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ABSTRACT

On the isomorphism testing of graphs

Xiaorui Sun

Graph Isomorphism is one of the very few classical problems in NP of unsettled complex-

ity status. The families of highly regular structures, for example Steiner 2-designs, strongly

regular graphs and primitive coherent configurations, have been perceived as difficult cases

for graph isomorphism. These highly regular structures arise naturally as obstacles for

both the classical group theory and combinatorial approaches for the graph isomorphism

problem.

In this thesis we investigate the isomorphism problem of highly regular structures. We

present new results to understand the combinatorial structure of highly regular structures,

and propose some new algorithms to compute the canonical forms (and thus isomorphism

testing) of highly regular structures based on the structural theorems.

We also give an algorithm solving the isomorphism problem of two unknown graphs

in the property testing setting. Our new algorithm has sample complexity matching the

information theoretical lower bound up to some multiplicative subpolynomial factor.
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Chapter 1

Introduction

One of the most fascinating graph-theoretic problems is to determine whether two graphs

are isomorphic to each other [Read and Corneil, 1977]. In this problem, we are given two

graphs G = (V,E) and H = (V,E′) on the same set of vertices, and are asked to decide

whether there exists a permutation σ such that for all pairs of vertices (u, v) in V , (u, v) ∈ E

if and only if (σ(u), σ(v)) ∈ E′.

It follows from the theory of interactive proofs that the Graph Isomorphism problem (GI)

is not NP-complete unless the polynomial-time hierarchy collapses ([Goldreich et al., 1991;

Babai, 1985; Goldwasser et al., 1985; Boppana et al., 1987; Goldwasser and Sipser, 1986],

see [Babai and Moran, 1988] for a self-contained proof). On the other hand, polynomial-

time algorithms have been developed for special families of graphs. It was also shown in

[Babai and Kucera, 1979; Babai et al., 1980; Czajka and Pandurangan, 2008] that isomor-

phism testing for random graphs is easy. For general graphs, the previous best upper

bound was exp(Õ(
√
n)) where n is the number of vertices and the tilde hides polylog

factors [Babai and Luks, 1983; Babai et al., 1983; Zemlyachenko et al., 1982]. This upper

bound was significantly improved to exp((log n)O(1)) by Babai [Babai, 2015] recently.

The families of highly regular structures have been perceived as difficult cases for

graph isomorphism. These highly regular structures arise naturally as obstacles for both

the classical group theory and combinatorial approaches for the graph isomorphism prob-

lem [Babai, 2014].

In this thesis, we develop new structure theory for the highly regular structures, includ-
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ing Steiner 2-designs, strongly regular graphs and primitive coherent configurations.

For all these highly regular structures, we show some new bounds on the rate of expan-

sion of small sets of vertices in certain ranges of parameters. We also prove the existence of

clique geometries for strongly regular graphs and primitive coherent configurations in other

cases. A clique geometry of a graph is a collection of maximal cliques such that every edge

belongs to a unique clique. Clique geometries allows us to separate the exceptions with

large automorphism groups from the others with nice claw structures.

Based on these new structure theory of the highly regular structures, we study the

isomorphism testing, as well as the number of automorphisms for the highly regular struc-

tures. The latter is of interest to algebraic combinatorics. We use the new structure results

to prove the efficiency of the individualization/refinement procedure on the highly regular

structures.

One classical combinatorial approach for graph isomorphism is the naive refinement

method: one first assigns each vertex a label that is equal to its degree and then repeatedly

relabels each vertex based on the set of labels of its neighbors. It is easy to show that, if

vertices of a graph G eventually obtain distinct labels under this process, then the testing of

isomorphism involving G with any other graph can be solved in polynomial time, and G has

only trivial automorphism. However, this method fails to distinguish any pair of vertices

for regular graphs. To break this symmetry of regular graphs, a more powerful technique is

the individualization/refinement procedure. One first chooses a set of (a small number of)

vertices, which we will refer to as the seeding set, and assigns each vertex in it a distinct

label to jump start the refinement procedure. It is standard that if G has a seeding set S

of size k such that the individualization of S followed by refinement assigns a distinct label

to every vertex of G, then the test of isomorphism involving G with any other graph can

be solved in time nk · poly(n), and G has at most nk automorphisms.

1.1 Summary of thesis contributions

We present the following results in this thesis.

1. We show that the individualization of O(log v) points and lines suffices for refine-
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ment to completely split a Steiner 2-design, where v is the number of points in the

Steiner 2-design. A Steiner 2-design consists of points and lines, where each line passes

through the same number of points and each pair of points uniquely determines a line.

Each Steiner 2-design induces a Steiner graph, in which vertices represent lines and

edges represent intersections of lines. Steiner graphs are an important subfamily

of strongly regular graphs whose isomorphism testing has challenged researchers for

years. Our result implies a quasipolynomial-time algorithm for isomorphism testing

of Steiner 2-designs. This improves the previous best bound of exp(Õ(v1/4)) by Spiel-

man [Spielman, 1996]. Before our result, quasipolynomial-time isomorphism testing

was only known for the case when the line size is polylogarithmic, as shown by Babai

and Luks [Babai and Luks, 1983]. Our result also implies that every Steiner 2-design

has at most quasipolynomial automorphisms.

2. We present an exp(Õ(n1/5))-time algorithm for isomorphism testing of strongly regular

graphs, improving the best previous exp(Õ(n1/3)) bound by Spielman [Spielman, 1996].

A strongly regular graph is a regular graph such that for each pair of vertices, the

number of their common neighbors is determined solely by whether they are con-

nected.

The previous results on isomorphism testing of strongly regular graphs [Babai, 1980;

Spielman, 1996] were based on the analysis of the classical individualization/refinement

method. Our new bound is based on a combination of a deeper analysis of the in-

dividualization/refinement method with Luks’s group theoretic divide-and-conquer

methods [Luks, 1982].

Following Spielman’s work [Spielman, 1996], our analysis builds on Neumaier’s 1979

classification of strongly regular graphs [Neumaier, 1979]. One of Neumaier’s classes,

the aforementioned Steiner graphs, has been eliminated as a bottleneck by showing a

quasipolynomial time algorithm for the isomorphism testing of Steiner 2-designs. In

the remaining hard cases, we have the benefit of “Neumaier’s claw bound” and its

asymptotic consequences derived by Spielman.

We also prove the following purely combinatorial result: Any non-trivial and non-
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graphic strongly regular graph has a set of Õ(n9/37) vertices whose individualization

and refinement completely split the graph. This implies that the order of the au-

tomorphism group of non-trivial and non-graphic strongly regular graphs is at most

exp(Õ(n9/37)), improving an earlier exp(Õ(n1/3)) bound by Spielman [Spielman, 1996].

3. We show that after excluding easily described and recognized exceptions, every prim-

itive coherent configuration has a set of Õ(n1/3) vertices whose individualization and

subsequent refinement completely split the configuration, improving the best pre-

vious exp(Õ(n1/2)) bound by Babai [Babai, 1981b]. Primitive coherent configura-

tions are colored directed graphs that generalize strongly regular graphs. Moreover,

primitive coherent configurations arise naturally as obstacles to combinatorial divide-

and-conquer approaches for general graph isomorphism. In a natural sense, the iso-

morphism problem for primitive coherent configurations is a stepping stone between

strongly regular graph isomorphism and the general graph isomorphism problem.

The emergence of exceptions illuminates the technical difficulties: we had to separate

these cases from the rest. For the analysis we develop a new combinatorial structure

theory for PCCs that in particular demonstrates the presence of “asymptotically uni-

form clique geometries” among the constituent graphs of PCCs in a certain range of

the parameters. Our result also implies an exp(Õ(n1/3))-time algorithm for isomor-

phism testing of primitive coherent configurations and an exp(Õ(n1/3)) upper bound

on the number of automorphisms of PCCs (with known exceptions), making the first

progress in 33 years on an old conjecture of Babai (If a PCC has at least exp(nε)

automorphisms for some positive constant ε, then the automorphism group of the

PCC is a primitive permutation group).

A corollary to our result is an exp(Õ(n1/3)) upper bound on the order of primitive

but not doubly transitive permutation groups (with known exceptions). This bound.

This bound was previously known only through the Classification of Finite Simple

Groups [Cameron, 1981].

The complexity of testing isomorphism of PCCs has recently been improved to quasipoly-

nomial time by Babai’s general graph isomorphism algorithm [Babai, 2015]. Our
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structural results and automorphism bounds for PCCs are not affected by Babai’s

new result.

In addition, PCCs play a prominent role in Babai’s new algorithm for general graph

isomorphism. Further progress on the old conjecture of Babai has the potential of

simplifying Babai’s new algorithm using a deeper combinatorial analysis.

4. We also investigate the isomorphism testing problem for two unknown graphs in the

property testing setting. In this setting, we want to distinguish pairs of graphs that

are isomorphic from pairs of graphs that are significantly different. We say that two

graphs are ε-far if at least ε
(n
2

)
edges must be added or removed from one graph in

order to make the two graphs isomorphic. The goal of the property testing algorithm

is to accept with probability at least 9/10 if the input graphs are isomorphic and reject

with probability at least 9/10 if the input graphs are ε-far, for some given constant

ε > 0. We study the question of how many queries are required to distinguish between

the two cases. A query is defined as asking if a two vertices are adjacent or not.

We present a new property testing algorithm using n · 2O(
√
logn) samples with an

exp(2O(
√
logn)) running time, improving previous Õ(n5/4) sample complexity by Fis-

cher and Matsliah [Fischer and Matsliah, 2008]. This new sample complexity matches

the information theoretical lower bound up to some multiplicative subpolynomial fac-

tor.

1.2 Acknowledgement of collaborations

The ingredients of this thesis are based on joint works with László Babai, Xi Chen, Krzysztof

Onak, Shang-Hua Teng and John Wilmes. We acknowledge the papers where these joint

results have appeared or will appear in this section. A simultaneous Ph.D. thesis by

Wilmes [Wilmes, 2016] will include disjoint elements from the related joint works.

The isomorphism of Steiner 2-designs is a joint work with Xi Chen and Shang-Hua

Teng, and was published in the proceeding of 45th ACM Symposium on Theory of Com-

puting [Chen et al., 2013]. A result essentially identical to ours obtained simultaneously by

Babai and Wilmes was published in the same proceeding [Babai and Wilmes, 2013], and
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included in [Wilmes, 2016].

The isomorphism of strongly regular graphs is a joint work with László Babai, Xi Chen,

Shang-Hua Teng and John Wilmes, and was published in the proceeding of 54th Annual

IEEE Symposium on Foundations of Computer Science [Babai et al., 2013]. The technical

details presented in this thesis appears in the journal version of the same paper. Other

elements of this work are included in Wilmes’s Ph.D. thesis [Wilmes, 2016].

The automorphism bound of strongly regular graphs is based on an unpublished joint

work with Xi Chen and Shang-Hua Teng.

The isomorphism of primitive coherent configuration is a joint work with John Wilmes,

and was published in the proceeding of 47th ACM Symposium on Theory of Comput-

ing [Sun and Wilmes, 2015]. The technical details presented in this thesis appear in the

journal version of the same paper. Other elements of the proof of this work are included in

Wilmes’s Ph.D. thesis [Wilmes, 2016].

The property testing of graph isomorphism is based on an unpublished joint work with

Krzysztof Onak.

1.3 Organization of the thesis

The following chapters are organized as follows: We begin in Chapter 2 by giving some

basic definitions, introducing the individualization and refinement method. We present our

quasi-polynomial time algorithm for isomorphism of Steiner 2-designs in Chapter 3. In

Chapter 4, we show our exp(Õ(n1/5)) time algorithm for isomorphism of strongly regular

graphs, and the exp(Õ(n9/37)) upper bound on the number of automorphisms. In Chapter

5, we present the new result for primitive coherent configurations. In Chapter 6, we present

our result on the property testing of graph isomorphism.
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Chapter 2

Preliminaries

2.1 Graph isomorphism and related problems

We formally define the graph isomorphism problem.

Definition 2.1.1. Let G = (V,E) and G = (V ′, E′) be two graphs. We say a bijection

σ : V → V ′ is an isomorphism mapping from G to G′ if for any pair of vertices u, v ∈ V ,

(σ(u), σ(v)) ∈ E′ iff (u, v) ∈ E.

Problem 1. (Graph isomorphism problem) Given two graphs G = (V,E) and G′ =

(V ′, E′), the graph isomorphism problem is to decide whether there is an isomorphism bi-

jection between the two graphs.

Graph isomorphism problem is closely related to the graph canonical form problem.

Definition 2.1.2. Let K denote a family of graphs that is closed under isomorphism. A

map F : K → K is called a canonical form for graphs in K if

1. For any G in K, F (G) and G are isomorphic;

2. For any G,H ∈ K, if G and H are isomorphic, then F (G) = F (H).

Problem 2. (Graph canonical form problem) Let K be a family of graphs that is

closed under isomorphism. The canonical form problem is to define a function F : K → K
such that
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1. F satisfies Definition 2.1.2;

2. F is computable in within a specific time bound f(n).

For instance, if we set f(n) to be n! · poly(n), then a corresponding F can be defined as

the graph in K with lexicographically smallest adjacency matrix.

It is straightforward that the graph isomorphism problem is not harder than computing

a canonical form: Isomorphism of members of K can be decided by two applications of a

canonical form function and comparison of the outputs.

An automorphism of graph G is an isomorphism from G to G. One interesting question

in algebraic combinatorics is to upper bound the number of automorphisms of highly regular

structures. We contribute three such upper bounds: a bound for Steiner 2- designs, one

for strongly regular graphs, and one for PCCs (with known exceptions). The bound for

PCCs implies the same bound on the order of primitive permutation groups; this bound

was previously only known through the CFSG.

All the above definitions for graphs can be naturally extended to edge colored graphs

and finite geometries.

2.2 Individualization and refinement

A classical heuristic to GI is the individualization/refinement (I/R) method. Individualiza-

tion means the assignment of individual colors to some vertices; then the irregularity so

created propagates via some canonical color refinement process. For a class C of graphs,

an assignment G 7→ G′ is a color refinement if G,G′ ∈ C have the same set of vertices and

the coloring of G′ is a refinement of the coloring of G. Such an assignment is canonical

if for all G,H ∈ C, we have Iso(G,H) = Iso(G′,H ′), where Iso(G,H) denotes the set of

isomorphisms from G to H. In particular, Aut(G) = Aut(G′), where Aut(G) denotes the

automorphisms of G.

The simplest canonical color refinement process is the naive vertex refinement. The

edge-colors do not change, only the vertex-colors are refined. The refined color of vertex u

of the graph G encodes the following information: the current color of u and the number of

vertices v of color i adjacent to u, for every vertex-color i. We note that it can be performed
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in polynomial time. Repeated application of the naive vertex refinement process leads to

the stable refinement after at most n− 1 rounds.

In 1968, Weisfeiler and Leman defined another natural canonical refinement process of

colorings of the ordered pairs [Weisfeiler and Leman, 1968]. This refinement was general-

ized to k-dimensional Weisfeiler-Leman refinement. The k-dimensional Weisfeiler-Leman

refinement initially assigns colors to all the ordered k-tuples of the vertices according to the

canonical form of the induced subgraph of the k vertices. At each step of the refinement,

the color of every k-tuple is further updated by considering the ordered multiset of colors of

the neighbors of the given k-tuple (here the neighbors are the k-tuples differing in exactly

one element). The vertex color of Weisfeiler-Leman refinement for a given vertex is the color

of the tuple with k copies of the given vertex. We note that every round of k-dimensional

Weisfeiler-Leman refinement can be performed in time nk+O(1), and the refinement is stable

after at most nk rounds.

If after individualizing the elements of a set S ⊆ V , all vertices get different colors in

the resulting stable refinement, we say that S completely splits G (with respect to the given

canonical refinement process).

The following lemma is standard (see, e.g., [Babai et al., 2013, Section 2]).

Lemma 2.2.1. Let K be a class of graphs, and suppose that for every G ∈ K there is

set of α vertices that completely splits G with respect to a polynomial-time canonical color

refinement process. Then the following statements hold for every G ∈ K:

1. |Aut(G)| ≤ nα;

2. a canonical form for G can be computed in time nα+O(1);

3. for every H ∈ K, the set of isomorphisms from G to H can be listed in time nα+O(1).

In particular, I/R can efficiently split a graph G only if G has a small automorphism

group.

2.2.1 Strong labeling

Without loss of generality, in this subsection we assume that G = (V,E) is a graph on n

vertices and V = [n] = {1, . . . , n}.
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Let K denote a family of graphs with trivial automorphism group that is closed under

isomorphism. Canonical forms of graphs in K can be obtained from a strong labeling L

which takes two parameters G = (V,E) and v ∈ V , and returns a binary string L(G, v):

Definition 2.2.2. (Strong Labeling) Let K denote a family of graphs with trivial

automorphism group that is closed under isomorphism. A labeling L is strong for graphs

in K if for every graph G ∈ K, L satisfies the following two properties:

• Invariant Under Isomorphism: For every v ∈ V and σ ∈ Sym(V ),

L(G, v) = L(σ(G), σ(v)), where we use σ(G) to denote the graph G∗ = (V,E∗) such

that (u, v) ∈ E if and only if (σ(u), σ(v)) ∈ E∗.

• Distinctness: For every two distinct vertices u, v ∈ V , we have L(G,u) 6= L(G, v).

A canonical form F for K can be derived from a strong labeling L for K as follows.

Given G = (V,E) in K with V = [n], set F (G) = σ(G), where σ ∈ Sym(V ) and σ(u) ∈ [n]

is set to be the rank of L(G,u) among {L(G, v) : v ∈ V }, under the lexicographical order.

With Definition 2.2.2, we review the process of individualization and refinement as

follows (with naive vertex refinement as an example):

• Individualization: We first select a set of t vertices from G = (V,E) and assign each

vertex in it a special and distinct label. So for convenience we use a (not necessarily

injective) map f : [t] → V , called a seeding map, to specify a subset of V such that

f(i) is assigned the ith special label, i ∈ [t]. We may also use a feature selection

algorithm to assign each vertex outside of f [t] = {f(i) : i ∈ [t]} an initial label.

• Naive vertex refinement: At each step, each vertex in V − f [t] receives the multiset

whose elements are the multisets of labels of its neighbors (including its neighbors in

f [t]) as well as itself, and obtains a new label that is set to its rank among all

multisets of vertices in V − f [t], under the lexicographical order. It continues this

refinement process until no more progress can be made. Note that vertices in f [t]

always keep their initially assigned special labels. It is clear that this process

terminates in polynomial time.
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We call f : [t] → V a good seeding map of parameter t for G, if the individualization of

f followed by the refinement process produces a distinct labeling of vertices of G. Suppose

H = (V,E′) is isomorphic to G, and let σ denote an isomorphism from G to H. It is easy

to show that σ ◦f is also a good seeding map for H. Moreover, the final label of each vertex

u in G must be the same as that of σ(u) in H after refinement, as long as f and σ ◦ f are

individualized, respectively, using the same set of matching special labels. As a result, if G

is guaranteed to have a good seeding map of parameter t, then one can test isomorphism

involving G in time nt · poly(n), since there are O(nt) many seeding maps of parameter t,

and for each of them the refinement process terminates in time polynomial in n.

In general, the individualization and refinement method can be viewed as a strong

labeling L that takes three parameters: a graph G = (V,E), a seeding map f : [t] → V ,

and a vertex u ∈ V ; and returns a binary string. It fits the following definition:

Definition 2.2.3. Let K denote a family of graphs that is closed under isomorphism, and

let T : N → N denote an integer function. We say a labeling L is T -strong for graphs in K
if for all G = (V,E) ∈ K on n vertices, there exists a good seeding map f : [t] → V with

t = T (n) satisfying the following two properties:

• Invariant Under Isomorphism: For all u ∈ V , and σ ∈ Sym(V ), we have

L(G, f, u) = L (σ(G), σ ◦ f, σ(u)).

• Distinctness: For every two distinct vertices u, v ∈ V , we have

L(G, f, u) 6= L(G, f, v).

We can also derive a canonical form F forK from a T -strong labeling L for K [Babai, 1980].

Given G we enumerate all seeding maps f : [t] → V , where t = T (|V |), and keep only the

good ones. For each good f , let σf ∈ Sym(V ) denote the permutation in which σf (u) is

the rank of L(G, f, u) among {L(G, f, v) : v ∈ V }, under the lexicographical order. Finally

we set F (G) = H, where H has the lexicographically smallest adjacency matrix among

{σf (G)}. Note that the time needed to compute F depends exponentially on T (n).

2.2.2 Canonical pairwise distinguisher

One way to produce the strong labeling is to construct pairwise distinguisher.
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We use two procedures named Cert and Test to show that after individualizing some

vertices every graph completely splits. The input variables of Cert and Test are:

1. The four input variables of Cert include a graph G = (V,E), a vertex-seeding map

f : [t] → V for some integer t ≥ 1, and two distinct vertices x, y ∈ V .

2. The four input variables of Test are the same, except that M is a binary string

called a certificate (see below) and there is only one vertex x ∈ V .

Note that f is not necessarily an injective map.

The output of Cert is either nil, in which case we say it fails, or a binary string M that

encodes a certificate. The output of Test, on the other hand, is either 0 or 1.

LetMx,y denote the output ofCert(G, f, x, y). We useMx,y to encode some information

that can be used to distinguish x and y. And Mx,y can be realized by procedure Test: If

the first three input variables of Test are G, f,Mx,y, then Test outputs 1 when the fourth

input variable is x, and outputs 0 when the fourth input variable is y. In addition, we also

require that the two procedures give the same output if distinct inputs are actually identical

under isomorphism.

Formally we will refer to a pair of procedures that satisfy the property below as a

canonical pairwise distinguisher

Property 2.2.4. (Canonical Pairwise Distinguisher) Cert and Test are two

procedures that satisfy:

• Invariant Under Isomorphism: Let G = (V,E) and G′ = (V ′, E′) denote two

isomorphic graphs, and φ denote an isomorphism from G to G′. For all pairs of

vertices x, y ∈ V , t ≥ 1, all seeding map f : [t] → V , and for all binary strings M ,

we have

Cert (G, f, x, y) = Cert
(
G′, φ ◦ f, φ(x), φ(y)

)
and

Test (G, f,M, x) = Test
(
G′, φ ◦ f,M, φ(x)

)

where φ ◦ f denotes the seeding map from [t] to V ′ with

φ ◦ f(i) = φ(f(i)) = {φ(x) : x ∈ f(i)}.
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• Pairwise Distinctness: If M = Cert (G, f, x, y) 6= nil for some t and f , then we

have

Test (G, f,M, x) 6= Test (G, f,M, y) .

The pairwise-distinctness condition does not impose any condition over Test (S, f,M, x)

and Test (S, f,M, y), if M is not the certificate output by Cert (S, f, x, y).
We show that a canonical pairwise distinguisher for G can be used to derive a canonical

form for all graphs isomorphic to G, if there exists a seeding map f of parameter t such

that

Cert (G, f, x, y) 6= nil, for all pairs of distinct vertices x, y ∈ V .

To this end, given any H = (V,E′) isomorphic to G (including G itself), we enumerate all

possible seeding map f ′ of parameter t, and only keep those satisfy

Cert
(
H, f ′, x, y

)
6= nil, for all pairs of distinct vertices x, y ∈ V .

By our assumption we know such seeding map exists. For each such a seeding map f ′, we

let

Mx,y = Cert
(
H, f ′, x, y

)
6= nil

and use Msort to denote the vector of m =
(n
2

)
entries obtained by sorting all the m

certificates Mu,v according to the lexicographical order. Then we let σH,f ′ denote the

following permutation: σH,f ′(x) is set to be the rank of the following length-m binary string

associated with x:

(
Test

(
H, f ′,Msort(1), x

)
, . . . ,Test

(
H, f ′,Msort(m), x

) )

among the n strings associated with vertices in V under the lexicographical order. (Here by

the property of pairwise distinctness we know that all the n strings associated with vertices

in V are distinct.) Finally we set F (H) to be the graph with the lexicographically smallest

adjacency matrix among {σH,f ′(H)}. The following lemma shows that F is a canonical

form: F (H) = F (G), for all H isomorphic to G.

Lemma 2.2.5. Let (Cert,Test) denote a canonical pairwise distinguisher for G = (V,E)

with V = [n]. Let H = σ(G) be a graph isomorphic to G. Suppose for some positive
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integer t, f : [t] → V is a map such that for all pairs of vertices x, y ∈ V ,

Mx,y = Cert (G, f, x, y) 6= nil. Then we have

σG,f (G) = σH,f ′(H), where f ′ = σ ◦ f .

Proof. First of all, because Cert is invariant under isomorphism, we have

Cert (G, f, x, y) = Cert
(
H, f ′, σ(x), σ(y)

)

This implies the two tuplesMsort andM ′
sort ofm certificates constructed fromG, f andH, f ′,

respectively, are exactly the same. Then because Test is invariant under isomorphism, we

have

Test (G, f,Msort(i), x) = Test
(
H, f ′,Msort(i), σ(x)

)

and thus, the two strings associated with x in G and σ(x) in H are exactly the same. It

follows that

σG,f(x) = σH,f ′(σ(x))

As a result, we have σG,f (G) = σH,f ′(H) and the lemma follows.

Corollary 2.2.6. Let K be a class of graphs. If for every graph G ∈ K, there exists a

seeding map t vertices and a canonical pairwise distinguisher, then

1. |Aut(G)| ≤ nt;

2. If the canonical pairwise distinguisher can be computed in time α, then the canonical

form of G can be computed in time nt+O(1) · α.

In this thesis, all pairwise distinguishers presented are superseded by the classical

Weisfeiler-Leman refinement, which means that if there is a pairwise distinguisher for a

graph with a seeding map, then the graph is completely split by the classical WL refine-

ment after individualizing the seeds.
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Chapter 3

Isomorphism of Steiner 2-designs

In this chapter we analyze the structure and isomorphism of Steiner 2-designs. We show

that every Steiner 2-design is completely split by a set of vertices of logarithmic size

3.1 Steiner 2-designs

Definition 3.1.1. (Steiner 2-designs) A Steiner 2-design with parameters (v, n, s, h) is

a pair S = (P,L) that satisfies the following conditions: 1) P is a set of v = |P| points; 2)
L is a set of n lines, where each line L ∈ L is a subset of P of cardinality |L| = s; 3) For

any two distinct points p, q ∈ P, there exists a unique line L ∈ L such that p, q ∈ L; and 4)

Each point p ∈ P belongs to exactly h lines.

Each Steiner 2-design S induces a Steiner graph G as follows: vertices of G correspond

to lines of S and two vertices are adjacent in G if and only if their corresponding lines

intersect in S. It is worth mentioning that each point of S corresponds to a clique of size h

in G.

We have the following basic property of Steiner 2-designs:

Proposition 3.1.2 (Basic). The parameters (v, n, s, h) of a Steiner 2-design must satisfy

vh = ns and (
v

2

)
= n

(
s

2

)
.
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Moreover, from ns(s− 1) = v(v − 1) and v ≥ s ≥ 2, we have

v

s
≤ h =

ns

v
=

v − 1

s− 1
<

v

s
· s

s− 1
≤ 2 · v

s
. (3.1)

Using (3.1), we also get the following useful inequalities:
√

n

2
≤ v

s
≤ √

n and
√
n ≤ h =

ns

v
≤

√
2n (3.2)

3.2 Isomorphism of Steiner 2-designs

We focus on the isomorphism testing problem of Steiner 2-designs:

Definition 3.2.1. (Isomorphisms between Steiner 2-designs). Let S = (P,L) and

S ′ = (P,L′) denote two Steiner 2-designs on the same set of points P. We say

φ ∈ Sym(P) is an isomorphism from S to S ′ if it induces a bijection from L to L′: L ∈ L
if and only if φ(L) ∈ L′, where φ(L) = {φ(p) : p ∈ L}.

Before this and the work of Babai and Wilmes [Babai and Wilmes, 2013], Spielman’s

exp(Õ(n1/4)) time bound [Spielman, 1996] was the best bound on the complexity of test-

ing isomorphism of Steiner 2-designs. For the special case when the line size is 3, Miller

obtained an (nlogn+O(1))-time algorithm in [Miller, 1978]. Later, Babai and Luks gave a

quasipolynomial-time algorithm for isomorphism of Steiner 2-designs of polylogarithmic line

size [Babai and Luks, 1983].

In this chapter, we give an nO(logn)-time isomorphism-testing algorithm for general

Steiner 2-designs. Our approach is inspired by the individualization/refinement method and

the previous analyses of Babai [Babai, 1981a] and Spielman [Spielman, 1996] over strongly

regular graphs. The proofs of [Babai, 1981a; Spielman, 1996] focus on showing that a small

set of randomly chosen vertices (seeding set) suffices to distinguish each pair u and v of

vertices with high probability, i.e., refinement after individualizing the seeding set assigns

distinct labels to u and v. Then the existence of a small seeding set whose individualization

results in a distinct colors of all vertices follows by a union bound.

In order to distinguish a pair of vertices u, v, Babai and Spielman examine structures

rooted at u and v, respectively, and show that they interact with the seeding set differently,

with high probability. Their structures rooted at u and v are closely related to the refinement
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process so that having different interactions with the seeding set directly implies that refine-

ment (in one [Babai, 1981a] or two [Spielman, 1996] steps) assigns distinct labels to u and

v.

Influenced by [Babai, 1981a; Spielman, 1996], we consider an isomorphism-testing frame-

work for Steiner 2-designs. It uses a small number of random seeding points and lines to

build multi-stage combinatorial structures to distinguish each pair p, q of points with high

probability. By distinguishing a pair of points, we again mean that the multi-stage struc-

tures built from p and q, respectively, interact with the seeding set differently. Note that, for

the purpose of isomorphism testing, these structures do not need to be tightly coupled with

the standard refinement process provided they satisfy the isomorphism-invariant condition,

meaning (informally) that mapping everything (p, q and the seeding set) to an isomorphic

Steiner 2-design would result in exactly the same structures and interactions. Thus, while

our multi-stage structures are designed with intention to capture the multi-step label prop-

agation of the refinement process, we use this relaxation to fine-tune the structures and gain

better control of their analysis, which coincidentally leads us to deviate from the standard

refinement process (see more discussion below).

The main question is then: How to design isomorphism-invariant structures so that a

small random seeding set suffices to distinguish each pair of points with high probability?

To this end, we give a construction of multi-stage structures for which a seeding set of size

O(log v) suffices.

Theorem 3.2.2. Every Steiner 2-design of v points is completely split by O(log v) individ-

ualizations under classical Weisfeiler-Leman refinement.

This leads to a quasipolynomial-time algorithm to compute a canonical form for Steiner

2-designs (and thus isomorphism-testing) :

Corollary 3.2.3. A canonical form for Steiner 2-designs with v vertices can be found in

time vO(log v). As a consequence, isomorphism of Steiner 2-designs can be decided, and the

set of isomorphisms found, within the same time bound.

And it also implies an upper bound of vO(log v) on the number of automorphisms of

nontrivial Steiner 2-designs.
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Corollary 3.2.4. Every Steiner 2-designs with v vertices has at most vO(log v)

automorphisms.

The best previous bound was exp(Õ(
√
v)) by Babai-Pyber [Babai and Pyber, 1994] and

Spielman [Spielman, 1996].

3.3 Multi-stage design

In this section, we give a high-level description of our multi-stage structures designed to

distinguish all pairs of points. Given a Steiner 2-design S = (P,L), we pick a point seeding

map f by simply drawing t points from P with replacement, independently and uniformly

at random. We also pick a line seeding map g similarly.

Fix an arbitrary pair p, q of points. Our goal is then to build two isomorphism-invariant

structures Π(p) for p and Π(q) for q, respectively, so that they interact differently with the

seeding maps with high probability, and p, q are distinguished from each other. As described

earlier, Π(p) and Π(q) are designed to mimic label propagation in the refinement process.

Roughly speaking, the structure Π(p) built for p is a tree rooted at p (level 1) in which

points at level i are those that may affect the label of p after 2(i − 1) steps, in some way,

by propagating along a sequence of i− 1 lines.

In this context, for example, Babai uses the seed vertices to interact with Π(u), a single-

level structure with u at the root [Babai, 1981b]; Spielman [Spielman, 1996] uses the seed

vertices to interact with Π(u), a two-level structure with u at the root and N(u) at the

second level, where N(u) denotes the set of k neighbors of u.

Our construction of Π(p),Π(q), unlike [Babai, 1981b] and [Spielman, 1996], is assisted

by a subset of points and lines from the seeding maps. To build a τ -level structure with

seeds R = f [t]∪ g[t], we first partition R into τ disjoint sets R1, . . . ,Rτ . We use elements

from R1, . . . , Rτ−1 to iteratively construct the two multi-level structures Π(p) and Π(q),

level by level, and at the end use Rτ to interact with the last level of Π(p) and Π(q).

The starting levels of Π(p),Π(q) are Π1(p) = ({p}) and Π1(q) = ({q}), respectively.

We use elements from R1 to define from (Π1(p),Π1(q)) a tuple of subsets of P to form the

second level Π2(p) of Π(p), and a tuple of subsets of P to form Π2(q). So, level by level, we
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define (Πℓ(p),Πℓ(q)) using (Πℓ−1(p),Πℓ−1(q)) and Rℓ−1, by exploiting interactions of their

neighborhood structures.

In our construction, Πℓ(p),Πℓ(q) are each a tuple of subsets of P, with the same length

denoted by mℓ. Let

Πℓ(p) =
(
Aℓ,i

)
i∈[mℓ]

and Πℓ(q) =
(
Bℓ,i

)
i∈[mℓ]

for some mℓ ≥ 1. Our construction ensures that for each i ∈ [mℓ], if set Aℓ,i is defined by the

interaction between a seed r ∈ Rℓ−1 and a set Aℓ−1,j ∈ Πℓ−1(p), for some j in [mℓ−1], then

Bℓ,i ∈ Πℓ(q) is defined by the interaction between the same r ∈ Rℓ−1 and Bℓ−1,j ∈ Πℓ−1(q).

In other words, Π(p) and Π(q) are two isomorphic branching structures of τ levels, such

that

• Each path from the root Π1(p) (or Π1(q)) to a leaf set in Πτ (p) (or Πτ (q)) is

associated with a unique seed sequence from R1 ×R2 × · · · ×Rτ−1; and

• For each i ∈ [mτ ], the associated seed sequence of the path from root Π1(p) to Aτ,i is

the same as the associated seed sequence of the path from Π1(q) to Bτ,i.

As a result, if one of the lines L ∈ Rτ interacts differently with Aτ,i and Bτ,i (e.g. the

parity of |L∩Aτ,i| and |L∩Bτ,i| are different), for some i ∈ [mτ ], then it also distinguishes

p, q and we succeed. We also point out that the branching structure of Π(p) mimics label

propagation in the refinement process: A point in Aτ,i, for example may affect the label of

p after 2(τ − 1) steps by propagating along a sequence of τ − 1 lines related to the unique

seed sequence of the path from Π1(p) to Aτ,i.

The main technical challenge is to design the construction of each level of Π(p) and

Π(q) from the level just built, and to formulate an inductive condition on each level

(Πℓ−1(p),Πℓ−1(q)) that allows us to probabilistically grow Π(p),Π(q) by building (Πℓ(p),Πℓ(q))

from (Πℓ−1(p),Πℓ−1(q)) and Rℓ−1. This condition, when applied on the τ th level (Πτ (p),

Πτ (q)), should give Rτ a sufficiently large chance to interact them differently, so that p and

q are distinguished.
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3.4 A canonical pairwise distinguisher for Steiner-2 designs

We now describe the main technical algorithms, Cert and Test, for Steiner-2 Designs. As

described in last section, we will use both point seeding map and line seeding map. Hence,

we define Cert (S, f, g, p, q) and Test (S, f, g,M, p) for Steiner-2 designs as following:

1. The five input parameters of Cert include a Steiner 2-design S = (P,L), a
point-seeding map f : [t] → P, a line-seeding map g : [t] → L for some integer t ≥ 1,

and two distinct points p, q ∈ P.

2. The five input parameters of Test are the same, except that M is a binary string

and there is only one point p ∈ P.

The first algorithm Cert (S, f, g, p, q) iteratively applies two operations Contract and

Expand to build two multi-stage branching structures, one for p and one for q, and uses

the third operation Interact to certify the pairwise distinction at the final stage. When it

succeeds, Cert returns a certificate M that is essentially a sketch of the structure built for p.

The second algorithm Test (S, f, g,M, p) then applies the same operations Contract, Expand

and Interact, trying to build a multi-stage structure for p that matches the description given

in M . It outputs 1 if it succeeds; and 0 if it fails.

We will use the following definitions in our algorithms. Let S = (P,L) be a Steiner

2-design.

Definition 3.4.1 ((m,W )-pdst). For positive integers m and W , an (m,W )-pdst

(pairwise disjoint set tuple) over P is a tuple A = (A1, . . . , Am) of subsets of P that

satisfies the following properties: (i) the Ai’s are pairwise disjoint and nonempty subsets

of P; and (ii) W
/
2 ≤ |Ai| ≤ W for every i ∈ [m].

Definition 3.4.2 ((m,W,α)-pair). For α ∈ [0, 1], two (m,W )-pdsts A and B form an

(m,W,α)-pair (A,B) over P, if |Ai| = |Bi| and |Ai ∩Bi| ≤ α · |Ai| for every i ∈ [m].

Below, we first define these three operations Contract, Expand and Interact, and state

their properties that will be crucially used in algorithms Cert and Test. We then present

Cert and Test. We prove all technical lemmas and theorems in Section 3.5.
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3.4.1 Contraction

Let A = (A1, . . . , Am) be an (m,W )-pdst over P. Let m′, r and W ′ be three positive

integers. Syntactically, we say C is an (m,m′, r,W ′)-contraction map if it satisfies the

following two properties:

• For each j ∈ [m], C(j) is either nil or a pair (ij , kj), where ij ∈ [r] and kj is a

positive integer between W ′/2 and W ′; and the number of j ∈ [m] such that

C(j) 6= nil is equal to m′.

Now let L = (L1, . . . , Lr) denote a tuple of r not necessarily distinct lines drawn from L.
Semantically, we say C matches (A,L) if for any j ∈ [m] such that (ij , kj) = C(j) 6= nil, we

have |Lij ∩Aj | = kj.

We use Contract (S,A,L, C) to denote the following polynomial-time procedure: If

C matches (A,L), then A′ = Contract (S,A,L, C) is the tuple consists of m sets Lij ∩
Aj , where (ij , kj) = C(j) 6= nil, ordered by j from small to large. Otherwise, we set

Contract (S,A,L, C) = nil. It is clear that if C matches (A,L), then the output A′ of

Contract must be an (m′,W ′)-pdst.

Let (A,B) be an (m,W,α)-pair and L = (L1, . . . , Lr) be a tuple of r lines. We say

an (m,m′, r,W ′)-contraction tuple C is α′-good with respect to (A,B) and L, for some

α′ ∈ [0, 1], if

• C matches both (A,L) and (B,L); and (A′,B′) is an (m′,W ′, α′)-pair, where

A′ = Contract(S,A,L, C) and B′ = Contract(S,B,L, C)

denote the two (m′,W ′)-pdsts obtained from applying Contract on A and B,
respectively.

We will prove the following technical lemma in Section 3.5.1:

Lemma 3.4.3 (Contraction). Let S = (P,L) be a Steiner 2-design with parameters

(v, n, s, h), where v is bounded below by a sufficiently large constant. Let (A,B) be an

(m,W,α)-pair over P with

β =
s

v
·W ≥ 1/8
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Let ǫ, γ and r be the following three parameters:

ǫ =
1

⌈log v⌉ , γ =
ǫ2

264
and r =

4⌈log v⌉
γ

= 1056 · ⌈log v⌉3

If r lines L = (L1, . . . , Lr) are sampled uniformly at random, then with probability at least

1− 1
/
v3, one can construct in polynomial time an (m,m′, r,W ′)-contraction map C such

that

m′ =
⌈
m/⌈log v⌉

⌉
and W ′ ≤ β

/
γ

and one of the following two conditions holds: either a) C is α′-good with respect to (A,B)
and L, where α′ = (1 + ǫ)α; or b) C matches (A,L) but does not match (B,L).

3.4.2 Expansion

Assume s ≥ 3. From now on we let s′ = s − 2 ≥ 1. In Expand, we will use the following

definition:

Definition 3.4.4 (Cones). Let T ⊂ P and p ∈ P. We use cone (T, p) ⊂ P to denote the

following set, which will be referred to as the cone defined by T and p: When p ∈ T ,

cone (T, p) = ∅; When p /∈ T ,

cone (T, p) =
{
q /∈ T ∪ {p} : the line L ∈ L uniquely determined by p and q satisfies |L ∩ T | = 1

}
.

It is clear from the definition that cone (T, p) ∩ T = ∅ and p /∈ cone (T, p).

Definition 3.4.5. Let T ⊂ P and p ∈ P. We say q ∈ T is a good point with respect to

(T, p) if p /∈ T and the line L ∈ L uniquely determined by p and q intersects with T only at

q. Otherwise, we say q ∈ T is a bad point with respect to (T, p). Note that when p ∈ T ,

every point in T is bad with respect to (T, p). We use gp (T, p) and bp (T, p) to denote the

set of all good and bad points in T , respectively, with respect to (T, p).

From these definitions, it is easy to prove the following two lemmas:

Lemma 3.4.6. Let T ⊂ P and p ∈ P, then we have

cone (T, p) = cone (gp (T, p) , p) and |cone (T, p) | = s′ · |gp (T, p) |
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Lemma 3.4.7. Let T ⊂ P, p ∈ P and H ⊆ gp(T, p) be a subset of good points with respect

to (T, p), then

|cone (H, p) | = s′ · |H|

Now we define Expand. Let A = (A1, . . . , Am) denote an (m,W )-pdst over P. Let m′,

r, and W ′ be three positive integers. Syntactically, we call E an (m,m′, r,W ′)-expansion

map if

• For any i ∈ [r] and j ∈ [m], E(i, j) is either nil or a positive integer ki,j between W ′/2
and W ′; and the number of (i, j) such that ki,j = E(i, j) 6= nil is exactly m′.

Let A = ∪j∈[m]Aj, and let p = (p1, . . . , pr) denote a tuple of r not necessarily distinct

points drawn from P. For each pair (i, j) ∈ [r] × [m], we let Gi,j ⊆ Aj denote the set of

good points in Aj with respect to (A, pi): Gi,j = Aj ∩gp (A, pi). Then semantically we say

E matches (A,p) if for every (i, j) ∈ [r]× [m] such that ki,j = E(i, j) 6= nil, we have

|Ai,j | = ki,j , where Ai,j = cone (Gi,j , pi)− ∪ℓ<icone (A, pℓ)

Now we can define the operation Expand. If E matches (A,p), then we set

A′ = Expand (S,A,p, E)

to be the tuple of Ai,j’s, where E(i, j) 6= nil, ordered by (i, j) under the lexicographical

order. It is clear that when E matches (A,p), A′ is an (m′,W ′)-pdst. If they do not match

then Expand (S,A,p, E) = nil.

