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ABSTRACT 

The overall goal of this thesis was to determine whether optical tomographic 

imaging can be employed to predict treatment outcome in women with breast cancer (BC) 

who undergo neoadjuvant chemotherapy (NACT). NACT is widely applied as a standard 

treatment for patients with newly diagnosed operable invasive BC.  Only about 13-30% 

of women have a response to this treatment.  Furthermore, NACT is an expensive and 

toxic treatment that takes several months to completely administer.  In order to know the 

response of the patient, physicians usually need to wait until the months of NACT has 

finished and the patient has undergo surgery in which they receive the pathology.  If the 

long-term treatment response could be predicted early into the treatment regimen, the 

patient would be relieved of any unnecessary side effects and alternative treatments 

could be initiated.  We have used a novel dynamic DOT system to study the effects of 

targeted NACT. Unlike X-ray imaging, which requires potentially harmful ionizing 

radiation, DOT can be applied without side effects, which is particularly important in the 

case of multiple imaging sessions to be performed over the course of treatment.  We have 

tracked 40 subjects and imaged them at 6 different time points during their NACT.  For 

this study, two different types of data were collected: static (single 3D image) and dynamic 

(3D movies).  The combination of the data may be used to accurately determine the 

response of the patient.  With non-invasive, non-ionizing DOT imaging we have been able 

to determine within two weeks if the patient will respond to treatment with an accuracy as 

high as 94.1%. 
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CHAPTER 1: INTRODUCTION        

1.1 Overall Goal and Specific Aims 

The overall goal of this thesis is to determine whether optical tomographic imaging 

biomarkers can be employed to predict treatment outcome in women with breast cancer 

(BC) who undergo neoadjuvant chemotherapy (NACT). BC affects 1 in 8 women in their 

lifetime. In the United States, there are approximately 230,000 women with invasive BC 

and almost 40,000 die every year. NACT is widely applied as standard treatment for 

patients with newly diagnosed invasive BC.  The goal of NACT is a pathologic complete 

response (pCR) at definitive surgery which typically is performed at ~6 months after 

treatment initiation. A pCR is associated with a substantial increase in 5-year survival and 

reduction in distant metastatic recurrences.  However, a pCR is achieved in only 15-40% 

of women.1-3 Furthermore, NACT is an expensive and toxic treatment that takes several 

months to completely administer, and major efforts are underway to find new drugs that 

increase pathologic response and ultimately improve survival.   If the long-term treatment 

response could be predicted early into the treatment regimen, unnecessary side effects 

could be minimized, and alternative treatments could be initiated. 1, 3  

Diffuse optical tomography (DOT) has the potential for becoming an early 

outcome-prediction tool. Over the last decade, DOT has been shown to be very sensitive 

to vascular changes in BC and other diseases. As a result, several groups have started 

to study NACT monitoring using DOT.  However, so far the patient-enrollment numbers 

have been relatively small and the few patients that participated in these studies have 

received a wide variety of different NACT regimens. Since the different drugs may affect 

the optical signals in different ways, the studies might have confounding results.  
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Furthermore, none of the previous studies have involved a full tomographic imaging 

system that images both breast at the same time, and very few studies have looked at 

hemodynamic changes in the tumor bearing breast.   

 To overcome the limitations of these previous studies, I had proposed to employ a 

novel dynamic DOT system to study the effects of targeted NACT. Unlike any other optical 

breast imager, this system provides full three-dimensional tomographic images of both 

breasts simultaneously.  Furthermore, the system allows for the study of static and 

hemodynamic effects, which is achieved through relatively fast data acquisition frame 

rates. The goal was then to use the system to perform the largest clinical pilot study to 

date and only enroll patients that are on the same standard NACT regimen.  To test and 

evaluate the potential of DOT imaging in the NACT setting, I have completed the following 

4 aims. 

 

Specific Aim I: Performed a 40-patient clinical NACT-monitoring study to 

demonstrate that 2-week changes in DOT-derived imaging biomarkers 

corresponds with pCR 

Challenge: To determine if DOT can predict treatment response of breast tumors to 

NACT. 

Approach:  We have previously built and utilized a DOT system to image subjects with 

malignant and benign tumors, as well as, healthy breast tissue. We found that biomarkers 

such as oxy-hemoglobin [HbO2], deoxy-hemoglobin [Hb], and total hemoglobin [HbT] 

concentrations, as well as their dynamic responses to a breath-hold, can be used to detect 

tumors. Employing the same system in this monitoring study, I hypothesized that these 
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biomarkers will change substantially at the beginning of the treatment and indicate if a 

patient will obtain a pCR. 

Impact: Finding imaging biomarkers that can predict treatment outcome early on, will help 

physicians in designing more effective treatment strategies.  

 

Specific Aim II: Developed a pre-processing and post-processing protocols for 

analyzing “static data” acquired from NACT imaging and to monitor how different 

chromophores change over the course of treatment. 

Challenge: Artifacts at the tissue-air interface are very common in optical images and 

therefore can effect automated quantification.  Additionally pre-processing and post-

processing must be similar for all imaging time points. 

Approach: Created custom algorithms via MatLab to pre-process data, to extract volume 

geometries that contain the tumor region, and to track the region of interest over time. 

Impact: The static data shows absolute concentrations of hemoglobin and water fraction.  

Observations of these parameters show changes over time for subjects that have a good 

or partial response to treatment, and can be used to monitor treatment. 

 

Specific Aim III: Develop a pre-processing and post-processing protocol for 

analyzing “dynamic data” acquired from NACT imaging.   

Challenge: We can collect dynamic information over time, and are able to view the 

hemodynamic changes in the breast when a stimulus is applied (e.g. a 30-second breath 

hold).  Therefore the challenge lies in how to use an intrinsic contrast to see tumor 

response. 
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Approach: Extracted features from dynamic breath hold images to determine different 

hemodynamic qualities of the vasculature of the tumor. 

Impact: The dynamic optical imaging can show how blood flow changes in the tumor 

region during NACT. 

 

Specific Aim IV: Combined static and dynamic data analysis schemes for 

discriminant analysis, which can be used to find a combination of imaging 

biomarkers that most accurately predict tumor response to NACT. 

Challenge: Finding effective combination of physiological parameters that describe the 

response of the tumor and can distinguish response. 

Approach: Used promising metrics from both the static and dynamic analyses to perform 

linear or quadratic discriminant analysis. 

Impact: Determining a way to predict tumor response accurately using optical imaging. 

 

1.2. Breast Cancer Epidemiology 

The chance of a woman in the United States being diagnosed with breast cancer has 

increased to 1 in 8 (12.3%) from 1 in 11 women since the 1970’s.  The increase in 

prevalence is likely caused by several environmental factors that have change in the 

United States over the past 40 years.  Some of these factors include the increase in 

obesity, increase life expectancy, changes in reproductive patterns (women having 

children at later ages), increase breast cancer screening, etc. Another factor for the 

increase in breast cancer cases may simply be the increase in breast cancer screening 

between 1979 and 1987. 4  The estimated number of incidences for 2014 is 232,670. The 
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number of new cancer cases has increased by 14% since 2000.  Accordingly, the number 

deaths caused by breast cancer in 2014 has also increased and is estimated to be about 

40,000 deaths or 6.8% of all cancer deaths.5  However, as seen in Figure 1, the incidence 

and mortality rate can be very dependent on the race and ethnicity of the individual.  There 

is usually a higher incidence of breast cancer in the non-Hispanic White population, yet 

the mortality rate is the highest among African Americans.4    

 
Figure 1.1 Female Breast Cancer Incidence and Mortality Rates by Race* and 
Ethnicity, US, 2006-2010.4 

 
The overall 5-year survival rate is about 89% among all populations in the United 

States.4, 5  Yet, the 5-year survival rate can vary between 78.9% and 92.8% depending 

on race.  As seen in Table 1.1, Asian women have the highest 5-year survival rate, while 

the African American population tends to have lowest survival rate. African American 
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women tend to be diagnosed with more aggressive cancers that have poor prognosis.  

Also, there are lower 5-year survival rates among populations that have low incomes, 

which prevent them from receiving the medical attention they require.  Since in low income 

subgroups, there may be the lack of health care or funds to receive proper treatment.4 

 
Table 1.1 Five Year Cause Specific Breast Cancer Survival by Race 2003-2009 

*Survival rates are based on patient diagnosed between 2003 and 2009 and folled 
through 2010.4 

Race 5-year Survival Rate 

Non-Hispanic White 88.6% 

African American 78.9% 

Hispanic 87.0% 

Asian 91.4% 

Pacific Islander 86.8% 

 
 

The stage of the cancer can affect the 5-year survival rate of the woman.  Usually, 

when breast cancer is caught in its earlier stages, then the prognosis of the patient is 

much better.  Therefore, as seen in Figure 2, localized cancer cases have the highest 5-

year relative survival.  While, distant or metastatic cancer usually has a poorer prognosis 

and a lower survival rate.5  

 

 
Figure 1.2 Five-year Relative Survival based on Stage of Disease5 
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 Since the 1980’s, the decrease in mortality rate has been contributed to increase 

screening using mammography (MG).  However, in 2010, 51% of women over the age of 

40 received a MG in the last year and 61% of women received a MG in the past two years.  

Additionally, this percentage changes depending on income and age.  For non-poor 

women between 74%-83% received a MG within the last two years. While only 46%-57% 

of women who are poor or near-poor received a MG in the past two years.4  Therefore, 

there is a clinical need to decrease the cost BC screening in order to increase the number 

of women who routine screening.   

 There are other factors that can prevent BC screening.  I have spoken to women 

over the past 5 years about the process of breast cancer screening and treatment and 

many have communicated their dislike of various imaging modalities.  Some women 

refuse to get MG imaging done because the compression is too painful.  Other women 

have said that they are afraid that the radiation will cause breast cancer in the future.  

Some women have refused MRI because they are uncomfortable or claustrophobic.   

Despite the risk of a having BC, many women still refuse to undergo the recommended 

procedures for tumor detection or monitoring.  Hence, BC imaging has other facets that 

need improvement to encourage women to get routine screening. 

 

1.3 Breast Cancer Pathology 

 Breast tissue is mostly consistent of adipose, fibrous, and glandular tissue.  Each 

breast has about 15-20 lobes, which each has up to 40 lobules.6, 7  The lobules are further 

divided into 10-100 alveoli, which secrete milk.  The alveoli are connected to a lactiferous 

tubule, which is connected to a lactiferous duct.  These ducts are basically conduits that 
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bring milk from the milk producing cells to the nipple.  Last, the glandular complexes are 

surrounded by adipose tissue.6 

 

Figure 1.3 Basic anatomy of the breast.6 

 
  

Breast cancer typically originates in either the lobules or the ducts of the breast.  

The four most common types of breast cancer are invasive ductal carcinoma (IDC), 

invasive lobular carcinoma (ILC), ductal carcinoma in situ (DCIS), and lobular carcinoma 

in situ (LCIS).  DCIS originates in the duct of the breast, while LCIS originates in the 

lobules.  In situ type cancers arises when abnormal cells grow and proliferate within the 

ducts or lobules without invading the basement membrane.8   IDC occurs when tumor 

cells have invaded the basement membrane.  Therefore DCIS is often a precursor for 

IDC.8, 9  Similarly, ILC occurs when infiltrates the stroma of the breast and happens to be 

much more difficult to detect.8 

Cancer, in general, starts in an avascular stage where the tumor will grow to 

between 1-2 mm and then reach an equilibrium of growth and apoptosis.  Tumors cannot 
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grow more than a couple millimeters without some conduit to receive nutrients.  Hence, 

tumors need to recruit blood vessels in order to progress.  Hypoxia in the tumor region 

can also induce these new blood vessels.10   

Tumor angiogenesis is much different from normal physiological angiogenesis.  

Tumor blood vessels are irregularly shaped, dilated, have dead ends, and have increased 

permeability.10  Also, blood vessels in the tumor are poorly organized, are compressed 

by surrounding tumor tissue, and provide limited delivery of oxygen and nutrients, and 

have irregular blow flow.11  Additionally, the blood vessels are forced apart due to the 

growing tumor, which can prevent proper drug penetration.11 

 

1.4 Breast Cancer Imaging 

 There are several different methods for imaging breast tissue and identifying 

breast cancer.  Traditional methods include X-ray mammography (MG), ultrasound (US), 

magnetic resonance tomography (MRI), and positron emission tomography (PET).  

However, there have been experimental imaging modalities that have been developed, 

such as optical imaging (OI).  To better understand how OI can be utilized in the clinic, 

we must examine the imaging modalities that currently exist and how these methods are 

being utilized in the breast cancer setting. 

1.4.1 X-ray Mammography 

 Over the last 25 years, the gold standard for breast cancer detection has been X-

ray mammography (MG). In the late nineties, there have been some reports of a ~25% 

reduction in breast-cancer mortality; More recent studies done in 2012 showed a 

reduction between 7%-23% in Europe and Canada over the last couple of decades.12, 13 
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In general this drop has been attributed to an increase in screening over the previous 

decades.  However, it should be noted that during the same time period there has also 

been an increase in adjuvant chemotherapies which, some argue, may have contributed 

to two thirds of the mortality rate decrease.14  Yet another major study done in Canada 

suggested that MG has no effect on the mortality rate, and overall there seems to be no 

clear consensus about the advantages and disadvantages of X-Ray imaging in breast 

cancer detection .15  

While there are conflicting results about the effect of MG on the mortality of breast 

cancer patients, there is no doubt about the diagnostic capabilities of X-ray imaging. 

According to the United States screening program MG has a sensitivity of 75%. The 

sensitivity decreases to 30%-40% with a false negative (FN) rate of 4%-34% for women 

with denser breasts. 12, 13   Therefore, MG is currently suggested for women over the age 

of 40 years, since the sensitivity of MG increases as breast density decreases with age 

and a postmenopausal status.12, 16 

The general guidelines suggest that women between the ages of 40-49 receive 

biennial MG screenings, while women between the ages of 50-74 should receive annual 

screenings. 12, 13   In the state of New York screening coverage laws allow baseline 

imaging at 35-39 years of age and every year over the age of 40 or with a physician 

recommendation.  Insurance coverage for MG screening varies from state to state within 

the United States.17 

1.4.2 Ultrasound 

 In general, US is not recommended as a screening tool and is usually not covered 

by insurance.  Yet, US is employed as an adjunct imaging method to MG. Also US is 
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considered if the patient is at high risk and cannot tolerate MRI, or if they have an 

intermediate risk with dense parenchyma or dense breasts.  High resolution US can also 

be used to detect occult cancers or be useful with patients with dense breasts.  However, 

there is limited detection of DCIS and microcalcifications.  Additionally, a negative US 

never supersedes the results of a MG, and negative US result does not indicate the lack 

of a tumor.   

Studies have shown that US detects 2.7-4.6 cancers per 1000 asymptomatic 

women who have dense breast or negative MG findings.  Yet, the use of US imaging 

leads to a high false positive rate and a low positive predictive value (PPV) of 8.8%-11%.12 

A 2002 study looking at 27,825 patient examinations (11,130 asymptomatic 

women) found 246 cancers in 221 women.  The addition of US screening allowed for the 

detection of smaller and lower stages of cancer than physical examination (PE) and 

increase detection in occult cancer.  The sensitivities for the study were 77.6%, 27%, and 

75.3% for MG, PE, and US, respectively.  Sensitivity of US was more or less unaffected 

by breast density or age.  From the women with non-palpable invasive cancer, 42% of 

cancers were detected with US only.  From the subgroup of US only detected cancer 70% 

were <1 cm and 89% were node negative, which would give the best prognosis and the 

largest number of options for treatment.  However, the authors mention that the benefits 

of the screening must be weighed against the false positive (FP) rate of 2.4%.  Also rate 

of positive biopsy due to US detection is much lower than in MG.16 

Another study done in Germany in 2012 suggests that there is little or marginal 

benefit to US screening.  They were able to detect additional cancers that MG did not, but 

the PPV for the study was 0.21%.18 
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 Therefore, US seems has some benefits as a screening tool, but at the risk of 

additional FPs and unnecessary biopsies.  Additionally, US is highly operator 

dependent.12, 16  However, US has been useful as a follow-up imaging modality for 

patients with dense breasts or at high risk. 

1.4.3 Magnetic Resonance Imaging 

 MRI has been used for staging and treatment planning and has shown to be helpful 

at screening high risk patients.12, 13, 19  As seen in Table 1.2, there are different 

recommendations for screening depending on the cancer risk of the patient.  Women who 

are at high risk are encouraged to get annual MG and MRI imaging done.  Annual MRI 

screening can start as early as age 30.  High-risk patients usually are carriers of 

deleterious BRCA genes, have first-degree relatives with BRCA mutation, or received 

chest irradiation between 10-30 years of age. 12, 13  High-risk women tend to have an 

earlier onset of cancer and therefore, may benefit from earlier screening using MRI, since 

MG would have lower sensitivity in patients under the age of 40.  MRI is usually not 

recommended for average risk patients even if they have dense breasts.12 

MRI shows higher sensitive of over 90%. Yet, there is still a low specificity of 40%-

80%.  Sensitivity tends to be greater in invasive carcinomas compared to DCIS.  When 

combined with MG there is a 58% increase in sensitivity and a 44% increase when 

combined with MG and US compared to MG alone.13 
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Table 1. 2 Recommended screening for patients depending on risk of cancer.13   

  

  

Overall, MRI can detect cancers that are not visible via other modalities due to its 

higher sensitivity, especially DCIS and ILC. Although MRI can be used for screening high 

risk patients, it has also been utilized for staging and treatment planning for new 

diagnosed patients.  However, preoperative or perioperative MRI may not be beneficial 

for patient care since it can lead to a higher false positive rate, delay in treatment, higher 

costs.  Also, there is no significant effect on the long-term survival of the patients due to 

MRI results compared to standard imaging methods.  Additionally, there is evidence in 

the literature to suggest that perioperative MRI has led to an increase in mastectomies.19 

1.4.4 Positron Emission Tomography 

 PET is a non-invasive exploratory technique for breast imaging, which uses 

radioactive tracers such as fluorodeoxyglucose (FDG) to obtain information about the 

uptake and metabolism of glucose.  Malignant tissue tends to have both a higher uptake 

of glucose and a fast metabolism, and allows for detection via PET.  For detecting primary 

Risk Population 
Recommendation 

Average risk 
Women with <15% lifetime risk for 

breast cancer 

Annual MG starting at age 40 

High risk 

BRCA1 or BRCA2 carriers, untested first 
degree relatives of BRCA mutation 

carriers 

Annual MG and MRI starting by age 30 
but not before age 25 

Women with >20% lifetime risk for 
breast cancer on the basis of family 

history 

Annual MG and MRI starting by age 30 
but not before the age 25, or 10 years 

before the age of the youngest affected 
relative, whichever is later. 

History of chest irradiation received 
between the ages of 10 and 30 

Annual MG and MRI starting 8 years 
after treatment; MG is not recommended 

before age 25. 

Intermediated risk 

Personal history of breast cancer, 
ovarian cancer, or biopsy diagnosis of 

lobular neoplasia or atypical ductal 
hyperplasia 

Annual MG from time of diagnosis; either 

annual MRI or US can also be 
considered 

Women with dense breasts as the only 
risk factor 

The addition of US to screening MG may 
be useful for incremental cancer 

detection. 
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tumors FDG-PET, the review article reports a range of 48-95.7%.  However, sensitivity 

reduces when the tumor is sub-centimeter due to a decrease uptake in FDG. FDG-PET 

seems to be a more reliable modality compared to conventional techniques (MG, US, 

etc.), but does not out preform magnetic resonance mammography and MRI when 

diagnosing primary tumors.  Yet, FDG-PET can only be recommended for the detection 

of metastases and recurrent disease.  Compared to conventional imaging, FDG-PET 

shows increased efficacy and similar sensitivity, but with lower false positives.20 

1.4.5 Experimental Imaging Modalities  

There are additional imaging modalities that are still within the experimental stages 

and have not been widely used in a clinical setting yet, according to Vreugdenburg, et. al.   

A few of these imaging modalities include digital infrared thermal imaging (DITI), electrical 

impedance scanning (EIS), and elastography, which include electronic palpation imaging 

(EPI) and ultrasound elastography (USE). 

 DITI produces a heat map or thermogram of the breast and is captured using 

infrared cameras.  Usually, DITI has a very low sensitivity, but with development of high 

resolution infrared cameras the topic has been revisited.  Tumors can be detected by DITI 

due to localized increase in skin temperature, since tumor display increased vascularity, 

vasodilation, and recruitment of inflammatory cells. 

 Cancer cells have increased electrical conductivity and lower impedance 

compared to healthy cells.  Therefore, EIS has also been utilized to locate breast tumors. 

 EPI creates pressure maps of the breast where the tumor is a more rigid structure 

compared to healthy tissue.  USE compares the strain between healthy and cancerous 

tissue. 
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 However, for this review article, the authors mention that a few studies have been 

done on asymptomatic patients and therefore they do not recommend including these 

particular imaging modalities as screening tools for the time being.20 

 
Table 1.3 Summary of the sensitivity and specificity of DITI, EIS, and USE from literary 

search. 20 

Modality Sensitivity (Median) Specificity (Median) 

DITI 25.0-96.7% (82%) 11.8-84.9% (55%) 
EIS 62.0-97.5% (83%) 42.0-80.9% (68%) 
USE 35.4-100% (84%) 21.1-98.9% (88%) 

 
 

1.4.6 Problems with Current Imaging Modalities for Breast Cancer  

 Despite the multiple imaging modalities available and years of screening studies 

done in the field of breast cancer detection, there is still room for improvement.  The 

overall goals are to reduce the rate of late-stage disease, decrease cancer mortality, and 

detect aggressive tumors early. As mentioned previously, MG tends to lead to FPs, which 

leads to the problem of overdiagnosis.  Overdiagnosis is the detection of cancer that if 

left untreated would not be clinically significant or detrimental.  As a result, overdiagnosis 

can then lead to overtreatment. 14, 21   

 In a Canadian study involving 89,835 women being screened for breast cancer, 

there was one over-diagnosed breast cancer for every 424 patient who received MG 

imaging.  Additionally they found that annual MG for women 40-59 did not reduce the 

mortality rate.  As seen in Figure 1.4, there is very little difference between the survival 

probability between the group of women that received MG screening and the control 

group that did not receive imaging. 15 The results found in this study seem contrary to 

what has been reported in the literature previously.  Nevertheless, the report has sparked 
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media attention in the United States, and has women asking if MG is necessary or 

worthwhile. 

 
Figure 1.4 Breast cancer specific mortality from cancers diagnosed in screening period, 
by assignment to mammography or control arms.15 

 

Survival rates for breast cancer have improved over the past few decades.  

However, the reason behind this trend can be debated.  The decrease in mortality rate 

may be due mostly to the development of adjuvant therapies and better treatment plans 

for patients and not so much the early detection of cancer.  Therefore, there is a need for 

early detection of aggressive tumors before it progresses or form metastases.  However, 

there is the issue of the preconceived notion among doctors and patients of not doing 

enough for a patient even if the cancer is indolent.21   Additionally, there is a need for 

imaging technology that can differentiate between benign and malignant tumors.   

 

1.5 Optical Imaging 

Since there are areas of breast cancer imaging that need improvement, OI imaging 

methods, such as diffuse optical tomography (DOT), have emerged as a novel imaging 
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modality for this setting.  DOT uses optical transmission measurements with non-ionizing, 

low-intensity, near-infrared light to generate three-dimensional maps of various tissue 

parameters. Optical property contrast from endogenous chromophores [oxyhemoglobin 

(HbO2), deoxyhemoglobin (Hb), water, and lipid] can distinguish malignant from normal 

tissue.22-25 For example, it has been reported that total hemoglobin (HbT) levels, which 

relate to tumor blood vessel density, are double those in benign breast lesions26; and 

vascular changes precede measurable structural changes in mouse models.27  

DOT works on the principles that govern light interaction in biological tissue.  

Different types of optical imaging systems can be employed to capture this light 

interaction.  Afterwards, light propagation models and optimization algorithms can be 

utilized to reconstruct the optical properties and chromophore concentration in the tissue. 

1.5.1 Light and Tissue Interactions 

 Biological tissue is optically strongly scattering and tends to be weakly absorbing 

especially within the 400-1350 nm spectral region.  Absorption and scattering are light 

phenomena that occur when light is shined through a medium.  Absorption refers to a 

decrease in intensity of light as it travels a certain path distance (x) as shown by equation 

1.1. 

𝐼(𝑥) = 𝐼0𝑒−𝜇𝑎𝑥      (1.1) 

I(x) is the intensity of light after it has travelled distance x.  I0 is the initial intensity of light 

and μa is the absorption coefficient.  Major causes of absorption in biological tissue come 

from hemoglobin, melanin, and water.28 Figure 1.5 shows oxy- and deoxy-hemoglobin 

absorption spectrum in the near-infrared range.  
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Figure 1.5 The molar extinction coefficients for oxyhemoglobin (HbO2) and deoxy-

hemoglobin (Hb) for light in the near infrared range.29 
 

Scattering is when light changes direction due to some obstacle or media of 

different optical properties.  The scattering coefficient μs is the probability that a photon 

will scatter per unit length.  Beer’s law describes the probability of transmittance (T) 

through distance x (Equation 1.2). 

𝑇(𝑥) =  𝑒−𝜇𝑠𝑥      (1.2) 

Scattering in biological tissue usually occurs when light interacts with structures such as 

nuclei.28 

1.5.2 Optical Imaging Systems 

After understanding light interaction in biological tissue, optical systems can be 

developed to capture this phenomenon. There are three types of optical systems: time 

domain (TD), frequency domain (FD), and continuous wave (CW).  Table 1.4 shows a 

summary of the different optical systems. 
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Table 1.4 Summary of types optical systems.28 

Type of Imaging 
System 

Source Light Detection Design 

 
Time Domain 

 
Impulse Photon counter 

Information-rich but slow 
DAQ and most expensive 

 
Frequency Domain 
 

Amplitude-
modulated 

Amplitude and 
phase of emitted 

light 

Faster and less 
expensive than TD. 

