invariable rates

Can be determined with an Õ(n(T + MF (n,m)))-time algo-

rithm, where MF (n,m) is the running time of an algorithm

that solves the maximum flow problem on a graph with n nodes

and m edges.

programming (see, e.g., [24, 104]).

For the max-min fair rate allocation in energy-harvesting, which is the focus of this

chapter, the algorithm from Chapter 2 cannot be applied in general, even for a specified

routing. Due to Lemma 2.35 from Chapter 2, max-min fair vector can be ε−approximated

by an α−fair vector if α is sufficiently large (scaling quadratically with the logarithm of

the input and ε−1), but the α−fair vector needs to be determined optimally (recall that the

algorithm from Chapter 2 is ε−approximate). Therefore, some of the problems considered

in this chapter – namely, the rate allocation problem in a specified routing and max-min

fair fractional routing – can be determined up to ε−accuracy through centralized convex

programming. Such an approach would generally lead to high polynomial dependence on

the input parameters. Here, we will instead rely on the structure of the considered problems

to devise efficient algorithms that do not rely on general convex programming.
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Summary of Contributions

For a routing that is provided at the input, we design a combinatorial algorithm that solves

the max-min fair rate assignment problem. The algorithm runs in Õ(nmT 2) time3, where

n is the number of energy-harvesting nodes, m is the number of edges in the routing graph,

and T is the time horizon.

We then turn to the problem of finding a “good” routing of the specified type, where

a routing is “good” if it provides a lexicographically maximum rate assignment out of all

feasible routings of the same type. We sometimes refer to such a routing as the max-min

fair routing.4 (See Section 3.2.2 for a formal statement of the problems.) Our results for

determining a max-min fair routing of a specified type are summarized in Table 3.1.

We show that a max-min fair routing tree is NP-hard to approximate within Ω(log(n))

and that a max-min fair unsplittable routing is NP-hard to find, regardless of whether

the routing is time variable or not. Relaxing the requirement of the lexicographically max-

imum rates, we design a polynomial-time algorithm that determines a time-invariable

unsplittable routing that maximizes the minimum rate assigned to any node in any

time slot.

For the max-min fair time-variable fractional routing, we demonstrate that ver-

ifying whether a given rate assignment is feasible is at least as hard as solving a feasible

2-commodity flow. This result implies that, to our current knowledge, it is unlikely that

we can determine a max-min fair fractional routing without the use of linear programming

(LP). To combat the high running time induced by the LP, we develop a fully polynomial

time approximation scheme (FPTAS). We also show that in the special case when the frac-

tional routing is restricted to be time-invariable with rates that are constant over

time, the max-min fair routing can be determined in polynomial time with a combinatorial

algorithm that we provide in Section 3.5.

Our algorithms rely on the well-known water-filling framework, described in Section

3.2.1. It is important to note that water-filling is a framework–not an algorithm–and there-

fore it does not specify how to solve the maximization nor fixing of the rates steps (see

3Õ(.)-notation hides poly-log terms.

4The notions of max-min fairness and lexicographical ordering of vectors are defined in Section 3.2.1.
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Section 3.2.1). Even though a general LP framework for implementing water-filling such as

e.g., [28, 79, 110] can be adapted to solve some of the problems considered in this chapter,

their implementation in general requires solving O(N2) LPs for any problem with N vari-

ables. For instance, to determine a max-min fair time-variable fractional routing this water

filling framework would in general need to solve O(n2T 2) LPs with O(mT ) variables and

O(nT ) constraints, thus resulting in an unacceptably high running time. Our algorithms

are devised relying on the problem structure, and in most cases do not use LP. The only

exception is the algorithm for determining a max-min fair time-variable fractional routing

(Section 3.4), which solves O(nT ) LPs, and thus provides at least O(nT )-fold improvement

as compared to an adaptation of [28,79,110].

The considered problems generalize classical max-min fair routing problems that have

been studied outside the area of energy harvesting networks, such as: max-min fair fractional

routing [100], max-min fair unsplittable routing [68], and bottleneck routing [18]. In contrast

to the problems studied in [18,68,100], our model allows different costs for flow generation

and forwarding, and has time-variable node capacities determined by the available energies

at the nodes. We remark that studying networks with node capacities is as general as

studying networks with capacitated edges, as there are standard methods for transforming

one of these two problems into the other (see, e.g., [3]). Therefore, we believe that the

results will find applications in other related areas.

3.1 Related Work

We briefly survey the related work on classical fairness problems and problems arising in

sensor and energy-harvesting networking applications.

Energy-harvesting Networks. Rate assignment in energy harvesting networks in the

case of a single node or a link was studied in [12,22,29,48,51,106,118]. Resource allocation

and scheduling for network-wide scenarios using the Lyapunov optimization technique was

studied in [46, 55, 84, 115]. While the work in [46, 55, 84, 115] can support unpredictable

energy profiles, it focuses on the (sum-utility of) time-average rates, which is, in general,

time-unfair. Online algorithms for resource allocation and routing were considered in [30,78].



CHAPTER 3. MAX-MIN FAIR RESOURCE ALLOCATION AND APPLICATIONS IN
ENERGY HARVESTING NETWORKS 84

Max-min time-fair rate assignment for a single node or a link was considered in [48,51],

while max-min fair energy allocation for single-hop and two-hop scenarios was studied

in [54]. Similar to our work, [54] requires fairness over both the nodes and the time slots, but

considers only two energy harvesting nodes. The work on max-min fairness in network-wide

scenarios [79] is explained in more detail below.

Sensor Networks. A special case of max-min fair rate assignment and routing in energy

harvesting networks is related to the problems of lifetime maximization in sensor networks

(see, e.g., [26, 83] and the follow-up work). In particular, the problem of maximizing only

the minimum rate assigned to any node (instead of finding a max-min fair rate assignment)

over a time horizon of a single slot is equivalent to maximizing the lifetime of a sensor

network. Determining a maximum lifetime tree in sensor networks [25] is a special case

of determining a max-min fair routing tree in energy harvesting networks. We extend the

NP-hardness result from [25] and provide a lower bound of Ω(log n) for the approximation

ratio (for both [25] and our problem), where n is the number of nodes in the network.

Max-min Fair Rate Assignment. Max-min fair rate assignment for a given routing was

studied extensively (see [18, 27] and references therein). Max-min fair rate assignment in

energy harvesting networks reduces to the problems from [18, 27] for cst = crt (unit energy

costs) and T = 1 (static capacities). In the energy harvesting network setting, the problem

of rate assignment has been considered in [79], for rates that are constant over time and

a time-invariable routing tree. We consider a more general case than in [79], where the

rates are time-variable, fairness is required over both network nodes and time slots, and the

routing can be time-variable and of any type (a routing tree, an unsplittable routing, or a

fractional routing).

Max-min Fair Unsplittable Routing. Determining a max-min fair unsplittable routing

as studied in [68] is a special case of determining a max-min fair unsplittable routing in en-

ergy harvesting networks for cst = crt and T = 1. The NP-hardness result from [68] implies

the NP-hardness of the max-min fair unsplittable routing in energy harvesting networks.

Max-min Fair Fractional Routing. Max-min fair fractional routing was first studied

in [100]. The algorithm from [100] relies on the property that the total values of a max-min

fair flow and max flow are equal, which does not hold even in simple instances of energy
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harvesting networks. The problem of determining a max-min fair fractional routing reduces

to the problem of [100] for T = 1 and cst = crt.

Max-min fair fractional routing in energy harvesting networks has been considered in

[79]. The distributed algorithm from [79] is a heuristic for the problem of determining a time-

invariable fractional routing with constant rates. We provide a combinatorial algorithm that

solves this problem optimally in a centralized manner (Section 3.5). We focus on the more

general problem of determining a max-min fair time-variable routing with time-variable

rates, and we provide an FPTAS for this problem in Section 3.4.

A general linear programming framework for max-min fair routing was provided in [110],

and extended to the setting of sensor and energy harvesting networks in [28] and [79],

respectively. This framework, when applied to our setting, is highly inefficient.

3.2 Preliminaries

3.2.1 Max-min Fairness and Lexicographic Maximization

Closely related to the max-min fairness5 is the notion of lexicographic maximization. The

lexicographic ordering of vectors, with the relational operators denoted by
lex
=,

lex
> , and

lex
< ,

is defined as follows:

Definition 3.1. Let u and v be two vectors of the same length l, and let us and vs denote the

vectors obtained from u and v respectively by sorting their elements in the non-decreasing

order. Then:

(i) u
lex
= v if us = vs element-wise;

(ii) u
lex
> v if there exists j ∈ {1, 2, ..., l}, such that us(j) > vs(j), and us(1) = vs(1), ..., us(j−

1) = vs(j − 1) if j > 1;

(iii) u
lex
< v if neither u

lex
= v nor u

lex
> v.

A max-min fair allocation vector exists on any convex and compact set [110]. In a given

optimization problem whenever a max-min fair vector exists, it is unique and equal to the

lexicographically maximum one [116]. The following lemma summarizes these two results.

5Recall that max-min fairness was defined in Introduction (Definition 1.2).
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Lemma 3.2. For any convex and compact feasible region, a max-min fair allocation vector

exists and it unique. Moreover, the max-min fair vector is equivalent to the lexicographically

maximum vector from the same feasible region.

Lexicographic maximization of a vector v over a feasible region R can be implemented

using the water-filling framework (see, e.g., [18]):

Algorithm 1 Water-filling-Framework(R)

1: Set vi = 0 ∀i, and mark all the elements of v as not fixed.

2: Maximizing-the-Rates: Increase all the elements vi of v that are not fixed by the

same maximum amount, subject to the constraints from R.

3: Fixing-the-Rates: Fix all the vi’s that cannot be further increased.

4: If all the elements of v are fixed, terminate. Otherwise, go to step 2.

As we will see later, the problems of finding the max-min fair rate assignment in a given

routing and determining max-min fair fractional routing will have convex and compact

feasible regions. Since in this case max-min fair rate allocation is equivalent to the lexico-

graphically maximum one (Lemma 3.2), our algorithms will rely on the Water-filling-

Framework. The algorithmic challenges for these problems will lie in the efficient imple-

mentation of common rate maximization (Step 2) and rate fixing (Step 3).

For problems that do not have a convex feasible region, a max-min fair allocation does

not necessarily exist, while a lexicographically maximum allocation always exists (see, e.g.,

[110]). Therefore, the problems of finding an “optimal” routing tree or an unsplittable

routing may not have a solution in the max-min fair sense, but will always have at least

one solution in the context of lexicographic maximization. For this reason, we will consider

lexicographic maximization in such cases.

3.2.2 Model and Problem Formulation

We consider a network that consists of n energy harvesting nodes and one sink node

(Fig. 1.2). The sink node is assumed not to be energy constrained. In the rest of the chap-

ter, we will use “sink” to refer to the sink node and “node” to refer to an energy harvesting

node. The connectivity between the nodes is modeled by a directed graph G = (V,E),
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where |V | = n+ 1 (n nodes and the sink), and |E| = m. We assume without loss of gener-

ality that every node has a directed path to the sink, because otherwise it can be removed

from the graph. The main notation is summarized in Table 4.1.

Each node is equipped with a rechargeable battery of finite capacity B. The time horizon

is T time slots. The duration of a time slot is assumed to be much longer than the duration

of a single data packet, but short enough so that the rate of energy harvesting does not

change during a slot. For example, if outdoor light energy is harvested, one time slot can

be at the order of a minute. In a time slot t, a node i harvests ei,t units of energy. The

battery level of a node i at the beginning of a time slot t is bi,t. We follow a predictable

energy profile [29, 48, 51, 54, 78, 79], and assume that all the values of harvested energy

ei,t, i ∈ {1, ..., n}, t ∈ {1, ..., T}, battery capacity B, and all the initial battery levels bi,1,

i ∈ {1, ..., n} are known and finite.

A node i in slot t senses data (generates flow) at rate λi,t. A node forwards all the data

it senses and receives towards the sink. The flow on a link (i, j) in slot t is denoted by fij,t.

Each node spends cs energy units to generate a unit flow, and ctx, respectively crx, energy

units to send, respectively receive, a unit flow. The joint cost of generating and sending a

unit flow is denoted by cst ≡ cs + ctx, while the joint cost of receiving and sending a unit

flow is denoted by crt ≡ crx + ctx.

Consider any routing R = {Rt}, where Rt ⊆ E is a subset of edges from the underlying

graph G used to route data in time slot t. The feasible region of the sensing rates λi,t and

the flows fij,t with respect to a given routing R is determined by the following set of linear6

constraints:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :
∑

(j,i)∈Rt

fji,t + λi,t =
∑

(i,j)∈Rt

fij,t (3.1)

bi,t+1 = min
{
B, bi,t + ei,t −

(
cstλi,t + crt

∑

(j,i)∈Rt

fji,t

)}
(3.2)

6Note that we treat Eq. (3.2) as a linear constraint, since the considered problems focus on maximizing

λi,t’s (under the max-min fairness criterion), and (3.2) can be replaced by bi,t+1 ≤ B and bi,t+1 ≤ bi,t +

ei,t − (crtf
Σ
i,t + cstλi,t) while leading to the same solution.
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Table 3.2: Nomenclature.
in

p
u

ts

n Number of energy harvesting nodes

m Number of edges

T Time horizon

i Node index, i ∈ {1, 2, ...n}
t Time index, t ∈ {1, ..., T}
B Battery capacity

ei,t Harvested energy at node i in time slot t

cs Energy spent for sensing a unit flow

ctx Energy spent for transmitting a unit flow

crx Energy spent for receiving a unit flow

v
a
ri

a
b

le
s

λi,t Sensing rate of node i in time slot t

fij,t Flow on link (i, j) in time slot t

bi,t Battery level at node i at the beginning of time slot t

n
o
ta

ti
o
n

cst
Energy spent for jointly sensing and transmitting a unit flow: cst =

cs + ctx

crt
Energy spent for jointly receiving and transmitting a unit flow: crt =

crx + ctx

fΣ
i,t

Total flow entering node i in time slot t: fΣ
i,t =

∑
j:(j,i)∈E fji,t

bi,t+1 ≥ 0, λi,t ≥ 0, fij,t ≥ 0,∀(i, j) ∈ Rt, (3.3)

where (3.1) is a classical flow conservation constraint, while (3.2) describes the battery

evolution over time slots.

For Definitions 1.2 and 3.1 to apply, we will interpret a rate assignment Λ = {λi,t} as a

one-dimensional vector.

3.2.3 Considered problems

We examine different routing types, in time-variable and time-invariable settings, as de-

scribed in the Introduction. The problems that we consider are from either of the following

two categories: (i) determining a max-min fair rate assignment in a routing that is provided



CHAPTER 3. MAX-MIN FAIR RESOURCE ALLOCATION AND APPLICATIONS IN
ENERGY HARVESTING NETWORKS 89

at the input, and (ii) determining a routing of the required type that provides lexicograph-

ically maximum rate assignment. We specify the problems in more detail below. The first

problem formalizes (i), while the remaining problems are specific instances of (ii).

P-Determine-Rates: Given a routing R = {Ri,t}, determine the max-min fair assign-

ment of the rates {λi,t}. Note that this setting subsumes all the routing types that were

defined in the Introduction.

P-Unsplittable-Routing: For a given (time-invariable or time-variable) unsplittable

routing P, let {λPi,t} denote a rate allocation that optimally solves P-Determine-Rates

over P. Searching over all feasible unsplittable routings in graph G over time horizon T ,

determine an unsplittable routing P that provides a lexicographically maximum assignment

of rates {λPi,t}.
P-Routing-Tree: Let T denote a (time-invariable or time-variable) routing tree on

the input graph G. For each T , let {λTi,t} denote a rate allocation that optimally solves

P-Determine-Rates. Searching over all feasible routing trees in G over time horizon T ,

determine T that provides a lexicographically maximum assignment of rates {λTi,t}.
P-Fractional-Routing: Determine a time-variable fractional routing that supports

lexicographically maximum rate assignment {λi,t}, considering all the (time-variable, frac-

tional) routings.

P-Fixed-Fractional-Routing: Determine a time-invariable fractional routing that

provides the max-min fair time-invariable rate assignment {λi,t} = {λi}. This problem is

a special case of P-Fractional-Routing, where the routing and the rates are constant

over time.

3.3 Rate Allocation in a Specified Routing

This section provides an algorithm for P-Determine-Rates, the problem of rate assign-

ment for a routing specified at the input. The analysis applies to any routing type described

in the Introduction. As discussed in Section 3.2.1, to design an efficient rate assignment al-

gorithm relying on Water-filling-Framework, we need to implement the common rate

maximization (Step 2) and fixing of the rates (Step 3) of Water-filling-Framework
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efficiently.

We begin by introducing additional notation. We assume that the routing over time

t ∈ {1, ..., T} is provided as a time-sequence of sets of routing paths P = {Pi,t} from a

node i to the sink s, for each node i ∈ V \{s}. We also assume that associated with each

path pi,t ∈ Pi,t there is a coefficient αi,t > 0, such that
∑

pi,t∈Pi,t αi,t = 1. The coefficients

αi,t determine the fraction of flow λi,t that is sent over path pi,t. We say that node j is a

descendant of node i in a time slot t if i ∈ Pj,t, that is, if i is on at least one routing path

of j in slot t.7

We let F ki,t = 1 if the rate λi,t is not fixed at the beginning of the kth iteration of

Water-filling-Framework, F ki,t = 0 otherwise. Initially, F 1
i,t = 1, ∀i, t. If a rate λi,t is

not fixed, we will say that it is “active”. To concisely evaluate the flow incoming into node

i in time slot t in iteration k, we let Dk
i,t =

∑
{pj,t:j 6=i∧i,pj,t∈Pj,t} αj,t ·F kj,t. Finally, let λki,t and

bki,t denote the values of λi,t and bi,t in the kth iteration of Water-filling-Framework,

where λ0
i,t = 0, ∀i, t. Under this notation, the rates in kth iteration can be expressed as

λki,t =
∑k

l=1 F
l
i,tλ

l, where λl denotes the common amount by which all the active rates get

increased in the lth iteration. Moreover, it is not hard to see that the total flow incoming

into node i and originating at other nodes in iteration k is equal to
∑k

l=1D
l
i,tλ

l.

3.3.1 Maximizing the Rates

Using the notation introduced in this section, maximization of the common rate λk in kth

iteration of Water-filling-Framework can be formulated as follows:

max λk

s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

bki,t+1 = min{B, bki,t + ei,t −
k∑

l=1

λl(crtD
l
i,t + cstF

l
i,t)}

bki,t ≥ 0, λk ≥ 0,

where ∀i ∀k : bki,1 = bi,1.

7Notice that this is consistent with the definition of a descendant in a routing tree.
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Instead of using all of the λl’s from previous iterations in the expression for bki,t+1, we

can define the battery drop in the iteration k, for node i and time slot t as: ∆bki,t =
∑k

l=1 λ
l
(
crtD

l
i,t + cstF

l
i,t

)
and only keep track of the battery drops from the previous iter-

ation. The intuition is as follows: to determine the battery levels in all the time slots, we

only need to know the initial battery level and how much energy (∆bi,t) is spent per time

slot. Setting ∆b0i,t = 0, the problem can be written as:

max λk

s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

∆bki,t = ∆bk−1
i,t + λk(crtD

k
i,t + cstF

k
i,t)

bki,t+1 = min{B, bki,t + ei,t −∆bki,t}

bki,t ≥ 0, λk ≥ 0

Writing the problem for each node independently, we can solve the following subproblem:

max λki (3.4)

s.t. ∀t ∈ {1, ..., T} :

∆bki,t = ∆bk−1
i,t + λki (crtD

k
i,t + cstF

k
i,t) (3.5)

bki,t+1 = min{B, bki,t + ei,t −∆bki,t} (3.6)

bki,t ≥ 0, λki ≥ 0 (3.7)

for each i with
∑

i,t F
k
i,t > 0, and determine λk = mini λ

k
i . Notice that we can bound each

λki by the interval [0, λkmax,i], where λkmax,i is the rate for which node i spends all its available

energy in the first slot τ in which its rate is not fixed:

λkmax,i =
bk−1
i,τ + ei,τ

crtDk
i,τ + cst

, τ = min{t : F ki,t = 1}.

The subproblem of determining λki can now be solved by performing a binary search in

the interval [0, λkmax,i].

Let δ denote the precision of the input variables. Note that however small, δ can usually

be expressed as a constant. This section can be summarized in the following lemma.
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Lemma 3.3. Maximizing-the-Rates in P-Determine-Rates can be implemented in

time

O
(
T
∑

i

log
(λkmax,i

δ

))
= O

(
nT log

(B + maxi,t ei,t
δcst

))
.

3.3.2 Fixing the rates

Recall that the elements of the matrix F k are such that F ki,t = 0 if the rate λi,t is fixed for

the iteration k, and F ki,t = 1 otherwise. At the end of iteration k ≥ 1, let F k+1 = F k, and

consider the following set of fixing rules:

(F1) For all (i, t) such that bki,t+1 = 0 set F k+1
i,t = 0.

(F2) For all (i, t) such that bki,t+1 = 0 determine the longest sequence (i, t), (i, t− 1), (i, t−
2), ..., (i, τ), τ ≥ 1, with the property that bki,s + ei,s −∆bki,s ≤ B ∀s ∈ {t, t− 1, ..., τ},
and set F k+1

i,s = 0 ∀s.

(F3) For all (i, t) for which the rules (F1) and (F2) have set F k+1
i,t = 0, and for all j such

that i ∈ Pj,t, set F k+1
j,t = 0.

We will need to prove that these rules are necessary and sufficient for fixing the rates.

Here, “necessary” means that no rate that gets fixed at the end of iteration k can get

increased in iteration k + 1 without violating at least one of the constraints. “Sufficient”

means that all the rates λi,t with F k+1
i,t = 1 can be increased by a positive amount in

iteration k + 1 without violating feasibility.

Lemma 3.4. (Necessity) No rate fixed by the rules (F1), (F2) and (F3) can be increased

in the next iteration without violating feasibility constraints.

Proof. We will prove the lemma by induction on iteration k.

The base case. Consider the first iteration and observe the pairs (i, t) for which

F 1
i,t = 0.

Suppose that b1i,t+1 = 0. The first iteration starts with all the rates being active, so we
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get from the constraint (3.6):

b1i,t+1 = min
{
B, b1i,t + ei,t −

(
crtD

1
i,t + cst

)
λ1
}

= min
{
B, b1i,t + ei,t −

(
crt

∑

pj,t:j 6=i∧i,pj,t∈Pj,t

αj,t · λ1
j,t + cstλ

1
i,t

)}

= b1i,t + ei,t −
(
crt

∑

pj,t:j 6=i∧i,pj,t∈Pj,t

αj,t · λ1
j,t + cstλ

1
i,t

)
= 0, (3.8)

as B > 0, where the first and the second line come from all the rates being equal in the

first iteration and the fact that all the i’s descendants whose path pj,t contains i send αj,t

fraction of their flow through i.

As every iteration only increases the rates, if we allow λi,t to be increased in the next

iteration, then (from (3.8)) we would get bi,t+1 < 0, which is a contradiction. Alternatively,

if we increase λ1
i,t at the expense of decreasing some λ1

j,t, i ∈ pj,t\{j}, to keep bi,t+1 ≥ 0,

then the solution is not max-min fair, as λ1
j,t = λ1

i,t = λ1. This proves the necessity of

the rule (F1). By the same observation, if we increase the rate λ1
j,t of any of the node i’s

descendants j at time t, we will necessarily get bi,t+ < 0 (or would need to sacrifice the

max-min fairness). This proves the rule (F3) for all the descendants of node i, such that

F 2
i,t is set to 0 by the rule (F1).

Now let (i, t), (i, t−1), (i, t−2), ..., (i, τ), τ ≥ 1, be the longest sequence with the property

that: bi,t = 0 and b1i,s + ei,s −∆b1i,s ≤ B ∀s ∈ {t, t− 1, ..., τ}. Observe that when this is the

case, we have:

∀s ∈{τ, τ + 1, ..., t− 2, t− 1} :

b1i,s+1 = min
{
B, b1i,s + ei,s −∆b1i,s

}
= b1i,s + ei,s −∆b1i,s

= b1i,s + ei,s −
(
crt

∑

pj,t:j 6=i∧i,pj,t∈Pj,t

αj,t · λ1
j,t + cstλ

1
i,s

)

This gives a recursive relation, so bi,t+1 can also be written as:

b1i,t+1 = b1i,τ +

t∑

s=τ

ei,s − crt

t∑

s=τ

∑

pj,t:j 6=i∧i,pj,t∈Pj,t

αj,t · λ1
j,t − cst

t∑

s=τ

λ1
i,s.

If we increase λi,s or λj,s, for any j, s such that j 6= i and i ∈ Pj,s, s ∈ {τ, τ+1, ..., t−2, t−1},
then either bi,t+1 becomes negative, or we sacrifice the max-min fairness, as all the rates
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are equal to λ1 in the first iteration. This proves rule (F2) and completes the proof for the

necessity of rule (F3).

The inductive step. Suppose that all the rules are necessary for the iterations

1, 2, ...k − 1, and consider the iteration k.

Observe that:

(o1) λj,t ≤ λi,t, ∀j : i ∈ Pj,t, as all the rates, until they are fixed, get increased by the same

amount in each iteration, and once a rate gets fixed for some (i, t), by the rule (F3),

it gets fixed for all the node i’s descendants in the same time slot. Notice that the

inequality is strict only if λj,t got fixed before λi,t; otherwise these two rates get fixed

to the same value.

(o2) Once fixed, a rate never becomes active again.

(o3) If a rate λi,t gets fixed in iteration k, then λi,t = λki,t =
∑k

p=1 λ
p = λli,t, ∀l > k.

Suppose that bki,t+1 = 0 for some i ∈ {1, .., n}, t ∈ {1, ..., T}. If F ki,t = 0, then by the

inductive hypothesis λi,t cannot be further increased in any of the iterations k, k + 1, ....

Assume F ki,t = 1. Then:

bki,t+1 = min
{
B, bki,t + ei,t −

(
crt

∑

pj,t:j 6=i∧i,pj,t∈Pj,t

αj,t · λkj,t + cstλ
k
i,t

)}

= bki,t + ei,t −
(
crt

∑

pj,t:j 6=i∧i,pj,t∈Pj,t

αj,t · λkj,t + cstλ
k
i,t

)
= 0.

By the observation (o1), λkj,t ≤ λki,t, ∀j such that i ∈ pj,t\{j}, where the inequality holds

with equality if F kj,t = 0. Therefore, if we increase λi,t in some of the future iterations, either

bi,t+1 < 0, or we need to decrease some λj,t ≤ λi,t, violating the max-min fairness condition.

This proves the necessity of the rule (F1). For the rule (F3), as for all (j, t) with j 6= i,

F kj,t = 1 and i ∈ Pj,t, we have λj,t = λi,t, none of the i’s descendants can further increase

its rate in slot t.

Now for (i, t) such that bki,t+1 = 0, let (i, t), (i, t − 1), (i, t − 2), ..., (i, τ), τ ≥ 1, be the

longest sequence with the property that: bki,s+ei,s−∆bki,s ≤ B ∀s ∈ {t, t−1, ..., τ}. Similarly
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as for the base case:

∀s ∈{τ, τ + 1, ..., t− 2, t− 1} :

bki,s+1 = min
{
B, bki,s + ei,s −∆bki,s

}

= bki,s + ei,s −
(
crt

∑

pj,t:j 6=i∧i,pj,t∈Pj,t

αj,t · λkj,t + cstλ
k
i,s

)
,

and we get that:

bki,t+1 = bki,τ +
t∑

s=τ

ei,s − crt

t∑

s=τ

∑

pj,t:j 6=i∧i,pj,t∈Pj,t

αj,t · λkj,t − cst

t∑

s=τ

λki,s. (3.9)

If any of the rates appearing in (3.9), was fixed in some previous iteration, then it cannot

be further increased by the inductive hypothesis. By the observation (o1), all the rates

that are active are equal, and all the rates that are fixed are strictly lower than the active

rates. Therefore, by increasing any of the active rates from (3.9), we either violate battery

nonnegativity constraint or the max-min fairness criterion. Therefore, rule (F2) holds, and

rule (F3) holds for all the descendants of nodes whose rates got fixed by the rule (F2), in

the corresponding time slots.

Lemma 3.5. (Sufficiency) If F k+1
i,t = 1, then λi,t can be further increased by a positive

amount in the iteration k + 1, ∀i ∈ {1, ..., n}, ∀t ∈ {1, ..., T}.

Proof. Suppose that F k+1
i,t = 1. Notice that by increasing λi,t by some ∆λi,t node i spends

an additional ∆bi,t = cst∆λi,t energy only in the time slot t. As F k+1
i,t = 1, by the rules (F1)

and (F2), either bi,t′ > 0 ∀t′ > t, or there is a time slot s > t such that bki,s+ei,s−∆bki,s > B

and s < s′, where s′ = arg min {τ > t : bi,τ = 0}.
If bi,t′ > 0 ∀t′ > t, then the node i can spend ∆bi,t = mint+1≤t′≤T+1 b

k
i,t′ energy, and

keep bi,t′ ≥ 0, ∀t′, which follows from the battery evolution (3.6).