Finally, let (A,B) denote an (m,W,α)-pair. We say an (m,m′, r,W ′)-expansion map E
is α′-good with respect to (A,B) and p, for some α′ ∈ [0, 1], if the following two conditions

hold:

• E matches both (A,p) and (B,p); and (A′,B′) is an (m′,W ′, α′)-pair, where

A′ = Expand (S,A,p, E) and B′ = Expand (S,B,p, E)

denote the two (m′,W ′)-pdsts obtained from applying Expand on A and B,
respectively.
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We will prove the following technical lemma in Section 3.5.2.

Lemma 3.4.8 (Expansion). Let S = (P,L) be a Steiner 2-design with parameters

(v, n, s, h), where s ≥ 3 and v is bounded below by a sufficiently large constant. Let ǫ and r

denote

r = 210 · ⌈log v⌉ and ǫ =
1

217 · ⌈log v⌉2
Let (A,B) be an (m,W,α)-pair over P with

2 · s
v
·m ·W ≤ ǫ and α ≤ 1/2

If r points p = (p1, . . . , pr) are sampled uniformly at random from P, then with probability

at least 1− 1/v64, one can construct in polynomial time an (m,m′, r,W ′)-expansion map

E such that

m′ ≥ m · 32⌈log v⌉

and one of the following two conditions holds: either a) E is α′-good with respect to (A,B)
and p with

α′ = α+
1

2 log v

or b) E matches (A,p) but does not match (B,p).

3.4.3 Interaction

Let A = (A1, . . . , Am) denote an (m,W )-pdst over P, and let L = (L1, . . . , Lr) denote a

tuple of r lines drawn from L. Given any i ∈ [r] and j ∈ [m], Interact (S,A,L, (i, j)) just

returns the parity of |Li ∩Aj | (0 if it is even and 1 if it is odd). We will prove the following

technical lemma in Section 3.5.3:

Lemma 3.4.9. Let S = (P,L) be a Steiner 2-design with parameters (v, n, s, h), where v

is bounded below by a sufficiently large constant. Let (A,B) denote an (m,W,α)-pair with

α ≤ 1

2
,

s

v
·W ≤ 1

8
and

s

v
·m ·W ≥ 1

218 · ⌈log v⌉2

Let r = 223 · ⌈log v⌉3. Then if r lines L = (L1, . . . , Lr) are sampled uniformly at random

from L, then with probability at least 1− 1/v4, there exists a pair i ∈ [r] and j ∈ [m] such

that

Interact (S,A,L, (i, j)) 6= Interact (S,B,L, (i, j)) (3.3)
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3.4.4 Algorithms Cert and Test

The goal of algorithm Cert (S, f, g, p, q) is to produce a certificate M that will assist algo-

rithm Test to distinguish p, q ∈ P. If successful, Cert (S, f, g, p, q) will produce a certificate

of the following form.

Definition 3.4.10 (Certificates). A certificate of a pairwise distinguisher M is a finite

tuple in which each component is either a contraction map C, an expansion map E, or a

pair of positive integers (i, j).

In Figure 3.1 we present algorithm Test (S, f, g,M, p) whose input parameters are: a

Steiner-2 design S = (P,L), two maps f : [t] → P and g : [t] → L, a certificate of a pairwise

distinguisher M , and a point p ∈ P. It also uses the following parameters. Assume S has

parameters (v, n, s, h), where s ≥ 3 and v is bounded below by a sufficiently large constant.

Let r1, r2 and r3 denote the following positive integers:

r1 = 1056 · ⌈log v⌉3, r2 = 210 · ⌈log v⌉ and r3 = 223 · ⌈log v⌉3 (3.4)

In addition to r1, r2 and r3 above, algorithm Cert, given in Figure 3.2, uses an additional

parameter:

ǫ =
1

217 · ⌈log v⌉2

To simplify our presentation of Cert, we use a ‘case-when construct’ which executes the

block of statements that follows the first ‘case-when’ Boolean expression that is true. In

other words, in each iteration of Cert as given in Figure 3.2, we perform either Expansion,

or Contraction, or Interaction, with Expansion preferred over Contraction when both of

their Boolean expressions are true.

We prove following theorem for Cert. By Corollary 2.2.6, Theorem 3.2.2 follows.

Theorem 3.4.11 (Polylogarithmic Number of Seeds Suffice). There exist three positive

constants C1, C2 and C3 such that for any Steiner 2-design S = (P,L) with parameters

(v, n, s, h) satisfying

v ≥ C1, s ≥ 3, and n ≥ (C2 · log3 v)sh
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Algorithm: Test (S, f, g,M, p)

1. Let K denote the number of components in M

2. Set A0 = ({p}), i.e., a (1, 1)-pdst over P ; and set a = b = 0

3. For k from 1 to K do

4. If the k th component of M is an (m,m′, r,W ′)-contraction map C then

5. If b+ r1 > t then return 0 (% running out random lines)

6. else if C does not match
(
Ak−1, (g(b+ 1), . . . , g(b+ r1))

)
then return 0

7. else: set Ak = Contract
(
S,Ak−1, (g(b+1), . . . , g(b+ r1)), C

)
and set b = b+ r1

8. else if the k th component of M is an (m,m′, r,W ′)-expansion map E then

9. If a+ r2 > t then return 0 (% running out random points)

10. else if E does not match
(
Ak−1, (f(a+ 1), . . . , f(a+ r2))

)
then return 0

11. else: set Ak = Expand
(
S,Ak−1, (f(a+1), . . . , f(a+ r2)), E

)
and set a = a+ r2

12. else: the k th component of M is a pair (i, j) of integers

13. If b+ r3 > t then return 0 (% running out random lines)

14. else return Interact
(
S,Ak−1, (g(b+ 1), . . . , g(b+ r3)), (i, j)

)

15. End for

16. return 1

Figure 3.1: Description of the algorithm Test for Steiner 2-designs
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there exists a pair of maps, f∗ : [t] → P and g∗ : [t] → L, with t =
⌈
C3 · log4 v

⌉
, that

guarantees

Cert (S, f∗, g∗, p, q) 6= nil, for any two distinct points p, q ∈ P .

Before moving to the analysis of the three operations and finally the proof of Theorem

3.4.11, we first show that (Cert,Test) forms a canonical pairwise distinguisher for Steiner-2

designs.

Proof of Property 4.2.29. First we can prove that both algorithms Cert and Test are in-

variant under isomorphisms by a routine induction following the loops of Cert and Test,

and also using the fact that all three operations Contract, Expand and Interact are themselves

invariant under isomorphism.

Second, to see that (Cert,Test) satisfies the condition of pairwise distinctness, we

consider any two points p, q ∈ P. If M = Cert (S, f, g, p, q) 6= nil, then M is a certificate,

and its last element is either a contraction map C, or an expansion map E , or a pair of

integers (i, j). Per algorithm Cert, its output is not nil only when the last element of M

produces a mismatch between the A structure and B structure, constructed from p and

q, respectively. As a result, when algorithm Test traces the branching structure to this

element, it will return different Boolean values for p and q.

3.5 Analysis

In the analysis of this section, we always assume that S = (P,L) is a Steiner 2-design with

parameters (v, n, s, h), where s ≥ 3 and v is bounded below by a sufficiently large constant.

The following property of Steiner-2 designs will be very useful to our analysis.

Proposition 3.5.1 (Points and Lines). For any subset of points P ⊆ P, we have

∑

L∈L
|L ∩ P | = h|P | and

∑

L∈L
|L ∩ P | ·

(
|L ∩ P | − 1

)
= |P | ·

(
|P | − 1

)

Here the first equation follows from the definition that every point p ∈ P belongs to

exactly h lines, and the second equation is true because for every two distinct points p, q ∈ P,

there exists a unique line L ∈ L such that p, q ∈ L.
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Algorithm: Cert (S , f, g, p, q):

1. [Initialization ] Set A0 = ({p}) and B0 = ({q}); set (m0,W0, α0) = (1, 1, 0)

2. Set M to be the empty tuple; and set a = b = 0

3. For k from 1 to ⌊log v/2⌋ do

4. [Comment ] (Ak−1,Bk−1) is an (mk−1,Wk−1, αk−1)-pair over P (by induction)

5. Case [Expansion ]: when 2(s/v) ·mk−1 ·Wk−1 ≤ ǫ

6. If a+ r2 > t then return nil (% running out random points)

7. set p =
(

f(a+ 1), . . . , f(a+ r2)
)

and a = a+ r2

8. find an (mk−1,mk, r2,Wk)-expansion map C satisfying the conditions of Lemma 3.4.8

9. If Lemma 3.4.8 fails then return nil

10. else if C satisfies b) of Lemma 3.4.8, then add C to the end of M and return M

11. else add C to the end of M ; Ak = Expand
(

S ,Ak−1,L, C
)

; Bk = Expand
(

S ,Bk−1,L, C
)

12. Case [Contraction ]: when (s/v) ·Wk−1 ≥ 1/8

13. If b+ r1 > t then return nil (% running out random lines)

14. set L =
(

g(b+ 1), . . . , g(b+ r1)
)

and b = b+ r1

15. find an (mk−1,mk, r1,Wk)-contraction map E satisfying the conditions of Lemma 3.4.3

16. If Lemma 3.4.3 fails then return nil

17. else if E satisfies b) of Lemma 3.4.3, then add E to the end of M and return M

18. else add E to the end of M ;Ak = Contract
(

S ,Ak−1,L, E
)

; Bk = Contract
(

S ,Bk−1,L, E
)

19. Case [Interaction ]: when (s/v) ·Wk−1 < 1/8 and 2(s/v) ·mk−1 ·Wk−1 > ǫ

20. If b+ r3 > t then return nil (% running out random lines)

21. set L =
(

g(b+ 1), . . . , g(b+ r3)
)

and b = b+ r3

22. find a pair (i, j) ∈ [r3]× [mk−1] of integers that satisfies the conditions of Lemma 3.4.9

23. If Lemma 3.4.9 fails then return nil

24. else add (i, j) to the end of M and return M

25. End for

26. [Comment ] This line should never be reached

Figure 3.2: Description of the algorithm Cert for Steiner 2-designs
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3.5.1 Contraction: Proof of Lemma 3.4.3

We first establish the following two lemmas, which will be used in the proof of Lemma 3.4.3.

Lemma 3.5.2. Let P and Q be two subsets of P, where P is nonempty but Q could be

empty. Let

β =
s

v
· |P | > 0 and α =

|Q|
|P | ≥ 0

Let ǫ ∈ (0, 1] be a parameter. If a line L is sampled uniformly at random from L, then

Pr
[
|L ∩ P | ≥ 1 and |L ∩Q| ≤ (1 + ǫ)α · |L ∩ P |

]
≥ ǫ2β

4(2 + β)
. (3.5)

Proof. Let L∗ denote the set of lines L ∈ L such that |L ∩ Q| > (1 + ǫ)α · |L ∩ P |. By

Proposition 4.12,

h|Q| =
∑

L∈L
|L ∩Q| ≥

∑

L∈L∗

|L ∩Q| > (1 + ǫ) · |Q|
|P | ·

∑

L∈L∗

|L ∩ P | =⇒
∑

L∈L∗

|L ∩ P | < h|P |
1 + ǫ

Since
∑

L∈L |L ∩ P | = h|P | by Proposition 4.12, we have

∑

L/∈L∗

|L ∩ P | > h|P | · ǫ

1 + ǫ
≥ ǫh|P |

2

where the last inequality uses ǫ ≤ 1.

Now let L′ denote the set of lines L ∈ L such that |L ∩ P | ≥ 1 and L /∈ L∗. Then we

have

Pr
[
|L ∩ P | ≥ 1 and |L ∩Q| ≤ (1 + ǫ)α · |L ∩ P |

]
=

|L′|
n

. (3.6)

To prove the lemma, we give a lower bound for |L′|. First we note that

∑

L∈L′

|L ∩ P | =
∑

L/∈L∗

|L ∩ P | > ǫh|P |
2

(3.7)

Then by Cauchy-Schwarz, we have

(
ǫh|P |
2

)2

<

(
∑

L∈L′

|L ∩ P |
)2

≤ |L′| ·
(
∑

L∈L′

|L ∩ P |2
)

(3.8)

Using the second equation of Proposition 4.12, we get

∑

L∈L′

|L∩P |2 ≤
∑

L∈L
|L∩P | ·

(
|L∩P | − 1

)
+
∑

L∈L
|L∩P | = |P |

(
|P | − 1

)
+ h|P | < |P |2 + h|P |
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Plugging this in (3.8), we get the following lower bound for |L′|:

|L′| > 1

|P |2 + h|P | ·
(
ǫh|P |
2

)2

=
ǫ2

4
· h2|P |
|P |+ h

Moreover, because (s/v) · |P | = β and (3.2), we have

|P | = β · v
s
≥ β · h

2
=⇒ |L′| > ǫ2

4
· h2|P |
|P | · (1 + 2/β)

=
ǫ2β

4(2 + β)
· h2 ≥ ǫ2β

4(2 + β)
· n

The lemma then follows from (3.6).

Lemma 3.5.3 (Concentration of Line Intersection). Let γ ∈ (0, 1) be a parameter. Let P

be a nonempty subset of P with β = (s/v) · |P | > 0. If a line L is sampled uniformly at

random, then we have

Pr
[
|L ∩ P | ≤ β

/
γ
]
≥ 1− γ (3.9)

Proof. For each k ∈ [0 : s], let Nk denote the number of lines L ∈ L such that |L ∩ P | = k.

Then
∑

k

Nk = n and
∑

k

Nk · k = h|P | = n · s
v

· |P | = βn

by Proposition 4.12 and (3.1). We then have

βn ≥
∑

k>β/γ

Nk · k >
β

γ
·
∑

k>β/γ

Nk =⇒
∑

k>β/γ

Nk < γn =⇒
∑

k≤β/γ

Nk > (1− γ)n

Therefore, the probabilty that |L ∩ P | ≤ β/γ is at least 1− γ.

Combining these two lemmas, we get the following useful corollary:

Corollary 3.5.4. Let P and Q be two subsets of P with

β =
s

v
· |P | ≥ 1

16
and α =

|Q|
|P | ≥ 0

Let ǫ, γ ∈ (0, 1) be two parameters such that γ = ǫ2
/
264. Then we have

Pr
[
1 ≤ |L ∩ P | < β

/
γ and |L ∩Q| ≤ (1 + ǫ)α · |L ∩ P |

]
≥ γ

Proof. By Lemma 3.5.3, we have (3.9). By Lemma 3.5.2, we have

Pr
[
|L ∩ P | ≥ 1 and |L ∩Q| ≤ (1 + ǫ)α · |L ∩ P |

]
≥ ǫ2β

4(2 + β)
≥ ǫ2

132
= 2γ

where the second inequality uses β ≥ 1/16. The lemma then follows from the union bound.
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We are now ready to prove Lemma 3.4.3.

Proof of Lemma 3.4.3. Let Hj = Aj ∩Bj for each j ∈ [m]. Then |Hj| ≤ α · |Aj |. Because

s

v
· |Aj | ≥

s

v
· W
2

≥ 1

16

by Corollary 3.5.4 we have for any j ∈ [m] and i ∈ [r]:

Pr
[
0 < |Li ∩Aj | < β

/
γ and |Li ∩Hj| ≤ (1 + ǫ) · α · |Li ∩Aj|

]
≥ γ.

As a result, we have for each j ∈ [m]:

Pr
[
∃ i ∈ [r] such that 0 < |Li ∩Aj | < β

/
γ and |Li ∩Hj| ≤ (1 + ǫ) · α · |Li ∩Aj |

]

≥ 1− (1− γ)r ≥ 1− exp (−γr) ≥ 1− 1
/
v4.

Since m ≤ v, by the union bound we have

Pr[∀ j ∈ [m], ∃ i ∈ [r] such that 0 < |Li ∩Aj | < β
/
γ

and |Li ∩Hj| ≤ (1 + ǫ) · α · |Li ∩Aj | ] ≥ 1− 1
/
v3.

Assume that the event above happens: For every j ∈ [m], there is an ij ∈ [r] such that

0 < |Lij ∩Aj| < β
/
γ and |Lij ∩Hj| ≤ (1 + ǫ) · α · |Lij ∩Aj |

We then construct C as follows: Divide [1 : s] into ⌈log(s+2)⌉−1 ≤ ⌈log s⌉ ≤ ⌈log v⌉ many

intervals:

[1 : 2], [3 : 6], [7 : 14], . . . , [2i − 1 : 2i+1 − 2], . . .

and let I denote the interval that contains the most j ∈ [m] such that |Lij ∩ Aj | ∈ I. It

is clear that the number of j ∈ [m] such that |Lij ∩ Aj| ∈ I is at least m′ =
⌈
m/⌈log v⌉

⌉
.

Then we set

C(j) =
(
ij , |Lij ∩Aj |

)

if |Lij ∩Aj | ∈ I and j is one of the m′ smallest such j ∈ [m]; and we set C(j) = nil otherwise.

It is easy to check that C is an (m,m′, r,W ′)-contraction map for some appropriate positive

integer W ′ ≤ β
/
γ. It satisfies either condition a) or condition b) of Lemma 3.4.3, based

on whether C matches (B,L).
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3.5.2 Expansion: Proof of Lemma 3.4.8

We start with the following two technical lemmas:

Lemma 3.5.5. Let ǫ, γ ∈ (0, 1) be two parameters and T ⊂ P be a set of points satisfying

(s/v) · |T | < ǫ. If a point p is sampled uniformly at random, then we have

Pr
[
p /∈ T and

∣∣bp (T, p)
∣∣ ≤ ǫ

γ
· |T |

]
≥ 1− γ − ǫ (3.10)

Proof. For each k ∈ [0 : s], let Nk be the number of lines L such that |L ∩ T | = k. By

Proposition 4.12,
∑

k

Nk · k(k − 1) = |T | ·
(
|T | − 1

)
< |T |2

For each point p ∈ P and k ∈ [0 : s], we let Nk,p denote the number of lines L ∈ L such

that p ∈ L and |L ∩ T | = k. If p is sampled uniformly at random, then we have

Ep

[
∑

k

Nk,p · k(k − 1)

]
=

s

v
·
∑

k

Nk · k(k − 1) < ǫ|T |

By Markov’s inequality, with probability at least 1− γ, we have

∑

k

Nk,p · k(k − 1) ≤ ǫ

γ
· |T | (3.11)

It is also easy to see that p /∈ T with probability 1 − |T |/v > 1 − ǫ/s > 1 − ǫ. Then, by

union bound

Pr
[
p /∈ T and (3.11) holds

]
≥ 1− ǫ− γ

Now it suffices to show p /∈ T and (3.11) together imply (3.10). To see this, from p /∈ T we

have

∑
k Nk,p · k = |T |

Combining it with (3.11), we have

ǫ

γ
· |T | ≥

∑

k

Nk,p · k(k − 1) ≥
∑

k≥2

Nk,p · k =⇒ N1,p ≥
(
1− ǫ

γ

)
· |T |

The lemma follows because N1,p is exactly the number of good points in T with respect to

(T, p).
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Recall that s′ = s− 2 ≥ 1. Next we prove the following lemma:

Lemma 3.5.6. Let ǫ ∈ (0, 1) be a parameter. Let A ⊂ P be a set of points with

(s/v) · |A| ≤ ǫ, and let F ⊆ A be a set of points. If a point p is sampled uniformly at

random, then we have

Pr
[ ∣∣cone (A, p) ∩ F

∣∣ ≤ 4ǫ|F |
]
≥ 3
/
4 (3.12)

Proof. For each point q ∈ F (and thus q /∈ A), we let Xq denote the following indicator

random variable: Xq = 1 when q ∈ cone (A, p); and Xq = 0 otherwise. Note that Xq = 1

iff p ∈ cone (A, q). Thus,

Pr
[
Xq = 1

]
=

|cone (A, q) |
v

≤ s′

v
· |A| < s

v
· |A| ≤ ǫ

This implies that the expectation of
∑

q∈F Xq is at most ǫ|F |. As a result, we have

Pr
[ ∑

q∈F Xq ≤ 4ǫ|F |
]
≥ 3
/
4

by Markov’s inequality. The lemma then follows directly.

Combining Lemma 3.5.5 and Lemma 3.5.6, we obtain the following corollary:

Corollary 3.5.7. Let ǫ, γ ∈ (0, 1) be two parameters, and let (A,B) be an (m,W,α)-pair

over P with 2(s/v) ·mW ≤ ǫ. Let A = ∪iAi, B = ∪iBi, T = A∪B and let F ⊆ A be a set

of points. If a point p is sampled uniformly at random from P, then we have

Pr
[
event (3.10) and event (3.12)

]
≥ (3/4) − ǫ− γ

Proof. Since (A,B) is an (m,W,α)-pair over P, we have

s

v
· |A| ≤ s

v
· |T | ≤ s

v
· 2mW ≤ ǫ.

The lemma then follows from Lemma 3.5.5 and Lemma 3.5.6 using union bound.

We can now use Corollary 3.5.7 to prove Lemma 3.4.8.
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Proof of Lemma 3.4.8. Let r, ǫ, γ and λ denote the following four parameters:

r = 210 · ⌈log v⌉, ǫ =
1

217 · ⌈log v⌉2 , γ =
1

212 · ⌈log v⌉ and λ = 4ǫr =
1

25 · ⌈log v⌉

Let A = ∪jAj , B = ∪jBj and T = A ∪ B. For each (i, j) ∈ [r] × [m], we use Gi,j ⊆ Aj

to denote the set of good points in Aj , with respect to (A, pi): Gi,j = gp (A, pi) ∩ Aj ;

and also use Hi,j ⊆ Bj to denote the set of good points in Bj, with respect to (B, pi):

Hi,j = gp (B, pi) ∩Bj . Then we have

cone (A, pi) =
⋃

j∈[m]

cone (Gi,j , pi) and cone (B, pi) =
⋃

j∈[m]

cone (Hi,j, pi)

We now sample p1, . . . , pr one by one. For each k ∈ [r] and j ∈ [m], we set Ak,j and Bk,j as

follows:

• Let Fk and F ∗
k denote the following two sets of points:

Fk =
⋃

i<k

cone (A, pi) and F ∗
k =

⋃

i<k

cone (B, pi)

It is clear that Fk ∩A = ∅, F ∗
k ∩B = ∅ and |Fk|, |F ∗

k | ≤ rs′ · |A| = rs′ · |B|. Then for

each j ∈ [m],

Ak,j = cone (Gk,j, pk)− Fk and Bk,j = cone (Hk,j, pk)− F ∗
k

By Corollary 3.5.7, we know that, with probability ≥ 3/4− ǫ− γ > 1/2, pk satisfies pk /∈ T ;

∣∣bp (T, pk)
∣∣ ≤ ǫ

γ
· |T | and

∣∣cone (A, pk) ∩ Fk

∣∣ ≤ 4ǫ|Fk| (3.13)

From now on, we say pk is good if all three conditions above hold.

Next we show that if pk is good, then the number of j ∈ [m] such that Ak,j and Bk,j

satisfy

s′

2
· |Aj | ≤ |Ak,j| ≤ s′ · |Aj | and |Ak,j ∩Bk,j| ≤ α′ · |Ak,j|, where α′ = α+

1

2 log v
(3.14)

is at least m/4. To this end, for each j ∈ [m] we let G′
k,j denote gp (T, pk) ∩ Aj , the set

of good points in Aj , with respect to (T, pk). It is easy to see that a good point in Aj
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with respect to (T, pk) must be good with respect to (A, pk) as well. This implies that

G′
k,j ⊆ Gk,j, cone (G

′
k,j , pk) ⊆ cone (Gk,j , pk) and

cone (G′
k,j, pk)− Fk ⊆ cone (Gk,j, pk)− Fk = Ak,j

Let bj denote the number of bad points in Aj with respect to (T, pk), then |G′
k,j| = |Aj |−bj .

By the first condition in (3.13), we have the following upper bound:

∑

j∈[m]

bj ≤
ǫ

γ
· |T | ≤ ǫ

γ
· 2mW =

mW

16⌈log v⌉ ≤ mW

16 log v

As a result, the number of j ∈ [m] such that bj satisfies

bj ≤
W

8 log v

must be at least m/2. We use R to denote the set of such j ∈ [m]. For each j ∈ R, we have

∣∣G′
k,j

∣∣ ≥ |Aj | −
W

8 log v
≥ |Aj | ·

(
1− 1

4 log v

)
(3.15)

as W ≤ 2|Aj |. This implies that

∣∣cone(G′
k,j , pk)

∣∣ = s′ |G′
k,j | ≥ s′ |Aj | ·

(
1− 1

4 log v

)

Next for each j ∈ [m], we let dj denote the following integer:

dj =
∣∣Fk ∩ cone (G′

k,j, pk)
∣∣

Since cone (G′
k,1, pk), . . . ,cone (G

′
k,m, pk) are pairwise disjoint and their union⊆ cone(A, pk),

we have

∑

j∈R
dj ≤

∣∣Fk ∩ cone (A, pk)
∣∣ ≤ 4ǫ|Fk| ≤ 4ǫ · rs′ |A| = λs′ · |A| ≤ λs′ ·mW

by the second condition of (3.13). Thus, the number of j ∈ R such that dj > 4λs′ ·W is at

most m/4. So at least m/4 many j ∈ R satisfy both (3.15) and dj ≤ 4λs′W . For each of

these j’s, we first have

|Ak,j| ≥
∣∣cone (G′

k,j , pk)
∣∣− dj ≥ s′ |Aj | ·

(
1− 1

4 log v
− 8λ

)
≥ s′ |Aj | ·

(
1− 1

2 log v

)
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Moreover, it is clear that cone (G′
k,j−Bj, pk) andBk,j are disjoint. From |G′

k,j∩Bj | ≤ α|Aj |,
we have

cone (G′
k,j −Bj , pk) ≥ s′ ·

(
|G′

k,j | − α|Aj |
)
≥ s′ |Aj| ·

(
1− 1

4 log v
− α

)

and thus, |Ak,j −Bk,j | is at least
∣∣cone (G′

k,j −Bj, pk)− Fk

∣∣ ≥ s′ |Aj | ·
(
1− 1

4 log v
− α

)
− dj ≥ s′ |Aj | ·

(
1− α− 1

2 log v

)

As a result, we have

|Ak,j ∩Bk,j|
|Ak,j |

=
|Ak,j| − |Ak,j −Bk,j |

|Ak,j |

=1− |Ak,j −Bk,j |
|Ak,j|

≤1−
(
1− α− 1

2 log v

)

=α+
1

2 log v

Finally we bound the number of (k, j), k ∈ [r] and j ∈ [m], such that Ak,j and Bk,j

satisfy (3.14). Due to the analysis above, we know that for each k ∈ [r], pk is good with

probability at least 1/2; and when pk is good, there are at least m/4 many j ∈ [m] such

that Ak,j and Bk,j satisfy (3.14). By Chernoff bound

Pr
[
the number of good pk, k ∈ [r], is at least r/4

]
≥ 1− exp (−r/16) ≥ 1− 1

/
v64

As a result, we have

Pr
[
the number of (k, j), k ∈ [r] and j ∈ [m], that satisfy (3.14) is at least mr

/
16
]

≥ 1− 1
/
v64

Assuming the event above happens, we construct E as follows. Since
[
s′ |Aj |

2
, s′ |Aj |

]
⊆
[
s′W
4

, s′W

]

we can find an appropriate positive integer W ′ such that the number of (k, j) that satisfy

both (3.14) and W ′/2 ≤ |Ak,j| ≤ W ′ is at least mr
/
32 = m · 32⌈log v⌉. For each such pair

(k, j), we set E(k, j) = |Ak,j |; and set E(k, j) = nil otherwise. It is easy to check that E is

an (m,m′, r,W ′)-expansion map and satisfies either condition a) or condition b) of Lemma

3.4.8, based on whether E matches (B,p).
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3.5.3 Interaction: Proof of Lemma 3.4.9

We start with a useful lemma for analyzing Interact.

Lemma 3.5.8. Let D ⊂ P be a nonempty set of points with β = (s/v) · |D| < 1. Then the

total number of lines L ∈ L such that |L ∩D| = 1 is a least (1− β)h|D|.

Proof. For each k ∈ [0 : s], let Nk denote the number of L ∈ L with |L ∩ D| = k. By

Proposition 4.12,

∑
k Nk · k = h|D| and

∑
k Nk · k(k − 1) = |D| ·

(
|D| − 1

)
< |D|2

Since k ≤ k(k − 1) for every k ≥ 2, we have

∑

k≥2

Nk · k ≤
∑

k≥2

Nk · k(k − 1) =
∑

k

Nk · k(k − 1) < |D|2

As a result, we have the following lower bound for N1:

N1 = h|D| −
∑

k≥2

Nk · k > h|D| − |D|2 (3.16)

On the other hand, by our assumption β = (s/v) · |D| < 1 and h ≥ (v/s), see (3.1), we have

|D| = β · (v/s) ≤ βh. The lemma then follows by plugging |D| ≤ βh into (3.16).

We now prove Lemma 3.4.9.

Proof of Lemma 3.4.9. By assumption we have (s/v) · m · W ≥ ǫ, where ǫ denotes the

following parameter:

ǫ =
1

218 · ⌈log v⌉2

For each j ∈ [m], let Dj = Aj∆Bj, the symmetric difference of Aj and Bj, and let D =

∪j∈[m]Dj . Then

W

4
≤ (1− α) · |Aj | ≤ |Dj | ≤ 2W and |D| ≥

∑

j

|Aj −Bj | ≥
∑

j

|Aj |
2

≥ m ·W
4

≥ ǫ

4
· v
s

Next we let j∗ denote the smallest j ∈ [m] such that

∣∣ ∪j≤j∗ Dj

∣∣ ≥ ǫ

4
· v
s
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Let D∗ = ∪j≤j∗Dj, then the way we picked j∗ implies that

ǫ

4
· v
s
≤ |D∗| ≤ ǫ

4
· v
s
+ 2W <

v

2s

Now we focus on the probability of the following event, which clearly implies (4.6).

Event E :
[
∃ i ∈ [r] such that |Li ∩D∗| = 1

]

To this end, note that β = s|D∗|/v < 1/2. Thus, by Lemma 3.5.8 we have for each i ∈ [r]:

Pr
[
|Li ∩D∗| = 1

]
≥ (1− β)h|D∗|

n
≥ (1− β)ǫhv

4ns
=

(1− β)ǫ

4
>

ǫ

8

By plugging in ǫ and r, we have

Pr
[
E
]
≥ 1−

(
1− ǫ

8

)r
≥ 1− exp(ǫr/8) > 1− 1/v4

The lemma then follows.

3.5.3.1 Proof of Theorem 3.4.11

In this section, we prove our main technical theorem as stated in Theorem 3.4.11.

Proof of Theorem 3.4.11. First we note that, because the total number of for-loops in

Cert (S, f, g, p, q) is no more than ⌊log v/2⌋, line 6, 13 or 20 can never evaluate to true

when C3 is large enough. The number of for-loops executed could be smaller than ⌊log v/2⌋
because the Expansion and Contraction operations may exit the for-loop by returning nil

or a shorter certificate that distinguishes p and q. By induction we can show that for each

k, (Ak,Bk) is an (mk,Wk, αk)-pair with

αk ≤ k
/
⌈log v⌉ ≤ 1/2

So every time we apply one of the three operations: Expansion (Lemma 3.4.8), Contraction

(Lemma 3.4.3) or Interaction (Lemma 3.4.9) in Cert, parameters (mk−1,Wk−1, αk−1) of

the current pair (Ak−1,Bk−1) of pdsts must satisfy the needed assumptions, respectively.

We now prove that Cert can never reach line 26. To this end, we first show that when

the constant C2 is large enough, Contraction (line 12 in Figure 3.2) can never be executed
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in two consecutive for-loops. We prove this statement by contradiction. Let us assume that

contraction happens in both the kth and (k + 1)th for-loops. Then we must have:

mk =
⌈
mk−1/⌈log v⌉

⌉
, Wk = O

(s
v
·Wk−1 · log2 v

)
and

s

v
·mk ·Wk = Ω

(
1

log2 v

)

In addition, since Ak−1 has mk−1 disjoint subsets of P and each has at least Wk−1/2 points,

we have
mk−1Wk−1

2
≤ v.

Combining these inequalities, we get

s = Ω

(
v

mkWk · log2 v

)
= Ω

(
v2

mk−1 · sWk−1 · log3 v

)
= Ω

(
v

s · log3 v

)
= Ω

( √
n

log3 v

)

Combining it with h = Θ(
√
n), we immediately have that

n

sh
= O(log3 v)

which cannot happen when C2 is set to be sufficiently large, and hence we reach a contra-

diction.

Since Cert never performs two consecutive Contraction operations in the for-loop, we

have
mk+1

mk−1
≥ 32⌈log v⌉

⌈log v⌉ = 32

Let K = ⌊log v/2⌋, the total number of for-loops. If line 26 is reached, then by the end mK

is at least

32K/2 if K is even; and
32(K−1)/2

⌈log v⌉ if K is odd

which is larger than v in both cases. But this cannot happen because the union of all sets

in an (m,W )-pdst has at least m points, and hence mK ≤ v. Now we have shown that line

26 is never reached.

Therefore, for any two points p, q ∈ P, Cert (S, f, g, p, q) returns nil only if line 9, 16

or 23 evaluates to true. By Lemma 3.4.3, Lemma 3.4.8 and Lemma 3.4.9, if f and g are

sampled uniformly at random then the probability that line 9, 16 or 23 never evaluates to

true in any of the ⌊log v/2⌋ for-loops is at least
(
1− 1

v3

)⌊log v/2⌋
= 1−O

(
log v

v3

)

Since there are O(v2) many pairs of p, q ∈ P, the lemma follows using the union bound.
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Chapter 4

Isomorphism of strongly regular

graphs

In this chapter we analyze the structure and isomorphism of strongly regular graphs.

Definition 4.0.1. A strongly regular(SR for short) graph with parameters (n, k, λ, µ) is a

k-regular graph on n vertices, in which every two adjacent vertices have λ common neighbors

and every two non-adjacent vertices have µ common neighbors.

We present an exp(Õ(n1/5)) time algorithm for isomorphism testing of strongly reg-

ular graphs. We also show that every non trivial strongly regular graph has at most

exp(Õ(n9/37)) automorphisms.

4.1 Strongly regular graphs

In this section, we present some basic facts about strongly regular graph.

All the disconnected SR graphs are disjoint unions of cliques of the same size. We refer

to these graphs and their complements as trivial SR graphs. The following facts about

non-trivial SR graphs can be easily seen from the definition.

Proposition 4.1.1. Let G be a non-trivial SR graph with parameters (n, k, λ, µ). Then,

1. G has diameter 2.
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2. k ≥
√
n− 1.

3. µ(n− k − 1) = k(k − λ− 1).

4. The adjacency matrix of G has exact three distinct eigenvalues, k > r ≥ 0 ≥ s.

Without loss of generality, we also assume throughout the chapter that k satisfies k ≤
(n− 1)/2 since the complement of a SR graph is SR.

Given a graph G = (V,E), the line-graph L(G) has the vertex set E, and two vertices

in L(G) are adjacent if the corresponding edges in G share a vertex. It is a folklore that for

L(G) to be a non-trivial SR graph, G must be either a complete graph, a complete bipartite

graph or the 5-cycle graph. These graphs and their complements are referred to as graphic

SR graphs. The following result was central to Spielman’s work and remains central to

ours.

Theorem 4.1.2 (Neumaier). Let G be a non-trivial and non-graphic SR graph with param-

eters (n, k, λ, µ) and eigenvalues k > r > s. Then, at least one of the following conditions

must hold:

(S) µ = s2 and G is a Steiner graph derived from a Steiner 2-design;

(L) µ = s(s+ 1) and G is a Latin square graph derived from an s-net;

(F) G is a conference graph (and thus, k = (n− 1)/2, µ = (n− 1)/4, and λ = µ− 1);

(C) G satisfies Neumaier’s claw bound:

r ≤ max

{
2(−s− 1)(µ + 1 + s) + s,

s(s+ 1)(µ + 1)

2
− 1

}
. (4.1)

Steiner and Latin square graphs are both defined by a finite geometry that consists of

a set of points and a set of “lines” each of which is itself a subset of points. As we will

not examine these geometric SR graphs, we refer interested readers to [Neumaier, 1979;

Spielman, 1996; Miller, 1978; Babai and Wilmes, 2013; Chen et al., 2013] for their defini-

tions.
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Lemma 4.1.3. Let G be an SR graph with parameters (n, k, λ, µ) and eigenvalues

k > r > 0 > s. If G satisfies Neumaier’s claw bound and k = o(n), then we have

µ =
k2

n
·
(
1± o(1)

)
and λ = O

(
k4/3

n1/3

)
.

Proof. Following the proof of Corollary 9 of [Spielman, 1996] we have µ = o(k) and r =

O(k2/3µ1/3). By Part (b) of Proposition 2 of [Spielman, 1996], we have the following bound

for λ:

λ = µ+ r + s ≤ µ+ r ≤ o
(
k2/3µ1/3

)
+O(k2/3µ1/3) = O(k2/3µ1/3).

This implies that λ = o(k). On the other hand, from µ(n− k − 1) = k(k − λ− 1) we have

µ =
k(k − λ− 1)

n− k − 1
=

k2(1− o(1))

n(1− o(1))
=

k2

n
·
(
1± o(1)

)

Plugging this into λ = O(k2/3µ1/3), the lemma follows directly.

We also have

Theorem 4.1.4 ([Babai and Wilmes, 2015]). Let G be a non-trivial SR graph. Then

λ = O(k3/2n−1/2 + n1/2). (4.2)

Consequently, for k = Ω(n2/3) we have λ = O(
√
kµ).

4.2 Isomorphism of SR graphs

The class of strongly regular graphs, while not believed to be GI-complete, has long been

identified as a hard case for GI (cf. [Read and Corneil, 1977]).

In [Babai, 1981b], Babai proved

Theorem 4.2.1. Every SR graph G with n vertices and k ≤ (n− 1)/2 has a set of Õ(n/k)

vertices whose individualization completely splits the graph under naive vertex refinement.

This gives an isomorphism testing algorithm for strongly regular graphs with running

time exp(Õ(
√
n)). Spielman [Spielman, 1996] then showed
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Theorem 4.2.2. Every SR graph with k = o(n2/3) and second eigenvalue r = o(k) has

a set of Õ(
√

n/k) vertices whose individualization completely splits the graph under naive

vertex refinement.

This implies an isomorphism testing algorithm for strongly regular graphs with running

time exp(Õ(n1/3)). In this section, we further improve this bound to exp(Õ(n1/5)).

Theorem 4.2.3. Let G be a SR graph with n vertices. Then a canonical form for G can

be computed in time exp(Õ(n1/5)).

Theorem 4.2.3 is obtained by applying the following theorem.

Theorem 4.2.4. Let G be a SR graph with n vertices and degree k ≤ (n − 1)/2. Then a

canonical form for G can be computed in time

(a) exp(Õ(1 + k2/n));

(b) exp(Õ(
√

n/k));

(c) exp(Õ(n/k).

Theorem 4.2.3 is obtained by applying (a) for k ≤ n3/5, part (b) for n3/5 ≤ k ≤ n3/4

and part (c) for n3/4 ≤ k ≤ (n− 1)/2.

In this section, we present a proof of Theorem 4.2.4 (b). For the proof of (a), (c) and

an alternative proof of Theorem 4.2.4, see [Babai et al., 2013] and [Wilmes, 2016]. More

precisely, we prove the following result.

Theorem 4.2.5. Fix any constant ε > 0. Every non-trivial vertex-colored SR graph satisfy-

ing k = Ω(n2/3) and k = O(n1−ε) is completely split by Õ((n/k)1/2) vertices under classical

Weisfeiler-Leman refinement.

We prove Theorem 4.2.5 by presenting a canonical pairwise distinguisher for vertices of

a strongly regular graph.

We will construct two technical algorithms Cert and Test for SR graphs. The first

algorithm Cert (G, f, u, v) iteratively applies the operation Partition to build two multi-

stage branching structures, one for u and one for v, and uses another operation Interact
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to certify the pairwise distinctness at the final stage. When it succeeds, Cert returns a

certificate M that is essentially a sketch of the structure built for u. The second algorithm

Test (G, f,M, u) then applies the same operations Partition and Interact, trying to build

a multi-stage structure for u that matches the description given in M . It outputs 1 if it

succeeds; and 0 if it fails.

The Cert algorithm aims at distinguishing two vertices u 6= v in G. We simultane-

ously grow two sequences of such bipartite structures, one from u and one from v, with the

assistance of a small number of individualized vertices (referred to as seeds) sampled inde-

pendently and uniformly at random. These bipartite structures are grown in a canonical

fashion (i.e., if φ is an isomorphism from G to G′, then bipartite structures grown from

u and φ(u) will be the same under the isomorphism φ).At each step, the pair of bipartite

structures grown so far have the following property. Either their “interactions” with a small

number of random seeds can introduce the desired asymmetry between u and v with high

probability, or their “interactions” with a small number of random seeds likely produce an-

other pair of bipartite structures with measurable progress towards the former case. Below

we explain in more details these “interactions”.

For a vertex u, we focus on the induced bipartite subgraph between N(u) and V \N+(u).

Specifically, we focus on a family of bipartite systems, each consisting of a sequence of

induced bipartite subgraphs ((A1, B1), . . . , (Aγ , Bγ)), where the Ai are disjoint subsets of

N(u) and Bi ⊆ V \ N+(u). For our construction and analysis, in addition to demanding

that every bipartite graph induced by Ai, Bi is dense enough, we further require that

• the sizes of all the Ai be within a factor of 2 of each other,

• all degrees involved by vertices in
⋃

iBi be within a factor of 2 of each other,

• the numbers of Bi to which each vertex in
⋃

i Bi belongs be within a constant factor

of each other.

(See Definition 4.2.7 for more details.)

With these strong “regularity” conditions, we have the following property: Suppose

((Ai, Bi)) and ((A′
i, B

′
i)) are a pair of bipartite systems built from u, v, respectively. If

|Ai ∩ A′
i| = o(|Ai|) and |Ai| = |A′

i| is smaller than k/max(λ, µ), then we have |Bi ∩ B′
i| =
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o(|Bi|) (and otherwise we are already done in distinguishing u and v). Thus, if |⋃i Bi| is
very close to n, then the interaction of a small number of random seeds w with Bi and B′

i

is likely to produce the asymmetry that we aim for: for some i, w ∈ Bi but w /∈ B′
i (since

these bipartite structures are built in a canonical fashion).

