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ABSTRACT 

Advances in Multiscale Methods with Applications in Optimization, Uncertainty 

Quantification and Biomechanics 

Nan Hu 

Advances in multiscale methods are presented from two perspectives which address 

the issue of computational complexity of optimizing and inverse analyzing nonlinear 

composite materials and structures at multiple scales. The optimization algorithm provides 

several solutions to meet the enormous computational challenge of optimizing nonlinear 

structures at multiple scales including: (i) enhanced sampling procedure that provides 

superior performance of the well-known ant colony optimization algorithm, (ii) a mapping-

based meshing of a representative volume element that unlike unstructured meshing 

permits sensitivity analysis on coarse meshes, and (iii) a multilevel optimization procedure 

that takes advantage of possible weak coupling of certain scales. We demonstrate the 

proposed optimization procedure on elastic and inelastic laminated plates involving three 

scales. We also present an adaptive variant of the measure-theoretic approach (MTA) for 

stochastic characterization of micromechanical properties based on the observations of 

quantities of interest at the coarse (macro) scale. The salient features of the proposed 

nonintrusive stochastic inverse solver are: identification of a nearly optimal sampling 

domain using enhanced ant colony optimization algorithm for multiscale problems, 

incremental Latin-hypercube sampling method, adaptive discretization of the parameter 

and observation spaces, and adaptive selection of number of samples.  A complete test data 

of the TORAY T700GC-12K-31E and epoxy #2510 material system from the NIAR report 



 

 

 

 

is employed to characterize and validate the proposed adaptive nonintrusive stochastic 

inverse algorithm for various unnotched and open-hole laminates. Advances in Multiscale 

methods also provides us a unique tool to study and analyze human bones, which can be 

seen as a composite material, too. We used two multiscale approaches for fracture analysis 

of full scale femur. The two approaches are the reduced order homogenization (ROH) and 

the novel accelerated reduced order homogenization (AROH). The AROH is based on 

utilizing ROH calibrated to limited data as a training tool to calibrate a simpler, single-

scale anisotropic damage model. For bone tissue orientation, we take advantage of so-

called Wolff’s law. The meso-phase properties are identified from the least square 

minimization of error between the overall cortical and trabecular bone properties and those 

predicted from the homogenization. The overall elastic and inelastic properties of the 

cortical and trabecular bone microstructure are derived from bone density that can be 

estimated from the Hounsfield units (HU). For model validation, we conduct ROH and 

AROH simulations of full scale finite element model of femur created from the QCT and 

compare the simulation results with available experimental data. 
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Chapter 1  

Introduction 

Because of its tremendous features including durability, corrosion resistance and 

customization, this past decade has seen an accelerated deployment of composite materials 

in various fields, ranging from aerospace and automotive industry to energy sector and 

consumer goods. In fact, organs in human body could also be deemed as composite 

material. The most obvious case is human bones. 

Methods for analyzing composite materials and structures ranging from 

mathematical homogenization methods pioneered by Babuska [1], Bensoussan [2] and 

Sanchez-Palencia [3], to computational variants of homogenization often coined as 

multiscale methods  [4-9] are reaching a level of maturity. And while challenges remain 

primarily due to enormous computational complexity of repeatedly solving nonlinear 

representative volume element (RVE) at all quadrature points and at every load increment, 

recent developments of various reduced order homogenization methods [10] and their 

utilization in practice [11] have been very promising.  

One of the key advantages offered by composites stems from their flexibility in 

tailoring composite microstructure to a problem at hand. This, however, poses added 

computational complexity that goes beyond analysis of these materials.  The research on 

optimization of composite materials dates back to mid-seventies and has been accelerating 

since then [12-26]. Various optimization methods have been utilized for composites, 

including integer programming, genetic algorithms, ant colony optimization (ACO), 

artificial bee colony and Tabu search [12, 13, 17, 18, 24, 27-29]. In particular, the ACO 
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has been shown to perform extremely well in comparison to competing approaches [30] 

and has been utilized in various fields [31-38]. Hybrid optimization methods that blend 

several optimization algorithms, have been shown not only to overcome the shortcomings 

of their comprising components but also improve the overall solution efficiency [39-47].  

In optimization of composite materials and structures, most of the research focused 

on optimization of a macrostructure (macroscale) as well as on stacking sequence 

(mesoscale) [12, 13, 16, 27, 48-54]. Optimization of microstructural and sub-

microstructural scales has been rarely pursued due to tremendous computational 

complexity involved. The dramatic increase in computational complexity stems not only 

from consideration of more than two scales but also from necessity of continuous 

regeneration of the RVE geometry and its remeshing. Furthermore, sensitivity analysis 

requiring small changes in RVE geometry has been very challenging due to degree of 

randomness in unstructured meshing [55].  

The focus of the present dissertation is partially on developing an enhanced ant 

colony optimization (EACO) algorithm and adapting it to composite materials and 

structures involving multiple scales. In the remaining of this section, we briefly review the 

relevant literature on the ant colony optimization (ACO), point out to current limitations 

and suggest remedies that conceptualize the proposed variant of the ACO, hereafter 

referred to as EACO. 

To better understand composite materials, we also need to face the challenges they 

brought up. One of the challenges of composite materials is that, unlike conventional 

materials, composite materials usually demonstrates variety between different 

manufacturing batches. Such uncertainty would lead to various performance of the material. 
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Because of this reason, propagation of uncertainty from the scale of microconstituents in 

composites to the structural level has been a subject of considerable interest in academia, 

government and industry. Noteworthy are the stochastic finite element method (SFEM) 

[56-62],  first order reliability method (FORM) [63],  second order reliability method 

(SORM) in combination with Monte Carlo simulation (MC) [64, 65], perturbation methods 

[66, 67], homogenization methods combined with extended finite element method [68], 

and Mori-Tanaka Mean-Field theory [69]. 

Reliable stochastic inverse analysis of composite materials enables us to understand 

the composite material on a finer level. Various sources of uncertainty in composites are 

commonly categorized based on their spatial scale resolution [70]. A number of forward 

stochastic multiscale methods have been proposed. Stochastic multiscale finite element 

method (SFEM) in combination with MC has been employed to investigate microscopic 

stresses in fiber reinforced composites [71].  A probabilistic thermo-mechanical fatigue 

problem at multiple scales has been studied by Chamis [72]. Tootkaboni and Graham-

Brady developed a multiscale spectral stochastic method for problems at multiple scales 

[73]. Chen and Soares analyzed laminated composite plates with spectral stochastic finite 

element method [74]. Fish and Wu [75, 76] developed an efficient uncertainty 

quantification solver for predicting elastic and inelastic response  of composite materials 

using sparse grid collocation approach in combination with the reduced order 

homogenization [4, 5, 7, 77, 78].   

The inverse multiscale problem is concerned with quantifying uncertainty at a fine 

(micro) scale, given variability of experimental data typically at the coarse (macro) scale.   

The goal is to infer the probability distribution of material constitutive model parameters 
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at the microscale from the macroscale level experiments by solving a stochastic inverse 

multiscale problem. There are several challenges associated with the stochastic inverse 

problem. First, the parameter space is multi-dimensional, while there are very few 

observations. So, the inverse problem is often ill-posed in the sense that the inverse solution 

of the deterministic model is set-valued. Secondly, forward multiscale simulation models 

are rather complex and expensive to evaluate. Sakata and colleagues studied the elastic 

properties of particle-reinforced composite material using MC [79]. A Bayesian statistical 

approach in combination with Markov Chain Monte Carlo (MCMC) method has been 

employed to calibrate microconstituent material properties from the coarse-scale 

experiments [80-82]. Microscale material constitutive parameters of a phenomenological 

multiscale model have been calibrated to hybrid experimental-digital database developed 

by high fidelity multiscale model in [83].  

Herein this dissertation, we developed an adaptive nonintrusive inverse multiscale 

solver based on the measure-theoretic approach (MTA) recently developed by Estep and 

Butler [84, 85]. The MTA takes advantage of the fact that the likelihood function, which 

relates the model parameters to observations, is a deterministic map defined by the 

mathematical and computational model. This permits the MTA to compute the inverse 

problem with relative ease. On the other hand, in the Bayesian approach, the likelihood 

function is not deterministic and its construction may not be trivial [84, 85]. 

Since a single forward realization in multiscale problems might be extremely costly, 

the goal is to device a nonintrusive solver aimed at minimizing the number of realizations 

while controlling solution accuracy. The MTA has been enhanced with: (i) an incremental 

Latin-hypercube sampling method (iLHS) [86], (ii) adaptive selection of number of 
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samples, and (iii) identification of a nearly optimal sampling domain using the enhanced 

ant colony optimization algorithm for multiscale problems [87].  

For model verification we will employ, the largest database for composites formed 

through the Advanced General Aviation Transport Experiments (AGATE), formed by 

NASA in 1995 and led by National Institute for Aviation Research (NIAR) at Wichita State 

University (WSU). This shared databases created using the AGATE process allowed a 

manufacturer to select a pre-approved composite material system to fabricate parts through 

a smaller subset of testing for a specific application [88]. The AGATE database uses a 

normal distribution to analyze the data.  

Except for those man-made composite materials, bones in human bodies can 

naturally be seen as composite materials. Hence, the multiscale methods can also be 

adopted to analyze human’s skeleton. Here, we focus our study on the human femurs.  

The risk for hip fracture increases with age due to natural increase in fall rates [89] 

and decreased bone strength [90]. Osteoporosis, an age-related disease affecting bone 

density, is one of the major causes of loss of hip strength [91]. The cost of treating fractures 

associated with low bone mineral density (BMD) exceeds $50 billion per year in the United 

States and Europe. To gain an insight into the causes of bone fracture it is necessary to 

understand the remarkable hierarchical structure of bones spanning multiple spatial scales. 

Long bones consist of the cortical (compact) bone forming the outer core and trabecular 

(spongy or cancellous) bone filling inner space of the bone as shown in Figure 1. 

Cancellous bone is found in the Epiphyses of long bones. It is made of struts and plates of 

lamellar bone approximately 200 um in diameter and has a large surface area. Cortical bone 

is made of Haversian (Osteonal) bone, which are concentric circles of lamellar bone 
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approximately 200-300 m  in diameter. These Haversion bone circles are formed side by 

side and create the diaphyseal shaft of long bones. Cortical bone is dense with low porosity. 

It is stiffer than trabecular bone but is less ductile. For more details on various spatial scales 

in femur we refer to [92]. 

 

Figure 1 Schematic of the multiscale skeleton model, comprising of: (A) body-level 

skeleton model, (B) femur head and neck model, (C) micro-CT reconstruction of 

trabecular bone and (D) magnification of cortical osteonal structure of the cortical 

bone 

In the present thesis we focus on the scale of trabecular and cortical bone (resolution 

of several hundred microns to several millimeters), which contains struts and plates of 

lamellar and osteons embedded in the interstitial lamella, respectively. Various analytical 

and computational models have been proposed to predict linear mechanical properties of a 

bone at this scale scales ranging from Mori–Tanaka to computational homogenization. 
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Mori–Tanaka scheme [92, 93] has been employed to predict overall elastic properties of 

cortical bone where the interstitial lamella being the matrix and the osteons with some 

resorption cavities being two inclusion phases. Patient-specific computational 

homogenization models of the human femur have been widely used to predict its linear 

elastic mechanical properties and response [94-96]. In [97], bone fracture was determined 

based on linear analysis when at least one solid element had exceeded a minimum principal 

strain of 1%. 

Inelastic modeling femur is of great importance to predict mortality of femur 

fractures in aging populations. Noninvasive measurements of femur strength are not yet 

available clinically [98]. Current standard for clinical fracture risk is based on measurement 

areal bone mineral density (aBMD), which does not account for precise bone geometry 

[99]. The quantitative computed tomography (QCT) can account for the three-dimensional 

femur geometry and bone density distribution [100], but cannot resolve the details of 

trabecular and cortical bone microstructure. 

Multiscale modeling of full scale femur fracture are practically nonexistent for 

variate of reason including lack of detailed patient-specific microstructural information and 

tremendous computational complexity involved. For linear problems, the unit cell 

representing trabecular or cortical bone has to be solved once, whereas for nonlinear 

problems, it has to be continuously solved at very load increment and each iteration at the 

femur (macro) scale. For instance, with typical one million full integration macro-elements 

at a femur level and 100 load increments with an average of 10 iterations per increment, a 

one-million degree-of-freedom nonlinear unit nonlinear cell problem representing 

trabecular or cortical bone microstructure has to be solved more than 1010 times!  
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This is why it is not surprising that femur fracture has been mostly modeled using 

single-scale phenomenological models employing either continuum damage, plasticity or 

fracture mechanics. Human femur can experience brittle behavior to quasi-brittle failure 

behavior depending mainly on bone organ geometry and intrinsic properties, viscosity, 

specimen preparation (fresh frozen, embalmed), aging (decrease in the bone toughness) 

and the load testing speed. In general, at a low load rate (quasi-static regime), the proximal 

femur behaves as a quasi-brittle material with a non-linear behavior till complete fracture 

[101].  A high-resolution finite element models of trabecular bone incorporating bilinear 

constitutive model with asymmetric tissue yield strains in tension and compression was 

employed in [102]. A single-scale, high-resolution, voxel-based finite element model with 

geometrical and material nonlinearity based on rate-independent isotropic elasto-plasticity 

model of tissue material properties was employed in [103].  The role of tissue-level post-

yield fully brittle versus fully ductile failure behavior on the overall strength of trabecular 

bone has been studied in [104].  

One of the most successful single-scale femur models aimed at predicting overall 

femoral strength is based on the combination of quantitative computer tomography (QCT) 

and patient-specific finite element analysis (FEA) [105-108]. This so called QCT/FEA 

procedure consists of: (1) obtaining a 3D finite element mesh based on a QCT-scan of the 

femur, (2) determining the Young’s modulus and failure strain for each element based on 

the CT grayscale numbers of the voxels in the elements, and (3) simulating the inelastic 

response under specific loading conditions. 3D FE meshes from the reconstructed QCT 

images can be generated using Mimics [109], Simpleware [110] or one of the open source 

codes such as Seg3D [111] in combination with Cleaver [112]. Bone density can be 
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estimated from Hounsfield units (HU) which represent the measured grey levels in the 

QCT scans. Young’s modulus ( E ) and compressive strength (
y ) have been correlated to 

bone density by the following empirical relation [113] 

 
Eb

E

b

y

E a

a 





 




  (1) 

where the coefficients , , ,E Ea b a b   have been determined by a trial and error optimization 

procedure to improve the agreement between predicted and experimental fracture forces. 

In [107, 108], a simplified damage model was employed by which elements with the von 

Mises strain exceeding the yield strain 
y  were failed by assigning a very small Young’s 

modulus. The model stiffness was then updated, the load was increased, and the model was 

solved again until the QCT/FEA load–displacement curve reached a plateau. 

There have been, however, a number of attempts for nonlinear multiscale modeling 

of femur. In [114], damage and energy dissipation mechanisms at three length scales 

including mineralized collagen fibrils, lamellar and osteonal levels were discussed. In [115], 

a two-dimensional multiscale approach that linked mesoscale finite element model of the 

cortical bone with full trabecular architecture in human proximal femur.  Hambli et al 

[116]combined the finite element analysis in 2D at the macroscale with neural network 

computations in 3D to link mesoscopic scale (trabecular network level) and macroscopic 

(whole bone). The input data for the artificial neural network are a set of bone material 

parameters and the applied overall stress. The output data are the instantaneous overall 

bone properties.  

In the present dissertation we present multiscale approaches for fracture analysis of 

full scale femur. The first approach, is based on the reduced order homogenization [5, 10, 
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77, 78, 117-119] where trabecular and cortical bone unit cells having arbitrary number of 

degrees of freedom are systematically reduced to a handful of modes representing key 

deformational modes. The second approach is based on utilizing reduced order 

homogenization calibrated to limited experimental as a training tool to calibrate a simpler, 

anisotropic phenomenological model of damage. We will refer to the two multiscale 

approaches as reduced order homogenization (ROH) approach and accelerated reduced 

order homogenization (AROH). For model validation, we consider finite element model 

created from the quantitative computer tomography (QCT) in [108]. Since the QCT 

resolution is typically not sufficient to resolve the fine-scale details of the bone structure, 

in this study we position a generic trabecular and cortical bone microstructure bone 

consistent with its ability to adapt the internal structure at various scales with changes in 

the load environment [120-122]. The cortical bone unit cell has been positioned based on 

the combination of the morphological and mechanical (elasticity) information. The osteon 

in the cortical bone unit cell has been aligned to coincide with the principal direction of 

strain during walking. The trabecular bone unit cell has been positioned based purely on 

mechanical information. The elastic constitutive tensor will be rotated so that the overall 

Young’s modulus of the cortical bone unit cell coincide with the direction of the maximum 

principal strain at the stance position. 

