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Abstract

Importance: Polycyclic aromatic hydrocarbons are widespread urban air pollutants from combustion of fossil fuel and other
organic material shown previously to be neurotoxic.

Objective: In a prospective cohort study, we evaluated the relationship between Attention Deficit Hyperactivity Disorder
behavior problems and prenatal polycyclic aromatic hydrocarbon exposure, adjusting for postnatal exposure.

Materials and Methods: Children of nonsmoking African-American and Dominican women in New York City were followed
from in utero to 9 years. Prenatal polycyclic aromatic hydrocarbon exposure was estimated by levels of polycyclic aromatic
hydrocarbon- DNA adducts in maternal and cord blood collected at delivery. Postnatal exposure was estimated by the
concentration of urinary polycyclic aromatic hydrocarbon metabolites at ages 3 or 5. Attention Deficit Hyperactivity
Disorder behavior problems were assessed using the Child Behavior Checklist and the Conners Parent Rating Scale- Revised.

Results: High prenatal adduct exposure, measured by elevated maternal adducts was significantly associated with all
Conners Parent Rating Scale-Revised subscales when the raw scores were analyzed continuously (N = 233). After
dichotomizing at the threshold for moderately to markedly atypical symptoms, high maternal adducts were significantly
associated with the Conners Parent Rating Scale-Revised DSM-IV Inattentive (OR = 5.06, 95% CI [1.43, 17.93]) and DSM-IV
Total (OR = 3.37, 95% CI [1.10, 10.34]) subscales. High maternal adducts were positivity associated with the DSM-oriented
Attention Deficit/Hyperactivity Problems scale on the Child Behavior Checklist, albeit not significant. In the smaller sample
with cord adducts, the associations between outcomes and high cord adduct exposure were not statistically significant
(N = 162).

Conclusion: The results suggest that exposure to polycyclic aromatic hydrocarbons encountered in New York City air may
play a role in childhood Attention Deficit Hyperactivity Disorder behavior problems.
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Introduction

Polycyclic aromatic hydrocarbons (PAH), such as benzo[a]py-

rene (B[a]P), are toxic air pollutants released during incomplete

combustion of fossil fuel, tobacco, and other organic material [1].

They are also found in the diet. In New York City (NYC) and

other urban areas, traffic and residential heating are major local

sources. There is also some contribution from coal-burning sources

in states upwind. Urban, minority populations in the U.S. often

have disproportionate exposure to air pollution and are at greater

risk for adverse health and developmental outcomes from this

exposure [2–5]. All of the mothers in the Columbia Center for

Children’s Environmental Health (CCCEH) NYC cohort had

detectable levels of PAH in prenatal personal air samples; 42%

had detectable levels of B[a]P-DNA adducts in maternal blood;

and 46% had detectable levels of B[a]P-DNA adducts in cord

blood. B[a]P is considered a representative PAH and is highly

correlated with other PAH class members [6]. PAH-DNA adducts

reflect individual exposure to PAH, integrating exposure over a 2–

3 month period [7]and via different routes (primarily inhalation

and ingestion). Adducts provide a biologic dosimeter as they not

only reflect inter-individual differences in exposure and uptake of

PAH but also in detoxification and DNA repair [8,9].

Because of the heightened susceptibility of the fetus and young

child, exposures to PAH and other environmental pollutants

during the prenatal and early postnatal stages are of particular

concern [10–13]. During the fetal period and early childhood

years, the brain is rapidly developing and vulnerable to neurotoxic

insults that may manifest as adverse outcomes in childhood and

adulthood [14,15]. Laboratory studies of PAH exposure during

the prenatal, neonatal, or adult periods have reported a range of

neurodevelopmental and behavioral effects, [16,17] including

hyperactivity [18,19]. In the present CCCEH cohort, prenatal

exposure to PAH measured by prenatal air monitoring or B[a]P-

DNA adducts in maternal or umbilical cord blood at delivery was

associated with developmental delay at age 3 [20], reduced IQ at

age 5 [21], and symptoms of anxiety/depression and attention

problems at ages 6–7 [6].