The two initial bipartite systems for u and v are simply ((N(u), V \ N+(u)) and

((N(v), V \ N+(v)) which do not meet the size condition above as |N(u)| = |N(v)| = k

is too large. To make progress, we draw a small number of fresh random seeds and use

the following process to partition a bipartite system ((Ai, Bi)) to ((A∗
j , B

∗
j )). For a seed z,

if z ∈ Bi for some i, then we extract a new induced bipartite graph (A∗, B∗), where A∗

contains all the vertices of Ai that are also neighbors of z, and B∗ contains all neighbors

of A∗ in Bi. We collect all such new induced bipartite graphs and then “clean them up” to

make sure the new bipartite system satisfy the desired regularity conditions (i–iii) again.

Our two goals are to ensure that (1) the union of the B-part of the new bipartite system still

contains almost all vertices in V \N+(u) and (2) the A-part of the new system is smaller

than the old one by a factor of O(n−Ω(1)). Given these two properties, a constant number

of steps is sufficient to obtain the desired bipartite system for u.

While the partition operation is intuitively simple, the greatest challenge for us is to

make sure that the new bipartite system remains highly regular (i.e., still satisfies all con-

ditions (i–iii); also see Definition 4.2.7). For this purpose, we need to first extract from

the old bipartite system ((Ai, Bi)) layers of structures that satisfy much stronger regularity

conditions than (i–iii), as a preparation for the partition operation. This involves careful

definitions of special vertices and pairs (Ai, Bi) satisfying those stronger regularity condi-

tions, as well as lemmas that show abundance of such objects. After using random seeds

to further partition ((Ai, Bi)), as described above, we apply a carefully designed cleaning

up procedure which only makes relatively minor changes to ((A∗
j , B

∗
j )) but produces at the

end a bipartite system that satisfies again all regularity conditions (i–iii).

Given the partition operation we show that our construction of bipartite systems is

canonical, and that Õ((n/k)1/2) random seeds are sufficient to distinguish all pairs of vertices

with high probability. From these results, we derive a canonical pairwise distinguisher for

the graph, and show that a seeding set of size Õ((n/k)1/2) is enough to distinguish every pair
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of vertices. For technical reasons, our analysis works only for SR graphs with k = O(n1−ε),

for any arbitrary constant ε > 0.

4.2.1 Bipartite systems

Fix any constant ε > 0. Let G = (V,E) be a SR graph with parameters (n, k, λ, µ). We will

only require the assumptions k = Ω(n2/3) and k = O(n1−ε) in Section 4.2.4. We note that

it then follows that λ = O(
√
kµ) by Theorem 4.1.4. In the remainder of Section 4.2.1, we

require only the weaker assumptions that k = o(n) (and hence µ = o(k) by Lemma 4.1.3),

and λ = o(k).

We need some notation. Given p /∈ A ⊆ V , we let E(p,A) denote the set of edges

(p, q) ∈ E with q ∈ A. Given two disjoint sets A,B ⊆ V , let E(A,B) denote the set of

edges between A and B. Sometimes we use E(A,B) to denote the bipartite graph induced

by A and B when it is clear from the context. Given u ∈ V , we let Hu denote the bipartite

subgraph of G induced by N(u) and V \N+(u). Let α = ⌊log n⌋.
In Section 4.2.1, u is a fixed vertex so we suppress the subscript and denote Hu by H.

Our algorithm is based on the following bipartite structures.

Definition 4.2.6 (Bipartite Systems). We call S = ((Ai, Bi) : i ∈ [γ]) a bipartite system

in H of size γ ≥ 1 if S satisfies the following two conditions:

1. Ai ⊆ N(u) and Bi ⊆ V \N+(u) are nonempty for all i ∈ [γ], and

2. Ai ∩Aj = ∅ for all i 6= j ∈ [γ]. (The Bi are not necessarily pairwise disjoint.)

Given S = ((Ai, Bi) : i ∈ [γ]), we let A =
⋃

i Ai and B =
⋃

iBi. Let M(p,S) = {i : p ∈
Bi} denote the number of times p appears in Bi, for some p ∈ B.

We will use the following “highly regular” bipartite systems.

Definition 4.2.7. Let γ,m, h, t be positive integers, and ρ ∈ (0, 1]. We call S = ((Ai, Bi) :

i ∈ [γ]) a (γ,m, h, t, ρ)-bipartite system in H if it is a bipartite system of size γ and satisfies

the following conditions:

1. For all i ∈ [γ], we have m/2 ≤ |Ai| ≤ m.

2. For all i ∈ [γ] and p ∈ Bi, we have h/2 ≤ |E(p,Ai)| = |N(p) ∩Ai| ≤ h.
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3. For all i ∈ [γ], |E(Ai, Bi)| ≥ ρmk (also bounded from above trivially by mk).

4. For all p ∈ B, we have t/8 ≤ |M(p,S)| ≤ t.

By definition, ((N(u), V \ N+(u))) is a trivial (1, k, µ, 1, 1 − o(1))-bipartite system in H

initially (since λ = o(k)).

The following lemma follows directly from definitions above.

Lemma 4.2.8. If S = ((Ai, Bi) : i ∈ [γ]) is a (γ,m, h, t, ρ)-bipartite system, then

ρmk

h
≤ |Bi| ≤

2mk

h
and

ρmkγ

ht
≤ |B| ≤ 16mkγ

ht
.

The next lemma gives us a very useful upper bound on h.

Lemma 4.2.9. Either h = O(1) or h = O (m ·max(λ, µ)/(ρk)).

Proof. Suppose h ≥ 4. Fix an i ∈ [γ], and we count the number of triples (p, a, b) such that

p ∈ Bi, a 6= b ∈ Ai, and (p, a), (p, b) ∈ E. Because |E(p,Ai)| ≥ h/2 ≥ 2, by picking p first,

this number is at least |Bi| ·Θ(h2) ≥ (ρmk/h) ·Θ(h2) = Θ(ρmkh). On the other hand, by

picking a and b first, this number is at most m2 ·max(λ, µ). This finishes the proof and the

lemma follows.

4.2.2 Partition

Let S = ((Ai, Bi) : i ∈ [γ]) be a (γ,m, h, t, ρ)-bipartite system in H. For each i ∈ [γ] and

p ∈ Bi, we say p is good in Bi if the number of edges between Bi and neighbors of p in Ai

is large:
∣∣E(Ai ∩N(p), Bi)

∣∣ ≥ ρ2hk
/
4.

The following lemma shows that many vertices in each Bi are good (in Bi).

Lemma 4.2.10. Let S = ((Ai, Bi) : i ∈ [γ]) be a (γ,m, h, t, ρ)-bipartite system in H. Then

for each i ∈ [γ], the number of good vertices in Bi is at least ρ2mk/(2h).

Proof. Fix an i ∈ [γ]. We now count the number L of triples (p, a, b) such that p, b ∈ Bi

(though they are not necessarily distinct) and a ∈ Ai, with (p, a), (a, b) ∈ E. If we pick

a ∈ Ai first, then both p and b have |E(a,Bi)| choices. By Cauchy–Schwarz,

L =
∑

a∈Ai

|E(a,Bi)|2 ≥
(
∑

a∈Ai
|E(a,Bi)|)2
|Ai|

=
|E(Ai, Bi)|2

|Ai|
.
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Using |E(Ai, Bi)| ≥ ρmk and |Ai| ≤ m, we have L ≥ ρ2mk2.

On the other hand, if we pick p ∈ Bi first, then we have

∑

p∈Bi

∣∣E(Ai ∩N(p), Bi)
∣∣ = L ≥ ρ2mk2.

Let T denote the number of good vertices in Bi. As |E(Ai ∩N(p), Bi)| ≤ hk, we have

2mk

h
· ρ

2hk

4
+ T · hk ≥ ρ2mk2,

which implies that T ≥ ρ2mk/(2h), and the lemma is proven.

Next, for each i ∈ [γ], we introduce the following function Fi(p, q) over p, q ∈ Bi (note

that p, q here are not necessarily distinct): Fi(p, q) = |Ai ∩N(p)∩N(q)|, i.e., Fi(p, q) is the

degree of q in E(Ai ∩ N(p), Bi), the bipartite graph induced by Ai ∩ N(p) and Bi. For a

good vertex p in Bi, by definition we have

∑

q∈Bi

Fi(p, q) =
∣∣E(Ai ∩N(p), Bi)

∣∣ ≥ ρ2hk

4
.

We define the type of a good vertex p in Bi, denoted Typei(p), as a positive power d of 2

that maximizes:
∑

q∈Bi
d≤Fi(p,q)<2d

Fi(p, q),

with tie-breaking done by picking the smallest such d. (This will be the tie-breaking rule

used in this section by default.) Equivalently, we put vertices of Bi in “buckets” of expo-

nentially increasing sizes with respect to their degrees in E(Ai ∩ N(p), Bi); the type of p

is then the “bucket” with the largest total degree. Note that type of p may vary in the

different sets Bi (as suggested in the subscript i in Typei).

By an averaging argument, if p is a type-d good vertex in Bi, then we have

∑

q∈Bi
d≤Fi(p,q)<2d

Fi(p, q) ≥
ρ2hk

4α
,

since Fi(p, q) ≤ µ = o(n) so the number of buckets is o(log n) = o(α).

We say the type of a bipartite system is d, a positive power of 2, if d maximizes the

number of pairs (i, p) such that p is good in Bi and Typei(p) = d. So the type of a
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bipartite system S is the most popular type among all such pairs. By Lemma 4.2.10 and

an averaging argument, the number of (i, p) such that Typei(p) = d is at least

γ · ρ
2mk

2h
· 1
α

=
ρ2mkγ

2αh
.

Given d, the type of S, we focus on vertices in B that appear in many pairs (i, p) with

Typei(p) = d. We say p ∈ B is a good vertex in the system S if it appears in at least

ρ2t/(64α) many such pairs, i.e., p is a good type-d vertex in at least ρ2t/(64α) of the Bi.

The next lemma shows that there are many good vertices in S.

Lemma 4.2.11. The number of good vertices in S is at least ρ2mkγ
/
(4αht).

Proof. Let T denote the number of good vertices in S. Then we have

|B| · ρ2t

64α
+ T · t ≥ ρ2mkγ

2αh
.

The lemma follows by the upper bound of |B| in Lemma 4.2.8 and solving for T .

From now on, we use d to denote the type of S. We focus on a good vertex p in

S and classify it further according to how it is connected with vertices in B. Given a

vertex q ∈ B (p, q here are not necessarily distinct), we say p and q have a connection of

strength s ≥ 0, denoted by Str(p, q), if there are s indices i ∈ [γ] such that Fi(p, q) satisfies

d ≤ Fi(p, q) ≤ 2d− 1. Since p is a good vertex in S, by definition we have

∑

q∈B
Str(p, q) ≥ ρ2t

64α
· ρ

2hk

4α
· 1

2d
=

ρ4hkt

29α2d
.

We then put q in “buckets” of exponentially increasing sizes according to the strength

Str(p, q) between p and q and refer to the “bucket” with the largest total strength as the

strength of p. More formally, we say the strength of a good vertex p in a bipartite system

S is a positive power s of 2 that maximizes:

∑

q∈B
s≤Str(p,q)<2s

Str(p, q).

By an averaging argument the sum above is at least ρ4hkt/(29α3d).

Finally, the strength of a bipartite system S is a positive power s of 2 that maximizes the

total number of good vertices of strength s in the bipartite system (i.e., the most popular
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strength s among all good vertices). For the rest of the section, we let d denote the type

and s denote the strength of the system S being considered, both of which are positive

powers of 2 (including 1).

The next definition will play a crucial role in further refining a bipartite system using a

small set of random seeds as discussed in the next subsection.

Definition 4.2.12. Given a (γ,m, h, t, ρ)-bipartite system S of type d and strength s, a

buzzer is a good vertex p ∈ B (i.e., p is a good, type-d vertex in at least ρ2t/(64α) of the

Bi) of strength s. We call q ∈ B a receiver for a buzzer p if s ≤ Str(p, q) < 2s. We call

i ∈ [γ] a dispatcher for a buzzer p ∈ B if the number of receivers q ∈ B for p such that

d ≤ Fi(p, q) < 2d is at least ρ4hk/(210α3d).

In the last two definitions, p and q are not necessarily distinct. Note that q ∈ Bi

being a receiver for p does not necessarily imply the d ≤ Fi(p, q) < 2d: it implies that

d ≤ Fj(p, q) < 2d for [s : 2s − 1] many j but not necessarily every i with q ∈ Bi.

Our plan is to use a small set of random seeds (vertices) y1, . . . , yθ to partition S, and
define a new bipartite system S ′ = {(Ck,Dk)} with smaller sets Ck: Roughly speaking,

each Ck is the intersection of Ai and N(yj), for some i, j, and Dk is a subset of N(Ck)∩Bi.

The challenge, however, is to make sure that S ′ is again a highly regular bipartite system

(in the sense of Definition 4.2.8) but with measurable progress on its parameter m. For

these purposes, buzzers will serve as candidates for yj; given a buzzer yj, we will add one

pair (Ck,Dk) to S ′ by setting Ck = Ai ∩N(yj) for each dispatcher i of yj, and setting Dk

to be the set of receivers of yj in Bi. While S ′ violates many conditions of Definition 4.2.8,

properties of these objects (either from their definitions or lemmas below) allow us to clean

up and regularize S ′ to obtain a bipartite system that fits Definition 4.2.8 and has a smaller

parameter m as desired.

We have the following corollary from Lemma 4.2.11 and the definition of buzzers.

Corollary 4.2.13. The number of buzzers is Ω(ρ2mkγ/(α2ht)).

We also bound the number of dispatchers for each buzzer as follows.

Lemma 4.2.14. Each buzzer p ∈ B has at least Ω(ρ4t/α3) dispatchers i ∈ [γ].
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Proof. Since p is a buzzer in S (good vertex in S of strength s), we have

∑

q∈B
s≤Str(p,q)<2s

Str(p, q) ≥ ρ4hkt

29α3d
.

Let T denote the number of dispatchers for p. Then we have

t · ρ4hk

210α3d
+ T · hk

d
≥ ρ4hkt

29α3d
.

The lemma follows by solving the inequality for T .

We end this subsection with a lemma concerning the type d and strength s of a bipartite

system S.

Lemma 4.2.15. Either d = s = 1, or we have ds = O(α3ht ·max(λ, µ)/(ρ4k)).

Proof. Assume ds > 1. Fix a buzzer p with Q being the set of its receivers. Then

Θ(|Q| · s) =
∑

q∈Q
Str(p, q) = Ω

(
ρ4hkt

α3d

)
⇒ |Q| · ds = Ω

(
ρ4hkt

α3

)
. (4.3)

On the other hand, we count the number of triples (a, b, q) such that a 6= b ∈ A, q is

a receiver of p, and satisfies (a, p), (a, q), (b, p), (b, q) ∈ E. By picking a, b ∈ A first, we see

that the number of such triples is ≤ (ht)2 max(λ, µ). On the other hand, using the |Q|
receivers, we can find at least |Q| · ds(ds − 1) = |Q| · Ω((ds)2) such triples (as ds > 1).

Thus, |Q| ·Ω((ds)2) ≤ (ht)2 max(λ, µ). The lemma follows by combining this inequality and

(4.3).

Let S = ((Ai, Bi) : i ∈ [γ]) be a (γ,m, h, t, ρ)-bipartite system in H of type d and

strength s, and let y1, . . . , yθ denote a sequence of θ ≥ 1 vertices sampled independently

and uniformly at random. In this subsection, we use y1, . . . , yθ to further partition S and

construct a new bipartite system with a smaller parameter m.

Let R = mkθ/(hn) (which can be viewed as the expected number of y1, . . . , yθ in a set

Bi). We always assume in this section that the two parameters θ and R satisfy

θ ≤ O
(
ρ10n/(α10k)

)
and R ≥ α8/ρ6, (4.4)

which is guaranteed whenever we apply the partition operation later in §4.2.3.
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Given y1, . . . , yθ, we let T denote the set of all pairs (i, j), i ∈ [γ] and j ∈ [θ], such that

yj is a buzzer and i is a dispatcher for yj. The following lemma bounds |T |.

Lemma 4.2.16. With probability at least 1− exp(−Ω(α2)), |T | ≥ Ω(ρ6γR/α5).

Proof. By Corollary 4.2.13, each yj is a buzzer with probability Ω(ρ2mkγ/(α2nht)). As

a result the expected number of buzzers sampled is Ω(ρ2γR/(α2t)) = ω(α2) using (4.4).

By the Chernoff bound, with probability 1 − exp(−Ω(α2)), number of buzzers sampled in

y1, . . . , yθ is Ω(ρ2γR/(α2t)). The lemma follows from Lemma 4.2.14.

We prove an upper bound for the number of times each i ∈ [γ] appears in T .

Lemma 4.2.17. Fix an i ∈ [γ]. With probability at least 1 − exp(−Ω(α2)), we have |{j :

(i, j) ∈ T}| ≤ O(R).

Proof. Since |Bi| = O(mk/h), the expected number of samples y1, . . . , yθ in Bi is O(R).

The lemma follows directly from R = ω(α2) and the Chernoff bound.

Next, for each pair (i, j) ∈ T , we set

Ci,j =
(
Ai ∩N(yj)

)
\




⋃

j′<j
(i,j′)∈T

(
Ai ∩N(yj′)

)

 .

Since the Ai are pairwise disjoint, all the sets Ci,j, (i, j) ∈ T , are pairwise disjoint as well.

Given a pair (i, j) ∈ T we say that Ci,j overlaps if |Ci,j| < |Ai ∩ N(yj)| − ρ4h/α4. Let

T ∗ ⊆ T denote the set of pairs (i, j) ∈ T such that Ci,j does not overlap.

We will only keep those Ci,j that do not overlap. To obtain an upper bound for the

number of those Ci,j that overlap, for each i ∈ [γ] we let Ji denote the set of the smallest

O(R) indices ℓ such that (i, ℓ) ∈ T . (Here the constant hidden in O(R) is chosen to be the

same as that in Lemma 4.2.17.) We then let

C ′
i,j =

(
Ai ∩N(yj)

)
\


 ⋃

j>j′∈Ji

(
Ai ∩N(yj′)

)

 .

By definition, we have C ′
i,j = Ci,j when Lemma 4.2.17 holds (which happens with high

probability). Similarly, we say C ′
i,j overlaps if |C ′

i,j | < |Ai ∩N(yj)| − ρ4h/α4.
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Lemma 4.2.18. Let i ∈ [γ]. With probability at least 1 − exp(−Ω(α2)), the number of

j ∈ [θ] such that (i, j) ∈ T and C ′
i,j overlaps is at most O(ρ6R/α6).

Proof. We examine the samples y1, . . . , yθ one by one. For each j, the number of vertices

that have ρ4h/α4 edges to the union of Ai ∩N(yj′), j
′ < j and j′ ∈ Ji, is

O(R) · hk · α4/(ρ4h) = O(α4kR/ρ4).

Thus, the probability that C ′
i,j overlaps is O(α4kR/(ρ4n)), and the expected number of

j ∈ [θ] such that C ′
i,j overlaps is (using the assumption on θ):

O
(
α4kRθ/(ρ4n)

)
= O

(
ρ6R/α6

)
.

Using the (generalized) Chernoff bound, with probability at least 1 − Ω(ρ6R/α6) the

number of j such that C ′
i,j overlaps is O(ρ6R/α6). The lemma then follows from the

assumption on R in (4.4).

To summarize, we get the following corollary from Lemma 4.2.16, 4.2.17 and 4.2.18:

Corollary 4.2.19. With probability 1− exp(−Ω(α2)), |T ∗| = Ω(ρ6γR/α5).

Below we assume that the event in Corollary 4.2.19 happens. For each (i, j) ∈ T ∗, yj is a

buzzer and i is a dispatcher for yj. By definition there are at least Ω(ρ4hk/(α3d)) receivers

q of yj that satisfy q ∈ Bi and d ≤ Fi(yj, q) < 2d, and we use Di,j to denote the set of all

such q. Since |Ci,j| ≥ |Ai ∩N(yj)| − ρ4h/α4 and the Ci,j are pairwise disjoint, we have the

following lemma.

Lemma 4.2.20. For each pair (i, j) ∈ T ∗, we have |E(Ci,j ,Di,j)| = Ω(ρ4hk/α3)

and |E(q, Ci,j)| < 2d for all q ∈ Di,j .

Before moving on, we record a lemma that will be helpful later when comparing the two

sequences of bipartite structures built from two vertices u and v.

Lemma 4.2.21. Let W be a subset of A. Then with probability 1− exp(−Ω(α2)),

∑

(i,j)∈T ∗

|W ∩ Ci,j | ≤
|W |kθ

n
+ α

√
θht.
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Proof. From the definition of bipartite systems,
∑

i |W ∩ Ci,j| is bounded from above by

min(|N(yj)∩W |, ht) with probability 1. Because the latter has expectation at most |W |k/n,
is independent of each other, and is bounded from above by ht with probability 1. The

lemma then follows from Hoeffding bound:

Pr

[∑
Xj −

|W |kθ
n

≥ α
√
θht

]
≤ exp

(
−2(α

√
θht)2

θ(ht)2

)
= exp(−2α2).

Bounding the number of occurrences

Let D denote the union of the Di,j over all (i, j) ∈ T ∗. We would like to prove an upper

bound on the number of occurrences of a vertex p in Di,j, (i, j) ∈ T ∗. Let L = thkθ/(dsn)

and α = ⌊log n⌋.

Lemma 4.2.22. With probability 1− exp(−Ω(α2)), each vertex p ∈ D appears in at most

O(s ·max(L,α2)) many of the Di,j.

Proof. Let p ∈ B. Let Q denote the set of buzzers q such that p is a receiver for q. We

have |Q| ≤ O(thk/(ds)). Note that the number of occurrences of p in the Di,j can be easily

bounded from above by s times the number of vertices of Q sampled in seeds y1, . . . , yθ. The

latter has expectation O(thkθ/(dsn)) = O(L). By the Chernoff bound, with probability

1− exp(−α2), p appears in at most O(s ·max(L,α2)) of the Di,j. The lemma then follows

from a union bound over all vertices in B.

Summarizing the construction and analysis so far

For convenience, we reindex pairs (Ci,j,Di,j) with [ℓ], ℓ = |T ∗|, lexicographically, and denote

this bipartite system in H as ((Ci,Di) : i ∈ [ℓ]). Assume that θ and R satisfy (4.4). By

combining all lemmas so far, with probability 1− exp(−Ω(α2)), ((Ci,Di) : i ∈ [ℓ]) satisfies:

(a) ℓ = Ω(ρ6γR/α5), and the Ci are pairwise disjoint (so it is a bipartite system).

(b) For all i ∈ [ℓ], h(1/2 − ρ4/α4) ≤ |Ci| ≤ h and |E(Ci,Di)| ≥ Ω(ρ4hk/α3).

(c) For all i ∈ [ℓ] and p ∈ Di, |E(p,Ci)| < 2d.
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(d) Every point p ∈ D appears in at most O(s ·max(L,α2)) of the Di, i ∈ [ℓ].

So, items 1, 2, and 4 of Definition 4.2.7 remain incomplete.

Item 1 is easy to fix. Let h∗ denote the positive integer that maximizes the total

number of Ci such that h∗/2 ≤ |Ci| ≤ h∗. By (b) h∗ = Θ(h), and the number of Ci with

h∗/2 ≤ |Ci| ≤ h∗ is Θ(ℓ). We only keep such sets Ci in the system. For convenience we

use the same ℓ to denote the number of Ci that remains. Then we get a bipartite system

((Ci,Di) : i ∈ [ℓ]) in H that satisfies (a), (c), (d) and

(b′) For all i ∈ [ℓ], we have h∗/2 ≤ |Ci| ≤ h∗ and |E(Ci,Di)| ≥ Ω(ρ4hk/α3).

Cleaning up

Finally, we clean up ((Ci,Di) : i ∈ [ℓ]) to obtain a new bipartite system that meets all

conditions of Definition 4.2.7, with appropriate parameters. The process consists of three

steps (i), (ii), (iii) of further regularizing ((Ci,Di) : i ∈ [ℓ]).

First we say the bipartite system ((Ci,Di) : i ∈ [ℓ]) is of degree g if g is a positive power

of 2 that maximizes the following sum:
∑

i,p |Ci ∩ N(p)|, over all i ∈ [ℓ] and p ∈ Di with

g ≤ |Ci ∩N(p)| < 2g.

By Property (c) of ((Ci,Di) : i ∈ [ℓ]) above, its degree satisfies g ≤ 2d. Step (i) then

removes from each Di all vertices except those satisfying g ≤ |Ci ∩ N(p)| < 2g. Let D′
i

denote the set of vertices left in Di for each i ∈ [ℓ]. Then after Step (i), item 2 of Definition

4.2.7 is now satisfied. While the second part of (b’) no longer holds for every |E(Ci,D
′
i)|,

we have the following lemma concerning
∑

i |E(Ci,D
′
i)|.

Lemma 4.2.23. After Step (i), the bipartite system ((Ci,D
′
i) : i ∈ [ℓ]) satisfies

∑

i∈[ℓ]

∣∣E(Ci,D
′
i)
∣∣ = Ω

(
ρ4ℓhk

α4

)
.

For each i ∈ [ℓ] and p ∈ D′
i, we have g ≤ |E(p,Ci)| < 2g. Moreover, we have

∑

i∈[ℓ]
|D′

i| = Ω

(
ρ4ℓhk

α4g

)
.

We note that the bipartite system ((Ci,D
′
i) : i ∈ [ℓ]) at this moment satisfies (a), items

1 and 2 of Definition 4.2.7 (with m set to h∗, h set to 2g), Lemma 4.2.23, and (d).
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Next, we define a bipartite graph Q, and use it to further clean up the bipartite system

((Ci,D
′
i) : i ∈ [ℓ]) to meet items 3 and 4 of Definition 4.2.7. Each vertex i on the left side

of Q corresponds to a set Ci; the right side of Q is exactly D′ =
⋃

iD
′
i. There is an edge

between i and p if p ∈ D′
i. Note that every edge corresponds to roughly g edges in the

current system. Denote the number of edges in Q by N =
∑

i∈[ℓ] |D′
i|.

In Step (ii) of the cleaning up we find a positive power r of 2 that maximizes the total

degree of vertices on the right side of Q with degree between r and 2r − 1. We remove all

vertices on the right side (and their incident edges as well) from Q except those of degree

between r and 2r − 1.

Let Q∗ denote the new bipartite graph after Step (ii), D∗ ⊆ D denote the set of vertices

on the right side of Q∗. Let N∗ denote the number of edges left in Q∗. From our choice of

r, N∗ ≥ N/α. All vertices of Q∗ in D∗ now have degree between r and 2r − 1. Property

(d) implies that r = O(s ·max(L,α2)).

Let Ldeg and Rdeg denote the average degree of the left and right side of Q∗: Ldeg =

N∗/ℓ and r ≤ Rdeg = N∗/|D∗| < 2r. In Step (iii), we run a deterministic procedure on

Q∗:

1. Remove vertices (and incident edges) on the left side of degree < Ldeg/4.

2. Remove vertices (and incident edges) on the right side of degree < Rdeg/4.

3. Go back to line 1 if there are still vertices on the left side of degree < Ldeg/4

or vertices on the right side of degree < Rdeg/4.

The procedure clearly terminates in polynomial time. Upon termination, each vertex on

the left side has degree ≥ Ldeg/4, and each vertex on the right side has degree ≥ Rdeg/4

(but still < 2r). Let Q̃ denote the new graph after Step (iii). Let I denote the set of i ∈ [ℓ]

that remains in Q̃ on the left side, and D̃ denote the set of vertices that remain on the right

side. We will use I and D̃ to finally obtain a bipartite system that satisfies Definition 4.2.7.

Before that we prove the following lemma, showing that the graph still has a lot of edges

after Step (iii).

Lemma 4.2.24. After Step (iii), the number of edges left in Q̃ is at least N∗/2.
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Proof. Even if Line 1 of (iii) removes all vertices on the left side of Q∗ it can only remove

at most ℓ · (Ldeg/4) = N∗/4 edges. Similarly, even if Line 2 of (iii) removes all vertices

on the right side of Q∗, it can only remove at most N∗/4 edges in Q∗. The lemma then

follows.

Using Q̃, I and D̃, we define a new bipartite system ((Ci, D̃i) : i ∈ I), where

D̃i = Di ∩ D̃, for each i ∈ I.

We show that it is indeed a highly regular bipartite system, and satisfies all items of Defi-

nition 4.2.7 with appropriate parameters.

Lemma 4.2.25. ((Ci, D̃i) : i ∈ I) is a (γ′,m′, h′, t′, ρ′)-bipartite system with

γ′ = Ω

(
ρ10

α10
· γR

)
, m′ = h∗ = Θ(h), h′ = 2g, t′ = 2r, and ρ′ = Ω

(
ρ4

α5

)
.

Proof. First, the Ci are pairwise disjoint and satisfy h∗/2 ≤ |Ci| ≤ h∗ by (b′).

Second, for all i and p ∈ D̃i, |E(p,Ci)| is between g and 2g − 1.

For each i ∈ I, the number of edges between Ci, D̃i is Ω(Ldeg · g) = Ω(ρ4hk/α5).

Also each p ∈ D̃ appears in less than 2r but at least r/4 of the D̃i.

Since the degree of a vertex is k, the degree of i ∈ I in Q̃ is O(hk/g). Thus,

|I| = Ω

(
N∗g
hk

)
= Ω

(
ρ4ℓ

α5

)
= Ω

(
ρ10γR

α10

)
.

We summarize all properties of the partition operation in the next theorem:

Theorem 4.2.26. Let ((Ai, Bi) : i ∈ [γ]) denote a (γ,m, h, t, ρ)-bipartite system in H of

type d and strength s. Then d and s satisfy either d = s = 1 or

ds = O
(
α3ht ·max(λ, µ)/(ρ4k)

)
.

Let θ be a positive integer with θ,R = mkθ/(hn) satisfying (4.4) and L = thkθ/(dsn).

Given a random sequence y1, . . . , yθ of θ vertices sampled from V , with probability

1 − exp(−Ω(α2)), the procedure described in this subsection constructs from ((Ai, Bi)) a

(γ′,m′, h′, t′, ρ′)-bipartite system ((Ci, D̃i) : i ∈ [γ′]), where the parameters satisfy

γ′ = Ω

(
ρ10

α10
· γR

)
, m′ = Θ(h), h′ = O(d), t′ = O

(
s ·max(L,α2)

)
, ρ′ = Ω

(
ρ4

α5

)
.



CHAPTER 4. ISOMORPHISM OF STRONGLY REGULAR GRAPHS 58

4.2.3 Interaction

Let ((Ai, Bi) : i ∈ [γ]) be a (γ,m, h, t, ρ)-bipartite system, and let X = (x1, . . . , xθ) denote a

tuple of θ vertices drawn fromG. Given any i ∈ [γ] and j ∈ [θ], Interact (G, (Ai, Bi),X, (i, j))

returns 1 if xj ∈ Bj, and 0 otherwise.

We prove following lemma for interaction operation.

Lemma 4.2.27. Let G be a SR graph. Let ((Ai, Bi) : i ∈ [γ]) be a (γ,m, h, t, ρ)-bipartite

system, and ((Ci, Di) : i ∈ [γ′]) be a (γ′,m′, h′, t′, ρ′)-bipartite system. If

|(∪iAi) ∩ (∪iCi)| = Õ

(
γm

(n/k)1/4

)
,

γm

ht
= Ω̃ (θ) , m = Õ

(
(n/k)1/2

loga n

)
, and h = O(1)

(4.5)

Then at least one of following conditions hold

1. γ 6= γ′.

2. There is an i ∈ [γ] such that |Ai| 6= |Ci|.

3. Let a be a sufficiently large constant. If θ =
⌈
(n/k)1/2 · loga n⌉ vertices

X = (x1, . . . , xθ) are sampled uniformly at random from V , then with probability at

least 1− exp(−Ω(α2)), there exists a pair i ∈ [γ] and j ∈ [θ] such that

Interact (G, ((Ai, Bi)),X, (i, j)) 6= Interact (G, ((Ci,Di)),X, (i, j)) (4.6)

Proof. First of all, it must be the case that γ′ = γ and |Ai| = |Ci| for all i; otherwise we are
done. Suppose this is indeed the case. Let A = ∪iAi and C = ∪iCi. Using (4.5), we have

|A ∩C| = Õ(γm/(n/k)1/4). So at least γ/2 many i ∈ [γ] satisfy

|Ai ∩Ci| ≤ Õ
(
m/(n/k)1/4

)
. (4.7)

Let I ⊆ [γ] denote the set of such indexes i. For each i ∈ I we show below that |Bi∩Di|
is small. First, |Bi| ≥ ρmk/h = Ω(ρmk) as h = O(1). Using (4.7),

∣∣N(Ai) ∩N(Ci)
∣∣ ≤ |Ai ∩ Ci|k + |Ai||Ci|max(λ, µ) = Õ

(
mk

(n/k)1/4
+m2max(λ, µ)

)

which is clearly an upper bound for |Bi ∩ Di| since Bi ⊆ N(Ai) and Di ⊆ N(Ci). It

follows from Eq. (4.5) and Theorem 4.1.4 that the right hand side is ≪ ρmk, if we choose

a sufficiently large a. As a result, |Bi \Di| = Ω(ρmk) for every i ∈ I.
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Finally, using the definition of (γ,m, h, t, ρ)-bipartite systems we have

∣∣∣∣∣
⋃

i∈I

(
Bi \Di

)
∣∣∣∣∣ ≥ Ω

( |I| · ρmk

ht

)
= Ω

(
ργmk

ht

)
= Ω̃ (kθ) ,

using (4.5). As kθ · (θ/n) = log2a n, by choosing a sufficiently large constant a we can

guarantee with probability 1− exp(−Ω(α2)), there are j and i such that xj ∈ Bi \Di.

4.2.4 A canonical pairwise distinguisher for SR graphs

We are now ready to present the Cert function, based on the partition operation and

interaction operation. Details of Cert function are presented in Figure 4.1. It follows from

the description of the partition operation that Cert (for parameters c and θ specified in

Eq. (4.11)) is a polynomial-time computable operator.

For the rest of this section, we fix ε > 0 to be any positive constant and use K to denote

the set of non-trivial SR graphs satisfying k = Ω(n2/3) and k = O(n1−ε).

Lemma 4.2.28. Let G be a graph in K, and

θ =
⌈
(n/k)1/2 · loga n

⌉
and c = ⌈4/ε⌉, (4.11)

where a denotes a sufficiently large constant to be specified later. There exists a map f :

[(c+ 1)θ] → V such that

Cert (G, f, x, y) 6= nil, for any two distinct vertices x, y ∈ V .

We prove Lemma 4.2.28 in the rest of this section. For clarity of the argument we state

additional lemmas within the proof.

Proof of Lemma 4.2.28. Fix u 6= v ∈ V . We show below that if mapping f is sampled

randomly, then Cert(G, f, u, v) is not nil with high probability. Lemma 4.2.28 then follows

by a union bound.

To this end, we first have the following direct corollary of Theorem 4.2.26.

Corollary 4.2.29. The probability that Cert(G, f, u, v) halts because the construction of a

bipartite system fails in Step 2 is at most exp(−Ω(α2)).
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Input: G = (V,E) in K, u, v ∈ V , f : [(c+ 1)θ] → V

0. Set yi,j to be the vertex f((i− 1)θ + j); set xj to be the vertex f(cθ + j).

1. Let γ0 = 1,m0 = k, h0 = µ, t0 = 1, ρ0 = 1− o(1). S0 = ((N(u), V \N+(u))) is a bipartite

system in Hu, with the above parameters. Let d0 denote the type and s0 denote the

strength of S0. Similarly construct S ′

0 for vertex v, and let γ′

0 = 1, m′

0 = k, h′

0 = µ,

t′0 = 1, ρ′0 = 1− o(1). Set r = 0.

2. If r < c and θ satisfies:

θ = O

(
ρ10r n

α10k

)
and Rr =

mrkθ

hrn
≥ α8

ρ6r
, (4.8)

we use the partition operation described in the previous subsection to build a new

(γr+1,mr+1, hr+1, tr+1, ρr+1)-bipartite system Sr+1 in Hu, using Sr and θ samples

yr+1,1, . . . , yr+1,θ. Let dr, sr denote the type and strength of the old bipartite system Sr.

Similarly construct (γ′

r+1,m
′

r+1, h
′

r+1, t
′

r+1, ρ
′

r+1)-bipartite system S ′

r for vertex v.

If parameters of Sr satisfy

dr = sr = 1 and
trhrkθ

n
≤ α2 (4.9)

or parameters of S ′

r satisfy

d′r = s′r = 1 and
t′rh

′

rkθ

n
≤ α2 (4.10)

increment r and go to Step 3; otherwise, increment r and go back to Step 2.

If at the beginning parameters of Sr(or S ′

r) violate (4.8), go to Step 3. If r = c (running

out of samples, which we will show never happens) or the partition operation fails, halt

and return nil.

3. Let Sr = ((Ai, Bi) : i ∈ [γr]) and S ′

r = ((Ci, Di) : i ∈ [γ′

r]). Then

(a) Return 0 if γr 6= γ′

r; Return i if |Ai| 6= |Ci|;

(b) a pair (i, j) if there exists i ∈ [γr] and j ∈ [θ] such that

Interact (G, (Ai, Bi), (x1, . . . , xθ), (i, j)) 6= Interact (G, (Ci, Di), (x1, . . . , xθ), (i, j)) ;

(c) Return nil otherwise.

Figure 4.1: The algorithm Cert for exp(Õ(
√

n/k)) bound of SR graphs



CHAPTER 4. ISOMORPHISM OF STRONGLY REGULAR GRAPHS 61

Assume that Cert(G, f, u, v) successively constructed two sequences of ℓ + 1 bipartite

structures in Step 2: S0, . . . ,Sℓ and S ′
0, . . . ,S ′

ℓ, for some ℓ ≤ c, and then either halts because

ℓ = c (running out of samples) or moves to Step 3 because (4.9) is satisfied by parameters

of Sℓ−1(or S ′
ℓ−1) or (4.8) is violated by parameters of Sℓ(or S ′

ℓ−1).

We let (γi,mi, hi, ti, ρi) denote the parameters of Si, with type di and strength si, and

(γ′i,m
′
i, h

′
i, t

′
i, ρ

′
i) denote the parameters of S ′

i, with type d′i and strength s′i. Let Si =

((Ai,j , Bi,j)), Ai =
⋃

j Ai,j, and Bi =
⋃

j Bi,j, and S ′
i = ((Ci,j ,Di,j)), Ci =

⋃
j Ci,j , and

Di =
⋃

j Di,j, Let W = N(u) ∩N(v) and Wi = Ai ∩W (so W0 = W ).

We prove the following lemma about these parameters for Si. The same bounds applies

to S ′
i.

Lemma 4.2.30. S0, . . . ,Sℓ satisfy the following conditions: for each i ∈ [0 : ℓ− 1],

γi+1 = Ω

(
ρ10i
α10

· γi ·
mikθ

hin

)
, mi+1 = Θ(hi), hi+1 = O(di). (4.12)

We also have

ti+1 = O

(
max

(
α2si,

hitikθ

din

))
, ρi+1 = Ω

(
ρ4i
α5

)
, |Wi+1| ≤ |Wi| ·

θk

n
+α

√
θhiti. (4.13)

Proof. Immediate from Theorem 4.2.26 and Lemma 4.2.21.

Next we show that ℓ = c (running out of samples) never happens.

Lemma 4.2.31. Cert(G, f, u, v) never halts due to ℓ = c for S0, . . . ,Sℓ in Step 2.

Proof. By induction and (4.12), ρi is Ω(1/polylog(n)) for all i (as c is a constant).

Next by (4.12), mi+1 = Θ(hi) for all i < ℓ. Using Lemma 4.2.9, either hi = O(1) or

hi = O(mi ·max(λ, µ)/(ρik)). So either mi+1 = O(1) or it drops by a factor of

O

(
max(λ, µ)

ρrk

)
= Õ

(
(k/n)1/2

)
= Õ

(
n−ε/2

)
,

from mi, using Theorem 4.1.4 and Lemma 4.1.3. Since m0 = k, within the c = ⌈4/ε⌉
rounds there must be a round in which mi = O(1). Let j be the first such round,

Rj = O(kθ/(hjn)) ≪ 1 and Cert(G, f, u, v) moves to Step 3, a contradiction.
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Now we know that Cert(G, f, u, v) reaches Step 3 with high probability. We analyze

carefully final parameters of Sℓ. As mentioned earlier, ρi = Ω(1/polylog(n)) for all i. Using

γ0 = 1, m0 = k, mi+1 = Θ(hi) and (4.12), we have by induction for any i ≥ 0:

γimi = Ω

(
1

polylog(n)
·
(
θk

n

)i

· k
)
. (4.14)

where the exponent of log n in polylog(n) is bounded, as there are at most c rounds. From

now on we use Õ and Ω̃ to suppress polylog factors (by the expression f = Ω̃(g) we mean

g = Õ(f)).

We study the first case: Cert reaches Step 3 because (4.8) is violated. Since ρi =

Ω(1/polylog(n)) and k = O(n1−ε), the first condition on θ in (4.8) always holds. So it must

be the case that the second condition in (4.8) is violated. Our goal is then to prove the

following set of bounds on parameters of Sℓ:

γℓmℓ

hℓtℓ
= Ω̃ (k/µ) , mℓ = Õ

(
(n/k)1/2

loga n

)
, and hℓ = O(1). (4.15)

To prove the first one we would like to show for i from 0 to ℓ− 1, one never needs to invoke

the max in the upper bound of ti+1 in (4.13) but always have

ti+1 = Õ

(
hitikθ

din

)
. (4.16)

If this is indeed the case then the first equation of (4.15) follows easily from bounds on

γi+1,mi+1, hi+1 and ri+1 in (4.12) and (4.13) and an induction on i.

To see (4.16), we focus on the case when disi > 1 (as (4.16) is trivial if disi = 1 but

parameters of Si violates the second bound of (4.9)) and Lemma 4.2.15 to get

tihikθ

disin
=

θk

n
· tihi · Ω̃

(
k

hiti ·max(λ, µ)

)
= Ω̃

(
loga n

)
,

where we used λ = O(
√
kµ) from Theorem 4.1.4 since k = Ω(n2/3). Note that the exponent

of log n in the hidden polylog factor is a constant that depends on c only but is independent

of our choice of a (so later we can pick a sufficiently large a to suppress it if desired).