If there is a slot s′ > t in which bki,s′ = 0, then let s be the minimum time slot between

t and s′, such that bki,s + ei,s −∆bki,s > B. Decreasing the battery level at s by (bki,s + ei,s −
∆bki,s) − B does not influence any other battery levels, as in either case bi,s+1 = B. As all

the battery levels are positive in all the time slots between t and s, i can spend at least

min{(bki,s + ei,s −∆bki,s)−B, mint+1≤t′≤s b
k
i,t′} > 0 energy at time t and have bi,t′ ≥ 0 ∀t′.
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By rule (F3), ∀j such that j ∈ Pi,t we have that bj,t > 0, and, furthermore, if ∃s′ > t

with bj,s′ = 0 then ∃s ∈ {t, s′} such that bki,s + ei,s −∆bki,s > B. By the same observations

as for the node i, each j ∈ Pi,t can spend some extra energy ∆bj,t > 0 in the time slot t and

keep all the battery levels nonnegative. In other words, on each directed path pi,t ∈ Pi,t
from the node i to the sink every node can spend some extra energy in time slot t and keep

its battery levels nonnegative. Therefore, if we keep all other rates fixed, the rate λi,t can

be increased by at least ∆λi,t = min{∆bi,t/cst,minj∈Pi,t ∆bj,t/crt} > 0.

As each active rate λi,t can (alone) get increased in the iteration k+1 by some ∆λi,t > 0,

it follows that all the active rates can be increased simultaneously by at least mini,t ∆λi,t/(T (cst+

ncrt)) > 0.

Theorem 3.6. Fixing rules (F1), (F2) and (F3) provide necessary and sufficient conditions

for fixing the rates in Water-filling-Framework.

Proof. Follows directly from Lemmas 3.4 and 3.5.

Lemma 3.7. Fixing-the-Rates for P-Determine-Rates can be implemented in time

O(mT ).

Proof. Rules (F1) and (F2) can be implemented for each node independently in time O(T )

by examining the battery levels from slot T + 1 to slot 2.

For the rule (F3), in each time slot t ∈ {1, ..., T} enqueue all the nodes i whose rates got

fixed in time slot t by either of the rules (F1), (F2) and perform a breadth-first search over

the graph determined by the enqueued nodes and the edges from ∪j∈{1,...,n}Pj,t added to the

graph with reversed direction. Fix the rates of all the nodes discovered by the breadth-first

search. This gives O(m) time per slot, for a total time of O(mT ). Combining with the time

for rules (F1) and (F2), the result follows.

Combining Lemmas 3.3 and 3.7, we can compute the total running time of Water-

filling-Framework for P-Unsplittable-Find, as stated in the following lemma.

Lemma 3.8. Water-filling-Framework with Steps 2 Maximizing-the-Rates and 3

Fixing-the-Rates implemented as described in Section 3.3 runs in time:

O(nT (mT + nT log(B + max
i,t

ei,t/(δcst)))).
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Proof. To bound the running time of the overall algorithm that performs lexicographic

maximization, we need to first bound the number of iterations that the algorithm performs.

As in each iteration at least one sensing rate λi,t, i ∈ {1, ..., n}, t ∈ {1, ..., T}, gets fixed, and

once fixed remains fixed, the total number of iterations is O(nT ). The running time of each

iteration is determined by the running times of the steps 2 (Maximizing-the-Rates) and 3

(Fixing-the-Rates) of the Water-filling-Framework. Maximizing-the-Rates runs

inO
(
nT log

(
B+maxi,t ei,t

δcst

))
(Lemma 3.3), whereas Fixing-the-Rates runs inO(mT ) time

(Lemma 3.7). Therefore, the total running time is: O
(
nmT 2 + n2T 2 log (B + maxi,t ei,t/(δcst))

)
.

3.4 Fractional Routing

Computing a lexicographically maximum fractional routing can be formulated as a general-

ized flow problem with capacitated nodes, where the nodes’ capacity change over time and

are determined by the battery states. It is not difficult to see that the feasible region of the

rates and flows in P-Fractional-Routing-Routing can be described by the following

constraints:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

fΣ
i,t + λi,t =

∑

(i,j)∈E

fij,t

bi,t+1 = min{B, bi,t + ei,t − (crtf
Σ
i,t + cstλi,t)}

bi,t ≥ 0, λi,t ≥ 0, fij,t ≥ 0, ∀(i, j) ∈ E,

where fΣ
i,t ≡

∑
(j,i)∈E fji,t.

We can avoid computing the values of battery levels bi,t+1, and instead explicitly write

the non-negativity constraints for each of the terms inside the min{.}. This increases the

number of constraints from O(mT ) to O(mT 2), but will allow us to make more observations

about the problem structure. Reordering the terms, we get the following formulation:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

fΣ
i,t + λi,t =

∑

(i,j)∈E

fij,t (3.10)
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t∑

τ=1

(crtf
Σ
i,τ + cstλi,t) ≤ bi,1 +

t∑

τ=1

ei,τ (3.11)

t∑

τ=s

(crtf
Σ
i,τ + cstλi,t) ≤ B +

t∑

τ=s

ei,τ , 2 ≤ s ≤ t (3.12)

λi,t ≥ 0, fij,t ≥ 0,∀(i, j) ∈ E (3.13)

In the kth iteration of Water-filling-Framework we have that λki,t = λk−1
i,t +F ki,t·λk =

∑k
l=1 F

l
i,t · λl, where λ0

i,t = 0. Let:

ubi,t = bi,1 +

t∑

τ=1

(ei,τ − cstλ
k−1
i,τ ),

uBi,t,s = B +
t∑

τ=s

(ei,τ − cstλ
k−1
i,τ ).

Since in the iteration k all λk−1
i,t ’s are constants, the rate maximization subproblem can be

written as:

max λk (3.14)

s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

− fΣ
i,t − F ki,t · λk +

∑

(i,j)∈E

fij,t = λk−1
i,t (3.15)

t∑

τ=1

(crtf
Σ
i,τ + F ki,τ · cstλ

k) ≤ ubi,t (3.16)

t∑

τ=s

(crtf
Σ
i,τ + F ki,τ · cstλ

k) ≤ uBi,t,s, 2 ≤ s ≤ t (3.17)

λk ≥ 0, fij,t ≥ 0, ∀(i, j) ∈ E (3.18)

Notice that in this formulation all the variables are on the left-hand side of the constraints,

whereas all the right-hand sides are constant.

3.4.1 Relation to Multi-commodity Flow

Let T = 2, and consider the constraints in (3.10)–(3.13). We claim that verifying whether

any set of sensing rates λi,t is feasible is at least as hard as solving a 2-commodity feasible

flow problem with capacitated nodes and a single sink:
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Claim 3.9. Any 2-commodity feasible flow problem with capacitated nodes and a single

sink can be reduced to a feasible flow problem in an energy harvesting network over a time

horizon T = 2.

Proof. To prove the claim, we first rewrite the constraints in (3.10)–(3.13) as:

∑

(j,i)∈E

fji,t + λi,t =
∑

(i,j)∈E

fij,t, t ∈ {1, 2}

∑

(j,i)∈E

fji,1 ≤
1

crt
(bi,1 + ei,1 − cstλi,1)

2∑

τ=1

∑

(j,i)∈E

fji,τ ≤
1

crt

(
bi,1 +

2∑

τ=1

(ei,τ − cstλi,τ )
)

∑

(j,i)∈E

fji,2 ≤
1

crt
(B + ei,2 − cstλi,2)

λi,t ≥ 0, fij,t ≥ 0, ∀i ∈ {1, ..., n}, (i, j) ∈ E, t ∈ {1, 2}

Suppose that we are given any 2-commodity flow problem with capacitated nodes, and

let:

• λi,t denote the supply of commodity t at node i;

• ui,t denote the per-commodity capacity constraint at node i for commodity t;

• ui denote the bundle capacity constraint at node i.

Choose values of cs, crt, B, bi,1, bi,2, ei,1, ei,2 so that the following equalities are satisfied:

ui,1 =
1

crt
· (bi,1 + ei,1 − cstλi,1)

ui,2 =
1

crt
· (B + ei,2 − cstλi,2)

ui =
1

crt
(bi,1 +

2∑

τ=1

(ei,τ − cstλi,τ ))

Then feasibility of the given 2-commodity flow problem is equivalent to the feasibility of

(3.10)–(3.13). Therefore, any 2-commodity feasible flow problem can be stated as an equiv-

alent problem of verifying feasibility of sensing rates λi,t in an energy harvesting network

for T = 2.
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For T > 2, (3.11) and (3.12) are general packing constraints. If a flow graph Gt in time

slot t is observed as a flow of a commodity indexed by t, then for each node i the constraints

(3.11) and (3.12) define capacity constraints for every sequence of consecutive commodities

s, s+ 1, ..., t, 1 ≤ s ≤ t ≤ T .

Therefore, to our current knowledge, it is unlikely that the general rate assignment

problem can be solved exactly in polynomial time without the use of linear programming,

as there have not been any combinatorial algorithms that solve feasible 2-commodity flow

optimally.

3.4.2 Fractional Packing Approach

The fractional packing problem is defined as follows [109]:

Packing: Given a convex set P for which Ax ≥ 0 ∀x ∈ P , is there a vector x such that

Ax ≤ b? Here, A is a p× q matrix, and x is a q-length vector.

A vector x is an ε-approximate solution to the Packing problem if x ∈ P and Ax ≤
(1 + ε)b. Alternatively, scaling all the constraints by 1

1+ε , we obtain a solution x′ = 1
1+εx ∈

( 1
1+εxOPT, xOPT] ⊂ ((1− ε)xOPT, xOPT], for ε < 1, where xOPT is an optimal solution to the

packing problem. The algorithm in [109] either provides an ε-approximate solution to the

Packing problem, or it proves that no such solution exists. Its running time depends on:

• The running time required to solve min{cx : x ∈ P}, where c = yTA, y is a given

p-length vector, and (.)T denotes the transpose of a vector.

• The width of P relative to Ax ≤ b, which is defined by ρ = maxi maxx∈P
aix
bi

, where

ai is the ith row of A, and bi is the ith element of b.

For a given error parameter ε > 0, a feasible solution to the problem min{β : Ax ≤
βb, x ∈ P}, its dual solution y, and CP(y) = min{cx : c = yTA, x ∈ P}, [109] defines the

following relaxed optimality conditions:

(1− ε)βyT b ≤ yTAx (P1)

yTAx− CP(y) ≤ ε(yTAx+ βyT b) (P2)

The packing algorithm [109] is implemented through subsequent calls to the procedure

Improve-Packing:
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Algorithm 2 Improve-Packing(x, ε) [109]

1: Initialize β0 = maxi aix/bi; α = 4β−1
0 ε−1 ln(2pε−1); σ = ε/(4αρ).

2: while maxi aix/bi ≥ β0/2 and x, y do not satisfy (P2) do

3: For each i = 1, 2, ..., p: set yi = (1/bi)e
αaix/bi .

4: Find a min-cost point x̂ ∈ P for costs c = yTA.

5: Update x = (1− σ)x+ σx̂.

6: return x.

The running time of the ε-approximation algorithm provided in [109], for ε ∈ (0, 1],

equals O(ε−2ρ log(mε−1)) multiplied by the time needed to solve min{cx : c = yTA, x ∈ P}
and compute Ax (Theorem 2.5 in [109]).

3.4.2.1 Maximizing the Rates as Fractional Packing

We discussed at the beginning of this section that for the kth iteration Maximize-the-

Rates can be stated as (3.14)-(3.18). Observe the constraints (3.16) and (3.17). Since

λk, fij,t and all the right-hand sides in (3.16) and (3.17) are nonnegative, (3.16) and (3.17)

imply the following inequalities:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

F ki,θ · cstλ
k ≤ ubi,t, 1 ≤ θ ≤ t

F ki,θ · cstλ
k ≤ uBi,t,s, 2 ≤ s ≤ t, s ≤ θ ≤ t

crt

∑

(j,i)∈E

fji,θ ≤ ubi,t − cst

t∑

τ=1

F ki,τλ
k, 1 ≤ θ ≤ t

crt

∑

(j,i)∈E

fji,θ ≤ uBi,t,s − cst

t∑

τ=s

F ki,τλ
k, 2 ≤ s ≤ t, s ≤ θ ≤ t

Therefore, we can yield an upper bound λkmax for λk:

λk ≤ λkmax ≡
1

cst
min
i,t,s≥2

{ubi,t :
t∑

τ=1

F ki,τ > 0, uBi,t,s :
t∑

τ=s

F ki,τ > 0} (3.19)

For a fixed λk, the flow entering a node i at time slot t can be bounded as:

∑

(j,i)∈E

fji,t ≤ ui,t ≡
1

crt
min
i,t1≥t
s≥2

{ubi,t1 − cst

t1∑

τ=1

F ki,τλ
k, uBi,t,s − cst

t1∑

τ=s

F ki,τλ
k} (3.20)
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We choose to keep only the flows fij,t as variables in the Packing problem. Given a

λk ∈ [0, λkmax], we define the convex set P 8 via the following set of constraints:

∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

−
∑

(j,i)∈E

fji,t +
∑

(i,j)∈E

fij,t = λk−1
i,t + F ki,t · λk (3.21)

∑

(j,i)∈E

fji,t ≤ ui,t (3.22)

fij,t ≥ 0, ∀(i, j) ∈ E (3.23)

Proposition 3.10. For P described by (3.21)−(3.23) and a given vector y, problem min{cf :

c = yTAf, f ∈ P} can be solved via T min-cost flow problems.

Proof. Constraint (3.21) is a standard flow balance constraint at a node i in a time slot t,

whereas constraint (3.22) corresponds to a node capacity constraint at the time t, given by

(3.20). As there is no interdependence of flows over time slots, we get that the problem

can be decomposed into subproblems corresponding to individual time slots. Therefore, to

solve the problem min{cf : c = yTAf, f ∈ P} for a given vector y, it suffices to solve T

min-cost flow problems, one for each time slot t ∈ {1, 2, ..., T}.

The remaining packing constraints of the form Ax ≤ b are given by (3.16) and (3.17),

where x ≡ f .

Proposition 3.11. Ax ≥ 0 ∀f ∈ P .

Proof. As fij,t ≥ 0 ∀(i, j) ∈ E, t ∈ {1, ..., T}, and all the coefficients multiplying fij,t’s in

(3.16) and (3.17) are nonnegative, the result follows immediately.

Lemma 3.12. One iteration of Improve-Packing for P-Fractional-Routing can be

implemented in time

O
(
nT 2 + T ·MCF (n,m)

)
,

where MCF (n,m) denotes the running time of a min-cost flow algorithm on a graph with

n nodes and m edges.

8P is determined by linear equalities and inequalities, which implies that it is convex.
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Proof. Since the flows over edges appear in the packing constraints only as the sum-terms

of the total incoming flow of a node i in a time slot t, we can use the total incoming flow

fΣ
i,t =

∑
(j,i)∈E fji,t for each (i, t) as variables. Reordering the terms, the packing constraints

can be stated as:

t∑

τ=1

fΣ
i,τ ≤

1

crt
(ubi,t − cst

t∑

τ=1

F ki,τλ
k), 1 ≤ t ≤ T (3.24)

t∑

τ=s

fΣ
i,τ ≤

1

crt
(uBi,t,s − cst

t∑

τ=s

F ki,τλ
k), 2 ≤ s ≤ t, 2 ≤ t ≤ T (3.25)

With this formulation on hand, the matrix A of the packing constraints AfΣ ≤ b is a 0− 1

matrix that can be decomposed into blocks of triangular matrices. To see this, first notice

that for each node i constraints given by (3.24) correspond to a lower-triangular 0-1 matrix

of size T . Each sequence of constraints of type (3.25) for fixed i and fixed s ∈ {2, ..., T},
and t ∈ {s, s+ 1, ..., T} corresponds to a lower-triangular 0-1 matrix of size T − s+ 1. This

special structure of the packing constraints matrix allows an efficient computation of the

dual vector y and the corresponding cost vector c. Moreover, as constraints (3.24, 3.25)

can be decomposed into independent blocks of constraints of the type Aif
Σ
i ≤ bi for nodes

i ∈ {1, ..., n}, the dual vector y and the corresponding cost vector c can be decomposed into

vectors yi, ci for i ∈ {1, ..., n}. Cost ci,t can be interpreted as the cost of sending 1 unit of

flow through node i in time slot t.

Observe the block of constraints Aif
Σ
i ≤ bi corresponding to the node i. The structure

of Ai is as follows:

T





1 0 0 · · · 0 0

1 1 0 · · · 0 0

...
...

...
. . .

...
...

1 1 1 · · · 1 1
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T − 1





0 1 0 · · · 0 0

0 1 1 · · · 0 0

...
...

...
. . .

...
...

0 1 1 · · · 1 1

...

2





0 0 0 · · · 1 0

0 0 0 · · · 1 1

1

{

0 0 0 · · · 0 1

As Ai can be decomposed into blocks of triangular matrices, each yi,j in the Improve-

Packing procedure can be computed in constant time, yielding O
(
T (T−1)

2

)
= O

(
T 2
)

time for computing yi. This special structure of Ai also allows a fast computation of the

cost vector ci. Observe that each ci,t, t ∈ {1, ..., T} can be computed by summing O(T )

terms. For example, ci,1 =
∑T

j=1 yi,j , ci,2 = ci,1 − yi,1 +
∑2T−1

j=T+1 yi,j , ci,3 = ci,2 − yi,2 −
yi,T+1 +

∑3T−2
j=2T yi,j , etc. Therefore, computing the costs for node i takes O(T 2) time. This

further implies that one iteration of Improve-Packing takes O
(
nT 2 + T ·MCF (n,m)

)

time, where MCF (n,m) denotes the running time of a min-cost flow algorithm on a graph

with n nodes and m edges.

Lemma 3.13. Width ρ of P relative to the packing constraints (3.16) and (3.17) is O(T ).

Proof. As ui,t is determined by the tightest constraint in which
∑

(j,i)∈E fji,t ≡ fΣ
i,t appears,

we have that in every constraint given by (3.24), (3.25):

fΣ
i,θ ≤

1

crt
(ubi,t − cst

t∑

τ=1

F ki,τλ
k), 1 ≤ θ ≤ t

fΣ
i,θ ≤

1

crt
(uBi,t,s − cst

t∑

τ=s

F ki,τλ
k), 2 ≤ s ≤ t, s ≤ θ ≤ t
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As the sum of fΣ
ij,θ over θ in any constraint from (3.24, 3.25) can include at most T terms,

it follows that ρ ≤ T ·bi
bi

= T .

Lemma 3.14. Maximizing-the-Rates that uses packing algorithm from [109] can be

implemented in time: Õ(T 2ε−2 · (nT + MCF (n,m))), where Õ-notation ignores poly-log

terms.

Proof. We have from (3.19) that λk ∈ [0, λkmax], therefore, we can perform a binary search to

find the maximum λk for which both min{yTAf |f ∈ P} is feasible and Packing outputs an

ε-approximate solution. Multiplying the running time of the binary search by the running

time of the packing algorithm [109], the total running time becomes:

O

(
log

(
λkmax

δ

)
ε−2ρ log(mε−1)

(
nT 2 + T ·MCF (n,m)

))

= Õ

(
T 2

ε2
· (nT +MCF (n,m))

)
.

3.4.2.2 Fixing the Rates

As Maximizing-the-Rates described in previous subsection outputs an ε-approximate

solution in each iteration, the objective of the algorithm is not to output a max-min fair

solution anymore, but an ε-approximation. We consider the following notion of approxima-

tion, as in [68]:

Definition 3.15. For a problem of lexicographic maximization, say that a feasible solution

given as a vector v is an element-wise ε-approximate solution, if for vectors v and vOPT

sorted in nondecreasing order v ≥ (1 − ε)vOPT component-wise, where vOPT is an optimal

solution to the given lexicographic maximization problem.

Let ∆ be the smallest real number that can be represented in a computer, and consider

the algorithm that implements Fixing-the-Rates as stated below.

Assume that Fixing-the-Rates does not change any of the rates, but only determines

what rates should be fixed in the next iteration, i.e., it only makes (global) changes to F k+1
i,t .

Then:
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Algorithm 3 Fixing-the-Rates

1: Solve the following linear program:

2: max
∑n

i=1 F
k
i,tλ

k
i,t

3: s.t. ∀i ∈ {1, ..., n}, t ∈ {1, ..., T} :

4: λki,t ≥ λk−1
i,t + F ki,t · λk

5: λki,t ≤ λk−1
i,t + F ki,t ·

(
ελk−1
i,t + (1 + ε)λk + ∆

)

6: fΣ
i,t + λki,t =

∑
(i,j)∈E fij,t

7: bi,t+1 = min
{
B, bi,t + ei,t −

(
crtf

Σ
i,t + cstλ

k
i,t

)}

8: bi,t ≥ 0, λki,t ≥ 0, fij,t ≥ 0

9: Let F k+1
i,t = F ki,t, ∀i, t.

10: If λki,t < (1 + ε)(λk−1
i,t + F ki,t · λk) + ∆, set F k+1

i,t = 0.

Lemma 3.16. If the Steps 2 and 3 in the Water-filling-Framework are implemented

as Maximizing-the-Rates and Fixing-the-Rates from this section, then the solution

output by the algorithm is an element-wise ε-approximate solution to the lexicographic max-

imization of λi,t ∈ R.

Proof. The proof is by induction.

The base case. Observe the first iteration of the algorithm. After rate maximization,

∀i, t : λi,t = λ1 ≥ 1

1 + ε
λ1

OPT and F 1
i,t = 1.

Observe that in the output of the linear program of Fixing-the-Rates, all the rates

must belong to the interval [λ1, (1 + ε)λ1 + ∆]. Choose any (i, t) with λ1
i,t < (1 + ε)(λk−1

i,t +

F 1
i,t · λ1) + ∆ = (1 + ε)λ1 + ∆. There must be at least one such rate, otherwise the rate

maximization did not return an ε-approximate solution. As
∑n

i=1 F
1
i,tλ

1
i,t =

∑n
i=1 λ

1
i,t is

maximum, if λ1
i,t is increased, then at least one other rate needs to be decreased to maintain

feasibility. To get a lexicographically greater solution λ1
i,t can only be increased by lowering

the rates with the value greater than λ1
i,t. Denote by S1

i,t the set of all the rates λ1
j,τ such

that λ1
j,τ > λ1

i,t. In the lexicographically maximum solution, the highest value to which

λ1
i,t can be increased is at most 1

|S1
i,t|

(
λ1
i,t +

∑
λj,τ∈S1

i,t
λ1
j,τ

)
< (1 + ε)λ1 + ∆, which implies

λi,t,max ≤ (1 + ε)λ1. Therefore, if λi,t is fixed to the value of λ1, it is guaranteed to be in

the ε-range of its optimal value.
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Now consider all the (i, t)’s with λ1
i,t = (1 + ε)λ1 + ∆. As all the rates that get fixed

are fixed to a value λi,t = λ1 ≤ λ1
i,t, it follows that in the next iteration all the rates that

did not get fixed can be increased by at least ελ1 + ∆, which Fixing-the-Rates properly

determines.

The inductive step. Suppose that up to iteration k ≥ 2 all the rates that get fixed

are in the ε-optimal range, and observe the iteration k. All the rates that got fixed prior to

iteration k satisfy:

λki,t ≥ λk−1
i,t + F ki,t · λk = λk−1

i,t , and

λki,t ≤ λk−1
i,t + F ki,t ·

(
ελk−1
i,t + (1 + ε)λk + ∆

)
= λk−1

i,t

and, therefore, they remain fixed for the next iteration, as λki,t = λk−1
i,t < (1 + ε)λk−1

i,t .

Now consider all the (i, t)’s with F ki,t = 1. We have that:

λki,t ≥ λk−1 + 1 · λk =

k∑

l=1

λl

λki,t ≤ (1 + ε)
(
λk−1 + 1 · λk

)
+ ∆ = (1 + ε)

k∑

l=1

λl + ∆

Similarly as in the base case, if λki,t < (1 + ε)
∑k

l=1 λ
l + ∆, let Ski,t = {λkj,τ : λkj,τ > λki,t}.

There must be at least one such (i, t), otherwise the rate maximization did not output an

ε-approximate solution. In any lexicographically greater solution:

λki,t,max ≤
1

|Ski,t|


λki,t +

∑

λkj,τ∈Ski,t

λj,τ




<(1 + ε)

k∑

l=1

λl + ∆,

which implies λki,t,max ≤ (1 + ε)
∑k

l=1 λ
l. Therefore, if we fix λi,t to the value

∑k
l=1 λ

l, it is

guaranteed to be at least as high as (1− ε) times the value it gets in the lexicographically

maximum solution.

Finally, all the (i, t)’s with λki,t = (1 + ε)
∑k

l=1 λ
l + ∆ can simultaneously increase their

rates by at least ε
∑k

l=1 λ
l + ∆ in the next iteration, so it should be F k+1

i,t = 1, which agrees

with Fixing-the-Rates.
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Lemma 3.17. An FPTAS for P-Fractional-Routing can be implemented in time:

Õ(nT (T 2ε−2 · (nT +MCF (n,m) + LP (mT, nT ))),

where LP (mT, nT ) denotes the running time of a linear program with mT variables and nT

constraints, and MCF (n,m) denotes the running time of a min-cost flow algorithm run on

a graph with n nodes and m edges.

Proof. It was demonstrated in the proof of Lemma 3.16 that in every iteration at least

one rate gets fixed. Therefore, there can be at most O(nT ) iterations. From Lemma 3.14,

Maximizing-the-Rates can be implemented in time Õ(T 2ε−2 · (nT +MCF (n,m))). The

time required for running Fixing-the-Rates is LP (mT, nT ), where LP (mT, nT ) denotes

the running time of a linear program with mT variables and nT constraints.

Note: A linear programming framework as in [28,79,110] when applied to P-Fractional-

Routing would yield a running time equal to O(n2T 2 ·LP (mT, nT )). As the running time

of an iteration in our approach is dominated by LP (mT, nT ), the improvement in running

time is at least O(nT )-fold, at the expense of providing an ε-approximation.

3.5 Fixed Fractional Routing

Suppose that we want to solve lexicographic maximization of the rates keeping both the

routing and the rates constant over time. Observe that, as both the routing and the rates do

not change over time, the energy consumption per time slot of each node i is also constant

over time and equal to ∆bi = cstλi + crt
∑

(j,i)∈E fji.

Proposition 3.18. Maximum constant energy consumption ∆bi can be determined in time

O(T log(
bi,1+ei,1

δ )) for each node i ∈ V \{s}, for the total time of O(nT log(
bi,1+ei,1

δ )).

Proof. Since the battery evolution can be stated as:

bi,t+1 = min {B, bi,t + ei,t −∆bi} ,

maximum ∆bi for which bi,t+1 ≥ 0 ∀t ∈ {1, ..., T} can be determined via a binary search

from the interval [0, bi,1 + ei,1], for each node i.
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Similarly as in previous sections, let F ki = 0 if the rate i is fixed at the beginning of

iteration k, and F ki = 1 if it is not. Initially: F 1
i = 1, ∀i. Rate maximization can then be

implemented as follows:

Algorithm 4 Maximizing-the-Rates(G,F k, b, e, k)

1: λkmax = 1
cst

mini{∆bi − cstλ
k−1
i : F ki = 1}

2: repeat for λk ∈ [0, λkmax], via binary search

3: Set the supply of node i to di = λk−1 + F ki λ
k, capacity of node i to ui = 1

crt
(∆bi −

cstλ
k), for each i

4: Set the demand of the sink to
∑

i di

5: Solve feasible flow problem on G

6: until λk takes maximum value for which the flow problem is feasible on G

The remaining part of the algorithm is to determine which rates should be fixed at the

end of iteration k. We note that in each iteration k, the maximization of the rates produces

a flow f in the graph Gk with the supply rates λki . Instead of having capacitated nodes,

we can modify the input graph by a standard procedure of splitting each node i into two

nodes i′ and i′′, and assigning the capacity of i to the edge (i′, i′′). This allows us to obtain

a residual graph Gr,k for the given flow. We claim the following:

Lemma 3.19. The rate λi of a node i ∈ G can be further increased in the iteration k + 1

if and only if there is a directed path from i to the sink in Gr,k.

Proof. First, observe that the only capacitated edges in Gk are those corresponding to the

nodes that were split. The capacity of an edge (i′, i′′) corresponds to the maximum per-slot

energy the node i can spend without violating the battery non-negativity constraint. If

an edge (i′, i′′) has residual capacity of ur(i′,i′′) > 0, then the node i can spend additional

crtu
r
(i′,i′′) amount of energy keeping the battery level non-negative in all the time slots. If

(i′, i′′) has no residual capacity (ur(i′,i′′) = 0), then the battery level of node i reaches zero in

at least one time slot, and increasing the energy consumption per time slot leads to bi,t < 0

for some t, which is infeasible.

(⇐) Suppose that the residual graph contains no directed path from the node i to the

sink. By the flow augmentation theorem [3], the flow from the node i cannot be increased
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even when the flows from all the remaining nodes are kept constant. As the capacities

correspond to the battery levels at the nodes, sending more flow from i causes at least one

node’s battery level to become negative.

(⇒) Suppose that there is a directed path from i to the sink, and let uri > 0 denote

the minimum residual capacity of the edges (split nodes) on that path. Then each node on

the path can spend at least crtu
r
i amount of energy maintaining feasibility. Let U denote

the set of all the nodes that have a directed path to the sink in Gr,k. Then increasing

the rate of each node i ∈ U by ∆λ =
mini u

r
i crt

cst + ncrt
> 0 and augmenting the flows of i ∈ U

over their augmenting paths in Gr,k each node on any augmenting path spends at most

mini u
r
i crt amount of energy, which is at most equal to the energy the node is allowed to

spend maintaining feasibility.

