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Abstract  

Modulation of Dopaminergic System Ontogeny by Low-Level Lead Exposure: A 

Potential Underlying Mechanism for the Onset of Drug Sensitization 

Barbara Domingos Soares 

Lead (Pb2+) is an environmental toxin that is known to cause lasting cognitive deficits 

following early life exposure.  Previously, our laboratory demonstrated increased sensitivity to 

the psychostimulant effects of cocaine in animals with elevated blood Pb2+ levels (BLL). This 

effect was abolished following introduction of dopamine (DA) receptor antagonists, indicating 

that the dopaminergic (DAergic) system may be a target of Pb2+’s toxic effects. However, the 

biological mechanisms through which Pb2+ increased sensitization to cocaine’s psychostimulant 

effects have not been fully elucidated. There is some disagreement regarding the magnitude and 

direction of Pb2+’s effects on the DAergic system. Furthermore, many studies to date have 

measured the effects of Pb2+ in only one sex (usually male), one exposure, and one or two time-

points, making it difficult to determine any potential sex-, age-, and exposure-dependent effects.  

In the present study, we used a well-validated animal model and Pb2+ exposure paradigm 

that uses chronic dietary exposure to 180ppm and 1500ppm Pb2+ acetate (PbAC) in the diet. 

These levels of Pb2+ in the diet resulted in low and moderate levels of BLLs that on average 

approximated 4.5 and 22.0µg/dl in young adult rats. These levels of Pb2+ exposure are relevant to 

contemporary levels of BLL in intoxicated children in many cities in the United States and in 

many parts of the world where Pb2+ exposure continues to be a major public health concern. It 

should be noted that at the low level of Pb2+ exposure, the resulting BLL of 4.5µg/dl is just below 

the current CDC level of action. 

Using this well-defined rat model of chronic Pb2 exposure, in Aim 1, we measured DA 

concentration and turnover in the dorsal striatum (STR) of juvenile (PN14), adolescent (PN28), 

and young adult (PN50) male and female rats. Tyrosine hydroxylase (TH) protein, the rate-



 

limiting step in the synthesis of DA, and phosphorylation of TH at serine 40 (pser40TH) were 

assessed as an indirect measure of TH activity. Thus, we measured the ratio of pser40TH to total 

TH protein. We also measured vesicular monoamine transporter-type 2 (VMAT2) levels in the 

STR, nucleus accumbens (NAC), and olfactory tubercle (OT) since this protein is critical for the 

sequestration of DA in presynaptic vesicles and has been used as a biomarker for DA terminal 

integrity. In Aim 2, we examine the effect of chronic Pb2+ exposure on D1 and D2 dopamine 

receptor (D1R and D2R) in the OT, NAC, and STR. Analysis of D1R and D2R is important 

since the downstream effects of DA are dependent on the DA receptor subtype it activates. 

In Aim 1, we observed significant increases in DA and its metabolites homovanillic acid 

(HVA) and 3,4-Dihydroxyphenylacetic acid (DOPAC) in the STR of adolescent and young adult 

male rats with BLL as low as 4.5µg/dl in the absence of phosphorylation at the serine 40 residue 

of TH or altered VMAT2 levels. In Aim 2, a significant increase in D2R was detected in the 

juvenile male rat STR.  We also observed increases in D1R expression in adolescent male rats in 

the NAC, OT, STR, and in the OT of adolescent female rats. Together, these results demonstrate 

that chronic Pb2+ exposure alters DA receptor levels in a manner characteristic of a hyperactive 

DAergic state. The observations presented in this work suggest that a hyperactive DAergic 

system underlies the heightened sensitization to cocaine we previously observed in Pb2+-exposed 

animals. This work builds upon the current understanding of how Pb2+ modulates the DAergic 

system and provides some elucidation of the mechanisms underlying increased drug sensitization 

our laboratory has previously observed in rats exposed to Pb2+. 
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Introduction 

 Public health policies implemented in the 1970s to remove lead (Pb2+) from paint and 

gasoline have gone a long way to reduce the number of children with Pb2+ intoxication. 

However, despite this public health policy success, the potential for children to be exposed to 

Pb2+ from paint in old homes and in low-rent public housing in many inner cities continues to be 

a major public health problem affecting an estimated 4 million households in the United States 

(Needleman 2009, CDC 2015). The widespread contamination of Pb2+ in the environment from 

man-made sources is best exemplified by the current crisis of elevated Pb2 levels in the drinking 

water in Flint, Michigan (Hanna-Attisha and Kuehn 2016, Hanna-Attisha, LaChance et al. 2016) 

and many other municipalities such as Newark, New Jersey and Detroit, Michigan, in which 

levels of Pb2+ in drinking water resulting from the corrosion of old pipes containing Pb2+ greatly 

exceed the United States Environmental Protection Agency (EPA) level of 15ppb (Toscano and 

Guilarte 2005, Nriagu, Burt et al. 2006, Nriagu, Senthamarai-Kannan et al. 2011, Brown and 

Margolis 2012, Triantafyllidou, Nguyen et al. 2013, AP 2016, Hanna-Attisha, LaChance et al. 

2016, Santora 2016).   

These tragic examples of thousands of children being exposed to Pb2+ levels known to 

produce serious health problems should remind public health practitioners, physicians, and state 

and federal government agencies that the scourge of childhood Pb2+ intoxication persist even 

today. The majority of current cases of Pb2+ exposure, as history can confirm, mainly occur in 

underserved African American and Hispanic communities living in inner city neighborhoods that 

have historically encountered a disproportionately higher risk for Pb2+ exposure (Fishbein, Todd 

et al. 2008, Nriagu, Senthamarai-Kannan et al. 2011, Pugh Smith and Nriagu 2011). These are 

the same communities that have a higher prevalence of stress, delinquency, and drug use and 
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abuse and lack the social and healthcare infrastructure than more socioeconomically affluent 

communities are able to enjoy (Dietrich, Ris et al. 2001, Needleman, McFarland et al. 2002, 

Cory-Slechta, Virgolini et al. 2004, Hubbs-Tait, Nation et al. 2005, Fishbein, Todd et al. 2008). 

There is a growing concern in the scientific and public health communities that chronic exposure 

to Pb2+ during early life may be associated with the emergence of a variety of maladaptive 

behaviors such as delinquency (Dietrich, Ris et al. 2001), drug use and abuse (Nation, Cardon et 

al. 2003, Nation, Smith et al. 2004, Fishbein, Todd et al. 2008), and mental health problems such 

as schizophrenia (Opler, Brown et al. 2004, Opler, Buka et al. 2008, Guilarte, Opler et al. 2012), 

anxiety (Moreira, Vassilieff et al. 2001, Bouchard, Bellinger et al. 2009, McFarlane, Searle et al. 

2013), and depression (Sciarillo, Alexander et al. 1992, de Souza Lisboa, Goncalves et al. 2005, 

McFarlane, Searle et al. 2013) in adolescence and adulthood. It is remarkable that for many of 

these mental afflictions there is evidence that disruption of the brain’s dopaminergic system may 

play an important role (Volkow and Li 2004, Jones and Miller 2008, Koob and Volkow 2010, 

Hong, Im et al. 2015, Volkow, Koob et al. 2016). There is previous evidence that chronic Pb2+ 

exposure alters dopaminergic (DAergic) signaling (Nation, Frye et al. 1989, White, Cory-Slechta 

et al. 2007, Stansfield, Ruby et al. 2015). However, the picture is far from complete. The aim of 

this work was to advance the current understanding of the neurotoxic effects of chronic early-life 

Pb2+ exposure on the DAergic system, in order to better understand its potential role in drug 

abuse and, to a broader extent, mental disease. 

 

History of Environmental Pb2+ Pollution 

Decades of clinical and experimental animal studies have shown that Pb2+ is an element 

that has no known biological function. On the other hand, its practical applications have resulted 



4 
 

in widespread dispersal of Pb2+ into the environment for the past 6000 years (Waldron 1973, 

Budd, Montgomery et al. 2004, Toscano and Guilarte 2005). Exposure to Pb2+ was minimal 

throughout most of human history as most naturally occurring Pb2+ was trapped beneath the 

earth’s surface or compounded with other metals in ores (Boeckx 1986). However, 

anthropogenic activity such as mining and smelting began releasing it into the environment as 

early as 6000 to 8000 years ago (Waldron 1973, Needleman 1999, Budd, Montgomery et al. 

2004, Papanikolaou, Hatzidaki et al. 2005). Because of its physical properties such as 

malleability and resistance to corrosion, Pb2+ was widely used in ancient world in glazes, 

plumbing, figurines, architecture, paints, food preservation, and cosmetics among many other 

uses (Waldron 1973).   

Cupellation, a refinery process that extracts precious metals from ore, dramatically 

increased production of Pb2+ waste and resulted in widespread exposure since its discovery 5000 

years ago (Boeckx 1986). It is estimated that 300 million tons of Pb2+ were released into the 

environment in the past 5000 years as a result of mining and metallurgy (Tong, von Schirnding 

et al. 2000). The pollution of water near mines where Pb2+ and other metals were extracted was 

described as early as the first century BC by Vitruvius (Waldron 1973). Once released into the 

environment, Pb2+ does not readily degrade, becoming a persistent source of exposure 

(Papanikolaou, Hatzidaki et al. 2005). Due to the amount of Pb2+ released into the environment 

by human activity and its persistence in the environment, the body Pb2+ burden of modern-day 

populations is much greater than those in the ancient world (Boeckx 1986, Tong, von Schirnding 

et al. 2000). 

 The use of Pb2+ as a sweetener and food preservative, together with the use of Pb2+ in 

pottery glazes and plumbing resulted in widespread Pb2+ poisoning epidemics throughout the 
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Roman Empire (Matte, Landrigan et al. 1992, Tong, von Schirnding et al. 2000). Although Pb2+ 

production decreased during the Middle Ages, Pb2+ continued to be used in medicinal 

preparations and as a wine sweetener, leading to sporadic Pb2+ poisoning epidemics in Europe 

and later in America until the 18th century (Boeckx 1986, Nriagu 1992, Hernberg 2000). 

It is possible that childhood Pb2+ poisoning epidemics occurred throughout history but 

remained unrecognized (Hernberg 2000). However, the first reported epidemic of childhood Pb2+ 

poisoning resulting from direct environmental exposure occurred in 1892 among children in 

Brisbane, Australia who lived and played in town homes with deteriorating Pb2+ paint. These 

children exhibited a number of symptoms associated with acute Pb2+ poisoning following 

ingestion of Pb2+ paint such as vomiting, abdominal cramps, paralysis, and seizures (Turner 

1909); the source of this epidemic was identified as Pb2+ paint 12 years later in 1904 (Needleman 

2004).   

 

History of Occupational Pb2+ exposure 

The effects of acute Pb2+ exposure were long believed to be limited to occupational 

exposures, with the first report of occupational Pb2+ poisoning being reported in a metal-worker 

as early as 370BC (Boeckx 1986, Hernberg 2000, Needleman 2009). The toxicity of Pb2+ dust 

and fumes were well known in ancient times, having been associated with the prevalence of 

paralysis, seizures, and death in miners and smelters (Waldron 1973, Kazantzis 1989). What 

Paracelsus once described as “the miner’s disease” would come to afflict plumbers, painters, 

potters, window-makers, ship builders, firearms makers, book printers, and many others as Pb2+ 

use increased across a variety of industries with the onset of the Industrial Revolution (Waldron 

1973, Matte, Landrigan et al. 1992, Hernberg 2000, Tong, von Schirnding et al. 2000). 
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Epidemics of paralysis, lethargy, cachexia, sterility, encephalopathy, colic, and death among 

Pb2+ workers would eventually lead to the passing of The 1883 Factory and Workshop Act in the 

United Kingdom requiring Pb2+ factories to meet safety standards designed to protect the health 

of workers (Hernberg 2000, Tong, von Schirnding et al. 2000). During the Industrial Revolution, 

it was also observed that the children of exposed female Pb2+ workers and the wives of male Pb2+ 

workers suffered from intellectual disabilities as well as convulsions (Boeckx 1986). Even so, 

the recognition of children as victims of Pb2+ poisoning would not occur until the end of the 19th 

century (Needleman 2009). 

 

Policy Achievements 

 The greatest source of environmental Pb2+ pollution in recent history was leaded 

gasoline, which resulted in the release of 4-5 million tons of Pb2+ into the atmosphere over the 

course of 50 years (Needleman 2000, Laidlaw and Filippelli 2008). During this time, child blood 

Pb2+ levels (BLL) increased drastically in the United States from the 1920s through the 1970s 

(Levin, Brown et al. 2008) as evidenced by the National Health and Nutrition Examination 

Survey (NHANES) 1976-1980 survey estimating a mean blood lead level (BLL) of 15µg/dl for 

children in the United States (CDC 2013). 

Following the 1892 Pb2+ poisoning epidemic in Brisbane, Australia concerns of Pb2+ 

toxicity originating from paints spread resulting in decreased use or complete bans of Pb2+ in 

paint in Europe starting in the 1920s (Hernberg 2000, Needleman 2000).  Pb2+ paint was banned 

in the United States in 1971 as a result of The Lead-Based Poisoning Prevention Act (Boeckx 

1986). The passing of the Clean Air act in 1970 resulted in the gradual phase-out of tetraethyl 

Pb2+ in gasoline beginning in 1970 because it fouled the newly required catalytic converter, and 
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was completely removed by 1986 (Needleman 2000, Taylor, Schniering et al. 2011). The 

discontinuation of tetraethyl Pb2+ as a fuel additive resulted in a sharp decrease in BLL in 

children (Levin, Brown et al. 2008). The removal of Pb2+ solder from canned foods beginning 

with its voluntary removal from baby food containers in the early 1980s and ending with a 

complete ban of Pb2+ solder from canned foods by the U.S. Food and Drug Administration in 

1995 also contributed to the decreases in BLL (Mielke 1999, Toscano and Guilarte 2005). As a 

result of these measures, the mean BLL for children aged 1-5 in the United States declined from 

15 µg/dl (NHANES 1976-1980), to 3.6 µg/dl (NHANES 1988-1991), and to 1.3µg/dl (2007-

2010) (CDC 2013). 

A number of measures have also been put into effect to minimize Pb2+ use and 

occupational exposure across industries in developed nations (Matte, Landrigan et al. 1992). The 

National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit is 

an average of 50 micrograms of Pb2+ per cubic meter of air (µg/m3) over a period of 8 hours 

(NIOSH 2013). The permissible exposure limit set by the Occupational Safety & Health 

Administration (OSHA) is also an average of 50 µg/m3 of Pb2+ over a period of 8 hours. OSHA 

standards also set an action level of 30 µg/m3 over an 8-hour period, requiring employers to 

begin specific compliance activities to ensure safety of employees (OSHA, accessed 2015). 

There is no effective treatment to remove Pb2+ in individuals with BLL below 30µg/dl and 

preventing exposure is the best public health and occupational approach (Needleman 2009).  

 

Pb2+ Exposure Today 

 Sources of Pb2+ exposure vary across countries and populations. Worldwide, the primary 

sources of Pb2+ exposure are Pb2+ soldering, contaminated drinking water, the use of leaded 
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gasoline, Pb2+ glazes, Pb2+-based paints, and folk remedies (Papanikolaou, Hatzidaki et al. 2005). 

In developing countries such as China and India, informal recycling of electronic waste (e-waste) 

is a growing source of environmental Pb2+ pollution (WHO 2010, Sthiannopkao and Wong 2013) 

and in African countries such as Nigeria, artisanal mining of gold has exposed children to fatal 

levels of Pb2+ exposure (Dooyema, Neri et al. 2012).  

 In the present-day United States, an estimated 535,000 children under the age of 5 have 

blood Pb2+ levels above 5µg/dl, the current Centers for Disease Control and Prevention (CDC) 

action level (CDC 2015). The contemporary sources of environmental Pb2+ exposure in the 

United States are Pb2+-contaminated dust and deteriorating Pb2+ paint, which can be found in an 

estimated 24 million homes (Levin, Brown et al. 2008, Kordas 2010, CDC 2015). Other sources 

of exposure in the United States contributing to elevated BLL include folk remedies, 

consumption of wild game killed with lead-based ammunition, ceramics, food, and batteries 

(Levin, Brown et al. 2008, Olympio, Goncalves et al. 2009). Foods, electronics, jewelry, and 

toys imported from countries where Pb2+ is not effectively regulated may also contain large 

quantities of Pb2+ that can be ingested (Meyer, Brown et al. 2008). Plants grown in Pb2+-

contaminated soil can also serve as potential sources of exposure (Clark, Brabander et al. 2006, 

Pruvot, Douay et al. 2006). Furthermore, an estimated 804,000 workers in general industry and 

another 838,000 workers in construction are at risk for occupational Pb2+ exposure (OSHA, 

accessed 2015). These individuals may bring Pb2+ dust in their clothes and into their homes and 

thus, expose their families (CDC 2015).  

 Up to 81 million homes in the United States may still be at risk for Pb2+ contamination in 

water due to particulate Pb2+ in water as well as the presence of Pb2+ in plumbing as of 2013 

(Triantafyllidou, Nguyen et al. 2013). However, the recent Pb2+ contamination episode in Flint, 
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Michigan and other municipalities has demonstrated that the dangers of Pb2+ contamination in 

water persist throughout the country. In 2014, the city of Flint, Michigan temporarily switched 

from Detroit-supplied Lake Huron water to the Flint River and discontinued corrosion-control 

treatments (Hanna-Attisha 2016). The corrosive properties of the Flint River water was further 

exacerbated by the addition of ferric chloride to reduce its trihalomethane content, making it 19 

times more corrosive than the Lake Huron water that was previously delivered to the town 

(Bellinger 2016, Hanna-Attisha 2016). As a result, Pb2+ leached from Pb2+-based plumbing into 

the tap water over time, increasing its Pb2+ content and increasing the incidence of elevated BLL 

in the children of Flint from 2.4% in 2013 to 4.9% in 2015 (Hanna-Attisha 2016). As evidenced 

by the recent shut-off of water fountains at 30 out of 67 schools in the Newark Public Schools 

district due to elevated Pb2+ levels, the devastating crisis in Flint, Michigan has reinforced the 

need for action to eliminate Pb2+ from drinking water and highlighted the heavy price of 

negligence on the part of local, state, and even federal officials (AP 2016, Santora 2016). 

 

Biomarkers of Pb2+ Exposure 

 The use of a particular biomarker is dependent on the type of exposure to be 

characterized (Sanders, Liu et al. 2009). The half-life of Pb2+ in the body varies across tissues 

and fluids, making it possible to study both short-term and long-term exposures (Papanikolaou, 

Hatzidaki et al. 2005, Sanders, Liu et al. 2009). Blood, bone, tooth, hair, urine, nail, and fecal 

Pb2+ concentration can all be used as biomarkers for exposure. Blood Pb2+ concentration (in 

µg/dl) is the primary biomarker used for Pb2+ burden in exposure studies (Sanders, Liu et al. 

2009). The half-life of Pb2+ in blood (27-36 days) makes blood Pb2+ concentration a suitable 

biomarker for recent exposure (Lidsky and Schneider 2003). Most of the Pb2+ in blood 
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accumulates in red blood cells, where it binds to δ-aminolevulinic acid dehydratase (δ-ALAD) 

and inhibits its function. Inhibition of δ-ALAD results in accumulation of δ-aminolevulinic acid 

(δ-ALA) in the blood and urine. δ-ALA in blood and urine can be used as a biomarker for Pb2+ 

exposure (Opler, Brown et al. 2004, Ahamed and Siddiqui 2007, Opler, Buka et al. 2008). Bone 

and tooth Pb2+ concentration are suitable biomarkers for cumulative exposure as Pb2+ has a half-

life of 10-30 years in bone (Rabinowitz 1991, Sanders, Liu et al. 2009). More recently, advances 

in micro-spatial analytical methods have allowed for measurement of dentine Pb2+ levels at 

multiple sampling points within a tooth, allowing for the determination of prenatal and postnatal 

Pb2+ exposure over time (Arora, Austin et al. 2014) 

 

Pb2+ Toxicokinetics 

 

Absorption 

Human Pb2+ exposure occurs through ingestion, inhalation, and percutaneous exposure 

and absorption varies by route of exposure (Olympio, Goncalves et al. 2009). Inhalation is the 

primary form of occupational exposure (Sakai 2000). Absorption of Pb2+ through the respiratory 

system is dependent on the size of the Pb2+ particles inhaled. Particles larger than 1-2 um are 

trapped in the upper respiratory tract and are eventually swallowed. Smaller particles, on the 

other hand, will be absorbed in the lower lung (Davidson CI 1992). Up to 50% of inhaled Pb2+ is 

absorbed into the bloodstream (Sakai 2000). Ingested Pb2+ is absorbed in the small intestine 

through divalent metal transporter 1, which is the primary transporter for iron (Kordas 2010). 

Percutaneous exposure of inorganic Pb2+ such as that found in leaded paint is negligible 

(Papanikolaou, Hatzidaki et al. 2005). However, organic Pb2+ compounds such as tetraethyl Pb2+ 
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are readily absorbed through skin into the bloodstream (Sakai 2000, Papanikolaou, Hatzidaki et 

al. 2005).  

