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ABSTRACT

Essays on Approximation Algorithms for Robust Linear Optiation Problems

Brian Yin Lu

Solving optimization problems under uncertainty has begingortant topic since the ap-
pearance of mathematical optimization in the mid 19th agnt@eorge Dantzig’'s 1955 paper,
“Linear Programming under Uncertainty” is considered ohéhe ten most influential papers in
Management Science [27]. The methodology introduced intigia paper is named stochastic
programming, since it assumes an underlying probabilgtridhution of the uncertain input param-
eters. However, stochastic programming suffers from tlheese of dimensionality”, and knowing
the exact distribution of the input parameter may not baseal On the other hand, robust opti-
mization models the uncertainty using a deterministic uaggty set. The goal is to optimize the
worst-case scenario from the uncertainty set. In recensye@any studies in robust optimization
have been conducted and we refer the reader to Ben-Tal anardvski [4—6], El Ghaoui and
Lebret [20], Bertsimas and Sim [15, 16], Goldfarb and lyeri@d], Bertsimas et al. [8] for a re-
view of robust optimization. Computing an optimal adjus¢ator dynamic) solution to a robust
optimization problem is generally hard. This motivatesastudy the hardness of approximation
of the problem and provide efficient approximation algarith In this dissertation, we consider
adjustable robust linear optimization problems with pagkand covering formulations and their
approximation algorithms. In particular, we study the perfances of static solution and affine
solution as approximations for the adjustable robust bl

Chapter 2 and 3 consider two-stage adjustable robust lpeaking problem with uncertain



second-stage constraint coefficients. For general cora@mxpact and down-monotone uncer-
tainty sets, the problem is often intractable since it rezpito compute a solution for all possible
realizations of uncertain parameters [23]. In particular,a fairly general class of uncertainty
sets, we show that the two-stage adjustable robust proldediPihard to approximate within a
factor that is better thaf(logn), wheren is the number of columns of the uncertain coefficient
matrix. On the other hand, a static solution is a single (a@cknow) solution that is feasible for
all possible realizations of the uncertain parameters ande computed efficiently. We study the
performance of static solution as an approximation for thjastable robust problem and relate its
optimality to a transformation of the uncertain set. Witlstttransformation, we show that for a
fairly general class of uncertainty sets, static solutgaptimal for the adjustable robust problem.
This is surprising since the static solution is widely péred as highly conservative. Moreover,
when the static solution is not optimal, we provide an ins¢gabased tight approximation bound
that is related to a measure of non-convexity of the transétion of the uncertain set. We also
show that for two-stage problems, our bound is at least ad (gal in many case significantly bet-
ter) as the bound given by the symmetry of the uncertaintjldet2]. Moreover, our results can
be generalized to the case where the objective coefficiandtsght-hand-side are also uncertainty.
In Chapter 3, we focus on the two-stage problems with a faafigplumn-wise and constraint-
wise uncertainty sets where any constraint describing ¢hensolves entries of only a single
column or a single row. This is a fairly general class of utaiaty sets to model constraint coef-
ficient uncertainty. Moreover, it is the family of uncertirsets that gives the previous hardness
result. On the positive side, we show that a static solusaniO(logn- min(logl’, log(m-n)))-

approximation for the two-stage adjustable robust probAdrarem andn denote the numbers of



rows and columns of the constraint matrix dnds the maximum possible ratio of upper bounds
of the uncertain constraint coefficients. Therefore, fanstantl", surprisingly the performance
bound for static solutions matches the hardness of appedidmfor the adjustable problem. Fur-
thermore, in general the static solution provides neartylibst efficient approximation for the
two-stage adjustable robust problem.

In Chapter 4, we extend our result in Chapter 2 to a multiestdjustable robust linear opti-
mization problem. In particular, we consider the case whiggechoice of the uncertain constraint
coefficient matrix for each stage is independent of the sthém real world applications, deci-
sion problems are often of multiple stages and a iteratiy@dementation of two-stage solution
may result in a suboptimal solution for multi-stage proble¥wie consider the static solution for
the adjustable robust problem show that it is optimal fordtdpistable robust problem when the
uncertainty set for each stage is constraint-wise. We alsam approximation bound on the per-
formance of static solution for multi-stage adjustableusitproblem that is related to the measure
of non-convexity introduced in Chapter 2.

Chapters 5 considers a two-stage adjustable robust lirmeariog problem with uncertain
right-hand-side parameter. As mentioned earlier, suchlenas are often intractable due to astro-
nomically many extreme points of the uncertainty set. Wieothice a new approximation frame-
work where we consider a “simple” set that is “close” to thigyimal uncertainty set. Moreover,
the adjustable robust problem can be solved efficiently dwerextended set. We show that the
approximation bound is related to a geometric factor thategents the Banach-Mazur distance
between the two sets. Using this framework, we provide appration bounds that are better than

the bounds given by an affine policy in [7] for a large classméiesting uncertainty sets. For



instance, we provide an approximation solution that giveg/4-approximation for the two-stage
adjustable robust problem with hypersphere uncertairtfyndele the affine policy has an approx-
p-1

p—- 1
imation ratio ofO(,/m). Moreover, our bound for generptnorm ball ism »* as opposed tanp

given by an affine policy.
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Chapter 1

Introduction

1.1 Background and Motivation

This thesis is devoted to approximation algorithms for atdjble robust linear problems. Research
in this area was ignited by the emergence of optimizatiobleras under uncertainty in the input
parameters. Such uncertainty arises naturally in manywedt optimization problems. For ex-
ample, in a Knapsack problem, the item sizes and the sizeeddrthpsack may be uncertain; In a
machine scheduling problem, the processing time for theiagrjobs may be uncertain. George
Dantzig’s 1955 paper, “Linear Programming under Uncetydiis considered one of the ten most
influential papers in Management Science [27]. The metlomyointroduced in Dantzig's paper
is named stochastic programming, since it assumes an yimdpdrobability distribution of the
uncertain input parameters. The objective of stochastignamming is to optimize the expected
value subject to chance constraints. We refer the readdé¢alt@nd Wallace [29], Prekopa [31],

Shapiro [32], Shapiro et al. [33] for a thorough introduntiof stochastic programming. Sev-



eral empirical algorithms such as sample average approximand stochastic gradient descent
have shown theoretical and numerical success. Howevehattic programming suffers from the
“curse of dimensionality” and is intractable in general. fglaver, knowing the exact distribution
of the input parameter may not be realistic, and one may calg Ipartial information such as the
moments of the uncertain parameters or bounds on such teanti

On the other hand, robust optimization models the unceparameters using a deterministic
uncertainty set. The goal is to optimize the objective valogesponding to the worst-case sce-
nario from the uncertainty set. Soyster [34] first considetsist linear optimization problem in
the early 1970s. The author shows that there is a compaer lpregramming formulation for ro-
bust problem with certain uncertainty sets. In fact, rolopsimization is computationally tractable
for a large class of problems if we want to compute a statiotswi which is feasible for all sce-
narios. However, interestingly enough, the methodologgtwanoticed for more than 20 years
after its debut. It was until late 1990s that researchesigfigld have become active again. The
series of Ben-Tal and Nemirovski [4—6], El Ghaoui and Lelp26{, Bertsimas and Sim [15, 16],
Goldfarb and lyengar [24], Bertsimas et al. [8] give a sofidiew of robust optimization, and most
of these studies focus on the robustification of optimizapmoblems and tractable approaches in
formulation.

In general, computing an adjustable (or dynamic) optimhltsmn for the robust optimization
problem is intractable. In fact, Feige et al. [23] show thas ihard to even approximate a two-
stage robust fractional set covering problem with uncenight-hand-side within a factor better
thanQ(logm/loglogm), wheremis the number of elements. This motivates us to consideoappr

imation algorithms for the problem. Static robust solusi@md affine adjustable robust solutions



are two approaches that have been studied in literaturesstatic robust solution, we compute a
single optimal solution that is independent of the choicthefuncertain parameters. Therefore, it
is feasible for all possible scenarios in the uncertainty Bertsimas and Goyal [9], Bertsimas et
al. [12] consider a two-stage adjustable robust coveringlpm with uncertain right-hand-side and
relate the performance of static solution to the symmetitheiuncertainty set. They show that the
static robust solution provides a 2-approximation for the-stage adjustable problem if the uncer-
tainty set is symmetric. However, the gap can be arbitréaiige for a general convex uncertainty
set. Ben-Tal and Nemirovski [5] consider an adjustable solpacking problem with constraint
uncertainty set. They show that the static robust soluooptimal for the two-stage adjustable
robust problem if the uncertainty set is constraint-wise, the choice of each row in the uncertain
coefficient matrix is independent of the other rows (a Cateproduct of row uncertainty sets).
This motivates us to study the optimality conditions of istabbust solution for general convex,
compact uncertainty sets. As mentioned earlier, Soystgrd@nsiders column-wise uncertainty
sets and shows that the static robust solution corresporadsytpercube uncertainty set and can be
solved by a single LP. This is a fairly general class of uraety sets. However, to the best of our
knowledge, no result for the performance of static solutieran approximation to the adjustable
robust problem with such uncertainty sets is known yet.

Ben-Tal et al. [3] introduce an affine adjustable solutided&nown as affine policy) to approx-
imate two-stage adjustable robust covering problem wittedtain right-hand-side. This approach
assumes an affine relationship between the second-staigblgaand the uncertain right-hand-
side. Such solution is preferred in its computational &hitity and strong empirical performance.

Bertsimas et al. [13], lancu et al. [28] consider single digsien multi-stage problem and give



optimality conditions for affine policy. When the geomefpioperties of the uncertainty set are
known, Bertsimas and Bidkhori [7] consider a two-stage stdjole robust covering problem with
uncertain right-hand-side and provide an approximatiamiblcon the power of affine policy that
depends on the simplex dilation factor, the translatiotofaand symmetry of the uncertainty set.
They also compute the above geometric properties for seseaific uncertainty sets. For general
uncertainty sets, Bertsimas and Goyal [10] give a genetimb@fO(,/m) on the performance of

affine policy in regardless of the structure of the uncetyeset, wheramis the dimension of the

uncertain right-hand-side. Moreover, they show that thenblds tight when the uncertainty set is

the intersection of the unib-norm ball and the positive orthant, i.e.,

U={heRT[h]]2<1,h>0}. (1.1.1)

Note that the above set has infinitely many extreme points.atihors also show that affine policy
is optimal if the uncertainty set is a simplex. However, focertainty sets with evefm-+ 3)

extreme points, affine policy can still be sub-optimal. Thest case of affine policy holds for the
uncertainty sets with huge number of extreme points. Thaivates us to find new policies where
we can have a good approximation for the adjustable probiem that the number of extreme

points can be very large.



1.2 Preliminaries

1.2.1 Basic Notation

We denote the set of real numbersIRythe n-dimensional Euclidean space &, and the Eu-
clidean space of the set of matrices of dimensioloy n by R™". We also denote the entry-wise
non-negative counterpart of these sets with subsctipté.g.,RT*" means set ai by n matrices
with non-negative entries. Vectors and matrices are in bmits, e.g.x € R™ implies thatx is

a mdimensional vector. As a conventional routimegenotes vector of all ones (of appropriate
dimension), whileg denotes the standard unit vector in tHecoordinate, i.e., one at th#' en-
try and zeros elsewhere. We dengteas the set of numbersl, 2,...,n}. The superscriptT”
denotes the transpose operation. The inner product of eecto R" andy € R" is denoted by
xTy = "_,X;yj. The Euclidean norm of € R" is denoted by|x||> = (x"x)"/2. We use]|x||1 to
denote the/s-norm ofx, i.e., |[x|[1 = ¥[_; [Xj|. |[X|| denotes the infinity norm, i.e., the largest
component ok in magnitude, i.e.||X||» = max; |xj|. Forx € R™, diag(x) denotes an x m matrix

with diagonal whose diagonal entries are the elementsaofd off-diagonal entries are zeros.



1.2.2 Robust Packing Problems

In Chapters 2 and 3, we consider the following two-stagestdhle robust linear packing problems
MaR—pack Under uncertain constraint coefficients.
T : T
ZAR- =maxc' X+ minmaxd'y(B
AR—pack ” Be U y(B) y( )

h
Ax+By(B) < (1.2.1)

X € R™m

y(B) € R,

whereA € R™M ¢ e R™ d € R? andh € R™ The second-stage constraint matéix R

is uncertain and belongs to a full dimensional compact comweertainty settl C RTX”Z in the
non-negative orthant. The decision variabte®present the first-stage decisions before the con-
straint matrixB is revealed, ang(B) represent the second-stage or recourse decision variables
after observing the uncertain constraint maix 7. Therefore, the (adjustable) second-stage
decisions depend on the uncertainty realization. We camassvithout loss of generality thgt

is down-monotonésee Appendix A.1).

We would like to emphasize that the second-stage objectiefficientsd, constraint coeffi-
cientsB, and the second-stage decision varialglg®) are all non-negative. Also, the uncertainty
set U of second-stage constraint matrices is contained in thenegative orthant. Therefore, the
model is slightly restrictive and does not allow us to haratlatrary two-stage linear problems.
For instance, we can not handle covering constraints imvglsecond-stage variables, or lower

bounds on second-stage decision variables. Note that there restrictions on the first-stage



constraint coefficienté or objective coefficients until later in this thesis. Also, the first-stage
decision variableg and right-hand-sidl are not necessarily non-negative.

Our model is still fairly general and captures importantleggpions including resource alloca-
tion and revenue management problems. For instance, iresioeirce allocation problem consid-
ered in [37],m corresponds to the number of resources with capaditieBhe linear constraints
correspond to capacity constraints on the resources, gtestage matriXA denotes the resource
requirements of known first-stage demands Braknotes the uncertain resource requirements for
future demands. In the framework of (1.2.1), we want to comfitst-stage (fractional) allocation
decisions such that the worst case total revenue over all possibledutemand arrivals froni!
iS maximized.

As another example, consider a multi-server schedulinglpno as in [14] where jobs arrive
with uncertain processing times and we need to make the sthgdlecisions to maximize the
utility. The first-stage matriXA denotes the known processing time of first-stage joldenotes
the available timespan amrepresents the time requirements of unknown arriving jtlse em-
ploy a pathwise enumeration for the uncertain time requamsuch stochastic project scheduling
problem can be modeled as two-stage packing linear progiagnonoblems with uncertain con-
straint coefficients as in (1.2.1).

Computing an optimal adjustable robust solution is intthle in general. In Chapter 2, we
show thatlar—_pack (1.2.1) is hard to approximate within any factor that is éethanQ(logn).

Therefore, we consider a static robust optimization apgrda approximat@&lar_pack- The cor-



responding static robust optimization probl€m,, can be formulated as follows.

Zrob = Maxc'x+d'y
X

Ax+By < h,VBe U
(1.2.2)

x € R™

n
y € R

Note that the second-stage solutjois static and does not depend on the realization of unceBtain
Both first-stage and second-stage decisioandy are selected before the second-stage uncertain
constraint matrix is known angk,y) is feasible for allB € 1. An optimal static robust solution
to (1.2.2) can be computed efficientlydf has an efficient separation oracle. In fact, Ben-Tal and
Nemirovski [5] give compact formulations for solving (122for polyhedral and conic uncertainty
sets.

In Chapter 2 and 3, our goal is to compare the performance opimal static robust solution
with respect to the optimal adjustable robust solutiof1ak_pack (1.2.1). The above models
have been considered in the literature. Ben-Tal and Nerskid®] show that a static solution
is optimal if the uncertainty setl is constraint-wisewhere each constraimt=1,...,m can be
selected independently from a compact convex@geti.e., U is a Cartesian product ofij,i =
1,....m. However, the authors do not discuss performance of stalitigns if the constraint-
wise condition on is not satisfied. Bertsimas and Goyal [11] consider a gematali-stage
convex optimization problem under uncertain constraints@bjective functions and show that the

performance of the static solution is related to the symyneftthe uncertainty setl. However,



the symmetry bound in [11] can be quite loose in many inst&nEer example, consider the case

when U is constraint-wise where eadl4, i = 1,...,mis a simplex, i.e.,

U ={xcR}|e'x<1}.

The symmetry oftl is O(1/n) [12] and the results in [11] imply an approximation boundXsh).
While from Ben-Tal and Nemirovski [5], we know that a statidigion is optimal.

As static solution has been shown to be optimal for adjustadiust problem with constraint-
wise uncertainty sets, it is natural to consider columrewisicertainty sets, i.e., each column
j € [n] of the uncertain matriB belongs to a compact convex s6t C R unrelated to other
columns

U={by1by...by) | bj € G, j € [N} (1.2.3)

In fact, the hardness result fBinr_pack (1.2.1) mentioned earlier is obtained when the uncertainty
set is column-wise. In Chapter 3, we focus on such unceytaiets and show that the static
solution provides a®(logn)-approximation for the adjustable robust problBiRr_pack (1.2.1).

Moreover, our results can be generalized to column-wisecandtraint-wise uncertainty sets, i.e.,

U={BeR"|BecCj,Vjen,B'ecR,Viec[m}.

In Chapter 4, we consider a multi-stage adjustable robostlti optimization problem with

covering constraints. Specifically, we consider the follmxprobleml‘lﬁR whereK € N, denotes



10

the number of decision stages.

Z8g = maxcixo+ min [machxl(Bl)+ min [ max CjX(B1,B2)+...
Bie | x1(B1) B2€ Uz | x2(B1,B2)

: T

4+ _min max cyXk(B1,...,B

Bk € Uk LK(BL---BK) <Xk (B K)}H

Axo+ B1x1(B1) +B2x2(B1,B2) +...+ Bk Xk (B1,...,Bk) < h,
VBt € Ut € [K]

X0,X1(B1),...,Xk(Bg,...,Bk) >0

whereA € R™" ¢ € R", h € RT, andB; € 7 C RT*" be the uncertain constraint coefficient
matrix for thet'"-stage for alt € [K]. Note that the uncertainty for each stage is independehiof t
uncertainties for the other stages, i.e., the uncertaettyis= U x Uz x ... x Uk. lancu et al. [28]
consider single dimension multi-stage linear adjustal®lem with covering constraints and give
optimality conditions for affine policy. Other the other ldanve study the multi-dimensional ad-
justable robust problem with packing constraints and thieopmance of static solution as its ap-
proximation. In particular, we generalize the result of Bahand Nemirovski [5] by showing that
the static solution is optimal for the multi-stage adjutabbust problem when the uncertainty set
for each stageec [K] is constraint-wise. We also give an approximation bouncherperformance

of static solution that is related to the measure of non-egity introduced in Chapter 2.

1.2.3 Adjustable Robust Covering Problem and Affine Policie

In Chapter 5, we consider a two-stage adjustable robustrliaptimization problems with cov-

ering constraints and uncertain right-hand-side. In paldr, we consider the following model
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I_IAR—cover((u>:

—cover U) = mi T . dT h
ZaR—cover (U) =Minc X-+maxmin y(h)

h) > h
Ax+By(h) > (1.2.4)

x € R}

y(h) € R,
whereA ¢ R™M ¢ e RT,d € RT, B € R™M, The mechanism of such model is the same as that
of Mar—pack(U) (1.2.1) except that the right-hand-siddés uncertain and belongs to a compact,
convex and full-dimensional uncertainty <#tC R". The choice oh € U is subject to adversary
selection, i.e.h is chosen so that the second-stage cost is maximized. Agairgan assume
without loss of generality that; = np = n and U is down-monotone, i.eh € U and0 < h<h
implies thath € .

Similar to previous model, we would like to note that the ahjee coefficientsc, d and the
decision variablex,y(B) are all non-negative. Moreover, the uncertainty gets constrained
to be in the positive orthant. Again, this is slightly restitre but the above model still captures
many important applications. For instance, in a demangigypoblem h represents the uncertain
demandA andB denote the supply-demand adjacency network matrix fomioedecision stages,
andc andd are the corresponding costs for supply. In the frameworKl g§_cover (U) (1.2.4),
our goal is to minimize the worst-case total cost over allsgiue future demand frontl. As
another example, we can obtain a two-stage set-cover pnaifesettingA andB to the element-
set incidence matrix. In fact, many combinatorial optini@a problems with uncertain right-

hand-side can be modeled using the framework such as ydoitiation and Steiner trees.
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Feige et al. [23] show that a two-stage robust set cover usm®e plausible complexity as-
sumptions is hard to approximate within any factor that igdveghanQ(logm/loglogm). This
motivates us to consider approximation algorithms for tii@stable robust problefiag (1.2.4)
for general uncertainty sets. Ben-Tal et al. [3] introdusetiine adjustable solution (also known
as affine policy), which assumes an affine relationship betviiee second-stage varialylgn) and
the uncertain right-hand-side i.e.,y(h) = Ph+q for someP € R™™ andq € R™. Therefore,

under affine policyl1ar_cover (U) (1.2.4) can be formulated as

ZAR—cover—aff (1) = MiNC'X +2
z—d'q>d"Ph, Yhe U
e (Ax+Bq) > & (I —BP)h, Vi € [m/,h € U
e (Ph+q) > 0, Vie[m,heu

X € R,

which can be solved efficiently provided a separation oracks 7. For general uncertainty sets,
Bertsimas and Goyal [10] give a bound®f./m) on the performance of affine policy. Moreover,
they show that the bound is tight when the uncertainty sdtadritersection of the unit-norm
ball and positive orthant. In Chapter 4, we provide a appnation framework that gives a ap-
proximation ratio ofm/# for such uncertainty set. Moreover, we generalize our tésujeneral

¢p-norm balls withp > 1.



