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ABSTRACT 

 

Nutritional influences on arsenic toxicity in Bangladeshi men and women:  

interplay between one-carbon metabolism, arsenic, and epigenetics 

 

Caitlin G. Howe 

 

Background: In Bangladesh, more than 57 million individuals are exposed to arsenic-

contaminated drinking water at concentrations that exceed the World Health Organization 

guideline for safe drinking water, which is 10 µg/L. Arsenic is a human carcinogen, which has 

also been associated with numerous non-cancer outcomes, including cardiovascular disease. For 

many arsenic-related health outcomes, susceptibility differs by sex, with some outcomes 

preferentially afflicting males and others females. Although reducing exposure to arsenic-

contaminated drinking water is the primary strategy for preventing arsenic toxicity, cancer risks 

remain elevated decades after arsenic exposure has been reduced. Therefore, public health 

approaches which complement arsenic remediation efforts are needed. One potential set of 

strategies includes nutritional interventions. Deficiencies in one-carbon metabolism (OCM) 

nutrients can cause hyperhomocysteinemia (HHcys), which has been associated with adverse 

health outcomes, including cancers and cardiovascular disease. In Bangladesh, the prevalence of 

HHcys is quite high and differs by sex (63% among men, 26% among women). Nutrients 

involved in the OCM pathway may also protect against arsenic toxicity. Two potential 

mechanisms include: 1) by enhancing arsenic metabolism and 2) by preventing/reversing 

arsenic-induced epigenetic dysregulation.  



Arsenic metabolism facilitates urinary arsenic elimination and depends on two sequential 

S-adenosylmethionine (SAM)-dependent methylation steps, which yield the mono- and dimethyl 

arsenical species (MMA and DMA, respectively) and S-adenosylhomocysteine (SAH), a potent 

inhibitor of most methyltransferases. SAM is synthesized via OCM, a pathway with many 

nutritional influences, including folate and cobalamin. There is substantial evidence from 

experimental studies that the OCM pathway is important for facilitating arsenic metabolism and 

elimination. However, the relationships between SAM, SAH, and arsenic methylation may be 

particularly complex in populations exposed continuously to arsenic, because 1) the arsenic 

metabolites compete for methylation, since each methylation step is catalyzed by the arsenic (+3) 

methyltransferase and requires a methyl group from SAM, and 2) folate and cobalamin 

nutritional status may vary between individuals. 

Although the mechanisms mediating arsenic toxicity remain largely unclear and are 

likely multifactorial, there is increasing evidence that arsenic induces epigenetic dysregulation, 

including alterations in both DNA methylation and posttranslational histone modifications 

(PTHMs), and these effects may differ by sex. Arsenic has also been shown to alter gene 

expression in a sex-dependent manner. However, the sex-specific effects of arsenic on PTHMs 

and gene expression have not been confirmed in a large epidemiological study. Since many of 

the enzymes involved in epigenetic regulation, including DNA methyltransferases and lysine 

histone methyltransferases, depend on SAM, epigenetic modifications are also influenced by 

OCM. Previous studies have demonstrated that nutritional methyl donors involved in the OCM 

pathway buffer against/modify toxicant-induced alterations in DNA methylation. This may also 

be true for arsenic-induced alterations in PTHMs. However, the relationships between OCM 

indices and PTHMs have not been characterized in arsenic-exposed populations. 



Objectives: We had five main objectives: 1) to examine the relationships between SAM, SAH, 

and arsenic methylation capacity, and potential effect modification by folate and cobalamin 

nutritional status; 2) to characterize a specific cleavage product of histone H3, which we 

identified in human peripheral blood mononuclear cells (PBMCs) in our early analyses of 

PTHMs; 3) to evaluate the effects of arsenic exposure and arsenic removal on three candidate 

PTHMs (di- and tri-methylation at lysine 36 of histone H3 (H3K36me2 and H3K36me3, 

respectively) and di-methylation at lysine 79 of histone H3 (H3K79me2)), which were selected 

because they are dysregulated in cancers and are altered by arsenic and/or nutritional methyl 

donors in vitro; 4) to examine associations between arsenic exposure and gene-specific DNA 

methylation and mRNA expression, particularly for genes involved in pathways implicated in 

arsenic toxicity; and 5) to characterize the relationships between OCM indices and our three 

candidate PTHMs, and the effect of folic acid (FA) supplementation on these same PTHMs. For 

objectives 3-5, we also examined potential differences by sex. 

Methods: To address these objectives, we used data from three epidemiological studies of 

arsenic-exposed Bangladeshi adults: 1) the Folate and Oxidative Stress (FOX) study, a cross-

sectional study of healthy individuals; 2) the Folic Acid and Creatine Trial (FACT), a 

randomized placebo-controlled trial (duration 24 weeks) in which healthy participants received 

an arsenic-removal water filter at baseline and were also randomized to one of five nutrition 

intervention arms: placebo, 400 µg FA/day (FA400), 800 µg FA/day (FA800), 3 g creatine/day 

(Creatine), and Creatine + FA400; and 3) the Bangladesh Vitamin E and Selenium Trial (BEST), 

a randomized placebo-controlled trial (duration 6 years) in which individuals with arsenicosis 

were randomized to one of four nutrition intervention arms: placebo, vitamin E (alpha-



tocopheral, 100 mg/day), selenium (L-selenomethionine, 200 µg/day), or a combination of 

vitamin E and selenium.  

In Chapter 3, we examined associations between blood SAM and SAH and the proportion 

(%) of each arsenic metabolite, measured in blood and urine, among FOX participants. We 

further examined if these associations differed within strata of folate and/or cobalamin nutritional 

status. In Chapter 4, we characterized a specific cleavage product of histone H3, which we 

identified in human PBMCs from a subset of FACT participants (n = 32). We also determined 

the prevalence of H3 cleavage in these samples and the impact of H3 cleavage on the 

measurement of downstream PTHMs. In Chapter 5, we presented sex-specific associations 

between pre-intervention measures of blood arsenic and creatinine-adjusted urinary arsenic 

(uAsCr) and PTHMs, measured in PBMCs collected from FACT participants (n = 317). We also 

evaluated whether PTHMs were stable for the 12 week duration after FACT participants 

received arsenic-removal water filters (n = 60 from placebo group). In Chapter 6, we presented 

associations between pre-intervention uAsCr and gene-specific DNA methylation (whole blood, n 

= 400) and mRNA expression (PBMCs, n = 1799) for 47 candidate genes involved in arsenic 

metabolism, OCM, epigenetic regulation, DNA repair, or tumor suppression/oncogenesis, using 

baseline-collected samples from BEST participants. We also evaluated these associations 

separately by sex. In Chapter 6, we examined sex-specific associations between baseline 

circulating concentrations of OCM indices, including folate, cobalamin, choline, betaine, and 

homocysteine, and PTHMs measured in PBMCs collected from FACT participants (n = 324). 

We also evaluated whether FA400 (n = 106), compared with placebo (n = 60), for a duration of 

12 weeks increased global levels of PTHMs. 



Results: We observed that folate and cobalamin nutritional status significantly modified 

associations between SAM and the % arsenic metabolites, as hypothesized (Chapter 3). Among 

folate and cobalamin deficient individuals, SAM was positively associated with the %MMA, and 

negatively associated with the %DMA, in blood. In Chapter 4, we determined that H3 cleavage 

was evident in one third of the FACT PBMC samples examined. We further demonstrated that 

H3 cleavage impacts the measurement of certain PTHMs. In Chapter 5, we reported that 

biomarkers of arsenic exposure were associated with H3K36me2 in a sex-dependent manner. In 

particular, uAsCr was positively associated with H3K36me2 among men, but not women. 

Furthermore, the use of arsenic-removal water filters was associated with significant reductions 

in H3K36me2 over a 12 week period, but this did not differ by sex. We also observed that uAsCr 

was associated with the methylation and expression of several genes involved in OCM, 

epigenetic regulation, DNA repair, and tumor suppression, and many of these associations 

differed by sex (Chapter 6). The associations between several OCM indices and PTHMs were 

also sex-dependent (Chapter 7). Specifically, choline was positively associated with H3K36me2 

among men only, while cobalamin was positively associated with H3K79me2 among women 

only. However, FA400 for 12 weeks did not alter global levels of the PTHMs examined. 

Conclusions: Given that cancer risks remain elevated decades after arsenic exposure has ceased, 

public health interventions which complement arsenic remediation efforts are needed. Nutritional 

interventions may be one promising approach. Previous studies have observed that a higher 

%MMA, and a lower %DMA, in urine is associated with an increased risk of developing adverse 

health outcomes. Our finding that SAM was positively associated with %MMA, and negatively 

associated with %DMA, among individuals deficient for folate and cobalamin contributes 



additional evidence that nutritional status may explain some of the inter-individual differences in 

arsenic methylation capacity and, consequently, in susceptibility to arsenic toxicity. 

Our observation that arsenic exposure was positively associated with global levels of 

H3K36me2 among men, but not women, and that arsenic was associated with gene-specific 

DNA methylation and mRNA expression in a sex-dependent manner, adds to a growing 

literature that arsenic induces epigenetic dysregulation differentially by sex. Furthermore, these 

findings suggest that this may have functional consequences, such as alterations in mRNA 

expression, including for genes involved in pathways implicated in arsenic toxicity. While it is 

tempting to speculate that this may explain some of the sex differences in susceptibility to 

arsenic toxicity, the clinical implications of our findings will require additional study. 

We also provided the first evidence from an arsenic-exposed population that choline and 

cobalamin are associated with PTHMs (H3K36me2 and H3K79me2, respectively) in a sex-

dependent manner, and that 12 weeks’ supplementation with FA, at a dose based on the 

recommended dietary allowance for folate, does not significantly alter global levels of 

H3K36me2, H3K36me3, or H3K79me2 in human PBMCs. Previous studies have shown that 

nutrients in the OCM pathway protect against toxicant-induced alterations in DNA methylation. 

Our findings suggest that some OCM nutrients, particularly choline and cobalamin, may also 

influence PTHMs in human PBMCs. These findings lay the groundwork for future studies which 

further examine whether these nutrients can protect against or modify arsenic-induced alterations 

in PTHMs. 
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CHAPTER ONE 

Statement of hypotheses 

 In Bangladesh, approximately 57 million individuals are exposed to arsenic at 

concentrations that exceed the World Health Organization guideline for safe drinking water, 

which is 10 μg/L [1]. This is a critical public health issue, because exposure to arsenic has been 

associated with numerous diseases, including both cancer and non-cancer outcomes, with 

susceptibility often differing by sex (reviewed in [2]). Although eliminating exposure to arsenic-

contaminated drinking water is the primary strategy for reducing arsenic toxicity, cancer risks 

remain elevated decades after arsenic exposure has ceased [3]. Therefore, complementary 

approaches will be needed to reduce disease burden in populations that have already been 

exposed to arsenic-contaminated drinking water.  

 Nutritional interventions may offer one set of complementary approaches. One-carbon 

metabolism (OCM), a biochemical pathway with many nutritional influences, including folate, 

cobalamin, choline, and betaine, may affect arsenic toxicity through multiple mechanisms. Two 

potential mechanisms include: 1) by enhancing arsenic metabolism and 2) by preventing or 

reversing arsenic-induced epigenetic dysregulation, including alterations in posttranslational 

histone modifications (PTHMs) (Figure 1). Since arsenic metabolism facilitates urinary arsenic 

excretion [4], and since epigenetic dysregulation is one proposed mechanism by which arsenic 

causes cancer [5], a better understanding of these mechanisms may inform the development of 

future interventions which reduce arsenic toxicity. This dissertation is an epidemiological 

investigation of the interplay between OCM, arsenic, and epigenetics. 
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Figure 1. One-carbon metabolism and the transsulfuration pathway. (1) Dietary folic acid is 

reduced to dihydrofolate (DHF) and tetrahydrofolate (THF) by dihydrofolate reductase (DHFR). 

(2) The β-carbon of serine is transferred to THF by serine hydroxymethyltransferase, forming 

5,10-methenyl-THF and glycine. (3) At a major branch point between transmethylation reactions 

and nucleotide biosynthesis, 5,10-methenyl-THF can be reduced to 5,10-methylene-THF, which 

can be further reduced to 5-methyl-THF by methylenetetrahydrofolate reductase (MTHFR). (4) 

In a reaction catalyzed by cobalamin-dependent methionine synthase (MTR), the methyl group 

of 5-methyl-THF is transferred to homocysteine (Hcys), generating methionine (Met) and 

regenerating THF. Alternatively, betaine Hcys methyltransferase (not shown) can transfer a 

methyl group from betaine for the remethylation of Hcys; betaine can be obtained from the diet 

or derived from choline. (5) Methionine adenosyltransferase activates methionine to form S-

adenosylmethionine (SAM). (6) SAM serves as a universal methyl donor for numerous 

acceptors, including inorganic arsenic (InAs) and monomethylarsonic acid (MMA) as well as 

lysine residues of histone proteins, such as lysines 36 and 79 of histone H3 (H3K36 and H3K79, 

respectively), which are catalyzed by various SAM-dependent lysine histone methyltransferases 

(KHMTs). Examples of methyl acceptors and their respective methylated products are shown in 

matching colors. (7) Upon donating a methyl group, SAM is converted to S-

adenosylhomocysteine (SAH), a potent inhibitor of most SAM-dependent methyltransferases. 

SAH is hydrolyzed to generate Hcys, which is then either used to regenerate Met or is directed to 

(8) the transsulfuration pathway through which it is ultimately catabolized to cystathionine for 

the synthesis of glutathione (GSH). Other abbreviations used: AS3MT, arsenic (+3 oxidation 

state) methyltransferase; DMA, dimethylarsinic acid; H3K36me1, mono-methylation at lysine 36 

of histone H3; H3K36me2, di-methylation at lysine 36 of histone H3; H3K79me1, mono-

methylation at lysine 79 of histone H3; H3K79me2, di-methylation at lysine 79 of histone H3 
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Hypothesis 1 

We hypothesize that blood S-adenosylmethionine (SAM) will be negatively associated 

with the proportion (%) of inorganic arsenical species (InAs) in blood and urine, while blood S-

adenosylhomocysteine (SAH) will be associated with an arsenic metabolite profile indicative of 

reduced arsenic methylation capacity (i.e., ↑%InAs, ↑% monomethyl arsenical species (MMA), 

and ↓% dimethyl arsenical species (DMA) in blood and urine). We further hypothesize that 

folate and cobalamin nutritional status will modify the associations between SAM and the 

methylated arsenic metabolites (%MMA and %DMA). 

Specific Aim 1a. SAM, SAH, and arsenic methylation 

 We will examine associations between whole blood SAM and SAH concentrations and 

arsenic metabolites, measured as the % of each metabolite (InAs, MMA, and DMA) in total 

blood or urine arsenic (bAs and uAs, respectively), using samples from the Folate and Oxidative 

Stress (FOX) Study, a cross-sectional study of Bangladeshi adults (n = 378) exposed to a wide 

range of water arsenic concentrations (0 to 700 µg/L). 

Specific Aim 1b. Folate and cobalamin nutritional status, SAM, and arsenic methylation 

 Using samples from the FOX study, we will evaluate whether folate and/or cobalamin 

nutritional status modify associations between SAM and the methylated arsenic metabolites 

(%MMA and %DMA), measured in blood and urine. Folate and cobalamin nutritional status will 

be determined using plasma folate and cobalamin cutoffs (9 nmol/L and 151 pmol/L, 

respectively [6]). 

The findings of Aims 1a and 1b are reported in Chapter 3. 
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Characterizing enzymatic cleavage of histone H3 

In our early analyses of PTHMs, we identified a specific cleavage product of histone H3 

in human peripheral blood mononuclear cells (PBMCs), which were collected from participants 

enrolled in the Folic Acid and Creatine Trial (FACT). We describe this cleavage product, the 

prevalence of H3 cleavage in human PBMC samples, and the impact of H3 cleavage on the 

measurement of downstream PTHMs. 

These findings are reported in Chapter 4. 

Hypothesis 2 

 We hypothesize that arsenic induces sex-specific alterations in global levels of three 

candidate PTHMs: histone H3 lysine 36 di- and tri-methylation (H3K36me2 and H3K36me3, 

respectively) and histone H3 lysine 79 di-methylation (H3K79me2), which were selected 

because they are influenced by arsenic and/or nutritional methyl donors in experimental models 

[7-10] and are dysregulated in cancers [11-16]. H3K36me2 was also selected based on a 

previous finding from our group that among men only, arsenic is positively associated with DNA 

methylation in the promoter region of lysine demethylase 2B, a histone demethylase that 

specifically targets H3K36me2. Furthermore, H3K79me2 was also selected, because it regulates 

the expression of Tet1, which converts 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-

hmC) [17, 18]. We have previously observed that both 5-mC and 5-hmC are altered by arsenic in 

a sex-dependent manner [19]. We further hypothesize that arsenic exposure is associated with 

gene-specific DNA methylation and mRNA expression in a sex-dependent manner.  

 



5 
 

Specific Aim 2a. Sex-specific effects of arsenic on PTHMs 

 We will examine associations between pre-intervention measures of bAs and creatinine-

adjusted uAs (uAsCr) and H3K36me2, H3K36me3, and H3K79me2, measured in histones 

isolated from PBMCs collected from a subset of FACT participants at baseline (n = 317). FACT 

is a randomized placebo-controlled trial of folic acid (FA) and/or creatine supplementation in 

arsenic-exposed Bangladeshi adults. We will further determine if the associations between 

arsenic exposure and PTHMs differ by sex. 

Specific Aim 2b. Stability of PTHMs after reductions in arsenic exposure 

We will evaluate whether H3K36me2, H3K36me3, and H3K79me2 are altered after the 

provision of arsenic-removal water filters. This will be examined using PBMCs collected at 

baseline and week 12 from a subset of FACT participants randomized to the placebo group (n = 

60), who were provided with arsenic-removal water filters but did not receive a nutritional 

intervention. We will further examine whether alterations in PTHMs due to arsenic-removal 

water filter use differ by sex. 

The findings of Aims 2a and 2b are reported in Chapter 5. 

Specific Aim 2c. Sex-specific associations between arsenic exposure and gene-specific DNA 

methylation and mRNA expression levels 

 Using pre-intervention samples from the Bangladesh Vitamin E and Selenium Trial 

(BEST), a randomized trial of vitamin E and/or selenium supplementation in Bangladeshi adults 

with arsenicosis, we will examine whether uAsCr is associated with gene-specific DNA 

methylation (whole blood, n = 400) and mRNA expression (PBMCs, n = 1799). We will use a 



6 
 

candidate gene approach, selecting genes involved in OCM, arsenic metabolism, epigenetic 

regulation, DNA repair, and tumor suppression/oncogenesis, as these pathways are involved in 

arsenic metabolism or have been implicated in arsenic toxicity. The Comparative 

Toxicogenomics Database will be used to identify potential targets of arsenic. We will also select 

a subset of genes involved in these pathways which have not previously been examined in 

relation to arsenic exposure. We will further examine potential differences by sex. 

The findings of Aim 2c are reported in Chapter 6. 

Hypothesis 3 

We hypothesize that nutritional methyl donors and related cofactors involved in the OCM 

pathway, including folate, cobalamin, choline, and betaine, will be positively associated with 

PTHMs (H3K36me2, H3K36me3, and H3K79me2), and that homocysteine, an indicator of 

reduced methylation capacity, will be inversely associated with these PTHMs. Furthermore, we 

hypothesize that FA supplementation will increase global levels of these PTHMs. Additionally, 

we hypothesize that these relationships may differ by sex. 

Specific Aim 3a. Associations between OCM indices and PTHMs 

 Using pre-intervention samples from the FACT study (n = 324), we will examine 

associations between circulating concentrations of OCM indices and global levels of H3K36me2, 

H3K36me3, and H3K79me2, measured in PBMCs. Furthermore, we will assess whether any of 

these associations differ by sex. 
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Specific Aim 3b. Influence of FA supplementation on PTHMs 

Using samples from the FACT study, we will investigate whether FA supplementation 

(400 μg/day for 12 weeks) (n = 107), compared with placebo (n = 60), increases global levels of 

H3K36me2, H3K36me3, and H3K79me2, measured in PBMCs. We will also examine potential 

differences by sex. 

The findings of Aims 3a and 3b are reported in Chapter 7. 
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CHAPTER TWO 

Background 

A. Overview of one-carbon metabolism and the transsulfuration pathway 

1. One-carbon metabolism 

One-carbon metabolism (OCM) consists of a series of oxidation and reduction reactions 

that involve the transfer of one-carbon units via folate [1]. These one-carbon units are primarily 

derived from formate and the hydroxymethyl group of serine [2]. The reactions of OCM are 

highly compartmentalized between the cytoplasm, mitochondria, and nucleus and are involved in 

many essential reactions, including the biosynthesis of thymidylate and purines and numerous 

transmethylation reactions [1, 3]. 

Nucleic acid synthesis 

The de novo synthesis of deoxythymidine monophosphate requires the transfer of a one-

carbon group from folate, in the form of 5,10-methylene-tetrahydrofolate (5,10-mTHF), to the 5’ 

position of deoxyuridine monophosphate [1, 3]. This primarily occurs in the cytoplasm and is 

catalyzed by thymidylate synthase [1, 3]. In folate limiting conditions, thymidylate synthesis is 

impaired [4]. As a result, uracil misincorporation into DNA occurs, which can lead to 

chromosomal breaks and genomic instability [4].  

Purine ring synthesis is largely dependent on purine recycling via the purine nucleotide 

salvage pathway [5]. However, de novo purine synthesis is critical during periods of rapid cell 

division, such as embryogenesis [6], and when purine nucleotides are limiting [5, 7]. De novo 

purine synthesis depends on the donation of two formate groups, provided by two molecules of 
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folate, in the form of 10-formyl-tetrahydrofolate, which become carbons 2 and 8 of the newly 

synthesized purine ring [3, 5]. 

Methylation reactions 

S-adenosymethionine (SAM) is involved in more than 100 different methylation reactions 

[8], which are important for diverse biological processes, including stabilization of DNA, RNA, 

and proteins; small molecule biosynthesis; cell signaling; and inactivation or elimination of small 

molecules, including xenobiotics [9]. SAM is therefore considered the universal methyl donor 

[10]. Each SAM-dependent methyltransferase transfers a methyl group from SAM to its 

respective substrate, which results in the methylated product and S-adenosyhomocysteine (SAH) 

(Figure 1). SAH is a potent inhibitor of most SAM-dependent methyltransferases [9]. Thus, 

SAM and SAH are considered indices of methylation capacity [11-14].  

 

 

Figure 1. S-adenosylmethionine and S-adenosylhomocysteine. S-adenosylmethionine (SAM) can 

donate a methyl group (shown in red) to a large number of different substrates. Upon donating 

this methyl group, SAM is converted to S-adenosylhomocysteine (SAH), a potent inhibitor of 

most SAM-dependent methyltransferases. 
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SAM synthesis is catalyzed by methionine adenosyltransferase and depends on the 

activation of methionine (Met) by ATP [15, 16]. Met can be obtained from the diet or 

synthesized via the methylation of homocysteine (Hcys) in a reaction catalyzed by one of two 

enzymes: 1) Met synthase (MTR), which utilizes cobalamin as a cofactor and requires a methyl 

donation from folate in the form of 5-methyl-tetrahydrofolate (5-mTHF) or 2) betaine Hcys 

methyltransferase (BHMT), which requires a methyl donation from betaine (Figure 2) [17]. 

Although both pathways contribute to Met synthesis, MTR is expressed ubiquitously [18], while 

BHMT expression is mainly confined to the kidney and liver [19]. Given their importance in 

numerous methylation reactions, intracellular SAM and SAH concentrations are very tightly 

controlled [20]. In part, this occurs through negative feedback via long-range allosteric 

regulation. For example, SAM inhibits methylenetetrahydrofolate reductase (MTHFR), which 

irreversibly converts 5,10-mTHF to 5-mTHF [21]. SAM also inhibits BHMT [22]. Thus, SAM 

downregulates its own synthesis by simultaneously reducing the production of 5-mTHF and the 

amount of betaine utilized for the remethylation of Hcys (Figure 2).  

Since SAH is a potent inhibitor of most SAM-dependent methyltransferases [9], the 

elimination of SAH is also important for maintaining efficient methylation capacity. SAH can be 

hydrolyzed to Hcys by SAH hydrolase [23]. However, this reaction is reversible and strongly 

favors SAH synthesis [23]. Therefore, SAH will readily accumulate, leading to the inhibition of 

multiple methylation reactions, unless Hcys is rapidly eliminated by 1) remethylation to Met by 

either the folate- and cobalamin-dependent or the betaine-dependent pathway or 2) catabolism 

via the transsulfuration pathway [23]. 
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Figure 2. Simplified overview of one-carbon metabolism. S-adenosylmethionine (SAM) donates 

a methyl group to one of its numerous substrates to form the methylated product and S-

adenosylhomocysteine (SAH), which can be hydrolyzed to homocysteine (Hcys). However, this 

reaction is reversible and favors SAH synthesis. The regeneration of SAM depends on 

methionine (Met), which can be obtained from the diet or synthesized endogenously via the 

remethylation of Hcys. This is either catalyzed by 1) methionine synthase (MTR), a cobalamin-

dependent enzyme that requires a methyl donation from 5-methyl-tetrahydrofolate (5-mTHF), or 

2) betaine homocysteine methyltransferase (BHMT), which requires a methyl donation from 

betaine. Once betaine donates a methyl group, it forms dimethylglycine (DMG). 5-mTHF can be 

obtained directly from the diet, or it can be derived from folic acid (FA). FA must be reduced to 

dihydrofolate (DHF), then tetrahydrofolate (THF), before receiving a methyl group from serine 

to form 5,10-methylene-tetrahydrofolate (5,10-mTHF). 5,10-mTHF is then converted to 5-mTHF 

by methylene tetrahydrofolate reductase (MTHFR). Betaine can either be obtained from the diet 

or derived from the irreversible oxidation of choline, which can also be acquired from the diet or 

synthesized endogenously. De novo choline synthesis involves three sequential methylation 

reactions, catalyzed by phosphatidylethanolamine N-methyltransferase (PEMT), which converts 

phosphatidylethanolamine (PE) to phosphatidylcholine (PC). The synthesis of one molecule of 

PC requires three molecules of SAM and generates three molecules of SAH. To ensure tight 

control of intracellular SAM and SAH concentrations, many enzymes involved in one-carbon 

metabolism are regulated through long-range allosteric interactions. For example, SAM inhibits 

both BHMT and MTHFR and thereby downregulates its own synthesis. 
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Folate 

Folate is a general term used to describe a family of many different folate metabolites, 

which can either directly donate one-carbon groups or serve as intermediates by transferring one-

carbon groups to other folate metabolites. Folic acid (FA), the synthetic form of folate, is the 

reference compound. FA is composed of a pteridine (2-amino-4-hydroxypteridine) ring, 

connected by a methylene bridge to p-aminobenzoic acid (PABA), which in turn is joined by a 

peptide linkage to a glutamate residue [21] (Figure 3). Naturally occurring folates follow the 

same structure, but with three major differences: 1) the pteridine ring is reduced, 2) one-carbon 

substitutions are present at the N5 and/or N10 position, and 3) PABA is connected to a 

polyglutamyl tail, rather than to a single glutamate residue [21]. 

