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ABSTRACT

Essays on Approximation Algorithms for Robust Linear Optimization Problems

Brian Yin Lu

Solving optimization problems under uncertainty has been an important topic since the ap-

pearance of mathematical optimization in the mid 19th century. George Dantzig’s 1955 paper,

“Linear Programming under Uncertainty” is considered one of the ten most influential papers in

Management Science [27]. The methodology introduced in Dantzig’s paper is named stochastic

programming, since it assumes an underlying probability distribution of the uncertain input param-

eters. However, stochastic programming suffers from the “curse of dimensionality”, and knowing

the exact distribution of the input parameter may not be realistic. On the other hand, robust opti-

mization models the uncertainty using a deterministic uncertainty set. The goal is to optimize the

worst-case scenario from the uncertainty set. In recent years, many studies in robust optimization

have been conducted and we refer the reader to Ben-Tal and Nemirovski [4–6], El Ghaoui and

Lebret [20], Bertsimas and Sim [15, 16], Goldfarb and Iyengar [24], Bertsimas et al. [8] for a re-

view of robust optimization. Computing an optimal adjustable (or dynamic) solution to a robust

optimization problem is generally hard. This motivates us to study the hardness of approximation

of the problem and provide efficient approximation algorithms. In this dissertation, we consider

adjustable robust linear optimization problems with packing and covering formulations and their

approximation algorithms. In particular, we study the performances of static solution and affine

solution as approximations for the adjustable robust problem.

Chapter 2 and 3 consider two-stage adjustable robust linearpacking problem with uncertain



second-stage constraint coefficients. For general convex,compact and down-monotone uncer-

tainty sets, the problem is often intractable since it requires to compute a solution for all possible

realizations of uncertain parameters [23]. In particular,for a fairly general class of uncertainty

sets, we show that the two-stage adjustable robust problem is NP-hard to approximate within a

factor that is better thanΩ(logn), wheren is the number of columns of the uncertain coefficient

matrix. On the other hand, a static solution is a single (hereand now) solution that is feasible for

all possible realizations of the uncertain parameters and can be computed efficiently. We study the

performance of static solution as an approximation for the adjustable robust problem and relate its

optimality to a transformation of the uncertain set. With this transformation, we show that for a

fairly general class of uncertainty sets, static solution is optimal for the adjustable robust problem.

This is surprising since the static solution is widely perceived as highly conservative. Moreover,

when the static solution is not optimal, we provide an instance-based tight approximation bound

that is related to a measure of non-convexity of the transformation of the uncertain set. We also

show that for two-stage problems, our bound is at least as good (and in many case significantly bet-

ter) as the bound given by the symmetry of the uncertainty set[11, 12]. Moreover, our results can

be generalized to the case where the objective coefficients and right-hand-side are also uncertainty.

In Chapter 3, we focus on the two-stage problems with a familyof column-wise and constraint-

wise uncertainty sets where any constraint describing the set involves entries of only a single

column or a single row. This is a fairly general class of uncertainty sets to model constraint coef-

ficient uncertainty. Moreover, it is the family of uncertainty sets that gives the previous hardness

result. On the positive side, we show that a static solution is anO
(

logn ·min(logΓ, log(m+n))
)

-

approximation for the two-stage adjustable robust problemwherem andn denote the numbers of



rows and columns of the constraint matrix andΓ is the maximum possible ratio of upper bounds

of the uncertain constraint coefficients. Therefore, for constantΓ, surprisingly the performance

bound for static solutions matches the hardness of approximation for the adjustable problem. Fur-

thermore, in general the static solution provides nearly the best efficient approximation for the

two-stage adjustable robust problem.

In Chapter 4, we extend our result in Chapter 2 to a multi-stage adjustable robust linear opti-

mization problem. In particular, we consider the case wherethe choice of the uncertain constraint

coefficient matrix for each stage is independent of the others. In real world applications, deci-

sion problems are often of multiple stages and a iterative implementation of two-stage solution

may result in a suboptimal solution for multi-stage problem. We consider the static solution for

the adjustable robust problem show that it is optimal for theadjustable robust problem when the

uncertainty set for each stage is constraint-wise. We also give an approximation bound on the per-

formance of static solution for multi-stage adjustable robust problem that is related to the measure

of non-convexity introduced in Chapter 2.

Chapters 5 considers a two-stage adjustable robust linear covering problem with uncertain

right-hand-side parameter. As mentioned earlier, such problems are often intractable due to astro-

nomically many extreme points of the uncertainty set. We introduce a new approximation frame-

work where we consider a “simple” set that is “close” to the original uncertainty set. Moreover,

the adjustable robust problem can be solved efficiently overthe extended set. We show that the

approximation bound is related to a geometric factor that represents the Banach-Mazur distance

between the two sets. Using this framework, we provide approximation bounds that are better than

the bounds given by an affine policy in [7] for a large class of interesting uncertainty sets. For



instance, we provide an approximation solution that gives am1/4-approximation for the two-stage

adjustable robust problem with hypersphere uncertainty set, while the affine policy has an approx-

imation ratio ofO(
√

m). Moreover, our bound for generalp-norm ball ism
p−1
p2 as opposed tom

1
p

given by an affine policy.
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1

Chapter 1

Introduction

1.1 Background and Motivation

This thesis is devoted to approximation algorithms for adjustable robust linear problems. Research

in this area was ignited by the emergence of optimization problems under uncertainty in the input

parameters. Such uncertainty arises naturally in many realworld optimization problems. For ex-

ample, in a Knapsack problem, the item sizes and the size of the knapsack may be uncertain; In a

machine scheduling problem, the processing time for the arriving jobs may be uncertain. George

Dantzig’s 1955 paper, “Linear Programming under Uncertainty” is considered one of the ten most

influential papers in Management Science [27]. The methodology introduced in Dantzig’s paper

is named stochastic programming, since it assumes an underlying probability distribution of the

uncertain input parameters. The objective of stochastic programming is to optimize the expected

value subject to chance constraints. We refer the readers toKall and Wallace [29], Prekopa [31],

Shapiro [32], Shapiro et al. [33] for a thorough introduction of stochastic programming. Sev-
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eral empirical algorithms such as sample average approximation and stochastic gradient descent

have shown theoretical and numerical success. However, stochastic programming suffers from the

“curse of dimensionality” and is intractable in general. Moreover, knowing the exact distribution

of the input parameter may not be realistic, and one may only have partial information such as the

moments of the uncertain parameters or bounds on such quantities.

On the other hand, robust optimization models the uncertainparameters using a deterministic

uncertainty set. The goal is to optimize the objective valuecorresponding to the worst-case sce-

nario from the uncertainty set. Soyster [34] first considersrobust linear optimization problem in

the early 1970s. The author shows that there is a compact linear programming formulation for ro-

bust problem with certain uncertainty sets. In fact, robustoptimization is computationally tractable

for a large class of problems if we want to compute a static solution which is feasible for all sce-

narios. However, interestingly enough, the methodology went unnoticed for more than 20 years

after its debut. It was until late 1990s that researches in this field have become active again. The

series of Ben-Tal and Nemirovski [4–6], El Ghaoui and Lebret[20], Bertsimas and Sim [15, 16],

Goldfarb and Iyengar [24], Bertsimas et al. [8] give a solid review of robust optimization, and most

of these studies focus on the robustification of optimization problems and tractable approaches in

formulation.

In general, computing an adjustable (or dynamic) optimal solution for the robust optimization

problem is intractable. In fact, Feige et al. [23] show that it is hard to even approximate a two-

stage robust fractional set covering problem with uncertain right-hand-side within a factor better

thanΩ(logm/ loglogm), wherem is the number of elements. This motivates us to consider approx-

imation algorithms for the problem. Static robust solutions and affine adjustable robust solutions
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are two approaches that have been studied in literatures. Ina static robust solution, we compute a

single optimal solution that is independent of the choice ofthe uncertain parameters. Therefore, it

is feasible for all possible scenarios in the uncertainty set. Bertsimas and Goyal [9], Bertsimas et

al. [12] consider a two-stage adjustable robust covering problem with uncertain right-hand-side and

relate the performance of static solution to the symmetry ofthe uncertainty set. They show that the

static robust solution provides a 2-approximation for the two-stage adjustable problem if the uncer-

tainty set is symmetric. However, the gap can be arbitrarilylarge for a general convex uncertainty

set. Ben-Tal and Nemirovski [5] consider an adjustable robust packing problem with constraint

uncertainty set. They show that the static robust solution is optimal for the two-stage adjustable

robust problem if the uncertainty set is constraint-wise, i.e., the choice of each row in the uncertain

coefficient matrix is independent of the other rows (a Cartesian product of row uncertainty sets).

This motivates us to study the optimality conditions of static robust solution for general convex,

compact uncertainty sets. As mentioned earlier, Soyster [34] considers column-wise uncertainty

sets and shows that the static robust solution corresponds to a hypercube uncertainty set and can be

solved by a single LP. This is a fairly general class of uncertainty sets. However, to the best of our

knowledge, no result for the performance of static solutionas an approximation to the adjustable

robust problem with such uncertainty sets is known yet.

Ben-Tal et al. [3] introduce an affine adjustable solution (also known as affine policy) to approx-

imate two-stage adjustable robust covering problem with uncertain right-hand-side. This approach

assumes an affine relationship between the second-stage variable and the uncertain right-hand-

side. Such solution is preferred in its computational tractability and strong empirical performance.

Bertsimas et al. [13], Iancu et al. [28] consider single dimension multi-stage problem and give
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optimality conditions for affine policy. When the geometricproperties of the uncertainty set are

known, Bertsimas and Bidkhori [7] consider a two-stage adjustable robust covering problem with

uncertain right-hand-side and provide an approximation bound on the power of affine policy that

depends on the simplex dilation factor, the translation factor and symmetry of the uncertainty set.

They also compute the above geometric properties for several specific uncertainty sets. For general

uncertainty sets, Bertsimas and Goyal [10] give a generic bound ofO(
√

m) on the performance of

affine policy in regardless of the structure of the uncertainty set, wherem is the dimension of the

uncertain right-hand-side. Moreover, they show that the bound is tight when the uncertainty set is

the intersection of the unitℓ2-norm ball and the positive orthant, i.e.,

U = {h ∈ Rm
+ | ||h||2 ≤ 1,h ≥ 0}. (1.1.1)

Note that the above set has infinitely many extreme points. The authors also show that affine policy

is optimal if the uncertainty set is a simplex. However, for uncertainty sets with even(m+ 3)

extreme points, affine policy can still be sub-optimal. The worst case of affine policy holds for the

uncertainty sets with huge number of extreme points. That motivates us to find new policies where

we can have a good approximation for the adjustable problem even that the number of extreme

points can be very large.
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1.2 Preliminaries

1.2.1 Basic Notation

We denote the set of real numbers byR, then-dimensional Euclidean space byRn, and the Eu-

clidean space of the set of matrices of dimensionm by n by Rm×n. We also denote the entry-wise

non-negative counterpart of these sets with subscript “+”, e.g.,Rm×n
+ means set ofmby n matrices

with non-negative entries. Vectors and matrices are in boldfonts, e.g.,x ∈ Rm implies thatx is

a m-dimensional vector. As a conventional routine,e denotes vector of all ones (of appropriate

dimension), whileei denotes the standard unit vector in theith coordinate, i.e., one at theith en-

try and zeros elsewhere. We denote[n] as the set of numbers{1,2, . . . ,n}. The superscript “T”

denotes the transpose operation. The inner product of vectors x ∈ Rn andy ∈ Rn is denoted by

xTy = ∑n
j=1x jy j . The Euclidean norm ofx ∈ Rn is denoted by||x||2 = (xTx)1/2. We use||x||1 to

denote theℓ1-norm of x, i.e., ||x||1 = ∑n
j=1 |x j |. ||x||∞ denotes the infinity norm, i.e., the largest

component ofx in magnitude, i.e.,||x||∞ = maxj |x j |. Forx ∈ Rm, diag(x) denotes am×mmatrix

with diagonal whose diagonal entries are the elements ofx and off-diagonal entries are zeros.
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1.2.2 Robust Packing Problems

In Chapters 2 and 3, we consider the following two-stage adjustable robust linear packing problems

ΠAR−pack under uncertain constraint coefficients.

zAR−pack = max
x

cTx+min
B∈U

max
y(B)

dTy(B)

Ax +By(B) ≤ h

x ∈ Rn1

y(B) ∈ R
n2
+ ,

(1.2.1)

whereA ∈ Rm×n1,c ∈ Rn1,d ∈ R
n2
+ andh ∈ Rm. The second-stage constraint matrixB ∈ R

m×n2
+

is uncertain and belongs to a full dimensional compact convex uncertainty setU ⊆ R
m×n2
+ in the

non-negative orthant. The decision variablesx represent the first-stage decisions before the con-

straint matrixB is revealed, andy(B) represent the second-stage or recourse decision variables

after observing the uncertain constraint matrixB ∈ U. Therefore, the (adjustable) second-stage

decisions depend on the uncertainty realization. We can assume without loss of generality thatU

is down-monotone(see Appendix A.1).

We would like to emphasize that the second-stage objective coefficientsd, constraint coeffi-

cientsB, and the second-stage decision variablesy(B) are all non-negative. Also, the uncertainty

setU of second-stage constraint matrices is contained in the non-negative orthant. Therefore, the

model is slightly restrictive and does not allow us to handlearbitrary two-stage linear problems.

For instance, we can not handle covering constraints involving second-stage variables, or lower

bounds on second-stage decision variables. Note that thereis no restrictions on the first-stage
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constraint coefficientsA or objective coefficientsc until later in this thesis. Also, the first-stage

decision variablesx and right-hand-sideh are not necessarily non-negative.

Our model is still fairly general and captures important applications including resource alloca-

tion and revenue management problems. For instance, in the resource allocation problem consid-

ered in [37],m corresponds to the number of resources with capacitiesh. The linear constraints

correspond to capacity constraints on the resources, the first-stage matrixA denotes the resource

requirements of known first-stage demands andB denotes the uncertain resource requirements for

future demands. In the framework of (1.2.1), we want to compute first-stage (fractional) allocation

decisionsx such that the worst case total revenue over all possible future demand arrivals fromU

is maximized.

As another example, consider a multi-server scheduling problem as in [14] where jobs arrive

with uncertain processing times and we need to make the scheduling decisions to maximize the

utility. The first-stage matrixA denotes the known processing time of first-stage jobs,h denotes

the available timespan andB represents the time requirements of unknown arriving jobs.If we em-

ploy a pathwise enumeration for the uncertain time requirement, such stochastic project scheduling

problem can be modeled as two-stage packing linear programming problems with uncertain con-

straint coefficients as in (1.2.1).

Computing an optimal adjustable robust solution is intractable in general. In Chapter 2, we

show thatΠAR−pack (1.2.1) is hard to approximate within any factor that is better thanΩ(logn).

Therefore, we consider a static robust optimization approach to approximateΠAR−pack. The cor-
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responding static robust optimization problemΠRob can be formulated as follows.

zRob = max
x

cTx+dTy

Ax +By ≤ h, ∀B ∈ U

x ∈ Rn1

y ∈ R
n2
+ .

(1.2.2)

Note that the second-stage solutiony is static and does not depend on the realization of uncertainB.

Both first-stage and second-stage decisionsx andy are selected before the second-stage uncertain

constraint matrix is known and(x,y) is feasible for allB ∈ U. An optimal static robust solution

to (1.2.2) can be computed efficiently ifU has an efficient separation oracle. In fact, Ben-Tal and

Nemirovski [5] give compact formulations for solving (1.2.2) for polyhedral and conic uncertainty

sets.

In Chapter 2 and 3, our goal is to compare the performance of anoptimal static robust solution

with respect to the optimal adjustable robust solution ofΠAR−pack (1.2.1). The above models

have been considered in the literature. Ben-Tal and Nemirovski [5] show that a static solution

is optimal if the uncertainty setU is constraint-wisewhere each constrainti = 1, . . . ,m can be

selected independently from a compact convex setUi, i.e., U is a Cartesian product ofUi , i =

1, . . . ,m. However, the authors do not discuss performance of static solutions if the constraint-

wise condition onU is not satisfied. Bertsimas and Goyal [11] consider a generalmulti-stage

convex optimization problem under uncertain constraints and objective functions and show that the

performance of the static solution is related to the symmetry of the uncertainty setU. However,
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the symmetry bound in [11] can be quite loose in many instances. For example, consider the case

whenU is constraint-wise where eachUi , i = 1, . . . ,m is a simplex, i.e.,

Ui = {x ∈ Rn
+ | eTx ≤ 1}.

The symmetry ofU is O(1/n) [12] and the results in [11] imply an approximation bound ofΩ(n).

While from Ben-Tal and Nemirovski [5], we know that a static solution is optimal.

As static solution has been shown to be optimal for adjustable robust problem with constraint-

wise uncertainty sets, it is natural to consider column-wise uncertainty sets, i.e., each column

j ∈ [n] of the uncertain matrixB belongs to a compact convex setC j ⊆ Rm
+ unrelated to other

columns

U = {[b1 b2 . . .bn] | b j ∈ C j , j ∈ [n]}. (1.2.3)

In fact, the hardness result forΠAR−pack (1.2.1) mentioned earlier is obtained when the uncertainty

set is column-wise. In Chapter 3, we focus on such uncertainty sets and show that the static

solution provides anO(logn)-approximation for the adjustable robust problemΠAR−pack (1.2.1).

Moreover, our results can be generalized to column-wise andconstraint-wise uncertainty sets, i.e.,

U =
{

B ∈ Rm×n
+ | Bej ∈Cj , ∀ j ∈ [n], BTei ∈ Ri , ∀i ∈ [m]

}

.

In Chapter 4, we consider a multi-stage adjustable robust linear optimization problem with

covering constraints. Specifically, we consider the following problemΠK
AR whereK ∈N+ denotes
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the number of decision stages.

zK
AR = maxcT

0 x0+ min
B1∈U1

[

max
x1(B1)

cT
1 x1(B1)+ min

B2∈U2

[

max
x2(B1,B2)

cT
2 x2(B1,B2)+ . . .

+ min
BK∈UK

[

max
xK(B1,...,BK)

cT
KxK(B1, . . . ,BK)

]]]

Ax0+B1x1(B1)+B2x2(B1,B2)+ . . .+BKxK(B1, . . . ,BK) ≤ h,

∀Bt ∈ Ut , t ∈ [K]

x0,x1(B1), . . . ,xK(B1, . . . ,BK)≥ 0

whereA ∈ Rm×n,ci ∈ Rn, h ∈ Rm
+, andBt ∈ Ut ⊆ Rm×n

+ be the uncertain constraint coefficient

matrix for thetth-stage for allt ∈ [K]. Note that the uncertainty for each stage is independent of the

uncertainties for the other stages, i.e., the uncertainty setU =U1×U2× . . .×UK. Iancu et al. [28]

consider single dimension multi-stage linear adjustable problem with covering constraints and give

optimality conditions for affine policy. Other the other hand, we study the multi-dimensional ad-

justable robust problem with packing constraints and the performance of static solution as its ap-

proximation. In particular, we generalize the result of Ben-Tal and Nemirovski [5] by showing that

the static solution is optimal for the multi-stage adjustable robust problem when the uncertainty set

for each staget ∈ [K] is constraint-wise. We also give an approximation bound on the performance

of static solution that is related to the measure of non-convexity introduced in Chapter 2.

1.2.3 Adjustable Robust Covering Problem and Affine Policies

In Chapter 5, we consider a two-stage adjustable robust linear optimization problems with cov-

ering constraints and uncertain right-hand-side. In particular, we consider the following model
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ΠAR−cover(U):

zAR−cover(U) = min cTx+max
h∈U

min
y(h)

dTy(h)

Ax +By(h) ≥ h

x ∈ R
n1
+

y(h) ∈ R
n2
+ ,

(1.2.4)

whereA ∈ Rm×n1,c∈ R
n1
+ ,d ∈ R

n2
+ ,B ∈ Rm×n2. The mechanism of such model is the same as that

of ΠAR−pack(U) (1.2.1) except that the right-hand-sideh is uncertain and belongs to a compact,

convex and full-dimensional uncertainty setU ⊆ Rm
+. The choice ofh ∈ U is subject to adversary

selection, i.e.,h is chosen so that the second-stage cost is maximized. Again,we can assume

without loss of generality thatn1 = n2 = n andU is down-monotone, i.e.,h ∈ U and0≤ ĥ ≤ h

implies thatĥ ∈ U.

Similar to previous model, we would like to note that the objective coefficientsc, d and the

decision variablesx,y(B) are all non-negative. Moreover, the uncertainty setU is constrained

to be in the positive orthant. Again, this is slightly restrictive but the above model still captures

many important applications. For instance, in a demand-supply problem,h represents the uncertain

demand,A andB denote the supply-demand adjacency network matrix for the two decision stages,

andc andd are the corresponding costs for supply. In the framework ofΠAR−cover(U) (1.2.4),

our goal is to minimize the worst-case total cost over all possible future demand fromU. As

another example, we can obtain a two-stage set-cover problem by settingA andB to the element-

set incidence matrix. In fact, many combinatorial optimization problems with uncertain right-

hand-side can be modeled using the framework such as facility location and Steiner trees.
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Feige et al. [23] show that a two-stage robust set cover undersome plausible complexity as-

sumptions is hard to approximate within any factor that is better thanΩ(logm/ loglogm). This

motivates us to consider approximation algorithms for the adjustable robust problemΠAR (1.2.4)

for general uncertainty sets. Ben-Tal et al. [3] introduce an affine adjustable solution (also known

as affine policy), which assumes an affine relationship between the second-stage variabley(h) and

the uncertain right-hand-sideh, i.e., y(h) = Ph+q for someP ∈ Rn×m andq ∈ Rm. Therefore,

under affine policy,ΠAR−cover(U) (1.2.4) can be formulated as

zAR−cover−aff(U) = min cTx+z

z−dTq ≥ dTPh, ∀h ∈ U

eT
i (Ax +Bq) ≥ eT

i (I −BP)h, ∀i ∈ [m],h ∈ U

eT
i (Ph+q) ≥ 0, ∀i ∈ [m],h ∈ U

x ∈ Rn
+,

which can be solved efficiently provided a separation oracleoverU. For general uncertainty sets,

Bertsimas and Goyal [10] give a bound ofO(
√

m) on the performance of affine policy. Moreover,

they show that the bound is tight when the uncertainty set is the intersection of the unitℓ2-norm

ball and positive orthant. In Chapter 4, we provide a approximation framework that gives a ap-

proximation ratio ofm1/4 for such uncertainty set. Moreover, we generalize our result to general

ℓp-norm balls withp> 1.
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1.3 Our Contributions

Although mentioned in a scattered fashion previously, we would like to summarize our main con-

tributions at this point:

• In Chapter 2 and 3, we consider the two-stage adjustable robust linear packing problems

ΠAR−pack (1.2.1). Our goal is to compare the performance of an optimalstatic robust solution

with respect to the optimal adjustable robust solution.

Hardness of Approximation. We show that the adjustable robust problemΠAR−pack (1.2.1)

is Ω(logn) hard to approximate for the case of column-wise uncertaintysets. In other words,

there is no polynomial time algorithm that computes an adjustable two-stage solution with

worst case objective value within a factor better thanΩ(logn) of the optimal. Our proof

is based on an approximation preserving reduction from the set cover problem [36]. In

particular, we show that any instance of set cover problem can be reduced to an instance of

the two-stage adjustable robust problem with column-wise sets where each column set is a

simplex. For the more general case where the uncertainty setU and objective coefficientsd

are not constrained to be in the non-negative orthant, we show that the two-stage adjustable

robust problem isΩ(2log1−ε m)-hard to approximate for any constant 0< ε < 1 by a reduction

from theLabel-Cover-Problem [1]. The hardness of approximation results motivate us to find

good approximations for the two-stage adjustable robust problem.

Optimality of static solution . We give a tight characterization of the conditions under which

a static solution is optimal for the two-stage adjustable robust problemΠAR−pack (1.2.1). The
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optimality of static solutions depends on the geometric properties of a transformation of the

uncertainty set. In particular, we show that the static solution is optimal if the transformation

of U is convex. If U is a constraint-wise set, we show that the transformation ofU is

convex. Ben-Tal and Nemirovski [5] show that for suchU, a static solution is optimal for

adjustable robust problem. Therefore, our result extends the result in [5] for the case where

U is contained in the non-negative orthant. We also present other families of uncertainty sets

for which the transformation is convex.

This result is quite surprising as the worst-case choice ofB ∈ U usually depends on the

first-stage solution even ifU is constraint-wise unlessU is a hypercube. For the case of

hypercube, each uncertain element can be selected independently from an interval and in

that case, the worst-caseB is independent of the first-stage decision. However, a constraint-

wise set is a Cartesian product of general convex sets. We show that if the transformation of

U is convex, there is an optimal recourse solution for the worst-case choice ofB ∈ U that is

feasible for allB ∈ U. Furthermore, we show that our result can also be interpreted as the

following min-max theorem.

min
B∈U

max
y≥0

{dTy | By ≤ h}= max
y≥0

min
B∈U

{dTy | By ≤ h}.

The inner minimization on the max-min problem implies that the solutiony must be feasible

for all B ∈ U and therefore, is a static robust solution. We would like to note that the above

min-max result does not follow from the general saddle-point theorem [17].