13

1.3 Our Contributions

Although mentioned in a scattered fashion previously, welditike to summarize our main con-

tributions at this point:

e In Chapter 2 and 3, we consider the two-stage adjustablestdimear packing problems
MAR-pack (1.2.1). Our goal is to compare the performance of an opttaaic robust solution

with respect to the optimal adjustable robust solution.

Hardness of Approximation. We show that the adjustable robust probl8gk—pack (1.2.1)

is Q(logn) hard to approximate for the case of column-wise uncertaety. In other words,
there is no polynomial time algorithm that computes an adhle two-stage solution with
worst case objective value within a factor better tilfaflogn) of the optimal. Our proof
is based on an approximation preserving reduction from #teacver problem [36]. In
particular, we show that any instance of set cover problembeareduced to an instance of
the two-stage adjustable robust problem with column-wets where each column set is a
simplex. For the more general case where the uncertainty/ setd objective coefficients
are not constrained to be in the non-negative orthant, we siat the two-stage adjustable
robust problem iS)(Z'OgH M-hard to approximate for any constant@ < 1 by a reduction
from theLabel-Cover-Problem [1]. The hardness of approximation results motivate us tb fin

good approximations for the two-stage adjustable robudilpm.

Optimality of static solution. We give a tight characterization of the conditions undeictvh

a static solution is optimal for the two-stage adjustabheisd problenflar_pack (1.2.1). The
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optimality of static solutions depends on the geometripprbes of a transformation of the
uncertainty set. In particular, we show that the statictsmtus optimal if the transformation
of U is convex. If U is a constraint-wise set, we show that the transformatiofilas
convex. Ben-Tal and Nemirovski [5] show that for suth a static solution is optimal for
adjustable robust problem. Therefore, our result extemelsdsult in [5] for the case where
U is contained in the non-negative orthant. We also preséet éamilies of uncertainty sets

for which the transformation is convex.

This result is quite surprising as the worst-case choicB af U usually depends on the
first-stage solution even HI is constraint-wise unles®l is a hypercube. For the case of
hypercube, each uncertain element can be selected indapgnttom an interval and in
that case, the worst-caBeis independent of the first-stage decision. However, a caingt
wise set is a Cartesian product of general convex sets. We ttad if the transformation of
U is convex, there is an optimal recourse solution for the woase choice dB € U that is
feasible for allB € U. Furthermore, we show that our result can also be interpretehe
following min-max theorem.

By <hl = By < h}l.
gnelgryzaox{d y By <h} ryz%xgnelg{d y By <h}

The inner minimization on the max-min problem implies theg solutiony must be feasible
for all B € U and therefore, is a static robust solution. We would likedterthat the above

min-max result does not follow from the general saddle-pthiaorem [17].

In Chapter 4, we generalize the optimality condition fotistaolution to a multi-stage prob-
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lems where the choice of the uncertainty constraint coefiisifor each stage is independent
of the others. In particular, we show that the static sohuisooptimal for the multi-stage ad-
justable robust problem if the uncertainty set for eachesitagonstraint-wise, thereby gener-
alizing the result of Ben-Tal and Nemirovski [5] to the mtdtage problems. Moreover, we
give an approximation bound on the performance of statigtgwi for multi-stage adjustable

robust problem that is related to the measure of non-cotywaxroduced in Chapter 2.

Approximation bounds for the static solution. We give a tight approximation bound on
the performance of the optimal static solution for the aidjoke robust problem when the
transformation oftl is not convex and the static solution is not optimal. We eethe per-

formance of static solutions to a natural measure of nowaaty of the transformation of

U. We also present a family of uncertainty sets and instanbesawve show that the approx-
imation bound is tight, i.e., the ratio of the optimal objeetvalue of the adjustable robust
problem (1.2.1) and the optimal objective value of the ropusblem (1.2.2) is exactly equal

to the bound given by the measure of non-convexity.

We also compare our approximation bounds with the bound msBeas and Goyal [11]
where the authors relate the performance of the staticisnhitvith the symmetry of the
uncertainty set. We show that our bound is stronger thanythmemetry bound in [11]. In
particular, for any instance, we can show that our bound lisaat as good as the symmetry
bound, and in fact in many cases, significantly better. Fstaimce, consider the following
uncertainty set

U= {BGRTX”

B: <1).
5o, <1)
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In this casesym(U) = 1/mn[12] and the symmetry bound &(mn). However, we show

that a static solution is optimal for the adjustable robusbfem (our bound is equal to one).

Models with both constraint and objective uncertainty. We extend our result to two-
stage models where both constraint and objective coeffgi@re uncertain. In particular,
we consider a two-stage model where the uncertainty in tbenskstage constraint matrix
B is independent of the uncertainty in the second-stage tget Therefore(B,d) belong

to a convex compact uncertainty s@tthat is a Cartesian product of the uncertainty set of

constraint matrice€/® and uncertainty set of second-stage objectitfe

We show that our results for the model with only constrairgfficient uncertainty can also
be extended to this case of both constraint and objectivertainty. In particular, we show
that a static solution is optimal if the transformation@® is convex. Furthermore, if the
transformation is not convex, then the approximation boumthe performance of the opti-
mal static solution is related to the measure of non-cotyefithe transformation of/B.
Surprisingly, the approximation bound or the optimalityaastatic solution does not depend
on the uncertainty set of objectivé#®. If the transformation oft/B is convex, a static solu-
tion is optimal for all convex compact uncertainty sété C R”f. We also present a family

of examples to show that our bound is tight for this case ak wel

We also consider a two-stage adjustable robust model whexgdition to the second-stage
constraint matriXB and objectival, the right hand sidé of the constraints is also uncertain
and

(B,h,d) e u=uBMx ul,
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where is a convex compact set that is a Cartesian product of thetanuty set for(B, h)
and the uncertainty set fak For this case, we give a sufficient condition for the optitgal
of a static solution that is related to the convexity of trensformation of uncertainty set
/B, Note again that the optimality of a static solution doesdegend on the uncertainty
set of objective€19. However, our approximation bounds do not extend for thiedathe

transformation oftiB" is not convex.

Uniform Approximation Bound for Column-wise and Constrain t-wise Uncertainty Sets

In Chapter 3, we focus on column-wise and constraint-wisetainty set (1.2.3) and show
thatin this case, a static solution providesriogn-min(logl", log(m+n)))-approximation
for the two-stage adjustable robust problem wHelis the maximum possible ratio of the
upper bounds of different matrix entries in the uncertaisgy (See Section 3.3 for de-
tails). Therefore, ifl is a constant, a static solution giveGélogn)-approximation for
the adjustable robust problem for column-wise and comdtmaise uncertainty sets; thereby,
matching the hardness of approximation. This is quite ssirg as it shows the static so-
lution is the best possible efficient approximation for tlguatable robust problem in this
case. We would like to note that the two-stage adjustablastobptimization problem is
Q(logn)-hard even for the case whénis a constant. Furthermore, whénis large, we
show that a static solution giveslogn-log(m+ n))-approximation for the adjustable ro-
bust problem. Therefore, the static solution provides alypegtimal approximation for the
two-stage adjustable robust problem for column-wise amgiraint-wise uncertainty sets in

general.
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We first consider the case when the uncertainty set is cowmea-and prove a bound of
O(logn- min(logr,log(m+n))) on the adaptivity gap for the adjustable robust problem.
Our analysis is based on the structural properties of thenaptadjustable and static robust
solutions. In particular, we first show that the worst adafytigap is achieved when each
column is a simplex. This is based on the property of the agtistatic robust solution
that it depends only on the hypercube containing the giveemainty sett (Soyster [34]).
We formalize this in Theorems 3.2.1 and 3.2.2. Furthermiorethe simplex column-wise
uncertainty sets, we relate the adjustable robust proliean tippropriate set cover problem
and relate the static robust problem to the correspondingelaRation in order to obtain the

bound on the adaptivity gap.

We extend the analysis to the case wkers a column-wise and constraint-wise uncertainty
set and prove a similar bound on the performance of statitisak. In particular, we show
that if a static solution provides anapproximation for the adjustable robust problem with
column-wise uncertainty sets, then a static solution istapproximation for the case of
column-wise and constraint-wise uncertainty sets. Mogeowe also extend our result to
the case where the second-stage objective coefficientdsareiracertain and show that the
same bound holds when the uncertainty in the objective coitis does not depend on the

column-wise and constraint-wise constraint coefficiertastainty sets.

Our results confirm the power of static robust solutions lier two-stage adjustable robust
problem. In particular, its performance nearly matchestreness of approximation factor

for the adjustable robust problem, which indicates thas mnearly the best approximation
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possible for the problem. In addition, we would like to ndtattour approximation bound
only compares the optimal objective values of the adjustabt static robust problems. The
performance of the static robust solution policy can patdigtbe better: if(x*,y*) is an
optimal static robust solution, we only implement the fetge solutiox™ and compute the
recourse solution after observing the realization of theeutain matrixB. Therefore, the

objective value of the recourse solution can potentiallypéieer than that of*.

In Chapter 5, we consider the two-stage adjustable roesilioptimization problems with
covering constraints and uncertain right-hand-Sig& _cover(U) (1.2.4). We introduce a
new approximation framework for the problem. Our framewmrkbased on choosing an
appropriate dominating seftl by exploring the geometric structure @f in order to get

better approximation bounds than the affine policy.

One of the main reasons of intractability of adjustable sblmptimization problems is that
the number of extreme points of the uncertainty getan be large. Our new approach
approximates the uncertainty s@twith a “simple” set that is “close” tct/ and over which
the adjustable problem can be solved efficiently. In paldicdor any uncertainty setl,
we construct an uncertainty sét with small number of extreme points that dominatés
i.e., for anyh € U, there exist$ € €1 such thath < h. Therefore, solving the adjustable
robust problem ovef! gives a feasible solution for the adjustable robust prokbeer ..
We show that the approximation bound is related to a geoafantorB(u@) that represents

the Banach Mazur distance between the getnd 1.

Using this framework, we provide approximation bounds tuat better than the bounds
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given by an affine policy in [7] for a couple of interesting eninty sets. For instance,
we provide an approximation solution that givesn&*-approximation for the two-stage
adjustable robust problefMar_cover (U) (1.2.4) with hypersphere uncertainty set, while the
affine policy has an approximation ratio©f ,/m). More general, our bound for thenorm

p-1 1
unit ballism »® as opposed tm? given by an affine policy.
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Chapter 2

A Tight Characterization of the
Performance of Static Solutions In
Two-stage Adjustable Robust Linear

Optimization

2.1 Introduction

In this chapter, we consider a two-stage adjustable rolmestd packing problem3ag —pack (1.2.1)
under uncertain constraint coefficients. For the ease oftidigon, we denote the problemldgg

throughout this and next chapter.

Outline. The rest of the chapter is organized as follows: In Secti@) ®&e present the hard-



22

ness of approximation for the two-stage adjustable robratlems. In Section 2.3, we discuss
the optimality of static solutions for the two-stage adfléé robust problem under constraint un-
certainty and relate it to the convexity of an appropriaéasformation of the uncertainty set. In
Section 2.4, we introduce a measure of non-convexity forcamypact set. Moreover, we present
a tight approximation bound for the performance of an optistatic solution for the adjustable
robust problem, that is related to the measure of non-catyekthe transformation of the un-
certainty set. In Section 2.5, we extend our result to tvagstmodels where both second-stage

constraint and objective are uncertain.

2.2 Hardness of Approximation.

In this section, we show that the two-stage adjustable toablem Mg is Q(logn)-hard to
approximate for column-wise uncertainty sets (1.2.3).threowords, there is no polynomial time
algorithm that guarantees an approximation within a faofd®(logn) of the optimal two-stage
adjustable robust solution. We achieve this via an appration preserving reduction from the set
cover problem , which i€2(logn)-hard to approximate [36]. In particular, we have the follogy

theorem.

Theorem 2.2.1.The two-stage adjustable robust problding as defined ir(1.2.1)is Q(logn)-

hard to approximate for column-wise uncertainty sets.

Proof. Consider an instanckeof the set cover problem with ground set of eleme&us{1,...,n}
and a family of subsetss,...,Sm € S The goal is to find minimum cardinality collectidd of

subsetss;,i € [m] that covers allj € [n]. We construct an instancg of the two-stage adjustable
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robust probleni1ag (1.2.1) with a column-wise uncertainty sétas follows.

c=0,A=0, hi=1Viem, dj=1,Vje|n|

Uj = {b e [0, 7)™

m
b<1,bi=0Vistj¢s
i;I i |}

‘U:{[blbz bn]|bj E‘Uj}.

Note that there is a row corresponding to each sulssand a column corresponding to each

elementj. Moreover, is a column-wise uncertainty set. Now,

zar=_min max{e'y
bjeUj,je[n yeR]}

n
> yibj<e
=]

= min min{e'v|b]v>1Vje[n]}
bjej,je[n veRT

where the second equality follows from taking the dual ofitireer maximization problem in the
original formulation. Suppos@,ﬁj for all j € [n] is a feasible solution for instandé. Then, we
can compute a solution for instanéawvith cost at mose' V. To prove this, we show that we can

construct an integral solutidh b; for all j € [n] such that

<t
(VAN
@

§>

Note thath j may not necessarily be integral. For egch [n], consider a basic optimal soluticﬁrp

where

bj cargmaxb'¥ |be U}
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Thereforebj is a vertex oft; for any j € [n], which impliesb; = &, for someij € ;. Also,

bjU>b]0>1 vje[n.

Now, let

Ve argmin{e’v | blv > 1] € [n],v>0}.

Clearly,e™7 < eT¥. Also, for all j € [n], sinceb; = g, for somei; € j,

bjV>1 = ¥, =1,Vje[n|

Therefore¥ € {0,1}™. Let

C={S|V=1}.

Clearly,C covers all the elemerjte [n] and|C| = €'V < €T¥.
Conversely, consider set coverC {Si,i € [m|} of instancel. For anyj € [n], there exists
ij € [m] such thay € §j; ands;; € C. Now, we can construct a feasible SOlUtEij forall j € [n]

for zyr as follows.

bj=e, Vjen

_ 1 if§5eC
Vi = , Vie[m.

0 otherwise

Itis easy to observe thaf v > 1 for all j € [n] ande™v = [C|. O
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2.2.1 General Two-stage Adjustable Robust Problem.

If the uncertainty setl of second-stage constraint matrices and the objectivdiceetsd are
not constrained to be in the non-negative orthanflifk, we can prove a stronger hardness of

approximation result. In particular, consider the follagiigeneral problerﬁlgeR“:

Gen T ; T
= d'y(B
ZyR' = maxc X+Er;n€|(2 rﬂgf y(B)
Ax +By(B) < h (2.2.1)
y(B) >0,

where C R™"is a convex compact column-wise sefd € R" andA € R™", We show that it

is Q(Z'C’@JL8 M)-hard to approximate for any constant < 1.

Theorem 2.2.2.The adjustable robust problef$e" (2.2.1)is Q(Z'C’@JL8 M)-hard to approximate

for any constan0 < € < 1.

We prove this by an approximation preserving reduction ftbmLabel-Cover-Problem [1].

The proof is presented in Appendix B.1.

2.3 Optimality of Static Solutions

As shown in previous section, the two-stage adjustablestgioblenTl ag (1.2.1) isQ(logn)-hard
even for column-wise uncertainty sets. This motivates @istbefficient approximation algorithms
for the problem. In particular, we consider static solution(1.2.2) as an approximation for the

adjustable robust problem. In this section, we presentld tiaracterization of the conditions
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under which a static robust solution computed from (1.2s29ptimal for the adjustable robust
problem (1.2.1). We introduce a transformation of the utaiety setU and relate the optimality
of a static solution to the convexity of the transformation.

An optimal static solution for (1.2.2) can be computed efintly. Note that a static solution
(x,y) is feasible for alB € U. To observe that an optimal static robust solution can bepced in
polynomial time, consider the separation problem: giveolat®nXx,y, we need to decide whether

or not there existB € U andj € {1,...,m} such that

e (Ax +By) > h;,

and find a separating hyperplanéxty) is not feasible. Therefore, by solvimglinear optimiza-
tion problems overd we can decide whether the given solution is feasible or nlaaeparating
hyperplane. From the equivalence of the separation anthgatiion [25], we can compute an
optimal static robust solution in polynomial time. In fatttere is a compact linear formulation to
compute the optimal static solution fDir.p, for a fairly general class of uncertainty sets [2, 5].
We can easily see that the static solution is a lower bounkeobptimal value of the adjustable
robust problem. Suppoge*,y*) is an optimal solution foFlg.,. Then,x = x*,y(B) = y* for all
B € U is feasible fol1pr. Therefore,

ZAR > ZRob- (2.3.1)

We would like to study the conditions under whizkg < zro,. Supposex*,y*(B)) for all
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B € U is a fully-adjustable optimal solution fét 5g. Then

— T <h-— *
Zar = CTX +En€|2ryax{d B) |By(B) <h—Ax*}

ZRob > C' X* +m>%x{dTy By <h—Ax*,vBe U}.
y=

Note thath — Ax* > 0, since otherwise the second-stage problem becomes ibliedsi Mag. In
fact, we can assume without loss of generality thatAx* > 0. Otherwise, it is easy to see that
ZAR = Zrob: SUppOséh— Ax"); = 0 for somei. Since is a full-dimensional convex set, we can

find B € U such thaéij > 0 forall j € [ny]. Therefore,
T <h— 1 T - <h— *Y
Iqur}yznax {d"y(B) | By(B) < h—Ax }_ryz%x{d y|By <h—-Ax*} =0,
which implieszar = zrop. Therefore, we need to study conditions under which

T <h— * > mi T <h— * 3.
ryz%x{d y|By < h— Ax ’VBEH}—E“E'ETZ%X{d y|By <h—Ax*}, (2.3.2)

whereh — Ax* > 0.
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2.3.1 One-stage Models

Motivated by (2.3.2), we consider the following one-stadgistable robust problefys (2, h):

2\ (U h) = I(:‘nei‘?lmyaxdTy
By < h (2.3.3)

y € R,

whereh € RT andh > 0, d € R} and ¢ C RT™" is the convex, compact and down-monotone
uncertainty set. The corresponding one-stage static t@oollemr}, (2, h) can be formulated

as follows:

Z,(U,h) = myaxdTy
By < h vBeu (2.3.4)
y € RT.
Considef) (U, h) as defined in (2.3.3). We can write the dual problem of therinraximization

problem.

Z\r(Uh) = rgiun{hTa |BTa >d,Be U,acRT}.

Substitutingh = hTa anda = Ay, we can reformulate'AR(‘u, h) as follows.

Z\r(U,h) = {nBir:l{)\ INBTu>d, hTp=1 B e U,pcRT} (2.3.5)
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Figure 2.1: The boundary of the setU, e) whenn = 3.
2.3.2 Transformation of U

Motivated from the formulation (2.3.5), we define the foliog transformationr (7Z,h) of the

uncertainty set/ € RT*" andh > 0.
T(U,h)={B"u|hTu=1Be U p>0}. (2.3.6)

For instance, ih = e, thenT (U, e) is the set of all convex combinations of rows®& U for all
B € U. Note thafl (U, e) is not necessarily convex in general. We discuss severaiges below

to illustrate properties of (U, h).

Example 1 (1 where T(U,h) is non-convex).Consider the following uncertainty sét:

U= {B e [0,™"

n
Bij =0, Vi # j, ZBjj§1}. (2.3.7)
=1
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T(U,e) is non-convex. Figure 2.1 illustratdg U, e) whenn = 3. In fact, in Theorem B.4.1, we

prove thafl (U, h) is non-convex for alh > 0.

On the other hand, in the following two lemmas, we show That, h) can be convex for ath > 0

for some interesting families of examples.

Example 2 (Constraint-wise uncertainty set).Suppose the uncertainty satis constraint-wise
where each constraimtc [m| can be selected independently from a compact convesgisetn

other words,l is a Cartesian product dfi,i € [m], i.e.,

U=UL X U X...xX Um,

thenT (U, h) is convex for allh > 0. In particular, we have the following lemma.

Lemma 2.3.1. Suppose the convex compact uncertainty(éét constraint-wise:

U={B|BTe c U},

where Uj is a compact convex setRf]. Then T U, h) is convex for alh > 0.