 

 

 

Figure 3. Structure of folic acid. Folic acid consists of three major moieties: a pteridine ring, p-

aminobenzoic acid (PABA), and a glutamic acid residue. Naturally occurring folates differ in 

that the pteridine ring is reduced, one-carbon substitutions can occur at the N5 and/or N10 

positions (indicated in red), and they have polyglutamyl tails, which are typically 4 to 10 

glutamate residues in length. 
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Folate is mainly absorbed in the proximal jejunum, where naturally occurring folates 

must be cleaved to monoglutamate species prior to being transported into the enterocyte, 

primarily by the reduced folate carrier or the proton-coupled folate transporter [24]. FA is more 

readily absorbed than naturally occurring folates, in part because FA does not need to be cleaved 

and thus can be directly transported into the enterocyte [21]. After being reduced in the 

enterocyte, FA is converted with naturally occurring folates to 5-mTHF [21], the predominant 

form of circulating folate [21]. 

In the United States, the recommended dietary allowance (RDA) for folate is 400 µg 

dietary folate equivalents/day for adults [25]. This is comparable to 400 µg natural folate from 

food sources, 240 µg FA taken with food, or 200 µg FA taken on an empty stomach [25]. Food 

sources particularly rich in natural folates include leafy greens and other vegetables, such as 

Brussels sprouts and asparagus, as well as beef liver, beans, and nuts [25]. In countries with 

mandatory FA fortification programs, fortified staple foods are rich sources of FA. In 1998, the 

United States mandated fortification of cereals, breads, pastas, and other grain products with FA 

[25]. Thus, with the exception of certain subgroups, the prevalence of folate deficiency in the 

United States has remained very low (<5%) since 1998 [26]. However, many countries do not 

have mandatory FA fortification, and have a high prevalence of folate deficiency. For example, 

in Bangladesh the prevalence of folate deficiency (plasma folate <9 nmol/L [27]) is estimated to 

be as high as 57% for men and 39% for women [28].  

The upper tolerable limit (UL) for FA is 1 mg/day. This was originally established based 

on concerns that FA could mask cobalamin deficiency, since FA supplementation can correct 

megaloblastic anemia, the main clinical symptom of cobalamin deficiency, without correcting 

other potential consequences, such as neurological damage [25]. These concerns largely arose in 
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response to early case studies which reported neurological symptoms in cobalamin deficient 

individuals treated with FA [29]. 

Cobalamin 

In mammals, cobalamin, also known as vitamin B12, exists in two main active forms: 

methylcobalamin and 5’-deoxyadenosylcobalamin [21]. These are the predominant forms of 

cobalamin in the serum and cytosol, respectively [30]. Methylcobalamin is a cofactor for MTR, 

while 5’-deoxyadenosylcobalamin is a cofactor for methylmalonyl coenzyme A (CoA) mutase, 

which converts methylmalonyl CoA to succinyl CoA, an intermediate in the citric acid cycle 

[21]. In addition to its role in SAM synthesis, MTR is critical for regenerating tetrahydrofolate 

(THF) from 5-mTHF [21]. Therefore, cobalamin deficiency can lead to a functional folate 

deficiency due to a phenomenon called the “methyl trap”, where in the absence of cobalamin, 

folate becomes trapped as 5-mTHF, since MTR is thus unable to convert 5-mTHF to THF 

(Figure 2). Consequently, an intracellular deficiency in THF develops, leading to the impairment 

of downstream processes, such as purine and thymidylate synthesis [21]. 

In the United States, the RDA for cobalamin is 2.4 µg/day for adults [31]. Major dietary 

sources include meat, eggs, and dairy [31]. In high-income countries, many cereals also contain 

cobalamin as a result of voluntary fortification [32, 33]. The main type of cobalamin used in 

fortified foods and supplements is cyanocobalamin, which is easily absorbed and can be 

converted endogenously to the biologically active forms methylcobalamin and 

5’deoxyadenosylcobalamin [31]. There is currently no UL for cobalamin [31], since randomized 

trials that administered doses as high as 0.4 and 1 mg/day did not observe toxic side effects [34, 

35]. 
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Dietary cobalamin is tightly bound to proteins and must therefore be released by 

hydrochloric acid in the stomach to be effectively absorbed [36]. However, free cobalamin is 

very susceptible to denaturation and must bind instantly to haptocorrin, a glycoprotein which 

protects it until it reaches the duodenum [37]. Once in the duodenum, cobalamin is released and 

bound by intrinsic factor (IF), [36, 38] another glycoprotein, which is essential for cobalamin’s 

subsequent absorption in the ileum [39]. Upon absorption, cobalamin is released from IF and is 

thus able to form a complex with transcobalamin II [40], which circulates in the blood and is 

transported into cells by transcobalamin receptors, which are expressed ubiquitously [41, 42].    

 Gastric atrophy occurs with aging, leading to decreased production of hydrochloric acid 

and IF. As a result, the elderly are particularly susceptible to developing cobalamin deficiency 

[33]. In the United States, the prevalence of cobalamin deficiency is highest among those greater 

than 60 years old, with 6% classified as deficient (plasma cobalamin <148 pmol/L) and more 

than 20% classified as marginally depleted (148 pmol/L< plasma cobalamin <221 pmol/L) [33]. 

Since cobalamin is only found naturally in animal products, vegans and vegetarians are also 

susceptible to developing cobalamin deficiency [33]. Due to expense, meat is not a major 

component of the diet in Bangladesh. Consequently, there is a high prevalence of cobalamin 

deficiency in Bangladesh, even among individuals less than 60 years old, with 8% of men and 

13% of women between the ages of 28 and 49 classified as deficient (plasma cobalamin <151 

pmol/L [27]) [28].  

Betaine 

Betaine, also known as trimethylglycine, has two major physiological functions: 1) to act 

as an osmolyte and 2) to serve as a methyl donor for the regeneration of SAM [43]. Due to its 
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role as a methyl donor, betaine supplementation reduces Hcys concentrations [44-47]. Although 

the Hcys-reducing effects of betaine are smaller than those observed for FA [48], they are more 

pronounced in individuals with low plasma folate [49]. Food sources rich in betaine include 

wheat, shellfish, spinach, and sugar beets [43]. There is currently no RDA or adequate intake 

(AI) level for betaine.  

Studies in animal models [43, 50, 51] and human participants [52, 53] have shown that 

dietary betaine is rapidly absorbed, then transported into tissues by amino acid transport systems 

[43], such as amino acid transport system A [54] and the betaine/γ–aminobutyric acid transporter 

[55, 56]. However, the majority of betaine is synthesized endogenously [43] in a two-step 

process that occurs in the liver and kidney [57-59], whereby choline is first irreversibly oxidized 

by choline dehydrogenase to betaine aldehyde, which is subsequently oxidized to betaine in a 

reaction catalyzed by betaine aldehyde dehydrogenase [60].  

Choline 

Choline is an essential component of membrane phospholipids and is also required for 

lipid transport and acetylcholine synthesis [61]. Since choline is a precursor to betaine, it also 

serves as an important methyl donor, particularly when Met and folate are limiting [61]. Choline 

can be obtained from the diet or synthesized endogenously. Approximately 70% of endogenous 

choline is provided by the Kennedy Pathway [62, 63]. The remaining 30% is synthesized de 

novo through a pathway which converts phosphatidylethanolamine (PE) to phosphatidylcholine 

(PC) through three methylation reactions, which are catalyzed by the SAM-dependent 

phosphatidylethanolamine N-methyltransferase (PEMT) [60] (Figure 2). Consequently, PC 
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synthesis is one of the largest consumers of SAM [60]. However, choline also contributes to 

SAM synthesis, since the majority of choline is irreversibly oxidized to betaine in the liver [60].  

Although choline is synthesized endogenously in the liver [60, 64] and, to a lesser extent, 

in the brain [60, 65, 66], it must also be obtained from the diet [60]. Major dietary sources 

include liver, egg yolks, fish, and dairy products [60, 61]. The main forms of choline obtained 

through these food sources include free choline and choline esters, such as phosphocholine, 

glycerophosphocholine, PC, and sphingomyelin [67]. Although there is currently insufficient 

information to set an RDA for choline [61], the recommended AI is 550 mg/day for adult men 

and 425 mg/day for adult women who are not pregnant or lactating [61]. These AIs were largely 

determined based on the amount of choline required to prevent liver damage [60]. Given the 

hypotensive properties of choline, proposed ULs have also been set for certain subgroups, 

including an UL of 3.5 g choline/day for women who are pregnant or lactating [60]. 

Homocysteine and hyperhomocysteinemia 

Hcys is a thiol-containing amino acid which is involved in both the transmethylation and 

the transsulfuration pathways [17]. Plasma Hcys concentrations rise when Hcys accumulates 

intracellularly [17]. Individuals with plasma Hcys concentrations exceeding 13 µmol/L are 

classified as having hyperhomocysteinemia (HHcys) [68], which is a risk factor for several 

adverse health outcomes, including cardiovascular disease [69] and neurological disorders [70]. 

In human populations, several factors have been associated with elevated plasma Hcys 

concentrations, including increased age, decreased renal function, and certain genetic variants 

(reviewed in [17]). Plasma Hcys concentrations are also consistently higher among men 
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compared with women [17]. Additionally, deficiencies in B vitamins, particularly folate, are 

important determinants of elevated plasma Hcys concentrations [17]. 

2. Transsulfuration pathway 

The transsulfuration pathway involves the unidirectional catabolism of Hcys for the 

synthesis of glutathione (GSH) [71, 72], the primary intracellular antioxidant in mammals [71, 

72]. This occurs in two major steps: 1) Hcys and serine condense to form cystathionine in a 

reaction that is catalyzed by cystathionine-β-synthase (CBS) and 2) cystathionine is cleaved by 

γ-cystathionase to liberate cysteine for GSH synthesis [73]. Vitamin B6, in the form of pyridoxal 

phosphate, is a required cofactor for each step [73]. 

 

B. Overview of arsenic metabolism and toxicity 

1. Arsenic and associated health outcomes 

 Exposure to arsenic-contaminated drinking water is a global problem. Worldwide, it has 

been estimated that 140 million individuals are exposed to inorganic arsenic (InAs) at 

concentrations exceeding the World Health Organization guideline for safe drinking water [74], 

which is 10 μg/L [75]. More than 57 million of these individuals reside in Bangladesh [76]. This 

is a critical public health issue, because there is substantial evidence that arsenic causes skin, 

lung, and bladder cancers, ischemic heart disease, and skin lesions (reviewed in [77]). Arsenic 

has also been associated with kidney, prostate, liver, and pancreatic cancers (reviewed in [77]), 

peripheral neuropathy [78], decreased intellectual function in children [79], nonmalignant lung 

disease (reviewed in [80]), diabetes [81-83], and hypertension (reviewed in [84]). In both animal 
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and human studies, susceptibility to arsenic toxicity has been shown to differ by sex1, with some 

outcomes preferentially afflicting males and others females (reviewed in [77]). 

Although InAs can exist in four oxidation states (-III, 0, III, and V) [85], in well water it 

predominately exists in the trivalent (III) and pentavalent (V) states (arsenite and arsenate, 

respectively) [77]. 

2. Uptake and metabolism of inorganic arsenic 

Almost all ingested InAs is absorbed by the gastrointestinal tract [77, 86]. Although the 

mechanisms of absorption are still being elucidated, arsenate (AsV) competes for uptake by 

phosphate transporters [87], while arsenite (AsIII) is likely taken up by several different 

transporters, including organic anion transporting polypeptides, glucose transporters, and 

aquaporins 7 and 9 [87]. Once absorbed, InAs is metabolized through a two-step methylation 

process, which is catalyzed by the SAM-dependent, AsIII methyltransferase (AS3MT) [88, 89].  

Three detailed mechanisms have been proposed for the sequential methylation of InAs to 

mono- and dimethyl arsenical species (MMA and DMA, respectively). The most commonly 

accepted pathway is that proposed by Challenger et al., whereby InAs is methylated via an 

oxidative methylation pathway, in which the valence state of As changes from III to V each time 

a methyl group is transferred from SAM [90, 91] (Figure 4). Two alternative pathways have also 

been hypothesized. In 2005, Hayakawa et al. described a mechanism in which arsenic is 

successively methylated, but the valence state does not change with the transfer of a methyl 

group from SAM [92]; instead, arsenic-GSH complexes form prior to each methylation step [92]. 

 

1For simplicity, the word “sex” is used. However, in epidemiological studies, observed differences between males and females 

may be driven by both biological sex, which is determined by sex chromosomes and gonads, and socially-determined factors 

(i.e., gender-related factors). Therefore, with respect to human populations, “sex” refers to both sex and gender unless otherwise 

specified. 
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However, in 2012, Wang et al. provided evidence that arsenic-thiol, not necessarily arsenic-

GSH, complexes were the required substrates for arsenic methylation [93]. Despite their 

differences, the three proposed mechanisms are unified in that AS3MT catalyzes both 

methylation steps, and each methylation step requires a methyl donation from SAM and is 

inhibited by SAH. Although the methylation of InAs is thought to primarily occur in the liver, 

studies in rats have shown that As3mt is also expressed in several other tissues, including the 

lung, bladder, heart, brain, kidney, and adrenal gland [88]. 

 

 

 

Figure 4. Arsenic metabolism (Challenger pathway). Arsenate (AsV) is reduced by glutathione 

(GSH) or similar reducing agents to form arsenite (AsIII) and glutathione disulfide (GSSG). A 

methyl group (shown in red) can then be transferred from S-adenosylmethionine (SAM) to AsIII 

by the AsIII methyltransferase (AS3MT) to form pentavalent monomethylarsonic acid (MMAV) 

and S-adenosylhomocysteine (SAH). MMAV can then be reduced by thioredoxin (Trx) to 

trivalent monomethylarsonous acid (MMAIII). MMAIII can receive a methyl group from SAM, 

transferred by AS3MT, to form dimethylarsinic acid (DMAV) and SAH. 
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Cell lines differ in their capacity to methylate arsenic, with human hepatocytes having a 

relatively high capacity; keratinocytes and bronchial cell lines having a lower capacity; and 

bladder epithelial cells, lymphoblasts, and fibroblasts having a very limited arsenic methylation 

capacity (reviewed in [94]). The efficiency of arsenic metabolism also varies considerably 

between species (reviewed in [95]). Dogs and mice methylate a substantial portion of InAs, with 

>70% eliminated as DMA (DMAIII + DMAV) within days [96-98]. Rats are also very efficient at 

methylating InAs to DMA [95]. However, DMA accumulates in the red blood cells (RBCs) of 

rats due to the affinity of DMAIII for cysteine 13 in the rat hemoglobin alpha chain [99]. Thus, 

rats excrete very little DMA [100]. Since this particular cysteine residue is not present in human 

or mouse hemoglobin, DMAIII does not accumulate in the RBCs of these species [100]. 

Compared with other mammals, rats also excrete a substantial amount of arsenic into bile [95]. 

In contrast with most animal models, humans are relatively inefficient at fully methylating InAs 

to DMA and thus excrete a large portion (~10-20%) of total urinary As (uAs) as MMA (MMAIII 

+ MMAV) [95]. Given the large differences in arsenic metabolism between species, and the fact 

that arsenic by itself is not tumorigenic in most rodent models [101], population-based studies 

have been essential for studying the potential mechanisms of arsenic toxicity.  

Within human populations there is substantial inter-individual variation in arsenic 

metabolism. Thus far, this has been attributed to differences in nutritional status [102, 103] and 

genetics [104]. There are also substantial differences by sex, with women typically having a 

greater capacity to methylate arsenic than men, such that they excrete a lower proportion of uAs 

as MMA and a higher proportion as DMA [105-107]. This difference is most apparent in adults 

between the ages of 22 and 55 [108] and may be due to sex differences in the OCM pathway 

[77]. For example, endogenous choline synthesis may be higher among premenopausal women 
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due to estrogen-induced upregulation of PEMT expression ([109] and reviewed in [110]). Studies 

in mice suggests that inter-individual differences in the microbiome may also contribute to 

variation in arsenic metabolism [111-113]. However, this has not been studied in human 

populations.  

The efficiency of arsenic metabolism may also vary with the dose of arsenic, as InAs has 

been shown to inhibit its own methylation in vitro [114, 115]. The second methylation step (i.e., 

the methylation of MMA to DMA) is particularly sensitive to this [114, 115]. Consistent with 

this, mice exposed to increasing doses of InAs excrete a larger proportion of arsenic as MMA 

and a lower proportion as DMA [116]. Therefore, individuals exposed to particularly high 

concentrations of InAs may have a reduced capacity to completely methylate InAs to DMA. 

However, while there is some supporting evidence of this in human populations [117-119], the 

findings have not always been consistent [120]. 

3. Proposed mechanisms of arsenic toxicity 

General mechanisms of arsenic toxicity 

There are likely multiple mechanisms of arsenic toxicity. Since AsV and phosphate are 

structurally very similar, one mechanism of action is through the disruption of phosphate-

dependent biochemical reactions and anion transporters [121]. Trivalent arsenical species are 

also highly toxic, because they react with sulfhydryl groups in proteins and thereby inhibit the 

activity of many enzymes [122]. In this manner, it has been estimated that arsenic inhibits at least 

200 different enzymes [122]. 
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Proposed mechanisms of arsenic carcinogenicity 

Although arsenic causes skin, bladder, and lung cancers, and has been associated with 

several other types of cancer, it is not a traditional mutagen [121]. However, several studies have 

demonstrated that arsenic causes chromosomal aberrations, generates oxidative stress, inhibits 

DNA repair, and alters cell cycle control and proliferation (reviewed in [94]). There is also 

increasing evidence that arsenic induces epigenetic dysregulation [123]. Therefore, arsenic may 

initiate and/or promote the development of cancer through multiple pathways. 

4. Arsenic metabolism and toxicity 

The relative toxicities of the predominant arsenic metabolites are shown in Figure 5. In 

vitro, the trivalent arsenical species, particularly the methylated metabolites, are the most 

cytotoxic (reviewed in [103]). However, DMAIII is highly unstable and thus may only contribute 

to a very small portion of total arsenic in vivo [124]. Among the pentavalent arsenic metabolites, 

AsV is the most cytotoxic, followed by MMAV, then DMAV (reviewed in [103]). 

 

 

Figure 5. Relative toxicities of predominant arsenic species. The most cytotoxic arsenic 

metabolites are shown to the left in red shades and the least cytotoxic metabolites are shown to 

the right in blue shades. The trivalent metabolites, particularly the methylated metabolites 

(MMAIII and DMAIII) are the most cytotoxic in vitro. However, DMAIII (not shown) is highly 

unstable and may not be present in large quantities in vivo [124]. Of the pentavalent metabolites, 

AsV has been shown to be the most toxic, followed by the methylated metabolites (MMAV and 

DMAV), with DMAV being the least cytotoxic species. 
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The relative toxicities of the arsenic metabolites also depend on their circulating half-

lives. In hamsters, the methylated arsenic metabolites are eliminated very rapidly, with half-lives 

of 7.4 and 5.6 hours for MMA and DMA, respectively [125]. Although the corresponding half-

lives are unknown for humans, DMA is the predominant metabolite observed in urine, followed 

by MMA, then InAs, providing additional evidence that DMA is the most rapidly eliminated 

arsenic metabolite (reviewed in [126]). Consistent with this, As3mt knockout mice exposed to 

InAs excrete less DMA and total uAs and retain a higher body burden of arsenic compared with 

wildtype animals exposed to the same dose [127, 128], indicating that arsenic methylation 

facilitates urinary arsenic excretion. As3mt knockout mice are also more susceptible to arsenic 

toxicity [129], which further suggests that arsenic methylation is a detoxification process. This is 

also supported by studies in human populations, which have demonstrated that arsenic-exposed 

individuals with a higher proportion of MMA (%MMA) in urine have an increased risk of 

developing adverse health outcomes, including lung [130, 131], bladder [131-135], and skin 

cancers [136-138]; skin lesions [139-141]; peripheral vascular disease (PVD) [142]; 

cardiovascular disease [143, 144]; developmental delay [145]; and breast cancer [146], although 

this has not been observed for hypertension [147, 148] or diabetes [149] (Figure 6 and 

Appendix, Table A1). Many of these studies also examined the proportion of DMA in urine 

(%DMA) and generally observed inverse relationships with adverse outcomes (Figure 7 and 

Appendix, Table A2). Notably, there were two exceptions to these trends: 1) in contrast to the 

finding by Huang et al. [150], Melak et al. observed a positive association between %DMA and 

bladder cancer [131] and 2) Kuo et al. identified a positive association between %DMA and the 

incidence of diabetes [149]. However, the relationship between %DMA and diabetes has not yet 
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Figure 6. Associations between %MMA in urine and adverse health outcomes. Black boxes 

represent point estimates for odds or hazards ratios for associations between %MMA and 

adverse health outcomes. The size of the box is proportional to the precision of the estimate 

based on the standard error. 95% confidence intervals are represented by gray lines. Arrows 

indicate that the confidence interval extends beyond the range of the plot. The association is not 

statistically significant at P < 0.05 if the confidence interval crosses the dashed line. Outcomes 

that have consistently been associated with arsenic exposure are listed first. *MMA:InAs or 

DMA:MMA (low versus high) was used instead of %MMA. Abbreviations used: Arg., 

Argentina; Develop. Delay, developmental delay; %MMA, proportion of monomethyl arsenical 

species (MMAIII + MMAV) in urine; DMA:MMA, ratio of dimethyl arsenical species (DMAIII + 

DMAV) to monomethyl arsenical species in urine; MMA:InAs, ratio of MMA to inorganic 

arsenical species (AsIII + AsV); PVD, peripheral vascular disease; U.S., United States 
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Figure 7. Associations between %DMA in urine and adverse health outcomes. Black boxes 

represent point estimates for odds or hazards ratios for associations between %DMA and adverse 

health outcomes. The size of the box is proportional to the precision of the estimate based on the 

standard error. 95% confidence intervals are represented by gray lines. Arrows indicate that the 

confidence interval extends beyond the range of the plot. The association is not statistically 

significant at P < 0.05 if the confidence interval crosses the dashed line. Outcomes that have 

consistently been associated with exposure to arsenic are listed first. Abbreviations used: 

Develop. Delay, developmental delay; %DMA, proportion of dimethyl arsenical species (DMAIII 

+ DMAV) in urine; PVD, peripheral vascular disease 
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been confirmed in other populations, and whether or not arsenic exposure is causally related to 

diabetes has been debated [83, 151-153]. 

5. Influences of one-carbon metabolism on arsenic metabolism and toxicity 

The OCM pathway and arsenic metabolism are highly interrelated, particularly since the 

latter involves two sequential SAM-dependent methylation reactions. There are therefore many 

possible nutritional influences on the metabolism and toxicity of arsenic. 

Experimental studies 

Early experimental studies demonstrated that arsenic-exposed rabbits fed a choline- and 

Met-deficient diet eliminate less arsenic in urine than arsenic-exposed rabbits fed a control diet, 

primarily due to reductions in DMA excretion [154]. Similarly, mice exposed simultaneously to 

arsenic and a diet deficient in choline [155] or folate [156] have been shown to excrete less uAs 

and to incur greater amounts of DNA damage at lower doses of arsenic than mice fed a control 

diet [155]. Furthermore, mice nullizygous for Folbp2, which is involved in folate transport [157], 

and mice born to mothers nullizygous for Mthfr [158] are more susceptible to arsenic-induced 

embryotoxicity. Choline supplementation also protects against arsenic-induced neural tube 

defects (NTDs) in chicks [159], and several in vitro studies have demonstrated that nutritional 

methyl donors prevent arsenic-induced DNA damage [160-162], mitochondrial dysfunction 

[160], alterations in gene expression patterns [163], apoptosis [164], and oxidative stress [165]. 

Collectively, these studies suggest that nutritional methyl donors protect against arsenic toxicity, 

and there are likely multiple protective mechanisms. 

 



30 

  

Observational studies 

Epidemiological studies have also provided evidence that the OCM pathway and arsenic 

metabolism are highly interrelated. Several cross-sectional studies in Bangladesh have observed 

that nutritional methyl donors, including folate, Met, and choline, are associated with an arsenic 

metabolite profile indicative of enhanced arsenic methylation capacity (i.e., a lower %MMA and 

a higher %DMA in urine) and lower concentrations of blood arsenic (bAs), while plasma Hcys 

has been associated with an arsenic metabolite profile indicative of reduced arsenic methylation 

capacity (i.e., a higher %MMA and a lower %DMA in urine) and higher concentrations of bAs 

[166-168]. Studies in Argentinian populations have also observed associations between single 

nucleotide polymorphisms (SNPs) in OCM genes and arsenic metabolites [169-171]. For 

example, SNPs which reduce the activity of MTHFR have been associated with a higher %InAs 

and a lower %DMA in urine [169]. Similarly, SNPs in CBS which increase Hcys concentrations 

are associated with a higher %MMA in urine [170]. Folate deficiency and HHcys are also 

independent predictors of arsenic-induced skin lesion risk [172], and plasma folate has been 

inversely associated with bladder cancer risk in an arsenic-exposed population [150], providing 

additional human evidence that nutritional methyl donors, such as folate, may protect against 

arsenic toxicity. 

Importantly, some of these effects may be population-dependent. For example, studies in 

the United States have not observed significant associations between dietary folate and uAs 

metabolites [173] or toenail arsenic concentrations [174]. Since these studies occurred after the 

United States mandated FA fortification of staple foods, this could be due to the fact that most of 

these participants were folate sufficient [173, 174]. Another important consideration is that both 

studies examined dietary folate rather than folate biomarkers. Natural folates are very susceptible 
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to oxidative degradation, thus dietary folate may not accurately reflect folate status [175]. 

Similar to the findings in the United States, a study in pregnant Bangladeshi women only 

observed marginal associations between plasma folate and uAs metabolites [176]. However, 

these women were taking prenatal supplements, including 400 µg FA/day [176], and were 

therefore likely to be folate sufficient. Furthermore, the OCM pathway is known to be 

dramatically altered during pregnancy [177].  

Although folate has not been associated with arsenic measures in populations receiving 

adequate folate, a study in the northeastern United States observed an inverse relationship 

between dietary cobalamin intake and toenail arsenic concentrations [174]. However, the 

relationship between cobalamin and arsenic metabolism may be quite complex, as studies in 

Bangladesh have observed positive associations between plasma cobalamin [178], or dietary 

cobalamin intake [168], and the %MMA or the ratio of MMA to DMA, respectively, in urine. 

Randomized clinical trials 

Thus far, two randomized, placebo-controlled trials in Bangladesh have provided the 

strongest human evidence that folate facilitates the metabolism and excretion of arsenic. The first 

such trial, which was conducted in folate-deficient adults, demonstrated that 400 µg FA/day 

significantly reduces the total proportion of uAs excreted as InAs or MMA, increases the total 

proportion of uAs excreted as DMA [179], and reduces total bAs concentrations [180]. A second 

trial demonstrated that a higher dose of FA (800 µg FA/day) reduces bAs concentrations in a 

mixed population of folate-deficient and folate-replete adults, and to a similar extent (12% 

reduction) as 400 µg FA/day in folate deficient adults (14% reduction) [181]. 
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C. Interplay between arsenic, one-carbon metabolism, and epigenetics 

1. Epigenetics 

Epigenetics has traditionally been defined as the study of stable and heritable changes in 

gene expression or cellular phenotypes that occur without changes in Watson-Crick base-pairing 

of DNA [182]. However, others have proposed a less conservative definition, which includes all 

chromatin modifications that alter gene activity, irrespective of heritability [183]. 