This dissertation is organized in the following manner. Chapter 2 presents an 

enhanced ant colony algorithm aiming to optimize composite structure in multiple scales. 

Chapter 3 introduces an adaptive nonintrusive stochastic inverse solver which provides a 

new perspective to understand and predict the uncertainty of composite materials. In 



 

 

11 

 

Chapter 4, an innovative accelerated multiscale analysis of the fracture of human femur 

was presented. Chapter 5 finishes the dissertation with conclusions. 
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Chapter 2  

Enhanced Ant Colony Optimization for Multiscale 

Problems  

The present chapter addresses the issue of computational complexity of optimizing 

nonlinear composite materials and structures at multiple scales. Several solutions are 

detailed to meet the enormous computational challenge of optimizing nonlinear structures 

at multiple scales including: (i) enhanced sampling procedure that provides superior 

performance of the well-known ant colony optimization algorithm, (ii) a mapping-based 

meshing of a representative volume element that unlike unstructured meshing permits 

sensitivity analysis on coarse meshes, and (iii) a multilevel optimization procedure that 

takes advantage of possible weak coupling of certain scales. The proposed optimization 

procedure was demonstrated on elastic and inelastic laminated plates involving three scales. 

2.1 Classic ACO 

The Ant System (AS) algorithm is one implementation of a larger concept called 

swarm intelligence (SI), which is collective behavior of self-organized natural or artificial 

system. SI includes some other applications, such as particle swarm optimization [123], 

artificial bee colony optimization [124] and artificial swarm intelligence [125].  

AS was first proposed by Marco Dorigo in 1992 [126]. The method was inspired 

by the collective behavior of real ants being able to find the shortest route to food by 

detecting the concentration of pheromone left by other ants. As in Figure 2, each member 

of the colony is searching for food, they deposit a chemical factor known as pheromone on 

the route back and forth between nest and food source, the deposited pheromone triggers a 
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social response in members of the same species (ants) and which evaporates over time. As 

a result, the shorter some specific routes are, the denser the pheromone concentration is. 

When selecting which route to take, ants have a higher probability to choose the routes 

with higher pheromone concentration, obviously to some extent of randomness. The 

randomness enables ants to discover new food sources. Eventually, for the simple example 

in Figure 2, route 2 would be identified as the optimal (shortest) one.  

 

Figure 2 Ant food searching in nature 

In 1997, Dorigo and Gambardella presented the algorithm for solving the traveling 

salesman problem (TSP) [127]. Since then, the ACO has been formalized into a 

combinatorial optimization metaheuristic [128] and has been used to solve many 

combinatorial optimization problems.  

While successfully being used to solve discrete optimization problems, ACO has 

been extended to solve optimization problems in continuous spaces (ACOR) [129] and 

mixed spaces [130, 131].  

Socha and Dorigo expanded the algorithm into the continuous domain [129] by 

introducing a Gaussian kernel probability density function (PDF). The kernel PDF, denoted 



 

 

14 

 

as ( )iG x , is a weighted sum of several one-dimensional Gaussian functions ( )i

l
g x . Then 

the kernel PDF for parameter i can be written as 

 ( ) ( )
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where 
l

w  is the weight of the lth archived solution, i

l
m  is the mean value of parameter i for 

the lth archived solution and i

l
s  is the corresponding standard deviation. 

 

Figure 3 Archived solutions 

Figure 3 schematically illustrates a typical solution archive. i

l
s  is the ith parameter 

for the lth solution, ( )l
f s  is the value of objective function with parameter 

{ }1 2, , , n

l l l l
s s s= Ls  and 

l
w  is the weight of the lth solution. Solutions archived are ordered 

according to their quality. For an optimization problem: ( ) ( ) ( )1 2 k
f f f£ £ £Ls s s . The 

associated weight is proportional to the solution quality, so that 
1 2 k

w w w³ ³ ³L . 

In practice, when constructing 
iG  , the following equations are used  
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where ξ and q are algorithm parameters. q; when q is small, the top-ranked solutions are 

preferred. And higher ξ acts similarly with the evaporation of pheromone of the real ants 

and is associated with lower convergence speed. 

The sampling process is accomplished as follows. First, the algorithm has to 

construct the kernel PDF, the probability of lth Gaussian function is chosen is computed as 

 

1

l

l k

mm

w
p

w
=

=

å
  (6) 

With the constructed kernel PDF, each ant would randomly pick a sample and 

evaluate the objective function. 

After each ant finishes evaluating the sample, the solution archive is updated by 

appending the newly evaluated samples and sorting the expanded archive. Then the archive 

would drop those with bad quality. For example, if n ants are employed, then the archive 

would be appended with n new solutions and after sorting, the last n solutions would be 

discarded. 

The general algorithm of ACO metaheuristic is depicted in Algorithm 1 below. The 

algorithm consists of three phases. Initially, it evaluates certain number of random 

solutions and then in the Construct Solutions phase, each ant generates a new solution. The 

new solution is then appended to the initial solution list and the appended solution list is 

sorted according to the objective function value, such that the worst solutions is discarded 

after sorting. In the optional Daemon Actions phase, which is also regarded as a Local 
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Search phase, some local search algorithms could be implemented to more efficiently 

explore the local space. The Update Pheromone phase mimics the evaporation of ant 

pheromone. The purpose of the Update Pheromone phase is to increase the probability of 

new ants to choose promising solutions and decrease the chance of choosing the bad ones. 

A detailed discussion of the algorithm can be found in various papers and books [129, 132, 

133]. 

Algorithm 1: Classic ACO 

Initialize solution parameters 

while termination condition is not met do 

    Construct Solutions from Ants 

    Daemon Actions                          (optional) 

    Update Pheromone 

end while 

 

Applying a local search algorithm to solutions generated by ACO usually improves 

the performance of ACO [134-137]. Gradient-based optimization algorithms have been 

widely utilized as local search algorithms in combination with multiple swarm intelligence 

algorithms by a number of investigators [138-140]. 

The classic ACO is not without deficiencies. Since it only allows the best ant to 

update the trails at every cycle, the algorithm may stagnate too early, preventing further 

improvement (Stutzle and Hoos 1997, Gambardella, Martinoli et al. 2006). Studies suggest 

that adding a restarting feature or adopting parallel searches adds ACO to more efficiently 

find the global optimal solution [141, 142]. While premature stagnation can be eventually 
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overcome by repeatedly restarting the ACO, it often leads to suboptimal performance since 

newly added samples might be exploring nearly the same space of design variables. 

2.2 Random Sphere Packing 

For complex multiscale problems, the overhead that resulting from an elaborate 

sampling algorithm is negligible in comparison to the computational cost of a single 

realization. Thus, the ultimate goal is to devise an intelligent sampling algorithm that finds 

an optimal global solution with minimal number of searches. In the present section, we 

show that by uniformly sampling the design space using a variant of random sphere 

packing (Figure 4) the performance of ACO can be considerably improved. Random sphere 

packing (RSP) algorithm constructs non-overlapping spheres that fill the domain of choice. 

The RSP algorithm with identical spheres has been utilized in various fields of physics, 

engineering, biology and chemistry [143-145]. Further improvement can be obtained by 

taking advantage of weak (or one-way) coupling of design variables represented by often 

weakly coupled scales. 
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Figure 4 Examples of a 2D RSP and a 3D RSP 

2.3 Enhanced ACO 

In this section, we describe the principal elements of the enhanced ACO (EACO) 

and schematically illustrate it on a model problem. The EACO is designed to explore the 

design variable subspace that has not been sufficiently explored by placing new samples in 
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so-called “fresh” subspace. The sampling process of EACO is designed to exclude the 

regions that have been heavily sampled. 

2.3.1 Adaptive Random Sphere Sampling (RSS) 

The ACO utilizes classic random sampling (CRS) to obtain initial samples. For the 

ACO with restarting feature, the use of CRS often results in certain parts of the search 

space being repetitively explored, since the newly added samples may land close to those 

previously sampled while a certain portion of the space might be under-sampled.  

Compared with the CRS, random sphere sampling (RSS) with properly selected 

sphere size is intended to provide more uniform sampling. To illustrate the advantage of 

RSS over CRS, consider the n-dimensional space  . The space   can be subdivided into 

M intervals in n dimensions, each interval in each dimension corresponding to a subspace  

,k d where [1, ]k M  and [1, ]d n . Let 
,dkW be the union of all (hyper) spheres in 

,k d
W . 

Figure 5.a and Figure 5.b depict an example of CRS and RSS sampling for a two-

dimensional space subdivided into 20 intervals (n = 2, M = 20) with the same number of 

samples for both RSS and CRS. Figure 5.b and Figure 5.c illustrate the distribution of 
,dkW  

for the CRS, whereas Figure 6.b and Figure 6.c depict the distribution of 
,dkW  for the RSS. 

It can be clearly seen that the RSS gives rise to much more uniform distribution of samples 

than the CRS. 
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Figure 5 CRS sampling  

(e) Wk,2 

(b) Wk,1 

(a) Sample distribution 
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Figure 6 RSS sampling 

(c) Wk,2 

(b) Wk,1 

(a) Sample distribution 
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The RSS, however, has a number of shortcomings. Figure 7 illustrates the 

performance of RSS in terms of CPU time as the number of samples increases. It can be 

seen that stagnation starts after 400 samples at which time the CPU time grows 

exponentially. 

 

Figure 7 The CPU time versus number of samples using RSS for three-dimensional 

spaces 

To overcome the stagnation, instead of equal-diameter spheres, smaller spheres are 

introduced, if and when the stagnation is detected. This approach improves the packing 

efficiency without significantly affecting the sampling uniformness.  

Figure 8 and Figure 9 compare the CRS and the adaptive RSS for three-dimensional 

sampling space.  It can be seen that the adaptive RSS retains the uniformness of sampling 

along each dimension in comparison to CRS. 
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Figure 8 Classic random sampling  

(a) Dimension 1 

(b) Dimension 2 

(c) Dimension 3 
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Figure 9 Adaptive RSS with dual-sized spheres 

(a) Dimension 1 

(b) Dimension 2 

(c) Dimension 3 
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2.3.2 Local Subspaces Identification 

In addition to keeping newly added samples away from the previous samples each 

time the ACO restarts, it is desirable to keep sampling away from portions of space that 

have been already extensively explored by ACO due to stagnation resulting in 

accumulation of sampling points in local subspaces LS  . To illustrate how local 

subspaces are identified consider a two-dimensional space in Figure 10. With completion 

of a single ACO cycle, the current best solution CBSx is identified. In the vicinity of 

CBS LSx  , the local subspace LS  contains considerable number of sampling points 

i LSx  . LS  is defined to encompass  K sampling points specified as a certain fraction 

of the total number of samples. In other words, it is the smallest subspace that contains K 

sampling points. Let 
1CBS ix x  denote the distance between CBSx and any other sample i 

in 
1

L norm. LS  is thus defined as an n-dimensional box that contains K sampling points 

that are closest to CBSx in 1L norm.  
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Figure 10 Identified LS   (top) and zoomed view (bottom) 
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Once the LS  is defined, the ACO sampling process will prevent the new sampling 

points to land in LS . Consequently, the ACO is forced to sample in the subspaces that 

have not been explored so far.  

Let 0

mind above be the user-specified initial minimal distance between two samples. 

Clearly, if 
0

min
d is infinitesimal, adaptive RSS will behave like CRS; if on the other hand 

0

mind is too large, some local/global minima might be unexplored. In the adaptive RSS, the 

allowable minimal distance is adaptively selected based on the number of unsuccessful 

tries of adding a new sample. The initial value can be estimated by using the volume of n-

dimensional sphere (n-ball)  

 
2

1
2

n

n
n

n
V

R



 
  
    (7) 

where R  is the radius of the n-dimensional sphere, which is equal to  0

min / 2d , and    is 

the gamma function. nV  can be estimated based on the parameters of the EACO algorithm 

as 

 n

V
V

k m l


 
  (8) 

where 1V   is the volume of the n-dimensional parametric domain; k the archive size, m 

the number of ants and l the maximal number of restarts. 

The minimal distance is adaptively selected using the following heuristics   

 
new present

min min3

1
d d

a
   (9) 
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where present

mind  is the present minimal distance, new

mind  denotes the new minimal distance and 

a  is a number of attempts required to add a new sample. Note that initially, present

mind = 0

mind , 

and as long as a = 1 the initial minimal distance remains the same.  

2.3.3 Illustration of the EACO 

For the illustration of the algorithm, consider a two-dimensional Holder Table 

function (Figure 11), which is defined as 

        

2 2
1 2

1

1 2sin cos 10,10 1,2

x x

if x e x x x for i





       (10) 

The function has four global optima at 9.664590028909654 1,2ix for i    with 

the function value of -19.20850256788675.  
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Figure 11 Holder Table function 

Solution parameters considered here are summarized as Table 1. 

Table 1 Solution parameters 

Number of Ants 5 

Archive Size 10 

Speed of Convergence (ξ) 0.85 

Locality of the Search Process 0.1 

Maximum Number of Restarts 4 

Maximum Number of Iterations 100 

 

Figure 12.a - Figure 12.d depict the samples being added in each restart. It can be 

seen that each time ACO restarts, new samples avoid the local subspaces LS  identified 
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in the previous restarts. Figure 12.e illustrates that samples added in each new restart are 

kept away from those being added previously. 
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Figure 12 Sampling process for the two-dimensional Holder Table function 

2.4 Specificities for multiscale problems 

(a) Restart 1 (b) Restart 2 

(c) Restart 3 (d) Restart 4 

(e) Final sample distribution. Colors depict sampling points obtained in different restarts 
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Consider a typical three-scale problem depicted in Figure 13 where  ,   and   

denote the spaces of design variables at a macroscale, mesoscale and microscale, 

respectively. 

 

Figure 13 Schematic illustration of triple-scale optimization 

The three-scale optimization problem is defined as 

 

 

   

lb

lb

min , , , , ,

subject to , , 0, 1, ..., optionali

lb ub
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f

g i m
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 

 
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x y z

x x x

y y y

z z z

  (11) 

where  , ,f x y z  is an objective function defined on   .  

2.4.1 Representative Volume Element (RVE) Generation 

One of the challenges in optimization of the discretized fine-scale geometry is that 

at each realization, the RVE has to be regenerated. The difficulty stems from the fact that 

𝜴 

𝚲 

𝜣 
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for sensitivity analysis employed in local searches, random unstructured finite meshes 

cannot precisely reflect perturbations in RVE geometry in particular when the meshes are 

coarse.  

Here we propose an alternative approach illustrated on the non-crimp fabric (NCF) 

composite microstructure that is the most commonly employed composite material system 

in automotive industry. The RVE geometry can be represented by three parameters: the 

volume fraction of a fabric  , the ratio between the major and minor axis of an elliptical  

fabric cross-section   and the angle of fabric orientation   as shown in Figure 9. 

Typically, to keep the composite cost fixed and to optimize for performance, the volume 

fraction is kept fixed, and thus  , z   are the only two active microstructural 

parameters.   For complex textile architectures, considerably more parameters would be 

required to parametrically define the RVE geometry.  Prior to optimization process, we 

construct an auxiliary base RVE mesh with 1  as shown in Figure 14. 
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Figure 14 The base RVE microstructure and mesh 

Figure 15 depicts a finite element mesh of an RVE that has the same number of 

nodes, elements and connectivity of  elements as the base RVE mesh in Figure 9 with only 

difference that 1.2r =  and 045  . The microstructure is assumed to remain locally 

periodic for all possible values of parameters z . The finite element mesh in Figure 10 is 

constructed by linear mapping  ,T zc of the base RVE mesh in Figure 9 as 

  , T zc c c   (12) 

where  1 2 3, ,
T

  c are the coordinates of nodes in the base mesh and c  are the nodal 

coordinates of the NCF composite mesh in Figure 10. 