To prove the other two bounds of (4.15), we combine the violation of the second condition

in (4.8) by Sℓ with Lemma 4.2.9. If hℓ is not O(1), we have

mℓ ≤
α8

ρ6ℓ
· hℓn
θk

= polylog(n) ·O
(
mℓ ·max(λ, µ))

ρℓk

)
· (n/k)

1/2

loga n
.
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If we choose a to be sufficiently large, this cannot happen. So hℓ = O(1) and

mℓ ≤
α8

ρ6ℓ
· hℓn
θk

= Õ

(
(n/k)1/2

loga n

)
. (4.17)

Next we work on the other case when parameters of Sℓ−1 satisfy (4.9). Our goal is the

following bounds on Sℓ (the first one is weaker but the other two are the same):

γℓmℓ

hℓtℓ
= Ω̃ (θ) , mℓ = Õ

(
(n/k)1/2

loga n

)
, and hℓ = O(1) (4.18)

As Sℓ−1 is the first bipartite system in the sequence that satisfies (4.9), an argument similar

to that used in proving the first bound of Eq. (4.15) gives us

γℓ−1mℓ−1

hℓ−1tℓ−1
= Ω̃ (k/µ)

and trivially γℓ−1mℓ−1 = Ω̃ (k/µ). From (4.12), (4.13) and (4.9) we have hℓ = O(1) and

tℓ = O(α2) as well as mℓ = Θ(hℓ−1) = O(α2n/(kθ)). Combining (4.12) and the bound on

γℓ−1mℓ−1 we get all three bounds claimed in Eq. (4.18). Since the first bound in (4.18) is

weaker while the other two bounds are the same in (4.15) and (4.18) we will use the latter

on parameters of Sℓ.

For S ′
ℓ, we have same bounds. Hence, Lemma 4.2.28 then follows from Lemma 4.2.27

by a union bound.

4.3 Automorphism of SR graphs

In last section, we showed a new algorithm for SR graph isomorphism with running time

exp(Õ(n1/5)). However, this result does not imply the same upper bound for the order of

automorphism groups for non-trivial non-graphical SR graphs, because (a) of Theorem 4.2.4

relies on group theory method, which does not yield bounds for the order of automorphism

group.

In this section, we present the following bound for non-trivial non-graphical SR graphs,

improving previous exp(Õ(n1/3)) upper bound by Spielman [Spielman, 1996].

Theorem 4.3.1. Every non-trivial non-graphical SR graph G has |Aut(G)| = exp(Õ(n9/37)).
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4.3.1 Latin square graphs and Steiner graphs

Proposition 4.3.2. Let G be a strongly regular graph with parameters (n, k, λ, µ). Let s

denote the smallest eigenvalue as in Theorem 4.1.2. Assume n is bounded below by a

sufficiently large constant. If G does not satisfy the claw bound and k < n/log n, then one

of following two conditions holds:

1. either G is a Steiner graph derived from a Steiner 2-design that satisfies
√
n− 2 > (−s− 1)2;

2. or G is a Latin square graph derived from an s-net with n > (−s− 1)4.

Proof. Let G be a strongly regular graph which does not satisfy Neumaier’s claw bound. As

observed in Spielman [Spielman, 1996], Neumaier’s characterization (Theorem 4.1.2) states

that G is either a Steiner graph or a Latin square graph, depending on whether µ = s2 or

µ = s(s+ 1).

If G is a Steiner graph obtained from a Steiner 2-design, then we have r = λ− µ− s =

λ− s2 − s. As λ = h− 2 + (−s− 1)2 where h denotes the number of lines passing through

each point in the Steiner 2-design (e.g., see the proof of Proposition 10 in [Spielman, 1996]),

we have

h− 2 + (−s− 1)2 − s2 − s = r > 2(−s− 1)(s2 + 1 + s)

where the inequality follows from the violation of claw bound. As
√
n ≥ h/

√
2 > h/2 from

(3.2), we get

√
n− 2 >

h

2
− 2 >

(−s− 1)(2s2 + 2s+ 3) + 2

2
− 2 > (−s− 1)2

where the last inequality always holds for any negative integer s < −1.

If G is a Latin square graph obtained from an s-net, then the violation of claw bound

implies that

k > r >
s(s+ 1)(µ + 1)

2
− s− 1 ≥ (−s− 1)4

/
2

Since n > k·log n, we have n > (−s−1)4 when n is sufficiently large. The lemma follows.

For the case of s-net, Miller proved following theorem in [Miller, 1978].

Theorem 4.3.3. Every s-net with n points completely splits by log n points under naive

vertex refinement.
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4.3.2 A canonical pairwise distinguisher for SR graphs with the claw

bound

In this section, we present an algorithm for general strongly regular graphs that satisfy the

claw bound and

k ≤ n7/13
/
log n. (4.19)

In the description of the algorithm and its analysis, we use α, β and γ to denote the following

integers:

α =

⌈
n7/3

k13/3 · log n

⌉
, β =

⌈
α

log n

⌉
, and γ =

⌈
k17/3

n8/3
· log5 n

⌉

From (4.19) and k ≥
√
n− 1, we have

Ω
(
log10/3 n

)
≤ α ≤ O

(
n1/6/ log n

)
, β = Ω

(
log7/3 n

)
and γ = Ω

(
n1/6 · log5 n

)

We also use the following notation. Given a vertex u in G, let N(u) denote the set of

neighbors of u and N+(u) denote N(u) ∪ {u}. Thus, |N(u)| = k and |N+(u)| = k + 1.

Then, for a set of vertices A in G, N(A) and N+(A) will denote ∪u∈AN(u) and ∪u∈AN+(u),

respectively.

Our algorithm in this section relies on two deterministic (polynomial-time algorithms)

also called Test and Cert. Details of these two algorithms can be found in Figure 4.2.

From the description of Test and Cert in Figure 4.2, Test and Cert form a canonical

pairwise distinguisher for the graph.

In the rest of this section, we will prove the following main technical theorem.

Theorem 4.3.4. Let G = (V,E) be a strongly regular graph with parameters (n, k, µ, λ)

satisfying the claw bound and (4.19). Let (u, v) be a pair of distinct vertices in G. If a

map f from [α+ β + γ ] to V is sampled uniformly at random, then Cert (G, f, u, v) 6= nil

with probability at least 1− exp(−Ω(log2 n)).

By requiring

k ≤ n19/37 ≪ n7/13
/
log n

we have

exp
(
Õ(α+ β + γ)

)
= exp

(
Õ(n1/6 + n1/6 + n9/37)

)
= exp

(
Õ(n9/37)

)



CHAPTER 4. ISOMORPHISM OF STRONGLY REGULAR GRAPHS 66

Algorithm Cert (G, f, u, v)

Input: G = (V,E) is a strongly regular graph with parameter (n, k, µ, λ) satisfying the claw

bound and (4.19); u and v are two distinct vertices in G; f is a map from [α+ β + γ ] to V .

1. Break f into three maps f1 : [α] → V , f2 : [β] → V and f3 : [γ] → V such that

f1(i) = f(i), f2(j) = f(α+ j) and f3(ℓ) = f(α+ β + ℓ)

2. [Expansion ]: For each i ∈ [α], construct Au,i as follows: If f1(i) ∈ N+(u), then set

Au,i = ∅; otherwise Au,i is the set of µ common neighbors of u and f1(i). For each

i ∈ [α] and j ∈ [β], construct Bu,i,j as follows: If Au,i = ∅ or f2(j) ∈ N+(Au,i), set

Bu,i,j = ∅; otherwise Bu,i,j is the set of all vertices that are common neighbors of f2(j)

and at least one vertex from Au,i:

Bu,i,j =
{
w ∈ N

(
f2(j)

)
: ∃w′ ∈ Au,i such that (w,w′) ∈ E

}

Similarly construct Av,i for each i, and Bv,i,j for each pair (i, j), i ∈ [α] and j ∈ [β].

3. [Interaction ]: If there exists a triple (i, j, ℓ), where i ∈ [α], j ∈ [β] and ℓ ∈ [γ], such that

f3(ℓ) ∈ N(Bu,i,j) but f3(ℓ) /∈ N(Bv,i,j)

return (i, j, ℓ); otherwise, return nil.

Algorithm Test (G, f, (i, j, ℓ), u)

Input: G = (V,E) is a strongly regular graph with parameter (n, k, µ, λ) satisfying the claw

bound and (4.19); u is a vertex in G; f is a map from [α+ β+ γ ] to V ; and (i, j, ℓ) is a triple

of integers that satisfy i ∈ [α], j ∈ [β], and ℓ ∈ [γ].

1. Return 1 if f3(ℓ) ∈ N(Bu,i,j); and return 0 otherwise.

Figure 4.2: The two algorithms Test and Cert for exp(Õ(n9/37)) bound of SR graphs
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Before proving Theorem 4.3.4, we introduce a definition and establish a few lemmas

that will be useful for the proof. In the rest of the section, we always assume G satisfies the

claw bound as well as (4.19).

Definition 4.3.5 (A Good Start). Let (u, v) be a pair of distinct vertices in G, and f1 be

a map from [α] to V . We say f1 is good with respect to (u, v) if there exists a set I ⊆ [α]

of size |I| ≥ α/2 such that

1. Au,i 6= ∅ and Av,i 6= ∅, for all i ∈ I;

2. Au,i ∩Au,j = ∅ and there is no edge between Au,i and Au,j, for all i, j : i 6= j ∈ I;

3. Av,i ∩Av,j = ∅ and there is no edge between Av,i and Av,j , for all i, j : i 6= j ∈ I; and

4. Au,i ∩Av,i = ∅, for all i ∈ I.

We first show that f1 is good with high probability, if it is sampled uniformly at random.

Lemma 4.3.6. Let (u, v) be a pair of distinct vertices. If a map f1 from [α] to V is

sampled uniformly at random, then f is good with probability 1− exp (−Ω (α)), and one

can compute in polynomial time a set I ⊆ [α] that satisfies all the conditions of Definition

4.3.5.

Proof. We construct I as follows. Start with I = ∅, and sample f(1), f(2), . . . , f(α) one by

one. For each i ≥ 1, assume f(1), f(2), . . . , f(i−1) have already been sampled. If the point

f(i) we get satisfies all the following four conditions, then we add it to I:

1. f(i) /∈ N+(u) ∪N+(v);

2. Au,i ∩Av,i = ∅;

3. Au,i ∩Au,t = ∅ and there is no edge between Au,i and Au,t, for all t < i and t ∈ I;

4. Av,i ∩Av,t = ∅ and there is no edge between Av,i and Av,t, for all t < i and t ∈ I.

By induction it is clear that the set I we get by the end satisfies all the conditions of

Definition 4.3.5. We now show that |I| ≥ α/2 with high probability. Note that the number

of vertices in G that, when picked as f(i), violate each of the four conditions can be bounded

above respectively by
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O(k), max{µ, λ} · k, (i− 1)µk + (i− 1)µλk and (i− 1)µk + (i− 1)µλk

The first two bounds are self-evident. To see the last two bounds, we consider a pair i and

t. First note that if f(i) is not connected to Au,t, then Au,i ∩ Au,t = ∅. As |Au,t| = µ, Au,t

is directly connected to at most µk vertices. Second note that if f(i) is not connected with

a common neighbor of u and a member of Au,t, then there is no edge between Au,i and

Au,t. The total number of common neighbors of u and members of Au,t is at most µλ. We

therefore obtain the third, and similarly the last, bound.

Since i ≤ α, the probability of i being added to I is at least

1−O

(
k +max{µ, λ} · k + αµk + αµλk

n

)
= 1−O

(
αµλk

n

)
= 1−O

(
1

log n

)

where µ = O(k2/n) and λ = O(k4/3/n1/3). So the expectation of |I| is α(1 − o(1)). By

Chernoff bound, we have |I| ≥ α/2 happens with probability at least 1− exp(−Ω(α)).

From now on we assume that the event described in Lemma 4.3.6 occurs: f1 has already

been sampled and it is good with respect to (u, v); We have obtained a set I ⊆ [α] that

satisfies all the conditions of Definition 4.3.5, including |I| ≥ α/2. Let m denote (note that

m could be much smaller than 1):

m =
k19/3

n10/3
· log n

Next we sample f2, and use R ⊆ I × [β] to denote the following set of pairs (i, j):

(i, j) ∈ R if i ∈ I and f2(j) satisfies the following four conditions:

1. f2(j) /∈ N+(Au,i) ∪N+(Av,i);

2. |Bu,i,j ∩Bv,i,j | ≤ m;

3. There are at most m vertices in Bu,i,j that are connected to at least two vertices in

Au,i;

4. There are at most m vertices in Bv,i,j that are connected to at least two vertices in

Av,i.

We prove that every pair (i, j) ∈ R has the following property:
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Lemma 4.3.7. If (i, j) ∈ R, then we have |Bu,i,j − Bv,i,j | ≥ µ2
/
2 and |Bv,i,j − Bu,i,j | ≥

µ2
/
2.

Proof. Because f2(j) /∈ N+(Au,i), each vertex in Au,i shares µ common neighbors with f2(j).

Hence the total number of pairs (w,w′) such that w ∈ Au,i and (w,w′), (f2(j), w′) ∈ E is

exactly µ2. Also note that |Bu,i,j| is exactly the number of distinct w′’s in such pairs.

Because (i, j) ∈ R, the number of w′’s that appear in at least two such pairs is no more

than m. As |Au,i| = µ, each w′ can appear in no more than µ different pairs. Together we

know the number of w′’s that appear in exactly one pair is at least

µ2 −mµ = µ2
(
1− o(1)

)

wherem = o(µ) follows from (4.19). Thus, |Bu,i,j | = µ2(1−o(1)) and using |Bu,i,j∩Bv,i,j | ≤
m we get

|Bu,i,j −Bv,i,j | ≥ µ2
(
1− o(1)

)
−m ≥ µ2

/
2.

Similarly we have |Bv,i,j −Bu,i,j | ≥ µ2
/
2.

We will use the following probabilistic statement about R.

Lemma 4.3.8. For each i ∈ I, if f2(j), where j ∈ [β], is sampled uniformly at random,

then

Pr
[
(i, j) ∈ R

]
= 1−O

(
1/ log n

)

Proof. Since i ∈ I and |Au,i| = |Av,i| = µ, we have |N+(Au,i)| + |N+(Av,i)| = O(µk). So

the probability that f2(j) violates the first condition is at most O(µk/n) = O(k3/n2) =

o(1/ log n).

To analyze the third condition, we let

W =
{
z ∈ V : there are two distinct w,w′ ∈ Au,i such that (z, w) and (z, w′) ∈ E

}

As each such w,w′ can have at most max{λ, µ} many common neighbors, we have

|W | ≤ |Au,i|2 ·max{λ, µ} ≤ µ7/3k2/3 = O

(
k16/3

n7/3

)
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When f2(j) /∈ N+(Au,i), W ∩ N(f2(j)) is exactly the set of vertices in Bu,i,j that

are connected to at least two vertices in Au,i. For a randomly sampled vertex f2(j), the

expectation of |W ∩N(f2(j))| is

O

(
k16/3

n7/3

)
· k
n
= O

(
k19/3

n10/3

)
= O

(
m

log n

)
(4.20)

It follows that f2(j) violates the third, and similarly the last condition, with probability

O(1/ log n).

Finally, we examine the probability of |Bu,i,j ∩ Bv,i,j | ≥ m. To this end, we count the

number K of vertices that are connected to at least one vertex in Au,i and at least one

vertex in Av,i. Because i ∈ I, we have Au,i∩Av,i = ∅ and thus, K is at most µ2 ·max{λ, µ}.
Similarly, for a randomly sampled f2(j), the expectation of |Bu,i,j∩Bv,i,j | can be bounded by

(4.20). It follows that the probability of j violating the second condition is also O(1/ log n).

The lemma then follows using the union bound.

For each j ∈ [β], let Ij ⊆ I denote the set of i ∈ I with (i, j) ∈ R. We need the following

definition:

Definition 4.3.9 (A Healthy Second Step). We say j ∈ [β] is good with respect to (u, v)

and f1, if |Ij | ≥ |I|/2 = Ω(α) and for any i, i′ : i 6= i′ ∈ Ij, Bu,i,j ∩Bu,i′,j = ∅ and

Bv,i,j ∩Bv,i′,j = ∅.

Lemma 4.3.10. If f2(j), where j ∈ [β], is sampled uniformly at random, then with

probability at least 1−O(1/ log n), j is good with respect to (u, v) and f1.

Proof. We first consider the probability of Bu,i,j ∩Bu,i′,j 6= ∅, for some i, i′ : i 6= i′ ∈ I.

When this event happens, there must be a vertex w such that (w, f2(j)) ∈ E and w is

connected to at least one vertex in Au,i and at least one vertex in Au,i′ , for some i 6= i′ ∈ I.

On the other hand, since there is no edge between any two sets Au,i and Au,i′ , the number

of vertices that are connected to more than one sets {Au,i}, i ∈ I, can be easily bounded

by O((|I|µ)2µ). For a randomly sampled vertex f2(j) the probability of Bu,i,j ∩Bu,i′,j 6= ∅
for some i 6= i′ ∈ I is at most

O

(
|I|2µ3 · k

n

)
= O

(
n2/3

k5/3 · log2 n

)
= O

(
1

n1/6 · log2 n

)
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So the probability of Bu,i,j ∩ Bu,i′,j = ∅ for all i, i′ is ≥ 1 − O(1/n1/6). The same bound

holds for v.

To complete the proof, it suffices to show that Ij ⊆ I is large with high probability. By

Lemma 4.3.8 we have the expectation of |Ij | is |I |(1 − O(1/ log n)). It then follows that

|Ij | ≥ |I |/2 with probability at least 1 − O(1/ log n). The lemma follows using the union

bound.

Lemma 4.3.11 (Ready to Interact). With probability 1− exp(−Ω(β)), there exists a set

J ⊆ [β] of size at least β/2 such that every j ∈ J is good with respect to (u, v) and map

f1; and {f2(j) : j ∈ J} is an independent set in G of size |J |.

Proof. We construct J by sampling f2(1), f2(2), . . . , f2(β) one by one. Start with J = ∅.
For each j ∈ [β] we add j to J if j is good and f2(j) /∈ N+(f2(1))∪ · · · ∪N+(f2(j − 1)). By

Lemma 4.3.10, the first event happens with probability 1− O(1/ log n). The second event

happens with probability at least

1− (j − 1)(k + 1)

n
= 1−O

(
βk

n

)
= 1−O

(
1

n1/3 · log2 n

)

Thus, each j is added to J with probability 1−O(1/ log n). The lemma follows by Chernoff

bound.

We now analysis the probability of successful interaction in Cert, when both events as

described in Lemma 4.3.6 and 4.3.11 occur. Let I ⊆ [α] and J ⊆ [β] denote the two sets

satisfying the conditions of Lemma 4.3.6 and 4.3.11. For each pair (i, j), where j ∈ J and

i ∈ Ij , we use Cu,i,j and Cv,i,j to denote

Cu,i,j = N(Bu,i,j) and Cv,i,j = N(Bv,i,j)

Based on Step 3 of Cert, if there exists an ℓ ∈ [γ] such that f3(γ) ∈ Cu,i,j − Cv,i,j then

Cert will return a triple rather then nil. Letting Cu,j = ∪i∈Ij(Cu,i,j − Cv,i,j), and we now

prove the following two lemmas to give a lower bound for | ∪j∈J Cu,j |.

Lemma 4.3.12. For each j ∈ J , we have |Cu,j | = Ω(µαk).
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Proof. Since j ∈ J , we know that the Bu,i,j’s are pairwise disjoint for i ∈ Ij. Let

W(u,v),j = ∪i∈Ij(Bu,i,j −Bv,i,j)

Note that W(u,v),j is a subset of N(f2(j)). By Lemma 4.3.7, it also satisfies

|W(u,v),j | =
∑

i∈Ij
|Bu,i,j −Bv,i,j | = Ω(µ2α)

To get a lower bound for |Cu,j |, we consider the following family of |W(u,v),j | sets:
{
N(z)− Cv,i,j −N+

(
f2(j)

)}
i∈Ij and z∈Bu,i,j−Bv,i,j

By definition, each of these sets is a subset of Cu,j. We first give a lower bound on the size of

any set in this family. Consider a vertex z ∈ Bu,i,j −Bv,i,j for some i ∈ Ij. As |Bv,i,j| ≤ µ2

and each vertex in Bv,i,j has at most max{λ, µ} many common neighbors with z, we have

∣∣N(z) ∩Cv,i,j

∣∣ ≤ µ2 ·max{λ, µ} = O

(
µ2 · k

4/3

n1/3

)
= o(k)

Since
∣∣N(z) ∩ N+(f2(j))

∣∣ = λ + 1, we have the size of each set in the family above is at

least

k − o(k)− λ− 1 = k
(
1− o(1)

)
= Ω(k)

Since W(u,v),j is a subset of N(f2(j)), every vertex w /∈ N+(f2(j)) can appear in at most

µ many N(z)’s, z ∈ W(u,v),j , which in turn implies that, if we take the union of all the

|W(u,v),j | sets in the family, every vertex can be counted for at most µ times. As a result,

we get the following lower bound for |Cu,j |:

|Cu,j | ≥ |W(u,v),j | · Ω(k)
/
µ = Ω(µαk)

The lemma then follows.

Lemma 4.3.13 (A Lot of Chances for Interaction). | ∪j∈J Cu,j | = Ω(µαβk).

Proof. For each j ∈ J , we show that |Cu,j − ∪j′ 6=jCu,j′ | = Ω(µαk). The lemma follows by

|J | = Ω(β).

To this end, we examine |Cu,j∩Cu,j′ |, for some j′ ∈ J with j′ 6= j. Note that by the defi-

nition of J , f2(j) and f2(j
′) are not connected. Let W = ∪i∈IjBu,i,j and W ′ = ∪i∈Ij′Bu,i,j′.

Then it is clear that W and W ′ are subsets of N(f2(j)) and N(f2(j
′)), respectively.
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We will prove the following inequality:

|N(W ) ∩N(W ′)| ≤ µk + α2µ5 + αµ3λ (4.21)

which gives an upper bound for |Cu,j∩Cu,j′ | as Cu,j ⊆ N(W ) and Cu,j′ ⊆ N(W ′). To prove

(4.21), let

W ∗ = N(f2(j)) ∩N(f2(j
′))

For each vertex z ∈ N(W ) ∩N(W ′), at least one of the following three cases occurs:

Case 1: ∃w ∈ W ∗ such that (w, z) ∈ E;

Case 2: ∃w ∈ N(W−W ∗) and w′ ∈ N(W ′−W ∗) such that (w,w′), (w, z), (w′ , z) ∈ E;

Case 3: ∃w ∈ N(W −W ∗) and w′ ∈ N(W ′ −W ∗) such that (w, z), (w′ , z) ∈ E and

(w,w′) /∈ E.

We can bound the number of z’s in each of the three cases respectively by

µk, (µ2α)µλ, and (µ2α)2µ

from which (4.21) follows. Using this upper bound for |Cu,j ∩ Cu,j′ |, we have

∣∣Cu,j − ∪j′ 6=jCu,j′
∣∣ ≥ |Cu,j | − β

(
µk + α2µ5 + αµ3λ

)
= Ω(µαk)

The lemma then follows from |J | = Ω(β).

Finally, we prove Theorem 4.3.4:

Proof of Theorem 4.3.4. First of all, with probability ≥ 1 − exp(−Ω(α)) − exp(−Ω(β)) =

1 − exp(−Ω(β)), both events described in Lemma 4.3.6 and Lemma 4.3.11 occur. We use

I ⊆ [α], R ⊆ I × [β] and J ⊆ [β] to denote the three sets that satisfy the conditions of

Lemma 4.3.6 and Lemma 4.3.11. Then, whenever

f3(ℓ) ∈ ∪j∈J Cu,j

for some ℓ ∈ [γ], the output of Cert would be a triple instead of nil. By Lemma 4.3.13, we

have

| ∪j∈J Cu,j | = Ω(µαβk) = Ω

(
n11/3

k17/3 · log3 n

)
= Ω

(
n

γ
· log2 n

)
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As a result, the probability that none of the γ vertices f3(1), . . . , f3(γ) hits ∪j∈J Cu,j is

(
1−Ω

(
log2 n

γ

))γ

= exp(−Ω(log2 n))

The theorem then follows from the union bound and the fact that β = Ω(log7/3 n).

Finally, we prove Theorem 4.3.1.

Proof of Theorem 4.3.1. If k ≥ n
/
log n, by Theorem 4.2.1, |Aut(G)| ≤ exp(O(log2 n)). In

the following, we assume k < n/ log n.

If G does not satisfy claw bound, then by Proposition 4.3.2, Theorem 3.2.2 and 4.3.3,

|Aut(G)| ≤ exp(O(log2 n)).

Now we assume G satisfies claw bound. By Theorem 4.3.4, if k ≤ n7/13/ log n, then

|Aut(G)| = exp(Õ(n9/37)). By Theorem 4.2.2 and 4.2.5, if k > n7/13/ log n, then |Aut(G)| =
exp(Õ(

√
n/k)) = exp(Õ(n3/13)).
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Chapter 5

Isomorphism of primitive coherent

configurations

A configuration X on vertex set V is a partition R0∪ · · · ∪Rr−1 of V ×V with the following

properties:

(1) the diagonal ∆ = {(v, v) : v ∈ V } is the union of some of the Ri;

(2) (∀i)(∃i∗)(R−1
i = Ri∗) (where R−1

i = {(v, u) : (u, v) ∈ Ri})

We think of X as an edge-colored complete digraph with loops on V , with edge color classes

given by the Ri. Hence, the color of a pair (u, v) ∈ V × V is c(u, v) = i if (u, v) ∈ Ri.

The rank r of a configuration is the number of edge color classes. We shall also speak of

the colors of the vertices, defined as c(u) := c(u, u). We call the digraph Xi = (V,Ri) the

color-i constituent digraph.

Given a graph G = (V,E), we associate with G the configuration X(G) = (V ;∆, E,E)

where E denotes the set of edges of the complement of G. (We omit E if E = ∅ and omit

E if E = ∅.) So graphs can be viewed as configurations of rank ≤ 3.

A coherent configuration (CC)is a configuration which additionally satisfies the following

condition:

(3) for every 0 ≤ i, j, k ≤ r − 1, there is a number pijk such that for every (u, v) ∈ Ri,

there are exactly pijk vertices w ∈ V such that (u,w) ∈ Rj and (w, v) ∈ Rk.
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The numbers pijk are called the structure constants of X.

The term “coherent configuration” was coined by Donald Higman in 1969 [Higman, 1970],

and at the same time, the same object under a different name was defined by Weisfeiler and

Leman [Weisfeiler and Leman, 1968]. In the case corresponding to a permutation group,

CCs already effectively appeared in Schur’s 1933 paper [Schur, 1933]. This group-theoretic

perspective on CCs was developed further by Wielandt [Wielandt, 1964].

A CC is primitive (PCC) if it has the following additional properties:

(4) ∆ = R0;

(5) the constituent digraphs Xi are strongly connected for every 1 ≤ i ≤ r − 1.

Given a graph H, the line-graph L(H) has as vertices the edges of H, with two vertices

adjacent in L(H) if the corresponding edges are incident in H. The triangular graph T (m)

is the line-graph of the complete graph Km (so n =
(m
2

)
). The lattice graph L2(m) is the

line-graph of the complete bipartite graph Km,m (on equal parts) (so n = m2). Both T (m)

and L2(m) have exp(Ω(m)) automorphisms.

We say a PCC is exceptional if it is of the form X(G), where G is isomorphic to the com-

plete graph Kn, the triangular graph T (m), or the lattice graph L2(m), or the complement

of such a graph.

Theorem 5.0.1. Given a non-exceptional PCC X, there exists a set of Õ(n1/3) vertices

that completely splits X under naive vertex refinement.

By Lemma 2.2.1,

Corollary 5.0.2. Let X be a non-exceptional PCC X with n vertices. We have |Aut(X)| ≤
exp(Õ(n1/3)).

We remark that it is easy to recognize an exceptional PCC from its clique structure and

create a canonical form in polynomial time. Hence

Corollary 5.0.3. A canonical form of primitive coherent configurations (PCCs) with n

vertices can be computed in time exp(Õ(n1/3)). In particular, isomorphism of PCCs can be

tested within the same time bound.

In the rest of this chapter, we prove Theorem 5.0.1.
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5.1 Growth of spheres

Throughout the chapter, X will denote a PCC of rank r on vertex set V with structure

constants pijk for 0 ≤ i, j, k ≤ r− 1. We assume throughout that r > 2, since the case r = 2

is the trivial case of X(Kn), listed as one of our exceptional PCCs.

For any color i in a PCC, we write ni = ni∗ = p0ii∗ = p0i∗i, the out-degree of each vertex

in Xi.

Two colors, 0 and 1, will play a special role. Recall that R0 = ∆ is the diagonal. Without

loss of generality, we assume throughout that n1 = maxi ni. We write ρ =
∑

i≥2 ni =

n− n1 − 1.

We say that color 1 is dominant if n1 ≥ n/2, i.e., ρ < n/2. We call a pair of distinct

vertices dominant (nondominant) when its color is dominant (nondominant, resp.). We say

color i is symmetric if i∗ = i. Note that when color 1 is dominant, it is symmetric, since

n1∗ = n1 ≥ n/2.

For a color i and vertex u, we denote by Xi(u) the set of vertices v such that c(u, v) = i.

We write N(u) for the set of neighbors of u in the graph G(X). For i nondominant, we

define λi = |Xi(u) ∩N(v)|, where c(u, v) = i. So, the parameters λi are loosely analogous

to the parameter λ of a SRG.

For a nondominant color i and vertex u, the δ-sphere X
(δ)
i (u) in Xi centered at u is the

set of vertices v with disti(u, v) = δ.

We prove

Lemma 5.1.1 (Growth of spheres). Let X be a PCC, let i, j ≥ 1 be nondiagonal colors, let

δ = disti(j), and u ∈ V . Then for any integer 1 ≤ α ≤ δ − 2, we have

|X(α+1)
i (u)||X(δ−α)

i (u)| ≥ ninj.

We note that Lemma 5.1.1 is straightforward when Xi is distance-regular. Indeed, a

significant portion of the difficulty of the lemma was in finding the correct generalization.

We will use Lemma 5.1.1 to prove Lemma 5.2.1 below, which shows that a modest

number of individualizations suffice to completely split X when ρ is sufficiently large. We

thereby reduce to the case that ρ = o(n2/3).

We start from a few basic observations.
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Proposition 5.1.2. Let G = (A,B,E) be a bipartite graph, and let A1 ∪ · · · ∪ Am be a

partition of A such that the subgraph induced on (Ai, B) is biregular of positive valency for

each 1 ≤ i ≤ m. Then for any A′ ⊆ A, we have

|N(A′)|/|A′| ≥ |B|/|A|

where N(A′) is the set of neighbors of vertices in A′, i.e., N(A′) = {y ∈ B : ∃x ∈ A′, {x, y} ∈
E}.

Proof. Let A′ ⊆ A. By the pigeonhole principle, there is some i such that |A′ ∩Ai|/|Ai| ≥
|A′|/|A|. Let α be the degree of a vertex in Ai and let β be the number of neighbors in Ai

of a vertex in B. We have α|Ai| = β|B|, and β|N(A′ ∩Ai)| ≥ α|A′ ∩Ai|. Hence,

|N(A′)| ≥ |N(A′ ∩Ai)| ≥
|A′ ∩Ai|α

β
=

|A′ ∩Ai||B|
|Ai|

≥ |B||A′|
|A| .

Suppose A,B ⊆ V are disjoint set of vertices. We denote by (A,B, i) the bipartite

graph between A and B such that there is an edge from x ∈ A to y ∈ B if c(x, y) = i. For

I ⊆ [r − 1] a set of nondiagonal colors, we denote by (A,B, I) the bipartite graph between

A and B such that there is an edge from x ∈ A to y ∈ B if c(x, y) ∈ I.

Fact 5.1.3. For any vertex u, colors 0 ≤ j, k ≤ r − 1 with j 6= k, and set I ⊆ [r − 1] of

nondiagonal colors, the bipartite graph (Xj(u),Xk(u), I) is biregular.

Proof. The degree of every vertex in Xj(u) is
∑

i∈I p
j
ik∗. And the degree of every vertex in

Xk(u) is
∑

i∈I p
k
ji.

Recall our notation X
(δ)
i (u) for the δ-sphere centered at u in the color-i constituent

digraph, i.e., the set of vertices v such that disti(u, v) = δ.

For the remainder of Section 5.1, we fix a PCC X, a color 1 ≤ i ≤ r − 1, and a vertex

u. For a color 1 ≤ j ≤ r − 1 and an integer 1 ≤ α ≤ disti(j), we denote by S
(j)
α the set of

vertices v ∈ X
(α)
i (u) such that there is a vertex w ∈ Xj(u) and a shortest path in Xi from u

to w passing through v, i.e.,

S(j)
α = {v ∈ X

(α)
i (u) : ∃w ∈ Xj(u) s.t. disti(u, v) + disti(v,w) = disti(u,w)}.

Note that these sets S
(j)
α are nonempty by the primitivity of X, and in particular, if α =

disti(j), then S
(j)
α = Xj(u). For v ∈ V and an integer disti(u, v) < α ≤ disti(j), we denote
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u

w

v

. . . . . .

X
(1)
i (u)

. . . . . .

X
(α)
i (u)S

(j)
α

X
(α+1)
i (u)S

(j)
α+1(v) S

(j)
α+1

Xj(u)

Figure 5.1: Growth of spheres for primitive coherent configurations

by S
(j)
α (v) ⊆ S

(j)
α the set of vertices x ∈ S

(j)
α such that there is a shortest path in Xi from

u to x passing through v, i.e.

S(j)
α (v) = S(j)

α ∩ X
(α−disti(u,v))
i (v) = {x ∈ S(j)

α : disti(u, v) + disti(v, x) = disti(u, x)}.

See Figure 1 for a graphical explanation of the notation.

Corollary 5.1.4. Let 1 ≤ j ≤ r−1 be a color such that δ = disti(j) ≥ 3. Let 1 ≤ α ≤ δ−2

be an integer, and let v ∈ S
(j)
α . Then

|S(j)
δ (v)|

|S(j)
α+1(v)|

≥ nj

|S(j)
α+1|

.

Proof. Consider the bipartite graph (S
(j)
α+1,Xj(u), I) with

I = {k : 1 ≤ k ≤ r − 1 and disti(k) = disti(j) − α− 1}.

There is an edge from x ∈ S
(j)
α+1 to y ∈ Xj(u) if there is a shortest path from u to y passing

through x.

By the coherence of X, if Xℓ(u)∩S
(j)
α+1 is nonempty for some color ℓ, then Xℓ(u) ⊆ S

(j)
α+1.

Hence, S
(j)
α+1 is partitioned into sets of the form Xℓ(u) with disti(ℓ) = α + 1. For such

colors ℓ, by Fact 5.1.3, (Xℓ(u),Xj(u), I) is biregular, and by the definition of S
(j)
α+1, then

(Xℓ(u),Xj(u), I) is not an empty graph.
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Therefore, the result follows by applying Proposition 5.1.2 with A = S
(j)
α+1, B = Xj(u),

A′ = S
(j)
α+1(v) ⊆ S

(j)
α+1, and (hence) N(A′) = S

(j)
δ (v).

Fact 5.1.5. Let 1 ≤ j ≤ r − 1 be a color such that δ = disti(j) ≥ 3, and w be a vertex in

Xj(u). Let 1 ≤ α ≤ δ − 2, and let v be a vertex in S
(j)
α . If disti(v,w) = δ − α, then

{x : x ∈ Xi(v) and disti(x,w) = δ − α− 1} ⊆ S
(j)
α+1(v).

Proof. For any x ∈ Xi(v), we have disti(u, x) ≤ α + 1. If disti(x,w) = δ − α − 1, then

x ∈ X
(α+1)
i (u), because otherwise dist(u,w) < δ. Then x is in S

(j)
α+1(v), since there is a

shortest from u to w passing through x.

Proposition 5.1.6. Let 1 ≤ j ≤ r − 1 be a color such that δ = disti(j) ≥ 3. Let 1 ≤ α ≤
δ − 2, and let v ∈ S

(j)
α . Then

|Xδ−α
i (u)| ≥ ni|S(j)

δ (v)|
|S(j)

α+1(v)|
.

Proof. Let k be a color satisfying disti(k) = δ − α and Xk(v) ∩ S
(j)
δ (v) 6= ∅. Let w be

a vertex in Xk(v) ∩ S
(j)
δ (v). Consider the bipartite graph B = (Xi(v),Xk(v), I), where

I = {ℓ : disti(ℓ) = δ − α− 1}.
By Fact 5.1.3, B is biregular, and by Fact 5.1.5 the degree of w in B is at most |S(j)

α+1(v)|.
Denote by dk the degree of a vertex x ∈ Xi(v) in B, so nk|S(j)

α+1(v)| ≥ nidk. Hence, summing

over all colors k such that Xk(v) ∩ S
(j)
δ (v) 6= ∅, we have

|X(δ−α)
i (v)| ≥

∑

k

nk ≥
∑

k

nidk

|S(j)
α+1(v)|

≥ ni|S(j)
δ (v)|

|S(j)
α+1(v)|

.

Finally, by the coherence of X, we have |X(δ−α)
i (u)| = |X(δ−α)

i (v)|.

We now complete the proof of Lemma 5.1.1.

Proof of Lemma 5.1.1. Combining Corollary 5.1.4 and Proposition 5.1.6, for any 1 ≤ α ≤
δ − 2 we have

|X(δ−α)
i (u)| ≥ nink

|S(k)
α+1|

and so since S
(k)
α+1 ⊆ X

(α+1)
i (u) by definition, we have the desired inequality.
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5.2 Distinguishing number

In this section, we will prove following lemma, which will allow us to assume that our PCCs

X satisfy ρ = o(n2/3).

Lemma 5.2.1. Let X be a PCC. If ρ ≥ n2/3(log n)−1/3, then there is a set of vertices with

size O(n1/3(log n)4/3) which completely splits X under naive vertex refinement.

Following Babai [Babai, 1981b], we analyze the distinguishing number.

Definition 5.2.2. Let u, v ∈ V . We say w ∈ V distinguishes u and v if c(w, u) 6= c(w, v).

We write D(u, v) for the set of vertices w distinguishing u and v, and D(i) = |D(u, v)| where
c(u, v) = i. We call D(i) the distinguishing number of i.

Hence, D(i) =
∑

j 6=k p
i
jk∗. If w ∈ D(u, v), then after individualizing w and refining, u

and v get different colors.

Lemma 5.2.3 ([Babai, 1981b, Lemma 5.4]). Let X be a PCC and let ζ = min{D(i) : 1 ≤
i ≤ r− 1}. Then there is a set of size O((n log n)/ζ) which completely splits X under naive

vertex refinement.

Thus, to prove Lemma 5.2.1, we show that if ρ ≥ n2/3(log n)−1/3 then for every color

i 6= 0, we have D(i) = Ω(n2/3(log n)−1/3).

We give the following lower bound on ζ when ρ is sufficiently large.

Lemma 5.2.4. Let X be a PCC. If ρ ≥ n2/3(log n)−1/3, then D(i) = Ω(n2/3(log n)−1/3) for

all 1 ≤ i ≤ r − 1.

Lemma 5.2.1 follows immediately from Lemmas 5.2.3 and 5.2.4.

We will prove Lemma 5.2.4 by separately addressing the cases ρ ≥ n/3 and ρ < n/3.

The case ρ < n/3 will rely on our estimate for the size of spheres in constituent digraphs,

Lemma 5.1.1. For the case ρ ≥ n/3, we will rely on following lemma.

Lemma 5.2.5. Let X be a PCC. For any nondiagonal color i, the number of colors j such

that nj > ni/2 is at most O((log n+ n/ρ)D(i)/ni).

We first recall the following observations of Babai [Babai, 1981b, Proposition 6.3].
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Proposition 5.2.6 (Babai). Let X be a PCC. Then

1

n− 1

r−1∑

j=1

D(j)nj ≥ ρ+ 2.

The following corollary is then immediate.

Corollary 5.2.7. Let X be a PCC. There exists a nondiagonal color i with D(i) > ρ.

The following facts about the parameters of a coherent configuration are standard.

Proposition 5.2.8 ([Zieschang, 2010, Lemma 1.1.1, 1.1.2, 1.1.3]). Let X be a CC. Then

for all colors i, j, k, the following relations hold:

1. ni = ni∗

2. pijk = pi
∗

k∗j∗

3. nip
i
jk = njp

j
ik∗

4.
∑r−1

j=0 p
i
jk =

∑r−1
j=0 p

i
kj = nk

5.2.1 Bound on the number of large colors

We now prove Lemma 5.2.5, using the following preliminary results.

Lemma 5.2.9. Let X be a PCC, let I be a nonempty set of nondiagonal colors, let nI =
∑

i∈I ni, and let J be the set of colors j such that nj ≤ nI/2. Then

∑

j∈J
nj ≤ 2max{D(i) : i ∈ I}.

Proof. For any color i, by Proposition 5.2.8, we have

D(i) =

r−1∑

j=0

∑

k 6=j

pijk∗ =

r−1∑

j=0

∑

k 6=j

njp
j
ik

ni

=
1

ni

r−1∑

j=0

nj

∑

k 6=j

pjik =
1

ni

r−1∑

j=0

nj(ni − pjij).
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Therefore,

nI max{D(i) : i ∈ I} ≥
∑

i∈I
niD(i)

≥
∑

i∈I

∑

j∈J
nj(ni − pjij)

≥
∑

j∈J
nj

∑

i∈I
(ni − pjij)

≥
∑

j∈J
nj (nI − nj)

≥ nI

2


∑

j∈J
nj


 .

Lemma 5.2.10. Let X be a PCC, and suppose pijk > 0 for some i, j, k. Then

D(j) −D(k) ≤ D(i) ≤ D(j) +D(k).

Proof. Fix vertices u, v, w ∈ V with c(u,w) = i, c(u, v) = j, and c(v,w) = k. (These vertices

exist since pijk > 0.) For any vertex x such that c(x, u) 6= c(x,w), we have c(x, u) 6= c(x, v)

or c(x, v) 6= c(x,w). Therefore, D(j) +D(k) ≥ D(i).

For the other inequality, if pijk > 0 then pjik∗ > 0 by Proposition 5.2.8, and D(k∗) = D(k)

by the definition of distinguishing number. So we have D(i)+D(k) = D(i)+D(k∗) ≥ D(j),

using the previous paragraph for the latter inequality.

Lemma 5.2.11. Let X be a PCC. Then for any nondiagonal color i and number 0 ≤ η ≤
ρ−D(i), there is a color j such that η < D(j) ≤ η +D(i).

Proof. By Corollary 5.2.7, there is a color k with D(k) > ρ. Now consider a shortest path

u0, . . . , uℓ in Xi with c(u0, uℓ) = k. (By the primitivity of X, the digraph Xi is strongly

connected, and such a path exists.) Let δj = D(c(u0, uj)) for 1 ≤ j ≤ k. By Lemma 5.2.10,

we have |δj − δj+1| ≤ D(i). Hence, one of the numbers δj falls in the interval (η, η +D(i)]

for any 0 ≤ η ≤ ρ−D(i).