Lemma 3.20. Water-filling-Framework for P-Fixed-Fractional-Routing can be

implemented in time

O
(
n log

(
max
i

(bi,1 + ei,1
δ

))
(T +MF (n,m))

)
,

where MF (n,m) denotes the running time of a max-flow algorithm for a graph with n nodes

and m edges.

Proof. From Proposition 3.18, determining the values of ∆bi for i ∈ V \{s} can be imple-

mented in time O(nT log(
bi,1+ei,1

δ )).

Running time of an iteration of Water-filling-Framework is determined by the

running times of Maximizing-the-Rates and Fixing-the-Rates. Each iteration of the

binary search in Maximizing-the-Rates constructs and solves a feasible flow problem,

which is dominated by the time required for running a max-flow algorithm that solves feasi-

ble flow problem on the graph G. Therefore, Maximizing-the-Rates can be implemented

in time O(log(
bi,1+ei,1

δ )MF (n,m)), where MF (n,m) denotes the running time of a max-flow

algorithm.

Fixing-the-Rates constructs a residual graph Gr,k and runs a breadth-first search

on this graph, which can be implemented in time O(n + m) (= O(MF (n,m)) for all the

existing max-flow algorithms).



CHAPTER 3. MAX-MIN FAIR RESOURCE ALLOCATION AND APPLICATIONS IN
ENERGY HARVESTING NETWORKS 111

Every iteration of Water-filling-Framework fixes at least one of the rates λi, i ∈
V \{s}, which implies that there can be at most n iterations.

Therefore, the total running time is

O
(
n log

(
max
i

(bi,1 + ei,1
δ

))
(T +MF (n,m))

)
.

3.6 Determining a Routing

In this section we demonstrate that solving P-Unsplittable-Routing and P-Routing-

Tree is NP-hard for both problems. Moreover, we show that it is NP-hard to obtain an

approximation ratio better than Ω(log n) for P-Routing-Tree. For P-Unsplittable-

Routing, we design an efficient combinatorial algorithm for a relaxed version of this

problem–it determines a time-invariable unsplittable routing that maximizes the minimum

rate.

3.6.1 Unsplittable Routing

Lemma 3.21. P-Unsplittable-Routing is NP-hard.

Proof. The proof of NP-hardness for P-Unsplittable-Routing is a simple extension of

the proof of NP-hardness for max-min fair unsplittable routing provided in [68]. We use

the same reduction as in [68], derived from the non-uniform load balancing problem [76].

From [68,76], the following problem is NP-hard:

P-Non-uniform-Load-Balancing: Let J = {J1, ..., Jk} be a set of jobs, and M =

{M1, ...,Mn} be a set of machines. Each job Ji has a time requirement ri ∈ {1/2, 1},
and the sum of all the job requirements is equal to n:

∑k
i=1 ri = n. Each job Ji ∈ J can be

run only on a subset of the machines Si ⊂M . Is there an assignment of jobs to machines,

such that the sum requirement of jobs assigned to each machine Mj equals 1?

For a given instance of P-Non-uniform-Load-Balancing we construct an instance

of P-Unsplittable-Routing as follows (Fig. 3.6). Let T = 1, and cst = crt = 1. Create a

node Ji for each job Ji ∈ J , a node Mj for each machine Mj ∈M , and add an edge (Ji,Mj)
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if Mj ∈ Si. Connect all the nodes Mj ∈M to the sink. Let available energies at the nodes

be bJi = ri, bMj = 2.

Figure 3.6: A reduction from P-Non-uniform-Load-Balancing for proving NP-hardness

of P-Unsplittable-Routing. Jobs are represented by nodes Ji, machines by nodes Mj ,

and there is an edge from Ji to Mj if job Ji can be executed on machine Mj . Each job Ji

has time requirement ri ∈ {1/2, 1}, and
∑k

i=1 Ji = n. Available energies at the nodes are

shown in the boxes next to the nodes. If at the optimum of P-Unsplittable-Routing

λJi = ri and λMj = 1, then there is an assignment of jobs to the machines such that the

sum requirement of jobs assigned to each machine equals 1.

Suppose that the instance of P-Non-uniform-Load-Balancing is a “yes” instance,

i.e., there is an assignment of jobs to machines such that the sum requirement of jobs as-

signed to each machine equals 1. Observe the following rate assignment: λ∗ = {λJi =

ri, λMj = 1}. This rate assignment is feasible only for the unsplittable routing in which

Mj ’s descendants are the jobs assigned to Mj in the solution for P-Non-uniform-Load-

Balancing. Moreover, as in this rate assignment all the nodes spend all their available

energies and since
∑k

i=1 bJi =
∑k

i=1 ri = n, it is not hard to see that this is the lexico-

graphically maximum rate assignment that can be achieved for any instance of P-Non-

uniform-Load-Balancing. If the instance of P-Non-uniform-Load-Balancing is a

“no” instance, then P-Unsplittable-Routing at the optimum necessarily produces a rate

assignment that is lexicographically smaller than λ∗.

Therefore, if P-Unsplittable-Routing can be solved in polynomial time, then P-

Non-uniform-Load-Balancing can also be solved in polynomial time.

As the proof of Lemma 3.21 is constructed for T = 1, it follows that P-Unsplittable-
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Routing is NP-hard for general T , in either time-variable or time-invariable setting.

On the other hand, determining a time-invariable unsplittable routing that guarantees

the maximum value of the minimum sensing rate over all time-invariable unsplittable rout-

ings is solvable in polynomial time, and we provide a combinatorial algorithm that solves

it below.

We first observe that in any time-invariable unsplittable routing, if all the nodes are

assigned the same sensing rate λ, then every node i spends a fixed amount of energy ∆bi

per time slot equal to the energy spent for sensing and sending own flow and for forwarding

the flow coming from the descendant nodes: ∆bi = λ (cst + crtDi,t).

The next property we use follows from the integrality of the max flow problem with

integral capacities (see, e.g., [3]). This property was stated as a theorem in [67] for single-

source unsplittable flows, and we repeat it here for the equivalent single-sink unsplittable

flow problem:

Theorem 3.22. [67] Let G = (N,E) be a given graph with the predetermined sink s. If

the supplies of all the nodes in the network are from the set {0, λ}, λ > 0, and the capacities

of all the edges/nodes are integral multiples of λ, then: if there is a fractional flow of value

f , there is an unsplittable flow of value at least f . Moreover, this unsplittable flow can be

found in polynomial time.

Note: For the setting of Theorem 3.22, any augmenting-path or push-relabel based max

flow algorithm produces a flow that is unsplittable, as a consequence of the integrality of the

solution produced by these algorithms. We will assume that the used max-flow algorithm

has this property.

The last property we need is that our problem can be formulated in the setting of

Theorem 3.22. We observe that for a given sensing rate λ, each node spends cstλ units of

energy for sensing, whereas the remaining energy can be used for routing the flow originating

at other nodes. Therefore, for a given λ, we can set the supply of each node i to λ, set

its capacity to ui = (∆bi − cstλ)/crt (making sure that ∆bi − cstλ ≥ 0), and observe the

problem as the feasible flow problem. For any feasible unsplittable flow solution with all

the supplies equal to λ, we have that flow through every edge/node equals the sum flow of

all the routing paths that contain that edge/node. As every path carries a flow of value λ,
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the flow through every edge/node is an integral multiple of λ. Therefore, to verify whether

it is feasible to have a sensing rate of λ at each node, it is enough to down-round all the

nodes’ capacities to the nearest multiple of λ: ui = λ · b(∆bi − cstλ)/(crtλ)c, and apply the

Theorem 3.22.

An easy upper bound for λ is λmax = mini ∆bi/cst, which follows from the battery

nonnegativity constraint. The algorithm becomes clear now:

Algorithm 5 Maxmin-Unsplittable-Routing(G, b, e)

1: Perform a binary search for λ ∈ [0, λmax].

2: For each λ chosen by the binary search set node supplies to λ and node capacities to

ui = λ · b(∆bi − cstλ)/(crtλ)c. Solve feasible flow problem.

3: Return the maximum feasible λ.

Lemma 3.23. Maxmin-Unsplittable-Routing runs in time

O(log(max
i

(bi,1 + ei,1)/(cstδ))(MF (n+ 1,m))),

where MF (n,m) is the running time of a max-flow algorithm on an input graph with n

nodes and m edges.

3.6.2 Routing Tree

If it was possible to find the (either time variable or time-invariable) max-min fair routing

tree in polynomial time for any time horizon T , then the same result would follow for T = 1.

It follows that if P-Routing-Tree NP-hard for T = 1, it is also NP-hard for any T > 1.

Therefore, we restrict our attention to T = 1.

Assume w.l.o.g. ei,1 = 0 ∀i ∈ V \{s}. Let T denote a routing tree on the given graph G,

and DTi denote the number of descendants of a node i in the routing tree T . Maximization

of the common rate λi = λ over all routing trees can be stated as:

max
T

min
i∈N

bi/(cst + crtD
T
i ) (3.26)

This problem is equivalent to maximizing the network lifetime for λi = 1 ∀i ∈ V \{s} as

studied in [25]. This problem, which we call P-Maximum-Lifetime-Tree, was proved to

be NP-hard in [25] using a reduction from the Set-Cover problem [61]. The instance used
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in [25] for showing the NP-hardness of the problem has the property that the equivalent

problem of finding a tree with the lexicographically maximum rate assignment, P-Routing-

Tree, is such that at the optimum λ1 = λ2 = ... = λn = λ. Therefore, P-Routing-Tree

is also NP-hard.

We will strengthen the hardness result here and show that the lower bound on the

approximation ratio for the P-Routing-Tree problem is Ω(log n), unless P = NP . Notice

that because we are using the instance for which at the optimum λi = λ ∀i, the meaning

of the approximation ratio is clear. In general, the optimal routing tree can have a rate

assignment with distinct values of the rates, in which case we would need to consider an

approximation to a vector {λi}i∈{1,...,n}. However, we note that for any reasonable definition

of approximation (e.g., element-wise or prefix-sum as in [68]) our result for the lower bound

is still valid. As for the instance we use P-Routing-Tree is equivalent to the P-Maximum-

Lifetime-Tree problem, the lower bound applies to both problems.

We extend the reduction from the Set-Cover problem used in [25] to prove the lower

bound on the approximation ratio. In the Set-Cover problem, we are given elements

1, 2, ..., n∗ and sets S1, S2, ..., Sm ⊂ {1, 2, ..., n∗}. The goal is to determine the minimum

number of sets from S1, ..., Sm that cover all the elements {1, ..., n∗}. Alternatively, the

problem can be recast as a decision problem that determines whether there is a set cover

of size k or not. Then the minimum set cover can be determined by finding the smallest k

for which the answer is “yes”.

Suppose that there exists an approximation algorithm that solves P-Routing-Tree

(or P-Maximum-Lifetime-Tree) with the approximation ratio r. For a given instance of

Set-Cover, construct an instance of P-Routing-Tree as in Fig. 3.7 and denote it by G.

This reduction is similar to the reduction used in [25], with modifications being made by

adding line-topology graphs, and by modifying the node capacities appropriately to limit

the size of the solution to the corresponding Set-Cover problem. Let lx denote a directed

graph with line topology of size x. Assume that all the nodes in any lx have capacities

that are non-constraining. By the same observations as in the proof of NP-completeness of

P-Maximum-Lifetime-Tree [25], if there is a routing tree that achieves λ = 1, then there

is a set cover of size k for the given input instance of Set-Cover.
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Figure 3.7: A lower bound on the approximation ratio for P-Routing-Tree. Nodes

1, 2, ..., n∗ correspond to the elements, whereas nodes S1, S2, ..., Sm correspond to the sets

in the Set-Cover problem. An element node i is connected to a set node Sj if in the Set-

Cover problem i ∈ Sj . If there is a set cover of size k, then at λ = 1 all the non-set-cover

nodes are connected to the tree rooted at the node l, whereas all the set cover nodes and

all the element nodes are in the tree rooted at sc. The line-topology graphs represented by

crossed circles are added to limit the size of an approximate solution to the Set-Cover

problem.

Now observe a solution that an approximation algorithm with the ratio r would produce,

that is, an algorithm for which 1
r ≤ λ ≤ 1 when λOPT = 1.

Lemma 3.24. In any routing tree for which 1
r ≤ λ ≤ 1, each node Cj can have at most

one descendant.

Proof. Suppose that there is some routing tree T in which some Cj , j = {1, ...,m} has

more than 1 descendants. Then Cj must have at least one element node as its descendant.

But if Cj has an element node as its descendant, then the line-topology graph connected

to that element node must also be in Cj ’s descendant list, because T must contain all the

nodes, and a line-topology graph connected to the element node has no other neighbors.

Therefore, Cj has at least 2r + 1 descendants. If λ ≥ 1
r , then the energy consumption at

node Cj is 2r+2
r > 2. But the capacity of the node Cj is 2, which is strictly less than the

energy consumption; therefore, a contradiction.

Lemma 3.24 implies that if there is a routing tree that achieves 1
r ≤ λ ≤ 1, then all the

element nodes will be connected to the tree rooted at sc through the set nodes they belong
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to. Therefore, the subtree rooted at sc will correspond to a set cover. The next question

to be asked is how large can this set cover be (as compared to k)? The next lemma deals

with this question.

Lemma 3.25. If there is a routing tree T that achieves 1
r ≤ λ ≤ 1, then the subtree rooted

at sc in T contains at most p ≤ 3rk nodes.

Proof. Let T be a routing tree that achieves 1
r ≤ λ ≤ 1.

The capacity of the node sc determines the number of the set nodes that can be con-

nected to sc. As all the element nodes (and line-topology graphs connected to them) are

in the subtree rooted at sc, when there are p set nodes connected to sc, sc has 2n∗r+ pn∗r

descendants. As each node has 1
r ≤ λ ≤ 1 sensing rate, the energy consumption at the

node sc is esc = (2n∗r + pn∗r + 1)λ. For the solution to be feasible, it must be esc ≤ bsc.

Therefore:

(2n∗r + pn∗r + 1)λ ≤ 2n∗r + kn∗r + 1

⇔ p ≤ 1

λ
· 2n∗r + kn∗r + 1

n∗r
− 2n∗r + 1

n∗r

=
1

λ

(
2 + k +

1

n∗r

)
− 2− 1

n∗r

As λ ≥ 1
r : p ≤ (2 + k)r + 1

n∗ − 2− 1
n∗r ≤ (2 + k)r ≤ k · 3r, where the last inequality comes

from k ≥ 1.

The last lemma implies that if we knew how to solve P-Routing-Tree in polynomial

time with the approximation ratio r, then for an instance of Set-Cover we could run this

algorithm for k = {1, 2, ...,m − 1} (verifying whether k = m is a set cover is trivial) and

find a 3r-approximation for the minimum set cover, which is stated in the following lemma.

Lemma 3.26. If there is a polynomial-time r-approximation algorithm for P-Routing-

Tree, then there is a polynomial-time 3r-approximation algorithm for Set-Cover.

Proof. Suppose that there was an algorithm that solves P-Routing-Tree in polynomial

time with some approximation ratio r. For a given instance of Set-Cover construct an

instance of P-Routing-Tree as in Fig. 3.7. Solve (approximately) P-Routing-Tree for

k ∈ {1, ...,m − 1}. In all the solutions, it must be λ ≤ 1. Let km denote the minimum
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k ∈ {1, ...,m − 1} for which λ ≥ 1
r . Then the minimum set cover size for the input

instance of Set-Cover is k∗ ≥ km, otherwise there would be some other k′m < km for

which λ ≥ 1
r . From Lemmas 3.24 and 3.25, the solution to the constructed instance of

P-Routing-Tree corresponds to a set cover of size p ≤ 3r ·km for the input instance. But

this implies p ≤ 3r · k∗, and, therefore, the algorithm provides a 3r-approximation to the

Set-Cover.

Theorem 3.27. It is NP-hard to approximately solve P-Routing-Tree with an approxi-

mation ratio better than Ω(log n).

Proof. The lower bound on the approximation ratio of Set-Cover was shown to be Ω(log n)

in [82].

The proof for the lower bound on the approximation ratio given in [82] was derived

assuming a polynomial relation between n∗ and m. Therefore, the lower bound of Ω(log n∗)

holds for m = n∗c
∗
, where c∗ ∈ R is some positive constant. Assume that n∗ ≥ 3. The graph

given for an instance of Set-Cover (as in Fig. 3.7) contains n = 2rn∗ +mrn∗ + 3 ≤ rn∗c′

nodes, for some other constant c′ > 1. Therefore: n∗ ≥ c′
√
n

r
. As r ≥ 1

3
c log n∗, it follows

that:

r ≥ 1

3
c log c′

√
n

r
=

c

3c′
(log n− log r)

⇔ c

3c′
log r + r ≥ c

3c′
log n⇒ r ≥ c′′ log n,

for some c′′ ∈ R.
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Part II

Full-Duplex Wireless Networks
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Chapter 4

Background and Modeling

Full-duplex (FD) communication – simultaneous transmission and reception on the same

frequency channel – holds great promise of substantially improving the throughput in wire-

less networks. The main challenge hindering the implementation of practical FD devices is

high self-interference (SI) caused by signal leakage from the transmitter into the receiver

circuit. The SI signal is usually many orders of magnitude higher than the desired sig-

nal at the receiver’s input, requiring over 100dB (i.e., by 1010 times) of self-interference

cancellation (SIC).

Cancelling SI is a very challenging problem. Even though different techniques of SIC

were proposed over a decade ago, only recently receiver designs that provide sufficient SIC

to be employed in Wi-Fi and cellular networks emerged (see [112] and references therein for

an overview). Exciting progress was made in the last few years by various research groups

demonstrating that a combination of SIC techniques employed in both analog and digital

domains can provide sufficient SIC to support practical applications [7,20,34,35,40–42,59,

64–66,69,99,114].

While there has been significant interest in FD from both industry and academia [2, 7,

13,20,32,34,35,40–42,53,59,64–66,69,77,99,113,114,117,119], the exact rate gains resulting

from the use of FD are still not well understood. The first implementations of FD receivers

optimistically envisioned 2× rate improvement (e.g., [20, 59]). To achieve such an increase

in data rates, the FD receiver would need perfect SIC, namely, to cancel SI to at least

one order of magnitude below the noise floor to render it negligible. The highest reported
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SIC [20], however, suppresses the SI to the level of noise.

Despite this insufficient cancelling capabilities, much of the work on FD rate improve-

ment assumes perfect SIC in the FD receiver [13, 53, 113, 119]. While non-negligible SI has

also been considered [2,32,77], there are still no explicit bounds on the rate gains for given

FD circuit parameters and parameters of the wireless signal. Moreover, from a modeling

perspective, the frequency selectivity of SIC has not been considered in any analytical work.

This is an important feature that is inherent in conventional compact implementations of

an FD receiver, such as that found in small-form factor mobile devices (e.g., smartphones

and tablets), where frequency selectivity is mainly a consequence of the cancellation in the

RF domain.1

We begin this chapter by outlining the challenges in implementing self-interference can-

cellation (SIC) in small form-factor hardware, such as those that can be used in cell phones

or tablets. These challenges motivate a simple model of residual self-interference (SI) for

a frequency-selective full-duplex transceiver that we introduce in Section 4.1, based on the

integrated circuit that was implemented in [125]. We also use the residual self-interference

data from [126] to numerically evaluate some of the power allocation results. Based on the

model and the data, we obtain analytic and algorithmic results for maximizing the sum of

(UL and DL) rates over orthogonal frequency channels (Chapter 5), and also for maximizing

one of the two (UL and DL) rates, when the other is fixed (Chapter 6).

We remark that we consider the problem of joint power allocation and canceller configu-

ration to maximize the sum of the rates only for the model based on [125] and introduced in

Section 4.2.1, where residual self-interference conforms to a simple model. For other resid-

ual self-interference data from [126], the model of residual self-interference is much more

complex, leading to a non-convex problem with many local extrema. For that reason, we

assume that the canceller configuration is computed by a separate algorithm and focus on

power allocation. The results for sum rate maximization and maximization of one of the

rates when the other is fixed apply to any model of residual self-interference where residual

self-interference on a channel is a fixed fraction of the transmission power level on that

channel (i.e., the results apply to any fixed canceller configuration).

1See our recent work [125,128] and Section 4.1 for more details.
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Figure 4.1: Block diagram of a full-duplex transceiver employing RF and digital cancellation.

Finally, we note that Jin Zhou and Harish Krishnaswamy had a major contribution to

the modeling results presented in this chapter, as acknowledged by authorship in [92–94].

4.1 FD Implementation Challenges

Fig. 4.1 shows the block diagram of a full-duplex transceiver. There are two antenna

interfaces that are typically considered for full-duplex operation: (i) an antenna pair and

(ii) a circulator. The advantage of using a circulator is that it allows a single antenna to

be shared between the transmitter (TX) and the receiver (RX). SIC must be performed in

both the RF and digital domains to achieve in excess of 100dB SI suppression. The RF

canceller taps a reference signal at the output of the power amplifier (PA) and performs

SIC at the input of the low-noise amplifier (LNA) at the RX side [37].

Typically, 20-30dB of SIC is required from the RF, given that the antenna interface

typically has a TX/RX isolation of 20-30dB [1]. Thus, an overall 50-60dB RF TX/RX

isolation is achieved before digital SIC is engaged. This amount of RF TX/RX isolation is

critical to alleviate the RX linearity and the analog-to-digital conversion (ADC) dynamic

range requirements [37,112]. Digital cancellation further cancels the linear SI as well as the

non-linear distortion products generated by the RX or the RF canceller.

A mixed-signal SIC architecture has been proposed in [114], where the digital TX signal

is processed and upconverted to RF for cancellation. However, this requires a separate

up-conversion path which introduces its own noise and distortion. Moreover, the noise and

distortion of the TX analog and RF circuits (such as the power amplifier) are not readily

captured in the cancellation signal, limiting the resultant RF SIC. In addition, the dedicated

up-conversion path results in area and power overhead. Because of these reasons, we are
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(a) (b) (c)

Figure 4.2: (a) RFIC receiver with RF SI cancellation [125, 128] and the two antenna

interfaces used in our measurements: (b) an antenna pair and (c) a circulator.

not considering this SIC architecture in this thesis.

For wideband SIC, the transfer function of the canceller must closely track that of the

antenna interface across frequency. However, the frequency dependence of the inherent

antenna interface isolation together with selective multi-path-ridden SI channels render this

challenging for the RF canceller in particular. The net antenna interface isolation amplitude

and phase response can vary significantly with frequency. A rapidly-varying phase response

is representative of a large group delay, requiring bulky delay lines to replicate the selectivity

in the RF canceller [20,37].

The fundamental challenge associated with wideband SIC at RF in a small form-factor

and/or using integrated circuits is the generation of large time delays. The value of true

time delay is linearly proportional to the dimension of the delay structure and inversely pro-

portional to the wave velocity in the medium. To generate 1ns delay in a silicon integrated

circuit, a transmission line of 15cm length is required as the relative dielectric constant

of silicon oxide is 4. A conventional integrated RF SI canceller with dimensions less than

1mm2 will therefore exhibit negligible delay. Note that the canceller phase response can be

calculated by integrating the delay with respect to frequency, and conventional integrated

RF SI cancellers typically have a flat amplitude response [125,128]. Therefore, the amplitude

and phase response of the canceller can be assumed to be flat with respect to frequency when

compared with antenna interface isolation, limiting the cancellation bandwidth [112,125].

While achieving wideband RF SI cancellation using innovative RFIC techniques is an

active research topic (e.g., frequency domain equalization based RF SI cancellation in [127]),
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in this thesis we focus on compact flat amplitude- and phase-based RF cancellers, such as

the one we implemented in the RFIC depicted in Fig. 4.2(a) [125,128].

In [128] and [125], the RF canceller is embedded in the RXs LNA, and consists of a

variable amplifier and a phase shifter. The RF canceller adjusts the amplitude and the

phase of a TX reference signal tapped from the PA’s output performing SIC at the RX

input. Thanks to the co-design of RF canceller and RX in a noise-cancelling architecture,

the work in [128] and [125] is able to support antenna interface with about 20dB TX/RX

isolation with minimum RX sensitivity degradation.

We measured isolation amplitude and group delay response of (i) a PCB antenna pair

(see Fig. 4.2(b)) and (ii) a commercial 2110-2170MHz miniature circulator from Skyworks [1]

(see Fig. 4.2(c)). The results are shown in Fig. 4.3(a) and Fig. 4.3(b), respectively. The

resultant TX/RX isolations using an RF canceller with flat amplitude and phase response

after the antenna interfaces (i) and (ii) are shown in Fig. 4.3(c) and Fig. 4.3(d), respectively.

As Fig. 4.3(c) and Fig. 4.3(d) suggest, for -60dB TX/RX isolation after RF cancellation,

the bandwidths are about 4MHz and 2.5MHz, respectively.

4.2 Model and Notation

We consider three use cases of FD: (i) a bidirectional link, where one mobile station (MS)

communicates with the base station (BS) both on the UL and on the DL (Fig. 1.3(a)),

(ii) two unidirectional links, where one MS is communicating with the BS on the UL,

while another MS is communicating with the BS on the DL (Fig. 1.3(b)), and (iii) multiple

orthogonal bidirectional links (Fig. 1.3(c)). Note that in (ii) only the BS is operating in FD.

For the multi-channel FD (use case (iii)), we assume that the network bandwidth of size

B is subdivided into K orthogonal frequency channels of width B/K each, and index the

frequency channels with k ∈ {1, ...,K}. An example of such sub-channelization is OFDM

with each frequency channel consisting of an integral number of subcarriers.

For all notation that relates to the BS, we use b in the subscript. For the notation that

relates to the MS in use cases (i) and (iii), we use m in the subscript, while in the use case

(ii) we use m1 and m2 to refer to MS 1 and MS 2, respectively. Summary of the main
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(a) (b)

(c) (d)

Figure 4.3: Measured isolation amplitude and group delay of (a) a PCB antenna pair and

(b) a commercial 2110-2170 MHz miniature circulator from Skyworks [1], and the resultant

TX/RX isolation using the integrated RF canceller with flat amplitude and phase response

from [125,128] with (c) the antenna pair and (d) the circulator compared to the SIC model.

notation is provided in Table 4.1.

The transmission power of a station u ∈ {b,m,m1,m2} on channel k is denoted by Pu,k,

where k ∈ {1, ...,K}. In use cases (i) and (ii), k is omitted from the subscript, since we

consider a single channel. The noise level at station u is assumed to be equal over channels

and is denoted by Nu.

4.2.1 Remaining SI

Single-channel FD. For single-channel FD, we assume that the remaining SI both at

the BS and at an MS can be expressed as a constant fraction of the transmitted power. In

particular, if the BS transmits at the power level Pb, the remaining SI is RSIb = gbPb, where
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gb is a constant determined by the hardware. Similarly, if an MS transmits at the power

level Pm, its remaining SI is RSIm = gmPm. The self-interference-to-noise ratio (XINR) at

station u ∈ {m, b} is denoted by γuu = guPu
Nu

. When Pu = Pu, we denote by γuu = guPu
Nu

the

maximum XINR at station u.

Multi-channel FD. We assume that the FD receivers conform to the model in which

the residual SI on any channel is a constant fraction of the TX power on that channel, i.e.,

RSIu,k = gu,kPu,k, where u ∈ {b,m}. 2 The XINR at station u is denoted by γuu,k =

gu,kPu,k
Nu

, while γuu,k =
gu,kPu
Nu

denotes the maximum XINR at station u.

For simplicity, we will often assume that BS has a frequency-flat SIC profile, meaning

that gb,k = gb, ∀k, where gb is a constant. We note that such FD receiver design is possible

for devices that do not require small form factor of the circuit (e.g., a BS or an access point

(AP)), and has been reported in [20]. Additionally, our results easily extend to the cases

with general gb,k’s.

Amplitude and phase frequency-flat canceller model. We now describe the mathematical

model of the remaining SI for a small form factor device (MS) with a canceller that has

frequency-flat amplitude and phase responses, denoted by |HC,R| and ∠HC,R, respectively.

We consider a compact/RFIC FD receiver with a circulator at the antenna interface, de-

scribed in Section 4.1. The amplitude and phase responses of the canceller are assumed to

be programmable but constant with frequency.

For the antenna interface’s TX/RX isolation, we assume a flat amplitude response

|HA(f)| = const = |HA| and a constant group delay equal to τ , so thatHA(f) = |HA|e−j2πfτ

(recall that the measured amplitude and group delay response are shown in Fig. 4.3(b)). For

the digital SIC, denoted by SICD, we assume that the amount of cancellation is constant

across frequency, as delay can be easily generated in the digital domain. Let fk denote the

central frequency of the kth channel, so that fk = f1 + (k − 1)B/K. Then, the remaining

SI after cancellation can be written as:

RSIm,k =|Pm,k(HA −HC,R)SIC−1
D |

=Pm,k|(|HA|e−j∠HA(fk) − |HC,R|e−j∠HC,R)|SIC−1
D

2Note that gu,k may be different for different k.
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=Pm,k|(|HA|2 + |HC,R|2 − 2|HA||HC,R|

· cos(∠HA(fk) + ∠HC,R))|SIC−1
D . (4.1)

Note that in (4.1), Pm,k is the MS transmission power on channel k, Pm,k(HA − HC,R) is

the remaining SI after the RF SIC, and Pm,k(HA −HC,R)SIC−1
D is the remaining SI after

both the RF and digital SIC.