For the NCF composite considered in Figures 10, in which the fabric is aligned 

along 1  direction,  ,T zc  is defined as 
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  
     

     

fabric phase
,

, matrix phase

F

M

  

  


 



R S R
T

R S R
zc

c
  (13) 

where S  and R  are stretch and rotation matrices, respectively.  

The rotation matrix  R  is defined as 

      

   

1 0 0

0 cos sin

0 sin cos

  

 

 
 

  
 
 

R   (14) 

The stretch operator for fabric phase  F S is given as 

  

1 0 0

0 0

0 0 1/

F  



 
 


 
  

S   (15) 

The matrix phase has to satisfy two conditions: (i) nodes on RVE boundary have to 

remain in their original positions and (ii) nodes at the fabric-matrix interface should 

coincide with nodes on the mapped fabric. We construct a scalar blending function  m c  

so that it equals to 1 at the RVE boundary and 0 at the interface with fabric. Consequently, 

the stretch operator for the matrix phase   ,M S c  is defined as 

         , 1M Fm m   S I Sc c c   (16) 

where I  is a 3 by 3 identity matrix. 
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Figure 15 Non-crimp fabric composite (NCF) RVE with  1.2, 45r a= = o
 

Figure 16 and Figure 17 depict how the homogenized properties (with fabric along 

1   direction) change with the stretch ratio and direction. Here we assume that both fabric 

and matrix are isotropic materials with properties depicted in Table 2. The fabric volume 

fraction is 30%. 

Table 2 RVE material properties 

Phase Young’s Modulus (GPa) Poisson’s Ratio 

Matrix 1 0.1 

Fabric 10 0.1 

 

𝛼 

𝜌 
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Figure 16 Homogenized properties vs. stretch ratio   



 

 

38 

 

 

 

Figure 17 Homogenized properties vs. stretch direction   

2.4.2 Multiscale Optimization with Weak Coupling of Scales 

Multiscale optimization naturally falls into the category of multilevel optimization 

methods [146]. By this approach, a large optimization problem is decomposed into a 

hierarchy of subproblems. At the top level, a subproblem optimizes a simplified model that 

describes the overall behavior of the system. At the lower levels, subproblems optimize 
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increasingly detailed representations of subsystems. The effectiveness of multilevel 

optimization depends on the strength of coupling between various subproblems that 

necessitate iterative process. In the limit, if a problem is decomposed into a number of 

subproblems that are totally uncoupled, there is no need to iterate through the optimization 

of the various subproblems to obtain the optimum design of the system and it is very likely 

that the multilevel optimization approach will require less computer time than a monolithic 

scheme that simultaneously considers all design variables. This is often the case in 

multiscale problems schematically illustrated in Figure 12. In Section 5, we show that a 

coupled macro-meso scale subproblem is weakly couple to the microscale subproblem.  

2.5 Validation for Classical Objective Functions 

In this section, we compare the proposed EACO algorithm with the ACOR. For 

comparison, we consider the classical optimization test functions summarized in Table 4.  

Each function is optimized 100 times by the EACO and ACOR using the same number of 

ants, same size of archive and same maximum number of restarts depicted in Table 3. 
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Table 3 ACO parameters 

Number of Ants 2 

Archive Size 50 

Speed of Convergence (ξ) 0.85 

Locality of the Search Process 0.1 

Maximum Number of Restarts 500 

Table 4 Test functions 
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Table 5 Comparison of the results for various test functions. Note that lower values 

of mean obtained by the EACO in comparison to the ACOR 

Function Algorithm Evaluation Limit Mean STD 

Rosenbrock 
EACO 1×106 1.02853×102 0.896259×102 

ACOR 1×106 1.19408×102 2.77244×102 

Schwefel 
EACO 1×106 2.74620×103 8.99055×102 

ACOR 1×106 2.97164×103 1.00924×103 

Rastrigin 
EACO 1×106 1.07019×102 0.433414×102 

ACOR 1×106 1.13407×102 0.485771×102 

Salomon 
EACO 1×106 0.65158 0.15693 

ACOR 1×106 0.65595 0.17475 

 

We take a closer look at the Rosenbrock function and compare the average number 

of function evaluations using EACO and ACOR with the same parameters. In both cases, 

the solution converges when the difference between the current objective function value 

and the optimum solution is less than 1×10-4. It can be seen from  

Table 6 that the EACO reduces the average number of function evaluations by 34.1% 

in comparison to the ACOR. 

Table 6 Average number of evaluations for the Rosenbrock function 

EACO 4.49695×105 

ACOR 6.82147×105 

 

2.6 Validation for Multiscale Problems 

2.6.1 Elastic Semi-circular Laminated Composite Plate 



 

 

42 

 

We consider a semi-circular composite laminated plate with radius of 5.0 meters 

and thickness of 0.025 meters as shown in Figure 18. The plate is fixed along the straight 

edge and is subjected to pressure of 1.0 kN/m2 at its top surface. Material properties of the 

laminated plate are listed in Table 7. 

 

Figure 18 Geometry, loading and boundary conditions of a semi-circular laminated 

plate subjected to pressure 

Table 7 Composite Material Properties 

Phase E (GPa) ν 

Matrix 3.14 0.18 

Fabric 233.0 0.1 

 

The objective is to maximize the stiffness of the plate, which in turn is 

accomplished by minimizing the total strain energy of the plate.  

We employ a two-phase optimization procedure that takes advantage of weak 

coupling between macro- and meso- scale on one hand, and microscale on the other. In 



 

 

43 

 

Phase 1, we conduct a simultaneous macroscale-mesoscale optimization using EACO 

algorithm assuming the base RVE microstructure (see  

Figure 19). In Phase 2, the microscale optimization is performed keeping the 

macro- and meso- scale design variables obtained from Phase 1 as fixed. We iterate back 

to Phase 1, but find no further solution improvement suggesting weak coupling between 

the scales. 

 

 

Figure 19 Two-phase optimization of the elastic semi-circular laminated composite 

plate 

2.4.1.1 Phase 1: Simultaneous macroscale-mesoscale optimization 

The design variables at the macroscale are 10 control points along the radius of the 

plate as shown in Figure 20. The control points can only move in the out-of-plane direction 

and are connected by spline. The geometry of the plate is obtained by 180° revolution of 

its radius. The lower and upper bounds of control points is selected as [-0.3, 0.3]. 

Phase 1: Macroscale-mesoscale Phase 2: Microscale 
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Figure 20 Macroscale design variables (control points) for the elastic semi-circular 

laminated composite plate 

At the mesoscale, the design variables are the laminate stacking sequence. It is 

assumed that the laminate is: (i) symmetric to avoid moment - axial force coupling, (ii) 

balanced, i.e., layers in the opposite directions   appear as pairs, and (iii) there are 40 

layers. 

Based on the above restrictions, there are 10 independent mesoscale design 

variables in the range of [-90, 90]. 

2.4.1.2 Phase 2: Microscale optimization 

We consider the NCF microstructure described in Section 3.1. The two microscale 

design variables are the stretch ratio and stretch direction bounded by [0.7, 1.3] and [-90, 

90], respectively. 

2.4.1.3 Optimization Results 

The evolution of the objective function with number of samples is summarized in 

Figure 19. Optimization starts with plate being flat (Figure 22) and lamination parameters 

of [45, 45, 45, 45, 45, 45, 45, 45, 45, 45]. In the optimization process, the strain energy of 

the plate decreases from 4.79×104 N m to 1.39×101 N m. The optimal macroscale design 
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is illustrated in Figure 23 with values of control points equal to [-0.3, -0.3, -0.3, 0.1, 0.291, 

0.3, 0.3, -0.276, -0.3, -0.3]. The optimal layup is given by [10.81, -21.27, -89.07, 41.66, -

51.08, -57.85, -39.13, -17.29, -6.95, 12.83, 33.39].  

For the microscale optimization in Phase 2, the RVE is initially assumed to have 

circular fabric cross-section. The optimal solution results in stretch ratio of 0.7 and the 

stretch angle of 0 as shown as Figure 21. The microscale optimization reduces strain energy 

by 5.9% from 1.47×101 N m to 1.39×101 N m. The low fabric volume fraction, 30%, is the 

main reason for relatively low contribution resulting from microscale optimization. 

Iterating back to Phase 1 optimization, does not yield any improvement. 
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Figure 21 Microscale optimal solution 

 

Figure 22 Initial shape and Von Mises stress in layer 1 prior to optimization 
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Figure 23 Optimized shape and Von Mises stress in layer 1 

 

 

Figure 24 Evolution of objective function with number of samples for semi-circular 

laminated composite plate 

2.6.2 Inelastic Rectangular Laminated Composite Plate 

Consider an inelastic rectangular laminated composite plate of length of 100.0mm, 

width 40.0mm, and thickness 0.4mm depicted in Figure 25. The two ends of the plate are 

fixed and pressure of 20 kN/m2 is applied on its top surface. 
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Figure 25 Geometry, loading and boundary conditions of the rectangular laminated 

plate 

The objective is to minimize the average deflection 
avgd   of the plate.  

 

Figure 26 Two-phase optimization of the inelastic rectangular laminated composite 

plate 

Both matrix and fabric are assumed to obey bilinear form of isotropic damage 

evolution law. The stress-strain relationship is expressed as 

  1ij ijkl klw L     (17) 

where w  is damage state variable in the range of [0, 1]. 0w   represents the state without 

damage while 1.0w  corresponds to total damaged. For numerical stability, the upper 

bound of w is chosen to be 0.9999. 

The bilinear damage state variable is defined as 

Phase 1: Macroscale-mesoscale Phase 2: Microscale 
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where 0̂  and 1̂ represent the strains at which damage initiates and totally damaged, 

respectively.  ˆG   is given by  
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̂  is the equivalent strain defined as  
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where  
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 


  (22) 

I
e  is the principle strain and  0,1C  is compression factor describing different behavior 

in tension and compression. A nonlinear three-scale analysis has been conducted using 

reduced order homogenization [4, 5, 7, 10, 77]. 

Table 8 summarizes the damage model parameters. 
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Table 8 Material property for Plate 2 

Phase E (GPa) ν ε0 ε1 C 

Matrix 3.14 0.18 0.01 0.02 1.0 

Fiber 233.0 0.1 0.01 0.02 1.0 

 

As in the previous composite plate problem, we employ a two-phase optimization 

procedure described in the previous example. 

The geometry of the plate is defined by 11 control points along its shorter cross-

section as shown in Figure 27. The control points are limited to move in the out-of-plane 

direction and are connected by spline. By extruding the cross-section, the geometry of the 

plate is fully defined. The control points are bounded by [-3.0, 3.0]. At the mesoscale and 

microscale the design variables are the same as for the semi-circular plate considered in 

Section 5.1. 

 

Figure 27 Macroscale design variables (control points) for the inelastic rectangular 

laminated composite plate 

The evolution of the objective function with number of samples is illustrated in 

Figure 30. The initial shape of the plate is assumed to be flat with initial layup of 
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[45,45,45,45,45,45,45,45,45,45]. Figure 28 and Figure 29 depict the deflection prior and 

after the optimization, respectively. The optimal values of control points is [3.0, 3.0, -3.0, 

-3.0, 3.0, 3.0, -3.0, -2.91, 3.0, -2.75, -2.75] and the optimal layup is [-72.97, 79.38, 58.85, 

-57.67, 72.89, -89.13, 73.32, 90.0, 79.76, 32.80]. The optimal value of the stretch ratio is 

0.7 and the stretch angle is 0. The microstructure optimization provides 7% decrease in the 

value of objective function. The average deflection decreases from 14.4 m from the initial 

value to 0.0251 m as a result of optimization.  
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Figure 28 Shape and deflection contours for the rectangular laminated composite 

plate prior to optimization 

5  

Figure 29 Shape and deflection contours for the optimized rectangular laminated 

composite plate 
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Figure 30 Evolution of objective function with number of samples for rectangular 

laminated composite plate 
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Chapter 3  

An Adaptive Nonintrusive Stochastic Inverse Solver for 

Multiscale Characterization of Composite Materials 

In this chapter, we present an adaptive variant of the measure-theoretic approach 

(MTA) for stochastic characterization of micromechanical properties based on the 

observations of quantities of interest at the coarse (macro) scale. The salient features of the 

proposed nonintrusive stochastic inverse solver are: identification of a nearly optimal 

sampling domain using enhanced ant colony optimization algorithm for multiscale 

problems, incremental Latin-hypercube sampling method, adaptive discretization of the 

parameter and observation spaces, and adaptive selection of number of samples.  A 

complete test data of the TORAY T700GC-12K-31E and epoxy #2510 material system 

from the NIAR report is employed to characterize and validate the proposed adaptive 

nonintrusive stochastic inverse algorithm for various unnotched and open-hole laminates.  

3.1 Problem Definition 

A typical two-scale problem is depicted in Figure 31 where x and y denote the 

macroscale and microscale coordinate systems, respectively. Making the usual assumption 

of scale separation, the two coordinates satisfy the following relationship: /x y z= , and 

0 1z< = . 
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Figure 31 Two-scale problem 

Let   be model parameters in the parameter space d  , typically describing 

microstructural geometry and material parameters  of microconstituents. The quantities of 

interest (QoI) denoted by q  in the observation space D are typically defined at the 

macroscale.  q  is assumed to be a smooth implicit function of  . In a deterministic two-

scale inverse problem, we seek for the microscale model parameters   given the 

macroscale observables  q  . 

We now consider the forward and inverse stochastic problems. Due to the natural 

variability of composite material properties at the scale of microconstituents, the 

macroscopic response may vary considerably.  Hence, both   and q  may be considered 

random variables. Let ( )s 
L

 be the (joint) probability density function of  , and ( )P q
D

 

the (joint) probability distribution of q . Using the so called the Law of Total Probability, 

we have 

        |P L d  


 q q   D
  (23) 
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where  |L q   is the likelihood function of the observables q  given the microscopic 

parameters  ;  |L q   is the unit mass distribution at  =q q  ;     is the parameter 

volume measure on  .  For an n-dimensional parameter space,  d   is given by 

   1 2 nd d d d        (24) 

Eq.(23) defines the forward stochastic problem. This forward problem is often 

solved using a Monte Carlo approach where: (i) random parameter sample values   are 

drawn from the distribution ( )s 
L

 on the parameter space; (ii) corresponding values of 

 q  are computed; and (iii) these values are binned to produce an approximate probability 

distribution in the observation space. 

The inverse stochastic problem, i.e. inversion of Eq.(23), consists of finding 

probability distribution    given the probability distribution  P qD
.  

3.2 Measure-theoretic Method for Stochastic Inverse Problem 

Consider a general deterministic inverse problem depicted in Figure 32.  We denote 

the union of solutions in the parameter space as a general contour (solid circle in the 

parameter space). Note that each observation in the observation space has a general contour 

in the parameter space and that no two general contours intersect. Thus, it is feasible to 

transform the probabilistic information from the observation space D  to the parameter 

space   (Figure 33a). Qualitatively, given the probability distribution of observations, we 

could find the corresponding density of the general contours. Higher probability of 

observations gives rise to denser general contours.  For instance, the blue region in 

parameter space depicted in Figure 33b, corresponds to the highest probability in the 

observation space. 
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Figure 32 A general inverse problem with multiple solutions 
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Figure 33 Transformation of statistical information from the observation space to 

parameter space 

To quantify the probability transformation from the observation space to the 

parameter space, it is necessary to discretize the two spaces. Figure 34 illustrates how the 

statistical information is transferred from the one-dimensional observation space to the 
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two-dimensional parameter space, which is uniformly discretized into 81 cells. Colors in 

Figure 4 in the two spaces denote corresponding solution map. For instance, model 

parameters corresponding to the blue region give rise to the observations corresponding to 

the blue region in the observation space.  Thus the probability corresponding to the blue 

interval in the observations space should be divided among all blue cells in the parameter 

space. For problems with multiple dimensions in the observation space, the observation 

space is partitioned in multiple dimensions. In the limit, as the cell size in both spaces is 

reduced, the numerical solution converges to the exact solution [84, 85].  