In Chapter 4, we generalize the optimality condition for static solution to a multi-stage prob-
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lems where the choice of the uncertainty constraint coefficients for each stage is independent

of the others. In particular, we show that the static solution is optimal for the multi-stage ad-

justable robust problem if the uncertainty set for each stage is constraint-wise, thereby gener-

alizing the result of Ben-Tal and Nemirovski [5] to the multi-stage problems. Moreover, we

give an approximation bound on the performance of static solution for multi-stage adjustable

robust problem that is related to the measure of non-convexity introduced in Chapter 2.

Approximation bounds for the static solution. We give a tight approximation bound on

the performance of the optimal static solution for the adjustable robust problem when the

transformation ofU is not convex and the static solution is not optimal. We relate the per-

formance of static solutions to a natural measure of non-convexity of the transformation of

U. We also present a family of uncertainty sets and instances where we show that the approx-

imation bound is tight, i.e., the ratio of the optimal objective value of the adjustable robust

problem (1.2.1) and the optimal objective value of the robust problem (1.2.2) is exactly equal

to the bound given by the measure of non-convexity.

We also compare our approximation bounds with the bound in Bertsimas and Goyal [11]

where the authors relate the performance of the static solutions with the symmetry of the

uncertainty set. We show that our bound is stronger than the symmetry bound in [11]. In

particular, for any instance, we can show that our bound is atleast as good as the symmetry

bound, and in fact in many cases, significantly better. For instance, consider the following

uncertainty set

U =

{

B ∈ Rm×n
+

∣

∣

∣

∣

∣

∑
i, j

Bi j ≤ 1

}

.
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In this case,sym(U) = 1/mn [12] and the symmetry bound isΩ(mn). However, we show

that a static solution is optimal for the adjustable robust problem (our bound is equal to one).

Models with both constraint and objective uncertainty. We extend our result to two-

stage models where both constraint and objective coefficients are uncertain. In particular,

we consider a two-stage model where the uncertainty in the second-stage constraint matrix

B is independent of the uncertainty in the second-stage objective d. Therefore,(B,d) belong

to a convex compact uncertainty setU that is a Cartesian product of the uncertainty set of

constraint matricesUB and uncertainty set of second-stage objectiveUd.

We show that our results for the model with only constraint coefficient uncertainty can also

be extended to this case of both constraint and objective uncertainty. In particular, we show

that a static solution is optimal if the transformation ofUB is convex. Furthermore, if the

transformation is not convex, then the approximation boundon the performance of the opti-

mal static solution is related to the measure of non-convexity of the transformation ofUB.

Surprisingly, the approximation bound or the optimality ofa static solution does not depend

on the uncertainty set of objectivesUd. If the transformation ofUB is convex, a static solu-

tion is optimal for all convex compact uncertainty setsUd ⊆ R
n2
+ . We also present a family

of examples to show that our bound is tight for this case as well.

We also consider a two-stage adjustable robust model where in addition to the second-stage

constraint matrixB and objectived, the right hand sideh of the constraints is also uncertain

and

(B,h,d) ∈ U = UB,h×Ud,
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whereU is a convex compact set that is a Cartesian product of the uncertainty set for(B,h)

and the uncertainty set ford. For this case, we give a sufficient condition for the optimality

of a static solution that is related to the convexity of the transformation of uncertainty set

UB,h. Note again that the optimality of a static solution does notdepend on the uncertainty

set of objectivesUd. However, our approximation bounds do not extend for this case if the

transformation ofUB,h is not convex.

Uniform Approximation Bound for Column-wise and Constrain t-wise Uncertainty Sets.

In Chapter 3, we focus on column-wise and constraint-wise uncertainty set (1.2.3) and show

that in this case, a static solution provides anO
(

logn·min(logΓ, log(m+n))
)

-approximation

for the two-stage adjustable robust problem whereΓ is the maximum possible ratio of the

upper bounds of different matrix entries in the uncertaintyset (See Section 3.3 for de-

tails). Therefore, ifΓ is a constant, a static solution gives aO(logn)-approximation for

the adjustable robust problem for column-wise and constraint-wise uncertainty sets; thereby,

matching the hardness of approximation. This is quite surprising as it shows the static so-

lution is the best possible efficient approximation for the adjustable robust problem in this

case. We would like to note that the two-stage adjustable robust optimization problem is

Ω(logn)-hard even for the case whenΓ is a constant. Furthermore, whenΓ is large, we

show that a static solution gives aO(logn · log(m+n))-approximation for the adjustable ro-

bust problem. Therefore, the static solution provides a nearly optimal approximation for the

two-stage adjustable robust problem for column-wise and constraint-wise uncertainty sets in

general.
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We first consider the case when the uncertainty set is column-wise and prove a bound of

O
(

logn ·min(logΓ, log(m+ n))
)

on the adaptivity gap for the adjustable robust problem.

Our analysis is based on the structural properties of the optimal adjustable and static robust

solutions. In particular, we first show that the worst adaptivity gap is achieved when each

column is a simplex. This is based on the property of the optimal static robust solution

that it depends only on the hypercube containing the given uncertainty setU (Soyster [34]).

We formalize this in Theorems 3.2.1 and 3.2.2. Furthermore,for the simplex column-wise

uncertainty sets, we relate the adjustable robust problem to an appropriate set cover problem

and relate the static robust problem to the corresponding LPrelaxation in order to obtain the

bound on the adaptivity gap.

We extend the analysis to the case whenU is a column-wise and constraint-wise uncertainty

set and prove a similar bound on the performance of static solutions. In particular, we show

that if a static solution provides anα-approximation for the adjustable robust problem with

column-wise uncertainty sets, then a static solution is anα-approximation for the case of

column-wise and constraint-wise uncertainty sets. Moreover, we also extend our result to

the case where the second-stage objective coefficients are also uncertain and show that the

same bound holds when the uncertainty in the objective coefficients does not depend on the

column-wise and constraint-wise constraint coefficient uncertainty sets.

Our results confirm the power of static robust solutions for the two-stage adjustable robust

problem. In particular, its performance nearly matches thehardness of approximation factor

for the adjustable robust problem, which indicates that it is nearly the best approximation
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possible for the problem. In addition, we would like to note that our approximation bound

only compares the optimal objective values of the adjustable and static robust problems. The

performance of the static robust solution policy can potentially be better: if(x∗,y∗) is an

optimal static robust solution, we only implement the first-stage solutionx∗ and compute the

recourse solution after observing the realization of the uncertain matrixB. Therefore, the

objective value of the recourse solution can potentially bebetter than that ofy∗.

• In Chapter 5, we consider the two-stage adjustable robust linear optimization problems with

covering constraints and uncertain right-hand-sideΠAR−cover(U) (1.2.4). We introduce a

new approximation framework for the problem. Our frameworkis based on choosing an

appropriate dominating set̂U by exploring the geometric structure ofU in order to get

better approximation bounds than the affine policy.

One of the main reasons of intractability of adjustable robust optimization problems is that

the number of extreme points of the uncertainty setU can be large. Our new approach

approximates the uncertainty setU with a “simple” set that is “close” toU and over which

the adjustable problem can be solved efficiently. In particular, for any uncertainty setU,

we construct an uncertainty setÛ with small number of extreme points that dominatesU,

i.e., for anyh ∈ U, there existŝh ∈ Û such thath ≤ ĥ. Therefore, solving the adjustable

robust problem over̂U gives a feasible solution for the adjustable robust problemoverU.

We show that the approximation bound is related to a geometric factorβ(U,Û) that represents

the Banach Mazur distance between the setsU andÛ.

Using this framework, we provide approximation bounds thatare better than the bounds
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given by an affine policy in [7] for a couple of interesting uncertainty sets. For instance,

we provide an approximation solution that gives am1/4-approximation for the two-stage

adjustable robust problemΠAR−cover(U) (1.2.4) with hypersphere uncertainty set, while the

affine policy has an approximation ratio ofO(
√

m). More general, our bound for thep-norm

unit ball ism
p−1
p2 as opposed tom

1
p given by an affine policy.



21

Chapter 2

A Tight Characterization of the

Performance of Static Solutions in

Two-stage Adjustable Robust Linear

Optimization

2.1 Introduction

In this chapter, we consider a two-stage adjustable robust linear packing problemsΠAR−pack (1.2.1)

under uncertain constraint coefficients. For the ease of discussion, we denote the problem asΠAR

throughout this and next chapter.

Outline. The rest of the chapter is organized as follows: In Section 2.2, we present the hard-
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ness of approximation for the two-stage adjustable robust problems. In Section 2.3, we discuss

the optimality of static solutions for the two-stage adjustable robust problem under constraint un-

certainty and relate it to the convexity of an appropriate transformation of the uncertainty set. In

Section 2.4, we introduce a measure of non-convexity for anycompact set. Moreover, we present

a tight approximation bound for the performance of an optimal static solution for the adjustable

robust problem, that is related to the measure of non-convexity of the transformation of the un-

certainty set. In Section 2.5, we extend our result to two-stage models where both second-stage

constraint and objective are uncertain.

2.2 Hardness of Approximation.

In this section, we show that the two-stage adjustable robust problemΠAR is Ω(logn)-hard to

approximate for column-wise uncertainty sets (1.2.3). In other words, there is no polynomial time

algorithm that guarantees an approximation within a factorof Ω(logn) of the optimal two-stage

adjustable robust solution. We achieve this via an approximation preserving reduction from the set

cover problem , which isΩ(logn)-hard to approximate [36]. In particular, we have the following

theorem.

Theorem 2.2.1.The two-stage adjustable robust problem,ΠAR as defined in(1.2.1)is Ω(logn)-

hard to approximate for column-wise uncertainty sets.

Proof. Consider an instanceI of the set cover problem with ground set of elementsS= {1, . . . ,n}

and a family of subsetsS1, . . . ,Sm ⊆ S. The goal is to find minimum cardinality collectionC of

subsetsSi, i ∈ [m] that covers allj ∈ [n]. We construct an instanceI ′ of the two-stage adjustable
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robust problemΠAR (1.2.1) with a column-wise uncertainty setU as follows.

c= 0,A = 0, hi = 1, ∀i ∈ [m], d j = 1, ∀ j ∈ [n]

U j =

{

b ∈ [0,1]m
∣

∣

∣

∣

∣

m

∑
i=1

bi ≤ 1, bi = 0, ∀i s.t. j /∈ Si

}

U =
{

[b1 b2 . . . bn] | b j ∈ U j
}

.

Note that there is a row corresponding to each subsetSi and a column corresponding to each

elementj. Moreover,U is a column-wise uncertainty set. Now,

zAR = min
b j∈U j , j∈[n]

max
y∈Rn

+

{

eTy

∣

∣

∣

∣

∣

n

∑
j=1

y jb j ≤ e

}

= min
b j∈U j , j∈[n]

min
v∈Rm

+

{eTv | bT
j v ≥ 1,∀ j ∈ [n]},

where the second equality follows from taking the dual of theinner maximization problem in the

original formulation. Supposêv, b̂ j for all j ∈ [n] is a feasible solution for instanceI ′. Then, we

can compute a solution for instanceI with cost at mosteT v̂. To prove this, we show that we can

construct an integral solutioñv, b̃ j for all j ∈ [n] such that

eT ṽ ≤ eT v̂.

Note thatb̂ j may not necessarily be integral. For eachj ∈ [n], consider a basic optimal solutionb̃ j

where

b̃ j ∈ argmax{bT v̂ | b ∈ U j}.
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Therefore,b j is a vertex ofU j for any j ∈ [n], which impliesb̃ j = ei j for somei j ∈ S j . Also,

b̃T
j v̂ ≥ b̂T

j v̂ ≥ 1, ∀ j ∈ [n].

Now, let

ṽ ∈ argmin{eTv | b̃T
j v ≥ 1,∀ j ∈ [n],v ≥ 0}.

Clearly,eT ṽ ≤ eT v̂. Also, for all j ∈ [n], sinceb̃ j = ei j for somei j ∈ S j ,

b̃T
j ṽ ≥ 1 =⇒ ṽi j = 1, ∀ j ∈ [n].

Therefore,̃v ∈ {0,1}m. Let

C= {Si | ṽi = 1}.

Clearly,C covers all the elementj ∈ [n] and|C|= eT ṽ ≤ eT v̂.

Conversely, consider set coverC ⊆ {Si, i ∈ [m]} of instanceI . For any j ∈ [n], there exists

i j ∈ [m] such thatj ∈ Si j andSi j ∈C. Now, we can construct a feasible solutionv̄, b̄ j for all j ∈ [n]

for zAR as follows.

b̄ j = ei j , ∀ j ∈ [n]

v̄i =















1 if Si ∈C

0 otherwise

, ∀i ∈ [m].

It is easy to observe that̄bT
j v̄ ≥ 1 for all j ∈ [n] andeT v̄ = |C|.
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2.2.1 General Two-stage Adjustable Robust Problem.

If the uncertainty setU of second-stage constraint matrices and the objective coefficientsd are

not constrained to be in the non-negative orthant inΠAR, we can prove a stronger hardness of

approximation result. In particular, consider the following general problemΠGen
AR :

zGenAR = maxcTx+ min
B∈U

max
y(B)

dTy(B)

Ax +By(B) ≤ h

y(B)≥ 0,

(2.2.1)

whereU ⊆ Rm×n is a convex compact column-wise set,c,d ∈ Rn andA ∈ Rm×n. We show that it

is Ω(2log1−ε m)-hard to approximate for any constant 0< ε < 1.

Theorem 2.2.2.The adjustable robust problemΠGen
AR (2.2.1) is Ω(2log1−ε m)-hard to approximate

for any constant0< ε < 1.

We prove this by an approximation preserving reduction fromthe Label-Cover-Problem [1].

The proof is presented in Appendix B.1.

2.3 Optimality of Static Solutions

As shown in previous section, the two-stage adjustable robust problemΠAR (1.2.1) isΩ(logn)-hard

even for column-wise uncertainty sets. This motivates us tofind efficient approximation algorithms

for the problem. In particular, we consider static solutionfor (1.2.2) as an approximation for the

adjustable robust problem. In this section, we present a tight characterization of the conditions
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under which a static robust solution computed from (1.2.2) is optimal for the adjustable robust

problem (1.2.1). We introduce a transformation of the uncertainty setU and relate the optimality

of a static solution to the convexity of the transformation.

An optimal static solution for (1.2.2) can be computed efficiently. Note that a static solution

(x,y) is feasible for allB∈ U. To observe that an optimal static robust solution can be computed in

polynomial time, consider the separation problem: given a solutionx,y, we need to decide whether

or not there existsB ∈ U and j ∈ {1, . . . ,m} such that

eT
j (Ax +By)> h j ,

and find a separating hyperplane if(x,y) is not feasible. Therefore, by solvingm linear optimiza-

tion problems overU we can decide whether the given solution is feasible or obtain a separating

hyperplane. From the equivalence of the separation and optimization [25], we can compute an

optimal static robust solution in polynomial time. In fact,there is a compact linear formulation to

compute the optimal static solution forΠRob for a fairly general class of uncertainty sets [2,5].

We can easily see that the static solution is a lower bound of the optimal value of the adjustable

robust problem. Suppose(x∗,y∗) is an optimal solution forΠRob. Then,x = x∗,y(B) = y∗ for all

B ∈ U is feasible forΠAR. Therefore,

zAR ≥ zRob. (2.3.1)

We would like to study the conditions under whichzAR ≤ zRob. Suppose(x∗,y∗(B)) for all
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B ∈ U is a fully-adjustable optimal solution forΠAR. Then

zAR = cTx∗+ min
B∈U

max
y(B)

{

dTy(B) | By(B) ≤ h−Ax∗}

zRob ≥ cTx∗+max
y≥0

{

dTy | By ≤ h−Ax∗,∀B ∈ U
}

.

Note thath−Ax∗ ≥ 0, since otherwise the second-stage problem becomes infeasible for ΠAR. In

fact, we can assume without loss of generality thath−Ax∗ > 0. Otherwise, it is easy to see that

zAR = zRob: suppose(h−Ax∗)i = 0 for somei. SinceU is a full-dimensional convex set, we can

find B̂ ∈ U such thatB̂i j > 0 for all j ∈ [n2]. Therefore,

min
B∈U

max
y(B)≥0

{

dTy(B) | By(B)≤ h−Ax∗}≤ max
y≥0

{

dTy | B̂y ≤ h−Ax∗}= 0,

which implieszAR = zRob. Therefore, we need to study conditions under which

max
y≥0

{

dTy |By ≤ h−Ax∗,∀B ∈ U
}

≥ min
B∈U

max
y≥0

{

dTy |By ≤ h−Ax∗} , (2.3.2)

whereh−Ax∗ > 0.
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2.3.1 One-stage Models

Motivated by (2.3.2), we consider the following one-stage adjustable robust problemΠI
AR(U,h):

zI
AR(U,h) = min

B∈U
max

y
dTy

By ≤ h

y ∈ Rn
+,

(2.3.3)

whereh ∈ Rm
+ andh > 0, d ∈ Rn

+ andU ⊆ Rm×n
+ is the convex, compact and down-monotone

uncertainty set. The corresponding one-stage static robust problemΠI
Rob(U,h) can be formulated

as follows:

zI
Rob(U,h) = max

y
dTy

By ≤ h, ∀B ∈ U

y ∈ Rn
+.

(2.3.4)

ConsiderΠI
AR(U,h) as defined in (2.3.3). We can write the dual problem of the inner maximization

problem.

zI
AR(U,h) = min

B,α
{hTα | BTα ≥ d,B ∈ U,α ∈ Rm

+}.

Substitutingλ = hTα andα = λµ, we can reformulatezI
AR(U,h) as follows.

zI
AR(U,h) = min

λ,B,µ
{λ | λBTµ≥ d, hTµ= 1, B ∈ U,µ∈ Rm

+}. (2.3.5)



29

Figure 2.1: The boundary of the setT(U,e) whenn= 3.

2.3.2 Transformation ofU

Motivated from the formulation (2.3.5), we define the following transformationT(U,h) of the

uncertainty setU ∈ Rm×n
+ andh > 0.

T(U,h) =
{

BTµ
∣

∣ hTµ= 1, B ∈ U, µ≥ 0
}

. (2.3.6)

For instance, ifh = e, thenT(U,e) is the set of all convex combinations of rows ofB ∈ U for all

B ∈ U. Note thatT(U,e) is not necessarily convex in general. We discuss several examples below

to illustrate properties ofT(U,h).

Example 1 (U where T(U,h) is non-convex).Consider the following uncertainty setU:

U =

{

B ∈ [0,1]n×n

∣

∣

∣

∣

∣

Bi j = 0, ∀i 6= j,
n

∑
j=1

B j j ≤ 1

}

. (2.3.7)
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T(U,e) is non-convex. Figure 2.1 illustratesT(U,e) whenn= 3. In fact, in Theorem B.4.1, we

prove thatT(U,h) is non-convex for allh > 0.

On the other hand, in the following two lemmas, we show thatT(U,h) can be convex for allh > 0

for some interesting families of examples.

Example 2 (Constraint-wise uncertainty set).Suppose the uncertainty setU is constraint-wise

where each constrainti ∈ [m] can be selected independently from a compact convex setUi . In

other words,U is a Cartesian product ofUi , i ∈ [m], i.e.,

U = U1×U2× . . .×Um,

thenT(U,h) is convex for allh > 0. In particular, we have the following lemma.

Lemma 2.3.1.Suppose the convex compact uncertainty setU is constraint-wise:

U = {B | BTej ∈ U j},

whereU j is a compact convex set inRn
+. Then T(U,h) is convex for allh > 0.

We provide a detailed proof of Lemma 2.3.1 in Appendix B.2. InBen-Tal and Nemirovski [5], the

authors show that a static solution is optimal for the adjustable robust problem ifU is constraint-

wise. In later discussion, we show that a static solution is optimal if T(U,h) is convex for all

h > 0; thereby extending the result in [5] for the case whereU is contained in the non-negative
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orthant. Note that constraint-wise uncertainty is analogous to independence in distributions for

stochastic optimization problems.

Example 3 (Symmetric projections).Suppose the uncertainty setU has symmetric projections,

i.e., the projections ofU onto each of its row sets are the same, thenT(U,h) is convex for all

h > 0. In particular, we have the following lemma.

Lemma 2.3.2.Consider any convex compact uncertainty setU ⊆ Rm×n
+ . For any j= 1, . . . ,m, let

U j =
{

b | ∃ B ∈ U,b = BTej
}

.

SupposeU is such thatUi = U j for all i , j ∈ {1, . . . ,m}. Then T(U,h) is convex for allh > 0.

We provide a proof of Lemma 2.3.2 in Appendix B.2.

The family of permutation invariantsets is an important sub-class of sets with symmetric

projections. A setU ⊆ Rm×n
+ is permutation invariantif for any B ∈ U and any permutationσ

of {1, . . . ,m}, the matrix obtained by permuting the rows ofB, sayBσ whereBσ
i j = Bσ(i) j , also

belongs toU. For example, consider the following set:

U =

{

B ∈ Rm×n
+

∣

∣

∣

∣

∣

∑
i, j

Bi j ≤ 1

}

.

It is easy to observe thatU is permutation invariant. Any permutation invariant setU has symmet-

ric projections since

b ∈ U j for somej = 1, . . . ,m⇒ b ∈ Ui , ∀i = 1, . . . ,m.
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Therefore,T(U,h) is convex for allh > 0 for any permutation invariantU. However, not all sets

with symmetric projections are permutation invariant. Forexample, consider the following set

U ⊆ R2×2
+ :

U =











































x1 x2

x3 x4









∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1+x2+x3 ≤ 1,

x2+x3+x4 ≤ 1,

xi ≥ 0, i = 1,2,3,4.



































.

Note thatU has symmetric projections as its projections on both rows are {x ∈ R2
+ | eTx ≤ 1}.

However,U is not permutation invariant as









1 0

0 1









∈ U, but









0 1

1 0









6∈ U.

2.3.3 Main Theorem

Now, we introduce the main theorem which gives a tight characterization of the optimality of the

static solution for the two-stage adjustable robust problem.

Theorem 2.3.3(Optimality of Static Solutions). Let zAR be the objective of the two-stage ad-

justable robust problemΠAR defined in(1.2.1)and zRob be that ofΠRob defined in(1.2.2). Then,

zAR = zRob if T (U,h) is convex for allh > 0. Furthermore, if T(U,h) is not convex for some

h > 0, then there exist an instance such that zAR > zRob.

Note thatzAR = zRob implies that the optimal static robust solution forΠRob is also optimal

for the adjustable robust problemΠAR. In order to prove Theorem 2.3.3, we first reformulate
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ΠI
AR(U,h) andΠI

Rob(U,h) as optimization problems overT(U,h). From (2.3.5) and the defini-

tion of T(U,h), we have the following lemma.

Lemma 2.3.4.GivenU ⊆ Rm×n
+ andh > 0, the one-stage adjustable robust problemΠI

AR(U,h)

defined in(2.3.3)can be formulated as

zI
AR(U,h) = min

λ,b
{λ | λb ≥ d, b ∈ T(U,h)}. (2.3.8)

We can also reformulateΠI
Rob(U,h) as an optimization problem overconv(T(U,h) as follows.

Lemma 2.3.5.GivenU ⊆ Rm×n
+ andh > 0, the one-stage static robust problemΠI

Rob(U,h) de-

fined in(2.3.4)can be formulated as

zI
Rob(U,h) = min

λ,b
{λ | λb ≥ d, b ∈ conv(T(U,h))}. (2.3.9)

We provide a detailed proof in Appendix B.3.

Note that the formulations (2.3.8) and (2.3.9) are bilinearoptimization problems overT(U,h)

and not necessarily convex even ifT(U,h) is convex. However, the reformulations provide in-

teresting geometric insights about the relation between the adjustable robust and static robust

problems with respect to properties ofU. Figure 2.2 illustrates the geometric interpretation of

zI
AR(U,h) andzI

Rob(U,h) in terms of the formulation in Lemma 2.3.4 and 2.3.5. Now, we are

ready to prove Theorem 2.3.3.

Proof of Theorem 2.3.3SupposeT(U,h) is convex for allh > 0. Let (x∗,y∗(B),B ∈ U) be an
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Figure 2.2: A geometric illustration ofzI
AR(U,h) andzI

Rob(U,h) whend = 1
2e: For zI

AR(U,h),
the optimal solutionb is the point whered intersects with the boundary ofT(U,h), while for
zI
Rob(U,h), the optimal solution isb = d sinced ∈ conv(T(U,h)).

optimal fully-adjustable solution toΠAR. Then

zAR = cTx∗+ min
B∈U

max
y(B)≥0

{

dTy(B) | By(B)≤ h−Ax∗}

= cTx∗+zI
AR(U,h−Ax∗),

where the second equation follows from (2.3.3). We can assume without loss of generality that

h−Ax∗ > 0 as discussed earlier. Now,

zRob ≥ cTx∗+max
y≥0

{

dTy | By ≤ h−Ax∗,∀B ∈ U
}

= cTx∗+zI
Rob(U,h−Ax∗)

= cTx∗+zI
AR(U,h−Ax∗) (2.3.10)

= zAR,
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where the first inequality follows asx∗ is a feasible first-stage solution for the static robust prob-

lem. The second equation follows from (2.3.4). Equation (2.3.10) follows from Lemma 2.3.4

and Lemma 2.3.5 and the fact thatT(U,h−Ax∗) is convex. Also, from (2.3.1) we know that

zAR ≥ zRob which implieszAR = zRob.