Continuous Wave 
(Steady State) 

DC Amplitude 
Fast DAQ 

Dynamic imaging 
Least Expensive 

  

TD systems work by sending short light pulses through a medium and detecting 

the light as a function of time using a photon counter.28, 30, 31 The resulting signal has a 

lower peak amplitude and has a broader curve than the input signal.  The peak of the 

detected signal yields information about the path length of the light.  A highly scattering 

medium would have a later peak due to the longer path length.  The decreasing slope of 

the signal gives information about the absorption of the medium.  A sharper slope would 

mean higher absorption.30 

 FD systems use lasers that modulate light in the 100-1000 MHz range.  The system 

detects the amplitude and the phase shift of the signal, which can be used to determine 

absorption and scatter.  The same information as TD systems is acquired, but FD systems 

cost much less.28, 30, 31 

 Last, CW systems use unmodulated or low modulated (<10 kHz) light that detects 

only the amplitude of the signal.  Some of the advantages are that these systems are low 

cost and can be used for dynamic imaging.28, 30, 31  However, it is difficult to distinguish 

absorption from scattering effects by using this approach.31 
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 Table 1.5 Summary of clinical optical breast imagers.

Optical 

Group 
Modality Method 

Acquisition 

Type 
Sources Detectors 

wavelengths 

[nm] 

Modulation 

Frequency 

Total Imaging 

Time 

Boas32 

MGH 

Tomographic optical 
breast imaging 

system. 

Combined Optical and 
Mammography; 

X-ray used for mesh 

generation 

Compressed 
breast  

between 

source (20 cm 
x 18 cm) and 

detector probe 

1st CW 

3 frequency-encoded 
lasers  

- Galvo scanner 
- 110 points (200ms 

per point) 
32 APD 

685 nm, 810 
nm, 830 nm 

 45 s for more 

than 
one source scan 

2nd CW 
26 frequency-encoded 

lasers 
685 nm, 830 

nm 

FD 40 8 APD 
685 nm, 830 

nm 
70 MHz 

Zhu33 
UConn 

Combined US and 
Optical system 

Handheld 
probe 

FD 

1st system:     12 
8 parallel 

PMT 
780 nm, 830 

nm 
- 50 MHz  

- 140 MHz 
- 350 MHz 

 

5 to 8 minutes 

for 10 to 20 data 
sets at a lesion 

site 2nd system:     9 
10 parallel 

PMT 

prototype:  
690 nm, 780 
nm 830 nm 

Pogue34  

(Dartmouth) 

Combined Optics and 

MRI system 

open breast 
coil inside 

 the MRI 

FD 16 (6 laser diodes) 
15 parallel 

PMT 

661nm 
752 nm, 
785 nm, 

805 nm, 
829 nm, 
849 nm 

100 MHz 

measurement 
with 6 

wavelengths 

takes 
approximately 4 

min 

Tromberg35 
(UC Irvine) 

Combined FD and CW 
system 

Handheld 
probe; 

source to 

detector: 
21.5mm (FD) 

and 24mm 

(CW) 

FD 

7  amplitude-

modulated 
diode lasers 

8–12 min (for 

one breast) 

672 nm, 800 
nm, 806 nm, 

852 nm,  

896 nm, 913 
nm, and 978 

nm 

251 modulation 

frequencies from 
100 to 700 MHz 

40 s per sample 
(30 s for 

FD and 10 s for 

CW); 
Take 20 minutes 

to 1 hours to 

image CW 150-W halogen lamp 

fiber-coupled 
spectrograph  
with a linear 

CCD 
detector from 
525 to 1155 

nm 

650–1000 nm  

Yodh36 
 (UPenn) 

FD and CW system 

parallel-plate 
(“slight 

compression”) 
built-in 

Intralid/Ink fluid 

tank 

FD 
45 sources (4 laser 

diodes); 

9 x 5 grid pattern 

3 x 3 grid  
(FD and CW-

mode) 

690 nm, 750 
nm, 786 nm, 

and 830 nm 

70 MHz 

8-12 min (for 

one breast) 
 

CW 
45 sources (2 laser 

diodes); 

9 x 5 grid pattern 

lens-coupled 
16-bit CCD 

camera (41 x 

24 grid) 

650 nm, 905 
nm 
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Table 1.5 shows a summary of clinical optical imagers from several optical imaging 

groups that are investigating breast cancer in the clinical setting.  As for the groups led 

by Boas, Zhu, and Pogue, they combine traditional imaging modalities with optical 

imaging (MG, US, and MRI).32-34  Tromberg’s system is a DOS system that has one 

source and one detector.  The DOS system is used to create line scans of the tumor 

region, which can be used to create 2D surface maps of optical parameters.35  Last, 

Yodh’s group does DOT imaging with a parallel plate design and is capable of creating 

3D tomographic images.36 

1.5.3 Iterative Image Reconstruction Algorithm 

 

 

Figure 1.6 Flow diagram of the optimization algorithm for the inverse problem.30 
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After the data has been collected the images are reconstructed. The first 

component of the image reconstruction algorithm is the initial guess, which is an estimate 

of the spatial parameters of μa and μs (see Figure 1.6).  The forward model is run to predict 

how light will travel through the medium with the parameters from the initial guess.  From 

there the prediction model is compared to the experimental data and the error between 

these two measurements is found.  If the error is not below a certain threshold the optical 

parameters are changed and updated and the forward model run again.  The updating 

phase of the algorithm takes place until the predicted model and experimental 

measurements are less than a designated threshold in which the final image is 

presented.30 

1.5.4 Light Propagation Models 

 In order to run the iterative scheme, there needs to be a forward model in place.  

The forward model is the light propagation model that predicts how light will travel through 

a medium of certain optical properties.  The most basic form of light propagation through 

a medium is the radiative transform equation (RTE) and is seen in equation 1.4. 

𝛿Φ(𝑟,�̂�,𝑡)

𝛿𝑡

1

𝑐
=  −�̂� ∙ ∇Φ(𝑟, �̂�, 𝑡) − 𝜇𝑡Φ(𝑟, �̂�, 𝑡) + 𝜇𝑠 ∫ Φ(𝑟, �̂�, 𝑡)𝑝(�̂�′ ∙ �̂�)𝑑Ω′

4𝜋
+ 𝑆(𝑟, �̂�, 𝑡) (1.3) 

The spectral radiance, Φ, is the energy rate per area per solid angle (W m-2 sr-1).  

The spectral radiance is terms of position (r), the unit direction vector (s), and time (t).  

The source term is denoted by S and μt is the summation of μa and μs’.  The function S is 

the spectral radiance of the source. The function, p, is the probability that light will 

probability of photons scattering from �̂�𝑖𝑛 to �̂�𝑜𝑢𝑡 and is defined by the Henyey-Greenstein 

phase function: 

𝑝(�̂�𝑖𝑛 ∙ �̂�𝑜𝑢𝑡) =
1

4𝜋

1−𝑔2

(1+𝑔2−2𝑔𝑐𝑜𝑠θ)2/3    (1.4) 
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where g is anisotropy. Anisotropy can range from -1 to 1 with a value of zero would 

indicate isotropy. For most biological tissue g=0.9, which indicates that the medium is 

highly forward scattering. 

However, for light modelling in biological tissue such as breast tissue the diffusion 

approximation is used since the medium is highly scattering.  The diffusion approximation 

is derived from the RTE.  To obtain the diffusion approximation there are a two of 

assumptions made: 

1. The medium is nearly isotropic  
2. μa << μs. 

 
After extensive derivation the diffusion approximation is: 
 

𝛿𝐼(𝑟,𝑡)

𝛿𝑡

1

𝑐
+ μa𝐼(𝑟, 𝑡) − ∇ ∙ [𝐷∇𝐼(𝑟, 𝑡)] = 𝑆(𝑟, 𝑡)   (1.5) 

If we are concerned with steady state where 
𝛿𝐼(𝑟,𝑡)

𝛿𝑡
= 0 then the diffusion approximation 

is: 

μa𝐼(𝑟, 𝑡) − ∇ ∙ [𝐷∇𝐼(𝑟, 𝑡)] = 𝑞(𝑟, 𝑡)    (1.6) 

where I is the intensity (W m-2) and can also be defined as: 

𝐼(𝑟, 𝑡) =  ∫ Φ(𝑟, �̂�, 𝑡)
4𝜋

𝑑Ω         (1.7) 

Since I has no dependency on angle, the light is isotropic.  The source term expressed 

as an intensity is q.  D is the diffusion coefficient and is calculated using: 

𝐷 =
1

3(𝜇𝑎+𝜇𝑠
′)

      (1.8) 

 In a discretized space, each unit (voxel) has designated optical properties (μa, μs’) 

for each wavelength being observed.  When the reconstruction algorithm updates, it is 

updating the optical properties of each unit to closer mimic the optical properties from the 

imaged volume.  After the updating the optical properties, this information is used again 
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to determine how the light travels through the medium and what the intensity will be on 

the surface of the medium where the measurements take place.  Therefore, optical 

properties such as μa, μs, and D are vectors that denote value for each voxel.  Essentially, 

the reconstruction will develop a three-dimensional map of the optical properties. 

1.5.5 Chromophore Concentration 

After the optical properties are determined using the reconstruction algorithm, the 

concentration of a chromophore can be found using Beer-Lamberts Law, which is defined 

as: 

𝜇𝑎(𝜆) =  ∑ 𝜀𝑖
𝜆𝐶𝑖

𝑁
𝑖=1      (1.9) 

where λ is the wavelength being employed, ε is the extinction coefficient, and C denotes 

the concentration.28    

 

1.6 DOT Breast Imaging 

DOT uses optical transmission measurements with non-ionizing, low-intensity 

near-infrared light to generate three-dimensional maps of various tissue parameters. 

Optical property contrast from endogenous chromophores can distinguish malignant from 

normal tissue25, 37-39.  For example, it has been reported that total hemoglobin (HbT) 

levels, which relate to tumor blood vessel density, are double those in benign breast 

lesions26; and vascular changes precede measurable structural changes in mouse 

models.27 

In a systematic review, Leff et. al. looked at several studies that involved 2,000 

women in total and found that about 85% of tumors were detectable by using optical 

techniques.  They determined that hemoglobin concentration and oxygen saturation were 



   25 

 

the two important factors for determining breast disease.  Combining the studies they 

found that the average [HbT] for malignant disease was 65±35 μmol/l and SO2% was 

66±24%.  For fibroadenomas the average was 54±13 μmol/l and 69 ± 3% for [HbT] and 

SO2%, respectively.  In healthy tissue, [HbT] was 21 ± 6 μmol/l and SO2% was 68 ± 5.31  

The [HbT] for malignant disease were much higher than healthy tissue, while SO2% had 

similar levels.  However, there are still some difficulties at distinguishing between 

malignant and benign tumors.  The best results for tumor differentiation seem to be with 

FD systems with US or MRI components.31 

 
Figure 1.7 Statistical analysis of the differences in Δ[Hb]% between healthy (n = 6), 
benign (n = 8), and tumor-bearing (n =14) breasts 15 seconds after the end of a breath-
hold. (a) Mean value and standard deviations of the average Δ[Hb]% in a 1-cm-sphere 
around the point of peak hemoglobin change. 40 
 

In a previous study, our group at Columbia University used dynamic diffuse optical 

tomography (DOT) imaging to observe the hemodynamics of different tumors to 

determine if a subject had a benign or malignant tumor, or was healthy.  The contrast 

mechanism that was used for the pilot and current study was a simple breath hold.  When 

a subject holds their breath there is an increase in intrathoracic pressure, which 

decreases the venous return of blood to the heart. Hence, there is an increase in blood 
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volume in the breast and when the subject breathes normally the blood volume returns to 

normal.   The quantified hemodynamic time traces showed variation between the healthy 

and tumor bearing breasts of a subject compared to that of a healthy subject who showed 

similar traces for both breast.  Additionally, there were slower recovery times for the 

tumor-bearing breast and higher Δ[Hb]% at the 15 second post breath hold image as 

seen in Figure 1.7 40 

 

1.7 Monitoring Neoadjuvant Chemotherapy 

1.7.1Monitoring NACT using Traditional Imaging 

NACT is widely applied as standard treatment for patients with newly diagnosed 

operable invasive BC.41   The goal of NACT is shrink the breast tumor as much as possible 

before surgical intervention. In this way an inoperable cancer may become operable, or 

an operable cancer can be converted from mastectomy to breast conserving therapy.  

Ideally a pathological complete response (pCR), meaning the complete disappearance of 

the tumor before surgery, is achieved. Studies have shown that patients with a pCR have 

a 90-95% five-year survival rate, while five-year survival rates for patients with no pCR 

are typically below 80%.42 Depending upon the exact definition, pCR is achieved in only 

15-40% of women. Recent studies have shown that changing therapy in patients that do 

not show an early response may benefit from a change in treatment regimen.43-47 

Therefore, it would be highly desirable to reliably determine who will and will not respond 

to NACT early in the treatment.3, 48 

Most NACT monitoring studies have concentrated on baseline and pre-surgical 

imaging to observe any residual cancer and estimate the size of the remaining tumor.  
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This is more or less for surgical planning purposes to assist physicians on whether breast 

conserving surgery is the best option or preform a full mastectomy.  The goal is to predict 

which patients received a pathological complete response and prevent surgery all 

together.  However, none of the traditional methods, such as clinical exam (CE), MG, and 

US seem to be accurate enough to estimate the pathological response or size of the 

residual tumor.2, 49-54  Some imaging studies have shown that MRI is more accurate than 

other imaging methods50, 51, yet other studies have seen little difference or have not been 

able to reliable predict response.2, 53  A meta-analysis of forty-four studies with 2050 

patients showed the MRI had a higher accuracy than CE or MG, but no difference 

between MRI and US.  The median sensitivity from the meta-analysis for MRI was 92% 

and the median specificity was 60%.54 

 Croshaw et. al. combined retrospective data with 6 other studies to determine the 

efficacy of CE, MG, US, and MRI, as seen in Table 1.6.  US has the best sensitivity of all 

the imaging modalities, but consequently the lowest specificity, which was the result of 

the highest number of false positives.  CE had the lowest sensitivity at 50% but the highest 

specificity of 82%.  Last, MRI showed the highest accuracy when determining pCR.53  

Table 1.6 Results of Data Synthesis to Predict Tumor Response.53 

 CE Digital MG US MRI 

Total Patients 259 255 301 230 
Sensitivity 50% 81% 90% 86% 
Specificity 82% 48% 33% 79% 
Accuracy 57% 74% 79% 84% 

 
One study did imaging at the mid-treatment time point to see if tumor response to 

NACT could be predicted before surgery.  When predicting the response of the tumor at 

the mid-time point the accuracy of CE, MG, US, and MRI was 58%, 56%, 63%, and 67%, 

respectively.51  Not only do none of these methods seem better than the others including 
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CE, but also none of these methods have a high enough accuracy to be clinically useful 

in predicting response at the mid-time point. 

1.7.2 Optical Tomographic Imaging for Neoadjuvant Chemotherapy 

 Although there have been several tumor diagnosis OI and DOT studies25, 26, 36, 55, 

56 including our own23 that show promising results, the technology has found a niche in 

NACT monitoring.3   Since traditional method lack the accuracy or the feasibility for 

treatment monitoring or predicting response, DOT has emerged as a promising novel 

imaging modality for this important application 

There are several advantages to using optical imaging (OI) to monitor breast tumor 

response over conventional imaging techniques.  For example, OI using non-ionizing light 

sources that allow for multiple imaging session within a short period of time.  Therefore, 

measurements can be taken a few weeks to a few days apart from each other with no 

adverse effect.  OI is also sensitive to parameters that change over the course of 

treatment, such as tissue vascularity or hypoxia.3, 48  Several studies have shown that 

there is a change in optical properties over time during the course of neoadjuvant 

chemotherapy. 48, 57-60  The purpose of these monitoring studies is to determine early 

within the treatment whether the patient will respond to the therapy or not.  Therefore, 

more personalized treatments could be developed to optimize the patient outcome of 

those who do not respond. 3, 48   

 Some studies have demonstrated that there is a decrease in total hemoglobin 

concentrations ([HbT]) time for subjects that had received a pathological complete 

response (pCR) or near-pCR.57, 58   Another study using spectroscopic methods examined 

34 women and found significant difference mid-treatment time point between pCR and 
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non-pCR subjects where the pCR subjects had a larger decrease in normalized 

deoxyhemoglobin concentrations ([Hb]).59  Additionally, the same group was able to 

predict tumor response to NACT using the baseline measurements and determined that 

oxygen saturation was higher in patients that were going to receive a pCR.60 

Since optical imaging has been shown to predict tumor response we performed a 

clinical study monitoring tumor response using our dynamic optical imaging system.   

 

1.8 Overview of this Thesis 

 This work aimed to employ an existing dynamic diffuse optical imaging system to 

image breast cancer patients undergoing NACT.  For the study, two different types of 

data were collected: static data (single 3D image) and dynamic data (3D movies).  The 

goal was to find imaging biomarkers that could be used to accurately predict treatment 

response of the patient as early as two weeks after treatment initiation. Currently 

physicians need to wait until the 5 months of NACT has been completed and the patient 

had undergone surgery, to find out if a patient had a good response to treatment. If not, 

it is often too late to start a new therapy. With non-invasive, non-ionizing DOT imaging 

we may be able to determine within weeks of treatment if the tumor will disappear in 5 

months; giving the physician and patient new options in therapy before expensive drugs 

with considerable side effects have been used for month. 
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Chapter 2: Study Design                     | 

2.1 Introduction 

Neoadjuvant chemotherapy (NACT) is widely applied as standard treatment for 

patients with newly diagnosed operable invasive BC.41   The goal of NACT is to shrink 

the size of the breast tumor as much as possible before surgical intervention. In this way 

an inoperable tumor may become operable, or breast conserving surgery can be 

performed instead of a mastectomy.  The best outcome would be a pathological complete 

response (pCR), in which there is no residual cancer after treatment. Studies have shown 

that patients with a pCR have a 90-95% five-year survival rate, while five-year survival 

rates for patients with no pCR are typically below 80%.42 Depending upon the exact 

definition, pCR is achieved in only 15-40% of women. Recent studies have shown that 

changing therapy in patients that do not show an early response may benefit from a 

change in treatment regimen.43-47 Therefore, it would be highly desirable to reliably 

determine early in the treatment, who will and will not respond to NACT.3, 48  

Our NACT monitoring study consists of imaging 40 women at six different time points 

during their treatment.  We have hypothesized that DOT imaging can determine early 

within treatment whether the patient will or will not have a pathological response to the 

chemotherapy.  For this chapter, we provide the methods and overview of the clinical pilot 

study. 

 

2.2 Clinical Study Overview 

2.2.1 Patient Recruitment and Treatment 
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The study was approved by The Columbia University Institutional Review Board 

and is HIPPA compliant.  Written consent was obtained by each subject.  Women over 

the age of 18 who were diagnosed with stage II or stage III breast cancer and were to 

undergo NACT were eligible for the study.  The primary tumor had to be at least 1 cm in 

diameter and women with metastases were not eligible. Each patient receives twelve 

weekly treatments of Paclitaxel followed by four cycles of doxorubicin and 

cyclophosphamide (AC) given every other week.  There are six DOT imaging time points: 

baseline, cycle 3 and 5 of Paclitaxel, before AC, cycle 1 and 2 of AC, and before surgery 

(Fig 2.1).  

 
Figure 2.1 Timeline for subject treatment and imaging. 

 

These imaging time points were chosen for two reasons.  First, we wanted to study 

tumor progression as a patient received chemotherapy throughout the entire course of 

treatment.  Second, we wanted to observe if there are time points during chemotherapy 

that can be used to predict the overall pathological response of the subject.   Imaging time 

points were selected close to the beginning of treatment and at points when the 

chemotherapy agents were changed.  This was designed so that we could observe the 
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beginning of each treatment to analyze early effects.  Response to treatment was based 

on histology performed after surgery. 

2.2.2 Baseline Biomarker 

 Before the beginning of treatment, diagnostic biopsies for each patient were tested 

for specific biomarkers that may assist in determining optimal treatment.   Current clinical 

care for breast cancer patients include determining biomarkers, such as estrogen 

receptor (ER), progesterone receptors (PR), and amplification of HER-2/neu (HER2),as 

well as, a widely used test of Ki67 staining. 

ER and PR are hormone receptors and are used to predict the response to anti-

estrogen therapy.61  Specifically, ER-α, an isoform of ER, is responsible for mammary 

gland development and tumorigenesis.62  Positive ER and PR statuses have a fairly good 

clinical prognosis, while negative ER and PR status have a poor prognosis. HER2 is an 

oncogene, which is linked to negative ER/PR status.  HER2 is also part of the standard 

work-up on newly diagnosed patients.  Amplification of HER2 is associated with a poor 

prognosis.61  Another biomarker we observe for this study is Ki67, which is a measure of 

cell proliferation in the cancer.  This is a widely used biomarker that has been used to 

predict response to chemotherapy. 61 

There has been sufficient evidence to support that the pathologic response 

predicts improved clinical outcome in specific BC subtypes, such as triple negative BCs 

(negative for ER, PR, and HER2).63  Therefore, combining these biomarkers with optical 

imaging features may increase the accuracy of our prediction models to help determine 

the pathological response to treatment before surgery. 

2.2.3 Clinical Exam Measurements 
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 Before each cycle of chemotherapy, patients would receive clinical exams and 

have their tumors measured extrinsically, by use of calibers.  The maximum dimension of 

the tumor was used for analysis.  The clinical measurements were taken to give the 

physicians an indication of how well the patient was doing without using any imaging or 

biopsy techniques.  We used this information to compare to our DOT measurements to 

conclude if DOT can perform better than these standardized clinical measurements. 

2.2.4 Residual Cancer Burden 

At the end of the treatment breast cancer surgery was performed and any 

remaining tumor mass was removed and evaluated by histopathology. For each person 

the residual cancer burden (RCB) score was calculated. The RCB score takes into 

account the size and proportion of the residual primary tumor and number and diameter 

of residual lymph nodes.63   

The following formula is used to calculate the RCB score: 

𝑅𝐶𝐵 = 1.4(𝑓𝑖𝑛𝑣𝑑𝑝𝑟𝑖𝑚)
0.17

+ [4(1 − 0.75𝐿𝑁)𝑑𝑚𝑒𝑡]0.17  (2.1) 

where finv is the proportion of the primary tumor bed that contains invasive 

carcinoma, LN is the number of axillary lymph nodes that contain cancer, d are the 

dimensional measurements of the primary (dprim) or metastatic cancer in the lymph node 

(dmet).  The primary tumor dimension was determined by using the two largest dimension 

and calculating: 𝑑𝑝𝑟𝑖𝑚 =  √𝑑1𝑑2. 

The RCB score is a score given on a continuous scale, but then can be further 

binned into classes.  A person was considered a pathologically complete responder (pCR) 

if the RCB ≤ 0.5 (RCB-0). A patient with RCB > 3.28 (RCB-III) was considered a non-
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responder. For values in between patients were classified as partial responders (RCB-I 

for 0.5< RCB≤1.36, and RCB-II for 1.36< RCB≤3.28).64 

Both pCR and RCB have been identified as surrogate endpoints for clinical 

outcome, as pathologic response (i.e. pCR or low RCB) associate with a favorable 

prognosis including longer disease free survival and overall survival.24, 63-65 Yet, 

pathologic response rates are low.  In a pooled analysis of over 6,000 patients 

administered neoadjuvant anthracycline-taxanes, pCR was achieved in only 15% in all 

BC subtypes. “Responders” as determined by a RCB score of 0 or 1, occur in 

approximately 40% of patients with BC after NACT, with “non-responders” (RCB = 2 or 

3) identified in about 60%.  RCB independently predicts for distant BC relapse-free-

survival in multivariate models that include pCR.64  Recent NACT guidelines recommend 

routinely checking RCB.65   

For the NACT monitoring study, we used the RCB score and RCB class as an 

endpoint to compare with our DOT features.  Our goal was to correlate the RCB score 

with our DOT features and to also predict pCR. 

 

2.3 Overview of DOT Imaging 

2.3.1 Instrumentation and Patient Interface 

To image subjects we used a custom built digital dynamic DOT system.  Our current 

breast DOT system is a continuous wave dynamic imaging system that emits four 

wavelengths.  Two of the wavelengths (765 and 808 nm) are modulated at 5 kHz, and the 

other wavelengths (827 and 905 nm) are modulated at 7 kHz.  Modulated light sources 

were used to implement a lock-in detection system to reduce noise.22, 66 
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Due to the large geometries that are being imaged, the signals received by the 

detection unit vary greatly.  To combat this problem, the imaging system was designed to 

have a large dynamic range (~120 dB).  Each source detector pair is allocated a gain 

setting that gives the acquired signal the optimal signal to noise ratio (SNR) without 

saturation.  The gain settings determine how much amplification is necessary for the 

signal from each source-detector pair. 

Table 2.1 Summary of DOT breast imager parameters.22 
 

Parameter Value 

Sources 32 per breast, 64 total 

Detectors 64 per breast, 128 total 

Wavelengths 
~5 mW at 765 nm, 
 808 nm,827 nm, 905 nm 

Temporal Response 1.7 Hz – 111 Hz 

Dynamic Range ~ 108 (158 dB) 

System Size 104 cm x 79 cm x 66 cm 

Power Consumption 3.5 Amps @ 120 V AC 

 

There are a total of 64 sources and 128 detectors (see Table 2.1).  The patient interface 

is comprised of two sets of four concentric rings that hold the source and detector fibers 

in place, and can be adjusted to accommodate different breast sizes.  Each set of the 

rings holds a total of 64 fibers in which all fibers are detectors, but half are collocated 

sources.  Fibers are placed in a source-detector-source-detector pattern around each 

ring.  There are four rings that vary in size with a diameter of 4, 8, 12, and 16 cm and hold 

8, 12, 16, and 28 fibers, respectively.  The angle between the fibers also changes as the 

size of the rings increase (60˚, 45˚, 30˚, 15˚) to assure fibers are normal to the tissue and 

maximum coverage of the breast is assured.  Larger rings can be removed to 

accommodate smaller breast sizes. However, frame rate is dependent on the number of 

sources and detectors used to image, so if a ring is removed the system images at a 
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faster frame rate.  We preform 3D imaging of both breasts simultaneously with a frame 

rate of 1.7 Hz when all sources and detectors are used.22   The fast acquisition time allows 

us to view hemodynamic changes that occur due to stimuli such as a breath hold (~30 

sec). 