 

Figure 34 Transfer statistical information from the discretized observation space to 

the uniformly discretized parameter space 

The discretization of the parameter space is defined by the Voronoi tessellation of 

the parameter samples into M cells, denoted as ib  for i = 1, M. The observation space is 

likewise discretized (typically uniformly) into cells iQ with i = 1, N where N is the total 

number of cells in discrete observation space. The measure-theoretic method approximates 
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the inverse of Eq. (23) with a piecewise constant probability  iP b  computed for each cell 

in L  as  

    
 

   
1 k

i

i k M

j Q jj

b
P b P Q

b b



 





D

L

L

  (25) 

where  ibL
 is the parameter volume measure. The observation space cell kQ  associated 

with parameter space cell ib  is given by solving the forward problem ( )ibq  and locating 

the cell kQ such that  i kq b Q  . Further,  
kQ jb  is defined as 

 
 1 if

0 otherwise
k

j k

Q

q b Q


 
 


  (26) 

Since the forward problem is unique, ( )ibq can only map to one observation space 

cell kQ . However since the inverse problem is generally set valued, there may be many 

parameter space cells ib  which map to the same observation space cell. In (25), the term 

     
1 k

M

i j Q jj
b b b  

L L
 represents the ratio of the volume of parameter space cell ib  to 

the total volume of all the parameter space cells which also map to observation space cell 

kQ . Therefore, (25) distributes the probability of cell kQ  its associated parameter space 

cells in accordance with their volume. This requires explicit computation of Voronoi 

tessellation of the parameter space so that the volumes of each cell can be computed. This 

step may be circumvented if it is assumed that all of the parameter space cells have the 

same volume. Equation (3) becomes 

  
 

 
1 k

k

i M

Q jj

P Q
P b

b





D   (27) 
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This equation simply divides the probability of cell kQ  equally amongst all the 

parameter space cells that map to it. 

While providing a significant algorithmic simplification, this assumption may lead 

to errors for nonuniform sampling methods where the volumes of parameter space cells are 

not necessarily the same. Criteria are proposed in the next section to ensure that the 

discretized parameter and observation spaces lead to the converged probability 

distributions. 

The Algorithm 1 describes the measure-theoretic method with uniform partitions.  

Algorithm 2 Measure-theoretic inverse solution algorithm with uniform 

discretization 

i. Discretize the n-dimension observation space into N cells 

 

1 1 2 2

1 1 1
, , , , 1, ...,n n

j j j j j j j
I q q q q q q j N

+ + +

é ù é ù é ù= Ä Ä Ä =ê ú ê ú ê úë û ë û ë û
L

  

ii. Compute the probability of each cell 
j

I ,  j jp p I D
  

iii. Partition the parameter space into M equal-size cells ( ib , 1, ...,i M ) 

iv. Sample over all cells  ( l i ,  1, ...,i M  ) with l i  denoting the centroid  of the cell 

v. Evaluate  iq   for each cell ib  

vi. Identify 
jW  samples that map to each interval 

jI   in observation space 

vii. Use Eq.(27) to compute the probability of each cell  iP b in the parameter space 
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3.3 An Adaptive Nonintrusive Stochastic Inverse Multiscale Solver 

There are two challenges in effective realization of the measure-theoretic algorithm. 

The first, is the ability to ensure solution accuracy. What is the necessary discretization that 

satisfies the user-defined accuracy needs?  The second challenges, is choosing a nearly 

optimal parameter space rather than sampling in the infinite space. 

To address the aforementioned challenges, we propose an adaptive nonintrusive 

stochastic inverse multiscale solver incorporating the measure-theoretic algorithm with 

incremental Latin-hypercube sampling (iLHS) and optimal parameter subspace 

identification. Figure 35 summarizes the major steps in the adaptive MTA algorithm. 

Various elements of the algorithm are detailed in the following subsections. 
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Figure 35 Adaptive Nonintrusive Stochastic Inverse Algorithm  

3.3.1 Latin-hypercube Sampling 

Latin-hypercube sampling (LHS) was proposed by McKay [147], Eglājs [148] and 

Iman [149]. To get N samples, LHS creates sampling grid by dividing each parameter 

dimension into N intervals. In each interval, a random value would be picked. Then 

samples are obtained by combing the values in a way that there is only one sample in each 

parameter interval. Figure 36 schematically illustrates LHS with 3 and 4 samples for a 2-

dimensional domain. 
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Figure 36 Latin-hypercube sampling 

3.3.2 Incremental Sampling with LHS 

When analyzing a problem with large number of parameters, it is necessary to keep 

the population of samples as small as possible without sacrificing on solution accuracy. 

This can be accomplished with incremental sampling that reuses previous samples. One of 

the obvious choices is to use Monte Carlo Sampling (MCS) [150]. However, MCS may 

encounter the situation where samples cluster, which may lead to the measure-theoretic 

algorithm providing biased solutions. We propose to employ the incremental Latin 

Hypercube Sampling  (iLHS) method [151], which is a derivative of the Latin Hypercube 

Sampling proposed by Conover [147, 152], that reuses previous samples. The iLHS 

doubles the number of samples each sampling iteration until the convergence criteria are 

met. 

To construct n samples in the d-dimension parameter space L , the iLHS divides 

each dimension in parameter space into n intervals which do not overlap. This process is 

referred to as “stratification”. One sample is randomly selected in each stratification. The 

cumulative probability iP  for sample i is computed as [86]  

 
1

i

r i
P

n

 
   (28) 
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where r is uniformly distributed random number ranging between 0 and 1. Given iP , the 

value of   is computed using the inverse of the distribution function 

  1

P if P    (29) 

where  Pf x  is the cumulative probability function. 

Then the n samples are selected as a combination of values from each dimension in 

a random manner with the condition that there is only one sample in each interval in each 

dimension. Figure 37 depicts an example of 64 samples being incrementally added in a 1 

by 1 two-dimensional space with 6 iterations. 

 

Figure 37 iLHS sampling with 64 samples over a 1 by 1 space 

3.3.3 Nearly Optimal Parameter Subspace 

Identifying a nearly optimal subspace 
opt that would contain all the necessary cells 

in the parameter space, is of outmost importance to minimize computational cost.  

To illustrate the process, consider a model problem having one-dimensional 

observation space and two-dimensional parameter space as shown in Figure 38.  Assume 
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the observation q follows normal distribution with the mean value   and the standard 

deviation   as shown in Figure 38a. Assuming truncated normal distribution, the bounds 

in the observation space, 1q  and 2q , are  defined as 3   and 3  , respectively. For 

other distributions, such as lognormal or Weibull, the bounds could be defined as   

1q     and 2q     where 0  and 0   depend on the type of distribution.  

Given the values of 1q  and 2q , we carry out a deterministic inverse analysis using 

a variant of the Ant Colony algorithm [34].  The multiplicity of inverse solutions (two in 

the present model problem) are summarized in .  

Table 9 and Figure 38. The nearly optimal sampling space, 
opt , highlighted as a 

red box in Figure 38(b), is defined as  

 1 4 1 4

opt 1 1 2 2, ,              (30) 

In more than two-dimensional parameter space, 
opt  is defined by 

 
opt 1 1 2 2, , ,L U L U L U

n n                      (31) 

where n is the number of independent model parameters and ,L U

n n   are the lower and 

upper bounds of the solutions on a parameter dimension n.  

Table 9 Deterministic solutions 

Observations Solution 1 Solution 2 

𝑞1 (𝜆1
1, 𝜆2

2) (𝜆1
2, 𝜆2

3) 

𝑞2 (𝜆1
3, 𝜆2

1) (𝜆1
4, 𝜆2

4) 
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Figure 38  Identification of nearly optimal parameter space 
opt shown in red box. 

Truncated normal distribution is considered in this study 

3.3.4 Convergence Criteria 

The measure-theoretic inverse algorithm is deemed to converge when the following 

criteria are met. First, the cumulative probability function should be equal or close to 1 

   1

1

1
kM

k i

i

P b tol


    (32) 

where kM  is number of cells in the parameter space for sampling iteration k, ib  is a cell in 

the parameter space,  k iP b  is the probability of cell ib  in the kth iteration and 1tol  is a 

user-defined tolerance. 

The second criterion is aimed at ensuring that the ratio between the number of 

samples and the number of observation cells is sufficiently large. With a piecewise constant 

discretization of probability distribution in the parameter space,  as samples are added the 

change in probability density in each cell should be controlled by the user-defined tolerance 

2tol  

    
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1 2

1 1

imn
i i
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i j

P B P B tol
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where n is the number of dimensions in the parameter space, im  is the number of intervals 

of ith parameter dimension; 
i

jB  is the jth interval on ith parameter dimension;  i

k jP B  is the 

probability of 
i

jB  in the kth iteration of iLHS. 

The final criterion is aimed at testing the discretization of the observation space. 

This is accomplished by using the following predictor-corrector algorithm. At the end of 

each sampling iteration, the MTA is performed twice and the difference in the mean and 

the standard deviation of each parameter is evaluated. The difference should be smaller 

than the user-specified tolerance as described in Eq. (34) and Eq. (35) below 

 3i i tol     (34) 

 4i i tol     (35) 

where i  and i  are the mean and standard deviation of parameter i in the observation 

space in the predictor step; i  and i   are the corresponding measures in the corrector step 

when the number of observation cells is doubled.  

3.4 Numerical Studies 

In this section, we evaluate the performance of the adaptive nonintrusive inverse 

stochastic multiscale solver using the data reported by Tomblin et al. [88], hereafter 

referred as the NIAR report. A nonlinear two-scale analysis has been conducted using the 

reduced order homogenization method [4, 5, 7, 10, 77].  For validation, a nonintrusive 

stochastic multiscale solver [75] based on the sparse grid collocation approach [76, 153] is 

employed.  

3.4.1 Composite Material Micro Geometry 
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The NIAR report describes the nominal ply thickness as 0.1524 mm and the fiber 

volume fraction to be proportionally varying with the thickness of the laminate from 0.45 

to 0.65. For simplicity, we neglect the uncertainty introduced by the fiber volume fraction 

and ply thickness; both are assumed to be deterministic, 0.55 and 0.1524 mm, respectively. 

Figure 39 depicts the finite element mesh of the representative volume element (RVE) with 

fiber volume fraction of 0.55. 

 

Figure 39 Representative volume element 

3.4.2 Deterministic Inverse Analysis of Linear Properties 

Fibers considered in this study are that of TORAY T700GC-12K-31E whereas the 

matrix is Epoxy #2510. The composite physical properties are listed in Table 10. Table 10 

lists also the standard deviation (SD) of the linear properties, which is considerably smaller 

than that of nonlinear properties given in  Table 15.  
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Table 15. Consequently, uncertainty in the elastic properties is neglected in the 

present study. The matrix and fiber phases are assumed to be isotropic and transversely 

isotropic, respectively.  The elastic properties of microconstituents have been 

deterministically calibrated to yield the overall elastic properties listed in Table 2 with an 

error of less than 0.1%. Using the published microconstituent  properties in [154] as an 

initial guess, elastic properties of microconstituents have been deterministically calibrated 

to yield the overall elastic properties listed in Table 2 with an error of less than 0.1%. The 

calibrated elastic properties of microconstituents are summarized in Table 11 and Table 12. 

Table 10 Composite elastic properties 

Direction Modulus (GPa) Standard Deviation (GPa) 

11 126.0 1.943 

22 8.0 0.191 

12 4.0 0.231 

Table 11 Matrix elastic properties 

Young’s Modulus Poisson’s Ratio 

2.764 0.169 

Table 12 Fiber elastic properties 

Young’s Modulus 

(Transverse) 

Young’s 

Modulus 

(Axial) 

Poisson’s ratio 

(Transverse) 

Poisson’s 

ratio (Axial) 

Shear 

modulus 

(Axial) 

34.465 225.987 0.1 0.1 34.885 

 



 

 

71 

 

3.4.3 Nonlinear Deterministic Inverse Analysis 

We assume bilinear form of continuum damage mechanics model for both matrix 

and fiber phases at the microscale [155] . The isotropic bilinear damage model, which is 

used for matrix phase, has four independent material constants including two deterministic 

elastic parameters listed in Table 13.  

Table 13 Isotropic bilinear damage model parameters 

E Young’s Modulus 

ν Poisson’s Ratio 

σ0 stress at damage initiation 

ε1 failure strain 

 

For the fiber phase, the orthotropic damage mechanics model is employed [155].  

Table 14 lists nine independent material parameters for the orthotropic bilinear 

damage model including five deterministic elastic material parameters that have been 

identified in Table 12. 
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Table 14 Orthotropic bilinear damage model parameters 

ET Young’s Modulus in transverse direction 

EA Young’s Modulus in axial direction 

νT Poisson’s Ratio in transverse direction 

νA Poisson’s Ratio in axial direction 

GA Shear Modulus in axial direction 

𝜎𝑇
0 stress at damage initiation in transverse direction 

𝜖𝑇
1  failure strain in transverse direction 

𝜎𝐴
0 stress at damage initiation in axial direction 

𝜖𝐴
1  failure strain in axial direction 

 

The inelastic deterministic analysis was performed with FOOF [155, 156] as a 

macro-solver and Multiscale Designer1 [11, 157] as micro-solver. 

The NIAR report [88] provides the mean and standard deviation of strength in 

different directions, which are summarized in Table 15.  

Table 15 Composite inelastic properties 

Direction 

Strength (MPa) 

Mean Standard Deviation 

11 2172.443 165.844 

22 48.857 4.101 

 

                                                 

1 Formerly, Multiscale Design Systems (MDS, http://multiscale.biz/) 
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Given the composite inelastic properties, a deterministic inverse solver is employed 

to identify inelastic microconstituent parameters, which are summarized in Table 16.  

Table 16 Calibrated matrix and fiber properties 

Matrix Parameter 

𝜎0 0.031 

𝜖1 0.015 

Fiber Parameter 

𝜎𝑇
0 0.65 

𝜖𝑇
1  0.02 

𝜎𝐴
0 3.93 

𝜖𝐴
1  0.022 

3.4.4 Stochastic Inverse Analysis 

Based on the sensitivity analysis, it has been observed that two inelastic parameters, 

𝜎𝐴
0 and 𝜎0, are the main parameters contributing to the uncertainty. Thus, we only consider 

uncertainty in the axial strength of the fiber 𝜎𝐴
0 and the matrix strength 𝜎0, while remaining 

material parameters are assumed to be deterministic. We will demonstrate that this 

assumption produces reasonable predictions in the quantities of interest at the macroscale. 

We start by determining 
opt  as described in the previous section.  

Table 17 lists the lower and upper bounds of the strengths at a coupon level along 

the fiber and transverse directions. 
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Table 17 Bounds in the observation space at a coupon level 

Direction Lower Bound (MPa) Upper Bound (MPa) 

11 1674.91 2669.96 

22 36.55 61.16 

 

By solving four deterministic inverse problems, the corresponding bounds in the 

parameter space are summarized in Table 18. 

Table 18 Calibrated bounds in the parameter space 

Parameter Lower Bound (MPa) Upper Bound (MPa) 

𝜎𝐴
0 3015.0 4815.0 

𝜎0 23.6 39.6 

 

Next, we carry out the measure-theoretic inverse analysis with 400 observation 

cells with samples added incrementally in the parameter space defined by 

   3015.0, 4815.0 23.6, 39.6 . Realizations are generated using the iLHS. The 

probability distributions of 𝜎0 and 𝜎𝐴
0 as obtained with 12800 samples in 12 intervals in 

each parameter dimension are given in Figure 40. Similarly, with 51200 samples in 15 

intervals in each parameter dimension, the probability distributions are listed in Figure 41. 

Figure 42 shows that the error in the cumulative probability decreases with increase in the 

number of samples. Figure 43 shows that the solution stabilizes with increase in the number 

of samples. The convergence criterion 3 was verified by increasing the number of 

observation cells from 400 to 841; the mean and standard deviation for both parameters 

changed by less than 2.5%, which was deemed to be acceptable. 
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Figure 40 Probability distribution of material parameters with 12800 samples in 12 

intervals 
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Figure 41 Probability distribution of material parameters with 51200 samples in 15 

intervals 
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Figure 42 Cumulative probability error 

 

Figure 43 Solution stability index 

3.4.5 Model Validation 

To validate the model, we consider the unnotched tension test (UNT) and open hole 

tensile test (OHT) and compare the model predictions against experimental results from 
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the NIAR report [88]. We employ the nonintrusive stochastic multiscale solver [75] based 

on the sparse grid collocation approach [76, 153] with model parameters identified in the 

previous sections to predict the probability distribution of the strength in the unnotched 

tension test (UNT) and the open hole tensile test (OHT). 

3.4.5.1 Lamina Test 

705 realizations were performed with the forward stochastic multiscale solver [75]. 