We provide a detailed proof of Lemma 2.3.1 in Appendix B.2B&n-Tal and Nemirovski [5], the
authors show that a static solution is optimal for the adjoigt robust problem if! is constraint-
wise. In later discussion, we show that a static solutionpneal if T (7, h) is convex for all

h > 0O; thereby extending the result in [5] for the case wheérés contained in the non-negative
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orthant. Note that constraint-wise uncertainty is analegm independence in distributions for

stochastic optimization problems.

Example 3 (Symmetric projections). Suppose the uncertainty sethas symmetric projections,
i.e., the projections ol onto each of its row sets are the same, tfi¢fil, h) is convex for all

h > 0. In particular, we have the following lemma.

Lemma 2.3.2.Consider any convex compact uncertainty @t RT". Forany j=1,....m, let
Uj={b|3IBec Ub=B"g}.

Supposé! is such thattl; = Uj foralli, j € {1,...,m}. Then T U, h) is convex for alh > 0.

We provide a proof of Lemma 2.3.2 in Appendix B.2.

The family of permutation invariantsets is an important sub-class of sets with symmetric
projections. A settl C RT™" is permutation invarianif for any B € U and any permutation
of {1,...,m}, the matrix obtained by permuting the rowsBf say B® whereBﬁ = Bg(i)j, also

belongs tot. For example, consider the following set:

U= {BGRTX”

B:<1).
5o, <1)

It is easy to observe thdt is permutation invariant. Any permutation invariant ¢ehas symmet-

ric projections since

be Ujforsomej=1,... m=be U, Vi=1,....m



32

Therefore,T(U,h) is convex for allh > 0 for any permutation invarianil. However, not all sets

with symmetric projections are permutation invariant. Egample, consider the following set

U C R2*2; ’ \
Xy +X2+X3 <1,
X1 X2
U= Xo+xg+xa <1, (-
X3 X4
% >0,i=1234
Vs

Note that?l has symmetric projections as its projections on both rowsarc Ri | eTx < 1}.

However, is not permutation invariant as

10 01
€ U, but g Uu.

01 10

2.3.3 Main Theorem

Now, we introduce the main theorem which gives a tight charaation of the optimality of the

static solution for the two-stage adjustable robust proble

Theorem 2.3.3(Optimality of Static Solutions). Let zyg be the objective of the two-stage ad-
justable robust problemlar defined in(1.2.1)and %}, be that ofl g, defined in(1.2.2) Then,
ZAR = Zrob If T(U,h) is convex for allh > 0. Furthermore, if TTU,h) is not convex for some

h > 0, then there exist an instance such thgt z> zrp.

Note thatzar = zrop iMplies that the optimal static robust solution 1ak, is also optimal

for the adjustable robust problefhag. In order to prove Theorem 2.3.3, we first reformulate
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Nhr (U, h) andNk,, (U, h) as optimization problems ov&i(2,h). From (2.3.5) and the defini-

tion of T(U, h), we have the following lemma.

Lemma 2.3.4.GivenU C RT*" andh > 0, the one-stage adjustable robust probl&g (7, h)

defined in(2.3.3)can be formulated as
z'AR(‘u,h):Tibn {N|Ab > d,beT(u,h)}. (2.3.8)

We can also reformulaf@k, (1, h) as an optimization problem ovesnv(T (7L, h) as follows.

Lemma 2.3.5.Given U C RT*" andh > 0, the one-stage static robust probldf , (7/,h) de-

fined in(2.3.4)can be formulated as
Zo, (U, h) = min {N|Ab>d, b € conv(T(7,h))}. (2.3.9)

We provide a detailed proof in Appendix B.3.

Note that the formulations (2.3.8) and (2.3.9) are bilirgatimization problems oveF (U, h)
and not necessarily convex evenTif,h) is convex. However, the reformulations provide in-
teresting geometric insights about the relation betweenatfjustable robust and static robust
problems with respect to properties of. Figure 2.2 illustrates the geometric interpretation of
Z,r(U,h) andz, , (U, h) in terms of the formulation in Lemma 2.3.4 and 2.3.5. Now, W& a

ready to prove Theorem 2.3.3.

Proof of Theorem 2.3.3SupposeT (U, h) is convex for allh > 0. Let (x*,y*(B),B € U) be an
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Figure 2.2: A geometric illustration ddy (U, h) andz, (7, h) whend = 3e: For Zyz (U, h),
the optimal solutiorb is the point wherel intersects with the boundary df(U,h), while for
Zs., (U, ), the optimal solution i®& = d sinced € conv(T (U, h)).

optimal fully-adjustable solution thi og. Then

T ; T *
_ d"y(B) | By(B) <h—A
ZnR = C'X +gn€|2y[gg<o{ y(B) | By(B) <h—Ax"}

= X"+ Z\g(U,h— AXY),

where the second equation follows from (2.3.3). We can asswithout loss of generality that

h — Ax* > 0 as discussed earlier. Now,

Zrop > C'X* +m>a(1)x{dTy |By<h—Ax*VBe U}
y>
= CTX* 47z, (U, h — AXY)
= c'X* +2\g(U,h—Ax") (2.3.10)

= ZaR,
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where the first inequality follows as’ is a feasible first-stage solution for the static robust prob
lem. The second equation follows from (2.3.4). Equatio3.(0) follows from Lemma 2.3.4
and Lemma 2.3.5 and the fact thaf7,h — Ax*) is convex. Also, from (2.3.1) we know that
ZAR = Zrob Which implieszar = Zrop-

Conversely, SUPPOSRAR = Zrop. FOr the sake of contradiction, assumgt, h) is non-convex
for someh = h. Then, there must exidt € R such thath ¢ T(,h) butb € conv(T (U, h)).

Consider the following instance 6fag andlMgep:

Note that in this case, we haggg = z'AR(‘u, ﬁ) andzrqp = z'Rob(‘u, F\). Therefore, by our assump-
tion,

Z!AR((uv ﬁ) = ZIRob(ua ﬁ)

Sinceb € conv(T (U, h)), a = 1,b = bis a feasible solution fat, , (U, h). Thereforez, , (U,h) <
1, which impIiesz'AR(‘u, ﬁ) < 1. However, this would further imply that there exists sdpaec
T(,h) such thatb; > b. Since« is down-monotone by our assumption, sdTis?, h) (see

Appendix A.1). Thereforeh € T(2,h), which is a contradiction. O

We give examples of families dfl in Lemma 2.3.1 and Lemma 2.3.2, wh@ret/, h) is convex
for all h > 0. We would like to note that for a givem> 0, it is not necessarily tractable to decide

whetherT (U, h) is convex or not for any arbitrarg!.
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2.3.4 Min-Max Theorem Interpretation

We can interpret a special case of Theorem 2.3.3 as a minimeaxdam. Consider the case where

A =0,c=0, in which we have

ZAR = Z!A\R("U, h),ZROb = Z:Qob("u, h)

Recall:

Z\r(U,h) = gneigryf})x{ dTy’ By < h}.

We define the following function foy € R ,B € U C RT™"™

dTy, if By <h
f(y,B) =
—oo, otherwise.

Now, we can expresz (U, h) andz, . (U,h) as follows:

| . .
Zpr(U,h) = gygryﬁ)xf(y,B)

and

Zs.p (U, h) = maxmin f (y, B).

y>0 BeU
Therefore, from Theorem 2.3.3, we have:
[ f(y,B) = inf(y,B 2.3.11
minmax (y,B) maxmin (v,B) ( )
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if T(U,h) is convex. We would like to note that the min-max equality3(21) does not follow

from the general Saddle-Point Theorem [17] sifi¢g, B) is not a quasi-convex function &

2.4 Measure of Non-convexity and Approximation Bound

In this section, we introduce a measure of non-convexitygiemeral down-monotone compact
sets in the non-negative orthant and show that the perfarenahthe optimal static solution is
related to this measure of non-convexity of the transfoional (7, h) of the uncertainty set!.
We also compare our bound with the symmetry bound introdbgegkertsimas and Goyal [11]. In
particular, we show that our bound is at least as good as thengyry bound, and is significantly

better in many cases.

Definition 2.4.1. Given a down-monotone compact set_ R} that is contained in the non-

negative orthant, theneasure of non-convexi®/(.$) is defined as follows.
K(S) =min{a|conv(S) Cas}. (2.4.1)

For any down-monotone compact e R", k(.§) is the smallest factor by whick must be
scaled to contain the convex hull §f If § is convex, thek(S) = 1. Therefore, if the uncertainty
setU is constraint-wise, ther(T (U, h)) = 1 for allh > 0 (Lemma 2.3.1). On the other hand, if

S is non-convex, ther(S) > 1. For instance, consider the following set:

5”:{XGR1
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Figure 2.3: A geometric illustration ef(.§) whenn = 2: S is down-monotone and shaded with dot
lines,conv(S) is marked with dashed lines, and the outmost curve is thedayrofk - §. Draw

a line from the origin which intersects with the boundarysadt v and the boundary afonv($) at

u. K(S) is the largest ratio of suahandv’s.

Figure 2.3 illustrates seg" for n = 2 and its measure of non-convexity. We would like to
emphasize that given an arbitrary down-monotone compadissadh > 0, it is not necessarily

tractable to compute(T (U, h)).

2.4.1 Approximation Bounds

In this section, we relate the performance of the statictgoidor the two-stage adjustable robust

problem to the measure of non-convexityTlafti, h).

Additional Assumption: For the analysis of the performance bound for static satstiove make
two additional assumptions in the model (1.2.1): the fitags objective coefficientsand the first-
stage decision variablesin Mar (1.2.1) are both non-negative. We work with these assumgtio

for the rest of this and next chapter.
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Theorem 2.4.2.For any down-monotone, compact et R™ ", let
p(U) =max{k(T(U,h))|h> 0}.

Let zar be the optimal value dflag in (1.2.1)and %, be the optimal value dflrep, in (1.2.2)

under the additional assumption that> 0 andc > 0. Then,

Zar < P(U) - Zrob-

Furthermore, we can show that the bound is tight.

Proof. Supposéx*,y*(B),B € ) is an optimal fully-adjustable solution fétag. Based on the
discussion in Theorem 2.3.3, we can assume without lossrergkty thath — Ax* > 0. Then
T ; T *
Zar =C X"+ min max {d y(B) | By(B) < h—Ax
AR +Beu y(B)zo{ y(B) | By(B) < i

= cTX* +Z\r (U, h — AXY),

and

Zrob > €' X* +max {d"y | By < h—Ax*, VB € U}
y (2.4.2)

= CTX* + Zkop, (U, — AXY).
Let h =h— Ax* andk = k(T(U,h)). From Lemmas 2.3.5, we can reformulalg, (U, h) as

follows.

Zo o (U,P)=  min ){M)\bzd,)\ZO}. (2.4.3)

beconv(T(U,h)



40

Suppose{X,B) be the minimizer foz'Rob(‘u,ﬁ) in (2.4.3). Therefore,

A A~ A~

b € conv(T (U, h)) = ~beT(uh).

Now,

Zin(w,h) = berTn(igﬁ) {\|Ab>d,\ >0}

< K-A

A~

= K-z (U, D), (2.4.4)

where the first equation follows from the reformulatiorggf (7, h) in Lemma 2.3.4. The second
inequality follows ag1/k)b € T (7, h) andAb > d and the last equality follows a_, (71, h) = A.

Therefore,

ZnR = O X'+ Z0R(U h— AX¥)
< CTX* K- Zyep (U, h — AXY) (2.4.5)
< K- (CTX" + Zrop (U, h — AX¥))
< P(U) - ZRob, (2.4.6)

where (2.4.5) follows from (2.4.4) and the last inequalyldws from (2.4.2) and the fact that

K=K(T(U,h)) <p(U).

Tightness of the bound We can show that the bound is tight. In particular, given scglar
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H>1and somen € Z., takeA = 0,c=0,d = e,h = eandB = log,n. Consider the following
uncertainty set:

U= {B e [0,™"

n
Bij =0, Vi#j, ZB?]- gl.}.
=1

ForlMag, we have

n
_ - . )
_ Biiyi<lj=1,... B <1
ZpR mBlnman{ey jiiYis L) ) ,”v;l ji= }

o
=min e
B ,-Zl Bjj

n
ZB?jﬁl}-

=

This is a convex problem and by solving the KKT conditions, hee the optimal solution as
Bjj = N3 for j=1,...,n. Hence, the optimal value @ig = n- né = nl*3.

ForMgob, We have
ZRob = myax{ ey ‘ Bjjyi <L VBe U, j= 1,...,n.}
The constraints essentially enfo8gy; < 1forallBj; <1,j=1,...,n. We only need to consider

the extreme case wheBgj = 1, which yieldsy; = 1. Thereforezg,, = n and

1+2
Z n-"s 1
AR _ i —p

ZRob n

D=

In Appendix B.4,we show tha¢(T (U, h)) = ne for all h > 0. Thereforep(U) =né = pand
Zar = P(U) - ZRob- O

In Theorem 2.4.2, we prove a bound on the optimal objectigaar of IMar with respect to
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the optimal objective valugs., of MNg,. Note that this also implies a bound on the performance of
the optimal static robust solution fbtg,, for the adjustable robust probleing. Furthermore, in
using a static robust solutidi, ¥) for the two-stage adjustable robust problem, we only imggleim
the first-stage solutiok and recompute the optimal second-stage soluti@) after the uncertain
constraint matrixB is known. Therefore, the cost of such a solution would onlybb#er than
Zrob Which is at mosp(U) - zag. We would like to note that given any arbitrary down-mon@&on
uncertainty setl, it is not necessarily tractable to comput@ (U, h)) or p(U). In Table 2.1, we
computep(U) for some commonly used uncertainty sets. Moreover, in theving theorem, we

show that (T (U, h)) is at mostm for any for any? C R7*" andh > 0.

Theorem 2.4.3.For any down-monotone convex compactdet R" andh > 0,
K(T(U,h)) <m.

Proof. Note that

T(Uh)={B"u|Be Uh"Tu=1u>0}.

Forallj=1,....m,let

a-((2) #sc)

Lnj T(U,h) C conv (U ‘UJ> (2.4.7)

=1

We can show that

Foranyj=1,...,m, considen=e;/hj. ThenU;j = {BTu|Beu}CT(U,h)foralj=1,...,m
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Consider any € T(U,h) where

3

-
b= B'ejy;,
=1

for someB € U andp > 0 andh™pu= 1. Therefore,

b=

J

1 m
(WBT%') ~(hjky) = > by~ (hjk),
j =

M=

1

whereb; € U;j for all j € [m] andhypy + . .. +hmpm = 1 which proves thab belongs to the convex

hull of the union ofl;j, j € [m]. From (2.4.7), we have that
m
conv(T(U,h)) = conv <U ‘llj) .

j=1

Now consider any € conv(T (U, h)). Thereforep belongs to the convex hull of union of sets
U, i.e.,

m
b=S b\,
j; Iy

for somebj € Uj, j =1,...,mand some\ > Osuch thal\; +... +Am=1. Forallj=1,...,m,

let

T
Bj =hj-ejb;.

Sincebj € Uj andU is down-monotoneBj € U. Now, let

LA |
B:Z—Bj €U,
=
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asB is a convex combination of elementsih Also, letyij = Aj/h; forall j =1,...,m. Therefore,

hTfi=1 andb =BTfie T(,h). Also,

2.4.2 Comparison with Symmetry Bound [11]

Bertsimas and Goyal [11] consider a general two-stage tatjlesrobust convex optimization prob-
lem with uncertain convex constraints and under mild coowlé, show that the performance of a
static solution is related to the symmetry of the uncerjag&t. In this section, we compare our
boundp(U) defined in (2.4.1) with the symmetry bound of [11] for the ca$eéwo-stage ad-

justable robust linear optimization problem under unéertanstraints. The notion of symmetry

is introduced by Minkowski [30].

Definition 2.4.4. Given a nonempty convex compact uncertaintyssetR™ and a point < §, the

symmetry of s with respect is defined as:

sym(s,S):=max{a >0|s+a(s—38) € 5,V5€ S}.

The symmetry of the sétis defined as:

sym(S) := max{sym(s,S) |s€ S}. (2.4.8)
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The maximizer 0{2.4.8)is called the point of symmetry.

In Bertsimas and Goyal [11], the authors prove the followirogind on the performance of
static solution for the two-stage adjustable robust comimization with uncertain constraints

under some mild conditions.

1
ZZR< |1 -7
= (14 g ) e

We show that for the case of two-stage adjustable robusddioptimization under uncertain con-
straints, our approximation bound in 2.4.2 is at least asigmothe symmetry bound for all in-

stances.

Theorem 2.4.5.Consider uncertainty set/ C RT*". Then,

1
< :
max{K(T(U,h)) |h >0} < <l-|— sym(w)
Proof. For a giverh > 0, from the definition ok(-) in (2.4.1), we have
conv(T(U,h)) Ck(T(U,h))-T(U,h).

Therefore, it is sufficient to show

conv(T(U,h)) C <1+ ) -T(U,h) (2.4.9)

forallh > 0. Let

Bo = argmax{sym(B, U) | B € U}
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be the point of symmetry. Then, from the result in [12], wedav

<1+ 1 ) .Bg>B,VB € 1U. (2.4.10)
sym(U)

Now, given anyh > 0, consider an arbitrary € conv(T (U, h)). There exist81,...,Bx € U such
that

K . . .
b= ZGJBjT}\J,hT)\le, MeRT j=1,...,K, e"8=1 0cRK.
=1
From (2.4.10), sinc84,...,Bk € U, we have
K 1 i
b< ¥ 0 1+7>B)\
2 (1 e ) ¥
_ (142 BS S on | e (14—t T(U,h)
= Momm) B | 2,8 sym(ay) TN
The last inequality holds because

K K
h' oA | = Bh"A | =e'0=1.
(gll ) (izll )

Since is down-monotone by assumption, sdi§U, h) (Appendix A.1), and we have

be (1—1— syml(‘u)) -T(U,h).

O

Theorem 2.4.5 states that our bound in Theorem 2.4.2 issttdsayood as the symmetry bound
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Uncertainty setl p(U) | Symmetry bound [11]
Constraint-wise setl = Uy X ... X Un 1 1+ m

Permutation invariant! 1 1+ m

(B [Bllo, < 1[Bllo, <1} C R 1 L+ r(mn)’s
{B:|B[|]1 <1} c RT™" 1 1+mn

{B:|B|lo <1} c RT*" 1 1+ (mn)@
{B:Z?:lBJJ <1,Bjj=0,Vi#j}c01™" n 1+n
{B:3y" ,B% <1Bj=0,vi#j}c[0]""6>1]| no 1+ns

Table 2.1: A comparison between the non-convexity boundtaedymmetry bound for various
. . 1/p
uncertainty sets. All the norms are entry-wise, ilj@\||p = (zim:lz?:l |aj |p> :

and in many cases significantly better. For instance, cen#liet following example:

U= {B e [0,™"

Bi <1}%.
7<)

In this case, U has symmetric projections. Therefore, from Lemma 2.8/, h) is convex for

allh > 0and

max{k(T(U,h)) |h>0} =1

On the other hand! is a simplex andym(U) = n—lz [12]. Therefore,

1
1+ —— —n?+1
+sym(‘ll) e

which is a significantly worse bound. Table 2.1 compares ounbd with the symmetry bound for

several interesting uncertainty sets.
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2.5 Two-stage Model with Constraint and Objective Uncertanty

In this section, we consider a two-stage adjustable robusad optimization problem where both
constraint and objective coefficients are uncertain. Iti@aar, we consider the following two-

stage adjustable robust problﬂﬁBéd).

(B,d) T : T
= maxc min  maxd'y(B,d
“AR XEXT g yaa) y(8.d)

Ax+By(B,d) < h
(B.d) (2.5.1)

n
X € RY

y(B,d) € R,

whereA € R™M ¢ e R't, h € RT, and(B,d) are uncertain second-stage constraint matrix and
objective that belong to a convex compact uncertaintyzget R7*™ x R?. We consider the
case where the uncertainty in constraint maBigoes not depend on the uncertainty in objective
coefficientsd. Therefore,

U= UBxul,

whereU® C RT*™ is a convex compact uncertainty set of constraint matrioesté# C R'? is a
convex compact uncertainty set of the second-stage olge@&s previous sections, we can assume

without loss of generality tha/® is down-monotone.
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We formulate the corresponding static robust probm&{%g), as follows.

B.d :
259 — max min c"x+d"y
Xy deud

Ax+By < h, VB e UB
(2.5.2)

x € R

y € R

We can compute an optimal static robust solution efficientlys easy to see that the separation
problem for (2.5.2) can be solved in polynomial time. In fage can also give a compact LP

formulation to compute an optimal static robust solutiomikdr to (1.2.2). Now, suppose the

optimal solution off1 %g) is (x*,y*), thenx = x*,y(B,d) = y* for all (B,d) € U is a feasible

solution toI‘IE\BFQd) . Therefore,

259 > 89, (2.5.3)

We prove the following main theorem.

Theorem 2.5.1.Let 259 be the optimal objective value of 2 in (2.5.1) defined over the
R AR

uncertainty?l = 1B x 9. Let z(R'i’S) be the optimal objective value BII(R%S) in (2.5.2) Also, let

p(UB) = T;&OXK(T(‘UB,h)).