Histone proteins 

The major unit of chromatin is the nucleosome, which is composed of approximately 147 

base pairs of DNA, wrapped 1.65 times around a histone protein octamer [184, 185]. The histone 

octamer consists of two copies of each of the four core histones: H2A, H2B, H3, and H4; 

histones H2A and H2B form two heterodimers, while histones H3 and H4 form a tetramer [184, 

186] (Figure 8). A fifth histone (H1), known as the linker histone, helps to stabilize the 

nucleosome and facilitates the folding of nucleosomes into higher-order structures [183, 187]. In 

addition to helping to compact and organize DNA such that it fits inside the nucleus, histone 

proteins regulate the accessibility of DNA for different cellular processes, such as gene 

transcription, DNA replication, and DNA repair [188]. Several mechanisms regulate these 

processes, including the addition of posttranslational modifications to the histone proteins [188], 

replacement of the canonical histones with histone variants [189], and potentially, proteolytic 

cleavage of the histone proteins [190] (see Chapter 4 for additional discussion of histone 

cleavage). 
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Figure 8. Nucleosome structure. The basic unit of chromatin is the nucleosome, which is 

composed of 147 base pairs of DNA wrapped around a histone octamer. The histone octamer is 

comprised of two copies of each of the four core histone proteins: H2A, H2B, H3, and H4. 

Histones H2A and H2B form two dimers, while two copies of histones H3 and H4 form a 

tetramer. Figure adapted from Chen et al. 2014 [192]. 

 

 

Histone structure 

Histones have two major domains: a globular core and a long, unstructured N-terminal 

tail (Figure 9). Although posttranslational histone modifications (PTHMs) can be added to 

amino acids in both domains, PTHMs in the N-terminal tails have historically received the most 

attention. This is largely due to the fact that PTHMs were first identified by Edman degradation, 

which is limited to measuring the first 20 to 30 amino acids within the N-terminus of a protein 
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[191]. However, the relatively recent application of mass spectrometry for histone 

characterization has led to the discovery of numerous PTHMs located within the globular core 

domains of these proteins, which also play important roles in chromatin regulation and are now 

receiving more attention [191]. 

 

 

Figure 9. Human histone H3 structure and lysine methylation marks. Histone proteins, including 

H3, have two major domains: a globular core and an N-terminal tail. Many of the amino acids 

within each domain can be modified with different moieties. One of the best studied 

modifications is lysine methylation. Human H3 lysine residues that are known to be methylated 

are shown in red and are listed in the box above. Most of these lysine residues can be modified 

with one, two, or three methyl groups (me1, me2, me3, respectively). #Identified but currently no 

known function. *Located in globular core domain. 
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PTHM nomenclature 

PTHMs are named based on which protein is modified (i.e., H3, H4, H2A, H2B, or H1); 

the type of amino acid that is modified, indicated by its single letter abbreviation; the position of 

the modified amino acid in relation to the N-terminus, indicated by a number denoting its 

location; the type of modification present (e.g., acetylation vs. methylation); and, in the case of 

methylation, the number of methyl groups present. Of the four core histones, H3 is the most 

highly modified [193]. Recently, Xu et al. summarized all human H3 PTHMs that have been 

identified by mass spectrometry [193]. Although 17 different types of PTHMs on more than 30 

amino acids have been characterized, the functions of many remain unknown [193]. To date, the 

best described modifications include the acetylation and methylation of lysine residues. Histone 

lysine residues can be modified with a single acetyl group (ac) or with one, two, or three methyl 

groups (me1, me2, and me3, respectively). All known lysine methylation marks identified in 

human H3 are depicted in Figure 9.  

DNA modifications 

The best-studied DNA modification is 5-methylcytosine (5-mC), which is established 

with the transfer of a methyl group from SAM to the 5’ position of a cytosine residue (Figure 

10) [194]. This can be catalyzed by one of several DNA methyltransferases (DNMTs) [194]. 

DNA methylation generally occurs at cytosine-guanine dinucleotides (CpG sites) and in a 

symmetrical fashion [195]. In mammals, approximately 70%-80% of CpG sites are methylated 

[196]. 5-mC is observed at high levels in repetitive elements, which prevents genomic instability, 

and within gene bodies, where it facilitates transcriptional elongation and prevents spurious 

transcription [197]. In contrast to the rest of the genome, CpG rich regions called CpG islands 
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(CGI) tend to be unmethylated, allowing for active transcription of the associated genes [198]. 

Although definitions for CGIs vary, they are typically classified as regions of at least 200 base 

pairs in length, with a G+C content >50% and an observed-to-expected CpG ratio >60% [198]. 

CGIs are present in more than 50% of genes [198]. Methylation in these regions may inhibit 

transcription directly by obstructing transcription factor binding or indirectly by recruiting 

chromatin modifying enzymes, which restructure the chromatin such that it is less accessible to 

the transcriptional machinery [199]. Although gene-specific levels of DNA methylation are cell 

type specific, genome-wide DNA methylation levels have been shown to be highly correlated 

between purified cell types within blood and skin lineages (Pearson’s correlations typically 

between 0.96 and 0.99) [200]. 

 

 

 

Figure 10. 5-methylcytosine and 5-hydroxymethylcytosine. Cytosine residues within DNA can 

be modified with different moieties, such as methyl or hydroxymethyl groups (shown in red). 5-

methylcytosine (5-mC) is formed when a methyl group is transferred from SAM to the 5’ 

position of a cytosine residue in a reaction that can be catalyzed by one of three DNA 

methyltransferases (DNMTs). 5-mC can then be oxidized to 5-hydroxymethylcytosine (5-hmC) 

by one of several enzymes within the ten-eleven translocation methylcytosine dioxygenase 

(TET) family. 5-hmC can be further oxidized to other cytosine derivatives, which can 

subsequently be removed by the base excision repair pathway. 
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Although 5-mC is considered a stable mark, a global loss of 5-mC occurs with aging and 

during cancer development [201-203]. Originally it was thought that DNA demethylation only 

occurred through passive mechanisms. However, there is now evidence that 5-mC is also 

actively demethylated through a pathway that depends on the oxidation of 5-mC to 5-

hydroxmethylcytosine (5-hmC) [204]. This is catalyzed by the ten-eleven translocation (Tet) 

methylcytosine dioxygenase family of enzymes [204] (Figure 9). 5-hmC can be further oxidized 

to other cytosine derivatives [204], which can be removed by the base excision repair pathway 

(reviewed in [205]). 

In most mammalian tissues, 5-hmC is much less abundant than 5-mC [195]. 5-hmC 

levels range from 0.03% to 0.17% in most mouse tissues [206]. One exception to this is the 

central nervous system, where normal 5-hmC levels may be as high as 0.70% [206]. In contrast, 

global 5-mC levels are close to 4.30% in almost all tissues [206]. Although the biological roles 

of 5-hmC are not fully understood, this mark has generally been associated with active genes and 

may be important for epigenetic reprogramming [207]. 

Euchromatin and heterochromatin 

PTHMs and DNA methylation work together to regulate chromatin, which can be 

classified into two major regions: heterochromatin and euchromatin [208]. Heterochromatin is 

condensed and is generally transcriptionally inactive, whereas euchromatin is open and mainly 

contains transcriptionally active genes [208] (Figure 11). Each region is dominated by specific 

epigenetic patterns (Figure 11). Heterochromatin is typically characterized by high levels of 5-

mC, low levels of 5-hmC, and repressive PTHMs, such as H4K20me3, H3K9me2/3, and 

H3K27me3 [184, 188, 209, 210]. In contrast, euchromatin is typically characterized by low 
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levels of 5-mC, high levels of 5-hmC, and activating PTHMs, such as acetylation at H3K14, 

H4K16, and H4K18, and methylation at H3K4, H3K36, and H3K79 [184, 188, 209, 210].  

 

 

Figure 11. Heterochromatin and euchromatin. Chromatin consists of DNA (shown in red) 

wrapped around a histone octamer, consisting of two copies of each of the core histone proteins: 

H2A, H2B, H3, and H4 (shown in purple). Chromatin can be classified broadly into two major 

domains: heterochromatin (top), which is highly condensed and transcriptionally inactive, and 

euchromatin (bottom), which is open, accessible, and generally transcriptionally active. Each 

region is characterized by specific epigenetic modifications. These are depicted in the insets, 

which convey a zoomed-in perspective of each region of chromatin. Heterochromatin is 

characterized by repressive PTHMs, such as H3K9me2/3, H3K27me3, and H4K20me3, and high 

levels of 5-mC (not shown). In contrast, euchromatin is characterized by PTHMs associated with 

transcriptional activation or elongation, such as H3K4me3, H3K14ac, H3K4me2, H3K36me2, 

H3K36me3, H3K79me2 (located in H3 core domain), H4K16ac, and H4K18ac, and high levels 

of 5-hmC (not shown). 
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PTHMs can alter chromatin structure through both direct and indirect mechanisms. Since 

acetyl and phosphate groups are negatively charged, the addition of these moieties to histones 

directly impacts chromatin structure by reducing the affinity of the otherwise positively charged 

histone proteins for the negatively charged DNA [188]. This leads to a more open chromatin 

conformation [188]. However, PTHMs can also indirectly alter chromatin structure by recruiting 

chromatin modifiers, which actively remodel the chromatin to a more open or closed 

conformation [188]. 

Relationship between PTHMs and DNA methylation 

The relationship between PTHMs and DNA methylation is dynamic, with each type of 

modification influencing the other. PTHMs have been shown to direct de novo DNA methylation 

patterns during development [211]. For example, methylation at H3K4 blocks the binding of 

DNMT3L, a recruiter of de novo DNMTs [212]. In turn, DNA methylation can act as a template 

for the re-establishment of PTHMs after DNA has been replicated [211]. However, PTHMs are 

generally thought to be more labile than DNA methylation [211]. Therefore, PTHMs may be 

more easily influenced by environmental exposures and may thus mediate environmentally-

induced alterations in DNA methylation. 

Regulation of histone lysine methylation 

Histone lysine methylation marks are regulated by histone lysine demethylases (KDMs) 

and SAM-dependent lysine histone methyltransferases (KHMTs). KDMs can be classified into 

two major groups. The majority fall under the Jumonji C family, which can remove methyl 

groups from mono-, di-, and tri-methylated substrates (reviewed in [213]). In contrast, the LSD 

family of demethylases can only demethylate mono- and di-methylated substrates [213]. KHMTs 
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are also classified into two major groups based on their catalytic domains. The majority of 

KHMTs have a highly conserved Su(var)3-9, Enhancer of Zeste [E(Z)], and Trithorax (trx) 

domain [214]. The only exception is DOT1L, which catalyzes the mono- di- and tri-methylation 

of H3K79, but is structurally more similar to arginine methyltransferases [214]. 

2. Dysregulation of epigenetic modifications in human diseases 

DNA methylation and human diseases 

Distinct alterations in DNA methylation patterns have been observed in numerous 

cancers and in several non-cancer health outcomes. Typically, a simultaneous loss of global, but 

gain of gene-specific, DNA methylation is observed during cancer development (reviewed in 

[215]). This can lead to genomic instability and the silencing of tumor suppressor genes, 

respectively [215]. Pre-diagnostic measures of global and genome-wide leukocyte DNA 

methylation patterns have been associated with increased risks for developing several adverse 

outcomes, including breast [216, 217] and gastric [218] cancers in women, renal cell carcinoma 

[219] and ischemic heart disease [220] in men, and arsenic-induced skin lesions [172]. 

PTHMs and human diseases 

Experimental studies have demonstrated that PTHMs are critical for normal cellular 

processes. For example, DNA repair mechanisms are regulated by several PTHMs, including 

H3K36me3 [221-223], H3K36me2 [224], and H3K79me2 [214]. H3K79me2 is also required for 

normal cell cycle control, cardiac development, and hematopoiesis (reviewed in [214]). The 

dysregulation of these, and other, PTHMs has therefore been implicated in the development of 

human diseases, particularly cancers. For example, an aberrant global increase in H3K36me2 
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leads to the overexpression of genes involved in oncogenic programming [225]. Similarly, a 

global aberrant increase in H3K79me2 plays a key role in the development of MLL-fusion 

leukemia [214]. In contrast, global reductions in H4K16ac and H4K20me3 are characteristic of 

most cancer types [226]. Global PTHM patterns have also been used successfully to predict the 

prognosis of many types of cancer, including lung, prostate, breast, gastric, esophageal, kidney, 

liver, colorectal, and pancreatic cancers, as well as gliomas and hematological malignancies 

([227-230] and reviewed in [231]). 

There is also evidence that PTHMs are dysregulated in non-cancer outcomes. For 

example, human NTDs are characterized by a global loss of H3K79me2 [232], and alterations in 

H3 phosphorylation and acetylation have been observed in postmortem brain tissue samples from 

individuals with Alzheimer’s disease [233] and neuropsychiatric disorders [233, 234]. 

Epigenetic therapeutics 

Since epigenetic modifications are reversible, they are targets of many potential 

therapeutics. Currently, two DNMT inhibitors and three histone deacetylase inhibitors are 

approved by the Food and Drug Administration for the treatment of hematological malignancies 

[183]. Several other epigenetic therapeutics are in preclinical or early clinical trials for the 

treatment of both hematological malignancies and solid tumors, and many of these newer drugs 

target KDMs and KHMTs [183]. However, it is important to note that in many cases the effects 

of epigenetic therapies may be non-specific, as many histone-modifying enzymes also have non-

histone targets. One notable exception to this is DOT1L, which exclusively methylates H3K79 

and is a promising therapeutic target for MLL-fusion leukemia [235, 236].  
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3. Arsenic and epigenetics 

Arsenic and DNA methylation 

Consistently, across in vitro and animal studies, arsenic has been shown to reduce global 

levels of DNA methylation (reviewed in [123]). In contrast, positive associations between 

arsenic exposure and global DNA methylation have been observed in human populations [237-

240]. There may be several reasons for these discrepancies: 1) experimental studies often use 

very high doses of arsenic, which are not relevant to human exposures, 2) the durations of 

exposure used in experimental studies are much shorter than the chronic exposures experienced 

by most human populations, 3) in vitro studies typically employ cancer/transformed cell lines, 

and 4) arsenic metabolism and susceptibility to arsenic toxicity differ substantially between 

humans and animal models. Human populations are also heterogeneous with respect to 

nutritional status, which can have profound influences on epigenetic marks (described in more 

detail below). Additionally, there has been a historical bias in the use of male animals and male-

derived cell lines for biomedical research, despite important sex differences [241]. Therefore, 

differences in nutritional status and sex are additional factors which may contribute to 

inconsistencies across studies. Several population-based studies have begun to tease apart the 

important interactions between arsenic, nutrition, and sex in relation to DNA methylation.  

Interactions with nutritional status and sex 

 Folate nutritional status has been shown to modify the relationship between arsenic 

exposure and global DNA methylation. One study in Bangladeshi adults observed a positive 

association between arsenic exposure and global levels of leukocyte DNA methylation, but only 

among those who were folate sufficient (plasma folate >9 nmol/L) [237]. Similarly, in a study of 
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elderly men, arsenic exposure was found to be positively associated with Alu methylation (an 

indicator of global DNA methylation), but only in individuals with plasma folate concentrations 

below the median [240]; importantly, since this study took place in the United States after FA 

fortification occurred, individuals in the low folate stratum were comparable to the folate 

sufficient stratum in Bangladesh. Thus, the findings from these two studies are consistent. 

 Sex may also modify the effect of arsenic on DNA methylation. In Bangladesh, prenatal 

arsenic exposure has been positively associated with global levels of cord blood DNA 

methylation among males, but negatively among females [242]. Another study in Bangladesh 

observed that prenatal arsenic exposure was associated with altered cord blood DNA methylation 

levels in both boys and girls, but the effects were more pronounced among boys [243]. The 

majority of studies which have examined the relationship between arsenic exposure and global 

DNA methylation have relied on bisulfite-conversion techniques, which cannot distinguish 

between 5-mC and 5-hmC (reviewed in [244]). However, in a recent study, which was able to 

discriminate between these two marks using an LC-MS/MS assay, arsenic exposure was found to 

be positively associated with both 5-hmC and 5-mC among men, but was inversely associated 

with 5-hmC and was not associated with 5-mC among women [245]. These findings were 

observed in two separate study samples [245]. Thus, sex appears to modify the effects of arsenic 

exposure on both 5-mC and 5-hmC. 

Statistical power considerations often preclude the examination of three-way interactions 

between sex, nutritional status, and arsenic exposure in human populations. However, one study 

in mice observed that simultaneous exposure to arsenic and a methyl deficient diet (MDD) 

reduced global levels of DNA methylation in the livers of male animals, but increased global 
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DNA methylation in the livers of female animals [246]. Therefore, arsenic may interact with 

both nutrition and sex to influence DNA methylation patterns. 

Arsenic and PTHMs 

There is increasing evidence that arsenic also alters global levels of PTHMs. While the 

majority of these studies have been conducted in vitro [247-265], there are a few supporting 

studies in rodents [266, 267] and human populations [268, 269] (Table 1). Collectively, these 

studies provide evidence that arsenic induces global dysregulation of many different PTHMs. 

However, there are some discrepancies across studies, which may be attributed to differences in 

the particular tissues/cell lines examined; the durations, doses, and forms of arsenic used; the sex 

of the animals or cell lines utilized; and, potentially, cleavage of histone proteins, which can 

affect the measurement of downstream PTHMs (See Chapter 4). Details of each study are 

summarized in Table 1. Similar to studies on arsenic and DNA methylation, there is increasing 

evidence that arsenic affects certain PTHMs differentially by sex [267, 269].  

4. One-carbon metabolism and epigenetics 

One-carbon metabolism and DNA methylation 

DNMTs are SAM-dependent enzymes. Therefore, the majority of experimental studies 

have demonstrated that global levels of DNA methylation are reduced when methyl donors or 

related cofactors are limiting [270-282] and are increased as a result of methyl donor 

supplementation [280, 283], although there have been a few exceptions [284-290]. Methyl 

donors may also counteract epigenetic dysregulation caused by environmental toxicants. For 

example, Dolinoy et al. observed that in utero exposure to bisphenol A reduces DNA 
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methylation, but this could be prevented by maternal supplementation with a combination of FA, 

cobalamin, choline, and betaine [291]. 

Since the methyl deficient conditions used in most animal studies are generally not 

relevant to human populations, epidemiological studies have been essential for understanding 

how nutritional methyl donors may influence DNA methylation. Several observational studies 

have observed inverse relationships between plasma Hcys or SAH concentrations and global 

DNA methylation levels [293, 294]. Additionally, RBC folate has been positively correlated with 

DNA methylation, although only in individuals with the T/T MTHFR SNP, which reduces 

MTHFR activity [295, 296]; this SNP has also been independently associated with lower global 

leukocyte DNA methylation levels [297]. Studies in adult women have also observed that global 

DNA methylation levels are reduced in response to folate depletion [298, 299], and these effects 

may be reversible [298]. Additionally, two randomized trials in adults have demonstrated that 

FA supplementation, at doses ranging from 100 to 4000 µg/day, either alone or in combination 

with cobalamin (500 µg/day), for durations ranging from 1 month to up to 2 years, alters DNA 

methylation levels in white blood cells [300, 301].  

In contrast with most of the findings for folate, one study observed that maternal choline 

intake during early pregnancy was inversely associated with cord blood DNA methylation, 

although this was only observed among boys [302]. Thus, other factors, such as sex and the 

timing of methyl donor supplementation, may be important modifiers of these relationships. 
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Table 1. Summary of studies examining the effects of arsenic on global levels of PTHMs 

Reference Cell Line, 

Mouse Strain, or 

Population 

Sex1 Exposure; Doses2 Duration PTHMs examined Findings 

Cell Culture 

[247] Arrigo 

(1983) 

Kc 161 (Drosophila, 

embryonic) 

? NaAsO2
 (AsIII); 50 

µM 

4 h H3, H4, H2A, H2B 

methylation and acetylation 

Methylation: ↓H3, H4, ↑H2B 

Acetylation: ↓H3, H4, H2A, H2B 

[248] Desrosiers 

and Tanguay 

(1986) 

Schneider and Kc III cells 

(Drosophila, embryonic) 

? NaAsO2 (AsIII); 50 

µM 

4 h H3, H4, and H2B 

methylation and acetylation 

Methylation: ↓H3, H4, ↑H2B 

Acetylation: ↓H3, H4, H2B 

[265] Cobo et al. 

(1995) 

CHO (Chinese hamster, 

ovary) 

F NaAsO2 (AsIII); 10 

µM 

2 h H1, H2A, H3, H4 

phosphorylation 

Phosphorylation: ↓H1 and H3  

 

No effects on H2A or H4 

[257] Perkins et 

al. (2000) 

HL-60 (human, APL)/ 

K562 (human, CML) 

F As2O3 (AsIII); 1, 2 

µM/2 µM 

7 d/24 h H3 and H4 acetylation ↑Acetylation for all doses and 

durations 

[249] Li et al. 

(2002) 

NB4 (human, APL) F As2O3 (AsIII); 0.4, 

0.8, 1.6 µM 

24 h H3S10phK14ac, H3S10ph, 

H3K14ac, H3K9acK14ac 

0.8 and 1.6 µM ↑H3S10ph and 

H3S10phK14ac 

 

No effect on H3K14ac or 

H3K9acK14ac 

[292] Kannan-

Thulasiraman et 

al. (2006) 

KT-1 (human, CML)/ 

NB4 (human, APL) 

M/F As2O3 (AsIII); 2 µM 20 min H3S10ph ↑H3S10ph 

[250] Ramirez et 

al. (2008) 

HepG2 (human, liver 

cancer) 

M NaAsO2 (AsIII); 7.5 

µM 

24 h H3K4me2, me3, H3K9ac, 

H3K9me2, me3, 

H3K27me3, H4K20me3 

↑H3K9ac 

 

No effects on methylation marks  

[251] Zhou et al. 

(2008)  

A549 (human, lung 

cancer)/BEAS2B (human, 

healthy lung, SV40-

transformed)  

M/M NaAsO2 (AsIII); 2.5, 

5 µM/1, 2 µM 

24 h H3K4me, me2, me3, 

H3K9me,me2, me3 

H3K27me3, H3K36me2, 

me3/ 

H3K9me2 

↑H3K9me2,me3, no effect on 

H3K9me, ↑H3K4me2, me3, 

↓H3K4me, ↓H3K27me3, 

↑H3K36me3, 

↓H3K36me2/↑H3K9me2 

[252] Zhou et al. 

(2009) 

A549 (human, lung cancer) M NaAsO2 (AsIII); 1, 5 

µM 

24 h H3K4me, me2, me3 ↑H3K4me2, me3 

↓H3K4me 

[260] Jo et al. 

(2009) 

UROTsa (human, healthy 

urothelium, SV40-

transformed) 

F NaAsO2 (AsIII); 3 

µM 

MMAIIIO (MMAIII); 

1 µM 

7 d H4K16ac ↓H4K16ac 
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[262] Suzuki et 

al. (2009) 

HepG2 (human, liver 

cancer) 

M NaAsO2 (AsIII); 60 

µM 

C2H7AsI (DMAIII); 

0.5 µM  

0.5, 1.5, 3, 5, 7 

h 

H3S10ph ↑H3S10ph 

[253] Chu et al. 

(2011) 

UROTsa (human, healthy 

urothelium, SV40-

transformed) 

F NaAsO2 (AsIII); 1 

nM, 3 and 10 µM/ 

MMAIIIO (MMAIII); 

0.3, 1, 3 µM 

24 h, 7 d H3 and H4 acetylation ↓H4K16ac, ↓H3 acetylation 

[259] Treas et al. 

(2012) 

RWPE1 (human, healthy 

prostate) 

M NaAsO2 (AsIII); 100 

pg/mL +/- E2, 100 

ng/mL +/- E2 

6 months H3ac, H3K4me3 ↑H3ac with AsIII or E2 alone, even 

greater ↑ for AsIII + E2 (100 

ng/mL) 

↓H3ac for combination of AsIII + 

E2 (100 pg/mL) 

↑H3K4me3 for combination of 

AsIII + E2 (100 ng/mL) 

[261] Kim et al. 

(2012) 

3T3 cells (BALB/c mouse, 

embryo fibroblasts) 

F As2O3 (AsIII); 0.5 

µM) 

2, 4 wk H3K27me3 ↑H3K27me3 

[263] Suzuki et 

al. (2013) 

HepG2 (human, liver 

cancer) 

M NaAsO2 (AsIII); 50 

µM 

0.5, 1, 2, 5 h H3S10ph ↑H3S10ph 

[264] Ge et al. 

(2013) 

UROTsa (human, healthy 

urothelium, SV40-

transformed) 

F CH3AsI2 (MMAIII); 

50 nM 

12 wk Acetylation of H4K5, H4K8, 

H4K12, and H4K16 

↓H4K12ac and H4K16ac 

 

No effects on H4K5ac or H4K8ac 

[254] Herbert et 

al. (2014) 

Primary human neonatal 

keratinocytes 

? Arsenic source 

unspecified (AsIII); 

0.5 µM 

1, 12, 24, 48 d H4K16ac ↑H4K16ac for all durations 

[255] Liu et al. 

(2015) 

HeLa (human, cervical 

cancer)/HEK293T (human, 

embryonic kidney) 

F/F As2O3 (AsIII); 0.2-

0.8 µM 

24, 48, 72 h H4K5ac, H4K8ac, H4K12ac, 

H4K16ac for both cell lines 

↓H4K16ac in both cell lines 

 

No changes in other PTHMs 

[256] Rahman et 

al. (2015) 

HEK293T (human, 

embryonic kidney)/UROtsa 

(human, healthy 

urothelium, SV40-

transformed) 

F/F As2O3 (AsIII); 1, 5 

µM 

As2O3 (AsIII); 0.5, 

2.5 µM 

72 h 

3 h 

Acetylation of H3K9, 

H4K12, and H4K16 

↓H3K9ac (UROTsa only after 72 

h, both doses) 

 

No effect at shorter duration or for 

other PTHMs 

[258] Ray et al. 

(2015) 

HaCaT (human, 

keratinocytes from healthy 

skin, SV40-transformed) 

 

 

M NaAsO2 (AsIII);  

0-25 µM/10 µM 

8 h/0-24h H3S10ph ↑H3S10ph in dose- and time-

dependent manner 
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Rodent 

[266] Cronican et 

al. 2013 

C57BL6/J (brain, cortex 

and hippocampus) 

Both, 

combined 

NaAsO2 (AsIII); 100 

µg/L  

(1 wk before 

conception 

until birth) 

H3K9ac ↓H3K9ac 

[267] Tyler et al. 