Attention-deficit/hyperactivity disorder (ADHD) is the most

common behavioral disorder diagnosed in children [22] and is

often accompanied by anxiety and depression [23–26]. In our

cohort, ADHD behavior problems and anxiety/depression at age

9 were significantly correlated (r = 0.43, p,0.0001). Children with

ADHD are at increased risk of substance abuse, conduct, and

mood disorders [27–30]. Family history, certain environmental

contaminants, alcohol use, maternal smoking during pregnancy,

pregnancy and delivery complications, and psychosocial adversity

have been implicated or identified as risk factors for ADHD

[31,32].

Prior data on air pollution and ADHD are suggestive. For

example, a cross-sectional study found an association between

ambient particulate matter (PM10) and childhood ADHD [33]. In

a longitudinal study, estimated exposure during infancy to

elemental black carbon, based on air sampling data and land

use regression modeling, was significantly associated with ADHD-

related symptoms [34]. Another cohort study reported an

association between attention and children’s lifetime exposure to

black carbon based on children’s residence and a spatiotemporal

model [35]. Ours is the first report of associations between

individual measures of early-life exposure to PAH pollutants and

ADHD behavior problems in children.

Methods

Sample selection
A complete description of the NYC cohort appears elsewhere

[20,36]. Briefly, African-American and Dominican women who

resided in Washington Heights, Harlem, or the South Bronx in

NYC, U.S., were recruited between 1998 and 2006 through local

prenatal care clinics. Enrollment was restricted to women who

were non-active cigarette smokers; ages 18–35; non-users of other

tobacco products or illicit drugs; free of diabetes, hypertension, or

known HIV; and who had initiated prenatal care by the 20th week

of pregnancy. The Institutional Review Board of the Columbia

University Medical Center approved the study. Mothers signed a

consent form, approved by the IRB, for themselves and their

children at the time of enrollment and at every subsequent visit.

The children sign an IRB-approved assent form beginning at age

7. The consent and assent forms are available in English and

Spanish and clearly explain the study goals and procedures.

The sample included in the present analysis is composed of the

children who had available data on at least one adduct measure

(maternal or newborn), the CPRS and the CBCL assessments, and

all covariates of interest (N = 250).

Maternal/child characteristics and home caretaking
environment

Demographic, health and environmental conditions. A

45-minute structured questionnaire was administered by a trained

bilingual interviewer during the last trimester of pregnancy to

obtain demographic information, residential history, and health

and environmental data such as active smoking (to confirm non-

active smoking status) and passive smoking [36]. The question-

naire also elicited information on dietary PAH (consumption of

broiled, fried, grilled or smoked meat), and socioeconomic

information related to income and education. Postnatal interviews

were administered in person at 6 months and annually thereafter

to determine changes in residence, exposure to environmental

tobacco smoke (ETS), and health and environmental conditions.

Maternal demoralization. Maternal demoralization, a

measure of maternal nonspecific psychological distress that has

been linked to neurodevelopment [37–39], was measured at each

visit by the Psychiatric Epidemiologic Research Instrument

Demoralization Scale (PERI-D) [40].

Non-verbal intelligence. The Test of Non-Verbal Intelli-

gence-Second Edition (C-TONI-2) [41] was administered to the

mothers when the child was about 3 years old.

Home assessment. Caldwell and Bradley’s Home Observa-

tion for Measurement of the Environment (HOME) [42] was

administered in the home by research workers, also when the child

was about 3 years old, to assess physical and interactive

characteristics of the child rearing environment.

Maternal ADHD. At the child’s 7 year visit, mothers

completed the Conners Adult ADHD Rating Scales (CAARS)

[43]. Given the high heritability rate of ADHD [44], maternal

ADHD symptoms on the CAARS were included as a covariate in

our analyses.

Child anxiety/depression. Childhood ADHD and anxi-

ety/depression are frequently comorbid conditions [24]. The

continuous score for symptoms of anxiety/depression on the

CBCL at age 9 [45] was included as a covariate.

