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ABSTRACT 

Biophysical and anthropogenic contributions to fire disturbance dynamics on the peat-
swamp landscape, Indonesia 

 

Megan E. Cattau 

 

Fires have been increasing in size and frequency across the tropics in recent decades, particularly 

in tropical peatland areas. Indonesia has the largest amount of tropical peat carbon globally. Fires 

in fuel-rich tropical peatlands are a major source of carbon emissions, have serious consequences 

for human health, destroy or degrade habitat, and result in high economic costs. There have been 

many calls for a better understanding of the relative contributions of the biophysical and 

anthropogenic factors that drive fire, as this understanding would contribute to the success of 

efforts to reduce these fires. This dissertation uses remote sensing, fieldwork, and modeling to 

explore the dynamics of fire disturbance in Indonesia and investigates this disturbance from the 

framework of coupled human and natural systems, where complex interactions between the 

social and the biophysical are explicitly considered. 

 

Chapters One and Two assess both the influence of various human and biophysical factors to fire 

probability (Chapter One) and ignitions (Chapter Two) on a peat-swamp forest area in Central 

Kalimantan, Indonesia, equivalent to a third of Kalimantan's peatland area. A Bayesian modeling 

approach is used in Chapter One to estimate the effects of atmospheric dryness, human access, 

vegetation, and hydrology on the probability of fire occurrence. The potential for peatland 

restoration to offset the impacts of climate on fire occurrence is also explored. I find that climate 

is the most important factor driving fire occurrence, which is consistent with the findings in 

many other parts of the tropics. However, two human-driven factors are almost as significant as 



	

the influence of climate: drainage canals, which were put in place as part of a failed agricultural 

project and have lowered the water table; and woody vegetation, which has decreased over time. 

Chapter Two inspects the oft-asserted claim that escaped fires from oil palm concessions and 

smallholder farms near settlements are the primary sources of fire ignitions. We evaluate fire 

origin and spread, and find that most fires originate in non-forest, compared to oil palm 

concessions, and relatively few originate close to settlements. Moreover, most fires started 

within oil palm concessions and in close proximity to settlements stay within those boundaries. 

However, fire ignition density in oil palm concessions and close to settlements is high. 

Furthermore, increased anthropogenic activity in close proximity to oil palm concessions and 

settlements produces a detectable pattern of fire activity. These results refute the claim that most 

fires originate in oil palm concessions, and that fires escaping from oil palm concessions and 

settlements constitute a major proportion of fires in this study region. However, there is a 

potential for these land use types to contribute more substantially to the fire landscape if their 

area expands.  

 

Chapter Three examines the potential for the financial incentive mechanism of Roundtable on 

Sustainable Palm Oil (RSPO) certification, which prohibits the use of fire on certified 

concessions, to reduce fire activity on oil palm concessions. We examine if RSPO-certified 

concessions have reduced fire activity in Sumatra and Kalimantan, the leading producers of oil 

palm both within Indonesia and globally. We also evaluate if this pattern changes with increasing 

likelihood of fires. These questions are particularly critical in fuel-rich peatland areas, of which 

approximately 46% was designated as oil palm concession as of 2010. We find that fire activity 

is significantly lower on RSPO certified concessions than non-RSPO certified concessions when 



	

the likelihood of fire is low (i.e., on non-peatlands in wetter years), but not when the likelihood 

of fire is high (i.e., on non-peatlands in dry years or on peatlands).  

 

These chapters advance our understanding of how anthropogenic factors influence the controls of 

fire in Kalimantan and Sumatra, both directly (i.e., human-caused ignitions) and indirectly (i.e., 

changing the susceptibility of the landscape to ignitions and to burning). The findings presented 

in this dissertation indicate that oil palm concessions are associated with high fire probability 

(Chapter One) and a substantial amount of ignitions and relatively high ignition density (Chapter 

Two). One of the more pointed ways to target fire on oil palm concessions is through RSPO 

certification; however, we find that certification is only effective when fire likelihood is already 

low, suggesting that, in order for this mechanism to reduce fire, more assistance may be needed 

to control fires in dry years and on peatlands (Chapter Three). Non-forested, degraded areas 

contribute much more to fire activity than oil palm on this landscape; these areas experience the 

greatest number of ignitions, have highest ignition density, and are the primary source of forest 

fires (Chapter Two). Furthermore, the declines in vegetation and the hydrological alteration in 

these degraded areas contribute substantially to fire occurrence (Chapter One). Effective fire 

management in this area, including fire prevention and suppression efforts, should therefore 

target not just oil palm concessions and smallholdings around settlements, but should also focus 

strongly on non-forested, degraded areas – and in particular those near oil palm concession 

boundaries and outside the immediate vicinity of settlements – where fire probability is high and 

where ignitions and fires escaping into forest are most likely to occur. Rehabilitation of the 

degraded landscape through restoring hydrology and replanting will be key to fire reduction, and 

can offset the effects of climate on fire in this landscape.  



	

The methodological approaches in this dissertation demonstrate ways in which remote sensing 

and analytical technologies can be used to answer complex questions about coupled human and 

natural systems that fuse social and environmental data, for both theoretical and management 

applications. Chapter One uses biophysical information from remotely sensed products and 

fieldwork with information about human access on the landscape and integrates them together 

with Moderate Resolution Imaging Spectroradiometer (MODIS) Active Fire detections under a 

Bayesian framework. Chapters Two and Three use a novel technique to cluster remotely sensed 

data on fire occurrence (MODIS Active Fire detections) into fire events so that ignitions can be 

isolated. This technique allows us to answer questions related to fire origin, spread, and impact 

that cannot be investigated by evaluating fire detections alone.  

 

This dissertation addresses a gap in knowledge regarding the anthropogenic contributions to 

increased fire probability and to ignitions in peat swamp, and the approaches could be applied to 

other degraded peatland areas in Indonesia that are candidate sites for restoration (e.g., under the 

newly established Peatland Restoration Agency), and to degraded peatlands that experience a 

novel fire regime in other parts of the tropics. Furthermore, this dissertation evaluates the 

capacity for RSPO certification to reduce fire activity on oil palm concessions across Sumatra 

and Kalimantan, Indonesia, and the analyses conducted could be applied to landscapes in other 

parts of the tropics experiencing oil palm development. In conclusion, the research findings 

presented in this dissertation are a product of combining social and environmental data and 

evaluating this data with a suite of classic and novel modeling approaches. This dissertation is 

presented in the hope that it contributes to our understanding of fire dynamics in the globally 

important peat-swamp forest, Indonesia, and thus our capacity to manage these disturbances. 
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INTRODUCTION 

 

The last few decades have been a time of unprecedented ecological change. Global change 

drivers, including large-scale land use / land cover (LULC) conversion, climate change, and 

other human-driven environmental impacts, are altering disturbance regimes at a rapid rate 

(Westerling, Hidalgo et al. 2006, Seidl, Rammer et al. 2014). Among these changing disturbance 

regimes is tropical fire disturbance. Fires in humid tropical forests, both natural and 

anthropogenic in origin, have been a source of disturbance over millennia (e.g., Goldammer 

1990). However, fires have been increasing in size and frequency across the tropics in recent 

decades, largely as a result of anthropogenic LULC change (Goldammer 1991, Cochrane 2003, 

Cochrane 2009). Furthermore, biomass burning in the tropics releases carbon and other gases 

into the atmosphere, contributing to global climate change, air pollution, acid rain, and property 

damage (Crutzen and Andreae 1990, Hao, Liu et al. 1990, Hao and Ward 1993, Langmann and 

Graf 2002). Fire disturbance causes dramatic changes to the ecosystem where they are extrinsic 

to the system, such as many tropical areas (e.g., Cochrane and Schulze 1999, Ferry Slik, Verburg 

et al. 2002, Gerwing 2002, Shlisky, Waugh et al. 2007, Shilisky, Alencar et al. 2009), and fire in 

the tropics is one of the primary contemporary drivers of tropical forest loss and degradation. 

Because tropical zones host much of the world's biodiversity and are being lost at alarming rates, 

fires in the tropics are of special interest for scientists concerned with their conservation and 

ecology. Despite pervasive fire in the tropics, there have been few studies on fire in tropical 

ecosystems relative to other systems. 
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This dissertation focuses on fire in tropical peat-swamp forest in Indonesia. This ecosystem is 

characterized by peat soil types, which consist of partially decayed vegetation matter that has 

been accumulating over thousands of years. Tropical peatland occurs wherever rainfall and 

topography result in poor drainage, permanent waterlogging, and acidification of soil, and is 

distributed across the tropics in East and Southeast Asia, Africa, the Caribbean, and Central and 

South America. Indonesia has the largest volume and area of tropical peat globally (Rieley, 

Ahmad-Shah et al. 1996, Page, Rieley et al. 2006, Page, Rieley et al. 2011). Tropical peatlands 

are capable of storing substantial amounts of carbon in their natural condition; the tropical 

peatland carbon pool is estimated at 88.6 Gt, roughly 15-19% of the global peat carbon pool 

(Page, Rieley et al. 2011). Most of the peatland in Indonesia is located at low altitudes in coastal 

and subcoastal areas. These ombrogenous swamps form domes, and receive water and nutrient 

inputs entirely from rain, aerosols, and dust rather than from river or other groundwater inputs. In 

their natural condition, these lowland peat-swamp forest ecosystems are mid- to low-canopy 

forested peatland areas that are inundated at or close to the surface for most of the year. Fire and 

other types of disturbance can result in both hydrological degradation, resulting in areas with 

lowered water tables and dry peat, and / or and vegetative degradation, resulting in fern, bush, or 

grass dominated vegetation types. 

 

Carbon emissions as a result of fires in tropical peatlands are particularly high, as peat is 

extremely rich in belowground organic carbon (Rieley, Ahmad-Shah et al. 1996, Page, Siegert et 

al. 2002, FRIM-UNDP/GEF 2006, Hooijer, Silvius et al. 2006, Page, Rieley et al. 2006, Page, 

Rieley et al. 2011, Harris, Minnemeyer et al. 2015). Over 90% of CO2 emissions from 

decomposition of deforested and drained peatlands and associated fires in Southeast Asia come 
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from Indonesia (Rieley, Ahmad-Shah et al. 1996, Page, Rieley et al. 2006, Page, Rieley et al. 

2011). Peat fires in Southeast Asia, and Indonesia in particular, are consequently a major cause 

of smog and particulate air pollution (Hayasaka, Noguchi et al. 2014, Reddington, Yoshioka et 

al. 2014), with serious consequences for human health (Kunii 1999, Kunii, Kanagawa et al. 

2002, Marlier, DeFries et al. 2012, Wooster, Perry et al. 2012) and local blocking of sunlight that 

can suppress plant photosynthesis (Davies and Unam 1999). In addition, peatland fires are 

responsible for forest habitat loss and degradation for flora and fauna, including those in marine 

systems (Yule 2010, Posa, Wijedasa et al. 2011, Jaafar and Loh 2014). Fire suppression efforts, 

lost timber and crop resources, missed workdays, and travel disruptions incur high economic 

costs (Ruitenbeek 1999, Barber and Schweithelm 2000, Tacconi 2003). In late 2015, Indonesia 

experienced an unusually severe fire season, resulting in a global environmental disaster. Fires 

burn in Indonesia nearly every dry season, but the 2015 dry season fires were the most severe 

since 1997. At the time of writing, peer-reviewed estimates for land area burned and emissions 

are not yet available, but emissions estimates are predicted to be about 1.75 billion metric ton of 

CO2 equivalents, with substantial uncertainty, the highest since 1997 (GFED 2015). It is 

estimated that Indonesia lost US$8.5-20.1 billion during the 1997/98 fire season alone (ADB 

1999, Varma 2003) and US$16.1 billion during the most recent fire crisis in 2015 (World Bank 

2015).  

 

Both national and international policy has been implemented in the past to attempt to reduce fire 

in Indonesia (e.g., ASEAN Agreement on Transboundary Haze Pollution, Singapore's 

Transboundary Haze Pollution Act, and Indonesia's national law (Act No 41/1999) banning 

corporations from using fire to clear land for palm-oil plantations), but with limited success. 
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However, as international attention is being directed toward Indonesian peat fires after the 2015 

haze crisis, recent governmental action in Indonesia appears promising. The Indonesian president 

Joko Widodo banned clearing and converting peatlands, even on existing concessions, by 

presidential instructions (Indonesia 2015), which could be further strengthened by becoming 

legally binding law. In 2016, Widodo has also established a Peatland Restoration Agency, tasked 

with restoring about 2Mha of peatlands by 2020 in Sumatra, Kalimantan, and Papua (Indonesia 

2016). Given the variety and severity of the consequences of tropical peatland fires in Indonesia, 

and the policy efforts to control these fires, it is of global interest to understand this changing 

disturbance regime and reduce fire occurrence. 

 

Coincident with this time of increased anthropogenic change and altered fire disturbance regimes 

have been rapid technological advances that have greatly increased our ability to observe and 

evaluate earth processes. Progress in remote sensing technologies have made data collection 

more logistically and economically feasible, particularly for studies in remote areas. Increases in 

computer processing power have allowed researchers to model changes in ecological processes 

at a speed and intricacy unheard of even a few decades ago. As a result, the research community 

is able to answer questions associated with human-driven changes in Earth processes that require 

large spatio-temporal datasets and complex geospatial analysis. 

 

This dissertation uses remote sensing, fieldwork, and modeling to explore the dynamics of fire 

disturbance in Indonesia and investigates this disturbance from the framework of coupled human 

and natural systems, where complex interactions between the social and the biophysical are 

explicitly considered. Simply, biomass fires can occur when there is sufficient heat applied to 
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organic fuel with oxygen present: the traditional "fire triangle" concept (Countryman 1972, Pyne, 

Andrews et al. 1996). When heat is applied to a potential fuel load, before it combusts, it must 

first become dry. Additionally, for the fire to spread, it is not sufficient for combustion to occur 

in one location, it must also dry out potential fuel past the fire line. Human activity can interfere 

with fire controls at any scale, either directly (i.e., human ignitions) or indirectly (i.e., interacting 

with predisposing factors and sensitizing the landscape to those factors) (Bowman, Balch et al. 

2011). The human contribution to changing fire regimes and our capacity to manage fire remains 

somewhat uncertain (Bowman, Balch et al. 2009, Bowman, Balch et al. 2011), and thus there 

have been many calls for a better understanding of the relative contributions of the biophysical 

and anthropogenic factors that drive fire (e.g., Eva and Lambin 2000). Evaluating the factors 

driving fire disturbance is a key component to understand changing fire regimes in the tropics 

and thus our capacity to manage these disturbances.  

 

The following chapters evaluate how human-driven and biophysical landscape changes affect 

fire disturbance in Indonesia. Each chapter addresses an ecologically and socially relevant issue 

in the fuel-rich tropical peat-swamp forest in Indonesia, quantifies the relevant factors, and 

examines the implications for fire disturbance.  

 

Chapters One and Two focus on a peat-swamp forest area in Central Kalimantan, Indonesia, and 

assess both the influence of various human and biophysical factors to fire probability (i.e., 

indirect anthropogenic contribution to fire) and ignitions (i.e., direct anthropogenic contribution 

to fire). The study area consists of the Sabangau-Katingan Forest and the recently degraded 

failed agricultural project called the Mega Rice Project (MRP), equivalent to around a third of 
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Kalimantan's total peat area. Both of these areas have historically experienced logging and 

hydrological alteration and continue to be exposed to anthropogenic activity. The Sabangau-

Katingan Forest has been previously subjected to both concession and illegal logging throughout, 

and as a consequence of the latter is criss-crossed by small illegal logging timber extraction 

canals, on many of which canal damming initiatives are currently underway. Currently, the area 

is not open for human use apart from some small-scale activities, though enforcement capability 

is limited, and the forest remains relatively intact. The MRP is a failed and abandoned 

agricultural conversion project that was initiated in 1995 and aimed to convert 1 Mha of peat-

swamp forest into rice plantations. Much of the area’s forest was cleared and wide, deep 

irrigation canals totaling over 4,000 km in length have resulted in extreme drainage and 

subsequent fire susceptibility. The MRP has burned regularly since 1997, particularly during the 

dry seasons in El Niño phases, and it now contains patchy forest remnants surrounded by 

degraded fire-prone peat swamp. Currently, tens of thousands of families live along the rivers 

that border the area. 

 

Chapter One analyzes how human-driven and biophysical landscape changes influence fire 

occurrence probability. A Bayesian modeling approach is used to estimate the effects of climate, 

human access, vegetation, and hydrology on the probability of fire occurrence, defined as the 

probability of burning at a 1km2 spatial resolution and a monthly temporal resolution, from 2000 

to 2010. These factors are known to contribute to fire in Indonesia. In terms of climate, during El 

Niño conditions of the ENSO, there is increased likelihood of drought in Southeast Asia and, 

thus, a well-established coupling of fires in Indonesia with El Niño conditions (e.g., Deeming 

1995, Kita, Fujiwara et al. 2000, Siegert, Ruecker et al. 2001, Page, Siegert et al. 2002, Wang, 
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Field et al. 2004, Fuller and Murphy 2006, Wooster, Perry et al. 2012, Spessa, Field et al. 2015). 

El Niño conditions are also favorable for escaped fires from shifting cultivation (Field, van der 

Werf et al. 2009). Fire probability is associated with vegetation type (Murdiyarso, Widodo et al. 

2002), as sufficient fuel loads must be present for a fire to occur. Human access can result in 

increased ignitions; most land is cleared in Indonesia through the use fire (Stolle, Chomitz et al. 

2003), including on agro-industrial concessions and smallholdings. Peat-swamp hydrology adds 

additional complexity to fire dynamics in those systems. In their natural condition, peat-swamps 

are inundated at or near the soil surface during the wet season and at about 20-40cm below the 

surface during the dry season drawdown, and thus peat in its natural state is not typically a major 

available fuel load. However, canals can drain the peat and lower the water table, causing the 

peat to become aerated and susceptible to fire (Hooijer 2006, Turetsky, Benscoter et al. 2015). In 

addition to evaluating the relevant influence of these factors on fire probability, the potential for 

peatland restoration to offset the impacts of climate on fire occurrence is explored.  

 

Chapter Two inspects the oft-asserted claim that escaped fires from oil palm concessions and 

smallholder farms near settlements are the primary sources of fire from 2000-2010. Before large-

scale anthropogenic land use change, the most common cause of ignition in tropical forests was 

natural, primarily lightning strikes (Baker and Bunyavejchewin 2009). Now, far more fires in the 

tropics are started by people than by natural sources (Stott 2000, Baker and Bunyavejchewin 

2009). Ignitions in Indonesia, as in many parts of the tropics, are primarily of anthropogenic 

origin (Bompard and Guizol 1999, Bowen, Bompard et al. 2000), resulting in either accidental or 

deliberate fires. Who is responsible for ignitions in Indonesia is highly contested, and reports of 

the ignition sources are many and varied (Dennis, Mayer et al. 2005, Page, Hoscilo et al. 2009). 
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Because fires set for land clearing can 'escape' beyond their intended boundaries, both large and 

small holders have been held responsible (e.g., Stolle, Chomitz et al. 2003, Page, Hoscilo et al. 

2009), as is often the case in rainforest fires more generally (Goldammer 1991). In this chapter, 

fire detections from the MODIS Active Fire product are grouped together into individual fire 

events using a novel approach - a hierarchical clustering algorithm - to discern the origin of fires. 

Fire origin and spread are evaluated, in particular for the longest and hottest fires and for fires 

that burn forest, on the LULC classes of legal, industrial oil palm concessions, non-forest, and 

forest, as well as in relation to settlement proximity. Fires that escape from oil palm concessions 

and settlements into other surrounding LULC classes are also identified. Additionally, because 

the sphere of influence of oil palm concessions and settlements extends beyond the immediate 

boundaries of those land use classes, whether fire ignitions occur disproportionately in proximity 

to oil palm concessions and settlements is analyzed.  

 

Chapter Three examines the potential for the financial incentive mechanism of Roundtable on 

Sustainable Palm Oil (RSPO) certification to reduce fire activity on oil palm concessions from 

2012-2015 for oil palm concessions developed prior to 2012 on Sumatra and Kalimantan, the 

leading producers of oil palm both within Indonesia and globally. This question is particularly 

critical in fuel-rich peatland areas, of which approximately 46% was designated as oil palm 

concession as of 2010	(WRI 2014). Oil palm (Elaeis guineensis), a major global commodity that 

dominates the vegetable oils market and is used for biofuel, is one of the world's most rapidly 

expanding crops. It is grown exclusively in the humid tropics. Production of oil palm and planted 

area have increased over the past few decades, especially in Indonesia, which is currently the 

largest oil palm producer (FAO 2015). Fire is a common tool for land conversion and 
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management associated with oil palm production. However, the RSPO prohibits the use of fire 

on certified concessions. This chapter therefore examines if RSPO-certified concessions have a 

lower density of fire detections, fire ignitions, or 'escaped' fires compared with those concessions 

that are not certified, and if this pattern changes with increasing likelihood of fires in concessions 

located on peatland and in dry years. In order to identify fire ignitions and escaped fires, MODIS 

Active Fire Detections are clustered into unique fire events using the hierarchical clustering 

algorithm developed in Chapter Two.  

 

With the ensuing chapters, I am pleased to contribute new information concerning the rapidly 

changing fire disturbance regime in the globally important peat-swamp forests of Indonesia with 

the hope that it will be meaningful for the scientific community. By increasing understanding 

about fire processes in the region, my desire is that this dissertation, united with the existing 

relevant body of work, will increase our capacity to manage fire in the region and ultimately to 

contribute to the conservation of this landscape and reducing the negative impacts associated 

with these fires. 
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CHAPTER ONE: Peatland restoration can mitigate impacts of climate on fires in Central 

Kalimantan, Indonesia 

 

Megan E. Cattau, Benedicte Bachelot, María Uriarte, Mark E. Harrison, Iwan Shinyo, Sady 

Tungau, and Ruth DeFries 
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ABSTRACT 

Fires in fuel-rich tropical peatlands are a major source of carbon emissions, have serious 

consequences for air quality that affect human health, destroy and degrade habitat, threaten 

wildlife, and result in high economic costs. Indonesia has the largest area of tropical peat carbon 

globally and experiences annual fire events, which in severely dry years result in a regional haze 

crisis. Understanding the relative contributions of the biophysical and anthropogenic factors that 

drive fire would contribute to the success of efforts to reduce these fires and their associated 

impacts. Using a Bayesian modeling approach, this work addresses the following questions for a 

peat-swamp forest landscape in Central Kalimantan, Indonesia that covers a third of 

Kalimantan's peatland area: 1) What are the relative effects of climate, human access, vegetation, 

and hydrology on the probability of fire occurrence in the peat swamp forest?, and 2) What is the 

potential for peatland restoration to reduce fire probability? We find that climate (strength of 

ENSO) is the most important factor driving fire occurrence. However, two human-driven factors 

are nearly as important as climate: distance from large drainage canals, which were put in place 

in the study area as part of a failed agricultural project and have lowered the water table; and 

woody vegetation cover (MODIS Vegetation Continuous Fields), which has decreased over time. 

We examine five restoration scenarios, and find that restoration of vegetation results in a 28.0 

(25.0 – 30.1)% reduction in fire probability over the entire study area for all years, partial and 

complete restoration of hydrology (i.e., if hydrology were restored to the hydrologic equivalent 

of pixels at the mean value (8.1 km) and the third quartile value (11.6 km) from the nearest 

canal) results in a 22.9 (20.7 – 24.5)% and 33.6 (30.7-35.7)% reduction in fire probability, 

respectively, and restoration of vegetation paired with partial and complete restoration of 

hydrology results in a 44.5 (40.7 – 47.1)% and 52.2 (48.3-54.8)% reduction in fire probability, 
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respectively. These results demonstrate that rehabilitation of the landscape through restoring 

hydrology (e.g., damming canals to raise the water table) and replanting can help offset the 

influence of climate on fires.  
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INTRODUCTION 

Tropical peatlands are a major source of carbon emissions during fire events because these areas 

are rich in belowground organic carbon (e.g., Page, Siegert et al. 2002, Hooijer, Silvius et al. 