2015 

C57BL/6 (brain, dentate 

gyrus and frontal cortex) 

Both, 

separate 

Na3AsO4 (AsV);  

50 µg/L 

(10 d prior to 

pregnancy –

weaning) 

H3K4me3, H3K9ac, 

H3K9me3 

M dentate gyrus: ↑H3K4me3 and 

↑H3K9ac  

F dentate gyrus: ↓H3K4me3 and 

↓H3K9ac 

M frontal cortex: ↑H3K4me3 and 

↓H3K9ac  

F frontal cortex: No change in 

H3K4me3 or H3K9ac  

 

No effects on H3K9me3 in either 

brain region in either sex 

Human 

[268] Cantone et 

al. 2011 

Adults, occupationally 

exposed via inhalation, Italy 

(PBLs) (n = 63) 

M Arsenic in 

particulate matter 

(0.01 – 0.31 µg/m3)  

Chronic (y) H3K4me2, H3K9ac ↑H3K4me2 

[269] Chervona 

et al. 2012 

Adults, exposed via 

contaminated drinking 

water, Bangladesh 

(PBMCs) (n = 40, 50% 

male) 

Both, 

separate  

Water As (primarily 

AsIII) (50 – 500 

µg/L) 

Chronic (y) H3K4me3, H3K9ac, 

H3K9me2, H3K18ac, 

H3K27ac, H3K27me3 

Whole sample: ↑H3K9me2, 

↓H3K9ac. 

M: ↓H3K4me3 and H3K27me3. 

↑H3K27ac. 

F: ↑H3K4me3 and H3K27me3. 

↓H3K27ac 

 

Abbreviations used: AsIII, arsenite; AsV, arsenate; As2O3, arsenic trioxide; APL, acute promyelocytic leukemia; C2H7AsI, dimethylarsine iodide; CH3AsI2, diiodomethylarsine; CML, chronic 

myelogenous leukemia; d, days; E2, estradiol; F, female; h, hours; M, male; NaAsO2, sodium arsenite; Na3AsO4; sodium arsenate; PBLs, peripheral blood leukocytes; PBMCs, peripheral blood 

mononuclear cells; PTHM, posttranslational histone modification; wk, week; y, years 
 

1With respect to cell culture studies, sex refers to the biological sex of the animal or patient from which the cell line was derived 
2Units are listed as they were reported in the original reference. 
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One-carbon metabolism and PTHMs 

Similar to DNMTs, KHMTs are SAM-dependent enzymes (Figure 12). Thus, several 

experimental studies have also demonstrated that supplementation with choline or folate 

increases global levels of histone methylation marks [303, 304], while deficiencies in methyl 

donors typically reduce them [305-307]. However, the effects of nutritional methyl donors on 

PTHMs may be more complex than their effects on DNA methylation for several reasons. First, 

there is evidence that PTHMs have differing sensitivities to alterations in methyl donors [304, 

306]. It has been hypothesized that this may be due to the fact that KHMTs likely have differing 

binding affinities for SAM [304]. The effects of nutritional methyl donors on PTHMs may also 

be complicated by the fact that histone lysine residues can be mono-, di-, or tri-methylated. 

These methylation states are mutually exclusive. Therefore, a decrease in one methylation state 

may necessitate the increase of another [308]. There is also substantial cross-talk between 

PTHMs. Thus, the presence of a particular modification at one amino acid may prevent or 

promote the addition of a modification at another amino acid [308]. For example, methylation at 

H3K4 precludes methylation at H3K9, and vice versa [308]. Therefore, it may not be surprising 

that methyl donor depletion has also been shown to induce higher levels of some PTHMs [303, 

309]. 

Although folate is an important methyl donor, it is also an acceptor and carrier of one-

carbon groups. Therefore, folate may have dual roles in regulating histone methylation marks. 

Two recent studies by the same group observed that folate, in the form of THF, binds to LSD1, a 

histone demethylase, and likely accepts the one-carbon group as it is removed from the histone 

protein; this may occur to prevent the formation of formaldehyde during oxidative histone 

demethylation, which could otherwise cause cross-linking at the enzyme’s active site [310, 311]. 
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Consistent with this hypothesis, the same group demonstrated that H3K4me2, a target of LSD1, 

was increased globally in the livers of male mice fed a folate deficient diet [312]. Thus, the 

effects of folate on histone methylation may be even more complex than those of other 

nutritional methyl donors.  

 

Figure 12. SAM-dependent methylation of histone H3. Commonly examined H3 lysine residues 

are indicated in light blue. Most histone lysine residues can receive one, two, or three methyl 

groups. Lysine histone methyltransferases (KHMTs), which depend on methyl donations from S-

adenosylmethionine (SAM), catalyze these reactions. Once a KHMT has transferred a methyl 

group from SAM to the histone substrate, S-adenosylhomocysteine (SAH) is formed. SAH can 

inhibit subsequent methylation reactions. The inset depicts the transfer of a methyl group (shown 

in red) from SAM to the mono-methyl form of H3K36 (H3K36me1), resulting in the di-methyl 

form of H3K36 (H3K36me2) and SAH. 
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The effects of OCM indices on PTHMs have been largely understudied in human 

populations. One very small case-control study in China (n = 8) characterized global PTHM 

patterns in human NTDs using mass spectrometry, and observed that H3K79me2 levels were 

much lower in fetal brain tissue from NTD cases compared with healthy controls matched on 

gestational age and sex [232]. Since folate deficiency is an established risk factor for NTDs, 

these findings provide indirect evidence that folate deficiency reduces global H3K79me2 levels 

[232]. This group also confirmed that folate deficient conditions reduce H3K79me2 levels in 

vitro [232]. A second study in the United States by Piyathilake et al. examined the influence of 

FA fortification on global H3K9me2 levels in women with cervical intraepithelial neoplasia 

(CIN) [313]. They compared H3K9me2 levels in CIN tissue collected from participants recruited 

pre- vs. post-FA fortification, and found that H3K9me2 levels were higher in the tissue collected 

post-fortification, after adjusting for age and race. Piyathilake et al. therefore concluded that FA 

increased global H3K9me2 levels [313]. However, this study had several important limitations: 

1) there were likely other factors which changed during the FA fortification period, or which 

differed between the two groups of participants, which may have confounded the relationship 

between FA fortification and H3K9me2, 2) CIN tissue collected pre-FA fortification had been 

stored for a longer duration than CIN tissue collected post-fortification, which could potentially 

affect H3K9me2 measures differentially by group, and 3) individual-level folate measures were 

not available for the participants, thus it is unclear if folate status actually differed between the 

two groups. Therefore, while there is some preliminary evidence from human populations that 

folate influences PTHMs, additional epidemiological studies are needed. 
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D. Summary and rationale 

As outlined in sections B and C, there is growing evidence that nutrients involved in the 

OCM pathway may influence arsenic toxicity through effects on both arsenic metabolism and 

epigenetics. Since the metabolism of arsenic involves two sequential SAM-dependent 

methylation reactions, nutrients involved in the OCM pathway, particularly folate, facilitate the 

methylation and urinary excretion of arsenic. However, the relationships between SAM and 

arsenic methylation, and the potential modifying effects of nutrients in the OCM pathway, have 

not been evaluated in human populations. In experimental models, SAM has also been shown to 

influence epigenetic modifications that are dependent on methylation reactions, such as DNA 

and histone methylation. These modifications are dysregulated in adverse health outcomes, such 

as cancers, and are altered by arsenic and nutritional methyl donors in experimental settings. 

However, given important differences between experimental models and human populations, 

there is a need for supporting epidemiological studies. In particular, there is a dearth of 

information on the influences of arsenic and OCM indices on PTHMs. Since susceptibility to 

arsenic toxicity differs between men and women, and since previous studies have observed that 

arsenic influences epigenetic modifications in a sex-dependent manner, a better understanding of 

potential differences by sex is also critical. The goal of this dissertation is to address these gaps 

in the literature, using data from three epidemiological studies of arsenic-exposed Bangladeshi 

men and women. 
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CHAPTER TWO APPENDIX 

Table A1. Associations between %MMA in urine and adverse health outcomes 

Study Outcome Predictor Cutoffs Design # Cases Country Subgroup OR/HR (95% CI) 

[1] Steinmaus 

et al. 2010 

Lung Cancer %MMA >17.2% Case Control 45 Argentina NA 3.09 (1.08-8.81) 

[2] Melak et al. 

2014 

Lung/ 

Bladder Cancer 

%MMA >12.5% Case Control 94/117 Chile NA 3.26 (1.76-6.04)/ 

2.02 (1.15-3.54) 

[3] Chen et al. 

2003a 

Bladder Cancer Low vs. high 

DMA:MMA 

≤4.8 Case Control 49 Taiwan CAE >12 

mg/L-yr 

4.23 (1.12-16.01) 

[4] Steinmaus 

et al. 2006 

Bladder Cancer %MMA >16.7%/ 

>14.8% 

Case Control 114/23 Argentina/U.S. Smokers/ 

Arsenic >100 

µg/day 

2.17 (1.02-4.63]/ 

2.7 (0.4-18.6) 

[5] Pu et al. 

2007 

Bladder Cancer %MMA >9.2% Case Control 177 Taiwan NA 2.8 (1.6-4.8) 

[6] Huang et 

al. 2008 

Bladder Cancer %MMA >11.4% Case Control 37 Taiwan CAE  

>20 mg/L-yr 

3.7 (1.2-11.6) 

[7] Hsueh et al. 

1997 

Skin Cancer %MMA >26.7% Case Control 33 Taiwan CAE  

>20 mg/L-yr 

23.9 (2.6-225.2) 

[8] Yu et al. 

2000 

Skin Cancer %MMA >15.5% Case Control 26 Taiwan NA 5.5 (1.2-24.8) 

[9] Chen et al. 

2003b 

Skin Cancer DMA:MMA 

(Low vs. high) 

≤5 Case Control 76 Taiwan CAE  

>15 mg/L-yr 

7.5 (1.7-34.0) 

[10] Ahsan et 

al. 2007 

Skin Lesions %MMA >16.4% Case Control 594 Bangladesh NA 1.6 (1.1-2.3) 

[11] McCarty 

et al. 2007 

Skin Lesions MMA:InAs >10 Case Control 600 Bangladesh NA 1.5 (1.0-2.3) 

[12] Lindberg 

et al. 2008 

Skin Lesions %MMA >12% Case Control 504 Bangladesh NA 2.8 (1.9-4.2) 

[13] Tseng et 

al. 2005 

PVD %MMA >11.4% Case Control 54 Taiwan CAE  

>0 mg/L-yr 

4.6 (1.0-20.6) 

[14] Wu et al. 

2006 

Atherosclerosis %MMA >13.4% Case Control 163 Taiwan CAE 

>1.7/mg/L-yr 

2.7 (1.0-7.8) 

[15] Chen et al. 

2013 

Heart Disease %MMA Highest 

tertile 

Prospective 211 Bangladesh NA 2.3 (1.0-1.5) 

[16] Huang et 

al. 2007 

Hypertension %MMA >15.6% Case Control 372 Taiwan NA 1.04 (0.66-1.62) 

[17] Li et al. 

2013 

Hypertension %MMA >16.4% Case Control 168 China NA 0.99 (0.59-1.66) 

[18] Kuo et al. 

2015 

Diabetes %MMA Per 5% 

increase 

Prospective 396 U.S. (Native 

American) 

NA 0.84 (0.76-0.94) 
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[19] Hsieh et 

al. 2014 

Develop. Delay %MMA >1.55% Case Control 63 Taiwan NA 8.3 (1.4-49.7) 

[20] Lopez-

Carrillo et al. 

2014 

Breast Cancer %MMA >13.3% Case Control 1016 Mexico NA 2.63 (1.89-3.66) 

 

Abbreviations used: CAE, cumulative arsenic exposure; Develop. Delay, developmental delay; DMA:MMA, ratio of dimethyl to 

monomethyl arsenical species; HR, hazards ratio; %MMA, proportion of monomethyl arsenical species in urine; MMA:InAs, ratio of 

monomethyl to inorganic arsenical species; OR, odds ratio; PVD, peripheral vascular disease; U.S., United States 
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Table A2. Associations between %DMA in urine and adverse health outcomes 

Study Outcome Predictor Cutoffs Design # Cases Country Subgroup OR/HR (95% CI) 

[1] Steinmaus et al. 

2010 

Lung Cancer %DMA >74% Case Control 45 Argentina NA 0.44 (0.16-1.23) 

[2] Melak et al. 

2014 

Lung/ 

Bladder Cancer 

%DMA ≥83.9% Case Control 94/117 Chile NA 0.62 (0.36-1.06)/ 

1.65 (1.06-2.56) 

[6] Huang et al. 

2008 

Bladder Cancer %DMA ≥85.8% Case Control 37 Taiwan NA 0.3 (0.1-0.9) 

[8] Yu et al. 2000 Skin Cancer %DMA >72.2% Case Control 26 Taiwan NA 0.3 (0.1-0.9) 

[10] Ahsan et al. 

2007 

Skin Lesions %DMA ≥76.1 Case Control 594 Bangladesh NA 0.83 (0.58-1.18) 

[12] Lindberg et al. 

2008 

Skin Lesions %DMA >82% Case Control 504 Bangladesh NA 0.41 (0.28-0.60) 

[13] Tseng et al. 

2005 

PVD %DMA >81.01% Case Control 54 Taiwan CAE >0 

mg/L-yr 

0.24 (0.05-1.10) 

[15] Chen et al. 

2013 

Heart Disease %DMA ≥75.6% Prospective 211 Bangladesh NA 0.65 (0.42-0.98) 

[16] Huang et al. 

2007 

Hypertension %DMA ≥85.3 Case Control 372 Taiwan NA 1.05 (0.68-1.63) 

[17] Li et al. 2013 Hypertension %DMA >79.1% Case Control 168 China NA 0.70 (0.42, 1.16) 

[18] Kuo et al. 2015 Diabetes %DMA Per 5% 

increase 

Prospective 396 U.S. (Native 

American) 

NA 1.07 (1.00-1.15) 

[19] Hsieh et al. 

2014 

Develop. Delay %DMA >96% Case Control 63 Taiwan NA 0.13 (0.01-1.32) 

[20] Lopez-Carrillo 

et al. 2014 

Breast Cancer %DMA >85% Case Control 1016 Mexico NA 0.63 (0.45-0.87) 

 

Abbreviations used: CAE, cumulative arsenic exposure; Develop. Delay, developmental delay; %DMA, proportion of dimethyl 

arsenical species in urine; HR, hazards ratio; OR, odds ratio; PVD, peripheral vascular disease; U.S., United States 
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ABSTRACT 

 Chronic exposure to inorganic arsenic (InAs) through drinking water is a major problem 

worldwide. InAs undergoes hepatic methylation to form mono- and dimethyl arsenical species 

(MMA and DMA, respectively), facilitating arsenic elimination. Both reactions are catalyzed by 

arsenic (+3 oxidation state) methyltransferase (AS3MT) using S-adenosylmethionine (SAM) as 

the methyl donor, yielding the methylated product and S-adenosylhomocysteine (SAH), a potent 

product-inhibitor of AS3MT. SAM biosynthesis depends on folate- and cobalamin-dependent 

one-carbon metabolism. With the use of samples from 353 participants in the Folate and 

Oxidative Stress study, our objective was to test the hypotheses that blood SAM and SAH 

concentrations are associated with arsenic methylation and that these associations differ 

by folate and cobalamin nutritional status. Blood SAM and SAH were measured by HPLC. 

Arsenic metabolites in blood and urine were measured by HPLC coupled to dynamic reaction 

cell inductively coupled plasma MS. In linear regression analyses, SAH was not associated with 

any of the arsenic metabolites. However, log(SAM) was negatively associated with log(% 

urinary InAs) (β: -0.11; 95% CI: -0.19, -0.02; P = 0.01), and folate and cobalamin nutritional 

status significantly modified associations between SAM and the percentage of blood MMA 

(%bMMA) and the percentage of blood DMA (%bDMA) (P = 0.02 and P = 0.01, respectively). 

In folate- and cobalamin-deficient individuals, log(SAM) was positively associated with 

%bMMA (β: 6.96; 95% CI: 1.86, 12.05; P < 0.01) and negatively associated with %bDMA (β: -

6.19; 95% CI: -12.71, 0.32; P = 0.06). These findings suggest that when exposure to InAs is 

high, and methyl groups are limiting, SAM is used primarily for MMA synthesis rather than for 

DMA synthesis, contributing additional evidence that nutritional status may explain some of the 
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interindividual differences in arsenic metabolism and, consequently, susceptibility to arsenic 

toxicity. 

 

INTRODUCTION 

 Worldwide, approximately 140 million people are exposed to arsenic at concentrations 

that exceed the safe drinking water guideline set by the World Health Organization (10 μg/L) [1–

3], and >57 million of those exposed live in Bangladesh [4]. Exposure to arsenic is associated 

with cancers of the skin, lung, bladder, liver, and kidney [5–8] in addition to non-cancer 

outcomes including peripheral vascular disease [9], atherosclerosis [10], hypertension [11], 

peripheral neuropathy [12], and decreased intellectual function in children [13]. However, 

individuals vary in their susceptibility to arsenic-induced health outcomes, and some of this 

interindividual variation may be explained by differences in arsenic metabolism [14]. In 

contaminated drinking water, arsenic is present as inorganic arsenic (InAs). Ingested InAs can be 

methylated to form mono- and dimethyl arsenical species (MMA and DMA, respectively) 

(Figure 1), thereby facilitating arsenic elimination, because DMA has a shorter circulating half-

life than does InAs and is rapidly excreted in urine [14]. Arsenic-exposed individuals who have a 

higher proportion of MMA and a lower proportion of DMA in their urine have an increased risk 

of developing adverse health outcomes [15]. Therefore, methylation of arsenic to DMA is 

considered a detoxification pathway [14].  

 Both steps of arsenic methylation are catalyzed by arsenic (+3 oxidation state) 

methyltransferase (AS3MT) and require a methyl group from S-adenosylmethionine (SAM) [16]. 

Synthesis of SAM via one-carbon metabolism (OCM) depends on folate in the form of 5-

methyltetrahydrofolate (5-mTHF) and cobalamin; the latter acts as a cofactor for methionine 



 

87 
 

synthase, which catalyzes the transfer of a methyl group from 5-mTHF to homocysteine (Hcys) 

to generate methionine (See Supplemental Material, Figure S1). Each methylation step 

requiring SAM yields the methylated product and S-adenosylhomocysteine (SAH) [17]. 

Importantly, SAH is a potent product-inhibitor of most methyltransferases [18], including 

AS3MT [19]. Therefore, the concentrations of SAM and SAH and the ratio of SAM to SAH 

(SAM:SAH) have been used frequently as indicators of methylation capacity [20–22]. 

 

 

Figure 1. SAM-dependent arsenic metabolism. AsV is reduced to AsIII in a reaction thought to be 

dependent on GSH or other endogenous reductants. AsIII then undergoes oxidative methylation, 

catalyzed by AS3MT and, with SAM as the methyl donor, forms MMAV and SAH. MMAV is 

reduced to MMAIII and can be methylated in a second oxidative methylation step, which is also 

catalyzed by AS3MT and requires SAM as the methyl donor to produce DMAV and SAH. 

Abbreviations used: AsIII, arsenite; AsV, arsenate; AS3MT, arsenic (+3 oxidation state) 

methyltransferase; DMAV, dimethylarsinic acid; GSH, glutathione; GSSG, oxidized glutathione; 

MMAIII, monomethylarsonous acid; MMAV, monomethylarsonic acid; SAH, S-

adenosylhomocysteine; SAM, S-adenosylmethionine; TRX, thioredoxin 
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Previously, our group reported that folic acid (FA) supplementation in folate-deficient 

adults enhances methylation of InAs to DMA [23]. Because SAM synthesis relies on folate- and 

cobalamin-dependent OCM (See Supplemental Material, Figure S1), FA supplementation 

facilitates arsenic methylation by regenerating this methyl donor. However, the relations between 

blood SAM and SAH and arsenic methylation have not been examined in a human population. 

Therefore, the objective of this study was to test the hypothesis that blood SAM, like plasma 

folate, is associated with increased arsenic methylation, whereas blood SAH is associated with 

decreased arsenic methylation. We hypothesized that SAM would be negatively associated with 

the percentage of InAs (%InAs) for all participants. However, we predicted that the relations 

between SAM and the methylated metabolites (%MMA and %DMA) would differ between 

individuals who were sufficient or deficient for folate and cobalamin, because the relation 

between SAM and the methylated arsenic metabolites may depend on whether or not SAM is 

limiting. 

 

STUDY PARTICIPANTS AND METHODS 
 

Study region. Our study site, which is the site of the Health Effects of Arsenic Longitudinal 

Study (HEALS) cohort [24], is currently a 35-km2 area within Araihazar, Bangladesh, which is 

situated ~30 km east of Dhaka.  

Participants. The Folate and Oxidative Stress (FOX) study is a cross-sectional study in 378 

participants selected from 5 water arsenic (wAs)–exposure categories [<10 μg/L (n = 76), 10–

100 μg/L (n = 104), 101–200 μg/L (n = 86), 201–300 μg/L (n = 67), and >300 μg/L (n = 45) 

[25]] who were recruited between February and July of 2008. This study had 2 major aims: 1) to 

study the dose-response relation between wAs exposure and oxidative stress [25, 26] and 2) to 

study the hypotheses outlined herein. Participants between the ages of 30 and 65 y were eligible. 
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The following individuals were excluded: 1) women who were pregnant, 2) participants taking 

nutritional supplements, and 3) participants with known diabetes, cardiovascular or renal disease, 

or other diseases known to be associated with oxidative stress. Bangladeshi field staff physicians 

obtained informed consent after reading an approved consent form to study participants. This 

study was approved by both the Bangladesh Medical Research Council and the Institutional 

Review Board of Columbia University Medical Center. 

General characteristics of study participants. General characteristics of the study participants 

(Table 1) were obtained by questionnaire. Body mass index (BMI) was calculated by using the 

measured height and weight of each participant. Dietary intakes of folate and cobalamin were 

determined by food frequency questionnaire [27].  

Sample collection and handling. During each participant’s visit to our field clinic, a physician 

collected a venous blood sample. Spot urine samples were collected in 50-mL acid-washed 

polypropylene tubes and frozen at –20°C. After blood samples underwent initial processing in 

the field clinic, aliquots of blood and plasma were immediately frozen at -80°C. Samples were 

then transported on dry ice to Dhaka by car where they were again stored in -80°C (blood and 

plasma) or -20°C (urine) freezers. In Dhaka, samples were packed on dry ice and flown to 

Columbia University. 

Water arsenic. Field sample collection and laboratory analysis procedures are described 

elsewhere in detail [28, 29]. Water samples were analyzed by high-resolution inductively 

coupled plasma MS after 1:10 dilution and addition of Ge to correct fluctuations in instrument 

sensitivity. The detection limit of the method is typically <0.2 mg/L. Arsenic standards of known 

concentration were run multiple times in each batch. The intra- and interassay CVs were 6.0% 

and 3.8%, respectively.  
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Total blood arsenic. Total blood arsenic (bAs) concentrations were measured by using a Perkin-

Elmer Elan DRC II inductively coupled plasma mass spectrometer equipped with an AS 93+ 

autosampler, as described previously [30]. The intra- and interassay CVs were 3.2% and 

5.7%, respectively. 

Total urinary arsenic. Total urinary arsenic (uAs) concentrations were measured by graphite 

furnace atomic absorption spectrometry [31] using the AAnalyst 600 graphite furnace system 

(PerkinElmer), as previously described [25]. The intra- and interassay CVs were 3.8% and 5.1%, 

respectively. A method based on the Jaffe reaction was used to measure urinary creatinine (uCr) 

concentrations [32]. 

Blood and urine arsenic metabolites. Four arsenic metabolites [arsenite (AsIII), arsenate (AsV), 

monomethylarsonous acid plus monomethylarsonic acid (MMAIII+V), and dimethylarsinous acid 

plus dimethylarsinic acid (DMAIII+V)] were measured in blood and urine by coupling HPLC to 

dynamic reaction cell inductively coupled plasma MS, as described previously [33]. The reduced 

and oxidized forms of MMA and DMA cannot be separated by HPLC, so each metabolite is 

measured as one variable (i.e., as MMAIII+V or DMAIII+V, respectively). All four bAs metabolites 

could only be measured for individuals with bAs concentrations ≥5 μg/L. Each metabolite (with 

AsIII + AsV combined as InAs) was calculated as a percentage of the total measured uAs or bAs. 

The intra-assay CVs for urinary AsIII, AsV, MMA, and DMA were 3.6%, 4.5%, 1.5%, and 0.6%, 

respectively; those for blood were 0.9%, 11.5%, 3.6%, and 2.6%, respectively. The inter-assay 

CVs for urinary metabolites were 9.7%, 10.6%, 3.5%, and 2.8%, respectively, whereas those for 

blood were 3.7%, 23.2%, 2.9%, and 3.5%, respectively.  
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Plasma folate and cobalamin. A radio-protein-binding assay (SimulTRACS; MP Biomedicals) 

was used to measure folate and cobalamin, as previously described [25, 33]. The within- and 

between-day CVs for folate were 9% and 14%, respectively, and for cobalamin these were 5% 

and 9%, respectively.  

Plasma total Hcys. Hcys concentrations were measured in plasma by HPLC with fluorescence 

detection [34]. The within- and between-day CVs were 2% and 9%, respectively.  

SAM and SAH. SAM and SAH were measured as described by Wise et al. [35] in whole blood. 

Briefly, samples were thawed and mixed on a vortex, and 400 µL of blood was added to 200 µL 

of 0.1 mol/L sodium acetate, pH 6.0, and 160 µL 40% trichloroacetic acid. After 30 min of 

incubation on ice, tubes were centrifuged for 10 min at 20,817 x g. An aliquot of 200 µL of the 

supernatant was filtered by using a 0.45-µm Ultra free MC filter (Millipore) and centrifuged for 

3 min at 2,655 x g for measurement of SAM. For SAH, the remaining supernatant was extracted 

twice with 100 µL of diethyl ether followed by filtration with another 0.45-µm filter. SAM and 

SAH were separated by reversed phase HPLC on a 25 x 0.46 cm (5-µm particle size) column 

(Beckman Instruments) by using a mobile phase consisting of 50 mmol/L NaH2PO4 and 10 

mmol/L heptane sulfonic acid in 18% methanol, adjusted to pH 4.38 with phosphoric acid at a 

flow rate of 0.9 mL/min. The running column was preceded by a precolumn filter (ChromTech). 

