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Abstract 

The scarcity of cost-effective patient identification methods represents a significant barrier to clinical research. 

Research recruitment alerts have been designed to facilitate physician referrals but limited support is available to 

clinical researchers. We conducted a retrospective data analysis to evaluate the efficacy of a real-time patient 

identification alert delivered to clinical research coordinators recruiting for a clinical prospective cohort study.  

Data from log analysis and informal interviews with coordinators were triangulated. Over a 12-month period, 

11,295 were screened electronically, 1,449 were interviewed, and 282 were enrolled.  The enrollment rates for the 

alert and two other conventional methods were 4.65%, 2.01%, and 1.34% respectively. A taxonomy of eligibility 

status was proposed to precisely categorize research patients. Practical ineligibility factors were identified and their 

correlation with age and gender were analyzed. We conclude that the automatic prescreening alert improves 

screening efficiency and is an effective aid to clinical research coordinators. 

Introduction 

Clinical research is an important step for translating basic biomedical discoveries into knowledge that will 

benefit clinical practice and human health.  However, delays in patient recruitment can impair the ability of 

researchers to conduct clinical trials, the most influential form of clinical research. These delays are widespread: 

86% of clinical trials are delayed in patient recruitment for up to 6 months and 13% are delayed for more than 6 

months
1,2

.  Recruitment delay is also expensive: in a recent large, multi-center trial, about 87 staff hours and more 

than $1,000 were spent to enroll each participant
3
.  Inefficient enrollment can also restrict access to studies: up to 

60% of patients can miss being identified to be studied
4,5

. An important factor in inefficient patient recruitment is the 

significant research staff time spent searching patient charts for information to compare with eligibility criteria.  The 

rapidly expanding deployment of Electronic Health Records (EHR) invites solutions for automatically identifying 

potentially eligible patients using the rich data in EHR. We will refer to this process as E-screening hereafter.  E-

screening can exclude ineligible patients and recommend a much smaller target patient pool for manual review so 

that clinical research personnel can switch from ―random browsing mode‖ to ―focused and facilitated review mode‖ 

and work on only potentially eligible patients
6
.   

E-screening solutions have been designed for various stakeholders, including investigators, patients, and 

physicians, each relying on different data sources or decision support mechanisms. E-screening solutions largely fall 

into the following 4 categories: (1) computerized research protocol systems, such as T-Helper
7
, EligWriter

8
, DS-

TREL
9
, and OncoDoc

10
, which help investigators or research coordinators to determine the eligibility of a patient 

using formal computable models of eligibility criteria; (2) web-based patient-enabling systems that match patients to 

research studies, such as caMatch
11

, ASPIRE
12

, TrialX
13

, and ResearchMatch
14

; (3) EHR-based recruitment alerts, 

such as those developed by Embi et al. that enable a physician to refer a patient to researchers when that patient’s 

EHR data meet trial eligibility criteria
15,16

; and (4) mass screening decision support for clinical researchers using 

clinical data repositories
6,17-21

.  

While these systems have great potential, their practical usefulness and feasibility has rarely been reported.  For 

researchers to choose a particular system for a cohort study or a trial, evidence must be available about its feasibility. 

The benefits and drawbacks of each system need to be elucidated to better enable researchers to choose the E-

screening system most appropriate for a particular study. Moreover, as Califf and others pointed out, clinical 

research sites are the underused component in the clinical research enterprise
22

 but are critical to community-based 

clinical research that can reduce health disparities. Co-author Bigger and others have reported the laborious 

workload and inefficient workflow among overextended clinical research coordinators
23-25

.  Nevertheless, enabling 

technologies for clinical research coordinators are still rare, as is knowledge about their unmet information and 

decision support needs.   
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We previously evaluated the use of a clinical data repository for identifying potentially eligible patients for the 

large randomized clinical trial ACCORD
6
.  By emphasizing high negative predictive accuracy for recruiting from a 

highly prevalent diabetic population, our E-Screening method reduced manual review effort for clinical research 

coordinators by 80% without missing any eligible patients.  As an extension to that study, this paper reports an 

evaluation of the utility and efficacy of an automated, clinical data repository-based patient prescreening alert 

delivered to clinical research coordinators intended to facilitate real-time patient contact and eligibility 

determination.  In the course of conducting one of the early log analyses of informatics interventions for clinical 

research screening and recruitment, we also identify the most frequent factors causing patient ineligibility and the 

possible ratios among patients at different eligibility status.  This knowledge can inform future efforts supporting 

clinical research feasibility assessment.    