Conversely, supposezAR = zRob. For the sake of contradiction, assumeT(U,h) is non-convex

for someh = ĥ. Then, there must exist̂b ∈ Rn
+ such thatb̂ 6∈ T(U, ĥ) but b̂ ∈ conv(T(U, ĥ)).

Consider the following instance ofΠAR andΠRob:

A = 0, c= 0, h = ĥ, d = b̂.

Note that in this case, we havezAR = zI
AR(U, ĥ) andzRob = zI

Rob(U, ĥ). Therefore, by our assump-

tion,

zI
AR(U, ĥ) = zI

Rob(U, ĥ).

Sinceb̂∈ conv(T(U, ĥ)), α=1,b= b̂ is a feasible solution forzI
Rob(U, ĥ). Therefore,zI

Rob(U, ĥ)≤

1, which implieszI
AR(U, ĥ) ≤ 1. However, this would further imply that there exists someb1 ∈

T(U, ĥ) such thatb1 ≥ b̂. SinceU is down-monotone by our assumption, so isT(U, ĥ) (see

Appendix A.1). Therefore,̂b ∈ T(U, ĥ), which is a contradiction.

We give examples of families ofU in Lemma 2.3.1 and Lemma 2.3.2, whereT(U,h) is convex

for all h > 0. We would like to note that for a givenh > 0, it is not necessarily tractable to decide

whetherT(U,h) is convex or not for any arbitraryU.
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2.3.4 Min-Max Theorem Interpretation

We can interpret a special case of Theorem 2.3.3 as a min-max theorem. Consider the case where

A = 0,c= 0, in which we have

zAR = zI
AR(U,h),zRob = zI

Rob(U,h).

Recall:

zI
AR(U,h) = min

B∈U
max
y≥0

{

dTy

∣

∣

∣

∣

By ≤ h
}

.

We define the following function fory ∈ Rn
+,B ∈ U ⊆ Rm×n

+ :

f (y,B) =















dTy, if By ≤ h

−∞, otherwise.

Now, we can expresszI
AR(U,h) andzI

Rob(U,h) as follows:

zI
AR(U,h) = min

B∈U
max
y≥0

f (y,B)

and

zI
Rob(U,h) = max

y≥0
min
B∈U

f (y,B).

Therefore, from Theorem 2.3.3, we have:

min
B∈U

max
y≥0

f (y,B) = max
y≥0

min
B∈U

f (y,B) (2.3.11)
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if T(U,h) is convex. We would like to note that the min-max equality (2.3.11) does not follow

from the general Saddle-Point Theorem [17] sincef (y,B) is not a quasi-convex function ofB.

2.4 Measure of Non-convexity and Approximation Bound

In this section, we introduce a measure of non-convexity forgeneral down-monotone compact

sets in the non-negative orthant and show that the performance of the optimal static solution is

related to this measure of non-convexity of the transformation T(U,h) of the uncertainty setU.

We also compare our bound with the symmetry bound introducedby Bertsimas and Goyal [11]. In

particular, we show that our bound is at least as good as the symmetry bound, and is significantly

better in many cases.

Definition 2.4.1. Given a down-monotone compact setS ⊆ Rn
+ that is contained in the non-

negative orthant, themeasure of non-convexityκ(S) is defined as follows.

κ(S) = min{α | conv(S)⊆ αS } . (2.4.1)

For any down-monotone compact setS ⊆ Rn
+, κ(S) is the smallest factor by whichS must be

scaled to contain the convex hull ofS . If S is convex, thenκ(S) = 1. Therefore, if the uncertainty

setU is constraint-wise, thenκ(T(U,h)) = 1 for all h > 0 (Lemma 2.3.1). On the other hand, if

S is non-convex, thenκ(S)> 1. For instance, consider the following set:

S n =

{

x ∈ Rn
+

∣

∣

∣

∣

∣

n

∑
i=1

x
1
2
j ≤ 1

}
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Figure 2.3: A geometric illustration ofκ(S) whenn= 2: S is down-monotone and shaded with dot
lines,conv(S) is marked with dashed lines, and the outmost curve is the boundary ofκ ·S . Draw
a line from the origin which intersects with the boundary ofS at v and the boundary ofconv(S) at
u. κ(S) is the largest ratio of suchu andv’s.

Figure 2.3 illustrates setS n for n = 2 and its measure of non-convexity. We would like to

emphasize that given an arbitrary down-monotone compact set U andh > 0, it is not necessarily

tractable to computeκ(T(U,h)).

2.4.1 Approximation Bounds

In this section, we relate the performance of the static solution for the two-stage adjustable robust

problem to the measure of non-convexity ofT(U,h).

Additional Assumption: For the analysis of the performance bound for static solutions, we make

two additional assumptions in the model (1.2.1): the first-stage objective coefficientsc and the first-

stage decision variablesx in ΠAR (1.2.1) are both non-negative. We work with these assumptions

for the rest of this and next chapter.
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Theorem 2.4.2.For any down-monotone, compact setU ⊆ Rm×n
+ , let

ρ(U) = max{κ(T(U,h)) | h > 0}.

Let zAR be the optimal value ofΠAR in (1.2.1)and zRob be the optimal value ofΠRob in (1.2.2)

under the additional assumption thatx ≥ 0 andc≥ 0. Then,

zAR ≤ ρ(U) ·zRob.

Furthermore, we can show that the bound is tight.

Proof. Suppose(x∗,y∗(B),B ∈ U) is an optimal fully-adjustable solution forΠAR. Based on the

discussion in Theorem 2.3.3, we can assume without loss of generality thath−Ax∗ > 0. Then

zAR = cTx∗+ min
B∈U

max
y(B)≥0

{

dTy(B) | By(B)≤ h−Ax∗}

= cTx∗+zI
AR(U,h−Ax∗),

and

zRob ≥ cTx∗+max
y

{

dTy | By ≤ h−Ax∗, ∀B ∈ U
}

= cTx∗+zI
Rob(U,h−Ax∗).

(2.4.2)

Let ĥ = h−Ax∗ andκ = κ(T(U, ĥ)). From Lemmas 2.3.5, we can reformulatezI
Rob(U, ĥ) as

follows.

zI
Rob(U, ĥ) = min

b∈conv(T(U,ĥ))
{λ | λb ≥ d,λ ≥ 0}. (2.4.3)



40

Suppose(λ̂, b̂) be the minimizer forzI
Rob(U, ĥ) in (2.4.3). Therefore,

b̂ ∈ conv(T(U, ĥ))⇒ 1
κ
· b̂ ∈ T(U, ĥ).

Now,

zI
AR(U, ĥ) = min

b∈T(U,ĥ)
{λ | λb ≥ d,λ ≥ 0}

≤ κ · λ̂

= κ ·zI
Rob(U, ĥ), (2.4.4)

where the first equation follows from the reformulation ofzI
AR(U, ĥ) in Lemma 2.3.4. The second

inequality follows as(1/κ)b̂∈ T(U, ĥ) andλ̂b̂≥ d and the last equality follows aszI
Rob(U, ĥ) = λ̂.

Therefore,

zAR = cTx∗+zI
AR(U,h−Ax∗)

≤ cTx∗+κ ·zI
Rob(U,h−Ax∗) (2.4.5)

≤ κ ·
(

cTx∗+zI
Rob(U,h−Ax∗)

)

≤ ρ(U) ·zRob, (2.4.6)

where (2.4.5) follows from (2.4.4) and the last inequality follows from (2.4.2) and the fact that

κ = κ(T(U, ĥ))≤ ρ(U).

Tightness of the bound. We can show that the bound is tight. In particular, given anyscalar
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µ> 1 and somen ∈ Z+, takeA = 0,c = 0,d = e,h = e andθ = logµn. Consider the following

uncertainty set:

U =

{

B ∈ [0,1]n×n

∣

∣

∣

∣

∣

Bi j = 0, ∀i 6= j,
n

∑
j=1

Bθ
j j ≤ 1.

}

.

For ΠAR, we have

zAR = min
B

max
y

{

eTy

∣

∣

∣

∣

∣

B j j y j ≤ 1, j = 1, . . . ,n,
n

∑
j=1

Bθ
j j ≤ 1

}

= min
B

{

n

∑
j=1

1
B j j

∣

∣

∣

∣

∣

n

∑
j=1

Bθ
j j ≤ 1

}

.

This is a convex problem and by solving the KKT conditions, wehave the optimal solution as

B j j = n−
1
θ for j = 1, . . . ,n. Hence, the optimal value ofzAR = n ·n1

θ = n1+ 1
θ .

For ΠRob, we have

zRob = max
y

{

eTy

∣

∣

∣

∣

B j j y j ≤ 1, ∀B ∈ U, j = 1, . . . ,n.

}

The constraints essentially enforceB j j y j ≤ 1 for all B j j ≤ 1, j = 1, . . . ,n. We only need to consider

the extreme case whereB j j = 1, which yieldsy j = 1. Therefore,zRob = n and

zAR
zRob

=
n1+ 1

θ

n
= n

1
θ = µ.

In Appendix B.4,we show thatκ(T(U,h)) = n
1
θ for all h > 0. Therefore,ρ(U) = n

1
θ = µ and

zAR = ρ(U) ·zRob.

In Theorem 2.4.2, we prove a bound on the optimal objective valuezAR of ΠAR with respect to



42

the optimal objective valuezRob of ΠRob. Note that this also implies a bound on the performance of

the optimal static robust solution forΠRob for the adjustable robust problemΠAR. Furthermore, in

using a static robust solution(x̂, ŷ) for the two-stage adjustable robust problem, we only implement

the first-stage solution̂x and recompute the optimal second-stage solutiony(B) after the uncertain

constraint matrixB is known. Therefore, the cost of such a solution would only bebetter than

zRob which is at mostρ(U) · zAR. We would like to note that given any arbitrary down-monotone

uncertainty setU, it is not necessarily tractable to computeκ(T(U,h)) or ρ(U). In Table 2.1, we

computeρ(U) for some commonly used uncertainty sets. Moreover, in the following theorem, we

show thatκ(T(U,h)) is at mostm for any for anyU ⊆ Rm×n
+ andh > 0.

Theorem 2.4.3.For any down-monotone convex compact setU ∈ Rm×n
+ andh > 0,

κ(T(U,h))≤ m.

Proof. Note that

T(U,h) =
{

BTµ
∣

∣ B ∈ U,hTµ= 1,µ≥ 0
}

.

For all j = 1, . . . ,m, let

U j =

{(

1
h j

)

·BTej

∣

∣

∣

∣

B ∈ U

}

.

We can show that
m⋃

j=1

U j ⊆ T(U,h)⊆ conv

(

m⋃

j=1

U j

)

. (2.4.7)

For any j = 1, . . . ,m, considerµ= ej/h j . ThenU j = {BTµ |B∈U}⊆T(U,h) for all j = 1, . . . ,m.
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Consider anyb ∈ T(U,h) where

b =
m

∑
j=1

BTejµj ,

for someB ∈ U andµ≥ 0 andhTµ= 1. Therefore,

b =
m

∑
j=1

(

1
h j

BTej

)

· (h jµj) =
m

∑
j=1

b j · (h jµj),

whereb j ∈ U j for all j ∈ [m] andh1µ1+ . . .+hmµm= 1 which proves thatb belongs to the convex

hull of the union ofU j , j ∈ [m]. From (2.4.7), we have that

conv(T(U,h)) = conv

(

m⋃

j=1

U j

)

.

Now consider anyb ∈ conv(T(U,h)). Therefore,b belongs to the convex hull of union of sets

U j , i.e.,

b =
m

∑
j=1

b jλ j ,

for someb j ∈ U j , j = 1, . . . ,m and someλ ≥ 0 such thatλ1+ . . .+λm = 1. For all j = 1, . . . ,m,

let

B j = h j ·ejbT
j .

Sinceb j ∈ U j andU is down-monotone,B j ∈ U. Now, let

B̂ =
m

∑
j=1

1
m

B j ∈ U,
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asB̂ is a convex combination of elements inU. Also, letµ̂j = λ j/h j for all j = 1, . . . ,m. Therefore,

hT µ̂= 1 andb̂ = B̂T µ̂∈ T(U,h). Also,

b̂ =
1
m
·
(

∑
j=1

BT
j µ̂

)

=
1
m
·
(

∑
j=1

h jb jeT
j µ̂

)

=
1
m

m

∑
j=1

b jλ j =
1
m
·b.

2.4.2 Comparison with Symmetry Bound [11]

Bertsimas and Goyal [11] consider a general two-stage adjustable robust convex optimization prob-

lem with uncertain convex constraints and under mild conditions, show that the performance of a

static solution is related to the symmetry of the uncertainty set. In this section, we compare our

boundρ(U) defined in (2.4.1) with the symmetry bound of [11] for the caseof two-stage ad-

justable robust linear optimization problem under uncertain constraints. The notion of symmetry

is introduced by Minkowski [30].

Definition 2.4.4. Given a nonempty convex compact uncertainty setS ⊆Rm and a point s∈ S , the

symmetry of s with respect toS is defined as:

sym(s,S) := max{α ≥ 0 | s+α(s− ŝ) ∈ S ,∀ŝ∈ S}.

The symmetry of the setS is defined as:

sym(S) := max{sym(s,S) | s∈ S}. (2.4.8)
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The maximizer of(2.4.8)is called the point of symmetry.

In Bertsimas and Goyal [11], the authors prove the followingbound on the performance of

static solution for the two-stage adjustable robust convexoptimization with uncertain constraints

under some mild conditions.

zAR ≤
(

1+
1

sym(U)

)

·zRob

We show that for the case of two-stage adjustable robust linear optimization under uncertain con-

straints, our approximation bound in 2.4.2 is at least as good as the symmetry bound for all in-

stances.

Theorem 2.4.5.Consider uncertainty setU ⊆ Rm×n
+ . Then,

max{κ(T(U,h)) | h > 0} ≤
(

1+
1

sym(U)

)

.

Proof. For a givenh > 0, from the definition ofκ(·) in (2.4.1), we have

conv(T(U,h))⊆ κ(T(U,h)) ·T(U,h).

Therefore, it is sufficient to show

conv(T(U,h))⊆
(

1+
1

sym(U)

)

·T(U,h) (2.4.9)

for all h > 0. Let

B0 = argmax{sym(B,U) | B ∈ U}
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be the point of symmetry. Then, from the result in [12], we have

(

1+
1

sym(U)

)

·B0 ≥ B,∀B ∈ U. (2.4.10)

Now, given anyh > 0, consider an arbitraryb ∈ conv(T(U,h)). There existsB1, . . . ,BK ∈ U such

that

b =
K

∑
j=1

θ jBT
j λ j , hTλ j = 1, λ j ∈ Rm

+, j = 1, . . . ,K, eTθ = 1, θ ∈ RK
+.

From (2.4.10), sinceB1, . . . ,BK ∈ U, we have

b ≤
K

∑
j=1

θ j

(

1+
1

sym(U)

)

BT
0 λ j

=

(

1+
1

sym(U)

)

BT
0

(

K

∑
j=1

θ jλ j

)

∈
(

1+
1

sym(U)

)

·T(U,h).

The last inequality holds because

hT

(

K

∑
j=1

θ jλ j

)

=

(

K

∑
j=1

θ jhTλ j

)

= eTθ = 1.

SinceU is down-monotone by assumption, so isT(U,h) (Appendix A.1), and we have

b ∈
(

1+
1

sym(U)

)

·T(U,h).

Theorem 2.4.5 states that our bound in Theorem 2.4.2 is at least as good as the symmetry bound
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Uncertainty setU ρ(U) Symmetry bound [11]
Constraint-wise setU = U1× . . .×Um 1 1+ 1

min1≤i≤msym(Ui)

Permutation invariantU 1 1+ 1
sym(U)

{B : ||B||θ1 ≤ 1, ||B||θ2 ≤ r} ⊂ Rm×n
+ 1 1+ r(mn)

1
θ1

{B : ||B||1 ≤ 1} ⊂ Rm×n
+ 1 1+mn

{B : ||B||θ ≤ 1} ⊂ Rm×n
+ 1 1+(mn)

1
θ

{B : ∑n
j=1B j j ≤ 1,Bi j = 0, ∀i 6= j} ⊂ [0,1]n×n n 1+n

{B : ∑n
j=1Bθ

j j ≤ 1,Bi j = 0, ∀i 6= j} ⊂ [0,1]n×n,θ > 1 n
1
θ 1+n

1
θ

Table 2.1: A comparison between the non-convexity bound andthe symmetry bound for various

uncertainty sets. All the norms are entry-wise, i.e.,||A||p =
(

∑m
i=1 ∑n

j=1 |ai j |p
)1/p

.

and in many cases significantly better. For instance, consider the following example:

U =

{

B ∈ [0,1]n×n

∣

∣

∣

∣

∣

∑
i, j

Bi j ≤ 1

}

.

In this case,U has symmetric projections. Therefore, from Lemma 2.3.2,T(U,h) is convex for

all h > 0 and

max{κ(T(U,h)) | h > 0}= 1.

On the other hand,U is a simplex andsym(U) = 1
n2 [12]. Therefore,

1+
1

sym(U)
= n2+1,

which is a significantly worse bound. Table 2.1 compares our bound with the symmetry bound for

several interesting uncertainty sets.



48

2.5 Two-stage Model with Constraint and Objective Uncertainty

In this section, we consider a two-stage adjustable robust linear optimization problem where both

constraint and objective coefficients are uncertain. In particular, we consider the following two-

stage adjustable robust problemΠ(B,d)
AR .

z(B,d)AR = maxcTx+ min
(B,d)∈U

max
y(B,d)

dTy(B,d)

Ax +By(B,d) ≤ h

x ∈ R
n1
+

y(B,d) ∈ R
n2
+ ,

(2.5.1)

whereA ∈ Rm×n1,c ∈ R
n1
+ , h ∈ Rm

+, and(B,d) are uncertain second-stage constraint matrix and

objective that belong to a convex compact uncertainty setU ⊆ R
m×n2
+ ×R

n2
+ . We consider the

case where the uncertainty in constraint matrixB does not depend on the uncertainty in objective

coefficientsd. Therefore,

U = UB×Ud,

whereUB ⊆ R
m×n2
+ is a convex compact uncertainty set of constraint matrices and Ud ⊆ R

n2
+ is a

convex compact uncertainty set of the second-stage objective. As previous sections, we can assume

without loss of generality thatUB is down-monotone.
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We formulate the corresponding static robust problemΠ(B,d)
Rob , as follows.

z(B,d)Rob = max
x,y

min
d∈Ud

cTx+dTy

Ax +By ≤ h, ∀B ∈ UB

x ∈ R
n1
+

y ∈ R
n2
+ .

(2.5.2)

We can compute an optimal static robust solution efficiently. It is easy to see that the separation

problem for (2.5.2) can be solved in polynomial time. In fact, we can also give a compact LP

formulation to compute an optimal static robust solution similar to (1.2.2). Now, suppose the

optimal solution ofΠ(B,d)
Rob is (x∗,y∗), thenx = x∗,y(B,d) = y∗ for all (B,d) ∈ U is a feasible

solution toΠ(B,d)
AR . Therefore,

z(B,d)AR ≥ z(B,d)Rob . (2.5.3)

We prove the following main theorem.

Theorem 2.5.1.Let z(B,d)AR be the optimal objective value ofΠ(B,d)
AR in (2.5.1) defined over the

uncertaintyU = UB×Ud. Let z(B,d)Rob be the optimal objective value ofΠ(B,d)
Rob in (2.5.2). Also, let

ρ(UB) = max
h>0

κ(T(UB,h)).

Then,

z(B,d)AR ≤ ρ(UB) ·z(B,d)Rob .
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Furthermore, the bound is tight.

If T(UB,h) is convex for allh > 0, thenρ(UB) = 1 andz(B,d)AR ≤ z(B,d)Rob . In this case, Theo-

rem 2.5.1 implies that a static solution is optimal for the adjustable robust problemΠ(B,d)
AR . There-

fore, if UB is constraint-wise or has symmetric projections thenT(UB,h) is convex for allh > 0

(Lemmas 2.3.1 and 2.3.2). In general, the performance of static solution depends on the worst-case

measure of non-convexity ofT(UB,h) for all h > 0. Surprisingly, the approximation bound for

the static solution does not depend on the uncertain set of objectivesUd.

To prove the Theorem 2.5.1, we need to introduce the following one-stage models as in Sec-

tion 2.3,ΠI
AR(U,h) andΠI

Rob(U,h).

zI
AR(U,h) = min

(B,d)∈U
max

y
dTy

By ≤ h

y ∈ Rn
+,

(2.5.4)

zI
Rob(U,h) = max

y
min
d∈Ud

dTy

By ≤ h, ∀B ∈ UB

y ∈ Rn
+.

(2.5.5)

whereU = UB×Ud andh > 0. Similar to Lemma 2.3.4 and Lemma 2.3.5, we can reformulate

the above problems as optimization problems over the transformation setT(UB,h).

Lemma 2.5.2.The one-stage adjustable robust problemΠI
AR(U,h) defined in(2.5.4)can be writ-



51

ten as:

zI
AR(U,h) = min

λ,b,d
{ λ | λb ≥ d,b ∈ T(UB,h),d ∈ Ud}.

Proof. ConsiderΠI
AR(U,h), by writing the dual of its inner maximization problem, we have

zI
AR(U,h) = min

B,d,α
{hTα | BTα ≥ d,(B,d) ∈ U,α ∈ Rm

+}

= min
λ,B,d,α

{

λhT
(α

λ

) ∣

∣

∣
λBT

(α
λ

)

≥ d,hTα = λ,(B,d) ∈ U,α ∈ Rm
+

}

.

= min
λ,b,d

{ λ | λb ≥ d,b ∈ T(UB,h),d ∈ Ud},

where the last equality holds becauseU = UB×Ud.

Lemma 2.5.3.The one-stage static robust problemΠI
Rob(U,h) defined in(2.5.5)can be written

as:

zI
Rob(U,h) = min

λ,b,d
{ λ | λb ≥ d,b ∈ conv(T(UB,h)),d ∈ Ud}.

We provide a detailed proof in Appendix B.5. Now, we are readyto prove Theorem 2.5.1.

Proof of Theorem 2.5.1Suppose(x∗,y∗(B,d),(B,d) ∈ U) is a fully-adjustable optimal solution

for Π(B,d)
AR . As discussed earlier, we can assume without loss of generality thath−Ax∗ > 0. Then,

z(B,d)AR = cTx∗+ min
(B,d)∈U

max
y(B,d)≥0

{

dTy(B,d) | By(B,d)≤ h−Ax∗}

= cTx∗+zI
AR(U,h−Ax∗), (2.5.6)
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and

z(B,d)Rob ≥ cTx∗+max
y≥0

min
d∈Ud

{

dTy
∣

∣ By ≤ h−Ax∗,∀B ∈ UB}

= cTx∗+zI
Rob(U,h−Ax∗).

(2.5.7)

Let ĥ = h−Ax∗ andκ = κ(T(UB, ĥ)). Suppose(λ̂, b̂, d̂) is an optimal solution forΠI
Rob(U, ĥ).

Therefore,

b̂ ∈ conv(T(UB, ĥ)) ⇒ 1
κ
· b̂ ∈ T(UB, ĥ).

Also,

λ̂ · b̂ ≥ d̂ ⇒ (κλ̂) ·
(

1
κ

b̂
)

≥ d̂,

which implies that(κλ̂, b̂/κ, d̂) is a feasible solution toΠI
AR(U, ĥ) and

zI
AR(U, ĥ)≤ κ ·zI

Rob(U, ĥ).

From (2.5.6), we have

z(B,d)AR = cTx∗+zI
AR(U,h−Ax∗)

≤ cTx∗+κ ·zI
Rob(U,h−Ax∗)

≤ κ · (cTx∗+zI
Rob(U,h−Ax∗)) (2.5.8)

≤ κ ·z(B,d)Rob ,

where (2.5.8) holds becauseκ ≥ 1, the last inequality holds from (2.5.7).

We can show that the bound is tight using the same family of uncertainty sets of matricesUB
θ
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in the discussion of Theorem 2.4.2:

UB
θ =

{

B ∈ [0,1]n×n

∣

∣

∣

∣

∣

Bi j = 0, ∀i 6= j,
n

∑
j=1

Bθ
j j ≤ 1

}

.

Consider the following instance ofΠ(B,d)
AR andΠ(B,d)

Rob :

A = 0,c= 0,h = e,Ud = {e}.

From the discussion in Theorem 2.4.2, the bound in Theorem 2.5.1 is tight.

Note that surprisingly, the bound only depends on the measure of non-convexity ofUB and

is not related toUd. Therefore, ifT(UB,h) is convex for allh > 0, then a static solution is

optimal for the adjustable robust problemΠ(B,d)
AR irrespective ofUd. As a special case where there

is no uncertainty inB, i.e., UB = {B0}, and the only uncertainty is inUd, T(UB,h) is convex

for all h > 0 and a static solution is optimal. In fact, the optimality of static solution in this case

follows from von Neumann’s Min-max theorem [35]. Therefore, we can interpret the result as a

generalization of von Neumann’s theorem.