We denote by Iα the set of colors i with D(i) ≤ α.
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Lemma 5.2.12. Let X be a PCC with ρ > 0. Let i be a nondiagonal color and let 0 ≤ η ≤
ρ− 2D(i). Then

ni ≤
∑

j∈Iη+3D(i)\Iη
nj.

Proof. By Lemma 5.2.11, the set Iη+2D(i) \ Iη+D(i) is nonempty. Let k ∈ Iη+2D(i) \ Iη+D(i).

We have
∑r−1

j=0 p
k
ij = ni by Proposition 5.2.8. On the other hand, if pkij > 0 for some j, then

D(j)−D(i) ≤ D(k) ≤ D(j) +D(i) by Lemma 5.2.10, and so j ∈ Iη+3D(i) \ Iη. Hence,

ni =

r−1∑

j=0

pkij =
∑

j∈Iη+3D(i)\Iη
pkij ≤

∑

j∈Iη+3D(i)\Iη
nj.

Lemma 5.2.13. Let X be a PCC with ρ > 0, let i be a nondiagonal color, and let 0 ≤ η ≤ ρ.

Then ⌊
η

3D(i)

⌋
ni ≤

∑

j∈Iη
nj.

Proof. If η < 3D(i), the left-hand side is 0, so assume η ≥ 3D(i). For any integer 1 ≤ α ≤
⌊η/(3D(i))⌋, let Sα = I3D(i)α\I3D(i)(α−1). Then

⌊η/(3D(i))⌋⋃

α=1

Sα ⊆ Iη

By the disjointness of the sets Sα and Lemma 5.2.12, we have

∑

j∈Iη
nj ≥

⌊η/(3D(i))⌋∑

α=1

∑

j∈Sα

nj ≥
⌊

η

3D(i)

⌋
ni.

Finally, we are able to prove Lemma 5.2.5.

Proof of Lemma 5.2.5. Fix an integer 0 ≤ α ≤ ⌊log2(ρ/(3D(i)))⌋. For any number β, let

Jβ denote the set of colors j such that nj ≤ β. We start by estimating |J2αni \J2α−1ni
|, i.e.,

the number of colors j with 2α−1ni < nj ≤ 2αni. By Lemma 5.2.13, we have

∑

j∈I2α(3D(i))

nj ≥ 2αni.
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Therefore, applying Lemma 5.2.9 with I = I2α(3D(i)) and J = J2αni , we have

∑

j∈J2αni

nj ≤ 2max{D(i) : i ∈ I2α·3D(i)} ≤ 2α+1(3D(i)),

with the second inequality coming from the definition of I2α(3D(i)).

It follows that the number of colors j such that j ∈ J2αni \ J2α−1ni
is at most

2α+1(3D(i))/(2α−1ni) = 12D(i)/ni.

Overall, the number of colors j satisfying

(1/2)ni < nj ≤ 2⌊log2(ρ/3D(i))⌋ni

is at most 12(log2 n+ 1)D(i)/ni.

Furthermore, the number of colors j satisfying

nj > 2⌊log2(ρ/3D(i))⌋ni ≥
ρni

6D(i)

is at most (6D(i)/(ρni))n, since
∑r−1

j=0 nj = n. Hence, there are at most O((log n +

n/ρ)D(i)/ni) colors j such that nj > ni/2.

5.2.2 Estimates of the distinguishing number

We now prove Lemma 5.2.4, our lower bound for D(i).

First, we recall the following two observations made by Babai [Babai, 1981b, Proposition

6.4 and Theorem 6.11].

Proposition 5.2.14 (Babai). Let X be a PCC. For colors 0 ≤ i, j ≤ r − 1, we have

D(j) ≤ disti(j)D(i).

Proposition 5.2.15 (Babai). Let X be a PCC. For any color 1 ≤ i ≤ r − 1, we have

niD(i) ≥ n− 1.

We prove the following two estimates of the distinguish number.

Lemma 5.2.16. Let X be a PCC. Fix nondiagonal colors i, j ≥ 1 and a vertex u ∈ V . Let

δ = disti(j), and γ =
∑δ−1

α=2 |X
(α)
i (u)|. If δ ≥ 3, then

D(i) = Ω

((
D(j)

√
nnj

γ

)2/3
)
.
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Proof. By Lemma 5.1.1, for any 1 ≤ α ≤ δ − 2 we have

|X(α+1)
i (u)||X(δ−α)

i (u)| ≥ ninj

and in particular,

max{|X(α+1)
i (u)|, |X(δ−α)

i (u)|} ≥ √
ninj.

Hence,

γ =

δ−1∑

α=2

|X(α)
i (u)| = Ω(δ

√
ninj) = Ω

(
δ
√
nnj√
D(i)

)
, (5.1)

where the last inequality comes from Proposition 5.2.15. Now by Proposition 5.2.14 and

Eq. (5.1), we have

D(i) ≥ D(j)

δ
= Ω

(
D(j)

√
nnj

γ
√

D(i)

)
,

from which the desired inequality immediately follows.

Lemma 5.2.17. Let X be a PCC with ρ = Ω(n). Then every nondiagonal color i with

ni ≤ ρ satisfies

D(i) = Ω

(√
ρni

log n

)
.

Proof. Fix a nondiagonal color i with ni ≤ ρ, and supposeD(i) < ρ/6 (otherwise the lemma

holds trivially). Let Jβ denote the set of colors j such that nj ≤ β. Applying Lemma 5.2.9

with the set I = {i}, we have
∑

j∈Jni/2

nj ≤ 2D(i). (5.2)

On the other hand, by Lemma 5.2.12, for every integer η with 0 ≤ η ≤ ρ/2− 3D(i),

ni ≤
∑

j∈Iη+3D(i)\Iη
nj.

Thus, for every such η, at least one of following two conditions hold:

(i) there exists a color j ∈ Iη+3D(i) \ Iη satisfying nj > ni/2;

(ii)
∑

j∈Iη+3D(i)\Iη :
nj≤ni/2

nj ≥ ni.
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There are at least ⌊ρ/(6D(i))⌋ disjoint sets of the form Iη+3D(i) \ Iη with 0 ≤ η ≤ ρ/2−
3D(i). By Lemma 5.2.5, at most O((log n+n/ρ)D(i)/ni) = O((log n)D(i)/ni) of these sat-

isfy (i). By Eq. (5.2), at most 2D(i)/ni satisfy (ii). Hence, ⌊ρ/(6D(i))⌋ = O((log n)D(i)/ni),

giving the desired inequality.

We recall that when color 1 is dominant, it is symmetric. In this case, we recall our

notation µ = |N(x) ∩ N(y)|, where x, y ∈ V are any pair of vertices with c(x, y) = 1 and

N(x) is the nondominant neighborhood of x. Hence, µ =
∑

i,j>1 p
1
ij.

Lemma 5.2.18. Let X be a PCC with n1 ≥ n/2. Then µ ≤ ρ2/n1.

Proof. Fix a vertex u. There are at most ρ2 paths of length two from u along edges of

nondominant color, and exactly n1 vertices v such that c(u, v) = 1. For any such vertex

y, there are exactly µ paths of length two from u to v along edges of nondominant color.

Hence, µ ≤ ρ2/n1.

Proof of Lemma 5.2.4. First, suppose n2/3(log n)−1/3 ≤ ρ < n/3. We have n1 = n−ρ−1 >

2n/3 − 1. Consider two vertices u, v ∈ V with c(u, v) = 1. Note that for any vertex

w ∈ N(v) \ N(u), we have c(w, u) = 1 and c(w, v) > 1. Hence, by Lemma 5.2.18 and the

definition of D(1),

D(1) ≥ ρ− µ ≥ ρ− ρ2

n1
≥
(
1

2
− o(1)

)
ρ = Ω(n2/3(log n)−1/3).

Fix a nondominant color i. If disti(1) = 2, then by Proposition 5.2.14,

D(i) ≥ D(1)

2
≥ Ω(n2/3(log n)1/3).

Otherwise, if disti(1) ≥ 3, by applying Lemma 5.2.16 with j = 1, we have

D(i) = Ω

((
D(1)

√
nn1

n− n1

)2/3
)

= Ω

((
ρn

ρ− 1

)2/3
)

= Ω(n2/3).

Now suppose ρ ≥ n/3. By Lemma 5.2.17 and Proposition 5.2.15, for every color i with

ni ≤ ρ, we have

(D(i))3/2 = Ω

(√
ρniD(i)

log n

)
= Ω

(√
ρn

log n

)
,
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and hence D(i) = Ω(n2/3(log n)−1/3). If n1 ≤ ρ, then ni ≤ ρ for all i, and we are done.

Otherwise, if n1 > ρ, we have only to verify that D(1) = Ω(n2/3(log n)−1/3). Consider

two vertices u,w with dist1(u,w) = 2. (Since we assume the rank is at least 3, we can

always find such u,w by the primitivity of X.) Let i = c(u,w). Then i > 1 and so ni ≤ ρ.

Since D(i) = Ω(n2/3(log n)−1/3) for every color 1 < i ≤ r − 1, and dist1(i) = 2, we have

D(1) = Ω(n2/3(log n)−1/3) by Proposition 5.2.14.

We have now reduced to the case that ρ = o(n2/3). Our analysis of this case is inspired

by Spielman’s analysis of SRGs [Spielman, 1996].

Lemma 5.2.19. There exists a constant ε > 0 such that the following holds. Let X be a

PCC with ρ = o(n2/3). There is a set of O(n1/4(log n)1/2) vertices which completely splits

X under naive vertex refinement.

For a proof of Lemma 5.2.19, see [Sun and Wilmes, 2015] and [Wilmes, 2016]. Combin-

ing Lemma 5.2.1 and 5.2.19, we obtain Theorem 5.0.1.
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Chapter 6

Property testing of graph

isomorphism

In this chapter we study a property testing version of the graph isomorphism problem.

We want to distinguish pairs of graphs that are isomorphic from pairs of graphs that are

significantly different.

We define the distance of two graphs, G = (VG, EG) and H = (VH , EH), as the mini-

mum of the normalized Hamming distances of their respective isomorphic copies, i.e., the

minimum number of edges that have to be modified in G (added or deleted) to turn it into

a graph isomorphic to H, divided by
(n
2

)
. The distance is zero iff they are isomorphic; so

this is not a metric on graphs but a metric on isomorphism classes of graphs. We say that

two graphs are ε-far if their distance is at least ε.

In the property testing version of the graph isomorphism problem, we want an algorithm

to accept with probability at least 9/10 if the input graphs are isomorphic and reject with

probability at least 9/10 if the input graphs are ε-far, where ε > 0 is the distance parameter

that is passed to the algorithm. One or two input graphs are not explicitly given to the

algorithm, but the edge query oracle is provided. (The algorithm can query, for example, if

the first vertex and the fifth vertex are adjacent in graph G.) The goal of a property testing

algorithm is to distinguish the two cases using as few edge queries as possible.

Fischer and Matsliah [Fischer and Matsliah, 2008], who were the first to study the prob-
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lem, consider different versions of the problem based on whether both graphs are unknown

and whether the algorithm has to satisfy a stronger requirement of never rejecting isomor-

phic pairs of graphs. We now discuss different flavors of the problem in more detail.

One graph known vs. both graphs unknown: The main goal of property testing re-

search is to determine the fraction of the input the algorithm has to query in order

to solve a problem. In this work, we use the dense graph model, in which the algo-

rithm can check in a single query whether an edge connects two arbitrary vertices of

an unknown input graph. There are two natural versions of the graph isomorphism

problem. In one, the algorithm completely knows a graph G (or alternately, queries

about G do not count towards its complexity) and only has to query pairs of vertices of

H. In the other, the algorithm initially knows nothing about either of the graphs and

has to query edges in both of them. Clearly, the complexity of isomorphism testing

in the former model is not higher than in the latter.

One-sided vs. two-sided error: The standard definition of property testing (as above)

allows algorithms to err with small constant probability both when the input graphs

are isomorphic and when they are ε-far. It may sometimes be desirable to ensure

that the algorithm never rejects pairs of graphs that are isomorphic. This kind of

setting is referred to as testing with one-sided error, compared to the former, which is

referred to as testing with two-sided error. In the one-sided error setting, if the input

graphs are ε-far, the algorithm has to find evidence of their non-isomorphism with

high constant probability. In the two-sided error setting, it suffices that the algorithm

collects enough information to prove that graphs are unlikely to be isomorphic in

order to reject them. The query complexity of two-sided error testing is never higher

that the query complexity of one-sided error testing. It is not uncommon that there

is a sharp difference between the complexity of the two versions of testing problems.

Fischer and Matsliah showed that this is the case for the graph isomorphism problem

(see Table 6.1, which we discuss next).

Fischer and Matsliah consider four versions of the problem resulting from combining the

above options. Table 6.1 presents their results and our contribution to the understanding



CHAPTER 6. PROPERTY TESTING OF GRAPH ISOMORPHISM 91

Version of the problem Previous results This work

[Fischer and Matsliah, 2008]

One-sided error, Õ(n), Ω(n)

one graph known

One-sided error, Õ
(
n3/2

)
, Ω
(
n3/2

)

both graphs unknown

Two-sided error, Õ
(
n1/2

)
, Ω
(
n1/2

)

one graph known

Two-sided error, Õ
(
n5/4

)
, Ω (n) O (n) · 2Õ(

√
logn)

both graphs unknown

Table 6.1: The query complexity of property testing of graph isomorphism

of the problem. Both their and our focus is on the dependence on n, i.e., the number of

vertices, once the proximity parameter ε is fixed to a positive constant. They obtained

bounds optimal up to polylogarithmic factors in all but one case in which two-sided error

is allowed and the algorithm does not know either of the graphs. Arguably, this is the most

interesting case. First, small probability of rejecting isomorphic graphs may be acceptable,

because we can make it an arbitrarily small constant by repeating the algorithm and taking

the majority of answers. Second, if we take the big data perspective, it may be difficult for

the algorithm to just “know” one of the graphs and it may make much more sense to assume

that the algorithm has to query both of them. Our contribution is essentially closing the

gap between Ω(n) and Õ
(
n5/4

)
in this case. More precisely, we prove the following theorem

Theorem 6.0.1. There is an algorithm solving the property testing of graph isomorphism

problem for two unknown graphs with two sided error with parameter ε0 < 1 using n ·
exp

(
O
(
log logn

√
logn

ε0

))
queries with running time exp

(
O
(
log logn(log n)1.5

ε0

))
.

In this chapter, we prove Theorem 6.0.1. We will overview the high level idea of our

improvement in Section 6.1, and present the details of the proof in the following sections.
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6.1 Overview of the proof

In this section, we first review Fischer and Matsliah’s algorithm, and then go over the high

level idea of our improvement.

6.1.1 Overview of the paper of Fischer and Matsliah

We briefly sketch the high level idea of the previous upper bound using Õ(n5/4) samples by

Fischer and Matsliah [Fischer and Matsliah, 2008].

Given a graph G. A core set of G is a list of vertices in G. Fixing a core set of k vertices

in graph G (x1, x2, . . . , xk), the label of a vertex x is defined as L(x) = e(x, x1) ◦ e(x, x1) ◦
· · · ◦ e(x, xk), a binary string of length k whose i-th bit is 1 iff x is adjacent to xi, otherwise

i-th bit is 0.

Theorem 6.1.1 ([Fischer and Matsliah, 2008], restated). Let CG and CH be two core sets

of G and H with size (log n)2. If the following two conditions satisfy

1. The label distribution of vertices in G with respect to CG has total variation distance

ε/10 to the label distribution of vertices in H with respect to CH ;

2. If the vertices are sampled in the following way: randomly sample two vertices u, v in

G, and then randomly sample two vertices u′, v′ in H satisfying L(u) = L(u′), L(v) =

L(v′), then the probability of eG(u, v) = eH(u′, v′) is at least 1− ε/4.

Then G and H is at most ε-far.

The high level idea of [Fischer and Matsliah, 2008] is to find a pair of CG and CH sat-

isfying the two conditions of Theorem 6.1.1. The algorithm of [Fischer and Matsliah, 2008]

can be summarized as follows:

1. Let PG be a set of random vertices in graph G of size Õ(n3/4), WG be a set of vertices

in graph G of size Õ(n1/2), and PH be a set of random vertices in graph H of size

Õ(n1/4).

2. Query all the edges between PG and WG in graph G, and all the edges between PH

and VH in graph H.



CHAPTER 6. PROPERTY TESTING OF GRAPH ISOMORPHISM 93

3. Enumerate over all the pairs of core sets CG ⊂ PG and CH ⊂ PH such that |CG| =
|CH | = (log n)2. For each pair of CG and CH ,

(a) Testing identity of the label distribution of vertices of G with respect to CG

and the label distribution of vertices of H with respect to CH . Since the la-

bels for vertices of H are known, it uses the testing algorithm for one unknown

distribution and one unknown distribution [Batu et al., 2013; Paninski, 2008;

Valiant and Valiant, 2014], in which Õ(n1/2) random samples from the unknown

distribution are required. Here, it uses the labels of vertices in WG as the Õ(n1/2)

random samples from the label distribution of vertices in G.

(b) Testing the second condition of Theorem 6.1.1. The algorithm randomly sample

(log n)7 paris of vertices (ui, vi) in G, and randomly find pairs of vertices (u′i, v
′
i) in

H satisfying LCG
(ui) = LCH

(u′i) and LCG
(vi) = LCH

(v′i). It rejects if e(ui, vi) 6=
e(u′i, v

′
i) for at least (1− ε/2)(log n)7 different i.

4. The algorithm accepts if both 3(a) and 3(b) accepts for at least one pair of CG and

CH enumerated, otherwise, the algorithm rejects.

Since step 3(a) employs the testing algorithm for one known distribution and one un-

known distribution, |WG| is at least Ω(
√
n). And the algorithm needs to query Θ̃(

√
n · |PG|)

edges in graph G and Θ̃(n · |PH |) edges in graph H. On the other hand, to make sure the

existence of the core set pair CG and CH satisfying the two conditions of Theorem 6.1.1, it

requires that with high probability, there is an isomorphism mapping from vertices of G to

vertices of H such that |σ(PG) ∩ PH | = Ω(log n)2. Hence, |PG| · |PH | = Ω(n). Hence, the

overall sample complexity is optimized by taking |PG| = Õ(n3/4) and |PH | = Õ(n1/4).

6.1.2 Sketch of our improvement

There are two main bottlenecks to further improving the sample complexity of Fischer and

Matsliah’s algorithm:

1. The first bottleneck is about testing identity of two label distributions. To make sure

there are core sets CG and CH satisfying the two conditions of Theorem 6.1.1, we needs
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|PG| · |PH | = Ω(n). If we use the algorithm of testing identity of distributions for one

known distribution and one unknown distribution, then an Ω̃(n5/4) edge query com-

plexity is inevitable. If we use the algorithm of testing identity of distributions for two

unknown distributions, then we need to know at least Ω(n2/3) labels in both graphs,

according to the Ω(n2/3) sample complexity lower bound by Valiant [Valiant, 2011].

And then we need to query Ω(n7/6) edges in both graphs.

2. The second bottleneck is to randomly sample vertices satisfying the second condition

of Theorem 6.1.1. In [Fischer and Matsliah, 2008], the condition is preserved by re-

vealing the labels for all the vertices with respect to the core sets. But this implies

an Õ(n5/4) sample complexity. On the other hand, if we do not query the labels for

all the vertices, it is hard to ensure that every pair of vertices in G has the same

probability to be sampled, because vertices whose label has high probability in the

label distribution are more likely to find a vertex with same label in the other graph.

We get over the two bottlenecks at the same time by making use of the estimation of

the neighbor distance between every pair of vertices. The neighbor distance between two

vertices in the same graph is the normalized distance between the rows of the two vertices in

an arbitrary adjacency matrix of the graph (see Section 6.2.1.1 for formal definition). Using

a Chernoff bound type argument, one can show that with Õ((n log n)/δ2) samples, we can

estimate the neighbor distance between any pair of vertices in the graph with additive error

at most δ. And the estimation gives us an approximate neighbor distance metric on the

vertices of the graph.

Based on the approximate neighbor distance metric, we first choose a parameter r such

that for most vertices, the radius r balls (the radius r ball for a vertex is the the set of

vertices in the same graph with neighbor distance at most r to the vertex) have a small

fraction of vertices on the boundary, and the size of 2r radius ball is upper bounded by

some subpolynomial multiplicative factor of the size of the r radius ball.

We overcome the first bottleneck by presenting an algorithm to solve the testing label

bijection problem. In the testing label bijection problem, we want an algorithm to distin-

guish the following two cases (see Section 6.5 for the formal statement of the testing label

bijection problem):
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1. Accept with good probability if there is a bijection from the vertices of G to H such

that the labels and the local views of the neighbor distance metric (measured by the

mapping distance defined in Section 6.2.1.2) are preserved by the bijection;

2. Reject with good probability if any bijection from the vertices of G to H have a

non-negligible fraction of vertices such that either the label or the local views of the

neighbor distance metric are not preserved by the bijection.

We reduce the testing label bijection problem to a special instance of testing collision

problem between the two graphs. Roughly speaking, a vertex y ∈ VH is a collision of vertex

x ∈ VG if the two vertices have label distance at most r and there exists a vertex z ∈ VH

with approximate neighbor distance at most r to y such that the local view of the neighbor

distance metrics for z is similar to x (see Section 6.4 for the formal definition of collision).

In the testing collision problem, given a set S of vertices in graph G, we want an algorithm

to accept with good probability if for every vertex x in S, the number of collision to x is

close to the size of the r radius ball of x, and all the collisions of x have pairwise neighbor

distances upper bounded by about 2r, and reject with good probability if a non-negligible

fraction of vertices do not satisfy the property. Observe that for any positive instance we

are going to accept, if x ∈ VG has a small fraction of vertices on the boundary of its r

radius ball and y ∈ VH is a collision of x, the number of collisions to x in the 2r radius

ball of y is close to the size of the r radius ball of x. Our algorithm makes use of the fact

that if y ∈ VH is a collision of x ∈ VG, then using another subpolynomial samples in the 2r

radius ball of y, one can estimate the number of collisions to x within that ball based on the

neighbor distance metric estimation of graph H. This leads to an algorithm with Õ(
√
n)

label queries in both graphs solving the testing collision problem satisfying that every pair

of vertices in S has estimated distance slightly greater than 4r.

We also carefully sparsify the graph G such that every pair vertices has estimated

distance slightly greater than 4r after the sparsification. We show that it is sufficient to solve

the testing labels problem by solving the testing collision problem on G after sparsification.

In addition, we get rid of the second bottleneck by proposing a new algorithm to sample

pairs of vertices (x ∈ VG, y ∈ VH) such that the label distance between x and y is small, and

for most vertices in graph G, the probability of a sampled pair containing the vertex is close
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to 1/n. This new algorithm can be used to near uniformly sample a pair of vertices (u, v)

in graph G and another pair of vertices (u′, v′) in graph H such that the label distances

for u, u′ and for v, v′ are small. Then we are able to test a property similar to the second

condition of Theorem 6.1.1.

In the new sampling algorithm, we partition the vertices of graph G into groups such

that the vertices within each group have similar sizes of r radius ball. The new sampling

algorithm contains two steps. First, it samples a group in graph G with probability pro-

portional to the size of the group. Second, it samples a subset of vertices from the prefixed

group in graph G and a set of vertices from graph H. The algorithm returns a pair of

sampled vertices (x ∈ VG, y ∈ VH) such that y is a collision of x.

6.2 Notations and parameters

In this section, we give some definitions and parameters used in the following sections.

6.2.1 Dissimilarity of vertices

An important role in our proof is played by two measures of dissimilarity between vertices.

Since each measure defines a metric1 on vertices of the graph, we simply refer to them as the

distances between vertices, even though it is unrelated to the standard notion of distance

in a graph.

6.2.1.1 Neighbor distance

Let G be an arbitrary unweighted graph. We write VG and EG to refer to the set of G’s

vertices and edges, respectively. For two vertices v, u ∈ VG, we write eG(v, u) to denote the

indicator whether v and u are connected. Formally,

eG(v, u)
def
=





1 if v and u are connected in G,

0 otherwise.

1To be more formal, each measure is a semi-metric because the distance between two different vertices

can be equal to zero.
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Note that in particular, for simple graphs, which are considered in this chapter, eG(v, v) = 0,

because simple graphs have no self-loops.

For two vertices v, u ∈ VG, their neighbor distance dG(v, u) is the normalized number of

connections to other vertices they differ at. Formally,

dG(v, u)
def
=

|{w ∈ VG : dG(v,w) 6= dG(u,w)}|
|VG|

.

Intuitively, dG(v,w) measures how differently two vertices behave with respect to other

vertices in the graph.

We describe a query-efficient subroutine for estimating distances between all vertices.

Subroutine Estimate-Edge-Distances:

Input: graph G, parameter σ ∈ (0, 1)

Output: Estimates MG(v, u) of dG(v, u) for all pairs v, u ∈ VG

1. Select independently uniformly at random m vertices t1, t2, . . . , tm in G, where

m
def
=
⌈
2 ln |VG|/σ2

⌉
.

2. Query eG(u, ti) for all u ∈ VG and i ∈ [m].

3. For every pair v, u ∈ VG, output

MG(v, u)
def
=

|{i ∈ [m] : eG(v, ti) 6= eG(u, ti)}|
m

.

Lemma 6.2.1. Let G be a graph on n vertices. Let σ ∈ (0, 1). With probability 1 − 1
n2 ,

Estimate-Edge-Distances computes estimates MG(·, ·) such that for every pair u and v

of vertices,

|dG(u, v) −MG(u, v)| ≤ σ. (6.1)

The query complexity of Estimate-Edge-Distances is O(nσ−2 log n).

Proof. For u = v, dG(u, v) = MG(u, v) trivially. Note that both dG(·, ·) and MG(·, ·) are

symmetric, so it suffices that both quantities are within σ for at most
(n
2

)
pairs. For any pair

of vertices u and v, it follows from Hoeffding’s inequality that |dG(u, v)−MG(u, v)| ≤ σ
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with probability 1 − 2 exp(−2σ2m) ≥ 1 − 2 exp(−4 lnn) = 1 − 2/n4. By the union bound,

the inequality holds for all u and v with probability at least 1−
(n
2

)
· 2
n4 ≥ 1− 1/n2.

The query complexity of Estimate-Edge-Distances is clearly O(nσ−2 log n).

In our algorithm, we run Subroutine Estimate-Edge-Distances once for each of the

input graphs G and H for some value of σ to be set later. With high probability, the

estimated distances between vertices are at distance at most σ from the real values. One

can therefore assume that throughout the rest of the proof and throughout the rest of the

algorithm’s execution, we have nearly correct estimates MG(·, ·) and MH(·, ·).
For a graph I ∈ {G,H}, a vertex x ∈ VI , and a radius t, we introduce notation for the

ball centered at v of radius t:

BI(x, t)
def
={v ∈ VI : MI(x, v) ≤ t1}.

Additionally, for any two radii t1 and t2, we introduce notation for the spherical shell

between them:

BI(x, t1, t2)
def
={v ∈ VI : t1 < MI(x, v) ≤ t2}.

6.2.1.2 Map distance

Let G and H be two arbitrary graphs with same number of vertices. We define the map

distance between two vertices in VG ∪ VH(not necessarily in same graph) as following:

Definition 6.2.2. Let I, J ∈ {G,H}. Given MI ,MJ and two vertices x ∈ VI , y ∈ VJ .

Denote Π be the set of all the bijections from VI to VJ . Let

ρ0(x, y) = min
π∈Π:π(x)=y

max
u∈VI

|MI(x, u) −MJ(y, π(u))|,

and for i ≥ 1,

ρi(x, y) = min
π∈Π:π(x)=y

max
u∈VI

{|MI(x, u) −MJ (y, π(u))|, |ρi−1(u)− ρi−1(π(u))|}.

Subroutine Estimate-Map-Distance:

Input: Two graphs G,H, MG,MH , parameter i and σ0

Output: A function γi,σ0 : {VG ∪ VH}2 → {0, 1}.
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1. Let x, y be two vertices in VG ∪ VH , I ∈ {G,H} be the graph containing x, and

J ∈ {G,H} be the graph containing y. For any x, y, build a bipartite graph B0,x,y

on (VI , VJ) such that two vertices u ∈ VI , v ∈ VJ are adjacent iff |MI(x, u) −
MJ(y, v)| ≤ σ0. Let γ0,σ0(x, y) = 1 if there is a perfect matching on B0,x,y with x

matching y, otherwise γ0,σ0(x, y) = 0.

2. For any 1 ≤ j ≤ i, and any two vertices x, y, build a bipartite graph Bj,x,y on

(VI , VJ) such that two vertices u ∈ VI , v ∈ VJ are adjacent iff

|MI(x, u)−MJ(y, v)| ≤ σ0 and γj−1,σ0(u, v) = 1.

Let γj,σ0(x, y) = 1 iff there is a perfect matching on Bj,x,y with x matching y,,

otherwise γj,σ0(x, y) = 0.

By the definition of map distance, we have

Fact 6.2.3. γi,σ0(x, y) = 1 iff ρi(x, y) ≤ σ0, otherwise γi,σ0(x, y) = 0.

6.2.2 Parameters

Given ε0, let

ε = ε0/1000, φ = exp
(
−
√
log n

)
,

ε1 =
1

log n
, ε2 =

1

log100 n
, σ = exp

(
−100

√
log n log log n

ε

)
, µ =

128σ log4 n

ε1
.

Given a parameter r, we define

ZI = {v : |BI(v, r + 4µ)|/|BI(v, r − 4µ)| ≤ 1 + ε1/4

and |BI(x, 1600r log n/ε1 + 4µ)|/|BI(x, r − 4µ)| ≤ 1/4φ},

AI = {v : |BI(v, r + 3µ)|/|BI(v, r − 3µ)| ≤ 1 + ε1/3

and |BI(x, 1600r log n/ε1 + 3µ)|/|BI(x, r − 3µ)| ≤ 1/3φ},

SI = {v : |BI(v, r + 2µ)|/|BI(v, r − 2µ)| ≤ 1 + ε1/2

and |BI(x, 1600r log n/ε1 + 2µ)|/|BI(x, r − 2µ)| ≤ 1/2φ},
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UI = {v : |BI(v, r + µ)|/|BI(v, r − µ)| ≤ 1 + ε1

and |B(v, 1600r log n/ε1 + µ)|/|B(v, r − µ)| ≤ 1/φ}.

We select the parameter r < φ100 such that both |ZG| and |ZH | are at least (1− ε)n.

Lemma 6.2.4. Given two graphs G,H and corresponding approximate distance metrics

MI and MJ , there exists a parameter 1000µ logn
ε21

< r < φ100 such that |ZG| ≥ (1− ε)n and

|ZH | ≥ (1− ε)n.

Proof. Let α = 3200 logn
ε1

, d0 =
1000µ logn

ε21
and di+1 = αdi for 0 ≤ i ≤ m with m = ⌈12

√
logn
ε ⌉.

We have dm+1 < φ100. For every vertex x ∈ VG, there are at most ⌈log1/4φ n⌉ < 2
√
log n dif-

ferent i satisfyingBG(x, di+1)/BG(x, di) > 1/4φ. LetGi = {x ∈ G : BG(x, di+1)/BG(x, di) ≤
1/4φ}. There are at most 2

√
lognn
εn/2 = 4

√
logn
ε different i such that |Gi| < (1 − ε

2 )n. Hence,

at least m− 4
√
logn
ε ≥ 2m

3 different i satisfying |Gi| ≥ (1− ε
2 )n.

Similarly, let Hi = {x ∈ H : BH(y, di+1)/BH(y, di) ≤ 1/4φ}. There are at least 2m/3

different i such that |Hi| ≥ (1 − ε
2)n. So, there exists an i such that both |Gi| ≥ (1 − ε

2)n

and |Hi| ≥ (1− ε
2)n hold. We arbitrarily fix such an i.

Now let cj = di + 8µj + 4µ for 0 ≤ j ≤ m′ where m′ = ⌈30 lognε1ε
⌉, and let

Gi,j = {x ∈ Gi : BG(x, cj + 4µ)/BG(x, cj − 4µ) ≤ 1 + ε1/4}.

Every vertex in Gi does not belong to at most 5 log n/ε1 different Gi,j . There are at most

10 logn
ε1ε

different i satisfying |Gi,j | < |Gi| − εn
2 . There exists at least m′ − 10 logn

ε1ε
≥ 2m′

3

different j such that |Gi,j | ≥ |Gi| − εn
2 .

Similarly, there are at least 2m′/3 different j such that Hi,j ≥ Hi − εn
2 , where Hi,j =

{y ∈ Hi : BH(y, cj + 2µ)/BH(x, cj − 2µ) ≤ 1 + ε1/4}.
So, there exists a j such that both |Gi,j | ≥ (1 − ε)n and |Hi,j| ≥ (1 − ε)n hold. Let

r = cj . The lemma follows.

6.2.3 Weight functions

Given two graphs G and H with approximate distance metrics MG and MH . We consider

function w : (VG × VG) ∪ (VH × VH) → R
≥0. We say w is a weight function for G and H if

∑
v,x∈VG

w(v, x) ≤ n and
∑

y,z∈VH
w(y, z) ≤ n. We always denote w(x) =

∑
v∈VG

w(x, v) for
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any x ∈ VG and w(y) =
∑

z∈VH
w(y, z) for any z ∈ VH . We say a weight function is robust

if for any u, v ∈ VG ∪ VH , ρ2(u, v) ≤ 4δ implies that (1− ε1)w(v) ≤ w(u) ≤ (1 + ε1)w(v).

6.3 Sparsification

In this section, we present an algorithm to sparsify vertices in a graph such that after the

sparsification, every pair of remaining vertices has neighbor distance estimation at least

4r + 6δ.

Given a robust weight function w on graph I and J .

Subroutine Sparsification

Input: Two graph I, J , metrics MI ,MJ , a set of vertex SI ⊆ VI , weight functions

w : VI ∪ VJ → R
≥0 such that

∑
x∈VI

w(x) ≤ n and
∑

y∈VJ
w(y) ≤ n.

Output: Accept or reject. If accept, then also return sets Si,j,k, Ti,j,k ⊆ VI ,

Hi,j,k, Ci,j,k ⊆ VJ for every 0 ≤ i, j, k ≤ 6 log n/ε1, and weightw : ∪i,j,kTi,j,k → R
≥0.

1. Partition SI into Si,k for 0 ≤ i, k ≤ 6 log n/ε1, where Si,k = {v ∈ SI : (1+ε1)
i/n2 ≤

w(v) < (1 + ε1)
i+1/n2, (1 + ε1)

k ≤ BI(v, r) < (1 + ε1)
k+1}

2. For every 0 ≤ i, k ≤ 6 log n/ε1,

(a) Let Ti,k = ∅ initially.

(b) Repeat following process for an arbitrary order of vertices in Si,k: for every

vertex x ∈ Si,k, if the MI distance between any vertex in Ti,k and x is more

than 4r + 6σ, then add x in Ti,k.

(c) For every vertex x ∈ Si,k, let Assignto(x) be the vertex in Ti,k with smallest

distance to x in MI(if there are more than one vertex with smallest distance,

use an arbitrary one). For a vertex v ∈ Ti,k, let Assign(v) = {x ∈ Si,k : v =

Assignto(x)}.

(d) Partition Ti,k into Ti,j,k for 0 ≤ j ≤ 6 log n/ε1 such that v ∈ Ti,k is in Ti,j,k if

(1 + ε1)
j ≤ |Assign(v)| < (1 + ε1)

j+1.
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3. For every 0 ≤ i, j, k ≤ 6 log n/ε1, let αi,j,k = (1 + ε1)
i/n2, βi,j,k = (1 + ε1)

j ,

γi,j,k = (1 + ε1)
k,

Hi,j,k ={y ∈ VJ : (1− 6ε1)αi,j,k ≤ w(y) ≤ (1 + 6ε1)(1 + ε1)αi,j,k,

(1− ε1)γi,j,k ≤ |BJ(y, r)| ≤ (1 + ε1)
2γi,j,k}

Ci,j,k = {z ∈ VJ : ∃x ∈ Ti,j,k, y ∈ Hi,j,k s.t. ρ2(x, y) ≤ 2δ and MJ(y, z) ≤ 50r}.

Reject if |Ci,j,k| < |Ti,j,k|γi,j,k.

4. For every 0 ≤ i, j, k ≤ 6 log n/ε1 and any x ∈ Ti,j,k, let weightw(x) =
∑

v∈Assign(x) w(v).

5. Accept.

Denote weightw(Ti,j,k) =
∑

v∈Ti,j,k
weightw(x) for any 0 ≤ i, j, k ≤ 6 log nε1.

Lemma 6.3.1. If subroutine Scarification rejects, then there does not exists a bijec-

tion π : VI → VJ satisfying for any w, x ∈ VI , MJ(π(w), π(x)) − 2σ ≤ MI(w, x) ≤
MJ(π(w), π(x)) + 2σ.

Proof. We prove by contradiction. Assume there is a π as we want. For any x ∈ VI ,

ρ2(x, π(x)) ≤ 2σ, and thus (1− ε1)w(π(x)) ≤ w(x) ≤ (1 + ε1)w(π(x)).

Hence, for any Ti,j,k, π(Ti,j,k) ⊆ Hi,j,k. For every pair of vertices y, z ∈ Ti,j,k,

MJ(π(y), π(z)) ≥ MI(y, z)− 2σ > 4r + 4σ.

On the other hand, since for any x ∈ Ti,j,k BI(x, r) ≥ γi,j,k and x ∈ SI ,

|Ci,j,k| ≥
∑

y∈π(Ti,j,k)

|BJ(y, r + 2δ)| ≥
∑

x∈Ti,j,k

|BI(x, r)| ≥ |Ti,j,k|γi,j,k

Fact 6.3.2. For any vertex x ∈ Ti,k, (BI(x, 2r + 2σ) ∩ Si,k) ⊆ Assign(x).

Lemma 6.3.3. |Hi,j,k| ≤ min{n, n
(1−6ε1)αi,k

} and |Ci,j,k| ≤ min{n, nγi,j,k(1+ε1)2

(1−6ε1)αi,j,kβi,j,kφ
}.
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Proof. Since every y ∈ Hi,j,k satisfying w(y) ≥ (1−6ε1)αi,j,k and
∑

y∈VJ
w(y) ≤ n, we have

|Hi,j,k| ≤ min{n, n
(1−6ε1)αi,k

}.
To prove the upper bound of |Ci,j,k|, we first find a sequence of vertices in Hi,j,k, denoted

as h1, h2, ...hm, satisfying

1. For every hℓ, there exists a x ∈ Ti,j,k such that ρ2(x, hℓ) ≤ 4δ.

2. MJ(hℓ, ht) ≥ 9r for ℓ 6= t.

Since for every vertex x ∈ Ti,j,k there are at least βi,j,k vertices in Si,j,k with distance at

most 4r+6σ to x in VI , there are also at least βi,j,k vertices in Hi,j,k with distance at most

4r + 10σ to hℓ in VJ . Hence m ≤ |Hi,j,k|/βi,j,k ≤ n
(1−6ε1)αi,j,kβi,j,k

. So

|Ci,j,k| ≤ | ∪m
ℓ=1 BJ(hℓ, 50r)| ≤ min{n, nγi,j,k(1 + ε1)

2

(1− 6ε1)αi,j,kβi,j,kφ
}

Lemma 6.3.4. If weightw(Ti,j,k) ≥ ε22n, then

ε22n

2αi,j,kβi,j,k
≤ |Ti,j,k| ≤

n

αi,j,kβi,j,k

Proof. For every vertex x ∈ Ti,j,k, since weightw(x) =
∑

v∈Assign(v) w(v) and βi,j,k ≤
|Assign(v)| ≤ (1 + ε1)βi,j,k, we have

αi,j,kβi,j,k ≤ weightw(x) ≤ (1 + ε1)
2αi,j,kβi,j,k.

Hence
ε22n

2αi,j,kβi,j,k
≤ ε22n

(1 + ε1)2αi,j,kβi,j,k
≤ |Ti,j,k| ≤

n

αi,j,kβi,j,k

By Lemma 6.3.3 and 6.3.4, we have

Corollary 6.3.5. Assume weightw(Ti,j,k) ≥ ε22n. We have

|Ti,j,k|γi,j,k ≤ |Ci,j,k| ≤ 4|Ti,j,k|γi,j,k/ε22φ.

If |Ti,j,k| ≤
√
n/φ14, then γi,j,k ≥ ε22φ

15|Ci,j,k|/4
√
n. If |Ti,j,k| >

√
n/φ14, then γi,j,k <

2φ14|Ci,j,k|/
√
n.
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Lemma 6.3.6. If weightw(Ti,j,k) ≥ ε22n, then γi,j,k ≤ 2αi,j,kβi,j,k/ε
2
2.

Proof. Since every pair of vertices in Ti,j,k has distance at least 4r + 6σ, and every vertex

x ∈ Ti,j,k satisfies |BI(x, r)| ≥ γi,j,k, by Lemma 6.3.4,

ε22n

2αi,j,kβi,j,k
γi,j,k ≤ | ∪x∈Ti,j,k

BI(x, r)| ≤ n

6.4 Testing collision

In this and the next section, we assume that every vertex in graphs G and H is associated

with a fixed binary string of length, called label. The length of these binary strings will be

specified later. For any pair of vertices x, y ∈ VI ∪ VJ , let the label distance between the

two vertices, denoted as M(x, y), be the hamming distance of the labels of the two vertices.

In this section, we present an algorithm for the testing collision problem. The main

reason of studying the testing collision problem is that the problem of testing label bijection

can be reduced to the testing collision problem, and the problem of testing label bijection will

be used to bypass the Ω(n2/3) lower bound of testing identity of two unknown distributions

using the estimation of neighbor distance metric.

We start from the definition of collision.

Definition 6.4.1. Let I, J ∈ {G,H} be two different graphs. A vertex y ∈ VJ is a collision

to x ∈ VI if

1. M(x, y) ≤ r

2. There is a vertex z ∈ VJ satisfying MJ(y, z) ≤ r + 2σ and ρ4(x, z) ≤ 2σ.

A vertex y ∈ VJ is a good collision with vertex x ∈ VI if

1. y is a collision with x;

2. Every vertex z ∈ BJ(y, 2r + 6σ) satisfying M(x, z) ≤ r is a collision of x;

3. (1 − ε1)|BI(x, r)| ≤ |N(x, y, 2r + 6σ)| ≤ (1 + ε1)|BI(x, r)|, where N(x, y, α) = {z ∈
BJ(y, α) : z is a collision with x};
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4. There is no z ∈ BJ(y, 2r + 6σ, 29r) satisfies M(x, z) ≤ r.

A vertex y ∈ VJ is a bad collision with vertex x ∈ VI if y is a collision with x and at least

one of following conditions hold

1. |N(x, y, 2r + 6δ)| < (1− 2ε1)|BI(x, r)| or |N(x, y, 2r + 6δ)| > (1 + 2ε1)|BI(x, r)|;

2. At least ε1|BI(x, r)| vertices in BJ(y, 2r+6δ) have distance at most r to x in M, but

not collisions of x.