Children are more susceptible to Pb2+ exposure and Pb2+ toxicity than adults for 

numerous reasons. The intake of Pb2+ by children through ingestion and inhalation is higher than 

it is for adults since children ingest more food and water and breathe more air per unit of weight 

than adults (Tong, von Schirnding et al. 2000, WHO 2010). In children, blood Pb2+ levels peak 

between 15 and 24 months of age due to the fact that children are more likely to play and crawl 

on the floor and engage in hand-to-mouth activity which can lead to ingestion of Pb2+-

contaminated house dust (Sayre, Charney et al. 1974, Needleman 2004, Levin, Brown et al. 

2008). Children with pica, the habit of eating non-nutritive substances, are also at risk Pb2+ 

intoxication due to ingestion of leaded paint or other Pb2+-contaminated materials (Moncrieff, 

Koumides et al. 1964, Lin-Fu 1973, Lin-Fu 1973, WHO 2010). 

Differences in Pb2+ toxicokinetics between children and adults also increase the 

vulnerability of children to Pb2+ exposure and Pb2+ toxicity (Davidson CI 1992, Lidsky and 

Schneider 2003). Though adults typically absorb up to 15% of the Pb2+ they ingest, absorption 

rates of Pb2+ are much higher in young children, with infants absorbing up to 50% of Pb2+ 

ingested (Davidson CI 1992, Sakai 2000, Lidsky and Schneider 2003, Papanikolaou, Hatzidaki et 

al. 2005). Pb2+ retention is also much higher in children (Kordas 2010). Furthermore, since the 

immature blood brain barrier is more permeable, a higher portion of Pb2+ is transported to the 

brains of children 5 and under compared to adults (Goyer 1990, Lidsky and Schneider 2003).  

 

Distribution 
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Once absorbed, Pb2+ is distributed throughout the body by the bloodstream  

(Papanikolaou, Hatzidaki et al. 2005, Clark, Brabander et al. 2006). The transfer of Pb2+ from 

blood to soft tissue takes approximately 4-6 weeks (Papanikolaou, Hatzidaki et al. 2005). With 

regard to Pb2+ toxicity, Pb2+ crosses the blood brain barrier through transferrin or calcium-

ATPase pumps (Lidsky and Schneider 2003, Kordas 2010). Blood brain barrier permeability can 

be enhanced by Pb2+-induced damage to endothelial cells (Wang, Luo et al. 2007). Maternal Pb2+ 

readily crosses the placenta to the fetus (Goyer 1990, Marchetti 2003).  Fetal uptake of Pb2+ from 

maternal stores begins at 12 weeks of gestation and continues until birth (Papanikolaou, 

Hatzidaki et al. 2005). Maternal blood and plasma Pb2+ levels follow a nonlinear U-shaped 

pattern throughout the course of the pregnancy, decreasing between weeks 12 and 20 of gestation 

and then increasing again between the twentieth week and birth in a manner corresponding to the 

transfer of maternal calcium to the fetus (Bellinger 2005). Maternal and fetal BLL are 

comparable as there is no effective barrier preventing the transfer of Pb2+ from a mother to the 

fetus (Goyer 1990, Graziano, Popovac et al. 1990).  

 

Storage and Mobilization 

The half-life of Pb2+ is less than an hour in plasma, 27-36 days in blood, 30-40 days in 

soft tissue, and 10-30 years in bone tissue (Sakai 2000, Papanikolaou, Hatzidaki et al. 2005). 

About 73% of the total Pb2+ body burden in children is found in bone (Papanikolaou, Hatzidaki 

et al. 2005). Bone turnover results in the mobilization and circulation of bone Pb2+ stores 

throughout the body (Needleman 2004). The demand for calcium during pregnancy and lactation 

results in the release of maternal bone Pb2+ stores to blood as bone metabolism increases 

(Bellinger 2005, White, Cory-Slechta et al. 2007). Bone resorption following menopause and 
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onset of osteoporosis also results in the release of Pb2+ into the bloodstream (Tsaih, Korrick et al. 

2001, Needleman 2004). 

 

Excretion 

The main route of excretion for absorbed Pb2+ is through the urinary tract, with minute 

quantities of Pb2+ excreted through sweat, nails, and bile (Papanikolaou, Hatzidaki et al. 2005). 

Chelation therapy decreases body Pb2+ burdens by enhancing excretion of Pb2+ through the 

urinary tract (Cory-Slechta 1988, Papanikolaou, Hatzidaki et al. 2005). Ingested Pb2+ not 

absorbed in the gut is excreted in feces (Lidsky and Schneider 2003). During pregnancy, 

mobilized maternal bone Pb2+ stores may be transferred to the developing fetus through blood. 

Post-pregnancy, maternal Pb2+ can be transferred to the neonate through breast-milk (Bellinger 

2005, White, Cory-Slechta et al. 2007, Levin, Brown et al. 2008). 

 

Disparities in Exposed Populations 

BLL in children continue to decline in the United States due to the removal of Pb2+ 

exposure sources, coupled with surveillance and prevention programs (Jones, Homa et al. 2009). 

It is estimated that BLL have decreased by up to 90% from the 1970s to 2000s in the United 

states following the ban of Pb2+ in paint in 1978, the ban of tetraethyl Pb2+ as a gasoline additive 

in 1995 and the ban of Pb2+ solder in canned foods in 1995 (Toscano and Guilarte 2005, Nevin 

2007, Levin, Brown et al. 2008, Brown and Margolis 2012, Hu, Scheidell et al. 2014).  Today, 

the majority of children living in the United States have BLL lower than 5µg/dl (CDC 2015).  

The percentage of children with elevated BLL in the United States has dropped 

considerably in recent decades (Chandran and Cataldo 2010). Furthermore, the general mean 
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BLL for children aged 1-5 in the United States has dropped from 15µg/dl (1976-1980) to 

1.3µg/dl (2007-2010) (CDC 2015). NHANES reports indicate that, although there has been a 

continued decline of mean BLL in children between 1 and 5 years of age, racial/ethnic and 

income level disparities persist. Historically, the percentage of minorities from low-income 

neighborhoods with elevated BLL has been disproportionately larger than the overall national 

average (Cory-Slechta, Virgolini et al. 2004, Muntner, Menke et al. 2005, Jusko, Henderson et 

al. 2008, Wright, Dietrich et al. 2008). In the 2007-2010 NHANES report, the general mean BLL 

for non-Hispanic black children aged 1-5 (1.8µg/dl) was significantly higher than that of either 

non-Hispanic white (1.3µg/dl) or Mexican American (1.3µg/dl) children. Furthermore, BLL 

were significantly higher for children from lower income households (1.6µg/dl) versus children 

from higher income households (1.2µg/dl) (CDC 2015).  

Despite the fact that leaded gasoline has not been used in the United States since 1986, 

decades of heavy vehicle traffic resulted in higher concentrations of Pb2+ in urban soil versus soil 

from suburban and agricultural regions (Needleman 2000, Laidlaw and Filippelli 2008). Pb2+ that 

has accumulated in urban soil can be tracked into homes or, when suspended in air, penetrate 

through open windows and increase house dust Pb2+ load (Laidlaw and Filippelli 2008). As a 

result, residents of urban areas also have higher environmental Pb2+ burdens than the general 

population (Clark, Brabander et al. 2006). Housing condition can also play a role in determining 

how much external Pb2+ pollution enters a home. Loose-fitting windows in older homes and loss 

of structural integrity may result in increased penetration and accumulation of Pb2+ dust in 

homes, especially in urban areas where high levels of Pb2+ are still present in soil. (Laidlaw and 

Filippelli 2008). 
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The condition of Pb2+ paint in a household, for example, is strongly associated with 

elevated BLL. Deteriorating Pb2+ paint increases the Pb2+ load in dust, which can then be easily 

consumed by children through hand-to-mouth activity. In one study, 39% of children dwelling in 

houses with Pb2+ paint in poor condition had BLL greater than 10µg/dl versus 15.4% of children 

in houses with paint in good condition (Lanphear, Burgoon et al. 1998). In a 2002 study, children 

24 months of age who never lived in rental housing had BLL of 5µg/dl, whereas children who 

sometimes lived in rental housing or always lived in rental housing had BLL of 8.8µg/dl and 

8.1µg/dl, respectively. Furthermore, of children surveyed, 15% of children who never lived in 

rental housing had BLL at or above 10µg/dl versus 53.8% of children who sometimes lived in 

rental housing and 35.7% of children who always lived in rental housing. A significantly higher 

percentage of rental housing was found to be in poor condition versus owner-occupied housing 

(Lanphear, Hornung et al. 2002).  

A number of nutritional factors are known to modulate the amount of Pb2+ absorbed in 

the gastrointestinal tract as well as the toxicity of Pb2+ absorbed. Total food intake and frequency 

of food intake, can alter the absorption of ingested Pb2+ in the gastrointestinal tract (Mahaffey 

1990). A higher percentage of ingested Pb2+ is absorbed by fasting adults versus adults versus 

nonfasting adults (Davidson CI 1992). Low intake of essential metals like calcium, iron, zinc, 

and phosphorus may enhance absorption of ingested Pb2+ in the gut (Mahaffey 1990, Lanphear, 

Hornung et al. 2002). The amount of Pb2+ absorbed in the gut is higher in children with low 

dietary intake of calcium, phosphorous, zinc, or iron (Papanikolaou, Hatzidaki et al. 2005). 

Dietary iron intake has been inversely related to BLL in children (Lanphear, Hornung et al. 

2002). Iron deficiency leads to increased expression of divalent metal transporter 1, which may 

contribute to increased absorption and bioavailability of ingested Pb2+ (Kordas 2010). Iron 
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deficiency has also been demonstrated to interact with Pb2+ exposure to increase risk for 

cognitive and behavioral deficits (Wasserman, Graziano et al. 1992, Levin, Brown et al. 2008). It 

is important to note that disadvantaged populations are at a particularly higher risk for iron 

deficiency (Kordas 2010).  

Low calcium intake during pregnancy and lactation has been demonstrated to increase 

release of bone Pb2+ stores, resulting in higher blood and tissue Pb2+ levels in women (Mahaffey 

1990, Bellinger 2005). This, in turn, may result in increased exposure of the fetus in utero as 

well as increased neonatal exposure through breast-milk during lactation (Mahaffey 1990, Levin, 

Brown et al. 2008). Increased calcium intake or calcium supplementation throughout pregnancy 

and lactation may decrease Pb2+ mobilization and subsequent transfer of maternal Pb2+ to the 

child (Bellinger 2005, White, Cory-Slechta et al. 2007). However, calcium intake may not be 

protective against elevated BLL in children (Lanphear, Hornung et al. 2002).  

Childhood BLL are dependent on the environment of the child as well as the behaviors 

exhibited by the child at different ages (Lanphear, Hornung et al. 2002). Low socioeconomic 

status is associated with substandard housing, proximity to exposure sources, poorer nutrition 

status and other factors that may increase the risk for elevated BLL in children (Tong, von 

Schirnding et al. 2000). Economically disadvantaged populations are also more likely to live in 

urban areas, where there are increased rates of drug use (Miller, Nation et al. 2000).  

 

Susceptibility of the Developing Brain to Pb2+ Toxicity 

The developing brain is much more susceptible to Pb2+’s neurotoxicity than the mature 

brain (Lidsky and Schneider 2003). Previous work by our laboratory and others has 

demonstrated that Pb2+ impairs the expression of long-term potentiation (LTP) (Nihei, Desmond 
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et al. 2000), a process by which synapses are strengthened or weakened based on signaling 

patterns between neurons. LTP is believed to underlie the formation of long-term memories and 

is dependent on n-methyl-d-aspartate receptor (NMDAR) activation.  A seminal study by Morris 

et al (1986) first demonstrated in vivo that chronic administration of amino-5-phosphonovaleric 

acid, a competitive NMDAR inhibitor, impaired LTP and spatial memory (Morris, Anderson et 

al. 1986). As a noncompetitive NMDAR antagonist, Pb2+ inhibits NMDAR function, decreasing 

activity-dependent calcium influx, thereby inhibiting a number of calcium-responsive signaling 

processes necessary for transcription of genes that maintain LTP (Toscano, McGlothan et al. 

2003). 

 Previous work by our laboratory and others has demonstrated that developmental Pb2+ 

exposure inhibits spatial memory and reduces the amplitude of LTP (Jett, Kuhlmann et al. 1997, 

Nihei, Desmond et al. 2000). Our laboratory has further demonstrated that developmental Pb2+ 

exposure alters NMDAR subunit expression, thereby altering NMDAR function and downstream 

signaling (Guilarte and McGlothan 1998, Nihei, Desmond et al. 2000, Guilarte, Toscano et al. 

2003). Pb2+ exposure during synaptogenesis also results in decreased presynaptic 

neurotransmitter release, which may be due to decreased expression of synaptophysin and 

synaptobrevin (Neal, Stansfield et al. 2010). Further work by our laboratory demonstrated that 

Pb2+ exposure during synaptogenesis of hippocampal neurons resulted in dysregulation of brain-

derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TrkB) transsynaptic signaling. 

Altered synapse maturation and function resulting from Pb2+-induced dysregulation of BDNF-

TrkB signaling could, in turn, underlie cognitive and behavioral deficits associated with 

developmental Pb2+ exposure (Stansfield, Pilsner et al. 2012). 
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Neurological Effects of Childhood Pb2+ Intoxication 

In the years preceding 1943, it was assumed that the toxic effects of Pb2+ poisoning were 

reversible following treatment and removal of the exposure (Olympio, Goncalves et al. 2009). 

However, a landmark study by Byers and Lord (1943) found that of 20 children that had been 

treated for Pb2+ poisoning in their infancy, 19 of these children experienced learning deficits as 

well as behavioral disorders such as aggression and antisocial behavior years later (Byers and 

Lord 1943). However, since all of the children in this study had presented clinical symptoms of 

Pb2+ intoxication, this study was unable to demonstrate the deleterious effects of low-level Pb2+ 

exposure on the cognitive function of otherwise asymptomatic children (Needleman 2009). As a 

result, the long-term effects of low-level Pb2+ exposure would remain unstudied for another three 

decades (Needleman 2009, Sanders, Liu et al. 2009). 

In 1979, Needleman et al. (1979) demonstrated that cognitive deficits occurred in 

otherwise asymptomatic children that had been Pb2+ exposed (Needleman, Gunnoe et al. 1979). 

In a follow-up study assessing the academic performance of these children 11 years later, 

Needleman et al. (1990) found that elevated dentine Pb2+ levels in childhood were associated 

with a sevenfold increase in high school graduation failure eleven years later (Needleman, Schell 

et al. 1990). Elevated dentine Pb2+ levels were also associated with lower IQ scores in a sample 

of first-grade children in Denmark (Hansen, Trillingsgaard et al. 1989) and elevated cord blood 

Pb2+ levels corresponding with prenatal exposure were associated with cognitive impairments in 

children at 24 months of age (Bellinger, Leviton et al. 1990). As a result of these studies and 

others demonstrating the long-term impact of low-level childhood Pb2+ exposure on cognitive 

function, there has been a shift in the focus of Pb2+’s toxic effects from high occupational 

exposure in adults to low exposures in children (Needleman 2004). 
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Early-life Pb2+ exposure has been associated with a number of behavioral and cognitive 

function deficits that may impair academic performance and increase the risk for school failure 

later in life (Needleman and Gatsonis 1990, Needleman, Schell et al. 1990, Miranda, Kim et al. 

2007). A number of studies have reported IQ deficits in children following low-level Pb2+ 

exposure (Needleman and Gatsonis 1990, Tong, Baghurst et al. 1996, Factor-Litvak, Wasserman 

et al. 1999, Canfield, Henderson et al. 2003). In another study, children with BLL of 5-10µg/dl 

scored significantly lower IQ-adjusted reading, mathematics, reading comprehension, and 

listening comprehension scores than children with BLL of 1-2µg/dl (Surkan, Zhang et al. 2007). 

Childhood Pb2+ exposure has also been associated with poor attention span, delinquency, deficits 

in language processing, reading disabilities, decreased working memory, and impaired executive 

function (Needleman and Gatsonis 1990, Needleman, Schell et al. 1990, Needleman 2000, 

Surkan, Zhang et al. 2007, Fishbein, Todd et al. 2008, McFarlane, Searle et al. 2013). 

 

Deficits in Cognitive Function 

In 1960, the toxic threshold for Pb2+ exposure in children was 60µg/dl, the detection limit 

for BLL at the time, and a level at which clinical symptoms of Pb2+ poisoning manifest 

themselves (Olympio, Goncalves et al. 2009). In the decades that followed, however, it became 

evident that lower BLL were associated with cognitive deficits in otherwise asymptomatic 

children (Needleman 2004, Olympio, Goncalves et al. 2009).   

As BLL in children decreased and research methodologies improved over time, it became 

possible to identify cognitive function deficits at lower thresholds, prompting the Centers for 

CDC to decrease the toxic threshold for Pb2+ several times (Cory-Slechta 1995, Needleman 

2004). As of 2012, the CDC no longer uses the term “level of concern.” Instead, the CDC now 
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employs a reference value of 5µg/dl based on the NHANES BLL distribution in children aged 1-

5 to identify exposed children and limit future exposures (CDC 2012). Even so, the CDC 

continues to recommend chelation therapy to decrease body burden of Pb2+ in children with BLL 

of 45µg/dl and higher (CDC 2004, CDC 2012). It should be noted that although chelation 

therapy has been used successfully to decrease the body burden of Pb2+ in children with BLL of 

45µg/dl and higher, it does not seem to reverse or ameliorate cognitive impairments resulting 

from Pb2+ exposure, making primary prevention a key course of action in the prevention of 

cognitive deficits resulting from low-level Pb2+ exposure (Rogan, Dietrich et al. 2001, Dietrich, 

Ware et al. 2004). 

IQ deficits have been described in children with elevated blood or dentine Pb2+ levels 

since the 1970s (Needleman and Gatsonis 1990, Needleman 2004). A number of studies have 

concluded that there is no safe threshold for early-life Pb2+ exposure since lasting effects on 

cognitive function have been associated with even the lowest detectable exposures (Chiodo, 

Jacobson et al. 2004, Lanphear, Hornung et al. 2005, Sanders, Liu et al. 2009, Hong, Im et al. 

2015). Recent studies suggest that the dose-response curve for childhood Pb2+ exposure is non-

linear, with the greatest decrement in IQ points occurring with the first 10µg/dl increase in BLL 

(Canfield, Henderson et al. 2003, Lanphear, Hornung et al. 2005). For example, increases in 

BLL from 1µg/dl to 10µg/dl were associated with a loss of up to 7.4 IQ points, whereas an 

increase from 10µg/dl to 30µg/dl was associated with a 2.5-point decrement (Canfield, 

Henderson et al. 2003).  

A pooled analysis of seven prospective Pb2+ cohorts also found a strong dose-response 

relationship between lower BLL in children (below 7.5µg/dl) and IQ points lost. In the pooled 

data, an increase in BLL from 1µg/dl to 10µg/dl was associated with a loss of 6.2 IQ points 
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whereas a 10-20µg/dl increase was associated with a 1.9-point decrement and a 20-30µg/dl 

increase was associated with a 1.1-point decrement (Lanphear, Hornung et al. 2005).  A more 

recent study, using linear and semi-parametic models to estimate the association between 

lifetime average blood Pb2+ concentration and IQ, estimated a 0.15-point decrease in IQ per 

1µg/dl increase in children with BLL ranging from 20-30µg/dl. A 0.32-point decrease in IQ was 

estimated per 1µg/dl increase in BLL for children with BLL ranging from 10-20µg/dl. Consistent 

with previous studies suggesting a non-linear dose-response curve for childhood Pb2+ exposure, a 

1.2-point decrement in IQ points was estimated with children in the lowest BLL range of 2.1-

10µg/dl (Jusko, Henderson et al. 2008). Thus, the greatest drop in IQ occurs in the very low BLL 

range. 

 

Behavioral Effects 

Prenatal and early-life Pb2+ exposure has been found to be associated with an increase in 

delinquency in early adulthood (Wright, Dietrich et al. 2008). A 2002 case-control study 

compared tibial bone Pb2+ concentrations of 12-18-year-old males charged with delinquent acts 

to those of age-adjusted males with no arrest records. Those charged with delinquent acts had 

significantly higher bone Pb2+ concentrations versus males with no arrest records (11ppm Pb2+ in 

cases versus 1.5ppm in controls), suggesting that low BLL is associated with increased risk for 

adjudicated delinquency (Needleman, McFarland et al. 2002). A prospective longitudinal birth 

cohort Dietrich (2001) found a significant relationship between prenatal Pb2+ exposure and 

antisocial and delinquent behavior in adolescence. Of note, this study also found a strong 

association between drug use and antisocial and delinquent behaviors in the adolescents 

(Dietrich, Ris et al. 2001). 
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In an ecological study, Mielke and Zahran (2012) found that aggravated assault rates in 

six U.S. cities were associated with air Pb2+ levels 22 years prior. Furthermore, every 1% 

increase in the tons of Pb2+ released into the atmosphere 22 years prior was associated with a 

.46% increase in the aggravated assault rate (Mielke and Zahran 2012). Using temporal changes 

in tetraethyl Pb2+ gasoline consumption and corresponding exposure rates as a proxy for 

temporal changes in BLL in the United States from 1941 to 1987, Nevin (2000) found that 

changes in unwed teenage pregnancy and violent crime rates corresponded with tetraethyl Pb2+ 

gasoline consumption years prior. This study suggested that increased tetraethyl Pb2+ gasoline 

consumption in 1960s and 1970s may have contributed to an epidemic of violent crimes and 

unwed teen pregnancies from the mid-1980s to mid-1990s (Nevin 2000). A similar follow-up 

analysis investigating the association between early-life BLL and crime trends in the United 

States and 8 other countries also found a significant association between preschool BLL and 

arrest rates later in life (Nevin 2007). 