The results are summarized in Table 19 and compared to the experiment results [88]. A 

good agreement has been observed. 

Table 19 Lamina test results 

Direction Simulation Experiment 

11 

Mean (MPa) 2.0947×103 2.1676×103 

CV (%) 7.666 7.634 

22 

Mean (MPa) 47.347 48.857 

CV (%) 8.612 8.394 
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Figure 44 Lamina strength probability distribution: simulations versus experiment 

[88] 

3.4.5.2 Unnotched Tensile (UNT) Laminate Test 

Figure 45 depicts the geometry of the specimen consisting of 20 symmetric plies 

with the ply orientations [45/0/-45/90/0/0/45/0/-45/0]s. This test measures the strength of 

the plate by fixing one end and pulling along the longitudinal direction at the other end.  
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Figure 45 Unnotched tensile test specimen geometry 

The finite element macro-model was constructed in FOOF [155, 156]. The finite 

element mesh consists of 36 twenty-node quadratic laminated elements in each of the 20 

plies (Figure 46). To overcome the issue of convergence due to softening, an explicit 

algorithm in FOOF was employed. 

 

Figure 46 Finite element model of the unnotched tensile test  

7169 realizations were carried out by the forward stochastic analysis [75]. Table 20 

and Figure 47 compare the simulation results with the experimental data [88]. Figure 48 

depicts a typical displacement-force curve for the cases of minimal and maximal reaction 

force where the cross marks indicate the peak values (strength). 
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Table 20 UNT test results 

 Simulation Experiment 

Mean (N) 127708.48 131867.6 

CV (%) 5.16 7.40 

 

Figure 47 UNT - reaction force probability distribution: simulations versus 

experiment [88] 
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Figure 48 UNT - minimal and maximal reaction force: simulations versus 

experiment [88] 

3.4.5.3 Open Hole Tensile (OHT) Test 

Figure 49 depicts the open hole tensile test specimen considered in this study [88]. 

The plate consists of 24 plies with the following layup: [(45/0/-45/90)3]s. The specimen 

was clamped at one end and pulled at the other end in the longitudinal direction. 
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Figure 49 Notched tensile test dimensions 

Figure 50 depicts the finite element mesh consisting of 212 twenty-node quadratic 

laminated elements in each of the 24 plies. The mesh was constructed in the way that the 

elements’ characteristic length near the hole is about a quarter of the rest of the model. The 

macro finite element model was constructed in FOOF [155, 156] and the explicit algorithm 

was employed in the simulations. 
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Figure 50 Open-hole tensile test finite element model 

7169 realizations were performed by the forward stochastic analysis algorithm [75]. 

Results are summarized in Table 21 and Figure 51. The displacement-force curves 

corresponding to the minimal and maximal reaction forces are illustrated in Figure 52 with 

the cross marks indicating the peak values. 

Table 21 OHT test results 

 Simulation Experiment 

Mean (N) 46657.52 47560.4 

CV (%) 3.72 4.23 
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Figure 51 OHT- test reaction force probability distribution: simulations versus 

experiment [88] 

 

 

Figure 52 OHT - minimal and maximal strength: simulations versus experiment 

[88] 
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Chapter 4  

Multiscale Modeling of Femur Fracture  

In this chapter, an accelerated multiscale analysis of femur fracture was presented 

with the validation of reduced order homogenization (ROH). The method proposed takes 

advantages of the digital database created from ROH, which provides the single-scale 

model unknown material information, so that a more accurate and efficient simulation 

could be possible. 

4.1 Multiscale Models of Femur 

The two-scale finite element model of the proximal femur (macro level) [97] and 

cortical/trabecular structure (meso levels) is depicted in Figure 53. In the experimental 

setup, the distal end of the femur was embedded in a block of dental cement. Two nodes, 

in the center of dental cement fixture were attached with rigid beam elements to the distal 

end of the femur as shown in Figure 53. Displacements of trochanter surface were 

constrained in the vertical direction. A prescribed displacement was applied downwards in 

the femoral head surface. The above boundary conditions are consistent with a sideways 

fall on the hip.  
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Figure 53 (A) Finite element model of proximal femur with schematics of load and 

boundary conditions; (B) Finite element model of periodic cortical bone 

mesostructure; (C) Finite element model of random trabecular bone mesostructure 

We consider a strong form of the boundary value problem stated on the domain   

comprising the bone structure 

 
,

( ) ( ) 0 ,ij j ib     x x x  (36) 

  ( ) ( ) ( ) ( ) ,ij ijkl kl klL        x x x x x  (37) 

  ( , ) , ,

1
( ) ( ) ,

2
ij i j i j j iu u u        x x x  (38) 

 ( ) ( ) ,u

i iu u   x x x  (39) 

 ( ) ( ) ( ) ,t

ij j in t     x x x x  (40) 

where the superscript   denotes meso-scale features; 
kl

  and ij

 the strain and stress 

components; ijklL the constitutive tensor; the total strain kl

  is additively decomposed into 
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elastic strain and inelastic strain, more generally referred to as eigenstrains kl

 . In the 

above, 


n  denotes the unit normal to the bone structure domain boundary   

consisting of essential and natural boundaries denoted by u and t . 
iu  and 

it
 are 

components of prescribed displacements and tractions, respectively, on corresponding 

boundaries; 
ib is the body force. 

Following two-scale asymptotic analysis where various fields are assumed to 

depend on the coarse-scale coordinate x   and the unit cell coordinate /y x , the strong 

form can be decomposed into the meso and macro problems. Following asymptotic 

analysis [10], the leading order equilibrium equations are: 

Mesoscale problem 

 
 

 
 

 

,

1

,

1

0

( ) ( ) ( ) ( )

( ) ( ) ( , )

( , ) is periodic in 

j

l

f

ij y

f f f

ij ijkl kl kl

f c

kl kl k y

i

L

u

u





  

 

 

  

 



y

x y x y x y x y y

x y x x y

x y

, , , ,

,
  (41) 

Macroscale problem 

                                
 

,

,

0

( ) ( )

1 1 1
; ;

j

l

c c c

ij x i

c c

kl k x

c f c f c

ij ij ij ij i i

b

u

d d b b d

BCs







   
  

  



     
    

x

x x

 (42) 

where the superscript c and f denote the macro (proximal bone scale) and meso (trabecular 

and cortical bone structure) scale fields. Comma denotes spatial derivative at symmetric 

subscript brackets denote symmetric part.  is the unit cell domain (including the voids) 

and   its volume. The eigenstrain ( , , )f f f f

ij ij

  s   depend on the constitutive 
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behavior of meso phases. In the present section they are assumed to follow continuum 

damage mechanics laws including regularization schemes in the form of staggered nonlocal 

formulation as described in [155, 158].  

The primary objective of the two multiscale methods outlined below is on the 

effective solution of the mesoscale problem and the subsequent calculation of the coarse-

scale stress required for full scale proximal bone analysis. 

4.1.1 Reduced Order Homogenization (ROH) Model 

In this section we briefly outline the formulation of the reduced order model [5, 10, 

77, 78, 117-119] with focus on the specificities of the cortical and trabecular bone structure. 

The salient feature of reduced order homogenization is that the mesoscale 

displacement field correction 
 1

( , )iu x y  to the smooth macroscale displacement ( )c

iu x is 

constructed to satisfy the mesoscale equilibrium equation (42) a for arbitrary macroscale 

strain 
c

kl , eigenstrains 
f

ij , and eigenseparations 
ˆ

f

n  , which describes the discontinuity 

at the interfaces of cement line, osteon and interstitial matrix in the cortical bone 

mesostructure (see Figure 53). 
 1

( , )iu x y  is constructed as follows 

 1
( , ) ( ) ( ) ( , ) ( , ) ( , ) ( , )x y y x y y x y y y x y


   

kl c kl f n f

i i kl i kl i n
S

u H h d h dS    (43) 

where 
kl

iH , 
kl

ih , and 
n

ih  are so-called transformation influence functions for the 

macrostrain, the eigenstrain, and the eigenseparation, respectively. The physical meaning 

of (43) is that the eigenstrain (or so-called transformation strain) ( , )x y
f

kl  introduces 

elastic deformation in the magnitude of ( , )kl

ih y y   due to volume and/or shape changes at 

an infinitesimal neighborhood of a point y . The volume integral represents the 
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accumulative effect of all possible eigenstrains in the unit cell domain. Likewise, the 

eigenseparation ( , )x y
f

n  gives rise to elastic deformation equal to ( , )y y
n

ih  as a result of 

a debonding (or displacement jump) at an infinitesimal neighborhood of a point y S   at 

the mesoscale interface. Cohesive laws, such as those used in [159, 160], can be use to 

describe the traction-separation law in the cortical bone.  The integral over all the interfaces 

in the unit cell represents an accumulative effect of all eigenseparations. In the present 

work we assume perfect interfaces, i.e. ( , ) 0f

n x y . Note that (43) holds for arbitrary 

eigenstrains as long as the strain follows the additive decomposition (37)c. 

The salient feature of ROH is reduction of computational complexity of solving the 

mesoscale problem by discretizing eigenstrains  
f

ij  in (43)  as 

 
( ) ( )

1

( , ) ( ) ( )
M

f

ij ijN  



 


x y y x   (44) 

where ( )N   are eigenstrain shape functions are the number of phases in 

mesostructure. For trabecular bone mesostructure, M = 1. For cortical bone mesostructure, 

M = 3. The shape functions are selected as follows. Various eigenstrain modes are grouped 

into matrix (soft phase) or inclusion (stiff phase) dominated modes of deformation. The 

mode is considered to be matrix dominated if the overall property corresponding to that 

mode is of the same order of magnitude as that of the matrix; otherwise the mode is 

considered to be inclusion dominated.  

For inclusion dominated mode the shape functions are assumed to be 1C  

continuous with piecewise constant approximation 

 

( )

( )

( )
 

1
( )

0
N






 
 



y
y

y
  (45) 
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For the matrix dominated mode of deformation the shape functions are implicitly 

defined in such a way that when the unit cell is subjected to matrix dominated mode 

defamation, inclusion phases remain stress-free. For more details we refer to [10]. 

4.1.2 Accelerated Reduced Order Homogenization (AROH) Model 

The primary goal of the accelerated reduced order homogenization (AROH) 

approach schematically depicted in Figure 3 is speed-up the multiscale simulations based 

on the ROH outlined in the previous section.  AROH builds on the fact that ROH possesses 

considerably fewer material constants that need to be experimentally calibrated than a 

lower fidelity phenomenological anisotropic damage model. This is because each 

microphase in ROH is assumed to be isotropic with just two parameters describing inelastic 

behavior of a single phase.  On the other hand, an anisotropic single-scale damage model 

[155, 158], which serves the basis for AROH, which has considerably more material 

constants that have to be calibrated against experimental data. Unfortunately, only limited 

patient-specific bone fracture data is available. Therefore, it is much easier to calibrate 

ROH to limited experimental data than a single-scale anisotropic damage model.  

Furthermore, the computational cost of ROH is significantly higher than of AROH since 

ROH requires solution of 18 equations with 18 unknowns (6 unknown eigenstrains 

components for each of the meso-phases in the cortical bone) at each quadrature point and 

at very increment.  Once material constants have been identified, AROH is computationally 

superior to ROH and thus can be deployed for analysis of full-scale proximal femur model. 

It is this interplay between ROH and single-scale anisotropic damage model that is at the 

heart of the AROH. First, ROH is calibrated against limited test data.  Consequently, the 

calibrated ROH model is subjected to triaxial loading conditions and a comprehensive 
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digital database is created to complement the limited test data (Figure 54), which is the 

used to identify model parameters of the single-scale anisotropic damage model. 

 

Figure 54 Accelerated Reduced Order Homogenization: (1) Limited experimental 

database is employed to calibrate the ROH; (2) The calibrated ROH is utilized to 

generate extensive digital database to compliment limited experimental database; 

(3) A single-scale damge model is calibrated against the integrated 

digital/experimental database; (4) The calibrated single-scale phenomenological 

damage model is used for bone analysis 

4.2 Multiscale model construction 

Let us first review the information we have and additional assumptions we need to 

make in order to fully characterize the multiscale model. The geometry of the bone is given 

from the quantitative computer tomography (QCT). The generation of the bone’s geometry 

(and thereafter the FE mesh) is considered, to a large extent, as a solved problem [161]. 
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While there is a certain amount of uncertainty regarding the precise modeling, load and 

boundary conditions, which have been discussed in [97], we consider hereafter it to be well 

defined and adopt the guidelines proposed in [97]. An adequate characterization of material 

properties, on the other hand, remains challenging due to inherent heterogeneous, 

anisotropic, and inelastic nature of the bone’s tissue.  

In order to characterize the heterogeneous, anisotropic and inelastic bone properties 

our goals are two-fold: (i) identify the elastic and inelastic properties of the cortical and 

trabecular mesostructure and (ii) determine the orientation of the mesostructure in various 

point (Gauss quadrature points) of the macro (proximal bone) finite element model (Figure 

53A). 

4.2.1 Identification of Mesostructural Orientation 

For bone tissue orientation we employ an approach motivated by so called Wolff’s 

law [162], which states that bone tissue orientation correlates well with principal strain 

direction [163] in the stance position. To determine the orientation of the mesoscale unit 

cells at various quadrature point in the macro-mesh, we employ the following three step 

approach.  In Step 1, we assume that the bone material is isotropic and single-scale, with 

values of isotropic elastic properties and yield strains assigned to each finite element in the 

femur model based on estimated Hounsfield units (HU), which represent the measured grey 

levels in the QCT scans, and the power law (1) with the following values of parameters in 

Table 22 [164].   
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Table 22 Relation between density and mechanical properties 

 Ea  
Eb  a  b  

Cortical bone - axial 2065 3.09 72.4 1.88 

Cortical bone - 

transverse 
2314 1.57 37 1.51 

Trabecular bone2 1904 1.64 40.8 1.89 

 

Other empirical relations between Young’s modulus and bone density for cortical 

and trabecular bone have been proposed in [165, 166]. 

In Step 2, we conduct a linear single-scale finite element analysis of the femur bone 

model to determine the maximum principal strain directions at various Gauss points in the 

macro-mesh.  

In Step 3, we determine the direction of the maximum overall stiffness at the 

mesoscale and align it with maximum principal direction of strain in the stance position. 

For the cortical bone, the maximum stiffness coincides with the direction of the osteon. An 

alternative approach by cortical bone mesostructure was positioned to follow the outer 

surface was discussed in [167].    

Individual trabeculae segmentation (ITS)-based morphological analysis has been 

conducted for trabecular bone [168], which revealed its anisotropic elastic response. To 

find the maximum overall Young’s modulus 
max

effE  of the trabecular bone, we first compute 

the overall properties using linear homogenization 
eff

ijklL . We then seek for the rotation 

 1 2 3    that rotates 
eff

ijklL into  

                                                 

2 The largest value reported in [111] 
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 ( ) ( ) ( ) ( )eff eff

IJKL Ii Jj Kk Ll ijklL R R R R L       (46) 

such that the effective Young’s modulus is maximized. In Eq. (46), ( )IiR   is the rotation 

matrix. 

4.2.2 Identification of Mesostructural Properties 

To identify elastic and inelastic phase properties at the mesoscale we make the 

following assumption: the Young’s modulus and compressive strength defined in Eq. (1) 

with parameter values given in Table 22 correspond to the average effective Young’s 

modulus and compressive strength. Each meso-phase will be assumed as either isotropic 

or transverse isotropic with subscripts a and t denoting axial and transverse isotropic 

properties. For instance, 
( )

aE 
and 

( )

tE 
, denote the compressive Young’s modulus of 

meso-phase   in the axial and transverse directions, respectively. The inelastic behavior 

of each phase is based on continuum damage mechanics [155, 158] assuming either bilinear 

or trilinear damage evolution law depicted in Figure 55.  
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Figure 55 (a) Bilinear damage law; (b) Trilinear damage law 

For trabecular bone, we lump trabecular plates (p) and rods (r) into a single meso-

phase. We assume that the trabecular bone meso-phase is isotropic and its inelastic 

behavior follows the trilinear damage law. Assuming Poisson ratio ( ) 0.3pr  , its 

remaining model parameters  (pr) (pr) (pr) (pr) (pr), , , ,y h h fE     are identified as follows.  First, 

elastic modulus (pr)E  is calibrated to match the largest homogenized modulus of the 

trabecular bone unit cell defined by equation (1) with parameter values summarized in  

Table 23. Given the calibrated elastic modulus (pr)E , model reductions is 

performed to reduce the computational complexity of the mesoscale unit cell. Finally, the 

values of  (pr) (pr) (pr) (pr), , ,y h h f     are identified to match the maximum overall stress-strain 

behavior of the trabecular bone unit cell as described in Section 4.2. 