Method 

1. Study Setting  

We studied the real-time prescreening alerts applied to an Institutional Review Board (IRB)-approved, National 

Institutes of Health-sponsored observational prospective cohort study entitled Prescription Use and Lifestyle 

Evaluation study (PULSE), a study of post-Acute Coronary Syndrome (ACS) inpatients at the Center for 

Interventional Vascular Therapies of the Columbia University Medical Center (CUMC)/NewYork Presbyterian 

Hospital.  The former is a world-renowned center with over 27,000 cardiac patients admitted annually. The hospital 

census data shows that about 6,100 patients are diagnosed with ACS annually.  With this large study, we plan an 

aggressive recruitment schedule of 1,400 participants in three years or nine participants per week.  The recruitment 

started in January 2009 and is still ongoing. Because PULSE’s exclusion criteria included medical conditions, e.g., 

non-acute coronary syndrome (NACS), troponin levels, and EKG changes, the IRB deemed it impractical to contact 

and obtain consent from potential research participants before a catheterization procedure to examine these medical 

exclusions. Thus, we received a HIPAA waiver to screen EHR before patient contact. After medical exclusions were 

examined, potential research participants were approached for consent to continue eligibility screening.  

2. The Informatics Infrastructure 

Our informatics infrastructure for clinical research recruitment consists of two components. One is a 

comprehensive clinical data repository, which includes registration information, ICD-9 diagnosis, laboratory results, 

medication orders, and ancillary clinical notes. It is equipped with an advanced and flexible semantic integration 

technology, the Medical Entities Dictionary
26

.  CUMC has been using the clinical data repository to support 

administration and research for more than 20 years
27

.   

The second component is a decision support system called Vigilens that is responsible for monitoring clinical 

events in real time and generating alerts at New York-Presbyterian Hospital (NYP). The repository feeds data to 

Vigilens, which was designed to complement existing hospital clinical information systems (e.g., WebCIS and 

Eclipsys) and currently provides a set of disparate asynchronous alerts to NYP providers. The architecture of 

Vigilens offers the abilities to interface with various sources of clinical data, apply both simple and complex logic to 

these data, and customize alert delivery to healthcare providers. Vigilens includes three core functions: (1) event 

manager, which interfaces with various sources of clinical data (e.g., HL7 data feed or the clinical data repository); 

(2) execution engine, which applies logic or rules to input data; and (3) message router, which delivers alerts to 

healthcare providers. Vigilens can be triggered by various clinical events, such as admit-discharge-transfer, the 

storage of laboratory results, the storage of reports from ancillary departments, and the processing of pharmacy 

orders. Vigilens can also query both coded data and narrative notes using user-supplied ICD-9 codes, medication 

names, diagnoses, and keywords that are present in clinical notes.  Based on the events and data, Vigilens can 

generate user-customized alerts and deliver them via email.  

While Vigilens was originally designed and used as a clinical decision support alerting system, our study used 

Vigilens and the clinical data repository as a recruitment tool to detect patients with ACS in real time. To facilitate 

real-time patient contact in concert with the workflow of the clinical research coordinators, Vigilens was configured 

to send three screening result emails per day at 6am, 10am, and 2pm to the two research coordinators (TB and CB).  