3. At least ε1|BI(x, r)| vertices in BJ(y, 2r+6δ, 29r) have distance at most r to x in M.

A vertex y ∈ VJ is an intermediate collision with vertex x ∈ VI if y is a collision with x,

but neither good nor bad.

Fact 6.4.2. If y ∈ Ci,j,k is a good or intermediate collision to v ∈ Ti,j,k, then there are at

least (1 − 2ε1)|BI(v, r)|(or (1 − 2ε1)γi,j,k) and at most (1 + 2ε1)|BI(v, r)|(or (1 + 2ε1)(1 +

ε1)γi,j,k) collisions to v in BJ(y, 2r+6σ), and then there are at most (1 + 3ε1)|BI(v, r)|(or
(1 + 3ε1)(1 + ε1)γi,j,k) collisions to v in BJ(y, 29r).

Definition 6.4.3. A vertex y ∈ VJ is a useful collision to x ∈ VI if

1. y is a good collision to x.

2. For every z ∈ BJ(y, 2r+6σ) such that z is a collision to x, z is a good collision to x.

y is a useless collision to x if one of following conditions hold

1. y is a bad collision to x.

2. At least ε1|BI(v, r)| vertices in BJ(y, 2r + 6σ) are bad collisions to x.

A vertex y is a semi-useful collision to x if it is not a useless collision to x.

Fact 6.4.4. If y ∈ Ci,j,k is a useful collision to v ∈ Ti,j,k, then there are at least (1 −
ε1)|BI(v, r)|(or (1−ε1)γi,j,k) and at most (1+ε1)|BI(v, r)|(or (1+ε1)

2γi,j,k) good collisions

to v in BJ(y, 2r + 6σ).
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If y ∈ Ci,j,k is a semi-useful collision to v ∈ Ti,j,k, then there are at least (1−3ε1)|BI(v, r)|
(or (1−3ε1)γi,j,k) and at most (1+2ε1)|BI(v, r)| (or (1+2ε1)(1+ε1)γi,j,k) good/intermediate

collisions to v in BJ(y, 2r + 6σ).

If y ∈ Ci,j,k is a semi-useful collision to v ∈ Ti,j,k, then there are at most (1 +

3ε1)|BI(v, r)|(or (1 + 3ε1)(1 + ε1)γi,j,k) good/intermediate collisions to v in BJ(y, 29r).

In the following of this section, we present an algorithm to solve the following problem.

Testing-Collision Problem

Input: Two graphs I and J , vertex subsets Si,j,k, Ti,j,k ⊆ VI , Ci,j,k,Hi,j,k ⊆ VJ for

0 ≤ i, j, k ≤ 6 log n/ε1, weightw : ∪Ti,j,k → R
≥0 satisfying

∑
x∈∪Ti,j,k

≥ (1 − ε)n, label

query oracle O, parameter δ.

Output:

1. Accept with probability 1− δ if all of the following conditions hold

(a) For both I and J , every pair of vertices from same graph has distance not

distorted.

(b) For every 0 ≤ i, j, k ≤ 6 log n/ε1, and x ∈ Ti,j,k, y ∈ Ci,j,k satisfying

M(x, y) ≤ r, y is a useful collision of x.

(c) Every vertex x ∈ ∪Ti,j,k, x has at least (1 − ε1)BI(x, r) and at most (1 +

ε1)BI(x, r) useful collisions.

2. Reject with probability 1− δ if a total weight of at least 12ε1
∑

i,j,k weightw(Ti,j,k)

vertices in ∪Ti,j,k do not have semi-useful collision.

In the following of this section, we prove the following theorem.

Theorem 6.4.5. If for every Ti,j,k, every pair of vertices has neighbor distance estimation

at least 4r + 6δ, then there is an algorithm solving the Testing Collision-Problem with

probability at least 1− δ using O((
√
n log n) · 1

φO(1) · log(1/δ) · 1
ε22
) label queries with running

time poly(n, 1
φ ,

1
ε22
, log(1/δ)).
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6.4.1 Testing distance distortion

We first present two useful subroutines to check whether the label distances between most

pairs of vertices in the same graph are close to their estimated distances.

6.4.1.1 Testing vertex distortion

Definition 6.4.6. Let I ∈ {G,H}. The distance between two vertices v, u ∈ VI is distorted

by fI if MI(v, u) < M(v, u)− 2σ or MI(v, u) > M(v, u) + 2σ.

Definition 6.4.7. Let I ∈ {G,H} be a graph, and x be a vertex in VI . For 0 ≤ i ≤
6 log n/ε1, denote

Ψx,i = {v ∈ VI : (1 + ε1)
i/n2 ≤ MI(x, v) < (1 + ε1)

i+1/n2}

,and

Λx,i = {v ∈ Ψx,i : M(x, v) − 2σ ≤ MI(x, u) ≤ M(x, v) + 2σ}.

We say x is λ-distorted by fI if

1. For all the s ∈ {uni,fi, fī}, and every 0 ≤ i ≤ 6 log n/ε1 with
∑

v∈Ψx,i
s(x, v) > 0,

∑
v∈Λx,i

s(x,v)
∑

v∈Ψx,i
s(x,v) ≥ 1− λ.

2. There is a s ∈ {uni,fi, fī} and an 0 ≤ i ≤ 6 log n/ε1 with
∑

v∈Ψx,i
s(x, v) > 0 such

that

∑
v∈Λx,i

s(x,v)
∑

v∈Ψx,i
s(x,v) = 1− λ.

Subroutine Testing-Single-Vertex-Distortion:

Input: A graph I, a vertex x ∈ VI , weight functions uni,fi, fī : VI × VI → R≥0 and

parameters λ, δ.

Output: Accept or reject.

1. For every s ∈ {uni,fi, fī} and every 0 ≤ i ≤ 6 log n/ε1, randomly sample 2 log(1/δ)
λ

vertices v in Ψx,i with probability proportional to s(x, v). Reject if M(x, v) ≥
MI(x, v) − 2σ or M(x, v) ≤ MI(x, v) + 2σ.

2. Accept.
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Lemma 6.4.8. Let x be a vertex in I.

1. If for every v, M(x, v)−2σ ≤ MI(x, u) ≤ M(x, v)+2σ, then Testing-Single-Vertex

-Distortion accept with probability 1.

2. If a vertex x is at least λ-distorted, then with probability at least 1−δ, Testing-Single

-Vertex-Distortion rejects.

Proof. The first case is obvious. For the second case, since x is at least λ-distorted, then

there is a s ∈ {uni,fi, fī} and a 0 ≤ i ≤ 6 log n/ε1 such that

∑
v∈Λx,i

s(x,v)
∑

v∈Ψx,i
s(x,v) < 1 − λ. The

probability of sampling a vertex in Λx,i − Ψx,i is at least λ. Hence, the probability that

none of the sampled vertices are in Λx,i −Ψx,i is at most

(1− λ)2 log(1/δ)/λ ≤ δ.

Subroutine Testing-Vertex-Distortion:

Input: A graph I, a set of vertices S ⊆ VI , weight function w : VI×VI → R
≥0(assuming

w(x) =
∑

v∈VI
w(x, v) for any x ∈ VI), and parameters λ, δ, α.

1. Randomly sample a set of 8
√
n log(1/δ)/α vertices. The probability of sample

x ∈ S is w(x)∑
v∈S w(v) . Run Subroutine Testing-Single-Vertex-Distortion with

each sampled vertex with weight function w and parameters λ, δ/2. Reject if any

execution of Subroutine Testing-Single-Vertex-Distortion rejects.

2. Accept.

Lemma 6.4.9. If every pair of vertices v, u ∈ S satisfying MI(v, u) − 2σ ≤ M(v, u) ≤
MI(v, u) + 2σ, then Subroutine Testing-Vertex-Distortion accepts with probability 1.

If a total weight of at least
α
∑

x∈S w(x)√
n

vertices are at least λ-distorted, then Subroutine

Testing-Vertex-Distortion rejects with probability at least 1− exp(−1/φ4).
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Proof. The first case is easy. Now, we prove the second case. If a total weight of at least

α
∑

x∈S w(x)√
n

vertices are at least λ-distorted, then the probability that none of the sampled

vertices is at least λ-distorted is at most

(1− α√
n
)8

√
n log(1/δ)/α ≤ δ/2.

By Lemma 6.4.8, if there is one sampled vertex at least λ-distorted, then with probability

1− δ/2, Subroutine Testing-Single-Vertex-Distortion rejects. The lemma is obtained

by union bound.

6.4.1.2 Testing set distortion

Given a set of vertices S in graph I explicitly.

Definition 6.4.10. A set M ⊆ S is a distorted set of S with respect to fI if at least one of

the following conditions hold

1. |M | ≥ φ16|S|/√n vertices such that for every u ∈ M , at least 1/100 fraction of all the

vertices v in M satisfy MI(u, v) > M(u, v) + 2σ or MI(u, v) < M(u, v) − 2σ.

2. |M | ≥ 2|S|/φ√n vertices in S such that for every vertex u ∈ M , there are at least

2φ3|S|2
|M |n and at most φ4|S|/√n vertices v in M satisfying

MI(u, v) > M(u, v) + 2σ or MI(u, v) < M(u, v) − 2σ, (6.2)

3. There are A ⊆ S and B ⊆ VI such that |A| ≥ max{1, |S|/2√n}, |B| ≥ √
n/4 and for

every x ∈ A, y ∈ B, the distance between x and y is distorted.

4. There is a function s : S × VI → R
≥0 such that

(a) If s(x, y) > 0, then the distance between x and y is distorted.

(b) for any x ∈ S,
∑

y∈VI
s(x, y) ≤ 2n/|S|;

(c) for any y ∈ VI ,
∑

x∈S s(x, y) ≤ √
n;

(d)
∑

x,y s(x, y) ≥ ε1φn/10 log n.
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Subroutine Testing-Distance-Preserved-Subset:

Input: A set of vertices S ⊆ VI , parameter δ

1. Randomly sample a set of 400 log(1/δ)
√
n/φ16 vertices in S, and

400 log(1/δ)
√
n/φ16 vertices in VI reject if there exists two sampled vertices

u ∈ S, v ∈ VI such that M(u, v) < MI(u, v) − 2σ or M(u, v) > MI(u, v) + 2σ.

2. Accept.

Lemma 6.4.11. If for every pair of vertices u ∈ S and v ∈ VI , the distance between

u and v is not distorted, then Subroutine Testing-Distance-Preserved-Subset accepts

with probability 1.

If S has a distorted set M , then Subroutine Testing-Distance-Preserved-Subset

rejects with probability 1− δ.

Proof. It is straightforward that if the distance between every pair of vertices u ∈ S and

v ∈ VI is not distorted, then Subroutine Testing-Distance-Preserved-Subset always

accepts.

We first show that if the first condition of Definition 6.4.10 holds for M , then the

subroutine rejects with probability at least 1− δ. The probability that one sample is in M

is at least φ16/
√
n. So, the probability that the first half of all the samples contain at least

one vertex u ∈ M is at least

1−
(
1− φ16

√
n

)400 log(1/δ)
√
n/φ16

≥ 1− δ/2.

We bound the probability that the second half of all the samples contain one v satisfying

MI(u, v) > M(u, v) + 2σ or MI(u, v) < M(u, v) − 2σ. The probability of such a v is at

least |M |
100|S| ≥

φ16

100
√
n
. So, the probability that second half of all the samples do not contain

such an v is at most

(1− φ16

100
√
n
)400 log(1/δ)

√
n/φ16 ≤ δ/2.

The lemma holds by union bound.
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Now we show that if the second condition of Definition 6.4.10 holds for M , then the

subroutine rejects with probability at least 1−δ. Consider the probability that a sequence of
√
n/φ3 samples find a pair of vertices which leads the algorithm to reject. Let m =

√
n/2φ3.

For a vertex v ∈ M , Pv = {u ∈ M : MI(u, v) > M(u, v) + 2σ or MI(u, v) < M(u, v)−
2σ}, and Xv denote the indicator variable that Xv = 1 iff there exists a u ∈ Pv in the first

m samples. Then

Pr[Xv] = 1−
(
1− |Pv|

|S|

)m

.

Since |Pv | ≤ φ4|S|/√n, we have

(1− o(1))
|Pv |m
|S| ≤ Pr[Xv = 1] ≤ |Pv|m

|S| .

Let X =
∑

v∈S Xv and p =
∑

v∈S |Pv |. (1−o(1))pm
|S| ≤ E[X] ≤ pm

|S| .

Now we calculate the variance of X.

Var[X] = E[X2]− E[X]2 =
∑

u,v∈S
E[XuXv ]− E[X]2

Since Xus are 0-1 random variables,

∑

u∈S
E[X2

u] =
∑

u∈S
E[Xu] ≤

∑

u∈S

|Pu|m
|S| =

pm

|S|

Let Pu,v = Pu ∩ Pv, Pu,−v = Pu\Pu,v. Note that

E[XuXv] =Pr[Xu = 1,Xv = 1]

=1− Pr[Xu = 0,Xv = 1]− Pr[Xu = 1,Xv = 0]− Pr[Xu = 0,Xv = 0].

Notice that

Pr[Xu = 0,Xv = 0] =

(
1− |Pu,v|+ |Pu,−v|+ |Pv,−u|

|S|

)m

,

Pr[Xu = 1,Xv = 0] =

(
1− |Pu,v|+ |Pv,−u|

|S|

)m

−
(
1− |Pu,v|+ |Pu,−v|+ |Pv,−u|

|S|

)m

,

Pr[Xu = 0,Xv = 1] =

(
1− |Pu,v|+ |Pu,−v|

|S|

)m

−
(
1− |Pu,v|+ |Pu,−v|+ |Pv,−u|

|S|

)m

,

we have

E[XuXv] =1−
(
1− |Pu,v|+ |Pv,−u|

|S|

)m

−
(
1− |Pu,v|+ |Pu,−v|

|S|

)m

+

(
1− |Pu,v|+ |Pu,−v|+ |Pv,−u|

|S|

)m

.
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Since
(|Pu,v|+|Pu,−v|+|Pv,−u|)m

|S| = o(1),

E[XuXv] ≤ (1 + o(1))

(
m|Pu,v|
|S| +

m2|Pu,−v||Pv,−u|)
|S|2

)

Thus,

∑

u 6=v∈M
E(XuXv) ≤(1 + o(1))

(
m
∑

u 6=v∈M |Pu,v|
|S| +

m2
∑

u 6=v∈M |Pu,−v||Pv,−u|
|S|2

)

≤(1 + o(1))

(
mpφ4|S|
|S|√n

+
m2p2

|S|2
)

and finally

Var[X] =E[X2]− E[X]2

=
∑

u 6=v∈S
E[XuXv ] +

∑

u∈S
E[X2

u]− E[X2]

≤(1 + o(1))

(
mpφ4|S|
|S|√n

+
m2p2

|S|2
)
+

pm

|S| −
(
pm

|S|

)2

≤(1 + o(1))

(
pmφ4

√
n

+
pm

|S|

)
+ o(

m2p2

|S|2 )

Since |Pu| ≥ 2φ3|S|2
|M |n for every vertex inM , p ≥ 2φ3|S|2/n, which implies

√
pmφ4√

n
= o(pm|S| ).

Thus,
√
Var(X) = o(E[X]). By Chebyshev’s inequality, we have

Pr[X ≥ |S|/2√n] ≤ Pr[X ≥ E[X]/2] = 1− o(1).

On the other hand, if X ≥ |S|/2√n, the probability that there is no sampled vertex v

in the second
√
n/2φ2 samples satisfying (6.2) for some vertex u ∈ M in the first

√
n/2φ2

samples is at least (
1− 1

2
√
n

)√
n/2φ2

= exp(−Ω(1/φ2)).

Overall, a random sequence of
√
n/φ3 samples can find a pair of vertices satisfying (6.2)

with at least constant probability. Thus, a random sequence of
√
n log(1/δ)/φ16 samples

can find a pair of vertices satisfying (6.2) with probability at least 1− δ.

Using above techniques, we can show that if the third or fourth condition of Defini-

tion 6.4.10, then Subroutine Testing-Distance-Preserved-Subset rejects with probabil-

ity at least 1− δ.
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6.4.2 An efficient algorithm for testing collision problem

We prove Theorem 6.4.5 in this section. We reduce the Testing-Collision problem to the

following problem.

Testing-Subset-Collision Problem

Input: 0 ≤ i, j, k ≤ 6 log n/ε1 such that weightw : ∪Ti,j,k → R
≥0 satisfying

weightw(Ti,j,k) ≥ ε22n, parameter δ.

Output:

1. Accept with probability 1− δ if all of the following conditions hold

(a) Every pair of vertices v,w ∈ Ti,j,k satisfies MI(v,w) − 2σ ≤ M(v,w) ≤
MI(v,w) + 2σ.

(b) Every pair of vertices y, z in Hi,j,k or Ci,j,k satisfies MJ(y, z) − 2σ ≤
M(y, z) ≤ MJ(y, z) + 2σ.

(c) For every x ∈ Ti,j,k, y ∈ Ci,j,k satisfying M(x, y) ≤ r, y is a useful collision

of x.

(d) Every vertex x ∈ Ti,j,k, x has at least (1 − ε1)BI(x, r) and at most (1 +

ε1)BI(x, r) useful collisions.

2. Reject with probability 1− δ if at least one of following conditions hold

(a) At least |Si,j,k|/
√
n vertices x ∈ Si,j,k have distance distorted to Assignto(x).

(b) At least φ4|Hi,j,k|/
√
n vertices are at least φ2-distorted in Hi,j,k by fJ .

(c) A total weight of at least 10ε1weightw(Ti,j,k) vertices in Ti,j,k do not have

semi-useful collision.

We start with some useful subroutines.

Subroutine Testing-Good-Collision:

Input: Two vertices v ∈ Ti,j,k and y ∈ Ci,j,k satisfying M(v, y) ≤ r, a parameter δ.



CHAPTER 6. PROPERTY TESTING OF GRAPH ISOMORPHISM 114

Output: Accept or reject.

1. If there is no z ∈ VJ satisfying MJ(y, z) ≤ r+2σ and ρ4(x, z) ≤ 2σ, then rejects.

2. Set c1 = 0 and c2 = 0.

3. Randomly sample m = ⌈2 log(1/δ)/ε21φ⌉ vertices in BJ(y, 2r + 6σ). For every

sampled vertex z satisfying M(v, z) ≤ r, if there is a vertex u ∈ VJ satisfying

MJ(z, u) ≤ r + 2σ and ρ4(x, u) ≤ 2σ, then increase c1 by 1, otherwise reject.

4. Randomly sample m vertices z in BJ(y, 2r +6δ, 29r), if M(v, z) ≤ r then rejects.

5. If c1 >
(1+1.5ε1)|BI (x,r)|
|BJ (y,2r+6σ)| m or c1 <

(1−1.5ε1)|BI(x,r)|
|BJ (y,2r+6σ)| m, then rejects, otherwise accepts.

Remark 6.4.12. Given two vertices v ∈ Ti,j,k and y ∈ Ci,j,k with M(v, y) ≤ r. By

the definition of collision, it is possible to determine whether y is a collision of v without

checking fJ of other vertices in VJ .

Lemma 6.4.13. If y is not a collision with v, then with probability at least 1, Subroutine

Testing-Good-Collision rejects.

If y is a good collision with v, then with probability at least 1−δ, Subroutine Testing-Good

-Collision accepts. If y is a bad collision with v, then with probability at least 1− δ, Sub-

routine Testing-Good-Collision rejects.

Proof. If y is not a collision to v, then the subroutine rejects with probability 1 at Step 1.

Let Xi denote the indicator variable whether i-th sample in Step 3 is a collision to x.

Then Pr[Xi] =
|N(v,y,2r+6δ)|
|BJ (y,2r+6σ)| , and E[X =

∑
Xi] =

|N(v,y,2r+6δ)|m
|BJ(y,2r+6σ)| . Since y is a collision to v,

there exists a vertex z satisfying MJ(y, z) ≤ r + 2σ and ρ4(v, z) ≤ 2σ. Thus |BI(v, r)| ≥
2φ|BI(v, 30r+6σ)| ≥ 2φ|BJ (z, 30r+4σ)|. On the other hand, BJ(y, 29r) ⊆ BJ(z, 30r+4σ),

so we have |BI(v, r)| ≥ 2φ|BJ(y, 29r)| and thus |BI(v, r)| ≥ 2φ|BJ(y, 2r + 6σ)|.
If y is a good collision to v, then

(1− ε1)φm ≤ (1− ε1)|BI(v, r)|m
|BJ (y, 2r + 6σ)| ≤ E[X] ≤ (1 + ε1)|BI(v, r)|m

|BJ(y, 2r + 6σ)| .



CHAPTER 6. PROPERTY TESTING OF GRAPH ISOMORPHISM 115

By Chernoff bound, with probability at least 1− δ, the subroutine accepts.

If y is a bad collision, then one of following conditions hold:

1. E[X] < (1−2ε1)|BI (v,r)|m
|BJ (y,2r+6σ)| or E[X] > (1+2ε1)|BI (v,r)|m

|BJ (y,2r+6σ)|

2. The probability that a random vertex z in Step 3 is not a collision of x but satisfying

M(x, z) ≤ r is at least ε1|BI(x,r)|
|BJ (y,2r+6δ)| .

3. The probability that a random vertex z in Step 4 is not a collision of x but satisfying

M(x, z) ≤ r is at least ε1|BI(x,r)|
|BJ (y,2r+6δ,29r)| .

Hence, with probability at least 1− δ, the subroutine rejects.

Subroutine Testing-Useful-Collision:

Input: Two vertices v ∈ Ti,j,k and y ∈ Ci,j,k satisfying y is a collision to v, a parameter

δ

Output: Accept or reject.

1. Run Subroutine Testing-Good-Collision with vertex v and y and parameter

δ/2. If Testing-Good-Collision rejects, then rejects.

2. Randomly sample m = ⌊2 log(1/δ)/ε1φ⌋ vertices z in BJ(y, 2r + 6σ): If z is a

collision of v, then run Subroutine Testing-Good-Collision with vertex v and z

and parameter δ/4m. If any execution of Subroutine Testing-Good-Collision

rejects, then rejects.

3. Accepts.

Lemma 6.4.14. If y is a useful collision with v, then Subroutine Testing-Useful-Collision

accepts with probability at least 1− δ. If y is not a collision with v or is a useless collision

with v, then Subroutine Testing-Useful-Collision rejects with probability at least 1− δ.

Proof. By Lemma 6.4.13, if y is a bad collision to v, then Step 1 of Subroutine Testing-Useful

-Collision rejects with probability at least 1− δ/2.
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Now we assume y is a good or intermediate collision to v. The number of collisions to

v in BJ(y, 2r + 6σ) is between (1 − 2ε1)|BI(v, r)| and (1 + 2ε1)|BI(v, r)|. If y is a useless

collision to v, then at least ε1|BI(v, r)| of them are bad. With probability

1− (1− ε1|BI(v, r)|
|BJ(y, 2r + 6σ)| )

m ≥ 1− (1− ε1φ)
m = 1− δ/4,

at least one sampled vertex is a bad collision of v. By Lemma 6.4.13, Subroutine Testing

-Single-Collision rejects with probability at least 1−δ/4m. By union bound, Subroutine

Testing-Useful-Collision rejects with probability at least 1− δ.

If y is a useful collision to v, then by Lemma 6.4.13 and union bound, Subroutine passes

Step 2 with probability at least 1− δ.

Subroutine Testing-Random-Subset-Collision:

Input: Si,j,k, Ti,j,k for 0 ≤ i, j, k ≤ 6 log n/ε1. A set of vertices Q ⊆ Ti,j,k such that

|Q| ≥ φ8|Ti,j,k|/
√
n and every pair of vertices in Q has distance at least 4r + 4σ in M,

a set of vertices Ci,j,k, and a parameter δ.

Output: Accept or reject. A pair of vertices (v, y) with v ∈ Si,j,k, y ∈ Ci,j,k.

1. Randomly sample a set K of ⌈96
√
n log(1/δ)
φ20ε22ε

2
1

⌉ vertices in Ci,j,k. Randomly select a

pair of vertices (x ∈ Q, z ∈ K) satisfying M(x, z) ≤ r, and randomly sample a

vertex v ∈ Assign(x). Set p = 0.

2. For every vertex y ∈ K, if there exists a vertex v ∈ Q such that M(v, y) ≤ r, then

run Subroutine Testing-Useful-Collision with vertices y, v and parameters

δ/n2. If the subroutine accepts, then increase p by 1.

3. Let q =
|Q||K|γi,j,k

|Ci,j,k| . If p < q(1−1.5ε1), p > q(1+ε1)(1+1.5ε1) or any execution of

Subroutine Testing-Useful-Collision in Step 1 or Step 2 rejects, then reject,

otherwise accept. Return (v, z).

Given a subset Q of Ti,j,k, define bipartite graph Au(Q) = (Q,Ci,j,k) such that there is

an edge between x ∈ Q and y ∈ Ci,j,k if and only if y is a useful collision to x, bipartite
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graph As(Q) = (Q,Ci,j,k) such that there is an edge between x ∈ Q and y ∈ Ci,j,k if and

only if y is a semi-useful collision to x, and bipartite graph An(Q) = (Q,Ci,j,k) such that

there is an edge between x ∈ Q and y ∈ Ci,j,k if M(x, y) ≤ r and y is a not a semi-useful

collision to x. We use |Au(Q)| to denote the number of edges in bipartite graph Au(Q) (and

same notation for all the following bipartite graphs).

Lemma 6.4.15. If for every x ∈ Q, y ∈ Ci,j,k with M(x, y) ≤ r y is a useful collision of

x, and (1− ε1)|Q|γi,j,k ≤ |Au(Q)| ≤ (1+ ε1)
2|Q|γi,j,k, then the subroutine Testing-Random

-Subset-Collision accepts with probability at least 1− δ.

If |An(Q)| > ε21φ
10|Q|γi,j,k, |As(Q)| < (1 − 2ε1)|Q|γi,j,k or |Au(Q)| > (1 + ε1)(1 +

2ε1)|Q|γi,j,k, then the subroutine Testing-Random-Subset-Collision rejects with proba-

bility at least 1− δ.

Proof. Since for every v,w ∈ Q satisfying M(v,w) ≥ 4r+4σ, every vertex in Ci,j,k can be a

collision of at most one vertex in Q. Let Xi, Yi and Zi be the indicator variable whether i-th

sampled vertex y in step 2 of Subroutine Testing-Random-Subset-Collision is a useful

collision, semi-useful or not semi-useful collision but with distance at most r to some vertex

in Q respectively. Hence Pr[Xi] =
|Au(Q)|
|Ci,j,k| , Pr[Yi] =

|As(Q)|
|Ci,j,k| and Pr[Zi] =

|An(Q)|
|Ci,j,k| . Thus,

E[X =
∑

Xi] =
|K||Au(Q)|

|Ci,j,k| , E[Y =
∑

Yi] =
|K||As(Q)|
|Ci,j,k| and E[Z =

∑
Zi] =

|K||An(Q)|
|Ci,j,k| .

By Corollary 6.3.5, we have

|K||Q|γi,j,k
|Ci,j,k|

≥ |K|φ8|Ti,j,k|γi,j,kε22φ
4
√
n|Ti,j,k|γi,j,k

≥ 24 log(1/δ)

φ11ε21
.

If (1− ε1)|Q|γi,j,k ≤ |Au(Q)| ≤ (1 + ε1)
2|Q|γi,j,k, then

(1− ε1)|K||Q|γi,j,k/|Ci,j,k| ≤ E[X] ≤ (1 + ε1)
2|K||Q|γi,j,k/|Ci,j,k|.

By Chernoff bound, we have

Pr[(1 − 1.5ε1)q ≤ X ≤ (1 + ε1)(1 + 1.5ε1)q] ≥ 1− δ,

and thus if every collision for vertices in Q is useful and (1 − ε1)|Q|γi,j,k ≤ |Au(Q)| ≤
(1 + ε1)

2|Q|γi,j,k, then the subroutine Testing-Random-Subset-Collision accepts with

probability at least 1− δ.
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Similarly, If |An(Q)| > ε21φ
10|Q|γi,j,k, |As(Q)| < (1 − 2ε1)|Q|γi,j,k or |Au(Q)| > (1 +

ε1)(1 + 2ε1)|Q|γi,j,k, then at least one of following three conditions hold:

E[Y ] <
(1− 2ε1)|K||Q|γi,j,k

|Ci,j,k|
,E[X] >

(1 + ε1)(1 + 2ε1)|K||Q|γi,j,k
|Ci,j,k|

,

E[Z] >
ε21φ

10|K||Q|γi,j,k
|Ci,j,k|

.

Again, by Chernoff bound, we obtain the lemma.

Subroutine Testing-Subset-Collision:

Input: Si,j,k, Ti,j,k and Ci,j,k for 0 ≤ i, j, k ≤ 6 log n/ε1 with weightw(Ti,j,k) ≥ ε22n.

Output: Accept or reject. A pair of vertices (v, y) with v ∈ Si,j,k, y ∈ Ci,j,k.

1. Randomly sample a set W of 2
√
n log(2/δ) vertices in Si,j,k. If there is v ∈ W such

that MI(v,Assignto(v)) > M(v,Assignto(v)) + 2σ or MI(v,Assignto(v)) <

M(v,Assignto(v)) − 2σ, then reject, and return an empty pair.

2. Run Subroutine Testing-Distance-Preserved-Subset on Ti,j,k, Si,j,k and Ci,j,k

with uniform weight function and parameter δ/n. If any execution of the subrou-

tine rejects, then reject, and return an empty pair.

3. If |Ti,j,k| ≤
√
n/φ14, then let Q = Ti,j,k

(a) Reject and return an empty pair if there exists v,w ∈ Q such thatMI(v,w) >

M(v,w) + 2σ or MI(v,w) < M(v,w) − 2σ.

(b) Randomly sample a set of 48
√
n log(2n/δ)/ε22φ

15 vertices K in Ci,j,k. For

every x ∈ Q and v ∈ K satisfying M(x, v) ≤ r, run subroutine

Testing-Useful-Collision with vertex x, v and parameter δ/2n2.

(c) Reject if any execution of subroutine Testing-Useful-Collision rejects or

there is a vertex v ∈ Q such that less than (1−1.5ε1)|BI(v,r)||Q|
|Ci,j,k| or more than

(1+1.5ε1)|BI (v,r)||Q|
|Ci,j,k| vertices in K have distance less than r in M, otherwise,

accept.
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(d) Randomly select a vertex t ∈ Q. Randomly choose a u ∈ Assign(t) and

z ∈ K satisfying M(t, z) ≤ r. Return the pair (u, z).

4. If |Ti,j,k| >
√
n/φ14, then let P = ∅ initially and repeat following process

log(4/δ)/φ8 times:

(a) Randomly sample a set of ⌈φ8|Ti,j,k|/
√
n⌉ vertices in Ti,j,k (with replacement).

Let Q denote this set of vertices.

(b) Reject and return an empty pair if there exists v,w ∈ Q such thatMI(v,w) >

M(v,w) + 2σ or MI(v,w) < M(v,w) − 2σ.

(c) Run Subroutine Testing-Random-Subset-Collisionwith Q and parameter

δ/n. If the subroutine rejects, then reject, otherwise, put the pair returned

into P .

5. Randomly select a pair (v, y) ∈ P . Randomly select a vertex x ∈ Assign(v).

Accept and return (x, y).

Lemma 6.4.16. If |Ti,j,k| >
√
n/φ14, then every execution of step 4(a) of Subroutine

Testing-Subset-Collision obtain distinct vertex samples with probability at least 1 −
O(φ16), and at least half of the executions of step 4(a) obtain distinct vertex samples with

probability at least 1− δ/4, .

Proof. Let Xi be the indicator variable that whether the i-th vertex sample is distinct to

all the previous vertex samples. We have Pr[Xi] ≥ 1 − |Q|
|Ti,j,k| . Thus, the probability that

all the vertex samples are distinct is at least

(
1− |Q|

|Ti,j,k|

)|Q|
≥
(
1−O

(
φ8

√
n

))φ8|Ti,j,k|/
√
n

≥ 1−O

(
φ16|Ti,j,k|

n

)
≥ 1−O(φ16). (6.3)

By Chernoff bound, we obtain the lemma.

Lemma 6.4.17. If |Ti,j,k| >
√
n/φ14 and |As(Ti,j,k)| < (1−4ε1)|Ti,j,k|γi,j,k, then Subroutine

Testing-Subset-Collision rejects with probability 1− δ.
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Proof. Let Xi denote the number of semi-useful collisions in Ci,j,k to the i-th vertex sample

in Step 4(a) of Subroutine Testing-Subset-Collision. We have E[Xi] =
|As(Ti,j,k)|

|Ti,j,k| , and

thus E[X =
∑

Xi] =
|As(Ti,j,k)||Q|

|Ti,j,k| . On the other hand, let Y be the event that all the vertex

samples in Step 4(a) are distinct, we have

E[X] ≥ Pr[Y ]E[X|Y ] = Pr[Y ]E[|As(Q)||Y ] ≥ (1−O(φ16))E[|As(Q)||Y ].

Thus,

E[|As(Q)||Y ] ≤ |As(Ti,j,k)||Q|
|Ti,j,k|(1−O(φ16))

≤ (1− 4ε1)γi,j,k|Q|
1−O(φ16)

≤ (1− 3ε1)γi,j,k|Q|.

Now we show that if E[|As(Q)||Y ] < (1−3ε1)|Q|γi,j,k, then Subroutine Testing-Subset

-Collision rejects with probability at least 1 − exp(−Ω(1/φ8)). If E[|As(Q)||Y ] < (1 −
3ε1)|Q|γi,j,k, then by Markov inequality,

Pr[|As(Q)| ≥ (1− 2ε1)|Q|γi,j,k|Y ] ≤ E[|As(Q)||Y ]

(1− 2ε1)|Q|γi,j,k
< 1− ε1

1− 2ε1
.

By Lemma 6.4.16, with probability at least 1 − δ/4, there is one execution of Step 4(a)

obtaining distinct vertex samples, and |As(Q)| < (1 − 2ε1)|Q|γi,j,k. By Lemma 6.4.15,

Algorithm Testing-Subset-Collision rejects with probability at least 1− δ/2.

Let Wx be a set of collisions of vertex x satisfying

1. Every vertex y in Wx is a good/intermediate collision with x.

2. For every pair of vertices y, z ∈ Wx, we have MJ(y, z) ≥ 29r.

3. The size of Wx is maximized.

Let Li,j,k be the set of vertices x ∈ Ti,j,k satisfying |Wx| ≥ 2, and

Ri,j,k = {y ∈ Ci,j,k : ∃x ∈ Li,j,k s.t. y is a good or intermediate collision of x}.

We define following bipartite graph Y = (Li,j,k, Ci,j,k), in which there is an edge between

x ∈ Li,j,k and y ∈ Ci,j,k if and only if y is a good/intermediate collision to x.

We prove following lemma.

Lemma 6.4.18. If |Ti,j,k| >
√
n/φ14 and |Y | ≥ φ|Ti,j,k|γi,j,k, then either Ti,j,k or Ci,j,k

have a distorted subset.
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We need some more definitions. For x ∈ Li,j,k, y ∈ Ri,j,k, let Px,y = {z ∈ BJ(y, 2r+6δ) :

z is a collision of x} if y is a good/intermediate collision of x, otherwise Px,y is an empty

set. Let Xi,j,k = ∪x∈Li,j,k,y∈Ri,j,k
Px,y. Let Ŷ be the bipartite graph on (Li,j,k,Xi,j,k) such

that x ∈ Li,j,k is adjacent to y ∈ ∪x∈Li,j,k
iff there is a z ∈ Ri,j,k such that y ∈ Px,z.

Let Z be a subgraph of Ŷ . For any x ∈ Li,j,k, let

DZ(x) = {v ∈ Li,j,k : ∃y ∈ Xi,j,k s.t. y is adjacent to both x and v in Z}.

For any y ∈ Xi,j,k, let

DZ(y) = {z ∈ Xi,j,k :∃x ∈ Li,j,k, u ∈ Xi,j,k s.t. y ∈ Px,u,

z is adjacent to x in Z and MJ(u, z) > 29r}.

Fact 6.4.19. Let Z be a subgraph of Ŷ . For any x ∈ Li,j,k and v, t ∈ {x} ∪ DZ(x), the

distance between v and t is distorted by fI . For any y ∈ Xi,j,k and z ∈ DZ(y), the distance

between y and z is distorted by fJ .

Lemma 6.4.20. Let Z be a subgraph of Ŷ . If x ∈ Li,j,k and y ∈ Xi,j,k with (x, y) ∈ Z, then

|DZ(y)| ≥ degZ(x)− (1 + 3ε1)(1 + ε1)γi,j,k and |DZ(x)| ≥ degZ(y)− 1 hold, where degZ(x)

denote the degree of vertex x in graph Z.

Proof. By the definition of Ŷ , there is a z ∈ Ri,j,k such that z is a good/intermediate collision

of x, and y ∈ BJ(z, 2r+6δ). By Fact 6.4.2, there are at most (1+3ε1)(1+ ε1)γi,j,k vertices

u ∈ BJ(y, 29r) satisfying that u is a collision of x. So, at least degZ(x)−(1+3ε1)(1+ε1)γi,j,k

vertices in Z have distance distorted with y.

On the other hand, if both x and x′ are adjacent to y in Z, then the distance between

x and x′ is distorted. So, at least degZ(y) − 1 vertices in Z have distance distorted with

x.

Proof of Lemma 6.4.18. Since every vertex x ∈ Li,j,k satisfies |Wx| ≥ 2, we can find a ℓ

with ℓ ≥ 2(1 − 3ε1)γi,j,k such that

∑

v∈Li,j,k :ℓ≤deg
Ŷ
(v)<2ℓ

degŶ (v) ≥
|Ŷ |

log2 n
≥ |Y |

log2 n
≥ φ|Ti,j,k|γi,j,k

log2 n
,
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where deg
Ŷ
(v) is the degree of vertex v in bipartite graph Ŷ . Let L′

i,j,k = {v ∈ Li,j,k :

ℓ ≤ degŶ (v) < 2ℓ}, X ′
i,j,k = {z ∈ Xi,j,k : |NŶ (z) ∩ L′

i,j,k| ≥ 1}, where NŶ (z) denote the

set of neighbors of z in graph Ŷ . Let Ŷ ′ be the induced subgraph of (L′
i,j,k,X

′
i,j,k) in Ŷ .

Furthermore, let AveL = |Ŷ ′|
|L′

i,j,k|
and AveX = |Ŷ ′|

|X′

i,j,k|
.

If |X ′
i,j,k| ≥ 16|L′

i,j,k|/ log102 n, then by Lemma 6.4.20, for every vertex y ∈ X ′
i,j,k, we

have

|D
Ŷ ′(y)| ≥ max{1, ℓ− (1 + 3ε1)(1 + ε1)γi,j,k} ≥ (1− 6ε1)ℓ

2
.

On the other hand, since |Ŷ ′| < 2ℓ|L′
i,j,k|,

|D
Ŷ ′(y)| ≥

(1− 6ε1)ℓ

2
>

|Ŷ ′|
8|L′

i,j,k|
≥ φ|Ti,j,k|γi,j,k

8 log2 n|L′
i,j,k|

≥ 2φ|Ti,j,k|γi,j,k
log112 n|X ′

i,j,k|
≥ 2φ3|Ci,j,k|

|X ′
i,j,k|

, (6.4)

where the last inequality uses Corollary 6.3.5.

If there exists a vertex y ∈ X ′
i,j,k with |D

Ŷ ′(y)| ≥ φ4|Ci,j,k|/
√
n, then by Corollary 6.3.5,

for any vertex z ∈ {y} ∪D
Ŷ ′(y), at least |DŶ ′(y)| − (1+ε1)γi,j,k

2φ = (1− o(1))|D
Ŷ ′(y)| vertices

in {y} ∪ DŶ ′(y) has distance distorted to z. Hence,{y} ∪ DŶ ′(y) forms a distorted set in

Ci,j,k. Otherwise, for an arbitrary y ∈ X ′
i,j,k, we have

|X ′
i,j,k| ≥

2φ3|Ci,j,k|
|DŶ ′(y)|

>
2φ3|Ci,j,k|

√
n

φ4|Ci,j,k|
=

2
√
n

φ
,

and by Inequality (6.4), X ′
i,j,k is a distorted set in Ci,j,k.

Now we consider the case of |X ′
i,j,k| < 16|L′

i,j,k|/ log102 n. Let L′′
i,j,k = L′

i,j,k and X ′′
i,j,k =

X ′
i,j,k initially, and let Ŷ ′′ = (L′′

i,j,k,X
′′
i,j,k). We keep following process on Ŷ ′′ until there is

no more action available:

1. Remove vertex x ∈ L′′
i,j,k from Ŷ ′′ if the degree of x is smaller than AveL/4

2. Remove vertex y ∈ X ′′
i,j,k from Ŷ ′′ if the degree of y is smaller than AveX/4.

Then every vertex in L′′
i,j,k has degree at least AveL/4 in Ŷ ′′, and every vertex in X ′′

i,j,k has

degree at least AveX/4 in Ŷ ′′. On the other hand, The total number of edges remaining in

Ŷ ′′ is at least

|Ŷ ′| −
|L′

i,j,k|AveL
4

−
|X ′

i,j,k|AveX
4

= |Ŷ ′|/2.
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So, every vertex x ∈ L′′
i,j,k has |D

Ŷ ′′(x)| ≥ AveX
4 − 1. Notice that

|DŶ ′′(x)| ≥
AveX

4
− 1

=
|Ŷ ′|

4|X ′
i,j,k|

− 1

≥ |Ŷ ′|
64|L′

i,j,k|/ log102 n
− 1

≥ log102 nℓ

64
− 1

=
(1− o(1)ℓ log102 n

64
.

If there exists a vertex x ∈ L′′
i,j,k such that |D

Ŷ ′′(x)| > φ4|Ti,j,k|/
√
n, then by Fact 6.4.19,

DŶ ′′(x) is a distorted set in Ti,j,k. Otherwise, since |L′′
i,j,k| ≥

|Ŷ ′|
4ℓ ≥ φ|Ti,j,k|γi,j,k

4 log2 nℓ
, we have

|D
Ŷ ′′(x)||L′′

i,j,k| ≥
(1− o(1))ℓ log102 n

64
|L′′

i,j,k| ≥
φ log92 n|Ti,j,k|γi,j,k

512
>

2φ3|Ti,j,k|2
n

.

Hence, L′′
i,j,k is a distorted set in Ti,j,k.

Lemma 6.4.21. If |Ti,j,k| ≤
√
n/φ14 and every pair of vertices in Ti,j,k is not distorted,

then

1. If Y is not an empty graph, then Subroutine Testing-Subset-Collision rejects with

probability at least 1− δ.