Low-level Pb2+ exposure may impair cognitive control, contributing to the onset of 

attention deficit hyperactive disorder (ADHD) (Nigg, Knottnerus et al. 2008, Roy, Bellinger et 

al. 2009). Braun (2006) described a significant dose-response relationship between 

environmental Pb2+ exposure and ADHD in children. Children with BLL higher than 2 μg/dL 

had a 4.1-fold increased risk for ADHD versus children with BLL less than 0.8μg/dL (Braun, 

Kahn et al. 2006). Postnatal Pb2+ exposure from diet of game hunted with Pb2+ pellets was 

associated with hyperactive-impulsive type ADHD in a population of Inuit children (Boucher, 

Jacobson et al. 2012). In another study, elevated BLL were associated with inattention-type 

ADHD in a population of children from Chennai, India. This study also found a strong 

association between elevated BLL and anxiety and poor sociability (Roy, Bellinger et al. 2009).  
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A cross-sectional epidemiological study has also found increased risk of panic and 

depressive disorders in young adults with elevated BLL. This increased risk persisted even when 

individuals with BLL ≥ 10 μg/dL were excluded from the analysis, indicating that even low-level 

Pb2+ exposure may contribute to the onset of these disorders (Bouchard, Bellinger et al. 2009). 

Elevated childhood BLL may increase the likelihood for impulsive behavior later in life (Reyes 

2015). Childhood BLL have been associated with early sexual activity, teenage pregnancy, and 

increased risk for sexually transmitted infections (Nelson, Shacham et al. 2015, Reyes 2015). An 

association between elevated childhood BLL and teenage alcohol and marijuana use has also 

been described (Reyes 2015). Poor impulse control may underlie the higher rates of arrest for 

violent crimes, ADHD, and teenage pregnancy that have been associated with early-life Pb2+ 

exposure (Nevin 2000, Bellinger 2008).  

 

Early life Pb2+ Exposure and Drug Sensitization 

Addiction is characterized by compulsive and uncontrolled drug seeking and abuse 

behaviors (Baler and Volkow 2006, Ersche, Jones et al. 2012). Not all individuals exposed to 

drugs become addicted and one of the challenges in drug addiction research has been to 

determine the neurobiology underlying the vulnerability of some individuals to transition from 

drug use to drug addiction (Koob and Le Moal 1997, Volkow and Wise 2005). Many factors 

such as drug availability, genetics, history of drug use, stress, and life events contribute to the 

transition from drug use to drug addiction (Volkow and Li 2004). However, exposure to 

environmental toxins such as Pb2+ may also play a role in this transition (Jones and Miller 2008). 

For example, Fishbein and colleagues (2008) found that tibial bone Pb2+ concentration in 

a sample of 26 female heroin users in Baltimore was 1.8 times higher per gram of bone than 
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those in age-matched unexposed females (14.5µg/g versus 8µg/g). Furthermore, frequency of 

heroin use in users was significantly associated with interactions between tibial Pb2+ and risky 

decision-making as well as tibial Pb2+ and cognitive inflexibility (Fishbein, Todd et al. 2008). 

The results of this study suggest that populations with higher body Pb2+ burdens are more at risk 

for drug use and abuse. Although no definitive link has been established between early-life Pb2+ 

exposure and drug use and abuse later in life in humans, it should be noted that the populations 

most at risk for Pb2+ exposure are also most at risk for use and abuse of drugs, especially cocaine 

(Ensminger, Anthony et al. 1997, Fishbein, Todd et al. 2008). Also, Pb2+ exposure has been 

demonstrated to increase DAergic system activity, which may enhance sensitivity to drugs of 

abuse (Nation, Miller et al. 2000, Nation, Cardon et al. 2003, Nation, Smith et al. 2004, Jones 

and Miller 2008). 

 

The Dopaminergic System as a Target for Pb2+ Neurotoxicity 

Dopamine (DA) is a catecholaminergic neurotransmitter that plays a critical role in a 

wide range of central nervous system processes such as working memory, locomotion, reward, 

motivation, learning, attention, and addiction (David, Clark et al. 1972, Dietrich, Ris et al. 2001, 

Canfield, Kreher et al. 2003, Tran, Tamura et al. 2005, Beaulieu and Gainetdinov 2011). 

DAergic system disruptions are associated with alterations in cognitive and behavioral outcomes 

associated with Pb2+ exposure, making the DAergic system a likely target for Pb2+ neurotoxicity 

(Pokora, Richfield et al. 1996, Bouchard, Bellinger et al. 2009). Previous studies have 

demonstrated that Pb2+ exposure affects a number of processes in the DAergic system such as 

DA synthesis, turnover, and reuptake, as well as the number and function of DA receptors (Cory-
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Slechta 1995). Regional as well as temporal differences in the effects of Pb2+ on the DAergic 

system have also been described (Zuch, O'Mara et al. 1998, Gedeon, Ramesh et al. 2001).  

 

DAergic System Overview 

DA synthesis begins with the hydroxylation of tyrosine to L-3,4-dihydroxyphenylalanine 

(L-DOPA) by tyrosine hydroxylase (TH). A carboxyl group is removed from L-DOPA by L-

DOPA decarboxylase to form DA (Vallone, Picetti et al. 2000). Once DA is synthesized, it is 

packaged into vesicles via vesicular monoamine transporter-type 2 (VMAT2) to prevent 

autooxidation (Harsing Jr 2008, Jones and Miller 2008). DA that is not stored in vesicles can be 

metabolized by monoamine oxidase into 3,4-Dihydroxyphenylacetic acid (DOPAC) which, in 

turn, can be further metabolized into homovanillic acid (HVA) catechol-o-methyl transferase 

(COMT). The metabolites HVA and DOPAC have been used as biomarkers of DA turnover as 

increased levels of these metabolites indicate increased release of DA and vice versa (Mignot 

and Laude 1985).  

The work performed here focused on brain regions associated with the mesolimbic and 

mesostriatal pathways, that is, the dorsal striatum (STR), nucleus accumbens (NAC), and 

olfactory tubercle (OT). The mesolimbic pathway is comprised of DAergic projections from the 

lateral portion of the ventral tegmental area and retrorubral area to the limbic regions of the STR 

(anteromedial and ventral regions), NAC, OT, and central region of the amygdala; this pathway 

is strongly indicated in drug addiction (Zhou, Wilson et al. 2003, Bjorklund and Dunnett 2007, 

Chen, Hopf et al. 2010, Volkow, Wang et al. 2011). The sensorimotor region of the STR 

(dorsolateral region) is innervated by DAergic neurons of the mesostriatal pathway, which 

project from the dorsal and ventral tiers of the substantia nigra pars compacta (Bjorklund and 
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Dunnett 2007). This pathway also contributes to drug reward and addiction (Volkow, Wang et al. 

2011).  

DA receptors belong to the 7 transmembrane domain G-protein coupled receptor family 

(Vallone, Picetti et al. 2000). There are 5 known DA receptors that are divided into two groups, 

the D1-like receptors (D1R) and the D2-like receptors (D2R) (Lindgren, Usiello et al. 2003). DA 

can act as either a stimulatory or inhibitory neurotransmitter, depending on the DA receptor type 

it activates. Activation of D1R, comprised of D1 and D5 DA receptors, will result in a 

stimulatory signaling cascade in postsynaptic neurons through activation of adenylyl cyclase 

(AC) and increased production of cyclic adenosine monophosphate (cAMP). On the other hand, 

activation of D2R, comprised of D2, D3, and D4 receptors inhibits AC and decreases production 

of cAMP in postsynaptic neurons (Harsing Jr 2008). The opposing signaling cascades activated 

by D1R and D2R play a significant role in the regulation of the direct and indirect signaling 

pathways underlying motor function, behavior, and cognition (Bjorklund and Dunnett 2007, 

Gruber and McDonald 2012).  

DA synthesis, release, and reuptake are tightly regulated. The binding of DA to D2R 

autoreceptors in presynaptic neurons results in decreased AC activity. This, in turn, decreases TH 

activity with a subsequent decrease in DA synthesis (Lindgren, Usiello et al. 2003). DA 

transporter (DAT), also present on the presynaptic cell terminal, facilitates the reuptake of DA 

from the synapse. Once taken up into the presynaptic terminal, DA can be repackaged into 

vesicles via VMAT2 for future release (Harsing Jr 2008). Together, these systems work to 

prevent excessive DA in the synaptic cleft and in the cytosol, preventing auto-oxidation of DA 

and subsequent generation of reactive oxygen species (Harsing Jr 2008, Jones and Miller 2008). 
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Targets of Pb2+ in the DAergic System 

 Previous studies have shown that Pb2+ exposure targets DAergic transmission. However, 

there is considerable disagreement in the literature regarding the mechanism(s) through which 

Pb2+ affects DAergic system function (Cory-Slechta 1995, Verstraeten, Aimo et al. 2008). The 

magnitude and direction of effect(s) can vary depending on the level of exposure, duration and 

developmental stage of exposure, and the models used (Verstraeten, Aimo et al. 2008). Overall, 

these studies demonstrate that there are multiple DAergic system biomarkers that are vulnerable 

to Pb2+ neurotoxicity (Lasley 1992). It should also be noted that insults to different DAergic 

targets can occur simultaneously, increasing vulnerability of DA transmission to Pb2+ 

neurotoxicity (White, Cory-Slechta et al. 2007). 

A number of studies have reported hyperlocomotor function in rats exposed to Pb2+ 

(Meredith, McIntosh et al. 1988, Ma, Chen et al. 1999, Moreira, Vassilieff et al. 2001). 

Locomotor activity is mediated by D1R and D2R signaling (Ma, Chen et al. 1999). Disruption in 

the function of these receptors has been implicated in altered DAergic system function in animals 

with BLL of 9.26-18.06µg/dl following chronic, post-weaning exposure to Pb2+ (Gedeon, 

Ramesh et al. 2001).  

Regional differences in D2R levels were observed by Moresco et al (1988), as Pb2+ 

exposure resulted in increased D2R levels in the STR and decreased D2R in the NAC; in 

contrast, no changes in D1R expression were observed in this study in either STR or NAC 

(Moresco, Dall'Olio et al. 1988). On the other hand, Pokora (1996) observed a 21% decrease in 

D2R binding in the NAC of Pb2+-exposed rats with BLL of 29µg/dl versus control rats with BLL 

of <5µg/dl at 8 months. At 12 months, D2R binding in the NAC was decreased by 16% and 28% 

in Pb2+-exposed rats with BLL of 17- and 27µg/dl, respectively, versus control rats with BLL of 
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<5µg/dl. No change in D2R binding was observed in the STR of Pb2+-exposed rats versus 

control at any time point. A 68% decrease in D1R sites were also observed in the NAC after 8 

months of exposure in Pb2+-exposed rats with BLL of 29 µg/dl versus control rats, though this 

decrease disappeared at 12 months of exposure (Pokora, Richfield et al. 1996). Decreases in D2R 

in the NAC were also reported by Gedeon (2001) in Pb2+-exposed rats (with BLL ranging from 

9.26-18.06µg/dl) versus control (with BLL ranging from 0.81-1.74µg/dl) at postnatal day (PN) 

30, PN60, and PN90, followed by significant increases at PN150. Significant increases in D1R 

were detected in the NAC at PN90, PN120, and PN150 (Gedeon, Ramesh et al. 2001). Ma et al. 

(1999) observed no change in D2R expression in either NAC or STR and no change in D1R 

binding in Pb2+-exposed rats with BLL of 40µg/dl versus control rats with undetectable BLL 

(Ma, Chen et al. 1999). These studies demonstrate that DA receptors are a target for Pb2+ toxicity 

even though the observed effects of Pb2+ exposure varied across studies. 

Pb2+ exposure may also target DA levels through a number of mechanisms. Pb2+ may also 

target D2 autoreceptor function in presynaptic DAergic cell terminals, altering DA release 

patterns (Leret, Garcia-Uceda et al. 2002). Chronic Pb2+ exposure may impair D2 autoreceptor-

regulated DA synthesis through downregulation or decreased function of D2 autoreceptors, 

changes in calcium influx through voltage-gated calcium channels, or interference with calcium-

dependent enzymes (Lasley and Lane 1988, Marchetti 2003, NourEddine, Miloud et al. 2005). 

Nation et al. (1989) reported a significant decrease in DA in the NAC, but also observed a 

significant increase in the OT, and no change in STR in Pb2+-exposed animals with BLL of 

61µg/dl versus control rats with BLL of 3µg/dl. Furthermore, all three of these regions exhibited 

significant increases in DOPAC levels as well as DA turnover (Nation, Frye et al. 1989). More 

recently, our laboratory observed significant increases in DA, DOPAC, HVA, and DA turnover 
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in the STR of Pb2+-exposed rats with BLL of 22µg/dl versus control rats with BLL of 0.6µg/dl 

(Stansfield, Ruby et al. 2015). Interestingly, Gedeon (2001) demonstrated a significant increase 

in DA in the NAC at PN60 followed by significant decreases at subsequent time points, raising 

the possibility of a time-dependent effect of Pb2+ on DA availability (Gedeon, Ramesh et al. 

2001). 

 As Pb2+ has been demonstrated to alter DA levels, several studies investigated its effects 

on TH expression and activity. Ramesh and Jadhav (1998) demonstrated that Pb2+ decreased TH 

activity and expression in the NAC but not in the STR of Pb2+-exposed rats with BLL of 18 

µg/dl versus control rats with BLL of 4µg/dl (Ramesh and Jadhav 1998). In an in vitro study, 

Pb2+ exposure produced a transient increase in TH activity in PC12 cells (Tian, Sun et al. 2000). 

This transient increase corresponded with the activity of protein kinase C (PKC), a known target 

of Pb2+ toxicity that modulates TH expression and activity (Vyas, Faucon Biguet et al. 1990, 

Kumer and Vrana 1996, Sun, Tian et al. 1999, Tian, Sun et al. 2000). Picomolar concentrations 

of Pb2+ have been demonstrated to increase PKC activity whereas micromolar concentrations 

inhibit PKC function (Marchetti 2003). As exposure paradigms vary across studies in the 

available literature, the concentration-dependent effects of Pb2+ on PKC function and may 

underlie some of the differences in TH activity observed across studies.  

Kala (1995) reported significant decreases in basal and stimulated release of DA in the 

NAC of rats exposed to Pb2+-exposed rats with BLL of 18µg/dl versus control rats with BLL of 

4µg/dl (Kala and Jadhav 1995). Pb2+ exposure has also been observed to increase potassium 

chloride-evoked DA release in the NAC by Zuch et al (1998), who reported faster clearance of 

DA in both the NAC and STR of Pb2+-exposed animals with BLL as low as 16µg/dl versus 

control rats with BLL <5µg/dl (Zuch, O'Mara et al. 1998). Prior work by this group also 
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demonstrated that DAT levels decreased in the NAC and not the STR of Pb2+-exposed rats with 

BLL of 29µg/dl versus control rats with BLL <5µg/dl. This effect was reversed following 

treatment with DA agonists (Pokora, Richfield et al. 1996). More recently, our laboratory 

reported no changes in DAT or VMAT2 levels in the STR or NAC in Pb2+-exposed animals 

(Stansfield, Ruby et al. 2015).  

 

Does DAergic System Dysregulation Underlie Drug Sensitization in Pb2+ Exposure Models? 

Studies by Nation and colleagues (Miller, Nation et al. 2000, Nation, Miller et al. 2000, 

Miller, Nation et al. 2001, Nation, Cardon et al. 2003, Nation, Smith et al. 2004) have shown that 

early-life Pb2+ exposure can increase the risk for drug abuse at later stages of life. Significant 

increases in locomotor response to repeated administration of cocaine have been observed in 

adult male rats that had been perinatally exposed to Pb2+, demonstrating increased sensitivity to 

the locomotor stimulatory effects of cocaine (Nevin 2000). In a subsequent study, significantly 

higher response rates to cocaine reinstatement were observed in exposed versus control rats, 

demonstrating an association between perinatal Pb2+ exposure and increased risk for drug relapse 

in later life (Nation, Cardon et al. 2003). Further work by this group demonstrated significantly 

higher rates of self-administration at a low dose cocaine infusion (.06mg/kg/infusion) in exposed 

rats whereas no effect was observed in control rats. Furthermore, Pb2+-exposed animals self-

administered higher doses of cocaine (0.5, 0.25, and 0.15 mg/kg/infusion) at significantly lower 

rates than control animals, suggesting that perinatal Pb2+ exposure increases the reinforcing 

properties of cocaine (Nation, Smith et al. 2004). 

 

Limitations in Current Knowledge 



31 
 

 Pb2+ has been demonstrated to adversely affect the DAergic system by a number of 

studies. It is evident that the effects of Pb2+ on the DAergic system are not only dependent on sex 

and the level of exposure, but on the developmental stage of the exposure (Jones and Miller 

2008). As such, it is probably inappropriate to generalize findings across studies that have 

employed different exposure paradigms and single-sex exposure groups.  

Today, the majority of children below the age of 5 residing in the United States have 

BLL below 5µg/dl, the current CDC level of action. Even so, a number of studies have 

determined that IQ deficits occur in children with BLL at or below this action level. As such, it is 

possible that the DAergic system may also be affected in children with BLL at or below 5µg/dl. 

A number of studies (Kala and Jadhav 1995, Jadhav and Ramesh 1997, Ramesh and Jadhav 

1998) have employed control groups with BLL near 5µg/dl and, as a result, masked any effects 

occurring at these low BLL. Furthermore, there is a scarcity of animal studies employing 

exposure paradigms resulting in BLL at or near the current CDC level of action.  

 Experimental animal studies have investigated the impact of Pb2+ on DAergic 

transmission. However, it is often difficult to generalize findings across studies due to a number 

of factors. Single-sex studies, which employ either all-male or all-female animal models, make 

up the majority of studies investigating Pb2+ toxicity. As the number of single-sex studies 

employing male animals greatly outweighs the number of those employing female animals, it is 

possible that our current understanding of Pb2+ effects on DAergic system ontogeny may not be 

generalized across sexes (Beery and Zucker 2011). Sex-dependent differences in cognitive 

function have been reported in children prenatally exposed to Pb2+, indicating increased 

susceptibility of males to Pb2+ neurotoxic effects (Jedrychowski, Perera et al. 2009). On the other 

hand, McFarlane (2003) found that females were more prone to drug/alcohol abuse, anxiety and 
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other behavioral outcomes following early-life Pb2+ exposure versus males (McFarlane, Searle et 

al. 2013). Therefore, there may be sex-dependent effects of Pb2+ exposure on the DAergic 

system that have yet to be elucidated. 

The DAergic system is dynamic and changes as the brain matures. Consequently, the 

levels of DA, DA receptors, and other markers differs across ages. Most studies investigating the 

impact of Pb2+ on the DAergic system have limited their assessment to one time-point (Cory-

Slechta 1995). Moreover, as studies typically employ one or two age groups, it is difficult to 

determine any temporal effects of Pb2+ neurotoxicity on any given DAergic system biomarker. 

The identification of temporal effects is further complicated when methodologies, exposure 

paradigms, and BLL differ across studies. Together, these limitations highlight the importance of 

conducting a study that not only incorporates both male and female, but also investigates the 

impact of Pb2+ on the DAergic system at multiple time points and at exposure levels similar to 

those detected in children today. 

 

Summary, Hypothesis, and Specific Aims of Thesis 

Despite the success of public health policy to eliminate the presence of Pb2+ in the 

environment, low-level Pb2+ exposure continues to be a significant public health problem, 

especially for low-income and minority populations in urban areas. These are the same 

populations that have a higher risk for drug addiction. It is increasingly evident that elevated 

BLL may be a risk factor for drug addiction in later stages of life. Even so, the neurobiology 

underlying this increased risk is not yet fully understood. Work by our laboratory has 

demonstrated that Pb2+ exposure increases sensitization to the psychostimulant effects of cocaine 

in a rodent model for Pb2+ intoxication. This effect was eliminated following administration of 
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DA receptor antagonists, primarily D1R, suggesting that the effect was mediated by the DAergic 

system (Stansfield, Ruby et al. 2015). However, the neurochemical modifications underlying the 

increased sensitization observed in Pb2+-exposed animals have not yet been described in the 

same animal model.  