 

Figure 2.2 Image of the DOT breast imager with translating ring interface. 

 Our DOT system is capable of dynamic imaging of both breast simultaneously, 

which allows us to compare the healthy and tumor bearing breasts. There is no 

compression or extrinsic contrast agents necessary, which allows for more comfortable 

imaging experience for the patient.  Also, the system has a fairly quick acquisition time 

which allows us to acquire about 1000 frames within 8-10 minutes. 

2.3.2 Patient Imaging 

The height of each ring was adjusted for each subject to assure that all of the 

optical fibers made contact with the tissue.  The subject placed her breasts inside the 

translating rings and the gain settings were automatically determined for each source-

detector pair through custom software written in LabView.  The gain settings determine 
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how much amplification is necessary for the signal from each source-detector pair.  After 

optimizing the gain settings for the subject, imaging began with a baseline measurement 

of about 2 minutes in which the patient remained stationary.  Next, the patient was 

instructed to hold their breath for thirty seconds, and then was given about 90 seconds of 

recovery time.  Each patient performed two to three breath holds, and the total imaging 

time was around 8 minutes (Figure 4).  Once the subject imaging was done and she was 

removed from the imaging probe, a reference solution was imaged for about a minute.  

The reference solution was composed of 20 % Intralipid and 1% India ink, which was 

diluted to have similar optical properties as breast tissue. 

 

 
Figure 2.3 Timeline for subject imaging and an example of how data is selected to 
reconstruct images.  Baseline refers to the period of time that the subject remains 
stationary.  Subjects perform three breath holds (BH) for about 30 seconds and given 90 
seconds to recover.  Reference solution is imaged for one minute after the subject 
imaging is over. 
 

The acquired data was reconstructed to create both static and dynamic images.  

Static images were reconstructed from the measurements acquired during the subject’s 

baseline imaging and the reference solution imaging.  By using a reference solution of 

known optical properties, static 3D images of oxy-hemoglobin concentration, deoxy-

hemoglobin concentration, and water fraction were made.  To create the dynamic images, 

one of the breath holds was selected for reconstruction.  The baseline measurement for 

the dynamic images were taken 30 seconds before the patient began holding their breath 
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and was used to calculate percent change of oxy-hemoglobin and deoxy-hemoglobin 

concentrations for the duration of the breath hold, as well as, 30 seconds of the recovery 

time. About one dynamic image per second was reconstructed so that the hemodynamic 

effect of the subject’s breath hold could be analyzed.  

Other studies have used the Valsalva maneuver, mechanical compression, or 

contrast agent, such as ICG to observe hemodynamic effects of breast tumors67, 68.  

However, these pose a couple of challenges.  One group needed to exclude a third of 

their subject population due to motion artifact caused by the Valsalva maneuver68.  This 

maneuver requires to breathe out for a certain length of time which could cause motion 

issues during imaging.  However, with the breath hold, the subject is not constantly 

moving during the imaging.  Additionally, there is no extrinsic contrast agent that could 

cause some discomfort to the patient. 

2.3.3 Mesh Construction  

 

Figure 2.4 Computer rendering of translating ring interface.  The location of each source 
and detector is known, as well as, the distance between rings.  This information can be 
used directly to create 3-dimensional meshes for reconstructions. 
 

Meshes for image reconstructions were created using the geometry of the rings 

and known locations of each source and detector (Fig 2.4). Therefore, meshes were 

generated custom made for each individual subject, which improves the accuracy of the 

reconstructed image.  The meshes extend 2 cm past the largest ring to account for the 
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effects that the chest wall might have on the reconstruction.  Meshes contained 

approximately 60,000 to 70,000 elements.   

 Meshes are 3-dimensional volumes that are segmented into voxels.  Each of the 

voxels are an unknown to which the reconstruction algorithm assigned a value (i.e. μa, μs, 

etc.).  The meshes are also used to predict how light travels through the medium that has 

been assigned specific optical parameters.  Mesh generation is an essential step in 

reconstructing optical images, since the distance between the source and detector are 

one of the key factors for predicting how light travels through the medium.  Additionally, 

the meshes are used to compile the final 3D DOT image. 

2.3.4 Reconstructions 

 The imaging data was pre-processed and reconstructed to yield 3-dimensional 

images and movies of the whole breast.  A PDE-constrained multispectral imaging 

method that uses the diffusion approximation as a model for light propagation.69 Static 

and dynamic reconstructions were performed on previously developed codes within the 

lab.  More detail about the specifics of the reconstruction algorithms can be found in 

chapters 3 and 4.  Otherwise, optimization schemes similar to the reconstruction 

algorithm structure explained in Chapter 1 were utilized. 

 

2.4 Statistics 

2.4.1 Standard Statistics 

The mean and standard deviation were determined for each of the previously 

described features.  One way ANOVAs were performed for comparison of more than two 

groups.  Otherwise, two-way unpaired student t-tests between designated groups was 
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performed.  Linear regressions of the RCB score versus different DOT features in which 

the correlation coefficient and p-value were determined. 

2.4.2 Sensitivity Analysis 

Classifier performance can be determined with the help of a confusion matrix.  A 

confusion matrix displays how many of a given population was predicted correctly for a 

particular feature being observed (i.e. how many women were correctly diagnosed with 

breast cancer using x-ray mammography).  Figure 2.5 shows how the confusion matrix is 

constructed.   

 

Figure 2.5 A template for a confusion matrix.70 

Subjects are classified based on an experimental feature (hypothesized class), but 

are compared to a gold standard of diagnoses (True Class).  Using our previous example, 

a true positive would be a subject that had breast cancer and was classified as having 

breast cancer.  A true negative would be a subject that did not have breast cancer and 

was correctly classified as have no breast cancer.  A false positive (FP) or false negative 

(FN) were subjects that were not classified correctly.  The sensitivity and specificity of the 

confusion matrix are determined using: 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑃𝐷
     (2.2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑁𝐷
     (2.3) 

where TP and TN are the number of subjects that were true positive and true negative, 

respectively.  PD were the number of positively diagnosed subjects and ND were the 

number of negatively diagnosed subjects.  The accuracy is determined by equation 2.4. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑁𝐷+𝑃𝐷
     (2.4) 

Additionally the positive predictive value (PPV) and negative predictive value (NPV) can 

be calculated using: 

𝑃𝑃𝑉 =
𝑇𝑃

𝑃𝑇
           (2.5) 

𝑁𝑃𝑉 =
𝑇𝑁

𝑁𝑇
          (2.6) 

where PT is the number of subjects that were classified positive and NT were the number 

of subjects tested negative. 

 

Figure 2.6 Examples of ROC curves with the sensitivity and specificity at the Youden 

index.  An ideal ROC curve with an area under the curve (AUC) of 1 (A), a standard ROC 
curve with an AUC of 0.85, and a very poor ROC curve with an AUC of 0.56 (C). 
 

Receiver operating curves (ROC) compare the specificity and sensitivity of a 

diagnosis test and are efficient at determining the efficiency of classification techniques.  
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The sensitivity and specificity of several threshold values within a given feature are tested 

and the threshold that has the maximum value to the equation 1-(Sensitivity + Specificity) 

is considered the Youden index, which is the optimal cutoff point for the classifier.  The 

area under the curve of the ROC can be determined.  An AUC of 1 is ideal for a classifier 

(Fig 2.6A).  Examples of ROC can be seen in Figure 2.6 in which there are different AUCs 

and the location of the Youden index are identified with the corresponding sensitivity and 

specificity. 

Thus, the sensitivity, specificity, accuracy, positive predictive value (PPV), and 

negative predictive value (NPV) were determined from the Youden index of the ROC 

curve.  The sensitivity within this thesis denotes the percentage of the more responsive 

group that was diagnosed correctly.  Conversely, the specificity denotes the percentage 

of subjects in the least responsive group that were categorized correctly.   

Univariate and multivariate discriminant analysis with cross-validation was also 

employed and described in Chapter 7. 

2.5 Summary of Subject Population 

Table 2.2 Subject summary and pathologies. 
 Avg ± Stdev Range 

Age (Years) 49 ± 12 (29-73) 

BMI 29.8 ± 6.0 (18.3-44) 

Tumor Size (cm) 4.4 ± 2.7 (1.1-12) 

    

Menopausal State Pre-Menopausal Post-Menopausal 

Number of Subjects 20 16 

     

Cancer Type Invasive Ductal Invasive 
Lobular 

Mixed Ductal & 
Lobular  

Number of Subjects 32 4  1 

RCB Score RCB 0 RCB I RCB II RCB III 

Number of Subjects (Percent of 
subject population) 

14 (38.9%) 2 (5.5%) 14 (38.9%) 6 (16.7%) 
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There were forty women recruited and imaged for the study with four subjects 

being excluded due to drop outs or machine malfunctions.  Four patients were excluded. 

One patient completely stopped NACT after the first imaging. For 2 subjects, 

instrumentation failure during the imaging session resulted in corrupted data sets that 

could not be used. Finally, one subject opted to receive radiation therapy in addition to 

the traditional NACT therapy and therefore was removed from the analysis.  

Table 2.3 Number of subjects in each response category for each week. 
# of Subjects Baseline Week 2 Week 4 Week 0AC Week 2AC Pre-surgical 

RCB 0 14 13 12 10 11 7 

RCB I 2 2 2 2 2 2 

RCB II 14 13 14 13 12 11 

RCB III 6 6 6 6 6 6 

Total 36 34 34 31 31 26 

* Subject imaged during week 3 instead of week 2 (1 RCB 0 subject and 2 RCB II subjects) 
** Two subjects imaged at third AC cycle instead of the second cycle. 

   

As seen in Table 1, the average age of the women was 49 ± 12 in which the 

youngest woman was 29 and the oldest was 73.  The average body mass index (BMI) 

was 29.8 ± 6.0.  There were 20 pre-menopausal subjects and 16 post-menopausal 

women.  Most women had invasive ductal carcinoma (32 subjects).  There were four 

women with invasive lobular carcinoma and one subject with mixed ductal and lobular.  

In the discrete scale of RCB score, 14 subjects had an RCB of 0 (pCR), 2 subjects had 

an RCB of I, 14 subjects had an RCB score of II, and 6 subjects had an RCB of III.  Not 

all subjects were imaged at every time point.  Table 2 shows a summary of the number 

of subjects that were included in the analysis for each week for each response group. 

 

2.6 Novelty and Uniqueness of Current Study 
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The current study has several features that make it unique.  First, our imaging 

system solely operates as an optical system.  There have been studies of dual-imaging 

systems that combine near-infrared imaging with US, MG, and MRI.25, 26, 58, 71-75 The 

advantage is that commonly used imaging modalities that physicians are comfortable 

using are being used the combined information that near-infrared imaging has to offer.  

However, when it comes to treatment monitoring these imaging modalities lack the 

versatility or efficacy that is needed to image patients multiple times safely at a reasonable 

cost.  DOT uses non-ionizing light sources that allow for multiple imaging session within 

a short period of time.  Therefore, unlike x-ray imaging, frequent DOT measurements can 

be performed without adverse effect.  DOT is also sensitive to parameters that change 

over the course of treatment, such as tissue vascularity or hypoxia.3, 48   

There are several facets that make our current study unique to other imaging 

studies that have been published.26, 57, 59, 72-81  First, all subject receive the same 

chemotherapy regimen.  Other chemotherapy studies have subjects on different 

chemotherapy regimens, which could lead to different responses and thus make 

predicting the response to certain treatments difficult.  Second, we have six imaging time 

points spaced throughout the treatment with imaging concentrated towards the beginning 

of treatment and after switching chemotherapy agents.  We have recruited 40 subjects 

and analyzed 36 subjects, which is one of the larger optical studies performed to date. 

 Most importantly we are collecting both static and dynamic information which could 

lead to a more complete picture of what the tumor progression is under the treatment 

circumstances.  We can possibly use these two pieces of information to accurately 

monitor the tumor or possibly predict the response early within the treatment. 
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2.7 Conclusion 

 We have designed a study that allows for the collection and analysis of multiple 

facets of tumor progression throughout NACT.  Through the use of a versatile dynamic 

DOT imaging system, we have collected static and dynamic optical information.  For the 

remainder of this thesis, I present how this information was processed and analyzed, as 

well as, the overall results we have found from this longitudinal pilot study. 

 

 

 

 

 

 

 

 

 

 

 

 

 



   46 

 

Chapter 3: Static Data Processing                            |  

3.1 Introduction 

Since DOT is sensitive to hemoglobin concentrations, it is capable of 

characterizing changes in vascular structures and blood perfusion in tissue.  Several 

studies have shown that there is a change in optical properties over time during the course 

of NACT. 26, 48, 57-60, 72-81 We have used a DOT breast imaging system previously 

developed in our group that is capable of acquiring 3D transmission data from both 

breasts simultaneously to measure spatially dependent concentrations of [HbO2], [Hb], 

[HbT], and water fraction (WF), and oxygen saturation (SO2%) on subjects receiving 

NACT.  We plan on looking at the percent change from the baseline of these parameters 

over time to track tumor progression and to correlate these changes with the pathological 

response of the subject.  

 

3.2 Challenges to overcome 

Since the DDOT system was set up for dynamic imaging, our previous studies had 

focused on the hemodynamics of breast cancer.  However, this has been the first study 

in which we planned to look at static imaging with the aid of a reference phantom.  

Therefore, several adjustments had to be made and techniques developed for the current 

data set to obtain accurate static images. 

The original code being utilized was a PDE-constrained multispectral imaging 

method that uses the diffusion approximation as a model for light propagation.   However, 

this code would work very well for some patients and pose huge problems for other 

patients.  There would be large artifacts, false positives in the contralateral breast, and 
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indeterminate cancer locations in our original protocol setup.  Also, the tumor-bearing 

masses would display blobs in the middle of the images which would be caused the by 

regularization within the reconstruction algorithm.  Regularization was kept constant for 

all patients but would have needed to be changed base on mesh size.  There is no method 

of determining this efficiently. 

Once we switched to the DCT reconstruction method, the artifacts at the surface 

of the images became clearer.  As a result, there needed some method of artifact removal 

incorporated into the pre-processing stage. We also added a method for determining the 

initial conditions for each reconstruction.  Last, there was no protocol put in place for the 

quantification of the images, so a new method had to be developed. 

 

3.3 Pre-processing 

3.3.1 Overview 

 Figure 3.1 shows an overview of the pre-processing protocol.  First, 30 seconds of 

the raw data are averaged for the patient and reference measurement and saved to text 

files.  There is no additional pre-processing methods performed on the raw data. 

 Next the forward model was run and the input and setup files were created.  The 

input files are the calculated data using the following equation: 

𝑧𝑡𝑎𝑟
𝜆 =

𝑀𝑡𝑎𝑟
𝜆

𝑀𝑟𝑒𝑓
𝜆 𝑃𝑟𝑒𝑓

𝜆       (3.1) 

where 𝑀𝑡𝑎𝑟
𝜆  is the subject measurement for a specific wavelength, 𝑀𝑟𝑒𝑓

𝜆  is the reference 

measurement for a specific wavelength, 𝑃𝑟𝑒𝑓
𝜆  is the prediction measurement for a specific 

wavelength from the forward model, and 𝑧𝑡𝑎𝑟
𝜆  is the input value for the reconstruction.  The 
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setup files contain information for the reconstruction including the initial condition.  The 

evolutionary strategy was run and used to change the initial condition in the setup files.   

 

Figure 3.1 Overview of pre-processing steps to run static reconstructions. 

Also, the source-detector (SD) points are analyzed, the poor points are removed, 

and the input files are modify to reflect the changes.  Last, the reconstruction is run.  All 

the time points and the left and right breasts are pre-processed and run together.  This 

saves time and allows all the time point images to be processed the same way. 

3.3.2 Evolutionary Strategy 

Before utilizing evolution strategies for the static reconstructions all patients were 

given the same initial value for the reconstruction algorithm.  There has been evidence to 

support that the initial value can have a huge impact on the outcome of the inverse 
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problem.30  Additionally, the optical properties of breast tissue can vary drastically 

according to age or BMI.82  Therefore, there was a need for a more individualistic means 

of inputting the initial conditions into the reconstruction algorithms.  One simple solution 

was to use pre-written evolutionary strategy algorithms to determine an estimate of the 

breast tissue properties. 

 

 
Figure 3.2 Evolution Strategy uses an iterative process of recombination, mutation, and 
selection of a set of individuals Pk to determine optical properties. 

 

The initial guess for the full tomographic images is predetermined beforehand 

using evolutionary strategies.  Briefly, evolution strategies uses principles of nature such 

as survival of the fittest and heredity to determine the optimal solution for an ill-posed 

problem.  This is an iterative process that starts with a parent population of 

𝑃𝑘 =  (𝑥1, … ,  𝑥𝑛)𝑘 where k is the number of iterations, P is the parent population, xi is one 

of the individuals of the population and n is the total number of individuals (Figure 3.2).  

Each individual is represented by 𝑥𝑖 = [𝑎1, … , 𝑎𝑚] where 𝑎𝑗 is one of the optical properties 

that needs to be solved out of m optical properties.  
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The properties of the individual are then recombined with another individual in the 

parent population.  This then becomes the beginning of the child population that contains 

𝐶𝑘 = [𝑥1
𝑐𝑜𝑚𝑏𝑥2

𝑐𝑜𝑚𝑏 , … 𝑥>𝑛
𝑐𝑜𝑚𝑏]  Afterward a mutation occurs to each property for each of the 

individuals in the child population where 𝑎𝑗
𝑚𝑢𝑡 = 𝑎𝑗

′ + 𝜎𝑗 ∙ 𝑁𝑗(0,1).  Sigma represents the 

mutation step size of the jth individual and Nj(0,1) is a random number from a normalized 

distribution.  After the mutations are completed the forward model is run and the outcome 

is compared to the measurement data taken in the experiment.  The objective function 

for each child is found and the n lowest objective values are chosen for the new population 

for the next iteration.  This is repeated until one individual reaches a threshold for the 

objective function value.83 

 The forward model for the ES is based on reflectance measurements and is 

dependent on the absorption coefficient (μa), the reduced scattering coefficient (μs’), and 

source-detector distance (d). 

𝑅(𝑑)𝑑𝑐 =
1

4𝜋𝜇𝑡
′ [

(𝜇𝑒𝑓𝑓+
1

𝑟1
2) exp(−𝜇𝑒𝑓𝑓𝑟1)

𝑟1
2 +

(
4

3
𝐴+1)(𝜇𝑒𝑓𝑓+

1

𝑟2
) exp(−𝜇𝑒𝑓𝑓𝑟2)

𝑟2
2 ]      (3.2) 

where 

𝑟1 = √(
1

𝜇𝑡
′)

2

+ 𝑑2   (3.3)  𝑟2 =  √(
3

4
𝐴+1

𝜇𝑡
′ )

2

+ 𝑑2   (3.4) 

𝜇𝑒𝑓𝑓 =  √3𝜇𝑎𝜇𝑠
′   (3.5)   𝜇𝑡

′ = 𝜇𝑎 + 𝜇𝑠
′    (3.6) 

 

where μeff is the attenuation coefficient, μt’ is the transport coefficient and A is the internal 

reflection parameter that takes into account the reflective index mismatch at the air-tissue 

interface.83  
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 To determine the initial condition of the static reconstruction only a fraction of the 

subject data was used in the evolutionary strategy.  The patient interface on the DDOT 

system has four concentric rings.  Only the data acquired from the second ring of the 

patient interface was used for the ES method.  The second ring was used since this was 

the ring that was most likely to have the least trouble making complete contact with the 

subject’s breast and therefore, would have the least artifacts so that the ES method would 

not be influenced by bad data.  In addition, this increases the speed of the ES code by 

reconstructing a uniform 2D area instead of a 3D volume. 

3.3.3 Data Point Selection 

 The data point selection method had a number of criteria that needed to be 

considered such as: 

1. Keeping the same number of data points for the tumor-bearing and healthy breast. 
2. Keeping the same number of data points for all time points in the longitudinal study. 
3. Identifying and removing irrelevant data points. 
4. Automate the removal process. 

In many cases, there are sources or detector fibers that were either not calibrated 

properly, not making contact with the patient’s skin, or just not working properly.  Yet, if 

we look at the target measurement divided by the reference measurement, such as in 

Figure 3.3, the poor data points can be identified.  In Figure 3.3A, there is an example of 

the calculated data for all source-detector pairings for a single wavelength.  The data 

seems to have not observable issues with data, and most likely would not have issue 

during reconstruction.  However, in Figure 3.3B, there is a whole source and detector that 

seems to have very little signal.  The aberrant data points would cause a large problem 

in the reconstruction as seen in Figure 3.4A. 
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Figure 3.3 An example of a non-problematic static data set (left) and a problematic static 

data set (right).  The magnitude is log10( 𝑀𝑡𝑎𝑟
𝜆 /𝑀𝑟𝑒𝑓

𝜆 ).  The problematic data set needs 

source 12 and detector 24 need to be removed from the reconstruction input. 
 

Figure 3.4 shows the example of a phantom measurement.  During the phantom 

measurement, source 12 (detector 24) was covered with black material.  The source 

concurrently acts as a detector.  In Figure 3.4A, there is an artifact in the location of the 

source-detector location. After the data points that are recorded when the source was 

illuminated and the data points of the corresponding detector were removed from the 

reconstruction input, the artifact disappeared from the image (Fig. 3.4B). 

 

 

Figure 3.4 Coronal slices of the same phantom measurement before (A) and after (B) 

source 12 (detector 24) had been removed from the input to the reconstruction algorithm. 
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Therefore, we developed a series of criteria to remove poor data points.  The 

magnitude of the point was calculated by using  log10( 𝑀𝑡𝑎𝑟
𝜆 /𝑀𝑟𝑒𝑓

𝜆 ) for each source-

detector pair and was examined by the criteria.  A data point was removed from the 

reconstruction if they fit under the following criteria: 

1. Source-detector points that were greater than 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑝
1 = 𝑃𝑎𝑣𝑔 + 𝜎 ∗ 𝑃𝑆𝑡𝐷𝑒𝑣  or 

less than 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑝
2 = 𝑃𝑎𝑣𝑔 − 𝜎 ∗ 𝑃𝑆𝑡𝐷𝑒𝑣 , where σ is a constant for the degree 

above and below the mean (Pavg) based on the standard deviation (PStDev). 

2. The median magnitude of the source across all detectors was calculated (S1, S2, 

S3…S32).  All data points for a particular source that had a median greater than 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆
3 = 𝑆𝑚𝑒𝑑𝑖𝑎𝑛 + 𝛽 ∗ 𝐼𝑄𝑅𝑆𝑜𝑢𝑟𝑐𝑒or less than 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑆

4 = 𝑆𝑚𝑒𝑑𝑖𝑎𝑛 − 𝛽 ∗

𝐼𝑄𝑅𝑆𝑜𝑢𝑟𝑐𝑒, where β is a constant for the degree above and below the median base 

on the interquartile range (IQR) and Smedian was the median of set (S1,S2, 

S3,…S32). 

3. The median magnitude of the source across all detectors was calculated (D1, D2, 

D3…D32).  All data points for a particular detector that had a median greater than 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐷
1 = 𝐷𝑚𝑒𝑑𝑖𝑎𝑛 + β ∗ 𝐼𝑄𝑅𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟or less than 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐷

2 = 𝐷𝑚𝑒𝑑𝑖𝑎𝑛 − 𝛽 ∗

𝐼𝑄𝑅𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 , where β is a constant for the degree above and below the median 

base on the interquartile range (IQR) and Dmedian was the median of set (D1,D2, 

D3,…D32). 

 If more than a third of the detectors for a single source meet criteria 1 then the whole 

source is removed from the reconstruction for all wavelengths.  If more than a third of the 

sources for a single detector meet criteria 1 then the whole source is removed from the 

reconstruction for all wavelengths.  The corresponding detector to a removed source is 
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removed.  If a removed detector had a corresponding source, the source is removed.  If 

the difference in the percentage of data points removed was greater than 7% for any two 

imaging time points, then σ was decreased by 0.1 until the data removal fit the condition 

or the lowest percent difference was found. The algorithm was applied to all the images 

of a single patient to assure that they were pre-processed in the same way.  Afterwards 

the modified input files were used for the reconstruction. 

The mean and standard deviation were considered for data points because using the 

above thresholds would remove any outliers or near outliers from the average of the data 

(criteria 1).  The median of each source and detector was found to avoid influences of 

single data points that would be removed by criteria 1.  Then the outliers of these medians 

were used to remove just sources or detectors that were vastly different from the rest of 

the sources or detectors (criteria 2&3). 

The percent difference was chosen around 7% since there needed to be some 

flexibility on the amount of data used per image, but this percent difference still need to 

be low.  The overall aim was to have a percent difference less than 5%, but for the 

algorithm this was increased slightly since 5% was sometimes difficult to achieve.  The 

percent difference was due to the different source-detector points that would be removed 

from the different time points since different sources would pose problems at different 

time points.  Therefore, the same amount of data removal from each image was extremely 

difficult to achieve.  If there the same points were removed from each image, the majority 

of the data would be removed and could not be used for reconstruction. 

The constants σ and β were tunable before starting the algorithm.  The tunable 

parameters were necessary for two reasons.  One, not all subjects, would reach the 
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percent difference between two images threshold and the initial parameters would need 

to be changed.  Also, if the parameters were too conservative (i.e. σ = 2 and β = 1.5) the 

majority of the data could be removed from the reconstruction, which would yield poor 

results.  Therefore, the recommended values for the parameters should be σ > 2 and β > 

1.5.  Otherwise, the algorithm would start removing relevant data that statistically would 

not count as an outlier. 

3.4 Discrete Cosine Transform Reconstructions 

The traditional method for optical image reconstructions are element based, which 

means the number of unknowns in the problem are the number of elements in the mesh.  