2. If An(Ti,j,k) > φ15ε22
√
n, then Subroutine Testing-Subset-Collision rejects with

probability at least 1− δ.

3. If all the collisions are useful, and for every vertex x ∈ Ti,j,k, (1 − ε1)|BI(x, r)| ≤
|Au(x)| ≤ (1 + ε1)|BI(x, r)|, then Subroutine Testing-Subset-Collision accepts

with probability at least 1− δ.

4. If there is a vertex x ∈ Ti,j,k satisfying |As(x)| < (1 − 2ε1)|BI(x, r)| or |As(x) ∪
An(x)| > (1 + 2ε1)|BI(x, r)|, then Subroutine Testing-Subset-Collision rejects

with probability at least 1− δ.

Proof. Assume there is a x ∈ Ti,j,k with |Wx| ≥ 2. Then there are two sets of vertices M1

and M2 with |M1|, |M2| ≥ (1 − 2ε1)γi,j,k such that the distance between every vertex of
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M1 and every vertex of M2 is distorted. Hence M1 ∪ M2 is a distorted set of Ci,j,k. By

Lemma 6.4.11, the subroutine rejects with probability at least 1− δ.

By Lemma 6.4.14, the last three conditions hold.

Lemma 6.4.22. Subroutine Testing-Subset-Collision solve the Testing-Subset-Collision

problem with probability at least 1− δ.

Proof. We first show that for a positive instance of the Testing-Subset-Collision problem,

the subroutine accept with probability 1 − δ. Since any pair of vertices in Si,j,k,Hi,j,k

or Ci,j,k has distance not distorted, the first two steps pass with probability 1. For the

case of |Ti,j,k| ≤ √
n/φ14, by Lemma 6.4.21, the subroutine accepts with probability at

least 1 − δ. For the case of |Ti,j,k| >
√
n/φ14, every set Q sampled in Step 4(a) satisfying

(1 − ε1)|Q|γi,j,k ≤ |Au(Q)| ≤ (1 + ε1)
2|Q|γi,j,k. By Lemma 6.4.15, the subroutine accepts

with probability at least 1− δ.

Now we consider a negative instance of the Testing-Subset-Collision problem. If there

are at least |Si,j,k|/
√
n vertices x in Si,j,k with distance distorted to Assignto(x), then with

probability at least 1 − δ/2, the subroutine rejects at Step 1. By Lemma 6.4.9, if at least

φ4|Hi,j,k|/
√
n vertices are at least φ2-distorted in Hi,j,k by fJ , then with probability at least

1− δ/2, the subroutine rejects at Step 2.

Consider the case that a total weight of at least 10ε1weightw(Ti,k) vertices in Ti,j,k do

not have semi-useful collision. For the case of |Ti,j,k| ≤
√
n/φ14, there exists a vertex x ∈

Ti,j,k without a semi-useful collision, then by Lemma 6.4.21, Subroutine Testing-Subset

-Collision rejects with probability at least 1− δ/2n.

For the case of |Ti,j,k| >
√
n/φ14, by Lemma 6.4.17, if |As(Ti,j,k)| < (1− 4ε1)|Ti,j,k|γi,j,k,

then Subroutine Testing-Subset-Collision rejects with probability 1− δ.

We now consider the case of |As(Ti,j,k)| ≥ (1 − 4ε1)|Ti,j,k|γi,j,k. For a vertex x ∈ Ti,j,k

with |Wx| = 1, the number of semi-useful collision to x is at most (1 + 3ε1)(1 + ε1)γi,j,k by

Fact 6.4.4. Since a total weight of at least 10ε1weightw(Ti,j,k) vertices in Ti,j,k have no semi-

useful collision, at least a 10(1−o(1))ε1 fraction of all the vertices in Ti,j have no semi-useful

collision, and then at least (1−o(1))ε1γi,j,k|Ti,j,k| semi-useful collisions are between vertices

Li,j,k and Ci,j,k. Notice that every semi-useful collision is a good/intermediate collision,
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|Y | ≥ (1 − o(1))ε1γi,j,k|Ti,j,k|. By Lemma 6.4.18, there exists a distort subset in Ti,j,k or

Ci,j,k. Then Step 2 of Subroutine Testing-Subset-Collision reject with probability at

least 1− δ.

We prove some additional property for the subroutine Testing-Subset-Collision.

Let

R0
i,j,k = {y ∈ Ci,j,k :∃v,w ∈ Ti,j,k − Li,j,k s.t. v 6= w,

y is a good/intermediate collision of both v and w},

L0
i,j,k = {x ∈ Ti,j,k − Li,j,k : ∃y ∈ R0

i,j,k s.t. y is a good/intermediate collision of x},

and Y 0 be the bipartite graph between L0
i,j,k and Ci,j,k such that x ∈ L0

i,j,k is adjacent to

y ∈ Ci,j,k if y is a good/intermediate collision of x.

Fact 6.4.23. If the distance between every pair of vertices in Ti,j,k is not distorted, then

Y 0 is an empty graph.

Lemma 6.4.24. If |Ti,j,k| >
√
n/φ14 and |Y 0| ≥ 4φ3|Ti,j,k|γi,j,k, then there exists a distorted

set in Ti,j,k.

Proof. For any vertex x ∈ L0
i,j,k, let

DY 0(x) = {v ∈ L0
i,j,k − {x} : ∃y ∈ R0

i,j,k s.t. y is adjacent to both x and v in Y 0}.

If there exists a vertex x ∈ L0
i,j,k such that |DY 0(x)| ≥ φ4|Ti,j,k|√

n
− 1, then {x} ∪DY 0(x) is a

distorted set for Ti,j,k, since every pair of vertices in {x} ∪DY 0(x) has distance at most 4r

in M.

Now assume |DY 0(x)| < φ4|Ti,j,k|√
n

− 1 for every x ∈ L0
i,j,k. Since L0

i,j,k ⊆ Ti,j,k − Li,j,k,

every vertex in L0
i,j,k has at most (1 + 3ε1)(1 + ε1)γi,j,k neighbors in Y 0 by Fact 6.4.2.

Thus, the number of vertices in |L0
i,j,k| ≥

|Y 0|
(1+3ε1)(1+ε1)γi,j,k

≥ 2φ3|Ti,j,k|, and then we have

1 ≥ 2φ3|Ti,j,k|
|L0

i,j,k|
≥ 2φ3|Ti,j,k|2

|L0
i,j,k|n

. Since for every vertex x in L0
i,j,k, there exists a v ∈ L0

i,j,k such

that the distance between x and v is distorted, L0
i,j,k is a distorted set in Ti,j,k.

Let Ui,j,k = {v ∈ Ti,j,k − Li,j,k − L0
i,j,k : |(v,As(v)) − (Y ∪ Y 0)| ≥ (1 − 4ε1)γi,j,k}, and

SUi,j,k = {v ∈ Si,j,k : Assignto(v) ∈ Ui,j,k}.
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Given a subset Q of Ti,j,k, define bipartite graph Ab(Q) = (Q,Ci,j,k) such that there is

an edge between x ∈ Q and y ∈ Ci,j,k if and only if x ∈ Q ∩ (Ti,j,k −Li,j,k − L0
i,j,k) and y is

a good/intermediate collision to x, but not a semi-useful collision to x.

Lemma 6.4.25. If As(Ti,j,k) ≥ (1 − 4ε1)|Ti,j,k|γi,j,k, Ab(Ti,j,k) ≤ 2ε21|Ti,j,k|γi,j,k, |Y | ≤
φ|Ti,j,k|γi,j,k and |Y 0| ≤ 4φ3|Ti,j,k|γi,j,k, then |Ui,j,k| ≥ (1 − 10ε1)|Ti,j,k| and |SUi,j,k| ≥
(1− 12ε1)|Si,j,k|.

Proof. We have

|As(Ti,j,k − Li,j,k − L0
i,j,k)| ≥ |As(Ti,j,k)| − |Y | − |Y 0| ≥ (1− 4(1 + o(1))ε1)|Ti,j,k|γi,j,k.

By the definition of Y and Y 0, every vertex in Ti,j,k −Li,j,k −L0
i,j,k satisfying |Wx| ≤ 1. By

Fact 6.4.4, there are at least

(1− 4(1 + o(1))ε1)|Ti,j,k|γi,j,k
(1 + 3ε1)(1 + ε1)γi,j,k

≥ (1− (1 + o(1))8ε1)|Ti,j,k|

vertices v in Ti,j,k−Li,j,k−L0
i,j,k which have semi-useful collisions in Ci,j,k. Let U

′
i,j,k denote

this set of vertices.

If a vertex in Ti,j,k − Li,j,k − L0
i,j,k has a semi-useful collision, then this vertex has at

least (1 − 3ε1)γi,j,k good/intermediate collisions. On the other hand, there are at most

|Ab(Ti,j,k)|
ε1γi,j,k

≤ 2ε1|Ti,j,k| vertices v in U ′
i,j,k satisfying |Ab(v)| ≥ ε1γi,j,k, and then there are at

most 2ε1|Ti,j,k| vertices in U ′
i,j,k but not in Ui,j,k. Hence |Ui,j,k| ≥ (1− 10ε1)|Ti,j,k|.

Since for every vertex x in Ti,j,k, βi,j,k ≤ |Assign(x)| < (1 + ε1)βi,j,k, βi,j,k|Ti,j,k| ≤
|Si,j,k| < (1 + ε1)βi,j,k|Ti,j,k|. Then |SUi,j,k| ≥ βi,j,k|Ui,j,k| ≥ (1− 12ε1)|Si,j,k|.

Lemma 6.4.26. If |Ti,j,k| >
√
n/φ14, Ab(Ti,j,k) ≤ 2ε21|Ti,j,k|γi,j,k, As(Ti,j,k) ≥ (1−4ε1)|Ti,j,k|·

γi,j,k, |Y | ≤ φ|Ti,j,k|γi,j,k and |Y 0| ≤ 4φ3|Ti,j,k|γi,j,k, then with probability 1 − O(φ16), the

set Q in Subroutine Testing-Collision-Ti,j,k satisfies

1. All the sampled vertices in Q are distinct;

2. |Q ∩ Ui,j,k| ≥ (1− 12ε1)|Q|;

Proof. By Lemma 6.4.16, with probability 1−O(φ16) all the sampled vertices are distinct.
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By Lemma 6.4.25, the probability that one vertex sample in 5(a) is in Ui,j,k is at least

1− 10ε1. By Chernoff bound,

Pr[|Q ∩ Ui,j,k| ≥ (1− 12ε1)|Q|] ≥ 1− exp(−Ω(ε21|Q|)).

By union bound, we obtain the lemma.

Definition 6.4.27. Let (v, y) be a pair of vertices satisfying v ∈ Ti,j,k and y is a collision

of v. We say (v, y) is nice if

1. v is in Ti,j,k − Li,j,k − L0
i,j,k.

2. y is a semi-useful collision of v.

Let y be a vertex in Si,j,k, we say a pair (v, y) is nice if (Assignto(v), y) is a nice pair.

Fact 6.4.28. Given a set of vertices Ti,j,k, we have

1. If (v, y) is a nice pair for Ti,j,k, then y is not a good/intermediate collision for all the

vertices in Ti,j,k except v.

2. Fix a vertex y ∈ Ci,j,k, if (v, y) is a nice pair for some vertex v ∈ Ti,j,k, then y forms

a nice pair with at least βi,j,k and at most (1 + ε1)βi,j,k vertices in Si,j,k.

Lemma 6.4.29. If the Q obtained in step 5(a) of Subroutine Tesing-Collision-Ti,j,k

satisfies

1. All the sampled vertices in Q are distinct,

2. Every pair of vertices in Q has distance at least 4r + 4δ within M

3. |Q ∩ Ui,j,k| ≥ (1− 12ε1)|Q|,

4. |An(Q)| ≤ ε21φ
10|Q|γi,j,k,

5. |(Q,Ci,j,k) ∩ Y | ≤ φ|Q|γi,j,k/ε2

then

1. With probability at least 1− 15ε1, Subroutine Testing-Collision-Subset returns a

nice pair of vertices.
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2. For any x ∈ (Ti,j,k−Li,j,k−L0
i,j,k)∩Q, Subroutine Testing-Collision-Subset returns

a nice pair containing x with probability at most
(1+22ε1)|Ti,j,k|

|Q||Si,j,k| .

3. Fix a nice pair of vertices (x, y) with x ∈ Si,j,k and Assignto(x) ∈ (Ti,j,k − Li,j,k −
L0
i,j,k)∩Q, Subroutine Testing-Collision-Subset returns the pair (x, y) with prob-

ability at most
(1+22ε1)|Ti,j,k|
γi,j,k|Q||Si,j,k| .

Proof. Since for every pair of vertices in Q has distance at least 4r + 4δ, every vertex

y ∈ Ci,j,k have at most one x ∈ Q satisfying M(x, y) ≤ r.

For any v ∈ Ui,j,k, there are at least (1− 4ε1)γi,j,k nice pairs containing v by definition,

and at most (1 + 3ε1)(1 + ε1)γi,j,k nice pairs. Let Xi be the indicator variable that i-th

sample of step 1 in Subroutine Testing-Collision-Subset forms a nice pair with a vertex

in Q. We have

(1− 4ε1)γi,j,k|Q ∩ Ui,j,k|
|Ci,j,k|

≤ Pr[Xi] ≤
(1 + 3ε1)(1 + ε1)γi,j,k|Q|

|Ci,j,k|
.

So the expected number of nice pairs is

(1− 4ε1)(1− 12ε1)γi,j,k|Q||K|
|Ci,j,k|

≤(1− 4ε1)γi,j,k|Q ∩ Ui,j,k||K|
|Ci,j,k|

≤E[X =
∑

Xi]

≤(1 + 3ε1)(1 + ε1)γi,j,k|Q||K|
|Ci,j,k|

.

By Corollary 6.3.5, 1−16ε1
2φ11 ≤ E[X]. By Chernoff bound,

Pr[
(1− 17ε1)γi,j,k|Q||K|

|Ci,j,k|
≤ X ≤ (1 + 5ε1)γi,j,k|Q||K|

|Ci,j,k|
] ≥ 1− exp(−1/φ10)

On the other hand, let Zi be the indicator variable that i-th sampled vertex z of step

1 in Subroutine Testing-Collision-Subset satisfying that there is a vertex x ∈ Q with

M(x, z) ≤ r, but (x, z) is not a nice pair. We have

Pr[Zi] =
|An(Q)|+ |(Q,Ci,j,k ∩ Y )|+ 12ε1|Q|(1 + 3ε1)(1 + ε1)γi,j,k

|Ci,j,k|
≤ 13ε1γi,j,k|Q|

|Ci,j,k|
.

So, E[Z =
∑

Zi] ≤ 13ε1γi,j,k|Q||K|
|Ci,j,k| , and again, by Chernoff bound,

Pr[Z ≥ 14ε1γi,j,k|Q||K|
|Ci,j,k|

] ≤ exp(−1/φ).
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With probability 1 − exp(−1/φ), the total number of nice pairs is at least 1−17ε1
14ε1

times of

the total number of non-nice pairs. Thus, the overall probability of obtaining a nice pair is

at least 1− 15ε1.

Fix a vertex x ∈ Si,j,k with v = Assignto(x) ∈ (Ti,j,k−Li,j,k−L0
i,j,k)∩Q, let pv denote the

probability that a sample in K forms a nice pair with v. So pv is at most
(1+3ε1)(1+ε1)γi,j,k

|Ci,j,k| .

For a non-negative integer α, the probability that there are α samples forming nice pairs

with v is
(|K|

α

)
(1 − pv)

|K|−αpαv , and the probability that the returned pair containing v is

α/(X +Z), where X +Z is within [
(1−17ε1)γi,j,k |Q||K|

|Ci,j,k | ,
(1+20ε1)γi,j,k |Q||K|

|Ci,j,k| ] with probability at

least 1− exp(−1/φ). Let qv be the overall probability that the returned pair is a nice pair

containing x such that Assign(x) = v. We have

qv ≤(1− exp(−1/φ))

|K|∑

α=0

(|K|
α

)
(1− pv)

|K|−αpαv
α

(1− 17ε1)γi,j,k|Q||K|/|Ci,j,k|
+ exp(−1/φ)

≤1 + (1 + o(1))21ε1
|Q| .

Since every vertex v in Ti,j,k have at least βi,j,k and at most (1+ε1)βi,j,k vertices assigned

to v, and βi,j,k|Ti,j,k| ≤ |Si,j,k| ≤ (1 + ε1)βi,j,k|Ti,j,k|, so the probability of returning a nice

pair containing x is at most 1+(1+o(1))21ε1
|Q|(1+ε1)j

≤ (1+22ε1)|Ti,j,k |
|Q||Si,j,k| .

Fix a nice pair (x, y) with v = Assignto(x) ∈ (Ti,j,k−Li,j,k−L0
i,j,k)∩Q, the probability

of sampling y is 1/|Ci,j,k|. For an non-negative integer β, the probability that there are β

samples hitting y is
(|K|

β

)
(1 − 1/|Ci,j,k|)|K|−β(1/|Ci,j,k|)β , and the probability of choosing

(v, y) is β/(X + Z). Thus, the overall probability of choosing (v, y) is at most

(
1− exp

(
− 1

φ

)) |K|∑

β=0

(|K|
β

)(
1− 1

|Ci,j,k|

)|K|−β ( 1

|Ci,j,k|

)β β|Ci,j,k|
(1− 17ε1)γi,j,k|Q||K|

+ exp

(
− 1

φ

)

≤1 + 21ε1
γi,j,k|Q| .

Hence, the probability of returning (x, y) is at most 1+21ε1
γi,j,k |Q|(1+ε1)j

≤ (1+22ε1)|Ti,j,k|
γi,j,k |Q||Si,j,k| .

Lemma 6.4.30. For any Ti,j,k with |Ti,j,k| >
√
n/φ14 and weight(Ti,j,k) ≥ ε22n, if one of

following conditions hold
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1. As(Ti,j,k) < (1− 4ε1)|Ti,j,k|γi,j,k

2. Ab(Ti,j,k) ≥ 2ε21|Ti,j,k|γi,j,k

3. |Y | ≥ φ|Ti,j,k|γi,j,k

4. |Y 0| ≥ 4φ3|Ti,j,k|γi,j,k

then Subroutine Testing-Collision-Ti,j,k rejects with probability at least 1−O(δ/n).

Proof. By Lemma 6.4.18 and Lemma 6.4.24, if the third or fourth conditions hold, then the

subroutine rejects with probability at least 1− δ/n.

Now we consider the case of As(Ti,j,k) < (1 − 4ε1)|Ti,j,k|γi,j,k. Let Xi be the random

variable of As(v) for i-th sampled vertex v. E[X =
∑

Xi] ≤ |As(Ti,j,k)||Q|/|Ti,j,k| ≤
(1−4ε1)γi,j,k|Q|. By Markov inequality, Pr[X ≥ (1−2ε1)γi,j,k|Q|] ≤ 1−4ε1

1−2ε1
. With probability

at least ε1, a random set Q satisfies As(Q) < (1 − 2ε1)|Q|γi,j,k. Hence, with probability

1 − exp(− log(4/δ)/φ7), there are Ω(log(4/δ)/φ7) samples of Q satisfying As(Q) < (1 −
2ε1)|Q|γi,j,k. By Lemma 6.4.15, with overall probability at least 1−O(δ/n), the subroutine

rejects.

Consider the case of Ab(Ti,j,k) ≥ 2ε21|Ti,j,k|γi,j,k. Let Zi be the random variable of As(v)

for i-th sampled vertex v. We have 0 ≤ Zi ≤ (1 + 3ε1)(1 + ε1)γi,j,k, and E[Z =
∑

Zi] =

Ab(Ti,j,k)|Q|/|Ti,j,k| ≥ 2ε21γi,j,k|Q|. By Hoeffding bound, we have Pr[Z ≥ ε21γi,j,k|Q|] ≥
1−exp(−Ω(ε21|Q|)). By Lemma 6.4.16, with probability at least 1−O(φ16), all the sampled

vertices in Q are distinct. Hence, with probability 1−O(φ16), a random set of Q satisfying

Ab(Q) ≥ ε21γi,j,k|Q|. By Lemma 6.4.15, the subroutine rejects such a set with probability

at least 1−O(δ/n).

Lemma 6.4.31. For any Ti,j,k with |Ti,j,k| >
√
n/φ14 and weight(Ti,j,k) ≥ ε22n, either Sub-

routine Testing-Collision-Ti,j,k rejects with probability at least 1−O(δ/n) or Subroutine

Testing-Collision-Ti,j,k satisfies following conditions

1. With probability at least 1− 17ε1, the subroutine returns a nice pair of collision.

2. Fix a vertex x ∈ Si,j,k such that Assignto(x) ∈ Ui,j,k, the probability that the subrou-

tine returns a nice pair of collision containing x is at most 1+22ε1
|Si,j,k| .
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3. Fix a pair of nice collision (x, y) with Assignto(x) ∈ Ui,j,k, the algorithm returns the

pair (x, y) with probability at most 1+22ε1
γi,j,k |Si,j,k| .

Proof. We first consider the case of |Ti,j,k| >
√
n/φ14. By Lemma 6.4.30, we assume

As(Ti,j,k) ≥ (1− 4ε1)|Ti,j,k|γi,j,k, Ab(Ti,j,k) < 2ε21|Ti,j,k|γi,j,k, |Y | < φ|Ti,j,k|γi,j,k and |Y 0| <
4φ3|Ti,j,k|γi,j,k.

Let p be the probability that at least one of following two conditions satisfy for a random

set of Q

1. There exists v,w ∈ Q such that the distance between v and w is distorted.

2. |An(Q)| > ε21φ
10|Q|γi,j,k.

The probability that none of the samples of Q in step 5(a) satisfying at least one of the

above two conditions is (1 − p)log(4/δ)/φ
8
. If p > φ8, then with probability at least 1− δ/4,

there is a sample of Q satisfying at least one of the above two conditions. By Lemma 6.4.15,

the subroutine rejects with probability at least 1− δ/n.

Now we assume p < φ8. By Lemma 6.4.16, with probability 1−O(φ16), all the sampled

vertices in one run of step 5(a) are distinct. By Lemma 6.4.25, the probability that one

vertex sample in 5(a) is in Ui,j,k is at least (1− 10ε1). By Chernoff bound,

Pr[|Q ∩ Ui,j,k| ≥ (1− 12ε1)|Q|] ≥ 1− exp(−Ω(ε21|Q|)).

By Markov inequality, we have |(Q,Ci,j,k)∩Y | > φ|Q|γi,j,k/ε2 with probability 1−ε2. Hence,

the probability that a random set of Q satisfying all the five conditions of Lemma 6.4.29 is

at least 1 − 2ε2, and by Lemma 6.4.29, the probability of returning a nice pair is at least

1 − 15ε1. With probability at most 1 − exp(−1/φ), a fraction of at most 16ε1 returned

pairs are not nice pairs. Hence, with overall probability at least 1−17ε1, the first condition

holds.

Let qv for v ∈ Ui,j,k denote the probability that a set Q sampled in step 5(a) of subroutine

Testing-Collision-Ti,j,k satisfying the v ∈ Q. For any u, v ∈ Ui,j,k, qu = qv. Hence

(1−O(1/
√
n)) |Q|

|Ti,j,k | ≤ qv ≤ |Q|
|Ti,j,k| . By Lemma 6.4.29, for a random set of Q, the probability

of returning x ∈ Si,j,k with Assignto(x) ∈ Ui,j,k is at most 1+22ε1
|Si,j,k| .
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Similarly, by Lemma 6.4.29, the probability of returning (x, y) with Assignto(x) ∈ Ui,j,k

is at most 1+22ε1
γi,j,k |Si,j,k| .

Now we consider the case of |Ti,j,k| <
√
n/φ14. By Lemma 6.4.21 and Lemma 6.4.14,

the first condition holds. The probability that returning a pair containing x ∈ Si,j,k with

v = Assignto(x) is at most 1
|Ti,j,k||Assignto(v)| ≤ 1+ε1

|Si,j,k| .

Fix an arbitrary nice pair (x, y) with v = Assignto(x). If |As(v) ∪ An(v)| is smaller

than (1 − 2ε1)γi,j,k|Q|/|Ci,j,k| or greater than (1 + 5ε1)γi,j,k|Q|/|Ci,j,k|, then the algorithm

rejects with probability at least 1− δ by Chernoff bound. Hence, with probability at least

1− δ/n, there are at least (1− 3ε1)γi,j,k|Q|/|Ci,j,k| vertices in K has distance at most r to

v. The probability of returning (x, y) is at most

1

|Ti,j,k|

(
1− δ

n

)(
1− (1− 1

|Ci,j,k|
)|Q|
) |Ci,j,k|

(1− 3ε1)γi,j,k|Q|
1

|Assignto(v)| +
δ

n
≤ 1 + 22ε1

γi,j,k|Si,j,k|

Now we present an algorithm for the Testing Collision Problem.

Subroutine Testing-Collision:

Input: Two graphs I, J ∈ {G,H}. Ti,j,k, Si,j,k ⊆ VI and Hi,j,k, Ci,j,k ⊆ VJ , Assign(v)

for every v ∈ Ti,j,k, Assignto(v) for every x ∈ Si,j,k, weightw : ∪Ti,j,k → R
≥0, and

parameter δ.

1. For every 0 ≤ i, j, k ≤ 6 log n/ε1 with weightw(Ti,j,k) ≥ ε22n, run Subroutine

Testing-Subset-Collision with Ti,j,k, Si,j,k, Ci,j,k and parameter ε22δ.

2. Reject if any execution of subroutine Testing-Subset-Collision rejects, other-

wise accept.

Proof of Theorem 6.4.5. By Lemma 6.4.22, for any positive instance, the subroutine accepts

with probability at least
(
1− ε22δ

)1/ε22 ≥ 1− δ.

For any negative instance, there are 0 ≤ i, j, k ≤ 6 log n/ε1 such that a total weight of at

least 10ε1weightw(Ti,j,k) vertices in Ti,j,k do not have semi-useful collision. By Lemma 6.4.22,

the subroutine rejects with probability at least 1− δ.
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6.5 Testing label bijection

In this section, we present an efficient algorithm solving the Testing Label Bijection problem,

which bypasses the Ω(n2/3) lower bound of testing identity of two unknown distributions

based on the estimation of neighbor distance metric. We first define the Testing Label

Bijection problem.

Assuming I, J ∈ {G,H} are two distinct graphs.

Definition 6.5.1. A vertex x ∈ Si,j,k is semi-mathched by a vertex y ∈ VJ through z ∈ VJ

if

1. z is a semi-useful collision of v = Assignto(x) ∈ Ti,j,k.

2. ρ3(x, y) ≤ 2σ

3. MJ(z, y) ≤ 5r + 10σ.

Definition 6.5.2. A vertex x ∈ Si,j,k is matched by y ∈ VJ within distance ζ if

1. y is at most φ2-distorted;

2. ρ2(x, y) ≤ 4σ and M(x, y) ≤ ζ;

3. Let v = Assignto(x). There exists a vertex z ∈ VJ such that z is a semi-useful

collision of v satisfying MJ(y, z) ≤ MI(x, v) + 2δ + ζ.

In this section, we solve the following problem.

Problem Testing Label Bijection

Input: Two graphs G and H

Output:

1. Accept with probability 1− δ if all of the following conditions hold
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(a) Every pair of vertices v,w ∈ VG satisfies MI(v,w) − 2σ ≤ M(v,w) ≤
MI(v,w) + 2σ.

(b) Every pair of vertices y, z ∈ VH satisfies MJ(y, z) − 2σ ≤ M(y, z) ≤
MJ(y, z) + 2σ.

(c) There is a bijection π : VG → VH s.t. for any v ∈ VI , M(v, π(v)) = 0.

2. Reject with probability 1−δ if for any mapping π : VG → VH , at least 4εn vertices

x in AG do not satisfy at least one of the following conditions

(a) M(x, π(x)) ≤ 1200r log n/ε1

(b) There is no vertex y ∈ VH such that y matches x within distance 40r, and

MH(π(x), y) ≤ 1200r log n/ε1.

We show that

Theorem 6.5.3. There is an algorithm solving the Testing Label Bijection Problem with

probability at least 1− δ using O((
√
n log n) · 1

φO(1) · log(1/δ) · 1
ε22
) label queries with running

time poly(n, 1
φ ,

1
ε22
, log(1/δ)).

We prove Theorem 6.5.3 in the rest of this section. In Section 6.5.1, we present an

algorithm to solve the Testing Vertex Matching problem, and in Section 6.5.3, we show

how to use the algorithm for Testing Vertex Matching problem solving the Testing Label

Bijection problem.

6.5.1 Testing vertex matching

We consider the following problem.

Problem Testing vertex Matching

Input: Two graphs I and J , vertex subsets Si,j,k, Ti,j,k ⊆ VI , Ci,j,k,Hi,j,k ⊆ VJ for

0 ≤ i, j, k ≤ 6 log n/ε1, robust weight function weightw : ∪Ti,j,k → R
≥0 satisfying

∑
x∈∪Ti,j,k

≥ (1− ε)n, label query oracle O, parameter δ.
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Output:

1. Accept with probability 1− δ if all of the following conditions hold

(a) Every pair of vertices v,w ∈ VI satisfies MI(v,w) − 2σ ≤ M(v,w) ≤
MI(v,w) + 2σ.

(b) Every pair of vertices y, z ∈ VJ satisfies MJ(y, z) − 2σ ≤ M(y, z) ≤
MJ(y, z) + 2σ.

(c) There is a bijection f : VI → VJ s.t. for any v ∈ VI , M(v, f(v)) = 0.

2. Reject with probability 1− δ if a total weight of at least 12ε1n vertices in SI are

not matched within distance 40r.

We prove the following theorem in the rest of Section 6.5.1 by showing that Testing Ver-

tex Matching Problem can be reduced to the Testing Collision problem, and thus Subroutine

Testing-Collision solves the Testing Vertex Matching Problem.

Lemma 6.5.4. There is an algorithm solving the Testing Vertex Matching Problem with

probability at least 1− δ using O((
√
n log n) · 1

φO(1) · log(1/δ) · 1
ε22
) label queries with running

time poly(n, 1
φ ,

1
ε22
, log(1/δ)).

We start from a few more definitions and facts.

Definition 6.5.5. A vertex x ∈ Si,j,k is first type false semi-matched by y through z if the

distance between x and Assignto(x) is distorted by fI .

A vertex x ∈ Si,j,k is second type false semi-matched by y through z if x is not first type

false semi-matched by y through z, and there does not exists a vertex y′ ∈ VJ satisfying that

ρ2(x, y
′) ≤ 4δ, M(x, y′) ≤ 40r, MJ(y

′, z) ≤ 40r and y′ is at most φ2-distorted.

A vertex x ∈ SI is true semi-matched by y through z if x is neither first type nor second

type false semi-matched by y through z.

We have following observations for collision, semi-matching, and matching.

Fact 6.5.6. For any 0 ≤ i, j, k ≤ 6 log n/ε1,
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1. For any vertex v ∈ Ti,j,k, if z ∈ VJ is a collision of v, then z ∈ Ci,j,k.

2. For any vertex x ∈ Si,j,k, if z ∈ Ci,j,k is a semi-useful collision of Assignto(x),

then x is semi-matched by a vertex u ∈ Hi,j,k through z satisfying MJ(u, z) ≤
MI(x,Assignto(x)) + 2σ.

3. For any vertex x ∈ Si,j,k, if x is matched by y within distance 40r or semi-matched by

y ∈ VJ , then y ∈ Hi,j,k.

4. If a vertex x ∈ Si,j,k is true semi-matched by y through z, then there exists a vertex

y′ ∈ VJ matching x within distance 40r.

Proof. For the first argument, if z is a collision of v, then there is a vertex u ∈ YJ satisfying

ρ4(v, u) ≤ 2δ and MJ(z, u) ≤ r + 2δ. Since w is a robust weight function, u ∈ Hi,j,k and

thus z ∈ Ci,j,k.

The second argument follows from the definition of Hi,j,k and the robust weight function.

Now we prove the third argument. Using the first argument, there is a vertex y ∈ Ci,j,k

satisfying MJ(y, z) ≤ r + 2δ and ρ4(Assignto(x), y) ≤ 2σ. Hence there is a bijection

g : VI → VJ such that g(Assignto(x)) = y and for any v ∈ VG

max{|MI(Assignto(x), v) −MJ(y, g(v))|, ρ3(v, g(v))} ≤ 2σ.

Hence ρ3(x, g(x)) ≤ 2σ and MJ(y, g(x)) ≤ MI(Assignto(x), x) + 2σ ≤ 4r + 8σ. Since

MJ(z, g(x)) ≤ MJ(z, y) +MJ (y, g(x)) ≤ 5r + 10σ, x is semi-matched by g(x).

For the fourth argument, there exists a vertex y′ ∈ VJ satisfying that ρ2(x, y
′) ≤ 4δ,

M(x, y′) ≤ 40r, MJ(y
′, z) ≤ 40r and y′ is at most φ2-distorted. By Definition 6.5.2, y

matches x within distance 40r.

Lemma 6.5.7. Fix a vertex y ∈ Hi,j,k, if there is a vertex x ∈ Si,j,k such that x is second

type false semi-matched vertex by y, then vertex y is an at least φ2-distorted vertex.

Proof. Without loss of generality, assume x is second type false semi-matched by y through

z ∈ Ci,j,k. Let v = Assignto(x). Since ρ3(x, y) ≤ 2σ and MJ(z, y) ≤ 5r + 10σ, either y is

at least φ2-distorted, or M(x, y) > 40r.
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In the following, we show that M(x, y) > 40r implies that y is at least φ2-distorted.

Assume M(x, y) > 40r. We have

M(x, y) ≤ M(x, v) +M(v, z) +M(z, y).

Since x is not first type semi-matched by y through z, M(x, v) ≤ MI(x, v)+ 2σ ≤ 4r+8σ.

Together with M(v, z) ≤ r, we have M(y, z) > 40r − 5r − 8σ = 35r − 8σ. However, by

Definition 6.5.1, MJ (y, z) ≤ 5r + 10σ.

Since z is a semi-useful collision to v, there are at least (1 − 2ε1)|BI(v, r)| vertices

u ∈ BJ(z, 2r + 6σ) satisfying M(v, u) ≤ r. For every such vertex u, we have MJ(u, y) ≤
MJ(u, z) +MJ(z, y) ≤ 2r + 6σ + 5r + 10σ = 7r + 16σ. On the other hand,

M(u, y) ≥ M(y, z)−M(u, z) ≥ M(y, z)− (M(u, v)+M(v, z)) ≥ 35r−8σ−2r ≥ 33r−8σ.

So, the distance between u and y is distorted. Thus, there are at least (1 − 2ε1)|BI(v, r)|
vertices in BJ(z, 2r + 6σ) have distance distorted to y.

On the other hand, BI(v, r) ⊆ BI(x, 5r+6σ). Since |BI(x, 40r)|/|BI (x, r)| ≤ 1/2φ, with

ρ3(x, y) ≤ 2δ, we have

|BI(v, r)| ≥ 2φ|BI(x, 5r + 6σ)| ≥ 2φ|BJ (y, 5r + 4σ)| ≥ 4φ2|BJ(y, 40r)|.

Using BJ(z, 2r + 6σ) ⊆ BJ(y, 7r + 16σ), vertex y is at least φ2 distorted.

Lemma 6.5.8. Let y ∈ Hi,j,k be an at least φ2-distorted vertex. If there are totally at most

φ4|Hi,j,k|/
√
n vertices in Hi,j,k at least φ2-distorted, then there are at most 16φ3|Hi,j,k|/

√
n

vertices in Si,j,k second type false semi-matched by y.

Proof. Fix a vertex z ∈ Ci,j,k satisfying that there is a vertex x ∈ Si,j,k semi-matched by y

through z, let

Dz = {u ∈ Ci,j,k : MJ(y, u) ≤ 7r + 16σ and M(z, u) ≤ 2r}

and

Cz = {u ∈ Ci,j,k : MJ(y, u) ≤ 7r + 16σ and M(z, u) ≤ 4r + 2σ}.

Since x is second type false semi-matched by y through z, z is a semi-useful collision to

v = Assignto(x). Let v′ be the vertex in Hi,j,k satisfying ρ4(v
′, v) ≤ 2σ and MJ (v

′, z) ≤
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r + 2σ. We have MJ(v
′, y) ≤ MJ(v

′, z) + MJ(z, y) ≤ r + 2σ + 5r + 10σ ≤ 6r + 12σ.

Hence, at least (1− 2ε1)|BI(v, r)| vertices u ∈ BJ(z, 2r+6σ) satisfying M(v, u) ≤ r. Since

MJ(u, y) ≤ MJ(u, z) +MJ(z, y) ≤ 2r + 6σ + 5r + 10σ ≤ 7r + 16σ, these vertices u are in

Dz, and thus

|Cz| ≥ |Dz|

≥ (1− 2ε1)|BI(v, r)|

≥ 2(1− 2ε1)φ|BI(v, 40r)|

> φ|BJ(v
′, 40r − 2δ)|

≥ φ|BJ(y, 7r + 16σ)|.

Let Gz be the set of vertices in Si,j,k which are second type false semi-matched by y

through some vertex in Cz. We prove that |Gz | is at most 8φ4|Hi,j,k|/
√
n by contradiction.

Assume |Gz | > 8φ4|Hi,j,k|/
√
n. For every vertex x ∈ Gz, assume y semi-matches x through

u ∈ Cz, we have

M(x, z) ≤ M(x,Assignto(x))+M(Assignto(x), u)+M(u, z) ≤ 4r+8σ+r+4r+2σ ≤ 9r+10σ.

Hence, for every pair of vertices v, t in Gz satisfying

M(v, t) ≤ M(v, z) +M(z, t) ≤ 18r + 20σ.

If for every vertex x ∈ Gz , there are at least |Gz | − 4φ4|Hi,j,k|/
√
n vertices in Gz

with distance distorted to x. Then Gz is a distorted set for Hi,j,k. Otherwise, there is a

vertex x ∈ Gz such that there are at least 4φ4|Hi,j,k|/
√
n vertices in Gz with distance not

distorted to x. Let set Ux be this set of vertices. Since ρ3(x, y) ≤ 2σ, there exists a bijection

g : VG → VH such that g(x) = y and for any v ∈ VG

max{|MI(x, v)−MJ(y, g(v))|, ρ2(v, g(v))} ≤ 2σ.

Thus, for any v ∈ Ux, ρ2(v, g(v)) ≤ 2σ. Since there are at most φ4|Hi,j,k|/
√
n vertices that

are at least φ2-distorted, there is a v ∈ Ux such that g(v) is a vertex less than φ2-distorted.

Let t ∈ Cz be the vertex such that v is second type false semi-matched by y through t. We

have

MJ(y, g(v)) ≤ MI(x, v) + 2σ ≤ M(x, v) + 4σ ≤ 18r + 24σ



CHAPTER 6. PROPERTY TESTING OF GRAPH ISOMORPHISM 139

(the last inequality uses the condition of v ∈ Ux), and

MJ(t, g(v)) ≤MJ(t, z) +MJ(z, y) +MJ (y, g(v))

≤7r + 16σ + 5r + 10σ +MJ(y, g(v))

≤30r + 50σ.

Now we prove M(z, g(v)) ≤ 28r by contradiction. Assume M(z, g(v)) > 28r, then

every vertex u ∈ Dz satisfies M(g(v), u) ≥ M(g(v), z) − M(z, u) > 28r − 2r = 26r and

MJ(g(v), u) ≤ MJ(g(v), y) +MJ(y, u) ≤ 18r + 24σ + 7r + 16σ ≤ 25r + 40σ. So, at least

|Dz| ≥ φ|BJ (y, 7r + 16σ)| ≥ 2φ2|BJ (y, 40r)| ≥ 2φ2|BJ (g(v), 22r − 24σ)|

vertices in BJ(y, 7r + 16σ) have distance distorted to g(v). Thus, g(v) is an at least φ2-

distorted vertex, a contradiction.

On the other hand, M(v, z) ≤ M(v,Assignto(v)) + M(Assignto(v), w) + M(w, z) ≤
5r + 12δ + r + 4r + 2σ ≤ 10r + 14σ, and thus

M(v, g(v)) ≤ M(v, z) +M(z, g(v)) ≤ 10r + 14σ + 28r ≤ 38r + 14σ.

So, v is not second type false semi-matched by y through w, a contradiction. Hence |Gz | ≤
8φ4|Hi,k|/

√
n.

We find a sequence of vertices z1, z2, . . . , zk ∈ BJ(y, 5r+10σ) such that for each zi, there

exists a x ∈ Si,j,k which is second type false semi-matched by y through zi, and zi /∈ ∪j<iCzj .

We have Dzi ∩Dzj = ∅, then

k ≤ |BJ(y, 7r + 16σ)|
mini |Dzi |

≤ |BJ(y, 7r + 16σ)|
φ|BJ(y, 7r + 16σ)| .

Thus k ≤ 1/φ. Then the lemma follows.

By Lemma 6.5.7 and Lemma 6.5.8, we have

Corollary 6.5.9. If following two conditions are satisfied

1. there are totally at most φ4|Hi,j,k|/
√
n vertices in Hi,j,k that are at least φ2-distorted,

2. at most |Si,j,k|/
√
n vertices x in Si,j,k have the distance distorted to x,
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then there are at most 16φ7|Hi,j,k|2/n+ |Si,j,k|/
√
n vertices in Si,j,k semi-matched, but not

true semi-matched.

Lemma 6.5.10. Let M ⊆ Ti,j,k be the set of vertices with semi-useful collisions. If following

two conditions are satisfied

1. there are totally at most φ4|Hi,j,k|/
√
n vertices in Hi,j,k that are at least φ2-distorted,

2. at most |Si,j,k|/
√
n vertices x in Si,j,k have the distance distorted to Assignto(x),

then a total weight of at least weightw(M)− 64φ7n vertices in Si,j,k are matched by vertices

in Ci,j,k.

Proof. By Fact 6.5.6, a total weight of weightw(M) are semi-matched by some vertices in

Hi,j,k. By Corollary 6.5.9, a total weight of at least

weightw(M)− (16φ7|Hi,j,k|2/n + |Si,j,k|/
√
n)(1 + ε1)αi,j,k

vertices in Si,k are true semi-matched. By Fact 6.3.3, |Hi,j,k| ≤ min{n, n
(1−6ε1)αi,j,k

}, and
thus

16φ7(1 + ε1)αi,j,k|Hi,j,k|2
n

≤ 32φ7 min{αi,j,kn,
n

αi,j,k
} ≤ 32φ7n.

We also have (1 + ε1)αi,j,k|Si,j,k|/
√
n ≤ 2

√
n. Hence a total weight of at least

weightw(M)− 32φ7n− 2
√
n ≥ weightw(M)− 64φ7n

vertices in Si,k are true semi-matched. By Fact 6.5.6, we obtain the lemma.