Then,

B.d B.d
Z,(AR ) < p(U®) 'Zgiob)‘
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Furthermore, the bound is tight.

If T(UPB,h) is convex for allh > 0, thenp(UP) = 1 andngéd) < zgi’g). In this case, Theo-

rem 2.5.1 implies that a static solution is optimal for th@uathble robust problerﬁﬂd). There-
fore, if 1B is constraint-wise or has symmetric projections ti€rii®, h) is convex for allh > 0
(Lemmas 2.3.1 and 2.3.2). In general, the performance ti stalution depends on the worst-case
measure of non-convexity af (78, h) for all h > 0. Surprisingly, the approximation bound for
the static solution does not depend on the uncertain setje¢tes .

To prove the Theorem 2.5.1, we need to introduce the follgwine-stage models as in Sec-

tion 2.3,Myg (U, h) andM,, (U, h).

Z\r(U,h) = min maxd'y

(B,d)eu Yy
By < h (2.5.4)
y € R,
Zrop( s ) = max min d'y
By < h, VBe uP (2.5.5)
y € RY.

where U = 1B x 19 andh > 0. Similar to Lemma 2.3.4 and Lemma 2.3.5, we can reformulate

the above problems as optimization problems over the toamsttion sef (75, h).

Lemma 2.5.2. The one-stage adjustable robust problEllﬁgR(‘u, h) defined in(2.5.4)can be writ-
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ten as:

2, (U, h) =min{A[Ab>d,be T(28 h),d e ul}.

Proof. Considen'I'AR(‘u, h), by writing the dual of its inner maximization problem, wevka

2\ (U h) = B.Olirg({hTO( |BTa >d,(B,d) € U,a € RT}
— i T(4 T(NsdnTg— m
_A,rg,ldr,la{}\h (A) )}\B ()\>—d’h cx_}\,(B,d)e‘u,aeR+}.

=min{A|Ab>d,b e T(uB,h),d e u},

where the last equality holds becaude= 7B x ¢/C. O

Lemma 2.5.3. The one-stage static robust probldth,, (7., h) defined in(2.5.5)can be written

as:

Zron(UL,1) = min{ A | Ab > d.b € conv(T (2% h)).d € U},

We provide a detailed proof in Appendix B.5. Now, we are retdgrove Theorem 2.5.1.

Proof of Theorem 2.5.1Supposex*,y*(B,d), (B,d) € U) is a fully-adjustable optimal solution

d)

for I'I&Bé . As discussed earlier, we can assume without loss of getyetrsth — Ax* > 0. Then,

(Bd) _ Ty : T < ho Ax*
Zyn c' X +(Bt2)|2uy(grjg>§0{d y(B,d) | By(B,d) <h—Ax*}

= X" +Zyr(U,h—AXY), (2.5.6)
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and

Znw) > C'x" +maxmin {d"y | By <h—Ax*,vB € 1®}
y>0 deqd (257)

= CTX* + Zh, (U, h — AX™).

Let h = h— Ax* andk = k(T (28, h)). SupposeA,b,d) is an optimal solution foflk_, (77, h).
Therefore,

b € conv(T(UB,h)) =

Also,

Ab>d = <Kx>.<%5)za,

which implies thatkA, b/, d) is a feasible solution to1 - (7, h) and

A A

ZlAR(u7h) <K- ZlRob(u7h>'

From (2.5.6), we have

B,d * *
289 = X" 4 Zyp (U, h— AX)

< CTX* K- Zhop (U, h — AXF)
< K- (CTX* 4 2k, (U, h — AXY)) (2.5.8)

B,d
< K- Zé%ob)7

where (2.5.8) holds becauge> 1, the last inequality holds from (2.5.7).

We can show that the bound is tight using the same family oédamty sets of matriceft‘:leB
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in the discussion of Theorem 2.4.2:

n
ug,: {BG [O,l]nxn Bij :O, Vi 75 j, lejej Sl}
=

Consider the following instance ﬁfg\Bng) andI'I(R'i’s):

A=0,c=0h=e U= {e}.

From the discussion in Theorem 2.4.2, the bound in Theorém 1 tight. 0J

Note that surprisingly, the bound only depends on the measiunon-convexity of?/® and
is not related tot/9. Therefore, ifT(UB,h) is convex for allh > 0, then a static solution is
optimal for the adjustable robust probIeTltﬂd) irrespective oftl9. As a special case where there
is no uncertainty irB, i.e., 4B = {B%}, and the only uncertainty is i, T (B, h) is convex
for all h > 0 and a static solution is optimal. In fact, the optimality tdits solution in this case
follows from von Neumann’s Min-max theorem [35]. Therefonee can interpret the result as a

generalization of von Neumann’s theorem.

General Case whentl is not a Cartesian product For the general case where the uncertainty set
U of constraint matriceB and objective coefficientd is not a Cartesian product of the respective

uncertainty sets, our bound of Theorem 2.5.1 does not extemlsider the following example:

A=0,c=0h=¢,
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ﬂ:m&Bﬂ)eRT”xRi

n n e
Bii < djSl,dZ—e,Bij:O,Vi#j}.
i; jzl n

Now,

(B.d) : T ;
z = min max{d Biiyi<1 Vj=1....ny>0
AR edeu Ty {d'y | Bjjy; <1, V] y>0}
. 2 d
= min —
Bdeu & Bjj
> 1

where the second equation follows from the fact that at aminof the outer minimization prob-
lem,Bj; > Oforall j=1,...,nandy; = 1/Bjj for the inner maximization problem. Otherwise, if
Bjj = 0 for somej, theny; andd,y; are both unbounded & > £/n > 0. The last equality follows

as for any(B,d) € U,
n n
2 Bi=)d
=1 =1
which implies thaBj; < d; for somej < [n].
For the robust probleril gi’g), consider any static solution> 0. Forallj=1,...,n,

Bjjy; <1,V(B,d) € U.

Since there existB,d) € U such thaBj; =1,y; <1 forall j=1,...,n. Moreovery =eis a

feasible solution aBjj < 1 for all (B,d) € U for all j € [n]. Therefore,

Zo, = min de<g,
(B,d)eUu
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where the second inequality follows by settiig=¢/nfor all j = 1,...,n. Therefore,

wheree > 0 is arbitrary. Therefore, the performance of the optimatistrobust solution as com-
pared to the optimal fully adjustable solution can not bertatma by the measure of non-convexity

as in Theorem 2.5.1.

2.5.1 Constraint, Right-hand-side and Objective Uncertaity

In this section, we discuss the case where the right-hate-¢gihe constraint and the objective

(B,h,d)

coefficients are all uncertain. Consider the following athible robust probleri ,

z&Béh’d) =maxc'x+ min max d'y(B,h.d)
X (B,h,d)e uBhdy(B,h.d)

AX+By(B.h,d) < h
(B.h.d) (2.5.9)
x € R

y(B,h,d) € R?,

whereA € R™M™ ¢ ¢ R™. In this case(B,h,d) € u®"d are uncertain and/B"d C RT*"™ x
RM x R? is convex and compact. We consider the case that the undétain constraint matrix
B and right-hand-side vectdr are independent of the uncertainty in the objective coeffitsid,
ie.,

aBhd — gBh 0
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where ¢7Bh € R™(2+1) js the convex compact uncertainty set of constraint matréoel right-
hand-side vectors, arid® C R™ is the convex compact set of the constraint coefficients.

The corresponding static robust verslﬂfi’g’d), can be formulated as follows.

(B,h,d)

_ T T
rop = Max min ¢'x+d'y

XY deud

Y4

AXx+By < h, ¥(B,h) € ¢B"
(2.5.10)
x € R

y € R

We can compute an optimal solution for (2.5.10) efficiengysblving a compact LP formula-
tion for its separation problem. Now, we study the perforogaof static solution and show that it

is optimal if 7/ is constraint-wise. In particular, we have the followingdhem.

Theorem 2.5.4.Let ;&Béh’d) be the optimal value dﬂfféh’d) defined in(2.5.9)and fRBO’E’d) be the

optimal value ofﬂg’g’d) defined in(2.5.10) Supposel/B" is constraint-wise, then the static
solution is optimal foﬂ'lgBth’d), i.e.,
B,h,d B,h,d
25D _ ABhd) (2.5.11)

To prove Theorem 2.5.4, we need to introduce the one-stagelsioConsider the one-stage
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adjustable robust problef, (7&M9)

| Bhdy _ - T

Zpr(U )_(B,h,ﬂ?érfl,s.h,dmand y
By < h (2.5.12)
y € R,

wheret/Bd = /BN x 9. The corresponding one-stage static robust protiy (7B"9) can
be formulated as follows

Zgop(U>") = max min d'y

By < h, V(B,h) c ﬂB,h (2513)

y € R,

We can reformulate these models as optimization probleresToMi® ", e).

Lemma 2.5.5. The one-stage adjustable robust problEIng(‘quhvd) defined in(2.5.12)can be

written as

Zyg(UBNY) = min { At[Ab > d, (b,t) € T(uBM e),d e ul}.

Flagh]

We present the proof of Lemma 2.5.5 in Appendix B.6.

Lemma 2.5.6.The one-stage static-robust problét, , (1%"9) defined in2.5.13)can be written

as

Zop (UM = min { At | Ab >d, (b,t) € conv(T (1B e)),d e u9}.

Pt bl
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We present the proof of Lemma 2.5.6 in Appendix B.6. Now, wilie reformulations in
Lemma 2.5.5 and Lemma 2.5.6, we are ready to prove Theores 2.5

Proof of Theorem 2.5.&uppose the optimal solution EII(RBO’E’d) is (X,¥), thenx =%X,y(B,h,d) =¥

forall (B,h,d) € U is a feasible solution tﬁlféh’d). Therefore,

Z(ABFéh,d) > Z&%E’d)~ (2.5.14)

On the other hand, suppo$e,y*(B,h,d), (B,h,d) € ©BM) is a fully-adjustable optimal

solution forl‘lféh’d). As discussed earlier, we can assume without loss of getyetedth — Ax* >

0 for all h such tha(B, h) ¢ 1B" for someB. Then,

Z = Cc X"+ min max{ d By < h—Ax
AR (B,h.d)e B4 y>0 {d'y By J
= X" 4 Zg(UBNACDY) (2.5.15)
and
28D > Ty 4 maxmin {dTy ‘ By < h—Ax*,¥(B,h) e ‘quh}
Rob o y>0 deud o
= CTX* 4 Zyp (UBNAXY, (2.5.16)

Since 1B is constraint-wise, so ig/®"AX. From Lemma 2.3.1T (UB"AX e) is convex

and T (UBNAX e) = conv(T(UBMAX e)). From Lemma 2.5.5 and Lemma 2.5.6, this implies
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that

UB7h—A)(k7d> UB7h—A)(k7d)

| |
Zar( = Zrob(

Therefore, from (2.5.15) and (2.5.16), we have

(Bhd) _ _(Bhd)
ZR S ZTRob -
Together with (2.5.14), we hawy " = &) -

We would like to note that we can not extend the approximalbionnds similar to Theo-
rem 2.5.1 in this case. In fact, the measure of non-convexity 78", ) is not even well defined

in this case sinc&/®" is not down-monotone.

2.6 Conclusion

In this chapter, we study the performance of static robukttism as an approximation of two-
stage adjustable robust linear optimization problem umiddeertain constraints and objective co-
efficients. We show that the adjustable problenfidogn)-hard to approximate. In fact, for a
more general case where the uncertainty@ednd objective coefficientd are not constrained
in the non-negative orthant, we show that the adjustablastoproblem isQ(Z'Oglfgm)-hard to
approximate for any constantQe < 1.

We give a tight characterization of the performance of swilution and relate it to the measure
of non-convexity of the transformatidn( 7/, -) of the uncertainty set!l. In particular, we show that

a static solution is optimal if (2, h) is convex for allh > 0. If T(,-) is not convex, the measure
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of non-convexity ofT (1, -) gives a tight bound on the performance of static solutions several
interesting families of uncertainty sets such as condtmaise or symmetric projections, we show
thatT (U, h) is convex for allh > O; thereby, extending the result of Ben-Tal and NemirovSki [
for the case wherél is contained in the non-negative orthant. Also, our appnation bound is
better than the symmetry bound in Bertsimas and Goyal [11].

We also extend our result to models where both constrainoapettive coefficients are un-
certain. We show that itl = 1B x 19, where B is the set of uncertain second-stage constraint
matricesB and 79 is the set of uncertain second-stage objective, then tHerpeance of static
solution is related to the measure of non-convexity 6t/8, -). In particular, a static solution is op-
timal if T (2B, h) is convex for allh > 0. Surprisingly, the performance of static solution does not
depend on the uncertainty s&f. We also present several examples to illustrate such ofityma
and the tightness of the bound.

Our results develop new geometric intuition about the perémce of static robust solutions for
adjustable robust problems. The reformulations of thesddple robust and static robust problems
based on the transformatidn( 7, -) of the uncertainty seti give us interesting insights about
properties oftl where the static robust solution does not perform well. &fwee, our results
provide useful guidance in selecting uncertainty sets shahthe adjustable robust problem can

be well approximated by a static solution.
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Chapter 3

The Adaptivity Gap in Two-Stage Robust
Linear Optimization under Column-wise

and Constraint-wise Uncertain Constraints

3.1 Introduction

In this chapter, we consider the two-stage adjustable tdimear packing problemBlag (1.2.1)
undercolumn-wiseand constraint-wisauncertain constraint coefficients. In the previous chapter
we provide an instance-based tight approximation bounthempérformance of static robust solu-
tion for Mg, which is related to a measure of non-convexity of a tramsédion of the uncertainty

set. However, for the following family of uncertainty sefsnon-negative diagonal matrices with
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an upper bound on thg-norm of the diagonal vector

m
U= {BERTxm Bij =0, Vi # ], Z\Bii Sl},
i=

the measure of non-convexityns Moreover, it is not necessarily tractable to compute thasuee

of non-convexity for an arbitrary convex compact set. We Mdilke to note that such (diagonal)
uncertainty sets do not arise naturally in practice. Fotaimse, consider the resource allocation
problem where the uncertainty sétrepresents the set of uncertain resource requiremento@sitri
A constraint on the diagonal relates requirements of differesources across different demands,
which is not a naturally arising relation. This motivatesastudy the special class cblumn-wise

andconstraint-wisesets. In particular,

U={BcR™"|Be €Cj, jc[n,B'g cRic[m]},

whereCj C R for all j € [n] andR; C R} for all i € [m] are compact, convex and down-monotone
sets. We assume that the sBfsj € [n] andR;, i € [m] are such that linear optimization problems
over U can be solved in time that is polynomial in the encoding lbrgtzl. We refer to the above

uncertainty set as a column-wise and constraint-wise se¢ $he constraints describing the uncer-
tainty set involve entries of only a single column or a single row of thatrix. In the resource

allocation problem, this would imply that we can have a c@ist on the resource requirements of
a particular resource for different demands, and a comstoai resource requirements of different

resources for any particular demand.
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Outline. In Section 3.2, we present the separation problem of thestahle robust problem and

the corresponding static robust problem. In Sections 3d33#, we present the bounds on the
adaptivity gap for column-wise uncertainty sets. We extdraanalysis to the general case of
column-wise and constraint-wise uncertainty sets in 8a@i5. In Section 3.6, we compare our
result with the measure of non-convexity bound in previcuespter and extend our bound to the

case where the objective coefficients are also uncertaindtich 3.7.

3.2 Adjustable Robust Problem: Separation Problem.

Before proving the adaptivity gap for the general columsevand constraint-wise uncertainty
sets, we first consider the case where the uncertaintg/sstcolumn-wise. Recall thail being

column-wise implies that

2= {[byby...bn] | bj € U, j € [n]},

where; C R is a compact, convex, down-monotone set forjal [n].

3.2.1 The Separation Problem.

In this section, we consider the separation problem fontloedtage adjustable robust problem and

a reformulation of the one-stage static robust problenodhiced by Soyster [34]. In particular,
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we have the following epigraph reformulationlOig.

ZAr = Maxc' x+z

Consider the following separation problem.

Separation problent Givenx > 0,z decide whether
: T
By <h-Ax} > 2.1
gnelgryz%x{d y|By < X} >z, (3.2.1)
or give a violating hyperplane by exhibitigje U such that
max{d'y |By <h—Ax} <z
y>0

In Appendix C.1, we show thatygapproximate algorithm for the separation problem (3.iri)
plies ay-approximate algorithm for the two-stage adjustable rolpusblem. Moreover, from
previous discussion, we can assume without loss of gehetiaéith — Ax > 0. Therefore, we can
rescale?! by U = [diag(h — Ax)] "1 so that the right-hand-sidén — Ax) is e. Note that?l is
also a convex, compact, down-monotone and column-wis& ketefore, we can assume without
loss of generality that the right-hand-sideeidn addition, we can interpret the separation problem

as the one-stage adjustable robust prohﬂa‘m(‘u,e) as in (2.3.3). For the ease of notation, we
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denote it asz'AR. By taking the dual of the inner maximization problem, wedav
Zg =min{e’"v|BTv>d,Be U,v>0}

On the other hand, we consider the corresponding one-statie robust problerrh‘l'Rob(‘u,e) as
in (2.3.4).

Z,, =max{d'y|By <eVB e U}.
y>0
We can reformulate:'Rob as a compact LP using the following result of Soyster [34].

Theorem 3.2.1(Soyster [34]) Supposell C RT" is a compact, convex, and column-wise uncer-

tainty set. LeB € R™" be such that
Bij = max{Bj; | B < U}, Vi [m],j € [n]. (3.2.2)

Then,

m>%x{dTy IBy<eVBe U}=maxd'y|By<ey>0l}. (3.2.3)
y>

For the sake of completeness, we provide the proof of The@8t2r in Appendix C.2. There-

fore, we can reformulats, , as follows.
Zhob = Min{e’v | BTv >d,v >0}, (3.2.4)

whereB is as defined in (3.2.2).
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3.2.2 Worst Case Instances for Adaptivity Gap.

In this section, we show that the adaptivity gap is worst dorom-wise uncertainty set when each

column set is a simplex. In particular, we prove the follogvtheorem.

Theorem 3.2.2.Given an arbitrary convex, compact, down-monotone andmohwise uncer-
tainty set? C R™" with U = 7 x ... x Uy, let B be defined as i1f3.2.2) For each je [n],

let
m 1 " }

b <1b=0Vi:Bj=0;,Vje[n].
iZlB

4 Bjj

@j:{bERT

and

U={[byby ... bn] |bj € Uj, Vje[n}.

Let 22r(U) (zAR(‘Zl) respectively) andgg, (U) (zRob(‘il) respectively) be the optimal values of
the two-stage adjustable robust problem and the static soptoblem over uncertainty séf (!
respectively). Then,

ZaR(U) > Zar(U) and Zob(U) = Zron(U).

Proof. Given arbitraryb ilj,j € [n], b is a convex combination ddj&,i € [m], which further
implies thatb € ;. ThereforeB ¢ U implies thatB € U and we havell C . Therefore, any
that is feasible fof1ar () is feasible folar(71), and we havear () > zar(U).

Since U C U, any feasible solution foFlrep(U) is also feasible fofl Rob(‘il). Therefore,

Zrob (1) > Zrop(U). Conversely, letk,§) be the optimal solution dfigey(71). Noting that(%, 0)
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is a feasible solution fdrlg., (U), we have

Zrob (1) > cTX+max{d"y | By <h—A%,VB € U}

=c'f+max{d"y | By < h—AX},

where the last equality follows from Theorem 3.2.1. Funhere,

Zrob(U) = c"X+max{d"y | By < h—AX,VB € U}

=c'x+max{d"y | By < h—A&},

where the last equality follows from Theorem 3.2.1 and tf flaat 7 and U have the sam8.

Therefore zrop (U) = Zrob(U). O

The above theorem shows that the for column-wise unceytagts, the gap between the opti-
mal values offlar andlrep for a column-wise set is largest when each column set is alsknp
Therefore, to provide the tight bound on the performanceatitssolutions, we can assume without
loss of generality that the column-wise, convex compacettamty U is a Cartesian product of
simplices. The worst known instanceldfr with a column-wise uncertainty set has an adaptivity

gap of©(logn). We present the family of instances below.

Family of Adaptivity Gap Examples. Consider the following instandg®) of Mag:

A=0,c=0,d=eh=¢e U= {[b1by...bn] | bj € Uj,j€[n]}, (1\B)
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where
h={beR] |1-b1+2-bp+...+(N—1)-byp_1+n-by <1},
Ub={beR] |n-b1+1-bp+...4+(N=2)-bp_1+(n—1)-by <1},
Therefore,

Uj = {beRi i[(m—i—j-l—l) modn]| - b; gl},Vj € [n|

wheremod is the standard remainder operation and(Gmodn) = n. We have the following

lemma.

Lemma 3.2.3. Let zag be the optimal objective value of the instarite®) of Mg and z, be the

optimal objective value of the corresponding static rolprsblem. Then,

zar = O(logn) - Zrob.