However, there are usually less measurements available then unknowns in practical 

applications causing a highly ill-posed problem.  The element based reconstruction 

methods are then sensitive to measurement noise, the initial guess, and the regularization 

parameter.  The regularization parameter would have to be optimized for each mesh and 

since the current experiment involves multiple subjects each with different size meshes, 

an efficient method for determine the regularization parameter for multiple meshes was 

not possible.  As seen in Figure 3.5B, the regularization parameter also caused a blob 

formation within the center of the reconstructed image, which made tumor positioning 

difficult to determine.  Therefore, we changed over to a DCT Reconstruction method for 

our static breast reconstructions. 

The reduced space basis function neural network method for the DOT image 

reconstruction was previously developed in our lab.  Briefly, this method uses a basis 

function to reduce the solution space, so instead of solving each element which can range 

from the 8k to10k elements, the algorithm now solves the basis function, which reduces 



   56 

 

the unknowns to about 1000.  The basis function of discrete cosine transformation (DCT) 

was used.84 

 

3.5 Static Image Improvement  

 

 

Figure 3.5 Comparisons of traditional imaging methods, DOT images, and improvements 
made to the reconstruction scheme. A 47 year old pre-menopausal women who was 
diagnosed with poorly differentiated ductal carcinoma with a tumor of about 2 cm located 
in the 11 o’clock position 6 cm behind the nipple.  (A) Images show pre-therapy images 
taken from different modalities. (B) Sagittal (3 cm from center) and coronal slices (6 cm 
from nipple) are shown using the original code.  (C) Same sagittal and coronal slices as 
above, but reconstructed using DCT code with initial condition. All images are baseline 
imaging for the tumor-bearing breast (with the exception of PET). 
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 We now use a DCT reconstruction algorithm that solves for a set number of DCT 

components instead of solving for each individual mesh element.  This has eliminated the 

need for modifying the regularization parameter, and has increased the speed of 

reconstruction.  We also started to use an evolution strategy algorithm to determine the 

initial condition parameters of the reconstruction.  Figure 3.5 shows the how the baseline 

imaging for a single patient has changed from the original to the current protocol.   

In the pre-therapy images (fig. 3.5A), the tumor is visible in all three images 

modalities: US, MG, and PET-CT.  The tumor was located in the 11 o’clock position in the 

right breast 6 cm from the nipple.  In the original DOT images (fig 3.5B), the tumor appears 

in the center and does not correlate with the other imaging.  Yet, in Figure 3.5C, we can 

see the tumor in the 11 o’clock position about 6 cm from the nipple.  Therefore, the 

addition of these pre-processing tools has assisted in improving the DOT static images.  

  

3.6 Post-processing 

3.6.1 Volume of Interest Selection 

 

Figure 3.6 Flow diagram of quantification of static images.  The VOI are all the voxels 

that have a value of M-SD < Vi< M. 

 

After the reconstructions were performed the images were analyzed.  To quantify 

the images, a semi-automated custom written program was used to locate the tumor.  A 

user would look at DOT images and asked to locate the tumor (Figure 3.6).  In order to 
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reduce bias, the algorithm then looked for the maximum value (M) within a 2cm radius.  

The location of the maximum location was �̅�𝑚𝑎𝑥 = (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥).  Additionally, the 

standard deviation (SD) of the volume was calculated.  The volume of interest then 

became all voxels with value Vi within the region that satisfied the condition M-SD ≤ Vi ≤ 

M.  Then the weighted average of the volume was taken.  To calculate the healthy breast 

the weighted average of the whole volume was used.  The normalized values were the 

tumor region divided by the healthy breast values.   

 

3.6.2 Features 

 The reconstructions solve for oxy-hemoglobin ([HbO2]), deoxy-hemoglobin ([Hb]), 

and water fraction (WF).  Total hemoglobin ([HbT]) was calculated summing [HbO2] and 

[Hb] ([𝐻𝑏𝑇] = [𝐻𝑏𝑂2] + [𝐻𝑏]).  Oxygen saturation (SO2%) was calculated using: 

𝑆𝑂2% = 100 ∗
[𝐻𝑏𝑂2]

[𝐻𝑏𝑂2]+[𝐻𝑏]
 (3.7) 

The normalized values were calculated in two ways.  First, the parameters were 

divided by the parameter values for the healthy breast ([HbO2]T/H, [Hb]T/H, etc.).  Second 

the parameters were divided by the weighted average for the non-tumor region in the 

tumor bearing breast ([HbO2]T/nT, [Hb]T/nT, etc.).  Additionally, the percent change was 

calculated from the baseline imaging for both the original optical features and the 

normalized values (i.e. %Δ[HbO2], %Δ[Hb]T/H, etc.). 

 

3.7 Conclusion 

 By utilizing the DCT code and the source-detector removal conditions the quality 

and accuracy of the image was greatly improved.  The automated pre-processing and 

batching all of a single patients images saves time and allows for consistency.  
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Additionally, we have established a method to extract the tumor region without 

interference from artifacts that also reduces the bias of the user.  Then we analyzed how 

the above mention features correlated to the pathological response of the subject and 

how they changed over time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   60 

 

Chapter 4: Static DOT Results                              |  

4.1 Introduction 

Diffuse optical tomography (DOT) can create 3D maps of various tissue parameters 

using transmission measurements with non-ionizing, near-infrared light.  From these 

measurements, endogenous chromophores such as oxyhemoglobin, deoxyhemoglobin, 

water, and lipid can be used to differentiate malignant from normal tissue.25, 37-39 

Due to the sensitivity of optical imaging, multiple groups have employed this technology 

for monitoring and predicting response to NACT.  Ueda et. al. correlated the pCR rates 

to baseline tumor oxygen saturation measurements by using a handheld spectroscopic 

measurement system.85 A subset of these patients received NACT combined with 

bevacizumab or trastuzumab.  They observed an elevated baseline oxygen saturation 

(SO2%) level corresponded highly with a pCR for treatment.  Zhu et. al. observed 32 

subjects undergoing NACT using a combined ultrasound DOT imaging.58, 71, 78, 79  Subject 

received several different NACT regiments.  They report higher baseline total hemoglobin 

concentrations ([HbT]) values and the greatest decrease in [HbT] levels for pCR and near-

pCR subjects.58   

Pakalniskis et. al. also looked at optical changes during NACT in 11 patients who 

received 4 different NACT regimens using a frequency domain DOT system.57    They 

demonstrated a longitudinal decrease in total hemoglobin levels in pCR subjects but not 

non-pCR subjects. More recently Jiang et. al., looked a 19 patients that received 5 

different therapies, including a subject on Avastin.80  Employing a full-tomographic 

frequency domain system they reconstructed images of [HbT], SO2%, and water fraction 

(WF) of the tumor bearing breast.  Subjects that had a pCR showed an early percent 
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decrease in [HbT].   Several groups26, 57, 59, 72-81 observed that [HbT] levels significantly 

decreases with pCR (p=0.001)76,74; and changes can occur as early as 1 week after 

starting NACT, with tumor Hb levels dropping 33% +/-7% in responders vs. non-

responders (18% +/- 10%: z=0.008).76 

Falou et al86 observed 15 patients using diffuse optical spectroscopy for five time 

points during treatment.  There were various chemotherapy regimens employed including 

chemoradiation for two subjects.  One week after treatment they observed an initial 

increase in deoxy-hemoglobin concentrations ([Hb]), oxy-hemoglobin concentrations 

([HbO2]), WF, [HbT], and tissue optical index in responding patients, followed by a drop 

the whole breast.  Conversely, poor response patients showed an initial decrease one 

week after treatment initiation followed by an increase optical parameters.  A somewhat 

different observation was made by Soliman et. al. and Falou et. al. Employing DOS, they 

found an initial increase followed by a decrease in [HbT] during the first four weeks of 

treatment in patients that achieved a pCR after 6 months of NACT.77, 86    

However, all of these previous studies have included patients on multiple different 

heterogeneous NACT regimens. 57-60, 73, 74, 77, 79-81, 86 Some studies even included 

chemoradiation therapy. 77, 86 Using different treatment regimens for patients in the same 

cohort may confound some of the obervations. For example, different drugs have differing 

anti-angiogenic effects and may affect optical signals in disparate ways. Only recently, 

Schaafsma et. al.87  reported on results found in 22 patients who were all treated with the 

same NACT protocol. All patients received six cycles of docetaxel, doxorubicin, and 

cyclophosphamide (TAC) with or without zoledronic acid. Using a non-tomographic 

diffuse optical spectroscopy system they investigated the tumor bearing breast. They 
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found a statistically significant difference in the decrease in oxy-hemoglobin and deoxy-

hemoglobin concentrations after the first cycle of NACT between those that achieved a 

pCR versus those with a partial response. No response subjects had an overall percent 

increase in hemoglobin concentration even to the mid treatment time point. Only 4 

patients had a pCR. While results are promising, the low enrollment of complete 

responders makes it less significant.87 

The study presented in this chapter differs from all previous studies in 3 major 

aspects. First, all patients follow the same NACT regimen, a standard 

taxane/anthracycline-based therapy. Second, the number of patients enrolled for this 

project (40) is one of the largest number of patients to be evaluated in an optical imaging 

NACT study to date.  Third, our optical imaging system performs tomographic 

measurements on both breasts simultaneously, allowing for a direct comparison of the 

tumor bearing breast and the non-tumor bearing breast of the same patients.  

Since there is sufficient evidence to suggest early changes in optical properties 

during NACT, we designed a pilot study to monitor tumor progression at six time points 

throughout treatment.  We observed 40 women who all underwent the same 

chemotherapy regimen using a dual breast DOT system.  We examined three 

dimensional tomographic images of both the tumor-bearing and contralateral breast.  We 

quantified and analyzed the progression of the tumor over time and correlated 

chromophore concentrations to the RCB score of each patient. 

 

4.2 Methods 
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We employed methods found in chapter 3 for the data pre-processing and analysis 

in this chapter.  Briefly, we looked at five parameters: [HbO2], [Hb], WF, total hemoglobin 

([HbT] = [HbO2] + [Hb]), and oxygen saturation (SO2% = [HbO2]/ ([HbO2] + [Hb]) ).  The 

normalized values were divided by the parameter values for the healthy breast ([HbO2]T/H, 

[Hb]T/H, etc.) and divided by the weighted average for the non-tumor region in the tumor 

bearing breast ([HbO2]T/nT, [Hb]T/nT, etc.).  Additionally, the percent change from the 

baseline time point for each of the above mention parameters. 

 

4.3 Results 

4.3.1 Patient Summary 

 There were forty women recruited and imaged for the study with four subjects 

being excluded due to drop outs or machine malfunctions.  Table 2.2 show a subject 

summary of the patients and their pathological response.  Also, Table 2.3 show a 

summary of the number of subjects that were included in the analysis for each week for 

each response group. 

4.3.2 Case Studies 

 The first subject is a 66 year old post-menopausal woman with poorly differentiated 

invasive ductal carcinoma.  Her baseline tumor had a maximum clinical exam dimension 

of 2.3 cm.  She had an RCB of 0.  Her DOT images show a clear enhancement at the 

baseline time point in the right tumor bearing breast (Figure 4.1A).  Yet, after the baseline 

imaging, there are no clear enhancements in either breast.  The normalized quantified 

data shows a steep decrease by week 2 for [HbO2](T/H), [HB] (T/H), and [HbT] (T/H) (Figure 

4.1C).  SO2% shows a slight decrease by week 2, but WF does not show much change 
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throughout the treatment.  After the beginning of AC there seems to be another decrease 

in [HBO2](T/H), [HB](T/H), and [HbT](T/H).  The clinical exam measurement correlate well with 

the change in most of the parameters in which the tumor is no longer palpable by week 

4.   

 
Figure 4.1 Two case studies of a subject with an RCB of 0 and a subject with an RCB of 
2.7 (partial response).  The DOT images for sagittal slices of the tumor bearing and 
contralateral breast in for the pCR subject (A) and the subject with the partial response 
(B).  Quantified data showing the normalized value for each time point with the clinical 
exam tumor measurements for both the pCR (C) and partial responding subject (D).   
 

 The second subject is a 46 year old pre-menopausal subject with poorly 

differentiated invasive ductal carcinoma.  Her baseline tumor was 3.8 cm based on clinical 

exam measurements.  She had a partial response to treatment with an RCB 2.7.  The 

DOT images for this subject show an enhancement in the left tumor bearing breast that 

is visible throughout treatment (Figure 4.1B).  The quantified data reveals an increase in 
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all the parameters at the second time point (Figure 4.1D).  Beyond week 2 the value of 

each of the parameters remain steady.  The clinical exam measurements show that the 

tumor is no longer palpable by W0AC, but the subject still showed traces in the tumor 

during the AC portion of the treatment.  The remaining excised tumor was still 1.4 cm in 

diameter. 

4.3.3 Optical features during NACT 

 Table 4.1 shows a summary of of each feature for pCR and non-pCR subjects for 

each imaging time point.  The p-value for each t-test performed between the subject 

groups is shown and highlighted in yellow if there is statistical significance.  Here, we 

identify what features will that assist in determining the pCR subjects. The baseline and 

week 2 time points show the most features with statistical significance between response 

groups. 

  For baseline imaging, the more promising features that showed statistical significance 

between subject groups were [HbO2](T/H), SO2%(T/H), and SO2%(T/nT).  The pCR group 

showed higher normalized [HbO2](T/H) and SO2%(T/H) compared to non-pCR with statistical 

significance of p = 0.03 and p = 0.02, respectively.  For normalized SO2%(T/nT) pCR 

subjects were 1.12 ± 0.1 and non-pCR subjects were 1.06 ± 0.05 with a p-value of 0.03 

(p= 0.04 for WT) between the groups (Figure 4.2).   
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Table 4.1 Summary of features for each time point and the p-value for the t-test between 
pCR and non-pCR subjects. 
 
  Tumor Region Normalized (T/H) Normalized (T/nT) 

Time point Parameter pCR non-pCR p pCR non-pCR p pCR non-pCR p 

Baseline 

[HbO
2
] 56.07 ± 10.64 48.84 ± 14.94 0.13 2.84 ± 0.80 2.20 ± 0.80 0.03 2.60 ± 0.61 2.18 ± 0.72 0.08 

[Hb] 19.93 ± 4.05 19.30 ± 6.08 0.73 2.00 ± 0.38 1.97 ± 0.89 0.89 1.87 ± 0.35 1.81 ± 0.59 0.74 

WF 0.53 ± 0.07 0.54 ± 0.04 0.82 1.04 ± 0.10 1.02 ± 0.09 0.45 1.04 ± 0.02 1.03 ± 0.02 0.19 

[HbT] 75.90 ± 13.61 67.82 ± 17.51 0.15 2.55 ± 0.63 2.12 ± 0.72 0.07 2.35 ± 0.49 2.05 ± 0.61 0.14 

SO
2
% 72.22 ± 6.47 70.41 ± 4.90 0.35 1.11 ± 0.11 1.04 ± 0.07 0.02 1.12 ± 0.10 1.06 ± 0.05 0.03 

Week 2 

[HbO
2
] 34.68 ± 12.43 51.65 ± 16.32 0.003 1.81 ± 0.93 2.40 ± 0.88 0.07 1.68 ± 0.53 2.31 ± 0.87 0.02 

[Hb] 16.58 ± 6.21 20.05 ± 6.53 0.14 1.57 ± 0.56 2.01 ± 0.69 0.06 1.55 ± 0.38 1.95 ± 0.63 0.05 

WF 0.52 ± 0.05 0.53 ± 0.04 0.52 1.02 ± 0.12 1.01 ± 0.08 0.88 1.02 ± 0.02 1.04 ± 0.03 0.02 

[HbT] 49.39 ± 16.11 70.91 ± 21.06 0.004 1.66 ± 0.72 2.25 ± 0.80 0.04 1.57 ± 0.44 2.18 ± 0.78 0.02 

SO
2
% 68.40 ± 3.60 71.19 ± 3.87 0.04 1.08 ± 0.06 1.07 ± 0.06 0.45 1.07 ± 0.04 1.06 ± 0.05 0.90 

Week 4 

[HbO
2
] 41.98 ± 14.98 41.97 ± 13.34 1.00 2.10 ± 0.40 2.03 ± 0.71 0.75 2.07 ± 0.39 2.05 ± 0.56 0.90 

[Hb] 19.36 ± 7.08 16.87 ± 4.50 0.22 1.82 ± 0.65 1.79 ± 0.55 0.90 1.81 ± 0.48 1.69 ± 0.37 0.39 

WF 0.52 ± 0.03 0.56 ± 0.05 0.07 0.98 ± 0.09 1.02 ± 0.08 0.24 1.02 ± 0.02 1.02 ± 0.01 0.90 

[HbT] 60.31 ± 20.01 58.62 ± 16.73 0.79 1.96 ± 0.44 1.95 ± 0.62 0.94 1.94 ± 0.33 1.92 ± 0.46 0.85 

SO
2
% 67.60 ± 3.26 69.24 ± 4.56 0.28 1.09 ± 0.08 1.03 ± 0.06 0.01 1.07 ± 0.05 1.06 ± 0.05 0.63 

Week 0AC 

[HbO
2
] 33.82 ± 8.61 42.66 ± 16.15 0.12 1.80 ± 0.32 2.15 ± 1.00 0.29 1.84 ± 0.34 2.08 ± 0.83 0.39 

[Hb] 17.36 ± 6.46 18.08 ± 8.03 0.81 1.73 ± 0.49 1.95 ± 1.10 0.55 1.67 ± 0.45 1.84 ± 0.79 0.52 

WF 0.53 ± 0.05 0.53 ± 0.03 0.71 1.02 ± 0.12 1.00 ± 0.08 0.59 1.01 ± 0.01 1.02 ± 0.02 0.13 

[HbT] 49.73 ± 12.05 60.47 ± 22.36 0.17 1.73 ± 0.32 2.07 ± 0.96 0.29 1.73 ± 0.33 1.99 ± 0.77 0.31 

SO
2
% 66.32 ± 5.27 69.77 ± 4.99 0.09 1.03 ± 0.04 1.04 ± 0.06 0.70 1.06 ± 0.03 1.05 ± 0.04 0.39 

Week 2AC 

[HbO
2
] 38.18 ± 9.33 41.24 ± 14.55 0.53 2.04 ± 0.65 1.92 ± 0.68 0.65 2.02 ± 0.65 1.90 ± 0.59 0.61 

[Hb] 20.65 ± 7.54 16.44 ± 5.85 0.09 2.10 ± 1.06 1.62 ± 0.49 0.10 1.95 ± 0.67 1.66 ± 0.48 0.16 

WF 0.52 ± 0.03 0.55 ± 0.05 0.15 1.01 ± 0.04 1.03 ± 0.12 0.60 1.02 ± 0.01 1.02 ± 0.02 0.85 

[HbT] 56.98 ± 12.75 57.03 ± 18.09 0.99 1.99 ± 0.66 1.81 ± 0.58 0.43 1.94 ± 0.60 1.81 ± 0.52 0.53 

SO
2
% 67.08 ± 3.05 70.55 ± 3.37 0.01 1.05 ± 0.07 1.06 ± 0.06 0.71 1.06 ± 0.05 1.05 ± 0.04 0.63 

Pre-surgical 

[HbO
2
] 39.73 ± 7.55 40.39 ± 9.97 0.88 2.15 ± 0.60 1.95 ± 0.56 0.43 1.80 ± 0.35 1.85 ± 0.50 0.82 

[Hb] 14.72 ± 1.94 16.08 ± 4.49 0.45 1.64 ± 0.28 1.66 ± 0.42 0.93 1.52 ± 0.14 1.60 ± 0.40 0.61 

WF 0.54 ± 0.04 0.54 ± 0.04 0.99 1.01 ± 0.08 1.02 ± 0.09 0.82 1.02 ± 0.01 1.02 ± 0.02 0.90 

[HbT] 54.15 ± 7.23 56.44 ± 13.24 0.67 1.98 ± 0.49 1.85 ± 0.47 0.54 1.71 ± 0.28 1.77 ± 0.45 0.74 

SO
2
% 71.67 ± 4.32 70.37 ± 3.32 0.42 1.08 ± 0.07 1.04 ± 0.06 0.15 1.05 ± 0.02 1.04 ± 0.04 0.45 
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Figure 4.2 Baseline imaging comparing values for [HBO2](T/H), [HBT] (T/H), and SO2%(T/H) 

between pCR and non-pCR subjects (Left).  Similarly baseline values for [HBO2](T/nT), 
[HBT] (T/nT), and SO2%(T/nT) (Right).  Asterisk denotes statistical significance (p<0.05).   
 

 As for week 2 imaging, [HbO2], [HbT], SO2%, [HbT](T/H), [HbO2](T/nT), [Hb](T/nT), 

WF(T/nT), and [HbT](T/nT) were all statistically significant between response groups.  For 

each of these aforementioned DOT parameters, the pCR group had lower concentrations 

compared to the non-pCR group (Table 4.1). Figure 4.3 shows the three features at the 

week 2 time point with the lowest p-values: [HbO2], [HbT], and normalized WF(T/nT).  Each 

of these parameter had higher values for the non-pCR group compared to the pCR 

subjects. 

 
Figure 4.3 Comparison of pCR and non-pCR subjects at week 2 using imaging 

parameters that showed the highest correlation to RCB score in Table 3.  An asterisk (*) 
denotes p< 0.05 and (#) denotes p < 0.01. 
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There were two other time points besides baseline and week 2 that showed 

statistical significance in a parameter.  At week 4 SO2%(T/H) showed statistical significance 

between pCR and non-pCR subjects (p=0.01).  Also, at week 2AC SO2% showed 

statistical significance with non-pCR subjects having higher SO2% levels than pCR 

subjects. 

4.3.4 Baseline and Week 2 Correlation Coefficient 

Table 4.2 Summary of correlation coefficients, and p-values of the linear regression of 
the RCB scores versus the baseline and week 2 parameters in the tumor region and 
normalized (T/H and T/nT).  Highlighted in yellow are the statistically significant p-values. 
 

Time 
Point 

Parameter 
Tumor Region Normalized(T/H) 

Normalized 
(T/nT) 

R p-value R p-value R p-value 

Baseline 

[HbO2] -0.29 0.09 -0.36 0.03 -0.33 0.052 

[Hb] -0.11 0.53 -0.03 0.85 -0.08 0.62 

Water% -0.01 0.97 -0.07 0.67 -0.25 0.14 

[HbT] -0.28 0.10 -0.29 0.08 -0.28 0.10 

SO2% -0.10 0.57 -0.31 0.07 -0.33 0.0504 

Week 2 

[HbO2] 0.50 0.003 0.32 0.06 0.41 0.02 

[Hb] 0.15 0.40 0.21 0.23 0.23 0.18 

Water% 0.18 0.31 0.04 0.80 0.46 0.007 

[HbT] 0.46 0.006 0.34 0.05 0.41 0.02 

SO2% 0.36 0.04 0.02 0.92 0.07 0.68 

 

 Since most parameters showed the greatest statistical significance at baseline and 

week 2 we looked at the correlation coefficient for these time points.  The parameters for 

the tumor region and normalized tumor region were correlated to the continuous RCB 

score and the statistical significance of the correlation was calculated.  For baseline 

imaging the correlation that was the highest was the [HbO2](T/H).  This had a negative 
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correlation coefficient which suggests that subjects that will have a low RCB or a pCR 

have higher [HbO2](T/H) . 

All features in for the baseline imaging had negative slopes and the all the features 

for week 2 had positive slopes.  The feature [HbO2](T/H) had the only statistically significant 

correlation at baseline.  In Figure 4.4 the linear regression analysis for RCB score versus 

[HbO2](T/H) is shown for both baseline and week 2 imaging.  For baseline there is a 

negative correlation and for week 2 there is a positive correlation between RCB score 

and [HbO2](T/H). 

 

 

Figure 4.4 Linear regressions of the RCB score versus [HbO2](T/H) at baseline imaging 
(left) and week 2 (right).   
 

4.3.5 Percent change from Baseline Imaging 

 After observing the absolute and normalized parameters, we looked at how these 

parameters change over time with respect to the baseline.  In Table 4.3, the percent 

change (%Δ) of each parameter from the baseline imaging is shown.  Here we can 

observe not only statistical significance between pCR and non-pCR subjects for some 
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features at the week 2 point but for all other time points as well, with the exception of the 

pre-surgical time point.  However, week 2 and week 0AC have the most parameters with 

statistical significance.   

Table 4.3 Summary of the percent change of each parameter from the baseline and the 
statistical analysis of pCR versus non-pCR subjects. 
 