The emails did not contain any of the 18 protected health information elements specified by HIPAA except for a link 

to a secure, password-protected web site, where coordinators could log in to obtain patient identifiers. We used 

cron
28

, the UNIX scheduler, to execute the SQL query of clinical data for patient screening regularly.  The SQL 

statement that interrogates the clinical research repository for elevated troponin is (command to run program with 

input parameters: java EM/Sched_Inpat_Lab_Alert TROPONIN 68168 1 0.4):  
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query = "select me.mrn, pc.primary_time, pc.num_value, me.location" + 

        " from u.management_event me, u.PROCEDUREA pa, u.PROC_COMPA pc" + 

        " where me.EVENT_CODE in (32483,32467,32472,32468) and me.EVENT_STATUS = 'A'" + 

     " and me.LOCATION in ('M5CC','M5GN','M5GS','M5HN','M51C','M8HN','M8HS','M9HN','M9HS','EXXX')" + 

        " and me.ORGANIZATION = 1000" +  

        " and me.MRN = pa.MRN" + 

        " and pa.PRIMARY_TIME > me.PRIMARY_TIME" + 

        " and pa.MRN = pc.MRN" + 

        " and pa.PRIMARY_TIME = pc.PRIMARY_TIME" + 

        " and pc.VALUE_TYPE = 1180" +  

        " and pc.NUM_VALUE >= " + highRange + 

        " and  pa.update_time between '" + endDate + "' AND current timestamp " + 

        " and pc.comp_code in (" + 

        "   select ml.des" + 

        "     from u.med_lineage ml" + 

        "     where ml.anc = " + medcode + ")" + 

        " order by me.mrn,pc.primary_time with UR"; 

 

Reusing EHR data for cohort identification is a non-trivial process; heterogeneous semantic representations 

pose significant challenges. To identify ACS patients, the research coordinators supplied to the Vigilens software 

developer information about ACS symptoms (e.g., chest pain), frequent wording used by clinicians, the signs (e.g., 

elevated troponin), and the common ACS-specific medications, as well as the ICD-9 codes group.  The developer 

further translated this information into the corresponding semantic representations in our EHR to construct data 

query logic.  For example, linguistic variations such as ―chest pain‖ and ―cp‖ were both used to query chest pain 

cases in our clinical notes, and medication names were translated into Medical Entities Dictionary codes to query 

our structured table for medication orders. 

Of note is that since the onset of this study, the research coordinators have been using an iterative process to 

improve Vigilens alerts precision.  They review the records and, over time, accumulate knowledge about possible 

ways to document ACS and chest pain so that they can regularly provide such feedback to the Vigilens developer to 

improve its screening accuracy through the study.  Therefore, rather than using machine learning, research 

coordinators implement a ―human-computer collaboration‖ model to provide timely user feedback to improve 

Vigilens accuracy for identifying ACS patients.  

3. Research Screening Workflow 

The major inclusion criteria for this study were age ≥ 18, diagnosis of ACS defined as either unstable angina or 

myocardial infarction (MI), and physical and mental fitness to participate in the study.  Figure 1 shows our overall 

screening workflow, which consists of two phases: initial screening for identifying patients who meet the age and 

ACS criteria, followed by a coordinator interview to determine patients’ physical and mental status by inquiring 

about more exclusion criteria, as well as their willingness to participate in the study. Initial screening identifies 

potential research participants and determines their medical eligibility.  Medically eligible patients complete 

screening consent for determination of overall eligibility and safety.  Completely eligible patients complete full 

consent and become participants in the study. Our prior studies have shown that due to missing and inaccurate data 

in EHR
29

, not all patients identified by initial screening are eligible
6,17

. Therefore, to improve accuracy, initial 

screening was further divided into two sub-phases: (1) identification of a group of patients who are potentially 

eligible; and (2) manually reviewing the EHR of these patients to confirm their eligibility for ACS and to identify 

those who are approachable.  

Three electronic information sources were used during initial screening: (1) lists of potentially eligible patients, 

generated three times a day by the automated Vigilens alerts, which automatically and regularly query the clinical 

data repository searching for ACS cases, emailed to coordinators; (2) daily admission lists of patients visiting 

CUMC’s cardiac clinical units (Floor list); and (3) daily lists of patients who have undergone a catheterization 

(CATH) procedure that day. The first source is ―pushed‖ to the coordinators, while the latter two contain limited 

information and require the coordinators to ―pull‖ information from EHR. All the three information sources save the 

patient identifiers on a secure server that requires authorized access. Every day, the coordinators reviewed the EHR 

of those patients identified by the above three information sources to determine the presence of ACS, identify those 

patients who were approachable, and document each patient’s eligibility status in a recruitment log. We have 
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previously developed a taxonomy to illustrate patient status transitions during screening and recruitment processes
17

.  