We assume a common oscillator for the TX and RX, with the phase noise of the oscillator

being good enough so that it does not affect the remaining SI.

The RF canceller’s settings can be programmed in the field to adjust the frequency

at which peak SIC is achieved [125, 128]. With the amplitude (|HC,R|) and the phase

(∠HC,R) of the RF canceller set to |HA| and −∠HA(fc), respectively, peak SIC is achieved

at frequency fc. Therefore, the total remaining SI at the MS on channel k can be written

as:

RSIm,k = 2|HA|2Pm,k(1− cos(2πτ(fk − fc)))SIC−1
D ,

where τ is the group delay from the antenna interface with a typical value at the order of

1ns (which agrees with the measured group delay in Fig. 4.3(b)). Frequency bands used by

commercial wireless systems are at most 10s of MHz wide. It follows that 2πτ(fk−fc) << 1,

and using the standard approximation cos(x) ≈ 1− x2/2 for x << 1, we further get:

RSIm,k ≈ |HA|2Pm,k(2πτ)2(fk − fc)2SIC−1
D .

Recalling that fk = f1 + (k − 1)B/K = f0 + kB/K for f0 = f1 − B/K, and writing fc

as fc = f0 + cB/K, for c ∈ R, we can combine all the constant terms and represent the

remaining SI as:

RSIm,k = gmPm,k(k − c)2, (4.2)

where gm = |HA|2(2πτ)2(B/K)2SIC−1
D . Note that even though in this notation we allow

c to take negative values, we will later show that in any solution that maximizes the sum

rate it must be c ∈ (1,K) (Lemma 5.7). Observe that

γmm,k = (k − c)2γmm,1+c, (4.3)

where γmm,1+c =
gmPm,k(1+c−c)2

Nm
=

gmPm,k
Nm

.
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Table 4.1: Nomenclature.

m Subscript notation for the MS

b Subscript notation for the BS

K Total number of OFDM channels

k Channel index, k ∈ {1, ...,K}
Pu,k Transmission power of station u on ch. k, u ∈ {b,m}
Pu Maximum total power:

∑K
k=1 Pu,k ≤ Pu, u ∈ {b,m}

αu,k = Pu,k/Pu, u ∈ {b,m}, ∑K
k=1 αu,k ≤ 1

γuv,k SNR of signal from u to v on channel k, where u 6= v, u, v ∈ {m, b}, when αu,k = 1

γuu,k XINR at station u, channel k when αu,k = 1, where u ∈ {b,m}
rb Sum of the rates on downlink

rm Sum of the rates on uplink

rb Maximum (TDD) rate on downlink

rm Maximum (TDD) rate on uplink

Fig. 4.3(d) shows the TX/RX isolation based on Eq. (4.2) and based on measurement

results. The parameter gm in Eq. (4.2) was determined via a least square estimation. The

modeled TX/RX isolation based on Eq. (4.2) is also compared to the measured TX/RX

isolation of the canceller with the antenna pair interface in Fig. 4.3(c). As Fig. 4.3 shows,

our model of the remaining SI closely matches the remaining SI that we measured with the

RFIC FD receiver presented in [125,128].

4.2.2 Sum Rate and Capacity Region

For simplicity, we introduce notation for the normalized transmission power levels: αb,k =

Pb,k/Pb, αm,k = Pm,k/Pm. The constraints for the sum of transmission power levels then

become:
∑

k αb,k ≤ 1 and
∑

k αm,k ≤ 1.

The channel gain from station u to station v on channel k is denoted by huv,k. We

assume that the channel states and noise levels are known. For the signal transmitted from

u to v, where u, v ∈ {b,m,m1,m2}, u 6= v, and either u = b or v = b, we let γuv,k =
huv,kPu,k

Nv

denote the signal to noise ratio (SNR) at v on channel k. In the use case (ii), γm1m2 denotes

the (inter-node-)interference to noise ratio (INR).
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γbm,k and γmb,k denote the SNR of the signal from the BS to the MS and from the MS to

the BS, respectively, on channel k, when the transmission power level on channel k is set to

its maximum value (Pb, Pm, respectively). Observe that in that case αb,k (respectively, αm,k)

is equal to 1. γbm ≡ 1
K

∑
k γbm,k/K and γmb ≡ 1

K

∑
k γmb,k/K denote the average SNR when

the power levels are equally allocated over channels (i.e., when αb,1 = ... = αb,K = 1/K

and αm,1 = ... = αm,K = 1/K). In the numerical evaluations, we adopt γbm,k = Kγbm and

γmb,k = Kγmb, ∀k, to focus on the effects caused by FD operation. Our results, however,

hold for general values of γbm,k and γmb,k over channels k.

We use Shannon’s capacity formula for spectral efficiency, and let log(.) denote the base

2 logarithm, ln(.) denote the natural logarithm. We use the terms “spectral efficiency” and

“rate” interchangeably, as the spectral efficiency on a channel is the rate on that channel

normalized by B/K. In use case (i), the sum rate on the channel is given as:

r = log
(

1 +
αmγmb

1 + αbγbb

)
+ log

(
1 +

αbγbm
1 + αmγmm

)
. (4.4)

Observe that αmγmb
1+αbγbb

and αbγbm
1+αmγmm

are signal to interference-plus-noise ratios (SINRs) on

the UL and DL, respectively. We will refer to rm = log
(

1 + αmγmb
1+αbγbb

)
as the UL rate and

rb = log
(

1 + αbγbm
1+αmγmm

)
as the DL rate.

Similarly as for (i), the sum rate for use case (ii) is:

r = log
(

1 +
αm1γm1b

1 + αbγbb

)
+ log

(
1 +

αbγbm2

1 + αm1γm1m2

)
. (4.5)

Finally, in use case (iii), the UL rate is given as:

rk = log
(

1 +
αm,kγmb,k

1 + αb,kγbb,k

)
+ log

(
1 +

αb,kγbm,k
1 + αm,kγmm,k

)
, (4.6)

while the sum rate (on all channels) is r =
∑K

k=1 rk. The UL rate is:

rm =

K∑

k=1

log
(

1 +
αm,kγmb,k

1 + αb,kγbb,k

)
,

while the DL rate is:

rb =
K∑

k=1

log
(

1 +
αb,kγbm,k

1 + αm,kγmm,k

)
.

We denote by rb = max{rb({αb,k}, {αm,k}) :
∑

k αb,k ≤ 1,
∑

k αm,k ≤ 1} the maximum

DL rate. Observe that when rb is maximized, we have
∑

k αb,k = 1, αm,k = 0,∀k, i.e., rb is

equal to the maximum HD rate on the DL. Similarly, rm denotes the maximum UL rate.
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Figure 4.4: (a) Convex and (b) non-convex FD capacity regions. A dashed line delimits the

corresponding TDD region. An FD region is convex, if and only if segments Sb (connecting

(0, rm) and (sb, sm)) and Sm (connecting (sb, sm) and (rb, 0)) can be represented by a concave

function rm(rb).

We focus on the following two problems:

1. Maximizing the sum rate r over power levels and possibly canceller configuration (i.e.,

the position c of maximum SIC in the amplitude and phase frequency flat canceller);

2. Determining the capacity region of an FD link, and also determining the convex hull

of the FD capacity region.

A capacity region of an FD link is the set of all achievable UL-DL FD rate pairs. Exam-

ples of FD regions appear in Fig. 4.4, where a full line represents the FD region boundary,

and a dashed line represents the TDD region boundary. The problem of determining the

FD capacity region is the problem of maximizing one of the rates (e.g., rm) when the other

rate (rb) is fixed, subject to the sum power constraints.

An FD capacity region is not necessarily convex. In such cases, we also consider a

convexified or time-division full-duplex (TDFD) capacity region, namely, the convex hull of

the FD capacity region. In practice, the TDFD region would correspond to time sharing

between different FD rate pairs. Fig. 4.4(b) illustrates a non-convex FD capacity region,

with the dotted line representing the boundary of the TDFD capacity region.

To evaluate achievable rate improvements and compare an FD or a TDFD capacity

region to its corresponding TDD region, we use the following definition (see Fig. 4.4(a) for

a geometric interpretation):
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Definition 4.1. For a given rate pair (rb, rm) from an FD or TDFD capacity region, the

rate improvement p is defined as the (positive) number for which
(
rb
p ,

rm
p

)
is at the boundary

of the corresponding TDD capacity region.

Using simple geometry, p can be computed as follows:

Proposition 4.2. p(rb, rm) = rb/rb + rm/rm.

Proof. From the definition of p,
(
rb
p ,

rm
p

)
is at the boundary of the corresponding TDD

capacity region. Since the boundary of the TDD region is the line that connects (0, rm) and

(rb, 0) (see Fig. 4.4), we have that:

rm
p

= rm −
rb
p
· rm
rb
.

Multiplying both sides by p
rm

, the result follows.
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Chapter 5

Sum-Rate Maximization

In this chapter, we focus on the problem of maximizing the sum of uplink and downlink

rates. The goal is understand under what circumstances using full-duplex is beneficial, and

how much can be gained in the best case.

Summary of Contributions

The main contribution of this chapter is a thorough analytical study of rate gains from

FD under non-negligible SI. We consider both single-channel and multi-channel orthogonal

frequency division multiplexing (OFDM) scenarios. For the multi-channel case, we develop

a new model for frequency-selective SIC in small-form factor receivers. Our results provide

explicit guarantees on the rate gains of FD, as a function of receivers’ signal-to-noise ratios

(SNRs) and SIC profile. Our analysis provides several insights into the structure of the sum

of uplink (UL) and downlink (DL) rates under FD, which will be useful for future work on

FD MAC layer algorithm design.

Specifically, as discussed in Introduction, we consider three different use cases of FD,

illustrated in Fig. 1.3: (i) a single channel bidirectional link, where one mobile station (MS)

communicates with the base station (BS) both on the UL and on the DL (Fig. 1.3(a));

(ii) two single channel unidirectional links, where one MS communicates with the BS on

the UL, while another MS communicates with the BS on the DL (Fig. 1.3(b)); and (iii)

a multi-channel bidirectional link, where one MS communicates with the BS over multiple
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OFDM channels, both on the UL and on the DL (Fig. 1.3(c)).

Models of Residual SI

For SI, we consider two different models. For the BS in all use cases and the MS in use case

(i), we model the remaining SI after cancellation as a constant fraction of the transmitted

signal. Such design is possible for devices that do not require a very small form factor (e.g.,

base stations), and was demonstrated in [20].

In the multi-channel case, we rely on the characteristics of RFIC receivers that we

recently designed [125,128] and develop a frequency selective model for the remaining SI in

a small form-factor device (Section 4.1). We demonstrate the accuracy of the developed

model via measurements with our receivers [125, 128]. We note that a frequency-selective

profile of SIC that we model is inherent to RF cancellers with flat amplitude and phase

response (see Section 4.1). A mixed-signal SIC architecture [114] where the digital TX

signal is processed and upconverted to RF for cancellation does not necessarily have flat

amplitude and phase response. However, we do not consider this architecture because it

requires an additional up-conversion path compared to the architecture of this work, and

this additional path introduces its own noise and distortion, limiting the resultant RF SIC.

Sum Rate Maximization

We focus on the problem of maximizing the sum of UL and DL rates under FD (referred to

as the sum rate in the rest of the chapter). This problem, in general, is neither concave nor

convex in the transmission power levels, since the remaining SI after cancellation depends

on the transmission power level. Due to the lack of a good problem structure, existing

analytical results (see e.g., [2, 32, 77]) are often restricted to specialized settings. Yet, we

obtain several analytical results on the FD rate gains, often under mild restrictions, by

examining closely the structural properties of the sum rate function.

Single-Channel Results. In the single-channel cases, we prove that if any rate gain

can be achieved from FD, then the gain is maximized by setting the transmission power

levels to their respective maximum values. This result is somewhat surprising because of
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the lack of good structural properties of the sum rate. We then derive a sufficient condition

under which the sum rate is biconcave1 in both transmission power levels, and show that

when this condition is not satisfied, one cannot gain more than 1b/s/Hz (additively) from

FD as compared to time-division duplex (TDD). We note that although the model for the

remaining SI in the single channel case is relatively simple, it nonetheless captures the main

characteristics of the FD receivers. Moreover, the results for the single channel case under

this model are fundamental for analyzing the multi-channel setting, and often extend to

this more general setting.

Multi-Channel Results. In the multi-channel case, we use the frequency-selective

SI model for the MS receiver that is introduced in Section 4.2.1 and motivated by FD

implementation challenges discussed in Section 4.1. Based on this model, we study the

problem of transmission power allocation over OFDM channels and frequency selection,

where the objective is to maximize the sum of the rates over UL and DL OFDM channels (in

this case, frequency refers to the frequency of maximum SIC of the SI canceller). Although

in general it is hard to find an optimal solution to this problem, we develop an algorithm that

converges to a stationary point (in practice, a global maximum) under two mild technical

conditions. One condition ensures that the sum rate is biconcave in transmission power

levels. This restriction is mild, since we prove that when it does not hold, the possible

gains from FD are small. The other condition imposes bounds on the magnitude of the first

derivative of the sum rate in terms of maximum SIC frequency, and has a negligible impact

on the sum rate in OFDM systems with a large number of channels, because it can only

affect up to 2 OFDM channels (see Section 5.3.1 for more details).

Although the algorithm in practice converges to a near-optimal solution and runs in

polynomial time, its running time is relatively high. Therefore, we consider a high SINR

approximation of the sum rate, and derive fixed optimal power allocation and maximum SIC

frequency setting that maximizes the sum rate up to an additive ε in time O(K log(1/ε)),

for any given ε, where K is the number of channels.

1A function is biconcave, if there exists a partition of variables into two sets, such that the function is

concave when variables from either set are fixed.
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Numerical Results. Finally, we note that throughout this chapter, we provide numer-

ical results that quantify the rate gains in various use cases and illustrate the impact of

different parameters on these gains. For example, for the multi-channel case, we evaluate

the rate gains using measured SI of our RFIC receiver [125, 128]. We use algorithms for

the general SINR regime and for the high SINR regime and compare their results to those

obtained by allocating power levels equally among the OFDM channels. Our results suggest

that whenever the rate gains from FD are non-negligible, all considered power allocation

policies yield similar rate gains. Therefore, one of the main messages of our work is that

whenever it is beneficial to use FD, simple power allocation policies are near-optimal.

5.1 Related Work

Possible rate gains from FD have been studied in [2, 13, 32, 53, 77, 113, 119], with much of

the work [13, 53, 113, 119] focusing on perfect SIC. Unlike this body of work, we focus on

rate gains from FD communication under imperfect SIC.

Non-negligible SI has been considered in [2, 32, 77]. A sufficient condition for achieving

positive rate gains from FD on a bidirectional link has been provided in [2], for the special

case of equal SINRs on the UL and DL. This condition does not quantify the rate gains.

Power allocation over orthogonal bidirectional links was considered in [32] and [77] for

MIMO and OFDM systems, respectively. The model used in [32] assumes the same amount

of SIC and equal power allocation on all channels, which is a less general model than the

one that we consider .

A more detailed model with different SIC over OFDM channels was considered in [77].

The model from [77] does not consider dependence of SIC in terms of canceller frequency

(although, unlike our work, it takes into account the transmitter’s phase noise). Optimal

power allocation that maximizes one of the rates when the other is fixed is derived for equal

power levels across channels, while for the general case of unequal power levels, [77] only

provides a heuristic solution.

Our work relies on structural properties of the sum rate to derive near-optimal power

allocation and maximum SIC frequency setting that maximizes the sum rate. While the
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model we consider is different than [2, 77], we provide a more specific characterization of

achievable rate gains, and derive results that provide insights into the rate dependence

on the power allocation. These results allow us to solve a very general problem of rate

maximization.

5.2 Single Channel FD

5.2.1 A Bidirectional FD Link

In this section, we derive general properties of the sum rate function for use case (i)

(Fig. 1.3(a)). First, we show that if it is possible for the FD sum rate to exceed the

maximum TDD rate, it is always optimal for the MS and the BS to transmit at their max-

imum respective power levels (Lemma 5.1). This result is somewhat surprising, because in

general, the FD sum rate function does not have good structural properties, i.e., it need

not be convex or concave in the transmission power variables. Building upon this insight,

we quantify the FD rate gains by comparing the FD sum rate to corresponding TDD rates

(Section 5.2.1.2). More specifically, we define a metric that characterizes by how much the

FD capacity region extends the corresponding TDD capacity region, and provide a sufficient

condition on the system parameters for rate gains to hold.

Finally, we establish a sufficient condition for the FD sum rate function to be biconcave

in transmission power levels (Section 5.2.1.3). This condition imposes very mild restrictions

on the XINRs at the BS and the MS. Moreover, the established condition extends to the

multi-channel scenario (use case (iii)), where it plays a crucial role in deriving an algorithm

for the sum rate maximization that converges to a stationary point that is a global maximum

in practice (Section 5.3.2.1). Without such a condition, the problem would not have enough

structure to be amenable to efficient optimization methods.

5.2.1.1 Power Allocation

Lemma 5.1. If there exists an FD sum rate r that is higher than the maximum TDD rate,

then r is maximized for αm = 1, αb = 1.
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Proof. From (4.4), the sum rate can be written as:

r = log
(

1 +
αmγmb

1 + αbγbb

)
+ log

(
1 +

αbγbm
1 + αmγmm

)

Taking partial derivatives of r directly w.r.t. αb, αm does not provide conclusive information

about the optimal power levels. Instead, we write r as an increasing function of another

function that is easier to analyze. Specifically:

r = log
((

1 +
αmγmb

1 + αbγbb

)
·
(

1 +
αbγbm

1 + αmγmm

))

= log(1 + γ), where

γ =
αmγmb

1 + αbγbb
+

αbγbm
1 + αmγmm

+
αmγmb

1 + αbγbb
· αbγbm

1 + αmγmm
.

Since r is strictly increasing in γ, to maximize r it suffices to determine αb, αm that

maximize γ. The first and the second partial derivative of γ with respect to αm are:

∂γ

∂αm
=

γmb
1 + αbγbb

+
αbγbm

(1 + αmγmm)2

(
γmb

1 + αbγbb
− γmm

)
, (5.1)

∂2γ

∂αm2
= −2

αbγbm
(1 + αmγmm)3

(
γmb

1 + αbγbb
− γmm

)
. (5.2)

From (5.1) and (5.2):

1. If γmb
1+αbγbb

− γmm ≥ 0, then ∂2γ
∂αm2 ≤ 0 and ∂γ

∂αm
> 0, i.e., γ is concave and strictly

increasing in αm when αb is fixed, and therefore maximized for αm = 1.

2. If γmb
1+αbγbb

− γmm < 0, then ∂2γ
∂αm2 > 0, i.e., γ is strictly convex in αm when αb is fixed.

Therefore, γ is maximized at either αm = 0 or αm = 1. Note that if αm = 0, there is

no signal on UL, in which case FD rate equals the maximum TDD UL rate.

A similar results follows for αb by taking the first and the second partial derivative of γ

with respect to αb.

5.2.1.2 Mapping Gain over SINR Regions

Let (sb, sm) denote the rate pair that is obtained when αb = 1 and αm = 1. Lemma 5.1

states that the maximizer of the FD sum rate is either (rb, 0), (0, rm) or (sb, sm). In

particular, to see whether FD operation increases the sum rate, it suffices to check whether
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Figure 5.1: TDD rate improvement due to FD as a function of SNRs for (a) γbb = 1,

γmm = 1 and (b) γbb = 1, γmm = 10, and (c) γbb = 1, γmm = 100.

sb+ sm > max{rb, rm}. This motivates us to focus on the pair (sb, sm) when considering by

how much the FD operation improves over TDD. In the rest of the chapter, we will therefore

quantify the FD rate improvement p using Definition 4.1 from Chapter 4, evaluated at the

rate pair (sb, sm).

Fig. 5.1 shows the TDD rate improvement due to FD operation, as a function of the

received signals’ SNR, for BS FD receiver that cancels SI to the noise level and MS FD

receiver that cancels SI to (i) the noise level (Fig. 5.1(a)), (ii) one order of magnitude above

noise (Fig. 5.1(b)), and (iii) two orders of magnitude above noise (Fig. 5.1(c)). Recall that

the rate improvement is computed for αm = 1 and αb = 1, and therefore the differences in

the SNRs are due to signal propagation and not due to reduced transmission power levels.

Fig. 5.1 suggests that to achieve non-negligible rate improvement, SNRs at the MS and at

the BS must be sufficiently high – at least as high as to bring the resulting SINR to the

level above 0dB.

5.2.1.3 Sum Rate Biconcavity

In this section, we establish a sufficient condition for the sum rate to be (strictly) biconcave

and increasing in αm and in αb (Condition 5.2). We also show that when the condition does

not hold, using FD does not provide appreciable rate gains, as compared to the maximum

rate achievable by TDD operation. Intuitively, the condition states that a station’s amount

of SIC should be at least as high as the loss incurred due to wireless propagation on the

path to the intended receiver.
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Condition 5.2. γmm ≤ γmb
1+αbγbb

and γbb ≤ αbγbm
1+αmγmm

.

Proposition 5.3. If γmm ≤ γmb
1+αbγbb

, the sum rate r is strictly concave and strictly increas-

ing in αm when αb is fixed. Similarly, if γbb ≤ αbγbm
1+αmγmm

, r is strictly concave and strictly

increasing in αb when αm is fixed. Thus, when Condition 5.2 holds, r is strictly biconcave

and strictly increasing in αm and in αb. Furthermore, when Condition 5.2 does not hold,

r −max{rb, rm} < 1b/s/Hz.

Proof. Fix αb. From the proof of Lemma 5.1, we can express r as r = log(1 + γ), where γ

is strictly increasing and concave in αm whenever

γmb
1 + αbγbb

− γmm ≥ 0. (5.3)

Whenever (5.3) holds, since γ > 0, ∂γ
∂αm

> 0, ∂2γ
∂αm2 ≤ 0:

∂r

∂αm
=

1

1 + γ
· ∂γ
∂αm

> 0, and,

∂2r

∂αm2
= − 1

(1 + γ)2
·
( ∂γ

∂αm

)2
+

1

1 + γ
· ∂

2γ

∂αm2
< 0,

and therefore r is strictly increasing and strictly concave in αm. Similarly, whenever γbb ≤
γbm

1+αmγmm
, r is strictly increasing and strictly concave in αb when αm is fixed.

Now suppose that Condition 5.2 does not hold. Then, either γmm > γmb
1+αbγbb

or γbb >

γbm
1+αmγmm

. Suppose that γmm > γmb
1+αbγbb

. Due to Lemma 5.1, r is maximized when either

αm = 0 or αm = 1. If αm = 0, there is nothing to prove. Suppose that αm = 1. Then:

r = log
(

1 +
γmb

1 + αbγbb

)
+ log

(
1 +

αbγbm
1 + γmm

)

< log
(

1 +
γmb

1 + αbγbb

)
+ log

(
1 +

αbγbm

1 + γmb
1+αbγbb

)

= log
(

2 ·
(

1 +
1

2

(
αbγbm +

γmb
1 + αbγbb

− 1
)))

= 1b/s/Hz + log
(

1 +
1

2

(
αbγbm +

γmb
1 + αbγbb

− 1
))
.

Since 1
2

(
αbγbm + γmb

1+αbγbb
− 1
)
< max{γmb, γbm}, it follows that r < 1b/s/Hz + max{rb, rm},

which completes the proof for γmm > γmb
1+αbγbb

. The proof for the case γbb >
γbm

1+αmγmm
follows

the same line of argument and is omitted for brevity.
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Figure 5.2: TDD rate improvement due to FD as a function of SNRs, where SNRs change

due to path loss with exponent η, and distance between MS 1 and MS 2 is dm1m2 =

ρ(dm1b + dbm2). Transmission power levels are set to maximum. In SNR regions where the

triangle inequality of the distances is not satisfied, rate improvement p is set to 0.

5.2.2 Two Unidirectional Links

Much of the analysis for use case (i) (Section 5.2.1) extends to use case (ii) (Fig. 1.3(b)),

due to the similarity between the sum rate as a function of transmission power levels for

these two use cases (see Eqs. (4.4) and (4.5)). However, there are also important differences.

First, the interfering signal at MS 2 in use case (ii), unlike the self-interfering signal at the

MS in the bidirectional link case, is not known at the receiver, and therefore, cannot be

cancelled (unless an additional channel is used, which we do not consider). Second, in use

case (ii), the channel gains between MSs cannot take arbitrary values. This is because

the channel gains typically conform to a path loss model of propagation, where the SNR

depends on distances between MSs, which in turn need to satisfy the triangle inequality.

The following two Lemma is similar to Lemma 5.1. We state it without a proof.

Lemma 5.4. If there exists an FD sum rate that is higher than the maximum TDD rate,
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then the FD sum rate is maximized at αm1 = 1 for MS 1, and αb = 1 for the BS.

In a path loss model of propagation, the wireless channel gain between two stations is

a function of the distance between the stations: huv =
(

L
duv

)η
, where u, v ∈ {b,m1,m2},

u 6= v, η is the path loss exponent, and L is a constant. Therefore, as distances dm1b, dbm2 ,

and dm1m2 need to satisfy the triangle inequality, SNRs γm1b, γbm2 and INR γm1m2 cannot

take arbitrary values. To evaluate rate gains in use case (ii), we consider path loss exponents

η ∈ {2, 3, 4}, since typical range for the path loss exponent is between 2 and 4 [111]. We

assume fixed maximum power levels at the BS and the MS 1, equal noise levels N at the

BS and the MS 2, and we vary SNRs and the INR as the function of distance, as follows:

γm1b =
hm1bPm1

N
=
hm1b

hmax
m1b

· γmax
m1b =

(dm1b

dmin
m1b

)η
γmax
m1b ,

γm1m2 =
hm1m2Pm1

N
=
hm2m2

hmax
m1m2

· γmax
m1m2

=
(dm1m2

dmin
m1m2

)η
γmax
m1m2

,

γbm2 =
hbm2Pb
N

=
hbm2

hmax
bm2

· γmax
bm2

=
(dbm2

dmin
bm2

)η
γmax
bm2

,

where dmin
uv is a reference distance at which γuv = γmax

uv for u, v ∈ {b,m1,m2}, x 6= y.

For the purpose of comparison, we will assume that dmin
bm2

= dmin
m1b

= dmin
m1m2

≡ dmin, which

would correspond to Pb = Pm, and normalize all distances to dmin.

Rate improvement as a function of SNRs is shown in Fig. 5.2, for different values of

the path loss exponent and dm1m2 = ρ(dm1b + dbm2), for ρ ∈ {0.25, 0.5, 0.75, 1}. For all

combinations of SNRs at which the triangle inequality is not satisfied, we set the rate

improvement p to 0.

Fig. 5.2 suggests that to achieve over 1.5× rate improvement, the environment needs

to be sufficiently lossy, i.e., with the path loss exponent η > 2. Moreover, to achieve high

rate improvements, the SNRs at the BS and at the MS 2 need to be low enough, meaning

that the corresponding distances dm1b and dbm2 need to be large, since the differences in

the SNR shown in all the graphs are due to different distances (and consequently different

path loss).
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5.3 OFDM Bidirectional Links

In this section, we focus on the rate maximization for use case (iii) (Fig. 1.3(c)). Recall that

in this use case the FD receiver at the MS has a frequency-selective SIC profile (Fig. 4.3(d)).

Requiring two technical conditions (Conditions 5.6 and 5.9), we derive an algorithm (Al-

gorithm 1, MaximumRate) for the sum rate maximization. The algorithm is guaranteed

to converge to a stationary point, which in practice is typically a global maximum. While

the derived algorithm runs in polynomial time, its running time is high because it requires

invoking a large number of biconvex programming methods. We therefore consider a high

SINR approximation of the sum rate, and develop an efficient power allocation algorithm

for the sum rate maximization. We also prove that in the high SINR regime it is always

optimal to set the maximum SIC frequency in the middle of the used frequency band.

5.3.1 Analysis of Sum Rate

5.3.1.1 Dependence on Channel Power Levels

The analysis of the sum rate in terms of transmission power levels extends from the single-

channel case (Section 5.2.1). In particular:

Observation 5.5. If

γmm,k = γmm,1+c(k − c)2 ≤ γmb,k
1 + αb,kγbb,k

and γbb,k ≤
γbm,k

1 + αm,kγmm,1+c(k − c)2
(5.4)

hold, then the sum rate is biconcave in αm,k and αb,k.

This result is simple to show by using the same arguments as in the case of a single

channel (proof of Lemma 5.1). Similar to the case of a single channel, if condition (5.4) is

not satisfied, then the achievable rate improvement is low.

