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ABSTRACT

Accurately measuring interannual variability in terrestrial evapotranspiration ET is a major challenge for

efforts to detect trends in the terrestrial hydrologic cycle. Based on comparisons with annual values of ter-

restrial evapotranspiration ET derived from a terrestrial water balance analysis, past research has cast doubt

on the ability of existing products to accurately capture ET variability. Using a variety of ET estimates, this

analysis reexamines this conclusion and finds that estimates of ET variations obtained from a land surface

model are more strongly correlated with ET independently acquired from thermal infrared remote sensing

than ET derived from water balance considerations. This tendency is attributed to significant interannual

variations in terrestrial water storage neglected by the water balance approach. Overall, results demonstrate

the need to reassess perceptions concerning the skill of ET estimates derived from land surface models and

show the value of accurate remotely sensed ET products for the validation of interannual ET.

1. Introduction

There has been a great deal of recent interest in the

development of large-scale terrestrial evapotranspiration

ET datasets for climate applications. These products can

be derived via a range of remote sensing, modeling, and

data assimilation approaches (Mueller et al. 2011). How-

ever, evaluating large-scale ET products at interannual

time scales remains a major challenge (Zhang et al. 2012).

The classical approach for verifying such products is

comparison against a terrestrial water balance calcula-

tion. The instantaneous terrestrial water balance is typi-

cally based on equating changes in terrestrial water

storage DTWS (mm) with the net sum of precipitation

accumulation P, horizontal runoff flow Q, and evapo-

transpiration losses:

DTWS5P2Q2ET. (1)

This balance holds within any spatial control volume;

however, it is commonly applied to discrete hydrologic

units so thatQ can be equated with observed streamflow

at a basin outlet. Summing (1) over annual time

periods—indicated using the overbar notation—leads to

DTWS5P2Q2ET. (2)

Therefore, based on (2), annual evapotranspiration ET

can be estimated as

ET5P2Q2DTWS. (3)

At annual time scales and above, DTWS is commonly

assumed to be zero. Therefore, the classical water
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balance WB approach for estimating ET is based on

measuring P and Q and applying (3) under the as-

sumption that DTWS5 0.

By comparing decadal trends in WB-based ET with

trends derived from independent ET estimates derived

from modeling and remote sensing, Zhang et al. (2012)

emphasized the inability of many model- and remote

sensing–based products to accurately capture interannual

ET trends in humid climates. Likewise, Jung et al. (2010)

validated ET derived via the spatial interpolation of

ground flux tower observations using independent ET

estimates derived from a catchment-scale water balance

analysis. However, at least in very large hydrologic ba-

sins, recent studies on the Gravity Recovery and Cli-

mate Experiment (GRACE) have called into question

the classical assertion that DTWS can be safely ne-

glected at annual time scales (Zeng et al. 2012, 2014).

Here, we seek to intercompare multiple large-scale

ET products with the aim of developing an improved

strategy for validating their interannual variability. Re-

sults are based on 1) ET from the Noah land surface

model ETNoah, 2) ET from the remote sensing–based

Atmosphere–Land Exchange Inverse (ALEXI) energy

balancemodel ETALEXI, and 3) ET from aWBapproach

that neglects annual changes in terrestrial water storage

ETWB. For an additional analysis, DTWS from GRACE

data and ET estimates from the interpolation of ground-

based flux towers using the model tree ensemble (MTE)

algorithm of Jung et al. (2009) ETMTE are also consid-

ered. Given that past work has already examinedmutual

biases in these products (Hain et al. 2015), our focus

here is on the correlation (at zero lag) of interannual ET

anomalies.

2. Methods

The analysis is divided into two scales. The first scale is

defined by an east–west transect of 15 medium-sized

(;402–1002 km2) unregulated basins within the U.S.

southern Great Plains (SGP) region (Table 1). The sec-

ond scale is consistent with five much larger (;5002–

10002 km2) major basins within the Mississippi River

system (Table 2). See Fig. 1 for a map of all basins. The 15

medium-sized basins described in Table 1 were selected

TABLE 1. List of moderately sized, unregulated catchments used in the analysis.