By using a 996 Photodiode Array UV absorbance detector (Waters), SAM and SAH were 

detected at 254 nm and were quantitated by comparing the integrated areas under HPLC peaks 

with standard curves generated by using purified SAM and SAH (Sigma). The interassay CVs 

for SAM and SAH were 9.6% and 16.1%, respectively. 
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Statistical analyses. Of the 378 participants recruited for the FOX study, 353 had complete 

information for the predictor variables (SAM and SAH), urine outcome variables (%uAs 

metabolites), and potential confounders. Descriptive statistics were calculated for general 

characteristics of this study sample, including for arsenic metabolites and nutrition variables; 

these values are reported as medians (ranges) for continuous variables and as frequencies (%) for 

categorical variables. The Wilcoxon rank-sum test was used to detect differences in quantitative 

variables, including SAM and SAH, by dichotomous characteristics, including folate and 

cobalamin nutritional status (i.e., deficient vs. sufficient). Folate and cobalamin deficiencies were 

defined by using cutpoints from Christenson et al., as follows: plasma folate <9 nmol/L and 

plasma cobalamin <151 pmol/L [36]. Spearman correlation coefficients, reported as rho (ρ), 

were used to assess bivariate relations between quantitative variables including SAM and SAH 

concentrations, arsenic metabolites, and other continuous measures. To examine the bivariate 

relations between blood InAs (bInAs) or blood MMA (bMMA) and the ratio of blood DMA 

(bDMA) to bMMA (bDMA:bMMA), scatterplots and corresponding LOESS curves were plotted 

in R (R Foundation) using the default smoothing parameter 0.7. Spearman 

correlations were used to evaluate the statistical significance of the bivariate relations. 

 Linear regression models were used to evaluate the relation between each of the 

predictors (SAM, SAH, SAM:SAH) and the outcome variables [% urinary InAs (uInAs), % 

urinary MMA (uMMA), % urinary DMA (uDMA), %bInAs, %bMMA, %bDMA)]. The 

estimated regression coefficient for each predictor of interest is reported as β (95% CI) and P 

value. Because bAs metabolites could only be measured for individuals with total bAs 

concentrations ≥5 µg/L, the sample size for bAs outcomes (%bAs metabolites) was smaller (n = 

276) than the sample size for uAs outcomes (%uAs metabolites) (n = 353). To meet model 
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assumptions, a natural log transformation (log) was applied to arsenic metabolites with skewed 

distributions (%uInAs, %uMMA, %bInAs) for approximate normality. To satisfy the linearity 

assumption for regression models, SAM, SAH, SAM:SAH, age, BMI, folate, and cobalamin 

were log-transformed, and a square root transformation was applied to wAs. Potential control 

variables included sex, age, BMI, folate and cobalamin (measured continuously), television 

ownership (an indicator of socioeconomic status in this population), years of education, cigarette 

smoking status (ever or never smoker), uCr, estimated glomerular filtration rate, and amount of 

time (days) that blood samples were stored at -80°C before SAM and SAH analysis by HPLC. 

All linear regression models were adjusted for age, smoking status, sex, wAs exposure, and 

blood sample storage time at -80°C. Results were not altered appreciably after further adjusting 

for television ownership, years of education, BMI, folate, cobalamin, or estimated glomerular 

filtration rate, so these variables were not included in the final models. The associations between 

SAM, SAH, SAM:SAH, and arsenic metabolites were also assessed stratified by folate and 

cobalamin status. The Wald test was used to detect differences between strata in the covariate-

adjusted regression coefficient for SAM with respect to methylated bAs metabolites. Because a 

subset of individuals were deficient for both folate and cobalamin, stratified analyses were also 

performed in the following four groups: deficient for both nutrients, deficient for folate only, 

deficient for cobalamin only, sufficient for both nutrients. Due to the small sample size of the 

group deficient for both folate and cobalamin (n = 32), the final models for the 4 groups were 

adjusted for a restricted set of variables: sex, wAs, and blood sample storage time at -80°C, 

because the exclusion of the covariates age and cigarette smoking status from regression models 

did not appreciably alter the coefficient for SAM. SAS and R were used to conduct all statistical 

analyses, and a significance level of 0.05 was used. 
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RESULTS 

 

General characteristics of study participants. Descriptive statistics for general characteristics of 

the FOX participants are shown in Table 1. By design, the participants were between the ages of 

30 and 63 y. Approximately 32.9% of the participants were underweight (BMI <18.5 kg/m2). 

Median (range) dietary intakes of folate and cobalamin were 241 (86–674) µg/d and 1.32 (0.09–

6.25) µg/d, respectively (Table 1); thus, in FOX participants the average dietary intakes of these 

B vitamins were below the recommended dietary allowances for adults (folate: 400 µg/d; 

cobalamin: 2.4 µg/d) [37, 38]. Prevalences (%) of folate and cobalamin deficiencies were 30.3% 

and 34.8%, respectively. Due to the study design, the mean wAs exposure was 140 µg/L, which 

is 14-fold higher than the World Health Organization standard of 10 μg/L. In blood, on average, 

the %MMA exceeded the %InAs or %DMA. Conversely, in urine, the mean %DMA was higher 

than the mean %InAs or %MMA.  

SAM and SAH concentrations and relations with other indices of OCM. The relations between 

SAM, SAH, and other bivariate variables are reported in Supplemental Material, Table S1. 

SAH concentrations were significantly higher in folate-deficient individuals compared with 

folate-sufficient individuals. SAM concentrations did not differ by folate nutritional status. 

However, SAM concentrations were significantly higher in cobalamin-sufficient individuals. 

Correlations between nutrition variables are reported in Supplemental Material, Table S2. 

SAM and folate were not significantly correlated. However, SAM was positively correlated with 

cobalamin (r = 0.17, P = 0.01). SAH was negatively correlated with folate (r = -0.15, P < 0.01) 

and positively correlated with Hcys (r = 0.18, P < 0.001).  
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Table 1. General characteristics of arsenic-exposed, Bangladeshi adults (ages 30-63 y) enrolled 

in the FOX study 

 

 Valuea Median (Range) 

Age (y) 43 ± 8 42 (30–63) 

Education (y) 3.4 ± 3.6 3.0 (0.0–16.0) 

BMI (kg/m2) 20.4 ± 3.5 19.7 (13.8–35.3) 

wAs (μg/L) 140 ± 125 114 (0–700) 

uAs (μg/L) 205 ± 229 124 (3–1990) 

uCr (mg/dL) 54 ± 43 41 (4–224) 

bAs (μg/L) 13.5 ± 9.9 10.8 (1.2–57.0) 

bInAsb (μg/L) 4.3 ± 2.2 3.8 (1.4–15.8) 

bMMAb (μg/L) 6.1 ± 3.8 5.1 (0.8–25.1) 

bDMAb (μg/L) 4.6 ± 2.7 3.8 (1.1–22.7) 

bInAsb (%) 29.5 ± 4.1 29.4 (19.7–46.7) 

bMMAb (%) 39.3 ± 5.4 39.7 (20.5–51.5) 

bDMAb (%) 31.2 ± 5.6 31.3 (18.0–46.5) 

uInAs (μg/L) 37 ± 44 22 (0–327) 

uMMA (μg/L) 31 ± 39 16 (0–303) 

uDMA (μg/L) 140 ± 166 89 (2–1290) 

uInAs (%) 17.7 ± 5.6 17.2 (6.7–51.8) 

uMMA (%) 14.1 ± 5.0 13.4 (3.6–30.0) 

uDMA (%) 68.3 ± 7.9 69.4 (38.3–88.0) 

Dietary folatec (μg/d) 267 ± 88 241 (86–674) 

Dietary cobalaminc (μg/d) 1.50 ± 0.77 1.32 (0.09–6.25) 

Plasma folate (nmol/L) 12.8 ± 7.3 11.1 (2.4–60.6) 

Plasma cobalamin (pmol/L) 203 ± 113 176 (44–1180) 

Plasma Hcys (μmol/L) 11 ± 13 9 (3–165) 

Blood SAM (μmol/L) 1.30 ± 0.53 1.18 (0.44–3.69) 

Blood SAH (μmol/L) 0.31 ± 0.18 0.27 (0.07–1.37) 

Male (%) 50.7 — 

http://jn.nutrition.org/content/144/5/690/T1.expansion.html#fn-5
http://jn.nutrition.org/content/144/5/690/T1.expansion.html#fn-5
http://jn.nutrition.org/content/144/5/690/T1.expansion.html#fn-5
http://jn.nutrition.org/content/144/5/690/T1.expansion.html#fn-5
http://jn.nutrition.org/content/144/5/690/T1.expansion.html#fn-5
http://jn.nutrition.org/content/144/5/690/T1.expansion.html#fn-5
http://jn.nutrition.org/content/144/5/690/T1.expansion.html#fn-6
http://jn.nutrition.org/content/144/5/690/T1.expansion.html#fn-6
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Ever smoker (%) 38.2 — 

Ever used betel nut (%) 43.1 — 

Own television (%) 58.4 — 

Underweightd (%) 32.9 — 

Folate deficiente (%) 30.3 — 

Cobalamin deficientf (%) 34.8 — 

 

Abbreviations used: bAs, blood arsenic; bInAs, blood inorganic arsenical species; bDMA, blood 

dimethyl arsenical species; BMI, body mass index; bMMA, blood monomethyl arsenical species; 

Hcys, homocysteine; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; uAs, urinary 

arsenic; uCr, urinary creatinine; uDMA, urinary dimethyl arsenical species; uInAs, urinary 

inorganic arsenical species; uMMA, urinary monomethyl arsenical species;  

wAs, water arsenic 
 

aValues are means ± SD or percentages; n = 353.  
bn = 276 
cn = 347 
dBMI <18.5 kg/m2 
ePlasma folate <9 nmol/L 
fPlasma cobalamin <151 pmol/L 

 

 

 

Correlations between nutrition variables and arsenic metabolites. Correlations between 

nutrition variables and arsenic metabolites are reported in Table 2. Folate was negatively 

correlated with %InAs and %MMA and positively correlated with %DMA in blood and urine. In 

contrast, Hcys was positively correlated with %MMA and negatively correlated with %DMA in 

blood and urine. Cobalamin was positively correlated with %MMA in urine but not in blood. 

SAM was positively correlated with %MMA in blood and urine and negatively correlated with 

%uInAs. SAH was not correlated with any of the arsenic metabolites. 
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Table 2. Correlationsa between nutrition variables and arsenic metabolites in arsenic-exposed, 

Bangladeshi adults (ages 30-63 y) enrolled in the FOX study 

 

 Blood Metabolites (n = 276) Urinary Metabolites (n = 353) 

 %InAs %MMA %DMA %InAs %MMA %DMA 

Folateb 

(nmol/L)  −0.14* −0.22# 0.29# −0.15** −0.21# 0.24# 

Cobalaminc 

(pmol/L) −0.06 −0.04 0.07 −0.10 0.12* −0.03 

Hcys 

(µmol/L) 0.05 0.20** −0.22# −0.03 0.22# −0.13* 

SAM 

(µmol/L) −0.03 0.13* −0.08 −0.11* 0.12* −0.01 

SAMd 

(µmol/L) −0.03 0.13* −0.08 −0.11 0.12* −0.01 

SAH 

(µmol/L) −0.04 0.01 0.02 −0.06 0.02 0.04 

SAHd 

(µmol/L) 0.05 −0.07 0.03 −0.04 0.02 0.01 

BMI  

(kg/m2) −0.09 −0.06 0.12 −0.06 −0.18# 0.15** 

 

Abbreviations used: BMI, body mass index; %DMA, proportion of dimethyl arsenical species; 

FOX, Folate and Oxidative Stress study; Hcys, homocysteine; %InAs, proportion of inorganic 

arsenical species; %MMA, proportion of monomethyl arsenical species; SAH, S-

adenosylhomocysteine; SAM, S-adenosylmethionine 

*P < 0.05, **P < 0.01, †P < 0.001, ‡P < 0.0001.  

 
aSpearman correlation coefficients.  
bFolate measured continuously 
cCobalamin measured continuously 
dPartial Spearman correlation, adjusted for blood sample storage time at -80°C. 

 

 

 

 

http://jn.nutrition.org/content/144/5/690/T2.expansion.html#fn-11
http://jn.nutrition.org/content/144/5/690/T2.expansion.html#fn-12
http://jn.nutrition.org/content/144/5/690/T2.expansion.html#fn-13
http://jn.nutrition.org/content/144/5/690/T2.expansion.html#fn-13
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Relation between blood arsenic metabolites. bDMA:bMMA decreased with increasing 

concentrations of bInAs or bMMA (Figure 2). The Spearman correlations between bInAs or 

bMMA and bDMA:bMMA were negative and significant (P < 0.05).  

 

 

 

Figure 2. Scatterplots and LOESS curves showing relations between bDMA:bMMA and bInAs 

(A) or bMMA (B) in arsenic-exposed, Bangladeshi adults (ages 30-63 y) enrolled in the FOX 

study (n = 353). The black line is the smoothed regression line, with bDMA:bMMA as the 

outcome and bInAs or bMMA concentration (μg/L) as the predictor. The gray shading is the 

corresponding 95% confidence band. Abbreviations used: bDMA:bMMA, ratio of dimethyl to 

monomethyl arsenical species in blood; bInAs, blood inorganic arsenical species; bMMA, blood 

monomethyl arsenical species; FOX, Folate and Oxidative Stress study 
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SAM, SAH, and SAM:SAH as predictors of arsenic methylation. In regression analyses, after 

adjusting for age, sex, wAs, cigarette smoking status, and blood sample storage time at -80°C, 

there was a significant negative association between log(SAM) and log(%uInAs) (β: -0.11; 95% 

CI: -0.19, -0.02; P = 0.01) (Table 3). No other significant associations were observed between 

SAM and the arsenic metabolites (Table 3). SAH and SAM:SAH were not significantly 

associated with any of the arsenic metabolites (Table 3). The results from the urinary metabolite 

analyses were very similar after restricting the sample size to participants with measured blood 

arsenic metabolites. The results were not appreciably altered when SAM and SAH were included 

simultaneously in the regression models, nor were the results altered after adjusting for folate or 

cobalamin as continuous predictors in the model. In analyses stratified by folate status, 

log(SAM) was positively and significantly associated with %bMMA in those who were folate 

deficient (β: 3.49; 95% CI: 0.40, 6.59; P = 0.03) but not in those who were folate sufficient (β: -

0.43; 95% CI: -2.47, 1.61; P = 0.68) (Table 4). Stratifying by cobalamin status revealed similar 

findings; although not statistically significant, log(SAM) was positively associated with 

%bMMA in those who were deficient for cobalamin (β: 2.58; 95% CI: -0.44, 5.60; P = 0.09) but 

not in those who were sufficient for cobalamin (β: 0.15; 95% CI: -1.93, 2.24; P = 0.90). The 

Wald test for the difference in the association between SAM and %bMMA across folate strata 

was significant (P = 0.04). SAM was also negatively associated with %bDMA in the cobalamin-

deficient group (P = 0.01); this was not observed in the folate-deficient group. The association 

between SAM and %bDMA differed significantly between cobalamin strata (P < 0.01). 

Although the patterns of association were similar for uAs metabolites, the positive associations 

between log(SAM) and log(%MMA) in folate-deficient participants (β: 0.17; 95% CI: -0.01, 

0.35; P = 0.07) and cobalamin-deficient participants (β: 0.15; 95% CI: -0.03, 0.32; P = 0.10) did 
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not achieve statistical significance (Supplemental Material, Tables S3 and S4). When 

individuals were stratified into four groups on the basis of joint folate and cobalamin status, there 

was a strong, positive association between log(SAM) and %bMMA in individuals who were 

deficient for both folate and cobalamin (β: 6.96; 95% CI: 1.86, 12.05; P < 0.01) (Table 5). The 

Wald test for overall differences in the association between SAM and %bMMA across the four 

nutrition groups was significant (P = 0.02), mainly due to the difference between those who were 

deficient for both folate and cobalamin and those who were sufficient for the two nutrients (P < 

0.01). In individuals deficient for cobalamin and in individuals deficient for both folate and 

cobalamin, there was a negative association between SAM and %bDMA, although these 

associations were not significant (0.05 < P < 0.10). However, the Wald test for overall 

differences in the association between SAM and %bDMA across the four nutrition groups was 

significant (P = 0.01) and was driven by the differences between those who were sufficient for 

both nutrients and those who were deficient for both nutrients (P < 0.01) or deficient for 

cobalamin only (P = 0.02). 

 

DISCUSSION 

 

 In vitro [16, 39] and animal [40] studies have established that SAM is necessary for the 

methylation of InAs to MMA and for the methylation of MMA to DMA and that SAH inhibits 

both of these methylation steps [19]. However, the relations between SAM and the percentage of 

arsenic metabolites in human populations may be particularly complex for 2 reasons: 1) there 

is competition between InAs and MMA for methylation, because both methylation steps are 

catalyzed by AS3MT and require a methyl group from SAM, and 2) these relations may depend 

on nutritional status, because SAM is synthesized via folate- and cobalamin-dependent OCM. In
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Table 3. Associations between SAM, SAH, SAM:SAH, and arsenic metabolites in arsenic-exposed Bangladeshi adults (ages 30-63 y) 

enrolled in the FOX studya 

 

Log(%InAs) %MMAb %DMA 

Blood (n = 280) β (95%CI) P β (95%CI) P β (95%CI) P 

 log(SAM) −0.01 (−0.05, 0.04) 0.75 0.77 (−0.90, 2.45) 0.36 −0.35 (−2.19, 1.49) 0.71 

 log(SAH) 0.02 (−0.02, 0.05) 0.37 −0.70 (−2.03, 0.62) 0.30 0.17 (−1.28, 1.63) 0.82 

 log(SAM:SAH) −0.02 (−0.05, 0.02) 0.33 0.86 (−0.26, 1.99) 0.13 −0.28 (−1.52, 0.96) 0.65 

Urine (n = 359) 

       log(SAM) −0.11 (−0.19, −0.02) 0.01 0.06 (−0.04, 0.15) 0.23 0.87 (−1.28, 3.01) 0.43 

 log(SAH) −0.03 (−0.10, 0.04) 0.35 0.01 (−0.06, 0.09) 0.77 0.59 (−1.12, 2.29) 0.50 

 log(SAM:SAH) −0.03 (−0.09, 0.03) 0.35 0.02 (−0.05, 0.08) 0.56 −0.03 (−1.53, 1.47) 0.97 

 

Abbreviations used: %DMA, proportion of dimethyl arsenical species;  FOX, Folate and Oxidative Stress Study; %InAs, proportion of 

inorganic arsenical species; %MMA, proportion of monomethyl arsenical species; SAH, S-adenosylhomocysteine; SAM, S-

adenosylmethionine; wAs, water arsenic 

 
aReported β values (95% CIs) and P values were determined from linear regression analyses, adjusted for log(age), sex, cigarette 

smoking status, square root (wAs), and SAM/SAH blood sample storage time at -80°C 
b%MMA in urine was log-transformed 
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Table 4. Associationsa between SAM and methylated blood arsenic metabolites in arsenic-exposed Bangladeshi adults (ages 30-63 y) 

enrolled in the FOX study, stratified by folate or cobalamin nutritional status 

 

 Log(SAM) and %bMMA Log(SAM) and %bDMA 

 β (95%CI) P β (95%CI) P 

Folate statusb 

 

0.04c 

 

0.44c 

 Folate sufficient (n = 194) −0.43 (−2.47, 1.61) 0.68 0.14 (−1.98, 2.26) 0.89 

 Folate deficient (n = 86) 3.49 (0.40, 6.59) 0.03 −1.51 (−5.22, 2.19) 0.42 

Cobalamin statusd 

 

0.19c 

 

<0.01c 

 Cobalamin sufficient (n = 179) 0.15 (−1.93, 2.24) 0.88 0.99 (−1.28, 3.25) 0.39 

 Cobalamin deficient (n = 101) 2.58 (−0.44, 5.60) 0.09 −4.33 (−7.54, −1.12) 0.01 

 

Abbreviations used: FOX, Folate and Oxidative Stress Study; SAM, S-adenosylmethionine; wAs, water arsenic 
 

aReported β values (95% CIs) and P values were determined from linear regression analyses, adjusted for log(age), sex, cigarette 

smoking status, square root (wAs), and SAM blood sample storage time at -80°C 
bFolate deficient = plasma folate <9 nmol/L; folate sufficient = plasma folate ≥9 mol/L 
cWald test for difference in covariate-adjusted β between strata. 
dCobalamin deficient = plasma cobalamin <151 pmol/L; cobalamin sufficient = plasma cobalamin ≥151 pmol/L 
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Table 5. Associationsa between SAM and methylated blood arsenic metabolites in arsenic-exposed Bangladeshi adults (ages 30-63 y) 

enrolled in the FOX study, stratified by joint folate and cobalamin nutritional status. 

 

 

Log(SAM) and %bMMA Log(SAM) and %bDMA 

Groupb β (95% CI) P β (95% CI) P 

Sufficient for both (n = 126) −1.15 (−3.55, 1.25) 0.34 1.70 (−0.91, 4.31) 0.20 

Deficient for folate (n = 52) 2.26 (−1.38, 5.90) 0.22 0.45 (−3.57, 4.46) 0.82 

Deficient for cobalamin (n = 66) 0.61 (−3.29, 4.52) 0.76 −3.48 (−7.43, 0.46) 0.08 

Deficient for both (n = 32) 6.96 (1.86, 12.05) <0.01 −6.19 (−12.71, 0.32) 0.06 

P for all groups 

 

0.02c 

 

0.01c 

 

Abbreviations used: FOX, Folate and Oxidative Stress study; SAM, S-adenosylmethionine; wAs, water arsenic 
 

aReported β values (95% CIs) and P values were determined from linear regression analyses, adjusted for sex, square root(wAs), and 

SAM blood sample storage time at -80°C. 
bDeficient for folate = plasma folate <9 nmol/L; deficient for cobalamin= plasma cobalamin <151 pmol/L 
cWald test for overall difference between the 4 groups 
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a cross-sectional study in arsenic-exposed adults in Bangladesh, our group previously observed 

that folate was negatively correlated with %InAs and %MMA and positively correlated with 

%DMA in urine, suggesting that folate facilitates the methylation of InAs to DMA [41]; we also 

observed this in the current study. However, in our previous study, we did not analyze blood 

SAM and SAH concentrations. 

 With the use of purified recombinant human AS3MT, Song et al. [42] demonstrated that 

when SAM concentrations are <0.5 mmol/L, the rate of MMA synthesis exceeds the rate of 

DMA synthesis. Although there are few estimates of human liver SAM concentrations in healthy 

individuals, reported SAM concentrations in rat liver vary from 60 to 160 μmol/L [43–45]. 

Therefore, according to the findings of Song et al. [42], the rate of MMA production should 

exceed the rate of DMA production at physiologically relevant concentrations of SAM. 

Consistent with this, we observed that the mean %MMA exceeded the mean %DMA in blood. 

Song et al. [42] also observed that with increasing InAs concentrations, the %MMA increases, 

the %DMA decreases, and the ratio of DMA to MMA decreases. Similarly, Styblo et al. [46] 

demonstrated that human hepatocytes exposed to increasing concentrations of InAs produce 

more MMA and less DMA. These studies indicate that the second step of arsenic methylation is 

inhibited by InAs. Evidence from mathematical modeling also suggests that MMA can inhibit its 

own methylation, likely due to substrate inhibition (Michael Reed and Fred Nijhout, Duke 

University, personal communication). Thus, methylation of InAs to MMA may predominate over 

the methylation of MMA to DMA in individuals who are continuously exposed to high 

concentrations of InAs, such as the current study participants, because 1) high amounts of InAs 

compete with MMA for methylation and 2) the second methylation step is inhibited by MMA. 

Our finding of a decrease in bDMA:bMMA with increasing concentrations of bInAs and bMMA 
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is consistent with this. Furthermore, our observation that SAM is positively associated with 

%bMMA but only in folate- and cobalamin-deficient participants suggests that limiting SAM 

concentrations further reduces the ability to methylate MMA to DMA. 

 Although we had anticipated a strong positive association between SAM and %bDMA in 

folate- and cobalamin-sufficient participants, many of the FOX participants were drinking from 

wells with very high wAs concentrations; thus, the null association between SAM and %bDMA 

in sufficient participants may reflect the strong inhibition of DMA synthesis by InAs and MMA. 

Alternatively, it may reflect saturation of the AS3MT at higher concentrations of SAM. 

Although Song et al. [42] observed that within the range of physiologically relevant 

concentrations of SAM, DMA production increases with increasing SAM concentrations, 

glutathione was the only reductant used in their assays; other groups have demonstrated that 

arsenic methylation is more efficient in the presence of other reductants, such as thioredoxin 

[47]. Thus, saturation of AS3MT may occur at lower physiologically relevant concentrations of 

SAM.  

Because folate and cobalamin are involved in SAM synthesis, a simplistic prediction was 

that both folate and cobalamin would be positively correlated with blood SAM concentrations. 

However, SAM was not correlated with plasma folate in the FOX participants. Increasing SAM 

concentrations leads to inhibition of methylenetetrahydrofolate reductase through long-range 

allosteric interactions, such that production of 5-mTHF decreases when SAM concentrations 

increase. This negative feedback loop may explain why there is no observable correlation 

between plasma 5-mTHF and SAM in our study. Loehrer et al. [48] similarly observed no 

correlation between SAM and 5-mTHF in their case-control study examining the relation 

between folate and coronary artery disease. As expected, in the FOX participants, plasma folate 
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was negatively correlated with both SAH and plasma Hcys concentrations and was positively 

correlated with %DMA in blood and urine. Additionally, cobalamin was positively correlated 

with SAM, and cobalamin-sufficient individuals had significantly higher SAM concentrations 

than did cobalamin-deficient individuals. This finding is reasonable given that, unlike folate, 

cobalamin concentrations are not regulated by SAM. 

 We did not find SAH to be significantly associated with any of the arsenic metabolites, 

which was surprising given that SAH is a potent inhibitor of most SAM-dependent methylation 

reactions in vitro [18]. However, it is important to note that we measured SAM and SAH in 

blood, yet arsenic methylation primarily occurs in the liver. Although blood SAM and SAH 

concentrations are considered indicators of methylation capacity and have been used as 

biomarkers in several other studies [49–51], we are unaware of any studies that have directly 

compared liver and whole-blood SAM and SAH concentrations. Although Hcys is readily 

exported from cells [52], the transport of intact SAH across the plasma membrane is not well 

characterized [53]. James et al. [53] proposed that Hcys may, in fact, serve as an exportable form 

of SAH, because it is more readily transported out of the cell [54] and may therefore be a better 

indicator of liver SAH concentrations than is blood SAH. As in previous studies, we found 

plasma Hcys to be positively correlated with %MMA in blood and urine and negatively 

correlated with %bDMA. If plasma Hcys is indeed a better indicator of hepatic SAH 

concentrations than is blood SAH itself, these findings are consistent with inhibition of the 

second methylation step of MMA to DMA by SAH in the liver. 

 The findings of this study have three major implications. First, the null associations 

between SAH and the arsenic metabolites highlight the need for additional research examining 

the utility of blood SAM and SAH (or alternatively plasma Hcys) as biomarkers of liver SAM 
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and SAH. Second, the inverse relation between either InAs or MMA and the ratio of DMA to 

MMA indicates that arsenic metabolism may not be as efficient in populations that are 

continuously exposed to high concentrations of InAs. Third, the observed positive association 

between SAM and %bMMA in folate- and cobalamin-deficient individuals suggests that these 

individuals may be particularly susceptible to arsenic-induced toxicity, because a higher %MMA 

in urine has been associated with multiple adverse health outcomes [15]. Previously, we 

observed that folate deficiency and hyperhomocysteinemia are risk factors for arsenic-induced 

skin lesions [55]. The findings of this study contribute additional evidence that folate and 

cobalamin deficiencies, and hyperhomocysteinemia, may help to explain a portion of the 

interindividual variation in arsenic methylation capacity and in susceptibility to arsenic toxicity. 