The first inequality in (5.4) guarantees concavity in αm,k when αb,k is fixed, while the

second one guarantees concavity in αb,k when αm,k is fixed. The condition (5.4) cannot

be satisfied for any αb,k ≥ 0, αm,k ≥ 0 (e.g., the first inequality cannot be satisfied if

γmm,1+c(k − c)2 > γmb,k). However, since the role of condition (5.4) is to guarantee bicon-

cavity in the power levels, we can replace this condition by either αm,k = 0 or αb,k = 0,

which implies rate concavity in αm,k, αb,k. Specifically, to guarantee that the sum rate is

biconcave in all αm,k, αb,k, we require the following condition:
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Condition 5.6. (a) γmm,1+c(k − c)2 ≤ γmb,k
1+αb,kγbb,k

, if γmm,1+c(k − c)2 < γmb,k, otherwise

αm,k = 0, and

(b) γbb,k ≤ γbm,k
1+αm,kγmm,1+c(k−c)2 if γbb,k < γbm,k; otherwise αb,k = 0 if αm,k was not set to

0 by (a).

Note that Condition 5.6 forces a channel k to be used in half-duplex (only one of

αm,k, αb,k is non-zero) whenever it is not possible to satisfy the sufficient condition (5.4) for

the sum rate biconcavity in αm,k, αb,k for any αm,k ≥ 0 and αb,k ≥ 0.

5.3.1.2 Dependence on Maximum SIC Frequency

The following lemma shows that choosing optimal c for a given power allocation {αb,k, αm,k}
is hard in general, since the sum rate r as a function of c is neither convex nor concave, and

can have Ω(K) local maxima. Proof is provided in Appendix B.

Lemma 5.7. The sum rate r is neither convex nor concave in c. All (local) maxima of r(c)

lie in the interval (1,K). In general, the number of local maxima is Ω(K).

Even though r(c) can have multiple maxima in c, if we restrict the analysis to the values

of γmb,k and γmm,k that are relevant in practice, the selection of c, together with the power

allocation, are tractable if the following inequalities hold:

γmm,1+c ≤
γmb,k

1 + αb,kγbb,k
, ∀k ∈ {1, ...,K}. (5.5)

Note that these inequalities are implied by Condition 5.6 for |k− c| ≥ 1, and that there can

be at most 2 channels with |k−c| < 1. For |k−c| < 1, the corresponding inequality limits SI

on channel k. The following lemma bounds the first partial derivative of r with respect to

c. This bound will prove useful in maximizing r as a function of c and {αb,k, αm,k} (Section

5.3.2.1).

Lemma 5.8. If inequalities (5.5) hold, then:

∣∣∣∣
∂r

∂c

∣∣∣∣ ≤
2

ln 2
(ln(K) + 1 + 2

√
3) ∀c ∈ (1,K).

Similarly as for Condition 5.6, since (5.5) cannot be satisfied for αb ≥ 0 when γmm,1+c >

γmb,k, we require the following:
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Condition 5.9. ∀k ∈ {1, ...,K}: γmm,1+c ≤ γmb,k
1+αb,kγbb,k

if γmm,1+c < γmb,k, and αm,k = 0

otherwise.

Proof of Lemma 5.8 can be found in Appendix B.

5.3.2 Parameter Selection Algorithms

5.3.2.1 General SINR Regime

The pseudocode of the algorithm for maximizing the sum rate in the general SINR regime

is provided in Algorithm 1 – MaximumRate. We claim the following:

Lemma 5.10. Under Conditions 5.6 and 5.9, the sum rate maximization problem is bi-

convex. If biconvex programming subroutine in MaximumRate finds a global optimum for

{αb,k, αm,k}, then MaximumRate determines c and the power allocation {αb,k, αm,k} that

maximize sum rate up to an absolute error ε, for any ε > 0.

Algorithm 6 MaximumRate(ε)

Input: K, γmm,1+c, γbm,k, γbb,k, γmb,k

1: c1 = 1, c2 = K, ∆c = ε
2

ln 2 (ln(K)+1+2
√

3)

2: cmax = rmax = 0, {αmax
b,k } = {αmax

m,k } = {0}
3: for c = c1, c < c2, c = c+ ∆c do

4: Solve via biconvex programming:

max r =
∑K
k=1 rk, where rk is given by (4.6)

s.t. Conditions 5.6 and 5.9 hold
∑K
k=1 αm,k ≤ 1,

∑K
k=1 αb,k ≤ 1

αb,k ≥ 0, αm,k ≥ 0 ,∀k ∈ {1, ...,K}.
5: if r > rmax then

6: rmax = r, cmax = c,

7: {αmax
b,k } = {αb,k}, {αmax

m,k } = {αm,k}

8: return cmax, {αmax
b,k }, {αmax

m,k }, rmax.

Note that without Condition 5.6, the biconvex programming subroutine in Maximum-

Rate would not be guaranteed to converge to a stationary point (see, e.g., [52]). Moreover,

since the sum rate is highly nonlinear in the parameter c (Lemma 5.7), c cannot be used

as a variable in the biconvex programming routine (or a convex programming method).
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Nevertheless, as a result of Lemma 5.8 that bounds the first derivative of r with respect to

c when condition 5.9 is applied, we can restrict our attention to c’s from a discrete subset

of the interval (1,K).

Proof of Lemma 5.10. Consider the optimization problem in Step 4 of the algorithm. Since

Condition 5.6 is required by the constraints, the objective r is concave in αb,k whenever

αm,k’s are fixed, and, similarly, concave in αm,k whenever αb,k’s are fixed. Therefore, r is

biconcave in αb,k, αm,k. The feasible region of the problem from Step 4 is determined by

linear inequalities and Conditions 5.6 and 5.9.

Condition 5.6 is either an inequality or an equality for each αm,k, αb,k that (possibly

rearranging the terms) is linear in αm,k, αb,k. Condition 5.9 is a linear inequality in αm,k.

Therefore, the feasible region in the problem of Step 4 is a polyhedron and therefore convex.

It follows immediately that this problem is biconvex.

Suppose that the biconvex programming method from Step 4 of MaximumRate finds

a global optimum. Then the algorithm finds an optimal power allocation for each c from

the set of
(K−1)( 2

ln 2
(ln(K)+1+2

√
3))

ε − 2 equally spaced points from the interval (1,K), and

chooses c and power allocation that provide maximum sum rate r.

What remains to prove is that by choosing any alternative c 6= cmax and accompanying

optimal power allocation the sum rate cannot be improved by more than an additive ε.

Recall from Lemma 5.7 that optimal c must lie in (1,K). Suppose that there exist

c∗, {α∗b,k, α∗m,k} such that c∗ ∈ (1,K), c∗ 6= cmax and r(c∗, {α∗b,k, α∗m,k}) > rmax + ε.

From the choice of points c in the algorithm, there must exist at least one point ca that

the algorithm considers such that |ca − c∗| < ∆c = ε
2

ln 2
(ln(K)+1+2

√
3)

. From Lemma 5.8,

r(c∗, {α∗b,k, α∗m,k})− r(ca, {α∗b,k, α∗m,k}) <
ε

2
ln 2(ln(K) + 1 + 2

√
3)
·
( 2

ln 2
(ln(K) + 1 + 2

√
3)
)

= ε,

since in any finite interval I any continuous and differentiable function f(x) cannot change

by more than the length of the interval I times the maximum value of its first derivative

f ′(x) (a simple corollary of the Mean-Value Theorem).

Since the algorithm finds an optimal power allocation for each c, we have that r(ca, {α∗b,k, α∗m,k}) ≤
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r(ca, {αab,k, αam,k}) ≤ rmax. Therefore: r(c∗, {α∗b,k, α∗m,k}) − rmax < ε, which is a contradic-

tion.

5.3.2.2 High SINR Regime

A high SINR approximation of the sum rate is:

r ≈
K∑

k=1

(
log
( αm,kγmb,k

1 + αb,kγbb,k

)
+ log

( αb,kγbm,k
1 + αm,kγmm,k

))
. (5.6)

While in the high SINR regime the dependence of sum rate on each power level αb,k, αm,k

for k ∈ {1, ...,K} becomes concave (regardless of whether Condition 5.6 holds or not), the

dependence on the parameter c remains neither convex nor concave as long as we consider

a general power allocation. Therefore, we cannot derive a closed form expression for c in

terms of an arbitrary power allocation. However, as we show in Lemma 5.13, when power

allocation and the choice of parameter c are considered jointly, it is always optimal to place

c in the middle of the interval (1,K): c = K+1
2 . The following proposition and lemma

characterize the optimal power allocation for a given c.

Lemma 5.11. Under high-SINR approximation and any power allocation {αm,k} at the

MS and any choice of c, it is always optimal to allocate BS power levels as:

αb,k =





−1+
√

1+4αb,Kγbb,k(1+αb,Kγbb,K)

2γbb,k
, if γbb,k > 0

αb,K(1 + γbb,K), if γbb,k = 0.

,

where
∑K

k=1 αb,k = 1. In particular, if γbb,k = γbb,K , ∀k, then αb,k = 1
K , ∀k.

Proof. Observe that the sum rate can be written as:

r =
K∑

k=1

(
log
( αm,kγmb,k

1 + αm,kγmm,k

)
+ log

( αb,kγbm,k
1 + αb,kγbb,k

))
,

and we can only focus on the terms that depend on αb,k’s.

Observe that

∂r

∂αb,k
=

1

αb,k
− γbb,k

1 + αb,kγbb,k
.
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As ∂r
∂αb,k

→ ∞ as αb,k → 0, we have αb,k > 0, ∀k, at the optimum. Moreover, since ∂r
∂αb,k

can be written as:

∂r

∂αb,k
=

1

αb,k(1 + αb,kγbb,k)
> 0,

it must be
∑K

k=1 αb,k = 1 at the optimum.

Finally, since
∑K

k=1 αb,k = 1, we can express αb,K as αb,K = 1−∑K−1
k=1 αb,k, which, taking

partial derivatives in r w.r.t. αb,k’s implies ∂r
∂αb,k

= ∂r
∂αb,K

, ∀k. Solving αb,k(1 + αb,kγbb,k) =

αb,K(1 + αb,Kγbb,K) for αb,k, we get:

αb,k =





−1+
√

1+4αb,Kγbb,k(1+αb,Kγbb,K)

2γbb,k
, if γbb,k > 0

αb,K(1 + γbb,K), if γbb,k = 0

.

If γbb,k = γbb,K , ∀k, then simplifying the solution for αb,k we get αb,k = αb,K , which,

combined with
∑K

k=1 = 1 implies αb,k = 1
K , ∀k.

Lemma 5.12. Under high-SINR approximation and for a given, fixed, c the optimal power

allocation at the MS satisfies
∑
αm,k = 1, and for k 6= K:

(i) αm,k = αm,K(1 + αm,Kγmm,1+c(K − c)2) if k = c,

(ii) αm,k =
−1+
√

1+4αm,K(k−c)2γmm,1+c(1+αm,Kγmm,1+c(K−c)2)

2γmm,1+c(k−c)2 .

Proof. Follows by using the same argument as in the proof of Lemma 5.11, by recalling that

γmm,k = γmm,1+c(k − c)2.

It is relatively simple to show (using similar approach as in the proof of Lemma 5.7)

that under general power allocation r can have up to K local maxima with respect to c.

However, if c is considered with respect to the optimal power allocation corresponding to

c (Proposition 5.11 and Lemma 5.12), it is always optimal to place c in the middle of the

interval (1,K), as the following lemma states.

Lemma 5.13. If (c, {αb,k, αm,k}) maximizes the sum rate under high SINR approximation,

then c = K+1
2 .

Even though this result may seem intuitive because the optimal power allocation is

always symmetric around c (Lemma 5.11 and Lemma 5.12), the proof does not follow
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directly from this property and requires many technical details. For this reason, the proof

is deferred to the appendix.

A simple corollary of Lemma 5.13 is that:

Corollary 5.14. If (c∗, {αmax
m,k , α

max
b,k }) maximizes r under high SINR approximation, then

the power allocation {αmax
m,k } is symmetric around K+1

2 and decreasing in |k − c|.

Proof. The first part follows directly from cmax = K+1
2 . The second part is proved in Lemma

5.13.

Lemma 5.15. A solution (cmax, {αmax
m,k , α

max
b,k }) that maximizes r under high SINR approx-

imation up to an absolute error ε can be computed in O
(
K log

(
1
ε

))
time.

Proof. Lemmas 5.11 and 5.12 provide similar expressions for αmax
b,k ’s and αmax

m,k ’s and in the

worst case require the same computation time. We provide the proof for the running time

of finding {αmax
m,k }.

From Lemma 5.12,
∑K

k=1 α
max
m,k = 1. Recall that all the αmax

m,k ’s are given in terms of

αmax
m,K , so we can find the allocation {αmax

m,k } by performing a binary search for αmax
m,K until

∑K
k=1 α

max
m,k ∈ [1− ε′, 1]. Corollary 5.14 implies that αmax

m,K ≤ 1
K , so it is sufficient to perform

the binary search for αmax
m,K ∈

[
0, 1

K

]
.2 Such a binary search requires O

(
log
(

1
Kε′

))
iterations,

with each iteration requiring O(K) time to compute {αmax
m,k } and evaluate

∑K
k=1 α

max
m,k , for

the total time O
(
K log

(
1
Kε′

))
.

The last part of the proof is to determine an appropriate ε′ so that r(cmax, {αmax
m,k , α

max
b,k }) ≥

max r− ε, where the maximum is taken over all feasible points (c, {αm,k, αb,k}). Notice that

we are only deviating from the optimal solution in that
∑K

k=1 α
max
m,k =∈ [1 − ε′, 1] instead

of
∑K

k=1 α
max
m,k = 1. Therefore, (cmax, {αmax

m,k , α
max
b,k }) is the optimal solution to the problem

that is equivalent to the original problem, with maximum total power at the MS equal to

2Observe that at the BS side αmax
b,K may not be the smallest coefficient. However, it is not hard to see

that we can replace αmax
b,K with any other fixed αmax

b,k∗ and get equivalent results for power allocation to those

from Lemma 5.11. By choosing k∗ as the index with maximum γbb,k, αmax
b,k∗ is guaranteed to be the smallest

coefficient from the allocation {αmax
b,k }, and as

∑K
k=1 α

max
b,k = 1, it follows that αmax

b,k∗ ∈ [0, 1/K].
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∑K
k=1 α

max
m,k ≡ Am. Denote α′m,k =

αmax
m,k

Am
Observe that:

∂r

∂Am
=

K∑

k=1

( 1

Am
−

α′m,kγmm,k

1 +AMα′m,kγmm,k

)
≤ K

Am
.

As ∂r
∂Am

(Am) ≤ K
1−ε′ for Am ∈ [1 − ε′, 1], it follows that: max r − r(cmax, {αmax

m,k , α
max
b,k }) ≤

K
1−ε′ · Amε′. Setting: K

1−ε′ · ε′ = ε ⇔ ε′ = ε
K+ε , we yield the total running time of:

O
(
K log

(
K+ε
Kε

))
= O

(
K log

(
1
ε

))
.

We summarize the results from this section in Algorithm 2 – HSINR-MaximumRate.

Algorithm 7 HSINR-MaximumRate(ε)

Input: K, γmm,1+c, γmb,k, γbb,k, γbm,k

1: cmax = (K + 1)/2

2: k∗ = arg max γbb,k

3: for αb,k∗ ∈ [0, 1/K], via a binary search do

4: Compute αb,k for 1 ≤ k ≤ K − 1 using Lemma 5.11

5: End binary search when
∑K
k=1 αb,k ∈ [1− ε/(K + ε), 1]

6: for αm,K ∈ [0, 1/K], via a binary search do

7: Compute αm,k for 1 ≤ k ≤ K − 1 using Lemma 5.12

8: End binary search when
∑K
k=1 αm,k ∈ [1− ε/(K + ε), 1]

9: return cmax, {αmax
b,k }, {αmax

m,k }.

5.4 Measurement-based Numerical Evaluation

This section presents numerical evaluations for use case (iii). Numerical evaluations for use

cases (i) and (ii) were already provided in Sections 5.2.1 and 5.2.2, respectively. We focus

on the impact of a frequency-selective SIC profile in a small form factor hardware at the

MS (Fig. 4.3(d)), and evaluate achievable rate gains from FD.

Evaluation Setup. To determine the position cmax of maximum SIC and the power allo-

cation {αmax
m,k , α

max
b,k } that maximize the sum rate, we run an implementation of the Maxi-

mumRate algorithm separately for measured ( [125,128] and Fig. 4.3(d)) and modeled (Eq.

(4.2)) SIC profiles of the MS FD receiver. Additionally, we determine cmax, {αmax
m,k , α

max
b,k }
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Figure 5.3: Power allocation over K = 33 channels (20MHz bandwidth) at the BS and MS

for different values of average SNR (γavg). The higher the γavg, the more channels are used

in full-duplex, and the closer the power allocation gets to the high SINR approximation one

(computed by HSINR-MaximumRate).

for the high SINR approximation of the sum rate using the HSINR-MaximumRate al-

gorithm. We also compare the results to the case when the total transmission power is

allocated equally among the frequency channels (we refer to this case as equal power allo-

cation).

Since the measurements were performed only for the analog part of the FD receiver, we

assume additional 50dB of cancellation from the digital domain.3 Similar to [20], we assume

that when either station transmits at maximum total power that is equally allocated across

channels (so that αm,k = 1/K,αb,k = 1/K), the noise on each channel is 110dB below the

transmitted power level.

We consider a total bandwidth of: (i) 20MHz in the range 2.13–2.15GHz, (ii) 10MHz in

the range 2.135–2.145GHz, and (iii) 5MHz in the range 2.1375–2.1425GHz. We adopt the

distance between the measurement points as the OFDM channel width (≈ 600kHz), so that

there are K = 33, K = 17, and K = 9 channels, respectively, in the considered bands. For

3Fig. 4.3(d) only shows isolation from the SIC in the analog domain.
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Figure 5.4: Evaluated (a) sum rate for K = 33, normalized to the number of channels K,

and (b)–(d) rate improvement for (b) K = 33, (c) K = 17, and (d) K = 9. The graphs

suggest that higher average SNR (γavg) and better cancellation (lower bandwidth – fewer

frequency channels K) lead to higher rate gains.
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Figure 5.5: Evaluated (a) sum rate for K = 33, normalized to K, and (b) rate improvement

for K ∈ {9, 17, 33}, for the sum of the total transmission power levels at the MS and at the

BS scaled so that it is the same as in the TDD case.
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the SIC at the BS, we take γbb,k/K = 1 [20].

We consider flat frequency fading (so that γmb,k and γbm,k are constant across chan-

nels k), and perform numerical evaluations for γmb = γbm ≡ γavg · K, ∀k, where γavg ∈
{0, 10, 20, 30, 40, 50} [dB].

We run MaximumRate for ∆c = 0.01, which corresponds to an absolute error of up to

ε ≈ 0.2 for r. We evaluate the sum rate and the rate improvement using the measurement

data for the remaining SI and cmax, {αmax
m,k , α

max
b,k } returned by the algorithm. We assume

that the amount of SIC around fc does not change as fc (and correspondingly c) is varied.

To run the algorithm for c positioned at any point between two neighboring channels, we

interpolate the measurement data.

Results. We provide detailed results for the power allocation only for the 20MHz band-

width (K = 33) case, in Fig. 5.3. For the 10MHz (K = 17) and 5MHz (K = 9) cases, we

only provide the results for the rate improvement, in Fig. 5.4.

Fig. 5.3 shows the power allocations at the BS (Fig. 5.3(a)–(d)) and at the MS

(Fig. 5.3(e)–(h)) computed by MaximumRate for both measured and modeled SI and

for different values of average SNR γavg. Additionally, Figs. 5.3(d) and 5.3(h) compare

the power allocation computed by MaximumRate to the one computed by HSINR-

MaximumRate. As Fig. 5.3 suggests, when γavg is too low, most channels are used as

half-duplex – i.e., only one of the stations transmits on a channel. As γavg increases, the

number of channels used as full-duplex increases: at γavg = 10dB about seven channels are

used as full-duplex, while for γavg = 20dB all but two channels are used as full-duplex, and

when γavg ≥ 30dB, we reach the high SINR approximation for the FD power allocation.

Fig. 5.4 shows (a) sum rate normalized to the number of channels for K = 33 (20MHz

bandwidth) and (b)–(d) rate improvement forK = 33 (20MHz bandwidth), K = 17 (10MHz

bandwidth), and K = 9 (5MHz bandwidth). As Fig. 5.4 suggests, the FD rate gains increase

as γavg increases and the SIC becomes better across the channels (i.e., as we consider lower

bandwidth – lower K).

We observe in Fig. 5.4(b)–(d) that there is a “jump” in the rate improvement as γavg

increases from 0dB to 5dB. This happens because at γavg = 0dB Conditions 5.6 and 5.9

force all the power levels at the MS to zero, and we have the HD case where only the BS is
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transmitting. At γavg = 5dB Conditions 5.6 and 5.9 become less restrictive and some of the

channels are used as FD. At the same time, the total irradiated power (considering both MS

and BS) is doubled compared to the case when γavg = 0dB (and to the TDD operation),

so a large portion of the rate improvement comes from this increase in the total irradiated

power. To isolate the rate gains caused by FD operation from those caused by the increase

in the total irradiated power, we normalize the total irradiated power so that it is the same

as in the TDD regime and compute the sum rate for K = 33 and the rate improvement

for K = {33, 17, 9}, as shown in Fig. 5.5. The results suggest that the rate gains that

are solely due to FD operation increase smoothly with γavg and the rate gains are almost

indistinguishable for different power allocation policies (MaximumRate for measured and

modeled SI, HSINR-MaximumRate, and equal power allocation).

Since for the transmitted power of 1/K and c placed in the middle of the frequency

band XINR at the first and the last channel is about 35 (≈ 15dB) for K = 33, about 8.5

(≈ 9dB) for K = 17, and about 2.5 (≈ 4dB) for K = 9, our numerical results suggest, as

expected (see e.g., Fig. 5.1), that to achieve high rate gains, γavg needs to be sufficiently

high. This is demonstrated by the results shown in Fig. 5.4 and 5.5. In particular, the

rate gains obtained solely from FD operation are non-negligible when on most channels

XINR ≥ 0dB. Moreover, simple power allocation policies, such as equal power allocation

and high SINR approximation power allocation are near-optimal when the rate gains are

non-negligible, as demonstrated by Fig. 5.5.
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Chapter 6

Capacity Regions of Full-Duplex

Links

The previous chapter focused on maximizing the sum of the UL and DL rates over orthog-

onal channels. While sum rate maximization gives a good estimate of what the achievable

rate improvements are in the best case or when UL and DL have the same priorities, there

are many cases where one of the (UL and DL) rates needs to be prioritized, due to, e.g.,

Quality of Service (QoS) considerations.

While in Time Division Duplex (TDD) systems asymmetric traffic can be supported via

time-sharing between the UL and DL, in FD the dependence of the bi-directional rates on

the transmission power levels and Signal-to-Noise Ratio (SNR) levels is much more complex.

As shown in Fig. 6.1, any (combination) of the following policies can be used: (i) FD with

reduced transmission power at one of the stations, (ii) FD with fewer channels allocated to

one of the stations, and (iii) time sharing between a few types of FD transmissions.

We study asymmetric link traffic and analytically characterize the capacity region (i.e.,

all possible combinations of UL and DL rates) under non-negligible SI. Such characteriza-

tion has theoretical importance, since it provides insights into the achievable gains from

FD, thereby allowing to quantify the benefits in relation to the costs (in hardware and

algorithmic complexity, power consumption, etc.). It also has practical importance, since

it supports the development of algorithms for rate allocation under different UL and DL
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Figure 6.1: (a) An example of different rate requirements on a full-duplex link and possible

policies to meet the requirements: (b) reduction of the the power levels on the UL channels,

(c) allocation of a subset of the channels to the UL, and (d) time-sharing between two FD

rate pairs (TDFD).

requirements. Such algorithms will determine the required combinations of the policies

illustrated in Fig. 6.1.

We first consider the case where both stations transmit on a single channel and the

remaining SI is a constant fraction of the transmitted power [21,92]. We study the structural

properties of the FD capacity region and derive necessary and sufficient conditions for its

convexity. Based on the properties, we present a simple and fast algorithm to “convexify”

the region.1 The convexified region combines (via time sharing) different FD rate pairs

(see Fig. 6.1(d)) and we refer to it as the Time Division Full-Duplex (TDFD) region. The

algorithm finds the points at the region’s boundary, given a constraint on one of the (UL

or DL) rates.

We then consider the the multi-channel case in which channels are orthogonal, as in

Orthogonal Frequency Division Multiplexing (OFDM). We assume that the shape of the

power allocation is fixed but the total transmission power can be varied. Namely, the ratios

between power levels at different channels are given. For each channel, the remaining SI is

some fraction of the transmitted power [32,92,124]. We characterize the FD capacity region

and analytically show that any point on the region can be computed with a low-complexity

binary search. We also focus on determining the TDFD capacity region, which due to the

lack of structure cannot in general be obtained via binary search. However, we argue that

1A convex region is desirable, since most resource allocation and scheduling algorithms rely on convexity

and providing performance guarantees for a non-convex region is hard.
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Figure 6.2: Considered cancellation profiles for the FD receiver (a) at the BS [20] and (b),

(c), (d) at the MS [125,126].

for any practical input, the TDFD capacity region can be determined in real time.

Finally, we consider the TDFD capacity region in the multi-channel case under a general

power allocation, (i.e., the power level at each channel is a decision variable). In this case,

maximizing one of the rates when the other rate is given is a non-convex problem which

is hard to solve. However, we develop an algorithm that under certain mild restrictions

converges to a stationary point that in practice is a global maximum. Although for most

practical cases, the algorithm is near-optimal and runs in polynomial time, its running time

is not suitable for a real-time implementation. Hence, we develop a simple heuristic and

show numerically that in most cases it has similar performance.

For all the cases mentioned above, we present extensive numerical results that illustrate

the capacity regions and the rate gains (compared to TDD) as a function of the receivers’

SNR levels and SIC levels. In the multi-channel examples, we use the maximum XINRs at

the BS and MS shown in Fig. 6.2 and based on the FD receiver implementations from [20,

125,126]. We also highlight the intuition behind the performance of the different algorithms.

To summarize, the main contributions of the chapter are two-fold: (i) it provides a

fundamental characterization and structural understanding of the FD capacity regions, and

(ii) the rate maximization algorithms, designed for asymmetrical traffic requirements, can

serve as resource allocation building blocks for future FD MAC protocols.
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6.1 Related Work

Various challenges related to FD wireless recently attracted significant attention. These

include FD radio/system design [7, 20, 35, 59, 66, 126] as well as rate gain evaluation and

resource allocation [2, 13, 21, 32, 77, 92, 119, 120, 124]. A large body of (analytical) work

[13,119,120] focuses on perfect SIC while we focus on the more realistic model of imperfect

SIC.

Rate gains and power allocation under imperfect SIC were studied in [2,21,32,77,92,124].

For the single channel case, [2] derives a sufficient condition for FD to outperform TDD in

terms of the of sum UL and DL rates. However, [2] does not quantify the rate gains nor

consider the multi-channel case.

Power allocation for maximizing the sum of the UL and DL rates for the single- and

multi-channel cases was studied in [32,92]. The maximization only determines a single point

on the capacity region and does not imply anything about the rest of the region, which is

our focus. While [92] (implicitly) constructs the FD capacity region in the single channel

case (restated here as Proposition 6.1), it does not derive any structural properties of the

region, nor does it consider the multi-channel case or a combination of FD and TDD.

The capacity region for an FD MIMO two-way relay channel was studied in [124] as a

joint problem of beamforming and power allocation. For a fixed beamforming, the prob-

lem reduces to determining a single channel FD capacity region. Yet, the joint problem

is significantly different from the problems considered here. The FD capacity region for

multiple channels was considered in [77]. While [77] considers both fixed and general power

allocation for determining an FD capacity region, analytical results are obtained only for

the fixed power case and the non-convex problem of general power allocation was addressed

heuristically. Specifically, for the fixed power case, our proof of Lemma 6.9 is more accurate

than the proof of Theorem 3 in [77] (see Section 6.3.1).

The TDFD capacity region was studied in [70] only via simulation and in [21] analytically

but mainly for the single-channel case. The “convexification” of the FD region in [21] is

performed over a discrete set of rate pairs, which requires linear computation in the set size,

assuming that the points are sorted (e.g., Ch. 33 in [36]). Our results for a single channel

rely on the structural properties of the FD capacity region and do not require the set of FD
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Figure 6.3: Possible shapes of segments Sb and Sm: (a) concave, (b) convex, (c) concave

and then convex.

rate pairs to be discrete. Moreover, the computation for determining the convexified region

is logarithmic (see Section 6.2.2).

To the best of our knowledge, this is the first thorough study of the capacity region and

rate gains of FD and TDFD.

6.2 Single Channel

We now study the structural properties of the FD and TDFD capacity regions for a single

FD channel and devise an algorithm that determines the points at the boundary of the

TDFD capacity region. First, we provide structural results that characterize FD capacity

regions. We prove that the FD region boundary, which can be described by a function

rm(rb), can only have up to four either convex or concave pieces that can only appear in

certain specific arrangements. We also provide necessary and sufficient conditions for the

region’s boundary to take one of the possible shapes. As a corollary, we derive necessary

and sufficient conditions for the FD region to be convex as a function of γbm, γmb, γmm, and

γbb.

Based on the structural results, we present a simple and fast algorithm that can de-

termine any point at the boundary of the TDFD capacity region. For a given rate r∗b , to

find the maximum rate rm subject to rb = r∗b , the algorithm determines the shape of the

capacity region as a function of γbm, γmb, γmm, and γbb, and either directly computes rm or

performs a binary search to find it.
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6.2.1 Capacity Region Structural Results

We start by characterizing the power allocation at the boundary of an FD capacity region,

given by the following simple proposition (used implicitly in [92]). The proof appears in [97].