We provide the proof in Appendix C.3.

3.3 O(logn-logl) Adaptivity Gap for Column-wise Uncertainty
Sets

In this section, we first consider the case of column-wiseettamty sets and show that a static

solution gives @(logn-logl")-approximation for the two-stage adjustable robust probihere
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" is defined as follows.

Bmax= rT‘|ax{éij lie[m],jeln}

Bmin = min{Bj | i € [m], j € [n], Bij # 0} (3.3.1)
. Bmax
r=2 Bmin7

whereB is defined as in (3.2.2). From Theorem 3.2.2, the worst caapta&dy gap for two-stage
adjustable robust problem with column-wise uncertaintg seachieved wheril is a Cartesian
product of simplices. Therefore, to provide a bound on thdop@ance of static solutions, we

assume thatl is a Cartesian product of simplices.

3.3.1 One-stage Adjustable and Static Robust Problems

We first compare the one-stage adjustable roldystand static robustz, , problems. Recall,

Z\g =min{e'v|B'v>d,B ¢ U,v>0}

Zkop, = min{e"v|BTv >d,v > 0}.

Theorem 3.3.1.Givend € R and a convex, compact and down-monotone uncertaintg/set
RTX” that is column-wise with simplex column uncertainty ¥@s. .., U,. Let i\R be as defined

in (2.3.3) and %Ob be as defined i3.2.4) Then

Zyg < O(logr logn) - Zx.,.-
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Our proof exploits the structural properties of the optimalutions for the adjustable robust
and static robust problems. In particular, we relate thesiage adjustable robust problem to an
integer set cover problem and relate the static robust enolid the dual of the corresponding LP
relaxation. As earlier, by appropriate rescalingtdfwe can assume that the cakis e. We can

write the one-stage adjustable robust problem as

Zhg =min{e'v |vTbi > 1,bl € uy,¥j € [n],v > 0} (3.3.2)

and the corresponding static robust problem:

n n )
ZRob = maX{ yi| S Blyj<1vie[my> 0} (3.3.3)
=1 | =
= min{e"v|v'Bl >1,Vje[n],v>0}, (3.3.4)
where
Bl =By, Vie [m,j e n). (3.3.5)

We first show that there exists an “integral” optimal solatfor the one-stage adjustable robust

problem (3.3.2).

Lemma 3.3.2.Consider the one-stage adjustable robust prob{8r8.2)where the uncertainty set

U is a Cartesian product of simpliced;, j € [n]. Letp!, j € [n] be defined as i3.3.5) Then,
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there exists an optimal solutidw, b!, j € [n]) for (3.3.2)such that

bl = Bijjeij for some j e [m], Vj € [n]

Vi e {0,1/[3ij ) je [n]}, Vi € [m.

Proof. Suppose this is not the case. I(&tbl) be an optimal solution for (2.3.3). For glle [n],

letb! be an extreme point optimal for
max{V'x | x € U;}.

Since; is a down-monotone simplek) = Bijjaj for somei;  [m]. Note that/"bl > 1. There-
fore, (V, bl,je [n]) is also an optimal solution for (2.3.3). Now, we can reforatelthe separation
problem as follows.

Zyr =min{e"v|vTbl > 1 vj e [n]},

where onlyv is the decision variable. Letbe an extreme point optimal of the above LP. Then for
all j € [n],

\Tij bijj = VijBijl- > 1,

ashi = Bijjaj. Therefore, we have
ve{oypl|iem}, viem

at optimality. O
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From the above lemma, we can reformulate the one-stagetabligsobust problem (2.3.3) as

vj € n),3ij € [ms.tviBl >1v> o} . (3.3.6)

m
Z\gr = Min Z\Vi
i=

A 0-1 formulation of z'AR. We formulate a 0-1 integer program that approximates (B\8itin
a constant factor. From Lemma 3.3.2, we know that there ispgimal solution(v,bl, j € [n])

for (3.3.6) such that

vie{o,l/Bij \ je[n]},Vie[m].

Therefore, ifv; # 0, then

To formulate an approximate 0-1 program, we consider disoralues ofv; in multiples of 2

starting from ¥Bmax. DenoteT = [logl| and7 = {0,...,T}. We consider

teff}.

For anyi € [m|, t € 7, let G denote the set of columnjse [n] that can be covered by setting

t

Vi E{O}U{

Bmax

V| = 2t/Bmax. i'e'l

Cit = {J € [n]
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Also, for alli € [m|,t € 7, let

1 ifvi = 2 ,
X = max
0, otherwise,
ot
G=p5
Consider the following 0-1 integer program.
zZned — mln{ Z chtx.t ZteT » Xt > 1, Vj € [n], xt € {0, 1}}. (3.3.7)

In the following lemma, we show that the above integer prngeq[)proximateszL\R within a

constant factor.

Lemma 3.3.3. The IP problem in(3.3.7)is feasible and provides a near-optimal solution for the

one-stage adjustable robust problem;z(S.S.G) In particular, we have
2 <y < 2%
Proof. Consider an optimal solutiovi for z'AR (3.3.6). Note that for all € [m|, t € 7, let

Lif 2 <V <a,

x
|

0, otherwise.

For anyj € [n], there exist$ € [m], t € 7 such that

‘fikBij > 1.



74

Then,x is a feasible solution to the IP problem (3.3.7) and

m T
d v T !
ZiR" < z 2 CeXit < 2e' V' =2-ZpR.

i=1t=

Conversely, suppos€, i € [m|, t € 7 is an optimal solution for (3.3.7). We construct a feasible

solutionV for (3.3.6) as follows:

v = Z Gt - Xit, Vi € [m].
teT

For eachj € [n], there exists € [m] andt € 7 such thatj € G andx; = 1. Therefore,

2t
Vi Z G=5—,
' Brmax
and
. 2t .
Vi B|] > B|] > 17

and

O

Note that (3.3.7) is a 0-1 formulation for the set cover ins&problem on ground set of

elements{1,...,n} and family of subset€; for all i € [m], t € 7 whereC;; has cost;. We can
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formulate the LP relaxation of (3.3.7) as follows.

Z p = min CtXit Xt > 1, Vj € [n], Xt > 0}- (3.3.8)
{ Z\ Z) Z\te‘f 1€Cit
From [36], we know that the LP relaxation (3.3.8) is@flogn)-approximation for (3.3.7), i.e.,

278 < O(logn) - z.p.

Consider the dual of (3.3.8).

n
Zp = max{ Z i yj<a,Viem,teT,y;>0,Vje [n]} (3.3.9)
j

=1 jeCit

We relate the dual of (3.3.8) to the one-stage static roadil@m (3.2.4) to obtain the desired

bound on the adaptivity gap.

Proof of Theorem 3.3.1From Lemma 3.3.3, it is sufficient to show that

Let y* by an optimal solution of (3.3.9). We show that we can coms$teufeasible solution

for (3.3.3) by scalingy* by a factor ofO(logl"). For each € [m|, we have

> Bmtaxyf <1 vteT.

i B|J>l3max



Sum over alt € 7, we have

il Bmax -
Z} > o Y] < T+1vie[m.
i BIJ>[3max

Switching the summation, we have

i > Bm‘"""y*<T+1<Iogr+2v| € [m]

leteT:Bﬁ"z@‘gﬁf

Note that

Bmax

2T

< Bmin < [3|] < BmaXa

which implies

1 ] Bmax
te‘l‘:—“z}a—xgﬁl
Therefore,
Yi = WW Vje[n|

is a feasible solution to the maximization formulatiorzgf, (3.3.3) and

2p =e'y" =O(logr) - €'y < O(log) - Zg,

which completes the proof.

76
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3.3.2 O(logn-logl) Bound on Adaptivity Gap

Based on the result in Theorem 3.3.1, we show that a statitigolgives anO(logn - logl)-
approximation for the two-stage adjustable robust prob(&rf.1) for column-wise uncertainty

sets. In particular, we prove the following theorem.

Theorem 3.3.4.Let zar be the objective value of an optimal fully-adjustable Solufor the ad-
justable robust problerfilar (1.2.1) and &b be the optimal objective value of the corresponding

static robust problenilrq, (1.2.2) If €U is a column-wise uncertainty set, then,

zar < O(logn-logl) - Zrob

Proof. Let (x*,y*(B),B € U) be an optimal fully-adjustable solution Ebag. Then,

Zar = C' X"+ min max{dT | By(B) < h—Ax*}.

BeUy(B)

From previous chapter, we can assume without loss of getyettedt (h — Ax*) > 0. Let

U* = [diag(h — Ax*)] .

Then,

Zar = C'X* + min max{dTy| By(B) < e}.
BeU*y(B)
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By writing the dual of the inner maximization problem, we bav
N g oral T %
ZAR =C' X +rgln{e pH|B'u>d,Be Uu',u>0}.
7“’

On the other hand, sing&*, 0) is a feasible solution dflg.y,, we have

Zrob > CT X" + m>%x{dTy | By <h—Ax*,¥B e U}
y>

=c'x* +m>%x{dTy |By <eVBec U}
y>
Let B be defined as in (3.2.2). Fd@i*, from Theorem 3.2.1, we have

Zrob > CTX* +max{d'y | By < ey >0}

=c"x* +min{e'v|BTv>d}.
v>0

Note that¢/* is compact, convex, down-monotone and column-wise. Thegeffrom Theo-

rem 3.3.1, we have

Zag =C'X* +rgin{eTu| B'u>d,Be U*,u>0}
M
< c'x* +O(logr logn) - m>i(r)1{eTv |BTv>d}
\
< O(logr logn) - <ch* + rl1>i51{eTv |BTv > d})
\

< O(logn-logl) - Zgep

where the second last inequality followsag* > 0.
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We would like to note that if the ratio between the largest anhllest entries oB is con-
stant, then static solution provides @flogn)-approximation for the two-stage adjustable robust
problem. The two-stage adjustable robust problem is haappvoximate within a factor better
thanO(logn) even when the ratio is one. Therefore, quite surprisinglg, gerformance of the
static solution matches the hardness of approximationisncdese. Furthermore, in the following
section, we show that even when the ratio is large, the datidion still provides a near-optimal

approximation for the adjustable robust problem.

3.4 O(logn-log(m+ n)) Bound on Adaptivity Gap

In this section, we show that a static solution provide©g@iogn - log(m+ n))-approximation for
the two-stage adjustable robust problBixk (1.2.1) with column-wise uncertainty sets. Note that
this bound on adaptivity gap is uniform across instancesdmad not depend dn. In particular,

we have the following theorem.

Theorem 3.4.1.Let zag be the objective value of an optimal fully-adjustable solufor N ar, and
Zrob be the optimal objective value of the corresponding statimst problenilggy (1.2.2) If U

is a column-wise uncertainty set, then,

zZar < O(logn-log(m+n)) - Zrop

To prove Theorem 3.4.1, it is sufficient to prove the appration bound for corresponding
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one-stage problems since we can extend the bound to tha&ge-sroblem using arguments as in

Theorem 3.3.4.

Theorem 3.4.2.Let 2, be as defined i(8.3.6) and %, be as defined i(8.2.4) If the uncertainty

setU is column-wise, then

Zug < O(logn- log(m+ 1) - Zh,p:

If I is a polynomial inm+n), the result follows from Theorem 3.3.1 as log- O(log(m-n)).
However, ifl" is super-polynomial, we need to handle extreme valuéjwiﬁerently in order
to avoid the dependence én Let v* be an optimal solution for the one-stage adjustable robust

problem (3.3.6) an@ = ||v*||«. Let

o i 2m
there exists € [m] s.t. B! > — }

le{je[n] 5

J2=[n]\J1

We show that we can delete the columnslinfrom z'AR (3.3.6) (corresponding to the large
values oféij) such that the modified problem is only within a constantdacf z'AR. As be-
fore, we consider only discrete values wffor all i € [m|. Let T = [max{logm,logn}| and

T ={-T,...,T}. Foralli € [m], we consider

vie{O}U{g

te‘I}.

Also, for alli € [m], t € 7, letCy; denote the set of columns Ja = [n] \ J; that can be covered by
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settingv; = 0/2', i.e.,

. t
G = {ic% |6/ =% |.and
0
Ctzﬁ-

Consider the following 0-1 formulation for the modified osi@ge problem.

m

Z > Xe=1,Vjed, X €{0, 1}}- (3.4.1)
i=1te7:jeCy

ZZ“Ed:min{ Z Ct Xt
ie[m)teT

We have the following lemma.

Lemma 3.4.3.The IP problem in(3.4.1)is feasible and provides a near-optimal solution for the

one-stage adjustable robust problehhz(S.S.G) In particular, we have

Proof. Consider an optimal solutioni* for (3.3.6). We construct a feasible solution for (3.4.1) as

follows. Now, for alli € [m],t € 7, let

Lif 2 <V <

x
|

0, otherwise.

Sincev* is feasible x is a feasible solution to the set cover problem (3.4.1) and

m T
d v T !
Zig <) D CXe <28V =27p.
i=1="T
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Conversely, consider an optimal solutiwhfor the set cover problem (3.4.1). We construct a

feasible solutiorv for (3.3.6) as follows. For all€ [m],

e
V=gt )
teT

Note that we ad@®/2mto eachv; in order to handle the constraints for columnsljrthat are not
considered in (3.4.1). For eagle J;, there exists € [m| such thaBij > 2m/0 andy; Bij > 1. For

all j € J, there exist$ € [m| andt € {—T,..., T} such thatj € G andx; = 1. Thereforey; > ¢
which implies thav; I3.] > 1. Thereforey is a feasible solution for the one-stage adjustable robust

problemz'AR (3.3.6). Moreover, we have
2/
Zg<ei< (—+z§§ ) §A7+zm = Zg < 2-778¢,

which completes the proof. 0J

We can formulate the LP relaxation of set cover problem ia.(@3.as follows.

m
ZLp = Min Zl Cit Xit Zl Z Xip >1,Vjed, xg >05. (3.4.2)
t==T =lteT:5 <

We have

278 < O(logn) - z.p.
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Consider the dual of (3.4.2).

wswvwﬂmwﬂthaweb} (3.4.3)

Zp= max{ ; Yi
igh

We will construct a feasible solution for the one-stagestabust problem (3.3.3) from (3.4.3).

j€Cit

Proof of Theorem 3.4.2From Lemma 3.4.3, it is sufficient to show that
21p < O(log(M-+ 1)) - Zry,-

Lety* by an optimal solution of (3.4.3). We construct a feasibleitson for (3.3.3) by scaling*

by a factor ofO(log(m+n)). Fort = 0, we have

5 %WSLWEmw

CANOEY

Let v* be an optimal solution for (3.3.6). From Lemma 3.3.2, forrepe [n], there exist € [m|

such that

Vi>1=pl> >

<
GD.| =

Therefore, for each € J,, we haval’jK < 0. Sincey* is an optimal solution of (3.4.3), we have

2t
Z 5yjkgl,VteT.

) t
ighpl>5
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Sum over alt € 7, we have

2t .
Eyj* <2T +1,Vi e [m].
teT jg3:pl>5

Switching the summation, we have

2t .
; Z Eyj* <2T+1Vie [m)
i JlteT:%gBij

Note that if3} > 1/n6 andj ¢ J;, then

1_; 2
QBi]— §§28|J
t:5 <pf
Let
L v oijes
. Jaryaly Mlee
Yj =
0, if j €y

For anyi € [m|, we have

n o o 1 . .
]Z]-Bijyj = JeZl Bijyj + AT +3 ( Z Bijy](f-i_ Z Bijy]t()

jZd:pl<1/n0 jZ:pl>1/n0

1 no_ o
<0+—[142 <y
=0t st j;tzzjeyf

B

<1

Thereforey is a feasible solution to the dual f , (3.3.3). Note thaT = O(log(m+n)). There-
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fore, we have

zp=e€'y* =O(log(m+n))-€"y < O(log(m+n)) - Zkp,,

which completes the proof. O

From Theorems 3.3.4 and 3.4.1, we have the following canolla

Corollary 3.4.4. Let zar be the objective value of an optimal fully-adjustable Solufor the ad-
justable robust problerfilar (1.2.1) and &b be the optimal objective value of the corresponding

static robust problenilrq, (1.2.2) If €U is a column-wise uncertainty set, then,

Zar < O(logn- min(logl,log(m+n))) - Zrob

3.5 Column-wise and Constraint-wise Uncertainty Sets.

In this section, we consider the general case where thetanugrset is the intersection of column-
wise and constraint-wise sets. Recall that a column-wisecamstraint-wise uncertainty sét
implies that

U={BcRT"|BejcCj, Vje[n],B'e R, Vie[m}, (3.5.1)

whereCj C R for all j € [n] andR; C R} for all i € [m] are compact, convex and down-monotone
sets. We refer to the above uncertainty set as a column-widecanstraint-wise set since the
constraints on the uncertainty set are either over the columns or the rows of the matrix. As
mentioned previously, we assume that optimization probleiith linear objective ovetl can be

solved in polynomial time in the encoding lengthaf
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We show that a static solution provides @flogn- min(logl',log(m+n))))-approximation
for the two-stage adjustable robust problExg for the above column-wise and constraint-wise

uncertainty set wherk is defined in (3.3.1). In particular, we have the followingdinem.

Theorem 3.5.1.Consider a convex, compact and down-monotone uncertaht/ & R7" that
is column-wise and constraint-wise as(.5.1) Let 2r(U) and %, (U) be the optimal val-
ues of the two-stage adjustable robust problBik (1) (1.2.1) and the static robust problem

Mgrob(U) (1.2.2)0ver uncertainty setl, respectively. Then,

Zar(U) < O(logn-min(logl,log(m+n))) - Zrob(U).

Our proof is based on a transformation of the static robugilpm into a equivalent formulation
over a constraint-wise uncertainty set. In particular, westruct the constraint-wise uncertainty

set as follows. For eadh= [m], let

% ={B"e |Be U}, (3.5.2)

i.e.j{-L is the projection of the uncertainty sétfor theit" row. Let

‘ll:i;{lxi;(zx...xﬂim, (3.5.3)

i.e., a Cartesian product ciﬁ,i € [m|. Note that for anyB € 11, the constraints corresponding to
row-setRy, ..., Ry are satisfied. However, the constraints correspondingltmroo sets, .. .,Cy

may not be satisfied. We have the following lemma.
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Lemma 3.5.2. Given a convex, compact and down-monotone uncertaintg/setR™" that is
column-wise and constraint-wise and ang [0, 1]™ such thae' u =1, let 1 be defined a€3.5.3)
Then, for anyB € 7, we have

diag(K)B € U.

Proof. Noting thatB' g € i{L anddiag(e)B has the!h row asBT e and other rows a6, we have

diag(e)B € U sinceU is down-monotone. Moreovau,is convex multiplier,

m
diag(W)B = deiag(a)B
i=
and U is convex, we havdiag(p)B € U. O

In the following lemma, we show that the static robust probleas the same optimal objective

value for uncertainty setsl and ..

Lemma 3.5.3.Given a convex, compact and down-monotone uncertaintg/setRT" that is
column-wise and constraint-wise, Iét be defined as i3.5.3) Let & (U) and onb(‘il) be the
optimal values of the static adjustable robust probl@gy,, (1.2.2)over uncertainty seti and €,
respectively. Then

ZRob (U) = Zrob(U).

Proof. For anyB € 71, we haveBTq € & for all i € [m], which implies thaB € 7I since 71 is

constraint-wise. Thereford@] C {1 and any solution that is feasible erob(‘fl) must be feasible
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for Mgrob(U). Therefore,

ZRob(iD < ZRob ( U) :

Conversely, supposg,y) is an optimal solution foflg.,(U). We show that it is feasible for

Mrob( 7). For the sake of contradiction, assume that there exists a1 such that

~

(BY); > hi — (AX); for somei € [m] = (diag()BY); > hi — (AR);.

However, from Lemma 3.5.2jag(&)B € U, which contradicts the assumption tti&ty) is feasi-

ble for Mrey( 7). Therefore(X,Y) is feasible foMgey (1) andzres(U) < Zrop (). n
From Ben-Tal and Nemirovski [5] and previous chapter, wexiitat
Zrob(U) = Zar(U),

since{! is a constraint-wise uncertainty set and a static soluiaptimal for the adjustable robust

problem. Therefore, to prove Theorem 3.5.1, it is now sugfitto show

zar(U) < O(logn-min(logl, log(m+n))) - zar ().

Proof of Theorem 3.5.1et (x*,y*(B),B € U) be an optimal fully-adjustable solution Eoar (U).

Therefore,

zar(U) =c'x* + min max{d'y | By < h—Ax*, y > 0}.
S
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As discussed in previous chapter, we can assume withoudfagmerality(h — Ax*) > 0. There-

fore, we can rescalél and 7/ as
S = [diag(h— Ax*)] 1, and$ = [diag(h— Ax*)] 14l
Note that$ is the Cartesian product of the row projectionssofFor anyH € R™", let
Zyr(H) =min{e'v|BTv>d,Bec H,v>0l.