The purpose of this dissertation was be to elucidate the neurobiology underlying the 

increased drug sensitization observed in Pb2+-exposed animals. We also aimed to address several 

limitations in the current understanding of Pb2+’s effects on the DAergic system. Our present 

knowledge of Pb2+ neurotoxicity relies heavily on single-sex studies and, as a result, may fail to 

recognize potential sex-dependent effects. To address this limitation, this thesis studied both 

male and female experimental animals. This thesis also enhanced current understanding of the 

effects of low-level Pb2+ exposure by employing exposure models with BLL close to the current 

CDC level of action (~5µg/dl) and models with BLL associated with moderate exposure (~ 

22µg/dl) (Stansfield, Ruby et al. 2015). Furthermore, it investigated the effects of Pb2+ on the 

ontogeny of the DAergic system by assessing its effects at three stages of rat development; 

juvenile, adolescent, and young adult. 

The overarching hypothesis is that developmental Pb2+ exposure alters DAergic system 

ontogeny in a manner that increases sensitization to the psychostimulant effects of cocaine. We 

further hypothesized that DAergic system function is enhanced through increased levels of DA 

and DA turnover in the STR. We also hypothesized that Pb2+ exposure may enhance DAergic 

signaling by altering DA receptor density in the STR, NAC, and the OT as these regions are 

sensitive to the psychostimulant effects of cocaine (Ikemoto 2002, Ikemoto 2003, Ikemoto and 

Witkin 2003, Ikemoto 2007). To test these hypotheses, we sought to determine if chronic 

exposure to environmentally relevant levels of Pb2+ (1) increases the DA levels and turnover in 
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the STR, and (2) affects D1R and D2R density in brain regions sensitive to the psychostimulant 

effects of cocaine (see Fig.1.1 for biomarkers to be analyzed).  
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Figure 1.1: Dopaminergic system biomarkers examined in the current study 

We measured DA and its metabolites DOPAC and HVA to determine DA availability and 

turnover in the STR. Additionally, we measured VMAT2 levels in the OT, NAC, and STR as 

this protein is essential in the transport of DA into vesicles in the presynaptic DAergic cell 

terminal. D1R and D2R levels were also measured in these regions. We measured TH levels as 

this enzyme is essential in the rate-limiting step of DA synthesis. We also measured pser40TH as 

a marker for TH activation as this enzyme is activated through phosphorylation.  
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 Abstract 

Previous studies have demonstrated that lead (Pb2+) exposure alters striatal dopamine 

(DA) levels and turnover (Nation, Frye et al. 1989, Cory-Slechta 1995). However, there is 

disagreement regarding the magnitude and direction of Pb2+ effects on DA levels and turnover 

(Gedeon, Ramesh et al. 2001). Also, age and dose have been reported to impact the effects of 

Pb2+ on dopaminergic (DAergic) transmission (Devi, Reddy et al. 2005, Jones and Miller 2008). 

Most studies have measured the effects of Pb2+ in only one sex (typically male), one exposure 

(usually high level exposure), and one or two time-points, making it difficult to determine any 

potential sex-, age-, and exposure-dependent effects. In the present study, we measured DA 

levels and turnover in the dorsal striatum (STR) of juvenile (PN14), adolescent (PN28), and 

young adult (PN50) male and female rats following chronic exposure to diets containing either 

180ppm Pb2+ acetate (PbAC) diet or 1500ppm PbAc diet. As tyrosine hydroxylase (TH) is the 

rate-limiting enzyme in DA synthesis, we measured TH and phosphorylated-serine (40)-tyrosine 

hydroxylase (pser40TH) levels to determine if altered levels of DA, DA metabolites, and DA 

turnover are due to Pb2+-induced changes in TH protein expression level and/or activation. 

Vesicular monoamine transporter 2 (VMAT2) levels were also measured as this transporter is 

critical for the packaging of free intracellular DA into synaptic vesicles. 

 We observed that chronic Pb2+ exposure significantly increased DA, and the DA 

metabolites 3,4-Dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA); as well as 

DA turnover in Pb2+-exposed male rats with BLL as low as 6.8µg/dl at PN28 and 4.4µg/dl at 

PN50, as compared to rats on control with BLL of 0.4µg/dl and 0.6µg/dl at PN28 and PN50, 

respectively. No changes in VMAT2, TH, or pser40TH were detected in these animals. No 

changes in DA, DA metabolites, or DA turnover were detected in the STR of exposed female 
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rats at any age. However, VMAT2 levels were significantly decreased in PN14 females on 

180ppm PbAC diet and increased in PN28 females on 180ppm and 1500ppm PbAC diets. 

Significant increases in pser40TH levels were detected in PN50 females on 1500ppm diet. The 

present study demonstrates that chronic Pb2+ exposure results in a hyperactive DAergic state in 

males with blood Pb2+ levels as low as 4.4µg/dl, but not in females. Furthermore, our results 

suggest that Pb2+ alters the DAergic system in a time-, sex-, and exposure-dependent manner. 

 

Introduction 

In a recent study, our laboratory observed increased locomotor activity induced by 

cocaine administration in male rats with BLL of 22µg/dl versus unexposed control rats 

(Stansfield, Ruby et al. 2015). Administration of a D1R antagonist (SCH23390) prior to cocaine 

injection resulted in a block of cocaine-induced locomotor activity, whereas administration of a 

D2R antagonist (Raclopride) resulted in a partial block of this effect (Stansfield, Ruby et al. 

2015). Further work by our laboratory found that male rats with BLLs as low as 4.5µg/dl and 

female rats with BLLs as low as 4.2µg/dl exhibited increased locomotor activity following a 

5mg/kg (low dose) injection of cocaine. Importantly, no response was detected in control rats 

following injection of the low dose of cocaine, suggesting that Pb2+-exposed rats at even this low 

level of exposure are sensitized to cocaine-induced locomotor activation. A 15mg/kg (high dose) 

cocaine injection, however, resulted in similar levels of cocaine-induced locomotor activity 

between animals with BLLs of 4.5µg/dl and control animals (Stansfield KH 2015). These results 

suggested a hyperactive DAergic state underlying the increased sensitization to cocaine’s 

psychostimulant effects observed in rats with BLLs lower than the current CDC level of action 

(CDC 2012). 
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DAergic systems play a critical role in a number of central nervous system processes, 

including drug addiction (Volkow and Li 2005, Baler and Volkow 2006, Volkow, Wang et al. 

2011, Volkow, Wang et al. 2011a, Volkow, Koob et al. 2016). There is evidence to suggest that 

environmental Pb2+ exposure plays a role in drug addiction by modulating DAergic system 

activity (Jones and Miller 2008). However, there is still disagreement regarding the magnitude 

and direction of the effects of Pb2+ on DAergic transmissions with studies variously reporting 

hyperactive (Nation, Frye et al. 1989, Szczerbak, Nowak et al. 2007), and hypoactive DAergic 

states (Lasley, Greenland et al. 1984, Pokora, Richfield et al. 1996, Antonio and Leret 2000), or 

no change (Leret, Garcia-Uceda et al. 2002, Nowak, Szczerbak et al. 2008). Region-, dose-, and 

age-dependent differences on DA levels and turnover have also been described (Antonio and 

Leret 2000, Gedeon, Ramesh et al. 2001, Leret, Garcia-Uceda et al. 2002, Devi, Reddy et al. 

2005).  

The conflicting findings in these studies may be due in part to differences in 

methodology, endpoints measured, and differences in exposure paradigms employed. The blood 

Pb2+ levels (BLL) of exposed animals vary across studies, with some studies assessing the 

impact of Pb2+ exposure on models with BLL of ≤10µg/dl (Gedeon, Ramesh et al. 2001, Nation, 

Cardon et al. 2003), 11-20µg/dl (Kala and Jadhav 1995, Ramesh and Jadhav 1998, Zuch, O'Mara 

et al. 1998, Nation, Smith et al. 2004), 21-30µg/dl (Zuch, O'Mara et al. 1998, Leret, Garcia-

Uceda et al. 2002, Stansfield, Ruby et al. 2015), 31-40µg/dl (Ma, Chen et al. 1999, Nation, 

Cardon et al. 2003), 41-50µg/dl (Cory-Slechta, Virgolini et al. 2004), or even ≥51µg/dl (Nation, 

Baker et al. 1986, Nation, Frye et al. 1989). Furthermore, given the different endpoints 

measured, as well as methodologies used, it is difficult to generalize findings across studies. 

Lastly, most published studies investigating the impact of Pb2+ on the brain have employed only 
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male animals, leaving a huge gap in our knowledge of Pb2+ effects on the female brain (Beery 

and Zucker 2011).  

 The present study seeks to address these limitations by analyzing separately the effects of 

Pb2+ in juvenile (postnatal day 14, PN14), adolescent (PN28), and young adult (PN50) male and 

female rats following chronic exposure to 180ppm Pb2+-acetate (PbAC) or 1500ppm PbAC. The 

exposure paradigm employed in this study resulted in BLL as low as 4.4µg/dl at PN50 after 

chronic exposure to 180ppm PbAC diet, just below the current CDC level of action of 5µg/dl, 

and as high as 36µg/dl at PN14 after chronic exposure to 1500ppm PbAC (Table 2.1A-C) (CDC 

2012). These BLLs are relevant to those detected in children of the United States (CDC 2015, 

Stansfield, Ruby et al. 2015, CDC 2016). We measured DA levels, DA metabolite levels, and 

DA turnover in the dorsal striatum (STR) using HPLC as the STR is considered an ideal system 

for analysis of the DAergic transmission (Lindgren, Usiello et al. 2003). We also used Western 

blotting techniques to measure tyrosine hydroxylase (TH) levels and phosphorylated-serine (40)-

tyrosine hydroxylase (pser40TH) in the STR to determine if Pb2+ alters expression and activation 

of the rate-limiting enzyme in DA synthesis (Lindgren, Usiello et al. 2003). VMAT2 levels were 

measured using quantitative autoradiography, as this transporter plays a critical role in the 

sequestration of DA into vesicles, thereby regulating intracellular DA levels (Duchemin, Zhang 

et al. 2009, Guillot and Miller 2009). VMAT2 is also resistant to changes in DA levels at the 

synapse and can be used as a marker for DAergic terminal integrity (Wilson and Kish 1996, 

Guilarte, Nihei et al. 2003).  

 

Materials and Methods 
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Animals  

All animal studies were approved by the Columbia University Medical Center Animal 

Care and Use Committee and were carried out in accordance with the Guide for Care and Use of 

Laboratory Animals of the U.S. National Institutes of Health. Long-Evans rats were purchased 

from Charles River, Inc. (Charles River, Bar Harbor, ME, USA) and fed 0-, 180-, or 1500ppm 

PbAC diet. PbAC diet was prepared by and purchased from Dyets (Dyets, Bethlehem, PA, 

USA). The diet was comprised of Purina RMH 1000 diet with PbAC incorporated into chow 

mix. Food and water were provided ad libitum. Dams were initiated on Pb2+ diet 10 days prior to 

mating with Long-Evans male rats, which were maintained on control diet at all times. Litters 

were culled to 10 pups per litter at postnatal day PN 1-2 and weaned on PN21. Upon weaning, 

rats were maintained on same diet as their respective mother. Rats were maintained on a 12-hour 

light-dark cycle until sacrificed at PN14, PN28, and PN50. For PN14 age group, all pups from a 

litter were euthanized on the same day. 

 

Tissue Collection 

For VMAT2 quantitative autoradiography, whole rat brains were harvested immediately 

after decapitation, snap frozen, and then stored at -80oC until used.  For HPLC and Western 

blots, rat brains were dissected immediately after decapitation. STR was dissected on ice and 

snap frozen. Brain tissue was then stored at -80oC until used for analysis. No more than one male 

and one female experimental determination was used per litter for statistical purposes.  

 

Blood Pb2+ levels 
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Rats were anesthetized with a 25mg/kg dose of pentobarbital. Blood was collected 

transcardially from rats for each age group. BLL were measured using a Magellan LeadCare 

analyzer using manufacturer’s instructions (ESA Laboratories, Chelmsford, MA, USA). BLL 

were averaged between litters in each exposure group at each age and for each sex.  

 

High Performance Liquid Chromatography 

Fresh-frozen dissected STR tissue was processed and analyzed using methods similar to 

Sheleg et al. (2013) (Sheleg, Yochum et al. 2013). Briefly, striatal tissue was sonicated in 500ul 

of .1N perchloric acid. Sonicated samples were then centrifuged at 14,000rpm for 20 minutes at 

4oC. Pellets were dried overnight and supernatant was collected and filtered through 0.22um 

filters before injection into a high-performance liquid chromatography system with 

electrochemical detection (Waters, Milford, MA, USA) for neurochemical analysis of DA and its 

metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). 

Components were separated on a CMD-150 cation exchange column (150 x 3.2mm, ESA 

Biosciences, Chelmsford, MA, USA) using isocratic mobile phase (MD-TM mobile phase, ESA 

Biosciences) containing 2.2mM NaCl pumped at a constant flow rate of 0.5mL/min. Compounds 

were quantified with electrochemical detection using a glassy carbon working electrode and 

2.0mm diameter in situ silver reference electrode (Flow Cell, 2mm GC WE, ISAAC; Waters). 

Pellets were dried at 30oC overnight and then dissolved in 100uL of 0.5N NaOH in a sonicating 

water bath until dissolved. 400uL of water was then added to samples, bringing the concentration 

of NaOH to 0.1N. Protein concentration was determined using a bicinchoninic acid assay reagent 

kit (Pierce, Rockford, IL, USA). Samples were read at 562nm using a SpectraMax microplate 

reader (Molecular Devices, Sunnyvale, CA, USA).  
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Protein Harvesting and Western Blot 

STR from control and Pb2+-exposed rats was lysed in radioimmunoprecipitation assay 

buffer containing 150mM NaCl, 20% SDS, 5mM EGTA, 50mM Tris, 1% Triton, and 5% 

deoxycholate. Two experiments were run per gel, each experiment containing the same set of 

samples run in duplicate. After protein transfer, the membrane was cut into two pieces between 

experiments and each experiment was probed with either TH or pser40TH. Membranes were 

incubated in the appropriate primary antibodies: 1:1000 TH (Millipore, AB318), 1:1000 

pser40TH (Millipore, AB5935), and 1:1000 β-actin (Santa Cruz, SC-1616) diluted in blocking 

solution overnight at 4 °C. Corresponding fluorescent secondary antibodies were used (LI-COR, 

IRDye® 680RD cat#925-68073, IRDye® 680LT cat#926-68022, IRDye® 800CW cat#925-

32214). Corresponding membrane halves were visualized simultaneously using the Odyssey 

imaging system (LI-COR). Integrated intensity of the protein of interest was normalized to β-

actin levels from the same blot.  

 

Quantitative Autoradiography 

Fresh-frozen brains were sectioned at 20-micron thickness in the coronal plane on a 

freezing cryostat (Leica Biosystems) and thaw-mounted on poly-L-lysine-coated slides. Slides 

were stored at − 20 °C until used. For VMAT2 autoradiography, slides were pre-washed in 

20mM HEPES-sucrose buffer at room temperature for 15 min. For total binding, slides were 

incubated in HEPES-sucrose buffer containing 6.9nM [3H]-dihydrotetrabenazine (DTBZ) for 1 

hour. Nonspecific binding was determined by adding 2 μM unlabeled DTBZ to buffer. Slides 

were then washed thrice in Tris-HCl-sucrose buffer at room temperature for 5 minutes and then 



57 
 

dipped in dH20 at 4 °C and dried overnight. On the following day, slides were apposed to Kodak 

Biomax MR film, MR-1 for 4 weeks. [3H]-Microscales (Amersham, Arlington Heights, IL, 

USA) were included with each film to allow for quantitative analysis of images. Images were 

captured and analyzed using MCID Imaging software (MCID, InterFocus Imaging, 

Cambridgeshire, UK). A rat brain atlas (Paxinos and Watson 1998) was used to define regions in 

OT, NAC, and STR to be analyzed. VMAT2 levels in OT were determined by averaging binding 

intensity measurements for anterior OT (A-OT) (at Bregma 1.60mm) and posterior OT (P-OT) 

(at Bregma 0.70mm) (Fig. 2.9). VMAT2 levels in NAC were determined by averaging binding 

intensity measurements for the NAC core (NAC-C) and NAC shell (NAC-S) (both at Bregma 

1.60) (Fig. 2.10).  VMAT2 levels in STR were determined by averaging binding intensity 

measurements for rostral STR (R-STR) (at Bregma 1.60mm), middle STR (M-STR) (at Bregma 

-0.26mm), and caudal STR (C-STR) (at Bregma -0.92mm) (Fig. 2.11).  

 

Data and Statistical Analysis 

Statistical analysis was performed using one-way ANOVA with post hoc Tukey’s test 

(Graphpad Software, Inc.). A Bonferroni correction was used for statistical analysis of VMAT2 

autoradiography data to account for multiple comparison across three brain regions (OT, NAC, 

and STR). For autoradiography analysis, values of p≤.017 were considered statistically 

significant. For statistical analyses of immunoblot and HPLC data, values of P≤.05 were 

considered statistically significant. DA, DOPAC, and HVA levels presented as percent of 

control. DA turnover is presented as a ratio. TH, pser40TH, and the ratio of pser40TH to TH 

(pser40TH/TH) levels are presented as percent of control. OT, NAC, and STR VMAT2 levels 

are presented as femtomoles per milligram tissue (fmol/mg tissue). Prior to statistical analysis, 
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data was analyzed for outlier values. To accomplish this, data for each group was divided into 

quartiles. Outliers were defined as any data point more than 1.5 interquartile ranges below the 

first quartile or above the third quartile. Outliers were removed prior to statistical analysis.   

 

Results 

BLLs in our rat model of Pb2+ exposure  

The exposure paradigm utilized in this study resulted in BLLs that were within the range 

of those detected in children aged 1-5 in recent NHANES surveys irrespective of age, sex, and 

exposure of animal (CDC 2012, CDC 2016). At each age, BLLs were significantly different for 

animals exposed to 0ppm, 180ppm, and 1500ppm PbAc diet (p<.0001, F2,33= 207.6 at PN14; 

p<.0001, F2,56= 173.3 at PN28, p<.0001, F2,191 = 426.7 at PN50) (Fig. 2.1 A-C). At PN14, the 

resulting BLL in these animals was 0.4±0.0 µg/dl for control (n=14), 9.9±0.7µg/dl for rats on 

180ppm PbAC diet (n=10), and 36.0 ± 3.9µg/dl for rats on 1500ppm PbAC diet (n=12). At 

PN28, the resulting BLL in these animals was 0.6±0.1 µg/dl for control (n=31), 7.0±0.3µg/dl for 

rats on 180ppm PbAC diet (n=12), and 19.9 ± 1.7µg/dl for rats on 1500ppm PbAC (n=6). At 

PN50, the resulting BLLs in these animals was 0.6±0.1 µg/dl for control (n=70), 4.4±0.2µg/dl 

for rats on 180ppm PbAC diet (n=40), and 22.0 ± 0.7µg/dl for rats on 1500ppm PbAC diet 

(n=70) (Fig. 2.1A-C). 

 

Increased DA and DA turnover in Pb2+-exposed adolescent and young adult male rat STR 

To determine how Pb2+ exposure affects DAergic system ontogeny in our model, we 

measured DA, DOPAC, and HVA levels, as well as DA turnover in males and female rats at 

PN14, PN28, and PN50. The time between PN14 and PN28 corresponds to a period of rapid 
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brain growth and maturation of the DAergic system while at PN50, DA content in the STR 

begins to reach adult levels (Broening and William Jr 1998). No significant changes in DA 

(P=0.53, F2,14=0.66), DOPAC (p=0.68, F2,13=0.40), or HVA (p=0.98, F2,14=0.02) levels were 

measured in male STR at PN14(Fig. 2.2A). Significant increases in DA (P=0.0005, F2,11=16.49), 

DOPAC (p=0.0002, F2,13=18.51), and HVA (p=<0.0001, F2,14=29.10) levels were measured in 

the STR of Pb2+-exposed versus control male STR at PN28 (Fig. 2.2B). Significant increases in 

DA (P=0.0004) levels were observed in the STR in Pb2+-exposed versus control PN50 male rats. 

A dose-dependent effect was observed for DOPAC (p<0.0001, F2,15=30.82) and HVA 

(p=<0.0001, F2,10=55.59) in STR of Pb2+-exposed PN50 male rats (Fig. 2.2C). 

When not packaged into vesicles, DA can be metabolized by monoamine oxidase into 

DOPAC which, in turn, can be further metabolized into homovanillic acid (HVA) by catechol-o-

methyl transferase (COMT) (Mignot and Laude 1985). Pharmacological and lesion analyses 

have demonstrated that the concentration of DOPAC and HVA present in DA-rich regions of the 

brain are dependent on DA transmission. Inhibition of DA transmission results in decreased 

DOPAC and HVA levels relative to DA levels, whereas increased DOPAC and HVA can be 

expected with increased release and subsequent metabolism of DA. Therefore, the ratio of these 

DA metabolites to DA can be implemented as an indirect measure of DA neurotransmission 

(Bacopoulos, Hattox et al. 1979). We measured changes in DA turnover by calculating the ratio 

of DOPAC to DA (DOPAC/DA) as well as HVA to DA (HVA/DA) as an index of DA turnover. 