In this study, we extended the taxonomy to account for the two-stage consent process: consent to be screened by 

coordinators and consent to participate in the study.   

 

Figure 2 shows our patient status transition diagram that includes 9 possible statuses for patients: (1) temporarily 

ineligible, (2) definitely ineligible, (3) potentially eligible (which also means not ineligible), (4) approachable, (5) 

consented to be fully screened, (6) declined to participate, (7) eligible, (8) consented to participate, and (9) enrolled. 

 

 

 

 

Figure 1.  The patient screening and recruitment workflow. 
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Figure 2.  The patient status transition diagram. 
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4.  Data Collection and Analysis 

We obtained the recruitment log from the research coordinators (TB and CB).  It comprised all patients 

screened between January 2009, the beginning of the study, to December 31, 2009.  For each patient, the log 

contained basic demographic information, identification source, eligibility status, reasons for ineligibility if so, and 

final enrollment status.  We also used the Think-aloud Protocol
30

 to conduct an informal interview with the two 

research coordinators.  Questions included: (1) ―what data, knowledge, and steps are involved to confirm if a patient 

has ACS using EHR‖; (2) ―how would you rank the three information sources used during initial screening (i.e., 

alerts, CATH list, and clinical unit admission lists) in the order of preference‖; and (3) ―what is the procedure to 

determine eligibility after initial screening?‖ Triangulation of these quantitative and qualitative data allowed us to 

answer the following questions: 

1. What is the comparative efficacy of the three methods used for initial screening: Vigilens alerts, CATH 

patient list, and clinical unit admission list? 

2. What are the most common factors causing patient ineligibility? 

3. What is the utility of real-time screening alerts for clinical research coordinator?  

4. What is the duration of each step in the workflow for one patient (Figure 1)?  

5. What additional information and decision support do research coordinators need? 

We generated descriptive statistics and derived the major information needs of research coordinators.   We 

shared these results with the research coordinators, who confirmed our interpretation. 

Results 

Over a 12-month period, 11,295 patients were identified by research coordinators, 1,449 were approached, 359 

consented to receive full screening, 295 were enrolled, and 282 remained eligible in the study.  The precision of 

Vigilens alerts was significantly higher than that of the patient lists search.  This precision increased during the study 

as the research coordinators adjusted Vigilens with increasingly accurate queries.  Next, we describe the overall 

recruitment results, the major factors causing patient ineligibility, and the coordinator feedback regarding the utility 

of Vigilens alerts.  

1. Qualitative Study Results 

Among the three screening methods, our research coordinators ranked the Vigilens alerts as the most efficient 

for its real-time and automatic delivery, followed by the CATH list search and clinical unit admission list search.  

All patients identified by the Vigilens alerts already had their information in our clinical data repository and thus 

were easily accessible by the coordinators to review to confirm their eligibility.  In contrast, not all patients admitted 

to our hospital and logged in the clinical unit admission list had their complete EHR in our system, as they may have 

been primarily treated elsewhere; therefore, the coordinators often spent much time searching for these patients’ 

information.  Similarly, it was easier for our coordinators to contact the primary care providers of patients identified 

by Vigilens than by the other two information sources.  Moreover, Vigilens can be easily adapted to query other 

cases, but not all cases had a corresponding clinical unit admission or procedure such as CATH that allowed for 

patient identification.  The Vigilens alerts had more flexibility and extensibility than the other two sources.  