2006, Page, Rieley et al. 2011). This issue is particularly marked in Indonesia, which has the 

largest area of tropical peat carbon globally (Rieley, Ahmad-Shah et al. 1996, Page, Rieley et al. 

2011). Smog and particulate matter emissions from peat fires have serious consequences for 

human health (Kunii 1999, Kunii, Kanagawa et al. 2002, Marlier, DeFries et al. 2012, Wooster, 

Perry et al. 2012). These fires also destroy or degrade habitat for both terrestrial and marine 

species (Yule 2010, Posa, Wijedasa et al. 2011, Jaafar and Loh 2014). Furthermore, there are 

high economic costs associated with fire suppression efforts, lost timber and crop resources, 

missed workdays, and travel disruptions (Ruitenbeek 1999, Barber and Schweithelm 2000, 

Tacconi 2003). In order to combat these fires, Indonesian President Widodo has recently 

established a Peatland Restoration Agency, tasked with restoring ~2Mha of peatlands by 2020 in 

Sumatra, Kalimantan, and Papua (Indonesia 2016). The factors that influence the probability of 

peatland fires in Southeast Asia - and in the tropics more generally - are complex, as fire is 

affected by land use conversion and other anthropogenic activity on the landscape, which interact 

with climate and other biophysical factors, leading to large spatio-temporal variations in fire 

occurrence. There have been many calls for a better understanding of the relative contributions 

of the biophysical and anthropogenic factors that drive fire probability in this area (e.g., Eva and 

Lambin 2000), which would inform the identification of degraded areas where fire probability is 

most likely and thus where restoration efforts could have the most impact on fire reduction. 
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Simply, biomass fires can occur when there is sufficient heat applied to organic fuel with oxygen 

present: the traditional "fire triangle" concept (Countryman 1972, Pyne, Andrews et al. 1996), 

and human activity can interfere with fire controls at any scale - either directly (i.e., human 

ignitions) or indirectly (i.e., interacting with predisposing factors and sensitizing the landscape to 

those factors) (Bowman, Balch et al. 2011). Land management activities can result in increased 

ignitions and can thus affect to what extent ignitions limit fire on the landscape. Most land is 

cleared in Indonesia through the use of fire (Stolle, Chomitz et al. 2003), including on agro-

industrial concessions and smallholdings. Ignitions are necessary for fire, but will not necessarily 

result in fire unless the conditions are suitable. For example, fire probability is associated with 

vegetation type in this system as sufficient fuel loads must be present for a fire to occur after an 

ignition (Murdiyarso, Widodo et al. 2002). Furthermore, as most plant communities are up to 

60% water, moisture is a common fire control in the humid tropics (Stott 2000). The drying of 

fuel, which can occur in tandem with or independently of climate, can remove the control of 

moisture on fire because it can prepare fuel for ignition and spread. In peatlands, the peat soil 

itself, which is composed of partially decayed vegetation material, adds additional complexity to 

fire dynamics in those systems, because the belowground biomass can be a potential fuel load in 

addition to vegetation. In their natural condition, peat-swamps are inundated at or near the soil 

surface, and thus peat in its natural state is not typically a major available fuel load. However, 

during El Niño conditions of the ENSO cycle, there is increased likelihood of drought in 

Southeast Asia, affecting both aboveground and belowground biomass, and, thus, a well-

established coupling of fires in Indonesia with drought and El Niño conditions (e.g., Deeming 

1995, Kita, Fujiwara et al. 2000, Wang, Field et al. 2004, Fuller and Murphy 2006, Wooster, 

Perry et al. 2012, Spessa, Field et al. 2015). There is some evidence that large fires do not occur 
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unless precipitation falls below a particular threshold (Goldammer 2007, Field, van der Werf et 

al. 2009), and that the length and intensity of the dry season strongly affects fire (van der Werf, 

Randerson et al. 2008). 

 

Although degraded or regenerating areas are much more susceptible to fire than mature forest 

due to a variety of biophysical differences from mature forest, less-disturbed forests can still be 

affected in instances when ignition events coincide with extreme drought (Guhardja, Fatawi et al. 

2000, Langner, Miettinen et al. 2007, Wooster, Perry et al. 2012). Also, canals, which are often 

put in place for agricultural development or log removal drain the peat and lower the water table. 

Each dry season, particularly during El Niño phases, the peat can become aerated and susceptible 

to fire (Hooijer 2006, Turetsky, Benscoter et al. 2015), particularly if the groundwater depth 

drops below a critical threshold of 40 cm (Usup, Hashimoto et al. 2004, Wösten, Clymans et al. 

2008). People also often use these canals for transportation, resulting in elevated ignitions near 

these infrastructural elements.  

 

Here, we investigate the relative contribution of the factors controlling fires to the probability of 

fire occurrence. This research aims to evaluate how human-driven and biophysical landscape 

changes affect fire occurrence in a coupled human and natural peatland system. We address the 

following questions:  

1) What are the relative effects of climate, human access, vegetation, and hydrology on 

the probability of fire occurrence in the peat swamp forest? 

2) What is the potential for peatland restoration to reduce fire probability? 
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The study investigates these issues in a lowland tropical peat-swamp forest landscape in Central 

Kalimantan, Indonesia, on the site of a failed agricultural project called the Mega Rice Project 

(MRP) (Fig. 1), which covers roughly 1.5 Mha of the total 6.8 Mha of lowland peatland in 

Kalimantan. Development of the former MRP was initiated in 1995 (Presidential Decree RI/82-

26, 1995), but the project failed, as predicted by peat experts, and was abandoned by 1999. An 

extensive irrigation canal network totaling over 4,000 km in length was developed in the former 

MRP, which lowered the water table, leaving the area susceptible to fire and causing 

considerable environmental damage (e.g., Aldhous 2004, Page, Hoscilo et al. 2009). The MRP 

now contains patchy forest remnants surrounded by degraded fire-prone peatland (e.g., Cattau, 

Husson et al. 2014), as well as several legal oil palm concessions. In 2000, less than half of the 

original peat-swamp forest remained in the MRP (Boehm and Siegert 2001). It is estimated that 

the carbon store of the MRP and the Sabangau Forest was 2.82-5.40 Gt C before the most 

destructive fire season in 1997-98, and that emissions totaling 0.19-0.23 Gt C from the peat and 

0.05 Gt C from aboveground biomass occurred in this area during this period (Page, Siegert et al. 

2002). From 2000-2010, 19.1% of the MODIS fire hotspots that occurred in all of the peatlands 

in Indonesia come from the Mega Rice Project. 

 

We use a Bayesian modeling approach to estimate fire occurrence, defined as the probability of 

burning at a spatial resolution of 1km2 and at a monthly temporal resolution in the dry season 

months in the study area from 2000-2010. We built a spatial database of predictor variables 

related to climate, vegetation, human access, hydrology, and fire history (detailed in Table S1 in 

Supplemental Information, including source information), fit a generalized linear model (See 

Equation (1) in Methods), and retained the model with the lowest Bayesian Information Criterion 
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(BIC) (See Fire probability model in Methods), which included those related to climate (Sea 

surface temperature anomalies (3-month running average)), hydrology (Euclidean distance from 

nearest canal and Euclidean distance from nearest river), interactions between hydrology and 

human access (Euclidean distance from nearest populated place: Euclidean distance from nearest 

canal and Cost distance from city through roads: Euclidean distance from nearest river), human 

access (Euclidean distance from nearest populated place and Cost distance from city through 

roads), and vegetation (Percent woody vegetation and Percent woody vegetation - quadratic 

term) detailed in Table 2 in Methods (all candidate variables detailed in Table S1 in 

Supplemental Information) (See Fire probability model in Methods for further justification of the 

independent variables). Fire history variables were not included in the Bayesian model because 

they did not contribute significantly. This model was then fitted in a Bayesian framework (See 

Fire probability model in Methods). We compared fire probability within and outside of oil palm 

concessions. We also examined how fire probability would change in each administrative block 

A-E if vegetation and hydrology were restored, excluding areas already in oil palm concession, 

by predicting fire occurrence probability conditioned on VCF ≥55 (the threshold equivalent to a 

liberal definition of forest in this area, including mature, degraded, and regenerating forest 

(Cattau, Harrison et al. 2016)) and conditioned on two thresholds of distance from the nearest 

drainage canal (i.e., if hydrology were restored to the hydrologic equivalent of pixels at the mean 

value (8.1 km) and the third quartile value (11.6 km) from the nearest canal). 

 

RESULTS 

Nearly half of the study area (40.9% at the 1km2 spatial resolution) experienced fire during at 

least one month over the course of the study period. Mean fire probability for all time periods, or 



	 18	

the probability of fire in any given pixel in any dry-season month is 0.025 (95% credible interval 

(CI): 0.009 - 0.061) (Fig. 2), 0.002 (0.001-0.005) in La Niña phases, and 0.042 (0.015-0.103) in 

El Niño phases. Mean fire probability within oil palm concessions is 0.035 (0.013-0.082) and 

outside of oil palm concessions is 0.023 (0.008-0.057). 

 

Standardized regression coefficients for the model predicting the probability of fire occurrence 

(Fig. 3) indicate that climate (3-month running average of the NINO4 Index) is most strongly 

correlated with fire occurrence (1.24; 95% CI: 1.16-1.32), followed by distance from canals (-

1.00; -1.18- -0.82) and percent woody vegetation (MODIS Vegetation Continuous Fields, VCF) 

(-0.77; -0.87- -0.67). When conditionally predicting fire probability on VCF with climate at 

mean El Niño and La Niña values and all other variables at their mean value, fire probability as a 

function of percent woody vegetation follows a generally hump-shaped relationship with a 

positive skew in El Niño conditions, and is relatively flat in La Niña conditions (Fig. 4a). Fire 

probability is highest at 24 percent woody vegetation. Similarly, when conditionally predicting 

fire probability on distance from drainage canals with climate at mean El Niño and La Niña 

values and all other variables at their mean value, fire probability decreases exponentially with 

increasing distance from canals in El Niño conditions, and is relatively flat in La Niña conditions 

(Fig. 4b).  

 

The restoration scenarios examined – restoration of vegetation, partial restoration of hydrology, 

complete restoration of hydrology, restoration of vegetation with partial restoration of hydrology, 

and restoration of vegetation with complete restoration of hydrology - result in a reduction of fire 

probability by 28.0 - 52.2% across the MRP, depending on the scenario (6.7- 60.3% when we 
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examine each administrative block A-E separately) (Table 1). Restoration of vegetation, or 

predicted fire occurrence probability conditioned on VCF ≥55 (the threshold equivalent to a 

liberal definition of forest in this area, including mature, degraded, and regenerating forest 

(Cattau, Harrison et al. 2016)) and all other variables at their mean results in a 28.0 (25.0 – 

30.1)% reduction in fire probability. Predicted fire occurrence probability conditioned on values 

greater than two thresholds of distance from drainage canals (i.e., if hydrology were restored to 

the hydrologic equivalent of pixels at the mean value (8.1 km) and the third quartile value (11.6 

km) from canals) results in a 22.9 (20.7 – 24.5)% and 33.6 (30.7-35.7)% reduction in fire 

probability, respectively. Predicted fire occurrence probability conditioned on VCF ≥55 

combined with each of the hydrologic thresholds results in a 44.5 (40.7 – 47.1)% and 52.2 (48.3-

54.8)% reduction in fire probability. Across all restoration scenarios, Blocks A-D have a 

considerably higher reduction in fire probability relative to Block E, which was the least 

impacted area with the development of the MRP (i.e., not cleared outright and had fewer large 

canals dug). The percent reduction of fire probability as a result of the various restoration 

scenarios is comparable in El Niño phases, La Niña phases, and when all dates are included 

(Table S3 in Supplemental Information). 

 

DISCUSSION AND CONCLUSION 

Our results that a great potential for hydrological rehabilitation coupled with planting to reduce 

fire and thus offset effects of climate on fire occurrence in the area. Global climate is not 

amenable to management at the national or provincial level, while restoring hydrology of peat 

swamps and replanting are management strategies that could feasibly be implemented, such as 

through the Indonesian government’s newly established Peatland Restoration Agency. In our 
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restoration scenarios, we find that restoring both vegetation and hydrology together result in 

greater reductions in fire probability than restoring either alone. The magnitude of the 

standardized regression coefficient related to vegetation is greater than that for hydrology, but 

the confidence intervals overlap, suggesting that both hydrological restoration and replanting can 

make a similarly significant contribution to fire occurrence. Furthermore, restoring both in 

tandem is essential for maximum fire reduction, as the hydrology and vegetation in peat domes 

are strongly linked (Page, Rieley et al. 1999, Page, Hoscilo et al. 2009).  

 

By evaluating the relative contribution of biophysical and anthropogenic factors on fire 

probability, this research contributes to the body of work on fire forecasting (e.g., Deeming 

1995, Spessa, Field et al. 2015). We find that climate, coupled with human alteration of 

hydrology and changes in vegetation, alter fire probability on the peat-swamp landscape. Fire 

probability is positively correlated with atmospheric (and subsequently therefore peat) dryness 

and negatively correlated with distance from drainage canals and amount of woody vegetation. 

Climate is the most important factor driving fire probability, which interacts with land cover 

change. These results are consistent with findings in previous studies in both Indonesia (e.g., 

Kita, Fujiwara et al. 2000, Wang, Field et al. 2004, Fuller and Murphy 2006, Wooster, Perry et 

al. 2012) and many other parts of the tropics (e.g., Cochrane and Laurance 2008, Gutierrez-

Velez, Uriarte et al. 2014). In this area, we find that the influence of canals and vegetation are 

almost as strong as the influence of climate. 

 

Hydrological perturbation from the development of canals has a large effect on fire probability. 

The canals were put in place as part of a failed agricultural project and have lowered the water 
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table. The relationships between fire probability and the distance from canals follows a negative 

exponential relationship. Although it is likely that ignitions are elevated along canals because 

people use these infrastructural elements as a means of transport, the interaction between 

distance from canals and distance from settlements, although significant, contributes relatively 

little to predicting fire probability. This result suggests that the main way in which canals 

contribute to fire probability is through the hydrological alteration itself rather than through 

increased access and thus increased ignitions. 

 

The amount of woody vegetation, which has decreased over time, also has a large effect on fire 

probability. The relationships between fire probability and the amount of woody vegetation 

follows a generally hump-shaped relationship with a positive skew, with fire probability higher 

in the lower range of amount of vegetation than in the higher range. This relationship is further 

supported by the significant contribution of the quadratic term related to the amount of woody 

vegetation to the fire probability model. Fire probability is highest around 20% vegetation, as 

(moving from low vegetation to higher) regrowth post-disturbance accumulates biomass that is a 

potential fuel load and (moving from high vegetation to lower) as forest types transition from a 

fire break to a fuel load as biomass dies and degrades. Degraded and regenerating areas are often 

more susceptible to fire during drought due to a variety of biophysical differences from mature 

forest - for example, lower humidity, higher temperatures, greater wind speeds, higher fuel loads 

of dead wood and drier fuel. Additionally, independent of woody vegetation, non-woody 

vegetation types (e.g., invasive ferns associated with post-disturbance regrowth) and the peat 

substrate itself can serve as fuel loads. These results support previous research highlighting the 

interactions between deforestation and fire in Indonesia (van der Werf, Dempewolf et al. 2008, 
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Spessa, Field et al. 2015). Because MODIS can miss fires under dense canopy, we likely 

underestimate fire probability in areas of high percent woody vegetation. However, we do not 

expect this to affect the overall trend, as fire probability continually decreases from ~25% woody 

vegetation, where fire detection rates would not be affected by canopy closure. 

 

Increasing woody vegetation, including on tree plantations or oil palm concessions, could reduce 

fire occurrence relative to degraded land. However, any reduction in fire as a result of increased 

woody vegetation from maturing oil palm may be offset by the hydrological alteration that 

usually accompanies concession development or by fire ignitions that are often used to clear land 

prior to the initial planting, replanting after a complete crop cycle, or for maintenance. We find 

that, in this area, fire probability is approximately one and a half times higher inside oil palm 

concession boundaries as it is outside. Furthermore, ignition density in oil palm is on par with 

that in degraded areas, both of which are substantially higher than in forests (Cattau, Harrison et 

al. 2016). 

  

We acknowledge several simplifications that we have made in our study that merit further 

research. First, we capture patterns of human activity on the landscape by evaluating the distance 

from populated places, the interaction between the distance from populated places and canals, 

the cost distance from major cities through roads, and the interaction between the cost distance 

from major cities through roads and rivers. Based on our extensive time in the area, we consider 

these reasonable proxies for patterns of movement on this landscape; however, spatially explicit 

information would improve the analysis and could perhaps increase the extent to which human 

access could predict fire probability on the landscape. Furthermore, social surveys examining 
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local land management decisions related to fire surrounding individual population centers would 

be a strong complement to this study. Second, we use Euclidean distance from large canals as a 

proxy for hydrological disturbance. Hydrological disturbances in one part of a peat dome can 

have consequences for the entire dome (Page, Rieley et al. 1999), and thus the hydrology is 

likely to be altered even at great distances from the canals. Using distance from canals as a proxy 

for hydrological conditions is sufficient to demonstrate that the canals have a large effect on fire 

occurrence, but our estimates of fire reduction as a result of hydrological restoration are thus 

likely conservative. The complex effect that drainage canals have on the hydrology of the peat 

swamp could be more finely captured with detailed hydrological models (e.g., Wösten, Clymans 

et al. 2008, Ishii, Koizumi et al. 2016), including those that incorporate the feedbacks between 

hydrology and vegetation. Furthermore, we likely do not capture all of the canals in the study 

area, and thus likely further underestimate the effect of canals. Finally, we sufficiently 

demonstrate the large effect that vegetation has on fire occurrence using percent woody 

vegetation. However, biomass (e.g., captured with LiDAR and ground surveys) paired with 

percent moisture content could better represent potential fuel loads, and detailed information 

about species or trait composition of the vegetation could add further nuance to this pattern. 

Furthermore, we capture the spatial variability of woody vegetation across the landscape and the 

temporal changes at the annual timescale, but spatial information that explicitly captures the 

vegetation of proximate areas (e.g., average percent vegetation of neighboring pixels within a 

certain radius) and more finely resolved temporal data could yield additional information about 

fire spread across the landscape and intra-annual patterns of fire activity, respectively. 
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In late 2015, Indonesia experienced an unusually severe fire season, resulting in a global 

environmental disaster. Fires burn in Indonesia nearly every dry season, but the 2015 dry season 

fires were the most severe since 1997, resulting in emissions of 380 Tg C, or about 1.5 billion 

metric ton of CO2 equivalents (Field, van der Werf et al. 2016). It is estimated that the 2015 fire 

crisis cost Indonesia US$16.1 billion (World Bank 2015), and smog from these fires affected 

people not just in Indonesia itself, but also across much of equatorial Asia (Koplitz, Mickley et 

al. 2016). Reducing fire occurrence through hydrological restoration paired with planting and 

supported by fire fighting could in turn contribute to mitigating climate change and improving air 

quality through reducing fire-related emissions. Given the severe consequences of peatland fires, 

targeting areas of high fire probability for restoration would be of great benefit to both local and 

international communities. The approach taken by this paper could be applied to other degraded 

peatland areas in Indonesia that are candidate sites for restoration, especially in Sumatra, Papua, 

and other parts of Kalimantan, and to degraded peatlands that experience a novel fire regime in 

other parts of the tropics. 

 

METHODS 

Fire Data 

We obtain fire detections at the 1 kilometre2 resolution from the Moderate Resolution Imaging 

Spectroradiometer (MODIS, 1 kilometre2 resolution) Active Fire Product (Giglio, Descloitres et 

al. 2003) processed and quality checked by the University of Maryland (MCD14ML) and 

downloaded from the FIRMS MODIS Archive Download tool: 

https://firms.modaps.eosdis.nasa.gov/download/. This product includes, for each fire detected by 

either the Terra or Aqua MODIS sensor, among other information, the location of the centroid 
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for the 1km2 pixel in which the fire was detected and the date and time of detection. MODIS 

hotspots are considered the most accurate and complete among alternative methods for detecting 

fires (Langner and Siegert 2009). The fire detections were used to create burned-unburned binary 

rasters at the 1km2 spatial resolution and a monthly temporal resolution from 2000-2010. 

Because fire activity peaks in the dry season, with 98% of fires detected between July and 

November (Fig. 5), we restrict the remainder of the analysis to dry season fires.  

 

Correlations between the number of MODIS hotspots and the area burned on the ground is 

reasonably high in peatlands (R2 = 0.75 in Tansey, Beston et al. 2008). Although MODIS can 

miss fires that spread quickly or that are extremely short-burning because the sensor passes only 

one or twice a day, fires in peat are generally characterized by smoldering combustion, for which 

the rate of spread is quite slow (Rollins, Cohen et al. 1993, Wan Ahmad 2001, Rein 2013, 

Turetsky, Benscoter et al. 2015). MODIS can also miss ground fires under dense canopy or 

belowground fires if the fires do not produce sufficient heat (Ballhorn, Siegert et al. 2009, 

Langner and Siegert 2009), thus we may underestimate the number of fires in forest, or peat fires 

that smolder underground before resurfacing. MODIS can also miss fires that are masked by the 

smoke itself. In Kalimantan and Sumatra, the omission rate for MODIS active fire detections has 

been estimated from 34-60%, depending upon the LULC class (Liew, C. et al. 2003, Miettinen, 

Andreas et al. 2007, Tansey, Beston et al. 2008).  

 

Fire probability model 

We built a spatial database of predictor variables related to climate, vegetation, human access, 

hydrology, and fire history (all variables detailed in Table S1 in Supplemental Information, 
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including source information), and fit a generalized linear model (logistic regression), assuming 

a binomial error, of the general form: 

 

log (pit / 1-pit) = αCit + βAit + γVit + δHit + εF       (1) 

 

where pit is the probability of fire occurrence in pixel i at time t, Cit, Ait, Vit, Hit, Fit, are 

covariates related to climate, human access, vegetation, hydrology, and fire history, respectively, 

at pixel i at time t (all variables detailed in Table S1 in Supplemental Information). A generalized 

linear model was chosen because it allows for non-normal distribution of the response variable. 

We fit several different models using various combinations of uncorrelated covariates and 

interactions, and retained the model with the lowest Bayesian Information Criterion (BIC). The 

final model included variables related to climate, hydrology, interactions between hydrology and 

human access, human access, and vegetation (detailed in Table 2). The climate variable, 3-month 

running average of sea surface temperature (SST) anomalies (NINO 4 Index), is related to ENSO 

and thus precipitation and temperature (and therefore peat dryness). Changes in SST can result in 

changes in convection and atmospheric circulation. Although SST anomalies in the Niño 3.4 

region are often used, we use SST anomalies in the Niño 4 region because the SST anomaly 

required to meet the SST threshold for the development and persistence of deep convection is 

consistent throughout the year in this region, as opposed to the Niño 3.4 region, where the SST 

anomaly required to reach this threshold can vary throughout the year. The variables related to 

hydrology, Euclidean distance from nearest canal and Euclidean distance from nearest river, are 

proxies for water table depth; areas near rivers are often flooded, and ground surface levels 

decline toward drainage canals (Isbell, Calcagno et al. 2011). The human access variables 
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(Euclidean distance from nearest populated place and Cost distance from city through roads) are 

related to ignition sources, and interactions between hydrology and human access (Euclidean 

distance from nearest populated place: Euclidean distance from nearest canal and cost distance 

from city through roads: Euclidean distance from nearest river) are included because canals and 

rivers are used as transportation routes. Percent woody vegetation (MODIS Vegetation 

Continuous Fields (VCF)) is used to represent available potential fuel loads, and the quadratic 

term is included to determine if fire probability responds non-linearly to available biomass. The 

VCF product is currently available for 2000-2010, and so the analysis is constrained to this 

temporal window in order to capture a consistent measure of woody plant material. The variance 

inflation factor was under 2 for each variable included in the final model (Table S2 in 

Supplemental Information). Fire history variables were not included in the Bayesian model 

because they did not contribute significantly. 