Independent variables
Prenatal exposure: PAH-DNA adducts. Following delivery,

maternal blood and umbilical cord blood samples were

collected. Within several hours following collection, samples were
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transported to the CCCEH Molecular Epidemiology Laboratory,

processed, and stored at 270uC. B[a]P–DNA adducts in extracted

white blood cell DNA were analyzed using the high performance

liquid chromatography (HPLC)/fluorescence method which de-

tects B[a]P tetraols [12,46]. Not all participants had adequate

DNA quantity for adduct analysis.

Postnatal exposure: urinary PAH metabolites. At the

CDC, a suite of PAH metabolites was measured in spot urine

(collected from the child at ages 3 and 5) using automated liquid-

liquid extraction and gas chromatography/isotope dilution high-

resolution mass spectrometry [47–49]. Although PAH urinary

metabolite have a short lifetime (half-life of 6–35 hours) [50], in

conditions of chronic exposure they provide a useful measure of

exposure to PAH [47,48]. Specific gravity (SG) measurements

were used to control for urinary dilution of the samples using the

following formula: freshweight metabolites for the subject*(mean

SG-1)/(SG for that subject-1) [51,52].

Behavioral outcomes
ADHD behavior problems were assessed using two comple-

mentary parent-report instruments: the CBCL for ages 6–18

(CBCL) [53] and the CPRS- Revised: Long Version [54]. The

CBCL is a screening instrument assessing childhood competencies,

adaptive functioning, and problems [45]. The CPRS is a focused

assessment of childhood ADHD and its common comorbid

disorders [54,55]. Both are widely used instruments that measure

ADHD problems and attention function and have been used to

study their associations with diverse environmental contaminants

[56–59]. Both instruments yield scales derived from the DSM-IV

[60] that are intended to screen for ADHD-behavior problems

and indicate those children requiring follow-up. Mothers self-

administered the 80-item CPRS [54] and the 118-item CBCL [53]

when their children were 9 years old, under the guidance of

trained research workers. Outcomes analyzed included the CBCL

DSM-oriented Attention Deficit/Hyperactivity Problems scale,

and the CPRS ADHD Index and DSM-IV subscales (denoted as

‘‘Total’’, ‘‘Inattentive’’, and ‘‘Hyperactive-Impulsive’’). The ‘‘To-

tal’’ DSM-IV measure comprises the ‘‘Inattentive’’ and ‘‘Hyper-

active-Impulsive’’ subscales. For both instruments, the child’s

responses were scored and summed to a raw score. T-scores were

derived from raw scores based on the normative comparison

sample as described in the administration manual and used to

determine the child’s classification [53,54]. On the CBCL DSM-

oriented Attention Deficit/Hyperactivity Problems score, children

above the 93rd percentile were classified as ‘‘borderline clinical’’,

and those below the 93rd percentile were classified in the normal

range [53]. The CPRS DSM-IV subscales and ADHD Index

scores were dichotomized based on the classification of a T score

.65 as ‘‘moderately to markedly atypical’’ and a T score #65 as

‘‘in the normal range’’ [54].

Statistical Analysis
As in prior analyses [6], adduct levels were dichotomized as

detectable/non-detectable (‘‘high/low’’), with detectable levels

observed in 42% of maternal and 46% of cord blood samples in

the whole cohort. Dichotomization of exposure variables is less

vulnerable to measurement error and permits comparison of the

most highly exposed children to children with lower exposure. In

our analyses, (1-hydroxynaphthalene, 2-hydroxynaphthalene,

2-hydroxyfluorene, 3-hydroxyfluorene, 9-hydroxyfluorene, 1-

hydroxyphenanthrene, 2-hydroxyphenanthrene, 3-hydroxyphe-

nanthrene, 4-hydroxyphenanthrene) were summed to provide a

composite measure denoted ‘‘PAH metabolites’’. PAH metabolites

in child urine at ages 3 or 5 were dichotomized at the respective

medians for the entire cohort and treated as ‘‘high/low’’. In terms

of data analysis, the age 5 metabolite level was preferentially

selected, but if that measure was missing, the age 3 metabolite level

was used. In secondary analyses, adducts and PAH metabolites

were also treated as a continuous variable after log transformation.