  Tumor Region Normalized (T/H) Normalized (T/nT) 

Time 

point 
Parameter pCR non-pCR p pCR non-pCR p pCR non-pCR p 

Week 2 

%Δ[HbO
2
] -36.44 ± 23.54 19.63 ± 69.58 0.01 -35.22 ± 30.91 22.94 ± 62.96 0.002 -33.48 ± 25.46 16.23 ± 52.63 0.003 

%Δ[Hb] -14.31 ± 30.64 14.76 ± 49.24 0.07 -20.68 ± 25.16 16.45 ± 49.12 0.01 -13.64 ± 29.00 18.14 ± 45.64 0.03 

%ΔWF -0.18 ± 14.37 -0.06 ± 9.13 0.98 -1.34 ± 15.29 -0.10 ± 11.86 0.63 -2.41 ± 1.85 0.59 ± 3.29 0.01 

%Δ[HbT] -33.30 ± 22.36 16.12 ± 62.42 0.01 -34.03 ± 27.44 18.93 ± 58.11 0.003 -31.43 ± 23.32 15.33 ± 50.14 0.004 

%ΔSO
2
% -4.64 ± 9.19 0.99 ± 6.68 0.05 -2.17 ± 10.42 2.67 ± 7.19 0.08 -4.56 ± 7.16 -0.17 ± 4.20 0.03 

Week 4 

%Δ[HbO
2
] -25.63 ± 25.75 0.91 ± 73.97 0.24 -25.60 ± 19.66 6.59 ± 66.61 0.11 -19.74 ± 25.19 5.98 ± 54.71 0.13 

%Δ[Hb] -2.58 ± 31.22 -4.36 ± 48.70 0.91 -9.26 ± 33.54 1.98 ± 50.88 0.58 -3.16 ± 31.01 -0.61 ± 36.25 0.84 

%ΔWF -3.20 ± 5.53 4.15 ± 11.74 0.05 -3.25 ± 13.22 0.84 ± 11.69 0.32 -1.72 ± 2.02 -1.09 ± 2.72 0.48 

%Δ[HbT] -20.97 ± 24.90 -1.64 ± 66.33 0.34 -23.32 ± 20.64 4.50 ± 62.89 0.16 -17.38 ± 22.35 3.13 ± 49.57 0.19 

%ΔSO
2
% -6.60 ± 8.17 -1.39 ± 7.10 0.06 -1.96 ± 12.09 -0.78 ± 7.21 0.56 -3.83 ± 10.59 -0.18 ± 4.35 0.16 

Week 
0AC 

%Δ[HbO
2
] -37.81 ± 19.76 -6.79 ± 38.72 0.02 -33.24 ± 21.70 0.04 ± 36.19 0.01 -27.66 ± 19.06 -2.27 ± 30.40 0.02 

%Δ[Hb] -9.19 ± 36.46 -6.14 ± 27.71 0.80 -12.87 ± 25.66 -0.55 ± 27.02 0.38 -12.12 ± 30.73 0.90 ± 22.25 0.19 

%ΔWF -1.89 ± 7.91 -1.13 ± 9.42 0.83 -2.05 ± 11.49 -2.13 ± 10.88 0.97 -2.55 ± 1.74 -0.73 ± 1.95 0.02 

%Δ[HbT] -32.32 ± 20.42 -8.15 ± 32.52 0.04 -29.84 ± 20.21 -1.51 ± 30.87 0.02 -26.71 ± 16.79 -2.06 ± 26.46 0.01 

%ΔSO
2
% -8.86 ± 11.89 -0.30 ± 10.06 0.05 -7.92 ± 10.25 0.45 ± 8.41 0.02 -3.98 ± 8.62 -1.43 ± 3.85 0.26 

Week 
2AC 

%Δ[HbO
2
] -26.70 ± 31.86 -5.38 ± 48.26 0.20 -20.58 ± 37.22 -2.23 ± 39.60 0.17 -19.30 ± 30.50 -4.99 ± 36.24 0.28 

%Δ[Hb] 8.55 ± 49.15 -5.71 ± 39.99 0.39 10.17 ± 66.68 -4.31 ± 36.28 0.39 3.30 ± 38.43 0.72 ± 33.66 0.85 

%ΔWF -4.71 ± 6.22 2.98 ± 12.39 0.06 -4.02 ± 8.99 0.83 ± 15.62 0.34 -1.86 ± 1.91 -1.11 ± 2.38 0.38 

%Δ[HbT] -19.46 ± 32.74 -7.76 ± 42.00 0.43 -14.48 ± 41.87 -4.99 ± 35.07 0.47 -15.74 ± 29.92 -4.67 ± 32.45 0.36 

%ΔSO
2
% -7.08 ± 9.03 0.40 ± 8.73 0.03 -5.95 ± 7.43 1.89 ± 7.99 0.008 -4.24 ± 6.52 -1.25 ± 3.44 0.10 

Pre-
Surgical 

%Δ[HbO
2
] -20.58 ± 29.34 0.69 ± 76.27 0.48 -13.71 ± 39.87 7.88 ± 68.13 0.42 -28.44 ± 23.88 -0.25 ± 60.54 0.25 

%Δ[Hb] -19.03 ± 18.27 -2.34 ± 62.01 0.49 -10.91 ± 25.15 2.28 ± 56.59 0.65 -22.05 ± 15.64 1.30 ± 50.73 0.25 

%ΔWF -0.04 ± 7.95 0.83 ± 9.28 0.83 -1.88 ± 12.55 -1.14 ± 11.09 0.72 -1.73 ± 2.67 -1.21 ± 2.71 0.66 

%Δ[HbT] -20.50 ± 24.52 -1.74 ± 70.05 0.50 -13.18 ± 34.90 4.69 ± 62.78 0.51 -26.71 ± 21.26 -0.06 ± 56.84 0.24 

%ΔSO
2
% 0.49 ± 5.96 0.54 ± 10.09 0.99 -2.31 ± 9.58 0.76 ± 9.22 0.35 -3.26 ± 4.41 -2.41 ± 3.97 0.64 

 

The non-normalized percent change tumor measurements had the most 

statistically or near statistically significant features.  Figure 4.5 presents the features that 

were statistically significant at least at the week 2 time point.  Each features shows an 

increase in the percent change for the non-pCR subjects and a percent decrease for the 

pCR subjects at the week 2 time point.  The %Δ[HbO2] (Figure 4.5A) shows statistical 
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significance at only the week 2 and week 0AC time points.  The pCR subjects seem to  

not change much after the initial decrease at week 2 and then there is a slight increase 

occurring after week 12 (week 0AC).  The %Δ[Hb] shows no statistical significance 

beyond the second week of treatment (Figure 4.4B). The %Δ[HbT] (Figure 4.4C) had a 

similar trend as the %Δ[HbO2].  Last, %ΔSO2% shows statistical significance between 

groups for all time points with the exception of the pre-surgical time point.  The pCR 

subjects show a decrease in %ΔSO2%, which begins to increase again after AC began 

to be administered (week 12).  The non-pCR subjects show that %ΔSO2% slightly 

decreases by week 4 but continues to increase throughout the rest of treatment. 

 

Figure 4.4 Longitudinal line plots of pCR and non-pCR subjects for %Δ[HbO2] (A), 

%Δ[Hb] (B),%Δ[HbT] (C), and %ΔSO2% (D). 
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At the week 2 time point, the percent change in [HbO2](T/H), [Hb](T/H), and [HbT](T/H) 

were statistically significant, as well as, all the features for the (T/nT) normalization 

scheme (Table 4.3).  For each of these features the pCR group experienced a percent 

decrease, while non-pCR subjects demonstrated an increase in the normalized features. 

For the Week 0AC time point, the statistically significant features normalized to the 

healthy breast for the Week 0AC time points were the percent change in [HbO2](T/H), 

[Hb](T/H), and [HbT](T/H).  As for the (T/nT) normalization scheme, in [HbO2](T/nT), WF(T/ nT), 

and [HbT](T/ nT) showed statistical significance between the pCR and non-pCR groups.  

Last, the percent change in SO2%(T/H), showed statistical difference at the Week 2AC time 

point. 

4.3.6 Correlation Coefficient of the Percent Change 

 Similar to the baseline and week 2 analysis, we observed the correlation coefficient 

for the percent change from the baseline imaging for all parameters.  The percent change 

in the tumor region is significantly correlated with the RCB score for %Δ[HbO2], %Δ[Hb], 

and %Δ[HbT] for week 2.  The %ΔWF is correlated only for the week 4 and week 2AC 

time point (Table 4.4). 

For the (T/H) normalized parameters, the strongest correlated parameters for week 2 

are %Δ[HbO2](T/H), %Δ[Hb2](T/H), and %Δ[HbT](T/H).  However, beyond the second week, 

%Δ[HbO2](T/H) shows significant correlation at week 4 and the week 2AC time points.  

Additionally, %Δ[HbT](T/H) has significant correlation at week 4, while %ΔSO2%(T/H) is 

strongly correlated at Week 2AC.  Only %Δ[Hb](T/H) in the pre-surgical time point showed 

statistical significance.  
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Table 4.4 Summary of linear regression analysis of RCB score versus the percent change 
from baseline imaging of each parameter for each time point. 
 

Time 
Point 

Parameter 
Tumor Region Normalized(T/H) Normalized (T/nT) 

R p-value R p-value R p-value 

Week 2 

%Δ[HbO2] 
0.5 0.003 0.51 0.002 0.55 0.001 

%Δ[Hb] 0.37 0.03 0.43 0.01 0.34 0.051 

%ΔWF 0.1 0.59 0.04 0.83 0.52 0.002 

%Δ[HbT] 0.5 0.003 0.51 0.002 0.52 0.002 

%ΔSO2% 0.27 0.12 0.28 0.11 0.4 0.02 

Week 4 

%Δ[HbO2] 0.29 0.1 0.38 0.03 0.36 0.04 

%Δ[Hb] 0.11 0.53 0.24 0.16 0.14 0.45 

%ΔWF 0.34 0.05 0.13 0.46 0.21 0.24 

%Δ[HbT] 0.26 0.14 0.35 0.04 0.32 0.07 

%ΔSO2% 0.19 0.28 0.07 0.69 0.3 0.09 

Week 
0AC 

%Δ[HbO2] 0.31 0.09 0.34 0.07 0.36 0.05 

%Δ[Hb] 0.11 0.57 0.25 0.18 0.25 0.18 

%ΔWF 0.13 0.48 0.03 0.85 0.34 0.06 

%Δ[HbT] 0.31 0.09 0.36 0.05 0.4 0.03 

%ΔSO2% 0.22 0.22 0.29 0.12 0.19 0.29 

Week 
2AC 

%Δ[HbO2] 0.35 0.051 0.37 0.04 0.39 0.03 

%Δ[Hb] -0.05 0.77 -0.06 0.76 0.06 0.74 

%ΔWF 0.51 0.004 0.2 0.27 0.3 0.10 

%Δ[HbT] 0.29 0.11 0.28 0.13 0.35 0.052 

%ΔSO2% 0.3 0.10 0.44 0.01 0.32 0.08 

Pre-
surgical 

%Δ[HbO2] 0.29 0.16 0.35 0.08 0.4 0.04 

%Δ[Hb] 0.33 0.10 0.39 0.05 0.42 0.03 

%ΔWF 0.07 0.74 -0.03 0.88 0.17 0.41 

%Δ[HbT] 0.3 0.13 0.36 0.07 0.41 0.04 

%ΔSO2% -0.12 0.55 0.03 0.9 0.12 0.57 
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Figure 4.5  Linear regression of the RCB score versus the %Δ[HbO2](T/nT) (A), %ΔWF(T/nT) 

(B), %Δ[HbT](T/nT) (C), %ΔSO2%(T/nT) (D).  Solid lines show the linear fit to the data and the 
dotted lines show the 95% confidence intervals (CI) upper and lower bounds. 
 
 For the (T/nT) normalization scheme, all the parameters show high correlation at 

the week 2 time point. Figure 4.5 shows the linear correlation RCB score versus 

%Δ[HbO2](T/nT) (A), %ΔWF(T/nT), %Δ[HbT](T/nT) , and %ΔSO2%(T/nT), which all showed 

statistical significance at week 2.  Each of these displayed features have a positive 

correlation compared to RCB score.   

The features %Δ[HBO2](T/nT) and %Δ[HbT](T/nT) had statistical significance or near 

statistical significance for all the time points including the pre-surgical time point. 

4.3.7 Longitudinal Trends 
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Figure 4.6 The percent change from baseline imaging of [HBO2](T/nT) over the course of 
NACT for RCB 0 (pCR) subjects, RCB I and II subjects, and RCB III subjects.  Error 
bars represent standard error.  
 
 Since the %Δ[HbO2](T/nT) show the greatest correlation among the all the time 

points we looked at how these parameters change over the course of treatment.  In figure 

4.6, each subject group displays non-linear trends of how these parameters change over 

the course of treatment.  The RCB 0 subjects show a decrease in %Δ[HbO2](T/nT) by week 

2, but then the percent change from the baseline does not change much at the other time 

points.  The RCB I&II group shows a slight percent increase by week 2, but does not 

seem to change much from the baseline.  However, after the W0AC time point this group 

shows a percent decrease at the Week 2AC and pre-surgical time points.  Last, the RCB 

III group increases about 47%, decreases back to baseline values by Week 0AC, and 

then shows about a 31% increase by the pre-surgical time point. 

4.3.8 Predicting Tumor Response 
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 ROC curves were created for each parameter and the five parameters with the 

highest Youden index for all imaging time points as seen in Table 4.5.  These parameters 

are all during week 2 and consist of the percent change in either oxy-hemoglobin or total 

hemoglobin (normalized or otherwise).  The parameter with the highest area under the 

curve (AUC) is %Δ[HbO2](T/nT), where we observed a sensitivity of 76.9% (10/13 subjects) 

and a specificity of 90.5% (19/21 subjects).  Therefore, the overall accuracy using a cutoff 

value of -27.5% is 85.3% (29/34 subjects).  The highest sensitivity was 100% (13/13 

subjects) for %Δ[HbO2] for week 2.  The specificity for this parameter was 61.9% (13/21), 

an accuracy of 76.5% (26/34 subjects), a PPV of 61.9% (13/21 subjects), and a NPV of 

100% (13/13 subjects). 

Table 4.5 Summary of parameters with the highest Youden index values for baseline 
and week 2 imaging. 

Parameter Time 
Point 

Sensitivity Specificity Accuracy AUC PPV NPV 

%Δ[HbO2](T/nT) Week 
2 

76.9% 90.5% 85.3% 0.87 83.3% 86.0% 

%Δ[HbO2](T/H) Week 
2 

76.9% 90.5% 85.3% 0.86 83.3% 86.0% 

%Δ[HbT](T/nT) Week 
2 

84.6% 76.2% 85.3% 0.82 68.8% 89.0% 

%Δ[HbT](T/H) Week 
2 

76.9% 85.7% 82.4 0.86 76.9% 86.0% 

%Δ[HbO2] Week 
2 

100% 61.9% 76.5% 0.84 61.9% 100% 

 

4.4 Discussion 

4.4.1 Summary of Results 

 The week 2 time point shows the highest correlation for [HbO2] and [HbT] to the 

RCB score of the subject, even when the data is normalized or the percent change of the 
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normalized values are calculated.  We found a statistical decrease in [HbT], which 

corresponds to the multiple studies done on optical NACT monitoring.26, 48, 57-60, 72-81   

Additionally, the baseline SO2%(T/H) values for pCR subjects were higher than non-pCR 

subjects.  This is similar to the work done by Ueda et. al., where they found an increase 

in SO2% in subjects that would receive a pCR to NACT.60 

However, there is statistically significant correlation between RCB score and the DOT 

parameters throughout the entirety of NACT.  Therefore, while the week 2 and even 

baseline time points may be used to evaluate the efficacy of treatment, the other imaging 

time points can also be used to determine if the subject will respond to NACT as well.  

Determining response throughout therapy can be beneficial to monitor if the tumor is still 

progressing or not.  Therefore, there can be multiple check points within the NACT to be 

able to monitor and assess treatment to assure that the patient has the optimal response 

to NACT. 

4.4.2 Physiological Explanation 

 Taxanes cause cell death by inhibited cell growth, differentiation, and proliferation 

by stabilizing microtubules within the cells.  Essentially taxanes cause an arrest in the G2 

phase of cell division prevent further maturation and proliferation.88, 89   There has also 

been evidence of taxanes inhibiting VEGF, which would suppress angiogenesis.88, 90  

Symmans et. al. demonstrated an increase in apoptosis and mitotic arrest in BC patient 

receiving paclitaxel within days of the first dose.91 Additionally in terms of early vascular 

changes, there have been studies that looked at interstitial fluid pressure (IFP) within the 

breast tumors after taxane administration,92 which is caused by the massive apoptosis of 

responding tumor cells.93  The early changes that we have observed may be caused by 
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these physiological phenomenon.  First, there was a decrease in [Hb] and [HbO2] by the 

second week of treatment for pCR subjects.  This can be caused by the antiangiogenic 

effects that taxanes have on tumors.  Also, the massive apoptosis of cancer cells could 

restore the microenvironment making the area less hypoxic and contributing to the 

decrease in [Hb].  Last, we noticed that there was a decrease for pCR subject in WF(T/nT) 

by week 2.  This could be contributed to the decrease in IFP within the tumor region 

compared to the surrounding healthy tissue in the tumor bearing breast.  Therefore, the 

early optical response of pCR subjects may possibly be contributed to the decrease in 

microvessels, hypoxia, and IFP. 

Anthracyclines stop the process of replication by preventing DNA from resealing after 

transcription.  Cyclophamide similarly works by disrupting the DNA to prevent cell growth 

and division.89  Anthracycline has shown to increase apoptosis and decrease proliferation 

in breast cancer.94  During this part of the treatment there seemed to be very little change 

to the pCR subject.  However, the RCB I/II subjects began to decrease beyond baseline 

values in [HBO2](T/nT), while RCB III subjects demonstrated and increase in [HBO2](T/nT) 

after AC treatment (refer to fig 4.6).  As a result, there seems to be no further change in 

pCR subject, the RCB I/II subjects seem to benefit from the change in chemotherapy 

agents, and the RCB III subjects seem to worsen. 

4.4.3 Conclusion 

 Early imaging time points, as other studies have suggested, are still optimal for 

determining the response of the subject.  Specifically we saw that the %Δ[HbO2](T/nT)  at 

week 2 time point yielding the highest sensitivity and specificity for determining a pCR or 

not.  Additionally, there is a positive statistically significant correlation between 



   79 

 

%Δ[HbO2](T/nT) and RCB score for every time point after baseline imaging.  This suggests 

that it may be possible to monitor tumor progression throughout NACT, not only initially 

predict response.  Monitoring would be more beneficial in some patient cases.  Hence, if 

a subject is predicted to respond by the second week, but further monitoring shows that 

she has not responded as well as originally perceived, a decision could be made on 

whether to proceed with prescribe chemotherapy agent or change drugs to help optimize 

the subject’s outcome.  These results are promising since it could lay the ground work for 

monitoring, as well as, tumor prediction. 
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Chapter 5: Dynamic Data Processing            | 

5.1 Introduction 

In a previous pilot study we have shown evidence that the hemodynamic response 

to a simple breath hold can be used to diagnose breast cancer. Tumors tend to have 

inherently different time traces compared to healthy tissue.39 Here we hypothesize that 

vascular changes occur early in the treatment process and that related hemodynamic 

parameters can be used to predict NACT treatment outcome.   The different features from 

the hemodynamic traces that we extracted from the dynamic DOT imaging will be 

correlated with the pathological response of the subject.   

There are three steps that were necessary for dynamic DOT analysis: pre-

processing, image quantification, and feature extraction. 

 

5.2 Challenges to Overcome 

There were several challenges to the pre-processing procedure that needed to be 

overcome.  First, there needed to an efficient and quick method to automate the pre-

processing procedure.  Second, there were high frequency noise that made the breath 

hold trend difficult to determine.  Third, each dynamic movie reconstruction took about 24 

hours to complete, but not each breath hold was viable for analysis.  Therefore, some 

breath holds needed to be reconstructed again, so there needed to be a procedure to 

determine before the reconstruction process to determine if the breath hold was usable.  

Additionally, some detector signals would cause issues with the reconstructions and 

would need to be removed, so there needed to be a process to determine these points.  
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Last, in order to fix these issues there needed to be a means of visualizing the raw 

data and the input information for the reconstructions to see how improvements could be 

made to the pre-processing procedure.  What made data visualizing challenging was the 

enormous amount of data that we collect.  If there are 32 sources, 64 detectors, 2 

wavelengths, and a thousand frames then there are over 4 million data points to observe. 

Therefore, there were sufficient efforts made to develop techniques to visualize all of this 

data for pre-processing. 

Image quantification also needed to be improved.  Originally, for each frame of the 

reconstruction, the location of the maximum value was found and then a 1 cm diameter 

sphere around the maximum was averaged.  Each average became a data point in time 

and the changes in the reconstruction could be viewed over the course of about a minute.  

One issue with this method is that the 1 cm sphere is free to move within the breast 

volume, so the maximum value could bounce from one region to the other, which would 

not occur in typical breast tumor physiology.  Also, the tumor region usually is not confined 

to a 1 cm sphere volume or shape.  Therefore, techniques were developed to quantify the 

data to determine a stationary volume that resembled the size and shape of the tumor. 

 For the feature extraction, we needed to determine physiological parameters that 

would assist in predicting tumor response.  However, one problem was that some 

subjects could not hold their breath for the entire desired length of thirty second.  Despite 

this challenge, if a subject held their breath for only fifteen seconds, half the time 

recommended, there were still clear hemodynamic effects to the breast tissue as seen 

from our optical imaging.  Yet, this caused a large variation in the amount of time that the 

subjects could hold their breath.  Therefore, certain parameters such as, time to peak or 
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a certain percentage, full width half maximum, and time to recovery could not be analyzed.  

As a result, we looked more a parameters that were not dependent on the breath hold 

length such as normalized peak values and washout rates. 

 

5.3 Pre-processing 

5.3.1 Overview 

 The pre-processing procedure before running a reconstruction is outlined in Figure 

5.1.  First, the raw data was pre-processed by applying a discrete cosine transform (DCT) 

filter that uses the first 15 coefficients to reduce high-frequency noise. Then one of the 

breath holds is chosen for reconstruction and the measurement files are created.  

Measurement files contain the filtered dynamic signal for each source-detector signal and 

the averaged baseline signal, which were calculated from the raw data.  Next, the forward 

model is run in order to get the prediction measurement for the reconstruction.  The input 

files are created using the measurement files and the prediction measurement.  There 

may be an additional step in which poor detector signals are removed from the input files 

directly.  Last, the reconstruction was run. 

 

Figure 5.1 Flow diagram of how data is processed before the reconstructions are run. 
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 Similar to the static input files, the input files are created using the following 

equation: 

𝑧(𝑡)𝜆 =
𝑀(𝑡)𝑡𝑎𝑟

𝜆

𝑀𝑟𝑒𝑓
𝜆

𝑃𝜆 

 where λ is the wavelength, z(t) is the input to the reconstruction for time t, 

M is a measurement, and P is the prediction measurement.  M(t) tar represents the 

measurement at time t during the breath hold.  Mref is the baseline measurement taking 

as an average of the 30 seconds of data prior to the subject holding their breath.  Then 

the signals that showed a signal to noise ratio of less than 10dB were labelled for removal 

from the reconstruction.  These two steps gave the input files to the reconstruction. 

5.3.2 Automated Program 

 In order to automate and quicken the pre-processing, a simple user interface was 

designed to guide the user easily through the necessary steps to pre-process the data.  

Figure 5.2 shows the first step where the measurement files are created.  The program 

covers two stages of the pre-processing procedure.  First, the raw data is filtered and the 

measurement files are created. Second, the calculated input files are used to remove any 

potentially erroneous signals.   

 The first step for creating the measurement files is loading the raw data.  The raw 

data are kept in files that the program can automatically search through to obtain the 

desired patient and time point.  Next the all the data is for each wavelength is displayed 

as a check to make sure there are no obvious issues with the data (i.e. missing 

wavelength data due to malfunction).  Figure 5.3 shows an example of the signals from 

the raw data. 
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Figure 5.2 Flow diagram of MatLab program to create text files for reconstruction input. 

 Then the program asks for the starting frames for each breath hold.  The program 

then performs DCT filter on each of these sections of data and displays the filtered signal 

(Figure 5.4).  The filtered signal display shows the negative sum of all the detector signals. 

This has become an essential check in the dynamic reconstruction process.  Before this 

check point was established, the optimal breath hold for reconstruction was difficult to 

establish.  Since occasionally the patient might move after a breath hold or talk, there are 

sometimes motion artifacts or other issues with the breath hold.  With this MatLab 

program, we can see each breath hold at once, and determine the best one for 

reconstruction.  Otherwise, potentially, each breath hold might need to be reconstructed 
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to find the best one, which was time consuming since each reconstruction could take a 

day to complete. 

 

 

Figure 5.3 Visualization of each raw signal for an entire imaging from each source 

detector pair for each wavelength for the left and right breast. 
 

There is an option to shift the breath hold frames one way or the other.  

Occasionally, the breath hold does not start right at the beginning of the frames that we 

instructed during the subject imaging.  The subject could either start late (i.e. take their 

time beginning the breath hold) or start before we finished giving directions.  Therefore, 

this option allows us to shift the data filtered a couple of frames in order to begin the 

reconstruction at the start of the breath hold.  Once the breath hold is filtered and chosen, 
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the user can choose how to name the files and the text files are automatically saved to a 

folder. 

 
Figure 5.4 Time traces for each breath hold that shows the normalized summation of all 

the detectors for each wavelength for each breast. 
   

5.3.3 Modify Input Files 

The other option for this program is to modify the input files.  After the 

measurement files have been created and the forward model run, then the created input 

files can also be used to check for any errors in the data.  Similarly to the “creating the 

measurement” process of the program, the program has a “modify input file” process, 

which also guides the user to correct files they wish to use.  Once the files are loaded, 

each frame of the breath hold can be displayed.  In Figure 5.5 is an example of one frame 

of data for a patient that has poor signal in one of the detectors.  After the user is finished 
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looking through the frames, the program prompts whether to remove any sources or 

detectors from the reconstruction.  From the example giving in Figure 5.5, detector 54 

would need to be removed from the reconstruction, since it is showing a much lower 

signal than the rest of the data.  This process is important since aberrant detectors can 

severely impair the quality of the dynamic reconstructions.  As seen in Figure 5.6, with 

the poor detector used in the reconstruction input data, there is no visible breath hold and 

the magnitude is far above what is typically expected.  With the detector removed, the 

breath hold is visible. 

 

Figure 5.5 Visualization of input file data for each source detector pair signal for each 
wavelength for each breast (Left).  The input signal is Mtar/Mref.  Also plots of the average 
input signal for each source and each detector (Right).  Sources also act as detectors.  
The sources are represented by circles and overlay its corresponding detector signal.  
Detector 54 on the right side for both wavelengths shows a poor signal. 
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Figure 5.6 Time trace of the reconstructed results of the data seen in Figure 5.5 of the 

same breath hold with and without detector 54 removed. 
 

Despite the current Matlab program having aided in increasing the speed and 

efficiency of pre-processing the dynamic data, there are still areas that could be improved.  

At the moment these poor source or detector signals are visualized and removed 

manually.  However, the program could be improved if poor signals could be automatically 

removed. 

 

5.4 Image Reconstruction Algorithm   

The resulting data set was input to a diffusion-theory based PDE-constrained 

multispectral imaging algorithm.69 This algorithm produced 3-dimensional volumetric 

reconstructions of various tissue parameters of both breasts. In this study we focused on 

the percent change of oxy-hemoglobin concentration (%Δ[HbO2]) and percent change of 

deoxy-hemoglobin concentration (%Δ[Hb]) with respect to values observed at baseline. 