Although eliminating arsenic exposure should remain the primary target for reducing its toxicity, 

this work and previous studies collectively indicate a significant need for public health 

interventions directed toward alleviating these micronutrient deficiencies, particularly in arsenic-

exposed populations. 
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CHAPTER THREE SUPPLEMENTAL MATERIAL 

 

 

Table S1. Bivariate analyses for SAM and SAH in arsenic-exposed, Bangladeshi adults (Ages 

30-63 y) enrolled in the FOX study 

 

Covariate (n) SAMa  

(μmol/L) 

Pb SAHa  

(μmol/L) 

Pb 

Males (179)   1.25 (0.44-3.69)  0.30 (0.10-1.37)  

Females  (174)   1.13 (0.52-3.38)  0.24 (0.07-1.16)  

  <0.01  <0.01 

Owns TV (206)   1.23 (0.57-3.38)  0.25 (0.07-1.16)  

No TV (147)   1.11 (0.44-3.69)  0.29 (0.10-1.37)  

  <0.01  0.22 

Ever Smoker (135)   1.28 (0.57-3.69)  0.29 (0.10-1.37)  

Never Smoker (218)   1.12 (0.44-3.38)  0.25 (0.07-1.16)  

  <0.01  0.29 

Ever Betelc (152)   1.17 (0.57-3.20)  0.28 (0.07-0.95)  

Never Betelc (201)   1.19 (0.44-3.69)  0.25 (0.07-1.37)  

  0.55  0.51 

Folate Sufficientd (246)   1.15 (0.57-3.69)  0.25 (0.07-1.37)  

Folate Deficientd  (107)   1.25 (0.44-3.03)  0.30 (0.10-0.82)  

  0.21  0.01 

Cobalamin Sufficiente (230)   1.23 (0.44-3.69)  0.28 (0.07-1.16)  

Cobalamin Deficiente  (123)   1.06 (0.57-3.38)  0.26 (0.07-1.37)  

  <0.01  0.25 

 

Abbreviations used: FOX, Folate and Oxidative Stress study; SAH, S-adenosylhomocysteine; 

SAM, S-adenosylmethionine 
 
aValues are median (range)  
bWilcoxon rank sum test for difference  
cEver Betel = Ever chewed betel nut, Never Betel = Never chewed betel nut  
dFolate Sufficient = Plasma folate ≥9 nmol/L, Folate Deficient = Plasma folate <9 nmol/L  
eCobalamin Sufficient = Plasma cobalamin ≥151 pmol/L, Cobalamin Deficient = Plasma 

cobalamin <151 pmol/L  
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Table S2. Correlationsa between continuous nutrition variables in arsenic-exposed Bangladeshi 

adults (ages 30-63 y) enrolled in the FOX study (n = 353) 

 

 SAM 

(µmol/L) 

SAH 

(µmol/L) 

Folate 

(nmol/L) 

Hcys 

(µmol/L) 

Cobalamin 

(pmol/L) 
 

SAH 

(µmol/L) 
 

0.14**     

Folate 

(nmol/L) 
 

-0.06 -0.15**    

Hcys 

(µmol/L) 
 

0.14** 0.18*** -0.45#   

Cobalamin 

(pmol/L) 
 

0.17** 0.08 0.10 -0.09  

uCr 

(mg/dL) 
 

0.03 -0.26# 0.06 -0.04 -0.11* 

BMI 

(kg/m2) 

0.09 0.04 0.18# -0.01 0.03 

 

 

Abbreviations used: BMI, body mass index; FOX, Folate and Oxidative Stress study; Hcys, 

homocysteine; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; uCr, urinary 

creatinine 
 

aSpearman correlations 

*P < 0.05, **P < 0.01, ***P < 0.001, #P < 0.0001 
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Table S3. Associationsa between SAM, SAH, SAM:SAH, and arsenic metabolites in arsenic-exposed Bangladeshi adults (ages 30-63 

y) enrolled in the FOX study, stratified by folate nutritional status 

 
 Bloodb  Urinec 

 %InAsd %MMA %DMA %InAsd %MMAd %DMA 

Folate Sufficiente       

SAMd β (95%CI) 0.01 (-0.04, 0.07) -0.43 (-2.47, 1.61) 0.14 (-1.98, 2.26) -0.11 (-0.21, -0.02) 0.01 (-0.10, 0.12) 1.52 (-0.90, 3.94) 

P 0.65 0.68 0.89 0.02 0.88 0.22 

SAHd β (95%CI) 0.02 (-0.02, 0.06) -0.29 (-1.81, 1.24) -0.38 (-1.97, 1.21) -0.04 (-0.12, 0.04) 0.00 (-0.09, 0.08) 0.67 (-1.20, 2.53) 

P 0.32 0.71 0.64 0.32 0.93 0.48 

SAM:SAHd β (95%CI) -0.01 (-0.05, 0.03) 0.04 (-1.37, 1.44) 0.39 (-1.07, 1.85) -0.02 (-0.10, 0.05) 0.01 (-0.07, 0.09) 0.20 (-1.54, 1.94) 

P 0.55 0.96 0.60 0.49 0.85 0.82 

Folate Deficientf       

SAMd β (95%CI) -0.05 (-0.14, 0.04) 3.49 (0.40, 6.59) -1.51 (-5.22, 2.19) -0.07 (-0.23, 0.09) 0.17 (-0.01, 0.35) -0.96 (-5.36, 3.43) 

P 0.26 0.03 0.42 0.39 0.07 0.66 

SAHd β (95%CI) 0.02 (-0.06, 0.11) -1.58 (-4.36, 1.21) 0.92 (-2.35, 4.18) -0.01 (-0.15, 0.13) 0.08 (-0.08, 0.24) -0.19 (-3.98, 3.59) 

P 0.55 0.26 0.58 0.90 0.30 0.92 

SAM:SAHd β (95%CI) -0.03 (-0.09, 0.02) 2.20 (0.25, 4.16) -1.07 (-3.41, 1.26) -0.03 (-0.13, 0.08) 0.03 (-0.10, 0.15) -0.31 (-3.24, 2.62) 

P 0.26 0.03 0.36 0.63 0.68 0.83 
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Abbreviations used: %DMA, proportion of dimethyl arsenical species; FOX, Folate and Oxidative Stress study; %InAs, proportion of 

inorganic arsenical species; %MMA, proportion of monomethyl arsenical species; SAH, S-adenosylhomocysteine; SAM, S-

adenosylmethionine; SAM:SAH, ratio of S-adenosylmethionine to S-adenosylhomocysteine; wAs, water arsenic 
 

aReported β (95%CI) and P are from linear regression analyses, adjusted for log(age), sex, cigarette smoking status, square root(wAs), 

and SAM/SAH sample storage time at -80°C, and stratified by folate nutritional status  
bn for blood metabolites in folate sufficient = 192, in folate deficient n = 84 

 cn for urine metabolites in folate sufficient = 246, in folate deficient n =107  
dNatural log-transformed  
eFolate Sufficient defined as plasma folate ≥9 nmol/L  
fFolate Deficient defined as plasma folate <9 nmol/L  
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Table S4. Associationsa between SAM, SAH, SAM:SAH, and arsenic metabolites in arsenic-exposed Bangladeshi adults (ages 30-63 

y) enrolled in the FOX study, stratified by cobalamin nutritional status 

 
 Bloodb  Urinec 

 %InAsd %MMA %DMA %InAsd %MMAd %DMA 

Cobalamin Sufficiente       

SAMd β (95%CI) -0.03 (-0.09, 0.03) 0.15 (-1.93, 2.24) 0.99 (-1.28, 3.25) -0.13 (-0.23, -0.02) 0.01 (-0.11, 0.12) 1.92 (-0.76, 4.59) 

P 0.29 0.88 0.39 0.02  0.92 0.16 

SAHd β (95%CI) 0.03 (-0.01, 0.08) -1.38 (-3.08, 0.33) 0.29 (-1.57, 2.16) -0.01 (-0.10, 0.08) 0.00 (-0.09, 0.09) 0.31 (-1.91, 2.53) 

P 0.15 0.11 0.76 0.77 0.99 0.78 

SAM:SAHd β (95%CI) -0.04 (-0.07, 0.00)  0.99 (-0.41, 2.38) 0.25 (-1.27, 1.77) -0.05 (-0.13, 0.02) 0.00 (-0.08, 0.08) 0.70 (-1.16, 2.56) 

P 0.06  0.16  0.75  0.18  0.95  0.46 

Cobalamin Deficientf       

SAMd β (95%CI) 0.06 (-0.02, 0.15) 2.58 (-0.44, 5.60) -4.33 (-7.54, -1.12) -0.03 (-0.17, 0.11) 0.15 (-0.03, 0.32) -1.71 (-5.55, 2.12)  

P 0.14 0.09 0.01 0.66 0.10 0.38 

SAHd β (95%CI) 0.01 (-0.05, 0.07) 0.01 (-2.22, 2.24) -0.20 (-2.62, 2.22) -0.04 (-0.14, 0.06) 0.01 (-0.12, 0.14) 0.76 (-2.05, 3.56) 

P 0.79 0.99  0.87 0.45 0.84 0.59 

SAM:SAHd β (95%CI) 0.02 (-0.04, 0.08) 1.09 (-0.90, 3.09) -1.69 (-3.85, 0.46)  0.02 (-0.08, 0.12) 0.06 (-0.06, 0.18) -1.48 (-4.11, 1.15) 

P 0.47  0.28 0.12 0.69 0.35 0.27  
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Abbreviations used: %DMA, proportion of dimethyl arsenical species; FOX, Folate and Oxidative Stress study; %InAs, proportion of 

inorganic arsenical species; %MMA, proportion of monomethyl arsenical species; SAH, S-adenosylhomocysteine; SAM, S-

adenosylmethionine; SAM:SAH, ratio of S-adenosylmethionine to S-adenosylhomocysteine; wAs, water arsenic 

 
aReported β (95%CI) and P are from linear regression analyses, adjusted for log(age), sex, cigarette smoking status, square root(wAs), 

and SAM/SAH sample storage time at -80°C, and stratified by cobalamin nutritional status  
bn for blood metabolites in cobalamin sufficient = 178, in cobalamin deficient n = 98  
cn for urine metabolites in cobalamin sufficient = 230, in cobalamin deficient n = 123  
dNatural log-transformed  
eCobalamin Sufficient defined as plasma cobalamin ≥151 pmol/L  
fCobalamin Deficient defined as plasma cobalamin <151 pmol/L
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Figure S1. One-carbon metabolism. (1) Dihydrofolate reductase (DHFR) reduces dietary folates 

to dihydrofolate (DHF) and tetrahydrofolate (THF). (2) Serine hydroxymethyltransferase 

transfers the β-carbon of serine to THF, forming 5,10-methenyl-THF and glycine. (3) At a major 

branch point between transmethylation reactions and nucleotide biosynthesis, 5,10-methenyl-

THF can be reduced to 5,10-methylene-THF and further reduced to 5-methyl-THF (5-mTHF) by 

5,10-methylene-THF reductase (MTHFR). (4) Methionine synthase (MTR), a cobalamin-

dependent enzyme, catalyzes the transfer of a methyl group from 5-mTHF to homocysteine 

(Hcys), generating methionine and regenerating THF. (5) Methionine adenosyl-transferase 

activates methionine to form S-adenosylmethionine (SAM). (6) SAM serves as a universal 

methyl donor for numerous acceptors, including inorganic (InAs) and monomethylarsonous acid 

(MMA), yielding MMA and dimethylarsinic acid (DMA), respectively. Matching colors indicate 

methyl acceptors and their corresponding methylated products. Both arsenic methylation steps 

are catalyzed by arsenic (+3) methyltransferase (AS3MT). Upon donating a methyl group, SAM 

is converted to S-adenosylhomocysteine (SAH), a potent inhibitor of most SAM-dependent 

methylation reactions. (7) SAH is hydrolyzed to generate Hcys, which is used to regenerate 

methionine or is (8) directed to the transsulfuration pathway through which it is ultimately 

catabolized for the synthesis of glutathione (GSH). 
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ABSTRACT: 

 

 Posttranslational histone modifications (PTHMs) are increasingly being used as 

biomarkers of cancer prognosis and survival. However, we identified a specific cleavage product 

of histone H3 in human peripheral blood mononuclear cells, which interferes with measures of 

certain H3 modifications. Therefore, the potential for enzymatic cleavage of histones should be 

considered when measuring PTHMs in human samples. Furthermore, enzymatic cleavage of 

human H3 is itself a fascinating area of research and two important questions remain to be 

answered: 1) Does cleavage of human H3 occur in vivo, as it does in other organisms? and 2) 

Does it serve a biologically important function? 

 

ENZYMATIC CLEAVAGE OF HISTONES: 

 

 Posttranslational histone modifications (PTHMs) are increasingly being used as 

biomarkers of cancer prognosis [1]. However, histones are very sensitive to enzymatic 

degradation by proteases [2], and there is evidence from many organisms that histones are 

enzymatically cleaved in vivo; this topic is receiving increasing attention and has been reviewed 

recently by several groups [3-5]. Enzymatic cleavage of H3 has been observed in 

tetrahymena [6], yeast [7-8], chicken [9], quail [10], and mouse [11,12]. Furthermore, certain 

viruses can cleave host cell H3 [13,14], and antimicrobial peptides derived from the N-terminal 

regions of various histones (e.g., H2A, H2B, H1) have been identified in several organisms, 

including fish [15-20], molluscs [21,22], frogs [23], and even from the gastrointestinal tract [24] 

and wound fluids [25] of humans. 

 Until recently, there were few reports of histone cleavage in human cells. However, last 

year, Vossaert et al. reported histone H3 clipping in human embryonic stem cell (ESC) 
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lines [26], and our group recently identified a cleavage product of H3 in human peripheral blood 

mononuclear cells (PBMCs) (Figure 1).  

 

 

 

Figure 1. Enzymatic cleavage of H3 interferes with the measurement of certain PTHMs. 

(A) Known enzymatic cleavage sites in H3 for mouse ESCs [11]. Bold solid lines indicate sites 

that are frequently cleaved, thin solid lines indicate sites that are less frequently cleaved, and 

dotted lines indicate sites that are rarely cleaved [11]. (B) Western blot (Odyssey® CLx Infrared 

Imaging System, Li-Cor) was used to measure total H3 protein levels (Sigma, H0164, 1:4,000) in 

11 representative histone samples that had been isolated, using an acid-extraction method [27], 

from PBMCs collected from arsenic-exposed Bangladeshi adults enrolled in the FACT study, a 

randomized controlled trial of folic acid and creatine supplementation; sample collection and 

processing for this study has been described previously [28]. The expected size of H3 is 

~17 kDa. A distinct cleavage product of H3 is observed at ~15 kDa, and an additional H3 

cleavage product between 15 and 17 kDa is also present in several of the samples (top panel). In 

the same 11 samples, three PTHMs that are located in different regions of H3 were assessed by 

Western blot: H3K9me2 (Abcam, ab1220, 1:1,000, mouse) (second panel), H3K36me2 (Abcam, 

ab9049, 1:1,000, rabbit) (third panel), and H3K79me2 (Abcam, ab3594, 1:400, rabbit) (fourth 

panel). Abbreviations used: ESC, embryonic stem cell; FACT, Folic Acid and Creatine Trial; 

H3K9me2, di-methylation at lysine 9 of histone H3; H3K36me2, di-methylation at lysine 36 of 

histone H3; H3K79me2, di-methylation at lysine 79 of histone H3; PBMC, peripheral blood 

mononuclear cell; PTHM, posttranslational histone modification 

http://www.clinicalepigeneticsjournal.com/content/7/1/7#B11
http://www.clinicalepigeneticsjournal.com/content/7/1/7#B11
http://www.clinicalepigeneticsjournal.com/content/7/1/7#B27
http://www.clinicalepigeneticsjournal.com/content/7/1/7#B28
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We observe this H3 cleavage product in spite of the use of protease inhibitors during 

histone isolation, including a protease inhibitor cocktail (Roche), which inhibits enzymatic 

cleavage of H3 in human ESCs [26], and E-64, which inhibits cathepsins, including Cathepsin L, 

which cleaves H3 in mouse ESCs [11]. The H3 cleavage product that we observe in human 

PBMCs is similar in size to the H3 cleavage product observed in mouse ESCs [11]. Extensive 

H3 cleavage is observed in approximately one-third of these PBMC histone samples (Figure 2). 

{We did not find that age, sex, arsenic exposure, nutritional status, cigarette smoking status, or 

most of the other participant characteristics examined, were associated with extensive H3 

cleavage (See Appendix, Tables A1 and A2). However, H3 cleavage was significantly more 

common among individuals who had ever chewed betel nut (See Appendix, Table A2), a 

stimulant used in many parts of Asia, which has been classified as a human carcinogen by the 

International Agency for Research on Cancer [29]}
1
. 

Based on Western blot, we have determined that H3 cleavage interferes with the 

measurement of certain PTHMs. Figure 1A illustrates the known enzymatic cleavage sites in H3 

for mouse ESCs [19]. In Figure 1B, Western blots illustrate total H3 (top panel) with varying 

degrees of histone cleavage for 11 representative PBMC histone samples that were collected 

from participants enrolled in the Folic Acid and Creatine Trial (FACT), a randomized controlled 

trial of folic acid and creatine supplementation in Bangladeshi adults [28]. Figure 1B also shows, 

for the same 11 PBMC samples, three PTHMs that vary in relation to their location on histone 

H3 (i.e., upstream or downstream of the cleavage sites shown in Figure 1A). For example, 

 

 

{}
1 
Indicates that this information has been added post-publication, because the referenced data was not available at 

the time of submission 
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Figure 1B illustrates H3K9me2 (second panel), a modification located downstream of known H3 

cleavage sites. Samples without large amounts of H3 cleavage (Lanes 1, 3–5, 8, 10, 11) have 

detectable H3K9me2. In contrast, samples with extensive cleavage of H3 (Lanes 2, 6, 7, 9) have 

no detectable H3K9me2. Figure 1B also illustrates H3K36me2 (third panel) and H3K79me2 

(fourth panel), which are PTHMs located upstream of H3 enzymatic cleavage sites; H3K36me2 

is located in the tail region of H3, and H3K79me2 is located in the core domain of H3 

(Figure 1A). H3K36me2 and H3K79me2 can be detected both in the 17-kDa band of H3 that has 

not been cleaved and in the <17-kDa bands of H3 that have been cleaved (Figures 1B and 2). H3 

cleavage is also detectable in histones from calf thymus (Figure 2). This has been described 

previously by other groups [3, 30]. Similarly, cleavage of calf thymus H3 does not interfere with 

upstream PTHMs, such as H3K79me2 (Figure 2). Collectively, these data suggest that H3 

cleavage only influences the ability to detect PTHMs that are situated downstream of histone 

cleavage sites.  

{Although we determined that the ability to detect H3K36me2 and H3K79me2 is not 

impacted by H3 cleavage, global levels of these PTHMs were found to be significantly higher 

among participants with evident H3 cleavage (Table A1). This finding for H3K36me2 is 

consistent with a recent study by Tvardovskiy et al., which identified H3 cleavage in primary 

human hepatocytes [31]. Tvardovskiy et al. compared PTHM profiles in the N-terminal tails of 

intact vs. clipped histone H3 and observed that the clipped proteoform was enriched with 

H3K36me2 [31]}
1
. 

 

 

{}
1
Indicates that this information has been added post-publication, because the referenced data and publication were 

not available at the time of submission 
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Figure 2. Extensive H3 cleavage is evident in approximately one-third of PBMC histone 

samples, but it does not affect measures of H3K36me2 and H3K79me2. Total H3 was measured 

in an additional 32 histone PBMC samples from the FACT study and in histones from calf 

thymus (Sigma-Aldrich). H3K36me2 was also measured in 22 of the PBMC samples (Samples 

1–22), and H3K79me2 was measured in calf histones and in ten of the PBMC samples (Samples 

23–32). Abbreviations used: FACT, Folic Acid and Creatine Trial; H3K36me2, di-methylation at 

lysine 36 of histone H3; H3K79me2, di-methylation at lysine 79 of histone H3; PBMC, 

peripheral blood mononuclear cell 

 

IMPLICATIONS FOR MOLECULAR EPIDEMIOLOGY STUDIES: 

 Since it is unclear when enzymatic cleavage of H3 occurs in human PBMC samples, it is 

difficult to know if it is of biological or methodological interest. Regardless, enzymatic cleavage 

of H3 has important implications for measuring global PTHMs in human samples. Currently, the 

most commonly studied PTHMs include methylation and acetylation marks on H3K4, H3K9, 

and H3K27, which all fall within the N-terminal tail region of H3. However, the portion of H3 

that is clipped off in mouse and human cells includes these residues. Thus, measures of marks on 

H3K4, H3K9, and H3K27 may be underestimated if samples have experienced enzymatic 

cleavage of H3. This is particularly true for antibody-based methods, such as ELISA and 

immunohistochemistry methods, which cannot take into account H3 cleavage. PTHMs that lie on 
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amino acid residues upstream of H3 enzymatic cleavage sites, such as H3K36 and H3K79, do 

not appear to be affected by the enzymatic cleavage of H3 and therefore can be measured 

accurately, regardless of cleavage. 

A better understanding of when and why enzymatic cleavage of H3 occurs is essential. If 

enzymatic cleavage of human H3 occurs in vivo, this may be an important biological 

phenomenon. Alternatively, if enzymatic cleavage occurs as a result of sample collection and 

processing, preventive measures must be developed such that all PTHMs on H3, including 

modifications on H3K4, H3K9, and H3K27, can be accurately measured. In the meantime, for 

banked samples previously collected for the measurement of global PTHMs, Western blot can be 

used to check samples for enzymatic cleavage of histones. If histone cleavage products are 

observed in samples, it may not be appropriate to measure certain PTHMs based on their 

location. 
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CHAPTER FOUR APPENDIX 

Table A1. Descriptive characteristics
a
 for continuous variables in FACT participants with vs. 

without extensive H3 cleavage 

 Extensive  

H3 Cleavage 

Minimal/No  

H3 Cleavage 

P
b
 

H3K36me2 (% of total H3) 1.56 (1.03-6.87), n = 42 1.35 (0.84-3.13), n = 73 <0.01 

H3K36me3 (% of total H3) 1.66 (0.80-6.00), n = 41 1.44 (0.48-3.72), n =70 0.10 

H3K79me2 (% of total H3) 1.55 (0.50-9.41), n = 42 1.26 (0.68-3.53), n = 73 0.03 

Age (y) 40 (27-52), n = 42 38 (24-54), n = 73 0.10 

BMI (kg/m
2
) 18.6 (15.3-26.9), n = 41 19.1 (15.7-28.0), n = 68 0.80 

Education (y) 0.5 (0.0-10.0), n = 42 3 (0-12), n = 73 0.13 

RBC Folate (nmol/L) 469 (186-825), n = 30 481 (155-1347), n = 56 0.85 

Plasma Folate (nmol/L) 13.4 (4.2-54.7), n = 42 11.8 (4.1-38.3), n = 73 0.28 

Plasma Cobalamin (pmol/L) 222 (60-705), n = 42 201 (78-610), n = 73 0.25 

Plasma Choline (µmol/L) 10.7 (8.1-18.1), n = 42 11.4 (7.3-20.0), n = 73 0.38 

Plasma Betaine (µmol/L) 43.9 (22.8-85.6), n = 42 42.3 (18.3-86.4), n =73 0.49 

Plasma Hcys (µmol/L) 10 (6-24), n = 42 13 (4-102), n = 73 0.15 

Cys (µmol/L) 223 (147-370), n = 41 230 (137-326), n = 71 0.15 

uCr (µg/dL) 41 (9-198), n = 42 52 (6-233), n = 73 0.34 

uAs (µg/L) 108 (17-958), n = 42 137 (11-1767), n = 73 0.52 

uAsCr (µg/g) 256 (48-975), n = 42 218 (65-2203), n = 73 0.60 

bAs (µg/L) 9.0 (2.2-26.9), n = 42 8.4 (2.4-80.2), n = 73 0.97 

bSe (µg/L) 134 (92-186), n = 42 132 (91-167), n = 73 0.73 

 

Abbreviations used: BMI, body mass index; bSe, blood selenium; Cys, cysteine; FACT, Folic 

Acid and Creatine Trial; H3K36me2, di-methylation at lysine 36 of histone H3; H3K36me3, tri-

methylation at lysine 36 of histone H3; H3K79me2, di-methylation at lysine 79 of histone H3; 

Hcys, homocysteine; RBC, red blood cell; uAs, urinary arsenic; uAsCr, urinary arsenic adjusted 

for urinary creatinine 

 
a
Median (range) values of continuous characteristics of FACT participants with vs. without 

extensive H3 cleavage, identified by Western blot. The methods used for measuring these 

characteristics are described in Chapters 5 and 7. 
b
Two-sided Wilcoxon rank-sum test 
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Table A2. Descriptive characteristics
a
 for categorical variables in FACT participants with vs. 

without H3 cleavage 

 Extensive  

H3 Cleavage 

Minimal/No  

H3 Cleavage 

P
b 

 

Sex    

Males (n = 58) 20 (34.5) 38 (65.5) 0.65 

Females (n = 57) 22 (38.6) 35 (61.4) 

Betel Nut Status    

Ever Betel (n = 34) 19 (55.9) 15 (44.1) <0.01 

Never Betel (n = 80) 23 (28.8) 57 (71.2) 

Cigarette Smoking Status    

Ever smoked cigarette (n = 33) 13 (39.4) 20 (60.6) 0.72 

Never smoked cigarette (n = 81) 29 (35.8) 52 (64.2) 

TV Ownership    

Own TV (n = 40) 13 (32.5) 27 (67.5) 0.51 

No TV (n = 75) 29 (38.7) 46 (61.3) 

Land Ownership    

Own Land (n = 58) 19 (32.8) 39 (67.2) 0.40 

No Land (n = 57) 23 (40.4) 34 (59.6) 

Folate Status    

Plasma Folate <9 nmol/L (n = 23) 7 (30.4) 16 (69.6) 0.50 

Plasma Folate ≥9 nmol/L (n = 92) 35 (38.0) 57 (62.0) 

Cobalamin Status    

Plasma Cobalamin <151 pmol/L (n = 30) 8 (26.7) 22 (73.3) 0.19 

Plasma Cobalamin ≥151 pmol/L (n = 85) 34 (40.0) 51 (60.0) 

Hyperhomocysteinemia    

Plasma Hcys >13 µmol/L (n = 47) 13 (27.7) 34 (72.3) 0.10 

Plasma Hcys ≤13 µmol/L (n = 68) 29 (42.6) 39 (57.4) 

 

Abbreviations used: FACT, Folic Acid and Creatine Trial; Hcys, homocysteine 

  
a
n (%) of participants in specified subgroup with or without H3 cleavage. The methods used for 

measuring these characteristics are described in Chapters 5 and 7. 
b
Chi-square test 
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ABSTRACT 

 

Background: Exposure to inorganic arsenic is associated with numerous adverse health 

outcomes, with susceptibility differing by sex. While evidence from in vitro studies suggests that 

arsenic alters posttranslational histone modifications (PTHMs), evidence in humans is limited. 