2. Quantitative Study Results 

Table 1 shows the 14 primary factors causing patient ineligibility across the three methods, including absence 

of ACS (86.87%), refusal to participate in the study (2.32%), not showing  up after referral (2.07%), presence of 

alcohol and substance abuse (0.94%), inability to follow-up with the study (0.95%), language barriers (0.68%), 

cognitive problems (0.53%), psychological problems (0.36%), terminal illness (0.31%), age too old (0.04%), and 

incarceration (0.03%). There were no significant gender differences in each ineligibility factor except that females 

were less capable of following up with the study and were more likely to have cognitive or mental problems. Males 

were more likely to be excluded for alcohol abuse. All three methods had relatively low specificity (i.e., majority are 

false positives or having no ACS), although the specificity of the Vigilens alerts (19%) was more than twice that of 

the other two information sources (8.4% for CATH list search and 9.4% for clinical unit admission list search).  
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Table 1.  Patients of different eligibility status across the 3 methods 

Reasons to be ineligible 
(except for the last row) 

CATH Clinical Vigilens Alerts 

1. No ACS 5,199 91.66% 611 91.06% 3,644 80.27% 

2. Not ACS per Study 11 0.19% 0 0.00% 40 0.88% 

3. Terminal Illness (e.g., cancer) 4 0.07% 3 0.45% 27 0.59% 

4. Language Barriers 26 0.46% 3 0.45% 45 0.99% 

5. Age (Too old to enroll) 0 0.00% 0 0.00% 4 0.09% 

6. Patient Refusal 86 1.52% 10 1.49% 157 3.46% 

7. Referred, Not Seen 120 2.12% 11 1.64% 94 2.07% 

8. Unable to come for follow-up 36 0.63% 6 0.89% 61 1.34% 

9. Alcohol or Substance Abuse 24 0.42% 3 0.45% 75 1.65% 

10. Cognitive Problem 10 0.18% 2 0.30% 46 1.01% 

11. Psychosis (Mental problems) 3 0.05% 4 0.60% 32 0.70% 

12. Prisoner 2 0.04% 0 0.00% 1 0.02% 

13. (blank) 0 0.00% 0 0.00% 45 0.99% 

14. Other 37 0.65% 9 1.34% 58 1.28% 

15. Eligible 114 2.01% 9 1.34% 211 4.65% 

Subtotal 5,672 100.00% 671 100.00% 4,540 100.00% 

 

Table 2 and Figure 3 show the monthly enrollment rates using the 3 methods.  Vigilens alerts generated 176 

enrollments. CATH list search generated 99 enrollments. The clinical unit admission list search generated only 7 

enrollments and was abandoned at the 4
th

 month due to low specificity and efficiency.  

Table 2.  Monthly enrollment using the 3 Methods. 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.  Monthly enrollment using the 3 methods. 

Month CATH  Clinical   Vigilens 
Alerts 

Total  

1   1 1 

2  1 3 4 

3 6 2 9 17 

4 18 4 17 39 

5 5  12 17 

6 12  13 25 

7 9  26 35 

8 7  24 31 

9 12  16 28 

10 11  21 32 

11 11  22 33 

12 8  12 20 

Total 99 7 176 282 
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Throughout the study, the Vigilens alerts were consistently more efficient than the other two information 

sources. The average time to process an alert was 2 minutes.  This included logging into the secure web site and 

performing a patient-based EHR review for chest pain and ACS.  In contrast, use of the CATH patient lists or 

clinical units required multiple steps, including identifying patients by name or medical record number, searching 

for patient medical records (e.g., the records of some patients who visited our clinic may not be electronically 

available in our system), locating the documents describing ACS symptoms for patients with this condition, and 

creating electronic notes for those patients.  The average time to complete these steps was about 15 minutes per 

patient.  As shown in Table 2, the research coordinators identified 114 (2.01%) eligible patients among the 5,672 in 

the CATH lists and identified 211 (4.65%) eligible patients among the 4,540 recommended by the Vigilens alerts.   

Table 3 shows the distribution of primary factors causing patient ineligibility over time.  Among 1,449 patients 

who had ACS, 282 (25%) were eligible for the study; the remaining 75% were ineligible for one of the primary 

reasons before or after initial screening. 17.9% patients explicitly refused to participate and 15.9% did not appear 

after the referral, which can be attributed to either implicit patient refusal or missed recruiting opportunities by the 

research coordinators due to time constraints or workflow factors (Figure 1). Overall, 34% patients were eligible but 

not successfully recruited to this study; further studies are needed to investigate the reasons for this.  About 25% of 

eligible patients consented to be fully screened, among whom 82% enrolled in the study.  ―Patient refusal‖, ―patient 

referred but unseen‖, and ―alcohol and substance abuse‖ were the most prevalent criteria among patients who were 

eligible but not part of the study.  A few patients were ineligible because they were prisoners or too old.   