As such, higher DOPAC/DA and HVA/DA levels indicate increased transmission DA (increased 

DA turnover), whereas lower DOPAC/DA and HVA/DA levels indicate decreased transmission 

of DA (decreased DA turnover).  
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No significant changes in DOPAC/DA (p=0.42, F2, 14 = 0.92) or HVA/DA (p=0.71) ratio 

were detected in PN14 male rat STR (Fig. 2.3A and 2.3D). Significant increases in DOPAC/DA 

ratio were detected in rats exposed to 1500ppm PbAC diet at PN28 (p=0.04, F2, 12 = 4.13) (Fig. 

2.3B) and PN50 (p=0.01, F2, 13 = 6.41) (Fig. 2.3C). The HVA/DA ratio was significantly 

increased in the STR of PN28 male rats exposed to 180 and 1500ppm diet versus control animals 

(p=0.001, F2, 11 = 13.78) (Fig. 2.3E). The HVA/DA ratio was significantly increased in the STR 

of PN50 male rats exposed to 1500ppm diet versus control animals and animals exposed to 

180ppm diet (p=0.01, F2, 12 = 6.41) (Fig. 2.3F). The significant increases in DOPAC/DA and 

HVA/DA ratios indicate significant increases in DA turnover in exposed versus control males at 

PN28 and PN50.  

No significant differences were detected in the female STR for DA (p=0.90, F2,13 =0.11 at 

PN14; p=0.30, F2,12 =1.32 at PN28; p=0.78, F2,13=0.25 at PN50), DOPAC (p=0.054, F2,14 =3.62 at 

PN14; p=0.77, F2,13 =0.26 at PN28; p=0.48, F2,12 =0.77 at PN50), or HVA (p=0.059, F2,12=3.63 at 

PN14; p=0.20, F2,11= 1.88 at PN28; p=0.13, F2,11 =2.44 at PN50) (Fig. 2.4A-C). No significant 

differences in DOPAC/DA ratio (p=0.40, F2,12 =0.99 at PN14; p=0.57, F2,14 =0.58 at PN28; 

p=0.23, F2,13 =1.63 at PN50) were detected in female rat STR (Fig. 2.5A-C). Furthermore, no 

significant differences in HVA/DA ratio (p=0.24, F2,13 =1.60 at PN14; p=0.20, F2,11 =1.88 at 

PN28; and p=0.11, F2,12 =2.73 at PN50) were detected in female rat STR (Fig. 2.5D-F). 

Altogether, no significant changes in DA or DA turnover in female rat STR were detected at any 

age following chronic Pb2+ exposure. 

 

Increases in DA and DA turnover were not associated with altered TH expression or 

activation 
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 TH is the rate-limiting enzyme in DA synthesis (Fig. 2.6). TH activity is tightly regulated 

by a number of mechanisms including phosphorylation, gene expression, and feedback inhibition 

(Dunkley, Bobrovskaya et al. 2004, Daubner, Le et al. 2011, Tekin, Roskoski et al. 2014). TH 

activity can be altered in response to changes in the environment and TH activity has been 

described in different regions of the rat brain as early as 2 weeks following chronic Pb2+ 

exposure (Chin, Ryu et al. 1992, Ramesh and Jadhav 1998). Phosphorylation acts as a short-term 

regulator of TH activity and there is evidence to suggest that TH phosphorylation is affected by 

Pb2+ exposure (Leret, Garcia-Uceda et al. 2002). Phosphorylation at the serine 40 site plays a 

pivotal role in the modulation of feedback inhibition of TH by catecholamines by altering TH 

conformation which, in turn, facilitates the release of the bound catecholamine and ultimately 

increases TH activity 20-fold (Dunkley, Bobrovskaya et al. 2004, Daubner, Le et al. 2011, Tekin, 

Roskoski et al. 2014). In this study, pser40TH levels were compared between exposed and 

control rats as a surrogate marker for enzymatic activity of TH. To determine if the increases in 

DA and DA metabolites observed in PN28 and PN50 male rats could be due to Pb2+-induced 

alteration of TH expression and phosphorylation, we measured TH and pser40TH levels as well 

as pser40TH/TH ratio in STR using Western blots.   

We found no significant differences in TH (p=0.58, F2,15=0.57), pser40TH (p=0.57, F2,14= 

0.58), or pser40TH/TH ratio (p=0.31, F2,14= 1.28) in the male STR at PN14 between control and 

exposed groups (Fig. 2.7A-C) or in TH (p=0.73, F2,15=0.32), pser40TH (p=0.67, F2,15=0.42), or 

pser40TH/TH (p=0.72, F2,15=0.34) in male STR at PN28 between control and exposed groups 

(Fig. 2.7D-F). Furthermore, we found no significant differences in TH (p=0.10, F2,12= 2.76), 

pser40TH. (p=0.26, F2,15= 1.48), or pser40TH/TH (p=0.41, F2,15=0.95) in male STR at PN50 

between control and exposed groups (Fig. 2.7G-I). Overall, chronic Pb2+ exposure had no 
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significant impact on TH or pser40TH levels or pser40TH/TH ratio in male rats at all ages 

studied (Fig. 2.11A-I). 

Similarly, we detected no significant differences in TH (p=0.30, F2,13= 1.30), pser40TH 

(p=0.80, F2,13= 0.23), or pser40TH/TH ratio (p=0.63, F2,14=0.47) in the female STR at PN14 

between control and exposed groups (Fig. 2.8A-C). We also did not observe any significant 

changes in TH (p=0.24, F2,13= 1.59), pser40TH (p=0.054, F2,14= 3.61), or pser40TH/TH (p=0.12, 

F2,13= 2.48) in female STR at PN28 between control and exposed groups (Fig. 2.8D-F). In 

contrast, we did find a significant increase in pser40TH levels (p=0.02, F2,14= 5.35) in female rats 

exposed to 1500ppm PbAC diets versus those on 0ppm and 180ppm PbAC diet at PN50 (Fig. 

2.8G-I). 

 

Altered VMAT2 levels in STR of PN14 and PN28 female rats on 180ppm PbAC diet 

DA is transported into vesicles via VMAT2 to prevent degradation (Fleckenstein, Volz et 

al. 2009). To determine if the increases in DA and DA metabolites observed in PN28 and PN50 

were associated by any changes to VMAT2 levels, we measured VMAT2 levels in the OT, NAC, 

and STR using quantitative autoradiography (See Fig.2.12-14 for representative autoradiograms 

of regions analyzed). After adjusting for multiple comparisons, we found no significant changes 

in VMAT2 levels in male rats at PN14, PN28, and PN50 in the OT (p=0.03, F2,14 =4.71 at PN14; 

p=0.15, F2,12 =2.23 at PN28; p=0.22, F2,15 =1.70 at PN50) (Fig. 2.9A-C), NAC (p=0.24, F2,15= 

1.58 at PN14; p=0.87, F2,15=0.14 at PN28; p=0.95, F2,17= 0.05 at PN50) (Fig.2.10-C), or STR 

(p=0.02, F2,15=4.83 at PN14; p=0.55, F2,16=0.55 at PN28; p=0.39, F2,17 =0.99 at PN50) 

(Fig.2.11A-C).  
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After adjusting for multiple comparisons, we also did not observe any significant changes 

in VMAT2 levels in female rats at PN14, PN28, and PN50 female rat OT (p=0.15, F2,14= 2.16 at 

PN14; p=0.02, F2,16= 4.78 at PN28; p=0.40, F2,17=0.97at PN50) (Fig.2.9D-F) or NAC (p=0.10, 

F2,15= 2.64 at PN14; p=0.38, F2,17= 1.0 at PN28; p=0.27, F2,16= 1.40 at PN50) (Fig.2.10D-F). A 

significant decrease in VMAT2 levels was observed in the STR of PN14 female rats exposed to 

180ppm diet versus females on control or 1500ppm diet (p=0.0014, F2,14= 10.96) (Fig.2.11D). 

However, a moderate increase in VMAT2 levels was detected in this region at PN28 in females 

exposed to 180ppm PbAC diet versus females on control or 1500ppm diet (p=0.01, F2,14 = 5.42) 

(Fig.2.11E). No significant difference in VMAT2 levels were detected in the STR of female rats 

at PN50 (p=0.44, F2,15=0.86) (Fig.2.11F). 
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Table 2.1. BLL measured across ages and sex from control and Pb2+ -exposed rats. (A) displays 

averaged BLL measured for rats fed control chow. (B) and (C) display averaged BLL measured 

for rats chronically exposed to 180ppm and 1500ppm PbAC, respectively. Each value is 

presented as BLL mean± SEM of at least 3 animals. To minimize litter effects, BLL from only 

one male and/or one female were collected for each age and exposure.  
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Figure 2.1. BLL for control and exposed rats at PN14, PN28, and PN50 A) At PN14, the 

resulting blood Pb2+ levels in these animals was 0.4±0.0 µg/dl (n=14) for control, 9.9±0.7µg/dl 

(n=10) for rats on 180ppm PbAC diet, and 36.0 ± 3.9µg/dl for rats on 1500ppm PbAC diet 

(n=12). BLL were significantly different across all groups (p<0.0001, F2,33= 207.6). B) At PN28, 

the resulting blood Pb2+ levels in these animals was 0.6±0.1 µg/dl (n=31) for control, 

7.0±0.3µg/dl (n=12) for rats on 180ppm PbAC diet, and 19.9 ± 1.7µg/dl for rats on 1500ppm 

PbAC (n=6). BLL were significantly different across all groups (p<0.0001, F2,56= 173.3). C) At 

PN50, the resulting blood PbAC levels in these animals was 0.6±0.1 µg/dl (n=70) for control, 

4.4±0.2µg/dl (n=40) for rats on 180ppm PbAC diet, and 22.0 ± 0.7µg/dl (n=70) for rats on 

1500ppm PbAC diet (n=70). BLL were significantly different across all groups (p<0.0001, F2,191 

= 426.7). Statistically significant differences among exposure groups are indicated by different 

letters labelling bars. There is no statistically significant difference between bars labelled with 

the same letters 
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Figure 2.2. DA, DOPAC, and HVA levels in control and Pb2+-exposed male rat STR. 

 (A) No significant changes in DA (P=0.53, F2,14=0.66, control n=5, 180ppm n=6, 1500ppm 

n=6), DOPAC (p=0.68, F2,13=0.40, control n=5, 180ppm n=5, 1500ppm n=6), or HVA (p=0.98, 

F2,14=0.02, control n=5, 180ppm n=6, 1500ppm n=6) levels were detected in the STR in Pb2+ -

exposed versus control PN14 male rats. (B) Significant changes in DA (P=0.0005, F2,11=16.49, 

control n=4, 180ppm n=5, 1500ppm n=5), DOPAC (p=0.0002, F2,13=18.51, control n=6, 180ppm 

n=5, 1500ppm n=5), and HVA (p=<0.0001, F2,14=29.10, control n=6, 180ppm n=5, 1500ppm 

n=6) levels were detected in the STR in Pb2+-exposed versus control PN28 male rats. (C) 

Significant changes in DA (P=0.0004, F2,13=15.14, control n=6, 180ppm n=5, 1500ppm n=5) 

levels were detected in the STR in Pb2+-exposed versus control PN50 male rats. A dose-

dependent effect was detected for DOPAC (p<0.0001, F2,15=30.82, control n=6, 180ppm n=6, 

1500ppm n=6),) and HVA (p=<0.0001, F2,10=55.59, control n=4, 180ppm n=5, 1500ppm n=4) 

for Pb2+-exposed PN50 rats. 
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Figure 2.3. DOPAC/DA and HVA/DA ratios in control and Pb2+-exposed male rat STR. (A) No 

significant changes in DOPAC/DA ratio were detected in PN14 male rat STR (p=0.42, F2, 14 = 

0.92, control n=6, 180ppm n=6, 1500ppm n=5). (B) A significant increase in DOPAC/DA ratio 

was detected in the STR of PN28 male rats exposed to 1500ppm diet versus control animals 

(p=0.04, F2, 12 = 4.13, control n=6, 180ppm n=3, 1500ppm n=6). (C) The DOPAC/DA ratio was 

significantly increased in the STR of PN50 male rats exposed to 1500ppm diet versus control 

animals and animals exposed to 180ppm diet (p=0.01, F2, 13 = 6.41, control n=6, 180ppm n=5, 

1500ppm n=5). (D) No significant changes in HVA/DA ratio were detected in PN14 male rat 

(p=0.71, F2, 10 = 0.35, control n=5, 180ppm n=5, 1500ppm n=3). (E) A significant increase in 

HVA/DA ratio was detected in the STR of PN28 male rats exposed to 180ppm and 1500ppm diet 

versus control animals (p=0.001, F2, 11 = 13.78, control n=5, 180ppm n=4, 1500ppm n=5). (F) 

The HVA/DA ratio was significantly increased in the STR of PN50 male rats exposed to 

1500ppm diet versus control animals and animals exposed to 180ppm diet (p=0.01, F2, 12 = 6.41, 

control n=5, 180ppm n=5, 1500ppm n=5).  
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Figure 2.4. DA, DOPAC, and HVA levels in control and Pb2+-exposed female rat STR. (A) No 

significant changes in DA (p=0.90, F2,13 =0.11, control n=6, 180ppm n=5, 1500ppm n=5), 

DOPAC (p=0.054, F2,14 =3.62, control n=6, 180ppm n=6, 1500ppm n=5), or HVA (p=0.059, 

F2,12=3.63, control n=5, 180ppm n=5, 1500ppm n=5) levels were detected in the STR in Pb2+-

exposed versus control PN14 female. (B) No significant changes in DA (p=0.30, F2,12 =1.32, 

control n=5, 180ppm n=6, 1500ppm n=5), DOPAC (p=0.77, F2,13 =.26, control n=5, 180ppm 

n=5, 1500ppm n=5), or HVA (p=0.20, F2,11= 1.88, control n=4, 180ppm n=5, 1500ppm n=5) 

levels were detected in the STR in Pb2+-exposed versus control PN28 females. (C) No significant 

changes in DA (p=0.78, F2,13= .25, control n=5, 180ppm n=6, 1500ppm n=5), DOPAC (p=0.48, 

F2,12 =0.77, control n=5, 180ppm n=5, 1500ppm n=5), or HVA (p=0.13, F2,11 =2.44, control n=4, 

180ppm n=5, 1500ppm n=5) levels were detected in the STR in Pb2+-exposed versus control 

PN50 females. 
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Figure 2.5. DOPAC/DA and HVA/DA ratios in control and Pb2+-exposed female rat STR. (A) 

No significant change in DOPAC/DA ratio was detected in the STR of exposed PN14 female 

rats versus control (p=0.40, F2,12 =0.99, control n=5, 180ppm n=5, 1500ppm n=5). (B) No 

significant change in DOPAC/DA ratio was detected in the STR of exposed PN28 female rats 

versus control (p=0.57, F2,14 =0.58, control n=6, 180ppm n=6, 1500ppm n=5). (C) No significant 

change in DOPAC/DA ratio was detected in the STR of exposed PN50 female rats versus control 

(p=0.23, F2,13 =1.63, control n=5, 180ppm n=5, 1500ppm n=6). (D) No significant change in 

HVA/DA ratio was detected in the STR of exposed PN14 female rats versus control (p=0.24, 

F2,13 =1.60, control n=5, 180ppm n=6, 1500ppm n=5). (E) No significant change in HVA/DA 

ratio was detected in the STR of exposed PN28female rats versus control (p=0.20, F2,11 =1.88, 

control n=6, 180ppm n=4, 1500ppm n=4). (F) No significant change in HVA/DA ratio was 

detected in the STR of exposed PN50 female rats versus control (p=0.11, F2,12 =2.73, control 

n=4, 180ppm n=6, 1500ppm n=5). 
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Figure 2.6: DA Synthesis and Metabolism 

DA synthesis begins with the addition of a hydroxyl group to tyrosine to form DA precursor L-

DOPA by TH, the rate-limiting enzyme in DA synthesis. DOPA decarboxylase then removes a 

carboxyl group from L-DOPA, resulting in DA synthesis. DA is metabolized into DOPAC by 

MAO through oxidative deamination. Methylation of DOPAC by COMT results in synthesis of 

DA metabolite HVA. DOPAC and HVA levels can be utilized as markers for dopamine 

turnover. 
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Figure 2.7. Phosphorylation of TH at serine 40 site in male rat STR. A) No significant changes in 

TH were detected in The STR of PN14 males (p=0.58, F2,15=0.57) (control n=6, 180ppm n=6, 

1500ppm n=6). B) No significant changes in pser40TH were detected in the STR of PN14 males 

(p=0.57, F2,14= 0.58) (control n=6, 180ppm n=6, 1500ppm n=5). C) No significant changes in 

pser40TH/TH ratio were detected in The STR of PN14 males (p=0.31, F2,14= 1.28) (control n=6, 

180ppm n=6, 1500ppm n=5). D) No significant changes in TH were detected in PN28 male STR 

(p=0.73, F2,15=0.32) (control n=6, 180ppm n=6, 1500ppm n=6). E) No significant changes in 

pser40TH were detected in PN28 male STR (p=0.67, F2,15= 0.42) (control n=6, 180ppm n=6, 

1500ppm n=6). F) No significant changes in pser40TH/TH ratio were detected in PN28 male 

STR (p=0.72, F2,15=0.34) (control n=6, 180ppm n=6, 1500ppm n=6). H) No significant changes 

in TH were detected in PN50 male STR (p=0.10, F2,12= 2.76) (control n=6, 180ppm n=4, 

1500ppm n=5). I) No significant changes in pser40TH were detected in PN50 male STR 

(p=0.26, F2,15= 1.48) (control n=6, 180ppm n=6, 1500ppm n=6). J) No significant changes in 

pser40TH/TH ratio were detected in PN50 male STR (p=0.41, F2,15=0.95) (control n=6, 180ppm 

n=5, 1500ppm n=5). 
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Figure 2.8. Phosphorylation of TH at serine 40 site in female rat STR. A) No significant changes 

in TH were detected in STR of PN14 females (p=0.30, F2,13= 1.30) (control n=6, 180ppm n=5, 

1500ppm n=5). B) No significant changes in pser40TH were detected in STR of PN14 females 

(p=0.80, F2,13= 0.23) (control n=6, 180ppm n=6, 1500ppm n=4). C) No significant changes in 

pser40TH/TH ratio were detected in PN14 female STR (p=0.63, F2,14=0.47) (control n=6, 

180ppm n=6, 1500ppm n=5). D) No significant changes in TH were detected in STR of PN28 

females (p=0.24, F2,13= 1.59) (control n=6, 180ppm n=6, 1500ppm n=4). E) No significant 

changes in pser40TH were detected in STR of PN28 females (p=0.054, F2,14= 3.61) (control n=6, 

180ppm n=5, 1500ppm n=6). F) No significant changes in pser40TH/TH ratio were detected in 

STR of PN28 females (p=0.12, F2,13= 2.48) (control n=6, 180ppm n=5, 1500ppm n=5). G) No 

significant changes in TH were detected in the STR of PN50 females (p=0.09, F2,15= 2.77) 

(control n=6, 180ppm n=6, 1500ppm n=6). H) A significant increase in pser40TH was detected 

in the STR of PN50 female rats on 1500ppm diet (38% increase versus control, 43% increase 

versus 180ppm females) (p=0.02, F2,14= 5.35) (control n=6, 180ppm n=6, 1500ppm n=5). I) No 

significant changes in pser40TH/TH ratio were detected in STR of PN50 females (p=0.40, F2,14= 

0.90) (control n=6, 180ppm n=6, 1500ppm n=5). 
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Figure 2.9. VMAT2 levels in the OT. A) At PN14, when adjusting for multiple comparisons, no 

significant changes in VMAT2 levels were detected in the male rat OT (p=0.03, F2,14 =4.71) 

(control n= 5, 180ppm n= 5, 1500ppm n=6). B) At PN28, when adjusting for multiple 

comparisons, no significant changes in VMAT2 levels were detected in the male rat OT (p=0.15, 

F2,12 =2.23) (control n= 6, 180ppm n= 6, 1500ppm n=3). C) At PN50, when adjusting for 

multiple comparisons, no significant changes in VMAT2 levels were detected in the male rat OT 

(p=0.22, F2,15 =1.70) (control n=6, 180ppm n= 5, 1500ppm n=7). D) At PN14, when adjusting 

for multiple comparisons, no significant changes in VMAT2 levels were detected in the female 

rat OT (p=0.15, F2,14= 2.16) (control n= 6, 180ppm n= 7, 1500ppm n=4). E) At PN28, when 

adjusting for multiple comparisons, no significant changes in VMAT2 levels were detected in the 

female rat OT (p=0.02, F2,16= 4.78) (control n= 8, 180ppm n= 5, 1500ppm n=6). F) At PN50, 

when adjusting for multiple comparisons, no significant changes in VMAT2 levels were detected 

in the female rat OT (p=0.40, F2,17= 0.97) (control n=6, 180ppm n= 7, 1500ppm n=7). 
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Figure 2.10. VMAT2 levels in the male rat NAC. A) At PN14, when adjusting for multiple 

comparisons, no significant changes in VMAT2 levels were detected in the male rat NAC 

(p=0.24, F2,15= 1.58) (control n= 5, 180ppm n= 7, 1500ppm n=6). B) At PN28, when adjusting 

for multiple comparisons, no significant changes in VMAT2 levels were detected in the male rat 

NAC (p=0.87, F2,15=0.14) (control n= 8, 180ppm n= 5, 1500ppm n=5). C) At PN50, when 

adjusting for multiple comparisons, no significant changes in VMAT2 levels were detected in the 

male rat NAC (p=0.95, F2,17= 0.05) (control n=7, 180ppm n= 5, 1500ppm n=8). D) At PN14, 

when adjusting for multiple comparisons, no significant changes in VMAT2 levels were detected 

in the female rat NAC (p=0.10, F2,15=2.64) (control n= 7, 180ppm n= 6, 1500ppm n=5). E) At 

PN28, when adjusting for multiple comparisons, no significant changes in VMAT2 levels were 

detected in the female rat NAC (p=0.38, F2,17= 1.0) (control n= 8, 180ppm n= 6, 1500ppm n=6). 