Covariates were selected based on whether they were significant

contributors to the model (at p#0.1) for at least one of the

outcomes and included: prenatal ETS exposure, child’s sex, child’s

ethnicity, child’s gestational age, mother’s intelligence, mother’s

completed years of education prior to birth of the child, maternal

prenatal demoralization, maternal ADHD symptoms, child’s exact

age at assessment (in months), the quality of the early home

caretaking environment, and season at time of monitoring (heating

vs. non-heating) (Table 1). We further adjusted for child anxiety/

depression at age 9 since it is a well-documented comorbid

condition with ADHD and symptoms overlap [24]. Moreover, we

have previously found associations of PAH with child anxiety/

depressive symptoms [6]. Dietary PAH, measured prenatally

during the third trimester, was not a predictor of outcomes at

p#0.1. The associations between the dichotomized PAH exposure

variables and continuous raw scores and dichotomized T scores

for ADHD-related behavior were analyzed by Poisson and logistic

regression, respectively.

Results

Maternal and cord adducts were not significantly correlated

with prenatally air monitored PAH, ETS, or dietary PAH.

Table 1 presents the socio-demographic, outcome, and expo-

sure characteristics of the children who had available data on

maternal or cord adducts, stratifying on whether or not they had

data on neurobehavioral outcomes and covariates of interest and

were thus included (N = 250) or not included (N = 364) in the

analysis. The two groups were similar except that the group

included had a higher proportion of females and were younger at

the CPRS assessment, though all assessments were given at

approximately age 9. The level of adducts and percentage

characterized as high vs. low did not differ between those included

and not included. Comparing the group included (N = 250) with

those children who did not have maternal or cord adduct data

(N = 111), there were differences in terms of exact age at

assessment for the CBCL and CPRS, home inventory scores,

and percentage of mothers that had completed high school (data

not shown).

Table 2 summarizes the distribution of CBCL and CPRS scores

in the entire sample. Table 3 shows the number of children in the

borderline or clinical range on the CBCL, and the number in the

moderately to markedly atypical range on the CPRS. Consistent

with other studies, there was substantial overlap between the

number of children categorized in the moderately to markedly

atypical range on the Hyperactive-Impulsive and Inattentive

problems, as shown in Figure 1.

Table 4 summarizes the associations between maternal

(N = 233) and cord adduct (N = 162) exposure and CBCL DSM-

oriented Attention Deficit/Hyperactivity problems and all CPRS

outcomes, adjusting for postnatal PAH exposure and selected

covariates. When considering outcomes analyzed as continuous

raw scores, all CPRS subscales were positively and significantly

associated with high maternal adduct exposure. After dichotomiz-

ing the outcome measures, those with high maternal adducts had

odds of being categorized as moderately to markedly atypical on

the DSM-IV Inattentive and DSM-IV Total scales 5.06 (95% CI

[1.43, 17.93]) and 3.37 (95% CI [1.10, 10.34]) times greater than

those with low maternal adducts. High maternal adduct exposure

Early-Life Exposure to Polycyclic Aromatic Hydrocarbons and ADHD
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was also significantly and positively associated with the CDCL

DSM-oriented Attention Deficit/Hyperactivity Problems scale,

though results did not reach statistical significance.

In separate models with log transformed adduct and metabolite

values as the exposure variables, the direction and significance of

the associations between adducts and outcomes were the same as

the models with the dichotomized exposure with the exception of

the CBCL DSM-oriented attention deficit hyperactivity scale raw

score and CPRS DSM-IV Total scale raw score, which became

borderline significant (p = 0.06, and p = 0.08, respectively) (data

not shown).

Parallel analyses in the smaller number of subjects with

available cord adduct data (N = 162) exposure found non-

significant or borderline significant associations with all outcomes

(Table 4).

Discussion

The present results suggest that high prenatal exposure, taking

into account the potential effects of postnatal PAH exposure, may

Table 1. Characteristics of the children included in the analysis and those not included due to missing data.