Discussion 

In this paper, we report on the evaluation of a real-time patient identification email alert applied to a large 

clinical study. We triangulated qualitative (i.e., informal interviews with research coordinators) and quantitative 

(i.e., recruitment log analysis) data to compare the efficacy of the alert delivered to research coordinators (the 

―push‖ mode) with that of traditional case search methods in clinical units (the ―pull‖ mode).  Our study confirmed 

that the automated patient identification alert is much more efficient and preferred by the research coordinators than 

CATH lists or patient admission lists. The alert also holds great potential for further improvement.  

This study elucidates patterns of patient ineligibility factors.  This is the first study to characterize patient 

eligibility status in different categories, such as ―potentially eligible‖, ―approachable‖, ―consentable‖, ―eligible‖, and 

ultimately ―enrolled‖.  This taxonomy provides greater nuance than conventional binary classification and enables 

research coordinators to more precisely calculate the ratios of patients of different eligibility status during screening.  

Although the generalizability of the ratios is untested, we hope this case study contributes to the development of 

reference standards for supporting clinical research feasibility studies.  Our eligibility status taxonomy can also help 

others categorize their patients with different eligibility status for measuring screening efficiency in future studies.  

When analyzing Vigilens errors, we identified an interesting factor that causes patient ineligibility: not ACS per 

study criteria.  A patient considered an ACS case by local hospital criteria might not be considered to have ACS as 

defined by the protocol-specific research eligibility criteria.  After interviewing the research coordinator, we learned 

that patients in this category had ―elevated troponin‖ in the notes; however, the hospital criteria set a threshold of 

―>0.09‖ for elevated troponin, whereas the protocol’s threshold is ―>0.36‖.  Therefore, a particular semantic 

representation can have different meanings in different contexts, which can adversely affect screening.  

There are a number of limitations to this study.  First, we only studied inpatient settings. There might be 

different recruitment challenges in other patient care settings, such as emergency room or outpatient clinics.  Further 

studies are needed to assess the efficacy and utility of real-time patient identification alerts in different types of 

clinical research studies in various patient care settings.  Second, this informatics observational study was a 

retrospective analysis of the clinical study and so was not prospectively designed to test the relative efficiency of 

these screening methods. Our data collection and analysis were retrospective; therefore, we did not capture all 

information systematically and, instead, had to rely on human recall and qualitative methods.  Third, the three data 

sources were not mutually exclusive. Therefore, a patient was identified sometimes by more than one method or 

often by the same method. When identified by more than one source, the patient was assigned a source arbitrarily in 

the recruitment log.  The research coordinators also sometimes received more than one Vigilens alert for the same 

patient; the burden of redundancy was high especially when the inpatients had a long length of stay.  There was no 

tool available to help the research coordinators reconcile information from the three data sources, which resulted in 

much unnecessary and tedious work for the coordinators to identify duplicates manually.  Future efforts to improve 

the alerts should consider using a lookup table listing all screened patients using all the data sources and should 

avoid sending multiple alerts for the same patient. Research coordinators often work with multiple documents 
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simultaneously and an information reconciliation tool would be valuable.  Finally, we did not know how research 

coordinators distributed their time among the three methods.  A future prospective study with more systematic data 

collection may more completely answer research questions raised in this study.  

Research coordinators should play a major role in increasing the accuracy of alerts.  In this study, we only used 

keyword-based content match without support for disambiguation or negation detection; therefore, our approach did 

not have the natural language processing (NLP) capacity. A future improvement would be adding NLP components. 