Now,

Zar(U) = cTx* + min max{d'y | By < e, y >0}
€
=c'x*+min{e'v|B'v>d,BeS, v>0}
:CTX*+Z!AR<5)7

where the second equation follows by taking the dual of therimaximization problem. Also,

zar(U) > c"x* + min max{d"y | By < h—Ax*, y > 0}
BeUu

~

= CTX>’< +Z!AR<5)

Therefore, to complete the proof, it is sufficient to showt tha
Z,r(S) < O(logn- min(logT,log(m+n))) - Zys(5). (3.5.4)

Let B € 5 be the minimizer ofZ,;(S). We construct a simplex column-wise uncertainty set,
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#H C RT*" where each simplex column sét; C RT, j € [n] is defined fronB as follows.

H; = conv ({O}U{éija i :1,...,m}).

and

H ={[b1---bn] | bj € Hj,Vj € [n]}.

We would like to note tha#/ C 5: For anyb € Hj, j € [n], we haveb < diag()Be; for some convex
multiplier p. From Lemma 3.5.2diag(l)B € .S, which indicates thatlj C [diag(h — Ax)]~1C;.
Moreover,B satisfies the row constraints sfande B < &' B for anyB € #,i € [m]. Therefore,
HCSand

Z\r(S) < Zhg(H) < O(logn-min(logl, log(m+n))) - Zkep, (H) (3.5.5)
where the second inequality follows from Theorems 3.3.1%A4®. Note thaB is the entry-wise
maximum matrix over{ as defined in (3.2.2). Therefore,

ZIRob("]{) =min {eTV | éTV > d} = Z!AR(3>7

where the first equality follows from Theorem 3.2.1 and theose equality follows from the
fact thatB € § is a minimizer forz,;(5). Therefore, from (3.5.5), we haw(.S) < O(logn-

min(log,log(m-+n))) - Z4z(S)- O
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3.6 Comparison with Measure of Non-convexity Bound

In this section, we compare our bound with the measure ofaumwexity bound introduced in
the previous chapter. We show that our bound provides anruppend on the measure of non-
convexity for column-wise and constraint-wise uncertasts. In particular, we have the follow-

ing theorem.

Theorem 3.6.1.Given a convex, compact and down-monotone uncertaint§/setR™" that is
column-wise and constraint-wise as(®.5.1)andh > 0, let T(U,h) andk(T(U,h)) be defined

asin(2.3.6)and(2.4.1) respectively. Then,
K(T(U,h)) <O(logn-min(logl,log(m+n))).

Proof. Let a = logn- min(logl,log(m+n)). Let ®,,i € [m be defined as in (3.5.2). From the

1 -~
ﬁ”“)’

proof of Theorem 2.4.3, we have

conv(T(U,h)) = conv (

LCs

Given anyd € conv(T(U,h)), we have

whereb; € ®,,i € [m], A > 0ande" A = 1. For alli € [m], letB; = b . Sincel is down-monotone,
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Bi € U. Let

B= [diag(h)]—l_isi.

Therefore,BTA = d. We construct a simplex column-wise uncertainty st R™" using B

similar to the proof of Theorem 3.5.1. Let
9 ={[b1---bn] | bj € Hj,¥]j € [n]}

where

H;j :conv<{O}U{§ija | izl,...,m}>

for all j € [n]. Note thatH; C [diag(h)]~1C;, which implies that?{ C [diag(h)]~1U. From Theo-

rem 3.2.1, we know that
Zoop(H) =min{e'v|BTv>d,v>0},
andA is a feasible solution fazg., (7). Thereforez,  (#) < €A = 1. Furthermore,
Zpr([diag(n)] 1 1) < Zyg(H) < O() - Zrep, () < O(0),

where the first inequality follows a®&/ C [diag(h)]~*U and the second inequality follows from

Theorems 3.3.1 and 3.4.2. Therefore, there exist8*) such that

(B*)Tv* >d, B* € [diag(h)] 1, andev* < O(a).



Now, let

. * 1 : —1, %
Q = diag(h)B* andp= W[dlag(h)] vE

Then,Q € W andh™p = 1, which implies thaQTp € T(,h). Note that

Since U is down-monotone, so iB(U, h). Therefore, fod € conv(T(U,h)), we have

1

O(or)d eT(U,h),

which implies thak (T (U, h)) < O(logn-min(logl,log(m+n))).
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3.7 Adaptivity Gap under Constraint and Objective Uncertainty.

In this section, we show that our result can be generalizédea@ase where both constraint and

objective coefficients are uncertain. In particular, we sider the two-stage adjustable robust

probleml‘I&Béd) asin(2.5.1).

(B,d) T : T
= maxc min maxd'y(B,d
“AR XX Baicu yB o) y(8.d)

Ax+By(B,d) < h

x € R}, y(B,d) € R
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We consider the case where the uncertainty in constrainixrgits column-wise and constraint-

wise and does not depend on the uncertainty in objectivdicaeitsd. Therefore,
U= UuBxu,

where ¢® C RT" is a convex compact uncertainty set of constraint matribas is column-

wise and constraint-wise, ardd C R" is a convex compact uncertainty set of the second-stage
+ p y g

objective. Consider the corresponding static robust jerlpl E{i’g) asin (2.5.2).

B.d :
259 — max min c"x+d"y
Xy deud

Ax+By < h, VB e UB

x,y € RY.

We prove the following theorem.

Theorem 3.7.1.Let z(ABng) be the optimal objective value dﬁgBng) in (2.5.1) defined over the

uncertainty?l = UB x U9, where B C R™" is a convex compact uncertainty set of constraint

matrices that is column-wise and constraint-wise, &fiC R") is a convex compact uncertainty

set of the second-stage objective. ngg% be the optimal objective value m(R'if) in (2.5.2)

Then,

289 < O(logn- min(logT, log(m-+n)) - 22,



95

Proof. From Theorem 2.5.1, we have

2539 < max{k(T(u,h)) | h>0}-229.

From Theorem 3.6.1, we have
max{K(T(U,h)) | h >0} <O(logn-min(logl,log(m-+n))),

which completes the proof. 0J

3.8 Computational Study

In this section, we perform a computational study on thegsarnce of static solutions as an ap-
proximation for the two-stage adjustable robust probliéga (1.2.1) with column-wise uncertainty
sets. From Theorem 3.2.2, we focus on uncertainty sets tbaartesian products of simplices
because they give the worst performance of static solutiénem Theorem 3.2.1, we can com-
pute an optimal one-stage static solution Iﬂj{ob (3.2.4) as a single LP. On the other hand, it is
NP-hard to compute an optimal solution for the one-stagesaalple robust problertﬁ'AR. How-
ever, we can consider the set cover formulatioﬁlQ]; (3.3.6) and solve the integer programming

formulation using Gurobi. In particular, give® € R™" as defined in (3.2.2), we consider the
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following instance of the adjustable robust problem:

c=0,A=0, hi=1Viem, dj=1,Vje|n|

. m 1 .
U= becRT —bi <1,bj=0,Vi:Bjj =03, Vje|[n.
j { + i;Bij i < 1,bi i } j€(n]

‘U:{[blbz bn]‘bj E‘Uj}.

We solve the following IP problem fdfl (3.3.6)

Zyg = minfe'v | Viéij >zj,Vi > 0,zj € {0,1}vie [m],j e [n]}

and the LP fol}, , (3.2.4)

Zroy = Max{e’y | By <ey > 0}.

For givenm andn, we sampleB under single-sided i.i.d. standard normal distribution ¥600

times, i.e. Bjj is the absolute value of a independ@§t0, 1) random variable for all< [m], j € [n].
Table 3.1 records the worst gap and average gap between tineabpalues for different

choices ofm andn. Note that neither the worst-instance nor the average mtgap follows

a strictly increasing pattern whenincreases. We conjecture that the upper bound for the adap-

tivity gap should beO(logn) instead ofO(log(m+ n)logn). In our analysis, the term I¢g+ n)

comes from cappinf, the ratio between that largest element and the smallesesleofB. There-

fore, in Table 3.2, we consider the case whiere mnto see if this is reflected in computation.
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n | m | Worst Gap| Average Gap
5 1.9836 1.4897
10 2.0345 1.6180
20 2.0752 1.6867
50 2.0304 1.7140
100| 2.0162 1.7056
200| 1.9708 1.6985
5 2.2038 1.6550
10 2.3890 1.8829
20 2.3580 2.0125
50 2.3461 2.0757
100| 2.3338 2.0801
200 | 2.2988 2.0699
5 2.4140 1.8237
10 2.8773 2.2516
20 2.8858 2.5006
50 2.9403 2.6478

10

20

50

Table 3.1: Computational study for all samples.

We plot the the percentage of instances versus threshokigune 3.1. In all figure, thg-axis
is the threshold for the adaptivity gap, and thaxis is the percentage of instances where the gap
is less than the threshold. As shown in the figures, theremsstino visible difference when we
restrictl > mn However, there is a significant change in the percentage wteechangen as
shown in the figures.

From our observation from the computational study, we adope that the upper bound for
the approximation ratio i©(logn) instead ofO(log(m+ n)logn), where the term logn+ n) is
resulted from our analysis. Table 3.3 compares the worst-aad average adaptivity gaps when
m= 10.

We plot the gaps with respect to the 10-based logarithmafh Figure 3.2. Note that the

curves follow similar trends. This is in conformity with oconjecture that the adaptivity gap for
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n | m | Worst Gap| Average Gap
5 1.9713 1.4954
10 2.1560 1.6207
20 2.0510 1.6815
50 2.0519 1.7066
100| 1.9748 1.7086
200 | 1.9654 1.6973
5 1.9713 1.4954
10 2.1560 1.6207
20 2.0510 1.6815
50 2.0519 1.7066
100| 1.9748 1.7086
200 | 1.9654 1.6973
5 2.3652 1.8096
10 2.6806 2.2487
20 2.8729 2.5090
50 2.9193 2.6467

10

20

50

Table 3.2: Computational study whé&r> mn

m | n | Worst Gap| Average Gap
10 2.0345 1.6180
20 2.3890 1.8829
50 2.8773 2.2516
100 | 2.9968 2.5082
200| 3.1934 2.7480
500| 3.4894 3.0224

10

Table 3.3: Computational study whem= 10.

column-wise and constraint-wise uncertainty set shoul®f@egn). It is an interesting question

to close the gap between the upper and lower bounds on theperfice of static solution.

3.9 Conclusion.

In this chapter, we study the adaptivity gap in two-stagestdjple robust linear optimization prob-

lem under column-wise and constraint-wise uncertainty. $&$ shown in the previous chapter, the
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Figure 3.2: Plots of worst-case and average adaptivity gegnw = 10.

adjustable problem i©(logn)-hard to approximate in this case. On the positive side, we/shat

a static solution is a®(logn- min(logl,log(m+ n)))-approximation for the adjustable robust
problem when the uncertainty set is column-wise and coinstwase. Therefore, if’ (maximum
ratio between upper bounds of uncertain constraint coeffis) is a constant, the static solution
provides arD(logn)-approximation which matches the hardness of approximétiohis case. If

I is large, the static solution is@(logn-log(m-+ n))-approximation which is a near-optimal ap-
proximation for the adjustable robust problem under camstruncertainty. Moreover, our bound
can be extended to the case where the objective coefficimntdso uncertain and the uncertainty
is unrelated to the column-wise and constraint-wise camgtuncertainty set. Surprisingly, al-
though widely perceived as highly conservative, the stdiation provides good approximation
for many uncertainty sets. In fact, EI Housni and Goyal [2idw that for general uncertainty sets,
there is no piecewise static policy with polynomial numbkpieces that gives an approximation
bound for the two-stage adjustable robust problem thattteibéaanO(m!—¢) for anye > 0, while

we show that static solution providesraapproximation for the problem. Our result confirms the
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power of static solution in two-stage adjustable robugtdimoptimization problem under uncertain

constraint and objective coefficients.
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Chapter 4

Characterization of the Optimality
Condition of Static Solution in Multi-Stage

Robust Optimization Problems

4.1 Introduction

In this section, we consider extensions to multi-stagesddple robust linear optimization problem
with uncertain packing constraints where uncertaintyvsaéed in stages. In each period, the deci-
sion maker needs to make decision in face of adversarialdutcertainty. Multi-stage problems
are intractable in general. In fact, Dyer and Stougie [1@\sthat the problem is PSPACE-hard.
Therefore, it is natural to consider efficient approximatalgorithms for the problem. In this
section, we extend our previous result by considering tiffdpaance of static solution for multi-

stage adjust robust problem. In particular, we considefahewing probleml‘I/Lm whereL € N
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denotes the number of decision stages.

L T : T : T
Zar = Maxc' X+ min | maxc;y1(B1)+ min [ max d,y»(B1,B2)+...
AR Bi€l lyl(Bl) 1Y1(B1) B2€ U [y2(B1,B2) 2Y2( )

+ min max dy.(By,...,B H}
BLe |:YL(BL---7BL) (B 2

4.1.1
AX +B1y1(B1) + B2y2(B1,B2) +...+BLyL(B1,...,BL) < h, ( )

VBt € U, t € [L]

X,Y1(Bl)7-~-7YL(Bl,~-~7BL) >0

whereA € R™" d; € R", h € RT, andB; € ¢ C RT*" be the uncertain constraint coefficient
matrix for thet!"-stage for allt € [L]. In particular, we consider the case where the uncertainty
for each stage is unrelated of the uncertainties for ther@tages, i.e., the uncertainty s@t=

Uy x Uy x ... x Uy. The corresponding static robust probléth , can be formulated as follows.

Zhop = Maxc'x+dly;+...+dly

AX +B1y1+Boya+...+BLyL < h,VBi € Ut e [L] (4.1.2)

X,¥Y1,...,yL > 0.
As in previous sections, we can assume without loss of gktyettzat 74 is down-monotone for

allt e [L].

4.2 Main Theorem

We have the following main theorem.
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Theorem 4.2.1.Let Z be the optimal objective value Bfs in (4.1.1)defined over the uncer-
tainty U = U x U x ... x Uy. Let % . be the optimal objective value bfs , in (4.1.2) Let

p(-) be defined as in Theorem 2.4.2, i.e.,
p(U) =max{k(T(U,h))| h> 0},
wherek(-) is the measure of non-convexity as defineid.1) Then,
Zrob < ZaR < P(U) - ZRop

Proof. It is easy to see thak, >z ,: Let (X*,y3,y5,...,Y;) be an optimal solution foFlk_, .
Since,t € [L] are independent of each other, this implies thatx*,y1(B1) =yj, y2(B1,B2) =
Y5, ..., YL(B1,...,BL) =y is a feasible solution for the adjustable robust problék@{ (4.1.1).
Thereforezz > 7, forall L € N...
On the other hand, consider the following problEigoq:
L
Znod = Maxc'x+  min max Z\dtTyt(Bl,...,BL)
(817...,BL)€‘Uyl(Bl,...,BL),...,yLBl,...,BL)t:
Ax+B1y1(B1,...,BL) +B2y2(By,...,BL) +... +BLyL(By,...,BL) < h

" (4.2.1)
V(By,...,BL) € U

X,yl(Bl,...,BL),...,yL(Bl,...,BL) >0

Note the inl,.4, the variablegys, ...,y ) are chosen with full knowledge of the uncertain con-

straint coefficient matriceBy,...,B.. Therefore, any solution feasible fﬁr,kR is also feasible
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for M0q4, and we havakR < Zmod- Moreover,[,,.4 IS essentially a two-stage adjustable robust
problem with the second-stage uncertaintydet 7y x Uz x ... x U.. Note the the static robust
problem forf o4 is exactlyMk .. From Theorem 2.4.2, we havg.q < p(U) - ... Therefore,

Zar < P(U)  Zry, N

Theorem 4.2.1 is a generalization of our result for two-stagjust adjustable robust problems.
Note that if ¢; are all constraint-wise or all symmetric projections, ti€r, h) is convex for all

h > 0. Therefore, we have the following Lemma.

Lemma4.2.2.Let jAR be the optimal objective value ﬂI‘AR in (4.1.1)defined over the uncertainty
U= U x Ux...x U. Letz  be the optimal objective value 6Tk , in (4.1.2) Then,

Zs, = Zhg ifforallt € [L],
1. U is constraint-wise as defined in Lemma 2.3.1, or
2. U is symmetric projection as defined in Lemma 2.3.2.

Proof. Note that the choice otk for each stage < [L] is unrelated of the choice of the others. If
U, are all constraint-wise fare [L], so is¥. Similar argument holds for the case wheigare
all symmetric projections. Therefor&,(U,h) is convex for allh > 0 and from Theorem 4.2.1,

L L
ZRob = ZAR- [

We would like to note that even’f( 7, h) is convex for alt € [L], T(U, h) may not be convex.

Consider the following example:

Example 1 (T(7k,h) is convex but notT (U, h)). Consider the following instance of input
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parameters:
c=0A=0h=d;=dx=[1;1],U= Uy x U,
X1 X2 | | X1+X2+2x3+2%4 < 1,
‘le - )
x3 xa| | x>0,i=1,23,4. (4.2.2)
X1 X2 | | 2X1+ 2%+ X3+ X4 < 1,

X3 Xa| | X% >0,i=123,4

We can reformulate the static solution as follows:

ZrRob = Maxy11+ Y12+ Y21+ Y22

1
max(y11,Y12) + > max(y21,Y22) < 1,

1
5 max(y11,y12) + max(yzq, y22) < 1.

Note that by symmetry, the optimal is achieved wiygn= y12 = y21 = Y22 = 2/3. Therefore,
ZRob = 8/3.

For the adjustable robust problem, we consider a specisd dbsolution where

y11(B1) = y12(B1) = y1(B1),Y21(B1,B2) = y22(B1,B2) = y2(B1,B>),

ag b1 a bz
B1 = , Ba=

c1 Op Co do
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Then,

Zar = Minmax 2y;(B1) +min max 2y»(B1,B»
AR B1 y1(B1) 2y1(Ba) B2 VZ(BLBZ)Zy ( )

(a1+b1)y1(B1) + (ag+ b2)y2(B1,B2) <1,
(c1+d1)y1(B1) + (c2+d2)y2(B1,B2) < 1.

For the ease of notation, let

€1=C1+di,e2=ax+bo,y1 =y1(B1),y2 = y2(B1,B2).
Then
Zar = MiNmMax2y; + minmax2y,
& W € Y
(1-2e1)y1+82y2 <1, (4.2.3)

gy1+(1—g)y> <1

Then, we have the following lemma.

Lemma 4.2.3.Let zyg be the optimal objective value of the probléfrl.1)with input parameters

as in(4.2.2)andzar be the optimal objective value ¢4.2.3) Then
A 17
ZAR = ZAR = 5

Proof. The first inequality holds becauggg”only consider a special class of solutionszig.

Now, we discuss the solution of (4.2.3) by categorize on tssible values of; over 0< g3 <1/2.

1. If &1 €[1/3,1/2], we can sey; = 1/€1 > 2, which implies thagzag > 4.
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2. Ife1€[1/4,1/3], we can seyy = 1/(1—2¢g1) > 2. which implies thazar > 4.

3. Ifg1 €[0,1/4], we set

—71 =min i ! 1- &1
= sm2ey P ™M 2 125, U 2128/ [

Therefore,

5 2 €1
> _
AR =T e "1 26, (1—2e1)(1—2e0)

Now, consider the problem

Z=min ! + = + ! 1-———
N 1-2x 1-2y 1-2 1—2x

x
IN
iR
o
IN
<
IN
NI =
——

We further discuss on the valuesof

(@) Ifx<1/8,then

x<10< <l
_87 —y—2

Z:min{ ! + ! + ! (1—L)

1-2x 1-2y 1-2 1-—2x
> min —>— 4 min {L <1+ min 1_3X)}
Tx<1/81—2x  y<1/2 ([1—-2y x<1/8 1 — 2X

> min ! + min il—l
T x<1/81—-2x y<1/2(1—-2y 6

Y
v
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(b) If1/8<x<1/4,then

|

NI =

2—min1+1+11X1 }<<
N 1-2x 1-2y 1-2 1-2x)| g=*=g"=Y=

> min min
T 1/8<x<1/41— 2x y<1/2{ -2y ( 1/8<x<1/4 1- 2x)

> min ! + m l 3
T x<1/81—2x y<1/2 2y2
Y
-5

Thereforezar > 2= 17/6.
From the discussions above, we can seezk@t>17/6 > 8/3 = Zgqp. O

Note that the projection ot/; onto each row is a scaling of the other, and the same holds for
Up. We can see thak (1, h) is convex for allh > 0 andt = 1,2. However, the static solution is
sub-optimal for the multi-stage adjustable robust proldiem our previous discussion. Therefore,
our previous optimality condition for the static solutiaia Theorem 2.3.3 can not be generalized

to the multi-stage problems.