F) At PN50, when adjusting for multiple comparisons, no significant changes in VMAT2 levels 

were detected in the female rat NAC (p=0.27, F2,16= 1.40) (control n=6, 180ppm n= 6, 1500ppm 

n=7). 
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Figure 2.11. VMAT2 levels in the male rat STR. A) At PN14, when adjusting for multiple 

comparisons, no significant changes in VMAT2 levels were detected in the male rat STR 

(p=0.02, F2,15= 4.83) (control n= 6, 180ppm n= 6, 1500ppm n=6). B) At PN28, when adjusting 

for multiple comparisons, no significant changes in VMAT2 levels were detected in the male rat 

STR (p=0.55, F2,16= 0.55) (control n= 9, 180ppm n= 7, 1500ppm n=3). C) At PN50, when 

adjusting for multiple comparisons, no significant changes in VMAT2 levels were detected in the 

male rat STR (p=0.39, F2,17 =0.99) (control n=6, 180ppm n= 6, 1500ppm n=8). D) At PN14, 

when adjusting for multiple comparisons, a significant decrease in VMAT2 levels was detected 

in the STR of female rats on 180ppm diet versus female rats on control or 1500ppm diet. 

VMAT2 levels were 17% lower in the STR of females on 180ppm diet versus control (p=0.0014, 

F2,14= 10.96) (control n= 6, 180ppm n= 6, 1500ppm n=5). B) At PN28, when adjusting for 

multiple comparisons, a significant increase in VMAT2 levels were detected in the STR of 

female rats on 180ppm and 1500ppm diets versus control (p=0.01). STR VMAT2 levels 

increased 10% in females on 180ppm diet and 8% in female rats on 1500ppm diet versus STR of 

female controls (p=0.01, F2,14 = 5.42) (control n= 7, 180ppm n= 4, 1500ppm n=6). C) At PN50, 

when adjusting for multiple comparisons, no significant changes in VMAT2 levels were detected 

in the female rat STR (p=0.44, F2,15= 0.86) (control n=6, 180ppm n= 6, 1500ppm n=6). 
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Figure 2.12. Representative autoradiograms illustrating [ 3H]-DTBZ binding in OT, NAC, and 

STR of control and Pb2+-exposed male (A) and female (B) rats at PN14.  
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Figure 2.13. Representative autoradiograms illustrating [ 3H]-DTBZ binding in OT, NAC, and 

STR of control and Pb2+-exposed male (A) and female (B) rats at PN28. 
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Figure 2.14. Representative autoradiograms illustrating [ 3H]-DTBZ binding in OT, NAC, and 

STR of control and Pb2+-exposed male (A) and female (B) rats at PN50. 
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Figure 2.15. Anatomical representation of OT regions (highlighted in green) from which [3H]-

DTBZ binding were measured. Regions highlighted are A-OT at Bregma 1.60mm and P-OT at 

0.70mm Bregma. Images adapted from (Paxinos and Watson 1998). 
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Figure 2.16. Anatomical representation of NAC regions (highlighted in green) from which [3H]-

DTBZ binding were measured. Regions highlighted are NAC-C and NAC-S at Bregma 1.60mm. 

Images adapted from (Paxinos and Watson 1998). 
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Figure 2.17. Anatomical representation of STR regions (highlighted in green) from which [3H]-

DTBZ binding were measured. Regions highlighted are R-STR at Bregma 1.60mm, M-STR at 

Bregma -0.26mm, and C-STR at Bregma -0.92mm. Images adapted from (Paxinos and Watson 

1998). 
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Discussion 

In the present study, we observed increased DA, DA metabolites, and DA turnover in the 

STR of adolescent and young adult male rats with BLL as low as 4.4µg/dl following chronic 

Pb2+ exposure. Dysregulation of DA levels by biological or pharmacological means has been 

demonstrated to impact motor activity and other processes regulated by the DAergic system 

(Jones and Miller 2008). Furthermore, dysregulation of synaptic DA levels in the synaptic cleft 

may disrupt DAergic circuits underlying reward, motivation, conditioning of habits, and 

executive function (Volkow, Wang et al. 2011, Volkow, Wang et al. 2011a). This, in turn, may 

enhance the motivational value of a drug and impair inhibition of actions associated with the 

desire to take it. The loss of control over drug intake may, in turn, increase the risk for drug 

addiction (Volkow and Li 2004, Baler and Volkow 2006, Volkow, Wang et al. 2011a). 

Previous studies suggest that altered mesostriatal and mesolimbic system signaling resulting 

from excess DA in regions like the STR may underlie the changes in behavior and locomotor 

activity in Pb2+-intoxicated animals (Zuch, O'Mara et al. 1998, Guilarte, Opler et al. 2012, 

Stansfield, Ruby et al. 2015).   

It is important to note that the increased sensitization to cocaine’s psychostimulant effects 

in female rats with BLL as low as 4.2µg/dl has not been found to be associated with changes in 

DA, DA metabolites, or DA turnover in females at any age or exposure group (Stansfield, Ruby 

et al. 2015).  It is possible that estrous cycle-dependent variations in progesterone and estrogen 

levels can underlie some sex-dependent differences in basal DA levels and DA-mediated 

functions and behaviors (Becker and Rudick 1999). Fluctuations in estrogen and progesterone 

levels throughout the estrous cycle have been demonstrated to affect release and reuptake of DA 
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in mesolimbic and mesostriatal DAergic systems (Becker and Beer 1986, Thompson, Thomas et 

al. 1997).  

DA receptor levels and autoreceptor function can also be modulated by hormone 

fluctuations (Thompson, Thomas et al. 1997, Bobzean, DeNobrega et al. 2014). In the present 

study, estrous cycle was not taken into consideration when animals were sacrificed and brains 

collected for analysis. It is possible that females were collected at different stages of the estrous 

cycle. As a result, potential Pb2+-induced effects in females could have been masked by 

progesterone- or estrogen-induced effects (Westwood 2008).  

TH expression and activation are subject to various short-term and long-term regulatory 

mechanisms such as feedback inhibition by DA and other catecholamines, phosphorylation of 

serine residues, D2R autoreceptor activation, and transcriptional regulation (Salvatore, Garcia-

Espana et al. 2000, Dunkley, Bobrovskaya et al. 2004, Fujisawa and Okuno 2005). 

Phosphorylation of TH alters its conformation, resulting in a 300-fold decrease in DA affinity, 

increasing TH activity. Since phosphorylation of TH at its serine 40 residue increases its activity 

20-fold, pser40TH levels were used as a surrogate marker for enzymatic activity of TH 

(Daubner, Le et al. 2011). The increases in DA observed in adolescent and young adult male rat 

STR observed in this study were not associated with altered TH expression or activation, as no 

changes in TH, pser40TH, or pser40TH/TH levels were detected in these animals. Interestingly, 

increased pser40TH levels were detected in the STR of females on 1500ppm PbAC diet, raising 

the possibility that TH activity was modulated in our model in a sex-specific manner. As 

pser40TH levels are an indirect measure of TH activation, further studies of Pb2+ impact on 

direct TH activity are needed. 
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DA levels in the synapse are tightly regulated by a number of factors, including 

autoreceptor-mediated regulation of DA release, DA metabolism, reuptake by dopamine 

transporter (DAT), and repackaging of free intracellular DA into synaptic vesicles via VMAT2 

(Walters, Ruskin et al. 2000, Duchemin, Zhang et al. 2009). VMAT2 and DAT both serve as 

markers for DAergic neurons and have been used to assess presynaptic terminal integrity and 

function (Stephenson, Childs et al. 2007, Sun, Kouranova et al. 2013). Furthermore, cocaine acts 

by blocking DAT, preventing DA reuptake and the resulting increase in extracellular DA 

underlies the psychostimulant effects of cocaine (Volkow, Wang et al. 1997, Miller, Gainetdinov 

et al. 1999, Volkow, Wang et al. 2000). In our previous study, we observed no changes to either 

VMAT2 or DAT levels in Pb2+-exposed male rats at PN50 exhibiting increased sensitivity to 

cocaine’s psychostimulant effects, indicating that this increased sensitivity was not mediated by 

an altered presynaptic environment (Guilarte, Nihei et al. 2003, Stansfield, Ruby et al. 2015). 

This hypothesis is supported by the observation in our more recent work demonstrating that 

administration of D1 antagonist SCH23390 prior to injection of cocaine results in a complete 

block of cocaine-induced locomotor activity in Pb2+-treated animals, suggesting that increased 

sensitization of Pb2+-exposed animals may be mediated, at least in part, via postsynaptic D1R 

receptors (Stansfield, Ruby et al. 2015). 

Attempts to determine dopamine transporter (DAT) levels in the STR through 

autoradiography and Western blots in the present study were unsuccessful. We intend to address 

the impact of chronic Pb2+ exposure on DAT across sex, age, and exposure groups analyzed in 

this study in a future study. As in our previous work, VMAT2 levels were unchanged in exposed 

males at PN50, PN28, and PN14 and females at PN50 following exposure to either 180ppm or 

15000ppm PbAC diet. VMAT2 levels were significantly decreased in the STR of PN14 females 



95 
 

and significantly increased in PN28 females following chronic Pb2+ exposure (10% increase for 

rats on 180ppm PbAC diet versus control, 8% increase for rats on 1500ppm PbAC diet versus 

control).  

Further investigation will be required to elucidate the functional significance of and 

mechanism(s) underlying the decrease in STR VMAT2 levels at PN14 in females on 180ppm 

PbAC diet versus control and the increase in STR VMAT2 levels at PN28 in Pb2+-exposed 

female rats versus control in the absence of changes in DA, DA turnover, and TH expression. 

The DAergic system undergoes extensive changes and is most vulnerable to Pb2+ neurotoxicity 

from gestational day 19 to PN21 as terminal fields of the DA system are established during this 

period (Leret, Garcia-Uceda et al. 2002). One potential explanation for changes in VMAT2 

levels observed, based on the multiple-hit hypothesis proposed by Cory-Slechta (2005), is that 

low-level Pb2+ exposure may act with another age-dependent factor to alter compensatory 

mechanisms within the mesolimbic system, leading to altered VMAT2 expression across ages 

(Cory-Slechta 2005). However, this theory does not adequately explain the regional differences 

in VMAT2 expression observed in PN14 and PN28 females.  

We did not detect any changes in VMAT2 levels in the OT and NAC. However, previous 

studies have demonstrated that these regions are vulnerable to Pb2+ toxicity (Lasley, Greenland et 

al. 1984, Nation, Frye et al. 1989, Pokora, Richfield et al. 1996, Ramesh and Jadhav 1998, Zuch, 

O'Mara et al. 1998, White, Cory-Slechta et al. 2007). As such, future studies should be 

undertaken to determine if DA levels and turnover, as well as TH and pser40TH, are altered in 

the OT and NAC of male and female rats at the ages and BLLs analyzed in the current study.  

The results of this study provide further evidence that the drug sensitization observed by 

Stansfield (2015) was mediated by a hyperactive DAergic state. Furthermore, they suggest that 
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increases in DA, DA metabolites, and DA turnover in animals may underlie the increased 

sensitization to cocaine our laboratory previously observed in animals with BLLs as low as 

4.4µg/dl. Though we lacked the statistical power to compare effects between age and sex, our 

results also suggest that Pb2+ alters the DAergic system in a time-, sex-dependent manner. 
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Abstract 

There is growing evidence that lead (Pb2+) exposure induces dopaminergic (DAergic) 

system hyperactivity by increasing dopamine (DA) levels and DA turnover. This may, in turn, 

increase susceptibility to drug addiction. Studies described in Chapter 2 demonstrated that 

chronic exposure to Pb2+ increases DA, 3,4-Dihydroxyphenylacetic acid (DOPAC), homovanillic 

acid (HVA), and DA turnover in the dorsal striatum (STR) of adolescent and young adult male 

rats exposed to Pb2+. As DAergic neurons of both the mesostriatal and mesolimbic systems 

project to the STR, DAergic signaling in both of these systems may be affected. The downstream 

effects of DA on these systems are dependent on whether DA binds to a D1- or D2-like DA 

receptor subtype (D1R, D2R) at the synapse. Whereas D1R activation results in excitatory 

downstream signaling processes, activation of D2R by DA results in inhibitory downstream 

signaling processes. In the present study, we used quantitative receptor autoradiography to 

measure D1R and D2R levels in the STR, nucleus accumbens (NAC), and olfactory tubercle 

(OT) of juvenile (PN14), adolescent (PN28), and young adult (PN50) male and female rats 

following chronic exposure to 180ppm Pb2+ acetate (PbAC) diet and 1500ppm PbAC in diet to 

elucidate the impact of Pb2+ on DAergic signaling processes.  

We observed that chronic exposure to Pb2+ led to significant increases in OT D1R levels 

in male and female rats at PN28. Significant increases in D1R levels were also detected in the 

NAC and STR of male rats at PN28 following chronic Pb2+ exposure. A significant increase in 

D2R levels was also detected in the STR of PN14 male rats exposed to 180ppm PbAC diet. The 

results of this study expand upon previous findings by demonstrating increased expression of 

D1R in adolescent female OT as well as in male rat STR, NAC, and OT. To our knowledge, this 

is the first study to describe increased D1R levels in the OT elicited by chronic Pb2+ exposure. 
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Furthermore, our results suggest that Pb2+ exposure-induced D1R upregulation in the OT is a 

likely mechanism underlying the increased sensitivity to cocaine’s psychostimulant effects 

observed in Pb2+-exposed rats in previous work by our laboratory (Stansfield, Ruby et al. 2015). 

 

Introduction 

The prevalence of low-level Pb2+ exposure has historically been disproportionately higher 

in low-income and minority populations in urban areas (Miller, Nation et al. 2000, Nation, Smith 

et al. 2004, Sanders, Liu et al. 2009). These populations are also at a higher risk for drug 

addiction (Ensminger, Anthony et al. 1997, Ensminger, Juon et al. 2002). Not all individuals who 

use drugs become addicted and there is considerable evidence that genetic, as well as 

environmental, factors increase vulnerability to drug addiction (Volkow and Li 2004, Volkow 

and Wise 2005, Volkow, Wang et al. 2011). Environmental Pb2+ exposure has been associated 

with increased risk for drug addiction (Fishbein, Todd et al. 2008, Jones and Miller 2008). 

Furthermore, a number of studies have demonstrated that Pb2+ exposure sensitizes animals to 

addictive drugs (Miller, Nation et al. 2000, Nation, Miller et al. 2000, Miller, Nation et al. 2001, 

Nation, Cardon et al. 2003, Nation, Smith et al. 2004). 

The dopaminergic (DAergic) system underlies many processes affected by Pb2+ 

exposure, among them attention, reward, and addiction (Cory-Slechta 1995, Koepp, Gunn et al. 

1998, Jones and Miller 2008). Disruption of DAergic signaling underlying reward, motivation, 

executive function and conditioning may increase the risk for drug addiction, by enhancing a 

drug’s motivational value and by impairing inhibition of actions associated with the desire to 

take a drug (Volkow, Wang et al. 2011, Volkow, Wang et al. 2011). DA release, synthesis, 

turnover, and metabolism are altered by Pb2+ as evidenced by the results in the previous chapter, 
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as well as other work by our laboratory and others (Nation, Frye et al. 1989, Cory-Slechta 1995, 

Zuch, O'Mara et al. 1998, Leret, Garcia-Uceda et al. 2002, Devi, Reddy et al. 2005, Szczerbak, 

Nowak et al. 2007, Stansfield, Ruby et al. 2015). Altered expression and function of DA 

receptors and DA transporters has also been described, as well as impaired D2 autoreceptor-

mediated regulation of DA synthesis in presynaptic neurons (Lasley and Lane 1988, Cory-

Slechta 1995, Pokora, Richfield et al. 1996, Zuch, O'Mara et al. 1998) 

Previously, our laboratory demonstrated that Pb2+ exposure increases DA turnover and 

D2R levels in the striatum of Pb2+-exposed young adult male rats with blood Pb2+ levels (BLL) 

of 22.2µg/dl (Stansfield, Ruby et al. 2015) We also demonstrated increased locomotor 

sensitization to cocaine in the same animal model. Further work by our laboratory has 

demonstrated that male rats with BLLs as low as 4.5µg/dl exhibited increased locomotor activity 

following a 5mg/kg (low dose) injection of cocaine compared to control animals receiving the 

same cocaine dose. A 15mg/kg (high dose) cocaine injection, however, resulted in similar levels 

of cocaine-induced locomotor activity between animals with BLLs of 4.5µg/dl and control 

animals. Administration of the D1-like DA receptor (D1R) antagonist SCH-23390 completely 

blocked this effect and administration of D2-like DA receptor (D2R) antagonist Raclopride 

dampened the effect, indicating that the increased stimulatory effects of cocaine in Pb2+-treated 

rats may be primarily mediated by D1R (Stansfield KH 2015). However, the manner in which 

Pb2+ exposure alters DA receptor ontogeny is still unclear. 

DA regulates the flow of information through the STR and other regions of the DAergic 

system such as the nucleus accumbens (NAC) and olfactory tubercle (OT). Downstream effects 

of DA are dependent on its activation of D1- or D2-like DA receptor (D1R and D2R, 

respectively) subtypes. Activation of D1R stimulates cyclic adenosine monophosphate (cAMP) 
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production, which increases protein kinase A (PKA) activity. Increased PKA activity, in turn, 

results in increased phosphorylation of dopamine- and cAMP-regulated neuronal phosphoprotein 

(DARPP-32) at its threonine-34 (Thr34) residue (Beaulieu and Gainetdinov 2011). Following 

phosphorylation of Thr34, DARPP-32 acts as a potent protein phosphatase 1 (PP-1) inhibitor 

(Nairn, Svenningsson et al. 2004). Inhibition of PP-1, in turn, enhances phosphorylation of 

extracellular-signal regulated kinases (ERK) and results in increased activation of transcription 

factors such as cAMP response element binding protein (CREB), which can ultimately influence 

gene expression and long-term synaptic plasticity in regions associated with reward and 

inhibition control (Beaulieu and Gainetdinov 2011, Volkow, Koob et al. 2016). Activation of 

D2R, on the other hand, results in decreased cAMP production which, in turn, results in 

decreased PKA activity. Decreased PKA activity can lead to decreased phosphorylation of 

substrates such as CREB (Koob and Volkow 2010, Beaulieu and Gainetdinov 2011).  

These two opposing systems work together to regulate a large number of central nervous 

system processes and are vulnerable to the neurotoxic effects of Pb2+ (Cory-Slechta and 

Widzowski 1991, Nishi, Snyder et al. 1997, Miller, Nation et al. 2001, Nation, Smith et al. 2004, 

Surmeier, Ding et al. 2007, Szczerbak, Nowak et al. 2007). However, there is considerable 

disagreement in the literature concerning the manner in which these signaling systems are 

affected (Cory-Slechta, Crofton et al. 2001, Nation, Smith et al. 2004, Jones and Miller 2008) 

The present study seeks to elucidate the altered neurobiology that may underlie the 

increased sensitivity of Pb2+-exposed rats to the psychostimulant effects of cocaine. As we 

previously demonstrated that sensitivity to cocaine’s psychostimulant effects was blocked by 

administration of a D1R antagonist and dampened by the administration of a D2-like DA 

receptor (D2R) antagonist (Stansfield KH 2015), we used quantitative receptor autoradiography 
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to measure D1R and D2R levels in the STR, NAC, and OT, as these brain regions are known to 

be affected by psychostimulants and involved in the onset of drug addiction (Ikemoto 2002, 

Ikemoto 2003, Ikemoto 2007, Ikemoto 2010). The present study also sought to address 

limitations in our current understanding of Pb2+’s effects on DA receptor ontogeny by analyzing 

the effects of Pb2+ in juvenile (postnatal day 14, PN14), adolescent (PN28), and young adult 

(PN50) male and female rats following chronic exposure to 180ppm or 1500ppm PbAC.  