In the rest of the section, sb = rb(1, 1), sm = rm(1, 1).

Proposition 6.1. If rb = r∗b ≤ sb, then rm is maximized for αm = 1 and αb that solves

rb(αb, 1) = r∗b . Similarly, if rm = r∗m ≤ sm, then rb is maximized for αb = 1 and αm that

solves rm(1, αm) = r∗m.

Proposition 6.1 implies that to determine any point (rb, rm) at the boundary of the

capacity region, where rb, rm > 0, for rb ≤ sb (resp. rm ≤ sm), it suffices to find αb (resp.

αm) that satisfies rb = rb(αb, 1) (resp. rm = rm(1, αm)). The capacity region is convex, if

and only if (i) rb(rm) is concave for rm ∈ (0, sm] and rb at the boundary of the capacity

region, (ii) rm(rb) is concave for rb ∈ (0, sb] and rm at the boundary of the capacity region,

and (iii) the functions rm(rb) and rb(rm) intersect at (sb, sm) under an angle smaller than

π (see Fig. 6.5 for an illustration why (iii) is important).

If the FD capacity region is convex (Fig. 4.4(a)), then to maximize rm subject to rb = r∗b ,

it is always optimal to use FD and allocate the power levels according to Proposition 6.1.

This is not necessarily true, if the capacity region is not convex; in that case, it may be

optimal to use a time-sharing scheme between two FD rate pairs (TDFD), since a convex

combination of e.g., (sb, sm) and (rb, 0) may lie above the FD capacity region boundary

(e.g., Fig. 4.4(b)).

The following lemma characterizes the FD capacity region boundary. The lemma states

that each of the segments Sb (corresponding to rm(rb) at the boundary of the FD capacity

region for rb ∈ [0, sb]) and Sm (corresponding to rb(rm) at the boundary of the FD capacity

region for rm ∈ [0, sm]) can only take one of the three possible shapes illustrated in Fig. 6.3.

Lemma 6.2. Given positive γmb, γbm, γbb, γmm, let rm(rb) describe the boundary of the FD

capacity region for rb ∈ [0, sb], and rb(rm) describe the boundary of the FD capacity region

for rm ∈ [0, sm]. Then rm(rb) (rb ∈ [0, sb]) and rb(rm) (rm ∈ [0, sm]) can only be described

by one of the following three function types: (i) concave, (ii) convex, and (iii) concave for

rb ∈ [0, r+
b ] for some r+

b < sb in the case of rm(rb), concave for rm ∈ [0, r+
m] for some

r+
m < sm in the case of rb(rm), and convex on the rest of the domain.
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Proof. From Prop. 6.1, segment Sb is described by rm(rb), where rb ≤ sb, αb ∈ [0, 1], and:

rb = log
(

1 +
αbγbm

1 + γmm

)
, rm = log

(
1 +

γmb
1 + αbγbb

)
. (6.1)

Similarly, segment Sm is described by rb(rm), where rm ≤ sm, αm ∈ [0, 1], and:

rb = log
(

1 +
γbm

1 + αmγmm

)
, rm = log

(
1 +

αmγmb
1 + γbb

)
. (6.2)

We prove the lemma only for segment Sb, while the proof for segment Sm follows by sym-

metry.

Since, from (6.1), rm(rb) is a continuous and twice differentiable function for rb ∈ [0, sb]

(equivalently, αb ∈ [0, 1]), rm(rb) is concave for rb ∈ [0, sb] if and only if d2rm
drb2

≤ 0. Observe

that we can write:
drm
drb

=
drm
dαb
· dαb
drb

(6.3)

and
d2rm
drb2

=
d2rm
dαb2

·
(
dαb
drb

)2

+
drm
dαb
· d

2αb
drb2

. (6.4)

From the left equality in (6.1):

αb = (2rb − 1) · 1 + γmm
γbm

,

dαb
drb

= ln(2) · 2rb · 1 + γmm
γbm

, and (6.5)

d2αb
drb2

= ln2(2) · 2rb · 1 + γmm
γbm

. (6.6)
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From the right equality in (6.1):

drm
dαb

= − γbb
ln(2)

·
( 1

1 + αbγbb
− 1

1 + αbγbb + γmb

)
, (6.7)

d2rm
dαb2

=
(γbb)

2

ln(2)
·
( 1

1 + αbγbb
− 1

1 + αbγbb + γmb

)

·
( 1

1 + αbγbb
+

1

1 + αbγbb + γmb

)
. (6.8)

Plugging (6.5)–(6.8) back into (6.4), we have that the sign of d2rm
drb2

≤ 0 is equivalent to the

sign of:

γbb

( 1

1 + αbγbb
+

1

1 + αbγbb + γmb

)2rb(1 + γmm)

γbm
− 1. (6.9)

Recalling (from (6.1)) that 2rb = 1 + αbγbm
1+γmm

and using simple algebraic transformations,

(6.9) is equivalent to:

αb
2 + αb

2(1 + γmm)

γbm
+

(2 + γmb)(1 + γmm)

γbbγbm
− 1 + γmb

(γbb)2
. (6.10)

(6.10) is a quadratic function whose smaller root is negative. If the discriminant of (6.10)

is negative or the larger root is at most 0, (6.10) is non-positive for all αb ∈ [0, 1], and

therefore rm(rb) is convex for all rb ∈ [0, sb]. If the discriminant of (6.10) is positive and

the larger root is at least 1, (6.10) is non-negative for all αb ∈ [0, 1], and therefore rm(rb)

is concave for all rb ∈ [0, sb]. Finally, if the discriminant of (6.10) is positive and the larger

root takes value α+
b < 1, rm(rb) is concave for rb ∈ [0, r+

b ] and convex for rb ∈ [r+
b , sb], where

r+
b = rb(α

+
b , 1).

The following corollary of the proof of Lemma 6.2 gives necessary and sufficient condi-

tions for rm(rb) to be concave for rb ∈ [0, sb], and, similarly, for rb(rm) to be concave for

rm ∈ [0, sm].

Corollary 6.3. For given positive γmb, γbm, γbb, and γmm, rm(rb) is concave for rb ∈ [0, sb]

if and only if:

γbm > max
{

(γmm)2 − 1, γbb(1 + γmm)
2 + γmb
1 + γmb

,

(1 + γmm)
2 + (2 + γmb)/γbb

(1 + γmb)/(γbb)2 − 1

}
. (6.11)
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Similarly, rb(rm) is concave for rm ∈ [0, sm] if and only if:

γmb > max
{

(γbb)
2 − 1, γmm(1 + γbb)

2 + γbm
1 + γbm

,

(1 + γbb)
2 + (2 + γbm)/γmm

(1 + γbm)/(γmm)2 − 1

}
. (6.12)

Proof. From the proof of Lemma 6.2, for rm(rb) to be concave in all rb ∈ [0, sb], the quadratic

function (6.10) in αb needs to be non-positive for all αb ∈ [0, 1]. It follows that the discrim-

inant of (6.10) must be positive and the larger of the roots, α+
b , must be greater than or

equal to 1 (the smaller root is negative). Finding the larger root of (6.10) gives:

α+
b =

1 + γmm
γbm

(
− 1

+

√
1 +

(γbm)2

(γbb)2
· 1 + γmb

(1 + γmm)2
− γbm
γbb
· 2 + γmb

1 + γmm

)

≥1. (6.13)

From (6.13), as α+
b > 0, it must also be:

(γbm)2

(γbb)2
· 1 + γmb

(1 + γmm)2
− γbm
γbb
· 2 + γmb

1 + γmm
> 0

⇒ γbm > γbb(1 + γmm) · 2 + γmb
1 + γmb

. (6.14)

Note that (6.14) implies that the discriminant of (6.10) is greater than 1 and therefore

positive.

Further, solving (6.13) for γbm, we get:

1 + γmm
γbm

(
− 1

+

√
1 +

(γbm)2

(γbb)2
· 1 + γmb

(1 + γmm)2
− γbm
γbb
· 2 + γmb

1 + γmm

)
≥ 1

⇔ γbm
1 + γmm

(
1 + γmb
(γbb)2

− 1

)
− 2 + γmb

γbb
− 2 ≥ 0. (6.15)

Now, for (6.15) to be possible to satisfy, as γbb, γmm, γbm, γmb are all strictly positive, it

must be:

1 + γmb
(γbb)2

− 1 > 0 ⇒ γmb > (γbb)
2 − 1. (6.16)
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Figure 6.5: Possible intersections of rm(rb) and rb(rm) at (sb, sm): (a) −
(
drb
drm

∣∣
rm=sm

)−1
=

−drm
drb

∣∣
rb=sb

, (b) −
(
. drbdrm

∣∣
rm=sm

)−1
< −drm

drb

∣∣
rb=sb

, and (c) −
(
drb
drm

∣∣
rm=sm

)−1
> −drm

drb

∣∣
rb=sb

.

Finally, solving (6.15) (given that (6.16) holds), we get:

γbm ≥ (1 + γmm)
2 + 2+γmb

γbb
1+γmb
(γbb)2 − 1

. (6.17)

Inequalities (6.14), (6.16), and (6.17) and their counterparts obtained when rb(rm) is concave

give (6.11)–(6.12) from the statement of the lemma.

Finally, we show that whenever both rm(rb) is concave for all rb ∈ [0, sb] and rb(rm) is

concave for all rm ∈ [0, sm], the FD region is convex.

Proposition 6.4. If both rm(rb) is concave for all rb ∈ [0, sb] and rb(rm) is concave for all

rm ∈ [0, sm], then the FD capacity region is convex.

Proof. Showing that the FD capacity region is convex is equivalent to showing that whenever

(6.11)–(6.12) hold, rm(rb) and rb(rm) intersect over an angle that is smaller than π at the

point (sb, sm). (That is to say, the tangents of rm(rb) and rb(rm) at (sb, sm) form an angle

that is smaller than π.)

Observe the derivative of rm(rb) with respect to rb at rb = sb (equivalently αb = 1).

From (6.3), (6.5), and (6.7):

drm
drb

∣∣∣
rb=sb

=
(drm
dαb
· dαb
drb

)∣∣∣
αb=1

= −1 + γmm + γbm
1 + γbb + γmb

· γbb
1 + γbb

· 1

γbm
.

Symmetrically:
drb
drm

∣∣∣
rm=sm

= − 1 + γbb + γmb
1 + γmm + γmb

· γmm
1 + γmm

· 1

γmb
.
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Observe that both drm
drb

∣∣
rb=sb

< 0 and drb
drm

∣∣
rm=sm

< 0. Whenever rm(rb) is concave and

rb(rm) is concave, for the capacity region to be convex it is necessary and sufficient that

(see Fig. 6.5):

(
− drb
drm

∣∣∣
rm=sm

)−1
≥ −drm

drb

∣∣∣
rb=sb

⇔ γmb ·
1 + γmm
γmm

≥ γbb
1 + γbb

· 1

γbm

⇔ γbmγmb ≥
γmmγbb

(1 + γmm)(1 + γbb)
. (6.18)

Recall (from (6.14)) that for rm(rb) to be concave, it must be:

γbm > γbb(1 + γmm)
2 + γmb
1 + γmb

> γbb(1 + γmm)

≥ γbb
1 + γmm

. (6.19)

Symmetrically:

γbm >
γmm

1 + γbb
. (6.20)

Combining (6.19) and (6.20) gives (6.18), and therefore, the capacity region is convex when-

ever rm(rb) and rb(rm) are both concave (which is equivalent to (6.11), (6.12) both being

true).

Fig. 6.4 illustrates the regions of (maximum) SNR values γbm and γmb for which the FD

capacity region is convex, for different values of γmm and γbb, compared to the maximum

achievable rate improvements. The black line delimits the region of γbm and γmb for which

the FD region is convex: north and east from it, the region is convex, while south and west

from it, the region is not convex. As Fig. 6.4 suggests, high (over 1.6×) rate improvements

are mainly achievable in the area where the FD region is convex, unless one of the SNR

values γbm and γmb is much higher than the other.

6.2.2 Determining TDFD Capacity Region

We now turn to the problem of allocating UL and DL rates, possibly through a combination

of FD and TDD, which is equivalent to determining the TDFD capacity region. As before,

the problem is to maximize rm subject to rb = r∗b and the power constraints. Denote the
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Figure 6.6: Capacity regions for γbb = 0dB, γmm ∈ {0, 5, 10}dB, and (a)–(c) γbm = γmb and

(d)–(f) γbm > γmb.

maximum rm such that rb = r∗b as r∗m. We start by providing two technical propositions

that will determine “allowed” arrangements in which the three possible shapes of Sb and

Sm can appear.

Proposition 6.5. If (sb, sm) maximizes the sum of UL and DL rates, then (sb, sm) ≥
λ(r′b, r

′
m) + (1 − λ)(r′′b , r

′′
m) element-wise for any λ ∈ [0, 1], and any two feasible rate pairs

(r′b, r
′
m) and (r′′b , r

′′
m).

Proof. Suppose that for some λ ∈ [0, 1] and some pairs of feasible rates (r′b, r
′
m) and (r′′b , r

′′
m):

(sb, sm) < λ(r′b, r
′
m) + (1− λ)(r′′b , r

′′
m). Then either (r′b, r

′
m) > (sb, sm) or (r′′b , r

′′
m) > (sb, sm),

and therefore r′b + r′m > sb + sm or r′′b + r′′m > sb + sm, which is a contradiction, as sb + sm

maximizes the sum of the (UL and DL) rates.

Proposition 6.5 implies that if (sb, sm) maximizes the sum of uplink and downlink rates,

it must dominate any convex combination of other points from the capacity region.

Proposition 6.6. If sb+sm < rm, then rm(rb) is convex on the entire segment from (0, rm)

to (sb, sm). Similarly, if sb + sm < rb, then rb(rm) is convex on the entire segment from

(sb, sm) to (rb, 0).
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The proof can be found in [97].

From Lemma 6.2 and Propositions 6.5 and 6.6, only the following cases can happen:

Case 1: (sb, sm) maximizes the sum of the (UL and DL) rates. Then, using Proposition

6.5: (i) if Sb is convex, then (r∗b , r
∗
m) is on the boundary of TDFD (but not FD) capacity

region and can be found as a convex combination of (0, rm) and (sb, sm), (ii) if Sb is concave,

(r∗b , r
∗
m) is on the boundary of FD capacity region and can be found using Proposition 6.1,

and (iii) if Sb is part-concave-part-convex, then (r∗b , r
∗
m) may be either on the boundary of

FD region or TDFD region.

Case 2: (sb, sm) does not maximize the sum of the (UL and DL) rates. Suppose w.l.o.g.

that (rb, 0) maximizes the sum rate. Then, from Proposition 6.6, Sm is convex and we have

the following cases: (i) if Sb is convex, then (r∗b , r
∗
m) is either on the boundary of TDD region

or on the line connecting (0, rm) and (sb, sm), (ii) if Sb is concave, then (r∗b , r
∗
m) is either on

the boundary of FD capacity region or on the line that contains (rb, 0) and is tangent to

Sb, and (iii) if Sb is part-concave-part-convex, then (r∗b , r
∗
m) may lie either on the boundary

of FD or TDFD capacity region.

As illustrated in Cases 1 and 2, we can often determine (r∗b , r
∗
m) in constant time, if

this point is guaranteed to be either on the boundary of FD capacity region, or if we know

exactly which two points produce (r∗b , r
∗
m) on the boundary of TDFD capacity region as

their convex combination. However, there are also cases (Cases 1(iii), 2(ii), and 2(iii)) when

it is not immediately clear how to determine (r∗b , r
∗
m). In the following lemma, we show that

in such cases we can “convexify” the FD capacity region (i.e., determine TDFD capacity

region) efficiently. Note that the convexification needs to be performed only once; after

that, rm(rb) (and rb(rm)) can be represented in a black-box manner, requiring constant

computation to determine any rate pair (r∗b , r
∗
m), given either r∗b or r∗m.

Lemma 6.7. The boundary of the TDFD capacity region can be determined in time O(log(ε−1rb)),

where ε is the additive error of r∗m = max{rm : rb = r∗b}, and the binary search, if employed,

takes at most dlog(ε−1 · 1.4rb)e steps.

Proof. Note that the time to determine r∗m on the boundary of TDFD capacity region may

not be constant only in Cases 1(iii), 2(ii), and 2(iii). We start with the Case 1(iii).

Using Proposition 6.5 and simple geometric arguments, it follows that in the “convexi-
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Figure 6.7: Two possible scenarios for Case 2(iii).

fied” capacity region there exists r′b ≤ r+
b such that the boundary of the region is equal to

rm(rb) for rb ∈ [0, r′b] joined with a line segment from a point (r′b, rm(r′b)) to (sb, sm), where

the line through points (r′b, rm(r′b)) and (sb, sm) is tangent to rm(rb) at point (r′b, rm(r′b))

(see Fig. 6.7(a)). Since the tangent from (sb, sm) onto rm(rb) must touch rm(rb) at a

point (r′b, rm(r′b)) where rm(rb) is concave, it follows that we can find r′b by performing a

binary search over rb ∈ [0, r+
b ], since every concave function has a monotonically decreasing

derivative. It follows that r∗m = rm(r∗b ) if r∗b ≤ r′b, and r∗m = rm(r′b) + drm
drb

∣∣
rb=r

′
b
(r∗b − r′b).

Consider now Case 2(iii), and recall that in this case sb + sm < rb. Using the same

approach as described above, we can determine a point r′b ≤ r+
b such that the line through

(r′b, rm(r′b)) and (sb, sm) is tangent to rm(rb). However, this approach may not always lead

to the convexified region.

Consider the scenario illustrated in Fig. 6.7(b). From Proposition 6.6, rb(rm) for rm ∈
[0, sm] must be convex, and therefore there exists an r′′b ≤ r+

b such that the boundary

of the convexified capacity region is determined by rm(rb) for rb ∈ [0, r′′b ] and by a line

through (r′′b , rm(r′′b )) and (sb, sm) for rb ∈ [r′′b , sb], where the line through (r′′b , rm(r′′b )) and

(sb, sm) is tangent onto rm(rb) at point rb = r′′b . Since r′′b must belong to the segment where

rm(rb) is concave, it follows that r′′b can be found through a binary search over rb ∈ [0, r+
b ].

To determine which one of the two tangents delimits the convexified capacity region, it is

sufficient to compare rm(r′b)+ drm
drb

∣∣∣
rb=r

′
b

(sb−r′b) and rm(r′′b )+ drm
drb

∣∣∣
rb=r

′′
b

(sb−r′′b ) and choose

the one with the maximum value.

The proofs for Case 2(ii) and scenarios when (0, rm) maximizes the sum rate are similar

and are omitted for brevity.

Finally, we show that the binary search can be implemented with low running time.
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To do so, we first bound the change in the derivative drm
drb

on the segment where rm(rb) is

concave.

Proposition 6.8. For all rb ∈ [0, sb] such that rm(rb) is concave:
∣∣d2rm
dr2
b

∣∣ < 1.4.

Proof. Fix any rb such that rm(rb) is concave, and let αb be such that rb = rb(αb, 1). The

proof of Lemma 6.2 implies that (using Eq.’s (6.4)–(6.9)):

∣∣∣d
2rm
dr2
b

∣∣∣ ≤ γbb
ln(2)

( 1

1 + αbγbb
− 1

1 + αbγbb + γmb

)

· ln2(2) · 2rb 1 + γmm
γbm

= ln(2)γbb ·
γmb

(1 + αbγbb)(1 + αbγbb + γmb)

·
(
αb +

1 + γmm
γbm

)

< ln(2)
γbb

1 + αbγbb

(
αb +

1 + γmm
γbm

)

= ln(2)
( αbγbb

1 + αbγbb
+
γbb(1 + γmm)

γbm
· 1

1 + αbγbb

)

≤2 ln(2) < 1.4,

where we have used: γmb
1+αbγbb+γmb

≤ γmb
1+γmb

< 1, αbγbb
1+αbγbb

< 1, 1
1+αbγbb

≤ 1, and γbb(1+γmm)
γbm

< 1

(from a necessary condition (6.9) for rm(rb) to be concave in any rb ∈ [0, sb] in the proof of

Lemma 6.2).

For r′b or r′′b to be determined with an absolute error ε, it takes at most dlog(ε−1)e
binary search steps. In terms of r∗m, the error is then less than 1.4εrb, and to find r∗m with

an absolute error ε, the binary search should perform at most dlog(ε−1 · 1.4rb)e steps.

To put the number of binary search steps in perspective, the highest SNR typically

measured in Wi-Fi and cellular networks is about 50dB (105). 50dB SNR maps to rb ≈ 16.61

b/s/Hz, leading to at most d4.53 + log(ε−1)e binary search steps. As each step requires

constant computation, the computation time for determining the TDFD region is very low.

Using the methods mentioned above, FD and TDFD capacity regions were obtained for

different combinations of γbm, γmb, γmm, and γbb (Fig. 6.6). As expected, as γmm increases

and γmb and γbm decrease, the rate improvements decrease and more FD regions become

non-convex.
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6.3 Multi-Channel – Fixed Power

In this section, we consider the problem of determining FD and TDFD capacity regions

over multiple channels when the (shape of) the power allocation is fixed, but the total

transmission power level can be varied. We first provide characterization of the FD capacity

region, which allows computing any point on the FD capacity region via a binary search.

Then, we turn to the problem of determining the TDFD capacity region. Due to the lack of

structure as in the single channel case, in the multi-channel case the TDFD capacity region

cannot in general be determined by a binary search. We argue, however, that for inputs

that are relevant in practice this problem can be solved in real time.

6.3.1 Capacity Region

Suppose that we want to determine the FD capacity region, given a fixed power allocation

over K orthogonal channels: αb,1 = αb,2 = ... = αb,K ≡ αb and αm,1 = αm,2 = ... = αm,K ≡
αm. Note that setting the power allocation so that all αb,k’s and all αm,k’s are equal is

without loss of generality, since we can represent an arbitrary fixed power allocation in this

manner by appropriately scaling the values of γbm, γmb, γmm, and γbb (see Eq.’s (6.21) and

(6.22) below). The sum of the UL and DL rates over the (orthogonal) channels can then

be written as r = rb + rm, where:

rb =
K∑

k=1

log
(

1 +
αbγbm,k

1 + αmγmm,k

)
, and (6.21)

rm =
K∑

k=1

log
(

1 +
αmγmb,k

1 + αbγbb,k

)
. (6.22)

Let sb = rb(αb = 1
K , αm = 1

K ), sm = rm(αb = 1
K , αm = 1

K ). We characterize the FD region

in the following lemma.

Lemma 6.9. For a fixed rb = r∗b ≤ sb, rm is maximized for αm = 1/K. Similarly, for a

fixed rm = r∗m ≤ sm, rb is maximized for αb = 1/K.

Proof. We will only prove the first part of the lemma, while the second part will follow

using symmetric arguments.
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Since rm is being maximized for a fixed rb = r∗b ≤ sb, we can think think of maximizing

rm by only varying αm, while αb changes as a function of αm to keep rb = r∗b as αm is

varied. Observe that for a fixed αm ∈ [0, 1/K], αb such that rb = r∗b is uniquely defined

since rb is monotonic in αb. Because r∗b ≤ sb and rb is decreasing in αm, a solution for

αb such that rb = r∗b exists for any αm ∈ [0, 1/K]. It is not hard to see that αb(αm) that

keeps rb = r∗b is a continuous and differentiable function. This follows from basic calculus,

as αb(αm) is an inverse function of rb, rb is continuous and strictly increasing in αb, with

∂rb
∂αb
6= 0, ∀(αb, αm) ∈ [0, 1]2. Therefore, we can write:

drm(αm)

dαm
=
∂rm(αb, αm)

∂αm
+
∂rm(αb, αm)

∂αb
· dαb
dαm

. (6.23)

From (6.22), we have:

∂rm(αb, αm)

∂αm
=

K∑

k=1

γmb,k
1 + αmγmb,k + αbγbb,k

, (6.24)

∂rm(αb, αm)

∂αb
= −

K∑

k=1

γbb,k
1+αbγbb,k

· αmγmb,k
1 + αmγmb,k + αbγbb,k

. (6.25)

To find dαb
dαm

, we will differentiate rb = r∗b (= const.) w.r.t. αm, using (6.21):

K∑

k=1

γmm,k + γbm,k · dαbdαm

1 + αbγbm,k + αmγmm,k
−

K∑

k=1

γmm,k
1 + αmγmm,k

= 0

⇔ dαb
dαm

=

(
K∑

k=1

γbm,k
1 + αbγbm,k + αmγmm,k

)−1

·
K∑

k=1

γmm,k
1+αmγmm,k

· αbγbm,k
1 + αbγbm,k + αmγmm,k

(6.26)

≤αb · max
1≤j≤K

γmm,j
1 + αmγmm,j

. (6.27)

Plugging (6.24), (6.25), and (6.27) back into (6.23), we have:

drm(αm)

dαm
≥

K∑

k=1

γmb,k
1 + αmγmb,k + αbγbb,k

−
K∑

k=1

γbb,k
1+αbγbb,k

· αmγmb,k
1 + αmγmb,k + αbγbb,k

· max
1≤j≤K

αbγmm,j
1 + αmγmm,j
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=
K∑

k=1

γmb,k
1 + αmγmb,k + αbγbb,k

− max
1≤j≤K

αmγmm,j
1 + αmγmm,j

·
K∑

k=1

αbγbb,k
1+αbγbb,k

· γmb,k
1 + αmγmb,k + αbγbb,k

> 0,

where the last inequality follows from
αmγmm,j

1+αmγmm,j
< 1 and

αbγbb,k
1+αbγbb,k

< 1, ∀j, k. It follows

that rm is strictly increasing in αm, and, therefore, maximized for αm = 1/K.

We now point out the difference between the proof of Lemma 6.9 and the proof of

Theorem 3 in [77]. The proof of Theorem 3 in [77] uses similar arguments as the proof of

Lemma 6.9 up to Eq. (6.23). However, the proof then concludes with the statement that

∂rm
∂αb

< 0 and dαb
dαm

< 0, which is not correct, as we see from (6.26) that dαb
dαm

> 0.2

Using Lemma 6.9, we can construct the entire FD capacity region by solving (i) rb = r∗b

for αb, when αm = 1/K and r∗b ∈ [0, sb], and (ii) rb = r∗b for αm, when αb = 1/K and

r∗b ∈ (sb, rb]. Note that rb = r∗b can be solved for αb when rb ∈ [0, sb] (resp. for αm) by

using a binary search, since rb is monotonic and bounded in αb for rb ∈ [0, sb] (resp. αm for

rb ∈ (sb, rb]). The pseudocode is provided in Algorithm 8 (MCFind-rm). The bound on

the running time is provided in Proposition 6.10.

Algorithm 8 MCFind-rm(r∗b ,K)

Input: γmb, γbm, γmm, γbb

1: sb =
∑K
k=1 log(1 + 1+γbm/K

1+γmm/K
)

2: if r∗b ≤ sb then

3: Via binary search, find αb s.t. rb(αb, 1/K) = r∗b

4: r∗m =
∑K
k=1 log(1 + 1+γmb/K

1+αbγbb
)

5: else

6: Via binary search, find αm s.t. rb(1/K,αm) = r∗b

7: r∗m =
∑K
k=1 log(1 + 1+αmγmb

1+γbb/K
)

return r∗m

Proposition 6.10. The running time of MCFind-rm is O(K log(
∑

k
γbb,k
Kε )), where ε is

the additive error for r∗m.

2In a private communication, the authors of [77] confirmed that our observation was correct and prepared

an erratum.
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Figure 6.8: Capacity regions for γbb,k from Fig. 6.2(a), and γmm,k from (a), (d) Fig. 6.2(b),

(b), (e) Fig. 6.2(c), and (c), (f) Fig. 6.2(d).
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Figure 6.9: Rate improvements corresponding to capacity regions from (a) Fig. 6.8(a), (b)

Fig. 6.8(c),(c) Fig. 6.8(d), and (d) Fig. 6.8(f).

Proof. To determine αb with the accuracy εα, the binary search takes dlog(εα
−1/K)e steps,

as αb ∈ [0, 1/K]. From (6.25), we can bound |drmdαb | as:

∣∣∣drm
dαb

∣∣∣ ≤
∑

k

γbb,k
1 + αbγbb,k

≤
∑

k

γbb,k,

as
αmγmb,k

1+αmγmb,k+αbγbb,k
≤ 1, and 1 + αbγbb,k ≥ 1, ∀k. Therefore, to find rm with the accuracy

ε, it suffices to take ε = εα∑
k γbb,k

. As each binary search step takes O(K) computation (due

to the computation of rb(αb, 1/K)), we get the claimed running time bound.

Notice that in practice γbb,k/K ≤ 1, γmm,k/K ≤ 100, and K is at the order of 100,
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which makes the running time of MCFind-rm suitable for a real-time implementation.

Unlike in the single channel case, where the shape of the FD region boundary is very

structured, in the multi-channel case the region does not necessarily have the property that

rm(rb) (and rb(rm)) has at most one concave and one convex piece. To see why this holds,

consider the following proposition.

Proposition 6.11. If rb ∈ [0, sb], then d2rm
drb2

=
(
drb
dαb

)−3 d2rm
dαb2

· drbdαb
− drm

dαb
· d2rb
dαb2

.