 

This model was then fitted using a Bayesian framework with two intercepts indicating if the 

pixel is outside (µ0) or within (µ1) the boundaries of an oil palm concession and with a pixel 

random effect (γp): 

 

Fireit~dbern(pit)          (2) 

 pit = invlogistic (µ+β1*Cit+β2*H1it+β3* H2it+β4*HA1it +β5* HA2it +β6*A1it+β7* A2it+β8* 

V1it+β9* V2it +γp)  

 

The covariates were z-transformed across all individuals prior to analyses to allow for 

comparison of their effect size (Gelman et al. 2013). Analyses were performed using R 
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(http://www.r-project.org) and STAN statistical software (http://mc-stan.org/rstan.htlm). We 

used non-informative priors for each variable, and we ran two MCMC chains with 2,000 

iterations. Significance of each parameter was assessed by non-overlap of the 95% credible 

intervals with 0. A credible interval, analogous to a confidence interval in frequentist statistics 

but treating the bounds as fixed and the parameter estimate as random because a Bayesian 

parameter estimate itself has a distribution of possible values, indicates the upper and lower 

bounds that the parameter has a given probability of lying between. We assessed convergence of 

the model using Brook and Gelman (2007). Goodness of fit was evaluated using Bayesian p 

values of the average (Bayesian p = 0.48) and standard deviation (Bayesian p = 0.49) fire 

occurrence (Fig. S1 in Supplemental Information) (Gelman et al. 2013) and posterior predictive 

checks, and r2 is estimated at 0.44 (CI: 0.22-0.66). To test how well the model captures spatial 

structure,  

we split the dataset randomly and performed 1,000 bootstrapped mantel tests on 500 averaged 

fire occurrence per pixel locations between spatial and residual distance, each on with 100 

repetitions. To correct for multiple tests, we use a False Discovery Rate and obtain an average p 

value =0.85, indicating there is no residual structure. 

 

To evaluate the relationship between vegetation and fire probability and between hydrology and 

fire probability, the two most important variables after climate, we predicted fire occurrence for 

each of those variables (VCF and distance from large canals) with all other variables set at their 

mean values. We also predicted fire occurrence for VCF and for distance from large canals with 

climate set at the mean value for an El Niño phase (3-month running average of SST anomalies 

in the Niño 4 region above the threshold of +0.5°C) and again with climate set at the mean value 
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for a La Nina phase (below the threshold of -0.5°C), with all other variables at their mean values 

(Fig. 4). 

 

Finally, to examine how fire probability would change in each administrative block A-E with 

restoration, excluding areas already in oil palm concession, we predicted fire occurrence 

probability conditioned on VCF ≥55 (the threshold equivalent to a liberal definition of forest in 

this area, including mature, degraded, and regenerating forest (Cattau, Harrison et al. 2016)) and 

conditioned on two thresholds of distance from the nearest drainage canal (i.e., if hydrology were 

restored to the hydrologic equivalent of pixels at the mean value (8.1 km) and the third quartile 

value (11.6 km) from the nearest canal). The model was run 1) just restoring vegetation, 2) 

restoring hydrology to the lower threshold, 3) restoring hydrology to the upper threshold, 4) 

restoring vegetation and restoring hydrology to the lower threshold, and 5) restoring vegetation 

and restoring hydrology to the upper threshold (Table 1). We evaluate these estimates during El 

Niño phases and during La Niña phases (Table S3 in Supplemental Information). 
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TABLES AND FIGURES 

 

 

 

Fig. 1. The study area: a failed agricultural project called the Mega Rice Project, a lowland peat-

swamp forest area in Central Kalimantan, Indonesia. Inset: Location within Indonesia. 
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Fig. 2. Map of posterior mean fire occurrence probability at the pixel level. 
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Fig. 3. Standardized regression coefficient estimates for the model predicting the probability of 

fire occurrence in the Sabangau catchment in Central Kalimantan, Indonesia.  
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a.  b.

 

Fig. 4. Predictions for probability of fire in any pixel in any dry season month as a function of (a) 

percent woody vegetation and (b) distance from drainage canals (binned at 50m), with climate at 

mean El Niño and La Niña values and all other variables at their mean value. Mean predicted 

probability is shown with a solid line and the 95% credible interval with a dotted line, El Niño 

values in red and La Niña values in blue. Fire probability as a function of percent woody 

vegetation follows a hump-shaped relationship with a positive skew in El Niño phases. Fire 

probability decreases exponentially with increasing distance from canals in El Niño phases. 
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Table 1. Predicted mean fire occurrence probability under different restoration scenarios for 

each administrative Block in the former Mega Rice project area, excluding oil palm concessions. 

Numbers in parenthesis are 95% confidence interval. 

 Restoration 
effort 

No 
restoration  

Restoration 
of 
vegetation 

Restoration 
of 
hydrology 
(lower 
threshold) 

Complete 
restoration 
of hydrology 
(upper 
threshold) 

Restoration 
of vegetation 
with 
restoration of 
hydrology 
(lower 
threshold) 

Restoration 
of vegetation 
with 
complete 
restoration of 
hydrology 
(upper 
threshold) 

 Detail No 
restoration 

All pixels 
restored to 
VCF ≥ 55 

All pixels 
restored to 
hydrologic 
equivalent 
of pixels at 
the mean 
value (8.1 
km) from 
canals 

All pixels 
restored to 
hydrologic 
equivalent 
of pixels at 
the third 
quartile 
value (11.6 
km) from 
canals 

All pixels 
restored to 
VCF ≥ 55 
and ≥ 8.1 km 
from canals 

All pixels 
restored to 
VCF ≥ 55 
and ≥ 11.6 
km from 
canals 

Block 
A 

Prediction 
for mean 
probability 
of fire 

0.027 
(0.009 – 
0.068) 

0.019 
(0.006 – 
0.049) 

0.019 
(0.006 – 
0.049) 

0.016 
(0.005-
0.041) 

0.013 (0.004-
0.035) 

0.011 (0.004-
0.029) 

 Percent 
reduction 

NA 30.5 (28.0 
– 32.1) 

30.2 (28.1 
– 31.7) 

42.0 (39.5 – 
43.6) 

51.8 (48.8 – 
53.6) 

60.0 (57.2 – 
61.7) 

Block 
B 

Prediction 
for mean 
probability 
of fire 

0.027 
(0.010 – 
0.067) 

0.020 
(0.007 – 
0.052) 

0.020 
(0.007 – 
0.049) 

0.016 
(0.006-
0.042) 

0.014 (0.005-
0.038) 

0.012 (0.004-
0.031) 

 Percent 
reduction 

NA 26.3 (23.2 
– 28.4) 

28.8 (26.6 
– 30.2) 

40.9 (38.3 – 
42.5) 

47.8 (44.3 – 
50.1) 

56.8 (53.5 – 
59.0) 

Block 
C 

Prediction 
for mean 
probability 
of fire 

0.036 
(0.013 – 
0.082) 

0.025 
(0.009 – 
0.060) 

0.028 
(0.010 – 
0.066) 

0.024 
(0.009-
0.057) 

0.020 (0.007-
0.048) 

0.017 (0.006-
0.041) 

 Percent 
reduction 

NA 30.0 (27.1 
– 32.1) 

21.2 (19.3 
– 22.7) 

32.3 (29.8-
34.2) 

45.1 (41.7 – 
47.5) 

53.0 (49.6 – 
55.4) 

Block 
D 

Prediction 
for mean 
probability 
of fire 

0.023 
(0.007 – 
0.060) 

0.015 
(0.005 – 
0.041) 

0.016 
(0.005 – 
0.045) 

0.014 
(0.004-
0.037) 

0.011 (0.003-
0.030) 

0.009 (0.003-
0.025) 

 Percent 
reduction 

NA 33.7 (31.8 
– 34.7) 

27.3 (25.8 
– 28.4) 

39.8 (37.8 – 
41.1) 

52.0 (49.7 – 
53.3) 

60.3 (58.1 – 
61.6) 

Block 
E 

Prediction 
for mean 
probability 
of fire 

0.009 
(0.003 – 
0.029) 

0.008 
(0.002 – 
0.024) 

0.009 
(0.002 – 
0.027) 

0.008 
(0.002-
0.026) 

0.007 (0.002-
0.023) 

0.007 (0.002-
0.022) 

 Percent 
reduction 

NA 16.6 (14.8 
– 17.8) 

6.7 (6.1 – 
7.2) 

12.1 (11 - 
12.8) 

22.5 (20.1 – 
24.2) 

27.3 (24.6 – 
29.1) 
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Entire 
MRP 

Prediction 
for mean 
probability 
of fire 

0.023 
(0.008 – 
0.057) 

0.016 
(0.006 – 
0.043) 

0.018 
(0.006-
0.045) 

0.015 
(0.005-
0.040) 

0.013 (0.004-
0.034) 

0.011 (0.004-
0.030) 

 Percent 
reduction 

NA 28.0 (25.0 
– 30.1) 

22.9 (20.7 
– 24.5) 

33.6 (30.7-
35.7) 

44.5 (40.7-
47.1) 

52.2  (48.3 – 
54.8) 

 

Fig. 5. Total number of MODIS fire detections 2000-2010 per month in the study area. The 

majority of fires (98%) take place in dry season months July - Nov. 

 

Table 2. Variables included in final Bayesian model  

Parameter Variable 
abbreviation 

Predictor Variables Resolution (Temporal and 
spatial) 

Category 

β1 C Sea surface temperature anomalies 
(3-month running average) 

monthly, entire area Climate 

β2 H1 Euclidean distance from nearest 
canal 

entire study period, 1km2 Hydrology 

β3 H2 Euclidean distance from nearest 
river 

entire study period, 1km2 Hydrology 

β4 HA1 Interaction: Euclidean distance 
from nearest populated place and 
Euclidean distance from nearest 
canal 

entire study period, 1km2 Human Access / 
Hydrology 

β5 HA2 Interaction: Cost distance from city 
through roads and Euclidean 
distance from nearest river 

entire study period, 1km2 Human Access / 
Hydrology 

β6 A1 Euclidean distance from nearest 
populated place 

entire study period, 1km2 Human Access 

β7  A2 Cost distance from city through 
roads 

entire study period, 1km2 Human Access 

β8 V1 Percent woody vegetation yearly, 1km2 Vegetation 
β9 V2 Percent woody vegetation - 

quadratic term 
yearly, 1km2 Vegetation 
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SUPPLEMENTAL INFORMATION 

 

a.  b. 

 

Fig. S1. Distribution of the a. average predicted presence of fire with a red line indicating the 

observed average, Bayesian p = 0.48, and b. standard deviation for predicted presence of fire 

with a red line indicating the observed standard deviation, Bayesian p = 0.49.  
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Table S1. Variables used in the prospective models to predict fire occurrence.  

Predictor Variables Source / Derived from Resolution (Temporal and 
spatial) 

Category 

Sea surface temperature 
anomalies (3-month running 
average) 

NINO4 Index from HadISST1, 
NOAA 

monthly, entire area Climate 

Euclidean distance from 
nearest river 

(Minnemeyer, Boisrobert et al. 
2009) 

entire study period, 1km2 Hydrology 

Euclidean distance from 
nearest canal 

Agata Hoscillo (Pers. comm)  entire study period, 1km2 Hydrology 

Density of canals Agata Hoscillo (Pers. comm)  entire study period, 1km2 Hydrology 
Euclidean distance from 
nearest road 

(Minnemeyer, Boisrobert et al. 
2009) 

entire study period, 1km2 Human 
Access 

Density of roads (Minnemeyer, Boisrobert et al. 
2009) 

entire study period, 1km2 Human 
Access 

Euclidean distance from 
nearest city 

Simon Husson (Pers. comm) entire study period, 1km2 Human 
Access 

Cost distance from any city 
through roads 

Simon Husson (Pers. comm) 
and (Minnemeyer, Boisrobert et 
al. 2009) 

entire study period, 1km2 Human 
Access 

Euclidean distance from 
nearest populated place 

Simon Husson (Pers. comm) entire study period, 1km2 Human 
Access 

Percent woody vegetation 
 

Vegetation Continuous Field 
(VCF) Collection 5 
(Townshend, Carroll et al. 
2011) 

Annual, 1km2 Vegetation 

Euclidean distance from 
mature forest 

Vegetation Continuous Field 
(VCF) Collection 5 
(Townshend, Carroll et al. 
2011) 

Annual, 1km2 Vegetation 

Age of woody forest Vegetation Continuous Field 
(VCF) Collection 5 
(Townshend, Carroll et al. 
2011) 

Annual, 1km2 Vegetation 

Time since last fire MODIS Annual, 1km2 Fire History 
Burn intensity of most recent 
burn: Fire radiative power 
(FRP) 

MODIS Annual, 1km2 Fire History 

Burned in previous year 
(binary) 

MODIS Annual, 1km2 Fire History 

 

Table S2. Variance inflation factor for each variable included in the final model. 

Variable VIF 
Sea surface temperature anomalies (3-month running average) 1.01 
Euclidean distance from nearest canal 1.44 
Euclidean distance from nearest river 1.88 
Euclidean distance from nearest populated place 1.53 
Cost distance from city through roads 1.98 
Percent woody vegetation 1.65 
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Table S3. Predicted mean fire occurrence probability under different restoration scenarios for 

each administrative Block in the former Mega Rice project area, excluding oil palm concessions 

for El Niño and La Niña phases. Numbers in parenthesis are 95% confidence interval. 

  Restoration 
effort 

No 
restoration  

Restoration 
of 
vegetation 

Restoration 
of 
hydrology 
(lower 
threshold) 

Complete 
restoration 
of 
hydrology 
(upper 
threshold) 

Restoration 
of 
vegetation 
with 
restoration 
of 
hydrology 
(lower 
threshold) 

Restoration 
of 
vegetation 
with 
complete 
restoration 
of 
hydrology 
(upper 
threshold) 

 ENSO 
Phase 

Detail No 
restoration 

All pixels 
restored to 
VCF ≥ 55 

All pixels 
restored to 
hydrologic 
equivalent 
of pixels at 
the mean 
value (8.1 
km) from 
canals 

All pixels 
restored to 
hydrologic 
equivalent 
of pixels at 
the third 
quartile 
value (11.6 
km) from 
canals 

All pixels 
restored to 
VCF ≥ 55 
and ≥ 8.1 
km from 
canals 

All pixels 
restored to 
VCF ≥ 55 
and ≥ 11.6 
km from 
canals 

Block 
A 

El 
Niño 

Prediction 
for mean 
probability 
of fire 

0.047 
(0.016 – 
0.115) 

0.033 
(0.011 – 
0.084) 

0.033 
(0.011 – 
0.084) 

0.027 
(0.009 – 
0.071) 

0.023 
(0.008 – 
0.060) 

0.019 
(0.006 – 
0.050) 

  Percent 
reduction 

NA 30.4 (27.6-
32.1) 

29.9 (27.5-
31.5) 

41.7 (38.9-
43.5) 

51.5 (48.2-
53.5) 

59.8 (56.6-
61.7) 

 La 
Niña 

Prediction 
for mean 
probability 
of fire 

0.002 
(0.001 – 
0.006) 

0.001 
(0.000 – 
0.004) 

0.001 
(0.000 – 
0.004) 

0.001 
(0.000 – 
0.003) 

0.001 
(0.000 – 
0.003) 

0.001 
(0.000 – 
0.002) 

  Percent 
reduction 

NA 31.2 (30.5-
31.7) 

31.9 (31.4-
32.5) 

43.9 (43.3-
44.5) 

53.1 (52.2-
53.8) 

61.4 (60.6-
62.0) 

Block 
B 

El 
Niño 

Prediction 
for mean 
probability 
of fire 

0.047 
(0.017 – 
0.114) 

0.035 
(0.012 – 
0.088) 

0.034 
(0.012 – 
0.084) 

0.028 
(0.010 – 
0.071) 

0.025 
(0.008 – 
0.064) 

0.020 
(0.007 – 
0.054) 

  Percent 
reduction 

NA 26.2 (22.9-
28.4) 

28.5 (26.0-
30.1) 

40.6 (37.3-
42.3) 

47.5 (43.7-
50.0) 

56.6 (52.9-
58.9) 

 La 
Niña 

Prediction 
for mean 
probability 
of fire 

0.002 
(0.001 – 
0.005) 

0.001 
(0.000 – 
0.004) 

0.001 
(0.000 – 
0.004) 

0.001 
(0.000 – 
0.003) 

0.001 
(0.000 – 
0.003) 

0.001 
(0.000 – 
0.002) 

  Percent 
reduction 

NA 26.8 (25.5-
27.9) 

30.9 (30.2-
31.3) 

43.2 (42.5-
43.7) 

49.3 (50.4-
47.9) 

58.3 (57.1-
59.4) 

Block 
C 

El 
Niño 

Prediction 
for mean 
probability 
of fire 

0.060 
(0.023 – 
0.137) 

0.042 
(0.016 – 
0.100) 

0.048 
(0.018 – 
0.111) 

0.041 
(0.015 – 
0.097) 

0.033 
(0.012 – 
0.081) 

0.029 
(0.010 – 
0.070) 
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  Percent 
reduction 

NA 29.8 (26.6-
32.1) 

20.8 (22.5-
18.7) 

31.9 (34.0-
29.1) 

44.8 (41.0-
47.4) 

52.7 (48.9-
55.3) 

 La 
Niña 

Prediction 
for mean 
probability 
of fire 

0.003 
(0.001 – 
0.007) 

0.002 
(0.001 – 
0.005) 

0.002 
(0.001 – 
0.005) 

0.002 
(0.001 – 
0.004) 

0.001 
(0.000 – 
0.004) 

0.001 
(0.000 – 
0.003) 

  Percent 
reduction 

NA 27.9 (27.2-
28.6) 

23.8 (23.3-
24.5) 

35.6 (34.9-
36.4) 

44.7 (43.8-
45.6) 

53.2 (52.2-
54.1) 

Block 
D 

El 
Niño 

Prediction 
for mean 
probability 
of fire 

0.039 
(0.012 – 
0.102) 

0.026 
(0.008 – 
0.070) 

0.028 
(0.009 – 
0.076) 

0.023 
(0.007 – 
0.064) 

0.019 
(0.006 – 
0.052) 

0.015 
(0.005 – 
0.043) 

  Percent 
reduction 

NA 33.8 (31.8-
34.9) 

27.2 (28.3-
25.4) 

39.6 (37.4-
41.0) 

52.0 (49.5-
53.4) 

60.3 (57.9-
61.7) 

 La 
Niña 

Prediction 
for mean 
probability 
of fire 

0.002 
(0.000 – 
0.005) 

0.001 
(0.000 – 
0.003) 

0.001 
(0.000 – 
0.003) 

0.001 
(0.000 – 
0.003) 

0.001 
(0.000 – 
0.002) 

0.001 
(0.000 – 
0.002) 

  Percent 
reduction 

NA 32.1 (31.6-
32.6) 

28.5 (28.2-
29.0) 

41.2 (40.8-
41.8) 

51.4 (50.8-
52.1) 

60.1 (59.4-
60.7) 

Block 
E 

El 
Niño 

Prediction 
for mean 
probability 
of fire 

0.016 
(0.005 – 
0.049) 

0.013 
(0.004 – 
0.042) 

0.015 
(0.004 – 
0.046) 

0.014 
(0.004 – 
0.044) 

0.012 
(0.003 – 
0.040) 

0.012 
(0.003 – 
0.037) 

  Percent 
reduction 

NA 16.4 (14.5-
17.6) 

6.8 (6.1-
7.2) 

12.2 (11.0-
13.0) 

22.4 (24.1-
19.9) 

27.2 (24.1-
29) 

 La 
Niña 

Prediction 
for mean 
probability 
of fire 

0.001 
(0.000 – 
0.002) 

0.001 
(0.000 – 
0.002) 

0.001 
(0.000 – 
0.002) 

0.001 
(0.000 – 
0.002) 

0.000 
(0.000 – 
0.002) 

0.000 
(0.000 – 
0.002) 

  Percent 
reduction 

NA 17.3 (18.2-
16.1) 

6.7 (7.0-
6.3) 

11.9 (11.3-
12.5) 

23.1 (21.6-
24.3) 

27.6 (25.9-
28.9) 

Entire 
MRP 

El 
Niño 

Prediction 
for mean 
probability 
of fire 

0.039 
(0.014 – 
0.097) 

0.028 
(0.010 – 
0.073) 

0.030 
(0.010 – 
0.077) 

0.026 
(0.009 – 
0.067) 

0.022 
(0.007 – 
0.058) 

0.019 
(0.006 – 
0.050) 

  Percent 
reduction 

NA 27.8 (24.6-
30.1) 

22.6 (20.2-
24.4) 

33.3 (30.1-
35.5) 

44.2 (40.1-
47.0) 

51.9 (47.7-
54.7) 

 La 
Niña 

Prediction 
for mean 
probability 
of fire 

0.002 
(0.001 – 
0.005) 

0.001 
(0.000 – 
0.003) 

0.001 
(0.000 – 
0.003) 

0.001 
(0.000 – 
0.003) 

0.001 
(0.000 – 
0.003) 

0.001 
(0.000 – 
0.002) 

  Percent 
reduction 

NA 27.5 (28.4-
26.4) 

24.9 (24.0-
25.8) 

36.0 (34.7-
37.2) 

45.1 (43.5-
46.4) 

53.1 (51.4-
54.5) 
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CHAPTER TWO: Sources of anthropogenic fire ignitions on the peat-swamp landscape in 

Kalimantan, Indonesia 

 

Megan E. Cattau, Mark E. Harrison, Iwan Shinyo, Sady Tungau, María Uriarte, and Ruth 

DeFries 
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ABSTRACT 

Fire disturbance in many tropical forests, including peat swamps, has become more frequent and 

extensive in recent decades. These fires compromise a variety of ecosystem services, among 

which mitigating global climate change through carbon storage is particularly important for peat 

swamps. Indonesia holds the largest amount of tropical peat carbon globally, and mean annual 

CO2 emissions from decomposition of deforested and drained peatlands and associated fires in 

Southeast Asia have been estimated at ~2,000 Mt y-1. A key component to understanding and 

therefore managing fire in the region is identifying the land use / land cover classes associated 

with fire ignitions. We assess the oft-asserted claim that escaped fires from oil palm concessions 

and smallholder farms near settlements are the primary sources of fire in a peat-swamp forest 

area in Central Kalimantan, Indonesia, equivalent to around a third of Kalimantan's total peat 

area. We use the MODIS Active Fire product from 2000-2010 to evaluate the fire origin and 

spread on the land use / land cover classes of legal, industrial oil palm concessions (the only type 

of legal concession in the study area), non-forest, and forest, as well as in relation to settlement 

proximity. We find that most fires (68-71%) originate in non-forest, compared to oil palm 

concessions (17%-19%), and relatively few (6-9%) are within 5 km of settlements. Moreover, 

most fires started within oil palm concessions and in close proximity to settlements stay within 

those boundaries (90% and 88%, respectively), and fires that do escape constitute only a small 

proportion of all fires on the landscape (2% and 1%, respectively). Similarly, a small proportion 

of fire detections in forest originate from oil palm concessions (2%) and within close proximity 

to settlements (2%). However, fire ignition density in oil palm (0.055 ignitions km-2) is 

comparable to that in non-forest (0.060 km-2 ignitions km-2), which is approximately ten times 

that in forest (0.006 ignitions km-2). Ignition density within 5 km of settlements is the highest at 
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0.125 ignitions km-2.  Furthermore, increased anthropogenic activity in close proximity to oil 

palm concessions and settlements produces a detectable pattern of fire activity. The number of 

ignitions decreases exponentially with distance from concessions; the number of ignitions 

initially increases with distance from settlements, and, from around 7.2 km, then decreases with 

distance from settlements. These results refute the claim that most fires originate in oil palm 

concessions, and that fires escaping from oil palm concessions and settlements constitute a major 

proportion of fires in this study region. However, there is a potential for these land use types to 

contribute substantially to the fire landscape if their area expands. Effective fire management in 

this area should therefore target not just oil palm concessions, but also non-forested, degraded 

areas where ignitions and fires escaping into forest are most likely to occur. 
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INTRODUCTION 

Fires in humid tropical forests, both natural and anthropogenic in origin, have been a source of 

disturbance over millennia (e.g., Goldammer 1990), but large, intense fires have been relatively 

infrequent prior to anthropogenic land use change. Fire has been increasing across the tropics 

both in size and in frequency in recent decades (Goldammer 1991, Cochrane 2003, Cochrane 

2009). In that time, both the largest and greatest number of fires have occurred in the tropics 

relative to other regions (Cochrane 2003, Cochrane and Ryan 2009). Tropical and subtropical 

moist broadleaf forests are considered the most fire-sensitive of the major ecoregions (Shlisky, 

Waugh et al. 2007, Shilisky, Alencar et al. 2009), and thus the ecological consequences for 

increased fire in the tropics are far-reaching, including changes in forest composition (Cochrane 

and Schulze 1999) and structure (Gerwing 2002) that are potentially long-term in nature (e.g., 

Ferry Slik, Verburg et al. 2002). Furthermore, biomass burning in the tropics releases carbon and 

other gases into the atmosphere, contributing to global climate change, air pollution, acid rain, 

and property damage (Crutzen and Andreae 1990, Hao, Liu et al. 1990, Hao and Ward 1993, 

Langmann and Graf 2002). 