 

Materials and Methods 

Animals  

All animal studies were approved by the Columbia University Medical Center Animal 

Care and Use Committee and have been carried out in accordance with the Guide for Care and 

Use of Laboratory Animals as stated by the U.S. National Institutes of Health. Long-Evans rats 

were purchased from Charles River, Inc. and fed 0-, 180-, or 1500ppm PbAC diet. PbAC diet 

was prepared by and purchased from Dyets (Dyets, Bethlehem, PA, USA). Diet comprised of 

Purina RMH 1000 diet with PbAC incorporated into chow mix. Food and water were provided 

ad libitum to animals. Dams were initiated on Pb2+ diet 10 days prior to mating with Long-Evans 

male rats, which were maintained on control diet at all times. Litters were culled to 10 pups per 

litter at postnatal day PN 1-2 and weaned on PN21. Upon weaning, rats were maintained on 

same diet as their respective mother. Rats were maintained on a 12-hour light-dark cycle until 

sacrificed at PN14, PN28, and PN50. For PN14 age group, all pups from a litter were euthanized 

on the same day. 

 

Blood Pb2+ levels 
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Rats were anesthetized with a 25mg/kg dose of pentobarbital. Blood was collected 

transcardially from rats for each age group. BLL were measured using a Magellan Pb2+Care 

analyzer using manufacturer’s instructions (ESA Laboratories, Chelmsford, MA, USA). BLL 

were averaged between litters in each exposure group at each age and for each sex.  

 

Tissue Collection 

For D1R and D2R quantitative autoradiography, rat brains were harvested immediately 

after decapitation, snap frozen, and then stored at -80oC until used. One male and one female 

brain was used per litter for statistical purposes. Therefore, the litter was the statistical unit.  

 

Quantitative Autoradiography 

Fresh-frozen brains were sectioned at 20-micron thickness in the coronal plane on a 

freezing cryostat (Leica Biosystems) and thaw-mounted on poly-L-lysine-coated slides. Slides 

were stored at − 20 °C until used.  

 

D1R Autoradiography 

For D1R autoradiography, slides were pre-incubated in 50mM Tris buffer (pH 7.4) at 

room temperature for 20 minutes. For total binding, slides were incubated in Tris buffer with 

[3H]-SCH23390 (1.36nM, 1.1nM and 1.39nM for PN14, PN28 and PN50 rats, respectively) in 

Tris buffer (pH 7.4) for 30 minutes at room temperature. Nonspecific binding was determined by 

adding 5µM butaclamol to the buffer. Slides were rinsed twice in buffer at 4OC and then dipped 

once in dH2O at 4OC. The slides were then dried at room temperature overnight.  
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D2R Autoradiography 

For D2R autoradiography, slides were incubated in [3H]-Raclopride (3.0nM for PN14 

and PN50, 2.9nM for PN28) in 170mM Tris-HCl buffer (pH 7.4) for 30 min at room temperature 

for total binding. Nonspecific binding was determined in the presence of 10 μM haloperidol 

(D2R antagonist). The slides were then washed for 1min in buffer at 4 °C four times, and then 

quickly dipped in dH20 at 4 °C. Slides were then dried at room temperature overnight. 

 

For both D1R and D2R autoradiography, after drying overnight, slides were apposed to 

Kodak Biomax MR film, MR-1, for 6 weeks. [3H]-Microscales (Amersham, Arlington Heights, 

IL, USA) were included with each film to allow for quantitative analysis of images. Images were 

captured and analyzed using MCID Imaging software (MCID, InterFocus Imaging, 

Cambridgeshire, UK). A rat brain atlas (Paxinos and Watson 1998) was used to define regions in 

the OT, NAC, and STR to be analyzed. D1R and D2R levels in OT were determined by 

averaging binding intensity measurements for anterior OT (A-OT) (at Bregma 1.60mm) and 

posterior OT (P-OT) (at Bregma 0.70mm) (Fig. 2.15). D1R and D2R levels in NAC were 

determined by averaging binding intensity measurements for the NAC core (NAC-C) and NAC 

shell (NAC-S) (both at Bregma 1.60) (Fig. 2.16).  D1R and D2R levels in STR were determined 

by averaging binding intensity measurements for rostral STR (R-STR) (at Bregma 1.60mm), 

middle STR (M-STR) (at Bregma -0.26mm), and caudal STR (C-STR) (at Bregma -0.92mm) 

(Fig. 2.17). For representative D1R autoradiograms of regions measured, see Fig. 3.7A, Fig. 

3.8A, and Fig. 3.9A for male and Fig. 3.7B, Fig. 3.8B, and Fig. 3.9B for female rat images. For 

representative D2R autoradiograms of regions measured, see Fig. 3.10A, Fig. 3.11A, and Fig. 

3.12A for male and Fig. 3.10B, Fig. 3.11B, and Fig. 3.12B for female rat images. 
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Data and Statistical Analysis 

Statistical analysis was performed using one-way ANOVA with post hoc Tukey’s test 

(Graphpad Software, Inc.). A Bonferroni correction was used for statistical analysis of D1R and 

D2R autoradiography data to account for multiple comparison across three brain. For 

autoradiography analysis of OT, NAC, and STR, values of p≤.017 were considered statistically 

significant.  D1R and D2R levels for OT, NAC, and STR are presented as femtomoles per 

milligram tissue (fmol/mg tissue). To calculate outliers, data for each group was divided into 

quartiles. Outliers were defined as any data point more than 1.5 interquartile ranges below the 

first quartile or above the third quartile. 

 

Results 

 

BLLs in our rat model of Pb2+ exposure  

The exposure paradigm utilized in this study resulted in BLLs that were within the range 

of those detected in children aged 1-5 in recent NHANES surveys irrespective of age, sex, and 

exposure of animal, as demonstrated in the previous chapter (see Table 2.1A-C and Fig. 2.1A-C 

for BLL data) (CDC 2012, CDC 2016).   

 

Increased D1R levels in OT, NAC, and STR of rats following chronic exposure to Pb2+ 

Increased D1R levels in young adolescent rat OT following chronic exposure to Pb2+ 

At PN14, after adjusting for multiple comparisons, no significant changes in D1R levels 

were detected in exposed male (p=0.03, F2,13 =6.39) or female (p=0.35, F2,14= 1.13) rat OT 

versus control (Fig. 3.1A, Fig. 3.1D). At PN28, significant increases in D1R levels were detected 
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in exposed male (17% and 48% increase for rats on 180ppm and 1500ppm PbAC diet, 

respectively) (p=0.0001, F2,14 =19.80) and female (41% increase for rats on 1500ppm PbAC diet 

versus control) (p=0.0005, F2,16=12.45) rat OT versus control (Fig. 3.1B, Fig. 3.1E). 

Furthermore, a dose-dependent increase in D1R levels was detected in the OT of exposed male 

rats at PN28 versus control. At PN50, no significant changes in D1R levels were detected in 

exposed male (p=0.09, F2,14 =2.82) or female (p=0.64, F2,14= 0.47) rat OT versus control (Fig. 

3.1C, Fig. 3.1F). 

 

Increased D1R levels in young adolescent male rat NAC following chronic exposure to Pb2+ 

At PN14, no significant changes in D1R levels were detected in exposed male (p=0.09, 

F2,16= 2.72) or female (p=0.61, F2,18= 0.51) rat NAC versus control (Fig. 3.2A, Fig. 3.2D). A 

21% increase in D1R levels was detected at PN28 in male rat NAC for males on 1500ppm PbAC 

diet versus control (p=0.0026, F2,15=9.03) (Fig. 3.2B). However, no changes in D1R levels were 

detected in exposed female rat NAC versus control (p=0.39, F2,15= 1.0) at PN28 (Fig. 3.2E). No 

differences in D1R levels were detected in either exposed male (p=0.2, F2,16= 1.78) or exposed 

female (p=0.29, F2,12= 1.37) rat NAC at PN50 versus control (Fig. 3.2C, Fig. 3.2F). 

 

Increased D1R levels in young adolescent male rat STR following chronic exposure to Pb2+ 

At PN14, no significant changes in D1R levels were detected in exposed male (p=0.07, 

F2,16= 3.13) or female (p=0.04, F2,17= 3.83) rat STR versus control (Fig. 3.3A, Fig. 3.3D). A 22% 

increase in D1R levels was detected in the STR of PN28 males exposed to 1500ppm PbAC diet 

(p=0.006, F2,17=7.02) versus control (Fig. 3.3B). No significant changes in D1R levels were 

detected in exposed female rat STR at PN28 versus control (Fig. 3.3E). At PN50, no significant 
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changes in D1R levels were detected in exposed male (p=0.49, F2,16 =.75) or female (p=0.16, 

F2,15=2.07) rat STR versus control (Fig. 3.3C, Fig. 3.3F). 

 

Increased D2R levels in juvenile male rat STR following chronic exposure to Pb2+ 

No detectable changes in OT D2R levels following chronic exposure to Pb2+ 

 At PN14, no significant changes in D2R levels were detected in exposed male (p=0.18, 

F2,15=1.94) or female (p=0.15, F2,15= 2.12) rat OT versus control (Fig. 3.4A, Fig. 3.4D). No 

significant changes in D2R levels were detected in exposed male (p=0.77, F2,18=0.26) or female 

(p=0.67, F2,13=0.41) rat OT at PN28 versus control (Fig. 3.4B, Fig. 3.4E). At PN50, no 

significant changes in D2R levels were detected in exposed male (p=0.29, F2,16 =1.32) or female 

(p=0.43, F2,14=0.89) rat OT versus control (Fig. 3.4C, Fig. 3.4F). 

 

No detectable changes in NAC D2R levels following chronic exposure to Pb2 

No significant changes in D2R levels were detected in exposed male (p=0.13, F2,17= 2.33) 

or female (p=0.52, F2,14= 0.68) rat NAC at PN14 versus control (Fig. 3.5A, Fig. 3.5D). At PN28, 

no significant changes in D2R levels were detected in exposed male (p=0.86, F2,15= 2.33) or 

female (p=0.11, F2,14= 2.62) rat NAC versus control (Fig. 3.5B, Fig. 3.5E). At PN50, no 

significant changes in D2R levels were detected in exposed male (p=0.90, F2,18= 1.78) or female 

(p=0.02, F2,16= 4.98) rat NAC versus control (Fig. 3.5C, Fig. 3.5F). 

 

Increased D2R levels in juvenile male rat STR following chronic exposure to Pb2+ 

A 30% increase in D2R levels was detected in the STR of PN14 male rats exposed to 

180ppm PbAC diet (p=0.01, F2,15=5.05) versus control (Fig. 3.6A). After adjusting for multiple 
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comparisons, no significant changes in D2R levels were detected in exposed female rat STR 

(p=0.02, F2,13= 5.24) at PN14 versus control (Fig. 3.6D). At PN28, no significant changes in 

D2R levels were detected in exposed male (p=0.03, F2,15 =4.63) or female (p=0.80, F2,16=0.22) 

rat STR versus control after adjusting for multiple comparisons (Fig. 3.6B, Fig. 3.6E). No 

significant change in D2R levels was detected in exposed male (p=0.46, F2,14=0.82) or female 

(p=0.35, F2,17=1.12) rat STR at PN50 versus control (Fig. 3.6C, Fig. 3.6F). 
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Figure 3.1 D1R levels in the male and female rat OT. A) At PN14, after adjusting for multiple 

comparisons, no significant changes in D1R levels were detected in the OT (p=0.03, F2,13 =6.39) 

(control n= 5, 180ppm n= 5, 1500ppm n=6). B) At PN28, a highly significant dose-dependent 

increase in D1R levels was detected in the OT of rats on PbAC (17% and 48% for rats on 

180ppm and 1500ppm PbAC diet, respectively) versus control diet (p=0.0001, F2,14 =19.80) 

(control n= 7, 180ppm n= 6, 1500ppm n=4). C) At PN50, no significant changes in D1R levels 

were detected in the OT (p=0.09, F2,14 =2.82) (control n=6, 180ppm n= 6, 1500ppm n=5). D) At 

PN14, no significant changes in D1R levels were detected in the OT (p=0.35, F2,14= 1.13) 

(control n= 5, 180ppm n= 7, 1500ppm n=5). E) At PN28, a 41% increase in D1R levels was 

detected in the STR of female rats exposed to 1500ppm PbAC versus control diet (p=0.0005, 

F2,16=12.45) (control n=7, 180ppm n= 6, 1500ppm n=6). F) At PN50, no significant changes in 

D1R levels were detected in the OT (p=0.64, F2,14= .47) (control n=7, 180ppm n= 6, 1500ppm 

n=4). 
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Figure 3.2. D1R levels in the male and female rat NAC. A) At PN14, no significant changes in 

D1R levels were detected in the NAC (p=0.09, F2,16= 2.72) (control n= 6, 180ppm n= 7, 

1500ppm n=6). B) At PN28, a 21% increase in D1R levels was detected in the NAC of male rats 

exposed to 1500ppm PbAc versus control diet (p=0.0026, F2,15=9.03) (control n= 7, 180ppm n= 

6, 1500ppm n=5). C) At PN50, no significant changes in D1R levels were detected in the NAC 

(p=0.2, F2,16= 1.78) (control n=7, 180ppm n= 6, 1500ppm n=6). D) At PN14, no significant 

changes in D1R levels were detected in the NAC (p=0.61, F2,18= 0.51) (control n= 7, 180ppm n= 

7, 1500ppm n=7). E) At PN28, no significant changes in D1R levels were detected in the NAC 

(p=0.39, F2,15= 1.0) (control n= 6, 180ppm n= 6, 1500ppm n=6). F) At PN50, no significant 

changes in D1R levels were detected in the NAC (p=0.29, F2,12= 1.37) (control n=6, 180ppm 

n=5, 1500ppm n=4). 
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Figure 3.3. D1R levels in the male and female rat STR. A) At PN14, no significant changes in 

D1R levels were detected in the STR (p=0.07, F2,16= 3.13) (control n= 7, 180ppm n= 6, 1500ppm 

n=6). B) At PN28, a 22% increase in D1R levels was detected in the STR of male rats exposed to 

1500ppm PbAC versus control diet (p=0.006, F2,17=7.02) (control n=8, 180ppm n= 6, 1500ppm 

n=6). C) At PN50, no significant changes in D1R levels were detected in the STR (p=0.49, F2,16 

=0.75) (control n=5, 180ppm n= 7, 1500ppm n=7). D) At PN14, no significant changes in D1R 

levels were detected in the STR (p=0.04, F2,17= 3.83) (control n=6, 180ppm n= 7, 1500ppm n=7). 

E) At PN28, no significant changes in D1R levels were detected in the STR (p=0.35, F2,16= 1.11) 

(control n=8, 180ppm n= 5, 1500ppm n=6). F) At PN50, no significant changes in D1R levels 

were detected in the STR (p=0.16, F2,15=2.07) (control n=7, 180ppm n= 6, 1500ppm n=5). 
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Figure 3.4. D2R levels in the male and female rat OT. A) At PN14, no significant changes in 

D2R levels were detected in the OT (p=0.18, F2,15=1.94) (control n= 5, 180ppm n= 7, 1500ppm 

n=6). B) At PN28, no significant changes in D2R levels were detected in the OT (p=0.77, 

F2,18=0.26) (control n= 8, 180ppm n= 6, 1500ppm n=7. C) At PN50, no significant changes in 

D2R levels were detected in the OT (p=0.29, F2,16 =1.32) (control n=6, 180ppm n= 5, 1500ppm 

n=8). D) At PN14, no significant changes in D2R levels were detected in the OT (p=0.15, F2,15= 

2.12) (control n= 5, 180ppm n= 7, 1500ppm n=6). E) At PN28, no significant changes in D2R 

levels were detected in the OT (p=0.67, F2,13= 0.41) (control n= 7, 180ppm n= 4, 1500ppm n=5). 

F) At PN50, no significant changes in D2R levels were detected in the OT (p=0.43, F2,14=0.89) 

(control n=6, 180ppm n= 6, 1500ppm n=5).  
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Figure 3.5. D2R levels in the male and female rat NAC. A) At PN14, no significant changes in 

D2R levels were detected in the NAC (p=0.13, F2,17= 2.33) (control n= 6, 180ppm n= 7, 

1500ppm n=7). B) At PN28, no significant changes in D2R levels were detected in the NAC 

(p=0.86, F2,15= 2.33) (control n= 7, 180ppm n= 6, 1500ppm n=5). C) At PN50, no significant 

changes in D2R levels were detected in the NAC (p=0.90, F2,18= 1.78) (control n=7, 180ppm n= 

6, 1500ppm n=8).  D) At PN14, no significant changes in D2R levels were detected in the NAC 

(p=0.52, F2,14=0.68) (control n= 5, 180ppm n= 6, 1500ppm n=6). E) At PN28, no significant 

changes in D2R levels were detected in the NAC (p=0.11, F2,14= 2.62) (control n= 6, 180ppm n= 

6, 1500ppm n=5). F) At PN50, after adjusting for multiple comparisons, no significant changes 

in D2R levels were detected in the NAC (p=0.02, F2,16= 4.98) (control n=6, 180ppm n=6, 

1500ppm n=7). 
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Figure 3.6. D2R levels in the male rat STR. A) At PN14, a significant increase in D2R levels was 

detected in the STR of male rats exposed to 180ppm (p=0.01, F2,15=5.05) (control n=6, 180ppm 

n= 5, 1500ppm n=7). B) At PN28, after adjusting for multiple comparisons, no significant 

changes in D2R levels were detected in the STR (p=0.03, F2,15 =4.63) (control n=6, 180ppm n= 

6, 1500ppm n=6). C) At PN50, no significant changes in D2R levels were detected in the STR 

(p=0.46, F2,14=0.82) (control n=7, 180ppm n= 5, 1500ppm n=5). D) At PN14, after adjusting for 

multiple comparisons, no significant changes in D2R levels were detected in the STR (p=0.02, 

F2,13= 5.24) (control n=5, 180ppm n= 5, 1500ppm n=6). E) At PN28, no significant changes in 

D2R levels were detected in the STR (p=0.80, F2,16= 0.22) (control n=7, 180ppm n= 6, 1500ppm 

n=6). F) At PN50, no significant changes in D2R levels were detected in the STR (p=0.35, 

F2,17=1.12) (control n=7, 180ppm n= 6, 1500ppm n=7). 
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Figure 3.7. Representative autoradiograms illustrating [3H]-SCH23390 binding in OT, NAC, and 

STR of control and Pb2+-exposed male (A) and female (B) rats at PN14. 
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Figure 3.8. Representative autoradiograms illustrating [3H]-SCH23390 binding in OT, NAC, and 

STR of control and Pb2+-exposed male (A) and female (B) rats at PN28. 
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Figure 3.9. Representative autoradiograms illustrating [3H]-SCH23390 binding in OT, NAC, and 

STR of control and Pb2+-exposed male (A) and female (B) rats at PN50. 
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Figure 3.10.  Representative autoradiograms illustrating [3H]-Raclopride binding in OT, NAC, 

and STR of control and Pb2+-exposed male (A) and female (B) rats at PN14. 
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Figure 3.11. Representative autoradiograms illustrating [3H]-Raclopride binding in OT, NAC, 

and STR of control and Pb2+-exposed male (A) and female (B) rats at PN28. 
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Figure 3.12. Representative autoradiograms illustrating [3H]-Raclopride binding in OT, NAC, 

and STR of control and Pb2+-exposed male (A) and female (B) rats at PN50. 
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Discussion 

In the present study, we confirm that chronic Pb2+ exposure alters DA receptor levels in 

the OT, NAC, and STR. D1R levels were increased by 21% and 22% in the NAC and STR, 

respectively, in adolescent male rats exposed to 1500ppm PbAC diet versus control. A robust, 

dose-dependent increase in D1R levels was detected in the OT of adolescent male rats, with a 

17% increase detected after chronic exposure to 180ppm PbAC diet and a 48% increase after 

chronic exposure to 1500ppm PbAC diet. A 41% increase in D1R levels was also detected in the 

OT of adolescent female rats exposed to 1500ppm PbAC diet. Together, these results 

demonstrate an increase in D1R levels in the mesolimbic and mesostriatal systems in the dorsal 

and ventral striatum. Our results are consistent with previous work by Gedeon (2001) 

demonstrating increases in D1R levels in the NAC of Pb2+-exposed rats at PN90, PN120, and 

PN150 (Gedeon, Ramesh et al. 2001). However, the results of this study contrast with previous 

work demonstrating no change in (Ma, Chen et al. 1999) or a temporary decrease in (Pokora, 

Richfield et al. 1996) D1R levels in the NAC of rats after Pb2+ exposure. They also contrast 

previous work demonstrating no change in D1R levels in the STR of Pb2+-exposed rats 

(Moresco, Dall'Olio et al. 1988, Pokora, Richfield et al. 1996, Ma, Chen et al. 1999). 

To the best of our knowledge, this is the first study to describe significant increases in 

D1R in the OT of both male and female adolescent rats and the first study to describe a dose-

dependent increase in D1R levels in the OT of adolescent male rats. Furthermore, our results 

demonstrate that D1R levels in the OT are markedly elevated by Pb2+ exposure relative to the 

STR and NAC, even at BLLs as low as 7µg/dl. Though the impact of Pb2+ toxicity on the OT has 

not been studied in depth, this region has been identified as a “trigger zone,” a synaptic junction 

in the mesocorticolimbic system where the circuitry underlying reward function is first activated 
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(Ikemoto 2010). The OT also serves as a sensory integration site where the auditory, visual, 

gustatory, and olfactory cues that lead to a reward response first converge (Chiang and 

Strowbridge 2007, Wesson and Wilson 2010). As such, activation of OT by psychostimulant 

drugs may be a central component in activation of the circuitry underlying drug-related reward 

(Ikemoto 2010). Dysregulation of DAergic signaling systems in the OT may, therefore, play a 

significant role in the DAergic system dysregulation that underlies drug addiction (Volkow and 

Li 2005, Volkow, Wang et al. 2011, Volkow, Wang et al. 2011). 