Proof. Fix αm = 1/K. As both rb(αb) and drb
dαb

are increasing and differentiable w.r.t. αb

and drb
dαb
6= 0, d2rb

dαb2
6= 0, ∀αb ∈ [0, 1/K], it follows that αb(rb) is continuous and twice-

differentiable w.r.t. rb. Therefore, we can write:

d2rm
drb2

=
d2rm
dαb2

·
(
dαb
drb

)2

+
drm
dαb
· d

2αb
drb2

. (6.28)

From (6.22), we can determine drm
dαb

and d2rm
dαb2

:

drm
dαb

=
K∑

k=1

( γbb,k
1 + αbγbb,k + γmb,k/K

− γbb,k
1 + αbγbb,k

)
,

d2rm
dαb2

=

K∑

k=1

(( γbb,k
1 + αbγbb,k

)2
−
( γbb,k

1 + αbγbb,k + γmb,k/K

)2
)
.

To find dαb
drb

and d2αb
drb2

, we differentiate (6.21) w.r.t. rb to get:

dαb
drb

=
( drb
dαb

)−1
, (6.29)

d2αb
drb2

= −
(
drb
dαb

)−3

· d
2rb
dαb2

. (6.30)

Plugging (6.29) and (6.30) back into (6.28), we have:

d2rm
drb2

=

(
drb
dαb

)−3(d2rm
dαb2

· drb
dαb
− drm
dαb
· d

2rb
dαb2

)
.

From Proposition 6.11, as
(
drb
dαb

)−3
> 0, the sign of d2rm

drb2
is determined by the sign of

d2rm
dαb2

· drbdαb
− drm

dαb
· d2rb
dαb2

, which can be equivalently written as a rational function of αb with

linear-in-K degree of the polynomial in its numerator. Therefore, the number of roots of
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d2rm
drb2

can be linear in K, and so rm can have up to linear in K concave and convex pieces.

When K = 1, d2rm
dαb2

· drbdαb
− drm

dαb
· d2rb
dαb2

can be factored as:

γbm
1 + αbγbm + γmm

·
( γbb

1 + αbγbb + γmb
− γbb

1 + αbγbb

)

·
( γbb

1 + αbγbb + γmb
+

γbb
1 + αbγbb

− γbm
1 + αbγbm + γmm

)
.

Simplifying the rational expressions in
(

γbb
1+αbγbb+γmb

+ γbb
1+αbγbb

− γbm
1+αbγbm+γmm

)
, we can

recover the same quadratic function in the numerator as we had in (6.10) and yield the same

conclusions as in Lemma 6.2, since γbm
1+αbγbm+γmm

·
(

γbb
1+αbγbb+γmb

− γbb
1+αbγbb

)
> 0. However,

there does not seem to be a direct extension of this result to the K > 1 case.

Although in general the problem of convexifying the FD region seems difficult in the

multi-channel case, in practice it can be solved efficiently. The reason is that in Wi-Fi and

cellular networks the output power levels take values from a discrete set of size N , where

N < 100. Therefore, (for fixed γmb,k, γbm,k, γbb,k, γmm,k, ∀k) rb can take at most N distinct

values. To find the TDFD capacity region, since the points of the FD region are determined

in order increasing in rb, Θ(N) computation suffices (Ch. 33, [36]).

The capacity regions and the rate improvements for γbb,k described by Fig. 6.2(a) and

the three cases of γmm,k described by Fig. 6.2(b)–(d), for equal power allocation and equal

SNR over channels, are shown in Figs. 6.8 and 6.9, respectively. As the cancellation becomes

more broadband, namely as γmm,k’s change from those described in Fig. 6.2(b) over 6.2(c)

to 6.2(d), the rate improvements become higher and the capacity region becomes convex

for lower values of γmb and γbm.

6.4 Multi-Channel – General Power

We now consider the computation of TDFD capacity regions under general power alloca-

tions. In this case there are 2K variables (αb,1, ..., αb,K , αm,1, ..., αm,K), compared to 2

variables (αb and αm) from the previous section.

Computing r∗m = max{rm : rb = r∗b} is a non-convex problem, and is hard to optimize

in general. Yet, we present an algorithm that is guaranteed to converge to a stationary
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point, under certain restrictions. In practice, the stationary point to which it converges is

also a global maximum. The restrictions are based on [92] and they guarantee that rb + rm

is concave when either the αb,k’s or αm,k’s are fixed. Note that the restrictions do not make

the problem r∗m = max{rm : rb = r∗b} convex (see Section 6.4.1). The restrictions are mild

in the sense that they do not affect the optimum by much whenever γbm,k and γmb,k do not

differ much.

Though for many practical cases the algorithm is near-optimal and runs in polynomial

time, its running time in general is not suitable for a real-time implementation. To combat

the high running time, in Section 6.4.2 we develop a simple heuristic that in most cases has

similar performance.

6.4.1 Capacity Region

Determining the FD region under a general power allocation is equivalent to solving {max rm :

rb = r∗b} for any r∗b ∈ [0, rb] over αb,k, αm,k ≥ 0,
∑

k αb,k ≤ 1,
∑

k αm,k ≤ 1. It is not hard to

show that drm
drb

< 0, and, therefore, the problem is equivalent to (P ) = {max rm : rb ≥ r∗b}.
Problem (P ) is not convex, even when some of the variables are fixed. When the αm,k’s

are fixed, rb is concave in αb,k’s and the feasible region is convex, however, rm is convex as

well. Conversely, when the αb,k’s are fixed, rm is concave in αm,k’s, but the feasible region

is not convex since rb is convex in αm,k’s. Therefore, the natural approach to determining

the FD region fails.

On the other hand, [92] provides conditions that guarantee that ∀k, r = rb + rm is (i)

concave and increasing in αm,k when αb,k is fixed, and (ii) concave and increasing in αb,k

when αm,k is fixed. These conditions are not very restrictive: when they cannot be satisfied,

one cannot gain much from FD additively – the additive gain is less than 1b/s/Hz compared

to the maximum of the UL and DL rates. However, these conditions can be very restrictive

when the difference between rb and rm is high. The conditions are:

γbm,k ≥ γbb,k(1 + αm,kγmm,k), ∀k (C1)

γmb,k ≥ γmm,k(1 + αb,kγbb,k), ∀k. (C2)

Notice that when γbm,k ≥ γbb,k(1 + γmm,k) and γmb,k ≥ γmm,k(1 + γbb,k), conditions (C1)
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and (C2) are non-restrictive (as they hold for any αb,k ≤ 1, αmk ≤ 1). When γbm,k < γbb,k,

(C1) cannot be satisfied for any αm,k as αm,k ≥ 0. Similarly for γmb,k < γmm,k, (C2) cannot

hold for any αb,k.

We will use conditions (C1) and (C2) to formulate a new problem that is still non-convex,

but more tractable than the original problem (P ). This way, we will get an upper bound

on the capacity region and rate improvements when the conditions are non-restrictive. The

new problem will also allow us to make a good estimate of the capacity region in the cases

when γbm,k and γmb,k do not differ much.

Let (sb, sm) denote the UL-DL rate pair that maximizes the sum of the rates over UL

and DL channels.

Lemma 6.12. If conditions (C1) and (C2) are non-restrictive, then, given γbm,k, γmb,k, γmm,k, γbb,k

for k ∈ {1, ...,K}, the TDFD capacity region can be determined by solving:

(Q) =





max
∑K

k=1(rb,k(αb,k, αm,k) + rm,k(αb,k, αm,k))

s.t.
∑K

k=1 rb,k(αb,k, αm,k) op r∗b
∑K

k=1 αb,k ≤ 1,
∑K

k=1 αm,k ≤ 1

αb,k ≥ 0, αm,k ≥ 0,∀k

,

where op =′≤′, if r∗b ≤ sb and op =′≥′, if r∗b ≥ sb.

Proof. First, observe that if we had op =′=′, then (Q) would be equivalent to (P ). There-

fore, if an optimal solution to (Q) satisfies rb = r∗b , then it also optimally solves (P ).

Suppose that r∗b ≤ sb and that an optimal solution (rQb , r
Q
m) to (Q) satisfies rQb < r∗b . Let

(rPb , r
P
m), where rPb = r∗b , be the optimal solution to (P ). Observe that rPb + rPm ≤ rQb + rQm,

and, as rQb < r∗b = rPb , it also holds that rQm > rPm. Let λ ∈ (0, 1) be the solution to

r∗b = λrQb + (1−λ)sb (such a λ exists and is unique as rb < sb). Then, as sb + sm ≥ rPb + rPm

and rQb + rQm ≥ rPb + rPm, we have:

λ(rQb + rQm) + (1− λ)(sb + sm) = rPb + λrQm + (1− λ)sm

≥ rPb + rPm,

and we have λrQm + (1−λ)sm ≥ rPm. Therefore, we can get a point (r∗b , rm) with rm ≥ rPm as

a convex combination of the points that optimally solve both (P ) and (Q). In other words,
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the convex hull of the points determined by (Q) is the TDFD capacity region. To find the

the convex hull of the points determined by (Q), we can employ an algorithm for finding a

convex hull of given points from e.g., [36].

A similar argument follows for r∗b > sb.

When conditions (C1) and (C2) are restrictive, they provide upper bounds on αb,k

and αm,k and they do not affect the optimal solution to (Q) unless γbm,k >> γmb,k or

γmb,k >> γbm,k for some k. To avoid infeasibility when restricting the feasible region of (Q)

by requiring (C1) and (C2), similar to [92], we will set either αb,k = 0 or αm,k = 0.3

We write the restrictions imposed by (C1) and (C2) on the feasible region of (Q) as

follows, where αb,k ≤ Ab(k) and αm,k ≤ Am(k), ∀k. Notice that the restrictions are fixed

for fixed γbm,k, γmb,k, γmm,k, γbb,k, and r∗b . We refer to the restricted version of problem (Q)

as (QR).

Let Ab and Am be size-K arrays

for k = 1 to K do

Ab(k) =
γmb,k/γmm,k−1

γbb,k
, Am(k) =

γbm,k/γbb,k−1
γmm,k

if r∗b ≤ sb then

if Ab(k) ≤ 0 then Ab(k) = 0, Am(k) = 1

if Am(k) ≤ 0 then Am(k) = 0, Ab(k) = 1

else

if Am(k) ≤ 0 then Am(k) = 0, Ab(k) = 1

if Ab(k) ≤ 0 then Ab(k) = 0, Am(k) = 1

To solve (QR), we will use a well-known practical method called alternating minimization

(or maximization, as in our case) [105]. For a given problem (Pi), the method partitions the

variable set x into two sets x1 and x2, and then iteratively applies the following procedure:

(i) optimize (Pi) over x1 by treating the variables from x2 as constants, (ii) optimize (Pi)

over x2 by treating the variables from x1 as constants, until a stopping criterion is reached.

Even in the cases when (Pi) is non-convex, if subproblems from (i) and (ii) have unique

3Recall that when αb,k = 0, the sum of the rates is concave in αm,k for any αm,k ∈ [0, 1]. Similarly when

αm,k = 0.
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solutions and are solved optimally in each iteration, the method converges to a stationary

point with rate O(1/
√
n), where n is the iteration count [15]. In the cases when, in addition,

for each of the subproblems the objective is convex (concave for maximization problems),

for each stationary point there exists an initial point such that the alternating minimization

converges to that stationary point [52]. A common approach that works well in practice

is to generate many random initial points and choose the best solution found. In our

experiments, choosing αb,k = αm,k = 0 as the initial point typically led to the best solution.

Due to the added restrictions in problem (QR) imposed by (C1) and (C2), the objective

in (QR) is concave whenever either all αb,k’s or all αm,k’s are fixed, while the remaining

variables are varied. Hence, our two subproblems for QR will be: (i) (QR,b), which is

equivalent to (QR) except that it treats αb,k’s as variables and αm,k’s as constants, and (ii)

(QR,m), which is equivalent to (QR) except that it treats αm,k’s as variables and αb,k’s as

constants. Given accuracy ε, the pseudocode is provided in Algorithm 9 (AltMax). The

rate pair (sb, sm) can be determined using the same algorithm by omitting the constraint

rb ≤ r∗b (or rb ≥ r∗b ).

Algorithm 9 AltMax((QR), ε)

1: Let {α0
b,k}, {α0

m,k} be a feasible solution to (QR), n = 0

2: repeat

3: n = n+ 1

4: {αnb,k} = arg max{(QR,b) : {αnm,k} = {{αn−1
m,k }}

5: {αnm,k} = arg max{(QR,m) : {αnb,k} = {αn−1
b,k }}

6: until maxk{|αnb,k − αn−1
b,k |+ |αnm,k − αn−1

m,k |} < ε

What remains to show is that both (QR,b) and (QR,m) have unique solutions that can

be found in polynomial time. We do that in the following (constructive) lemma. Note that

without the constraint r∗b ≤ sb or r∗b ≥ sb, both (QR,b) and (QR,m) are convex and have

strictly concave objectives, and therefore, we can determine sb using AltMax.

Lemma 6.13. Starting with a feasible solution {α0
b,k, α

0
m,k} to (QR), in each iteration of

AltMax the solutions to (QR,b) and (QR,m) are unique and can be found in polynomial

time.
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Proof. Suppose that r∗b ≤ sb. Then it is not hard to verify that (QR,m) is a convex problem

with a strictly concave objective. The objective is strictly concave due to the enforcement

of conditions (C1) and (C2), while all the constraints except for rb ≤ r∗b are linear. The

constraint rb ≤ r∗b is convex as rb is convex in αm,k’s. Therefore, (QR,m) admits a unique

solution that can be found in polynomial time through convex programming. By similar

arguments, when r∗b > sb, (QR,b) admits a unique solution that can be found in polynomial

time through convex programming.

Consider (QR,b) when r∗b ≤ sb. This problem is not convex due to the constraint rb ≤ r∗b ,
as rb is concave in αb,k’s. However, we will show that the problem has enough structure so

that it is solvable in polynomial time.

Let k∗ = arg maxk
{ γbm,k

1+αm,kγmm,k
− γbb,k +

γbb,k
1+αm,kγmb,k

}
(= arg maxk

{
dr

dαb,k

∣∣
αb,k=0

}
). Re-

call that, due to conditions (C1) and (C2), we have that d2r
dαb,k2 < 0, and therefore dr

dαb,k
is

monotonically decreasing, ∀k. It follows that for any αb,k∗ ∈ [0, 1] and any k ∈ {1, ...,K},
either there exists a (unique) αb,k ∈ [0, 1] such that dr

dαb,k
= dr

dαb,k∗
, or dr

dαb,k
< dr

dαb,k∗
,

∀αb,k ∈ [0, 1].

Consider Algorithm 10 (SolveSubproblemb) and let {α∗b,k} be the solution returned

by the algorithm. Note that the binary search for finding α∗b,k∗ and for determining α∗b,k’s

in SolveSubproblemb is correct from the choice of k∗ and because dr
dαb,k

is monotonically

decreasing, ∀k.

Algorithm 10 SolveSubproblemb

1: k∗ = arg maxk
{ γbm,k

1+αm,kγmm,k
− γbb,k +

γbb,k
1+αm,kγmb,k

}

2: For αb,k∗ ∈ [0, 1], via binary search, find the maximum αb,k∗ such that rb ≤ r∗b and
∑
k αb,k ≤ 1,

where:

3: if dr
dαb,k

∣∣
αb,k=0

< dr
dαb,k∗

then αb,k = 0

4: else

5: Via binary search over αb,k ∈ [0, 1], find αb,k such that dr
dαb,k

= dr
dαb,k∗

We first show that {α∗b,k} is a local maximum for (Qb). Because of the algorithm’s

termination conditions, it must be either
∑

k α
∗
b,k = 1 or rb = r∗b . If

∑
k α
∗
b,k = 1, then to

move to any alternative solution, the total change must be
∑

k ∆αb,k ≤ 0, or, equivalently

∆αb,k∗ ≤ −
∑

k 6=k∗ ∆αb,k. As dr
dαb,k

≤ dr
dαb,k∗

, it follows that
∑

k
dr

dαb,k
∆αb,k ≤ 0, which is the



CHAPTER 6. CAPACITY REGIONS OF FULL-DUPLEX LINKS 180

first-order optimality condition. Now suppose that rb = r∗b . Since dr
dαb,k

= drb
dαb,k

+ drm
dαb,k

> 0

and drb
dαb,k

> 0, drm
dαb,k

< 0, to keep the solution feasible (i.e., to keep rb ≤ r∗b ), we must

have
∑

k
drb,k
dαb,k

∆αb,k ≤ 0, which implies
∑

k
dr

dαb,k
∆αb,k ≤ 0. Therefore, {α∗b,k} computed by

SolveSubproblemb is a local optimum.

In fact, for any local optimum: dr
dαb,k

≤ dr
dαb,k∗

, otherwise we can construct a better

solution. Suppose that dr
dαb,j

> dr
dαb,k∗

for some j. Then if drb
dαb,j

≤ drb
dαb,k∗

, we can choose a

sufficiently small ∆ > 0, so that the solution {α′b,k} with α′b,j = αb,j + ∆, α′b,k∗ = αb,k∗ −∆,

and α′b,k = αb,k for k /∈ {j, k∗} is feasible. For such a solution
∑

k
dr

dαb,k
(α′b,k−αb,k) > 0, and

therefore, it is not a local optimum. Conversely, if drb
dαb,j

> drb
dαb,k∗

, we can choose sufficiently

small ∆1,∆2 > 0 such that ∆2 > ∆1 and dr
dαb,j

∆1 >
dr

dαb,k∗
∆2. Then, we can construct an

{α′b,k} with α′b,j = αb,j + ∆1, α′b,k∗ = αb,k∗ − ∆2, and α′b,k = αb,k for k /∈ {j, k∗} that is

feasible. Again, we have
∑

k
dr

dαb,k
(α′b,k − αb,k) > 0, and {αb,k} cannot be a local maximum.

Finally, since {α∗b,k} returned by SolveSubproblemb satisfies α∗b,k ≥ α′b,k for any other

local maximum {α′b,k} and the objective is strictly increasing in all αb,k’s, {α∗b,k} must be

a global maximum. From the strict monotonicity of dr
dαb,k

, this maximum is unique. The

proof for (QR,m) when r∗b ≥ sb uses similar arguments and is omitted.

6.4.2 A Simple Power Allocation Heuristic

Even though the algorithm described in the previous section will lead to the optimal or a

near-optimal TDFD capacity region in many cases of interest, it may not be suitable for a

real-time implementation. This motivates us to develop a simple heuristic that performs well

in most cases and is based on the observations we made while implementing the algorithms

described in previous sections.

The intuition for the heuristic is that around the points (0, rm) and (rb, 0), one of the

two rates is very low, and the power allocation at the station with the high rate behaves as

the optimal HD power allocation. When the SNR on each channel and at both stations is

high compared to the XINR, the power allocation around the point (sb, sm) has the shape

of the power allocation in the high SINR approximation4. When the SNR compared to the

4See [92] for the high SINR approximation power allocation.
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Figure 6.10: Rate improvements for γbb,k and γmm,k from Fig. 6.2. The leftmost column

of graphs corresponds to γmm,k from Fig. 6.2(b), the middle column corresponds to γmm,k

from Fig. 6.2(c), and the rightmost column corresponds to γmm,k from Fig. 6.2(d). γbb,k is

selected according to Fig. 6.2(a). When rate improvements are at least 1.4×, the heuristic

performs similar to or better than the alternating maximization.

XINR is high on some channels, but not high on the other channels, then it may be better

to use some of the channels with low SNR as HD. For practical implementations of compact

FD transceivers, the channels with the higher XINR typically appear closer to the edges

of the frequency band. The pseudocode of the heuristic for the case r∗b ≤ sb is provided in

Algorithm 11 (PA-Heuristic). The pseudocode for the case r∗b > sb is analogous to the

r∗b ≤ sb case and is omitted. Here, (sb, sm) is obtained as the rate pair that maximizes the

sum rate under the high SINR approximation, as in [92].
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Algorithm 11 PA-Heuristic(K, r∗b )

1: Input: {γbm,k, γmb,k, γmm,k, γbb,k}
2: {αLb,k} = arg{rb}, {αLm,k} = arg{rm}
3: {αHb,k}, {αHm,k} = arg{sb + sm}
4: f1 = true, f2 = true, k = 1

5: if r∗b ≤ sb then

6: j = 0, {α1
b,k} = {αLb,k}, {α2

b,k} = {αHb,k}
7: while j ≤ K/2 and (f1 or f2) do

8: {γ1
bm,k, γ

1
mb,k, γ

1
mm,k, γ

1
bb,k} = Scale({α1

b,k, α
L
m,k})

9: r1
m = MCFind-rm(r∗b ,K) for input above

10: {γ2
bm,k, γ

2
mb,k, γ

2
mm,k, γ

2
bb,k} = Scale({α2

b,k, α
H
m,k})

11: r2
m = MCFind-rm(r∗b ,K) for input above

12: if j = 0 then

13: r∗m = max{r1
m, r

2
m}

14: else

15: {αtb,k} = {α1
b,k}/(

∑
k α

1
b,k), αtb,j = 0

16: if rb({αtb,k}, {αLm,k}) ≥ r∗b and MCFind-rm(r∗b ,K)> r∗m with input =

{γ1
bm,k, γ

1
mb,k, γ

1
mm,k, γ

1
bb,k}

17: then

18: r∗m =MCFind-rm(r∗b ,K), {α1
b,k} = {αtb,k}

19: else f1 = false

20: {αtb,k} = {α2
b,k}/(

∑
k α

2
b,k), αtb,K−j+1 = 0

21: if rb({αtb,k}, {αLm,k}) ≥ r∗b and MCFind-rm(r∗b ,K)> r∗m with input =

{γ2
bm,k, γ

2
mb,k, γ

2
mm,k, γ

2
bb,k}

22: then

23: r∗m =MCFind-rm(r∗b ,K), {α2
b,k} = {αtb,k}

24: else f2 = false

25: j = j + 1

26: else

27: Use a similar procedure as for r∗b ≤ sb.
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Algorithm 12 Scale({αb,k, αm,k})
1: Input: {γbm,k, γmb,k, γmm,k, γbb,k}
2: for k = 1 to K do

3: γbm,k
s = Kαb,kγbm,k, γmb,k

s = Kαm,kγmb,k

4: γmm,k
s = Kαm,kγmm,k, γbb,k

s = Kαb,kγbb,k
return {γbm,ks, γmb,ks, γmm,ks, γbb,ks}

For the FD capacity region determined by the heuristic, we further run a convex hull

computation algorithm [36] to determine the FD + TDD capacity region. The total running

time is O(NK2 log(
∑

k γbb,k/(Kε))) for computing N points on the FD capacity region

boundary by using PA-Heuristic, plus additional O(N) for convexifying the capacity

region. Note that in practice K and N are at the order of 100, which makes this algorithm

real-time.

The comparison of the rate improvement for FD + TDD operation determined by PA-

Heuristic and the alternating maximization algorithm described in the previous section

is shown in Fig. 6.10. The results shown in Fig. 6.10 were obtained assuming that γbm,1 =

γbm,K ... ≡ Kγbm, γmb,1 = ... = γmb,K ≡ Kγmb, and γmm,k, γbb,k from Fig. 6.2. The alternat-

ing maximization algorithm can provide an optimal solution only when conditions (C1) and

(C2) are non-restrictive, i.e., when γbm,k ≥ γbb,k(1 + γmm,k) and γmb,k ≥ γmm,k(1 + γbb,k),

∀k. For γbb,k from Fig. 6.2(a) and γmm,k from Fig. 6.2(b), (c), and (d), (C1) and (C2) are

non-restrictive when (i) γbm ≥ 39.1dB, γmb ≥ 39.2dB, (ii) γbm ≥ 32.8dB, γmb ≥ 32.3dB,

and (iii) γbm ≥ 25.3dB, γmb ≥ 25.3dB, respectively.

As Fig. 6.10(a)–(c) shows, when (C1) and (C2) are non-restrictive, the alternating max-

imization algorithm and the PA-Heuristic provide almost identical results (minor differ-

ences are mainly due to a numerical error in computation). Moreover, when the smallest

upper bound on αb,k’s and αm,k’s imposed by (C1) and (C2) is no higher than 5/K, i.e., for

(i) γbm ≥ 28.9dB, γmb ≥ 29.7dB, (ii) γbm ≥ 22.6dB, γmb ≥ 23.4dB, and (iii) γbm ≥ 15.2dB,

γmb ≥ 15.9dB, for γmm,k from Fig. 6.2(b), (c), and (d), respectively, the differences be-

tween the alternating maximization algorithm and the PA-Heuristic are still negligible

(Fig. 6.10(a)–(i)).

When (C1) and (C2) are restrictive (Fig. 6.10(d)–(i)), any of the following cases may
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happen: (i) the alternating maximization outperforms PA-Heuristic, (ii) PA-Heuristic

outperforms the alternating maximization, and (iii) both have similar performance. Case

(i) typically happens when most channels are allocated as HD by the alternating maximiza-

tion, with some of them allocated to the BS, and others to the MS. In this case the rate

improvements predominantly come from using higher total irradiated power compared to

TDD, rather than from using full-duplex [93]. Note that the PA-Heuristic allows the

HD channels to be assigned either only to the BS or only to the MS, but not both. Case

(ii) happens when (C1) and (C2) restrict the part of the feasible region where high rate

improvements are possible; namely, when either both γbm and γmb are low, or when γbm is

much (20dB) higher than γmb.
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Part III

Conclusions
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This thesis presented a comprehensive study of resource allocation problems in wireless

networks. The presented results are analytic and algorithmic and can be applied to various

problems within and outside wireless networking applications. Below, we highlight general

conclusions and possible future directions.

Stateless and Distributed α−Fair Packing

In Chapter 2, we presented an efficient stateless distributed algorithm for the class of α-fair

packing problems. To the best of our knowledge, this is the first algorithm with poly-

logarithmic convergence time in the input size. Additionally, we obtained results that char-

acterize the fairness and asymptotic behavior of allocations in weighted α−fair packing

problems that may be of independent interest. An interesting open problem is to determine

the class of objective functions for which the presented techniques yield fast and stateless

distributed algorithms, together with a unified convergence analysis. This problem is espe-

cially important in light of the fact that α-fair objectives are not Lipschitz continuous, do

not have a Lipschitz gradient, and their dual gradient’s Lipschitz constant scales at least lin-

early with n and Amax. Therefore, the properties typically used in fast first-order methods

are lacking [5,104]. Moreover, for applications of α-fair packing that do not require uncoor-

dinated updates, it seems plausible that the dependence on ε−1 in the convergence bound

can be improved from ε−5 to ε−3 by relaxing the requirement for asynchronous updates,

similarly as was done in [6] over [11].

Another interesting and practically relevant direction is obtaining a fast distributed

and stateless algorithm for more general constraints. In particular, in network congestion

control interpretation of the problem, packing constraints correspond to the setting in which

every source-destination pair has a fixed set of routing paths and the fractions of source-

destination flow sent over the paths are fixed. The fairness is required among the (total) flows

between source-destination pairs. An immediate direction is to generalize the techniques

from Chapter 2 to the setting in which the routing paths between source-destination paths

are known, but the flows are allowed to be split in an arbitrary manner. A more ambitious

goal is generalizing the techniques to α−fair multi-commodity flows, which would also relax

the assumption that the source-destination paths are known and fixed. For such a setting,
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Table 6.1: Running times of the algorithms for the Water-filling-Framework imple-

mentation.

Problem Running time

P-Determine-Rates O(nT (nT log(
B+maxi,t ei,t

(δcst)
) +mT ))

P-Fixed-Fractional-Routing O(n log(
bi,1+ei,1

δ )(T +MF (n,m)))

P-Fractional-Routing Õ(nT (T 2ε−2 · (nT +MCF (n,m) +LP (mT, nT )))

no polynomial-time algorithm for general α is known.

Max-Min Fair Resource Allocation and Applications in Energy Harvesting

Networks

In Chapter 3, we presented a comprehensive algorithmic study of the max-min fair rate

assignment and routing problems in energy harvesting networks with predictable energy

profile. We developed algorithms for the Water-filling-Framework implementation

under various routing types. The running times of the developed algorithms are summarized

in Table 6.1. The algorithms provide important insights into the structure of the problems,

and can serve as benchmarks for evaluating distributed and approximate algorithms possibly

designed for unpredictable energy profiles.

The results reveal interesting trade-offs between different routing types. For example,

while we provide an efficient algorithm that solves the rate assignment in any routing

specified at the input, we also show that determining a routing with the lexicographically

maximum rate assignment for any routing tree or an unsplittable routing is NP-hard. On

the positive side, we are able to construct a combinatorial algorithm that determines a

time-invariable unsplittable routing which maximizes the minimum sensing rate assigned to

any node in any time slot.

Fractional time-variable routing provides the best rate assignment (in terms of lexico-

graphic maximization), and both the routing and the rate assignment are determined jointly

by one algorithm. However, as demonstrated in Section 3.4, the problem is unlikely to be

solved optimally without the use of linear programming, incurring a high running time.

While we provide an FPTAS for this problem, reducing the algorithm’s running time by
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a factor of O(nT ) (as compared to the framework of [28, 79, 110]), the proposed algorithm

still requires solving O(nT ) linear programs.