 

Trends of fire activity in Southeast Asia follow pantropical trends (Taylor, Saksena et al. 1999, 

Field, van der Werf et al. 2009), and peatland fires in Indonesia have been increasing in 

frequency, number, and severity since the 1980's (Meijaard and Dennis 1997). Consequently, 

tropical peatlands, the majority of which are found in Southeast Asia (57% of the tropical 

peatland area and 77% of the volume) (Page, Rieley et al. 2011), are at heightened fire risk. 

During El Niño phases of the El Niño Southern Oscillation (ENSO), there is increased likelihood 

of drought in Southeast Asia and, thus, a well-established coupling of fires in Indonesia with El 
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Niño conditions and precipitation, including in Kalimantan (e.g., Deeming 1995, Kita, Fujiwara 

et al. 2000, Siegert, Ruecker et al. 2001, Page, Siegert et al. 2002, Wang, Field et al. 2004, Fuller 

and Murphy 2006, Wooster, Perry et al. 2012, Spessa, Field et al. 2015). There is some evidence 

that large fires do not occur unless precipitation falls below a particular threshold (Goldammer 

2007, Field, van der Werf et al. 2009). However, fire is increasing in tandem with land use 

change and increased population density (Field, van der Werf et al. 2009) and, without 

anthropogenic influence on the landscape, extreme fire events would not exist.  

 

Carbon emissions as a result of fires in peatlands are particularly high, as peat is extremely rich 

in belowground organic carbon; peat-swamp forest with a depth of 10 m can store 12-19 times 

the amount of carbon as other tropical forest types (FRIM-UNDP/GEF 2006). Mean annual CO2 

emissions from decomposition of deforested and drained peatlands and associated fires in 

Southeast Asia are estimated at ~2,000 Mt y-1 (Hooijer, Silvius et al. 2006). However, there is 

annual variability in emissions, and emissions during El Niño phases of ENSO far exceed those 

from non-El Niño periods (van der Werf, Dempewolf et al. 2008). Over 90% of these peat 

emissions come from Indonesia, which has the largest amount of tropical peat carbon globally 

(Rieley, Ahmad-Shah et al. 1996, Page, Rieley et al. 2006, Page, Rieley et al. 2011). It is 

estimated that 0.81-2.57 Gt C were released from Indonesia's peatlands during the 1997/98 fire 

season alone due to peat and vegetation combustion (Page, Siegert et al. 2002). Fires in the 2015 

dry season were the most severe since 1997/98, but, at the time of writing, peer-reviewed 

estimates for land area burned and emissions are not yet published. Indonesia has become the 

world's fourth largest emitter of CO2, largely as a result of emissions from the 2015 fires, which 

have reached 1.62 billion tons of CO2 (Harris, Minnemeyer et al. 2015).  
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Peat fires in Southeast Asia, and Indonesia in particular, are consequently a major cause of smog 

and particulate air pollution (Hayasaka, Noguchi et al. 2014, Reddington, Yoshioka et al. 2014), 

with serious consequences for human health (Kunii 1999, Kunii, Kanagawa et al. 2002, Marlier, 

DeFries et al. 2012, Wooster, Perry et al. 2012) and local blocking of sunlight that can suppress 

plant photosynthesis (Davies and Unam 1999). In addition, peatland fires are responsible for 

forest habitat loss and degradation for flora and fauna, including those in marine systems (Yule 

2010, Posa, Wijedasa et al. 2011, Jaafar and Loh 2014). Fire suppression efforts, lost timber and 

crop resources, missed workdays, and travel disruptions incur high economic costs (Ruitenbeek 

1999, Barber and Schweithelm 2000, Tacconi 2003), and it is estimated that Indonesia lost 

US$20.1 billion during the 1997/98 fire season alone (Varma 2003). Both national and 

international policy has been implemented to attempt to reduce fire in Indonesia prior to the 2015 

fire season (e.g., ASEAN Agreement on Transboundary Haze Pollution, Singapore's 

Transboundary Haze Pollution Act, and Indonesia's national law (Act No 41/1999) banning 

corporations from using fire to clear land for palm-oil plantations), but with limited success. 

Given the variety and severity of the consequences of tropical peatland fires, particularly those in 

Indonesia, it is of global interest to understand this changing disturbance regime and reduce fire 

occurrence (Harrison, Page et al. 2009). 

 

Before large-scale anthropogenic land use change, the most common cause of ignition in tropical 

forests was natural, primarily lightning strikes (Baker and Bunyavejchewin 2009). Now, far 

more fires in the tropics are started by people than by natural sources (Stott 2000, Baker and 

Bunyavejchewin 2009). Ignitions in Indonesia, as in many parts of the tropics, are primarily of 
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anthropogenic origin (Bompard and Guizol 1999, Bowen, Bompard et al. 2000), resulting in 

either accidental or deliberate fires. The human contribution to changing fire regimes and our 

capacity to manage fire remains somewhat uncertain (Bowman, Balch et al. 2009, Bowman, 

Balch et al. 2011). Thus, a key component to understand changing fire regimes in the tropics is to 

identify the sources of fire ignitions and the land use / land cover (LULC) classes associated with 

fire ignitions. 

 

Who is responsible for ignitions in Indonesia is highly contested, and reports of the ignition 

sources are many and varied (Dennis, Mayer et al. 2005, Page, Hoscilo et al. 2009), often 

resulting in a chain of finger-pointing (e.g., Suyanto 2000). Although some large-holders do 

clear land mechanically, most land is cleared in Indonesia through use of fire (Stolle, Chomitz et 

al. 2003). Because fires set for clearing can 'escape' beyond their intended boundaries, both large 

and small holders have been held responsible (e.g., Stolle, Chomitz et al. 2003, Page, Hoscilo et 

al. 2009), as is often the case in rainforest fires more generally (Goldammer 1991). Burning to 

clear land has been the traditional practice of smallholders and indigenous groups, and there is 

some evidence that smallholders' use of fire has been historically relatively small-scale and well-

managed (Seavoy 1973, Dove 1985, Wibowo, Suharti et al. 1997, G√∂nner 1998, Nicolas 1998, 

Tomich, Fagi et al. 1998, Bowen, Bompard et al. 2000). However, this is likely not the case 

today. The scale of land cleared by fire has expanded with increased use of burning by both 

smallholders and larger-scale rubber and oil palm concessions (Brauer and Hisham-Hashim 

1998, Potter and Lee 1998, Stolle, Chomitz et al. 2003). Originally, the Indonesian government 

blamed smallholder shifting cultivators for fire, but later publically claimed that it was more 

likely larger-scale companies opening land on commercial plantations for palm oil, pulpwood, 
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and timber, some of which was promoted by government policies themselves (Brown 1998, 

Page, Hoscilo et al. 2009). There is evidence that high-impact fires often originate on plantations, 

logging concessions, and large land-clearing projects (Hoffmann, Hinrichs et al. 1999) and that 

wildfires escaping from oil palm concessions contribute to deforestation (Carlson, Curran et al. 

2012). However, much evidence still points to small- and mid-scale farmers outside of large 

concessions as the main contributors to fire. For example, although concessions do contribute 

substantially to emissions, particularly in peatlands and non-forested areas, the majority of 

emissions can be attributed to fires outside of concessions in both Sumatra and Kalimantan 

(Marlier, DeFries et al. 2015). Additionally, it is often complicated to attribute ignitions to agro-

industrial plantations or to local communities because communities can be given land to plant 

within concession boundaries (Gaveau, Salim et al. 2014). Furthermore, fire is used in social 

conflicts over forest conversion and land tenure, which may include fires started inside 

concessions by people from outside of the concession (Tomich, Fagi et al. 1998). However, the 

argument can also be made that large companies should be responsible for activities occurring 

within the boundaries of their concessions, especially considering the financial resources 

available to them to do so.  

 

Because many studies using satellite data to evaluate fire consider individual fire detections at 

the 1 km2 resolution (e.g., Langner and Siegert 2009) and not individual fire events (i.e., a fire 

with a common ignition source, which may consist of multiple fire detections), it is often 

difficult to pinpoint the LULC classes on which ignitions occur rather than the LULC classes 

associated with fire or that are predisposed to burning. This issue complicates efforts to 

determine who should be blamed for fires and the associated pollution and damage, particularly 
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if fires quickly escape a LULC boundary and burn into another LULC class. In this study, for 

what we believe to be the first time, we disentangle fire detections from individual fire ignitions 

to discern the origin of fires in a peat-swamp forest landscape in Central Kalimantan, Indonesia. 

We focus on ignition sources in this study area because of the global importance of peatland 

areas in Indonesia and the consequences of peatland fires.  

 

In so doing, we assess the oft-asserted claim that escaped fires from oil palm concessions and 

from smallholder farms near settlements are the primary sources of fire, through addressing the 

following questions:  

1) In which LULC classes do fires, in particular the longest and hottest fires, originate and 

to which LULC classes do they spread?  

2) What proportion of fires, in particular the longest and hottest fires, escape from oil palm 

concessions and settlements into other surrounding LULC classes?   

3) Do fire ignitions occur disproportionately in proximity to oil palm concessions and 

settlements?  Are these fires longer in duration or hotter than fires occurring away from 

oil palm concessions and settlements?  

 

MATERIALS AND METHODS 

Study Site 

We analyze fire ignitions in an area of lowland tropical peat-swamp forest in Central 

Kalimantan, Indonesia (Fig. 1). The study area consists of the Sabangau-Katingan Forest and the 

recently degraded failed agricultural project called the Mega Rice Project (MRP), representing a 

combined total of ~2.5 Mha of the total 6.8 Mha of lowland peatland in Kalimantan. The 
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630,000 ha Sabangau-Katingan Forest consists of the now-protected Natural Laboratory of Peat 

Swamp Forest and the Sebangau National Park. It has been previously subjected to both 

concession and illegal logging throughout, and as a consequence of the latter is criss-crossed by 

small illegal logging timber extraction canals, on many of which canal damming initiatives are 

currently underway. Some parts of the forest have suffered fire damage. Currently, the area is not 

open for human use apart from some small-scale activities, but enforcement capability is limited. 

There are several villages located along the Katingan and Sabangau Rivers.  

 

The MRP is a failed and abandoned agricultural conversion project that was initiated in 1995 and 

aimed to convert 1 Mha of peat-swamp forest into rice plantations. Much of the area’s forest was 

cleared and wide, deep irrigation canals totaling over 4,000 km in length have resulted in 

extreme drainage and subsequent fire susceptibility. The MRP has burned regularly since 1997, 

particularly during the dry seasons in El Niño phases, and it now contains patchy forest remnants 

surrounded by degraded fire-prone peat swamp. In 2000, less than half of the original peat-

swamp forest remained in the MRP (Boehm and Siegert 2001), and fire has been identified as a 

primary factor of forest cover loss in the area (Hoscilo, Page et al. 2011). Currently, tens of 

thousands of families live along the Kahayan, Kapuas, and Barito Rivers that border the area. 

Many of these people rely upon forest resource extraction for their livelihoods, some in 

combination with smallholdings. There are no wood fiber, rubber, or logging concessions in the 

study area, but there are several oil palm concessions located throughout the MRP and on the 

southeastern edge of the Sabangau basin. There are still several large transmigration settlements 

in the study area, many of which are located adjacent to the oil palm concessions. 
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It is estimated that the carbon store of the MRP and the Sabangau Forest was 2.82-5.40 Gt C 

before the most destructive fire season in 1997-98, and that emissions totaling 0.19-0.23 Gt C 

from the peat and 0.05 Gt C from aboveground biomass occurred during this period (Page, 

Siegert et al. 2002). The Sabangau Forest is home to the largest remaining population of Bornean 

orangutans (Wich, Meijaard et al. 2008) and southern Bornean gibbons (Cheyne, Thompson et 

al. 2008), and the adjacent portion of the Mega Rice Project also hosts a substantial population of 

Bornean orangutans (Cattau, Husson et al. 2014). As is typical for the region, more fires occur in 

the study area during the dry season and particularly El Niño phases (Fig. 2). 

 

Data 

Fire detections at the 1 km2 resolution across the study area from 2000-2010 are obtained from 

the Moderate Resolution Imaging Spectroradiometer (MODIS) Active Fire Detections, extracted 

from MCD14ML and distributed by NASA FIRMS. The MODIS Active Fire Product includes, 

for each fire detected by either the Terra or Aqua MODIS sensor, the location of the center of the 

1 km2 pixel in which the fire was detected, the date and time of detection, the Fire Radiative 

Power (FRP, a measure of fire heat output), and the detection confidence. MODIS hotspots are 

considered the most accurate and complete among alternative methods for detecting fires 

(Langner and Siegert 2009) and correlations  between the number of MODIS hotspots and the 

area burned on the ground is reasonably high, especially in peatlands (R2 = 0.75 in Tansey, 

Beston et al. 2008). However, MODIS can miss fires that spread quickly or that are extremely 

short-burning, as the sensor passes only one or twice a day, and it can also miss ground fires in 

dense canopy if they do not produce sufficient heat (Ballhorn, Siegert et al. 2009, Langner and 

Siegert 2009). We therefore focus here on persistent fires, which are more likely to be detected 
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as they emit heat during at least one satellite pass. Additionally, fires in peat are generally 

characterized by smoldering combustion, for which the rate of spread is quite slow, thus 

increasing their chances of detection over a multi-day period (Rollins, Cohen et al. 1993, Wan 

Ahmad 2001, Rein 2013, Turetsky, Benscoter et al. 2015). However, smoke from fires can 

prevent their detection, and it is possible that we also miss ground fires under dense canopy, thus 

underestimating the number of fires in forest, or peat fires that smolder underground before 

resurfacing. In Kalimantan and Sumatra, the omission rate for MODIS active fire detections has 

been estimated from 34-60%, depending upon the LULC class (Liew, C. et al. 2003, Miettinen, 

Andreas et al. 2007, Tansey, Beston et al. 2008).  

 

We create a LULC layer at the annual temporal resolution consisting of oil palm concessions, 

forest, and non-forest classes. Oil palm concession boundaries according to the Indonesian 

Ministry of Forestry are obtained from the Global Forest Watch portal (WRI 2014). Oil palm 

plantations almost certainly exist outside of these official concession boundaries, particularly 

small-scale plantations or plantations immediately adjacent to concessions, but these have not 

been mapped and so we focus on legal concessions in this analysis. According to these data, 

there are no wood fiber, rubber, or logging concessions in the study area. The forest and non-

forest classes are based upon tree cover derived from the MODIS Vegetation Continuous Fields 

(VCF) Collection 5 product, which contains proportional estimates of woody vegetation at the 

250 m2 resolution (DiMiceli, Carroll et al. 2011). VCF is aggregated to the 1 km2 resolution, and 

a forest binary layer is created by thresholding VCF at 55 percent woody vegetation to designate 

tree cover. This classification is based upon the range of VCF values of areas known to be tree 

cover in the study area. Classification accuracy of the forest binary layer is assessed using GPS 
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points collected in the field in forest (50 points) and non-forest (50 points) in 2009, and accuracy 

is over 95%. Because this classification is based on woody vegetation, it is possible that the 

forest class also includes some mature illegal plantations, particularly if trees are present. We use 

a relatively coarse non-forest class because degraded LULC classes can be highly spectrally 

variable and LULC verification points are not available for all possible degraded LULC classes. 

This non-forest class includes a relatively heterogeneous mixture of non-forest LULC classes, 

including fern-dominated, shrub/bushland, bare peat, and possibly even young plantations and 

some highly degraded forest. We assign non-forest conservatively to reduce classification error. 

Furthermore, land use policy for degraded areas in Indonesia is targeted at non-forest broadly 

(e.g., national policy to develop oil palm plantations on degraded land rather than primary forest 

or peatland) and more precise definitions of 'degraded land' vary between the relevant 

government institutions (e.g., Ministry of Environment and Forestry, Ministry of Agriculture, 

Land Agency). Finally, settlement locations, or points indicating the center of major villages and 

cities, are used to calculate distance from settlement across the study area.  

 

Analysis 

Data analysis covers the period from 2000-2010. We group multiple fire detections into single 

fire events, identify high-impact fires based upon fire duration and heat, and trace the LULC 

class on which that ignition occurs and to which that fire spreads. We also evaluate if increased 

anthropogenic activity in close proximity to oil palm concessions and settlements results in a 

detectable pattern of fire activity. Data processing is conducted in ArcGIS (ESRI 2011) and the 

R programming environment (Team 2012), and statistical analyses are conducted in R.  
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Grouping fire detections into single fire events and identifying high-impact fire events 

The MODIS Active Fire Product indicates the presence of a fire within a 1 km2 area, but not the 

exact location or size of a particular fire (Langner, Miettinen et al. 2007, Miettinen, Andreas et 

al. 2007, Langner and Siegert 2009). Thus, it is challenging to determine if proximal fire 

detections are spatially contiguous or if they represent isolated fires. We assign all fire detections 

to a particular fire event using two methods (Fig. 3). In the more conservative single-pixel 

technique, fire detections that occur within a given pixel are assigned to the same fire and fire 

detections in neighboring pixels are not included. Thus, fires are restricted to a 1km2 area, and 

fires are not allowed to spread beyond their pixel of origin. In the neighborhood-pixel technique, 

fire detections that occur within a given pixel or the eight adjacent pixels (3 x 3 window) are 

assigned to the same fire using hierarchical clustering with the 'dplyr' package in R (Wickham 

and Francois 2014). Fires are not confined to one 3 x 3 window; they are allowed to spread 

provided there is a fire detection in a pixel adjacent to any pixel already within a given fire.  

 

Because the MODIS Active Fire Product has a relatively high and variable rate of omission, we 

allow for fire detections that do not occur on consecutive days to be considered the same fire, to 

account for missed detections or subterranean fires that resurface. We use a variety of temporal 

thresholds (1, 2, 4, 6, 8, 10, 12, and 14 days) to define the temporal window in which fire 

detections are considered to originate from the same ignition event. We run all further analyses 

using the various temporal thresholds to designate fires. Thus, we use a relatively conservative 

four-day fire detection temporal threshold for all figures and tables in the remainder of the 

manuscript; this threshold is sufficiently high to account for the 60% upper omission rate for 

MODIS active fire detections and also the possibility of subsurface fires. Lower thresholds are 
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even more conservative in terms of fire spread. We include results using the full range of 

temporal thresholds in Supporting Information.  

 

Fires with a duration (determined by the difference in days between the earliest and latest fire 

detection date in each fire) and/or maximum heat (determined by the fire detection with the 

highest fire radiative power (FRP) in each fire) within the top decile of fires are considered 

"high-impact". This distinction is made because these factors affect the fires' potential 

environmental damage - for example, burning the seed bank in the soil (Van Nieuwstadt, Sheil et 

al. 2001). Additionally, the fire detections with high-FRP and the long-duration fires tend to have 

consistently average to high detection confidence (Fig. S1 in Supporting Information). We 

isolate the 'high-impact' fires for fires identified using both the single- and neighborhood-pixel 

techniques.  

 

We evaluate the agreement between fire events identified with our model and finer spatial 

resolution data. We acquire Normalized Burn Ratio (NBR) data at the 30 m resolution based on 

surface reflectance generated by the Landsat Ecosystem Disturbance Adaptive Processing 

System (LEDAPS) for every Landsat 5 TM and Landsat 7 ETM+ scene (WRS 2 Path 118 row 

62, covering 83.5% of the study region) with less than 10% cloud cover available from 2000-

2010 from USGS Earth Resources Observation and Science (EROS) Center Science Processing 

Architecture (ESPA) On Demand Interface. For any two images fewer than 90 days apart, we 

calculate the differenced NBR (dNBR), for a total of 4 scene-pairs consisting of 6 scenes. We do 

not include image pairs with longer periods in between acquisition dates in order to avoid the 

confounding effects of seasonal changes. We create a binary burned - unburned raster by 

thresholding dNBR layers at 1500, based on on-the-ground knowledge of the study area and 
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visual inspection of burn scars seen in composite images of surface reflectance in the green, near 

infrared, and short-wave infrared parts of the spectrum (i.e., Landsat 5 TM and Landsat 7 ETM+ 

bands 2, 4, and 7), and also include results from using thresholds of 1000 and 2000 (Fig. S3 in 

Supporting Information). Because thresholding dNBR excludes areas that burn between the 

acquisition dates of the two scenes if that area is also burned in the first scene, we also include 

areas that were burned in the first scene (NBR is 2000 or lower). To compute a pixel-based error 

matrix (Table S2 in Supporting Information), we sample our MODIS-derived fire layer and the 

Landsat-derived fire layer at approximately 2,000 random points stratified by burn status as 

predicted by our algorithm. We also evaluate the polygon-based output of our algorithm by 

calculating the percent of the burned area predicted by our MODIS-derived fire layer that is 

predicted as burned by the Landsat-derived fire layer (Table S3 in Supporting Information). 

 

In which LULC classes do fires originate and to which LULC classes do they spread? 

We consider the earliest fire detection in each fire event to be the ignition for that fire event.  In 

some cases, fire events can have multiple ignitions if there are multiple fire detections with the 

same time stamp associated with that fire (Fig. 4). On the other hand, if the fire event consists of 

only one detection, ignition and detection are the same. We calculate the percentage of fire 

ignitions located on the different LULC categories, plus the percentage of fire ignitions in close 

proximity to settlements (within 1, 2, 3, 4, and 5 km, which could include oil palm concessions, 

forest, or non-forest).  Analyses of fire spread between LULC classes are restricted to fires 

identified using the neighborhood-pixel technique, as fires using the single-pixel technique were 

restricted to one pixel and, thus, cannot indicate fire spread. For each fire detection, we identify 

the LULC class in which the fire originates (i.e., the location of the earliest fire detection in the 

fire detection cluster) and calculate how many fire detections are associated with fires whose 
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ignitions are located on the different LULC categories. We determine the density of ignitions per 

LULC class by dividing the number of ignitions in each LULC class by the area of that LULC 

class in the entire study region for each year and taking the mean. 