Medium-scale

basin No. USGS station No. USGS station name

Basin size

(km2)

Mean annual

precipitation* (mmyr21)

1 07144780 North Fork Ninnescah River above

Cheney Reservoir, KS

2049 704

2 07144200 Lower Arkansas River at Valley Center, KS 3402 777

3 07152000 Chikaskia River near Blackwell, OK 4891 825

4 07243500 Deep Fork near Beggs, OK 5210 891

5 07147800 Walnut River at Winfield, KS 4855 908

6 07177500 Bird Creek Near Sperry, OK 2360 954

7 06908000 Blackwater River at Blue Lick, MS 2924 1069

8 07196500 Illinois River near Tahlequah, OK 2492 1124

9 07019000 Meramec River near Eureka, MO 9766 1164

10 07052500 James River at Galena, MO 2568 1202

11 07186000 Spring River near Wace, MO 2980 1206

12 07056000 Buffalo River near St. Joe, AR 2148 1229

13 06933500 Gascondade River at Jerome, MO 7356 1256

14 07067000 Current River at Van Buren, MO 4351 1304

15 07068000 Current River at Doniphan, MO 5323 1309

*Note that mean annual precipitation is the temporal (2002–12) mean of spatially averaged annual NLDAS-2 precipitation.

TABLE 2. List of larger river basins within the Mississippi River system used in the analysis.

Major Mississippi subbasin USGS station No. USGS station name Basin size (km2)

Mean annual

precipitation* (mmyr21)

Missouri River 06934500 Missouri River at Hermann, MO 1 347 556 537

Arkansas River 07263450 Arkansas River below Little Rock, AR 409 201 699

Red River 07344370 Red River at Spring Bank, AR 153 906 809

Upper Mississippi River 07022000 Mississippi River at Thebes, IL 496 016 876

Ohio River 03611500 Ohio River at Metropolis, IL 527 557 1200

*Note that mean annual precipitation is the temporal (2002–12) mean of spatially averaged annual NLDAS-2 precipitation.
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based on a screening analysis by the Model Parameter

Estimation Experiment (MOPEX) to remove basins

with poor rain gauge coverage and/or excessive human

regulation/impoundment of streamflow. In addition, an

attempt was made to select medium-scale basins that

span the strong east–west precipitation gradient across

the SGP and receive a relatively low fraction of their

annual precipitation as snowfall. Naturally, the impact

of human streamflow regulation cannot be neglected

within the major basins examined.

3. Data

a. Water balance–ET

As described in (3), ETWB estimates were derived

from the difference between annual observed stream-

flow and precipitation where DTWS is assumed to be

zero. In particular, daily streamflow volumes at in-

dividual basin outlets listed in Tables 1 and 2 (and

mapped in Fig. 1) were obtained from the U.S. Geologic

Survey (USGS), normalized by basin drainage areas,

and aggregated to (calendar year) annual values. An-

nual precipitation was based on the temporal aggrega-

tion of terrain-corrected daily rain gauge observations

collected from the National Centers for Environmental

Prediction (NCEP) Climate Prediction Center (CPC)

and processed onto a 0.1258 grid as part of phase 2 of the

North American Land Data Assimilation System

(NLDAS-2). More details on the NLDAS-2 project and

meteorological forcing datasets can be found inMitchell

et al. (2004) and Xia et al. (2012). Following (3), ETWB

was calculated for calendar years 2002–12.

b. Noah–ET

The ETNoah product was based on the temporal ag-

gregation of hourly ET predictions acquired from

a 0.1258-resolution Noah land surface model simula-

tion driven by NLDAS-2 meteorological forcing data.

The NLDAS-2 hourly precipitation forcing dataset is

based on the disaggregation of daily NCEP CPC data

using available ground-based rain radar observations.