Subjects included in
the analysis (N = 250)a

Subjects not included in
the analysis (N = 364)b

Variables Mean 6SD or % Mean 6SD or % p-value

High maternal adductsc 37.34% 44.25% 0.10

High cord adductsc 39.51% 49. 37% 0.07

High urinary PAH metabolites at ages 3 or 5d 49.20% 55.07% 0.22

Log-transformed urinary PAH metabolites at ages 3 or 5e 9.0260.89 9.0360.80 0.86

Log-transformed maternal adduct (per 108 nucleotides) 21.7360.47 21.6860.48 0.20

Log-transformed cord adduct (per 108 nucleotides) 21.6760.53 21.5960.53 0.13

CBCL DSM-oriented Attention Deficit/Hyperactivity Problems (% with
borderline or clinical diagnosis)f

7.20% 10.66% 0.32

CPRS subscales (% categorized as moderately to markedly atypical)g

ADHD Index 8.40% 7.87% 1.00

DSM-IV Inattentive 8.40% 5.51% 0.41

DSM- IV Hyperactive- Impulsive 10.80% 14.17% 0.40

DSM-IV Total 10.40% 7.87% 0.47

Prenatal ETS exposure (% yes) 33.20% 37.36% 0.30

Child sex (% female) 57.60% 48.35% 0.03*

Child ethnicity (AA%)h 40.00% 33.24% 0.09

Gestational age (in weeks)i 39.3561.37 39.3461.44 0.94

Maternal intelligencej 20.8268.78 20.2568.62 0.47

Maternal education (%$ high school education) 64.80% 59.83% 0.24

Maternal demoralization score 1.1560.61 1.1860.67 0.67

Maternal ADHD (CAARS ADHD index raw score)k 38.7968.87 37.6767.16 0.15

CBCL age (in months)l 108.0161.83 108.7864.60 0.14

CPRS age (in months)l 107.96±2.02 109.15±4.97 0.03*

Home environmentm 40.0965.94 39.3366.09 0.18

Heating season (% yes)n 54.0% 56.52% 0.64

Child anxiety/depression (CBCL anxiety/depression raw score)o 2.7463.02 2.5362.80 0.53

aSubjects were included if they had data for maternal adducts and/or cord adducts, as well as data on CBCL, CPRS outcome and all covariates of interest.
bSubjects not included are those that had available data on cord and/or maternal adducts but were missing data on the CBCL, CPRS outcomes and/or any covariates
included in the final model.
cAdduct levels were dichotomized as detectable/non-detectable (‘‘high/low’’).
dPAH metabolites in child urine at ages 3 or 5 were dichotomized at the respective medians (‘‘high/low’’).
eChildren with urinary PAH metabolite measurement at ages 3 or 5.
fBased on T score. Borderline or clinical defined as percentile $93rd.
gBased on T score. Moderately to markedly atypical defined as T-score .65.
hPercent African American; the remainder are Dominican.
iBased on medical record data.
jNonverbal intelligence measured by the TONI-2.
kMeasure of maternal ADHD.
lAge at administration.
mHOME Inventory as a measure of the home caretaking environment.
nThird trimester in heating season.
oBased on CBCL Anxious/Depressed Syndrome Scale measured at age 9.
*p-value ,0.05.
doi:10.1371/journal.pone.0111670.t001
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increase the risk of ADHD behavior problems. ADHD is a

disorder that is known to impact school performance, social

relationships, and occupational performance [61–66]. In the U.S.

the annual societal cost of illness for ADHD is estimated to be

between $36 and $52 billion, and the annual cost per individual is

estimated to be $12,005 to $17,458 (2005) [67,68].

To our knowledge, there have been no prior epidemiological

studies on the role of pre- and post-natal PAH exposure, here

measured by chemical-specific biomarkers, on ADHD in school-

age children. Prior experimental research and limited epidemio-

logical studies have suggested links between PM and air pollution

(elemental carbon and black carbon) and ADHD symptoms [33–

35]. In the present longitudinal study high maternal adduct levels

were not significantly associated with Attention Deficit/Hyperac-

tivity problems on the CBCL screening test, but on the more

detailed CPRS, consistently significant associations with a number

of ADHD-related outcomes were seen. In particular, significant

associations between high maternal adducts and the DSM-IV

Total and DSM-IV Inattentive scales were observed in models

treating CPRS scores as continuous and dichotomous outcomes.