For the calibration of cortical bone three meso-phases, cement line (c), osteon (o) 

and interstitial matrix (i), we have to our disposal two experiments, one in the axial 

direction and one in the transverse direction based on Eq. (1) and parameter values given 

in Table 22. In solving the identification problem, which is a constrained optimization 

(a) (b) 
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problem, we will assume initial properties of meso-phases based on the nanoindentation 

tests conducted in [169] where the average Young’s modulus for the osteon was E = 22.4 

GPa and E = 25.8 GPa for interstitial lamellae with corresponding standard deviations of 

1.3 GPa and 0.7 GPa. We assume meso-phases (osteon and matrix) to be transverse 

isotropic [170]. The exact nature and composition of the cement line remains a subject of 

current research, it is usually considered to be much more compliant than that of osteon 

[171]. The Poisson’s ratio of the cement line has been reported to be 25% higher than that 

of the osteon [172]. In the present study we will assume the value of the Young’s modulus 

equal to half of the axial modulus of the osteon. 

4.3 Bone Fracture Simulations 

4.3.1 Finite Element Model 

The finite element mesh of the femur depicted in Figure 56 consists of 650,000 

tetrahedral elements. The reaction force was computed from the set of nodes on the femoral 

head surface defined in Figure 53 where prescribed displacement equal to 5mm was applied 

downward.  Based on the density measurements by the quantitative computer tomography, 

material properties have been discretized into 42 piecewise constant values. To further 

reduce computational complexity, nonlinear properties were only considered in the neck 

region (shown in red in Figure 56), which is where fractures are most often expected, 

whereas the remaining femur domain is assumed to be elastic. 
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Figure 56 Finite element model of femur. Material properties in the region shown in 

red are assumed to be nonlinear 

Using a single-scale linear analysis of the femur in stance position (Figure 57), local 

orientations of each Gauss point were identified. Figure 58 illustrates the orientations 

assigned to select quadrature points in the neck region.  The red arrow points in the 

direction of the maximum principal direction in the trabecular and cortical bone. It can be 

seen that in the cortical bone, the maximum principal direction is tangential to the femur 

surface. 
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Figure 57 Stance position used to determine local material orientations 

 

Figure 58 Local orientations shown in selected points 
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4.3.2 Calibration of the Reduced Order Model and Generation of Digital Database 

Each meso-phase in the cortical and trabecular bone is modeled by bilinear damage 

and trilinear damage law, respectively. Meso-phase properties have identified for 42 

different unit cells. The identified meso-phase properties of the trabecular bone 

mesostructure corresponding to ρapp = 0.41 g/cm3 are summarized in  

Table 23. The identified meso-phase properties of the cortical bone mesostructure 

corresponding to ρapp = 2.09 g/cm3 are summarized in  

Table 24 with the subscription a and t denoting the axial and transverse directions, 

respectively. Figure 59 and Figure 60 depict a typical calibration of the ROH model for the 

cortical bone mesostructure in the axial (osteon) and transverse compression. Once the 

ROH model has been calibrated, a digital database is generated for calibration of AROH.  

Figure 61 and Figure 62 depict the digital database for the cortical bone in two shear 

directions. 
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Table 23 Calibrated elastic material properties of the trabecular bone (ρapp = 0.41 

g/cm3) 

Bone Type Parameter Calibrated Value 

Trabecular 

( )pr
E  2155.9 MPa 

( )pr
n  0.3 

( )pr

y
s  37.1 MPa 

( )pr

h
s  37.1 MPa 

( )pr

h
e  0.034 

( )pr

f
e  0.052 

 



 

 

102 

 

Table 24 Calibrated elastic material properties of the cortical bone (ρapp = 2.09 

g/cm3) 

Bone Type Parameter Calibrated Value 

Osteon 

( )o

t
E  8500.0 MPa 

( )o

a
E  17000.0 MPa 

( )o

t
n  0.3 

( )o

a
n  0.3 

( )o

a
G  9000.0 MPa 

( )o

yt
s  100.45 MPa 

( )o

ft
e  0.013 

( )o

ya
s  244.8 MPa 

( )o

fa
e  0.0158 

Cement 

( )c
E  8500.0 MPa 

( )c
n  0.3 

( )c

y
s  122.40 MPa 

( )c

f
e  0.0158 

Matrix 

( )m

t
E  12269.7 MPa 

( )m

a
E  24539.3 MPa 
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Figure 59 ROH calibration in axial compression for the cortical bone (ρapp = 2.09 

g/cm3) 

 

Figure 60 ROH calibration in transverse compression for the cortical bone (ρapp = 

2.09 g/cm3) 
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Figure 61 Digital database in axial shear for the cortical bone (ρapp = 2.09 g/cm3) 

 

Figure 62 Digital database in transverse shear for the cortical bone (ρapp = 2.09 

g/cm3) 

Figure 63 depicts calibration of the ROH model for the trabecular bone 

mesostructure corresponding to ρapp = 0.41 g/cm3 to the overall compression defined by 

equation (1). Since only a single unit cell of the trabecular bone was available in this study, 
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phase properties of trabecular plates and rods were calibrated to be consistent with the 

prescribed porosity. Following the inelastic response of trabecular bone reported in [173], 

we set 2h y   and 3f y  . Figure 65 plots the database created in four directions for 

trabecular bone.   
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Figure 63 ROH calibration for the trabecular bone in 11 mode (ρapp = 0.41 g/cm3) 

 

Figure 64 ROH calibration for the trabecular bone in 33 mode (ρapp = 0.41 g/cm3) 
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Figure 65 Digital database in four deformation modes for the trabecular bone (ρapp = 

0.41 g/cm3) 

4.3.3 Calibration of AROH to hybrid experimental-digital database 

The trilinear orthotropic damage law were employed to calibrate the simulation 

results in Section 4.3.2. Table 25 and  

Table 26 list the typical calibrated AROH material parameters for cortical and 

trabecular bone. Figure 66 - Figure 75 depict the typical calibration results for different 

loading conditions for both bone types. 
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Table 25 Cortical bone AROH material parameters (ρapp = 2.09 g/cm3) 

Parameter Value 

,
t a

E E  7743.3, 20158.2 MPa 

,
t a

n n  0.3 

a
G  1823.2 MPa 

,
yt ya

s s  116.3, 279.7 MPa 

,
ht ha

s s  25.0, 285.0 MPa 

,
ht ha

e e  0.032, 0.0144 

,
ft fa

e e  0.04, 0.016 

 

Table 26 Trabecular bone AROH material parameters (ρapp = 0.41 g/cm3) 

Parameter Value 

1 2 3
, ,E E E  266.5, 395.8, 441.1 MPa 

1 2 3
, ,n n n  0.3 

23 13 12
, ,G G G  167.4, 122.5, 112.7 MPa 

1 2 3
, ,

y y y
s s s  7.4 MPa 

1 2 3
, ,

h h h
s s s  7.4 MPa 

1 2 3
, ,

h h h
e e e  0.0444, 0.034, 0.051 

1 2 3
, ,

f f f
e e e  0.051 
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Figure 66 AROH calibration in axial compression for the cortical bone (ρapp = 2.09 

g/cm3) 

 

Figure 67 AROH calibration in transverse compression for the cortical bone (ρapp = 

2.09 g/cm3) 
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Figure 68 AROH calibration in axial shear for the cortical bone (ρapp = 2.09 g/cm3) 

 

Figure 69 AROH calibration in transverse shear for the cortical bone (ρapp = 2.09 

g/cm3) 
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Figure 70 AROH calibration for the trabecular bone in 11 mode (ρapp = 0.41 g/cm3) 

 

Figure 71 AROH calibration for the trabecular bone in 22 mode (ρapp = 0.41 g/cm3) 
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Figure 72 AROH calibration for the trabecular bone in 33 mode (ρapp = 0.41 g/cm3) 

 

Figure 73 AROH calibration for the trabecular bone in 23 mode (ρapp = 0.41 g/cm3) 
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Figure 74 AROH calibration for the trabecular bone in 12 mode (ρapp = 0.41 g/cm3) 

 

Figure 75 AROH calibration for the trabecular bone in 13 mode (ρapp = 0.41 g/cm3) 

4.3.4 Bone Fracture Simulations and Validation 

AROH simulations were performed with Abaqus on a 48-core 2.3 GHz Dell server 

with 128 GB RAM memory. The simulations had a computing time of 6 hours. To verify 

the accuracy of AROH simulation, we also performed ROH simulation on the same 
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machine. The ROH simulation had a computing time of 29 hours. Figure 76 compares the 

ROH macroscale simulation and the corresponding AROH simulation with the calibrated 

material parameters. It can be seen that AROH simulation results are in good agreement 

with the ROH simulations. 

 

Figure 76 Comparison of AROH and ROH simulations of femur sideways fall 

In [174], it has been observed that once peak bone mass is reached, the loss of bone 

mass follows slow first-order degradation rate, such  the loss of bone density  is 11% per 

decade for the trabecular bone and 3% for the cortical bone. We next study the influence 

of loss of bone density on the stiffness and the peak load of a human femur in a sideways 

fall situation.  For each femur sideways fall simulation, the 42 ROH models and 42 AROH 

models were calibrated following the procedures outlined in Section 4.2 and Section 4.3. 

The simulation results are presented in Figure 77 together with a typical displacement-

reaction force curve reported in [175, 176]. It can be seen, that the simulations provide 

reasonable stiffness and peak load of an osteoporosis femur. 
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Figure 77 Femur sideways fall on the hip AROH simulation with prediction and 

experiment results 

Figure 78 and Figure 79 depict the intertrochanteric fracture and subcapital neck 

damage with both ROH and AROH simulation. We compare the fracture pattern with what 

was reported in the open literature in Figure 80. 
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Figure 78 Fracture pattern view 1 (left: ROH, right: AROH) 

 

Figure 79 Fracture pattern view 2 (left: ROH, right: AROH) 
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Figure 80 Typical Proximal Femur Fractures [177] 

 

 

  



 

 

118 

 

Chapter 5  

Conclusions 

Multiscale analysis of composite materials and structures well into their nonlinear 

regime is a challenging problem on its own due to considerable computational complexity 

involved. Adding an optimization layer on top of inelastic multiscale analysis with design 

variables at three scales magnifies the computational complexity by several orders of 

magnitude. We show that despite the seemingly intractable problem, it can be indeed 

simulated in one to two days on a 20-core machine. In addition to utilizing reduced order 

homogenization technology developed elsewhere, several new elements have contributed 

to this feat. First, we perfected the ant colony optimization (ACO) algorithm, by developing 

a methodology that gives rise to uniform sampling of the design space at multiple scales 

resulting in superior performance of the ACO. Secondly, we replaced unstructured meshing 

of RVE geometry that does not permit sensitivity analysis especially for coarse meshes by 

mapping of so-called base RVE mesh. Finally, we employed a multilevel optimization 

procedure that takes advantage of possible weak coupling of scales. 

To study the stochasticity of the micro properties of composite material. A complete 

test data of the TORAY T700GC-12K-31E and Epoxy #2510 material system from the 

NIAR report has been employed to validate the proposed adaptive nonintrusive stochastic 

inverse algorithm. Given the micro-geometry definition, mechanical test data in the axial 

tension, transverse tension and shearing, microscale mechanical properties have been 

identified using the proposed adaptive nonintrusive stochastic inverse algorithm. Once the 

stochastic properties of model parameters have been identified, the adaptive nonintrusive 
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stochastic inverse algorithm has been validated by considering various unnotched and 

open-hole laminates tests. In all validation tests, the error in the mean was less than 5%. In 

the UNT lamina test, the error in the standard deviation was less than 10%.  In the UNT 

laminate test and in the open-hole test, the error in the standard deviation was as high as 

20% in some cases.  

And while 10% error in the mean and 20% in the standard deviation are acceptable 

from the practical point of view, it is instructive to point out to the possible causes of error 

that can be attributed to one or more approximations made:  

i) neglecting the variation in the fiber-volume fraction, lamina thickness, and 

elastic constants;  

ii) neglecting the cross-correlation, which may exist between the random 

parameters considered;  

iii) assuming that model parameters are random variables as opposed to random 

fields; and  

iv) neglecting free edge effects in the deterministic multiscale solver that may lead 

to delamination. 

The above approximations (ii) and (iii) were primarily made due to lack of 

experimental data. The second assumption is supported by the work of Graham and 

Deodatis [178] who demonstrated that the cross-correlation effects do not affect 

significantly the response variability when static problems are considered.  

In our future studies, the effect of random fields given limited experimental data 

should be investigated. Karhunen-Loeve (KL) expansion to discretize the random fields in 

terms of a small set of denumerable random variables [60] is a viable option.  Finally, the 
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issue of accuracy and computational efficiency of the deterministic nonlinear multiscale 

solvers, which has not been addressed in the previous chapter, remains an important 

research area on its own. 

Chapter 4 presents an attempt to devise a generic (non-patient-specific) framework 

for inelastic multiscale analysis of femur fracture. The generic multiscale framework 

utilizes limited experimental data such as:  (i) a single QCT scan of full scale femur and 

(ii) a single QCT scan of the mesostructure. The proposed multiscale framework takes 

advantage of existing models that relate the overall elastic and inelastic properties of the 

cortical and trabecular bone microstructure to bone density estimated from the Hounsfield 

units that represent the measured grey levels in the quantitative computer tomography 

(QCT) scans. Mesostructural properties are reverse engineered (identified) from these 

overall properties and Wolff’s law is employed to orient the cortical and trabecular bone 

unit cells. Various perturbations from a single sample of the osteoporosis patient QCT scan 

are obtained by perturbing bone densities assuming that cortical and trabecular bone 

densities reduce by 3% and 11% over a single decade, respectively. 

The simulation results suggest that the proposed multiscale framework is both 

efficient and predictive. The model efficiency has been demonstrated by analyzing full 

scale femur in less than 6 hours. The model is predictive in the sense that the observed 

femur fracture in sideways fall is within the range simulations that employ bone densities 

perturbed by one decade from a single QCT scan used in the simulations.  

Nevertheless, confidence or validity bounds of the proposed multiscale framework 

requires extensive clinical testing, which was not available in this study. The proposed 
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model could be substantially improved by taking advantage of statistical analysis of such 

an extensive clinical data.  

  



 

 

122 

 

References 

1. Babuska, I., Homogenization and its application. Mathematical and computational 

problems. Numerical solution of partial differential equations, 1976: p. 89-115. 

2. Papanicolau, G., A. Bensoussan, and J. Lions, Asymptotic Analysis for Periodic 

Structures. 1978. 

3. Sánchez-Palencia, E. Non-homogeneous media and vibration theory. in Non-

homogeneous media and vibration theory. 1980. 

4. Yuan, Z. and J. Fish, Multiple scale eigendeformation-based reduced order 

homogenization. Computer Methods in Applied Mechanics and Engineering, 2009. 

198(21-26): p. 2016-2038. 

5. Oskay, C. and J. Fish, Eigendeformation-based reduced order homogenization for 

failure analysis of heterogeneous materials. Computer Methods in Applied 

Mechanics and Engineering, 2007. 196(7): p. 1216-1243. 

6. Kouznetsova, V., M.G. Geers, and W.M. Brekelmans, Multi‐scale constitutive 

modelling of heterogeneous materials with a gradient‐enhanced computational 

homogenization scheme. International Journal for Numerical Methods in 

Engineering, 2002. 54(8): p. 1235-1260. 

7. Fish, J. and K. Shek, Multiscale analysis of composite materials and structures. 

Composites Science and Technology, 2000. 60(12–13): p. 2547-2556. 

8. Fish, J. and A. Wagiman, Multiscale finite element method for a locally nonperiodic 

heterogeneous medium. Computational Mechanics, 1993. 12(3): p. 164-180. 

9. Hou, T.Y. and X.-H. Wu, A Multiscale Finite Element Method for Elliptic Problems 

in Composite Materials and Porous Media. Journal of Computational Physics, 

1997. 134(1): p. 169-189. 