The baseline values were obtained as the average signal level over a period of 30 

seconds prior to the patient’s breath hold.  Each frame was reconstructed using the 
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previous frame as the initial guess to the reconstruction, which decreases the 

reconstruction time and improves accuracy.  The first frame starts with a uniform initial 

condition. 

5.5 Post-Processing: Image Analysis and Quantification 

 

 

Figure 5.7 A visual of how time traces are acquired from 3D imaging. First the frames of 
the 3D images are averaged (A).  The max of the averaged 3D image is found and a 
volume of half of the max is determined to become the volume of interest (VOI) (B).  Last, 
the average of the voxels in the VOI for each frame is found and plotted (C). 
 

After the reconstructions are completed, the movies are quantified.  To identify the 

area that contains the tumor in the tumor-bearing breast, we average each voxel of the 

full 3-D tomographic data set over the period of the breath hold and half the recovery 

time. This results in a single frame of 3D data (see Fig. 5.7). Within this single frame we 

determine the location �⃗�𝑚𝑎𝑥 = (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥) of the maximum percentage change in 

deoxyhemoglobin (%Δ[Hb]max) and the value of half this change, defined as FWHM = 

%Δ[Hb]max/2. All voxels within the vicinity of �⃗�𝑚𝑎𝑥  for which %Δ[Hb]≥ FWHM are defined as 

part of the “volume of interest” (VOI) which contains the region with the tumor.  Then for 

each time point t of the original breath-hold data, the %Δ[Hb] values of each voxel within the 

VOI is averaged to get a single data point SHb(t) = %Δ[Hb]avg(t) . This value will change from 
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time point to time point and a time-dependent curve SHb(t) can be plotted (see e.g. Fig. 

5.7). Similarly, the same process was used to determine SHbO2(t) = %Δ[HbO2]avg(t). 

 

5.6 Breath Hold Trace Improvement 

 Figure 5.8 shows an example of a breath hold for a patient before and after the 

above techniques were established.  The breath hold in the before time trace (Fig. 5.8A) 

is difficult to distinguish and shows high frequencies.  Figure 5.8B shows a much smother 

signal with a distinguishable breath hold.  This improvement was due to the use of the 

DCT filter and the current post-processing methods that keep the VOI fixed for each 

frame. 

 

 

Figure 5.8 Example of a dynamic reconstruction of a baseline breath hold for a partial 
response patient using just a 10dB filter (A) and both a 10dB and DCT filter using the first 
15 coefficients (B). 

 

5.7 Feature Extraction 
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With reconstructed 3D imaging data sets of the two parameters (%Δ[Hb] and 

%Δ[HbO2]) for both breast in place, the task becomes to find suitable features in these 

images that show pronounced differences between the responders and non-responders.  

First, a MatLab program was created to automatically find key points in the breath 

hold curve.  Figure 5.9 shows the key points that were determined via this program. 

 

Figure 5.9 An example of a breath hold for both the tumor (red) and healthy (blue) 

undergoing feature extraction.  Specific points along the breath hold curve were 
determined on the curves for further calculations.  The maximum of the peak, the start 
point for the exponential fit for the recovery portion, the post 15 second after the peak, 
the initial minimum before the peak value, and the post-peak minimum value and location 
were determined.   
 
The maximum peak is found by locating the maximum value during the breath hold.  The 

15 second post breath hold value is determined 15 seconds after the peak.  To find the 

key minimum values in the graph, the local minimum before (initial) and after (post peak 

minimum) the peak were located.  Last, the exponential fit start point is the maximum 

value before the recovery portion of the curve.  This point is usually the peak value, 
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however, occasionally the breath hold would have a plateau section around the peak 

location (see Figure 5.9).  Therefore, to properly determine the exponential fit the start 

point has to occur at the edge of this plateau portion of the breath hold.  After these points 

were determined, the following features were determined. 

Since time-dependent dynamic data was obtained during a breath hold, we first 

focused on time varying features inside the tumor.  Figure 5.10 shows a plot of the time-

dependent SHb values for the VOI in one of our subjects. One can see how the SHb 

increases sharply before a maximum is reached. Once the patient starts breathing again 

SHb decreases. To capture the features of this rise and fall in a more quantitative way, we 

introduce the following parameters, many of which have been used in other dynamic 

imaging modalities before: initial enhancement (IE) of the breath hold, post-initial 

enhancement (PIE), normalized maximum value (NMV), rise slope (mrise), fall slope (mfall),  

rise rate (τrise), and  washout rate (τfall).   

Initial enhancement (IE) is a parameter often employed in functional magnetic 

resonance imaging (MRI). It is a measure of how an MRI contrast agent increases in 

signal intensity after injections.95  We adapted this parameter for DDOT by defining it as 

the ratio of the difference between the peak signal strength, Speak, and the initial minimal 

signal before the peak Sinitial,
 divided the peak signal strength: 

𝐼𝐸 =
𝑆𝑝𝑒𝑎𝑘−𝑆𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑆𝑝𝑒𝑎𝑘
                                                                (1) 

The post-initial enhancement (PIE) is another parameter used in contrast-

enhance MRI. It is employed to determine how fast a contrast agent leaves a region an 

interest in DCE-MRI imaging. 95  For DDOT we define the PIE as  

𝑃𝐼𝐸 =
𝑆𝑝𝑜𝑠𝑡𝐵𝐻 15 𝑠𝑒𝑐−𝑆𝑝𝑒𝑎𝑘

𝑆𝑝𝑒𝑎𝑘
                                                          (2) 
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In this equation SpostBH15sec is the [HbT] value 15 seconds post breath hold mark. In 

previous studies we found that this value leads to biggest differences between non-tumor 

bearing and tumor bearing breast.23  The post-15 value was determined by using the 

value in the trace 15 seconds after the peak and normalizing it by the value of the peak.   

The rise slope, mrise, was found by using the formula for slope between two points, 

where the first point was the minimum value before the peak and the second point was 

the peak point.  The fall slope, mfall, was similarly found using the peak as the first point 

and the post-15 second point as the second.  A visualization of the above features can 

be seen in Figure 5.10. 

 

Figure 5.10 An example how several features are taken from the time trace for a single 

breast. 
 

The rise rate, τrise, was determined by fitting the rising portion of the curve to an 

exponential and taking the rate coefficient by looking at the section between the minimum 
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values before the peak to the peak value.  Similarly, the washout rate, τfall, was 

determined by fitting the recovery portion of the breath hold trace to an exponential and 

taking the rate coefficient.  The recovery portion was defined from the maximum point of 

the trace to the following minimum position.  These portions of the curve were fitted to the 

following equations: 

𝑆𝑋 = 𝐴𝑟𝑖𝑠𝑒 ∗ 𝑒𝜏𝑟𝑖𝑠𝑒∗𝑡 
(3) 

𝑆𝑋 = 𝐴𝑓𝑎𝑙𝑙 ∗ 𝑒−𝜏𝑓𝑎𝑙𝑙∗𝑡 

 
Where Arise and Afall were coefficients, t was the time that has passed in seconds, 

and SX is either SHb or SHbO2.  The parameters τrise and τfall were then used in the current 

analysis. 

The normalized maximum peak value (NMPV), was calculated using the peak 

value of the tumor trace normalized by the peak value of the healthy breath hold trace.   

In addition we calculated the correlation coefficient (CC) between the time traces 

observed in the healthy and tumor bearing breasts between the corresponding VOI.    

In addition we tried various other parameters and features, such as time to 

maximum, area under the curve, etc. However, these other features did not show 

promising results, and hence we focused on the 9 parameters just introduced here. 

 

5.8 Conclusion 

 By introducing the DCT filter and the automated program, dynamic DOT data was 

able to be processed quickly and efficiently.  Also, by developing methods to visualize the 

data there has been progress to create check points that assist in breath hold choice and 

quality.  Therefore, the methods explained above has greatly contributed to the quality of 
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the dynamic breath hold time traces.  Last, features were created and calculated to assist 

in the data analysis to determine if the hemodynamic nature of the breath hold can be 

used to determine tumor response to NACT. 
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Chapter 6: Dynamic DOT Results                    |  

6.1. Introduction  

In addition to the static images that we acquired using our DOT system, we had 

acquired and reconstructed movies of the hemodynamics of subjects holding their breath.  

This is the largest dynamic NACT DOT monitoring study at the moment.  Other groups 

differ in imaging modality and methodology, however, few groups have employed 

dynamic techniques for the purpose of observing hemodynamic changes in the NACT 

setting. 

As previously mentioned, given the non-invasive character of optical imaging 

modalities and its sensitivity to blood-dependent parameters and tissue vascularity, 

several groups have evaluated DOT or non-tomographic diffuse optical spectroscopy 

(DOS) for monitoring response to NACT. For example, Ueda et. al. correlated the pCR 

rates to baseline tumor oxygen saturation measurements obtained with a handheld 

spectroscopic measurement system.60  The handheld probe had only one source and one 

detector that were scanned across a region of interest to take both frequency-domain and 

steady-state measurements.  No optical tomographic reconstruction of the entire breast 

was performed. Other groups employed tomographic breast imaging systems.36, 57, 74, 80, 

96 This includes the Zhu group at the University of Connecticut, who performed ultrasound 

guided DOT NACT monitoring studies;58, 72, 73, 78, 79  and Dr. Yodh’s team at UPENN, who 

performed a pilot study in 3 patients undergoing NACT. They employed a combined 

frequency and continuous-wave system that uses two parallel plates to hold one of the 

breasts in place inside a “breast box.” The box is filled with a solution of Intralipid and 

India ink that is used as matching fluid and reference medium.36, 96   These groups have 
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either employed dual-modality OI or DOS to perform NACT monitoring in which 

chromophore concentrations were observed, but have not utilized any dynamic 

capabilities to detect hemodynamic trends of breast tumors. 

In addition to the previous mentioned aspects in Chapter 5, the study differs from 

previous research in a very distinct way. We employ a full-tomographic 3-dimensional 

dynamic DOT imaging that provides information about hemodynamic effects of a breath 

hold in the NACT setting. 

Our group has previously used a dynamic diffuse optical tomographic (DDOT) 

system to observe the hemodynamics of different tumors to determine if a subject had a 

benign or malignant tumor or no tumor at all.  The contrast mechanism that was used for 

that diagnostic study was a simple breath hold.  The quantified hemodynamic time traces 

showed variation between the healthy and tumor bearing breasts of subjects compared 

to those of healthy subjects, which showed similar traces for both breast.  Additionally, 

we observed a more pronounced change in deoxy-hemoglobin (Δ[Hb]%) in the tumor at 

the 15 second post breath hold.23  

Given these promising results, we hypothesized that we will be able to observe the 

vascular changes that occur in tumors utilizing DDOT early in treatment. In particular, we 

expected that information about early changes in the hemodynamics can be used to 

predict the NACT response of individual patients.  To test this hypothesis, we designed a 

longitudinal clinical study that uses DDOT to observe tumor response to throughout 5-

months of NACT.  

 

6.2. Results 



   98 

 

6.2.1 Patient Summary 

There were forty women recruited and imaged for the study with four subjects 

being excluded due to drop outs or machine malfunctions.  Table 2.2 show a subject 

summary of the patients and their pathological response.   

Since for this chapter we are only concerned with the baseline and week 2 time 

points.  Results from 6 patients were not included in the analysis presented here. One 

patient completely stopped NACT midway through the therapy and was removed from 

the study. For another 2 subjects, instrumentation failure during the imaging session 

resulted in corrupted data sets that could not be used. One subject opted to receive 

radiation therapy in addition to the traditional NACT therapy and therefore was removed 

from the analysis.  Two subjects completely missed there week 2 imaging time point. 

6.2.2 Case Studies 

Before a full statistical analysis is provided, we present two case studies that 

illustrate the overall results we obtained. The first case involves a 46 year-old post-

menopausal woman with a poorly differentiated invasive ductal carcinoma.  Her baseline 

tumor, located in the left breast, had an initial maximum diameter of 2.9 cm as determined 

by mammography (a clinical exam found the diameter to be 5.5 cm).  The patient had a 

pCR to NACT (RCB-0). Figure 6.1A shows the baseline mammogram of her left breast 

with calcifications in the outer quadrants.  Baseline optical images shows a greater 

percent change in [Hb] than in the healthy breast at the 15 second post-breath hold time 

frame (Fig. 6.1B).  Figure 6.1C shows the time traces of changes in deoxyhemoglobin 

(SHb) in response to a breath hold obtained at baseline and 2 weeks after the start of 

NACT. We observe that while the rise slopes of both curves are similar, the washout rate 
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at the two-week time point (black curve) is noticeably higher compares to baseline (red 

curve). 

Figure 6.1 The top row shows imaging results from a patient with a pathological complete 
response (RCB-0); the bottom row shows imaging results from a patient with no response 
(RCB-III) to NACT. Figures A and D display magnetic resonance images (MRIs) obtained 
prior to chemotherapy. Figures B and E are DOT images obtained from the left and right 
breasts just before therapy. The images displayed refer to a time point of 15 seconds 
after the breath hold; Finally, in figures C and F we show time-dependent signal traces in 
response to a 30 second breath hold for the tumor region obtained from DDOT just before 
the start of NACT (baseline) and 2 weeks after treatment initiation.  

 

The second case study involves a 61 year-old post-menopausal woman with a 

moderately differentiated invasive lobular carcinoma.  Employing ultrasound imaging and 

x-ray mammography it was determined that she had a very large tumor of 9.5 cm in 
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diameter in the left breast, at the start of the therapy.  She did not respond well to NACT 

and was classified as a RCB-III patient. The patient’s baseline DOT images at the 15 

second post-breath hold time frame show a large enhancement in the left tumor-bearing 

breast, while the healthy breast shows a very small increase in the percent change of 

[Hb] (Figure 6.1E).  Furthermore, there is little difference between the time-trace of SHb 

obtained at baseline and 2-weeks into chemotherapy (Fig. 6.1F). Especially, the washout 

rates are almost the same, which is in stark difference to the time-traces observed in the 

patient with a pCR (Fig. 6.1C). 

6.2.3 Statistical Analysis of Hemodynamic Parameters 

6.2.3.1 Analysis of Hemoglobin Traces observed at Week 2 

We start our analysis by looking at the hemodynamic traces observed 2 weeks 

after the first treatment with taxane. A summary of our main findings is given in Table 6.1. 

The table shows the means values for all four cohorts (RCB-0, I, II, III) for all 9 features 

(IE, PIE, mRise, mFall, τrise, τfall, SPeak, NMPV, and CC) of both the SHb and SHbO2 response 

curves. Furthermore the values for various ANOVA analyses and p-values are given. 

Statistical significant differences are highlighted in green (0.01 ≤ p ≤ 0.05) and yellow (p 

< 0.01). The mrise, Speak, NMPV, and CC do not show any statistically significant difference 

among or between any of the groups for both SHb and SHbO2 traces.  The features that 

show some statistically significant differences between groups are IE, PIE, mfall, τrise, and 

τfall. As these features promise to be good predictors for treatment outcome, we will 

discuss each them in more detail in the following sections. 
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Table 6.1 Summary of features derived from time traces of the hemodynamic responses 
(both SHb and SHbO2) obtained 2 weeks after the initial treatment with taxane. Shown are 
the mean and standard deviation for 9 different hemodynamic-curve features (IE, PIE, 
mrise, mfall, τrise, τfall, Speak, NMPV, and CC) for all four sub-cohorts (RCB 0, I, II, and III).  
One way ANOVA’s were performed among all four groups, then three groups with RCB I 
subjects grouped with either RCB 0 or RCB II subjects.  Fields highlighted in green mark 
statistical significance (p<0.05); yellow denotes “strong” statistical significance (p<0.01), 
and blue fields have values of 0.05<p<0.1. 
 

Features 
Time -
Traces 

RCB 0 RCB I RCB II RCB III 

ANOVA 
1             
(4 

groups) 

ANOVA 
2          
(3 

groups 
0&I) 

ANOVA 
3              
(3 

groups 
I&II) 

pCR vs          
non-
pCR 

(RCB 0  
vs RCB 

I, II & 
III) 

RCB 
0&I  vs 
RCB II 

& III 

RCB 
0,I,&II 

vs 
RCB 

III 

IE 
SHb 1.02 ± 0.28 0.92 ± 0.04 0.96 ± 0.15 0.71 ± 0.34 0.09 0.04 0.04 0.13 0.15 0.01 

SHbO2 1.03 ± 0.29 0.90 ± 0.03 0.96 ± 0.18 0.73 ± 0.35 0.14 0.08 0.07 0.13 0.17 0.03 

PIE 
SHb -0.89 ± 0.52 -0.51 ± 0.18 -0.40 ± 0.42 -0.30 ± 0.56 0.04 0.02 0.01 0.004 0.01 0.15 

SHbO2 -0.77 ± 0.38 -0.47 ± 0.21 -0.49 ± 0.46 -0.44 ± 0.48 0.30 0.24 0.15 0.052 0.09 0.37 

mrise 

SHb 0.80 ± 0.83 0.47 ± 0.21 0.70 ± 0.49 0.38 ± 0.46 0.58 0.46 0.41 0.34 0.47 0.22 

SHbO2 0.44 ± 0.47 0.24 ± 0.06 0.32 ± 0.20 0.17 ± 0.15 0.39 0.30 0.23 0.14 0.21 0.17 

mfall 

SHb -0.46 ± 0.32 -0.41 ± 0.31 -0.19 ± 0.20 -0.01 ± 0.34 0.015 0.005 0.008 0.01 0.002 0.03 

SHbO2 -0.24 ± 0.25 -0.19 ± 0.13 -0.11 ± 0.12 -0.03 ± 0.14 0.11 0.05 0.054 0.03 0.02 0.09 

τrise 
SHb 0.11 ± 0.06 0.07 ± 0.004 0.17 ± 0.10 0.05 ± 0.04 0.03 0.01 0.04 0.70 0.43 0.03 

SHbO2 0.12 ± 0.06 0.07 ± 0.01 0.17 ± 0.10 0.08 ± 0.06 0.10 0.06 0.17 0.61 0.32 0.13 

τfall 
SHb 0.18 ± 0.09 0.07 ± 0.02 0.09 ± 0.10 0.07 ± 0.07 0.03 0.05 0.01 0.003 0.02 0.16 

SHbO2 0.17 ± 0.14 0.07 ± 0.04 0.11 ± 0.10 0.11 ± 0.07 0.38 0.44 0.23 0.09 0.20 0.59 

Speak 
SHb 9.24 ± 7.54 11.0 ± 5.21 8.61 ± 5.31 9.26 ± 8.31 0.97 0.94 0.99 0.93 0.77 0.95 

SHbO2 5.34 ± 5.29 5.62 ± 1.66 4.34 ± 3.29 3.98 ± 3.82 0.88 0.72 0.78 0.50 0.42 0.63 

NMPV 
SHb 1.83 ± 1.62 1.16 ± 0.85 1.55 ± 1.24 2.93 ± 4.27 0.61 0.43 0.41 0.90 0.72 0.20 

SHbO2 1.85 ± 1.51 0.81 ± 0.26 1.32 ± 0.95 2.57 ± 3.39 0.48 0.39 0.31 0.75 0.97 0.20 

CC 
SHb 0.46 ± 0.38 0.57 ± 0.17 0.36 ± 0.34 0.43 ± 0.36 0.34 0.52 0.96 0.77 0.28 0.93 

SHbO2 0.53 ± 0.37 0.69 ± 0.26 0.41 ± 0.34 0.39 ± 0.37 0.47 0.42 0.69 0.45 0.19 0.50 

 

 Since there are four response groups, there are several ways to create groupings 

of the subjects.  Most studies try to find the patients with a pCR (RCB-0) and group 

patients in classes RCB-I, -II, and -III into one class of non-pCRs.  However, if the goal is 

to find patients who would benefit from a change in therapy, therefore patients that do not 

respond to NACT, one could argue that finding patients that belong to the RCB-III class 
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is equally important. From our statistical analysis, it is apparent that IE and τrise are the 

two best features for finding RCB III subjects. The p-values for differences between RCB-

III and all other patients (last column in Table 6.1) are 0.01 and 0.03 for IE and τrise 

determined for the SHb traces. As seen in Figure 6.2A, subjects that had some response 

to NACT (RCB 0, I, &II) have a higher IE value at week 2 compared to RCB III subjects 

for both the SHb and SHbO2 traces.  Similarly, the responding subjects have a higher τrise, 

but only the SHb traces showed a significant difference between response groups (Figure 

6.2B). 

 

Figure 6.2 Comparison of different groupings for statistically significant features at week 

2.  Week 2 IE value for subject groups responders versus no response (A).  Week 2 PIE 
value for pCR and non-pCR subject groups (B).  Week 2 τrise coefficient for subjects that 
had some response (RCB 0, I, & II) compared to no response subjects with an RCB of III 
(C).  The mfall at week 2 for RCB 0&I and RCB II&III groups (D).  Statistical significance 
between the two response groups is denoted by (*) for p<0.05, (#) for p<0.01, and (&) for 
p<0.001. 
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 If one wanted to identify RCB-II and RCB-III group members as candidates who 

benefit from a change in treatment then the RCB 0&I versus RCB II&III grouping should 

be used (see next to last column in Table 6.1). For this case we observed the largest 

statistical significance (p<0.002) in the mfall for the SHb traces. The RCB 0&I subjects 

showed steeper slopes at week 2 compared to RCB II &III subjects for both the SHb and 

SHbO2 traces. 

 Similar to other studies we also looked for parameters and features for which pCR 

subject could be distinguished best from non-pCR subjects (RCB-0 vs RCB-I, -II, -III).  In 

this case the most significant parameters were PIE (p<0.004) and τfall (p<0.003).  The 

pCR subjects had lower PIE values at week 2 for both the SHb (p<0.004) and SHbO2 

(p<0.052) traces compared to non-pCR subjects (Figure 6.1D).  Also, pCR subjects had 

faster τfall compared to non-pCR subject, but only SHb traces showed statistical 

significance (p<0.03) (Figure 6.3). 

 
Figure 6.3 Week 2 τfall coefficient for subjects that had pCR compared to non-pCR.  There 
is only statistical significance for the SHb parameter with (#) p=0.003 (%d [HBO2]: p=0.08) 
(Left). ROC curve for both SHb and SHbO2 with an area under the curve of 85 and 67, 
correspondingly (Right). 
 

6.2.3.2 ROC Curves for selected Week 2 features 
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Since the difference in mfall for SHb traces between patients with a pCR and non-

pCR produced the strongest statistically significant distinction, we created a ROC curve 

for this case (see Figure 6.3). The sensitivity, specificity, and accuracy for the washout 

rate for SHb was 92.3% (12/13 subjects), 76% (16/21 subjects), and 82.4% (28/34 

subjects), respectively (cut-off point τfall
 = 0.09). The area under the curve (AUC) was 

0.85, and the PPV calculated to 70.6% with the NPV 94.1%. A similar ROC analysis for 

mfall and PIE for SHb resulted in values shown in Table 6.2.  

As for differentiating the RCB-0&I subjects from RCB-II&III the parameter with 

smallest p-value for this analysis was mfall for SHb.  The corresponding ROC curve has an 

AUC of 0.83 with a sensitivity of 86.7% (13/15 subjects), and specificity of 73.7% (14/19 

subjects), and an accuracy of 79.4% (27/34 subjects).  The PPV was 72.2% and the NPV 

was 85.7%.  Additionally, mfall for SHbO2 was statistically significant (p = 0.02) and the ROC 

analysis can be found in Table 6.2. 

Table 6.2 Summary of binary classification test for the three features that show the 
statistically most significant differences between patients with a pCR (RCB-0) and non-
pCR patients (RCB-I, -II, -II), based on an analysis of the data obtained at week 2.  
Sensitivity is the percent of the pCR subjects that were classified as pCR.  Similarly, 
specificity is the percent of the non-pCR subject that were classified as non-pCR.  
 

pCR v non-pCR Sensitivity Specificity Accuracy AUC PPV NPV 

mfall 92.3%  76.0% 82.4% 0.85 70.6% 94.1% 

PIE 53.8% 90.5% 76.5% 0.73 77.8% 76.0% 
RCB 0&I v. II&III Sensitivity Specificity Accuracy AUC PPV NPV 

mfall for SHb 86.7% 73.7% 79.4% 0.83 72.2% 87.5% 

mfall for SHbO2 86.7%  63.2% 73.5% 0.77 65.0% 85.7% 

RCB 0,I&II v. III Sensitivity Specificity Accuracy AUC PPV NPV 

IE for SHb 96.4% 50.0% 88.2% 0.71 90.0% 75.0% 

IE for SHbO2 96.4% 50.0% 88.2% 0.66 90.0% 75.0% 

τrise for SHb 53.6% 100% 61.8% 0.83 100.0% 31.6% 

 

For differentiation between RCB-III and all other patients, the parameter IE 

determined from the SHb traces produced the smallest p-value (p=0.01).  The 
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corresponding ROC curve has an AUC of 0.71 with an accuracy of 73.5% (30/34 

subjects), sensitivity of 96.4% (27/28 subjects), and specificity of 50.0% (3/6 subjects).   

The PPV is 90.0% and the NPV is 75.0%.  The sensitivity represents the ability to predict 

responding subjects (RCB-0, -I, and –II) from the non-responders.  The sensitivity, 

specificity, accuracy, AUC, PPV, and NPV for the other statistically significant parameters 

can be seen in Table 6.2. 

6.2.4 Analysis of Differences between Baseline and Week 2 Imaging  

In the previous section we only looked at data obtained two weeks after initiation 

of the NACT protocol. To determine if additional parameters and features could be found 

that yield even better separation between various RCB classes, we also analyzed 

differences between data obtained at baseline (week 0) and week 2. Table 6.3 shows a 

summary of each of the features. 

In this table, the most notable entries are the low p-values for Δmfall (changes in 

the fall slope) determined from SHb traces (highlighted in yellow). Of the 6 different 

groupings considered, only RCB-III vs RCB-0, -I, -II, shows a non-significant statistical 

difference (p=0.64). All other groupings show p-values ≤ 0.001. The features Δmrise and 

Δmfall had the lowest p-values for pCR versus non-pCR and can be seen in Figure 6.4.  