Proof of Lemma 6.5.4. By Theorem 6.4.5, the subroutine accepts with probability at least

1− δ for any accept instance.

Now we consider an negative instance. Since a total weight of at least 12ε1n vertices are

not matched by vertices in VJ , there are 0 ≤ i, j, k ≤ 6 log n/ε1 with weightw(Ti,j,k) ≥ ε22n

such that a total weight of at least 11ε1weightw(Ti,j,k) vertices in Si,j,k are not matched by

vertices in VJ . By Lemma 6.4.22 and Lemma 6.5.10, the subroutine rejects with probability

at least 1− δ.
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6.5.2 Flow index

Definition 6.5.11. For any I ∈ {G,H}, and a vertex y ∈ MI , let

α1(y, z) =





1 if MI(y, z) ≤ r − 3µ

(1− ε1
64(log n)2

)(MI (y,z)−r+3µ)/σ if MI(y, z) > r − 3µ

and α1(y) =
∑

z α1(y, z), let

β1(y, z) =





1 if |MI(y, z)− r| ≤ 2µ

(1− ε1
64(log n)2 )

(|MI(y,z)−r|−2µ)/σ if |MI(y, z)− r| > 2µ

and β1(y) =
∑

z β1(y, z), and let

t1(y) =





1 if β1(y)/α1(y) ≤ ε1/3(
ε1α1(y)
3β1(y)

)8 logn
if β1(y)/α1(y) > ε1/3

Lemma 6.5.12. If µ ≥ 128(log n)3σ/ε1, then for any vertex y ∈ VI

1. If |BI(y, r + 2µ)|/|BI (y, r − 2µ)| ≥ 1 + ε1/2, then t1(y) ≤ 2/n2;

2. If |BI(y, r + 3µ)/|BI(y, r − 3µ)| ≤ 1 + ε1/3, then 1− o(1) ≤ t1(y) ≤ 1;

3. If ρ0(y, y
′) ≤ kσ with k ≤ 2 log n/ε1, then

(
1− k

2 log n
ε1

)
t1(y

′) ≤ t1(y) ≤
(
1 +

k

2 log n
ε1

)
t1(y

′).

Proof. Since µ ≥ 128(log n)3σ/ε1, for any z with MI(y, z) > r − 2µ, we have

α1(y, z) ≤
(
1− ε1

64(log n)2

)µ/σ

≤
(
1− ε1

64(log n)2

)128(log n)3/ε1

≤ 1

n2
.

Thus,

|BI(y, r − 3µ)| ≤ α1(y) ≤ |BI(y, r − 2µ)|+ 1

n
.

Similarly, for any z with |MI(y, z) − r| > 3µ, we have

β1(y, z) ≤
(
1− ε1

64(log n)2

)µ/σ

≤
(
1− ε1

64(log n)2

)128(log n)3/ε1

≤ 1

n2
,

and thus

|BI(y, r − 2µ, r + 2µ)| ≤ β1(y) ≤ |BI(y, r − 3µ, r + 3µ)|+ 1

n
.
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If |BI(y, r + 2µ)|/|BI (y, r − 2µ)| ≥ 1 + ε1/2, then

β1(y)

α1(y)
≥ |BI(y, r − 2µ, r + 2µ)|

|BI(y, r − 2µ)|+ 1/n
≥ n

n+ 1

|BI(y, r − 2µ, r + 2µ)|
|BI(y, r − 2µ)| ≥ ε1n

2(n+ 1)
,

t1(y) ≤
(
ε1
3

2

ε1

(
1 +

1

n

))8 logn

≤ 2

n2
.

If |BI(y, r + 3µ)/|BI(y, r − 3µ)| ≤ 1 + ε1/3, then

β1(y)

α1(y)
≤ |BI(y, r − 3µ, r + 3µ)|+ 1/n

|BI(y, r − 3µ)| ≤ |BI(y, r − 3µ, r + 3µ)|
|BI(y, r − 3µ)| +

1

n
≤ ε1

3
+ 1/n,

t1(y) ≥
(
ε1
3

1

ε1/3 + 1/n

)8 logn

≥
(
1− 3

nε1

)8 logn

= 1− o(1).

If ρ0(y, y
′) ≤ kσ, then there exists a bijection g : VI → VJ such that

1. g(y) = y′;

2. for any z ∈ VI MJ(y
′, g(z)) − kσ ≤ MI(y, z) ≤ MJ(y

′, g(z)) + kσ.

Then, (1 − ε1
64(log n)2

)kα1(y
′) ≤ α1(y) ≤ 1

(1−ε1/64(log n)2)k
α1(y

′) and (1 − ε1
64(log n)2

)kβ1(y
′) ≤

β1(y) ≤ 1
(1−ε1/64(log n)2)k

β1(y
′). Thus

(
1− kε1

2 log n

)
t1(y

′) ≤
(
1− ε1

64(log n)2

)16k logn

t1(y
′) ≤ t1(y)

≤ 1

(1− ε1
64(log n)2 )

16k logn
t1(y

′)

≤
(
1 +

kε1
2 log n

)
t1(y

′).

Definition 6.5.13. Let I ∈ {G,H}. Given a vertex y ∈ MI . Let

α2(y, z) =





1 if MI(y, z) ≤ r − 3µ

(1− ε1
64(log n)2

)(MI (y,z)−r+3µ)/σ if MI(y, z) > r − 3µ

and α2(y) =
∑

z α2(y, z). Let

β2(y, z) =





1 if MI(y, z) ≤ 1600r log n/ε1 + 2µ

(1− ε1
64(log n)2 )

(MI (y,z)−1600r logn/ε1−2µ)/σ if MI(y, z) > 1600r log n/ε1 + 2µ

and β2(y) =
∑

z β2(y, z).
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Finally, let

t2(y) =





1 if β2(y)/α2(y) ≤ 3φ
(
φα2(y)
β2(y)

)8 logn
if β2(y)/α2(y) > 3φ

Lemma 6.5.14. If µ ≥ 128(log n)3σ/ε1, then for any vertex y ∈ VI

1. If |BI(y, 1600r log n/ε1 + 2µ)|/|BI(y, r − 2µ)| ≥ 1
2φ , then t2(y) ≤ 2/n2;

2. If |BI(y, 1600r log n/ε1 + 3µ)|/|BI(y, r − 3µ)| ≤ 1
3φ , then 1− o(1) ≤ t2(y) ≤ 1;

3. If ρ0(y, y
′) ≤ kδ with k ≤ 2 log n/ε1, then

(
1− ε1k

2 log n

)
t2(y

′) ≤ t2(y) ≤
(
1 +

ε1k

2 log n

)
t2(y

′).

Proof. Since µ ≥ 128(log n)3σ/ε1, for any z with MI(y, z) > r − 2µ, we have

α2(y, z) ≤
(
1− ε1

64(log n)2

)µ/σ

≤
(
1− ε1

64(log n)2

)128(log n)3/ε1

≤ 1

n2
.

Thus,

|BI(y, r − 3µ)| ≤ α2(y) ≤ |BI(y, r − 2µ)|+ 1

n
.

Similarly, for any z with MI(y, z) > 1600r log n/ε1 + 3µ, we have

β2(y, z) ≤
(
1− ε1

64(log n)2

)µ/σ

≤
(
1− ε1

64(log n)2

)128(log n)3/ε1

≤ 1

n2
,

and thus

|BI(y, 1600r log n/ε1 + 2µ)| ≤ β2(y) ≤ |BI(y, 1600r log n/ε1 + 3µ)|+ 1

n
.

If |BI(y, 1600r log n/ε1 + 2µ)|/|BI(y, r − 2µ)| ≥ 1
2φ , then

β2(y)

α2(y)
≥ |BI(y, 1600r log n/ε1 + 2µ)|

|BI(y, r − 2µ)|+ 1/n
≥ n

n+ 1

|BI(y, 1600r log n/ε1 + 2µ)|
|BI(y, r − 2µ)| ≥ n

2φ(n+ 1)
,

t2(y) ≤
(

1

3φ
2φ

(
1 +

1

n

))8 logn

≤ 2

n2

If |BI(y, 1600r log n/ε1 + 3µ)|/|BI(y, r − 3µ)| ≤ 1
3φ , then

β2(y)

α2(y)
≤ |BI(y, 1600r log n/ε1 + 3µ)|+ 1/n

|BI(y, r − 3µ)| ≤ |BI(y, 1600r log n/ε1 + 3µ)|
|BI(y, r − 3µ)| +

1

n
≤ 1

3φ
+

1

n
,

t2(y) ≥
(

1

3φ

3φn

3φ+ n

)8 logn

≥
(
1− 3φ

n+ 3φ

)8 logn

= 1− o(1)

If ρ0(y, y
′) ≤ kσ, then there exists a bijection g : VI → VJ such that
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1. g(y) = y′;

2. for any z ∈ VI , MJ(y
′, g(z)) − kσ ≤ MI(y, z) ≤ MJ(y

′, g(z)) + kσ.

Then,
(
1− ε1

64(log n)2

)k
α2(y

′) ≤ α2(y) ≤ 1
(1−ε1/64(log n)2)k

α2(y
′) and (1− ε1

64(log n)2
)kβ2(y

′) ≤
β2(y) ≤ 1

(1−ε1/64(log n)2)k
β2(y

′) hold. Thus

(
1− ε1k

2 log n

)
t2(y

′) ≤
(
1− ε1

64(log n)2

)16k logn

t2(y
′) ≤ t2(y)

≤ 1

(1− ε1
64(log n)2

)16k logn
t2(y

′)

≤
(
1 +

ε1k

2 log n

)
t2(y

′).

Definition 6.5.15. Given a metrics MI with I ∈ {G,H} and a parameter r, the flow

index from y ∈ I to z ∈ I is

fiI(y, z) =
fi′
I(y, z)∑

w∈MI
fi′
I(y,w)

where

fi′
I(y, z) = (1− ε1/2)

MI (y,z)/80r · t1(z) · t2(z).

Let fiI(y) =
∑

z∈VI
fiI(y, z).

Let fīI(y, z) = fiI(z, y), and fīI(y) =
∑

z∈VI
fīI(y, z).

Lemma 6.5.16. Let I, J ∈ {G,H}. If two vertices x, v ∈ VI and y,w ∈ VJ satisfying

1. ρ1(x, y) ≤ kσ

2. max{|MI(x, v) −MJ(y,w)|, |ρ0(v)− ρ0(w)|} ≤ kδ

with k ≤ logn
10ε1

, then
(
1− 7kε1

2 logn

)
fiJ(y,w) ≤ fiI(x, v) ≤

(
1 + 7kε1

2 logn

)
fiJ(y,w).

Proof. Since ρ1(x, y) ≤ kσ, there exists a bijection g : VI → VJ satisfying

1. g(x) = y;

2. for any z ∈ VI , MJ(y, g(z)) − kσ ≤ MI(x, z) ≤ MJ(y, g(z)) + kσ;
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3. for any z ∈ VI , ρ0(z, g(z)) ≤ kσ.

By Lemma 6.5.12 and 6.5.14, for any z ∈ VI ,
(
1− ε1k

2 logn

)2
t1(g(z))t2(g(z)) ≤ t1(z)t2(z) ≤

(
1 + ε1k

2 logn

)2
t1(g(z))t2(g(z)). Hence, for any z ∈ VI we have

(
1− 3kε1

2 log n

)
fi′
J(y, g(z)) ≤ fi′

I(x, z) ≤
(
1 +

3kε1
2 log n

)
fi′
J(y, g(z)),

and thus if z ∈ VI , z
′ ∈ VJ satisfying max{|MI(z, z

′) − MJ(z, z
′)|, |ρ0(z) − ρ0(z

′)|} ≤ kδ,

then (
1− 7kε1

2 log n

)
fiJ(y, z

′) ≤ fiI(x, z) ≤
(
1 +

7kε1
2 log n

)
fiJ(y, z

′). (6.5)

Lemma 6.5.17. Let I, J ∈ {G,H}. If two vertices x ∈ VI and y ∈ VJ satisfying ρ2(x, y) ≤
kσ with k ≤ logn

10ε1
, then

(
1− 7kε1

2 logn

)
fīJ(y) ≤ fīI(x) ≤

(
1 + 7kε1

2 logn

)
fīJ(y).

Proof. Since ρ2(x, y) ≤ kδ, there exists a bijection g′ : VI → VJ satisfying

1. g′(x) = y;

2. for any z ∈ VI , max{|MI(x, z) −MJ (y, g
′(z))|, |ρ1(z)− ρ1(g

′(z))|} ≤ kδ.

By Lemma 6.5.16, for any z ∈ VI ,

(
1− 7kε1

2 log n

)
fiJ(g

′(z), y) ≤ fiI(z, x) ≤
(
1 +

7kε1
2 log n

)
fiJ(g

′(z), y),

and thus
(
1− 7kε1

2 logn

)
fīJ(y) ≤ fīI(x) ≤

(
1 + 7kε1

2 logn

)
fīJ(y).

Lemma 6.5.18. For any vertex x ∈ AI , the total internal flow from x to VI −SI is at least

1−O(1/n).

Proof. By Lemma 6.5.12 and 6.5.14, t1(x) = Ω(1) and t2(x) = Ω(1). Thus, fi′
I(x, x) = Ω(1).

On the other hand, by Lemma 6.5.12 and 6.5.14, either t1(y) = O(1/n2) or t2(y) = O(1/n2)

holds for any y ∈ VI −SI . So, fi
′
I(x, y) = O(1/n2). Hence

∑
y∈DI

fiI(x, y) =

∑
y∈SI

fi
′

I (x,y)∑
y∈VI

fi
′

I(x,y)
=

O(1/n).

We define the crossing flow from vertices of graph G to vertices of graph H.
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Definition 6.5.19. Given two graphs G,H with distance metrics MG,MH and a param-

eter r. For a vertex x ∈ VG, if there is a vertex x′ ∈ VH matching x within distance 40r,

then the crossing flow index from x to y ∈ VH is

cross(x, y) = fi(x′, y).

If there are more than one such x′, then use an arbitrary one. If there is no vertex in VH

matching x, then cross(x, y) = 0 for any y ∈ VH .

6.5.3 Testing label bijection

Let π be a bijection from vertices of G to vertices of H. We say π preserves crossing flow

cross if the following two conditions holds

1. M(x, π(x)) ≤ 1200r log n/ε1

2. The distance between π(x) and the vertex deciding the crossing flow from x to VH is

at most 1200r log n/ε1 in MJ .

Let SHℓ for 0 ≤ ℓ ≤ 6 log n/ε1 be set of all the vertices y in SH with (1 + ε1)
ℓ/n2 ≤

fīH(y) < (1 + ε1)
ℓ+1/n2. We prove the following sufficient condition for the existence of

bijection preserving crossing flow.

Lemma 6.5.20. If following conditions hold,

1. A total weight of at most
√
n vertices in VG are at least φ2-distorted for fI with weight

function fi.

2. A total weight of at most
√
n vertices in VH are at least φ2-distorted for fH with weight

function fī.

3. A total weight of at most 12ε1n vertices in SG are not matched by vertices in VH

within distance 40r using weight function fi.

4. A total weight of at most 12ε1n vertices in SH are not matched by vertices in VG

within distance 40r using weight function fī.

5. For any SHi, SHi is not a distorted set for VH .
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then there exists a mapping π : VG → VH such that for at least (1− 4ε)n vertices x in AG,

a. M(x, π(x)) ≤ 1200r log n/ε1

b. The distance between π(x) and the vertex deciding the crossing flow from x to VH is

at most 1200r log n/ε1 in MJ .

Lemma 6.5.21. For any vertex x ∈ AI for I ∈ {G,H}, the total flow from x to VI −
BI(x, 320r log n/ε1) is at most O(1/n).

Proof. By Lemma 6.5.12 and 6.5.14, t1(x) = Ω(1) and t2(x) = Ω(1), and thus, fi′
I(x, x) =

Ω(1). For any v ∈ VI − BI(x, 320r log n/ε1), we have fi′
I(x, y) ≤ (1 − ε1/2)

320r logn/80rε1 =

O(1/n2). Hence, the total flow from x to VI −BI(x, 320r log n/ε1) is at most O(1/n).

Let A′
G be the set of vertices in AG matched by vertices in VJ .

Lemma 6.5.22. The total crossing flow from A′
G to SH is at least |A′

G| −O(1).

Proof. We prove that for any vertex x ∈ A′
G, the total flow from x to VH − SH is O(1/n),

and then the total flow from A′
G to VH − SH is O(n · 1

n) = O(1). Let x′ ∈ H be the vertex

deciding the crossing flow from x to VH . Since ρ2(x, x
′) ≤ 2σ, by Lemma 6.5.12 and 6.5.14,

t1(x
′) = Ω(1) and t2(x

′) = Ω(1). Thus, fi′
H(x′, x′) = Ω(1). On the other hand, by Lemma

6.5.12 and 6.5.14, either t1(y) = O(1/n2) or t2(y) = O(1/n2) holds for any y ∈ VH − SH .

So, fi′
H(x′, y) = O(1/n2). Hence

∑
y∈VH−SH

cross(x, y) =

∑
y∈VH−SH

fi
′

H (x′,y)
∑

y∈VH
fi
′

H(x′,y)
= O(1/n).

Let ΨH be the set of vertices y ∈ SH such that there is no z′ ∈ VG matching z within

distance 40r. For every vertex z ∈ SH −ΨH , let τ(z) be a vertex in VG matching z within

distance 40r. If there is more than one possible τ(z), then use an arbitrary one. We say a

pair (x ∈ A′
G, z ∈ SH −ΨH) is bad if

1. The distance between x and τ(z) is not distorted by fG, andMG(x, τ(z)) ≤ 320r log n/ε1.

2. MH(x′, z) ≥ MG(x, τ(z)) + 300r.

For a bad pair (x, z), let the expected flow from x to z be fiG(x, τ(z)).

Lemma 6.5.23. If the conditions of Lemma 6.5.20 satisfy, then the total amount of expected

flow of bad pairs is at most φn.
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Proof. We show that if the total amount of expected flow of bad pairs is more than φn,

then there exists a SHℓ such that either SHℓ is a distorted set of VH , or VG is a distorted

set.

We consider a set SHℓ such that the total amount of expected flow for bad pairs between

A′
G and SHℓ−ΨH is at least ε1φn

10 logn . For any y ∈ VH , let determine(y) be the set of vertices

in SG such that the flow of x is determined by y, qℓ(y) be the total amount of expected flow

of bad pairs from determine(y) to vertices in SHℓ − ΨH , and Badℓ(y) be the set of all the

vertices z ∈ SHℓ −ΨH such that there is a x ∈ determine(y) forming bad pair with z.

For any y ∈ SHℓ−ΨH , any z ∈ Badℓ(y), let x be a vertex in determine(y) such that (x, z)

is a bad pair. M(y, z) ≤ M(y, x)+M(x, τ(z))+M(τ(z), z) ≤ 40r+MG(x, τ(z))+2δ+40r.

For any vertex u ∈ BH(y, 80r+8δ) such that the distance between u and y is not distorted,

M(u, z) ≤ M(u, y) +M(y, z) ≤ MG(x, τ(z)) + 160r + 10δ. On the other hand,

MH(u, z) ≥ MH(y, z)−MH (u, y) ≥ MG(x, τ(z))+300r−80r−8δ = MG(x, τ(z))+220r−8δ.

Hence, the distance between u and z is distorted.

Consider the case that there exists a y ∈ SHℓ − ΨH such that qℓ(y) ≥ √
n. Then

|determine(y)| ≥ √
n. If there exists a vertex x ∈ determine(y) satisfying |{v ∈ determine(y) :

MG(x, v) ≤ 80r+4δ}| ≥ √
n/2, then |BH(y, 80r+8δ)| ≥ √

n/2 by ρ2(x, y) ≤ 4δ. Since y is at

most φ2-distorted, at least
√
n/4 vertices in BH(y, 80r+8δ) have distance at most 80r+10δ

to y inM, and then all these vertices has distance distorted to every vertex of Badℓ(y) by fH .

On the other hand, since qℓ(y) ≥
√
n and fī function is robust, |Badℓ(y)| ≥ max{1, n5/2

(1+ε1)ℓ+2}.
Using the fact that |SHℓ| ≤ n3/(1+ ε1)

ℓ, SHℓ is a distorted set of VH . Otherwise, for every

x ∈ determine(y), at least
√
n/2− 1 vertices in determine(y) have distance distorted to x by

fG. Hence determine(y) is a distorted set of VG.

Now we assume qℓ(y) <
√
n for every y. For any vertex z ∈ SHℓ−ΨH , the total amount

of expected flow from vertices in AG to z is at most (1+ε1)ℓ+2

n2 . Since |SHℓ| ≤ n3

(1+ε1)ℓ
, and

the total amount of expected flow to vertices in SHℓ is at least ε1φn
10 logn , SHℓ is a distorted

set of VH .

Definition 6.5.24. We say the crossing flow from x ∈ AG to y ∈ SH −ΨH is an effective

crossing flow with respect to mapping fG and fH if
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1. Vertex x is at most φ2-distorted, and the crossing flow from x to VH is decided by a

vertex x′ ∈ VH matching x within distance 40r.

2. Vertex y is at most φ2-distorted.

3. The distance between x and τ(y) is not distorted by fG.

4. MH(x′, y) < MG(x, τ(y)) + 300r

5. M(x, y) ≤ 400r log n/ε1

For any vertex y ∈ SH , let eff(y) be the total amount of effective flow from vertices in

SG to y, and ub(y) = min{fiH(y), eff(y)}.

Lemma 6.5.25. If the conditions of Lemma 6.5.20 satisfy, then
∑

y∈SH
ub(y) ≥ (1− 2ε)n.

Proof. For any vertex y ∈ SH−ΨH , let Γ(y) be the set of vertices inBG(τ(y), 320r log n/ε1)∩
AG with effective flow to y, and ∆(y) = (BG(τ(y), 320r log n/ε1)∩AG)\Γ(y). We first bound
∑

y∈SH−ΨH ,x∈∆(y) fiG(x, τ(y)).

Let Pi be the set of pairs (x ∈ AG, y ∈ SH −ΨH) with x ∈ ∆(y) such that the crossing

flow from x to y does not satisfying the i-th condition of Definition 6.5.24 for 1 ≤ i ≤ 5,

and P ′
i = Pi − ∪j<iPi.

Since at most
√
n vertices in VG are at least φ2-distorted, and at most 12ε1n vertices in

AG are not matched by vertices in VH ,
∑

(x,y)∈P ′

1
fiG(x, τ(y)) ≤

√
n+ 12ε1n.

Since a total weight of at most
√
n vertices in VH are at least φ2-distorted using fī weight

function,
∑

(x,y)∈P ′

2
fiG(x, τ(y)) ≤

√
n.

Since every vertex τ(y) is at most φ2-distorted,
∑

(x,y)∈P ′

3
fiG(x, τ(y)) ≤ φ2n.

If a pair (x, y) ∈ P ′
4, then (x, y) is a bad pair. By Lemma 6.5.23,

∑
(x,y)∈P ′

3
fiG(x, τ(y)) ≤

φn.

For any pair (x, y) with x ∈ BG(τ(y), 320r log n/ε1) satisfies the first four conditions of

Definition 6.5.24, the fifth condition is also satisfied.

Hence,
∑

y∈SH−ΨH ,
x∈∆(y)

fiG(x, y
′) ≤ √

n+ 12ε1n+
√
n+ φ2n+ φn ≤ 13ε1n.
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LetWH(y) = BH(y, 320r log n/ε1+2δ)∩ZH For any y ∈ SH−ΨH , Since ρ2(y, τ(y)) ≤ 4δ,

by Lemma 6.5.16,

∑

x∈Γ(y)∪∆(y)

fiG(x, τ(y)) ≥ (1− ε1)
∑

z∈WH(y)

fiH(z, y).

Since
∑

x∈Γ(y) cross(x, y) ≥ (1− 3ε1)
∑

x∈Γ(y) fiG(x, τ(y)), we have

eff(y) ≥
∑

x∈Γ(y)
cross(x, y)

≥(1− 3ε1)
∑

x∈Γ(y)
fiG(x, τ(y))

≥(1− 3ε1)


(1− ε1)

∑

z∈WH(y)

fiH(z, y)−
∑

x∈∆(y)

fiG(x, τ(y))




≥(1− 4ε1)
∑

z∈WH(y)

fiH(z, y)− (1− 3ε1)
∑

x∈∆(y)

fiG(x, τ(y)).

Hence

∑

y∈SH−ΨH :
fiH (y)>eff(y)

ub(y) ≥
∑

y∈SH−ΨH :
fiH(y)>eff(y)


(1− 4ε1)

∑

z∈WH(y)

fiH(z, y)− (1− 4ε1)
∑

x∈∆(y)

fiG(x, τ(y))


 .

If fiH(y) ≤ eff(y), ub(y) = fiH(y). Overall, we have

∑

y∈SH−ΨH

ub(y) ≥(1− 4ε1)
∑

y∈SH−ΨH ,z∈WH(y)

fiH(z, y) − (1− 3ε1)
∑

y∈SH−ΨH ,x∈∆(y)

fiG(x, τ(y)).

Since a total weight of at most 12ε1n vertices in SH are not matched by vertices in VG with

fī weight function, by Lemma 6.5.21 and Lemma 6.5.18,

∑

y∈SH−ΨH ,z∈WH(y)

fiH(z, y) ≥ |ZH | − 12ε1n−O(1).

Put all together, we have We have

∑

y∈SH−ΨH

ub(y) ≥ (1− 4ε1)[(1− ε)n − 12ε1n−O(1)] − (1− 3ε1)13ε1n ≥ (1− 2ε)n.

Definition 6.5.26. We say an internal flow from y ∈ VH to z ∈ SH is an effective internal

flow with respect to mapping fH if
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1. y ∈ AH .

2. The distance between y and z is not distorted by fH .

3. M(y, z) ≤ 800r log n/ε1

Lemma 6.5.27. If at most
√
n vertices in VH are at least φ2-distorted, then the total

amount of effective internal flow is at least (1− 2ε)n.

Proof. Since |VH\AH | ≤ εn, the total flow from VH\AH to SH is at most εn. Using the

condition that at most
√
n vertices in VH are at least φ2-distorted, the total flow between

AH to SH with distance distorted is at most
√
n + φ2n. By Lemma 6.5.21, the total flow

from from AH to SH not satisfying the the third condition of Definition 6.5.24 is at most

O(1). Hence, the total effective internal flow from is at least n − εn−√
n − φ2n−O(1) ≥

(1− 2ε)n.

Proof of Lemma 6.5.20. We construct a function p : AG × SH → R
≥0 such that for any

x ∈ AG, y ∈ SH with p(x, y) > 0, then M(x, y) ≤ 1200r log n/ε1. Let x1, x2, . . . , x|AG| be

an arbitrary order of vertices in AG, and y1, y2, . . . , y|SH | be an arbitrary order of vertices

in SH . Define p1 : AG × SH → R
≥0 as

p1(xi, yj) =





cross(xi, yj) if the crossing flow from xi to yj is effective

and
∑

k<i p1(xk, yj) + cross(xi, yj) ≤ fiH(yj)

fiH(yj)−
∑

k<i p1(xk, yj) if the crossing flow from xi to yj is effective

and
∑

k<i p1(xk, yj) + cross(xi, yj) > fiH(yj)

0 otherwise

and p2 : AG × SH × SH → R
≥0 as

p2(xi, yj, yk) =





fiH(yk, yj) if the internal flow from xi to yj is effective

and
∑

ℓ<k p1(xi, yj , yℓ) + fiH(yk, yj) ≤
∑

x p1(x, yj)

∑
x p1(x, yj) if the internal flow from xi to yj is effective

−∑ℓ<k p1(xi, yj , yℓ) and
∑

ℓ<k p1(xi, yj , yℓ) + fiH(yk, yj) >
∑

x p1(x, yj)

0 otherwise
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Finally, let p(x, y) =
∑

z∈SH
p2(x, z, y). By the definition of effective crossing flow, effective

internal flow and Lemma 6.5.25, 6.5.27, we have

1. for any x ∈ AG,
∑

y∈SH
p(x, y) ≤ 1;

2. for any y ∈ SH ,
∑

x∈AG
p(x, y) ≤ 1;

3. for any x ∈ AG, y ∈ SH , if p(x, y) > 0, then M(x, y) ≤ 1200r log n/ε1;

4.
∑

x∈AG,y∈SH
p(x, y) ≥ (1− 4ε)n.

Hence, function p corresponds to a fractional matching between AG and SH such that two

vertices have non-zero weight if M(x, y) ≤ 1200r log n/ε1. Then the lemma follows.

Subroutine Testing-Label-Bijection:

Input: Graph G, H; Si,j,k, Ti,j,k ⊆ VG, Ci,j,k,Hi,j,k ⊆ VH returned by Subroutine

Sparcification with I = G, J = H and fi as the weight function; S′
i,j,k, T

′
i,j,k ⊆ VH ,

C ′
i,j,k,H

′
i,j,k ⊆ VG returned by Subroutine Sparcification with I = H, J = G and fī

as the weight function; parameter δ.

Output: Accept or reject.

1. Run Subroutine Testing-Vertex-Distorted for G with weight function fi with

δ/5.

2. Run Subroutine Testing-Vertex-Distorted for H with weight function fī with

δ/5.

3. Run Subroutine Testing-Collision with I = G, J = H using fi as weight

function with δ/5.

4. Run Subroutine Testing-Collision with I = H, J = G using fī as weight

function with δ/5.

5. For any SHi, run Subroutine Testing-Distance-Preserved-Set with δ/n.

6. Reject if any run of the subroutines rejects, otherwise accept.
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Corollary 6.5.28. Fixing fG(x) and fH(x), if not all of the following condition hold,

1. A total weight of at most
√
n vertices in VG are at least φ2-distorted for fG with weight

function fi.

2. A total weight of at most
√
n vertices in VH are at least φ2-distorted for fH with weight

function fī.

3. A total weight of at most 12ε1n vertices in SG are not matched by vertices in VH

within distance 40r using weight function fi.

4. A total weight of at most 12ε1n vertices in SH are not matched by vertices in VG

within distance 40r using weight function fī.

5. For any SHi, SHi is not a distorted set for VH .

then Subroutine Testing-Label-Bijection rejects with probability at least 1− δ/n3m.

With Lemma 6.4.9, Lemma 6.4.11, Lemma 6.5.4, Lemma 6.5.20 and Corollary 6.5.28,

Theorem 6.5.3 follows.

6.6 Sample vertices with small label distance

In this section, we present the overall algorithm for the graph isomorphism testing problem.

Before we give the overall algorithm, we show a subroutine to randomly sample pairs of

vertices in two graphs with small label distance.

Subroutine Sample-Collision-Pair:

Input: Sets Ti,j,k, Si,j,k and Ci,j,k with fi weight function in VG.

Output: Accept or reject. If accept, also output a pair of collision (v, y).

1. Randomly sample a set T among all the sets Ti,j,k. The probability of sampling

Ti,j,k is
|Si,j,k|
|S0| , where S0 = ∪i,j,k:weight(Ti,j,k)≥ε22n

Si,j,k.

2. Run Subroutine Testing-Collision-Ti,j,k with T , and return its output.
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Let SU = ∪i,j,k:weight(Ti,j,k)≥ε22n
Ui,j,k.

Lemma 6.6.1. Subroutine Testing-Collision-Ti,j,k rejects with probability at least 1− δ

for some set Ti,j,k, or Subroutine Sample-Collision-Pair satisfies following conditions

1. With probability at least 1− 17ε1, Subroutine Sample-Collision-Pair returns a nice

pair.

2. Fix a vertex x ∈ SU , the probability that Subroutine Sample-Collision-Pair returns

a nice pair containing x is at most 1+2ε
n .

3. For any nice pair (x, y) satisfying x ∈ Si,j,k, Subroutine Sample-Collision-Pair

returns (x, y) with probability at most 1+2ε
γi,j,kn

4. For any vertex y ∈ VH , Subroutine Sample-Collision-Pair returns a nice pair con-

taining y with probability at most 1000 log3 n
ε31φn

.

Proof. Since there are at most O(log3 n/ε31) Ti,j,k sets for different i, j, k, |S0| ≥ n − εn −
O(log3 n/ε31)ε

2
2n. Hence, for any Ti,j,k, the probability of T = Ti,j,k is at most |Si,j,k|/(1 −

ε−O(log3 n/ε31)ε
2
2)n. By Lemma 6.4.31, the lemma holds.

Now we consider the bijection π promised by Lemma 6.5.20. Let YG be the set of vertices

in SG satisfying (a) and (b) of Lemma 6.5.20.

Lemma 6.6.2. At least one of the following conditions hold:

1. Subroutine Testing-Collision-Ti,j,k rejects with probability at least 1 − δ for some

set Ti,j,k;

2. Not all the five conditions of Lemma 6.5.20 hold

3. |SU ∩ YG| ≥ (1 − 5ε)n. In addition, for any vertex x ∈ SU ∩ YG, if (x, y) is a nice

pair, then MH(π(x), y) ≤ 1400r log n/ε1.

Proof. By Lemma 6.4.25, |SU | ≥ (1−12ε1−ε22 log
3 n/ε31)n ≥ (1−13ε1)n. By Lemma 6.5.20,

|YG| ≥ (1− 4ε)n. Hence |SU ∩ YG| ≥ (1− 5ε)n.

By (b) of Lemma 6.5.20, for every vertex x ∈ YG, there exists a vertex z which is

a good/intermediate collision of Assignto(x) satisfying MH(z, π(x)) ≤ 1200r log n/ε1 +
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45r. On the other hand, since |WAssignto(x)| = 1, all the good/intermediate collisions

of Assignto(x) has distance at most 29r in MH , thus, MH(y, π(x)) ≤ MH(z, π(x)) +

MH(z, y) ≤ 1200r log n/ε1 + 45r + 29r ≤ 1400r log n/ε1.

Lemma 6.6.3. With probability 1 − 20ε, the two pairs of collisions (x0, y0) and (x1, y1)

returned by two executions of Subroutine Sample-Collision-Pair satisfy

1. x0, x1 ∈ SU ∩ YG.

2. Both (x0, y0) and (x1, y1) are nice pairs.

3. π(x0) has same connectivity to π(x1) and y1

4. π(x1) has same connectivity to π(x0) and y0

5. y1 has same connectivity to π(x0) and y0

Proof. For a nice pair (v, z), we define p(v,z) =
1+2ε
γi,j,kn

. By Lemma 6.6.1, the probability of

sampling (v, z) is at most p(v,z). LetN be the set of all the nice pairs (v, z) with v ∈ SU∩YG.

By Corollary 6.6.1 and Lemma 6.6.2, we have

p(N) =
∑

i,j,k:weight(Ti,j,k)≥ε22n


 ∑

nice pair (v,z)∈N :v∈SUi,j,k∩YG

p(v,z)




≤
∑

i,j,k:weight(Ti,j,k)≥ε22n

|SUi,j,k ∩ YG|(1 + 2ε1)(1 + ε1)γi,j,k ·
1 + 2ε

γi,j,kn

≤|SU ∩ YG|(1 + 3ε)/n

≤1 + 3ε.

Fix a vertex y ∈ VH . Let Ny be the set of all the nice pairs (v, z) with v ∈ SU ∩ YG

satisfying y has different connectivity to π(v) and z, and denote

p(Ny) =
∑

(v,z)∈Ny

p(v,z).

On the other hand, for any nice pair (v, z) with v ∈ SU ∩ YG, by Lemma 6.6.2, there

are at most 1400rn log n/ε1 vertices in VH have different connectivity to π(v) and z. Hence

(v, z) belongs to at most 1400rn log n/ε1 different Ny for y ∈ VH . Thus,

∑

y∈VH

p(Nx) ≤ p(N) · 1400rn log n

ε1
≤ (1 + 3ε)1400rn log n

ε1
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and then there are at most (1+3ε)1400r logn
ε1ε

n vertices y in VH satisfying p(Ny) > ε. By

Lemma 6.6.1 and Lemma 6.6.2, the total probability of sampling a nice pair (x0, y0) satis-

fying x0 ∈ SU ∩ YG and p(Nπ(x0)) ≤ ε is at least

1−O(φ10)− 5εn
1 + 2ε

n
− 1 + 2ε

n

(1 + 3ε)1400r log n

ε1ε
n ≥ 1− 6ε.

Now we assume (x0, y0) satisfies p(Nπ(x0)) ≤ ε. Let N(π(x0),y0) be the set of nice pairs

(x1, y1) satisfying at least one of following conditions:

1. π(x0) has distinct connectivity to π(x1) and y1

2. π(x1) has distinct connectivity to π(x0) and y0

3. y1 has distinct connectivity to π(x0) and y0

Since there are at most 1400rn log n/ε1 vertices in VH have different connectivity to π(x0)

and y0,

p(N(π(x0),y0)) ≤ p(Nπ(x0)) +
1400rn log n

ε1
(
1 + 2ε

n
+

1000 log3 n

ε31φn
)) ≤ 2ε.

Thus, with probability at least

1−O(φ10)− 5εn
1 + 2ε

n
− 2ε ≤ 1− 8ε

(x1, y1) is in N(π(x0),y0), and thus satisfies (4) and (5).

By union bound, we obtain the lemma.

6.7 Overall algorithm

Finally, we present the main algorithm

Algorithm Testing-Graph-Isomorphism:

Input: An oracle to query edges in G and H, parameter δ

Output: Accept or reject.

1. Run Subroutine Metric-Distance.
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2. Run Subroutine Sparsification to obtain sets Si,j,k, Ti,j,k,Hi,j,k, Ci,j,k with I =

G, J = H and fi weight function.

3. Run Subroutine Sparsification to obtain sets Si,j,k,
′ T ′

i,j,k,H
′
i,j,k, C

′
i,j,k with I =

H, J = G and fī weight function.

4. Randomly sample ⌊12 log n√n log(1/δ)/σ⌋ vertices in both G and H, denote as

PG and PH .

5. Let m = ⌊12 log2 n/σ⌋. For each choice of x1, x2, . . . , xm ∈ PG and y1, y2, . . . , ym ∈
PH , let fG(x) = e(x, x1) ◦ e(x, x2) ◦ · · · ◦ e(x, xm) and fH(y) = e(y, y1) ◦ e(y, y2) ◦
· · · ◦ (y, ym), where e(u, v) for u, v ∈ VG is 1 iff (u, v) is an edge in G. Repeat

following process with common random generator

(a) Reject if Subroutine Testing-Label-Bijection for graph G and H rejects

with parameter δ/n3m.

(b) Let c = 0.

(c) Repeat following process t = ⌊ log(n3m/δ)
φ5 ⌋ times: Run Subroutine

Sample-Collision-Pair twice. If at least one of the execution rejects, then

rejects. Otherwise, if the connectivity between x0 and x1 is same to the

connectivity between y0 and y1, then increase c by 1.

(d) If c ≥ (1− ε0
2 )t, then accept.

6. Reject.

Theorem 6.7.1 (Completeness). Let G and H be two isomorphic graphs. Algorithm

Testing-Graph-Isomorphism accepts with probability at least 1− δ.

Proof. Let π be an isomorphic bijection from G to H. We first show that with probability

1 − δ, there exists x1, x2, . . . xm ∈ PG and π(x1), π(x2), . . . , π(xm) ∈ PH such that for any

x, x′ ∈ VG,

MG(x, x
′)− 2σ ≤ M(x, x′) ≤ MG(x, x

′) + 2σ,
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and

MH(π(x), π(x′))− 2σ ≤ M(π(x), π(x′)) ≤ MH(π(x), π(x′)) + 2σ.

By Lemma 6.2.1, a fraction of 1 − 1
nlog n out of all the sequences of vertices of length

⌊12 log2 n/δ2⌋ satisfying above two conditions. Let S = {x ∈ PG : π(x) ∈ PH}. If |S| ≥
⌊12 log2 n/δ2⌋, then with probability 1− 1

nlog n , there exists a sequence of vertices of length

⌊12 log2 n/δ2⌋ satisfying above two conditions. By Chernoff bound, with probability at least

1− δ, there is a sequence of vertices satisfying above two conditions.

Now we consider the execution of step 4 with respect to x1, x2, . . . xm ∈ PG and

π(x1), π(x2), . . . , π(xm) ∈ PH . By Corollary 6.5.28, step 5(a) passes with probability at

least 1− δ/n3m.

Since π is an isomorphic mapping, for any x0, x1 ∈ VG, e(x0, x1) in G is always same to

e(π(x0), π(x1)) in H. Thus, if (x0, y0) and (x1, y1) satisfying the five conditions in Lemma

6.6.3, e(x0, x1) is same to e(y0, y1) in H. By Lemma 6.6.3, the probability that two pairs

satisfies the five conditions is at least 1 − 20ε. Let Xi be the indicator variable that i-th

execution of step 4(c) of the algorithm increase c by 1. We have Pr[Xi] ≥ 1 − 20ε. By

Chernoff bound, with probability 1 − δ/n3m, c ≥ (1 − ε0
2 )t. Thus, the algorithm accepts

with probability at least 1−O(δ/n3m).

Theorem 6.7.2 (Soundness). Let G and H be two graphs with distance at least ε0. Algo-

rithm Testing-Graph-Isomorphism rejects with probability at least 1− δ.

Proof. By Corollary 6.5.28, with probability 1 − δ/n3m, step 5(a) rejects if not all the the

five conditions are satisfied. Hence, with probability at least 1−δ/n3m, Lemma 6.5.20 holds,

and by Lemma 6.6.2, there exists a mapping π such that |YG ∩ SU | ≥ (1 − 5ε)n. Since G

is ε0 far from H, there are at most (1 − ε0)n
2 pair of vertices v,w ∈ SU ∩ YG such that

eG(v,w) is same to eH(π(v), π(w)).

By Lemma 6.6.1 and Lemma 6.6.3, the probability of sampling two pairs (x0, y0), (x1, y1)

satisfying at least one of following two conditions

1. (x0, y0) or (x1, y1) are not nice pair.

2. (x0, y0) and (x1, y1) do not satisfying all of the five conditions of Lemma 6.6.3.
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3. e(x0, x1) = e(π(x0), π(x1)).

is at most 17ε1 + 20ε+
(
1+2ε
n

)2
(1− ε0)n

2 ≤ 1− ε0 + 25ε. Hence, the probability that step

4 of the algorithm returns two pairs (x0, y0) and (x1, y1) satisfying

1. The two pairs satisfy the five conditions of Lemma 6.6.3.

2. e(x0, x1) 6= e(π(x0), π(x1)).

is at least ε0 − 25ε. By Chernoff bound, for each run of step 4(a) to 4(d), algorithm

rejects with probability at least 1−O(δ/n3m). By union bound the algorithm rejects with

probability at least 1− δ.

Theorem 6.0.1 is obtained by combining Theorem 6.7.1 and Theorem 6.7.2.
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