Objectives: The objectives were to determine: 1) if arsenic exposure is associated with global 

levels of PTHMs: H3K36me2, H3K36me3, and H3K79me2 in a sex-dependent manner and 2) if 

PTHMs are stable when arsenic exposure is reduced. 

Methods: We examined associations between arsenic, measured in blood and urine, and PTHMs 

in peripheral blood mononuclear cells from 317 participants enrolled in the Bangladesh Folic 

Acid and Creatine Trial (FACT). We also examined the stability of PTHMs after the use of 

arsenic-removal water filters (n = 60).  

Results: Associations between natural log-transformed (log) urinary arsenic, adjusted for 

creatinine (uAsCr), and H3K36me2 differed significantly between men and women (P = 0.01). 

Log(uAsCr) was positively associated with H3K36me2 in men (β: 0.12; 95% CI: 0.01, 0.23; P = 

0.03), but was negatively associated with H3K36me2 in women (β: -0.05; 95% CI: -0.12, 0.02; P 

= 0.19). The patterns of associations with blood arsenic were similar. On average, water filter use 

was also associated with reductions in H3K36me2 (P < 0.01), but this did not differ significantly 

by sex. Arsenic was not significantly associated with H3K36me3 or H3K79me2 in men or 

women.  

Conclusions: Arsenic exposure was associated with H3K36me2 in a sex-specific manner, but 

was not associated with H3K36me3 or H3K79me2. Additional studies are needed to assess 

changes in H3K36me2 after arsenic removal. 
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INTRODUCTION 

Worldwide, more than 140 million people are exposed to arsenic-contaminated drinking 

water [1]; in Bangladesh alone, up to 57 million individuals are exposed [2]. Chronic exposure to 

arsenic causes bladder, lung, and skin cancers and is also associated with numerous non-cancer 

health outcomes [3]. Susceptibility to many of these arsenic-related health outcomes differs by 

sex, with some outcomes preferentially afflicting males and others females [3]. For example, 

males are more likely to develop arsenic-induced skin lesions [4,5] and skin, liver, and bladder 

cancers [6-8], while females may be more susceptible to arsenic-induced developmental 

outcomes [9-11] and cardiovascular disease [12]. However, the mechanisms underlying these sex 

differences remain unknown.   

Experimental studies and observational studies in human populations have demonstrated 

that arsenic alters epigenetic modifications, including global 5-methylcytosine (5-mC) [13-16] 

and 5-hydroxymethylcytosine (5-hmC) [17,18], and there is evidence that these effects differ by 

sex [17, 19-21]. In vitro and rodent studies have also shown that arsenic alters global levels of 

posttranslational histone modifications (PTHMs) in tissues or cell lines derived from tissues that 

are targets of arsenic toxicity, such as the lung [22], bladder [23], and brain [24], and the effects 

of arsenic on PTHMs in the brain have been shown to be sex-dependent in mice [25]. An 

epidemiological study of 63 male steel workers also reported that arsenic exposure via inhalation 

was associated with higher global levels of histone H3 lysine 4 dimethylation in white blood 

cells (WBCs) [26]; however, since this study only included men, potential differences by sex 

could not be examined.  
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In a previous study of 40 Bangladeshi adults, we observed sex-specific associations 

between arsenic, measured in urine, and several PTHMs (H3 lysine 4 trimethylation, H3 lysine 

27 trimethylation, and H3 lysine 27 acetylation) in peripheral blood mononuclear cells (PBMCs) 

[27]. We have also previously observed sex-specific associations between arsenic exposure and 

global levels of both 5-mC and 5-hmC in PBMC DNA [17]. Thus, we now present data on three 

PTHMs: histone H3 lysine 79 di-methylation (H3K79me2), selected because it has been shown 

to regulate the expression of Tet1 [28,29], which converts 5-mC to 5-hmC [30], and it is 

dysregulated in cancers [31,32], and histone H3 lysine 36 di- and tri-methylation (H3K36me2 

and H3K36me3, respectively), because these two PTHMs have been shown to be altered by 

arsenic in vitro [22] and they are also dysregulated in several types of cancer [33-36]. This study 

utilized a subset of PBMC samples collected from participants enrolled in the Folic Acid and 

Creatine Trial (FACT) [37]. First we evaluated sex-specific associations between arsenic and our 

candidate PTHMs using baseline FACT samples. Then, since all participants in the trial were 

provided with arsenic-removal water filters at enrollment, we evaluated whether PTHMs were 

altered after reducing arsenic exposure; this was achieved using samples collected at baseline 

and week 12 from participants who did not receive a dietary supplement. The data reported 

herein add to a growing body of evidence that arsenic induces epigenetic dysregulation on a 

global level and, moreover, that this often occurs in a sex-specific manner.  

STUDY PARTICIPANTS AND METHODS 

Region and Participants 

In 2010, participants for the current study (FACT) were recruited from the Health Effects 

of Arsenic Longitudinal Study (HEALS), a prospective cohort study which initially recruited 

11,746 adults (between the ages of 20 and 65) living in a 25 km2 region in Araihazar, 
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Bangladesh [38]. FACT participants were randomly selected from all HEALS participants who 

had been drinking from household wells with water arsenic ≥50 μg/L, the Bangladesh standard 

for safe drinking water. Exclusion criteria included: pregnancy, nutritional supplement use, and 

adverse health outcomes, including proteinuria, renal disease, diabetes, gastrointestinal disease, 

chronic obstructive pulmonary disease, skin lesions, and cancer. Informed consent was obtained 

by Bangladeshi field staff physicians. This study was approved by the Institutional Review 

Board of Columbia University Medical Center and the Bangladesh Medical Research Council. 

Study Design 

The FACT study is a randomized, placebo-controlled trial that had the primary goal of 

determining whether folic acid (FA) and/or creatine supplementation reduces blood arsenic 

(bAs) concentrations in arsenic-exposed, Bangladeshi adults [37]. All FACT participants 

received an arsenic-removal water filter (READ-F filter, Brota Services International, 

Bangladesh) at baseline to be used for the duration of the study and thereafter. Participants (n = 

622) were also randomized to one of five nutrition intervention treatment arms: placebo (n 

=104), 400 µg FA/day (n = 156), 800 µg FA/day (n = 154), 3 g creatine/day (n = 104), and 3 g 

creatine + 400 µg FA/day (n = 104) [37]. Whole blood and urine samples were collected from 

participants at baseline, week 12, and week 24; sample collection and handling have been 

described previously [27,37]. For the current study, we used histones isolated from baseline (i.e., 

pre-intervention)-collected PBMCs from a subset of FACT participants from all five treatment 

arms (see Supplemental Material, Figure S1), who had whole blood, urine, and PBMC 

samples and complete data for arsenic measures, PTHMs, and potential confounders (n = 317). 

We also used all available PBMCs collected at baseline and week 12 from participants in the 

placebo group (n = 60) to examine if PTHMs were altered after the use of arsenic-removal water 
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filters; due to filter use, participants in the placebo group experienced a significant decrease in 

bAs concentrations from baseline to week 12 [37]. 

General Characteristics 

General characteristics of the study participants were determined at baseline by an in-

person questionnaire. Body mass index (BMI) was calculated from the measured weight and 

height of each participant (kg/m2) at baseline. 

Total Blood Arsenic 

As described previously [37], total bAs concentrations were measured using a Perkin-

Elmer Elan DRC II ICP-MS equipped with an AS10+ autosampler. The intra- and inter-assay 

CVs for bAs were 2.7% and 5.7%, respectively. 

Total Urinary Arsenic 

We measured total urinary arsenic (uAs) by graphite furnace atomic absorption 

spectrophotometry, using the AAnalyst 600 graphite furnace system (Perkin Elmer, Shelton, 

CT), based on a method by Nixon et al. [39]. Intra- and inter-assay CVs for uAs were 3.1% and 

5.4%, respectively. These values were adjusted for urinary creatinine (uCr) concentrations, 

measured by a method based on the Jaffe reaction [40]. The intra- and inter-assay CVs for uCr 

were 1.3% and 2.9%, respectively. 

Plasma Folate and Cobalamin 

Plasma folate and cobalamin were measured by radio-protein-binding assay 

(SimulTRAC-SNB, MP Biomedicals). The intra- and inter-assay CVs were 5% and 13%, 

respectively, for folate and 6% and 17%, respectively for cobalamin. 
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Histone Isolation 

While we recently identified a cleavage product of histone H3 in human PBMCs that 

interferes with the measurement of PTHMs residing downstream of H3 cleavage sites [41], we 

note that the PTHMs in the current study are located upstream of cleavage sites and are therefore 

not impacted by this. Histones were isolated from PBMCs by acid extraction, as described 

previously [27]. Briefly, PBMCs were lysed in radioimmunoprecipitation assay buffer, 

supplemented with a protease inhibitor cocktail (Roche) and 1 µM of protease inhibitor E-64, for 

10 min. The cell lysate was passed through a 21-gauge needle, and the pellet was collected by 

centrifugation, washed in histone washing buffer, collected again after centrifugation, and 

resuspended in 0.4 N H2SO4. After incubation at 4°C overnight, the supernatant was collected by 

centrifugation, mixed with acetone, and incubated overnight at -20°C. Pellets were collected by 

centrifugation, washed with acetone, dried, and resuspended in 4 M urea. Histone concentrations 

were determined by the Bradford Assay, according to the manufacturer’s instructions (Bio-Rad 

Laboratories, Hercules, CA). Samples were aliquoted and stored at -80°C. 

 

H3K36me2, H3K36me3, H3K79me2 

 

PTHMs were measured by sandwich ELISA, based on a previously described method 

[27]. Polystyrene 96-well microplates (Fisher Scientific) were coated with a capture antibody for 

total histone H3 (Abcam, 1:20,000) and incubated overnight at 4ºC. The next day, plates were 

blocked with 3% milk diluted in PBST (1 X PBS, 0.05% TWEEN-20) for 2 hr and then washed 

with PBST. Histone samples from FACT participants were diluted with ddH2O. Sample dilutions 

for each assay were as follows: H3K36me2, 1 ng/µL; H3K36me3, 1.5 ng/µL; H3K79me2, 2.0 

ng/µL. A standard curve was made with mixed histones from calf thymus (Sigma), and a pooled 

blood sample was included on each plate for calculating inter-assay CVs. FACT histone samples, 
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calf histones, and the pooled blood sample were plated in duplicate. Plates were incubated on an 

orbital shaker at room temperature for 1.5 hr, then wells were washed with PBST. Detection 

antibodies were diluted in 1% milk PBST, to further prevent potential background signal, and 

100 µL was added to each well of the appropriate plate. Detection antibody dilutions were as 

follows: total H3, Sigma, 1:40,000; H3K36me2, Abcam, 1:2,000; H3K36me3, Abcam, 1:2,000; 

H3K79me2, Active Motif, 1:1,000. Plates were incubated for 1 hr at room temperature on an 

orbital shaker. Plates were washed with TBST (0.1% TWEEN-20), and 100 µL of secondary 

antibody (Santa Cruz, goat anti-rabbit IgG-HRP, 1:2000, diluted in TBS) was added to each well. 

Plates were incubated for 1 hr at room temperature without agitation. Subsequently, plates were 

washed with TBST followed by ddH2O, and 100 µL of 3,3’,5,5’-tetramethylbenzidine was added 

to each well. Plates were incubated in the dark for 10 min. The reaction was quenched with 2 N 

H2SO4, and the optical density was read at 450 nm using a SpectraMax 190 plate reader 

(Molecular Devices) with SoftMax Pro software (version 6.3). Total H3 and each of the three 

PTHMs were calculated relative to mixed calf histones based on a 4-parameter logistic standard 

curve. The % PTHM level was calculated by dividing the PTHM measure by the total H3 

measure. Samples from the same individual, but from different time points, were run on the same 

plate. H3K79me2 values were normalized to the pooled blood sample to reduce potential batch 

effects [42]. The inter-assay CV for H3K79me2 was calculated from a subset of samples (n = 16) 

measured on two separate days. The intra- and inter-assay CVs, respectively, for each ELISA 

method were as follows: H3K36me2: 3.4% and 9.6%, H3K36me3: 4.9% and 11.9%, and 

H3K79me2: 7.1% and 7.0%. Since there were limited histone aliquots for the final assays, and 

since samples with poor reproducibility were excluded, final sample sizes for H3K36me2 (n = 

311) and H3K36me3 (n = 300) were smaller than the final sample size for H3K79me2 (n = 315).  
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Statistical Methods 

Summary statistics were calculated for each variable (median (range) for continuous 

variables and % for categorical variables) in all participants and also separately by sex. 

Differences in continuous and categorical variables, between men and women and also between 

participants with and without PTHM measures, were determined by Wilcoxon rank-sum and 

Chi-square tests, respectively. Transformations were applied to variables with skewed 

distributions to stabilize variances for parametric model assumptions and to reduce the influence 

of extreme values. A natural log-transformation (log(X)) was applied to each of the predictors, 

bAs and uAs, which was adjusted for uCr (uAsCr); to the covariate BMI; and also to two of the 

outcome variables, H3K36me3, H3K79me2. An inverse transformation (1/Y) was applied to the 

third outcome variable, H3K36me2. 

 A generalized linear model, with an inverse-link function applied to the mean of (1/Y), 

was used to model the association between log(bAs) or log(uAsCr) and the harmonic mean of 

H3K36me2. Associations between the predictors, log(bAs) and log(uAsCr) and the outcomes, 

log(H3K36me3) and log(H3K79me2), were examined with linear models. Arsenic regression 

coefficients (β) in models for H3K36me2 indicate the change in the harmonic mean of 

H3K36me2 for a unit increase in log(bAs) or log(uAsCr), controlling for other variables in the 

model, while those for H3K36me3 and H3K79me2 indicate the change in the mean of the 

log(PTHM) for a unit increase in log(bAs) or log(uAsCr), controlling for other variables in the 

model. Variables were considered potential confounders if they were correlated with arsenic 

exposure measures and the PTHM in men or women and their addition to models changed 

arsenic exposure coefficients by >10%. Therefore, we also present models adjusted for age, 

log(BMI), education, and sex. To demonstrate the robustness of the associations between arsenic 
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measures and PTHMs, we also present analyses in supplemental materials showing adjustment 

for additional variables: log(uCr), log(plasma folate), and log(plasma cobalamin), and also 

cigarette and betel nut use (ever vs. never). All variables were included in models as continuous 

variables, except for sex and education; the latter was dichotomized (education >5 years vs. ≤5 

years), since many participants had 0 years of education. Models were also run separately by sex, 

and differences by sex were determined using the Wald test, which compares regression 

coefficients between models [43]. 

We also present Spearman correlations, which remain the same with or without applying 

the specified transformations to variables, showing the relationships between arsenic measures 

and PTHMs to confirm that the directions of the associations are consistent with model-based 

results and to facilitate comparisons between PTHMs. 

Relationships between baseline and week 12 measures of each PTHM were examined 

using Spearman correlations. The Wilcoxon signed-rank test was used to evaluate whether 

PTHMs (untransformed) changed on average over a 12 week period; this was examined in a 

subset of participants (n = 60) in the placebo group (n = 56 for H3K36me2 and H3K79me2, n = 

55 for H3K36me3). We also examined the within-person changes in the PTHMs separately by 

sex and tested for differences using the Wilcoxon rank-sum test. 

A significance level of 0.05 was used for all statistical tests and regression models, which 

were performed with SAS (version 9.3, Cary, NC). 
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RESULTS 

General Characteristics, Arsenic Measures, and PTHMs 

General characteristics for the study participants are presented in Table 1. Participants 

were between 24 and 54 years old. Approximately 22.4% of the study participants had >5 years 

of education. Blood arsenic concentrations ranged from 1.0 to 80.2 μg/L. Concentrations of 

uAsCr ranged from 35 to 2200 μg/g uCr. Compared with women, male study participants were 

older, had lower BMIs, and had higher uCr and bAs concentrations and lower uAsCr 

concentrations. Men were also more likely to have low plasma folate concentrations and to be 

cigarette smokers. Individuals in the placebo group with PTHM measures (See Supplemental 

Material, Table S1) were very similar to the overall study population (Table 1). The only 

variables which differed were uCr concentrations and, consequently, uAs concentrations, which 

were both lower in the placebo group participants. However, uAsCr concentrations were similar 

between groups.  

FACT participants with PTHM measures were generally comparable to FACT 

participants without PTHM measures (See Supplemental Material, Table S2), although 

participants with PTHM measures were slightly older, were more likely to have low folate, and 

had higher uCr and uAs concentrations (before adjustment for uCr). 

Associations between Arsenic Exposure and PTHMs 

In the whole sample, neither log(bAs) nor log(uAsCr) was significantly associated with 

any of the PTHMs (Table 2). However, log(uAsCr) was positively associated with H3K36me2 in 

men both before (β: 0.13; 95% CI: 0.02, 0.24; P = 0.02) and after (β: 0.12; 95% CI: 0.01, 0.23; P 

= 0.03) adjusting for age, education, and log(BMI). The association between log(uAsCr) and 
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Table 1. Baseline characteristicsa of FACT participants with at least one PTHM measure and complete information for variables 

included in regression models 

Characteristic Whole Sample (317) Men (161) Women (156) Pb 

Age (y) 39 (24-54) 42 (25-54) 37 (24-54) <0.01 

BMI (kg/m2) 19.3 (13.9-31.6) 18.7 (15.4-27.9) 20.0 (13.9-31.6) <0.01 

uCr (μg/L) 48 (6-252) 53 (6-252) 45 (6-233) 0.03 

bAs (μg/L) 8.8 (1.0-80.2) 9.6 (2.5-52.0) 7.9 (1.0-80.2) 0.05 

uAs (μg/L) 121 (11-1770) 123 (11-1770) 121 (11-1320) 0.67 

uAsCr (μg/g uCr) 257 (35-2200) 242 (65-1480) 287 (35-2200) 0.03 

H3K36me2c (% of total H3) 1.45 (0.68-6.87) 1.45 (0.68-4.00) 1.43 (1.00-6.87) 0.47 

H3K36me3d (% of total H3) 1.61 (0.48-6.44) 1.57 (0.48-4.09) 1.62 (0.52-6.44) 0.18 

H3K79me2e (% of total H3) 1.26 (0.29-9.46) 1.26 (0.29-9.46) 1.25 (0.29-9.41) 0.69 

Folate <9 nmol/L 74 (23.3) 46 (28.6) 28 (18.0) 0.03 

Cobalamin <151 pmol/L 77 (24.3) 39 (24.2) 38 (24.4) 0.98 

Ever Smoker 93 (29.3) 91 (56.5) 2 (1.3) <0.01 

Ever Betel 87 (27.4) 48 (29.8) 39 (25.0) 0.34 

Education >5 y 77 (22.4) 33 (20.5) 38 (24.4) 0.41 
 

Abbreviations used: bAs, blood arsenic; BMI, body mass index; FACT, Folic Acid and Creatine Trial; H3K36me2, di-methylation at 

lysine 36 of histone H3; H3K36me3, tri-methylation at lysine 36 of histone H3; H3K79me2, di-methylation at lysine 79 of histone H3; 

PTHM, posttranslational histone modification; uAs, urinary arsenic; uAsCr, urinary arsenic adjusted for urinary creatinine; uCr, 

urinary creatinine 

 
aValues are median (range) or n (%) for continuous and categorical variables, respectively 
bWilcoxon rank-sum or Chi-square test for difference between men and women in continuous and categorical variables, respectively 
cn = 311 (Men: 158, Women: 153) 
dn = 300 (Men: 153, Women: 147) 
en = 315 (Men: 161, Women: 154) 
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H3K36me2 was in the opposite direction for women (covariate-adjusted β: -0.05; 95% CI: -0.12, 

0.02; P = 0.19) and differed significantly from the corresponding estimate in men (P = 0.01) 

(Table 2). While not statistically significant, associations between log(bAs) and H3K36me2 were 

similar to those for log(uAsCr), with estimates that were positive in men and negative in women 

(P for difference between men and women = 0.08 for covariate-adjusted models). The patterns of 

associations according to sex were similar for log(H3K36me3). Since coefficients in models for 

H3K36me2 represent changes in the harmonic mean of H3K36me2, while coefficients in models 

for H3K36me3 represent changes in the mean of log(H3K36me3), the magnitudes of the 

associations cannot be directly compared. However, the findings were consistent when examined 

by Spearman correlation, which does not require that variables be transformed and thus allows 

for more direct comparisons between PTHMs (See Supplemental Material, Table S3). 

Although associations between log-transformed arsenic measures and log(H3K36me3) were not 

significant in either men or women, differences by sex were significant or suggestive (Table 2). 

Log-transformed arsenic measures were not associated with log(H3K79me2) in men or women, 

and differences by sex were not significant (Table 2). Associations between arsenic measures 

and PTHMs were very similar after additionally adjusting for log(uCr), log(plasma folate), 

log(plasma cobalamin), cigarette smoking status, and betel nut use (See Supplemental Material, 

Table S4).  

Stability of PTHMs after Reductions in Arsenic Exposure 

Arsenic-removal water filter use for 12 weeks was associated with significant reductions 

in bAs (see [37]) and uAsCr (P < 0.01, Wilcoxon signed-rank test) in the placebo group. 

Summary statistics for within-person changes in H3K36me2, H3K36me3, and H3K79me2
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Table 2. Estimated regression coefficientsa and 95% confidence intervals for associations between baseline measures of arsenic 

exposure and PTHMs in FACT participants 

PTHM Arsenic Exposure Whole Sample Men Women Pb 

H3K36me2c bAs  0.02 (-0.05, 0.09) 0.12 (-0.00, 0.24) -0.04 (-0.12, 0.04) 0.04 

bAsd  0.02 (-0.05, 0.09) 0.10 (-0.02, 0.22) -0.03 (-0.11, 0.05) 0.08 

uAsCr
  0.01 (-0.05, 0.08) 0.13 (0.02, 0.24)* -0.05 (-0.12, 0.02) <0.01 

uAsCr
d 0.02 (-0.05, 0.08) 0.12 (0.01, 0.23)* -0.05 (-0.12, 0.02) 0.01 

H3K36me3e bAs  -0.03 (-0.10, 0.04) 0.06 (-0.04, 0.16) -0.08 (-0.17, 0.01) 0.04 

bAsd  -0.02 (-0.09, 0.05) 0.05 (-0.04, 0.15) -0.07 (-0.16, 0.02) 0.07 

uAsCr  -0.01 (-0.07, 0.05) 0.07 (-0.02, 0.16) -0.06 (-0.14, 0.02) 0.04 

uAsCr
d 0.00 (-0.06, 0.06) 0.07 (-0.02, 0.16) -0.05 (-0.14, 0.03) 0.05 

H3K79me2f bAs  0.04 (-0.05, 0.12) 0.04 (-0.09, 0.17) 0.03 (-0.08, 0.14) 0.91 

bAsd  0.03 (-0.05, 0.12) 0.04 (-0.09, 0.17) 0.04 (-0.08, 0.15) 0.95 

uAsCr
  0.02 (-0.06, 0.09) 0.05 (-0.07, 0.17) 0.00 (-0.10, 0.10) 0.53 

uAsCr
d 0.01 (-0.06, 0.09) 0.04 (-0.08, 0.17) 0.01 (-0.10, 0.11) 0.65 

 

Abbreviations used: bAs, blood arsenic; FACT, Folic Acid and Creatine Trial; H3K36me2, di-methylation at lysine 36 of histone H3; 

H3K36me3, tri-methylation at lysine 36 of histone H3; H3K79me2, di-methylation at lysine 79 of histone H3; PTHM, 

posttranslational histone modification; uAsCr, urinary arsenic adjusted for urinary creatinine 

 
aEstimated regression coefficients and 95% confidence intervals (β (CI)) from generalized linear models. Associations were examined 

between log(bAs) or log(uAsCr) in relation to each of the three PTHMs. Coefficients from H3K36me2 models indicate the change in 

the harmonic mean of H3K36me2 for a unit increase in the log-transformed arsenic measure, controlling for other covariates. 

Coefficients from H3K36me3 and H3K79me2 models indicate the change in the mean of the log(PTHM) for a unit increase in the log-

transformed arsenic measure, controlling for other covariates. 
bWald test for sex difference 
cWhole sample n = 311, Men n = 158, Women n = 153. 
dAdjusted for age, education (dichotomized at 5 years), and log(BMI). Whole sample analyses were also adjusted for sex. 
eWhole sample n = 300, Men n = 153, Women n = 147.  
fWhole sample n = 315, Men n = 161, Women n = 154. 

*P < 0.05 
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from baseline to week 12 for participants in the placebo group are presented in Table 3. 

Although for each of the three PTHMs analyzed, baseline values were significantly correlated 

with values measured at week 12 (P-values from Spearman correlations < 0.01), the median 

change in H3K36me2 from baseline to week 12 was negative (-0.15). Thus, on average 

H3K36me2 declined over time (P < 0.01), although the interquartile range (IQR) for the within-

person change (-0.43, 0.11) indicates that this mark did increase over time in at least 25% of 

participants. In sex-stratified analyses, H3K36me2 was found to decrease on average among both 

men and women. However, the decline was only statistically significant among women (P < 

0.01). H3K36me3 did not change significantly during the 12 week period, but there was a 

suggestive decrease in H3K79me2 (median within-person change: -0.05; IQR: -0.24, 0.04), P = 

0.07). The within-person changes in PTHMs did not differ significantly by sex (Table 3). 

 

DISCUSSION 

In an adult population in Bangladesh, we examined associations between arsenic 

exposure and three PTHMs (H3K36me2, H3K36me3, and H3K79me2), which were selected 

because they are dysregulated in several types of cancer [31-36] and are altered by arsenic in 

vitro [22] or regulate 5-hmC [28,29]. Percent 5-hmC has been shown to be altered by arsenic in 

male rats [18] and in humans in a sex-dependent manner [17]. We observed that arsenic was    

associated with higher levels of H3K36me2, but only in men. Interestingly, the use of arsenic-

removal water filters, which was associated with significant reductions in both bAs [37] and 

uAsCr, was also associated with significant reductions in H3K36me2 in the full sample. 