4.3 Approximation Bound on the Performance of Static Solu-
tion

In this section, we show that for a multi-stage Cartesiarettamnty set?l, p(U) is at mostL -
max{p(Tk) | t € [L]}, whereL is the number of stages. In particular, we prove the follgwin

lemma.
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Lemma 4.3.1.Given a L-stage uncertainty sét = U1 x Up x ... x UL, letp(-) be defined as in

Theorem 2.4.2. Then, we have

P(U) <L-max{p()|te[L]}

Proof. Given an arbitrany > 0, considemb € conv(T (U, h)). We can write

b =[b] bl ... b]]

whereby € conv(T (T, h)) since€ is a Cartesian product dfk, t € [L]. From the definition of

p(-), this implies that

bT { b] by
p

—_ qF T
max{p(k) |t € [L]} < @) p(‘ZlL)} =[WB1 ... W B

whereh™py = 1,u> 0,B; € 7 for all t € [L]. Now, let

B=[B1B2...BL],u=

=
=

SinceU is a Cartesian product df;, t € [L]|, we have

Be U,h"p=1u>0.
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ThereforeBTuc T(,h). Note that

L
L-u'B= ZHT[Bl By...BL] > [WB1 ... W B,
t=

we have
bT
L-max{p(T) |t € [L]}

eT(U,h),

thereby complete our proof. O

Therefore, if the uncertainty sl is a mixture of constraint-wise or symmetric projection
uncertainty sets, then the adaptivity gap is bounded.blyloreover, from our previous result in
Theorem 2.4.3p(k) is at mostm. Therefore, for a multi-stage adjustable robust probldma, t

performance of static solution is boundedLoy.



112

Chapter 5

Generalized Decision Rule Approximation

for Two-Stage Robust Linear Optimization

5.1 Introduction

In this chapter, we consider the two-stage adjustable tdimesr optimization problem with cov-
ering constraints and uncertain right-hand-sitlgz _cover (U) (1.2.4). In Feige et al. [23], the
authors consider a two-stage set cover problem where teeo$ithe second-stage demanded is
capped by integet. They show that the problem @logm/loglogm-hard to approximate, and a
LP-rounding algorithm gives @(logmlogn)-approximation. Bertsimas and Goyal [10] consider
the general formulation (1.2.1) and show that the affinecgatives anO(,/m)-approximation.
Moreover, they show that the bound is tight when the unaastaet is the intersection of the unit
/2-norm ball and positive orthant. This motivates us to findcedfit algorithms to improve this

approximation ratio. In particular, we introduce a new feavork to approximat€l ar _cover (U)-



113

For the ease of discussion, we den@ig _cover (U) aslar(U) throughout this chapter. Note that
we add the uncertainty sé€f as an input to the problem because our new framework depends o

computing the optimal two-stage adjustable robust satutio an extended set.

Outline. In Section 5.2, we present the new framework for approxingathe two-stage ad-
justable robust problem (1.2.4). Based on this framewokk pvovide approximation bounds for

Mar(U) (1.2.4) with unitl>-norm ball and/y,-norm ball uncertainty sets in Section 5.3.

5.2 A New Approximation Framework via Dominating Uncer-

tainty Set

In this section, we present a new framework to approximaewio-stage adjustable robust prob-
lem (1.2.4). Our policy is based on approximating the bouwngaints of the uncertainty set
with a simple set. In particular, we construct a $ethatdominateghe uncertainty seti. More-
over, we require that the two-stage adjustable robust prolfl.2.4) can be efficiently solved over

1. We first define some geometric properties for the unceytaieti.

Definition 5.2.1. (Domination) Given uncertainty seti C R, UC R dominatest if for all

h € U, there exist$ € U such thath > h.

Definition 5.2.2. (Scaling factor)Given a full-dimensional uncertainty set C R'!' and U C R

that dominatestl. We define the scaling factﬁr@u @ of (1, U) as the smallest scalar such that

(b

Biaan = min{a > 0| U Ca- U}.
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For the sake of simplicity, we denote the scaling factofaf ‘Zl) by 3 throughout this chapter.
Note that this scaling factor always exists becatse full-dimensional. Moreover, it is greater
than one because of the assumption of domination. The folppwheorem shows that solving
the adjustable problem over the s‘fetgives an approximation to the two-stage adjustable robust

problem (1.2.4) within a factds.

Theorem 5.2.3.Given a convex, compact and down-monotone uncertaintgisand 71 C R
dominatest C R, let B be the scaling factor of U, 1). Moreover, let zr(U) and zr(U) be

the optimal values fo1.2.4)on U and U, respectively. Then,

ZaR(U) < 2ar(U) < B-2ar(U).

Proof. Let (X, §(h),h € U) be an optimal solution fozag(71). For eacth € €, let§i(h) = §(h)

whereh € U dominatesh. Therefore, for any € U,
A%+ By (h) = Ax+By(h) >h > h,
i.e., (X,¥(h),h e U) is a feasible solution fazar (U). Therefore,
ZaR(U) < CT%+maxdT§(h) < cTx+ g%dW/(ﬁ) = 23R (U).

Conversely, le(x*,y*(h),h € 1) be an optimal solution afag (7). Then, for anyh € 71, since
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h/B € U, we have

A

o)}

Therefore (Bx*, By* (%) .h e U) is feasible fol1ar (11). Therefore,

zar(U) < c"Bx* +maxd' By* <h> <B- <ch* +maxdTy*(h)) =B-zar(U).
heu [3 heu

O

Theorem 5.2.3 provides a new framework for approximatirggttino-stage adjustable robust
problemlMar () (1.2.4). Note that we require that dominatest/ andMar () can be efficiently
solved over{L. In fact, the latter is satisfied if the number of extreme [3:91]] 21 is small (typically
polynomial ofm). Therefore, we choos@l to be a simplex in our framework. The adjustable
problem is easy to solve over a simplex as it can be reduceditmybe LP problem. In particular,
given simplex uncertainty set

U = conv (V1,V2,...,Vmi1),

we can formulate the two-stage adjustable robust prolblgg( U) as the following LP.

zar(U) =minc'x+z
z>d"y;, Vi e [m+1]
AX+By; > vj, Vi € [Im+1]

xR,y eR".
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Affine policy is another tractable approach to sdlVgz (U) (1.2.4) whent is simplex. As men-
tioned earlier, it is optimal for simplex uncertainty setfowever, for general convex uncertainty
sets, its performance can be as ba®agm). Our goal is to study new approximation framework
to improve this ratio. In particular, we would like to find mp'lex‘il that dominateq! such that
B= Q(m%*e) for somee > 0, thereby give a good approximation fdnr(U). In the following
sections, we provide improved approximation bound$Tgg (U) with several interesting families

of uncertainty sets given by this framework.

5.3 Examples of Improved Approximation Bounds

In this section, we present the approximation bounds foritweresting family of uncertainty
sets. In particular, our bounds are better than the restiBexsimas and Bidkhori [7]. Similar
to previous chapters, we can assume without lost of gehethlt 7/ C [0,1]" by scaling. In

particular, we have; € U for all j € [m].

Permutation Invariant Sets. We first consider permutation invariant sets. Recall thatireer-
tainty set? is permutation invariant ik € U implies that for any permutationof [m], x' € U

wherex = x;). We definey(U) where

y(U)e=argmaXe’'x | x e U}.
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Now, consider the simplex

U =B-conv(er,e,...,emV(U)-e).

Let B be the scaling factor ot and 7. By definition, 37 dominatestl. Therefore, solving the
two-stage adjustable robust probléimg (1.2.4) overil gives anp-approximation td1ag over
u.

Note that3 may not be efficiently computable given arbitrary permotainvariant set. In the
following examples, we explore several interesting fanefyuncertainty sets and compute their

corresponding’s.

Lemma 5.3.1. (Hypersphere)Consider = {h € RT | ||h||]> <1} as in(1.1.1) Then, Theo-

rem 5.2.3 holds with
(= conv ie
- el? e27"'7an7 \/m
1
with 3 = m4.

Proof. To prove thaB{ dominatest/, it is sufficient to show that the boundary @fis dominated.
2
Considemh such that|h||2 = 1. Leta; = h7' fori e [m andamy = % be the convex multipliers for

1. Then, we have o = 1 and for alli € [m],

%%

o ) 535l 2

Thereforef € 7 and U is dominated b)B‘fl. O
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Lemma 5.3.2. (p-Norm Ball) Considerti = {h € RT | ||h||, < 1} where pc N,. Then,

‘Zl:B-conv<el,e2,...,em,m_Tl’e),

p-1
where =m¢# .

Proof. Similar to the previous proof, it is sufficient to show thag toundary oftl is dominated
A~ p
by BU. Consideih € U such that|h||p = 1. Leta; = h—Fi) fori e [m andam s = p;pl be the convex

multipliers for 1. Then,ea = 1 and for alli  [m],

« 1 h° p-1 1 11\
o = (@ + ramia ) =B (%4 P tm ) =g (m ) =,
where the inequality follows from the AM-GM inequality. O

Lemma5.3.2is a generalization for Lemma5.3.1. In fact,@eever the resultin Lemma5.3.1
for p= 2. Bertsimas and Bidkhori [7] show that an affine policy ontheertainty set/ provides
amfl) -approximation for the two-stage adjustable robust proldleyg. However, by considering a
dominating set’, we can provide a better approximation ratio without sigatfitly increasing the
computational complexity. It would be interesting to calesisuch approximation framework for

other uncertainty sets.
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5.4 Conclusion

In this Chapter, we consider the two-stage adjustable tdibesr optimization problems with cov-
ering constraints and uncertain right-hand-side. We thtoe a new framework for approximating
such problem based on choosing an appropriate dominatifigrdbe uncertainty set. The choice
of the dominating set explores the geometric structure efutiicertainty set and gives better ap-
proximation bounds than the affine policy for a couple offieséing class of uncertainty sets. In
particular, our approximation framework providesm&#-approximation for the unit hypersphere
while the affine policy gives a@(,/m)-approximation. More generally, for general ufjitnorm

p-1 1
balls, our framework gives i P -approximation as opposedte given by an affine policy.
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Chapter 6

Conclusions

In this thesis, we consider adjustable robust linear ogttnon problems in both packing and
covering formulations with constraint and right-handesighcertainty, respectively. Such prob-
lems arise naturally in real-world applications such asuese allocation and machine scheduling.
However, computing an optimal solution for adjustable silproblem is intractable. In fact, we
show that for a column-wise constraint uncertainty settwestage packing problem &(logn)-
hard to approximate. For a more general case where the aimtgdet?/ and objective coefficients
d are not constrained in the non-negative orthant, we shottliesadjustable robust problem is
Q(Z'Oglf8 M)-hard to approximate for any constantCe < 1. In addition, Feige et al. [22] show
that the covering problem & (logm/loglogm)-hard to approximate. This motivates us to study
approximation algorithm for the problem.

In Chapter 2 and 3, we consider the two-stage robust packoigem with uncertain constraint
coefficients and study the performance of static robustismlas its approximation. We first give

a tight characterization of the performance of static sotuaind relate it to the measure of non-
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convexity of the transformatioii (U, -) of the uncertainty set/. In particular, we show that a
static solution is optimal iff (2, h) is convex for allh > 0. For several interesting families of
uncertainty sets such as constraint-wise or symmetrieptions, we show that(U,h) is convex
for all h > 0; thereby generalize the result of Ben-Tal and Nemirovski¢r the case wheré!
is contained in the non-negative orthant. In Chapter 4, weagdize the result to a multi-stage
problem where the choice of the uncertain coefficient mditmi>each stage is independent of the
others. We show that a static solution is optimal for the raifige adjustable robust problentif
is constraint-wise for each stage [K]. Moreover, we also give an approximation bound on the
performance of static solutions that is related to the measiinon-convexity of the transformation
of the Cartesian product of the uncertainty sets for eagiesta

WhenT(U,-) is not convex, We show that the measure of non-convexify(df, -) gives a
tight bound on the performance of static solutions. Our expnation bound is better than the
symmetry bound in Bertsimas and Goyal [11]. However, thendas instanced-based and may
not be efficiently computable. Moreover, for a family of diagl uncertainty sets, the bound can
be as large as. Therefore, we consider column-wise and constraint-wismrtainty sets, which
are more natural in real-world applications. For such uagaly sets, we show that a static solution
is anO(logn-min(logl, log(m+n)))-approximation for the adjustable robust problem. Thersfo
if ' (maximum ratio between upper bounds of uncertain constcaiefficients) is a constant, the
static solution provides a@®(logn)-approximation which matches the hardness of approximatio
in this case. Iff is large, the static solution is@(logn-log(m-+ n))-approximation which is a
near-optimal approximation for the adjustable robust fgnwbunder constraint uncertainty. From

our computational study, we conjecture the upper boundehffproximation bound i©(logn)
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instead ofO(logn-log(m+n)) and it is an interesting open question to close the gap bettee
upper and lower bounds.

We extend our results to models where both constraint arettig coefficients are uncertain.
We show that iftl = 718 x 19, where??® is the set of uncertain second-stage constraint matrices
B and 19 is the set of uncertain second-stage objective, then tHerpeance of static solution is
related to the measure of non-convexityTafi®,-). In particular, a static solution is optimal if
T (B, h) is convex for alh > 0; it also provides ®(logn- min(logl, log(m-n)))-approximation
if B is column-wise and constraint-wise. Surprisingly, theég@nance of static solution does not
depend on the uncertainty s&f. We also present several examples to illustrate such ofityma
and the tightness of the bound.

Piecewise static solution is an interesting generalipatib static solution and is perceived
as more general. However, in a recent result by El Housni aoyhld21], the authors show
that in general there is no piecewise static policy with aypoimial number of pieces that has a
significantly better performance than an optimal statizoh. Our results further confirm the
power of static solution in two-stage adjustable robusgtdimoptimization problem under uncertain
constraint and objective coefficients. Moreover, our rssidévelop new geometric intuition about
the performance of static robust solutions for adjustadit@ st problems. The reformulations of the
adjustable robust and static robust problems based orath&ftrmatiorT (7, -) of the uncertainty
setU give us interesting insights about propertiestdivhere the static robust solution does not
perform well. Therefore, our results provide useful guitkaim selecting uncertainty sets such that
the adjustable robust problem can be well approximated bt solution.

In Chapter 5, we consider the two-stage adjustable robusaidioptimization problems with
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covering constraints and uncertain right-hand-side. ddeds and Bidkhori [7] show that for un-
certainty sett/ that is an intersection of positive orthant afygnorm ball, an affine policy ort!
provides an%-approximation for the problem. We consider a new approkingramework that
is based on choosing an appropriate dominating set for thertainty set. In particular, we ex-
ploit the geometric structure of the dominating set suchgsbbring the adjustable robust problem
over the set gives a better performance than affine policyttecoriginal set. Our approximation
framework provides an'/4-approximation for the unit hypersphere while the affineigyogives
anO(y/m)-approximation. More generally, for general ufitnorm balls, our framework gives a

p-1
m * -approximation as opposedmm% given by an affine policy.
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Appendix A

Appendix of Chapter 1

A.1 Down-monotone Uncertainty Sets

In this section, we show that ) (U, h) defined in (2.3.3) anfll}, (U, h) defined in (2.3.4), we
can assumé! to bedown-monoton&vithout loss of generality, where down-monotone is defined

as follows.
Definition A.1.1. A set§ C R isdown-monotonéf s€ §,t € R? andt < simpliest € §.

Givens C R"7, we can construct the down-hull 8f denoted bys* as follows.
St={teR|3Iscs:t<s}. (A.1)

We would like to emphasize that the down hull of a non-negaiivcertainty set is still constrained
in the non-negative orthant. Given uncertainty ge¢ RT*" andh > 0, if U is down-monotone,
thent = U. Therefore, (U, h) is essentially the same problem witly ; (77, h) and we have
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Zyr (U, h) =2,z (U,h). Similar arguments applies fét, , (U, h) andz, , (U, h) =2z . (U,h).
On the other hand, iftl is not down-monotone, thefil C 7*. Then, we prove the following

lemma.

Lemma A.1.2. Given uncertainty setl € RT*" andh > 0, let 2,3 (U h) be the optimal value
of Mz (U, h) defined in(2.3.3) z, (U, h) be the optimal value dfik_, (U, h) defined in(2.3.4)

Supposel! is not down-monotone, et be defined as i6A.1). Then,

Z!AR(U¢7h> = ZlAR(u7h>v ZlRob(‘u\L?h> = ZlRob(uvh)'

Proof. Consider an arbitrark € ¢+ andX ¢ 1, i.e.,X € U\ U. From (A.1), there existB € U
such thatX < B. SinceB, X andy are all non-negative, any € R such thatBy < h satisfies

Xy < h. Therefore,

max{d'y |By <h,y € RT} <max{d'y | Xy <h,y e R1}.

Take minimum over alB € U on the left side, we have

mlnmax{dTy|By<hye]R }<max{dTy|Xy<hy€R I

SinceX is arbitrarily chosen irt/+\ 21, we can take minimum of ak € 7*\ U on the right side

mlnmax{dT IBy<hyecR?}< min max{d'y|Xy <hycR]}.
xeuhau Y
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Therefore, the minimizer of the outer problemﬁb}(R(‘w, h) is in U, which implies
minmax{d'y | By < h,y e R"} = min max{d"y | Xy < h,y e R" }.
minmax{d'y [By <h,y € Ry} = min max{d’y [ Xy <hy € R}

As a result, we have,g (U, h) = 2,z (U, h).
Similarly, anyy € R} satisfieBy < h for all B € U is guaranteed to be feasibleXy < h for

all X € U\ U. Therefore, we conclude tha} , (74, h) = z;., (U, h). O

Therefore, we can assume without loss of generality ftias down-monotone in (2.3.3)
and (2.3.4). Now, we generalize the result for the two-stagdblemslTar_pack in (1.2.1) and
Mgop in (1.2.2). Consider the following adjustable robust pembl'lﬁ\R

Z\., = maxc'x+ min maxdy(B
AR Bewut y(B) Y(B)

Ax+By(B) < h

(A.2)
X € R™
y(B) € R,
and the corresponding two-stage static robust protﬂléegg
z., = maxc' x+d'y
Ax+By < h, VB e U
(A.3)

X € R

y € R2.
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Again, given uncertainty setl € R}*™, if ¢ is down-monotone, the* = U. Therefore,
I'I;L\R is essentially the same problem withg and we hava/i_\R = ZaR. Similarly, ZiRob = ZRob. FOr

the case wher@! is not down-monotone, we prove the following lemma:

Lemma A.1.3. Given uncertainty setl € RTX”Z andh € R™M, let zsg and %, be the optimal
values oflTar_pack defined in(1.2.1)and Mg, defined in(1.2.2) respectively. Supposg is not
down-monotone, let* be defined as ifA.1). Let Z;R and %ob be the optimal values dTIﬁ\R

defined in(A.2) and I'I%aob defined in(A.3), respectively. Then,

Z/&R = ZAR,Zﬁob = ZRob-

Proof. Supposgx*,y*(B),B € U') is an optimal solution oﬂjR. Based on the discussion in
Theorem 2.3.3, we can assume without loss of generalityhthadx* > 0. Then,

Zip = C'X*+ min max{d"y | By <h—Ax*}
BeulyeRr'?

+
= C'X" +Z\g (U h— Ax¥)
= C'X" +Z\g (U, h — AX¥)

< Zar.
The second equation holds from Lemma A.1.2, and the lasuadiég holds because = x* is a

feasible first-stage solution f6tag. Thereforezi, < zag.

Conversely, suppos&, y(B),B € U) is the optimal solution foF1ag. Again, we can assume
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without loss of generality thdt — AX > 0. Using similar arguments, we have

Zar = C'%+ minmax< d'y
BE‘UyeRiZ

By < h—A)"(}
= C'X+ Zy(U,h— AX)

= C'X+ Zyg(U*, h —AX)

Zug:

IA

The last inequality holds because- X is a feasible first-stage solution fnkR. Therefore, in both
cases, we havieg < Z/&R. Together with previous result, we hax},gQ = Zar. Inthe same way, we

can show thaleob = Zrob, We omit it here. O

Lemma A.1.4. Given a down-monotone sét C R™", let T(U,h) be defined as i2.3.6) then

T(U,h) is down-monotone for alt > 0.

Proof. Consider an arbitrarg > 0 andy € T(,h) CRT such that
y=BTA,hTA=1,A>0,B € U.
Then, for anyz € R} such thaz <y, set
B =3Bji=1...mj=1...n
Yij

Clearly, B < B sincez <y. Therefore B € U from the assumption thatl is down-monotone.
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Then,

z=B"™\,h"TA=1A>0Be U,

which impliesz € T(U,h). O



Appendix B

Appendix of Chapter 2

B.1 Proof of Theorem 2.2.2.

In this section, we show that the general two-stage adjlestaiibust problenﬂﬁ‘f{‘ (2.2.1) is
Q(2'°9178 M)-hard to approximate for any constank0Os < 1. We prove this by an approxima-
tion preserving reduction from theabel-Cover-Problem. The reduction is similar in spirit to the

reduction from the set cover problem to the two-stage aalplistrobust problem.