If fractional routing is restricted to be time-invariable and with constant rates, the prob-

lem can be solved by a combinatorial algorithm, which we provide in Section 3.5. However,

as discussed in the introduction, constant sensing rates often result in the underutilization

of the available energy.

There are several directions for future work. For example, extending the model to incor-

porate the energy consumption due to the control messages exchange would provide a more

realistic setting. Additionally, designing algorithms for unpredictable energy profiles that

can be implemented in an online and/or distributed manner is of high practical significance.

Moreover, the work described in Chapter 3 focused on flow-level rate assignment which

corresponds to a relatively coarse time scale. In a more fine-grained time scale the problems

of data buffering and packet scheduling need to be addressed as well.

Finally, fairness over both nodes and time is relevant in many applications other than en-

ergy harvesting networks. For example, in data centers, it is important to guarantee fairness

over time and over different applications to avoid large time delays affecting time-sensitive

applications. This setting is different from the one considered in this thesis, because the

available resources are fixed, while the applications (described by their resource require-

ments) arrive in an online fashion.

Resource Allocation in Full-Duplex Wireless Networks

In Chapters 5 and 6, we focused on the resource allocation problems in full-duplex networks,

with the objectives of (i) maximizing the sum of UL and DL rates over orthogonal channels

and (ii) maximizing one of the (UL and DL) rates when the other rate is fixed, respectively.

The problem of maximizing one of the rates when the other rate is fixed is equivalent to

the problem of determining the capacity region of full-duplex links, namely, the set of all

achievable rates.

We considered three basic use cases of FD, including single- and multi-channel scenarios.

In order to analyze the multi-channel scenario, we developed a new model that is grounded

in realistic FD receiver implementations for small form factor devices. We characterized
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the rate improvements at the maximum sum of rates in different scenarios and solved

power allocation and frequency selection problems either analytically or algorithmically.

Our numerical results demonstrate the gains from FD in scenarios and for receiver models

that have not been studied before.

Then, we considered the rate improvements over the entire capacity region, by studying

the problems of allocating time and power levels to UL and DL transmissions when one of

the two rates is fixed. We presented a thorough analytical study and developed algorithms

that allow for representation of one of the (UL and DL) rates as a function of the other in

a black-box manner. Such a representation allows addressing the (UL, DL) rate allocation

under different priorities, e.g., by guaranteeing the value of one of the rates or by maximizing

a concave utility function of the two rates.

These are some of the first steps towards understanding the benefits and the complexities

associated with full-duplex, and the basic building blocks of fair scheduling and resource

allocations algorithms for Wi-Fi and cellular networks supporting full-duplex operation.

Hence, there are still many open problems to consider, some of which are outlined below.

CSMA lays the foundation for the distributed 802.11 protocols. Therefore, it is impor-

tant to understand the performance of these protocols when the network is shared between

the legacy HD users and new FD users. In particular, it is of utmost importance to un-

derstand the following questions: How should the back-off times be chosen for HD and FD

users? (Should they be the same?) What is the right notion of fairness among the HD and

FD users? What is the trade-off between the fairness and rate improvements?

Current cellular systems are OFDMA, where orthogonal frequency channels are shared

among multiple users at a time. Choosing how to allocate the channels to users over time

is a challenging problem that has not been addressed yet. However, for FD to become

a part of future cellular and small cell standards, it is essential to address the challenges

associated with the network-wide channel, power, and time allocation, taking into account

QoS considerations for different classes of traffic.

Finally, there is a need for experimental evaluation of scheduling, power control, and

channel allocation algorithms tailored to the special characteristics of full-duplex wireless

networks and systems.
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[90] J. Marašević, C. Stein, and G. Zussman. A fast distributed stateless algorithm for

α-fair packing problems. In Proc. EATCS ICALP’16, July 2016.
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Appendix A

Some Properties of α−Fair Packing

Problems

A.1 Scaling Preserves Approximation

Let the α-fair allocation problem be given in the form:

(Qα) max
{ n∑

j=1

wjfα(xj) : Ax ≤ b, x ≥ 0
}
, where fα(xj) =





ln(xj), if α = 1

x1−α
j

1− α, if α 6= 1

,

w is an n−length vector of positive weights, x is the vector of variables, A is an n × m
constraint matrix, and b is an m−length vector with positive entries. Denote pα(x) =
∑n

j=1wjfα(xj).

It is not hard to see that the assumption bi = 1 ∀i is without loss of generality, since for

bi 6= 1 we can always divide both sides of the inequality by bi and obtain 1 on the right-hand

side, since for (non-trivial) packing problems bi > 0. Therefore, we can assume that the

input problem has constraints of the form A ·x ≤ 1, although it may not necessarily be the

case that Aij ≥ 1 ∀Aij 6= 0.

The remaining transformation that is performed on the input problem is:

x̂j = c · xj , Âij = Aij/c.
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where

c =





mini,j:Aij 6=0
Aij , if mini,j:Aij 6=0

Aij < 1

1, otherwise

.

The problem (Qα) after the scaling becomes:

max

n∑

j=1

wjfα(x̂j) · c1−α

s.t. Âx̂ ≤ 1

x̂ ≥ 0

⇔
(Pα) max

n∑

j=1

wjfα(x̂j)

s.t. Âx̂ ≤ 1

x̂ ≥ 0,

as c1−α is a positive constant. Recall that α-FairPSolver returns an approximate solution

to (Pα), and observe that x is feasible for (Qα) if and only if x̂ is feasible for (Pα).

Choose the dual variables (Lagrange multipliers) for the original problem (Qα) as:

yi = cα−1C · eκ(
∑n
i=1 Aijxj−1) = cα−1C · eκ(

∑n
i=1 Âij x̂j−1) = cα−1ŷi, (A.1)

and notice that

xj
α

m∑

i=1

yiAij = x̂αj · c−α ·
m∑

i=1

(cα−1 · ŷi · c · Âij) = x̂αj

m∑

i=1

ŷiÂij . (A.2)

It is clear that yi’s are feasible dual solutions, since the only requirement for the duals is

non-negativity.

A.1.1 Approximation for Proportional Fairness

Recall (from (2.1)) that the duality gap for a given primal- and dual-feasible x and y is

given as:

G(x, y) =

n∑

j=1

wj ln(wj)−
n∑

j=1

wj ln

(
xj

m∑

i=1

yiAij

)
+

m∑

i=1

yi − 1.

Since α = 1, we have that ŷi = yi for all i, and using (A.2), it follows that

G(x̂, ŷ) = G(x, y).

Since we demonstrate an additive approximation for the proportional fairness via the duality

gap: p(x̂∗)− p(x̂) ≤ G(x̂, ŷ), the same additive approximation follows for the original (non-

scaled) problem.
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A.1.2 Approximation for α-Fairness and α 6= 1

For α 6= 1, we show that the algorithm achieves a multiplicative approximation for the

scaled problem. In particular, we show that after the algorithm converges we have that:

pα(x̂∗) − pα(x̂) ≤ rαpα(x̂), where x̂∗ is the optimal solution, x̂ is the solution returned by

the algorithm, and rα is a constant.

Observe that since x̂ = c · x, we have that pα(x̂∗) = c1−αp(x∗) and pα(x̂) = c1−αpα(x).

Therefore:

pα(x∗)− pα(x) = cα−1(pα(x̂∗)− pα(x̂))

≤ cα−1 · rαpα(x̂)

= rαpα(x).

A.2 Primal, Dual, and the Duality Gap

A.2.1 Proportionally Fair Resource Allocation

In this section we consider (w, 1)-proportional resource allocation, often referred to as the

weighted proportionally fair resource allocation. Recall that the primal is of the form:

(P1) max

n∑

j=1

wj ln(xj)

s.t. Ax ≤ 1,

x ≥ 0.

The Lagrangian for this problem can be written as:

L1(x; y, z) =
n∑

j=1

wj ln(xj) +
m∑

i=1

yi ·


1−

n∑

j=1

Aijxj − zi


 ,

where y1, ..., ym are Lagrange multipliers, and z1, ..., zm are slack variables. The dual to this

problem is:

(D1) min g(y)

s.t. y ≥ 0,
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where g(y) = maxx,z≥0 L(x; y, z). To maximize L1(x; y, z), we first differentiate with respect

to xj , j ∈ {1, ..., n}:
∂L1(x; y, z)

∂xj
=
wj
xj
−

m∑

i=1

yiAij = 0,

which gives:

xj ·
m∑

i=1

yiAij = wj , ∀j ∈ {1, ..., n}. (A.3)

Plugging this back into the expression for L1(x; y, z), and noticing that, since yi, zi ≥ 0

∀i ∈ {1, ...,m}, L1(x; y, z) is maximized for zi = 0, we get that:

g1(y) =

n∑

j=1

wj ln

(
wj∑m

i=1 yiAij

)
+

m∑

i=1

yi −
m∑

i=1

yi

n∑

j=1

Aijwj∑m
k=1 ykAkj

=
n∑

j=1

wj ln(wj)−
n∑

j=1

wj ln

(
m∑

i=1

yiAij

)
+

m∑

i=1

yi −
n∑

j=1

wj

m∑

i=1

yiAij∑m
k=1 ykAkj

=

n∑

j=1

wj ln(wj)−
n∑

j=1

wj ln

(
m∑

i=1

yiAij

)
+

m∑

i=1

yi −W,

since
∑m

i=1

yiAij∑m
k=1 ykAkj

= 1 ∀j ∈ {1, ..., n}, and
∑n

j=1wj = W .

Let p1(x) =
∑n

j=1wj ln(xj) denote the primal objective. The duality gap for any pair

of primal-feasible x and dual-feasible (nonnegative) y is given by:

G1(x, y) = g1(y)− p1(x)

= −
n∑

j=1

wj ln

(
xj
∑m

i=1 yiAij
wj

)
+

m∑

i=1

yi −W.

Since the primal problem maximizes a concave function over a polytope, the strong duality

holds [24], and therefore G1(x, y) ≥ 0 for any pair of primal-feasible x and dual-feasible y,

with equality if and only if x and y are primal- and dual- optimal, respectively.

A.2.2 α-Fair Resource Allocation for α 6= 1

Recall that for α 6= 1 the primal problem is:

(Pα) max
n∑

j=1

wj
x1−α
j

1− α ≡ pα(x)

s.t. Ax ≤ 1,

x ≥ 0.
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The Lagrangian for this problem can be written as:

Lα(x; y, z) =
n∑

j=1

wj
x1−α
j

1− α +
m∑

i=1

yi


1−

n∑

j=1

Aijxj − zi


 ,

where yi and zi, for i ∈ {1, ...,m}, are Lagrangian multipliers and slack variables, respec-

tively.

The dual to (Pα) can be written as:

(Dα) min g(y)

s.t. y ≥ 0,

where gα(y) = maxx,z≥0 Lα(x; y, z).

Since Lα(x; y, z) is differentiable with respect to xj for j ∈ {1, ..., n}, it is maximized

for:

∂Lα(x; y, z)

∂xj
=

wj
xjα
−

m∑

i=1

yiAij = 0

⇒ wj = xj
α

m∑

i=1

yiAij . (A.4)

As zi · yi ≥ 0 ∀i ∈ {1, ...,m}, we get that:

gα(y) =

n∑

j=1

wj
1− α

(
wj∑m

i=1 yiAij

) 1−α
α

+

m∑

i=1

yi −
m∑

i=1

yi

n∑

j=1

Aij

(
wj∑m

k=1 ykAkj

)1/α

=

n∑

j=1

wj
1− α

(
wj∑m

i=1 yiAij

) 1−α
α

+

m∑

i=1

yi −
n∑

j=1

w
1/α
j

(
m∑

k=1

ykAkj

)−1/α m∑

i=1

Aijyi

=

n∑

j=1

wj
1− α

(
wj∑m

i=1 yiAij

) 1−α
α

+

m∑

i=1

yi −
n∑

j=1

w
1/α
j

(
m∑

i=1

Aijyi

)α−1
α

.

Similarly as before, for primal-feasible x and dual-feasible y, the duality gap is given as:

Gα(x, y) = gα(y)− pα(x)

=

n∑

j=1

wj
1− α

(
wj∑m

i=1 yiAij

) 1−α
α

+

m∑

i=1

yi −
n∑

j=1

w
1/α
j

(
m∑

i=1

Aijyi

)α−1
α

−
n∑

j=1

wj
x1−α
j

1− α

=

n∑

j=1

wj
x1−α
j

1− α

((
wj

xjα
∑m

i=1 yiAij

) 1−α
α

− 1

)
+

m∑

i=1

yi −
n∑

j=1

w
1/α
j

(
m∑

i=1

Aijyi

)α−1
α

.
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Observing that:

w
1/α
j

(
m∑

i=1

Aijyi

)α−1
α

= wj · wj−
α−1
α · x1−α

j · xα
α−1
α

j ·
(

m∑

i=1

Aijyi

)α−1
α

= wjx
1−α
j ·

(
xj
α
∑m

i=1Aijyi
wj

)α−1
α

,

we finally get:

Gα(x, y) =

n∑

j=1

wj
x1−α
j

1− α

((
xj
α
∑m

i=1 yiAij
wj

)α−1
α

− 1

)
+

m∑

i=1

yi−
n∑

j=1

wjx
1−α
j ·

(
xj
α
∑m

i=1Aijyi
wj

)α−1
α

.
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Appendix B

Omitted Proofs from Chapter 5

Proof of Lemma 5.7 . Since r =
∑K

k=1 rk, we will first observe partial derivatives of rk with

respect to c.

Recall that γmm,k = αm,kγmm,k, γmb,k = αm,kγmb,k, γbm,k = αb,kγbm,k, γbb,k = αb,kγbb,k.

Observe that in the expression (4.6) for rk only γmm,k depends on c. Moreover, since

γmm,k = γmm,1+c(k − c)2, we have that (k − c)∂γmm,k∂c = −2γmm,k.

Observe partial derivatives of rk with respect to c:

∂rk
∂c

=
2

ln 2
· γmm,1+c · γmb,k

· k − c(
1 + γmb,k + γmm,k(c)

)(
1 + γmm,k(c)

) , (B.1)

∂2rk
∂c2

=
2

ln 2
· γmm,1+c · γmb,k

· γmm,k(c)
(
2 + γmb,k + 3γmm,k(c)

)
−
(
1 + γmb,k

)
(
1 + γmb,k + γmm,k(c)

)2(
1 + γmm,k(c)

)2 . (B.2)

From (B.1), ∂rk
∂c equals zero for c = k, it is positive for c < k and negative for c > k.

Therefore, rk is a has a unique maximum in c, with the maximum attained at k = c. Since

this is true for every k ∈ {1, ...,K}, it follows that for c ≤ 1 ∀k ∈ {1, ...,K}: ∂rk
∂c ≥ 0 (with

equality only for k = c), and therefore ∂r
∂c > 0. Similarly, ∂r

∂c < 0 for c ≥ K. Therefore, all

(local) maxima of r(c) must lie in the interval (1,K).

As γmm,k = γmm,1+c(k−c)2, rk is symmetric around c = k. From (B.2), ∂
2rk
∂c2

is negative

for k − c = 0, and there exits a unique c0 at which ∂2rk
∂c2

= 0 (this part can be shown by



APPENDIX B. OMITTED PROOFS FROM CHAPTER 5 211

solving γmm,k(c)
(
2 + γmb,k + 3γmm,k(c)

)
−
(
1 + γmb,k

)
= 0, which is a quadratic equation in

terms of (k − c)2 with a unique zero; see the proof of Lemma 5.8). For |k − c| > |k − c0|,
∂2rk
∂c2

is positive. This is true, e.g., for γmm,k(c) ≥ 1.

Visually, each rk as a function of c is a symmetric bell-shaped curve centered at k.

Therefore, r can be seen as a sum of shifted and equally spaced symmetric bell-shaped

curves. This sum, in general, can have linear in K number of local maxima. Examples

with K local maxima can be constructed by choosing sufficiently large γmm,1+c (sufficiently

“narrow” bell-shaped curves).

Proof of Lemma 5.8. Assume that γmm,k > 0 and γmb,k > 0 ∀k ∈ {1, ...,K}, as otherwise∣∣∣∂rk∂c
∣∣∣ = 0 and can be ignored.

Case 1. Assume first that c = k∗ for some k∗ ∈ {1, ...,K}. Then, using (5.1),
∂r∗k
∂c = 0, and

for every k 6= k∗:

∣∣∣∣
∂rk
∂c

∣∣∣∣ ≤
2

ln 2
γmb,kγmm,1+c

|k − c|
(1 + γmm,k(c))(1 + γmb,k)

≤ 2

ln 2

γmm,1+c|k − c|
1 + γmm,1+c(k − c)2

· γmb,k
1 + γmb,k

≤ 2

ln 2

1

|k − c| ,

since k − c ≥ 1. Observe that since c = k∗ ∈ {1, ...,K}, every c − k is a positive integer.

Therefore:

∣∣∣∣
∂r

∂c

∣∣∣∣ =

∣∣∣∣∣
K∑

k=1

∂rk
∂c

∣∣∣∣∣ ≤
2

ln 2

∣∣∣∣∣∣
−
k∗−1∑

j=1

1

|j − k∗| +
K∑

k=k∗+1

1

|k − k∗|

∣∣∣∣∣∣

≤ 2

ln 2

K−1∑

k=1

1

k
=

2

ln 2
HK−1,

where HK−1 is the (K − 1)th harmonic number. Using the known inequality Hn < ln(n) +

0.58 + 1
2n for n ∈ N [123] and assuming K ≥ 4, we get:

∣∣∂r
∂c

∣∣ < 2
ln 2(ln(K) + 1). For K < 4,

by inspection:
∑K−1

k=1
1
k < ln(K) + 1.

Case 2. Assume that c /∈ {1, ...,K}, and observe that for |k − c| ≥ 1:
∣∣∣∂rk∂c

∣∣∣ ≤ 2
ln 2

1
|k−c| ≤

2
ln 2

1
b|k−c|c .

There can be at most two k’s with |k − c| < 1. For such k, we bound
∣∣∣∂rk∂c

∣∣∣ as follows.

First, observe from (B.1) and (B.2) that ∂
∂|k−c|

∣∣∣∂rk∂c
∣∣∣ = −∂2rk

∂c2
. From (B.2), ∂2rk

∂c2
= 0 if and



APPENDIX B. OMITTED PROOFS FROM CHAPTER 5 212

only if for some c0:

γmm,k(c0)
(
2 + γmb,k + 3γmm,k(c0)

)
−
(
1 + γmb,k

)
= 0

⇔γmm,k(c0) =
(2 + γmb,k) +

√
(2 + γmb,k)2 + 12(1 + γmbk)

6
.

Note we have used that γmm,k > 0 to get a unique solution for γmm,k. Since γmm,k(c0) =

γmm,1+c(k − c0)2:

(k − c0)2 =
1

γmm,1+c
γmm,k(c0)

>
1

γmm,1+c

2 · (2 + γmb,k)

6
>

1

γmm,1+c

γmb,k
3

.

From condition 5.9 we have that 1
γmm,1+c

· γmb,k ≥ 1, which gives |k − c0| > 1√
3
. It is clear

from (5.1) and γmm,k = γmm,1+c(k − c)2 that ∂2rk
∂c2

is negative for |k − c| < |k − c0| and

positive for |k − c| > |k − c0|. Since ∂
∂|k−c|

∣∣∣∂rk∂c
∣∣∣ = −∂2rk

∂c2
, it follows directly that

∣∣∣∂rk∂c
∣∣∣ is

maximized at c = c0. Therefore, for |k − c| < 1, we have that
∣∣∣∂rk∂c

∣∣∣ < 2
ln 2

1
|k−c0| <

2
ln 2

√
3.

Combining the results for |k − c| ≥ 1 and |k − c| < 1:

∣∣∣∣
∂r

∂c

∣∣∣∣ ≤
K∑

k=1

∣∣∣∂rk
∂c

∣∣∣ ≤ 2

ln 2

(∣∣∣−
bcc−1∑

j=1

1

|j − c| +
K∑

k=dce+1

1

|k − c|
∣∣∣+ 2

√
3
)

≤ 2

ln 2

(K−1∑

k=1

1

k
+ 2
√

3
)
<

2

ln 2
(ln(K) + 1 + 2

√
3).

Proof of Lemma 5.13. From Lemma 5.12:

αm,k =




αm,k ·

(
1 + αm,kγmm,1+c(K − c)2

)
, if k = c,

−1+
√

1+4αm,k(1+αm,kγmm,1+c(K−c)2)γmm,1+c(k−c)2

2γmm,1+c(k−c)2 , if k 6= c

. (B.3)

Notice that for c = 1 + l · 1
2 , l ∈ {1, 2, ..., 2K−3}, the power allocation is symmetric around

c, that is : αb c
2
c = αd c

2
e, αb c

2
c−1 = αd c

2
e+1, etc.

The first partial derivative of r with respect to c is:

∂r

∂c
=

K∑

k=1

∂

∂c

(
log

(
1

1 + γmm,1+cαm,k(k − c)2

))

=

K∑

k=1

2γmm,1+cαm,k(k − c)
1 + γmm,1+cαm,k(k − c)2

(B.4)

Observe that given the optimal power allocation (B.3):
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(a) c− 5 < 1
2

(b) c− 5 > 1
2

Figure B.1: Pairing of points that are left and right from c for (a) c ∈ (5, 5.5) and (b)

c ∈ (5.5, 6).

• If c = K+1
2 , then (from (B.3)) α1 = αm,k, α2 = αK−1,..., αbK+1

2
c = αdK+1

2
e, and it

follows that ∂r
∂c = 0.

• If c = 1 + l · 1
2 , for l ∈ {0, 1, ...,K − 2}, then, as {αm,k} is symmetric around c:

∂r

∂c
=

bcc∑

i=1

2γmm,1+cαm,i(i− c)
1 + γmm,1+cαm,i(i− c)2

+

2bcc∑

j=bcc+1

2γmm,1+cαm,j(j − c)
1 + γmm,1+cαm,j(j − c)2

+
K∑

k=2bcc+1

2γmm,1+cαm,k(k − c)
1 + γmm,1+cαm,k(k − c)2

=
K∑

k=2bcc+1

2γmm,1+cαm,k(k − c)
1 + γmm,1+cαm,k(k − c)2

> 0.

• If c = 1 + l · 1
2 , for l ∈ {K, ...,K − 2}, then, as {αm,k} is symmetric around c:

∂r

∂c
=

2c−K−1∑

i=1

2γmm,1+cαm,i(i− c)
1 + γmm,1+cαm,i(i− c)2

+

bcc∑

j=2c−K

2γmm,1+cαm,j(j − c)
1 + γmm,1+cαm,j(j − c)2

+
K∑

k=bcc+1

2γmm,1+cαm,k(k − c)
1 + γmm,1+cαm,k(k − c)2

=

2c−K−1∑

i=1

2γmm,1+cαm,i(i− c)
1 + γmm,1+cαm,i(i− c)2

< 0.

In other words, if we restrict our attention only to those {αm,k} that determine the optimal

power allocation, then considering c’s from the set 1 + l · 1
2 , where l ∈ {0, 1, ..., 2K − 2}, we

get that the first derivative of r with respect to c is positive for c < K+1
2 , l equal to zero for

c = K+1
2 , and negative for c > K+1

2 . To conclude that at the global maximum for r we have
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c = K+1
2 by considering c ∈ (1,K) it remains to show that for c ∈ (1 + l · 1

2 , 1 + (l+ 1) · 1
2),

where l ∈ {0, 1, ..., 2K − 2}, we have that ∂r
∂c > 0 if l ≤ K − 2 and ∂r

∂c < 0 if l ≥ K − 1.

Fix any l ∈ {0, 1, ...,K − 2} (on the left half of the interval [1,K]) and let c ∈ (1 + l ·
1
2 , 1 + (l + 1) · 1

2). We make the following three claims:

(K1) Each point i ∈ {1, 2, ..., bcc} (left from c) can be paired to a point j ∈ {dce, dce +

1, ...,K} such that all the pairs are mutually disjoint and for each pair (i, j) we have

that c− i < j − c.

Proof of (K1): To construct the pairing, observe that, by the choice of c, c is between two

consecutive integer points and is strictly closer to one of them. If it is closer to the left

point, then the pairing is (bcc, dce), (bcc − 1, dce+ 1),..., (1, 2bcc). If c is closer to the right

point, then the pairing is (bcc, dce + 1), (bcc − 1, dce + 2),..., (1, 2bcc + 1). Such pairings

must exist as c < K+1
2 . The pairings for K = 12 and cases: c ∈ (5, 5.5) and c ∈ (5.5, 6) are

illustrated in Fig. B.1. Q.E.D.

(K2) In the optimal power allocation that corresponds to a given c and for any i, j ∈
{1, ...,K}, if |i − c| < |j − c|, then αm,i > αm,j .In other words, the smaller the

distance between k ∈ {1, ...,K} and c, the larger the αm,k.

Proof of (K2): The proof has two parts. First, assume that |i− c| = 0 and observe αm,j for

|j − c| > 0. From (B.3):

αm,i = αm,k(1 + αm,kγmm,1+c(K − c)2), and

αm,j =
−1 +

√
1 + 4αm,k(1 + αm,kγmm,1+c(K − c)2)γmm,1+c(j − c)2

2γmm,1+c(j − c)2

=
−1 +

√
1 + 4αm,iγmm,1+c(j − c)2

2γmm,1+c(j − c)2
.

Using simple algebraic transformations:

αm,j < αm,i

⇔−1 +
√

1 + 4αm,iγmm,1+c(j − c)2

2γmm,1+c(j − c)2
< αm,i

⇔
√

1 + 4αm,iγmm,1+c(j − c)2 < 1 + 2αm,iγmm,1+c(j − c)2,
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we get that αm,j < αm,i by squaring both sides of the last term, as |j − c| > 0 implies

(2αm,iγmm,1+c(j − c)2)2 > 0.

Second, assuming that |k− c| > 0 and taking the first derivative of αm,k with respect to

(k − c)2, we show that αm,k decreases as (k − c)2 (and consequently |k − c|) increases. Let

∆ = (k − c)2. Then, as:

dαm,k
d∆

=
d

d∆

(
−1

2γmm,1+c∆
+

√
1 + 4αm,k(1 + αm,kγmm,1+c(K − c)2)γmm,1+c∆

2γmm,1+c∆

)

=
1

2γmm,1+c∆2
− 1 + 2αm,k(1 + αm,kγmm,1+c(K − c)2)γmm,1+c∆

2γmm,1+c∆2
√

1 + 4αm,k(1 + αm,kγmm,1+c(K − c)2)γmm,1+c∆
,

it follows that
dαm,k
d∆ < 0, since

√
1 + 4αm,k(1 + αm,kγmm,1+c(K − c)2)γmm,1+c∆ <

1 + 2αm,k(1 + αm,kγmm,1+c(K − c)2)γmm,1+c∆ . Q.E.D.

(K3) As |k − c| increases,
∣∣∣∂rk∂c

∣∣∣ =
2γmm,1+cαm,k|k−c|

1+γmm,1+cαm,k(k−c)2 decreases.

Proof of (K3): Observe that:

∂

∂αm,k

∣∣∣∣
∂ri,k
∂c

∣∣∣∣ =
2γmm,1+c|k − c|

(1 + γmm,1+cαm,k(k − c)2)2
> 0.

We had from (K2) that
dαm,k
d|k−c| < 0, and therefore:

∂

∂|k − c|

∣∣∣∣
∂rk
∂c

∣∣∣∣ =
∂

∂αm,k

∣∣∣∣
∂rk
∂c

∣∣∣∣ ·
dαm,k
d|k − c| < 0, Q.E.D.

Using (B.4), we can write ∂ri
∂c as:

∂ri
∂c

=

K∑

k=1

2γmm,1+cαm,k(k − c)
1 + γmm,1+cαm,k(k − c)2

=

bcc∑

i=1

2γmm,1+cαm,i(i− c)
1 + γmm,1+cαm,i(i− c)2

+

K∑

j=bcc+1

2γmm,1+cαm,j(j − c)
1 + γmm,1+cαm,j(j − c)2

.

If c ∈ [1, K+1
2 ), then, from (K1), each term i in the left summation can be paired to a

term j in the right summation, such that all the pairs are disjoint and for each pair (i, j):

|i−c| < |j−c|. From (K3), for each such pair (i, j):
2γmm,1+cαm,i|i−c|

1+γmm,1+cαm,i(i−c)2 <
2γmm,1+cαm,j |j−c|

1+γmm,1+cαm,j(j−c)2 .
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As all the terms in the left summation are negative, and all the terms in the right summation

are positive, it follows that:

∂r

∂c
=

bcc∑

i=1

2γmm,1+cαm,i(i− c)
1 + γmm,1+cαm,i(i− c)2

+
K∑

j=bcc+1

2γmm,1+cαm,j(j − c)
1 + γmm,1+cαm,j(j − c)2

= −
bcc∑

i=1

2γmm,1+cαm,i|i− c|
1 + γmm,1+cαm,i(i− c)2

+
K∑

j=bcc+1

2γmm,1+cαm,j |j − c|
1 + γmm,1+cαm,j(j − c)2

> 0.

Proving that ∂r
∂c < 0 for c ∈ (K+1

2 ,K] is symmetrical to the proof that ∂r
∂c > 0 for

c ∈ [1, K+1
2 ). As ∂r

∂c = 0 for c = K+1
2 , at the globally maximum r we have that c = K+1

2 .
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