General Case whenU is not a Cartesian product. For the general case where the uncertainty set

U of constraint matricesB and objective coefficientsd is not a Cartesian product of the respective

uncertainty sets, our bound of Theorem 2.5.1 does not extend. Consider the following example:

A = 0,c= 0,h = e,
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U =

{

(B,d) ∈ Rn×n
+ ×Rn

+

∣

∣

∣

∣

∣

n

∑
i=1

Bii ≤
n

∑
j=1

d j ≤ 1,d ≥ ε
n

e,Bi j = 0,∀i 6= j

}

.

Now,

z(B,d)AR = min
(B,d)∈U

max
y

{

dTy
∣

∣ B j j y j ≤ 1, ∀ j = 1, . . . ,n, y ≥ 0
}

= min
(B,d)∈U

n

∑
j=1

d j

B j j

≥ 1,

where the second equation follows from the fact that at optimum of the outer minimization prob-

lem,B j j > 0 for all j = 1, . . . ,n andy j = 1/B j j for the inner maximization problem. Otherwise, if

B j j = 0 for somej, theny j andd jy j are both unbounded asd j > ε/n> 0. The last equality follows

as for any(B,d) ∈ U,
n

∑
j=1

B j j ≤
n

∑
j=1

d j ,

which implies thatB j j ≤ d j for somej ∈ [n].

For the robust problemΠ(B,d)
Rob , consider any static solutiony ≥ 0. For all j = 1, . . . ,n,

B j j y j ≤ 1, ∀(B,d) ∈ U.

Since there exist(B,d) ∈ U such thatB j j = 1, y j ≤ 1 for all j = 1, . . . ,n. Moreover,y = e is a

feasible solution asB j j ≤ 1 for all (B,d) ∈ U for all j ∈ [n]. Therefore,

z(B,d)Rob = min
(B,d)∈U

dTe≤ ε,
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where the second inequality follows by settingd j = ε/n for all j = 1, . . . ,n. Therefore,

z(B,d)AR ≥ 1
ε
·z(B,d)Rob ,

whereε > 0 is arbitrary. Therefore, the performance of the optimal static robust solution as com-

pared to the optimal fully adjustable solution can not be bounded by the measure of non-convexity

as in Theorem 2.5.1.

2.5.1 Constraint, Right-hand-side and Objective Uncertainty

In this section, we discuss the case where the right-hand-side, the constraint and the objective

coefficients are all uncertain. Consider the following adjustable robust problemΠ(B,h,d)
AR .

z(B,h,d)AR = max
x

cTx+ min
(B,h,d)∈UB,h,d

max
y(B,h,d)

dTy(B,h,d)

Ax +By(B,h,d) ≤ h

x ∈ R
n1
+

y(B,h,d) ∈ R
n2
+ ,

(2.5.9)

whereA ∈ Rm×n1,c ∈ R
n1
+ . In this case,(B,h,d) ∈ UB,h,d are uncertain andUB,h,d ⊆ R

m×n2
+ ×

Rm
+×R

n2
+ is convex and compact. We consider the case that the uncertainties in constraint matrix

B and right-hand-side vectorh are independent of the uncertainty in the objective coefficientsd,

i.e.,

UB,h,d = UB,h×Ud,
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whereUB,h ⊆ Rm×(n2+1) is the convex compact uncertainty set of constraint matrices and right-

hand-side vectors, andUd ⊆ Rn2 is the convex compact set of the constraint coefficients.

The corresponding static robust versionΠ(B,h,d)
Rob , can be formulated as follows.

z(B,h,d)Rob = max
x,y

min
d∈Ud

cTx+dTy

Ax +By ≤ h, ∀(B,h) ∈ UB,h

x ∈ R
n1
+

y ∈ R
n2
+ .

(2.5.10)

We can compute an optimal solution for (2.5.10) efficiently by solving a compact LP formula-

tion for its separation problem. Now, we study the performance of static solution and show that it

is optimal ifUB,h is constraint-wise. In particular, we have the following theorem.

Theorem 2.5.4.Let z(B,h,d)AR be the optimal value ofΠ(B,h,d)
AR defined in(2.5.9)and z(B,h,d)Rob be the

optimal value ofΠ(B,h,d)
Rob defined in(2.5.10). SupposeUB,h is constraint-wise, then the static

solution is optimal forΠ(B,h,d)
AR , i.e.,

z(B,h,d)AR = z(B,h,d)Rob . (2.5.11)

To prove Theorem 2.5.4, we need to introduce the one-stage models. Consider the one-stage
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adjustable robust problemΠI
AR(U

B,h,d)

zI
AR(U

B,h,d) = min
(B,h,d)∈UB,h,d

max
y

dTy

By ≤ h

y ∈ Rn
+,

(2.5.12)

whereUB,h,d = UB,h×Ud. The corresponding one-stage static robust problemΠI
Rob(U

B,h,d) can

be formulated as follows

zI
Rob(U

B,h,d) = max
y

min
d∈Ud

dTy

By ≤ h, ∀(B,h) ∈ UB,h

y ∈ Rn
+,

(2.5.13)

We can reformulate these models as optimization problems overT(UB,h,e).

Lemma 2.5.5.The one-stage adjustable robust problemΠI
AR(U

B,h,d) defined in(2.5.12)can be

written as

zI
AR(U

B,h,d) = min
λ,b,t,d

{ λt | λb ≥ d,(b, t) ∈ T(UB,h,e),d ∈ Ud}.

We present the proof of Lemma 2.5.5 in Appendix B.6.

Lemma 2.5.6.The one-stage static-robust problemΠI
Rob(U

B,h,d) defined in(2.5.13)can be written

as

zI
Rob(U

B,h,d) = min
λ,b,t,d

{ λt | λb ≥ d,(b, t) ∈ conv(T(UB,h,e)),d ∈ Ud}.
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We present the proof of Lemma 2.5.6 in Appendix B.6. Now, withthe reformulations in

Lemma 2.5.5 and Lemma 2.5.6, we are ready to prove Theorem 2.5.4.

Proof of Theorem 2.5.4Suppose the optimal solution ofΠ(B,h,d)
Rob is (x̃, ỹ), thenx= x̃,y(B,h,d) = ỹ

for all (B,h,d) ∈ U is a feasible solution toΠ(B,h,d)
AR . Therefore,

z(B,h,d)AR ≥ z(B,h,d)Rob . (2.5.14)

On the other hand, suppose(x∗,y∗(B,h,d),(B,h,d) ∈ UB,h,d) is a fully-adjustable optimal

solution forΠ(B,h,d)
AR . As discussed earlier, we can assume without loss of generality thath−Ax∗ >

0 for all h such that(B,h) ∈ UB,h for someB. Then,

z(B,h,d)AR = cTx∗+ min
(B,h,d)∈UB,h,d

max
y≥0

{

dTy | By ≤ h−Ax∗}

= cTx∗+zI
AR(U

B,h−Ax∗,d), (2.5.15)

and

z(B,h,d)Rob ≥ cTx∗+max
y≥0

min
d∈Ud

{

dTy
∣

∣

∣
By ≤ h−Ax∗,∀(B,h) ∈ UB,h

}

= cTx∗+zI
Rob(U

B,h−Ax∗,d). (2.5.16)

SinceUB,h is constraint-wise, so isUB,h−Ax∗. From Lemma 2.3.1,T(UB,h−Ax∗,e) is convex

andT(UB,h−Ax∗,e) = conv(T(UB,h−Ax∗,e)). From Lemma 2.5.5 and Lemma 2.5.6, this implies
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that

zI
AR(U

B,h−Ax∗,d) = zI
Rob(U

B,h−Ax∗,d).

Therefore, from (2.5.15) and (2.5.16), we have

z(B,h,d)AR ≤ z(B,h,d)Rob .

Together with (2.5.14), we havez(B,h,d)AR = z(B,h,d)Rob .

We would like to note that we can not extend the approximationbounds similar to Theo-

rem 2.5.1 in this case. In fact, the measure of non-convexityof T(UB,h,e) is not even well defined

in this case sinceUB,h is not down-monotone.

2.6 Conclusion

In this chapter, we study the performance of static robust solution as an approximation of two-

stage adjustable robust linear optimization problem underuncertain constraints and objective co-

efficients. We show that the adjustable problem isΩ(logn)-hard to approximate. In fact, for a

more general case where the uncertainty setU and objective coefficientsd are not constrained

in the non-negative orthant, we show that the adjustable robust problem isΩ(2log1−ε m)-hard to

approximate for any constant 0< ε < 1.

We give a tight characterization of the performance of static solution and relate it to the measure

of non-convexity of the transformationT(U, ·) of the uncertainty setU. In particular, we show that

a static solution is optimal ifT(U,h) is convex for allh > 0. If T(U, ·) is not convex, the measure
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of non-convexity ofT(U, ·) gives a tight bound on the performance of static solutions. For several

interesting families of uncertainty sets such as constraint-wise or symmetric projections, we show

thatT(U,h) is convex for allh > 0; thereby, extending the result of Ben-Tal and Nemirovski [5]

for the case whereU is contained in the non-negative orthant. Also, our approximation bound is

better than the symmetry bound in Bertsimas and Goyal [11].

We also extend our result to models where both constraint andobjective coefficients are un-

certain. We show that ifU = UB×Ud, whereUB is the set of uncertain second-stage constraint

matricesB andUd is the set of uncertain second-stage objective, then the performance of static

solution is related to the measure of non-convexity ofT(UB, ·). In particular, a static solution is op-

timal if T(UB,h) is convex for allh > 0. Surprisingly, the performance of static solution does not

depend on the uncertainty setUd. We also present several examples to illustrate such optimality

and the tightness of the bound.

Our results develop new geometric intuition about the performance of static robust solutions for

adjustable robust problems. The reformulations of the adjustable robust and static robust problems

based on the transformationT(U, ·) of the uncertainty setU give us interesting insights about

properties ofU where the static robust solution does not perform well. Therefore, our results

provide useful guidance in selecting uncertainty sets suchthat the adjustable robust problem can

be well approximated by a static solution.
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Chapter 3

The Adaptivity Gap in Two-Stage Robust

Linear Optimization under Column-wise

and Constraint-wise Uncertain Constraints

3.1 Introduction

In this chapter, we consider the two-stage adjustable robust linear packing problemsΠAR (1.2.1)

undercolumn-wiseandconstraint-wiseuncertain constraint coefficients. In the previous chapter,

we provide an instance-based tight approximation bound on the performance of static robust solu-

tion for ΠAR, which is related to a measure of non-convexity of a transformation of the uncertainty

set. However, for the following family of uncertainty sets of non-negative diagonal matrices with
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an upper bound on theℓ1-norm of the diagonal vector

U =

{

B ∈ Rm×m
+

∣

∣

∣

∣

∣

Bi j = 0, ∀i 6= j,
m

∑
i=1

Bii ≤ 1

}

,

the measure of non-convexity ism. Moreover, it is not necessarily tractable to compute the measure

of non-convexity for an arbitrary convex compact set. We would like to note that such (diagonal)

uncertainty sets do not arise naturally in practice. For instance, consider the resource allocation

problem where the uncertainty setU represents the set of uncertain resource requirement matrices.

A constraint on the diagonal relates requirements of different resources across different demands,

which is not a naturally arising relation. This motivates usto study the special class ofcolumn-wise

andconstraint-wisesets. In particular,

U = {B ∈ Rm×n
+ | Bej ∈Cj , j ∈ [n],BTei ∈ Ri, i ∈ [m]},

whereCj ⊆Rm
+ for all j ∈ [n] andRi ⊆Rn

+ for all i ∈ [m] are compact, convex and down-monotone

sets. We assume that the setsCj , j ∈ [n] andRi, i ∈ [m] are such that linear optimization problems

overU can be solved in time that is polynomial in the encoding length of U. We refer to the above

uncertainty set as a column-wise and constraint-wise set since the constraints describing the uncer-

tainty setU involve entries of only a single column or a single row of the matrix. In the resource

allocation problem, this would imply that we can have a constraint on the resource requirements of

a particular resource for different demands, and a constraint on resource requirements of different

resources for any particular demand.
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Outline. In Section 3.2, we present the separation problem of the adjustable robust problem and

the corresponding static robust problem. In Sections 3.3 and 3.4, we present the bounds on the

adaptivity gap for column-wise uncertainty sets. We extendthe analysis to the general case of

column-wise and constraint-wise uncertainty sets in Section 3.5. In Section 3.6, we compare our

result with the measure of non-convexity bound in previous chapter and extend our bound to the

case where the objective coefficients are also uncertain in Section 3.7.

3.2 Adjustable Robust Problem: Separation Problem.

Before proving the adaptivity gap for the general column-wise and constraint-wise uncertainty

sets, we first consider the case where the uncertainty setU is column-wise. Recall thatU being

column-wise implies that

U = {[b1 b2 . . .bn] | b j ∈ U j , j ∈ [n]},

whereU j ⊆ Rm
+ is a compact, convex, down-monotone set for allj ∈ [n].

3.2.1 The Separation Problem.

In this section, we consider the separation problem for the two-stage adjustable robust problem and

a reformulation of the one-stage static robust problem introduced by Soyster [34]. In particular,
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we have the following epigraph reformulation ofΠAR.

zAR = maxcTx+z

z ≤ dTy(B), ∀B ∈ U

Ax +By(B) ≤ h, ∀B ∈ U

x,y(B) ≥ 0.

Consider the following separation problem.

Separation problem: Givenx ≥ 0,z, decide whether

min
B∈U

max
y≥0

{dTy | By ≤ h−Ax} ≥ z, (3.2.1)

or give a violating hyperplane by exhibitingB ∈ U such that

max
y≥0

{dTy | By ≤ h−Ax}< z.

In Appendix C.1, we show that aγ-approximate algorithm for the separation problem (3.2.1)im-

plies aγ-approximate algorithm for the two-stage adjustable robust problem. Moreover, from

previous discussion, we can assume without loss of generality thath−Ax > 0. Therefore, we can

rescaleU by Û = [diag(h−Ax)]−1U so that the right-hand-side(h−Ax) is e. Note thatÛ is

also a convex, compact, down-monotone and column-wise set.Therefore, we can assume without

loss of generality that the right-hand-side ise. In addition, we can interpret the separation problem

as the one-stage adjustable robust problemΠI
AR(U,e) as in (2.3.3). For the ease of notation, we
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denote it aszI
AR. By taking the dual of the inner maximization problem, we have

zI
AR = min{eTv | BTv ≥ d,B ∈ U,v ≥ 0}

On the other hand, we consider the corresponding one-stage static robust problemΠI
Rob(U,e) as

in (2.3.4).

zI
Rob = max

y≥0
{dTy | By ≤ e,∀B ∈ U}.

We can reformulatezI
Rob as a compact LP using the following result of Soyster [34].

Theorem 3.2.1(Soyster [34]). SupposeU ⊆ Rm×n
+ is a compact, convex, and column-wise uncer-

tainty set. Let̂B ∈ Rm×n be such that

B̂i j = max{Bi j | B ∈ U}, ∀i ∈ [m], j ∈ [n]. (3.2.2)

Then,

max
y≥0

{dTy | By ≤ e,∀B ∈ U}= max{dTy | B̂y ≤ e,y ≥ 0}. (3.2.3)

For the sake of completeness, we provide the proof of Theorem3.2.1 in Appendix C.2. There-

fore, we can reformulatezI
Rob as follows.

zI
Rob = min{eTv | B̂Tv ≥ d,v ≥ 0}, (3.2.4)

whereB̂ is as defined in (3.2.2).



66

3.2.2 Worst Case Instances for Adaptivity Gap.

In this section, we show that the adaptivity gap is worst on column-wise uncertainty set when each

column set is a simplex. In particular, we prove the following theorem.

Theorem 3.2.2.Given an arbitrary convex, compact, down-monotone and column-wise uncer-

tainty setU ⊆ Rm×n
+ with U = U1× . . .×Un, let B̂ be defined as in(3.2.2). For each j∈ [n],

let

Û j =

{

b ∈ Rm
+

∣

∣

∣

∣

∣

m

∑
i=1

1

B̂i j
bi ≤ 1,bi = 0,∀i : B̂i j = 0

}

, ∀ j ∈ [n].

and

Û =
{

[b1 b2 . . . bn]
∣

∣ b j ∈ Û j , ∀ j ∈ [n]
}

.

Let zAR(U) (zAR(Û) respectively) and zRob(U) (zRob(Û) respectively) be the optimal values of

the two-stage adjustable robust problem and the static robust problem over uncertainty setU (Û

respectively). Then,

zAR(Û)≥ zAR(U) and zRob(Û) = zRob(U).

Proof. Given arbitraryb ∈ Û j , j ∈ [n], b is a convex combination of̂Bi j ei , i ∈ [m], which further

implies thatb ∈ U j . Therefore,B ∈ Û implies thatB ∈ U and we havêU ⊆ U. Therefore, anyx

that is feasible forΠAR(U) is feasible forΠAR(Û), and we havezAR(Û)≥ zAR(U).

SinceÛ ⊆ U, any feasible solution forΠRob(U) is also feasible forΠRob(Û). Therefore,

zRob(Û)≥ zRob(U). Conversely, let(x̂, ŷ) be the optimal solution ofΠRob(Û). Noting that(x̂,0)
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is a feasible solution forΠRob(U), we have

zRob(U)≥ cT x̂+max{dTy | By ≤ h−Ax̂,∀B ∈ U}

= cT x̂+max{dTy | B̂y ≤ h−Ax̂},

where the last equality follows from Theorem 3.2.1. Furthermore,

zRob(Û) = cT x̂+max{dTy | By ≤ h−Ax̂,∀B ∈ Û}

= cT x̂+max{dTy | B̂y ≤ h−Ax̂},

where the last equality follows from Theorem 3.2.1 and the fact thatU andÛ have the samêB.

Therefore,zRob(U) = zRob(Û).

The above theorem shows that the for column-wise uncertainty sets, the gap between the opti-

mal values ofΠAR andΠRob for a column-wise set is largest when each column set is a simplex.

Therefore, to provide the tight bound on the performance of static solutions, we can assume without

loss of generality that the column-wise, convex compact uncertaintyU is a Cartesian product of

simplices. The worst known instance ofΠAR with a column-wise uncertainty set has an adaptivity

gap ofΘ(logn). We present the family of instances below.

Family of Adaptivity Gap Examples. Consider the following instance(ILB) of ΠAR:

A = 0,c= 0,d = e,h = e,U = {[b1 b2 . . .bn] | b j ∈ U j , j ∈ [n]}, (ILB)
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where

U1 =
{

b ∈ Rn
+ | 1 ·b1+2 ·b2+ . . .+(n−1) ·bn−1+n ·bn ≤ 1

}

,

U2 =
{

b ∈ Rn
+ | n ·b1+1 ·b2+ . . .+(n−2) ·bn−1+(n−1) ·bn ≤ 1

}

,

...

Un =
{

b ∈ Rn
+ | 2 ·b1+3 ·b2+ . . .+n ·bn−1+1 ·bn ≤ 1

}

.

Therefore,

U j =

{

b ∈ Rn
+

∣

∣

∣

∣

∣

n

∑
i=1

[(n+ i − j +1) modn] ·bi ≤ 1

}

,∀ j ∈ [n]

wheremod is the standard remainder operation and let(0 modn) = n. We have the following

lemma.

Lemma 3.2.3.Let zAR be the optimal objective value of the instance(ILB) of ΠAR and zRob be the

optimal objective value of the corresponding static robustproblem. Then,

zAR = Θ(logn) ·zRob.

We provide the proof in Appendix C.3.

3.3 O(logn· logΓ)Adaptivity Gap for Column-wise Uncertainty

Sets

In this section, we first consider the case of column-wise uncertainty sets and show that a static

solution gives aO(logn · logΓ)-approximation for the two-stage adjustable robust problem where
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Γ is defined as follows.

βmax= max{B̂i j | i ∈ [m], j ∈ [n]}

βmin = min{B̂i j | i ∈ [m], j ∈ [n], B̂i j 6= 0}

Γ = 2 · βmax

βmin
,

(3.3.1)

whereB̂ is defined as in (3.2.2). From Theorem 3.2.2, the worst case adaptivity gap for two-stage

adjustable robust problem with column-wise uncertainty sets is achieved whenU is a Cartesian

product of simplices. Therefore, to provide a bound on the performance of static solutions, we

assume thatU is a Cartesian product of simplices.

3.3.1 One-stage Adjustable and Static Robust Problems

We first compare the one-stage adjustable robust,zI
AR and static robust,zI

Rob problems. Recall,

zI
AR = min{eTv | BTv ≥ d,B ∈ U,v ≥ 0}

zI
Rob = min{eTv | B̂Tv ≥ d,v ≥ 0}.

Theorem 3.3.1.Givend ∈ Rn
+ and a convex, compact and down-monotone uncertainty setU ⊆

Rm×n
+ that is column-wise with simplex column uncertainty setsU1, . . . ,Un. Let zIAR be as defined

in (2.3.3), and zIRob be as defined in(3.2.4). Then

zI
AR ≤ O(logΓ logn) ·zI

Rob.
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Our proof exploits the structural properties of the optimalsolutions for the adjustable robust

and static robust problems. In particular, we relate the one-stage adjustable robust problem to an

integer set cover problem and relate the static robust problem to the dual of the corresponding LP

relaxation. As earlier, by appropriate rescaling ofU, we can assume that the costd is e. We can

write the one-stage adjustable robust problem as

zI
AR = min{eTv | vTb j ≥ 1,b j ∈ U j ,∀ j ∈ [n],v ≥ 0}. (3.3.2)

and the corresponding static robust problem:

zI
Rob = max

{

n

∑
j=1

y j

∣

∣

∣

∣

∣

n

∑
j=1

β j
i y j ≤ 1, ∀i ∈ [m],y ≥ 0

}

(3.3.3)

= min{eTv | vTβ j ≥ 1,∀ j ∈ [n],v ≥ 0}, (3.3.4)

where

β j
i = B̂i j , ∀i ∈ [m], j ∈ [n]. (3.3.5)

We first show that there exists an “integral” optimal solution for the one-stage adjustable robust

problem (3.3.2).

Lemma 3.3.2.Consider the one-stage adjustable robust problem(3.3.2)where the uncertainty set

U is a Cartesian product of simplicesU j , j ∈ [n]. Let β j , j ∈ [n] be defined as in(3.3.5). Then,
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there exists an optimal solution(v̄, b̄ j , j ∈ [n]) for (3.3.2)such that

b̄ j = β j
i j
ei j for some ij ∈ [m], ∀ j ∈ [n]

v̄i ∈
{

0,1/β j
i

∣

∣

∣
j ∈ [n]

}

, ∀i ∈ [m].

Proof. Suppose this is not the case. Let(ṽ, b̃ j) be an optimal solution for (2.3.3). For allj ∈ [n],

let b̄ j be an extreme point optimal for

max{ṽTx | x ∈ U j}.

SinceU j is a down-monotone simplex,̄b j = β j
i j
ei j for somei j ∈ [m]. Note thatṽT b̄ j ≥ 1. There-

fore,(ṽ, b̄ j , j ∈ [n]) is also an optimal solution for (2.3.3). Now, we can reformulate the separation

problem as follows.

zI
AR = min{eTv | vT b̄ j ≥ 1,∀ j ∈ [n]},

where onlyv is the decision variable. Let̄v be an extreme point optimal of the above LP. Then for

all j ∈ [n],

v̄i j b̄
j
i j
= vi j β

j
i j
≥ 1,

asb̄ j = β j
i j
ei j . Therefore, we have

v̄i ∈
{

0,1/β j
i

∣

∣

∣
j ∈ [n]

}

, ∀i ∈ [m]

at optimality.
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From the above lemma, we can reformulate the one-stage adjustable robust problem (2.3.3) as

zI
AR = min

{

m

∑
i=1

vi

∣

∣

∣

∣

∣

∀ j ∈ [n],∃i j ∈ [m] s.t.vi j β
j
i j
≥ 1,v ≥ 0

}

. (3.3.6)

A 0-1 formulation of zI
AR. We formulate a 0-1 integer program that approximates (3.3.6) within

a constant factor. From Lemma 3.3.2, we know that there is an optimal solution(v,b j , j ∈ [n])

for (3.3.6) such that

vi ∈
{

0,1/β j
i

∣

∣

∣
j ∈ [n]

}

, ∀i ∈ [m].

Therefore, ifvi 6= 0, then

1
βmax

≤ vi ≤
1

βmin
.

To formulate an approximate 0-1 program, we consider discrete values ofvi in multiples of 2

starting from 1/βmax. DenoteT = ⌈logΓ⌉ andT = {0, . . . ,T}. We consider

vi ∈ {0}∪
{

2t

βmax

∣

∣

∣

∣

t ∈ T

}

.

For anyi ∈ [m], t ∈ T , let Cit denote the set of columnsj ∈ [n] that can be covered by setting

vi = 2t/βmax, i.e.,

Cit =

{

j ∈ [n]

∣

∣

∣

∣

2t

βmax
·β j

i ≥ 1

}

.
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Also, for all i ∈ [m], t ∈ T , let

xit =



















1, if vi =
2t

βmax
,

0, otherwise,

ct =
2t

βmax
.