 

What proportion of fires escape from oil palm concessions and settlements into other 

surrounding LULC classes?   

We identify fires that escape from oil palm concessions by isolating fires that start within oil 

palm concessions and burn outside the concession boundaries at some point during the burn (i.e., 

have at least one fire detection outside of the concession boundaries). Similarly, we identify fires 

that escape from settlements by isolating fires that start near settlements (we use a 5km 

threshold, following Stolle, Chomitz et al. 2003) and burn outside that boundary at some point 

during the burn. We determine if the mean duration in days and mean maximum FRP of these 

escaped fires are significantly different from all other fires in the study area using Welch's t-tests. 

We also test whether the difference is significant for all other fires that start on the same LULC 

class but are not escaped.  

 

Do fire ignitions occur disproportionately in proximity to oil palm concessions and settlements? 

To analyze the influence of increased anthropogenic activity around settlements and outside of 

oil palm concessions on fire activity, we evaluate if the number of ignitions and the severity of 

fires (i.e., fire duration or the maximum FRP) varies as a function of the fire ignitions' distance 

from oil palm concessions or from settlements. After assessing exploratory plots, we fit models 

of the number of fire ignitions as a function of distance from oil palm concessions and from 

settlements using the MASS package in R (Venables and Ripley 2002). Because we find no 
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relationship between distance from oil palm concession and distance from settlement (e.g., most 

settlements are not necessarily found only within close distances to oil palm concessions), these 

factors are evaluated separately. We fit exponential regression models for distance from oil palm 

concessions (binned into 50m increments) because we expect anthropogenic ignitions to be 

highest near concession borders (due to expansion of the concession itself, clearing for 

smallholder plots, or accidental fires where workers are regularly frequenting) and then decrease 

as distance from concession increases (due to increased cost of travel from the concession). We 

fit a Ricker function of the form y~ax exp (-bx), where y is the number of ignitions and x is the 

distance from settlements binned into 50m increments, and estimate the parameters a and b using 

the 'nls' package in R. We select a Ricker model, which has been commonly used to model 

density-dependent population growth, because we expect the number of ignitions to start at zero 

due to an aversion to burn very close to the village, increase to a peak, and then decrease back to 

zero as the cost of travelling from the settlement increases with distance. This function allows us 

to estimate 1/ b, or the distance from settlements at which ignitions peak. We also evaluate the 

relationship between both fire duration and maximum FRP with distance from both oil palm 

concessions and settlements after examining exploratory plots. We apply linear, second order 

polynomial, third order polynomial, forth order polynomial, and exponential regressions. We use 

fires detected using both the single-pixel and neighborhood techniques, using all fires and all 

high-impact fires. 

 

RESULTS 

Grouping fire detections into single fire events and identifying high-impact fire events 



	 59	

For fires identified using the single-pixel and neighborhood detection techniques, mean fire 

duration is 1.6 (± 1.6) days and 2.1 (±3.3) days, respectively, and mean maximum FRP is 45.7 

(±65.0) MWth and 43.8 (±79.6) MWth, respectively. For both detection techniques, ~80% of fires 

burn for just one day (Fig. 5) The lower bound of high-impact fires, or the threshold above which 

a fire is considered high-impact, is 3 days or 95.1 MWth using the single-pixel technique, and 4 

days or 87.0 MWth using the neighborhood-pixel technique, resulting in 19% and 18% of the 

fires being classified as 'high-impact,' respectively. See Fig. S2 and Table S1 in Supporting 

Information for characteristics of fires identified across the range of temporal thresholds. Overall 

pixel-based accuracy of fires identified by our algorithm is 73 (±3)% (see Table S2 in Supporting 

Information for overall accuracy of fires identified by our algorithm broken down by each time 

period, as well as producer's and user's accuracy for burned and unburned land cover classes 

broken down by each time period). Polygon-based comparisons show that 34 (±4)% of the total 

area of fires identified by our algorithm is also identified as burned by Landsat-derived dNBR 

thresholded at 1500 (see Table S3 in Supporting Information for percent broken down by each 

time period). 

 

In which LULC classes do fires originate and to which LULC classes do they spread? 

Fires ignited in non-forest areas have the biggest impact on the landscape. By far the majority of 

ignitions occur in non-forest (Table 1; Table S4 in Supporting Information). The same pattern is 

found for 'high-impact' fires, and results are consistent when using both the single- and 

neighborhood-pixel detection techniques and across the temporal thresholds chosen to identify 

fires. When we evaluate fire spread between and among LULC classes, we find that the majority 

of fire detections are associated with fires that start on non-forest (Fig. 7; Fig. S4 in Supporting 
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Information). Fires that start on non-forest are also the primary ignition source for fires that burn 

non-forest itself and for fires that burn forest (Table 2 and Fig. 7; Table S5 and Fig. S4 in 

Supporting Information).  

 

Fires that begin on oil palm concessions constitute approximately 20% of all fires and 20% of 

high-impact fires (Table 1; Table S4 in Supporting Information). Fire detections from fires 

started on oil palm constitute 18% of all detections and 16-18% of detections associated with 

high-impact fires (Fig. 7; Fig. S4 in Supporting Information). Most fires that burn oil palm 

concessions are started on the concessions. Fires that begin on oil palm concessions, however, 

are not the main source of ignition for fires on any other LULC class. The fewest fires originate 

in forest (Table 1; Table S4 in Supporting Information). Fire detections from fires starting on 

forest constitute 7-13% of all detections and 7-12% of detections associated with high-impact 

fires (Fig. 7; Fig. S4 in Supporting Information). The number of fires that are started close to 

settlements, which could occur on oil palm concessions, non-forest, or forest, are low in 

comparison (6-9%). A very low percentage of fires and high-impact fires are ignited close to 

settlements (Table 1; Table S4 in Supporting Information).  

 

Non-forest has the highest density of ignitions followed by oil palm concessions, and these 

LULC classes have an identical density of ignitions for high-impact fires (Table 1 and Fig. 6; 

Table S4 in Supporting Information). For both all fires and high-impact fires, this is about ten 

times the density of ignitions in forest. The density of ignitions near settlements is just over twice 

that of non-forest and oil palm for all fires, and approximately 1.5 times that of non-forest and oil 

palm for high-impact fires. This density is higher than can be explained by LULC near the 
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settlements alone. So, the density of fires near human settlements is high, but the overall 

contribution of fires near settlements is low. 

 

What proportion of fires escape from oil palm concessions and settlements into other 

surrounding LULC classes?   

Most fires that are started within oil palm concessions stay on the concession, and most fires that 

are started near settlements stay near settlements (Table 3; Table S6 and Table S7 in Supporting 

Information). However, high-impact fires that begin on oil palm concession and near settlements 

are more likely to escape than non-high impact fires. Although some fires, and particularly high-

impact fires, do escape from oil palm concessions and from settlements, they constitute only a 

small percent of total fires in the study area. Furthermore, these escaped fires do not serve as a 

notable ignition source for forest fires; a low percentage of forest fires are associated with fires 

that were ignited in oil palm concessions or close to settlements (Table 2; Table S5 in Supporting 

Information). However, fires that escape from oil palm concessions or from settlements are 

higher impact than other fires, and have both a longer mean duration and a higher mean 

maximum FRP than both other fires that start in oil palm concessions or near settlements but do 

not escape and all other fires in the landscape (Table 4; Table S8 in Supporting Information). 

 

Do fire ignitions occur disproportionately in proximity to oil palm concessions and settlements? 

Using both the single-pixel and neighborhood techniques, the number of ignitions of all fires and 

high-impact fires decreases exponentially with increasing distance from oil palm concessions, 

but fire duration and heat do not have a clear relationship with distance from oil palm 

concessions (Fig. 8; Fig. S5 in Supporting Information). Although regressions between both fire 
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duration and maximum FRP with distance from oil palm concessions are significant, they 

explain less than 1% of the variation in the duration of fires and the maximum FRP of fires 

identified using both the single-pixel and neighborhood techniques. 

 

When we explore the relationship between the number of ignitions and distance from 

settlements, we find that the Ricker model fits the data well, including at the extremes, and that 

the number of ignitions increases farther from settlements, peaks, and then decreases (Fig. 8; Fig. 

S6 in Supporting Information). Fire duration and maximum heat do not follow this trend. The 

distance from settlements at which the number of ignitions is at its maximum is 7.2 km (±0.2). 

Again, although regressions between fire severity and distance from settlements are significant, 

they explain very little of the variation in the duration of fires and the maximum FRP of fires. 

 

DISCUSSION 

Our results provide only limited support to the claim that fires occurring on or escaping from oil 

palm concessions and settlements are major contributors to fire in this study region during our 

study period. The vast majority of ignitions occurs in non-forested areas, a relatively 

heterogeneous mixture that includes fern-dominated, shrub/bushland, bare peat, plantations 

including very young oil palm (outside legal concession boundaries), and degraded forest. A 

relatively low but still substantial percentage of ignitions occur on oil palm concessions, and 

very few ignitions occur in close proximity to settlements. The majority of fires started within 

concessions or near settlements are confined to those boundaries, and a very low percentage of 

fires on the landscape are escaped fires from oil palm concessions or settlements into other 

LULC classes.  
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While there is potential for oil palm concessions from converted degraded land to reduce fire 

prevalence on the landscape if ignitions on oil palm concessions can be reduced relative to 

degraded areas, this is not currently the case; ignition density in oil palm was on par with that in 

degraded areas, both of which were substantially higher than in forests. Although fires that have 

escaped from oil palm currently constitute a small percentage of fires in the study area relative to 

fires on degraded non-forest areas, our findings nevertheless support concerns about the 

contribution of the oil palm industry to emissions and hazardous smog in the region (e.g., Stuart 

2012, Marlier, DeFries et al. 2015). Furthermore, our results likely underestimate the number of 

ignitions attributable to oil palm companies and overestimate the contribution from other LULC 

classes, as our oil palm category includes only those plantations found within the reported 

boundaries of legal oil palm concessions.  

 

Our findings that there is a detectable pattern in the number of fire ignitions as a function of 

distance from oil palm concessions and settlements suggest that these LULC classes influence 

the fire regime through increased anthropogenic activity around them, plus escaped fires from 

these LULC classes. The extent to which these ignitions will result in high-impact fires depends 

upon both the flammability of the landscape and the capacity for management interventions (e.g., 

Uriarte, Pinedo-Vasquez et al. 2012). If the peat is relatively undrained and inundated close to 

the surface, the forest is intact, and fire-fighting resources are available, an ignition is much less 

likely to turn into a high-impact fire than if the land is degraded from canal development and 

unmanaged. We find that increased anthropogenic activity around oil palm concessions and 

settlements increases the number of high-impact fires, indicating that fire reduction efforts are 

needed in these areas through both capacity building and awareness raising to increase the 
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success of management interventions, establishment of effective fire-fighting teams, plus 

landscape restoration to reduce the predisposition of the landscape to burning. Additionally, 

because the density of ignitions in oil palm is nine times that in forest, and the density of 

ignitions within 5km of settlements is over twenty times that in forest, it is clear that 

anthropogenic activity within oil palm concessions and settlements has the potential to contribute 

substantially to the fire landscape if these land use types continue to expand, and peat and fire 

management practices do not improve, particularly if fragmentation and/or climate change leave 

the landscape more predisposed to burning. Furthermore, these fires are not only well-managed 

fires that burn low-heat for a short period of time; the density of ignitions of high-impact fires in 

concessions and near settlements are 10 and 15 times that in forest, respectively. 

 

Our results support previous research that most fires occur in non-forest or degraded areas 

(including oil palm in Miettinen, Andreas et al. 2007, Gaveau, Salim et al. 2014) and that 

emissions from fire are associated with highly degraded areas (Marlier, DeFries et al. 2015), by 

showing both that the majority of fires are ignited in non-forest and highlighting that fires 

actually start in non-forest rather than merely just occur in non-forest (with the possibility that 

ignition started there or elsewhere). Management to reduce ignitions in degraded non-forest 

areas, in addition to reducing the probability of continued burning when ignitions do occur, will 

be pivotal in reducing fire across the landscape. This strategy is also key to preventing forest 

fires and the associated loss of habitat, as we found that the majority of forest fires start in non-

forest. Achieving this goal among numerous smallholders is likely to prove even more difficult 

than reducing fire ignition and burning in oil palm concessions, however, as the latter have much 

greater capacity to implement consistent management policies over large areas and provide 
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necessary management resources, and are under higher pressure to do so. There are some 

existing village-level fire teams (Regu Pemadam Kebakaran = RPK) and community groups for 

fire management (Kelompok Masyarakat Pengendali Kebakaran = KMPK1) operating in 

degraded, non-forest areas, but these groups are small-scale and under-funded. It is also easier to 

identify actors of illegal burning within concessions and bring prosecutions against a single 

concession holder, compared to numerous smallholders operating illegally in areas with ill-

defined land ownership. This approach is likely to be even more challenging in very remote areas 

that are not being frequented or cultivated by smallholders, as much of this land is discarded 

wasteland. In these areas, regeneration efforts, including reforestation and hydrological 

restoration, will be key for fire reduction on the landscape. In making this recommendation, we 

recognize that some previous projects focusing on restoration in this area appear to have failed 

due to a combination of insufficient or inconsistent funding, land tenure concerns, 

misinformation between project organizers and local people, etc. (e.g., Atmadja, Indriatmoko et 

al. 2014). However, there are currently active restoration efforts on the ground. Based on our 

field experience, these efforts, much like the local fire teams, are effective but small-scale and 

underfunded. Indonesia has recently established a Peatland Restoration Agency with the goal of 

preventing peatland fires and restoring about 2 million ha of fire-damaged peatland across the 

nation. Although specific spatially-explicit targets areas have not yet been identified, this agency 

could make peatland restoration more feasible by providing funding and capacity beyond that 

which is currently available in the region.  

 

The low percentage of and density of ignitions in forest are consistent with the thesis that mature 

forest has low flammability due to lower levels of peat drainage, increased moisture conditions 
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within a closed canopy and decreased anthropogenic activity (e.g., Langner, Miettinen et al. 

2007). One limitation to our methods is that it is possible that small, low-heat fires, particularly 

those burning under a forest canopy, were missed from detection by MODIS. Thus, we may have 

underestimated the number of fire ignitions that occur in forest, but notwithstanding the fact that 

they are in forests, these small, low-heat fires are likely of lower importance in terms of 

ecological impact. On the other hand, because the forest class may include mature illegal 

plantations in addition to mature forest, some of the fire ignitions that we attribute to forest will 

actually have occurred on mature illegal plantations. In the case of tree plantations, low fire 

occurrence is likely related to more careful management to minimize the risk of damage to 

valuable mature crop resources. 

 

While we cannot definitively identify the exact source or location of fire ignitions without 

extensive fieldwork on the ground, including fire forensics (e.g., fire-scene investigations or fire 

path reconstructions), this was beyond the scope of this study. Because we are assessing trends in 

fire activity over a large area of inaccessible terrain in which there are potential legal 

repercussions for igniting fire, fire activity detected empirically through satellite data provides a 

more comprehensive and unbiased picture than through interviews or empirical observations on 

the ground. Furthermore, the results of our analysis were not sensitive to the temporal threshold 

chosen to cluster fire detections into fires, showing that missed detections due to subsurface fires 

or smoke do not affect the trends in our results. When we compare the output of our algorithm 

with burned area products derived from satellite data with a finer spatial scale (Landsat dNBR), 

the overall accuracy of 73(±3)% is reasonably high. However, because only 34 (±4)% of the total 

area of fires identified by our algorithm is also identified as burned by Landsat-derived dNBR, 
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we are overestimating fires compared with the Landsat-derived dNBR data, meaning that we 

may overestimate fire spread. However, how long it takes post-fire regrowth to mask a fire scar 

from detection by Landsat in this study area is unknown and likely variable, and the Landsat 

scenes we use for validation are 32-80 days apart; thus, our algorithm, which uses data with a 

finer temporal resolution, may detect fires that the Landsat-derived dNBR data does not. 

 

While it may be possible to pinpoint ignitions locations reasonably reliably with the methods that 

we developed, we do not recommend that these methods be used to assign responsibility to 

specific land owners or other actors for fire occurrence. Additionally, the underlying causes of 

fire can be both complex and site-specific (Bowen, Bompard et al. 2000, Applegate, 

Chokkalingam et al. 2001, Dennis, Mayer et al. 2005), and so management and policy actions 

need to take into account the diverse needs of all stakeholders. Important and complementary 

information that we cannot deduce through satellite data could be ascertained through interviews 

(e.g., motivations for lighting fires, willingness or ability to adapt alternative land clearing 

strategies, etc.). Institutional issues are also relevant to this conversation, as national and regional 

policies affect land use zoning (Stolle, Chomitz et al. 2003), and how these policies are 

implemented affects the behavior of stakeholders (e.g., communities and government agencies) 

on the ground. For example, when the customary laws under the marga system, which gave 

rights to forest resources to local communities, were replaced with current forest laws, local 

communities were left feeling marginalized, with little incentive to engage in fire-fighting efforts 

outside the boundaries of their plots (Bompard and Guizol 1999). Recent law changes are now 

giving more forest rights back to communities, but there is concern that this too will lead to more 

forest destruction (Handadhari 2015). 
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There has been an Indonesian national law banning corporations from using fire to clear land for 

palm-oil plantations since 1999 (Act No 41/1999), but it is unclear if the Indonesian government 

has the capacity to monitor or enforce burning bans or other fire reduction efforts, particularly 

since decentralization. In 2006, the provincial government in Central Kalimantan banned 

households and community plantations from using fire to clear land (Someshwar, Boer et al. 

2010). After much resistance from local communities, the ban was softened in 2008 to 

incorporate seasonal forecasts informed by the Seasonal Fire Early Warning Tool developed by 

an international partnership (Wong, Marshall et al. 2010); farmers are allowed to burn if climatic 

conditions indicate low fire risk. However, adherence to the ban in high-risk years would likely 

be low if local people were to feel that they had no choice but to burn to clear land or were 

unaware of official designated fire risk. Furthermore, the capacity to enforce the ban is limited, 

particularly in remote areas. Community outreach activities that not only inform local people 

about the importance of alternative land management strategies but enable them to adopt those 

strategies will be pivotal in restoration and fire prevention efforts on this degraded landscape 

(Page, Hoscillo et al. 2009). The ASEAN Agreement on Transboundary Haze Pollution sets the 

groundwork for international cooperation in fire monitoring and prevention, calls for national 

efforts, and also resulted in the development of a joint monitoring system. However, haze 

problems in the region have persisted since the Agreement came into effect in 2003. 

Additionally, Singapore enacted a Transboundary Haze Pollution Act in 2014, which places 

criminal and civil liability for haze pollution that reaches Singapore on the responsible agri-

business entities.  Responses to the recent fire crisis in the region will reveal how effective 

transboundary, national, and sub-national policy initiatives are in reducing fire in Indonesia. As 
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of yet, efforts do not appear promising, as the haze problem continues to worsen and efforts on 

the ground have been largely inadequate despite the serious economic and health consequences 

of these fires. 

 

Fire regimes are dictated by ignition source, the conduciveness of meteorological conditions for 

burning, and fuel availability (Stolle, Chomitz et al. 2003). Thus, while ignition is a key 

component to the fire regime because it is necessary for either an open or a smoldering self-

sustaining fire, ignition per se does not necessarily lead to fire; there must also be sufficient fuel 

loads, appropriate air temperature and moisture, etc. We focus on ignitions themselves, following 

the recommendations of (Vayda 2006) who makes a call for a distinction between research 

approaches addressing factors responsible for ignition versus fire occurrence. However, 

understanding the factors that predispose the landscape to burning is also critical to 

understanding the fire regime, including altered hydrology from drainage canals for agricultural 

development, logging history and other vegetation changes, climate change, and fire history 

itself, all of which can alter the probability of fire occurrence and spread. Certainly more 

research is needed on the relative influence of various biophysical and anthropogenic factors on 

increasing fire probability. Because ignition will not turn into a fire if there are sufficient 

biophysical or spatial controls, management or policy interventions focused on ignitions should 

be focused on reducing the prevalence of conditions under which fires can and do result (i.e., 

where ignitions could potentially lead to fire because they are not constrained biophysically), in 

addition to behavior change leading to reduced ignitions. Additionally, promoting less-

flammable LULC classes that may help buffer ignitions could also reduce fire on the landscape 
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(e.g., allowing degraded or logged-over forest to recover or even actively restoring it rather than 

allocating it for conversion).  

 

Conclusions 

Fires in Indonesia have consequences from the local to global scale, including burning forest that 

is home to endemic and endangered flora and fauna, emitting haze that compromises human 

health and impacts economies across the region, and converting peatlands from a major carbon 

sink to a major source of CO2. Identifying the sources of fire ignitions and LULC classes 

associated with fire ignitions is a key factor for reducing fire on this landscape, as this will allow 

us to more pointedly target management and policy interventions. Results of this research, which 

uses remotely sensed data and modeling to analyze ignition sources and fire spread in tropical 

peat-swamp forest in Central Kalimantan from 2000-2010, indicate that most fires (68-71%) 

originate in non-forest areas, and refute the claim that fires occurring on or escaping from oil 

palm concessions and settlements constitute the major proportion of fires in this study region 

during 2000-2010. We find that only 17%-19% of fires are ignited on oil palm concessions, and 

that most fires that start on oil palm concessions stay on the concession (90%), with the 

relatively few escaped fires from concessions constituting a very low percentage of fires on the 

landscape (2%). Similarly, few fires start within 5km of settlements (6-9%), most stay within 

those boundaries (88%), and fires escaping from settlements constitute only 1% of fires on the 

landscape. However, we do find a detectable pattern of fire ignitions around oil palm concessions 

and settlements, and a high density of ignitions within them (0.055 ignitions km-2 and 0.125 

ignitions km-2, respectively), suggesting that increased anthropogenic activity around these land 

use classes contributes to fire activity, and that the expansion of settlements or concession areas 
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could substantially increase fire on the landscape, if peat and fire management is not improved. 

Effective fire management should therefore target not just oil palm concessions or areas around 

settlements, but should also focus strongly on non-forested, degraded areas –and in particular 

those near oil palm concession boundaries and outside the immediate vicinity of settlements – 

where ignitions are most likely to occur. Addressing these issues within degraded, unmanaged, 

or illegally planted non-forest areas is likely to prove even more challenging than addressing 

them within oil palm concessions. 
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TABLES AND FIGURES  

 

Figure 1. The study area: lowland peat-swamp forest in Central Kalimantan, Indonesia, 

consisting of the failed Mega Rice Project (pink borders; letters indicate administrative zones) 

and the adjacent Sabangau Forest (yellow border), including the percent woody vegetation, legal 

oil palm concession boundaries, and major villages and settlement locations. Inset: Location 

within Indonesia. 
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a.   

b.  

Figure 2. Temporal pattern of fire in the study area 2000-2010: the number of MODIS fire 

detections per year and per month within the study area. Fire activity peaks during a. El Niño 

phases (2002, 2004, 2006, and 2009) and b. during the dry season months (August-October). 

Data source described below in Data. 
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Figure 3. An example of the methodology for identifying individual fire events from fire 

detections using (a) the single-pixel technique and (b) the neighborhood-pixel technique. Using 

the single-pixel technique, fire detections within a given temporal threshold and within the same 

pixel are assigned to the same fire (designated by the same number). Using the neighborhood-

pixel technique, fire detections within a given temporal threshold and within the same and 

adjacent pixels are assigned to the same fire. In this example, all fire detections are all within the 

temporal threshold. 
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Figure 4. Two examples of individual fires in the study area identified by clustering MODIS fire 

detections together based on spatial and temporal rules. One fire (left) starts in non-forest and 

spreads into both forest and oil palm concession. Another (right) starts from several ignition 

points near the boundary of oil palm concession and non-forest and spreads further into each of 

these LULC classes. 
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Figure 5. Distribution of fire duration and FRP for all fires in the study area identified using the 

neighborhood-pixel technique 
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Table 1. The percent of all fire ignitions that are located in each land use / land cover class for 

fires identified using the single-pixel technique (fires less than or equal to 1 km) and the 

neighborhood pixel technique (fires allowed to spread beyond 1 km) and the density of those fire 

ignitions. Numbers for high impact fires are in parentheses. 