Consistency in the results across both of these outcome measures

strengthens the conclusion that inattention is associated with

prenatal PAH exposure.

The maternal and cord adducts were significantly but only

modestly correlated (r = 0.28, p,0.0001), probably because of the

immaturity of the metabolic/detoxification and DNA repair

systems in the fetus compared to the adult [69] and the differing

genetic profiles of the mother and the child. The stronger

relationship between the maternal adducts and ADHD-related

outcomes than between the cord adducts and the same outcomes

could be attributable to the effects of exposure on placental

function and/or the fact that high levels of maternal adducts

indicate that the mother has been highly exposed and is an

efficient activator of PAH, resulting in higher transplacental

exposure to reactive PAH intermediates. We used urinary PAH

metabolites to assess postnatal exposure. This biomarker has been

employed in many studies as an indicator of PAH exposure in the

general population [70]. Although they represent recent exposure

[71], the metabolites can provide a chronic measure of ambient

PAH in populations with constant exposure [72].

The mechanisms by which PAH exposure might affect the

developing brain are not fully understood. Several pathways have

been suggested including endocrine disruption [73–75], binding to

receptors for placental growth factors resulting in decreased

exchange of oxygen and nutrients [76], binding to the human Ah

receptor to induce P450 enzymes [77], DNA damage resulting in

activation of apoptotic pathways [78–80], oxidative stress due to

inhibition of the brain antioxidant scavenging system [81], and

epigenetic alterations [82]. The prenatal period is critical because

of the extensive structural and cellular-level changes that occur

during this stage of development. However, because brain

development and growth occurs throughout childhood, postnatal

exposures to environmental pollutants may also affect children’s

neurodevelopment and behavior [83].

The strengths of the study include our ability to account for a

number of potential confounding variables and to draw upon

Table 2. Distribution of CBCL and CPRS Scores in children at age 9 (N = 250a).

Score Range Mean of Scores
Percent in Borderline or clinical or
Moderately to markedly atypical rangeb

Outcomes T Score Raw Score T score Raw score

CBCL DSM-oriented Attention Deficit/
Hyperactivity Problems

50–80 0–14 53.9 3.1 7.2

CPRS subscales

ADHD Index 40–89 0–34 49.8 6.4 8.4

DSM-IV Total 40–90 0–48 50.8 9.2 10.4

DSM-IV Hyperactive- Impulsive 41–90 0–25 52.8 4.7 10.8

DSM-IV Inattentive 40–88 0–25 48.9 4.5 8.4

aChildren included in analysis with all covariates.
bCBCL ‘‘borderline or clinical’’ defined as percentile $93rd; CPRS ‘‘moderately to markedly atypical’’ defined as T-score .65.
doi:10.1371/journal.pone.0111670.t002

Table 3. Number of children scoring in the borderline or clinical range on the CBCL and in the moderately to markedly atypical
range on the CPRS in the analyses with maternal adducts or cord adductsa.

Maternal Adducts (N = 233) Cord Adducts (N = 162)

CBCL DSM-oriented Attention Deficit/Hyperactivity Problems (Borderline or clinicalb) 18 15

CPRS subscales (Moderately to markedly atypicalb)

ADHD Index 20 14

DSM-IV Total 25 19

DSM-IV Hyperactive Impulsive 26 19

DSM-IV Inattentive 20 15

aChildren included in analysis with all covariates.
bCBCL- Borderline or clinical defined as percentile $93rd; CPRS- Moderately to markedly atypical defined as T-score .65.
doi:10.1371/journal.pone.0111670.t003
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individual pre- and post-natal exposure data from biomarker and

questionnaire data. We were able to use two complementary age-

appropriate instruments to measure ADHD–related behaviors.

The CBCL screens for various childhood behavior problems,

including ADHD [53]. The CPRS tests specifically for ADHD and

related problem behaviors and is intended to be more diagnostic

than the CBCL [54]. Due to the prospective nature of our cohort

study we were able to assess the association between environmental

exposures sustained prenatally and future development of

ADHD-related behaviors in childhood.