Consider the following 0-1 integer program.

zmod
AR = min

{

m

∑
i=1

T

∑
t=0

ctxit

∣

∣

∣

∣

∣

m

∑
i=1

∑
t∈T : j∈Cit

xit ≥ 1, ∀ j ∈ [n], xit ∈ {0,1}
}

. (3.3.7)

In the following lemma, we show that the above integer program approximateszI
AR within a

constant factor.

Lemma 3.3.3.The IP problem in(3.3.7)is feasible and provides a near-optimal solution for the

one-stage adjustable robust problem zI
AR (3.3.6). In particular, we have

1
2

zmod
AR ≤ zI

AR ≤ zmod
AR .

Proof. Consider an optimal solutionv∗ for zI
AR (3.3.6). Note that for alli ∈ [m], t ∈ T , let

x̄it =















1, if
ct

2
< v∗i ≤ ct ,

0, otherwise.

For any j ∈ [n], there existsi ∈ [m], t ∈ T such that

v∗i β j
i ≥ 1.
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Then,x̄ is a feasible solution to the IP problem (3.3.7) and

zmod
AR ≤

m

∑
i=1

T

∑
t=0

ct x̄it ≤ 2eTv∗ = 2 ·zI
AR.

Conversely, supposex∗it , i ∈ [m], t ∈ T is an optimal solution for (3.3.7). We construct a feasible

solutionṽ for (3.3.6) as follows:

ṽi = ∑
t∈T

ct ·xit , ∀i ∈ [m].

For eachj ∈ [n], there existsi ∈ [m] andt ∈ T such thatj ∈Cit andx∗it = 1. Therefore,

vi ≥ ct =
2t

βmax
,

and

viβ
j
i ≥

2t

βmax
·β j

i ≥ 1,

since j ∈Cit . Therefore,̃v is a feasible solution for the one-stage adjustable robust problem (3.3.6)

and

zI
AR ≤ eT ṽ ≤

m

∑
i=1

T

∑
t=0

ctx
∗
it = zmod

AR .

Note that (3.3.7) is a 0-1 formulation for the set cover instance problem on ground set of

elements{1, . . . ,n} and family of subsetsCit for all i ∈ [m], t ∈ T whereCit has costct . We can
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formulate the LP relaxation of (3.3.7) as follows.

zLP = min

{

m

∑
i=1

T

∑
t=0

ctxit

∣

∣

∣

∣

∣

m

∑
i=1

∑
t∈T : j∈Cit

xit ≥ 1, ∀ j ∈ [n], xit ≥ 0

}

. (3.3.8)

From [36], we know that the LP relaxation (3.3.8) is anO(logn)-approximation for (3.3.7), i.e.,

zmod
AR ≤ O(logn) ·zLP.

Consider the dual of (3.3.8).

zLP = max

{

n

∑
j=1

y j

∣

∣

∣

∣

∣

∑
j∈Cit

y j ≤ ct , ∀i ∈ [m], t ∈ T , y j ≥ 0,∀ j ∈ [n]

}

(3.3.9)

We relate the dual of (3.3.8) to the one-stage static robust problem (3.2.4) to obtain the desired

bound on the adaptivity gap.

Proof of Theorem 3.3.1.From Lemma 3.3.3, it is sufficient to show that

zLP ≤ O(logΓ) ·zI
Rob.

Let y∗ by an optimal solution of (3.3.9). We show that we can construct a feasible solution

for (3.3.3) by scalingy∗ by a factor ofO(logΓ). For eachi ∈ [m], we have

∑
j :β j

i ≥
βmax

2t

βmax

2t y∗j ≤ 1, ∀t ∈ T .
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Sum over allt ∈ T , we have

T

∑
t=0

∑
j :β j

i ≥
βmax

2t

βmax

2t y∗j ≤ T +1,∀i ∈ [m].

Switching the summation, we have

n

∑
j=1

∑
t∈T : βmax

2t ≤β j
i

βmax

2t y∗j ≤ T +1≤ logΓ+2,∀i ∈ [m]

Note that

βmax

2T ≤ βmin ≤ β j
i ≤ βmax,

which implies

1
2

β j
i ≤ ∑

t∈T : βmax
2t ≤β j

i

βmax

2t ≤ 2β j
i .

Therefore,

ŷ j =
1

2(logΓ+2)
y∗j , ∀ j ∈ [n]

is a feasible solution to the maximization formulation ofzI
Rob (3.3.3) and

zLP = eTy∗ = O(logΓ) ·eT ŷ ≤ O(logΓ) ·zI
Rob,

which completes the proof.
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3.3.2 O(logn · logΓ) Bound on Adaptivity Gap

Based on the result in Theorem 3.3.1, we show that a static solution gives anO(logn · logΓ)-

approximation for the two-stage adjustable robust problem(1.2.1) for column-wise uncertainty

sets. In particular, we prove the following theorem.

Theorem 3.3.4.Let zAR be the objective value of an optimal fully-adjustable solution for the ad-

justable robust problemΠAR (1.2.1), and zRob be the optimal objective value of the corresponding

static robust problemΠRob (1.2.2). If U is a column-wise uncertainty set, then,

zAR≤ O(logn · logΓ) ·zRob.

Proof. Let (x∗,y∗(B),B ∈ U) be an optimal fully-adjustable solution toΠAR. Then,

zAR = cTx∗+ min
B∈U

max
y(B)≥0

{dTy | By(B)≤ h−Ax∗}.

From previous chapter, we can assume without loss of generality that (h−Ax∗)> 0. Let

U∗ = [diag(h−Ax∗)]−1U.

Then,

zAR = cTx∗+ min
B∈U∗

max
y(B)≥0

{dTy | By(B) ≤ e}.
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By writing the dual of the inner maximization problem, we have

zAR = cTx∗+min
B,µ

{eTµ | BTµ≥ d,B ∈ U∗,µ≥ 0}.

On the other hand, since(x∗,0) is a feasible solution ofΠRob, we have

zRob ≥ cTx∗+max
y≥0

{dTy | By ≤ h−Ax∗,∀B ∈ U}

= cTx∗+max
y≥0

{dTy | By ≤ e,∀B ∈ U∗}.

Let B̂ be defined as in (3.2.2). ForU∗, from Theorem 3.2.1, we have

zRob ≥ cTx∗+max{dTy | B̂y ≤ e,y ≥ 0}

= cTx∗+min
v≥0

{eTv | B̂Tv ≥ d}.

Note thatU∗ is compact, convex, down-monotone and column-wise. Therefore, from Theo-

rem 3.3.1, we have

zAR = cTx∗+min
B,µ

{eTµ | BTµ≥ d,B ∈ U∗,µ≥ 0}

≤ cTx∗+O(logΓ logn) ·min
v≥0

{eTv | B̂Tv ≥ d}

≤ O(logΓ logn) ·
(

cTx∗+min
v≥0

{eTv | B̂Tv ≥ d}
)

≤ O(logn · logΓ) ·zRob

where the second last inequality follows asc,x∗ ≥ 0.
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We would like to note that if the ratio between the largest andsmallest entries of̂B is con-

stant, then static solution provides anO(logn)-approximation for the two-stage adjustable robust

problem. The two-stage adjustable robust problem is hard toapproximate within a factor better

thanO(logn) even when the ratio is one. Therefore, quite surprisingly, the performance of the

static solution matches the hardness of approximation in this case. Furthermore, in the following

section, we show that even when the ratio is large, the staticsolution still provides a near-optimal

approximation for the adjustable robust problem.

3.4 O(logn · log(m+n)) Bound on Adaptivity Gap

In this section, we show that a static solution provides anO(logn · log(m+n))-approximation for

the two-stage adjustable robust problemΠAR (1.2.1) with column-wise uncertainty sets. Note that

this bound on adaptivity gap is uniform across instances anddoes not depend onΓ. In particular,

we have the following theorem.

Theorem 3.4.1.Let zAR be the objective value of an optimal fully-adjustable solution for ΠAR, and

zRob be the optimal objective value of the corresponding static robust problemΠRob (1.2.2). If U

is a column-wise uncertainty set, then,

zAR≤ O(logn · log(m+n)) ·zRob.

To prove Theorem 3.4.1, it is sufficient to prove the approximation bound for corresponding
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one-stage problems since we can extend the bound to the two-stage problem using arguments as in

Theorem 3.3.4.

Theorem 3.4.2.Let zIAR be as defined in(3.3.6), and zIRob be as defined in(3.2.4). If the uncertainty

setU is column-wise, then

zI
AR ≤ O(logn · log(m+n)) ·zI

Rob.

If Γ is a polynomial in(m+n), the result follows from Theorem 3.3.1 as logΓ=O(log(m+n)).

However, ifΓ is super-polynomial, we need to handle extreme values ofB̂i j differently in order

to avoid the dependence onΓ. Let v∗ be an optimal solution for the one-stage adjustable robust

problem (3.3.6) andθ = ||v∗||∞. Let

J1 =

{

j ∈ [n]

∣

∣

∣

∣

there existsi ∈ [m] s.t. β j
i ≥

2m
θ

}

J2 = [n]\J1

We show that we can delete the columns inJ1 from zI
AR (3.3.6) (corresponding to the large

values ofB̂i j ) such that the modified problem is only within a constant factor of zI
AR. As be-

fore, we consider only discrete values ofvi for all i ∈ [m]. Let T = ⌈max{logm, logn}⌉ and

T = {−T, . . . ,T}. For all i ∈ [m], we consider

vi ∈ {0}∪
{

θ
2t

∣

∣

∣

∣

t ∈ T

}

.

Also, for all i ∈ [m], t ∈ T , letCit denote the set of columns inJ2 = [n]\J1 that can be covered by
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settingvi = θ/2t , i.e.,

Cit =

{

j ∈ J2

∣

∣

∣

∣

β j
i ≥

2t

θ

}

,and

ct =
θ
2t .

Consider the following 0-1 formulation for the modified one-stage problem.

zmod
AR = min

{

∑
i∈[m],t∈T

ctxit

∣

∣

∣

∣

∣

m

∑
i=1

∑
t∈T : j∈Cit

xit ≥ 1, ∀ j ∈ J2, xit ∈ {0,1}
}

. (3.4.1)

We have the following lemma.

Lemma 3.4.3.The IP problem in(3.4.1)is feasible and provides a near-optimal solution for the

one-stage adjustable robust problem zI
AR (3.3.6). In particular, we have

1
2

zmod
AR ≤ zI

AR ≤ 2zmod
AR .

Proof. Consider an optimal solutionv∗ for (3.3.6). We construct a feasible solution for (3.4.1) as

follows. Now, for all i ∈ [m], t ∈ T , let

x̄it =















1, if
ct

2
< v∗i ≤ ct

0, otherwise.

Sincev∗ is feasible,̄x is a feasible solution to the set cover problem (3.4.1) and

zmod
AR ≤

m

∑
i=1

T

∑
t=−T

ct x̄it ≤ 2eTv∗ = 2zI
AR.
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Conversely, consider an optimal solutionx∗ for the set cover problem (3.4.1). We construct a

feasible solutioñv for (3.3.6) as follows. For alli ∈ [m],

ṽi =
θ

2m
+ ∑

t∈T

ctx
∗
it .

Note that we addθ/2m to eachvi in order to handle the constraints for columns inJ1 that are not

considered in (3.4.1). For eachj ∈ J1, there existsi ∈ [m] such thatβ j
i ≥ 2m/θ andviβ

j
i ≥ 1. For

all j ∈ J2, there existsi ∈ [m] andt ∈ {−T, . . . ,T} such thatj ∈Cit andx∗it = 1. Therefore,vi ≥ ct

which implies thatvi ·β j
i ≥ 1. Therefore,̃v is a feasible solution for the one-stage adjustable robust

problemzI
AR (3.3.6). Moreover, we have

zI
AR ≤ eT ṽ ≤

(

θ
2
+zmod

AR

)

≤ zI
AR

2
+zmod

AR ⇒ zI
AR ≤ 2 ·zmod

AR ,

which completes the proof.

We can formulate the LP relaxation of set cover problem in (3.4.1) as follows.

zLP = min







m

∑
i=1

T

∑
t=−T

cit xit

∣

∣

∣

∣

∣

m

∑
i=1

∑
t∈T : 2t

θ ≤β j
i

xit ≥ 1, ∀ j ∈ J2, xit ≥ 0







. (3.4.2)

We have

zmod
AR ≤ O(logn) ·zLP.
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Consider the dual of (3.4.2).

zLP = max

{

∑
j 6∈J1

y j

∣

∣

∣

∣

∣

∑
j∈Cit

y j ≤ ct , ∀i ∈ [m], t ∈ T , y j ≥ 0,∀ j ∈ J2

}

(3.4.3)

We will construct a feasible solution for the one-stage static robust problem (3.3.3) from (3.4.3).

Proof of Theorem 3.4.2.From Lemma 3.4.3, it is sufficient to show that

zLP ≤ O(log(m+n)) ·zI
Rob.

Let y∗ by an optimal solution of (3.4.3). We construct a feasible solution for (3.3.3) by scalingy∗

by a factor ofO(log(m+n)). For t = 0, we have

∑
j 6∈J1:β j

i ≥ 1
θ

1
θ

y∗j ≤ 1,∀i ∈ [m].

Let v∗ be an optimal solution for (3.3.6). From Lemma 3.3.2, for each j ∈ [n], there existi ∈ [m]

such that

β j
i v

∗
i ≥ 1⇒ β j

i ≥
1
v∗i

≥ 1
θ
.

Therefore, for eachj ∈ J2, we havey∗j ≤ θ. Sincey∗ is an optimal solution of (3.4.3), we have

∑
j 6∈J1:β j

i ≥ 2t
θ

2t

θ
y∗j ≤ 1, ∀t ∈ T .
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Sum over allt ∈ T , we have

∑
t∈T

∑
j 6∈J1:β j

i ≥ 2t
θ

2t

θ
y∗j ≤ 2T +1,∀i ∈ [m].

Switching the summation, we have

∑
j 6∈J1

∑
t∈T : 2t

θ ≤β j
i

2t

θ
y∗j ≤ 2T +1,∀i ∈ [m]

Note that ifβ j
i ≥ 1/nθ and j 6∈ J1, then

1
2

β j
i ≤ ∑

t: 2t
θ ≤β j

i

2t

θ
≤ 2β j

i .

Let

ŷ j =















1
4T +3

y∗j , if j ∈ J2

0, if j ∈ J1

For anyi ∈ [m], we have

n

∑
j=1

β j
i ŷ j = ∑

j∈J1

β j
i ŷ j +

1
4T +3



 ∑
j 6∈J1:β j

i <1/nθ

β j
i y

∗
j + ∑

j 6∈J1:β j
i ≥1/nθ

β j
i y

∗
j





≤ 0+
1

4T +3



1+2
n

∑
j=1

∑
t: 2t

θ β j
i

2t

θ
y∗j





≤ 1

Therefore,̂y is a feasible solution to the dual ofzI
Rob (3.3.3). Note thatT = O(log(m+n)). There-
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fore, we have

zLP = eTy∗ = O(log(m+n)) ·eT ŷ ≤ O(log(m+n)) ·zI
Rob,

which completes the proof.

From Theorems 3.3.4 and 3.4.1, we have the following corollary.

Corollary 3.4.4. Let zAR be the objective value of an optimal fully-adjustable solution for the ad-

justable robust problemΠAR (1.2.1), and zRob be the optimal objective value of the corresponding

static robust problemΠRob (1.2.2). If U is a column-wise uncertainty set, then,

zAR≤ O(logn ·min(logΓ, log(m+n))) ·zRob.

3.5 Column-wise and Constraint-wise Uncertainty Sets.

In this section, we consider the general case where the uncertainty set is the intersection of column-

wise and constraint-wise sets. Recall that a column-wise and constraint-wise uncertainty setU

implies that

U =
{

B ∈ Rm×n
+ | Bej ∈Cj , ∀ j ∈ [n], BTei ∈ Ri , ∀i ∈ [m]

}

, (3.5.1)

whereCj ⊆Rm
+ for all j ∈ [n] andRi ⊆Rn

+ for all i ∈ [m] are compact, convex and down-monotone

sets. We refer to the above uncertainty set as a column-wise and constraint-wise set since the

constraints on the uncertainty setU are either over the columns or the rows of the matrix. As

mentioned previously, we assume that optimization problems with linear objective overU can be

solved in polynomial time in the encoding length ofU.



86

We show that a static solution provides anO(logn ·min(logΓ, log(m+ n))))-approximation

for the two-stage adjustable robust problemΠAR for the above column-wise and constraint-wise

uncertainty set whereΓ is defined in (3.3.1). In particular, we have the following theorem.

Theorem 3.5.1.Consider a convex, compact and down-monotone uncertainty set U ⊆ Rm×n
+ that

is column-wise and constraint-wise as in(3.5.1). Let zAR(U) and zRob(U) be the optimal val-

ues of the two-stage adjustable robust problemΠAR(U) (1.2.1) and the static robust problem

ΠRob(U) (1.2.2)over uncertainty setU, respectively. Then,

zAR(U)≤ O(logn ·min(logΓ, log(m+n))) ·zRob(U).

Our proof is based on a transformation of the static robust problem into a equivalent formulation

over a constraint-wise uncertainty set. In particular, we construct the constraint-wise uncertainty

set as follows. For eachi ∈ [m], let

R̃i = {BTei | B ∈ U}, (3.5.2)

i.e., R̃i is the projection of the uncertainty setU for the ith row. Let

Ũ = R̃1× R̃2× . . .× R̃m, (3.5.3)

i.e., a Cartesian product of̃Ri , i ∈ [m]. Note that for anyB ∈ Ũ, the constraints corresponding to

row-setsR1, . . . ,Rm are satisfied. However, the constraints corresponding to column-setsC1, . . . ,Cn

may not be satisfied. We have the following lemma.
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Lemma 3.5.2. Given a convex, compact and down-monotone uncertainty setU ⊆ Rm×n
+ that is

column-wise and constraint-wise and any µ∈ [0,1]m such thateTµ= 1, let Ũ be defined as(3.5.3).

Then, for anyB ∈ Ũ, we have

diag(µ)B ∈ U.

Proof. Noting thatBTei ∈ R̃i anddiag(ei)B has theith row asBTei and other rows as0, we have

diag(ei)B ∈ U sinceU is down-monotone. Moreover,µ is convex multiplier,

diag(µ)B =
m

∑
i=1

µidiag(ei)B

andU is convex, we havediag(µ)B ∈ U.

In the following lemma, we show that the static robust problem has the same optimal objective

value for uncertainty setsU andŨ.

Lemma 3.5.3. Given a convex, compact and down-monotone uncertainty setU ⊆ Rm×n
+ that is

column-wise and constraint-wise, letŨ be defined as in(3.5.3). Let zRob(U) and zRob(Ũ) be the

optimal values of the static adjustable robust problemΠRob (1.2.2)over uncertainty setU andŨ,

respectively. Then

zRob(U) = zRob(Ũ).

Proof. For anyB ∈ U, we haveBTei ∈ R̃i for all i ∈ [m], which implies thatB ∈ Ũ sinceŨ is

constraint-wise. Therefore,U ⊆ Ũ and any solution that is feasible forΠRob(Ũ) must be feasible
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for ΠRob(U). Therefore,

zRob(Ũ)≤ zRob(U).

Conversely, suppose(x̂, ŷ) is an optimal solution forΠRob(U). We show that it is feasible for

ΠRob(Ũ). For the sake of contradiction, assume that there exists aB̃ ∈ Ũ such that

(B̃ŷ)i > hi − (Ax̂)i for somei ∈ [m]⇒ (diag(ei)B̃ŷ)i > hi − (Ax̂)i .

However, from Lemma 3.5.2,diag(ei)B̃ ∈ U, which contradicts the assumption that(x̂, ŷ) is feasi-

ble for ΠRob(U). Therefore,(x̂, ŷ) is feasible forΠRob(Ũ) andzRob(U)≤ zRob(Ũ).

From Ben-Tal and Nemirovski [5] and previous chapter, we know that

zRob(Ũ) = zAR(Ũ),

sinceŨ is a constraint-wise uncertainty set and a static solution is optimal for the adjustable robust

problem. Therefore, to prove Theorem 3.5.1, it is now sufficient to show

zAR(U)≤ O(logn ·min(logΓ, log(m+n))) ·zAR(Ũ).

Proof of Theorem 3.5.1Let (x∗,y∗(B),B∈ U) be an optimal fully-adjustable solution toΠAR(U).

Therefore,

zAR(U) = cTx∗+ min
B∈U

max{dTy | By ≤ h−Ax∗, y ≥ 0}.
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As discussed in previous chapter, we can assume without lossof generality(h−Ax∗)> 0. There-

fore, we can rescaleU andŨ as

S = [diag(h−Ax∗)]−1U, andS̃ = [diag(h−Ax∗)]−1Ũ.

Note thatS̃ is the Cartesian product of the row projections ofS . For anyH ⊆ Rm×n
+ , let

zI
AR(H ) = min{eTv | BTv ≥ d,B ∈ H ,v ≥ 0}.

Now,

zAR(U) = cTx∗+min
B∈S

max{dTy | By ≤ e, y ≥ 0}

= cTx∗+min {eTv | BTv ≥ d,B ∈ S , v ≥ 0}

= cTx∗+zI
AR(S),

where the second equation follows by taking the dual of the inner maximization problem. Also,

zAR(Ũ)≥ cTx∗+min
B∈Ũ

max{dTy | By ≤ h−Ax∗, y ≥ 0}

= cTx∗+zI
AR(S̃).

Therefore, to complete the proof, it is sufficient to show that

zI
AR(S)≤ O(logn ·min(logΓ, log(m+n))) ·zI

AR(S̃). (3.5.4)

Let B̃ ∈ S̃ be the minimizer ofzI
AR(S̃). We construct a simplex column-wise uncertainty set,
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H ⊆ Rm×n
+ where each simplex column set,H j ⊆ Rm

+, j ∈ [n] is defined fromB̃ as follows.

H j = conv
(

{0}
⋃
{

B̃i j ei | i = 1, . . . ,m
}

)

.

and

H = {[b1 · · ·bn] | b j ∈ H j ,∀ j ∈ [n]}.

We would like to note thatH ⊆ S : For anyb∈H j , j ∈ [n], we haveb≤ diag(µ)B̃ej for some convex

multiplier µ. From Lemma 3.5.2,diag(µ)B̃ ∈ S , which indicates thatH j ⊆ [diag(h−Ax)]−1Cj .

Moreover,B̃ satisfies the row constraints ofS andeT
i B ≤ eT

i B̃ for anyB ∈ H , i ∈ [m]. Therefore,

H ⊆ S and

zI
AR(S)≤ zI

AR(H )≤ O(logn ·min(logΓ, log(m+n))) ·zI
Rob(H ) (3.5.5)

where the second inequality follows from Theorems 3.3.1 and3.4.2. Note that̃B is the entry-wise

maximum matrix overH as defined in (3.2.2). Therefore,

zI
Rob(H ) = min {eTv | B̃Tv ≥ d}= zI

AR(S̃),

where the first equality follows from Theorem 3.2.1 and the second equality follows from the

fact thatB̃ ∈ S̃ is a minimizer forzI
AR(S̃). Therefore, from (3.5.5), we havezI

AR(S) ≤ O(logn ·

min(logΓ, log(m+n))) ·zI
AR(S̃).
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3.6 Comparison with Measure of Non-convexity Bound

In this section, we compare our bound with the measure of non-convexity bound introduced in

the previous chapter. We show that our bound provides an upper bound on the measure of non-

convexity for column-wise and constraint-wise uncertainty sets. In particular, we have the follow-

ing theorem.

Theorem 3.6.1.Given a convex, compact and down-monotone uncertainty setU ⊆ Rm×n
+ that is

column-wise and constraint-wise as in(3.5.1)andh > 0, let T(U,h) andκ(T(U,h)) be defined

as in(2.3.6)and (2.4.1), respectively. Then,

κ(T(U,h))≤ O(logn ·min(logΓ, log(m+n))).

Proof. Let α = logn ·min(logΓ, log(m+n)). Let R̃i , i ∈ [m] be defined as in (3.5.2). From the

proof of Theorem 2.4.3, we have

conv(T(U,h)) = conv

(

m⋃

i=1

1
hi
· R̃i

)

.

Given anyd ∈ conv(T(U,h)), we have

d =
m

∑
i=1

λi

hi
b̃i

whereb̃i ∈ R̃i , i ∈ [m], λ≥ 0 andeTλ= 1. For alli ∈ [m], letBi = ei b̃T
i . SinceU is down-monotone,
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Bi ∈ U. Let

B̃ = [diag(h)]−1
m

∑
i=1

Bi .