10. Fish, J., Practical multiscaling. 2013: John Wiley & Sons. 



 

 

123 

 

11. MDS. Multiscale Design System. 2015; Available from: http://multiscale.biz/. 

12. Haftka, R.T. and J.L. Walsh, Stacking-sequence optimization for buckling of 

laminated plates by integer programming. AIAA journal, 1992. 30(3): p. 814-819. 

13. Le Riche, R. and R.T. Haftka, Optimization of laminate stacking sequence for 

buckling load maximization by genetic algorithm. AIAA Journal, 1993. 31(5): p. 

951-956. 

14. Miki, M. and Y. Sugiyamat, Optimum design of laminated composite plates using 

lamination parameters. AIAA journal, 1993. 31(5): p. 921-922. 

15. Gürdal, Z., R.T. Haftka, and P. Hajela, Design and optimization of laminated 

composite materials. 1999: John Wiley & Sons. 

16. Wu, J. and R. Burgueno, An integrated approach to shape and laminate stacking 

sequence optimization of free-form FRP shells. Computer Methods in Applied 

Mechanics and Engineering, 2006. 195(33-36): p. 4106-4123. 

17. Omkar, S.N., et al., Artificial Bee Colony (ABC) for multi-objective design 

optimization of composite structures. Applied Soft Computing, 2011. 11(1): p. 489-

499. 

18. Sebaey, T.A., et al., Ant Colony Optimization for dispersed laminated composite 

panels under biaxial loading. Composite Structures, 2011. 94(1): p. 31-36. 

19. Bendsoe, M.P., Optimization of structural topology, shape, and material. 2013: 

Springer Science & Business Media. 

20. Sigmund, O. and S. Torquato. Design of materials with extreme thermal expansion 

using a three-phase topology optimization method. in Smart Structures and 

Materials' 97. 1997. International Society for Optics and Photonics. 

21. Eschenauer, H.A. and N. Olhoff, Topology optimization of continuum structures: 

A review*. Applied Mechanics Reviews, 2001. 54(4): p. 331-390. 

http://multiscale.biz/


 

 

124 

 

22. Duysinx, P. and M.P. Bendsøe, Topology optimization of continuum structures with 

local stress constraints. International journal for numerical methods in engineering, 

1998. 43(8): p. 1453-1478. 

23. Sigmund, O. and S. Torquato, Design of smart composite materials using topology 

optimization. Smart Materials and Structures, 1999. 8(3): p. 365. 

24. Bendsøe, M.P. and O. Sigmund, Material interpolation schemes in topology 

optimization. Archive of applied mechanics, 1999. 69(9-10): p. 635-654. 

25. Danfelt, E.L., S.A. Hewes, and T.-W. Chou, Optimization of composite flywheel 

design. International Journal of Mechanical Sciences, 1977. 19(2): p. 69-78. 

26. Saravanos, D.A. and C. Chamis, Multiobjective shape and material optimization of 

composite structures including damping. AIAA journal, 1992. 30(3): p. 805-813. 

27. Pai, N., A. Kaw, and M. Weng, Optimization of laminate stacking sequence for 

failure load maximization using Tabu search. Composites Part B: Engineering, 

2003. 34(4): p. 405-413. 

28. Lund, E., Buckling topology optimization of laminated multi-material composite 

shell structures. Composite Structures, 2009. 91(2): p. 158-167. 

29. Lund, E. and J. Stegmann, On structural optimization of composite shell structures 

using a discrete constitutive parametrization. Wind Energy, 2005. 8(1): p. 109-124. 

30. Aymerich, F. and M. Serra, Optimization of laminate stacking sequence for 

maximum buckling load using the ant colony optimization (ACO) metaheuristic. 

Composites Part A: Applied Science and Manufacturing, 2008. 39(2): p. 262-272. 

31. Maier, H.R., et al., Ant colony optimization distribution for design of water systems. 

Journal of Water Resources Planning and Management-Asce, 2003. 129(3): p. 200-

209. 

32. Parpinelli, R.S., H.S. Lopes, and A. Freitas, Data mining with an ant colony 

optimization algorithm. Evolutionary Computation, IEEE Transactions on, 2002. 

6(4): p. 321-332. 



 

 

125 

 

33. Merkle, D., M. Middendorf, and H. Schmeck, Ant colony optimization for resource-

constrained project scheduling. Evolutionary Computation, IEEE Transactions on, 

2002. 6(4): p. 333-346. 

34. Liang, Y.-C. and A.E. Smith, An ant colony optimization algorithm for the 

redundancy allocation problem (RAP). Reliability, IEEE Transactions on, 2004. 

53(3): p. 417-423. 

35. Di Caro, G., Ant Colony Optimization and its application to adaptive routing in 

telecommunication networks. 2004, PhD thesis, Faculté des Sciences Appliquées, 

Université Libre de Bruxelles, Brussels, Belgium. 

36. Camp, C.V. and B.J. Bichon, Design of space trusses using ant colony optimization. 

Journal of Structural Engineering, 2004. 130(5): p. 741-751. 

37. Abbaspour, K., R. Schulin, and M.T. Van Genuchten, Estimating unsaturated soil 

hydraulic parameters using ant colony optimization. Advances in water resources, 

2001. 24(8): p. 827-841. 

38. Tian, J., W. Yu, and S. Xie. An ant colony optimization algorithm for image edge 

detection. in Evolutionary Computation, 2008. CEC 2008.(IEEE World Congress 

on Computational Intelligence). IEEE Congress on. 2008. IEEE. 

39. Kim, D.H., A. Abraham, and J.H. Cho, A hybrid genetic algorithm and bacterial 

foraging approach for global optimization. Information Sciences, 2007. 177(18): 

p. 3918-3937. 

40. Plevris, V. and M. Papadrakakis, A Hybrid Particle Swarm-Gradient Algorithm for 

Global Structural Optimization. Computer-Aided Civil and Infrastructure 

Engineering, 2010. 

41. Xia, W. and Z. Wu, An effective hybrid optimization approach for multi-objective 

flexible job-shop scheduling problems. Computers & Industrial Engineering, 2005. 

48(2): p. 409-425. 

42. Wang, L. and D.-Z. Zheng, An effective hybrid optimization strategy for job-shop 

scheduling problems. Computers & Operations Research, 2001. 28(6): p. 585-596. 



 

 

126 

 

43. Vicini, A. and D. Quagliarella, Airfoil and wing design through hybrid optimization 

strategies. AIAA journal, 1999. 37(5): p. 634-641. 

44. Zahara, E., S.-K.S. Fan, and D.-M. Tsai, Optimal multi-thresholding using a hybrid 

optimization approach. Pattern Recognition Letters, 2005. 26(8): p. 1082-1095. 

45. Chaparro, B., et al., Material parameters identification: Gradient-based, genetic 

and hybrid optimization algorithms. Computational Materials Science, 2008. 44(2): 

p. 339-346. 

46. Okamoto, M., et al., Nonlinear numerical optimization with use of a hybrid genetic 

algorithm incorporating the modified Powell method. Applied Mathematics and 

Computation, 1998. 91(1): p. 63-72. 

47. Crain, T., et al., Interplanetary flyby mission optimization using a hybrid global-

local search method. Journal of Spacecraft and Rockets, 2000. 37(4): p. 468-474. 

48. Lin, C.-C. and Y.-J. Lee, Stacking sequence optimization of laminated composite 

structures using genetic algorithm with local improvement. Composite structures, 

2004. 63(3): p. 339-345. 

49. Kim, C., et al., Stacking sequence optimization of laminated plates. Composite 

Structures, 1997. 39(3): p. 283-288. 

50. Matsuzaki, R. and A. Todoroki, Stacking-sequence optimization using fractal 

branch-and-bound method for unsymmetrical laminates. Composite Structures, 

2007. 78(4): p. 537-550. 

51. Park, J., et al., Stacking sequence design of composite laminates for maximum 

strength using genetic algorithms. Composite Structures, 2001. 52(2): p. 217-231. 

52. Soremekun, G., et al., Stacking sequence blending of multiple composite laminates 

using genetic algorithms. Composite Structures, 2002. 56(1): p. 53-62. 

53. Ghiasi, H., et al., Optimum stacking sequence design of composite materials Part 

II: Variable stiffness design. Composite Structures, 2010. 93(1): p. 1-13. 



 

 

127 

 

54. Bruyneel, M., et al., Stacking sequence optimization for constant stiffness laminates 

based on a continuous optimization approach. Structural and Multidisciplinary 

Optimization, 2012. 46(6): p. 783-794. 

55. Bendsøe, M.P., Optimal shape design as a material distribution problem. Structural 

optimization, 1989. 1(4): p. 193-202. 

56. Der Kiureghian, A. and J.-B. Ke, The stochastic finite element method in structural 

reliability. Probabilistic Engineering Mechanics, 1988. 3(2): p. 83-91. 

57. Shinozuka, M. and G. Deodatis, Response variability of stochastic finite element 

systems. Journal of Engineering Mechanics, 1988. 114(3): p. 499-519. 

58. Yamazaki, F., et al., Neumann expansion for stochastic finite element analysis. 

Journal of Engineering Mechanics, 1988. 114(8): p. 1335-1354. 

59. Haldar, A. and S. Mahadevan, Reliability assessment using stochastic finite element 

analysis. 2000: John Wiley & Sons. 

60. Ghanem, R.G. and P.D. Spanos, Stochastic finite elements: a spectral approach. 

2003: Courier Corporation. 

61. Stefanou, G., The stochastic finite element method: past, present and future. 

Computer Methods in Applied Mechanics and Engineering, 2009. 198(9): p. 1031-

1051. 

62. Ghanem, R.G. and P.D. Spanos, Spectral stochastic finite-element formulation for 

reliability analysis. Journal of Engineering Mechanics, 1991. 117(10): p. 2351-

2372. 

63. Di Sciuva, M. and D. Lomario, A comparison between Monte Carlo and FORMs 

in calculating the reliability of a composite structure. Composite Structures, 2003. 

59(1): p. 155-162. 

64. Der Kiureghian, A., H.-Z. Lin, and S.-J. Hwang, Second-order reliability 

approximations. Journal of Engineering Mechanics, 1987. 113(8): p. 1208-1225. 



 

 

128 

 

65. Hohenbichler, M. and R. Rackwitz, Improvement of second-order reliability 

estimates by importance sampling. Journal of Engineering Mechanics, 1988. 

114(12): p. 2195-2199. 

66. Kamiński, M. and M. Kleiber, Perturbation based stochastic finite element method 

for homogenization of two-phase elastic composites. Computers & Structures, 2000. 

78(6): p. 811-826. 

67. Kaminski, M., The stochastic perturbation method for computational mechanics. 

2013: John Wiley & Sons. 

68. Hiriyur, B., H. Waisman, and G. Deodatis, Uncertainty quantification in 

homogenization of heterogeneous microstructures modeled by XFEM. International 

Journal for Numerical Methods in Engineering, 2011. 88(3): p. 257-278. 

69. Dwaikat, M.M.S., C. Spitas, and V. Spitas, Effect of the stochastic nature of the 

constituents parameters on the predictability of the elastic properties of fibrous 

nano-composites. Composites Science and Technology, 2012. 72(15): p. 1882-

1891. 

70. Sriramula, S. and M.K. Chryssanthopoulos, Quantification of uncertainty 

modelling in stochastic analysis of FRP composites. Composites Part a-Applied 

Science and Manufacturing, 2009. 40(11): p. 1673-1684. 

71. Sakata, S.-i., F. Ashida, and K. Enya, Stochastic Analysis of Microscopic Stress in 

Fiber Reinforced Composites Considering Uncertainty in a Microscopic Elastic 

Property. Journal of Solid Mechanics and Materials Engineering, 2010. 4(5): p. 

568-577. 

72. Chamis, C.C., Probabilistic simulation of multi-scale composite behavior. 

Theoretical and Applied Fracture Mechanics, 2004. 41(1–3): p. 51-61. 

73. Tootkaboni, M. and L. Graham‐Brady, A multi‐scale spectral stochastic method 

for homogenization of multi‐phase periodic composites with random material 

properties. International journal for numerical methods in engineering, 2010. 83(1): 

p. 59-90. 

74. Chen, N.-Z. and C. Guedes Soares, Spectral stochastic finite element analysis for 

laminated composite plates. Computer Methods in Applied Mechanics and 

Engineering, 2008. 197(51–52): p. 4830-4839. 



 

 

129 

 

75. Fish, J. and W. Wu, A nonintrusive stochastic multiscale solver. International 

Journal for Numerical Methods in Engineering, 2011. 88(9): p. 862-879. 

76. Gerstner, T. and M. Griebel, Numerical integration using sparse grids. Numerical 

algorithms, 1998. 18(3-4): p. 209-232. 

77. Yuan, Z. and J. Fish, Hierarchical model reduction at multiple scales. International 

Journal for Numerical Methods in Engineering, 2009. 79(3): p. 314-339. 

78. Yuan, Z. and J. Fish, Multiple scale eigendeformation-based reduced order 

homogenization. Computer Methods in Applied Mechanics and Engineering, 2009. 

198(21–26): p. 2016-2038. 

79. Sakata, S.-i., F. Ashida, and Y. Shimizu, Inverse stochastic homogenization 

analysis for a particle-reinforced composite material with the Monte Carlo 

simulation. International Journal for Multiscale Computational Engineering, 2011. 

9(4). 

80. Bogdanor, M.J., C. Oskay, and S.B. Clay, Multiscale modeling of failure in 

composites under model parameter uncertainty. Computational Mechanics, 2015. 

56(3): p. 389-404. 

81. Bogdanor, M.J., S. Mahadevan, and C. Oskay, UNCERTAINTY 

QUANTIFICATION IN DAMAGE MODELING OF HETEROGENEOUS 

MATERIALS. 2013. 11(3): p. 289-307. 

82. Crouch, R.D., S.B. Clay, and C. Oskay, Experimental and computational 

investigation of progressive damage accumulation in CFRP composites. 

Composites Part B: Engineering, 2013. 48: p. 59-67. 

83. Liu, Y., W. Sun, and J. Fish, Determining Material Parameters for Critical State 

Plasticity Models Based on Multilevel Extended Digital Database. Journal of 

Applied Mechanics, 2015. 83(1): p. 011003-011003. 

84. Breidt, J., T. Butler, and D. Estep, A Measure-Theoretic Computational Method for 

Inverse Sensitivity Problems I: Method and Analysis. Siam Journal on Numerical 

Analysis, 2011. 49(5): p. 1836-1859. 



 

 

130 

 

85. Butler, T., D. Estep, and J. Sandelin, A Computational Measure Theoretic 

Approach to Inverse Sensitivity Problems Ii: A Posteriori Error Analysis. Siam 

Journal on Numerical Analysis, 2012. 50(1): p. 22-45. 

86. Wyss, G.D. and K.H. Jorgensen, A user’s guide to LHS: Sandia’s Latin hypercube 

sampling software. 1997. 

87. Hu, N. and J. Fish, Enhanced ant colony optimization for multiscale problems. 

Comput. Mech., 2016. 57(3): p. 447-463. 

88. Tomblin, J., et al., A-Basis and B-Basis Design Allowables for Epoxy–Based 

Prepreg TORAY T700GC-12K-31E/# 2510 Unidirectional Tape [US Units]. 2002, 

Wichita, KS: National Institute for Aviation Research. 

89. Fuller, G.F., Falls in the elderly. American family physician, 2000. 61(7): p. 2159-

68, 2173-4. 

90. Melton 3rd, L. and S. Cummings, Heterogeneity of age-related fractures: 

implications for epidemiology. Bone and mineral, 1987. 2(4): p. 321-331. 

91. Cummings, S.R. and L.J. Melton, Epidemiology and outcomes of osteoporotic 

fractures. The Lancet, 2002. 359(9319): p. 1761-1767. 

92. Hamed, E., Y. Lee, and I. Jasiuk, Multiscale modeling of elastic properties of 

cortical bone. Acta Mechanica, 2010. 213(1-2): p. 131-154. 

93. Taya, M. and T.-W. Chou, On two kinds of ellipsoidal inhomogeneities in an 

infinite elastic body: an application to a hybrid composite. International Journal of 

Solids and Structures, 1981. 17(6): p. 553-563. 

94. Keyak, J.H., et al., Automated 3-Dimensional Finite-Element Modeling of Bone - a 

New Method. Journal of Biomedical Engineering, 1990. 12(5): p. 389-397. 