Studies by Ikemoto and colleagues have demonstrated that the OT is more sensitive to the 

psychostimulant effects of cocaine on locomotor activity and rearing than the STR and NAC 

(Ikemoto 2003, Ikemoto 2007). Rats have been demonstrated to learn to self-administer 

psychostimulants such as cocaine sooner and at much lower concentrations if injected into the 

OT versus the NAC and STR (Ikemoto 2003, Ikemoto 2010). These effects are abolished with 

co-administration of DA receptor antagonists (Ikemoto 2003, Ikemoto, Qin et al. 2005). Together 

with the work of Ikemoto, our results strongly suggest that Pb2+ exposure-induced D1R 

upregulation in the OT is a likely mechanism underlying the increased locomotor sensitization 

by cocaine in Pb2+-exposed rats previously reported by our laboratory (Stansfield, Ruby et al. 

2015, Stansfield KH 2015).   

It should be noted that work by Ikemoto and colleagues also suggests a medio-lateral 

gradient for cocaine sensitivity in the NAC, STR, and OT, with the highest level of sensitivity in 

the medial posterior OT (Ikemoto, Qin et al. 2005, Ikemoto 2007, Ikemoto 2010). The current 

study did not have the power necessary to allow for statistical analysis of DA receptor levels in 

subregions of the STR, NAC, or OT. Furthermore, we did not have the power to allow for 

statistical comparisons across sex and age. Still the findings in our study do suggest that the 
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impact of chronic Pb2+ exposure on DA receptor levels may vary across age and sex for analysis 

of either D1R or D2R levels. Future work with larger sample sizes will be required to allow for 

subregional analysis of DA receptor level changes as well as comparisons across age and sex in 

exposed versus control animals.  

Disruption of D1R and D2R signaling has been implicated in altered DAergic system 

function resulting from low-level Pb2+ exposure (Gedeon, Ramesh et al. 2001). Though we 

demonstrate increased D1R levels in animals, we did not evaluate the effects of increased D1R 

levels on phosphorylation of protein substrates downstream of D1R-mediated activation of the 

Camp/PKA/CREB pathway in the animals studied.  Future studies should be undertaken to 

determine the effect of Pb2+ exposure on phosphorylation within the cAMP/PKA/CREB pathway 

as it may provide a mechanism through which Pb2+-induced alterations in DA receptor levels 

may alter signaling in postsynaptic cells and ultimately lead to the enhanced sensitivity of our 

Pb2+-exposed animals to cocaine’s psychostimulant effects.  

In the previous chapter, we demonstrated that Pb2+ exposure resulted in increased DA 

turnover in PN28 and PN50 male rats following chronic exposure to 180ppm and 1500ppm 

PbAC diet. Previous work has also demonstrated that DA turnover in these regions are sensitive 

to the neurotoxic effects of Pb2+ (Nation, Frye et al. 1989, Stansfield, Ruby et al. 2015). Our 

laboratory has not measured DA and DA turnover in the NAC or OT of the animals in this study. 

However, the robust increases in D1R levels we observed in the OT and NAC indicate DA 

turnover should be analyzed in these regions.  

Even though we previously demonstrated significant increases in sensitization to 

cocaine’s psychostimulant effects in both male and female rats at PN50, we detected no changes 

in DA or DA turnover in female rats in the previous chapter. This suggests that changes in DA 
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levels and turnover observed in Pb2+-exposed animals may not underlie the increases in 

sensitivity to cocaine’s psychostimulant effects we previously observed in both male and female 

rats.  In the present study, very robust increases in D1R levels were detected in the OT of both 

female and male rats at PN28 following Pb2+ exposure. Given this region’s high sensitivity to 

psychostimulants as well as the role of D1R in the modulation of phosphorylation in the 

postsynaptic cell, these results suggest that increased D1R in the OT may be a factor underlying 

the increased sensitization to cocaine we previously observed in both male and female rats. This 

hypothesis is strengthened by the dose-response effect observed in the OT of adolescent male 

rats as it demonstrates the sensitivity of this region to Pb2+ neurotoxicity. However, we cannot 

yet rule out other mechanisms through which Pb2+ exposure may induce a hyperactive DAergic 

state. 

The results presented in this study support our hypothesis that chronic Pb2+ exposure 

increases sensitivity to the psychostimulant effects of cocaine by inducing a hyperactive DAergic 

state as reflected by increased D1R levels in the OT, NAC, and STR and DA turnover in the STR 

(Stansfield KH 2015).  Here we demonstrate increases in D1R expression in young adolescent 

rats with BLLs as low as 7µg/dl. Together with the increased STR DA and DA turnover levels 

observed in Pb2+-exposed male adolescent and young adult rats the previous chapter, these 

results suggest that dysregulation of DA synthesis, metabolism, and signaling may underlie 

increased locomotor activity we previously observed in Pb2+-exposed animals.  
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Conclusion 

Summary of Findings and Implications 

The central finding of this dissertation is that chronic Pb2+ exposure induces changes in 

expression of proteins essential for DAergic transmission that may be suggestive of a 

hyperactive DAergic state characterized by increased DA levels and DA turnover in the STR and 

increased D1R levels in the OT, NAC and STR in male rats with BLL as low as 4µg/dl. The 

reinforcing properties of cocaine and other drugs of abuse stem from their ability to increase the 

magnitude and duration of elevated DA concentrations in the extracellular environment, 

surpassing the increases in DA elicited by natural reinforcers such as food (Volkow, Wang et al. 

1997, Volkow and Li 2004, Volkow and Wise 2005, Koob and Volkow 2010). In Aim 1, we 

found that total STR DA levels were significantly higher in Pb2+-exposed males versus control, 

both in adolescence and young adulthood, time points that correspond with a higher risk of drug 

use and onset of drug addiction (Volkow and Li 2004).  

Addictive drugs activate brain regions associated with reward by eliciting rapid spikes in 

DA release and repeated exposure to the drug strengthens synaptic connections associated with 

learning and memory formation (Volkow, Koob et al. 2016). The transition from drug use to 

abuse begins with changes in the mesolimbic DAergic system that begin in the ventral striatum 

(OT and NAC), leading to the activation of other brain regions associated with reward (dorsal 

striatum, thalamus, and globus pallidus) (Volkow and Li 2004, Koob and Volkow 2010, Volkow, 

Wang et al. 2011, Volkow, Koob et al. 2016). Repeated exposure to drugs results in the 

strengthening of processes of the brain associated with reward and weakens those associated 

with inhibition control and decision making (Baler and Volkow 2006, Volkow, Koob et al. 

2016). The central finding of this work is that chronic low-level Pb2+ exposure induces 

alterations consistent with a hyperactive dopaminergic state in the regions of the brain that are 
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most responsive to psychostimulants such as cocaine (Ikemoto 2003, Ikemoto 2007, Ikemoto 

2010). Such Pb2+-induced DAergic hyperactivity may underlie the increased sensitization to 

cocaine’s psychostimulant effects that our laboratory previously observed in our animal model of 

low-level Pb2+ exposure (Stansfield, Ruby et al. 2015).  

Drugs of addiction dysregulate DA release and reuptake, which can result in increased 

DA concentration and duration in the synapse (Koob and Volkow 2010). This, in turn, can alter 

DA-mediated synaptic plasticity, resulting in adaptations to DAergic circuits underlying reward 

and other processes associated with addiction (Volkow and Li 2004, Volkow, Koob et al. 2016). 

The increased DA turnover observed in the STR of Pb2+-exposed animals versus control in the 

absence of a reinforcer suggests DA-mediated synaptic plasticity may also be altered in these 

animals in a manner similar to individuals after repeated exposure to drug of abuse and 

subsequent changes to neurocircuitry that predisposes them to addiction (Baler and Volkow 

2006, Koob and Volkow 2010, Volkow, Koob et al. 2016).  

DAergic system dysregulation is known to increase susceptibility to drug addiction onset 

and Pb2+ is known to alter DAergic transmission (Volkow, Wang et al. 2011, Volkow, Koob et 

al. 2016). The brain is particularly sensitive to the effects of drug-induced DA dysregulation in 

adolescence and young adulthood, as these periods coincide with increased neuroplasticity 

associated with the maturation of neurocircuitry underlying processes such as inhibition control 

(Koob and Volkow 2010, Volkow, Koob et al. 2016). Dysregulation of DA resulting from drug 

use in adolescence has been demonstrated to result in neuroadaptations that increase 

susceptibility to drug abuse in later stages of life (Volkow and Li 2004). It is possible that the 

Pb2+-induced dysregulation of DA and DA turnover we observed in adolescent and young adult 

male rats could result in similar neuroadaptations and ultimately underlie the increased 
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sensitization to cocaine previously observed in our model for chronic Pb2+ exposure (Stansfield, 

Ruby et al. 2015).  

This hypothesis is supported by the robust increases in D1R observed in the OT, NAC, 

and STR of adolescent Pb2+-exposed male rats and in the OT of adolescent Pb2+-exposed female 

rats. Of these regions, the OT has been demonstrated to be the most sensitive to cocaine 

(Ikemoto 2003, Ikemoto 2007, Ikemoto 2010). The D1R-mediated disinhibitory direct pathway 

underlies drug-related increases in locomotor function as well as other responses. It also 

undergoes long-term potentiation in response to increased DA associated with a natural reward 

or drugs of abuse such as cocaine. The D2R-mediated inhibitory indirect pathway, on the other 

hand, undergoes long-term depression in response to phasic release of DA or long-term 

potentiation in response to basal release of DA (Gruber and McDonald 2012). Together with the 

increases in DA and DA turnover observed in Aim 1, the increases in D1R observed in Aim 2 

suggest that lead exposure may alter DA-modulated neurocircuitry in a manner that may increase 

responsiveness to cocaine’s psychostimulant effects.   

Drug addiction remains a public health concern and an improved understanding of the 

mechanisms underlying the transition from drug use to drug abuse may result in improved 

strategies for prevention (Volkow, Koob et al. 2016). Pb2+ has been demonstrated to alter DA 

release, DA turnover, DA receptors, DA synthesis, and uptake in regions that are sensitive to 

psychostimulant effects of cocaine (Nation, Frye et al. 1989, Cory-Slechta 1995, Zuch, O'Mara 

et al. 1998, Ikemoto 2003, Ikemoto 2007, Stansfield, Ruby et al. 2015). A number of studies 

have determined that early-life Pb2+ exposure increases the risk for cognitive and behavioral 

deficits later in life and an association between Pb2+ exposure and drug abuse has been suggested 

(Canfield, Henderson et al. 2003, Canfield, Kreher et al. 2003, Needleman 2004, Lanphear, 
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Hornung et al. 2005, Fishbein, Todd et al. 2008, Jones and Miller 2008, Jusko, Henderson et al. 

2008).  

NHANES data indicates that legislation has successfully decreased BLL of children 

under the age of 5 (Nevin 2007, CDC 2012, CDC 2016). Nevertheless, the effects of early-life 

Pb2+ exposure on cognitive and behavioral function can persist well after the exposure occurs 

and, as such, continue to affect populations that were exposed to Pb2+ as children in previous 

decades (Nevin 2000, Nevin 2007). The populations most at-risk for Pb2+ exposure are also the 

populations most at-risk for drug addiction, but the nature of the relationship between Pb2+ 

exposure and drug addiction has not yet been defined (Ensminger, Anthony et al. 1997, 

Ensminger, Juon et al. 2002, Cory-Slechta, Virgolini et al. 2004, Fishbein, Todd et al. 2008, 

Jones and Miller 2008). By demonstrating that Pb2+ induces a hyperactive DAergic state, our 

findings provide a neurobiological mechanism by which Pb2+ may act as a causal risk factor in 

the onset of drug addiction. Together with previous work by our laboratory and work by Nation 

et al., our findings expand upon our current understanding of how environmental pollutants can 

play a role in the onset of drug addiction (Miller, Nation et al. 2000, Nation, Smith et al. 2004, 

Jones and Miller 2008, Stansfield, Ruby et al. 2015).  

 

Limitations and Directions for Future Research 

One limitation of this study is the sample size used, as it did not allow us the power 

necessary to determine sex-, region-, and age-dependent effects on the biomarkers analyzed. 

Though our data suggest that differences occur across sex, brain regions, and age, we were 

unable to evaluate this statistically. Even so, the results of this work should be useful for 

conducting the power calculations necessary to determine the appropriate sample sizes to be used 



145 
 

in future studies evaluating sex-, region-, and age-dependent effects of Pb2+ on the DAergic 

system. Another key limitation is that we did not take estrous cycle into consideration when 

female brains were collected, as fluctuating estrogen levels can affect the endpoints we 

measured. Therefore, future work evaluating sex-dependent effects should also monitor the 

effects of Pb2+ at different stages of the female estrous cycle, as it may provide insights to how 

fluctuating hormones interact with Pb2+ exposure to affect the DAergic system.  

  In Chapter 2, we observed increased DA turnover in the STR of exposed male rats 

versus control at PN28 and PN50. D1R levels were significantly increased in the OT and NAC, 

demonstrating that the vulnerability of these regions to the neurotoxic effects of Pb2+. As a result, 

we are currently in the process of collecting the tissue necessary to measure DA, DA 

metabolites, and DA turnover in these regions in addition to STR. Though the increased 

DOPAC/DA and HVA/DA ratios observed in exposed adolescent and young adult male rats 

indicate increased DA turnover in the STR, it is still unclear if DA release and reuptake were 

affected by Pb2+ exposure. We intend to measure DAT levels in OT, NAC, and STR in future 

work as a marker for DA reuptake. However, in vivo electrochemical analysis of evoked DA 

release and clearance should also be conducted in these regions as it will provide a more accurate 

assessment of whether Pb2+ increases the availability of DA following stimulation of DAergic 

neurons and, if so, provide further evidence to support a hyperactive DAergic system. 

 Though we demonstrated increased DA levels in Pb2+-exposed male rats at PN28 and 

PN50, we found no change in pser40TH or TH, the rate-limiting enzyme in DA synthesis, in 

these animals. In contrast, increased pser40TH levels were detected in the STR of female rats 

exposed to 1500ppm PbAC diet at PN50, demonstrating that TH may be affected by Pb2+. 

Though phosphorylation of TH indicates activation of this enzyme, it is not a direct measure of 
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TH activity. Future studies should, therefore, conduct a TH enzyme activity assay such as the 

assay described by Naoi (1988) to measure TH activity in the STR. This assay utilizes HPLC 

coupled with electrochemistry to detect L-DOPA generated by brain homogenate samples in the 

presence or absence of an amino acid decarboxylase inhibitor such as p-bromobenzyloxyamine 

(Naoi, Takahashi et al. 1988). Furthermore, the increased D1R levels observed in the OT of 

female rats and in the OT and NAC of male rats at PN28 indicate that these regions are 

vulnerable to Pb2+ toxicity and suggest that analysis of TH activity in these regions should also 

be undertaken.  

In studies in Chapter 3, we observed increased D1R receptor levels in Pb2+-exposed 

animals, but we did not evaluate DA receptor function. DA receptor function may be altered by 

Pb2+ exposure, resulting in compensatory upregulation of DA receptors. Given the robust 

increases in D1R levels observed in both male and female rats at PN28, future studies should be 

undertaken to determine the effect of Pb2+ exposure on D1R activation of the cyclic adenosine 

monophosphate (cAMP)-dependent pathway, which plays a significant role in regulating 

synaptic plasticity underlying strengthened reward circuits and weakened inhibitory control 

(Volkow, Koob et al. 2016).  

One marker that should be studied further is phosphorylation of dopamine- and cAMP-

regulated neuronal phosphoprotein (DARPP-32) at its threonine 34 residue. DARPP-32, a 

protein expressed by medium spiny neurons, is necessary for the behavioral responses of cocaine 

(Halpain, Girault et al. 1990, Bjorklund and Dunnett 2007). Activation of D1R by DA or D1R 

agonists such as SKF81297 results in increased phosphorylation of the DARPP-32 threonine 

residue 34 (Thr34) (Halpain, Girault et al. 1990, Bjorklund and Dunnett 2007, Beaulieu and 

Gainetdinov 2011). Once phosphorylated at Thr34, DARPP-32 is activated and acts as a potent 
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protein phosphatase-1 (PP1) inhibitor. Inhibition of PP1, in turn, results in decreased 

dephosphorylation of a number of protein substrates (Halpain, Girault et al. 1990). To assess the 

impact of Pb2+ on D1R function, future studies should compare Thr34 phosphorylation levels of 

DARPP-32 in the OT, NAC, and STR as a marker for activation of signaling pathways 

downstream of DA receptors.  

There are two isoforms of D2R, the long form (D2RL) and the short form (D2RS) 

(Usiello, Baik et al. 2000, Beaulieu and Gainetdinov 2011). D2RL is found postsynaptically, 

whereas D2RS is located presynaptically and plays a role in the regulation of DA synthesis and 

release (Lindgren, Xu et al. 2001, Centonze, Gubellini et al. 2004, Beaulieu and Gainetdinov 

2011). Binding of DA or DA agonists to D2RS results in decreased release of DA and impaired 

autoreceptor function has been associated with altered DA transmission (Calipari, Sun et al. 

2014). Binding of DA to D2RL, on the other hand, leads to the inhibition of adenylyl cyclase, 

which, in turn, leads to decreased activity of cAMP/protein kinase A (PKA) cascade activity and 

subsequent decreases in phosphorylation of PKA protein phosphates such CREB, NMDAR, 

AMPAR, and DARPP-32 (Surmeier, Ding et al. 2007, Beaulieu and Gainetdinov 2011). The 

D2R quantitative autoradiography conducted in Aim 2 does not distinguish between D2RS and 

D2RL levels. In Aim 1, we observed increases in DA in Pb2+-exposed male rats at PN28 and 

PN50 in the absence of altered TH phosphorylation. As D2RS acts as an autoreceptor to regulate 

DA synthesis in presynaptic cells, future work should be undertaken to determine whether Pb2+ 

exposure has differential effects on D2RL and D2RS. Quantitative real-time PCR using methods 

similar to those described in Naneix (2013) can be implemented to measure D2RL and D2RS 

expression in the OT, NAC, and STR (Naneix, Marchand et al. 2013).   
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Preliminary subregional analysis of D1R and D2R levels in the OT, NAC, and STR (data 

not shown) indicated differences in magnitude and direction of Pb2+-induced effects on D1R and 

D2R levels in neuroanatomical delineations corresponding with limbic, sensorimotor, and 

associative functions (Haber 2003, Voorn, Vanderschuren et al. 2004, Gruber and McDonald 

2012). Subregional analyses of OT, NAC, and STR using a larger sample of animals may better 

elucidate functional relevance of Pb2+-induced changes in DA receptor levels. Together with our 

current understanding of the neuroanatomical arrangement of DAergic circuitry associated with 

addiction, subregional analysis of D1R and D2R levels in the OT, NAC, and STR may allow us 

to better pin-point what behaviors and processes are most vulnerable to Pb2+ neurotoxicity.  

In Chapter 3, using quantitative receptor autoradiography, we demonstrated that D1R and 

D2R levels were altered by chronic exposure to Pb2+. Increased D2R levels were detected in the 

STR of PN14 male rats exposed to 180ppm PbAC diet, which resulted in BLL of 10µg/dl. We 

also observed robust increases in OT D1R levels in male and female rats at PN28 after exposure 

to 180ppm (BLL of 7µg/dl for males at PN28) and 1500ppm (BLL of 18µg/dl for males and 

23µg/dl for females; BLL of 20µg/dl for combined sexes at PN28). Significant increases in D1R 

levels were also detected in the NAC and STR of male rats at PN28 following chronic Pb2+ 

exposure. The increased DA receptor levels observed in this aim, together with the increases in 

DA levels and DA turnover observed in the previous aim, support our hypothesis that Pb2+ 

exposure induces a hyperactive DAergic state that may ultimately result in increased 

sensitization to the effects of psychostimulants. 

The extent of environmental Pb2+ exposure’s impact on the prevalence of drug addiction 

in America today is unclear. Even so, in demonstrating a neurobiological mechanism through 

which Pb2+ may increase susceptibility for drug addiction later in life, we demonstrate yet 
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another long-term consequence of early-life Pb2+ exposure with far-reaching societal 

consequences.  In light of recent events in Flint, Michigan (Hanna-Attisha and Kuehn 2016, 

Hanna-Attisha, LaChance et al. 2016), the results of this study highlight the importance of 

legislation and policy decisions designed to eliminate existing Pb2+ exposures. These results also 

highlight the need for legislation designed to eradicate the socioeconomic disparities associated 

with elevated BLL in children as these disparities may increase the risk for drug addiction as 

well as cognitive and behavioral deficits later in life.  
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