Therefore,B̃Tλ = d. We construct a simplex column-wise uncertainty setH ⊆ Rm×n
+ using B̃

similar to the proof of Theorem 3.5.1. Let

H = {[b1 · · ·bn] | b j ∈ H j ,∀ j ∈ [n]}

where

H j = conv
(

{0}
⋃
{

B̃i j ei
∣

∣ i = 1, . . . ,m
}

)

for all j ∈ [n]. Note thatH j ⊆ [diag(h)]−1Cj , which implies thatH ⊆ [diag(h)]−1U. From Theo-

rem 3.2.1, we know that

zI
Rob(H ) = min{eTv | B̃Tv ≥ d,v ≥ 0},

andλ is a feasible solution forzRob(H ). Therefore,zI
Rob(H )≤ eTλ = 1. Furthermore,

zI
AR([diag(h)]

−1U)≤ zI
AR(H )≤ O(α) ·zI

Rob(H )≤ O(α),

where the first inequality follows asH ⊆ [diag(h)]−1U and the second inequality follows from

Theorems 3.3.1 and 3.4.2. Therefore, there exists(v∗,B∗) such that

(B∗)Tv∗ ≥ d, B∗ ∈ [diag(h)]−1U, andeTv∗ ≤ O(α).
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Now, let

Q = diag(h)B∗ andµ=
1

eTv∗
[diag(h)]−1v∗.

Then,Q ∈ U andhTµ= 1, which implies thatQTµ∈ T(U,h). Note that

QTµ=
1

eTv∗
(B∗)Tv∗ ≥ 1

O(α)
d.

SinceU is down-monotone, so isT(U,h). Therefore, ford ∈ conv(T(U,h)), we have

1
O(α)

d ∈ T(U,h),

which implies thatκ(T(U,h))≤ O(logn ·min(logΓ, log(m+n))).

3.7 Adaptivity Gap under Constraint and Objective Uncertainty.

In this section, we show that our result can be generalized tothe case where both constraint and

objective coefficients are uncertain. In particular, we consider the two-stage adjustable robust

problemΠ(B,d)
AR as in (2.5.1).

z(B,d)AR = maxcTx+ min
(B,d)∈U

max
y(B,d)

dTy(B,d)

Ax +By(B,d) ≤ h

x ∈ Rn
+, y(B,d) ∈ Rn

+
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We consider the case where the uncertainty in constraint matrix B is column-wise and constraint-

wise and does not depend on the uncertainty in objective coefficientsd. Therefore,

U = UB×Ud,

whereUB ⊆ Rm×n
+ is a convex compact uncertainty set of constraint matrices that is column-

wise and constraint-wise, andUd ⊆ Rn
+ is a convex compact uncertainty set of the second-stage

objective. Consider the corresponding static robust problemΠ(B,d)
Rob as in (2.5.2).

z(B,d)Rob = max
x,y

min
d∈Ud

cTx+dTy

Ax +By ≤ h, ∀B ∈ UB

x,y ∈ Rn
+.

We prove the following theorem.

Theorem 3.7.1.Let z(B,d)AR be the optimal objective value ofΠ(B,d)
AR in (2.5.1) defined over the

uncertaintyU = UB×Ud, whereUB ⊆ Rm×n
+ is a convex compact uncertainty set of constraint

matrices that is column-wise and constraint-wise, andUd ⊆ Rn
+ is a convex compact uncertainty

set of the second-stage objective. Let z(B,d)
Rob be the optimal objective value ofΠ(B,d)

Rob in (2.5.2).

Then,

z(B,d)AR ≤ O(logn ·min(logΓ, log(m+n))) ·z(B,d)Rob .



95

Proof. From Theorem 2.5.1, we have

z(B,d)AR ≤ max{κ(T(U,h)) | h > 0} ·z(B,d)Rob .

From Theorem 3.6.1, we have

max{κ(T(U,h)) | h > 0} ≤ O(logn ·min(logΓ, log(m+n))),

which completes the proof.

3.8 Computational Study

In this section, we perform a computational study on the performance of static solutions as an ap-

proximation for the two-stage adjustable robust problemΠAR (1.2.1) with column-wise uncertainty

sets. From Theorem 3.2.2, we focus on uncertainty sets that are Cartesian products of simplices

because they give the worst performance of static solutions. From Theorem 3.2.1, we can com-

pute an optimal one-stage static solution forΠI
Rob (3.2.4) as a single LP. On the other hand, it is

NP-hard to compute an optimal solution for the one-stage adjustable robust problemΠI
AR. How-

ever, we can consider the set cover formulation ofΠI
AR (3.3.6) and solve the integer programming

formulation using Gurobi. In particular, given̂B ∈ Rm×n
+ as defined in (3.2.2), we consider the
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following instance of the adjustable robust problem:

c= 0,A = 0, hi = 1, ∀i ∈ [m], d j = 1, ∀ j ∈ [n]

Û j =

{

b ∈ Rm
+

∣

∣

∣

∣

∣

m

∑
i=1

1

B̂i j
bi ≤ 1,bi = 0,∀i : B̂i j = 0

}

, ∀ j ∈ [n].

U =
{

[b1 b2 . . . bn] | b j ∈ U j
}

.

We solve the following IP problem forΠI
AR (3.3.6)

zI
AR = min{eTv | viB̂i j ≥ zi j ,vi ≥ 0,zi j ∈ {0,1}∀i ∈ [m], j ∈ [n]}

and the LP forΠI
Rob (3.2.4)

zI
Rob = max{eTy | B̂y ≤ e,y ≥ 0}.

For givenm andn, we sampleB̂ under single-sided i.i.d. standard normal distribution for 1000

times, i.e.,B̂i j is the absolute value of a independentN (0,1) random variable for alli ∈ [m], j ∈ [n].

Table 3.1 records the worst gap and average gap between the optimal values for different

choices ofm andn. Note that neither the worst-instance nor the average adaptivity gap follows

a strictly increasing pattern whenm increases. We conjecture that the upper bound for the adap-

tivity gap should beO(logn) instead ofO(log(m+n) logn). In our analysis, the term log(m+n)

comes from cappingΓ, the ratio between that largest element and the smallest element ofB̂. There-

fore, in Table 3.2, we consider the case whereΓ > mn to see if this is reflected in computation.
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n m Worst Gap Average Gap

10

5 1.9836 1.4897
10 2.0345 1.6180
20 2.0752 1.6867
50 2.0304 1.7140
100 2.0162 1.7056
200 1.9708 1.6985

20

5 2.2038 1.6550
10 2.3890 1.8829
20 2.3580 2.0125
50 2.3461 2.0757
100 2.3338 2.0801
200 2.2988 2.0699

50

5 2.4140 1.8237
10 2.8773 2.2516
20 2.8858 2.5006
50 2.9403 2.6478

Table 3.1: Computational study for all samples.

We plot the the percentage of instances versus thresholds inFigure 3.1. In all figure, thex-axis

is the threshold for the adaptivity gap, and they-axis is the percentage of instances where the gap

is less than the threshold. As shown in the figures, there is almost no visible difference when we

restrictΓ > mn. However, there is a significant change in the percentage when we changen as

shown in the figures.

From our observation from the computational study, we conjecture that the upper bound for

the approximation ratio isO(logn) instead ofO(log(m+n) logn), where the term log(m+n) is

resulted from our analysis. Table 3.3 compares the worst-case and average adaptivity gaps when

m= 10.

We plot the gaps with respect to the 10-based logarithm ofm in Figure 3.2. Note that the

curves follow similar trends. This is in conformity with ourconjecture that the adaptivity gap for
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(b) Samples whereΓ > mn for n= 10
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(d) Samples whereΓ > mn for n= 20
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Figure 3.1: Plots of percentage of instances versus threshold.
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n m Worst Gap Average Gap

10

5 1.9713 1.4954
10 2.1560 1.6207
20 2.0510 1.6815
50 2.0519 1.7066
100 1.9748 1.7086
200 1.9654 1.6973

20

5 1.9713 1.4954
10 2.1560 1.6207
20 2.0510 1.6815
50 2.0519 1.7066
100 1.9748 1.7086
200 1.9654 1.6973

50

5 2.3652 1.8096
10 2.6806 2.2487
20 2.8729 2.5090
50 2.9193 2.6467

Table 3.2: Computational study whenΓ > mn.

m n Worst Gap Average Gap

10

10 2.0345 1.6180
20 2.3890 1.8829
50 2.8773 2.2516
100 2.9968 2.5082
200 3.1934 2.7480
500 3.4894 3.0224

Table 3.3: Computational study whenm= 10.

column-wise and constraint-wise uncertainty set should beO(logn). It is an interesting question

to close the gap between the upper and lower bounds on the performance of static solution.

3.9 Conclusion.

In this chapter, we study the adaptivity gap in two-stage adjustable robust linear optimization prob-

lem under column-wise and constraint-wise uncertainty sets. As shown in the previous chapter, the
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Figure 3.2: Plots of worst-case and average adaptivity gap whenm= 10.

adjustable problem isΩ(logn)-hard to approximate in this case. On the positive side, we show that

a static solution is anO(logn · min(logΓ, log(m+ n)))-approximation for the adjustable robust

problem when the uncertainty set is column-wise and constraint-wise. Therefore, ifΓ (maximum

ratio between upper bounds of uncertain constraint coefficients) is a constant, the static solution

provides anO(logn)-approximation which matches the hardness of approximation in this case. If

Γ is large, the static solution is aO(logn · log(m+n))-approximation which is a near-optimal ap-

proximation for the adjustable robust problem under constraint uncertainty. Moreover, our bound

can be extended to the case where the objective coefficients are also uncertain and the uncertainty

is unrelated to the column-wise and constraint-wise constraint uncertainty set. Surprisingly, al-

though widely perceived as highly conservative, the staticsolution provides good approximation

for many uncertainty sets. In fact, El Housni and Goyal [21] show that for general uncertainty sets,

there is no piecewise static policy with polynomial number of pieces that gives an approximation

bound for the two-stage adjustable robust problem that is better thanO(m1−ε) for anyε > 0, while

we show that static solution provides am-approximation for the problem. Our result confirms the
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power of static solution in two-stage adjustable robust linear optimization problem under uncertain

constraint and objective coefficients.
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Chapter 4

Characterization of the Optimality

Condition of Static Solution in Multi-Stage

Robust Optimization Problems

4.1 Introduction

In this section, we consider extensions to multi-stage adjustable robust linear optimization problem

with uncertain packing constraints where uncertainty is revealed in stages. In each period, the deci-

sion maker needs to make decision in face of adversarial future uncertainty. Multi-stage problems

are intractable in general. In fact, Dyer and Stougie [19] show that the problem is PSPACE-hard.

Therefore, it is natural to consider efficient approximation algorithms for the problem. In this

section, we extend our previous result by considering the performance of static solution for multi-

stage adjust robust problem. In particular, we consider thefollowing problemΠL
AR whereL ∈ N+
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denotes the number of decision stages.

zL
AR = maxcTx+ min

B1∈U1

[

max
y1(B1)

cT
1 y1(B1)+ min

B2∈U2

[

max
y2(B1,B2)

dT
2 y2(B1,B2)+ . . .

+ min
BL∈UL

[

max
yL(B1,...,BL)

dT
L yL(B1, . . . ,BL)

]]]

Ax +B1y1(B1)+B2y2(B1,B2)+ . . .+BLyL(B1, . . . ,BL) ≤ h,

∀Bt ∈ Ut , t ∈ [L]

x,y1(B1), . . . ,yL(B1, . . . ,BL)≥ 0

(4.1.1)

whereA ∈ Rm×n,di ∈ Rn, h ∈ Rm
+, andBt ∈ Ut ⊆ Rm×n

+ be the uncertain constraint coefficient

matrix for thetth-stage for allt ∈ [L]. In particular, we consider the case where the uncertainty

for each stage is unrelated of the uncertainties for the other stages, i.e., the uncertainty setU =

U1×U2× . . .×UL. The corresponding static robust problemΠL
Rob can be formulated as follows.

zL
Rob = maxcTx+dT

1 y1+ . . .+dT
L yL

Ax +B1y1+B2y2+ . . .+BLyL ≤ h,∀Bt ∈ Ut , t ∈ [L]

x,y1, . . . ,yL ≥ 0.

(4.1.2)

As in previous sections, we can assume without loss of generality that Ut is down-monotone for

all t ∈ [L].

4.2 Main Theorem

We have the following main theorem.
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Theorem 4.2.1.Let zLAR be the optimal objective value ofΠL
AR in (4.1.1)defined over the uncer-

tainty U = U1×U2× . . .×UL. Let zLRob be the optimal objective value ofΠL
Rob in (4.1.2). Let

ρ(·) be defined as in Theorem 2.4.2, i.e.,

ρ(U) = max{κ(T(U,h)) | h > 0},

whereκ(·) is the measure of non-convexity as defined in(2.4.1). Then,

zL
Rob ≤ zL

AR ≤ ρ(U) ·zL
Rob.

Proof. It is easy to see thatzL
AR ≥ zL

Rob: Let (x∗,y∗1,y
∗
2, . . . ,y

∗
L) be an optimal solution forΠL

Rob.

SinceUt , t ∈ [L] are independent of each other, this implies thatx = x∗,y1(B1) = y∗1, y2(B1,B2) =

y∗2, . . ., yL(B1, . . . ,BL) = y∗L is a feasible solution for the adjustable robust problemΠL
AR (4.1.1).

ThereforezL
AR ≥ zL

Rob for all L ∈ N+.

On the other hand, consider the following problemΠmod:

zmod = maxcTx+ min
(B1,...,BL)∈U

max
y1(B1,...,BL),...,yLB1,...,BL)

L

∑
t=1

dT
t yt(B1, . . . ,BL)

Ax +B1y1(B1, . . . ,BL)+B2y2(B1, . . . ,BL)+ . . .+BLyL(B1, . . . ,BL) ≤ h,

∀(B1, . . . ,BL) ∈ U

x,y1(B1, . . . ,BL), . . . ,yL(B1, . . . ,BL)≥ 0

(4.2.1)

Note the inΠmod, the variables(y1, . . . ,yL) are chosen with full knowledge of the uncertain con-

straint coefficient matricesB1, . . . ,BL. Therefore, any solution feasible forΠL
AR is also feasible
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for Πmod, and we havezL
AR ≤ zmod. Moreover,Πmod is essentially a two-stage adjustable robust

problem with the second-stage uncertainty setU = U1×U2× . . .×UL. Note the the static robust

problem forΠmod is exactlyΠL
Rob. From Theorem 2.4.2, we havezmod ≤ ρ(U) · zL

Rob. Therefore,

zL
AR ≤ ρ(U) ·zL

Rob.

Theorem 4.2.1 is a generalization of our result for two-stage adjust adjustable robust problems.

Note that ifUt are all constraint-wise or all symmetric projections, thenT(U,h) is convex for all

h > 0. Therefore, we have the following Lemma.

Lemma 4.2.2.Let zLAR be the optimal objective value ofΠL
AR in (4.1.1)defined over the uncertainty

U = U1 × U2 × . . .× UL. Let zLRob be the optimal objective value ofΠL
Rob in (4.1.2). Then,

zL
Rob = zL

AR if for all t ∈ [L],

1. Ut is constraint-wise as defined in Lemma 2.3.1, or

2. Ut is symmetric projection as defined in Lemma 2.3.2.

Proof. Note that the choice ofUt for each staget ∈ [L] is unrelated of the choice of the others. If

Ut are all constraint-wise fort ∈ [L], so isU. Similar argument holds for the case whereUt are

all symmetric projections. Therefore,T(U,h) is convex for allh > 0 and from Theorem 4.2.1,

zL
Rob = zL

AR.

We would like to note that even ifT(Ut ,h) is convex for allt ∈ [L], T(U,h)may not be convex.

Consider the following example:

Example 1 (T(Ut,h) is convex but notT(U,h)). Consider the following instance of input
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parameters:

c= 0,A = 0,h = d1 = d2 = [1;1],U = U1×U2,

U1 =























x1 x2

x3 x4









∣

∣

∣

∣

∣

∣

∣

∣

x1+x2+2x3+2x4 ≤ 1,

xi ≥ 0, i = 1,2,3,4.















,

U2 =























x1 x2

x3 x4









∣

∣

∣

∣

∣

∣

∣

∣

2x1+2x2+x3+x4 ≤ 1,

xi ≥ 0, i = 1,2,3,4.















(4.2.2)

We can reformulate the static solution as follows:

zRob = maxy11+y12+y21+y22

max(y11,y12)+
1
2

max(y21,y22)≤ 1,

1
2

max(y11,y12)+max(y21,y22)≤ 1.

Note that by symmetry, the optimal is achieved wheny11 = y12 = y21 = y22 = 2/3. Therefore,

zRob = 8/3.

For the adjustable robust problem, we consider a special class of solution where

y11(B1) = y12(B1) = y1(B1),y21(B1,B2) = y22(B1,B2) = y2(B1,B2),

B1 =









a1 b1

c1 d1









, B2 =









a2 b2

c2 d2









.
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Then,

ẑAR = min
B1

max
y1(B1)

2y1(B1)+min
B2

max
y2(B1,B2)

2y2(B1,B2)

(a1+b1)y1(B1)+(a2+b2)y2(B1,B2)≤ 1,

(c1+d1)y1(B1)+(c2+d2)y2(B1,B2)≤ 1.

For the ease of notation, let

ε1 = c1+d1,ε2 = a2+b2,y1 = y1(B1),y2 = y2(B1,B2).

Then

ẑAR = min
ε1

max
y1

2y1+min
ε2

max
y2

2y2

(1−2ε1)y1+ ε2y2 ≤ 1,

ε1y1+(1− ε2)y2 ≤ 1.

(4.2.3)

Then, we have the following lemma.

Lemma 4.2.3.Let zAR be the optimal objective value of the problem(4.1.1)with input parameters

as in(4.2.2)andẑAR be the optimal objective value of(4.2.3). Then

zAR ≥ ẑAR ≥ 17
6
.

Proof. The first inequality holds because ˆzAR only consider a special class of solutions tozAR.

Now, we discuss the solution of (4.2.3) by categorize on the possible values ofε1 over 0≤ ε1≤ 1/2.

1. If ε1 ∈ [1/3,1/2], we can sety1 = 1/ε1 ≥ 2, which implies thatzAR ≥ 4.



108

2. If ε1 ∈ [1/4,1/3], we can sety1 = 1/(1−2ε1)≥ 2. which implies thatzAR ≥ 4.

3. If ε1 ∈ [0,1/4], we set

y1 =
1

2(1−2ε1)
, y2 = min

{

1
2ε2

,
1

1−2ε2

(

1− ε1

2(1−2ε1)

)}

.

Therefore,

ẑAR ≥ 1
1−2ε1

+
2

1−2ε2
− ε1

(1−2ε1)(1−2ε2)

Now, consider the problem

ẑ= min

{

1
1−2x

+
1

1−2y
+

1
1−2y

(

1− x
1−2x

)∣

∣

∣

∣

x≤ 1
4
,0≤ y≤ 1

2

}

.

We further discuss on the values ofx.

(a) If x≤ 1/8, then

ẑ= min

{

1
1−2x

+
1

1−2y
+

1
1−2y

(

1− x
1−2x

)∣

∣

∣

∣

x≤ 1
8
,0≤ y≤ 1

2

}

≥ min
x≤1/8

1
1−2x

+ min
y≤1/2

{

1
1−2y

(

1+ min
x≤1/8

1−3x
1−2x

)}

≥ min
x≤1/8

1
1−2x

+ min
y≤1/2

{

1
1−2y

11
6

}

=
17
6
.



109

(b) If 1/8≤ x≤ 1/4, then

ẑ= min

{

1
1−2x

+
1

1−2y
+

1
1−2y

(

1− x
1−2x

)∣

∣

∣

∣

1
8
≤ x≤ 1

4
,0≤ y≤ 1

2

}

≥ min
1/8≤x≤1/4

1
1−2x

+ min
y≤1/2

{

1
1−2y

(

1+ min
1/8≤x≤1/4

1−3x
1−2x

)}

≥ min
x≤1/8

1
1−2x

+ min
y≤1/2

{

1
1−2y

3
2

}

=
17
6
.

Therefore, ˆzAR ≥ ẑ= 17/6.

From the discussions above, we can see that ˆzAR ≥ 17/6> 8/3= zRob.

Note that the projection ofU1 onto each row is a scaling of the other, and the same holds for

U2. We can see thatT(Ut,h) is convex for allh > 0 andt = 1,2. However, the static solution is

sub-optimal for the multi-stage adjustable robust problemfrom our previous discussion. Therefore,

our previous optimality condition for the static solution as in Theorem 2.3.3 can not be generalized

to the multi-stage problems.

4.3 Approximation Bound on the Performance of Static Solu-

tion

In this section, we show that for a multi-stage Cartesian uncertainty setU, ρ(U) is at mostL ·

max{ρ(Ut) | t ∈ [L]}, whereL is the number of stages. In particular, we prove the following

lemma.
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Lemma 4.3.1.Given a L-stage uncertainty setU = U1×U2× . . .×UL, let ρ(·) be defined as in

Theorem 2.4.2. Then, we have

ρ(U)≤ L ·max{ρ(Ut) | t ∈ [L]}

Proof. Given an arbitraryh > 0, considerb ∈ conv(T(U,h)). We can write

bT = [bT
1 bT

2 . . . bT
L ]

wherebt ∈ conv(T(Ut,h)) sinceU is a Cartesian product ofUt , t ∈ [L]. From the definition of

ρ(·), this implies that

bT

max{ρ(Ut) | t ∈ [L]} ≤
[

bT
1

ρ(U1)
. . .

bT
L

ρ(UL)

]

= [µT
1 B1 . . . µT

L BL]

wherehTµt = 1,µ≥ 0,Bt ∈ Ut for all t ∈ [L]. Now, let

B = [B1 B2 . . .BL],µ=
1
L

L

∑
t=1

µt .

SinceU is a Cartesian product ofUt , t ∈ [L], we have

B ∈ U,hTµ= 1,µ≥ 0.
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Therefore,BTµ∈ T(U,h). Note that

L ·µTB =
L

∑
t=1

µT
t [B1 B2 . . .BL]≥ [µT

1 B1 . . . µT
L BL],

we have

bT

L ·max{ρ(Ut) | t ∈ [L]} ∈ T(U,h),

thereby complete our proof.

Therefore, if the uncertainty setU is a mixture of constraint-wise or symmetric projection

uncertainty sets, then the adaptivity gap is bounded byL. Moreover, from our previous result in

Theorem 2.4.3,ρ(Ut) is at mostm. Therefore, for a multi-stage adjustable robust problem, the

performance of static solution is bounded byLm.
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Chapter 5

Generalized Decision Rule Approximation

for Two-Stage Robust Linear Optimization

5.1 Introduction

In this chapter, we consider the two-stage adjustable robust linear optimization problem with cov-

ering constraints and uncertain right-hand-sideΠAR−cover(U) (1.2.4). In Feige et al. [23], the

authors consider a two-stage set cover problem where the size of the second-stage demanded is

capped by integerk. They show that the problem isΩlogm/ loglogm-hard to approximate, and a

LP-rounding algorithm gives aO(logmlogn)-approximation. Bertsimas and Goyal [10] consider

the general formulation (1.2.1) and show that the affine policy gives anO(
√

m)-approximation.

Moreover, they show that the bound is tight when the uncertainty set is the intersection of the unit

ℓ2-norm ball and positive orthant. This motivates us to find efficient algorithms to improve this

approximation ratio. In particular, we introduce a new framework to approximateΠAR−cover(U).
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For the ease of discussion, we denoteΠAR−cover(U) asΠAR(U) throughout this chapter. Note that

we add the uncertainty setU as an input to the problem because our new framework depends on

computing the optimal two-stage adjustable robust solution on an extended set.

Outline. In Section 5.2, we present the new framework for approximating the two-stage ad-

justable robust problem (1.2.4). Based on this framework, we provide approximation bounds for

ΠAR(U) (1.2.4) with unitℓ2-norm ball andℓp-norm ball uncertainty sets in Section 5.3.

5.2 A New Approximation Framework via Dominating Uncer-

tainty Set

In this section, we present a new framework to approximate the two-stage adjustable robust prob-

lem (1.2.4). Our policy is based on approximating the boundary points of the uncertainty setU

with a simple set. In particular, we construct a setÛ thatdominatesthe uncertainty setU. More-

over, we require that the two-stage adjustable robust problem (1.2.4) can be efficiently solved over

Û. We first define some geometric properties for the uncertainty setU.

Definition 5.2.1. (Domination)Given uncertainty setU ⊆ Rm
+, Û ⊆ Rm

+ dominatesU if for all

h ∈ U, there existŝh ∈ Û such thatĥ ≥ h.

Definition 5.2.2. (Scaling factor)Given a full-dimensional uncertainty setU ⊆ Rm
+ andÛ ⊆ Rm

+

that dominatesU. We define the scaling factorβ(U,Û) of (U,Û) as the smallest scalar such that

Û ⊆ β(U,Û) ·U, i.e.

β(U,Û) = min{α > 0 | Û ⊆ α ·U}.
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For the sake of simplicity, we denote the scaling factor of(U,Û) by β throughout this chapter.

Note that this scaling factor always exists becauseU is full-dimensional. Moreover, it is greater

than one because of the assumption of domination. The following theorem shows that solving

the adjustable problem over the setÛ gives an approximation to the two-stage adjustable robust

problem (1.2.4) within a factorβ.

Theorem 5.2.3.Given a convex, compact and down-monotone uncertainty setU and Û ⊆ Rm
+

dominatesU ⊆ Rm
+, let β be the scaling factor of(U,Û). Moreover, let zAR(U) and zAR(Û) be

the optimal values for(1.2.4)on U andÛ, respectively. Then,

zAR(U)≤ zAR(Û)≤ β ·zAR(U).