All features show an increase for pCR subjects and a decrease for non-pCR subjects.  

For the particularly important subgrouping of pCR versus non-pCR we find that the 

sensitivity, specificity, and accuracy is 61.5% (8/13 subjects), 100% (21/21 subjects), and 

85.3% (29/34 subjects) with an AUC of 0.87.  The PPV was 100% and the NPV was 

80.8%.  The 100% specificity signifies that all the patients with a non-pCR were identified 

as having a non-pCR response. This is of particular importance, as these are exactly the 
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patients that would benefit form a change in therapy. The ROC curves for the significant 

parameters for this grouping can be found in Figure 6.5A&B. 

Table 6.3 Summary of the differences in features between baseline and two weeks after 
the initial treatment with taxane (Week 2 – Baseline). Shown are the mean and standard 
deviation for 9 different hemodynamic-curve features (IE, PIE, mrise, mfall, τrise, τfall, Speak, 
NMPV, and CC) for all four sub-cohorts (RCB 0, I, II, and III).  One way ANOVA’s were 
performed among all four groups, then three groups with RCB I subjects grouped with 
either RCB 0 or RCB II subjects.  Green marks statistical significance (0.01≤p≤0.05).  
Yellow denotes “strong” statistical significance (p<0.01), and blue shows entries with 
0.05<p≤0.1). 
 

Features 
time 

traces 

RCB 0 

 (pCR) 
RCB I RCB II RCB III 

ANOVA 
1             
(4 

groups) 

ANOVA 
2          
(3 

groups 
0&I) 

ANOVA 
3              
(3 

groups 
I&II) 

pCR vs          
non-
pCR 

(RCB 0  
vs RCB 
I, II & III) 

RCB 0&I  
vs RCB 
II & III 

RCB 
0,I,&II 

vs 
RCB 

III 

ΔIE 

SHb 0.03 ± 0.39 -0.39 ± 0.27 -0.04 ± 0.30 -0.29 ± 0.31 0.16 0.28 0.19 0.17 0.47 0.11 

SHbO2 0.16 ± 0.38 -0.35 ± 0.49 0.03 ± 0.41 -0.40 ± 0.37 0.03 0.05 0.02 0.055 0.18 0.01 

ΔPIE 

SHb 0.29 ± 0.66 0.15 ± 0.45 -0.25 ± 0.70 0.02 ± 0.53 0.23 0.12 0.15 0.07 0.06 0.97 

SHbO2 0.17 ± 1.08 0.08 ± 0.77 -0.25 ± 0.54 0.02 ± 0.64 0.63 0.42 0.48 0.28 0.26 0.87 

Δmrise 
SHb 0.47 ± 0.65 -0.06 ± 0.01 -0.13 ± 1.08 -0.07 ± 0.26 0.27 0.20 0.14 0.04 0.07 0.55 

SHbO2 0.26 ± 0.36 0.003 ± 0.001 -0.03 ± 0.51 -0.07 ± 0.14 0.22 0.15 0.11 0.03 0.052 0.34 

Δmfall 
SHb 0.33 ± 0.33 0.03 ± 0.27 -0.38 ± 0.56 -0.13 ± 0.30 0.003 0.001 0.002 0.0004 0.0004 0.64 

SHbO2 0.16 ± 0.21 -0.08 ± 0.31 -0.12 ± 0.27 -0.06 ± 0.13 0.03 0.03 0.01 0.0025 0.01 0.50 

Δτrise 

SHb -0.04 ± 0.14 -0.1 ± 0.21 -0.03 ± 0.19 -0.12 ± 0.22 0.64 0.55 0.60 0.69 0.94 0.31 

SHbO2 0.002 ± 0.10 -0.13 ± 0.20 0.001 ± 0.18 -0.14 ± 0.12 0.15 0.14 0.13 0.32 0.59 0.05 

Δτfall 

SHb 0.02 ± 0.14 -0.01 ± 0.05 -0.11 ± 0.19 -0.07 ± 0.12 0.23 0.11 0.16 0.056 0.04 0.70 

SHbO2 0.01 ± 0.19 -0.01 ± 0.06 -0.14 ± 0.19 -0.06 ± 0.11 0.23 0.11 0.17 0.08 0.055 0.98 

ΔSpeak 

SHb -4.44 ± 4.96 -1.32 ± 1.68 2.13 ± 11.6 -3.53 ± 8.58 0.14 0.16 0.56 0.14 0.16 0.56 

SHbO2 -2.68 ± 3.20 -0.49 ± 2.36 -0.19 ± 6.23 -1.27 ± 4.30 0.20 0.26 0.96 0.20 0.26 0.96 

ΔNMPV 

SHb -0.74 ± 1.83 0.15 ± 0.06 -0.02 ± 1.81 -2.19 ± 4.61 0.37 0.23 0.21 0.93 0.89 0.11 

SHbO2 -0.63 ± 1.86 0.23 ± 0.23 0.41 ± 1.75 -1.92 ±3.67 0.22 0.12 0.11 0.70 0.86 0.08 

ΔCC 

SHb 0.01 ± 0.41 0.07 ± 0.18 0.22 ± 0.45 -0.04 ± 0.38 0.50 0.32 0.33 0.39 0.41 0.41 

SHbO2 -0.02 ± 0.45 0.04 ± 0.27 0.07 ± 0.50 0.02 ± 0.33 0.93 0.92 0.83 0.58 0.73 0.98 
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Figure 6.4 Comparison of pCR and non-pCR for Δmrise (Left), Δmfall (Right), between 
baseline and week 2 imaging.  Statistical significance between the two response groups 
is denoted by (*) for p<0.05, (#) for p<0.01, and (&) for p<0.001.   

 

To separate RCB 0&I subjects from the RCB II&III subjects, τfall  had statistical 

significance for SHb traces in which RCB II&III showed decreases in washout rate and 

pCR subjects had an increase in washout rate.  Figure 6.5C shows the ROC curve for 

Δτfall for SHb.  The AUC was 0.76 and the overall accuracy at the Youden index was 76.5% 

(26/32 subjects).  The corresponding sensitivity, specificity, PPV, and NPV was 73.3% 

(11/15), 78.9% (15/19), 71.3%, and 78.9%. 

To sort out RCB-III patients, the best features seem to be IE and τrise for the SHbO2 

traces (p=0.01, and 0.05, respectively).  The AUC for IE and τrise for the SHbO2 traces was 

0.83 and 0.76 (Figure 6.5D).  Looking at the higher AUC, τrise for the SHbO2 had a 

sensitivity, specificity, and accuracy of 85.7%, 83.3%, and 85.3%, respectively.  Here, the 

sensitivity is the percentage of responders (RCB-0, -I, &-II) that were correctly identified. 

The PPV was 96.0% and a NPV of 55.6%.  

PIE, SPeak, NMVP, and CC did not show any statistical significance between or 

among the different response groups. 
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Figure 6.5 ROC curves for select parameters from Table 6.3 in which the RCB 0 were 

compared to RCB-I, -II, and –III subjects (A and B), the RCB 0&I were compared to RCB-
II&III (C), and last where the RCB-0, -I, and –II were compared to RCB-III subject (D).  
The AUC for Δmrise for SHb and SHbO2 was 0.71 and 0.69, respectively.  For Δmfall the AUC 
for SHb was 0.87 and for SHbO2 was 0.78.  The ROC curve for Δτfall for SHb had an AUC of 
0.76.  The AUC for the Δτrise and ΔIE for SHbO2 was 0.83 and 0.76, correspondingly. 

 

6.3. Discussion 

6.3.1 Summary of Results 
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We have performed a clinical pilot study to evaluate if DDOT can be used to predict 

pathologic response to NACT setting. In this study, 40 patients were enrolled, of which 

dataset from 6 had to be discarded, either because the patients drop out of the study 

before it was finished, or instrumentation malfunction. We evaluated a total of 9 curve 

parameters for time-dependent traces of SHb and SHbO2 recorded inside the tumor.  

Recordings were obtained at baseline, just before treatment initiation (week 0) and 2 

weeks after NACT started. Our study showed that tumors in patients with pCR (RCB = 0) 

have higher washout rates, mfall, by week 2 compared to non-pCR (RCB=I, II, III) patients.  

Using mfall for SHb as parameter to predict patients with a pCR, we achieved a sensitivity 

of 92.3% and a specificity of 76%.  Here sensitivity is defined as the ability to determine 

if the patient will have a pCR, and specificity is how well the non-pCR subjects can be 

determined. Additionally, the Δmrise and Δmfall showed significant difference between pCR 

and non-pCR subjects, where pCR subjects showed an increase in each parameter for 

both SHb and SHbO2 traces.  This may possibly indicate and increase in blood flow in the 

tumor.   For this analysis, the highest AUC (0.87) and specificity (100%) were obtained 

for Δmfall (fall slope) of the SHb trace. 

 In comparing RCB-0/I from RCB-II/III, the best parameter would be mfall at week 2 

for SHb where an accuracy of 79.4%, the highest for this grouping.  However, the best test 

for determining RCB III was using Δτrise for SHbO2 in which the corresponding ROC curve 

had the highest Youden index with a sensitivity of 85.7% and a specificity of 83.3%.   

 IE and PIE show very similar trends to the τrise and τfall parameters. This would be 

expected since these parameters describe similar phenomena.  There also seems to be 

little correlation between the response of the subject and to the absolute values of the 
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traces at any point.  Additionally, since breath hold times between patients varied due to 

the subject’s capability to hold her breath, features such as time to peak was difficult to 

extract.  Therefore, in this current study we focus on the overall shape of the breath hold 

by looking at IE and PIE, as well as, the rise and fall time constants.  

 For this current analysis of dynamic features for NACT tumor response, we 

observed many different features and report here our most promising parameters. 

6.3.2 Physiology Basis of Observed Phenomena 

 Like many other chemotherapeutic drugs, taxanes disrupts the cell cycle to prevent 

proliferation and causes apoptosis. In addition it has been shown that taxanes disrupts 

microvessels and decreases microvascular density.88  However, instead of disrupting 

blood flow, studies in mice have suggested that the diameter of the tumor vessel and 

blood flow velocity inside the vessels actually increase when a tumor responds to 

taxanes.  To explain  this apparent paradox, it has been argued that solid tumors have a 

naturally high interstitial fluid pressure (IFP) due to the compression of blood vessels from 

surrounding tumor cells, the disorganized tumor vascular network, and the absence of 

functional lymphatics.11, 93 Chemotherapy leads to a reduction of tumor cell density, which 

in turn lowers IFP, and consequently increasing blood vessel diameter and blood flow 

velocity. These arguments are supported by another study that demonstrated that IFP 

decreased after breast cancer patients who received the taxane paclitaxel.92  Additionally, 

it was demonstrated that the use of taxanes can help with drug delivery to the rest of the 

tumor by increasing vascular surface area and essentially improving tumor response to 

treatment.93  A Doppler sonography study in which 17 out of 30 patients received 
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paclitaxel based NACT showed an initial increase in vascularity in subjects that 

responded well to treatment followed by a decrease in vascularity.97 

 The results obtained in our study seem to support these findings. For example, we 

observed an absolute increase of mrise, and mfall (Table 6.3, row 3&4, column 3) which 

may be better explained by the cell death that occurs early during treatment, rather than 

anti-angiogenics effects, which would suggest a decrease in blood flow and vascular 

reactivity.  

 
Figure 6.6 The week 0 washout rate ratio (τTumor/ τHealthy) for both SHb and SHbO2 were 

statistically significant different from the value 1 with p <0.01 for each group. 
 

 The tumor region in our dynamic imaging at baseline had a greater washout rate 

compared to that of the contralateral breast (see Figure 6.6). This finding is in 

agreement with other studies, based on color Doppler ultrasound, PET-MRI, and optical 

imaging, in which it was observed that blood flow is greater in tumor regions then in 

corresponding healthy breast tissue.98-101  For example, Choe et. al. used diffuse 

correlation spectroscopy to observe blood flow in breast cancer patients without any 
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treatment.  They observed that blood flow was about twice as fast in tumor regions 

compared to healthy tissue and compared to the contralateral breast.100  Also, we saw 

increases in mrise, mfall, and mfall for pCR subjects between the baseline and week 2 

imaging time point suggesting that there may be increase blood flow in the tumor.  

Therefore, there is evidence in this current study to suggest that the increase apoptosis 

and increase IFP in responding tumors to taxane may cause the increase in mrise, mfall, 

and mfall by the second week of NACT and could be physiologically relevant parameters. 

 

6.4 Conclusions 

We have developed an imaging approach to noninvasively extract information 

about the hemodynamic effects that occur in and around tumors of newly diagnosed 

breast cancer patients. In this study we demonstrate that certain features of the 

hemodynamic responses to a simple breath hold can be used to predict treatment 

outcome in patients undergoing NACT. Using dynamic optics tomographic imaging data 

from 34 patients, we evaluate time-traces of deoxy-hemoglobin concentrations, SHb, and 

oxy-hemoglobin concentration SHbO2 inside the tumor.  Recordings were obtained at 

baseline, just before treatment initiation (week 0), and 2 weeks after treatment started. 

Our study showed that tumors in patients with pCR (RCB-0) have statistically significant 

higher washout rates, mfall, at week 2 compared to non-pCR (RCB-I,-II, III).  Using τfall for 

SHb as parameter to predict patients with a pCR, we achieved a sensitivity of 92.3% and 

a specificity of 76%.  Additionally, the difference in rise slope, mrise, and fall slope, mfall, 

between the two imaging points showed significant difference between pCR and non-

pCR subjects, where pCR subjects showed an increase in each parameter for both SHb 
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and SHbO2 traces. Finally, we determined that IE and τrise of the SHb traces are the two best 

features for comparing RCB-0/I/II vs. RCB III patients, i.e. the patients at highest risk for 

breast cancer. We were able to get 100% specificity for τrise of the SHb traces when looking 

at RCB-0, I, &–II versus RCB-III, which indicates that we can identify all non-responders. 

These are subjects that are least likely to respond NACT and hence may be prime 

candidates for a change of therapy. 
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Chapter 7: Combined Analysis             . 

7.1 Introduction 

There have been several optical and non-optical imaging studies that have 

observed changes of breast tumors during or after NACT.   Since few patients have a 

pCR after treatment, the purpose of the studies was to identify the subjects who do not 

have a good response to treatment early during NACT. Then other options for treatment 

could be considered instead of continuing with a treatment that yields no result.  

Therefore, more personalized treatments could be developed to optimize the patient 

outcome of those who do not respond. 3, 48   

In Chapter 1, I go into more detail about monitoring using traditional methods.  

Briefly, in a meta-analysis using CE, MG, US, and MRI, that had an accuracy of 57%, 

74%, 79%, 84%, respectively.53  Additionally, some of these methods are not feasible for 

monitor, such as MG or MRI.  MG would be dangerous for multiple imaging session due 

to radiation.  MRI would not be feasible since it would be too expensive for multiple 

imaging sessions.  Since traditional method lack the accuracy or the feasibility for tumor 

monitoring or predicting response, DOT has emerged as a novel imaging modality for 

tumor monitoring. DOT uses optical transmission measurements with non-ionizing, low-

intensity near-infrared light to generate three-dimensional maps of various tissue 

parameters.  

There are several advantages to using optical imaging (OI) to monitor breast tumor 

response over conventional imaging techniques.  For example, OI uses non-ionizing light 

sources that allow for multiple imaging session within a short period of time.  Therefore, 

measurements can be taken a few weeks to a few days apart from each other with no 
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adverse effect.  OI is also sensitive to parameters that change over the course of 

treatment, such as tissue vascularity or hypoxia.3, 48   

Several studies have shown that there is a change in optical properties over time 

during the course of neoadjuvant chemotherapy. 48, 57-60  Ueda et. al. used discriminant 

analysis to predict tumor response at the baseline with a sensitivity of 100% and 

specificity of 85.7% when combining the estrogen receptor status with baseline SO2%.  

Otherwise, with just using SO2% at baseline imaging there was a sensitivity of 75% and 

a specificity of 73.3%. The subjects of the study received four different treatments, some 

concurrent with bevacizumab and trastuzumab.60   

 Zhu et. al. found that by adding optical imaging parameters of [HbO2]and [HbT] to 

their logistic regression model, there was a significant improvement to sensitivity and 

specificity for the pre-treatment time point.  Using pathological variables alone they saw 

an average sensitivity of 56.8% and specificity of 88.9%.  By adding [HbT] the sensitivity 

and specificity were 79%, and 94%, respectively.  Also, by adding [HbO2] to the model, 

the sensitivity became 77% and specificity was 85%.  Using just the training set of data, 

they were able to increase the AUC by adding the [HbT] for each cycle of chemotherapy 

to the model, so that by just using the pathological variables the area under the curve was 

87.9%, but combining the pathological variables with baseline [HbT], and cycle 1-3 

measurements the AUC was 100%.78 These analyses are based on data collected from 

32 patients that received four different treatments with three patients receiving 

bevacizumab.58 

 Falou et. al. observed 15 patients that received several different treatments 

including chemoradiotherapy and was able to determine a 100% sensitivity and 83% 
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specificity with [Hb] and 75% sensitivity and 100% specificity with water percentage one 

week after the beginning of NACT.  They employed univariate methods without cross 

validation.86 

In the previous chapters, we looked at 3D images (static data) and 3D movies 

(dynamic data) individually to determine if the response of a subject could be predicted 

using these DOT techniques.  Both studies track the tumor progression in 34 breast 

cancer patients receiving the same NACT regimen.  The static DOT study observed how 

concentrations of oxy-hemoglobin, deoxy-hemoglobin, water fraction, total hemoglobin, 

and oxygen saturation changed over the entire course of treatment at six imaging time 

points and how normalized oxy-hemoglobin correlated significantly with the residual 

cancer burden throughout NACT.  Our dynamic DOT study selected features from the 

hemodynamic trend that occurs as a subject held their breath and that could be used to 

determine the pathological response two weeks after the beginning of NACT.  However, 

an in depth discriminant analysis of the features acquired had not been done, which is 

the focus of this chapter. 

 For the current study we employ discriminant analysis techniques and use baseline 

biomarkers, static DOT imaging features, and dynamic DOT imaging features to improve 

the accuracy, sensitivity, and specificity of our tumor prediction models.  We have looked 

at models that separate the pCR subjects from the non-pCR subjects.  Ideally, the poorly 

responding subjects (RCB-III) are a population of great concern, but the current number 

of subjects that fall into this group is 6.  Therefore, discriminant analysis with this small 

number would be difficult to interpret.  Also, since the goal of the study is to determine 

early on within treatment whether or not NACT is effective, we have concentrated our 
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feature selection to the first two imaging time points: baseline and week 2 (third cycle of 

taxane).  Here we show that the combination of static and dynamic features yields the 

highest accuracy and out performs baseline biomarker analyses. 

 

7.2 Methods 

7.2.1 Patient population 

 There were 40 women with breast cancer imaged with four exclusions.  Here, we 

only look at the first two time points (baseline, week 2) since the largest advantage for the 

patient would to be able to determine early within treatment the tumor response.  A more 

detailed description of the subject population can be found in Table 2.3.  

7.2.1 Pathological, Static, and Dynamic Parameters 

 There were five data sets we incorporated for the current study: pathology, 

baseline static data, week 2 static data, baseline dynamic data, and week 2 dynamic data.  

These data were obtained from the results of the previous chapters.  For the pathological 

biomarkers, the estrogen receptor status (ER), progestogen status (PR), and Ki-67 

protein percentage (Ki67) were acquired before the initiation of NACT.  Four patients were 

missing their baseline Ki67 tests due to outside diagnosis and testing.  The static DOT 

parameters include concentration of [HbO2], [Hb], WF, [HbT], SO2%, and the normalized 

concentrations by both the healthy breast (T/H) and the non-tumor region in the tumor 

bearing breast (T/nT).  Only week 2 features have the percent change from baseline 

imaging.  Additionally, the percent change from the baseline was found for the normalized 

values as well.  These parameters are described in more detail in chapter 5.  The dynamic 

parameters are taken from the hemodynamic time traces of the percent change in [HbO2] 
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(SHbO2) and [Hb] (SHb) during a breath hold.  Some of the features include the rise slope, 

fall slope, rise rate, washout rate and maximum peak value. The calculations and 

descriptions of the dynamic features can be seen in chapter 4. A list of all parameters are 

shown in Table 7.1. 

Table 7.1 Summary of features where X could be any of the features above and Y is any 
feature above or any feature involving X. 

 
Pathological features 

ER 
Estrogen Receptor 
percentage 

PR 
Progestogen Receptor 
percentage 

Ki67 
Ki-67 protein 
percentage 

Static Features 

[HbO2] 
Oxy-hemoglobin 
Concentration 

[Hb] 
Deoxy-hemoglobin 
Concentration 

WF Water Fraction 

[HbT] 
Total hemoglobin 
Concentration 

SO2% Oxygen Saturation 

X(T/H) 
Feature X normalized 
to Healthy Breast 

X(T/nT) 
Feature X normalized 
to non-Tumor region in 
Tumor bearing breast 

%ΔY 
Percent change of 
feature Y from baseline 
imaging 

 
Dynamic Features 

mRise Rise Slope 

mFall Fall slope 

τRise Rise rate 

τFall Fall rate 

IE Initial Enhancement 

PIE 
Post Initial 
Enhancement 

SPeak Peak value 

NMPV 
Normalized maximum 
peak value 

CC Correlation Coefficient 

X for SHb 
Parameter X for 
deoxyhemoglobin 
dynamic curves 

X for SHbO2 
Parameter X for 
oxyhemoglobin 
dynamic curves 

ΔY 
Change in Y from 
baseline imaging 

%ΔY 
Percent change of Y 
from baseline imaging 

 

7.2.2 Discriminant Analysis 

 Discriminant analysis was performed using MatLab.  Both univariate and 

multivariate methods were employed for calculating the accuracy, sensitivity, specificity, 

positive predictive value (PPV), and negative predictive value (NPV) for determining 

whether the patient had a pCR or non-pCR to treatment.  Sensitivity in this study 

represents the probability that a positive predicted condition is a true pCR.  Conversely, 

specificity represents the probability that a negative predicted condition is a true non-pCR. 
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The data was divided into testing and training data where 25% of the data was 

used for testing.  The univariate and multivariate discriminant analysis was repeated 20 

times with a different random portion of the data removed for testing. Then the mean and 

standard deviation were calculated for the accuracy, sensitivity, specificity, PPV, and 

NPV.

For the univariate method, the cutoff point/threshold for was taken at the Youden 

index (YI) of the training data and then applied to the testing data.  As for the multivariate 

method both linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) 

were employed.  These methods were used for the baseline and week 2 time points, and 

the static and dynamic data.  Last, the static and dynamic features were both used for 

LDA and QDA.   

The feature for the univariate analysis with the largest YI are was reported.  For 

the multivariate method, LDA and QDA were performed for every combination of features 

between two sets of data and the combination with the highest YI was reported. 

 

7.3 Results 

7.3.1 Univariate Analysis 

 First, we looked at the ROC curves of the just the pathological baseline biomarkers 

to determine the standard ROC that the physicians would have for this particular study.  

Figure 7.1 shows the ROC curves for ER, PR, and Ki67 that have an area under the curve 

(AUC) of 0.89, 0.85, and 0.53, respectively.  
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Figure 7.1 ROC curves of pathologic biomarkers ER, PR, and Ki67. 

ER has the highest AUC with a sensitivity of 85.7%, a specificity of 81.8%, and an 

accuracy of 83.3%.  The sensitivity analysis at the YI for the biomarkers can be seen in 

Table 7.2.  Additionally, these pathological biomarkers underwent univariate analysis with 

cross validation (Table 7.3).   

Table 7.2 Sensitivity analysis of ROC curves in Figure 7.1 for ER, PR, and Ki67. 

Biomarker AUC Sensitivity Specificity Accuracy PPV NPV 

ER 0.89 85.71% 81.82% 83.3% 75.0% 90.0% 

PR 0.85 85.71% 77.27% 80.6% 70.6% 89.5% 

Ki67 (n=32) 0.53 90.91% 42.86% 59.4% 45.5% 90.0% 

 

 First, univariate analysis was performed to see if a single variable would be viable 

enough for tumor response prediction at the first two imaging time points during NACT.  

Table 7.3 shows the features for each set of data that had the highest Youden index.  Out 

of the data sets shown, pathology had the highest YI by using the ER percentage.  
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Consequently, ER had the highest accuracy (72.8%) and sensitivity (64.2%).  However, 

the sensitivity and accuracy for any of these parameters is <75%.  Therefore, multivariate 

analysis was performed to see if the accuracy, sensitivity, and specificity could be 

increase. 

 
Table 7.3 Summary of univariate analysis for each data set with the feature with the 

greatest Youden index. 
Data Set Feature Accuracy Sensitivity Specificity PPV NPV 

Pathology ER 72.8%±11.7% 64.2%±14.6% 89.6%±14.8% 91.4%±12.5% 56.9%±17.4% 

Static Baseline [Hb] 46.1%±15.4% 25.0%±44.4% 75.0%±44.4% 51.1%±14.9% 44.4%±15.7% 

Static Week 2 %Δ[HbO2](T/nT) 71.3%±11.9% 53.3%±20.7% 96.6%±8.2% 95.3%±12.6% 61.2%±14.7% 

Dynamic Baseline τRise for SHbO2 50.0%±13.7% 21.8%±12.8% 96.5%±9.0% 88.9%±27.4% 43.2%±15.2% 

Dynamic Week 2 PIE for SHb 70.0%±14.5% 62.3%±22.1% 85.5%±14.2% 87.0%±12.5% 61.2%±22.2% 

 
 

   
Figure 7.2 ROC curves of best DOT features from univariate analysis. 
 
 Figure 7.2 shows ROC curves for the best DOT features from the univariate 

analysis.  Here the highest area under the curve is the week 2 static feature of 
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%Δ[HbO2](T/nT).  This features has a sensitivity of 76.9% and specificity of 90.5% (see 

Table 7.4).  Additionally, %Δ[HbO2](T/nT) has the highest accuracy of the features (85.5%), 

which is higher than the ER ROC analysis.  However, %Δ[HbO2](T/nT) has a lower 

sensitivity than ER. 