The Noah model is a one-dimensional, physically

based land surface model that calculates surface state

and flux variables using prognostic energy and water

balance equations. Total ET is calculated by summing

up hourly Noah predictions of 1) direct evaporation

from the surface soil, 2) direct evaporation of canopy-

intercepted precipitation, 3) transpiration via plant

root uptake of water, and 4) sublimation. Annual av-

erages were then obtained by summing hourly ET

within calendar years 2002–12 and spatially averaging

these 0.1258 summations over all basin domains in-

dicated in Fig. 1. More information about the Noah

model version implemented in NLDAS-2 (version 2.8)

is given in Chen et al. (1996), Chen and Dudhia (2001),

and Ek et al. (2003). Note that since ETNoah and ETWB

are both derived (in part) from NLDAS-2 pre-

cipitation data, they cannot be considered wholly in-

dependent estimates.

c. ALEXI–ET

Unlike ETNoah and ETWB, the ALEXI surface energy

balancemodel produces ETusing thermal infrared (TIR)

remote sensing data without any precipitation input

FIG. 1. Map of the 15 unregulated medium-scale basins (red outlines) and the five Mississippi River system major subbasins used in the

analysis. See Tables 1 and 2 for basin details.
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(Anderson et al. 2011). ALEXIwas processed at a spatial

resolution of 10km over the period of 2003–12, forced

with meteorological inputs from the North American

Regional Reanalysis (NARR; Mesinger et al. 2006),

TIR land surface temperature from the Geostationary

Operational Environmental Satellite (GOES), and leaf

area index (LAI) from the 8-day TerraMODIS product

(MOD15A2), used to estimate vegetation cover fraction

fc. Instantaneous latent heat fluxes retrieved fromALEXI

are upscaled to daytime-integrated ET estimates, assum-

ing a self-preservation of the ratio of latent heat flux and

incoming shortwave radiation fSUN during daytime

hours (Cammalleri et al. 2014). Incoming shortwave

radiation inputs are taken from the NCEP Climate

Forecast System Reanalysis (CFSR; Saha et al. 2010).

Currently, ALEXI is not executed over snow-covered

surfaces. These periods are instead gap filled with a lin-

ear interpolation of fSUN.

While based on very different fundamental principles,

ALEXI and Noah share some common inputs. There-

fore, in order to minimize commonality in inputs be-

tween ETNoah and ETALEXI, every effort was made to

ensure that these inputs did not induce cross-correlated

error in ET predictions. For instance, while both Noah

and ALEXI require incoming solar radiation as a forc-

ing, ALEXI simulations were based by radiation prod-

ucts generated by CFSR while Noah simulations were

instead forced by radiation fields from the NARR.

Likewise, while both ALEXI and Noah require fc, Noah

uses a fixed monthly climatology acquired from a retro-

spective analysis of Advanced Very High Resolution

Radiometer observationswhileALEXI uses actual 8-day

MODIS LAI composites to estimate fc.

d. MTE–ET

For an additional analysis, ET estimates were also

acquired from the flux tower observations and the MTE

machine-learning algorithm introduced by Jung et al.

(2009). The MTE upscales in situ ET measurements

from a network of regional networks (FLUXNET) using

the remotely sensed fraction of photosynthetically ac-

tive radiation and gridded meteorological data to pro-

duce monthly gridded ET estimates at a 0.508 spatial

resolution. These estimates were temporally averaged to

an annual scale (within calendar years 2002–11) and

spatially averaged within the five major basins listed in

Table 2.

e. GRACE–DTWS

Monthly GRACE DTWS data were obtained by ap-

plying the rescaling coefficients of Landerer and Swenson

(2012) to gridded 0.258 GRACE DTWS products pro-

vided by the GeoForschungsZentrum (GFZ) and the

University of Texas Center for Space Research (CSR)

and averaging the resulting two fields together. Decem-

ber and January GRACE DTWS values from this unified

product were averaged together to estimate 1 January

DTWS. The difference between successive 1 January

DTWS values was then used to obtain DTWS for cal-

endar years 2002–12. Finally, the resulting 0.258 annual
DTWS fields were spatially averaged within the five

major river basins listed in Table 2.

4. Results

Our analysis focused on calculating the (lag zero)

Pearson correlation coefficient between normalized

anomalies of interannual, basin-scale ETNoah variations

and interannual variation found in other ET products.