         Land use / land cover class 

 

       Fire ID      Oil palm           Forest      Non-forest       Multiple  Within Within Within Within Within 

       method       concession       outside of      outside of  5 km 4 km 3 km 2 km 1 km 

                             concession      concession 

        

Percent of       Single-       18.5 (16.8)        13.1 (13.4*)         68.3 (69.5)      0.2 (0.3) 5.8 (3.1) 3.6 (1.9) 2.0 (0.8) 0.9 (0.4) 0.2 (0.1) 

ignitions       pixel      

 

       Nhood-      17.0 (17.7)         8.8 (9.3)              71.2 (68.3)      3.1 (4.6) 9.1 (6.0) 5.6 (3.4) 3.3 (1.8)  1.5 (0.9) 0.4 (0.3) 

       pixel 

 

Density       Nhood-      0.055 (0.010)     0.006 (0.001)      0.060 (0.010) NA 0.125 0.096  0.077  0.058  0.051  

(ignitions km-2)  pixel       (0.015) (0.011) (0.008) (0.006) (0.008) 

* Numbers in parentheses are for high-impact fires 
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Figure 6. Spatial distribution of the density of ignitions for all fires and for high-impact fires 

shown with LULC class. Top row: details of an area of high ignition density that occurs on oil 

palm concession. Middle row: the entire study area. Bottom row: details of an area of high 

ignition density that occurs on non-forest near oil palm concession. For all rows, from left to 

right: the density of ignitions for all fires, the density of ignitions for high-impact fires, and 

LULC class. 
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Figure 7. Fire origin and spread for all fires and high-impact fires: The number of fire detections 

associated with fires that start on each LULC class (origin), broken down by LULC class to 

which the fire spreads (destination). 

 

Table 2. The percent of all fire detections in forest that are associated with all fires and with 

high-impact fires that originate in each land use / land cover class. 

  LULC class on which fire starts (origin) 

Fire type Oil palm Forest  Non-forest Multiple Within 5 km   

          of settlements 

All fires 1.5  39.9  46.4  12.2  2.4 

High-impact 2.0  29.4  56.7  11.9  1.3 
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Table 3. Percent of total fires and total fire detections in the study area that start on oil palm 

concessions or that start within 5 km of settlements rather than other LULC classes, broken down 

into those which escape from the source LULC class and those which do not escape. In 

parentheses are the percent of fires and fire detections that start on oil palm concessions or that 

start within 5 km of settlements, which escape from the source LULC class and do not escape.  

Land use class     Percent of all Percent of all  Percent of all 

class    Fire type  fires that start fires (percent of  fires (percent of 

      on land use fires that start on  fires that start on 

      class  land use class)  land use class) 

        which escape from which stay on 

        from land use class land use class 

Oil palm  Percent of  All fires  17.0  1.8 (10.5*)  15.2 (89.5) 

concession ignitions    

    High-impact 17.7  6.8 (37.3)  11.1 (62.7) 

  Percent of  All fires  17.5  3.1 (17.9)  14.4 (82.1) 

  detections  

    High-impact 17.9  4.1 (22.7)  13.8 (77.3) 

 

Within 5 km of Percent of  All fires  10.2  1.2 (12.2)  8.9 (87.8) 

settlements ignitions    

    High-impact 6.8  3.0 (44.1)  3.8 (55.9) 

  Percent of  All fires  5.0  2.2 (44.1)  2.8 (55.9) 

  detections 

    High-impact 3.4  2.4 (70.0)  1.0 (30.0) 

* Numbers in parentheses are percent of fires that start on oil palm concessions rather than 

percent of all fires in the study area 
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Table 4. Mean duration in days and mean maximum FRP of fires that escape from oil palm 

concessions and from within 5 km of settlements, of fires that start on oil palm concessions and 

within 5 km of settlements but do not escape, and of all fires in the study area that do not start on 

oil palm concessions and from within 5 km of settlements.  

     Mean duration (days)    Mean maximum FRP (MWth) 

Land use class    Escaped from Other fires All other fires Escaped from Other fires that All other  

     land use class that start on not started on land use class start on land fires  

     not started on land use class land use class use class  land use class 

Oil palm        6.7 (± 6.6) 1.6 (± 2.2)***  2.0 (± 3.2)*** 102.7 (± 134.7) 34.2 (± 39.2)*** 42.7 (± 

concessions           77.9)*** 

Settlement    3.2 (± 3.9) 1.3 (± 1.6)*** 2.1 (± 3.3)** 84.5 (± 144.4) 29.6 (± 58.9)*** 43.3 (±  

            78.3)** 

Significance codes for difference between denoted category and escaped fires: *<0.05, **<0.01, 

***<0.001 

 
Figure 8. The number of fire ignitions for all fires identified using the neighborhood-pixel 

technique as a function of a. distance from oil palm concessions with regression lines fitted for 

exponential models (Adjusted R2= 0.59, p<0.001) and b. distance from settlements with 

regression lines fitted with a Ricker model. 
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Supporting Information 

a.   

b.  

Fig. S1. The relationship between a. fire radiative power (FRP) and confidence for all fire 

detections and b. fire duration (days) and mean confidence for each fire across the range of 

temporal thresholds used to identify fires. Detections with high FRP have high confidence 

values. The mean confidence values of the longest fires are approximately 60-80. 
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Fig. S2. The characteristics of the fires depending upon the temporal threshold chosen to identify 

unique fires a. duration of fires identified using the single-pixel technique, b. duration of fires 

identified using the neighborhood-pixel technique, c. maximum FRP of fires identified using the 

single-pixel technique, d. maximum FRP of fires identified using the neighborhood-pixel 

technique. 
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Table S1. The characteristics of fires depending upon the temporal threshold chosen to identify 

unique fires. 

 

Single-
pixel 
technique 

 

 

 Neighbor
hood-
pixel 
technique 

  

 

Temporal 
threshold 

Mean 
duration 
(days) 

Threshold 
long-
duration 
fires (top 
10%) 

Mean 
maximum 
FRP 

Threshold 
high-FRP 
fires (top 
10%) 

Mean 
duration 
(days) 

Threshold 
long-
duration 
fires (top 
10%) 

Mean 
maximum 
FRP 

Threshold 
high-FRP 
fires (top 
10%) 

1 1.0 >1 42.0 86.1 1.1 >1 40.7 80.0 
2 1.3 2 44.3 91.6 1.6 2 43.0 85.6 
4 1.6 3 45.7 95.1 2.1 4 43.8 87.0 
6 1.9 5 47.0 98.7 2.7 6 45.0 89.3 
8 2.3 6 47.8 100.6 3.2 8 45.7 89.6 

10 2.6 7 48.6 102.3 3.7 10 46.4 91.0 
12 2.9 9 49.1 104.1 4.2 12 47.2 92.0 
14 3.2 9 49.6 105.2 4.8 15 48.1 94.8 
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Fig. S3. Distribution of Landsat-derived dNBR values for each time period included in the 

accuracy assessment of fires identified by our algorithm. Every time period 2000-2010 is 

included for which Landsat 5 TM or Landsat 7 ETM+ scenes with less that 10% cloud cover are 

available that are fewer than 90 days apart, for a total of four scene-pairs and six scenes (WRS 2 

Path 118 row 62, covering 83.5% of the study region). Each dNBR image is thesholded at 1500 

(also 1000 and 2000) to create a binary burned - unburned layer. 
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Table S2. Error matrix for accuracy assessment of fires identified by our algorithm compared 

with Landsat-derived dNBR thresholded at 1500 (numbers in parentheses are for Landsat-

derived dNBR thresholded at 1000 and 2000) from the same time period (WRS 2 Path 118 row 

62, covering 83.5% of the study region), including overall accuracy as well as producer's and 

user's accuracy for burned and unburned land cover classes, based on a random sample of pixels 

stratified by burn status. Every time period 2000-2010 is included for which Landsat 5 TM or 

Landsat 7 ETM+ scenes with less that 10% cloud cover are available that are fewer than 90 days 

apart, for a total of four scene-pairs and six scenes. 

Julian Day 
and year of 
scenes that 
bookend time 
periods  

Landsat-derived dNBR 

 

 

152 2001 - 
232 2001 MODIS algorithm 

Burned Unburned 
User's Accuracy 

 Burned 
347 (322-391) 345 (301-370) 

50 (47-57)% 

 Unburned 
93 (73-161)  908 (840-928) 

91 (84-93)% 

 Producer's Accuracy 79 (71-82)% 72 (71-74)% 
Overall Accuracy 

= 74 (73-74)% 
137 2004 -
169 2004 MODIS algorithm 

Burned Unburned User's Accuracy 

 Burned 
315 (297-343) 380 (352-398) 

45 (43-49)% 

 Unburned 
21 (11-50) 848 (819-858) 

98 (94-99)% 

 Producer's Accuracy 94 (87-96)% 69 (68-70)% 
Overall Accuracy 

= 74 (74)% 
169 2004 -
233 2004 MODIS algorithm 

Burned Unburned User's Accuracy 

 Burned 
298 (267-381) 376 (293-407) 

44 (40-57)% 

 Unburned 
104 (61-185) 737 (656-780) 

88 (78-93)% 

 Producer's Accuracy 74 (67-81)% 66 (66-69)% 
Overall Accuracy 

= 68% 
233 2004 -
265 2004 MODIS algorithm 

Burned Unburned User's Accuracy 

 Burned 
273 (255-304) 197 (166-215) 

58 (54-65)% 

 Unburned 
131 (104-179) 760 (712-787) 

85 (80-88)% 

 Producer's Accuracy 68 (63-71)% 79 (79-81)% 
Overall Accuracy 

= 76 (75-77)% 
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Table S3. Percent of total area of fires identified by our algorithm compared that is predicted as 

burned by the Landsat-derived dNBR thresholded at 1000, 1500, and 2000 from the same time 

period (WRS 2 Path 118 row 62, covering 83.5% of the study region). Every time period 2000-

2010 is included for which Landsat 5 TM or Landsat 7 ETM+ scenes with less that 10% cloud 

cover are available that are fewer than 90 days apart, for a total of four scene-pairs. 

Julian Day and year of 
scenes that bookend 
time periods 

dNBR Threshold 
= 1000 

dNBR Threshold = 
1500 
 

dNBR Threshold 
= 2000 

152 2001 - 232 2001 42.68 35.67 32.64 
137 2004 -169 2004 39.73 34.68 32.11 
169 2004 -233 2004 37.18 28.56 24.52 
233 2004 -265 2004 41.83 37.67 35.09 

Avergae 40.36 (± 2.45) 34.15 (± 3.93) 31.09 (± 4.57) 
 

 

Table S4. The percent of all fire ignitions that are located in each land use / land cover class for 

fires identified using the single-pixel technique (fires less than or equal to 1km) and the 

neighborhood pixel technique (fires allowed to spread beyond 1km). Numbers for high impact 

fires are in parentheses. 

  Land use / 
land cover 
class  

  

  

 

  
Temporal 
Threshold 

Fire id 
method 

Oil palm 
concessions 

Forest 
outside of 
concessions 

Non-forest 
outside of 
concessions 

Multiple Within x 
km of 
settlements  

 
 

  
      5 4 3 2 1 

1 Single-
pixel 18.3 (15.3) 12.9 (13.3) 68.6 (71.0) 

0.2 (0.4) 
5.1 (3.0) 

3.2 
(1.6) 

1.7 
(0.6) 

0.7 
(0.4) 

0.2 
(0.2) 

 Neighb
orhood-

pixel 17.3 (16.3) 9.5 (11.1) 69.9 (67.3) 

3.3 (5.4) 

6.8 (4.0) 
4.4 

(2.5) 
2.5 

(1.4) 
1.1 

(0.7) 
0.3 

(0.2) 

2 Single-
pixel 18.3 (17.0) 13.1 (13.3) 68.5 (69.4) 

0.2 (0.3) 
5.5 (3.1) 

3.4 
(1.9) 

1.9 
(0.7) 

0.8 
(0.3) 

0.2 
(0.1) 

 Neighb
orhood- 17.6 (17.8) 9.4 (9.4) 70.1 (69.2) 

3.0 (3.6) 
8.1 (5.6) 

5.1 
(3.5) 

2.9 
(1.8) 

1.4 
(0.9) 

0.4 
(0.2) 
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pixel 

4 Single-
pixel 18.5 (16.8) 13.1 (13.4) 68.3 (69.5) 

0.2 (0.3) 
5.8 (3.1) 

3.6 
(1.9) 

2.0 
(0.8) 

0.9 
(0.4) 

0.2 
(0.1) 

 Neighb
orhood-

pixel 17.0 (17.7) 8.8 (9.3) 71.2 (68.3) 

3.1 (4.6) 

9.1 (6.0) 
5.6 

(3.4) 
3.3 

(1.8) 
1.5 

(0.9) 
0.4 

(0.3) 

6 Single-
pixel 18.7 (16.8) 13.1 (13.5) 68.1 (69.4) 

3 (0.3) 
6.0 (3.1) 

3.7 
(1.8) 

2.1 
(0.8) 

0.9 
(0.4) 

0.2 
(0.l) 

 Neighb
orhood-

pixel 17.0 (17.9) 8.7 (9.1) 71.3 (67.6) 

3.0 (5.4) 

9.8 (6.2) 
6.0 

(3.3) 
3.5 

(2.0) 
1.6 

(1.1) 
0.4 

(0.4) 

8 Single-
pixel 18.7 (16.0) 13.1 (13.5) 68.0 (70.1) 

0.2 (0.4) 
6.1 (3.4) 

3.8 
(2.1) 

2.1 
(0.9) 

0.9 
(0.5) 

0.2 
(0.1) 

 Neighb
orhood-

pixel 17.0 (16.1) 8.7 (9.2) 71.4 (69.5) 

2.9 (5.2) 

10.3 (7.6) 
6.3 

(4.2) 
3.7 

(2.6) 
1.8 

(1.2) 
0.5 

(0.4) 

10 Single-
pixel 18.7 (16.6) 13.0 (13.5) 68.1 (69.6) 

0.2 (0.4) 
6.2 (3.4) 

3.8 
(2.2) 

2.1 
(0.9) 

0.9 
(0.4) 

0.2 
(0.1) 

 Neighb
orhood-

pixel 17.0 (15.9) 8.5 (9.3) 71.6 (69.1) 

2.9 (5.7) 

10.6 (7.9) 
6.4 

(4.5) 
3.8 

(2.8) 
1.8 

(1.5) 
0.5 

(0.4) 

12 Single-
pixel 18.7 (16.4) 13.0 (13.9) 68.1 (69.4) 

0.2 (0.4) 
6.2 (3.4) 

3.9 
(2.1) 

2.1 
(1.0) 

0.9 
(0.4) 

0.3 
(0.1) 

 Neighb
orhood-

pixel 16.9 (15.9) 8.5 (9.2) 71.7 (69.6) 

2.9 (5.4) 

10.8 (7.2) 
6.6 

(4.1) 
3.9 

(2.7) 
1.9 

(1.2) 
0.5 

(0.4) 

14 Single-
pixel 18.6 (16.6) 13.1 (13.7) 68.1 (69.3) 

0.2 (0.4) 
6.3 (3.5) 

3.9 
(2.2) 

2.1 
(1.0) 

1.0 
(0.4) 

0.3 
(0.1) 

 Neighb
orhood-

pixel 16.6 (16.4) 8.5 (8.4) 71.9 (69.3) 

3.0 (5.9) 

11.0 (7.2) 
6.8 

(4.0) 
4.1 

(2.4)  
1.9 

(1.2) 
0.5 

(0.3) 
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Fig. S4. Fire origin and spread for all fires and high-impact fires: The number of fires that spread 

to each LULC class (destination), broken down by the LULC class on which the fire starts 

(origin) across all temporal thresholds. 
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Table S5. The percent of all forest fires and high-impact forest fires that originate in each land 

use / land cover class across all temporal thresholds. 

Temporal 
threshold 

 LULC class 
on which 
fire starts 
(origin) 

    

 Fire type Oil palm Forest Non-forest Multiple Within 5km of 
settlements 

1 All fires  0.9 55.4 33.8 10.0 3.0 
 High-impact 1.4 37.5 53.0 8.2 1.7 

2 All fires  1.4 48.3 40.3 10.0 2.5 
 High-impact 1.8 38.4 50.6 9.2 1.5 

4 All fires  1.5 39.9 46.4 12.2 2.4 
 High-impact 2.0 29.4 56.7 11.9 1.3 

6 All fires  3.8 38.0 45.6 12.6 3.1 
 High-impact 5.0 26.6 55.2 13.3 2.3 

8 All fires  3.9 38.2 46.7 11.2 2.3 
 High-impact 5.1 26.9 56.2 11.8 1.2 

10 All fires  5.9 36.7 46.0 11.4 2.5 
 High-impact 7.6 26.7 53.8 12.0 1.5 

12 All fires  3.9 35.4 49.6 11.2 3.6 
 High-impact 4.8 26.2 57.6 11.4 3.1 

14 All fires  4.3 34.3 50.2 11.2 3.6 
 High-impact 5.4 24.4 58.6 11.6 3.1 

 

 

Table S6. Percent of total fires and total fire detections in the study area that start on oil palm 

concessions rather than other LULC classes, broken down into those that escape and those that 

do not escape. In parentheses are the percent of fires and fire detections that start on oil palm 

concessions that escape and that do not escape.  

  
  

% of all fires in the 
study area  

 Temporal 
threshold 

Fire type 

All fires that 
start on land use 
class 

Escape from land 
use class 

Stay within land 
use class  

Percent of 
ignitions 1 All fires 17.3 1.1 (6.4) 16.2 (93.6) 

  High-impact 16.3 4.7 (28.7) 11.6 (71.3) 
 2 All fires 17.6 1.6 (9.3) 15.9 (90.7) 
  High-impact 17.8 5.7 (32.3) 12.0 (67.7) 
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Table S7. Percent of total fires and total fire detections in the study area that start within 5km of 

settlements rather than other LULC classes, broken down into those that escape and those that do 

not escape. In parentheses are the percent of fires and fire detections that start within 5km of 

settlements that escape and that do not escape. 

 4 All fires 17.0 1.8 (10.5) 15.2 (89.5) 
  High-impact 17.7 6.8 (37.3) 11.1 (62.7) 
 6 All fires 17.0 1.9 (10.9) 15.2 (89.1) 
  High-impact 17.9 7.5 (42.1) 10.4 (57.9) 
 8 All fires 17.0 1.8 (10.5) 15.2 (89.5) 
  High-impact 16.1 6.7 (41.4) 9.4 (58.6) 
 10 All fires 17.0 1.9 (11.2) 15.1 (88.8) 
  High-impact 15.9 6.5 (41.0) 9.4 (59.0) 
 12 All fires 16.9 2.0 (12.0) 14.9 (88.0) 
  High-impact 15.9 7.1 (44.4) 8.8 (55.6) 
 14 All fires 16.6 2.0 (11.8) 14.7 (88.2) 
  High-impact 16.4 7.1 (43.5) 9.2 (56.5) 

Percent of 
detections 1 All fires 16.0 1.1 (7.1) 14.8 (92.9) 

  High-impact 14.7 1.7 (11.4) 13.0 (88.6) 
 2 All fires 18.0 2.9 (16.1) 15.1 (83.9) 
  High-impact 18.3 3.9 (21.3) 14.4 (78.7) 
 4 All fires 17.5  3.1 (17.9) 14.4 (82.1) 
  High-impact 17.9 4.1 (22.7) 13.8 (77.3) 
 6 All fires 20.5 6.1 (30.0) 14.4 (70.0) 
  High-impact 22.0 8.1 (36.9) 13.9 (63.1) 
 8 All fires 18.3 5.8 (31.9) 12.5 (68.1) 
  High-impact 18.8 7.5 (39.8) 11.3 (60.2) 
 10 All fires 19.1 7.0 (36.6) 12.1 (63.4) 
  High-impact 19.7 8.9 (45.2) 10.8 (54.8) 
 12 All fires 15.5 4.0 (25.5) 11.6 (74.5) 
  High-impact 14.9 4.8 (32.2) 10.1 (67.8) 
 14 All fires 14.2 3.5 (24.3) 10.8 (75.7) 
  High-impact 13.2 4.1 (31.4) 9.0 (68.6) 

  
  

% of all fires in the 
study area  

 Temporal 
threshold 

Fire type 

All fires that 
start on land use 
class 

Escape from land 
use class 

Stay within land 
use class  

Percent of 
ignitions 1 All fires 8.1 0.9 (11.2) 7.2 (88.8) 

  High-impact 5.4 2.1 (38.5) 3.3 (61.5) 
 2 All fires 9.2 1.1 (11.4) 8.2 (88.6) 
  High-impact 6.6 2.3 (34.1) 4.4 (65.9) 
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 4 All fires 10.2 1.2 (12.2) 8.9 (87.8) 
  High-impact 6.8 3.0 (44.1)  3.8 (55.9) 
 6 All fires 10.9 1.4 (12.7) 9.5 (87.3) 
  High-impact 7.0 3.2 (46.2)  3.8 (53.8) 
 8 All fires 11.4 1.4 (12.5) 9.9 (87.5) 
  High-impact 7.9 4.0 (50.7)  3.9 (49.3) 
 10 All fires 11.6 1.5 (12.9) 10.1 (87.1) 
  High-impact 8.5 4.3 (50.7)  4.2 (49.3) 
 12 All fires 12.0 1.6 (13.7) 10.3 (86.3) 
  High-impact 8.5 4.5 (53.4)  4.0 (46.6) 
 14 All fires 12.3 1.7 (13.5) 10.7 (86.5) 
  High-impact 8.6 4.4 (51.5)  4.2 (48.5) 

Percent of 
detections 1 All fires 5.0 1.7 (34.0) 3.3 (66.0) 

  High-impact 2.9 1.9 (63.9) 1.0 (36.1) 
 2 All fires 4.6 1.5 (32.8) 3.1 (67.2) 
  High-impact 3.0 1.5 (50.9) 1.5 (49.1) 
 4 All fires 5.0  2.2 (44.1) 2.8 (55.9) 
  High-impact 3.4 2.4 (70.0) 1.0 (30.0) 
 6 All fires 5.3 2.6 (49.4) 2.7 (50.6) 
  High-impact 3.7 2.8 (75.7) 0.9 (24.5) 
 8 All fires 4.8 2.1 (44.9) 2.6 (55.1) 
  High-impact 3.2 2.2 (71.0) 0.9 (29.0) 
 10 All fires 4.9 2.3 (47.4) 2.6 (52.6) 
  High-impact 3.4 2.5 (73.6) 0.9 (26.4) 
 12 All fires 5.8 3.3 (57.4) 2.5 (42.6) 
  High-impact 4.6 3.8 (81.3) 0.9 (18.7) 
 14 All fires 5.8 3.4 (57.9) 2.4 (42.1) 
  High-impact 4.5 3.7 (82.0) 0.8 (18.0) 
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Table S8. Mean duration in days and mean maximum FRP of fires that escape from oil palm 

concessions and from within 5km of settlements, of fires that start on oil palm concessions and 

within 5km of settlements but do not escape, and of all fires in the study area that do not start on 

oil palm concessions and from within 5km of settlements across all temporal threshold. Escaped 

fires are statistically significantly longer and hotter-burning than other fires that were started on 

oil palm concessions or settlements that are not escaped fires and than all other fires in the study 

area, and this pattern holds across the temporal thresholds used to define individual fires. 