95. Martelli, S., et al., Accuracy of subject specific finite-element models of long bones 

from CT data: an in vitro study. Proc. ICCB II, 2005. 1: p. 251-265. 



 

 

131 

 

96. Trabelsi, N., Z. Yosibash, and C. Milgrom, Validation of subject-specific 

automated p-FE analysis of the proximal femur. Journal of biomechanics, 2009. 

42(3): p. 234-241. 

97. Rossman, T., V. Kushvaha, and D. Dragomir-Daescu, QCT/FEA predictions of 

femoral stiffness are strongly affected by boundary condition modeling. Computer 

methods in biomechanics and biomedical engineering, 2016. 19(2): p. 208-216. 

98. Dawson-Hughes, B., et al., Clinician’s guide to prevention and treatment of 

osteoporosis. National Osteoporosis Foundation, Washington DC, 2008. 

99. Dalle Carbonare, L. and S. Giannini, Bone microarchitecture as an important 

determinant of bone strength. Journal of endocrinological investigation, 2004. 

27(1): p. 99-105. 

100. Genant, H., et al., Advanced imaging of bone macro and micro structure. Bone, 

1999. 25(1): p. 149-152. 

101. Bettamer, A., et al., Using visual image measurements to validate a novel finite 

element model of crack propagation and fracture patterns of proximal femur. 

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & 

Visualization, 2015: p. 1-12. 

102. Niebur, G.L., et al., High-resolution finite element models with tissue strength 

asymmetry accurately predict failure of trabecular bone. Journal of biomechanics, 

2000. 33(12): p. 1575-1583. 

103. Nawathe, S., et al., Microstructural failure mechanisms in the human proximal 

femur for sideways fall loading. Journal of bone and mineral research, 2014. 29(2): 

p. 507-515. 

104. Nawathe, S., F. Juillard, and T.M. Keaveny, Theoretical bounds for the influence 

of tissue-level ductility on the apparent-level strength of human trabecular bone. 

Journal of biomechanics, 2013. 46(7): p. 1293-1299. 

105. Bessho, M., et al., Prediction of proximal femur strength using a CT-based 

nonlinear finite element method: differences in predicted fracture load and site with 

changing load and boundary conditions. Bone, 2009. 45(2): p. 226-231. 



 

 

132 

 

106. Keyak, J., Improved prediction of proximal femoral fracture load using nonlinear 

finite element models. Medical engineering & physics, 2001. 23(3): p. 165-173. 

107. Den Buijs, J.O. and D. Dragomir-Daescu, Validated finite element models of the 

proximal femur using two-dimensional projected geometry and bone density. 

Computer methods and programs in biomedicine, 2011. 104(2): p. 168-174. 

108. Dragomir-Daescu, D., et al., Robust QCT/FEA models of proximal femur stiffness 

and fracture load during a sideways fall on the hip. Annals of biomedical 

engineering, 2011. 39(2): p. 742-755. 

109. Materialise. Materialise Mimics. 2016; Available from: 

http://biomedical.materialise.com/mimics. 

110. Synopsys, I., Simpleware. 2016. 

111. Computing, N.N.C.f.I.B., Seg3D. 2016. 

112. Computing, N.N.C.f.I.B., Cleaver - A MultiMaterial Tetrahedral Meshing Library 

and Application. 2016. 

113. Doblaré, M., J.M. Garcı́a, and M.J. Gómez, Modelling bone tissue fracture and 

healing: a review. Engineering Fracture Mechanics, 2004. 71(13–14): p. 1809-

1840. 

114. Vashishth, D., Hierarchy of bone microdamage at multiple length scales. 

International journal of fatigue, 2007. 29(6): p. 1024-1033. 

115. Jang, I.G. and I.Y. Kim, Computational simulation of simultaneous cortical and 

trabecular bone change in human proximal femur during bone remodeling. Journal 

of Biomechanics, 2010. 43(2): p. 294-301. 

116. Hambli, R., H. Katerchi, and C.-L. Benhamou, Multiscale methodology for bone 

remodelling simulation using coupled finite element and neural network 

computation. Biomechanics and Modeling in Mechanobiology, 2011. 10(1): p. 

133-145. 

http://biomedical.materialise.com/mimics


 

 

133 

 

117. Fish, J., et al., Computational plasticity for composite structures based on 

mathematical homogenization: Theory and practice. Computer Methods in 

Applied Mechanics and Engineering, 1997. 148(1): p. 53-73. 

118. Fish, J., Q. Yu, and K. Shek, Computational damage mechanics for composite 

materials based on mathematical homogenization. International journal for 

numerical methods in engineering, 1999. 45(11): p. 1657-1679. 

119. Jacob Fish, Z.Y., N-Scale Model Reduction Theory, in Multiscale Methods: 

Bridging the Scales in Science and Engineering. 2009, Oxford University Press. 

120. Mulvihill, B.M. and P.J. Prendergast, Mechanobiological regulation of the 

remodelling cycle in trabecular bone and possible biomechanical pathways for 

osteoporosis. Clinical Biomechanics, 2010. 25(5): p. 491-498. 

121. Martin, R., Toward a unifying theory of bone remodeling. Bone, 2000. 26(1): p. 1-

6. 

122. Ciarelli, T., et al., Variations in three‐dimensional cancellous bone architecture 

of the proximal femur in female hip fractures and in controls. Journal of Bone and 

Mineral Research, 2000. 15(1): p. 32-40. 

123. Kennedy, J., Particle swarm optimization, in Encyclopedia of machine learning. 

2011, Springer. p. 760-766. 

124. Karaboga, D. and B. Basturk, A powerful and efficient algorithm for numerical 

function optimization: artificial bee colony (ABC) algorithm. Journal of global 

optimization, 2007. 39(3): p. 459-471. 

125. Bonabeau, E., M. Dorigo, and G. Theraulaz, Swarm intelligence: from natural to 

artificial systems. 1999: Oxford university press. 

126. Dorigo, M., Optimization, Learning and Natural Algorithms. Ph.D. Thesis, 

Politecnico di Milano, Italy, 1992. 

127. Dorigo, M. and L.M. Gambardella, Ant colonies for the travelling salesman 

problem. Biosystems, 1997. 43(2): p. 73-81. 



 

 

134 

 

128. Dorigo, M. and T. Stutzle, The Ant Colony Optimization Metaheuristic. Ant Colony 

Optimization, 2004: p. 25-64. 

129. Socha, K. and M. Dorigo, Ant colony optimization for continuous domains. 

European journal of operational research, 2008. 185(3): p. 1155-1173. 

130. Socha, K., ACO for continuous and mixed-variable optimization, in Ant colony 

optimization and swarm intelligence. 2004, Springer. p. 25-36. 

131. Schlüter, M., J.A. Egea, and J.R. Banga, Extended ant colony optimization for non-

convex mixed integer nonlinear programming. Computers & Operations Research, 

2009. 36(7): p. 2217-2229. 

132. Blum, C., Ant colony optimization: Introduction and recent trends. Physics of Life 

reviews, 2005. 2(4): p. 353-373. 

133. Dorigo, M., Ant Colony Optimization and Swarm Intelligence: 5th International 

Workshop, ANTS 2006, Brussels, Belgium, September 4-7, 2006, Proceedings. Vol. 

4150. 2006: Springer Science & Business Media. 

134. Stützle, T. and H.H. Hoos, MAX–MIN ant system. Future generation computer 

systems, 2000. 16(8): p. 889-914. 

135. Stützle, T.G., Local search algorithms for combinatorial problems: analysis, 

improvements, and new applications. Vol. 220. 1999: Infix Sankt Augustin, 

Germany. 

136. Stutzle, T. and H. Hoos, MAX-MIN Ant System and local search for the traveling 

salesman problem. Proceedings of 1997 Ieee International Conference on 

Evolutionary Computation (Icec '97), 1997: p. 309-314. 

137. Stutzle, T. and H. Hoos. MAX-MIN Ant System and local search for the traveling 

salesman problem. in Evolutionary Computation, 1997., IEEE International 

Conference on. 1997. 

138. Plevris, V. and M. Papadrakakis, A hybrid particle swarm—gradient algorithm for 

global structural optimization. Computer ‐ Aided Civil and Infrastructure 

Engineering, 2011. 26(1): p. 48-68. 



 

 

135 

 

139. Renders, J.-M. and S.P. Flasse, Hybrid methods using genetic algorithms for global 

optimization. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE 

Transactions on, 1996. 26(2): p. 243-258. 

140. Zhang, J.-R., et al., A hybrid particle swarm optimization–back-propagation 

algorithm for feedforward neural network training. Applied Mathematics and 

Computation, 2007. 185(2): p. 1026-1037. 

141. Gambardella, M., M.B.A. Martinoli, and R.P.T. Stützle. Ant Colony Optimization 

and Swarm Intelligence. in 5th International Workshop. 2006. Springer. 

142. Hajimirsadeghi, G.H., M. Nabaee, and B. Araabi, Ant Colony Optimization with a 

Genetic Restart Approach toward Global Optimization, in Advances in Computer 

Science and Engineering, H. Sarbazi-Azad, et al., Editors. 2009, Springer Berlin 

Heidelberg. p. 9-16. 

143. Torquato, S., T.M. Truskett, and P.G. Debenedetti, Is random close packing of 

spheres well defined? Physical review letters, 2000. 84(10): p. 2064. 

144. Shimada, K. and D.C. Gossard, Bubble mesh: automated triangular meshing of 

non-manifold geometry by sphere packing, in Proceedings of the third ACM 

symposium on Solid modeling and applications. 1995, ACM: Salt Lake City, Utah, 

USA. p. 409-419. 

145. Li, X.Y., S.H. Teng, and A. Üngör, Biting: Advancing front meets sphere packing. 

International Journal for Numerical Methods in Engineering, 2000. 49(1‐2): p. 

61-81. 

146. Haftka, R.T. and Z. Gürdal, Elements of structural optimization. Vol. 11. 2012: 

Springer Science & Business Media. 

147. McKay, M.D., R.J. Beckman, and W.J. Conover, A comparison of three methods 

for selecting values of input variables in the analysis of output from a computer 

code. Technometrics, 2000. 42(1): p. 55-61. 

148. Eglajs, V.A.P., New approach to the design of multifactor experiments. Problems 

of Dynamics and Strengths, 1977. 2: p. 104-107. 



 

 

136 

 

149. Iman, R.L., J. Campbell, and J. Helton, An approach to sensitivity analysis of 

computer models. I- Introduction, input, variable selection and preliminary 

variable assessment. Journal of quality technology, 1981. 13: p. 174-183. 

150. Rubinstein, R.Y. and D.P. Kroese, Simulation and the Monte Carlo method. Vol. 

707. 2011: John Wiley & Sons. 

151. Adams, B.M., et al., Dakota, a multilevel parallel object-oriented framework for 

design optimization, parameter estimation, uncertainty quantification, and 

sensitivity analysis: Version 5.0 user’s manual. Sandia National Laboratories, Tech. 

Rep. SAND2010-2183, 2009. 

152. Helton, J.C. and F.J. Davis, Latin hypercube sampling and the propagation of 

uncertainty in analyses of complex systems. Reliability Engineering & System 

Safety, 2003. 81(1): p. 23-69. 

153. Ma, X. and N. Zabaras, An adaptive hierarchical sparse grid collocation algorithm 

for the solution of stochastic differential equations. Journal of Computational 

Physics, 2009. 228(8): p. 3084-3113. 

154. TORAY CARBON FIBERS AMERICA, I., TORAYCA T700S DATA SHEET. 

2015. 

155. Liu, Y., et al., A regularized phenomenological multiscale damage model. 

International Journal for Numerical Methods in Engineering, 2014. 99(12): p. 867-

887. 

156. Yuan, Z. and J. Fish, Nonlinear multiphysics finite element code architecture in 

object oriented Fortran environment. Finite Elements in Analysis and Design, 2015. 

99: p. 1-15. 

157. Altair. Multiscale Designer. 2016; Available from: 

http://www.altairhyperworks.com/product/Multiscale-Designer. 

158. Zifeng Yuan, J.F., Are the cohesive zone models necessary for delamination 

analysis? 2016, Columbia University. 

http://www.altairhyperworks.com/product/Multiscale-Designer


 

 

137 

 

159. Jonvaux, J., T. Hoc, and É. Budyn, Analysis of micro fracture in human Haversian 

cortical bone under compression. International journal for numerical methods in 

biomedical engineering, 2012. 28(9): p. 974-998. 

160. Ural, A. and S. Mischinski, Multiscale modeling of bone fracture using cohesive 

finite elements. Engineering Fracture Mechanics, 2013. 103: p. 141-152. 

161. Liao, S.-H., R.-F. Tong, and J.-X. Dong, Anisotropic finite element modeling for 

patient-specific mandible. computer methods and programs in biomedicine, 2007. 

88(3): p. 197-209. 

162. Wolff, J., The Law of Bone Remodeling. 1892 ed. 1986, Berlin: Springer. 

163. Heřt, J., P. Fiala, and M. Petrtýl, Osteon orientation of the diaphysis of the long 

bones in man. Bone, 1994. 15(3): p. 269-277. 

164. Lotz, J.C., T.N. Gerhart, and W.C. Hayes, Mechanical properties of metaphyseal 

bone in the proximal femur. Journal of biomechanics, 1991. 24(5): p. 317327-

325329. 

165. Keyak, J.H. and Y. Falkinstein, Comparison of in situ and in vitro CT scan-based 

finite element model predictions of proximal femoral fracture load. Medical 

engineering & physics, 2003. 25(9): p. 781-787. 

166. Doblaré, M., J. Garcıa, and M. Gómez, Modelling bone tissue fracture and healing: 

a review. Engineering Fracture Mechanics, 2004. 71(13): p. 1809-1840. 

167. Trabelsi, N. and Z. Yosibash, Patient-specific finite-element analyses of the 

proximal femur with orthotropic material properties validated by experiments. 

Journal of biomechanical engineering, 2011. 133(6): p. 061001. 

168. Liu, X.S., et al., Complete volumetric decomposition of individual trabecular plates 

and rods and its morphological correlations with anisotropic elastic moduli in 

human trabecular bone. Journal of Bone and Mineral Research, 2008. 23(2): p. 

223-235. 

169. Rho, J.-Y., T.Y. Tsui, and G.M. Pharr, Elastic properties of human cortical and 

trabecular lamellar bone measured by nanoindentation. Biomaterials, 1997. 18(20): 

p. 1325-1330. 



 

 

138 

 

170. Budyn, E., T. Hoc, and J. Jonvaux, Fracture strength assessment and aging signs 

detection in human cortical bone using an X-FEM multiple scale approach. 

Computational Mechanics, 2008. 42(4): p. 579-591. 

171. Hogan, H.A., Micromechanics modeling of Haversian cortical bone properties. 

Journal of Biomechanics, 1992. 25(5): p. 549-556. 

172. Sabelman, E., et al. Collagen/hyaluronic acid matrices for connective tissue repair. 

in First Smith and Nephew international Symposium: Advances in Tissues 

Engineering and Biomaterials. 1997. 

173. Hambli, R., Micro-CT finite element model and experimental validation of 

trabecular bone damage and fracture. Bone, 2013. 56(2): p. 363-374. 

174. O'Flaherty, E.J., Modeling normal aging bone loss, with consideration of bone loss 

in osteoporosis. Toxicological Sciences, 2000. 55(1): p. 171-188. 

175. Dragomir-Daescu, D., et al., Robust QCT/FEA Models of Proximal Femur Stiffness 

and Fracture Load During a Sideways Fall on the Hip. Annals of Biomedical 

Engineering, 2011. 39(2): p. 742-755. 

176. Kinzl, M., U. Wolfram, and D. Pahr, Identification of a crushable foam material 

model and application to strength and damage prediction of human femur and 

vertebral body. Journal of the mechanical behavior of biomedical materials, 2013. 

26: p. 136-147. 

177. Martin-Brownlie, D.J. Hip Joint Pain That Is From A Fracture... Available from: 

http://www.drjoexplains.com/  

178. Graham, L. and G. Deodatis, Response and eigenvalue analysis of stochastic finite 

element systems with multiple correlated material and geometric properties. 

Probabilistic Engineering Mechanics, 2001. 16(1): p. 11-29. 

 

http://www.drjoexplains.com/