Proof. Let (x̂, ŷ(ĥ), ĥ ∈ Û) be an optimal solution forzAR(Û). For eachh ∈ U, let ỹ(h) = ŷ(ĥ)

whereĥ ∈ Û dominatesh. Therefore, for anyh ∈ U,

Ax̂+Bỹ(h) = Ax̂+Bŷ(ĥ)≥ ĥ ≥ h,

i.e.,(x̂, ỹ(h),h ∈ U) is a feasible solution forzAR(U). Therefore,

zAR(U)≤ cT x̂+max
h∈U

dT ỹ(h)≤ cT x̂+max
ĥ∈Û

dT ŷ(ĥ) = zAR(Û).

Conversely, let(x∗,y∗(h),h ∈ U) be an optimal solution ofzAR(U). Then, for anyĥ ∈ Û, since
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ĥ/β ∈ U, we have

Ax∗+By∗
(

ĥ
β

)

≥ ĥ
β
,

Therefore,(βx∗,βy∗
(

ĥ
β

)

, ĥ ∈ U) is feasible forΠAR(Û). Therefore,

zAR(Û)≤ cTβx∗+max
ĥ∈Û

dTβy∗
(

ĥ
β

)

≤ β ·
(

cTx∗+max
h∈U

dTy∗(h)
)

= β ·zAR(U).

Theorem 5.2.3 provides a new framework for approximating the two-stage adjustable robust

problemΠAR(U) (1.2.4). Note that we require thatÛ dominatesU andΠAR(Û) can be efficiently

solved overÛ. In fact, the latter is satisfied if the number of extreme points ofÛ is small (typically

polynomial ofm). Therefore, we choosêU to be a simplex in our framework. The adjustable

problem is easy to solve over a simplex as it can be reduced to asingle LP problem. In particular,

given simplex uncertainty set

U = conv (ν1,ν2, . . . ,νm+1) ,

we can formulate the two-stage adjustable robust problemΠAR(U) as the following LP.

zAR(U) = min cTx+z

z≥ dTyi , ∀i ∈ [m+1]

Ax +Byi ≥ νi , ∀i ∈ [m+1]

x ∈ Rn
+, yi ∈ Rn

+.
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Affine policy is another tractable approach to solveΠAR(U) (1.2.4) whenU is simplex. As men-

tioned earlier, it is optimal for simplex uncertainty sets.However, for general convex uncertainty

sets, its performance can be as bad asO(
√

m). Our goal is to study new approximation framework

to improve this ratio. In particular, we would like to find a simplexÛ that dominatesU such that

β = Ω(m
1
2−ε) for someε > 0, thereby give a good approximation forΠAR(U). In the following

sections, we provide improved approximation bounds forΠAR(U)with several interesting families

of uncertainty sets given by this framework.

5.3 Examples of Improved Approximation Bounds

In this section, we present the approximation bounds for twointeresting family of uncertainty

sets. In particular, our bounds are better than the results of Bertsimas and Bidkhori [7]. Similar

to previous chapters, we can assume without lost of generality that U ⊆ [0,1]n by scaling. In

particular, we haveej ∈ U for all j ∈ [m].

Permutation Invariant Sets. We first consider permutation invariant sets. Recall that anuncer-

tainty setU is permutation invariant ifx ∈ U implies that for any permutationτ of [m], xτ ∈ U

wherexτ
i = xτ(i). We defineγ(U) where

γ(U)e= argmax{eTx | x ∈ U}.
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Now, consider the simplex

Û = β · conv(e1,e2, . . . ,em,γ(U) ·e).

Let β be the scaling factor ofU andÛ. By definition,βÛ dominatesU. Therefore, solving the

two-stage adjustable robust problemΠAR (1.2.4) overÛ gives anβ-approximation toΠAR over

U.

Note thatβ may not be efficiently computable given arbitrary permutation invariant set. In the

following examples, we explore several interesting familyof uncertainty sets and compute their

correspondingβ’s.

Lemma 5.3.1. (Hypersphere)ConsiderU = {h ∈ Rm
+ | ||h||2 ≤ 1} as in (1.1.1). Then, Theo-

rem 5.2.3 holds with

Û = β · conv
(

e1,e2, . . . ,em,
1√
m

e
)

with β = m
1
4 .

Proof. To prove thatβÛ dominatesU, it is sufficient to show that the boundary ofU is dominated.

Considerh such that||h||2 = 1. Letαi =
h2

i
2 for i ∈ [m] andαm+1 =

1
2 be the convex multipliers for

Û. Then, we haveeTα = 1 and for alli ∈ [m],

βĥi = β
(

αi +
1√
m

αm+1

)

= β
(

h2
i

2
+

1
2
√

m

)

≥ β ·2
√

h2
i

4
√

m
= hi .

Therefore,̂h ∈ Û andU is dominated byβÛ.
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Lemma 5.3.2. (ℓp-Norm Ball) ConsiderU =
{

h ∈ Rm
+ | ||h||p ≤ 1

}

where p∈ N+. Then,

Û = β · conv
(

e1,e2, . . . ,em,m
− 1

pe
)

,

whereβ = m
p−1
p2 .

Proof. Similar to the previous proof, it is sufficient to show that the boundary ofU is dominated

by βÛ. Considerh ∈ U such that||h||p = 1. Letαi =
hp

i
p for i ∈ [m] andαm+1 =

p−1
p be the convex

multipliers forÛ. Then,eTα = 1 and for alli ∈ [m],

βĥi = β
(

αi +
1√
m

αm+1

)

= β
(

hp
i

p
+

p−1
p

m− 1
p

)

≥ β
(

hp
i

) 1
p

(

m− 1
p

)
p−1

p
= hi ,

where the inequality follows from the AM-GM inequality.

Lemma 5.3.2 is a generalization for Lemma 5.3.1. In fact, we recover the result in Lemma 5.3.1

for p= 2. Bertsimas and Bidkhori [7] show that an affine policy on theuncertainty setU provides

am
1
p -approximation for the two-stage adjustable robust problem ΠAR. However, by considering a

dominating set̂U, we can provide a better approximation ratio without significantly increasing the

computational complexity. It would be interesting to consider such approximation framework for

other uncertainty sets.
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5.4 Conclusion

In this Chapter, we consider the two-stage adjustable robust linear optimization problems with cov-

ering constraints and uncertain right-hand-side. We introduce a new framework for approximating

such problem based on choosing an appropriate dominating set for the uncertainty set. The choice

of the dominating set explores the geometric structure of the uncertainty set and gives better ap-

proximation bounds than the affine policy for a couple of interesting class of uncertainty sets. In

particular, our approximation framework provides am1/4-approximation for the unit hypersphere

while the affine policy gives anO(
√

m)-approximation. More generally, for general unitℓp-norm

balls, our framework gives am
p−1
p2 -approximation as opposed tom

1
p given by an affine policy.
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Chapter 6

Conclusions

In this thesis, we consider adjustable robust linear optimization problems in both packing and

covering formulations with constraint and right-hand-side uncertainty, respectively. Such prob-

lems arise naturally in real-world applications such as resource allocation and machine scheduling.

However, computing an optimal solution for adjustable robust problem is intractable. In fact, we

show that for a column-wise constraint uncertainty set, thetwo-stage packing problem isΩ(logn)-

hard to approximate. For a more general case where the uncertainty setU and objective coefficients

d are not constrained in the non-negative orthant, we show that the adjustable robust problem is

Ω(2log1−ε m)-hard to approximate for any constant 0< ε < 1. In addition, Feige et al. [22] show

that the covering problem isΩ(logm/ loglogm)-hard to approximate. This motivates us to study

approximation algorithm for the problem.

In Chapter 2 and 3, we consider the two-stage robust packing problem with uncertain constraint

coefficients and study the performance of static robust solution as its approximation. We first give

a tight characterization of the performance of static solution and relate it to the measure of non-



121

convexity of the transformationT(U, ·) of the uncertainty setU. In particular, we show that a

static solution is optimal ifT(U,h) is convex for allh > 0. For several interesting families of

uncertainty sets such as constraint-wise or symmetric projections, we show thatT(U,h) is convex

for all h > 0; thereby generalize the result of Ben-Tal and Nemirovski [5] for the case whereU

is contained in the non-negative orthant. In Chapter 4, we generalize the result to a multi-stage

problem where the choice of the uncertain coefficient matrixfor each stage is independent of the

others. We show that a static solution is optimal for the multi-stage adjustable robust problem ifUt

is constraint-wise for each staget ∈ [K]. Moreover, we also give an approximation bound on the

performance of static solutions that is related to the measure of non-convexity of the transformation

of the Cartesian product of the uncertainty sets for each stage.

WhenT(U, ·) is not convex, We show that the measure of non-convexity ofT(U, ·) gives a

tight bound on the performance of static solutions. Our approximation bound is better than the

symmetry bound in Bertsimas and Goyal [11]. However, the bound is instanced-based and may

not be efficiently computable. Moreover, for a family of diagonal uncertainty sets, the bound can

be as large asm. Therefore, we consider column-wise and constraint-wise uncertainty sets, which

are more natural in real-world applications. For such uncertainty sets, we show that a static solution

is anO(logn·min(logΓ, log(m+n)))-approximation for the adjustable robust problem. Therefore,

if Γ (maximum ratio between upper bounds of uncertain constraint coefficients) is a constant, the

static solution provides anO(logn)-approximation which matches the hardness of approximation

in this case. IfΓ is large, the static solution is aO(logn · log(m+n))-approximation which is a

near-optimal approximation for the adjustable robust problem under constraint uncertainty. From

our computational study, we conjecture the upper bound of the approximation bound isO(logn)
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instead ofO(logn · log(m+n)) and it is an interesting open question to close the gap between the

upper and lower bounds.

We extend our results to models where both constraint and objective coefficients are uncertain.

We show that ifU = UB×Ud, whereUB is the set of uncertain second-stage constraint matrices

B andUd is the set of uncertain second-stage objective, then the performance of static solution is

related to the measure of non-convexity ofT(UB, ·). In particular, a static solution is optimal if

T(UB,h) is convex for allh> 0; it also provides aO(logn·min(logΓ, log(m+n)))-approximation

if UB is column-wise and constraint-wise. Surprisingly, the performance of static solution does not

depend on the uncertainty setUd. We also present several examples to illustrate such optimality

and the tightness of the bound.

Piecewise static solution is an interesting generalization of static solution and is perceived

as more general. However, in a recent result by El Housni and Goyal [21], the authors show

that in general there is no piecewise static policy with a polynomial number of pieces that has a

significantly better performance than an optimal static solution. Our results further confirm the

power of static solution in two-stage adjustable robust linear optimization problem under uncertain

constraint and objective coefficients. Moreover, our results develop new geometric intuition about

the performance of static robust solutions for adjustable robust problems. The reformulations of the

adjustable robust and static robust problems based on the transformationT(U, ·) of the uncertainty

setU give us interesting insights about properties ofU where the static robust solution does not

perform well. Therefore, our results provide useful guidance in selecting uncertainty sets such that

the adjustable robust problem can be well approximated by a static solution.

In Chapter 5, we consider the two-stage adjustable robust linear optimization problems with
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covering constraints and uncertain right-hand-side. Bertsimas and Bidkhori [7] show that for un-

certainty setU that is an intersection of positive orthant andℓp-norm ball, an affine policy onU

provides am
1
p -approximation for the problem. We consider a new approximation framework that

is based on choosing an appropriate dominating set for the uncertainty set. In particular, we ex-

ploit the geometric structure of the dominating set such that solving the adjustable robust problem

over the set gives a better performance than affine policy over the original set. Our approximation

framework provides am1/4-approximation for the unit hypersphere while the affine policy gives

anO(
√

m)-approximation. More generally, for general unitℓp-norm balls, our framework gives a

m
p−1
p2 -approximation as opposed tom

1
p given by an affine policy.
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Appendix A

Appendix of Chapter 1

A.1 Down-monotone Uncertainty Sets

In this section, we show that inΠI
AR(U,h) defined in (2.3.3) andΠI

Rob(U,h) defined in (2.3.4), we

can assumeU to bedown-monotonewithout loss of generality, where down-monotone is defined

as follows.

Definition A.1.1. A setS ⊆ Rn
+ is down-monotoneif s∈ S , t ∈ Rn

+ and t ≤ s impliest ∈ S .

GivenS ⊆ Rn
+, we can construct the down-hull ofS, denoted byS ↓ as follows.

S ↓ = {t ∈ Rn
+ | ∃s∈ S : t ≤ s}. (A.1)

We would like to emphasize that the down hull of a non-negative uncertainty set is still constrained

in the non-negative orthant. Given uncertainty setU ∈ Rm×n
+ andh > 0, if U is down-monotone,

thenU↓=U. Therefore,ΠI
AR(U

↓,h) is essentially the same problem withΠI
AR(U,h) and we have
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zI
AR(U

↓,h) = zI
AR(U,h). Similar arguments applies forΠI

Rob(U,h) andzI
Rob(U

↓,h) = zI
Rob(U,h).

On the other hand, ifU is not down-monotone, thenU ( U↓. Then, we prove the following

lemma.

Lemma A.1.2. Given uncertainty setU ∈ Rm×n
+ and h > 0, let zIAR(U,h) be the optimal value

of ΠI
AR(U,h) defined in(2.3.3), zI

Rob(U,h) be the optimal value ofΠI
Rob(U,h) defined in(2.3.4).

SupposeU is not down-monotone, letU↓ be defined as in(A.1). Then,

zI
AR(U

↓,h) = zI
AR(U,h), zI

Rob(U
↓,h) = zI

Rob(U,h).

Proof. Consider an arbitraryX ∈ U↓ andX 6∈ U, i.e.,X ∈ U↓\U. From (A.1), there existsB ∈ U

such thatX ≤ B. SinceB,X andy are all non-negative, anyy ∈ Rn
+ such thatBy ≤ h satisfies

Xy ≤ h. Therefore,

max{dTy | By ≤ h,y ∈ Rn
+} ≤ max{dTy | Xy ≤ h,y ∈ Rn

+}.

Take minimum over allB ∈ U on the left side, we have

min
B∈U

max
y

{dTy | By ≤ h,y ∈ Rn
+} ≤ max

y
{dTy | Xy ≤ h,y ∈ Rn

+}.

SinceX is arbitrarily chosen inU↓\U, we can take minimum of allX ∈ U↓\U on the right side

min
B∈U

max
y

{dTy | By ≤ h,y ∈ Rn
+} ≤ min

X∈U↓\U
max

y
{dTy | Xy ≤ h,y ∈ Rn

+}.
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Therefore, the minimizer of the outer problem ofΠI
AR(U

↓,h) is in U, which implies

min
B∈U

max
y

{dTy | By ≤ h,y ∈ Rn
+}= min

X∈U↓
max

y
{dTy | Xy ≤ h,y ∈ Rn

+}.

As a result, we havezI
AR(U

↓,h) = zI
AR(U,h).

Similarly, anyy ∈ Rn
+ satisfiesBy ≤ h for all B ∈ U is guaranteed to be feasible toXy ≤ h for

all X ∈ U↓\U. Therefore, we conclude thatzI
Rob(U

↓,h) = zI
Rob(U,h).

Therefore, we can assume without loss of generality thatU is down-monotone in (2.3.3)

and (2.3.4). Now, we generalize the result for the two-stageproblemsΠAR−pack in (1.2.1) and

ΠRob in (1.2.2). Consider the following adjustable robust problemΠ↓
AR

z↓AR = maxcTx+ min
B∈U↓

max
y(B)

dTy(B)

Ax +By(B) ≤ h

x ∈ Rn1

y(B) ∈ R
n2
+ ,

(A.2)

and the corresponding two-stage static robust problemΠ↓
Rob

z↓Rob = maxcTx+dTy

Ax +By ≤ h, ∀B ∈ U↓

x ∈ Rn1

y ∈ R
n2
+ .

(A.3)
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Again, given uncertainty setU ∈ R
m×n2
+ , if U is down-monotone, thenU↓ = U. Therefore,

Π↓
AR is essentially the same problem withΠAR and we havez↓AR = zAR. Similarly,z↓Rob = zRob. For

the case whereU is not down-monotone, we prove the following lemma:

Lemma A.1.3. Given uncertainty setU ∈ R
m×n2
+ and h ∈ Rm, let zAR and zRob be the optimal

values ofΠAR−pack defined in(1.2.1)andΠRob defined in(1.2.2), respectively. SupposeU is not

down-monotone, letU↓ be defined as in(A.1). Let z↓AR and z↓Rob be the optimal values ofΠ↓
AR

defined in(A.2) andΠ↓
Rob defined in(A.3), respectively. Then,

z↓AR = zAR,z
↓
Rob = zRob.

Proof. Suppose(x∗,y∗(B),B ∈ U↓) is an optimal solution ofΠ↓
AR. Based on the discussion in

Theorem 2.3.3, we can assume without loss of generality thath−Ax∗ > 0. Then,

z↓AR = cTx∗+ min
B∈U↓

max
y∈Rn2

+

{

dTy | By ≤ h−Ax∗}

= cTx∗+zI
AR(U

↓,h−Ax∗)

= cTx∗+zI
AR(U,h−Ax∗)

≤ zAR.

The second equation holds from Lemma A.1.2, and the last inequality holds becausex = x∗ is a

feasible first-stage solution forΠAR. Therefore,z↓AR ≤ zAR.

Conversely, suppose(x̃, ỹ(B),B ∈ U) is the optimal solution forΠAR. Again, we can assume
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without loss of generality thath−Ax̃ > 0. Using similar arguments, we have

zAR = cT x̃+ min
B∈U

max
y∈Rn2

+

{

dTy

∣

∣

∣

∣

∣

By ≤ h−Ax̃

}

= cT x̃+zI
AR(U,h−Ax̃)

= cT x̃+zI
AR(U

↓,h−Ax̃)

≤ z↓AR.

The last inequality holds becausex = x̃ is a feasible first-stage solution forz↓AR. Therefore, in both

cases, we havezAR ≤ z↓AR. Together with previous result, we havez↓AR = zAR. In the same way, we

can show thatz↓Rob = zRob, we omit it here.

Lemma A.1.4. Given a down-monotone setU ⊆ Rm×n
+ , let T(U,h) be defined as in(2.3.6), then

T(U,h) is down-monotone for allh > 0.

Proof. Consider an arbitraryh > 0 andy ∈ T(U,h)⊆ Rn
+ such that

y = BTλ,hTλ = 1,λ ≥ 0,B ∈ U.

Then, for anyz∈ Rn
+ such thatz≤ y, set

B̂i j =
zj

y j
Bi j , i = 1, . . . ,m, j = 1, . . . ,n.

Clearly, B̂ ≤ B sincez ≤ y. Therefore,B̂ ∈ U from the assumption thatU is down-monotone.
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Then,

z= B̂Tλ,hTλ = 1,λ ≥ 0, B̂ ∈ U,

which impliesz∈ T(U,h).
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Appendix of Chapter 2

B.1 Proof of Theorem 2.2.2.

In this section, we show that the general two-stage adjustable robust problemΠGen
AR (2.2.1) is

Ω(2log1−ε m)-hard to approximate for any constant 0< ε < 1. We prove this by an approxima-

tion preserving reduction from theLabel-Cover-Problem. The reduction is similar in spirit to the

reduction from the set cover problem to the two-stage adjustable robust problem.

Label-Cover-Problem: We are given a finite setV (|V| = m), a family of subset{V1, . . . ,VK} of

V and graphG = (V,E). Let H be a supergraph with vertices{V1, . . . ,VK} and edges F where

(Vi,V j) ∈ F if there exists(k, l) ∈ E such thatk ∈ Vi , l ∈ V j . The goal is to find the smallest

cardinality setC⊆V such thatF is covered, i.e., for each(Vi,V j) ∈ F, there existsk∈ Vi ∩C, l ∈

V j ∩C such that(k, l) ∈ E.

The label cover problem isΩ(2log1−ε m)-hard to approximate for any constant 0< ε < 1, i.e.,
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there is no polynomial time approximation algorithm that give anO(2log1−ε m)-approximation for

any constant 0< ε < 1 unlessNP⊆ DTIME (mpolylog(m)) [1].

Proof of Theorem 2.2.2Consider an instanceI of Label-Cover-Problem with ground elements

V (|V| = m), graphG = (V,E), a family of subset ofV: (V1, . . . ,VK) and a supergraphH =

({V1, . . . ,VK},F) where|F|= n. We construct the following instanceI ′ of the general adjustable

robust problemΠGen
AR (2.2.1):

A = 0, c= 0, d =









e

−e









∈ Rn+m, h = e∈ Rm, U = {[B − Im] | B ∈ UF}

whered1 = d2 = . . . = dn = 1, Im is them-dimensional identity matrix and each column set of

UF ⊆ Rm×n
+ corresponds to an edge(Vi,V j) ∈ F with

U(Vi ,V j) = conv

(

{0}
⋃{

1
2
(ek+el )

∣

∣

∣

∣

(k, l) ∈ E,k∈ Vi , l ∈ V j

})

⊆ Rm
+.

Therefore,U is column-wise with column setsU(Vi ,V j),∀(Vi,V j)∈ F andU j , j ∈ [m] whereU j =

{−ej}, i.e., there is no uncertainty inU j . The instanceI ′ of ΠGen
AR can be formulated as

zGenAR = min
B∈UF

max
y≥0,z≥0

{eTy−eTz | By−z≤ e,y ≥ 0,z≥ 0}

= min
b(Vi ,V j )

∈U(Vi ,V j )

max
y≥0,z≥0







eTy−eTz

∣

∣

∣

∣

∣

∣

∑
(Vi ,V j)∈F

y(Vi ,V j)
b(Vi ,V j)

−z≤ e,y ≥ 0,z≥ 0







.

Suppose(ŷ, ẑ, b̂(Vi ,V j),(Vi,V j) ∈ F) is a feasible solution for instanceI ′. Then, we can com-

pute a label cover of instanceI with cardinality at mosteT ŷ−eT ẑ. From strong duality, there
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exists an optimal solution ˆµ for

min{eTµ | b̂T
(Vi ,V j)

µ≥ 1,∀(Vi,V j) ∈ F,µ∈ [0,1]m}

andeT µ̂= eT ŷ−eT ẑ. For each(Vi,V j) ∈ F, consider a basic optimal solution(b̃(Vi ,V j),(Vi,V j) ∈

F) where

b̃(Vi ,V j) ∈ argmax{bT µ̂ | b ∈ U(Vi ,V j)}.

Therefore,b̃(Vi ,V j) is a vertex ofU(Vi ,V j) for each(Vi,V j) ∈ F , which implies thatb̃(Vi ,V j) =

1
2(eki +el j ) for some(ki , l j) ∈ E andki ∈ Vi, l j ∈ V j . Also, b̃T

(Vi ,V j)
µ̂≥ 1,∀(Vi,V j) ∈ F. Now, let

µ̃ the optimal solution of the following LP:

min{eTµ | b̃T
(Vi ,V j)

µ≥ 1,∀(Vi,V j) ∈ F,0≤ µ≤ e}.

Clearly,eT µ̃≤ eT µ̂. Also, sinceb̃(Vi ,V j)
= 1

2(eki +el j ) andb̃T
(Vi ,V j)

µ̃≥ 1, µ̃ki = µ̃l j = 1. Therefore,

µ̃∈ {0,1}m. Let

C= { j | µ̃j = 1}.

Clearly,C is a valid label cover forF and|C|= eT µ̃≤ eT µ̂= eT ŷ−eT ẑ.

Conversely, given a label coverC of instanceI , for any j ∈ [m], let µ̄j = 1 if j ∈ C and zero

otherwise. This implies thateT µ̄ = |C|. For any(Vi,V j) ∈ F, let b̄(Vi ,V j) =
1
2(eki + el j ) where

ki ∈ Vi ∩C, l j ∈ V j ∩C such that(ki , l j) ∈ E. Then, letµ′ be an optimal solution for the following
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LP

min{eTµ | b̄T
(Vi ,V j)

µ≥ 1,∀(Vi,V j) ∈ F,0≤ µ≤ e}.

Then,eTµ′ ≤ eT µ̄ asµ̄ is feasible for the above LP. From strong duality, there exists ȳ ∈ Rn
+ and

z̄∈Rm
+ such that(ȳ, z̄, b̄(Vi ,V j),(Vi,V j)∈ F) is a feasible solution for instanceI ′ of ΠGen

AR with cost

eT ȳ−eT z̄= eTµ′ ≤ eT µ̄= |C|.

B.2 Proofs of Lemmas 2.3.1 and 2.3.2

Proof of Lemma 2.3.1Consider anyv1,v2 ∈ T(U,h). Therefore, forj = 1,2,

v j = BT
j λ j ,hTλ j = 1,λ j ≥ 0,B j ∈ U.

For any arbitraryα ∈ [0,1], let µi = αλ1
i +(1−α)λ2

i andb j
i = BT

j ei for i = 1, . . . ,m. Then,

αv1+(1−α)v2 =
m

∑
i=1

(

αλ1
i b1

i +(1−α)λ2
i b2

i

)

=
m

∑
i=1

µi

(

αλ1
i

µi
b1

i +
(1−α)λ2

i

µi
b2

i

)

=
m

∑
i=1

µi · b̂i

=B̂Tµ,

whereb̂i ∈ Ui sinceb̂i is a convex combination ofb1
i andb2

i for all i = 1, . . . ,m andUi is convex.
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Also, note that̂B ∈ U (sinceU is constraint-wise) andhTµ= αhTλ1+(1−α)hTλ2 = 1, we have

αv1+(1−α)v2 ∈ T(U,h).