 

 

Mean 
duration 
(days) 

  

Mean FRP 

  

Land use class 

Temporal 
threshold Escaped 

Other fires 
that start on 
land use 
class 

All other 
fires Escaped 

Other fires that 
start on land 
use class All other 

fires 
Oil palm 

concessions 1 1.6 
1.1*** 

1.1** 95.8 
33.4*** 

40.4*** 
 2 3.9 1.3*** 1.6*** 102.2 33.9*** 42.2*** 
 4 6.7 1.6*** 2.0*** 102.7 34.2*** 42.7*** 
 6 9.6 1.8*** 2.5*** 110.1 34.7*** 43.7*** 
 8 10.6 2.0*** 3.1*** 105.5 34.6*** 44.6*** 
 10 12.4 2.2*** 3.5*** 104.5 34.6*** 45.3*** 
 12 13.8 2.6*** 4.0*** 99.5 34.4*** 46.1*** 
 14 14.9 2.9*** 4.6*** 93.0 35.4*** 47.2*** 

Within 5km of 
settlements 1 1.2 

1.0* 
1.1 68.8 

29.9*** 
40.5*** 

 2 2.0 1.2** 1.6 79.9 29.7*** 42.7* 
 4 3.2 1.3*** 2.1** 84.5 29.6*** 43.3** 
 6 4.7 1.4*** 2.6*** 92.2 29.7*** 44.3** 
 8 5.9 1.6*** 3.2*** 86.3 29.5*** 45.1* 
 10 7.5 1.8*** 3.6*** 90.1 29.6*** 45.8** 
 12 9.0 2.0*** 4.2*** 92.7 29.7*** 46.4** 
 14 10.9 2.2*** 4.7*** 95.0 29.9*** 47.3** 

Significance codes for difference between denoted category and escaped fires from oil palm concessions: *<0.05, 

**<0.01, ***<0.001 
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a.   

b.  
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c.   

d.  
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Fig. S5. The number of fires as a function of distance from oil palm concessions for a. all fires 

identified using the single-pixel technique, b. high-impact fires identified using the single-pixel 

technique, c. all fires identified using the neighborhood-pixel technique, and d. high-impact fires 

identified using the neighborhood-pixel technique with fitted with regression lines for 

exponential models across all temporal thresholds. 

 

a.   
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b.  

c.   
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d.  

 

Figure S6. The number of fires as a function of distance from settlements across all temporal 

thresholds for a. all fires identified using the single-pixel technique, b. high-impact fires 

identified using the single-pixel technique, c. all fires identified using the neighborhood-pixel 

technique, and d. high-impact fires identified using the neighborhood-pixel technique with fitted 

with regression lines. 
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ABSTRACT 

Fire is a common tool for land conversion and management associated with oil palm production.  

Fires can cause biodiversity and carbon losses, emit pollutants that deteriorate air quality and 

harm human health, and damage property. The Roundtable on Sustainable Palm Oil (RSPO) 

prohibits the use of fire on certified concessions. However, efforts to suppress fires are more 

difficult during El Niño conditions and on peatlands. In this paper, we address the following 

questions for oil palm concessions developed prior to 2012 in Sumatra and Kalimantan, the 

leading producers of oil palm both within Indonesia and globally: 1) For the period 2012-2015, 

did RSPO-certified concessions have a lower density of fire detections, fire ignitions, or 'escaped' 

fires compared with those concessions that are not certified? and 2) Did this pattern change with 

increasing likelihood of fires in concessions located on peatland and in dry years? These 

questions are particularly critical in fuel-rich peatlands, of which approximately 46% of the area 

was designated as oil palm concession as of 2010. We conducted propensity scoring to balance 

covariate distributions between certified and non-certified concessions, and we compare the 

density of fires in certified and non-certified concessions using Kolmogorov-Smirnov tests based 

on Moderate Resolution Imaging Spectroradiometer (MODIS) Active Fire Detections from 

2012-2015 clustered into unique fire events. We find that fire activity is significantly lower on 

RSPO certified concessions than non-RSPO certified concessions when the likelihood of fire is 

low (i.e., on non-peatlands in wetter years), but not when the likelihood of fire is high (i.e., on 

non-peatlands in dry years or on peatlands). Our results provide evidence that RSPO has the 

potential to reduce fires, though it is currently only effective when fire likelihood is relatively 

low. These results imply that, in order for this mechanism to reduce fire, additional strategies 

will be needed to control fires in oil palm plantations in dry years and on peatlands. 
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INTRODUCTION 

Agricultural expansion and intensification has occurred over the last few decades and is expected 

to continue, especially in the tropics, in order to meet the demands of a growing global 

population. Oil palm (Elaeis guineensis), a major global commodity that dominates the vegetable 

oils market and is used for biofuel, is one of the world's most rapidly expanding crops. It is 

grown exclusively in the humid tropics. Production of oil palm and planted area have increased 

over the past few decades, especially in Indonesia, which is currently the largest oil palm 

producer (FAO 2015). The area under oil palm cultivation in Indonesia expanded 600% to 7.8 

Mha from 1990-2000 (Agriculture 2010). 

 

With land use conversion for the expansion of oil palm in Southeast Asia have come myriad 

environmental and social concerns, including deforestation (e.g, Carlson, Curran et al. 2012) and 

land tenure and other social conflicts (e.g., displacement of local people, Colchester and Jiwan 

2006). The loss of forest through oil palm expansion is a threat to biodiversity (Wilcove and Koh 

2010, Koh, Miettinen et al. 2011), with plantations hosting species-poor communities dominated 

by generalists with few forest species (Danielsen, Beukema et al. 2009). The development of oil 

palm plantations can also result in greenhouse emissions from the conversion process. The 

carbon losses from the development on peatlands are particularly high (Hooijer, Silvius et al. 

2006, Koh, Miettinen et al. 2011). Even when oil palm is used as a biofuel, the carbon savings 

from avoided fossil fuel combustion do not offset the losses in ecosystem carbon from land 

clearing until decades to centuries, particularly on peatlands (Gibbs, Johnston et al. 2008, 

Danielsen, Beukema et al. 2009), although the payback time is much shorter for previously 

degraded lands. However, proponents of oil palm argue that it has a much higher yield than the 
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alternatives (e.g., soybean, sunflower, rapeseed), and with increased production efficiency, less 

land in cultivation is required to produce the same amount on a per hectare basis (Teoh 2010). 

There is also evidence that oil palm development can reduce poverty, contribute to national 

economies, and act as a carbon sink (relative to degraded lands) (Koh, Ghazoul et al. 2010, Teoh 

2010).  

 

Oil palm concession development can lead to increased fire incidence, as fire is often used to 

clear land prior to the initial crop planting, prior to replanting after a complete crop cycle, or to 

clear brush or eliminate pests mid-cycle	(Simorangkir, Moore et al. 2002). Fires that are started 

on oil palm concessions may escape the boundaries of the concession and burn other land cover 

types, including primary forest (e.g., Carlson, Curran et al. 2012, Cattau, Harrison et al. 2016). 

Fires occurring within or outside of concession boundaries, particularly on peatlands, are a major 

cause of smog and particulate air pollution (Hayasaka, Noguchi et al. 2014, Reddington, 

Yoshioka et al. 2014), habitat loss and degradation (Yule 2010, Posa, Wijedasa et al. 2011, 

Jaafar and Loh 2014), and economic costs associated with fire suppression efforts, lost timber 

and crop resources, and missed workdays (Ruitenbeek 1999, Barber and Schweithelm 2000, 

Tacconi 2003). Oil palm and timber concessions, particularly on peatlands and non-forest 

lowlands, contribute to emissions and hazardous regional air pollution; oil palm concessions are 

the largest source of concession-related emissions in Kalimantan (Marlier, DeFries et al. 2015). 

However, the majority of emissions can be attributed to fires outside of concessions in both 

Sumatra and Kalimantan (Marlier, DeFries et al. 2015).  
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Land use conversion can interact with climate and other biophysical factors by further increasing 

fire risk in conditions under which fire risk is already elevated. For example, during El Niño 

conditions of the El Niño Southern Oscillation (ENSO), there is increased likelihood of drought 

in Southeast Asia and, thus, fires are tied to ENSO cycles throughout insular Southeast Asia, 

including Indonesia (e.g., Deeming 1995, Kita, Fujiwara et al. 2000, Siegert, Ruecker et al. 2001, 

Page, Siegert et al. 2002, Wang, Field et al. 2004, Fuller and Murphy 2006, Wooster, Perry et al. 

2012, Spessa, Field et al. 2015). In peatlands, canals drain the peat and lower the water table, 

improving oil palm planting conditions, but also making the peat even more susceptible to fire in 

the dry season, particularly during El Niño phases (Hooijer 2006, Turetsky, Benscoter et al. 

2015).  

 

The land area in oil palm concession in Indonesia is projected to grow as Indonesia has pledged 

to double its oil palm production from 2010 to 2020 (Maulia 2010). In order to meet emissions 

reductions targets and improve air quality in the region, it will be critical that agricultural 

practices minimize fire occurrence on this land use type, either through regulatory, incentive-

based, or technological mechanisms. Wilcove and Koh (2010) discuss how financial incentives 

can promote desirable behavior in the oil palm industry that would reduce the threats to 

biodiversity from land use conversion; these incentives can reduce practices that promote 

negative outcomes on oil palm concessions more generally, including fire. The Roundtable on 

Sustainable Palm Oil (RSPO) certification program, established in 2004, is one such incentive. 

RSPO is non-profit industry-led trade organization designed, in part, to address the growing 

concerns about the negative environmental impacts of palm oil. RSPO is currently the largest 

multi-stakeholder organization focused on sustainability within the palm oil sector and the only 
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global sustainability standard in the edible oil sector. Thus, RSPO has a large potential to reduce 

the negative impacts of oil palm concession development globally. According to the RSPO 

Principles and Criteria, RSPO does not permit the use of fire for preparing land for new plantings 

or for replanting on certified plantations except "where an assessment has demonstrated that it is 

the most effective and least environmentally damaging option for minimizing the risk of severe 

pest and disease outbreaks, and exceptional levels of caution should be required for use of fire on 

peat" (RSPO 2013). Therefore, the RSPO certification mechanism has the potential to reduce fire 

on oil palm plantations, presuming that companies follow the RSPO Principles and Criteria. This 

issue is particularly critical in peatland areas, because fires in these fuel-rich systems result in 

high emissions from aboveground and belowground biomass burning. Approximately 46% of 

peatland area was designated as oil palm concession as of 2010 (WRI 2014). In late 2015 after 

the most severe fire season since 1997/98, the Indonesian president Joko Widodo, through 

presidential instructions, did ban clearance and conversion on peatlands, including on existing 

concessions (Indonesia 2015). However, this is not yet a legally binding law, though one is 

forthcoming. Furthermore, by targeting economic incentives, RSPO certification might result in 

monitoring and enforcement beyond what would exist as a result of regulatory policy alone. 

 

Although there have been concerns that the RSPO Principles and Criteria are not sufficiently 

stringent, currently there is minimal evidence regarding how RSPO certification affects fire 

occurrence. In this research, we assess if fire activity was reduced on RSPO certified oil palm 

concessions in Indonesia from 2012 to 2015. We ask: 1) Did certified concessions have a lower 

density of fire detections, fire ignitions, or 'escaped' fires compared with those concessions that 
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are not certified? and 2) Did this pattern change with increasing likelihood of fires in concessions 

located on peatland and in dry years? 

 

 

 

METHODS 

We assess whether fire activity is reduced on RSPO certified oil palm concessions. We first 

identify concessions that are RSPO-certified and concessions that are not certified, and select 

only concessions that are already converted. We then derive three metrics of fire activity: the 

density fire detections, fire ignitions, and 'escaped' fires. We use nonparametric matching 

methods to control for bias and then determine if RSPO certified concessions have reduced fire 

activity, relative to the control group of non-certified concessions, in low fire-risk conditions 

(i.e., in wet years and on non-peatlands), in intermediate fire-risk conditions (i.e., in wet years 

and on non-peatlands), and in high fire-risk conditions (i.e., in dry years and on peatlands). In the 

subsections that follow, we describe the study area, concession and other datasets, remotely 

sensed fire observations, and our methodology to compare fire activity within RSPO-certified 

and non-certified concessions. 

 

Study Area 

The study area consists of the island of Sumatra and of Kalimantan, the Indonesian portion of the 

island of Borneo (Fig. 1), Indonesia's largest islands, with a total area of 473,481 km2 and 

544,150 km2, respectively. Both islands straddle the equator and have a hot and humid tropical 

climate marked by distinct wet and dry seasons. The western interior of Sumatra is mountainous 
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and the eastern interior is lowlands and swamp. The interior of Borneo (i.e., the northern border 

of Kalimantan) consists of upland areas with the outer areas primarily lowlands and swamp. 

Both islands were once dominated by tropical rainforest, but development, illegal logging, and 

fire have greatly reduced the extent of that forest (e.g., 28.3% and 51.9% mature forest remained 

in 2012 on Sumatra and Kalimantan, respectively	(Margono, Potapov et al. 2014)). 

 

We focus on Sumatra and Kalimantan because over 90% of oil palm development in Indonesia 

occurred there over the past few decades (Indonesia 2010). As of 2010, 95.8% of all the oil palm 

concessions in Indonesia were located in Sumatra and Kalimantan, covering 13.8% of the total 

land area (WRI 2014). Industrial oil palm plantations that have already been developed cover 

18.2% and 12.6% of peatlands in Sumatra and Kalimantan, respectively (Miettinen, Shi et al. 

2016).  

 

Data and processing 

We obtain oil palm concession locations in Indonesia from the Global Forest Watch portal 

(GFW) (WRI 2014). Produced by the Indonesian Ministry of Forestry, these are the boundaries 

of the area allocated by the Indonesian government for industrial-scale oil palm plantations 

developed or planned by 2010. These data are known to be incomplete but are currently the best 

available; they do not include oil palm plantations that exist outside of the official concession 

boundaries. These data include the company to which each concession belongs, but not 

information about whether an individual concession is RSPO certified. Because spatially explicit 

data on the location of RSPO certified plantations is currently not publically available, we are not 

able to directly evaluate fire activity on all concessions that are certified versus those that are not. 
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Instead, data on the total number of hectares of oil palm concession that each company owns and 

the number of hectares associated with concessions that are RSPO certified that each company 

owns as of 2012 is obtained from Greenpeace (Rosoman and Rahmawa 2015), and we evaluate 

fire activity on concessions belonging to companies that have 0% of their concession area 

certified (hereafter, referred to as non-RSPO certified concessions) versus concessions belonging 

to companies that have ≥85% of their concession area certified (hereafter, referred to as RSPO 

certified concessions). There is a general lack of agreement between the oil palm concession 

boundary data from GFW and tabular data on certification from Greenpeace. Of the 167 

concessions reported by Greenpeace to belong to companies that have ≥85% of their concession 

area certified, only 58 are present in the GFW data. Of the 239 concessions reported by 

Greenpeace to belong to companies that have 0% of their concession area certified, only 34 are 

in the GFW data. Therefore, our analyses do not include all of the concessions that are RSPO 

certified or non-certified, but rather only the subset that are owned by companies for which data 

is present in both datasets. 

 

Because fire is often used differently at different stages of plantation development, we separate 

concessions that were developed prior to the study period (2012-2015), during the study period, 

or are not yet developed. To derive the year of development for each RSPO certified and non-

certified concession, we visually inspect Google Earth imagery for signs of clearing or planting 

(e.g., irrigation canals, new vegetation that is spatially ordered). We did not definitively identify 

any concessions that either remained undeveloped during the entire study period 2012-2015 or 

that were developed sometime during the study period. Thus we restrict the analysis to 

concessions that we determined to be already developed by 2012, including 28 RSPO certified 
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concessions totaling 180,333 ha (4 on peatlands and 24 on non-peatlands) and 25 non-RSPO 

certified concessions totaling 326,205 ha (11 on peatlands and 14 on non-peatlands) (detailed in 

Fig. 1). The subset of concessions used for our analyses do not show a spatial bias, as they have a 

representative distribution across the study area (i.e., the majority of concessions are found on 

Kalimantan), but may be biased in terms of size and accessibility (Table A.1 in Appendix). 

 

We retrieve all fire detections occurring in Kalimantan and Sumatra during 2012-2015 at the 

nominal 1 km2 resolution from the Moderate Resolution Imaging Spectroradiometer (MODIS) 

Active Fire Detections, extracted from MCD14ML Collection 5 and distributed by NASA 

FIRMS. This product is considered the most accurate and complete among alternative methods 

for detecting fires (Langner and Siegert 2009), and correlations between the number of fire 

detections and the area burned on the ground is high in peatlands (R2 = 0.75 in Tansey, Beston et 

al. 2008). We use this product to derive the metrics of fire activity on concessions: the density 

fire detections, fire ignitions, and 'escaped' fires. Fire detections on concessions could be 

associated with fires that originate outside of the concession and escape into the concession, and 

are thus not directly the result of activities on the concession itself. To account for this 

possibility, we identify fire ignitions on and escaped fires from concessions, in addition to just 

fire detections occurring on concessions. The MODIS fire detections indicate the center point of 

a 1 km2 area in which a fire was detected, but not the location or size of the fire (Langner, 

Miettinen et al. 2007, Miettinen, Andreas et al. 2007, Langner and Siegert 2009). Thus, 

depending on the location and size of the associated fires, MODIS fire detections that are 

temporally proximate and that represent adjacent pixels may be associated with a spatially 

contiguous fire event or they may represent isolated fire events. In order to identify fire ignitions, 
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we group all fire detections into fire events (i.e., a fire with a common ignition source, which 

may consist of multiple fire detections) using a spatial rule that allows fire events to spread 

beyond their pixel of origin	 (i.e., neighborhood-pixel technique explained in detail in Cattau, 

Harrison et al. 2016). The overall accuracy of fires identified by our algorithm is 73 (±3)% when 

compared with finer-resolution (30m2) Landsat data (Cattau, Harrison et al. 2016). For each fire 

event, we identify the location of the ignition(s) as the earliest detection(s) associated with that 

fire event.  

 

Fire activity on RSPO certified and non-RSPO certified oil palm concessions 

For each oil palm concession that is identified as RSPO certified or non-certified, we identify fire 

detections and fire ignitions located within that concession. We also identify fires that 'escape' 

from each oil palm concessions into the surrounding landscape by isolating fire events whose 

ignition detection(s) are within that concessions and that have at least one associated detection 

outside the concession boundaries. For each concession, we calculate the annual density of fire 

detections, of fire ignitions, and of fires that 'escape' from the concession into the surrounding 

landscape by dividing the number of detections, ignitions, and escaped fires respectively 

occurring on each concession each year by the area of that concession.  

 

We determine if the density of fire detections, ignitions, or escaped fires on RSPO certified 

concessions are different from that on non-RSPO certified concessions between 2012-2015 using 

the Kolmogorov-Smirnov (KS) test, a non-parametric test to evaluate if the distribution differs 

between two groups. We conduct these analyses on data stratified by whether a concession was 

located in peatland or non-peatland rather than grouping them all together, because the likelihood 
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of fire is different in those classes. We obtain the location of peatlands from the Global Forest 

Watch portal (WRI 2014), which is a layer of peat depth at the sub-meter resolution from the 

atlas of peat land distribution Kalimantan originally derived from remotely sensed data validated 

with field data (Wahyunto and Suryadiputra 2008). We further separate the data by wet years 

(2012 and 2013) and dry years (2014 and 2015). In the wet years, the 3-month running mean of 

SST anomalies in the Niño 4 region never surpassed a threshold of +0.5 °C. In the dry years, it 

surpassed the threshold in 6 months in 2014 and 12 months in 2015 (Fig. A.1 in Appendix). 

 

Because our data are observational, we improve causal inferences by controlling for bias (i.e., 

factors that may have an influence on whether a concession is RSPO certified and thereby 

affecting comparability with non-certified concessions). We conduct propensity score matching 

using the 'MatchIt' package in R (Ho, Imai et al. 2011), which uses nonparametric matching 

methods to match samples of the treated (i.e., RSPO certified) and control (i.e., non-RSPO 

certified) groups with similar covariate distributions in order to improve statistical models. For 

each concession, we calculate the following covariates: concession area in hectares and mean 

road density (i.e., access to infrastructure) (See Fig. A.2 in Appendix for covariate distributions). 

Road density is derived from a layer of road locations, including both paved and unpaved roads, 

obtained from WRI (Minnemeyer, Boisrobert et al. 2009). We estimate propensity scores (i.e., 

the probability that a concession is RSPO certified) using a generalized linear model with a logit 

link, and match samples on propensity scores using nearest neighbor matching. We then 

determine if the distributions of the density of fire detections, ignitions, or escaped fires on 

RSPO certified concessions are different from that on non-RSPO certified concessions using KS 

tests on matched samples. 
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RESULTS 

In the study area, the intra-annual pattern of fire activity from 2012 to 2015 peaks during the dry 

season months (August-October) both within all concessions in the study area (i.e., all 

concessions in the GFW dataset) and outside of concessions (Fig. 2(a) and (b), respectively). The 

inter-annual pattern of fire activity within all concessions in the study area is also similar to that 

outside of concessions across the years 2012-2015 (Fig. 2(c) and (d), respectively). Although 

most fire activity in the study area occurs outside of oil palm concessions, a substantial 

percentage (16.6%) of all the fire detections during the study period are located within oil palm 

concessions (Fig. 3), distributed among 70.5% of the total concessions. During the study period, 

a disproportionate percentage of the total fire detections (52.3%) occur on peatlands (Fig. 3), 

considering peatlands cover approximately 13.7% of the land area in Sumatra and Kalimantan. 

 

Propensity scoring 

On peatlands, concession area does not differ between RSPO certified and non-certified 

concessions, but road density does (Fig. A.2 and Table A.2 in Appendix). We thus conduct 

propensity scoring using just road density to improve inference on peatlands. Propensity scoring 

resulted in one-to-one matching of 4 RSPO certified concessions with 4 non-certified 

concessions and a 79.7% balance improvement on mean road density, meaning that the mean of 

that measured covariate is more similar between the RSPO certified and non-certified 

concessions after matching than prior to matching (Table A.2 in Appendix). On non-peatlands, 

concession area and road density differ between RSPO certified and non-certified concessions 

(Table A.2 in Appendix); we thus conduct propensity scoring using both covariates to improve 
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inference on non-peatlands. Propensity scoring resulted in matching with replacement of 24 

RSPO certified concessions with 8 non-certified concessions and a 25.5% balance improvement 

on mean road density and a 96.4% balance improvement on concession area (Table A.2 in 

Appendix). 

 

 

Fire activity on RSPO certified and non-RSPO certified oil palm concessions 

During the study period, fire activity - including the density of fire detections and fire ignitions - 

is not significantly different between RSPO certified and non-certified concessions on peatlands 

for matched or unmatched samples (Fig. 4 and Table A.3 in Appendix). This result is consistent 

in wet years (2012-2013) and dry years (2014-2015). Fire activity is also not significantly 

different between RSPO certified and non-certified concessions on non-peatlands in dry years. 

However, fire activity is significantly lower on RSPO certified concessions compared with non-

certified concessions on non-peatlands in wet years. During the study period, only eight fires 

escaped from inside the boundaries of a developed concession included in our analysis into other 

land use classes; five from certified concessions and three from non-certified concessions. Thus, 

we do not consider escaped fires further in our analysis.  