Table 7.4 Summary of sensitivity analysis of the best select features from the univariate 
analysis seen in Table 7.3 

Feature AUC Sensitivity Specificity Accuracy PPV NPV 

Baseline Static:[Hb] 0.56 64.3% 72.7% 69.4% 60.0% 76.2% 

Week 2 Static: 
%Δ[HbO2](T/nT) 

0.87 76.9% 90.5% 85.5% 83.3% 86.4% 

Baseline Dynamic: 
τRise for SHbO2 

0.54 21.4% 100.0% 69.4% 100.0% 66.7% 

Week 2 Dynamic: 
PIE for SHb 

0.79 92.3% 61.9% 73.5% 60.0% 92.9% 

 
7.3.2 Multivariate Analysis 
 
Table 7.5 Summary of LDA and QDA for each data set with the features with the greatest 

Youden index. 
Data Set Type Feature I Feature II Accuracy Sensitivity Specificity PPV NPV 

Pathology 
LDA ER PR 72.8%±15.5% 80.0%±20.3% 68.7%±18.2% 62.7%±23.2% 83.7%±14.6% 

QDA ER PR 75.0%±21.3% 78.3%±37.5% 57.5%±43.8% 72.5%±25.0% 82.3%±35.2% 

Static Baseline 
LDA [HbT](T/nT) [HbO2](T/H) 70.6%±14.1% 43.4%±30.5% 89.1%±19.5% 79.6%±32.1% 72.6%±14.5% 

QDA [Hb](T/nT) [HbT](T/H) 67.8%±17.6% 42.8%±21.2% 87.7%±18.8% 77.6%±33.1% 64.4%±20.6% 

Static Week 2 
LDA SO2%(T/nT) %Δ[HbO2](T/H) 82.5%±16.4% 80.8%±28.2% 85.5%±18.4% 73.7%±33.2% 90.3%±14.5% 

QDA %ΔSO2% %ΔWF(T/nT) 81.3%±11.1% 84.4%±22.5% 83.7%±15.5% 72.3%±24.7% 90.0%±13.7% 

Dynamic Baseline 
LDA Fs SHb NMPV for SHb 65.6%±16.5% 48.4%±27.0% 83.6%±19.7% 72.1%±27.8% 68.1%±19.3% 

QDA Fs for SHb τRise for SHb 78.3%±14.2% 92.7%±19.7% 70.2%±23.3% 73.1%±21.5% 93.3%±16.7% 

Dynamic 
Week 2 

LDA ΔFs SHb PIE for SHb 88.8%±13.4% 81.3%±28.5% 92.1%±12.4% 82.1%±29.4% 91.7%±11.5% 

QDA τFall for  SHb ΔSPeak for SHbO2 88.1%±7.6% 89.0%±16.3% 87.9%±10.4% 82.6%±15.9% 93.0%±10.0% 

  
 In Table 7.5 is a summary the features that had the highest YI of the discriminant 

analysis for each data set using both LDA and QDA.  The QDA for dynamic week 2 data 

has the highest YI, where accuracy is 88.1%, sensitivity is 89.0%, specificity is 87.9%, 

PPV is 82.6%, and NPV is 93.0%.  However, the LDA for dynamic week 2 had a higher 



   123 

 

accuracy (88.8%). Both the static and dynamic week 2 data set had the highest 

accuracies (>80%) among the analyzed data sets.   

 The best performing test for the baseline data sets was the dynamic data set with 

QDA where the accuracy was 78.3%, the sensitivity was 92.7% (the largest sensitivity 

from Table 7.5), and a specificity of 70.2% .   

This is a large increase in accuracy compared to the univariate analysis.  LDA and 

QDA yield similar results for each of the data sets, in which QDA only occasionally 

increases accuracy or the YI.   

7.3.3 Multivariate Analysis with Pathology 
 
Table 7.6 Summary of LDA and QDA for pathology combined with DOT features. 

Data Set Type Pathology Feature DOT Feature Accuracy Sensitivity Specificity PPV NPV 

Static Baseline 
LDA ER SO2% 75.6%±15.1% 81.9%±24.8% 75.8%±15.0% 68.2%±19.5% 84.7%±18.7% 

QDA ER [HbT] 75.6%±17.1% 82.0%±21.1% 75.9%±23.8% 68.0%±26.6% 86.8%±16.4% 

Static Week 2 
LDA PR %Δ[HbO2] 85.0%±11.2% 86.8%±25.2% 83.9%±14.0% 75.5%±19.3% 92.9%±12.1% 

QDA ER %Δ[HbT](T/H) 85.0%±10.4% 80.3%±18.0% 88.2%±15.3% 82.9%±21.0% 88.2%±10.2% 

Dynamic Baseline 
LDA PR mFall for Hb 82.2%±12.2% 86.3%±18.8% 82.0%±18.7% 76.7%±22.7% 90.1%±14.4% 

QDA ER IE for Hb 78.9%±12.4% 85.6%±17.4% 76.3%±18.9% 73.7%±21.2% 86.5%±15.7% 

Dynamic 
Week 2 

LDA ER ΔmFall for Hb 85.6%±11.7% 81.5%±22.2% 90.5%±12.6% 85.8%±18.8% 87.5%±16.7% 

QDA PR %ΔτFall for Hb 84.4%±9.0% 76.3%±24.1% 91.6%±11.1% 86.7%±17.4% 86.0%±12.4% 

 
 Since there was still room for improvement for the YI and accuracy, we combined 

each of the DOT parameters with the pathology of the subject.  Table 7.6 shows the 

combination of features with the highest YI for each data set.  The best performing test 

was the LDA of pathology combined with dynamic week 2.  This combination has an 

accuracy of 85.6% with a sensitivity and specificity of 81.5% and 90.5%, respectively.  

The next best performing test is the QDA for the combination of pathology features and 

static week 2 features, where the accuracy, sensitivity, and specificity are 85.0%, 80.3%, 

and 88.2%, correspondingly.  The best performing pathology and baseline data set 
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combination was LDA for dynamic week 2 with an accuracy of 82.2%, sensitivity of 86.3%, 

and specificity of 82.0%.   

 The top results from the multivariate analysis are an improvement from the 

univariate analysis of the pathology. 

 
7.3.4 Combining Baseline and Week 2 features 
 
Table 7.7 Summary of LDA and QDA for baseline versus week 2 features. 

 Type Baseline Feature Week 2 Feature Accuracy Sensitivity Specificity PPV NPV 

Static 
LDA WF(T/H) %Δ[HbT](T/nT) 81.3%±13.1% 81.7%±23.5% 84.2%±13.4% 73.8%±22.6% 87.7%±15.4% 

QDA [Hb](T/H) [HbT] 75.0%±18.6% 82.0%±31.6% 75.5%±20.4% 65.1%±28.5% 87.5%±20.8% 

Dynamic 
LDA NMPV  for SHbO2 ΔmFall for  SHb 86.3%±10.7% 76.3%±32.0% 90.7%±11.1% 77.2%±29.9% 90.4%±11.4% 

QDA mFall for SHb τFall for SHb 83.1%±10.2% 81.7%±22.1% 85.5%±11.3% 71.9%±22.1% 89.0%±14.4% 

 
 In order to see if the static or dynamic data sets could be used individually, LDA 

and QDA were used to combine baseline a week 2 features.  The highest YI index was 

the dynamic QDA test where the accuracy was 83.1%, sensitivity was 81.7%, and 

specificity was 85.5% using the Fs for SHb and τFall for SHb as the features.     However, 

the highest accuracy and specificity was from the dynamic LDA test (accuracy 86.3%, 

specificity 90.7%).   

 Besides the baseline parameters, this analysis does not yield higher accuracies or 

YI from the multivariate analysis using only one data set at a time.   

7.3.5 Combining Static and Dynamic features 
 
Table 7.8 Summary of LDA and QDA for static versus dynamic features. 

 Type Static Dynamic Accuracy Sensitivity Specificity PPV NPV 

Baseline 
LDA [HbO2](T/H) NMPV for SHbO2 63.3%±17.3% 39.9%±34.5% 83.5%±17.7% 55.2%±35.3% 71.2%±20.5% 

QDA SO2%(T/nT) Fs for SHb 67.2%±13.2% 54.0%±27.7% 82.1%±21.4% 73.3%±24.3% 71.5%±19.5% 

Week 2 
LDA %Δ[HbO2](T/H) τFall for SHb 91.3%±10.8% 89.7%±15.6% 95.0%±11.3% 91.7%±19.3% 92.0%±11.6% 

QDA %Δ[HbO2] τFall for SHb 93.1%±8.6% 87.1%±25.4% 94.4%±10.5% 90.6%±17.4% 94.8%±9.9% 
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The static and dynamic parameters were combined and the test with the highest 

YI was LDA for week 2, but the highest accuracy was QDA for week 2.  The LDA for week 

2 had an accuracy of 91.3%, a sensitivity of 89.7%, and a specificity of 95.0%.  Also, the 

week 2 LDA test had a PPV of 91.7% and a NPV of 92.0%.  As for the QDA, there was 

an accuracy of 93.1%, which is the highest accuracy out of all the previous discriminant 

analyses.  The combination of data sets can be seen in Figure 7.3, where a non-validated 

QDA was performed.  Here the accuracy, sensitivity, specificity, PPV, and NPV were 

94.1%, 92.3%, 95.2%, 92.3%, and 95.2%, respectively.   

 
Figure 7.3 QDA without validation of the week 2 features from the static and dynamic 
data sets.  The accuracy, sensitivity, specificity, PPV, and NPV were 94.1%, 92.3%, 
95.2%, 92.3%, and 95.2%, respectively.   
 
 

7.4. Discussion 

The univariate analysis showed that the pathology had the best YI, but was not 

clinically useful.  Yet, the analysis gave us a standard in which we needed to exceed in 
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which ER status had a sensitivity of 64.2% and a specificity of 89.6%.  The multivariate 

analysis for both week 2 static and dynamic data sets performed much better than the 

univariate analysis.  The week 2 data sets had accuracies that were all over >80%.  From 

the baseline data sets the dynamic QDA had the highest YI and sensitivity (92.7%), which 

may be helpful at determining pCR at the baseline imaging.  However, the multivariate 

analysis was most accurate when the week 2 data was taken into consideration. 

The best baseline testing was the combination of pathology and dynamic features, 

which yielded an accuracy of 82.2% for LDA (see Table 7.6).  Here, since the accuracy, 

sensitivity, specificity, PPV, and NPV are all >75.0%, this test may be viable for baseline 

screening of NACT effectiveness before the first dose is administered.  However, the 

analysis clearly shows that the week 2 time point yields better testing options that give 

higher accuracies, sensitivities, etc.  The best week 2 performing combination would be 

between the static and dynamic features, where an accuracy of 91.3% was acquired from 

LDA, and an accuracy of 93.1% was acquired from QDA.  Therefore, the QDA model may 

be used tumor response prediction (see Figure 7.3).  Future studies could consist of using 

this model to determine which patients will not have a pCR and possibly add or change 

the agents used from their current treatment protocol. 

The physiological features that yielded the highest accuracy from our discriminant 

analysis test were %Δ[HbO2] and the washout rate τFall at the week 2 time point.  The 

physiological basis of each of these parameters has been explained before in sections 

5.4 and 6.4 of this thesis.  Briefly, there is a tendency for pCR subjects to have a decrease 

in [HbO2] levels by the second week of NACT initiation.  Also, we have observed that pCR 

subjects have a higher washout rate by week 2 compared to non-pCR subjects.  As a 
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result, the pCR subjects tend to cluster in the top left portion of the graph that compares 

these two features (see Figure 2).  While the non-pCR subjects tend to have little change 

or an increase in [HbO2] levels, as well as, a slower washout rate at the week 2 time point.  

Therefore, the combination of the features yields a very good prediction model for tumor 

response to NACT. 

The result with the highest YI was the LDA with the week 2 static and dynamic 

data combined.  With an accuracy of 91.3%, a sensitivity of 89.7%, and a specificity of 

95.0%, our model outperformed the traditional methods seen in Table 1.6.  Even MRI, 

which had the accuracy of 84% was still lower than the current results we have obtained.  

Therefore, using dynamic and static information can plausibly predict tumor response to 

NACT treatment. 

Overall, the discriminant analysis for pathology, static features, and dynamic 

features have yielded promising results that could potentially be used in interventional 

studies to improve the outcome of the patient, based on their DOT imaging.  Especially, 

combining the static and dynamic capabilities of our imaging system to obtain different 

features to use in simple discriminant analysis techniques has acquired a prediction 

accuracy as high as 93.1%. 
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Chapter 8                      . 

8.1 Summary 

Our current DOT breast imager is capable of dual breast dynamic and static 

imaging.  Therefore, there is a vast array of information we can utilize to observe tumor 

vascular changes.  The static images are capable of locating the tumor position, as well 

as showing changes over treatment that correspond to the pathological response of the 

patient. Additionally there are visible changes in the dynamic traces of the patient breath 

hold that also can be analyzed to determine if the subject has a good response.  The 

combination of this information has been utilized to further assist in determining response.  

Ultimately the goal was to use the week 2 information to predict whether early in the 

treatment if there is a response and change the treatment plan accordingly to optimize 

the patients’ outcomes. 

There were 40 subjects have been recruited for this current study with 36 subjects 

that have been used for the overall analysis of this NACT monitoring study. The number 

of patients in our study that have a pCR was about 38.9%, which corresponds to similar 

numbers in the literature.1, 3 Our analysis has shown promising results, with significant 

difference in percent change of [HbT] at the week 2 time point.  Our results correspond 

with previous studies where pCR patients show a drop in [HbT] after the first few weeks 

of treatment.   However, in other studies, subjects received different chemotherapy 

regimens or have taken additional cancer drugs.10-12, 15-20  Here, we look at subjects that 

have all undergone the same treatment, throughout the length of their therapy. 

The static images with different chromophore concentrations that were observed 

indicate that the baseline and week 2 time points were the most opportune chance for 
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determining a pCR or not to treatment.  We also observed that baseline [HbO2](T/H) 

significantly correlates with RCB score.  Additionally, several parameters for week 2 

showed significant correlations.  When the percent change from the baseline was 

calculated, %Δ[HbO2](T/nT) show significant correlation throughout each of the imaging 

time points with the RCB score. 

The hemodynamic effects visualized in this study were acquired by using non-

invasive methods to understand the vasculature of healthy and diseased tissue.  Our 

analysis shows how the hemodynamics of breast cancer changes as a patient receives 

treatment over two weeks.  This information could be beneficial to physicians as a method 

of tumor monitoring and treatment evaluation.  For pCR subjects, we observed that there 

is an increase in the washout rate, fall slope, and rise rate by the second imaging time 

point.  The possible physiological reason could be the increase in apoptosis which 

decreases IFP and allows an increase of blood flow. 

Last by combining the static and dynamic data sets and performing simple 

discriminant analysis methods, we were able to obtain an accuracy as high as 93.1% at 

determine pCR subjects from non-pCR subjects. 

 

8.2 Future Work 

8.2.1 Hardware Development 

There are several possible modifications to the current imaging system that could 

be made to increase the accuracy and quality of the images and the overall amount of 

information acquired.  There could be the addition of wavelengths that could assist with 

image reconstructions to better visualize chromophore concentrations, such as lipid.  
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Also, there could be a frequency domain (FD) component added to increase the accuracy 

of the scattering coefficient and the overall reconstruction image.  Last, the patient 

interface could undergo minor modification to help to ensure contact. 

Currently, lipid cannot be reconstructed using the current wavelengths that the 

system has.  While, important chromophores such as oxy and deoxy-hemoglobin can still 

be visualized, adding another feature to the analysis could help determine the response 

of the subject over the course of treatment.  Additionally, having more laser wavelengths 

than chromophores could increase the accuracy of the reconstruction algorithm by 

decreasing the ill-posedness of the solution.102 

Since the breast imager is a continuous wave system, there is no phase 

component recorded.  The phase component of the signal usually helps distinguish 

between the absorption and scattering coefficient102.   A FD component could be added 

in order to get a baseline image of the subject.  Then the system could be switched to 

CW mode and continue with the dynamic imaging.32, 35, 36  Then the baseline FD 

measurement can be used to determine the initial scattering coefficient and could be used 

for the static measurements. 

For the patient interface, there could be pressure sensors setup along the rings of 

the interface.  These pressure sensors could be coupled with the computer and give a 

binary signal in which it indicates good or bad contact with the detector fibers.  

Occasionally, proper contact with the patient interface is hard to determine.  The pressure 

sensors could take out some of the guess work for optimal patient positioning and 

increase the quality of the image, since (as shown in chapter 3) poor contact leads to 

artifacts in the image. 
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8.2.2. Static Imaging Improvements 

 The current static reference poses some logistical problems.  The liquid phantoms 

only last about a month before they are no longer useful.  The intralipid for these 

phantoms are also relatively expensive and could cost about $80 per phantom. Solid 

phantoms would be more cost effective.  The upfront cost (~$3,000) would be relatively 

expensive, but would pay for its self over time, since it would not need to be replaced.  

The solid phantom could be shaped to each of the rings of the patient interface, which 

would prevent any contact issues with the detectors.  Also, there would be no variability 

between phantoms since the same one would be used for all imaging.  Additionally, the 

solid phantoms would be key in multi-center studies in order to remove the variability of 

liquid phantom preparation by different groups.  Therefore, with solid phantoms, the 

accuracy of the static images could increase and possible artifacts could be avoided. 

8.2.3 Dynamic Imaging 

 One issue that the dynamic portion of the study has run into is knowing when a 

patient holding their breath.  We depend on the honesty of the patient to tell us when they 

begin breathing again, but sometimes it is apparent that the patient is not holding her 

breath.  Also, when they begin or end the breath hold is up to them and we cannot always 

observe these timings.  To fix this issue, there may be two possibilities: have the patient 

breath in different gasses or have the patient wear a strain gage that tracks their 

breathing. 

 There has been a study where the patient breathes in a different combination of 

gasses and the tumor can be distinguished.103  This would be one way of controlling the 

experiment and making sure that each patient underwent the same protocol.  With the 
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breath hold method, each patient holds their breath for a different length of time, but there 

would be more control over the timing with the inhalation of timed gasses.  However, this 

does introduce and extrinsic element that patients may not appreciate. 

 Also, there is a simple strain gage device that can be placed around the chest 

(below the breasts) that can measure the expansion and relaxation of the muscles around 

the lungs.  The strain gage device can provide a signal to the computer and recorded in 

tandem with the optical imaging.  Hence, the breathing of the patient and the optical 

imaging data could be digitally match up and possibly automatically segmented to show 

just the breath hold data.  This is a simple solution that would not add an extrinsic factor 

to the patient, such as the different gasses.  However, the downside would be that the 

breath hold times could still range from subject to subject. 

8.2.4 Patient comfort 

 Patient comfort is often neglected in scientific articles, but I feel that it is somewhat 

worth mentioning since the system was designed to allow the patient to be as comfortable 

as possible.  Our current system and study can provide a comfortable and fairly quick 

means of imaging patients with breast cancer.  There is no need for painful compression 

that is required by mammography.  Also, the actual imaging takes about 10-12 minutes 

(maybe 20 minutes with setup time), which would be much quicker than a patient would 

experience in a MRI system.  Additionally, when we examine the hemodynamic 

phenomena caused by the tumor vasculature, we look at intrinsic contrasts that occur 

during a simple breath hold so there is no need for injections of contrast agents.   

I believe these factors have had a large impact on our capability to maintain 

constant accrual of patients on the study and to have them return for all or most their 



   133 

 

imaging sessions.  However, there are still improvements that can be made to ensure the 

comfort of the patient.  First, one of the biggest complaints I get about the system is that 

the patient’s back or neck will hurt from the hunch over position that they are in.  There 

was even a point in the study where we stopped using a chair and had the patients stand 

throughout the imaging since they were uncomfortable and there was a lack of space in 

the new imaging room.  However, this problem is still occurring, especially when the 

patient already had a preexisting condition that involves shoulder or back pain.  This 

problem could be eradicated with a system that was set up like a bed.  A bed interface 

would be more comfortable, could possible lead to better contact with the patient 

interface, and lead to less motion from the patient who may adjust themselves during 

imaging to be more comfortable.  

8.2.5 Imager Software Development 

Currently, the DDOT breast imager has a LabView GUI that controls the system.  

This system is difficult to navigate.  An engineer that has been trained in LabView can 

use the DDOT GUI interface.  However, for a research coordinator, clinician, or physician 

the interface could be confusing and takes a while to train a single person on how the 

program works.  Therefore, to increase the ease of use of the system the GUI should be 

rearranged.  The best way might be to have a series of windows that prompt the user to 

enter the necessary information.  For example, at the beginning the program, it prompts 

the user to enter the number of sources and detectors for the subject.  Afterwards, the 

program could ask if the patient is in position and then automatically configure the gain 

bits.  Then the subject information could be entered and then automatically begin imaging.  
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Overall, a more user friendly interface is needed in order to increase personnel that can 

operate the system.  For multi-center studies this would be essential. 

8.2.5.1 Pre-processing and Post-processing 

 The short comings of some of the pre- and post-processing techniques have been 

explained in previous chapters.  Yet, I would like to mention that there are still work to be 

done with this regard.  Overall, these pre- and post-processing tools could be placed into 

a single MatLab program or GUI for both the dynamic and static data, which would 

increase the ease of use and decrease the time spent on processing. 

8.2.5.2 Real-Time Imaging 

A key facet and long term goal of DOT imaging would to obtain real time images.  

The current set up lets us take the data a reconstruct the images over a day.  However, 

with most imaging systems such as US, imaging can be viewed in real time.  The limiting 

factor for DOT are the reconstruction algorithms.  Our current study reconstructs 3D 

images and custom designed meshes.   However, fast 2D images may be possible to 

procure.  Since the rings of the breast imager are fixed, the mesh for each ring will always 

remain the same.  Hence, 2D meshes could be generated once and used for real-time 

reconstruction.  Also, 2D reconstructions are much faster than 3D reconstructions since 

there are many less units of space needed to solve the inverse problem.  Additionally, to 

increase the speed the first three or four iterations could be used as the final image 

(instead of waiting for 9-10 iterations).  As result, we could get images within minutes 

instead of hours for a single imaging.  Later, full tomographic images could be created in 

order to increase the accuracy and understanding of the data (tumor location, 

hemodynamic effects, etc.).  The real-time imaging could aid in quick diagnosis and tumor 
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response predictions that could help the physician and patient move forward with 

treatment. 

8.2.6 Interventional Studies 

 By using the current data set and developing a model for discriminating the 

response groups at the baseline or early treatment time point such as the second week, 

interventional studies could be developed.  The interventional study could consist of 

baseline imaging and initial assessment.  We have develop discriminant analysis models 

that can have a sensitivity as high as 94.1% at determining a pCR.  Therefore, these 

subjects would unlikely need further monitoring. 

 For the subjects that seem like they will not have a pCR, DOT can further monitor 

at week 2 to check for a pCR status.  Also, we can compare the DOT values to the linear 

regressions of the static data and estimate the RCB score at each time point.  Further 

analysis would be needed to determine specifically the RCB-III subjects (subjects with no 

response) since the aforementioned study had only 6 subjects in this group. 

8.2.7 Multi-Center Clinical Trials 

 The NACT DOT imaging study is considered a Phase II clinical trial, where a set 

of subjects are studied for an initial analysis of an experimental imaging system.  The next 

step would be to go to a Phase III clinical study where there would be multiple imaging 

systems and collaborators at other institutions or hospitals involved.  The advantage of 

this study is threefold.  First, this would give us a different subject population that we were 

not capable of reaching at New York Presbyterian Hospital, which would valuable to know 

if the imaging system could work on this subject population as well.   Second, that the 

imaging system is user independent and that similar results could be obtained from 
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different locations, which would show the consistency of the system.  Last, patients could 

be recruited regularly and would yield a much bigger data set than a single center study. 

 Organizing and performing a successful multi-center trial could yield results that 

could help obtain FDA approval and ultimately allow for clinicians to use the DOT system 

within the hospital to help monitor breast cancer. 

8.2.8 Modelling Hemodynamic Trends 

 Now that we have developed a method to acquire and analyze the hemodynamic 

traces from the breath hold imaging, we can look at ways to model these trends.  As I 

have looked at these breath hold traces, I have noticed a variety of differences among 

the curves.  Yet, we do not understand fully what causes these different features to occur.  

Therefore, by modelling theses traces using mock circuit designs, such as the Windkessel 

model, we can possibly mimic the trends occurring in the vasculature and come to a better 

understanding of the physiology.  Last, once we have developed these models, we can 

use them as another method to predict the outcome of NACT based on the resistance or 

capacitance of different sections of the model. 

8.2.9 Additional Data Analysis 

 Due to the large quantity of data, there is still data that needs to be processed.  For 

example, the dynamic data for all time points must still be reconstructed and analyzed to 

view any possible trends in the hemodynamics over time.  Additionally, discriminant 

analysis can be performed on all time points and prediction models could be developed. 

 

8.3 Conclusion 
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 Both the optical properties and hemodynamic trends of breast tumors can indicate 

how a patient will respond to NACT.  Additionally, DDOT can easily be employed to safely 

and inexpensively image a patient several times over the course of treatment and their 

tumors can be monitored throughout each stage.  We have observed that the 

%Δ[HbO2](T/nT) correlates with the RCB score of the patient population at each imaging 

time point.  The dynamic study shows that there is an increase in rise slope, fall slope, 

and washout rate in pCR subjects by week 2, which could be explained by the increase 

in blood flow due to the apoptosis of the tumor and decrease of IFP.  Additionally, 

combining the static and dynamic data, we have developed prediction models that are 

capable of predicting the response of the subject at the week 2 imaging time point with 

an accuracy of 94.1%.  Therefore, DDOT static and dynamic capabilities can be utilized 

to observe malignant tumors, predict treatment outcome, and monitor tumor response 

throughout NACT.  As a result, DDOT is a viable imaging modality for an area of breast 

cancer treatment that does not currently exist. 
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