Given the west-to-east increase in P within the SGP re-

gion, meanPwithin the 15medium-scale basins (Table 1,

Fig. 1) ranges from 500 to 900mmyr21 (Table 1).

Figure 2 plots the correlation between ETNoah and

ETWB sampled in each medium-scale basin, where ba-

sins are sorted according to mean P. Within the driest

basins, ETNoah–ETWB correlations are uniformly high.

However, since ETNoah and ETWB estimates are based

on the same (uncertain) precipitation product, some of

this correlation may be spurious because of positively

correlated errors. In contrast, ETNoah–ETWB correla-

tions become highly erratic (and frequently negligible)

FIG. 2. TheETNoah–ETALEXI (red lines) andETNoah–ETWB (blue

lines) correlations for the 15 unregulated, medium-scale basins

listed in Table 1 (ordered from driest to wettest). Dashed lines

indicate sampled correlations and solid lines indicate the inter-

quartile spread of sampled correlations derived using a 5000-

member bootstrapping approach.
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within wetter basins (Fig. 2). This tendency has been

attributed to the inability of land models to accurately

capture interannual ET variability in humid climates

(Zhang et al. 2012).

However, a different interpretation emerges when

also considering the correlation between ETNoah and

ETALEXI. In particular, ETNoah–ETALEXI correlations

are uniformly positive for all medium-scale basins, even

the wettest basins, which exhibit very lowETNoah–ETWB

correlations (Fig. 2). In addition, all sampled

ETNoah–ETALEXI correlations have interquartile sam-

pling ranges (derived from a boot-strapping approach)

that do not include zero. Such robust positive correla-

tions occur despite the fact that ETNoah and ETALEXI are

obtained via wholly independent means and cold season

ETALEXI is based on a simplistic temporal interpolation

technique (section 2c). Therefore, Fig. 2 strongly implies

that the aforementioned reduction in ETNoah–ETWB

correlation within humid basins is attributable to error

in ETWB and not uncertainty in ETNoah.

An obvious error source for ETWB is the neglect of

DTWS. Within the larger-scale major basins listed in

Table 2, the impact of DTWS can be directly examined

using GRACE DTWS observations. Figure 3 is analo-

gous to Fig. 2, except applied to much larger basins

within the Mississippi River system (Fig. 1, Table 2). As

in Fig. 2, ETNoah–ETWB correlations are relatively high

for the drier major basins (i.e., the Missouri, the Red,

and the Arkansas) but fall sharply for the wetter major

basins (i.e., the Ohio and the upper Mississippi). How-

ever, ETNoah–ETWB correlations are uniformly im-

proved by avoiding the problematic assumption that

DTWS5 0 and instead estimating large-scale DTWS

directly from GRACE (Fig. 3). The consistent im-

provement implies that the neglect of DTWS is playing

a significant role in reducing sampled ETNoah–ETWB

correlations.

As in Fig. 2, ETNoah–ETALEXI correlations in Fig. 3 are

relatively high and remain stable across all five major

basins. Sampled ETNoah–ETMTE correlations are even

higher for all basins except the Ohio River basin. In

particular, note that the exceptionally low (negative)

correlation in (non-GRACE corrected) ETNoah–ETWB

correlations within the upper Mississippi basin is not

FIG. 3. The ETNoah–ETALEXI (red line) and ETNoah–ETWB (solid blue line) correlations for

the five major Mississippi River subbasins listed in Table 2 (ordered from driest to wettest).

Also shown are correlations between ETNoah and 1) GRACE-corrected ETWB (dotted blue

line) and 2) ETMTE (black line).
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reflected in either ETNoah–ETALEXI, ETNoah–ETMTE, or

GRACE-corrected ETNoah–ETWB correlations. There-

fore, the observed shortcoming in (uncorrected)

ETNoah–ETWB appears linked to relatively large in-

terannual variability in surface water and snow storage

within the upper Mississippi River basin. As a result,

Fig. 3 supports Fig. 2 by suggesting that the decline in

ETNoah–ETWB correlations within humid basins is at-

tributable to problems with the accuracy of the ETWB

benchmark and not the ability of Noah to accurately

capture interannual ET variability.