The coordinators started with simple keywords, which did not fully capture all the ACS cases.  As they reviewed 

each case and accumulated more knowledge about how ACS was documented in EHR, the coordinators became 

more proficient in selecting terms to help with query expansion and thus significantly improved Vigilens accuracy 

over time.  We obtained the latest recruitment report as of February 14, 2011 and found the Vigilens query precision 

increased from 12.5% in January 2009 to 82% in February 2011.  We intend to study what queries helped with the 

improvement in more detail to inform accurate EHR phenotyping research. Moreover, this improvement itself is an 

exciting result. Although we were unable to fully evaluate the alerts accuracy improvement in our current study, the 

improvement has encouraged us to attempt to build a ―human-computer collaboration‖ model for informatics 

intervention development.  This improvement demonstrates the importance of research coordinators in the effort to 

design a more efficient recruitment process. They can provide valuable feedback to improve the performance of an 

informatics intervention.  In our future work to improve Vigilens, we will provide an informatics infrastructure to 

more proactively support research coordinators and incorporate their feedback in a more efficient, timely, and user-

friendly fashion.  

Conclusion 

This study used a retrospective data analysis method to compare the efficacy of three methods for clinical 

research screening. Our results demonstrate the potential of an automated screening alert linked to a clinical data 

repository for increasing the efficiency of the clinical research recruitment process.  We elucidated practical factors 

causing patient ineligibility and identified no gender differences in most of them.  We also contributed preliminary 

information about the percentages of patient populations across the spectrum of eligibility statuses. This can be 

valuable for assessing the population size required for a recruitment goal and for building informatics models 

enabling clinical research feasibility studies.  
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Table 3.  The summative monthly multi-source report of patients at different eligibility status 

MM/YY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1/09 10 1 9 0 0 1 0 1 3 1 0 2 0 0 1 0 0 0 0 1 1 0 

2/09 711 622 89 0 2 1 0 15 13 13 0 13 0 4 28 3 2 4 1 18 3 15 

3/09 1,245 1,130 115 0 4 8 0 20 19 9 6 34 11 21 20 1 1 1 1 16 2 14 

4/09 1,252 1,102 150 0 2 13 0 20 33 11 12 11 1 8 39 2 1 1 3 32 3 29 

5/09 1,196 1,022 174 0 5 4 0 41 33 15 15 13 0 15 33 1 4 2 2 24 2 22 

6/09 1,084 941 143 0 2 9 0 26 35 16 14 9 0 5 27 0 1 1 0 25 1 24 

7/09 982 857 125 5 1 8 0 21 17 9 12 8 0 7 37 4 1 0 4 28 0 28 

8/09 1,068 934 134 7 1 5 1 18 22 11 7 11 0 7 44 1 3 2 2 35 0 35 

9/09 928 781 147 9 6 6 1 25 14 10 15 16 0 16 29 1 2 0 1 25 0 25 

10/09 939 816 123 5 4 11 0 26 13 8 5 10 0 9 32 1 1 1 0 30 0 30 

11/09 1,075 938 137 13 4 4 0 25 17 6 10 7 0 7 44 3 1 0 1 39 0 39 

12/09 805 702 103 11 4 5 2 22 11 6 4 5 1 7 25 0 0 1 2 22 1 21 

                                              

Total 11,295 9,846 1,449 50 35 75 4 260 230 115 100 139 13 106 359 17 17 13 17 295 13 282 

  1 87.2% 12.8%                                       

      1 3.5% 2.4% 5.2% 0.3% 17.9% 15.9% 7.9% 6.9% 9.6% 0.9% 7.3% 24.8%               

                              1 4.7% 4.7% 3.6% 4.7% 82.2%     

                                        1 4.4% 95.6% 

 
Column headers: 

1. Patients screened using all data sources 

2. Not Acute Coronary Syndrome (NACS) 

3. Acute Coronary Syndrome (ACS) 

4. Note Acute Coronary Syndrome per study 

5. Terminal illness 

6. Language barrier 

7. Unfit age group 

8. Patient refusal to participate 

9. Patient referred but unseen 

10. Unable to follow-up with the patient 

11. Substance abuse 

12. Mental illness 

13. Prisoner 

14. Other 

15. Consent to be screened 

16. Mental illness identified after consent 

17. Substance abuse identified after consent 

18. Unable to complete the study 

19. Other 

20. Enrolled 

21. Post-enrollment exclusion 

22. Eligible

 

*:  The total numbers of patients in Table 3 were slightly higher than that in Table 2 because it includes some rarely used data sources.  The difference did not change the percentages of patients in each 

status category
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