 

DISCUSSION AND CONCLUSION 

We find that, from 2012-2015, fire activity (i.e., the density of fire detections and fire ignitions) 

is significantly lower on RSPO certified concessions than non-RSPO certified concessions when 

the likelihood of fire is low (i.e., on non-peatlands in wet years), but not statistically different 

when the likelihood of fire is high (i.e., on peatlands in all years or on non-peatlands in dry 
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years). Our results provide evidence that RSPO has the potential to reduce fires, but is currently 

only effective when fire likelihood is relatively low and thus fewer fires occur and are 

presumably more easily controllable; during the study period, only 16.3% of fire detections on 

RSPO certified and non-certified concessions occurred on non-peatlands in wet years. This result 

implies that, in order for this mechanism to reduce fire, greater efforts may be needed to control 

fires in dry years and on peatlands.  

The potential for RSPO certification to further reduce environmental impacts, including fire, may 

depend in part upon further clarification of what is required under the RSPO Principles and 

Criteria. A few relatively new initiatives may strengthen the RSPO; The Palm Oil Innovation 

Group (POIG) and The Sustainable Palm Oil Manifesto (SPOM) have been developed to provide 

additional clarification and criteria above and beyond what is required by the RSPO, and the 

Indonesian Sustainable Palm Oil (ISPO) standard introduces accountability for domestic 

growers. 

 

Fire activity on RSPO certified concessions may also be reduced with improved monitoring and 

enforcement. A single, undisputed set of map data containing the location of Indonesian oil palm 

concessions, including RSPO certified plantations, is not currently publically available. Because 

of these data constraints, our sample size was reduced to the concessions that belong to 

companies for which the percent of their holdings that are RSPO certified are known to be either 

0% (for non-certified concessions) or over 85% (for certified concessions). This issue is the 

major limitation of this study. RSPO members were required by General Assembly Resolution in 

November 2013 to submit their concession maps to RSPO. However, Indonesia and Malaysia 

questioned the legality of this (e.g., Directorate General of Plantation 2015), resulting in a freeze 
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of the implementation of this resolution and of the release of these data since 2013. However, 

this issue limits the ability not only of independent researchers to evaluate the effects of RSPO 

certification, but also of RSPO to monitor its members. The RSPO monitors fire hotspots 

through the GFW platform (WRI 2014); if a fire detection is located within a RSPO certified 

concession, the RSPO member must provide evidence of what the situation is on the ground and 

report back to RSPO with the results of the actions they have taken to remediate the situation 

(RSPO 2015). These concession maps are often different than the boundary maps that the oil 

palm companies hold. Without an undisputed map of certified concessions, RSPO cannot hold its 

members accountable. Although RSPO indicates it will publish its members' oil palm concession 

maps during the second quarter of 2016 (RSPO 2015), this will be map data disclosed primarily 

by the RSPO member companies that hold the concessions themselves. In order to 

comprehensively evaluate if fire activity is reduced on RSPO certified concessions, as well as to 

accurately assign responsibility for fires in order to hold RSPO members and other concession 

owners accountable, spatially explicit data that are publically accessible, accurate, current, 

exhaustive, and recognized by all parties is essential.  

 

We recognize some important limitations in assessing fire activity using MODIS-derived active 

fire detections, including the relatively large and variable MODIS pixel size and the spatial 

uncertainty of the fire size and fire location within the MODIS pixel. However, the average 

concession that we used for our analyses is 96 km2; thus, the percent of all fires along the 

concession boundaries that are misattributed to either the area inside a concession or outside a 

concession is likely to be only a small percent of all fires and not biased in one direction. 

Although using moderate resolution data to map burned area might allow us to more accurately 
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identify the spatial location and size of fires, there is a paucity of available moderate resolution 

data that is relatively cloud-free during the study period (e.g., only 4 images with 10% or less 

cloud cover are available for Path 118 Row 62 from Landsat 7 during the entire study period). 

Furthermore, the temporal resolution is too coarse to identify ignitions, escaped fires, or repeat 

fires at a return interval more frequent than concurrent cloud-free images. 

 

We acknowledge several limitations in our study that may result in under- or overestimating fire 

activity and / or the effect of RSPO on fire activity. Our estimate that 16.6% of fire detections are 

located within oil palm concessions includes fires that occurred during the study period on all 

concessions. However, our estimates for fire activity on RSPO certified and non-certified 

concessions were limited to concessions that were already developed by the beginning of the 

study period in 2012 because there were insufficient data to include concessions developed 

during the study period. Thus, we do not capture fire related to the clearing stage, and our 

estimates of fire activity are therefore conservative. When more data become available, the effect 

that RSPO certification has on reducing fire activity will be substantially improved by evaluating 

conversion fires. The subset of concessions used for our analyses may be biased, as they are 

larger and more accessible than the average concession in Sumatra and Kalimantan. However, 

this bias is unlikely to affect the results, as the concessions are still representative of the larger 

landscape (i.e., well within a standard deviation for size and accessibility of all concessions) and 

there is no clear relationship between either the size of a concession and fire activity on that 

concession or between road density around a concession and fire activity on that concession (Fig. 

A.3 in Appendix). We control for concession size and accessibility when matching certified and 

non-certified concessions, but more research is needed to identify if additional factors affect the 
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relationship between certification status and fire activity. These covariates may include 

biophysical factors (e.g., slope), anthropogenic factors (e.g., land use history), as well as 

complex interactions between these factors (e.g., the climatological conditions in the year of 

initial clearing). Additionally, the omission rate for MODIS active fire detections in Kalimantan 

and Sumatra is estimated at 34-60% (Liew, C. et al. 2003, Miettinen, Andreas et al. 2007, 

Tansey, Beston et al. 2008). Fire detection density therefore likely underestimates fire activity, 

especially in areas with high tree cover including mature plantations, though we do allow for 

missed detections when we cluster fire detections into fire events to derive ignition density (see 

Cattau, Harrison et al. 2016 for further explanation). Finally, we include only legal, agro-

industrial oil palm concessions, though smallholders are eligible for RSPO certification. The 

effect of RSPO on fire activity or the trends of fire activity more generally may be different on 

smallholder plantations than on agro-industrial concessions, but data are not currently available 

to evaluate this issue. 

 

Financial mechanisms (e.g., RSPO certification) used in tandem with regulatory approaches 

(Wilcove and Koh 2010) may be effective for reducing fire. There have been previous attempts 

to reduce fire in Indonesia through national and international regulatory mechanisms (e.g., 

ASEAN Agreement on Transboundary Haze Pollution, Singapore's Transboundary Haze 

Pollution Act, and Indonesia's national law (Act No 41/1999) banning corporations from using 

fire to clear land for palm-oil plantations), but with limited success. The presidential instructions 

banning clearance and conversion on peatlands, including on existing concessions (Indonesia 

2015) may prove effective if it becomes legally binding law. Furthermore, the effectiveness of 

regulatory approaches to reducing fire on oil palm will depend, in part, upon the capacity for 
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enforcement. In a clear demonstration of regulatory enforcement, the Indonesian government is 

currently taking legal recourse on companies responsible for fires associated with the 2015 haze 

crisis, most of which are in pulp and paper, by revoking or suspending their licenses (Butler 

2015).  

 

Protecting high carbon value areas, particularly peatlands, from fire activity will be essential in 

reducing concessions-related emissions. During the study period, a disproportionate percentage 

of the total fire detections (52.3%) occur on peatlands, which cover approximately 13.7% of the 

land area in Sumatra and Kalimantan. Furthermore, fires in peatlands have higher emissions 

potential because of the high fuel loads in belowground biomass. Nearly half of all peatland area 

is designated as oil palm concession, and so the management of those concessions will have a 

large influence on fire activity on peatlands and the integrity of peatland ecosystems at the 

national scale. The relevant management includes not only direct burning, but also whether 

canals are dug, which can alter the hydrology of these systems and make them more susceptible 

to ignition and burning (e.g., critical threshold of groundwater depths below which fire is very 

likely Usup, Hashimoto et al. 2004, Wosten, van den Berg et al. 2006)). 

 

We find that RSPO does have a limited potential to reduce fires on agro-industrial concessions in 

Indonesia. More research is needed to understand if and in what capacity fire activity is reduced 

on RSPO certified smallholder plots in Indonesia and on smallholder and agro-industrial 

plantations in other countries. Given the global reach of the association, the capacity for this 

mechanism to result in oil palm production that is more sustainable is considerable.  
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TABLES AND FIGURES 

 

Figure 1. The study area: oil palm concessions on Sumatra and Kalimantan, Indonesia. Inset: 

details of two portions of the study area displaying non-exhaustive locations of oil palm 

concessions, including those that are RSPO certified, those that are non-RSPO certified, and 

those for whom certification status is unknown, as well as the distribution of peatland. See Data 

and Processing for a description of categorization of oil palm concessions into those that are 

RSPO certified and those that are non-RSPO certified. 
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Figure 2. Temporal pattern of fire in the study area 2012-2015: the number of MODIS fire 

detections within the study area (total N fire detections = 242,957: 110,884 on Kalimantan and 

132,073 on Sumatra) that occur per month (a) on all oil palm concessions in the study area (N 

concessions = 1,764) and (b) outside of oil palm concessions, and that occur per year (c) on all 

oil palm concessions in the study area and (d) outside of oil palm concessions. Fire activity peaks 

during the dry season months (August-October) both within and outside of concessions. Fire 

activity was higher in dry years 2014 (Mean 3-month average Niño 4 Index: 0.50 ± SD 0.27) 

(28.7% of fire detections) and 2015 (1.21 ± SD 0.28) (41.9% of fire detections) than wet years 

2012 (-0.01 ± SD 0.47) (16.5% of fire detections) and 2013 (0.08 ± SD 0.10) (12.9% of fire 

detections), both within and outside of concessions. Note differences in scale. 
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Figure 3. The number of fire detections (N = 205,749) within all oil palm concessions in the 

study area (N= 1,764) and outside of concessions on Kalimantan and Sumatra 2012-2015, 

divided into peatlands (13.7% of the land area) and non-peatlands (86.3% of the land area). 

16.6% of all the fire detections during the study period are located within oil palm concessions. 

 

 

 

0

50000

100000

150000

200000

Non-concession Oil palm concession
Land use

To
ta

l f
ire

 d
et

ec
tio

ns
 2

01
2-

20
15

Land_cover

Non-peat

Peat



	 124	

 

 

Figure 4. Density of fire activity, including the density of fire detections and density of fire 

ignitions for RSPO certified concessions (N=48) and non-certified concessions (N=28) on non-

peatlands for wet years (2012-2013), RSPO certified concessions (N=48) and non-certified 

concessions (N=28) on non-peatlands for dry years (2014-2015), RSPO certified concessions 

(N=8) and non-certified concessions (N=22) on peatlands for wet years (2012-2013), and RSPO 

certified concessions (N=8) and non-certified concessions (N=22) on peatlands for dry years 

(2014-2015). Differences in fire activity between RSPO certified and non-certified concessions 
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before and after matching tested using KS-tests are shown with the following significance codes: 

--- > 0.10, * < 0.10, ** < 0.05, *** < 0.01. See Table S2 in Supporting Information for data on 

fire activity on RSPO certified concessions compared with non-certified concessions both on 

peatlands and on non-peatlands divided into wet and dry years. 
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Supporting Information 

 

 

Fig. S1. Covariate distribution for propensity scoring. Frequency distribution of concessions for 

concession area (ha) and mean road density for (a) RSPO certified concessions and (b) non-

certified concessions in peatlands and for (c) RSPO certified concessions and (d) non-certified 

concessions in non-peatlands. 
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Table S1. Characteristics of covariates for propensity scoring: mean and standard deviation of 

concession area (ha) and mean road density for RSPO certified concessions and non-certified 

concessions in peatlands and in non-peatlands. Differences covariates between RSPO certified 

and non-certified concessions tested using KS-tests are shown with the following significance 

codes: --- > 0.10, * < 0.10, ** < 0.05, *** < 0.01. 
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14,525.8 (±SD 
11,230.0) 

16,242.0 (±SD 
9,390.7) 

NA --- NA 

 Mean road 
density 

0.013 (±SD 
0.021) 

0.286 (±SD 
0.275) 

0.068 (±SD 
0.051) 

*** 79.7 

Non-peatland Concession 
area (ha) 

5,092.9  
(±SD 6,078.8) 

10,538.8 (±SD 
6,229.2) 

5,287.2 (±SD 
6,111.9) 

*** 96.4 

 Mean road 
density 

0.238 (±SD 
0.209) 

0.330 (±SD 
0.269) 

0.170 (±SD 
0.247) 

*** 25.5 

 

 

Table S2. Density of fire activity, including the density of fire detections km-2, fire ignitions km-

2, and escaped fires km-2 for RSPO certified (n=16) and non-certified (n=44 for unmatched 

samples and n=16 for matched samples) concessions on peatlands divided into wet years (2012-

2013) and dry years (2014-2015) and for RSPO certified (n=96) and non-certified (n=56 for 

unmatched samples and n=32 for matched samples) concessions on non-peatlands divided into 

wet and dry years. Differences in fire activity between RSPO certified and non-certified 

concessions before and after matching tested using KS-tests are shown with the following 

significance codes: --- > 0.10, * < 0.10, ** < 0.05, *** < 0.01.  
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K
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Peatland Wet 
years 
(2012-
2013) 

Fire 
detections 
km-2 

0.017 (±SD 
0.028) 

0.036 (±SD 
0.057) 

0.030 (±SD 
0.025) 

--- --- 

  Fire 
ignitions 
km-2 

0.013 (±SD 
0.018) 

0.023 (±SD 
0.028) 

0.023 (±SD 
0.018) 

--- --- 

  Escaped 

fires km-2 0.000 (±SD 
0.000) 

0.000 (±SD 
0.000) 

0.000 (±SD 
0.000) 

NA NA 

 Dry 
years 
(2014-
2015) 

Fire 
detections 
km-2 

0.180 (±SD 
0.348) 

0.054 (±SD 
0.102) 

0.012 (±SD 
0.015) 

--- --- 

  Fire 
ignitions 
km-2  

0.087 (±SD 
0.128) 

0.032 (±SD 
0.053) 

0.011 (±SD 
0.013) 

--- --- 

  Escaped 

fires km-2 
0.001 (±SD 
0.002) 

0.000 (±SD 
0.001) 

0.000 (±SD 
0.001) 

NA NA 

Non-
peatland 

Wet 
years 
(2012-
2013) 

Fire 
detections 
km-2 

0.012 (±SD 
0.033) 

0.043 (±SD 
0.083) 

0.027 (±SD 
0.037) 

*** * 

  Fire 
ignitions 
km-2 

0.010 (±SD 
0.022) 

0.029 (±SD 
0.045) 

0.019 (±SD 
0.022) 

*** * 

  Escaped 

fires km-2 
0.000 (±SD 
0.000) 

0.000 (±SD 
0.003) 

0.000 (±SD 
0.000) 

NA NA 

 Dry 
years 
(2014-
2015) 

Fire 
detections 
km-2 

0.059 (±SD 
0.142) 

0.045 (±SD 
0.059) 

0.034 (±SD 
0.042) 

--- --- 

  Fire 
ignitions 
km-2  

0.038 (±SD 
0.077) 

0.032 (±SD 
0.035) 

0.025 (±SD 
0.026) 

--- --- 

  Escaped 

fires km-2 
0.001 (±SD 
0.008) 

0.000 (±SD 
0.000) 

0.000 (±SD 
0.000) 

NA NA 
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SYNTHESIS 

 

The preceding chapters present new information on the novel fire disturbance regime in the 

globally important peat-swamp forest of Indonesia. The studies in these chapters reveal trends in 

fire dynamics from the framework of coupled human and natural systems, where anthropogenic 

and biophysical data are integrated in a coherent modeling framework. These chapters advance 

our understanding of how anthropogenic factors influence the controls of fire, both directly (i.e., 

human-caused ignitions) and indirectly (i.e., changing the susceptibility of the landscape to 

ignitions and to burning). This synthesis serves to present the main findings included in this 

dissertation and to evaluate their influence on future research and on the management and 

conservation of this landscape. 

 

Chapter One estimates the relative influence of anthropogenic and biophysical factors - climate, 

vegetation, human access, hydrology, and fire history - on the probability of fire occurrence in a 

peat-swamp forest area in Central Kalimantan, Indonesia from 2000 to 2010. The results of this 

chapter reveal that climate is the most important factor driving fire occurrence (standardized 

regression coefficient: 1.29 (95% credible interval: 1.21-1.37)), which is consistent with findings 

in many other parts of the tropics. The influence of canals (-0.78 (-0.64- -0.92)), which were put 

in place as part of a failed agricultural project and have lowered the water table, and the 

influence of vegetation (-0.92 (-1.01- -0.83)), which has decreased over time, are almost as 

strong as the influence of climate. Our results that vegetation and hydrology contribute almost as 

much as climate to fire probability demonstrates that the impact of canals and deforestation 

continues to contribute to fire risk for the area, even two decades after its abandonment. 
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However, results also suggest a great potential for hydrological rehabilitation coupled with 

planting to reduce fire and thus offset effects of climate on fires. 

  

Chapter Two challenges the assumption that most fire ignitions are located on oil palm 

concessions or on smallholder farms near settlements. Most fires (68-71%) originate in non-

forest, compared to oil palm concessions (17%-19%), and relatively few (6-9%) are within 5 km 

of settlements. Additionally, very few fires that burn forest originate in oil palm concessions 

(2%) or within close proximity to settlements (2%). Moreover, most fires started within oil palm 

concessions and in close proximity to settlements stay within those boundaries (90% and 88%, 

respectively), and fires that do escape constitute only a small proportion of all fires on the 

landscape (2% and 1%, respectively). However, fire ignition density in oil palm (0.055 ignitions 

km-2) is comparable to that in non-forest (0.060 km-2 ignitions km-2), which is approximately 

ten times that in forest (0.006 ignitions km-2). Ignition density within 5 km of settlements is the 

highest at 0.125 ignitions km-2.  Furthermore, increased anthropogenic activity in close 

proximity to oil palm concessions and settlements produces a detectable pattern of fire activity. 

The number of ignitions decreases exponentially with distance from concessions; the number of 

ignitions initially increases with distance from settlements, and, around 7.2 km, decreases with 

distance from settlements. These results refute the claim that most fires originate in oil palm 

concessions, and that fires escaping from oil palm concessions and settlements constitute a major 

proportion of fires in this study region. However, as the density of ignitions in oil palm and 

settlements high, and there is a detectable pattern of fire activity outside the immediate 

boundaries, there is a potential for these land use types to contribute substantially to the fire 

landscape if their area expands.  
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Chapter Three determines if fire activity is reduced on Roundtable on Sustainable Palm Oil 

(RSPO) certified concessions relative to non-certified concessions in Kalimantan and Sumatra, 

Indonesia. Fire activity is significantly lower on RSPO certified concessions than non-RSPO 

certified concessions when the likelihood of fire is low (i.e., on non-peatlands in wetter years), 

but not when the likelihood of fire is high (i.e., on non-peatlands in dry years or on peatlands). 

Our results provide evidence that RSPO has the potential to reduce fires, though it is currently 

only effective when fire likelihood is relatively low. This result implies that, in order for this 

mechanism to reduce fire, additional strategies will be needed to control fires in dry years and on 

peatlands.  

 

As international attention is being directed toward Indonesia after the recent haze crisis in 2015, 

blame is being place on large agro-industrial companies, especially oil palm, and to a lesser 

extent on smallholders (e.g., Allen 2015, Meijaard 2015, Mollman 2015, Soares 2015). The 

prevailing opinion now is that the main driver of fire in tropical peat swamp, apart from climate, 

is escaped fire from land management on those land use classes, meaning fires that accidentally 

burn out of the intended boundaries. The findings presented in this dissertation indicate that oil 

palm concessions are associated with high fire probability (Chapter One) and a substantial 

amount of ignitions and relatively high ignition density (Chapter Two). One of the more pointed 

ways to target fire on oil palm concessions is through RSPO certification; however, we find that 

certification is only effective when fire likelihood is already low, suggesting that, in order for 

this mechanism to reduce fire, more assistance may be needed to control fires in dry years and on 

peatlands (Chapter Three). The recent ban on clearing and converting peatlands, even on existing 
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concessions (Indonesia 2015), is a promising step toward reducing peat fire, but it is insufficient 

by itself, because placing all the blame on agro-industrial companies is an oversimplification of 

the issue. The work in this dissertation determined that fires that escape the boundaries of oil 

palm concessions are actually quite low (Chapter Two). Furthermore, non-forested, degraded 

areas contribute much more to fire activity on this landscape; these areas experience the greatest 

number of ignitions, have highest ignition density, and are the primary source of forest fires 

(Chapter Two). The declines in vegetation and the hydrological alteration in these degraded areas 

contribute substantially to fire occurrence (Chapter One). Effective fire management in this area, 

including fire prevention and suppression efforts, should therefore target not just oil palm 

concessions and smallholdings around settlements, but should also focus strongly on non-

forested, degraded areas –and in particular those near oil palm concession boundaries and outside 

the immediate vicinity of settlements – where fire probability is high and where ignitions and 

fires escaping into forest are most likely to occur. Rehabilitation of the degraded landscape 

through restoring hydrology and replanting, together with awareness-raising, fire fighting and 

law enforcement, will be key to fire reduction.  

 

In addition to assessing how human-driven and biophysical landscape changes alter fire 

disturbance in Indonesia, the methodological approaches in the preceding chapters demonstrate 

ways in which remote sensing and analytical technologies can be used to answer complex 

questions about coupled human and natural systems that fuse social and environmental data, for 

both theoretical and management applications. Chapter One uses biophysical information from 

remotely sensed products and fieldwork with information about human access on the landscape 

and integrates them together with Moderate Resolution Imaging Spectroradiometer (MODIS) 
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Active Fire detections under a Bayesian framework. Variables related to climate, hydrology, 

vegetation, human access, and fire history are standardized so that comparisons can be made 

between seemingly disparate types of data. Chapters Two and Three use a novel technique to 

cluster remotely sensed data on fire occurrence (MODIS Active Fire detections) into fire events 

(i.e., a fire with a common ignition source, which may consist of multiple fire detections). 

Because many studies using satellite data to analyze fire consider individual fire detections at the 

1 km2 resolution (e.g., Langner and Siegert 2009) and not individual fire events (i.e., a fire with a 

common ignition source, which may consist of multiple fire detections), it is often difficult to 

pinpoint the LULC classes on which ignitions occur rather than the LULC classes associated 

with fire or that are predisposed to burning. This issue complicates efforts to determine where to 

target fire reduction efforts aimed at reducing ignitions, particularly if fires quickly escape a 

LULC boundary and burn into another LULC class. The novel approach to analyzing MODIS 

data so that ignitions can be isolated presented in this dissertation allows us to answer questions 

related to fire origin, spread, and impact that cannot be investigated by evaluating fire detections 

alone.  

 

This dissertation addresses a gap in knowledge regarding the anthropogenic contributions to 

increased fire probability and to ignitions in peat swamp, and the approaches could be applied to 

other degraded peatland areas in Indonesia that are candidate sites for restoration (e.g., under the 

newly established Peatland Restoration Agency), especially in Sumatra, Papua, and other parts of 

Kalimantan, and to degraded peatlands that experience a novel fire regime in other parts of the 

tropics, including lowland peatlands in Africa. Furthermore, this dissertation evaluates the 

capacity for RSPO certification to reduce fire activity on oil palm concessions across Sumatra 
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and Kalimantan, Indonesia, and the analyses conducted could be applied to landscapes in other 

parts of the tropics experiencing oil palm development.  

 

In conclusion, the research findings presented in this dissertation are a product of combining 

social and environmental data and evaluating this data with a suite of classic and novel modeling 

approaches. Given the variety and severity of the consequences of tropical peatland fires in 

Indonesia, and the policy efforts to control these fires, it is of global interest to understand this 

changing disturbance regime and reduce fire occurrence. This dissertation is presented in the 

hope that it contributes to our understanding of fire dynamics in Indonesia and that the outcomes 

of this research provide empirical information for conservation and management on this 

landscape.  
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