A limitation of the study is that unmeasured factors such as other

pollutants, stress, and noise may have contributed to residual

confounding. In addition, the number of children with moderately

to markedly atypical outcomes on the CPRS (cases) was small,

resulting in fairly wide confidence intervals around the odds ratios.

However, the confidence intervals around the effect estimates for

the continuous outcomes are much tighter. Although of interest, we

Table 4. Associations between PAH Exposure and CBCL DSM-oriented Attention Deficit/Hyperactivity problems and ADHD
Behavior Problems on the CPRS Subscales adjusting for postnatal exposurea.

Maternal Adduct (N = 233) Cord Adduct (N = 162)

Outcomes analyzed continuously

badducts(95% CIb) badducts (95% CIb)

CBCL DSM-oriented Attention Deficit/Hyperactivity Problems 0.13 (20.03, 0.29) 20.04 (20.23, 0.15)

CPRS subscales

ADHD Index 0.14 (0.03, 0.25)* 20.06 (20.19, 0.07)

DSM-IV Total 0.16 (0.07, 0.26)* 0.009 (20.10, 0.12)

DSM-IV Hyperactive-Impulsive 0.16 (0.03, 0.29)* 0.10 (20.05, 0.26)

DSM-IV Inattentive 0.17 (0.04, 0.31)* 20.09 (20.25, 0.06)

Outcomes analyzed dichotomouslyc

ORb (95% CIb) ORb (95% CIb)

CBCL DSM-oriented Attention Deficit/Hyperactivity Problems 1.48 (0.38, 5.79) 1.17 (0.24, 5.66)

CPRS subscales

ADHD Index 1.83 (0.61, 5.54) 0.93 (0.22, 4.01)

DSM-IV Total 3.37 (1.10, 10.34)* 1.70 (0.47, 6.17)

DSM-IV Hyperactive-Impulsive 1.58 (0.55, 4.52) 1.04 (0.30, 3.61)

DSM-IV Inattentive 5.06 (1.43, 17.93)* 1.32 (0.31, 5.56)

aAdjusting for postnatal PAH exposure (measured by metabolites at ages 3 or 5, adjusted for specific gravity), prenatal ETS, child sex, maternal education, child ethnicity,
gestational age, maternal demoralization, heating season, HOME caretaking environment, maternal intelligence, child age at assessment, maternal ADHD, child anxiety/
depression at age 9.
bOR stands for odds Ratio; CI stands for Confidence Interval.
cCBCL- Borderline or clinical defined as percentile $93rd; CPRS- Moderately to markedly atypical defined as T-score .65.
*p-value ,0.05.
doi:10.1371/journal.pone.0111670.t004

Figure 1. Number of children categorized as moderately to markedly atypical on the CPRS DSM-IV Hyperactive Impulsive and CPRS
DSM-IV Inattentive Subscalesa.
doi:10.1371/journal.pone.0111670.g001
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did not have complete data on exposure to lead or mercury and

were unable to account for this in our models. We were also unable

to evaluate the effects of individual postnatal PAH metabolites that

may have differing toxicities; however benzo[a]pyrene is an

important, toxic member of the class of PAH. Finally, generaliz-

ability was reduced by the ethnicity restriction of our cohort

(African-American and Dominican) and our exclusion of active

smokers, illicit drug users, and women with pre-existing disease.

Conclusions

In conclusion, this study provides evidence that early exposure

to environmental PAH may contribute to ADHD behavior

problems in children. The results require confirmation but are

of concern since children with ADHD are at greater risk of risk-

taking behaviors [84], poor academic performance [85], and lower

earnings in adulthood [86,87]. ADHD imposes large costs on

society, estimated to range between $36 billion and $52 billion

annually [67,68].

PAH are widespread in urban environments worldwide largely as

a result of fossil fuel combustion. Fortunately, it is possible to reduce

airborne PAH concentrations using currently available pollution

controls, greater energy efficiency, the use of alternative energy

sources, and regulatory intervention to control polluting sources.
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