The low ETNoah–ETMTE correlation sampled within

the (humid) Ohio River basin (Fig. 3) runs somewhat

counter to this interpretation. However, the lack of

a comparable reduction in either ETNoah–ETALEXI or

GRACE-corrected ETNoah–ETWB correlation results

within the Ohio River basin implies that the reduction is

due to increased error in ETMTE and not ETNoah.

5. Discussion and conclusions

Here, we examine the correlation in interannual ET

variations observed via a variety of independent

means. When transitioning from a dry to a wet climate

within the SGP, a large reduction is seen in the corre-

lation between ETNoah and ETWB. This trend holds

along a transect of both medium-scale unregulated

basins in the SGP (Fig. 2) and among five large-scale

major Mississippi River subbasins (Fig. 3). However,

an analogous reduction with wetter climate is not ob-

served in the correlation between ETNoah and ETALEXI

(Figs. 2 and 3). Therefore, the reduction in the

ETNoah–ETWB correlation for wet climates appears to

be a consequence of neglecting DTWS in water balance

calculations and not reflective of any shortcoming in

ETNoah.

In addition, within the major Mississippi River system

basins, the introduction of GRACE-based DTWS uni-

formly improves the ETNoah–ETWB correlation (Fig. 3).

Therefore, taken as a whole, results imply that WB-

based calculations with the neglect of interannualDTWS

do not represent a robust benchmark for the validation

of interannual ET variations in relatively humid cli-

mates. Instead, a more robust verification approach

appears to be the examination of correlations between

model-based predictions and independently generated

ET datasets and/or the use of GRACE DTWS data to

refine annual water balance calculations (within suffi-

ciently large basins). This may suggest the need to

reevaluate previous work (Zhang et al. 2012) that uti-

lized water balance approaches to conclude that model-

based ET products contain little skill in capturing

interannual ET variability.

The impact of DTWS on (annual) ETWB calculations

has been previously noted (Rodell et al. 2007; Syed et al.

2008; Zeng et al. 2012); however, this analysis leads to

several novel insights. First, by using ET correlations

(and not GRACE observations) to infer the presence of

significant DTWS variations, these results provide an in-

dependent source of verification for earlier studies based

only on GRACE DTWS retrievals. One consequence of

this is our ability to extend the observation-based analysis

ofDTWS down to small-scale catchments (1000–8000km2

in size) that cannot be resolved by GRACE (Table 1,

Fig. 2). Despite these small-scale basins being free of any

major anthropogenic impoundment (and generally clear

of major snowpack storage), DTWS still appears to play

a major role in any attempt to estimate ET via water

balance considerations and the neglect of terrestrial water

storage variations. In addition, results suggest a relatively

larger impact for DTWS on ETWB variations within rela-

tively wet climates. This tendency is at odds with earlier

GRACE-based studies (which suggested greater impacts

in arid climates; Zeng et al. 2012) and provides an alter-

native explanation for the conclusion of Zhang et al.

(2012) that land surface models cannot match ETWB

trends within relatively wet climates.

Nevertheless, several important caveats should be con-

sidered. For example, Hain et al. (2015) identified large

relative biases in ETNoah for areas with extensive irrigation

and/or direct groundwater extractionbyplant roots. In such

areas, correlations between ETNoah and ETALEXI may be

degraded and consequently unsuitable as a verification

tool. Finally, all results are based on relatively short (9 or 10

years) data records because of limitations in the length of

available satellite data records. Care should therefore be

taken to avoid the overinterpretation of small—and po-

tentially nonsignificant—differences in correlations. Fi-

nally, a number of obvious follow-on research topics can be

defined based on initial results presented here. Such topics

include 1) examining the impact of snow water storage on

DTWS by modifying the start/stop times used to define an

annual average, 2) replicating the analysis for multiple land

surface models, and 3) evaluating water balance calcula-

tions on subannual time scales.
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