Label-Cover-Problem: We are given a finite s&t (V| = m), a family of subse{ 14, ..., 7k} of

V and graphG = (V,E). LetH be a supergraph with verticd94, ..., 7k} and edges F where
(U, ;) € F if there exists(k,|) € E such thatk € 74,1 € 7. The goal is to find the smallest
cardinality seC C V such thaF is covered, i.e., for eact}, ) € F, there exist&k € 1/ NC,| €
V;NC such thatk,!) € E.

The label cover problem iQ(Z"’gH M)-hard to approximate for any constank( < 1, i.e.,
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there is no polynomial time approximation algorithm tha;tegiam0(2'0917g M)-approximation for

any constant & & < 1 unlessNP C DTIME (mPoY'oa(m)y 1],

Proof of Theorem 2.2.2Consider an instancé of Label-Cover-Problem with ground elements
V (V| = m), graphG = (V,E), a family of subset oV: (14,...,7k) and a supergraphl =
({1,...,%},F) where|F| = n. We construct the following instandé of the general adjustable

robust problenf1$en (2.2.1):
A=0,c=0,d= eER™ h=eecR™ U={[B —In|Be€ U}

whered; = dy = ... = dn = 1, I, is them-dimensional identity matrix and each column set of

Ur C RT" corresponds to an edgé{, 7;) € F with

Uy, ) = conv ({O}U{%(aﬁ—a) ' (k1) e E,ke U,l € ‘VJ}) CRT.

Therefore,l is column-wise with column setd; 1), V(U, }) € F andj, j € [m] where; =

{—ej}, i.e., there is no uncertainty itij. The instancd’ of M&&" can be formulated as

Gen . T T
Zyg = Min max {e'y—-e' z|By—-z<ey>0,z>0
AR Beﬂpyzo,zzo{ y |[By-z<ey>0z>0}
' T T
= min max ¢ e'y—e z y(rV.rV.)b((VyfV_)—ZSe7y207220
b<%ft/,—>6ﬂ<v.yj)y20,zzo ((thj)e': V] i,Vj

Suppos€y, 2,6(%%), (U, %) € F) is a feasible solution for instandé. Then, we can com-

pute a label cover of instancewith cardinality at mose’y —e’2. From strong duality, there
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exists an optimal solutiop for

min{e’ u|b p= LY(U, V) € Fue 0,17}

ande’ 1= €'y —e"2. For each{ 1, ¥}) € F, consider a basic optimal soluti¢h, vy (W, V) €

F) where

bas,4) € argmaxb’it| b € Uy 41}

Therefore,f)(%f,/j) is a vertex of?, 4 for each(4, 7)) € F, which implies thatﬁ(q/ V)

3 (e +@,) for some(k;,lj) € E andk € U, 1j € 7}. Also, B(T%q/j)ﬁz 1LV(H,V;) € F. Now, let

fL the optimal solution of the following LP:

min{e’ u\b p>1V(‘V.,‘V,)eFO<p<e}

Clearly,e’fi< e"{1. Also, sinceﬁ(%r,/j) =3(eg+8)) andb(Tq/ q/,)ﬂZ 1,0k = fi; = 1. Therefore,

fie {0,1}™. Let
C={jlm=1}.

Clearly,C is a valid label cover foF and|C|=e"fi<e’fi=e'y—e'Z

Conversely, given a label coverof instancel, for any j € [m], letp; = 1if j € C and zero

otherwise. This implies tha' = |C|. For any(¥,V}) € F, let B(q/ V) = = i(eg @, ;) where

ki€ YYNC,l; € ¥,NC such thatk;,l) € E. Then, lety be an optimal solution for the following
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LP

min{e’u | BEFM7%)H2 LY(UY, V) eF,0<pu<el.

Then,e' | < e'pasyiis feasible for the above LP. From strong duality, theretexise R" and
ze RT such thaty, z, b v (U, V}) € F) is afeasible solution for instandé of N$e" with cost

ely—elz=e'y <e'u=|C|. O

B.2 Proofs of Lemmas 2.3.1 and 2.3.2

Proof of Lemma 2.3.XConsider any1,v2 € T(U,h). Therefore, forj = 1,2,
=BJA,hTA =1A>0,Bj € w.
For any arbitrany € [0,1], let; = aAl + (1— a)A2 andb) = Bf& fori=1,...,m Then,

avi+ (1—a)vz (oAb + (1 — o)AZ0?)

" (O‘}‘u bl (1- G)}\u b2>
i Hi

I
3 M3

3

Il
=
.

|
o

_|
=

whereb; € ¢ sincebj is a convex combination dn‘il andbi2 foralli=1,...,mand{; is convex.



137

Also, note thaB € U (since is constraint-wise) ani™p=ah™ A1+ (1—a)hTA2 = 1, we have
avi+ (1—a)ve e T(U,h).

Therefore,T(U,h) is convex. O

Proof of Lemma 2.3.2Note that in (2.3.6)h"p= 1, which impliesy; < h_1, forj=1,....m We
assume without loss of generality that< hj for j = 2,...,m. Note that? is down-monotone, so

is Uj, ] =1,...,m. Therefore, forj = 2,...,m, we have

1 1
U C = CT h
hJ u] = h]_ul_ (Uv )

where the second set inequality holds because we canutak% in (2.3.6). Note thattl; is

convex, So isnl1 1. Now, consider an arbitrarny € T(U,h) such that
v=BTA,hTA=1,A>0,B € U.

Letb; = BTej, we have

m
v=9Y Aib
]lej
m
1
= Ajhj- —=bj
PREND
1
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whereb € 4. The last equation holds because\ = 1 andy 7/; C . 7. Therefore,

1
T(‘U,h) - h_erll,

which is convex. O

B.3 Proof of Lemma 2.3.5

For eachj € [m], let

| Beu),

Zoop(U; D) = myax{dTy |By<h,vBe UycR]}

l

Then,

_max{dTy\b y<1 vbje ujjem,yeR}}

Consider a feasible solution we have

bjTygl,Vbje‘uj,je[m]
& by <1,vbeUl,; 4

& b'y <1, Vbeconv (UTzl ‘llj)
where the last inference follows from the fact theijfy < 1 andb]y < 1, then

(aby+(1—a)bo)Ty=ably+(1—a)bly <1,
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forall0<a < 1. In Theorem 2.4.3, we show that

conv(T(U,h)) = conv <

u>

Zoop (U, D) = myax{dTy ‘ bTy <1, ¥b € conv(T (U, h),y € R] }

LCs

Therefore,

- myax{dTy } y € (conv(T (2, h))°(R" }
where $° is the polar set ofs. Note that the last maximization problem can be viewed as the
support function of the set

C = (conv(T(,h))°(R].

Therefore, we can reformulate it as the Minkowski functiomeer the polarC°® as follows (see

Proposition 3.2.5 in Chapter 5 of [26]).

ZlRob(Uah) = m}jﬂ{)\ ) deA ((ConV(T(u’h»oﬂRi)O}

_ mxin{)\ ) deA (conV(T(‘Um)URE) }

where the second equation follows as

(51ﬂ52>0 =571 s, and (5°)° = S,
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and(R7)° =R". Sinced € R, we have

Zhop (U, D) = rr}\in{)\ | d € Aconv(T (U, h)}

=min{\ |Ab > d.b € conv(T (U h)}

which completes the proof. O

B.4 Tight Example for Measure of Non-convexity Bound

Theorem B.4.1. Consider the following uncertainty sef®,

u® = {Be [0,1]™"

n
Bij =0, Vi # |, ZB?j gl}.
=1

with ® > 1. Then,

1. T(u®,h) can be written as:
T(u® h) = {b cR"

R
=

2. The convex hull of ®, h) can be written as:

conv(T (8, h)) = {b cR"

bj _ 1} . (B.2)

M=
= |

J

3. T(U®, h) is non-convex for alh > 0.
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4. k(T(U®,h)) =nd for all h > 0.

Proof. 1. For giverh > 0andb e T(1®,h), we have
b=BTpwh'p=1,u>0,Be u°.
LetA; = hjy fori =1,...,n. Thereforee™\ =1 and
b =BT (diag(h)) I\ = (diag(h)) "1BTA,

wherediag(h) € R™" denotes the matrix with diagonal entries bemg < [n] and off-diagonal
entries being zero. The second equality above followB asdiagonal. Thereforgdiag(h))b €
T(u®,e). Using a similar argument, we can show that T(®,e) implies that(diag(h)) b e
T(®, h). ThereforeT (78, h) = diag(h)) 1T (®, e) and it is sufficient to show:

T(ul e =4a:= {b cR"

Consider any € 04, i.e.,b € R} such that

n o
1 _
2D
=1

Set

1
Aj= br X = b
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Then,

n
AjXj = b,-,eT)\: 1, Z Xje: 1,
=

which impliesb € T(2®,e). Since bothg andT (u®, e) are down-monotoneg C T (P, e).

Conversely, consider the following problem:

n 0 n
max Aixi)eT [ efa=1 $x¥ <1
A7)(20{;( %) j; P s }

From Holder’s Inequality, we have

1
o+l
) <1

n n
Z(MXJ‘)B% < (e (2 X
i= =1
Therefore, for anyp € T(U®,e), we have

n 0
S oficn
=1

which impliesb € 4. ThereforeT (1®,e) C 4.

2. Similarly, it is sufficient to show

conv(T(18 @) = B:= {b c R}

n
bi <153.
$o<]

From (B.1), we see thaj ¢ T(u®,e). For anyb € 8B, by takingA = b as the convex multiplier,



143
we have
n
b= Z bje;.
=1

Therefore B C conv(T (U®, €)). Since bothB andconv(T (U®, e)) are down-monotone, we have

B C conv(T(Ub, €)).

Conversely, consider the following problem:

max{ e'b
b>0

n 9
Z bjl_+Ei <1%= max
=1 =04

Note that

is a convex function. Therefore,

Therefore, for any € T(®,€), we haveb € B. SinceB is convexconv(T (U8, €)) C B.

3. From (B.1) and (B.2), itis easy to see thate conv(T (U0 h)), butih ¢ T(w® h). Therefore,

T(u®,h) is non-convex for alh > 0.

4. Now, we compute (°, h). Recall that

k(2® h) = min{a | conv(T(7® h)) CaT(2® h)} = min{a | %conv(T(‘Ue, h)) C T(u® h)}.
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From (B.2) and scaling, we can observe that it is equivaleriind the largesti such that the

N b; 1
b € R" =
{ ’ j;hi “}

intersects with the positive boundaryBf7/°, h). Therefore, we formulate the following problem:

hyperplane

(k(u® h))~t = rg;ig{

By solving KKT conditions for the convex problem above, thtimal solution isa = % -e. There-
fore, we have

K(18,h) = (n-n~6 )"t =né.

B.5 Proof of Lemma 2.5.3

We first introduce some notations. Let

. . —d
B = { B 0] € RT* (™D ‘ Be ‘ZJB} and (/9 = eR™ | deqd
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For eachj € [m], let

1 . b
uj:{W'BTEj Be‘u}and‘u,-: cR™ | be
’ 0
Lastly, let
. h
h =
0
It is easy to see that
R b
T(UB h) = eRY™ | beT(u,h)
0

Then,

Zoop (U, D) = r%x{u } n<d'y,vde ¢ By<h,vBe UB ye Ri}

- r%x{u ‘ ~d'y+p+1<1vde u, bly<1 vbje uj,je [m],yeRl}.

Now, let

we have

Zhon (1) = max{el v -1 [dv<1vd e U0 bTV < Lb e T(EPR), ve R |
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wheree,1 € R is the unit vector for thén-+ 1)-th coordinate. Following the revised proof of
+

Lemma 4, we can write

Zoop (U, D) = mvax{ele ‘ Ve (conv <conv (T(‘ZIB, ﬁ)) U ‘Zld)>o ﬂRT“l} -1

= myin {y ‘ €nt1 € y<conv (conv (T(‘ZIB, F\)) U ‘Zld> URQH) } -1

Note thaten,; € R, Therefore,

Zrob(U; D) = myin{y ‘ €ny1 € Yconv (conv T(UB F\ U rud> }

_ B (1 5B ¢ = 1d
_y70r(2|[(r)171]{y 1)yzzaq+1,z (1— )b+ ad,b € conv (T(TUB h)),deu}

R S 1 5B 7d
Mr(r;l[gl]{)\‘(lJr)\)z_awl,z (1—a)b+ad,b e conv(T(Uh)),de U }

Note that

(14+N)z> en1,2= (1—a)b+ad,b € conv (T(UB,h)) ,d e T
& (14+Nz1>1,7>0Vie[n], z=(1-a)b+ad,b € conv (T(UB,h)),d € U

& (1+Ma>1, (1—a)b—ad >0,b € conv (T(UB,h)),d e ¢
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where the last step of induction holds becabige = 0 for all b € conv(T (78, h)) anddp.1 = 1

for all d € ¢19. Therefore,

2o (T h) = min{)\ ‘ (14N> 1, (1—a)b—ad > 0,b € conv (T(UB,h)),d e ud}

A

:Tin{x ‘)\2%-1, (é—l)bzd,beconv(T(‘uB,h)),de ud}

,a

= min{ | Ab>d,b e conv (T(TP,),de u}.

which completes the proof. O

B.6 Proofs of Lemmas 2.5.5 and 2.5.6

Proof of Lemma 2.5.85Me can write the dual of the inner problem of (2.5.12):

Bhd :
250 min hTo
(B,h,d)e uBhd geRT

BTazd}

a a
= min MT (=) | ABT (=) >d,hTa=A
(B,h)eﬂ5=h,deud,aeRT,)\{ <)\) ’ ()\) - }

= min {)\t‘}\bzd},
(b,t)eT(UBNe),deud A

where the second equality holds becaa™d = ¢/B" x ¢/9. O

Proof of Lemma 2.5.6Me first introduce some notations. Let

712" — { [diag 1 (n)B 0] € RT* ™| (B,h) € uB"} and e - eR™|d e 1
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For eachj € [m], let

BTej . .
U = (B,h) e wBN} CR™! andqy; = {BTej |IBe ‘quh} C R,
hTej

Note that for eachlj, Uj normalizes any vectds € ¥; so that the last component is one, then
replace it with zero. This is very similar to the perspecfivection (See page 39 in [18]), which

indicates thatlJ; is convex provided thatl; is convex. Then,
Zh., (U, h) = rr;azlx{z ‘ z<d'y,vd e 49 By <h,¥(B,h) ¢ uB" ycR" }

Similar to the previous proof, by setting

we have

Zho( U ) = mvax{ele—l ’ d'v<ivde U, bjv<1bje jjem, veRfl}.
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wheree,1 € R is the unit vector for thén-+ 1)-th coordinate. Following the revised proof of
+

Lemma 4, we can write

Zhop (U, D) = mvax{e,le ‘ Ve <conv (conv (u'j“:lfiz,-) U ‘Zld>>o ﬂRTl} -1

— myin{y ) €1 € y(conv (conv (Uﬁnzlflj) U ‘Zld) U]R'l“) } —1.

Note thaten,; € RT™. Therefore,

Zoop (U, D) = myin {y ‘ n+1 € Yconv (conv () U ‘Zld> } -1

:ygggl {y‘yz>aq+1,z_(1 a)b+ad,b € conv (UL, Tj) de‘ud} 1.

Note that

VZZQ~1+]_,Z:(1—G)b+ﬂd,b€c0nv< ™, ‘Zl),de‘ild
& yzn+121,ziZO,Vie[n],z:(l—a)b+0(d,beconv< 1UJ),de‘ZId

& ya>1 (1—a)b— de>0b€conv<Um1‘ZlJ) de ud

where the last statement holds becaligg = 0 for all b € conv(UE"Zlfflj) andd,.; = 1 for all

d € 119, Therefore,

Y.a a

Q

Zrop (U N) = mln{y 1’\/>E 1—ab>d ,b € conv (U En_l‘zlj),de‘lld}
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Substitute b\ =1/a — 1 > 0, we have

Zhop(Uoh) =min{y—1 |y =12, Ab>d.b e conv (ULy ) d e '}

mAin{)\ ‘ Ab > d,b € conv (UM, 71;) ,d ud}

b.
Ay Wt >d,(bj.hj) € Uje'p=1u>0de ‘ud}

For eachj € [m], let

_ /b
P/
Note that
L
b ehy
Then,
Zhop (U, D) = min< A L-Eejbpd (bj,hj) € Uj,e"8=1,6>0,d e U
° A YiLi0ih & B B

= min{ 2 %-b > d, (b,t) € conv (T(u&h,e)) de ud}

= mAin{)\t ‘ Ab > d, (b,t) € conv <T(‘UB’h,e)) deud }

which completes the proof. O



Appendix C

Appendix of Chapter 3

C.1 Approximate Separation to Optimization.

For anyx € R}, let

* — 1 T < _ k
Q*(x) gnelgryz%x{d y|By <h—Ax}

We show that if we can approximate the separation problemgcavealso approximatélag.
Let 4 be ay-approximate algorithm for the separation problem (3,2i.8), 4 computes ay-
approximation algorithm for the min-max problem in (3.2.Epr anyx € R, let B”(x) denote

the matrix returned by and let

QY (x) = m%x{dTy | B(x)y <h—Ax}.
y>
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Therefore, the approximate separation based on Algorihiw as follows: for any(x,z), return
feasible ifQ?(x) > z Otherwise give a violating hyperplane correspondingfdx). Now, we

prove the following theorem.

Theorem C.1.1. Suppose we have an Algorithfhthat is ay-approximation for the separation
problem(3.2.1) Then we can compute yaapproximation for the two-stage adjustable robust

problemlMag (1.2.1)

Proof. Since4 is ay-approximation to the min-max problem in (3.2.1), for ang R" ,

Q (x) <Q(x) <y-Q"(x).

Let (x*,Z") be an optimal solution fofl g and let

OPT =c'x* + 7.

Consider the optimization algorithm based on the approteérs@paration algorithrd and suppose
it returns the solutioriX, 2). Note that(x*, z") is feasible according to the approximate separation

algorithm 4 asQ?(x*) > Q*(x*) = z*. Therefore,

c'R+2>c'x* +7°. (C.1)

Note thatzis an approximation for the worst case second-stage obgeddiue when the first stage
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solution isX. The true objective value for the first stage solutkas given by

cTR+Q* (%) > c'x+-Q%x)

\V,
o
x>
_|_

5 (C.2)

v

v
<lP<IpkE

where the first inequality follows ag is a y-approximation andQ?*(X) < y- Q*(X). Inequal-
ity (C.2) follows as(X, 2) is feasible according td and thereforez X Q*(X) and the last inequal-
ity follows from (C.1). Therefore, the optimization probiebased on algorithn® computes a

y-approximation follag. O

C.2 Proof of Theorem 3.2.1

Let y* be such thaBy* < h. For anyB € U, we haveB < B component-wise by construction.
Note thaty* > 0, this impliesBy* < By* < h for all B € 1.
Conversely, supposesatisfiesB§ < h for all B € 7. For each e [m], note thatliag(e)B € U

by construction. Therefore’ By < h; for all i € [m], which implies thaB§ < h.
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C.3 Proof of Lemma 3.2.3.

Let

B _ 1
Y (n4+i—j+1) modm’

From Theorem 3.2.T]gep IS €quivalent to
Zrob = max{e'y | By < ey > 0}.

The dual problem is

Zrob = Min{e"z| BTz >e z > 0}.

Let

— o(logn).

It is easy to observe théte is a feasible solution for both the primal and the dual foratiohs of

Zrob- Moreover, they have the same objective value. Therefore,

, n
Rob = —
s

On the other hand, for eaghe [n|, denote

n
Zl n+i—j+1) modn]- b.<1}
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By writing the dual of the inner maximization problemldig, we have

zar =min{e'a |BTa >ea>0,Be U}

=min{fA [\BTu>ee'p=1u>0Bec U}

:min{% ) b-jrp.Z 8,bj € ‘le,eTuzl,p.z O}.

Therefore, we just need to solve

Zi:max{9|bjTu2 0,bj € Uj,e"u=1,u>0} (C.1)
AR

Suppose(é,ﬁ,f)j,j € [m]) is an optimal solution for (C.1). For eaghe [n], consider a basic

optimal solutiorﬁj of the following LP:
b; cargmaxb™f| b € u;}.

Thereforepj is a vertex oftlj, which implies thab; = B;;j&; for someij € [n] andb] 1> 6. For
eachi € [n], let ;= {j |ij =i}. We haves , |S| = n. For each € [n] such thats; # 0, B;j can
only take values i{1,1/2,...,1/n} for j € §;. Moreover,éij £ By for j # k. Therefore, there
existsli € S such that

. 1 . . .
Bii; < S0 andbj = By, > 6.
|
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We have

i:520 i:5#0 é"i i1 570
Thereforef < % which implies thatzar > n.
On the other hand, it is easy to observe that <n: bj =ej, u=1/n-eand6=1/nis a
feasible solution for (C.1). Therefore,

1
T ZRob = O©(logn) - Zrob,

")

which completes the proof.