Therefore,T(U,h) is convex.

Proof of Lemma 2.3.2Note that in (2.3.6),hTµ= 1, which impliesµj ≤ 1
h j

for j = 1, . . . ,m. We

assume without loss of generality thath1 ≤ h j for j = 2, . . . ,m. Note thatU is down-monotone, so

is U j , j = 1, . . . ,m. Therefore, forj = 2, . . . ,m, we have

1
h j

U j ⊆
1
h1

U1 ⊆ T(U,h)

where the second set inequality holds because we can takeµ = e1
h1

in (2.3.6). Note thatU1 is

convex, so is1
h1

U1. Now, consider an arbitraryv ∈ T(U,h) such that

v = BTλ,hTλ = 1,λ ≥ 0,B ∈ U.

Let b j = BTej , we have

v =
m

∑
j=1

λ jb j

=
m

∑
j=1

λ jh j ·
1
h j

b j

=
1
h1

b̂,
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whereb̂ ∈ U1. The last equation holds becausehTλ = 1 and 1
h j

U j ⊆ 1
h1

U1. Therefore,

T(U,h) =
1
h1

U1,

which is convex.

B.3 Proof of Lemma 2.3.5

For eachj ∈ [m], let

U j =

{

1
h j

·BTej

∣

∣

∣

∣

B ∈ U

}

.

Then,

zI
Rob(U,h) = max

y

{

dTy
∣

∣ By ≤ h, ∀B ∈ U,y ∈ Rn
+

}

= max
y

{

dTy
∣

∣ bT
j y ≤ 1, ∀b j ∈ U j , j ∈ [m],y ∈ Rn

+

}

Consider a feasible solutiony, we have

bT
j y ≤ 1, ∀ b j ∈ U j , j ∈ [m]

⇔ bTy ≤ 1, ∀ b ∈⋃m
j=1U j

⇔ bTy ≤ 1, ∀ b ∈ conv
(⋃m

j=1 U j

)

where the last inference follows from the fact that ifbT
1 y ≤ 1 andbT

2 y ≤ 1, then

(αb1+(1−α)b2)
Ty = αbT

1 y+(1−α)bT
2 y ≤ 1,
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for all 0≤ α ≤ 1. In Theorem 2.4.3, we show that

conv(T(U,h)) = conv

(

m⋃

j=1

U j

)

.

Therefore,

zI
Rob(U,h) = max

y

{

dTy
∣

∣ bTy ≤ 1, ∀b ∈ conv(T(U,h),y ∈ Rn
+

}

= max
y

{

dTy
∣

∣

∣
y ∈ (conv(T(U,h))◦

⋂
Rn
+

}

whereS ◦ is the polar set ofS . Note that the last maximization problem can be viewed as the

support function of the set

C = (conv(T(U,h))◦
⋂

Rn
+.

Therefore, we can reformulate it as the Minkowski functional over the polarC ◦ as follows (see

Proposition 3.2.5 in Chapter 5 of [26]).

zI
Rob(U,h) = min

λ

{

λ
∣

∣

∣
d ∈ λ

(

(conv(T(U,h))◦
⋂

Rn
+

)◦}

= min
λ

{

λ
∣

∣

∣
d ∈ λ

(

conv(T(U,h)
⋃

Rn
−
)}

where the second equation follows as

(

S1
⋂

S2

)◦
= S ◦

1

⋃
S ◦

2 , and (S ◦)◦ = S ,
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and
(

Rn
+

)◦
= Rn

−. Sinced ∈ Rn
+, we have

zI
Rob(U,h) = min

λ
{λ | d ∈ λconv(T(U,h)}

= min
λ

{λ | λb ≥ d,b ∈ conv(T(U,h)}

which completes the proof.

B.4 Tight Example for Measure of Non-convexity Bound

Theorem B.4.1.Consider the following uncertainty set,Uθ,

Uθ =

{

B ∈ [0,1]n×n

∣

∣

∣

∣

∣

Bi j = 0, ∀i 6= j,
n

∑
j=1

Bθ
j j ≤ 1

}

.

with θ > 1. Then,

1. T(Uθ,h) can be written as:

T(Uθ,h) =

{

b ∈ Rn
+

∣

∣

∣

∣

∣

n

∑
j=1

(

b j

h j

) θ
θ+1

≤ 1

}

(B.1)

2. The convex hull of T(Uθ,h) can be written as:

conv(T(Uθ,h)) =

{

b ∈ Rn
+

∣

∣

∣

∣

∣

n

∑
j=1

b j

h j
≤ 1

}

. (B.2)

3. T(Uθ,h) is non-convex for allh > 0.
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4. κ(T(Uθ,h)) = n
1
θ for all h > 0.

Proof. 1. For givenh > 0 andb ∈ T(Uθ,h), we have

b = BTµ,hTµ= 1,µ≥ 0,B ∈ Uθ.

Let λi = hiµi for i = 1, . . . ,n. Therefore,eTλ = 1 and

b = BT(diag(h))−1λ = (diag(h))−1BTλ,

wherediag(h) ∈ Rn×n denotes the matrix with diagonal entries beinghi, i ∈ [n] and off-diagonal

entries being zero. The second equality above follows asB is diagonal. Therefore,(diag(h))b ∈

T(Uθ,e). Using a similar argument, we can show thatb ∈ T(Uθ,e) implies that(diag(h))−1b ∈

T(Uθ,h). Therefore,T(Uθ,h) = diag(h))−1T(Uθ,e) and it is sufficient to show:

T(Uθ,e) = A :=

{

b ∈ Rn
+

∣

∣

∣

∣

∣

n

∑
j=1

b
θ

θ+1
j ≤ 1

}

.

Consider anyb ∈ ∂A , i.e.,b ∈ Rn
+ such that

n

∑
j=1

b
θ

θ+1
j = 1.

Set

λ j = b
θ

θ+1
j ,x j = b

1
θ+1
j .
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Then,

λ jx j = b j ,eTλ = 1,
n

∑
j=1

x j
θ = 1,

which impliesb ∈ T(Uθ,e). Since bothA andT(Uθ,e) are down-monotone,A ⊆ T(Uθ,e).

Conversely, consider the following problem:

max
λ,x≥0

{

n

∑
i=1

(λ jx j)
θ

θ+1

∣

∣

∣

∣

∣

eTλ = 1,
n

∑
j=1

xθ
j ≤ 1.

}

From Holder’s Inequality, we have

n

∑
i=1

(λ jx j)
θ

θ+1 ≤ (eTλ)
θ

θ+1 ·
(

n

∑
j=1

xθ
j

) 1
θ+1

≤ 1.

Therefore, for anyb ∈ T(Uθ,e), we have

n

∑
j=1

b
θ

θ+1
j ≤ 1,

which impliesb ∈ A . Therefore,T(Uθ,e)⊆ A .

2. Similarly, it is sufficient to show

conv(T(Uθ,e)) = B :=

{

b ∈ Rn
+

∣

∣

∣

∣

∣

n

∑
j=1

b j ≤ 1

}

.

From (B.1), we see thatej ∈ T(Uθ,e). For anyb ∈ ∂B, by takingλ = b as the convex multiplier,
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we have

b =
n

∑
j=1

b jej .

Therefore,∂B ⊆ conv(T(Uθ,e)). Since bothB andconv(T(Uθ,e)) are down-monotone, we have

B ⊆ conv(T(Uθ,e)).

Conversely, consider the following problem:

max
b≥0

{

eTb

∣

∣

∣

∣

∣

n

∑
j=1

b
θ

1+θ
j ≤ 1

}

= max
a≥0

{

n

∑
j=1

a
1+θ

θ
j

∣

∣ eTa≤ 1

}

Note that

f (x) =
n

∑
j=1

x
1+θ

θ
j

is a convex function. Therefore,

n

∑
j=1

a
1+θ

θ
j ≤ (eTa)

1+θ
θ ≤ 1.

Therefore, for anyb ∈ T(Uθ,e), we haveb ∈ B. SinceB is convex,conv(T(Uθ,e))⊆ B.

3. From (B.1) and (B.2), it is easy to see that1
nh∈ conv(T(Uθ,h)), but 1

nh 6∈ T(Uθ,h). Therefore,

T(Uθ,h) is non-convex for allh > 0.

4. Now, we computeκ(Uθ,h). Recall that

κ(Uθ,h) = min{α | conv(T(Uθ,h))⊆ αT(Uθ,h)}= min{α | 1
α
conv(T(Uθ,h))⊆ T(Uθ,h)}.
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From (B.2) and scaling, we can observe that it is equivalent to find the largestα such that the

hyperplane
{

b ∈ Rn
+

∣

∣

∣

∣

∣

n

∑
j=1

b j

h j
=

1
α

}

intersects with the positive boundary ofT(Uθ,h). Therefore, we formulate the following problem:

(κ(Uθ,h))−1 = min
b≥0

{

n

∑
j=1

b j

h j

∣

∣

∣

∣

∣

n

∑
j=1

(
b j

h j
)

θ
1+θ = 1

}

= min
a≥0

{

n

∑
j=1

a
1+θ

θ
j

∣

∣

∣

∣

∣

n

∑
j=1

a j = 1

}

By solving KKT conditions for the convex problem above, the optimal solution isa= 1
n ·e. There-

fore, we have

κ(Uθ,h) = (n ·n− 1+θ
θ )−1 = n

1
θ .

B.5 Proof of Lemma 2.5.3

We first introduce some notations. Let

ŨB =
{

[B 0] ∈ R
m×(n+1)
+

∣

∣

∣ B ∈ UB
}

andŨd =























−d

1









∈ Rn+1

∣

∣

∣

∣

∣

∣

∣

∣

d ∈ Ud















.
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For eachj ∈ [m], let

U j =

{

1
h j

·BTej

∣

∣

∣

∣

B ∈ U

}

andŨ j =























b

0









∈ Rn+1
+

∣

∣

∣

∣

∣

∣

∣

∣

b ∈ U j















.

Lastly, let

h̃ =









h

0









.

It is easy to see that

T(ŨB, h̃) =























b

0









∈ Rn+1
+

∣

∣

∣

∣

∣

∣

∣

∣

b ∈ T(U,h)















.

Then,

zI
Rob(U,h) = max

y,µ

{

µ
∣

∣

∣
µ≤ dTy,∀d ∈ Ud, By ≤ h,∀B ∈ UB, y ∈ Rn

+

}

= max
y,µ

{

µ
∣

∣

∣
−dTy+µ+1≤ 1,∀d ∈ Ud, bT

j y ≤ 1, ∀b j ∈ U j , j ∈ [m],y ∈ Rn
+

}

.

Now, let

v =









y

µ+1









∈ Rn+1
+ ,

we have

zI
Rob(U,h) = max

v

{

eT
n+1v−1

∣

∣

∣
dTv ≤ 1,∀d ∈ Ũd, bTv ≤ 1,b ∈ T(ŨB, h̃), v ∈ Rn+1

+

}
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whereen+1 ∈ Rn+1
+ is the unit vector for the(n+1)-th coordinate. Following the revised proof of

Lemma 4, we can write

zI
Rob(U,h) = max

v

{

eT
n+1v

∣

∣

∣
v ∈

(

conv
(

conv
(

T(ŨB, h̃)
)
⋃

Ũd
))◦⋂

Rn+1
+

}

−1

= min
γ

{

γ
∣

∣

∣
en+1 ∈ γ

(

conv
(

conv
(

T(ŨB, h̃)
)
⋃

Ũd
)⋃

Rn+1
−
)}

−1.

Note thaten+1 ∈ Rn+1
+ . Therefore,

zI
Rob(U,h) = min

γ

{

γ
∣

∣

∣
en+1 ∈ γconv

(

conv
(

T(ŨB, h̃)
)
⋃

Ũd
)}

−1

= min
γ,α∈[0,1]

{

γ−1
∣

∣

∣
γz≥ en+1,z= (1−α)b+αd,b ∈ conv

(

T(ŨB, h̃)
)

,d ∈ Ũd
}

= min
λ,α∈[0,1]

{

λ
∣

∣

∣
(1+λ)z≥ en+1,z= (1−α)b+αd,b ∈ conv

(

T(ŨB, h̃)
)

,d ∈ Ũd
}

.

Note that

(1+λ)z≥ en+1,z= (1−α)b+αd,b ∈ conv
(

T(ŨB, h̃)
)

,d ∈ Ũd

⇔ (1+λ)zn+1 ≥ 1, zi ≥ 0,∀i ∈ [n], z= (1−α)b+αd,b ∈ conv
(

T(ŨB, h̃)
)

,d ∈ Ũd

⇔ (1+λ)α ≥ 1, (1−α)b−αd ≥ 0,b ∈ conv
(

T(UB,h)
)

,d ∈ Ud
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where the last step of induction holds becausebn+1 = 0 for all b ∈ conv(T(ŨB, h̃)) anddn+1 = 1

for all d ∈ Ũd. Therefore,

zI
Rob(U,h) = min

λ,α

{

λ
∣

∣

∣
(1+λ)α ≥ 1, (1−α)b−αd ≥ 0,b ∈ conv

(

T(UB,h)
)

,d ∈ Ud
}

= min
λ,α

{

λ
∣

∣

∣

∣

λ ≥ 1
α
−1,

(

1
α
−1

)

b ≥ d,b ∈ conv
(

T(UB,h)
)

,d ∈ Ud
}

= min
λ

{

λ
∣

∣

∣
λb ≥ d,b ∈ conv

(

T(UB,h)
)

,d ∈ Ud
}

.

which completes the proof.

B.6 Proofs of Lemmas 2.5.5 and 2.5.6

Proof of Lemma 2.5.5We can write the dual of the inner problem of (2.5.12):

z(B,h,d)AR = min
(B,h,d)∈UB,h,d,α∈Rm

+

{

hTα

∣

∣

∣

∣

∣

BTα ≥ d

}

= min
(B,h)∈UB,h,d∈Ud,α∈Rm

+,λ

{

λhT
(α

λ

)

∣

∣

∣

∣

∣

λBT
(α

λ

)

≥ d,hTα = λ

}

= min
(b,t)∈T(UB,h,e),d∈Ud,λ

{

λt

∣

∣

∣

∣

λb ≥ d
}

,

where the second equality holds becauseUB,h,d = UB,h×Ud.

Proof of Lemma 2.5.6We first introduce some notations. Let

ŨB,h =
{

[diag−1(h)B 0] ∈ R
m×(n+1)
+

∣

∣

∣
(B,h) ∈ UB,h

}

andŨd =























−d

1









∈ Rn+1

∣

∣

∣

∣

∣

∣

∣

∣

d ∈ Ud















.
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For eachj ∈ [m], let

U j =























BTej

hTej









∣

∣

∣

∣

∣

∣

∣

∣

(B,h) ∈ UB,h















⊆ Rn+1, andŨ j =
{

BTej | B ∈ ŨB,h
}

⊆ Rn+1.

Note that for eachŨ j , Ũ j normalizes any vectorb ∈ U j so that the last component is one, then

replace it with zero. This is very similar to the perspectivefunction (See page 39 in [18]), which

indicates thatŨ j is convex provided thatU j is convex. Then,

zI
Rob(U,h) = max

y,z

{

z
∣

∣

∣
z≤ dTy,∀d ∈ Ud, By ≤ h,∀(B,h) ∈ UB,h, y ∈ Rn

+

}

.

Similar to the previous proof, by setting

v =









y

z+1









∈ Rn+1
+ ,

we have

zI
Rob(U,h) = max

v

{

eT
n+1v−1

∣

∣

∣
dTv ≤ 1,∀d ∈ Ũd, bT

j v ≤ 1,b j ∈ Ũ j , j ∈ [m], v ∈ Rn+1
+

}

.
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whereen+1 ∈ Rn+1
+ is the unit vector for the(n+1)-th coordinate. Following the revised proof of

Lemma 4, we can write

zI
Rob(U,h) = max

v

{

eT
n+1v

∣

∣

∣
v ∈

(

conv
(

conv
(

∪m
j=1Ũ j

)
⋃

Ũd
))◦⋂

Rn+1
+

}

−1

= min
γ

{

γ
∣

∣

∣
en+1 ∈ γ

(

conv
(

conv
(

∪m
j=1Ũ j

)
⋃

Ũd
)⋃

Rn+1
−
)}

−1.

Note thaten+1 ∈ Rn+1
+ . Therefore,

zI
Rob(U,h) = min

γ

{

γ
∣

∣

∣
en+1 ∈ γconv

(

conv
(

∪m
j=1Ũ j

)
⋃

Ũd
)}

−1

= min
γ,α∈[0,1]

{

γ
∣

∣

∣
γz≥ en+1,z= (1−α)b+αd,b ∈ conv

(

∪m
j=1Ũ j

)

,d ∈ Ũd
}

−1.

Note that

γz≥ en+1,z= (1−α)b+αd,b ∈ conv
(

∪m
j=1Ũ j

)

,d ∈ Ũd

⇔ γzn+1 ≥ 1, zi ≥ 0,∀i ∈ [n], z= (1−α)b+αd,b ∈ conv
(

∪m
j=1Ũ j

)

,d ∈ Ũd

⇔ γα ≥ 1, (1−α)b−αd ≥ 0,b ∈ conv
(

∪m
j=1Ũ j

)

,d ∈ Ud

where the last statement holds becausebn+1 = 0 for all b ∈ conv(∪m
j=1Ũ j) anddn+1 = 1 for all

d ∈ Ũd. Therefore,

zI
Rob(U,h) = min

γ,α

{

γ−1

∣

∣

∣

∣

γ ≥ 1
α
,

1−α
α

b ≥ d,b ∈ conv
(

∪m
j=1Ũ j

)

,d ∈ Ud
}
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Substitute byλ = 1/α−1≥ 0, we have

zI
Rob(U,h) = min

γ,λ

{

γ−1
∣

∣

∣
γ−1≥ λ, λb ≥ d,b ∈ conv

(

∪m
j=1Ũ j

)

,d ∈ Ud
}

= min
λ

{

λ
∣

∣

∣
λb ≥ d,b ∈ conv

(

∪m
j=1Ũ j

)

,d ∈ Ud
}

= min
λ

{

λ

∣

∣

∣

∣

∣

λ
m

∑
j=1

µj
b j

h j
≥ d,(b j ,h j) ∈ U j ,eTµ= 1,µ≥ 0,d ∈ Ud

}

For eachj ∈ [m], let

θ j =
µj/h j

∑m
i=1µi/hi

.

Note that

µj =
θ jh j

∑m
j=1 θ jh j

.

Then,

zI
Rob(U,h) = min

λ

{

λ

∣

∣

∣

∣

∣

λ
∑m

j=1 θ jh j
·

m

∑
j=1

θ jb j ≥ d,(b j ,h j) ∈ U j ,eTθ = 1,θ ≥ 0,d ∈ Ud

}

= min
λ

{

λ
∣

∣

∣

∣

λ
t
·b ≥ d,(b, t) ∈ conv

(

T(UB,h,e)
)

,d ∈ Ud
}

= min
λ

{

λt
∣

∣

∣
λb ≥ d,(b, t) ∈ conv

(

T(UB,h,e)
)

,d ∈ Ud
}

.

which completes the proof.



Appendix C

Appendix of Chapter 3

C.1 Approximate Separation to Optimization.

For anyx ∈ Rn
+, let

Q∗(x) = min
B∈U

max
y≥0

{dTy | By ≤ h−Ax}.

We show that if we can approximate the separation problem, wecan also approximateΠAR.

Let A be aγ-approximate algorithm for the separation problem (3.2.1), i.e., A computes aγ-

approximation algorithm for the min-max problem in (3.2.1). For anyx ∈ Rn
+, let BA(x) denote

the matrix returned byA and let

QA(x) = max
y≥0

{dTy | BA(x)y ≤ h−Ax}.
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Therefore, the approximate separation based on AlgorihmA is as follows: for any(x,z), return

feasible ifQA(x) ≥ z. Otherwise give a violating hyperplane corresponding toBA(x). Now, we

prove the following theorem.

Theorem C.1.1. Suppose we have an AlgorithmA that is aγ-approximation for the separation

problem(3.2.1). Then we can compute aγ-approximation for the two-stage adjustable robust

problemΠAR (1.2.1).

Proof. SinceA is aγ-approximation to the min-max problem in (3.2.1), for anyx ∈ Rn
+,

Q∗(x)≤ QA(x)≤ γ ·Q∗(x).

Let (x∗,z∗) be an optimal solution forΠAR and let

OPT= cTx∗+z∗.

Consider the optimization algorithm based on the approximate separation algorithmA and suppose

it returns the solution(x̂, ẑ). Note that(x∗,z∗) is feasible according to the approximate separation

algorithmA asQA(x∗)≥ Q∗(x∗) = z∗. Therefore,

cT x̂+ ẑ≥ cTx∗+z∗. (C.1)

Note thatẑ is an approximation for the worst case second-stage objective value when the first stage
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solution isx̂. The true objective value for the first stage solutionx̂ is given by

cT x̂+Q∗(x̂) ≥ cT x̂+
1
γ
QA(x̂)

≥ cT x̂+
1
γ
ẑ (C.2)

≥ 1
γ
(cT x̂+ ẑ)

≥ 1
γ
OPT,

where the first inequality follows asA is a γ-approximation andQA(x̂) ≤ γ · Q∗(x̂). Inequal-

ity (C.2) follows as(x̂, ẑ) is feasible according toA and therefore, ˆz≤ QA(x̂) and the last inequal-

ity follows from (C.1). Therefore, the optimization problem based on algorithmA computes a

γ-approximation forΠAR.

C.2 Proof of Theorem 3.2.1

Let y∗ be such that̂By∗ ≤ h. For anyB ∈ U, we haveB ≤ B̂ component-wise by construction.

Note thaty∗ ≥ 0, this impliesBy∗ ≤ B̂y∗ ≤ h for all B ∈ U.

Conversely, supposẽy satisfiesBỹ ≤ h for all B ∈ U. For eachi ∈ [m], note thatdiag(ei)B̂ ∈ U

by construction. Therefore,eT
i B̂ỹ ≤ hi for all i ∈ [m], which implies that̂Bỹ ≤ h.
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C.3 Proof of Lemma 3.2.3.

Let

B̂i j =
1

(n+ i − j +1) modm
.

From Theorem 3.2.1,ΠRob is equivalent to

zRob = max{eTy | B̂y ≤ e,y ≥ 0}.

The dual problem is

zRob = min{eTz | B̂Tz≥ e,z≥ 0}.

Let

s=
n

∑
i=1

1
i
= Θ(logn).

It is easy to observe that1
se is a feasible solution for both the primal and the dual formulations of

zRob. Moreover, they have the same objective value. Therefore,

zRob =
n
s
.

On the other hand, for eachj ∈ [n], denote

U j =

{

b ∈ Rn
+

∣

∣

∣

∣

∣

n

∑
i=1

[(n+ i − j +1) modn] ·bi ≤ 1

}

.
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By writing the dual of the inner maximization problem ofΠAR, we have

zAR = min{eTα | BTα ≥ e,α ≥ 0,B ∈ U}

= min{λ | λBTµ≥ e,eTµ= 1,µ≥ 0,B ∈ U}

= min

{

1
θ

∣

∣

∣

∣

bT
j µ≥ θ,b j ∈ U j ,eTµ= 1,µ≥ 0

}

.

Therefore, we just need to solve

1
zAR

= max{θ | bT
j µ≥ θ,b j ∈ U j ,eTµ= 1,µ≥ 0} (C.1)

Suppose(θ̂, µ̂, b̂ j , j ∈ [m]) is an optimal solution for (C.1). For eachj ∈ [n], consider a basic

optimal solutionb̃ j of the following LP:

b̃ j ∈ argmax{bT µ̂ | b ∈ U j}.

Therefore,̃b j is a vertex ofU j , which implies that̃b j = B̂i j jei j for somei j ∈ [n] andb̃T
j µ̂≥ θ̂. For

eachi ∈ [n], let Si = { j | i j = i}. We have∑n
i=1 |Si| = n. For eachi ∈ [n] such thatSi 6= /0, B̂i j can

only take values in{1,1/2, . . . ,1/n} for j ∈ Si. Moreover,B̂i j 6= B̂ik for j 6= k. Therefore, there

existsl i ∈ Si such that

B̂il i ≤
1
|Si|

, andb̃T
l i µ̂= B̂il i µ̂i ≥ θ̂.
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We have

1= ∑
i:Si 6= /0

µ̂i ≥ ∑
i:Si 6= /0

θ̂
B̂il i

≥ ∑
i:Si 6= /0

θ̂|Si|= θ̂n.

Therefore,̂θ ≤ 1
n, which implies thatzAR ≥ n.

On the other hand, it is easy to observe thatzAR ≤ n: b j = ej , µ= 1/n · e andθ = 1/n is a

feasible solution for (C.1). Therefore,

zAR = n=
n

∑
i=1

1
i
·zRob = Θ(logn) ·zRob,

which completes the proof.