However, in sex-stratified analyses, while we observed that H3K36me2 declined in both men 

and women, this only achieved statistical significance among women. Given that there was no
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Table 3. Within-person changes in PTHMs from baseline to week 12 for FACT participants in the placebo group 

PTHM Whole Sample Men Women pa 

 n Median (IQR) Pb n Median (IQR) Pb n Median (IQR) Pb  

H3K36me2  56 -0.15 (-0.43, 0.11) <0.01 27 -0.07 (-0.44, 0.16) 0.14 29 -0.17 (-0.37, 0.04) <0.01 0.62 

H3K36me3  55 0.02 (-0.23, 0.30) 0.61 28 0.05 (-0.23, 0.47) 0.35 27 0.02 (-0.22, 0.12) 0.93 0.35 

H3K79me2  56 -0.05 (-0.24, 0.04) 0.07 29 -0.03 (-0.28, 0.09) 0.36 27 -0.05 (-0.18, 0.04) 0.10 0.88 

 

Abbreviations used: FACT, Folic Acid and Creatine Trial; H3K36me2, di-methylation at lysine 36 of histone H3; H3K36me3, tri-

methylation at lysine 36 of histone H3; H3K79me2, di-methylation at lysine 79 of histone H3; IQR, interquartile range; PTHM, 

posttranslational histone modification 

 
aWilcoxon rank-sum test for difference between men and women in the within-person change for each PTHM 
bWilcoxon signed-rank test for within-person change in PTHM from baseline to week 12
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comparison group that did not receive arsenic-removal water filters due to ethical considerations, 

we cannot rule out the possibility that the decline in H3K36me2 may have been caused by 

extrinsic factors. Additional studies will be needed to confirm the changes we observed 

in H3K36me2 in association with arsenic removal. In cross-sectional analyses, arsenic exposure 

was not associated with H3K36me3. Additionally, H3K36me3 did not change over time, despite 

reductions in arsenic exposure. Thus, arsenic does not appear to alter H3K36me3 in histones 

derived from PBMCs. Although in cross-sectional analyses arsenic exposure was not associated 

with H3K79me2, which has been shown to regulate the expression of Tet1 [28,29], we did 

observe a suggestive (P = 0.07) decline in H3K79me2 over time after individuals received 

arsenic-removal water filters; this needs to be confirmed in a larger sample.  

Although neither H3K36me3 nor H3K79me2 changed significantly over the 12 week 

period, we cannot make definitive conclusions about the stability of these marks, since all 

participants received arsenic-removal water filters at baseline and were thus subject to an 

intervention; furthermore, these marks did vary over time in some participants. Little is known 

about the stability of PTHMs in human PBMCs. One study by Zhang et al. examined the stability 

of PTHMs during adipogenesis and observed that while gene-specific levels of PTHMs were 

highly dynamic, global levels of PTHMs were remarkably stable [44]. However, since Zhang et 

al. used murine adipocyte cell lines, it is unclear if these findings are relevant to PTHM stability 

in human PBMCs. One previous epidemiological study measured PTHMs in PBMCs collected at 

three one-week intervals from 15 nickel refinery workers and 15 individuals who had not been 

exposed occupationally to nickel, and observed that the inter-individual variances in PTHMs 

were much higher than the intra-individual variances, suggesting that PTHMs are relatively 
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stable over time in human PBMCs [45]. However, since this was evaluated over a short duration, 

and in a small number of participants, this is an area that requires additional investigation. 

Our study has several potential limitations. First, given the cross-sectional nature of some 

of the analyses, we need to consider the possibility of reverse causality. Since several previous 

experimental studies have shown that arsenic influences PTHMs, it is unlikely that reverse 

causality would explain our findings. However, it is possible that PTHMs influence the 

expression of genes involved in arsenic metabolism, such as the arsenic (+3 oxidation state) 

methyltransferase, which could thereby influence the excretion of arsenic, thus altering bAs and 

uAsCr concentrations. Although residual confounding is another important consideration, the 

associations between arsenic measures and PTHMs were quite robust, even after adjusting for 

additional covariates. Another important consideration for our study is the fact that PTHMs were 

measured in human PBMCs, which consists of a mixed population of cell types. However, global 

DNA methylation levels, which are closely related to PTHMs, have been shown to be very 

similar between blood cell types (reviewed in [46]). Additionally, a cross-sectional study of 63 

male steel workers, which examined associations between inhalation exposure to occupational 

toxicants, including arsenic, and PTHMs in total WBCs, evaluated the influence of cell type 

distribution on these associations, and observed that while adjusting for the proportion of 

granulocytes influenced their results, adjusting for other cell types did not have a major impact 

[26]. Since we measured PTHMs in PBMCs, which do not include granulocytes, potential shifts 

in the proportion of granulocytes could not explain the associations we observed between arsenic 

and PTHMs. However, we cannot rule out the possibility that alterations in the proportion of 

monocytes, natural killer cells, T cells, or B cells, or their subpopulations, may have affected our 

findings, and this is an area that merits additional investigation. Another important limitation of 
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our study is that the sample sizes for prospective analyses were small. Therefore, we may have 

had insufficient statistical power to formally examine sex differences in the influence of arsenic 

removal on PTHMs. Finally, we recently identified a specific cleavage product of histone H3 in 

human PBMCs and observed that global levels of H3K36me2 and H3K79me2 were significantly 

higher in samples with extensive H3 cleavage ([41] and see Chapter 4). Therefore, while H3 

cleavage does not impact the measurement of PTHMs, it is possible that this phenomenon 

nevertheless impacted our findings. 

   Despite some of the limitations of this study, our findings support a previous 

experimental study in A549 cells, which examined the effects of arsenite (2.5 and 5 µM) on 

H3K36me2 and H3K36me3 [22] and observed that arsenic decreased H3K36me2 and increased 

H3K36me3. Although we observed a positive association between uAsCr and H3K36me2 in men 

and did not observe a significant association between uAsCr and H3K36me3, we studied a 

population exposed to arsenic-contaminated drinking water for years to decades, while Zhou et 

al. measured PTHMs in a cell line that was exposed to arsenic for a 24 hour period. Furthermore, 

our study participants were healthy individuals, whereas A549 cells are alveolar basal epithelial 

cells derived from a male human lung tumor; arsenic may have distinct effects in different 

tissues and may also have differential effects in normal vs. cancerous cells. Additionally, in vitro 

studies are limited in that they cannot account for the numerous systemic differences associated 

with sex in vivo. Nevertheless, it is quite interesting that arsenic appears to target H3K36me2 in 

such diverse models.  

Although the consequences of arsenic-induced increases in H3K36me2 are currently 

unknown, H3K36me2 has been implicated in oncogenic programming [47], and some of the 

enzymes responsible for regulating this mark, such as methyltransferase NSD2, are 
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overexpressed in multiple cancers, including those caused by arsenic, such as bladder, lung, and 

skin cancers [48]. A global increase in H3K36me2 leads to widespread increases in this mark 

across the genome, thereby altering its typical distribution [49]; this may have profound effects 

on both gene expression and genomic stability. For example, a global increase in H3K36me2 is 

associated with increased levels of H3K36me2 within gene bodies, which in turn is associated 

with increased expression of genes involved in oncogenic programming [47]. 

Similar to our findings, several studies have observed sex-specific effects of arsenic on 

other epigenetic marks, such as DNA methylation [19-21], including our previous finding that 

arsenic exposure is associated with increased global levels of 5-mC and 5-hmC in men but not 

women [17]. Sex-specific effects of other environmental contaminants, such as cadmium and 

lead, on DNA methylation have also been observed [50,51]. Since PTHMs can direct DNA 

methylation patterns [52], PTHMs may mediate the effects of environmental contaminants, such 

as arsenic, on DNA methylation marks. In addition to the sex-specific findings for uAsCr and 

H3K36me2 reported here, our group previously observed sex-specific correlations between 

uAsCr and several other PTHMs [27]. Additionally, Tyler et al. recently demonstrated that arsenic 

alters PTHMs in a sex-dependent manner in the mouse brain [25]. Although the mechanisms are 

not fully understood, arsenic also altered the expression of corresponding histone modifying 

enzymes, including MLL and KDM5B, in a sex-dependent manner [25]. Many histone 

modifying enzymes have also been shown to interact with androgen receptor [53], and some 

histone demethylases are dosage-sensitive regulators that are coded for by genes that reside on 

the Y chromosome and are highly conserved across mammalian species and broadly expressed 

across tissues and cell types [54]. Thus, both hormonal influences and genetic differences may 

contribute to the sex-specific effects of arsenic on PTHMs. 
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For many arsenic-induced health outcomes, susceptibility differs by sex [3]. For example, 

men are more susceptible to developing arsenic-induced skin lesions [4,5], and cancers of the 

skin, liver, and bladder [6-8]. In contrast, several studies have reported that early life exposure to 

arsenic is associated with impaired intellectual function and other developmental outcomes 

among female, but not male, children [9-11]. Additionally, in the United States the arsenic-

associated risk for cardiovascular disease was found to be higher among women [12]. Animal 

studies have also demonstrated sex-specific effects of arsenic for many outcomes. For example, 

female mice are more susceptible to arsenic-induced changes in locomotor activity [55] and are 

more likely to develop lung tumors as a result of prenatal exposure to arsenic, while males are 

more likely to develop liver and adrenal tumors [56]. 

Although some of the sex-specific effects of arsenic observed in human populations may 

be explained by gender-differences in co-exposures (e.g., cigarette smoking, UV exposure, and 

nutritional deficiencies), the dramatic sex differences observed in well-controlled animal studies 

of arsenic toxicity suggest that co-exposures are not solely responsible for these differences. One 

consideration is that women have a higher capacity to fully methylate inorganic arsenic to 

dimethyl arsenic species, which facilitates arsenic elimination in urine [57-59]. This should 

generally reduce arsenic toxicity for women. However, some arsenic-related health outcomes 

preferentially afflict women, thus, there are likely other contributing factors. Epigenetic 

dysregulation has been implicated in the development of arsenic-induced health outcomes, 

including skin lesions and cancers of the skin and bladder [60-63]. Thus, epigenetic 

dysregulation may be one important mechanism contributing to the sex differences observed for 

multiple arsenic-related health outcomes. Previous studies examining the sex-specific effects of 
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arsenic on epigenetics have focused on DNA methylation. However, this study and our previous 

study [27] suggest that arsenic also induces sex-specific alterations in PTHMs. 

 

CONCLUSIONS  

Our findings have two major implications that warrant further investigation. First, arsenic 

exposure was associated with H3K36me2 in a sex-dependent manner in our study population of 

adults in Bangladesh. While it is tempting to speculate that these findings may explain some of 

the observed sex differences in susceptibility to arsenic-induced diseases, the impact of 

H3K36me2 and other PTHMs on health outcomes will require further study. Secondly, the 

arsenic-associated increase in H3K36me2 observed in men decreased, albeit non-significantly, 

after the use of arsenic-removal water filters. However, since we did not have a comparison 

group that did not receive water filters, and since H3K36me2 decreased significantly in women, 

future studies will be needed to evaluate the effects of arsenic removal on H3K36me2 and to 

investigate whether downstream effects of alterations in PTHMs, such as changes in DNA 

methylation patterns, persist over time. 
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CHAPTER FIVE SUPPLEMENTAL MATERIAL 

Table S1. Baseline characteristicsa of FACT participants in the placebo group with PTHM measures 

Characteristic Whole Sample (n = 60) Men (n = 31) Women (n = 29) Pb 

Age (y) 38 (25-53) 39 (25-53) 35 (27-52) 0.37 

BMI (kg/m2)c 19.5 (15.4-31.6) 18.7 (15.4-24.0) 21.3 (16.6-31.6) <0.01 

uCr (μg/L) 40 (6-121) 33 (6-121) 45 (8-102) 0.26 

bAs (μg/L) 8.7 (1.0-34.7) 9.7 (3.9-17.8) 8.0 (1.0-34.7) 0.24 

uAs (μg/L) 88 (11-796) 71 (11-305) 116 (22-796) 0.16 

uAsCr (μg/g uCr) 297 (35-1250) 245 (91-598) 297 (35-1250) 0.33 

H3K36me2d (% of total H3) 1.56 (0.68-3.86) 1.60 (0.68-3.86) 1.52 (1.03-2.33) 0.20 

H3K36me3e (% of total H3) 1.67 (0.80-4.16) 1.73 (0.80-3.94) 1.66 (0.85-4.16) 0.87 

H3K79me2f (% of total H3) 1.22 (0.66-3.46) 1.16 (0.29-2.78) 1.22 (0.66-3.46) 0.75 

Folate <9 nmol/L 11 (18.3) 7 (22.6) 4 (13.8) 0.51g 

Cobalamin <151 pmol/L 16 (26.7) 7 (22.6) 9 (31.0) 0.65 

Ever Smoker 19 (31.7) 19 (61.3) 0 (0.0) <0.01g 

Ever Betel 16 (26.7) 7 (22.6) 9 (31.0) 0.65 

Education >5 y 10 (16.7) 3 (9.7) 7 (24.1) 0.17g 
 

Abbreviations used: bAs, blood arsenic; BMI, body mass index; FACT, Folic Acid and Creatine Trial; H3K36me2, di-methylation at 

lysine 36 of histone H3; H3K36me3, tri-methylation at lysine 36 of histone H3; H3K79me2, di-methylation at lysine 79 of histone H3; 

PTHM, posttranslational histone modification; uAs, urinary arsenic; uAsCr, urinary arsenic adjusted for urinary creatinine; uCr, 

urinary creatinine 

 
aValues are median (range) or n (%) for continuous and categorical variables, respectively 
bWilcoxon rank-sum test or Chi-square test for difference between men and women in continuous and categorical variables, 

respectively 
cn = 28 for women 
dn = 58 for whole sample, n = 29 for men 
en = 57 for whole sample, n = 29 for men, n = 28 for women 
fn = 60 for whole sample, n = 31 for men, n = 29 for women 
gFisher’s exact test 
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Table S2. Baseline characteristicsa of FACT participants with vs. without PTHM measures and with complete information for 

variables included in regression models 

 

Characteristic Participants with PTHM Measures  

(n = 317 ) 

Participants without PTHM Measures  

(n = 293) 

Pb 

Age (years) 39 (24-54) 37 (24-55) 0.03 

BMI (kg/m2) 19.3 (13.9-31.6) 19.6 (14.3-27.6) 0.27 

uCr (μg/L) 48 (6-252) 41 (6-303) <0.01 

bAs (μg/L) 8.8 (1.0-80.2) 8.8 (1.8-35.0) 0.43 

uAs (μg/L) 121 (11-1770) 109 (7-769) 0.05 

uAsCr (μg/g uCr) 257 (35-2200) 275 (46-1100) 0.35 

Men 161 (50.8) 146 (49.8) 0.81 

Folate <9 nmol/L 74 (23.3) 46 (15.7) 0.02 

Cobalamin <151 pmol/L 77 (24.3) 67 (22.9) 0.68 

Ever Smoker 93 (29.3) 73 (24.9) 0.22 

Ever Betel 87 (27.4) 63 (21.5) 0.09 

Education >5 y 71 (22.4) 83 (28.3) 0.09 
 

Abbreviations used: bAs, blood arsenic; BMI, body mass index; FACT, Folic Acid and Creatine Trial; PTHM, posttranslational 

histone modification; uAs, urinary arsenic; uAsCr, urinary arsenic adjusted for urinary creatinine; uCr, urinary creatinine 
 

aValues are median (range) or n (%) for continuous and categorical variables, respectively 
bWilcoxon rank-sum or Chi-square test for difference between those with vs. without PTHM measures for continuous and categorical 

variables, respectively 
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Table S3. Spearman correlation coefficientsa for baseline measures of arsenic exposure and PTHMs in FACT participants 

PTHM Whole Sample Men Women 

 bAs uAsCr bAs uAsCr bAs uAsCr 

Unadjusted       

H3K36me2b 0.04 (0.44) 0.02 (0.68) 0.18 (0.02) 0.21 (<0.01) -0.11 (0.18) -0.13 (0.10) 

H3K36me3c -0.01 (0.85) 0.01 (0.81) 0.09 (0.26) 0.11 (0.18) -0.10 (0.22) -0.09 (0.28) 

H3K79me2d 0.02 (0.68) 0.00 (0.97) 0.02 (0.78) 0.04 (0.61) 0.03 (0.74) -0.03 (0.70) 

Adjustede       

H3K36me2b 0.04 (0.50) 0.03 (0.59) 0.17 (0.04) 0.20 (0.01) -0.11 (0.17) -0.15 (0.06) 

H3K36me3c 0.00 (0.98) 0.01 (0.85) 0.08 (0.33) 0.11 (0.16) -0.09 (0.26) -0.09 (0.30) 

H3K79me2d 0.01 (0.88) -0.01 (0.85) 0.02 (0.76) 0.03 (0.69) 0.03 (0.74) -0.02 (0.77) 
 

Abbreviations used: bAs, blood arsenic; FACT, Folic Acid and Creatine Trial; H3K36me2, di-methylation at lysine 36 of histone H3; 

H3K36me3, tri-methylation at lysine 36 of histone H3; H3K79me2, di-methylation at lysine 79 of histone H3; PTHM, 

posttranslational histone modification; uAsCr, urinary arsenic adjusted for urinary creatinine 
 

aValues presented are Spearman correlation coefficients, with respective P-values indicated in parentheses 
bn = 311 for whole sample, n = 158 for men, n = 153 for women 
cn = 300 for whole sample, n = 153 for men, n = 147 for women 
dn = 315 for whole sample, n = 161 for men, n = 154 for women 
ePartial Spearman correlation coefficients, adjusted for age, education, body mass index. Whole sample analyses were also adjusted 

for sex. 
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Table S4. Estimated regression coefficientsa and 95% confidence intervals for associations between baseline measures of arsenic 

exposure and PTHMs, after adjusting for additional covariates, in FACT participants 

PTHM Arsenic Exposure Whole Sample Men Women Pb 

H3K36me2c bAs 0.02 (-0.05, 0.09) 0.10 (-0.02, 0.22) -0.04 (-0.12, 0.04) 0.06 

uAsCr 0.01 (-0.05, 0.08) 0.12 (+0.00, 0.23)* -0.06 (-0.14, 0.02) 0.01 

H3K36me3d bAs 0.00 (-0.07. 0.06) 0.06 (-0.05, 0.16) -0.05 (-0.15, 0.04) 0.12 

uAsCr -0.01 (-0.08, 0.05) 0.07 (-0.03, 0.17) -0.04 (-0.13, 0.05) 0.10 

H3K79me2e bAs  0.04 (0.05, 0.12) 0.06 (-0.07, 0.19) 0.03 (-0.08, 0.14) 0.75 

uAsCr 0.02 (-0.06, 0.10) 0.06 (-0.07, 0.19) 0.00 (-0.10, 0.11) 0.49 

 

Abbreviations used: bAs, blood arsenic; FACT, Folic Acid and Creatine Trial; H3K36me2, di-methylation at lysine 36 of histone H3; 

H3K36me3, tri-methylation at lysine 36 of histone H3; H3K79me2, di-methylation at lysine 79 of histone H3; PTHM, 

posttranslational histone modification; uAsCr, urinary arsenic adjusted for urinary creatinine 

 
aEstimated regression coefficients and 95% confidence intervals (β (CI)) from generalized linear models. Associations were examined 

between log(bAs) or log(uAsCr) in relation to each of the three PTHMs. Coefficients from H3K36me2 models indicate the change in 

the harmonic mean of H3K36me2 for a unit increase in the log-transformed arsenic measure, controlling for other covariates. 

Coefficients from H3K36me3 and H3K79me2 models indicate the change in the mean of the log(PTHM) for a unit increase in the log-

transformed arsenic measure, controlling for other covariates. Models were adjusted for age, education (dichotomized at 5 years), 

log(BMI), log(uCr), log(plasma folate), log(plasma cobalamin), cigarette smoking status (ever vs. never), and betel nut chewing status 

(ever vs. never). Whole sample analyses were also adjusted for sex. 
bWald test for sex difference 
cWhole sample n = 311, Males n = 158, Females n = 153. 
dWhole sample n = 300, Males n = 153, Females n = 147.  
eWhole sample n = 315, Males n = 161, Females n = 154. 

*P < 0.05 
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Figure S1. Folic Acid and Creatine Trial (FACT) Study Design and Sampling for Current Study. 

(A) FACT study design. A total of 622 participants were randomized to five treatment arms. 12 

participants were dropped during the course of the study. The final sample size for each 

treatment arm is shown. Approximately half of the participants in each folic acid (FA) treatment 

arm were switched to placebo at week 12. All participants received arsenic-removal water filters 

at baseline to be used for the duration of the 24 week study period and thereafter. (B) The first 

set of analyses for the current study used peripheral blood mononuclear cell (PBMC) samples 

collected at baseline from a total of 317 FACT participants. We show here the distribution of the 

317 participants by treatment arm. By design, the majority of participants in the current study 

were from the placebo and the 400 µg FA/day treatment arms. To ensure sufficient statistical 

power for regression analyses, an additional 123 PBMC samples were selected from participants 

in other treatment arms who had measures for all covariates of interest. All cross-sectional 

analyses for the current study used PBMC samples that were collected from these 317 

participants at baseline, prior to the provision of arsenic-removal water filters and nutritional 

supplements or a placebo (C) The second set of analyses for the current study used all available 

samples from the placebo group (n = 60). These samples were collected at baseline and at week 

12. Participants in the placebo group did not receive any nutritional interventions during the 

study period but, like all other FACT participants, received arsenic-removal water filters at 

baseline to be used during the study period and thereafter. Abbreviations used: FA, folic acid; 

FACT, Folic Acid and Creatine Trial; PBMC, peripheral blood mononuclear cell 
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ABSTRACT 

Arsenic is a human carcinogen which has also been associated with numerous non-cancer 

health outcomes. Based on our prior research, we were interested in genes involved in pathways 

implicated in arsenic toxicity, including arsenic metabolism, one-carbon metabolism, epigenetic 

regulation, DNA repair, and tumor suppression; thus we selected 47 relevant candidate genes. 

For many arsenic-related health outcomes, susceptibility differs by sex. There is also increasing 

evidence that arsenic induces epigenetic dysregulation in a sex-dependent manner. Whether or 

not arsenic also alters gene expression in a sex-dependent manner has not been confirmed in a 

large epidemiological study. We therefore examined sex-specific associations between baseline 

measures of creatinine-adjusted urinary arsenic (uAsCr) and gene-specific DNA methylation 

(whole blood, n = 400) and mRNA expression (peripheral blood mononuclear cells, n = 1799) 

for the 47 selected candidate genes among participants in the Bangladesh Vitamin E and 

Selenium Trial. DNA methylation and mRNA expression levels were measured using Illumina’s 

HumanMethylation450 BeadChip and HumanHT-12-v4 BeadChip kits, respectively. In linear 

regression analyses, which were adjusted for multiple comparisons using the Bonferroni 

correction, we observed that uAsCr was associated with methylation at five CpG sites within four 

of the candidate genes. Three of these CpG sites were differentially methylated by arsenic 

exposure among women only. In similar analyses, we observed that uAsCr was significantly 

associated with the expression of 18 candidate genes. Of these genes, six were differentially 

expressed by arsenic exposure among men only and five among women only. Our findings 

contribute to growing evidence that arsenic alters epigenetic modifications, such as DNA 

methylation, in a sex-dependent manner, and suggest that this may have functional 

consequences, such as alterations in gene expression. 
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INTRODUCTION 

Exposure to arsenic-contaminated drinking water is a global problem. In Bangladesh 

alone, more than 57 million individuals are exposed to arsenic concentrations exceeding the 

World Health Organization guideline of 10 µg/L [1]. Exposure to inorganic arsenic has been 

associated with both cancer and non-cancer outcomes, with susceptibility often differing by sex 

[2]. For example, men are more prone to developing arsenic-induced skin lesions and skin, liver, 

and bladder cancers, while women and girls may be more susceptible to arsenic-induced 

cardiovascular disease and developmental outcomes, respectively ([3-9] and reviewed in [2]). 

Although gender-based differences in co-exposures may explain some of the differences in 

susceptibility, animal studies have similarly demonstrated sex-dependent effects of arsenic [10, 

11], suggesting contributions from biological sex. While the mechanisms underlying these sex 

differences are likely multifactorial, there is evidence that arsenic induces epigenetic 

dysregulation, including alterations in DNA methylation and posttranslational histone 

modifications (PTHMs), and these effects may differ by sex [12-18]. Exposure to arsenic has 

also been shown to alter gene expression [19-22]. However, while one small human study (n = 

29) has observed dramatic sex differences in the effects of arsenic on gene expression [23], this 

has not been confirmed in a larger epidemiological study. 

The effects of arsenic on genome-wide DNA methylation and gene expression were 

previously investigated in participants from the Bangladesh Vitamin E and Selenium Trial 

(BEST) [24]. The original report evaluated all 485,577 CpG sites, representing >99% of RefSeq 

genes, on Illumina’s HumanMethylation450 platform, and differences between men and women 

were not examined. For the current study, we used a candidate gene approach and evaluated the 

relationships between arsenic exposure, gene-specific DNA methylation, and mRNA expression 
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in BEST study participants separately by sex. For our candidate genes, we selected a total of 47 

genes which are involved in arsenic metabolism, one-carbon metabolism (OCM), epigenetic 

regulation, DNA repair, and tumor suppression, since these pathways have been implicated in 

arsenic metabolism and toxicity [25-30]. Our approach for identifying candidate genes was two-

pronged: 1) we used the Comparative Toxicogenomics Database (CTD) [31] to identify genes 

involved in our pathways of interest that have previously been shown to be affected by arsenic 

exposure (32 genes) and 2) we selected additional genes in these same pathways that were not 

necessarily identified by the CTD as known targets of arsenic (15 genes). 

STUDY PARTICIPANTS AND METHODS 

 

Study Population 

For the current study, we used baseline-collected (i.e., pre-intervention) samples from 

1799 participants in the BEST study [32]. These participants were the first 1799 individuals 

enrolled into the study. Of these 1799 participants, 400 were randomly selected for DNA 

methylation measures for an epigenome-wide study, which has been published [24]. The BEST 

study is a 2x2 factorial randomized chemoprevention trial, which was designed to examine 

whether vitamin E and/or selenium supplementation prevent non-melanoma skin cancer risk in 

Bangladeshi adults with arsenicosis. Participants were eligible for the BEST study if they were 

between the ages of 25 and 65, had a permanent residence within the study area in central 

Bangladesh, exhibited manifest arsenical skin lesions, and had no prior history of cancer. 

Individuals who met these eligibility criteria (n = 7000) were enrolled between April 2006 and 

August 2009. 
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Urinary Arsenic 

Total urinary arsenic was measured in baseline-collected urine samples by graphite 

furnace atomic absorption spectrometry (AAnalyst 600 spectrometer; PerkinElmer, Norwalk, 

CT, USA) in the Trace Metals Core Lab at Columbia University [33]. The intra- and inter-assay 

CVs were 6.2% and 4.4%, respectively. Total urinary arsenic concentrations were adjusted for 

urinary creatinine, which was measured by a method based on the Jaffe method [34]. The intra- 

and inter-assay CVs for creatinine were 3.5% and 2.2%, respectively. 

Selection of Candidate Genes 

The 47 candidate genes selected for the current study are listed in Table 1. The CTD was 

used to identify genes in our pathways of interest that had previously been examined in relation 

to arsenic exposure. To identify all genes affected by arsenic exposure at the gene, mRNA, and 

protein level, we entered “arsenic” as our chemical of interest in the CTD Chemical-Gene 

Interaction Query. Of the genes identified as targets of arsenic, we then searched for those 

involved in the one-carbon metabolism pathway, arsenic metabolism, epigenetic regulation (with 

a particular focus on DNA methyltransferases and histone modifying enzymes), DNA repair, and 

tumor suppression/oncogenesis. The CTD is updated every month; we used the August 2015 

release. 

DNA Methylation 

DNeasy Blood kits (Qiagen, Valencia, CA, USA) were used to isolate DNA from whole 

blood. DNA was bisulfite-converted using the EZ DNA Methylation Kit (Zymo Research, 

Irvine, CA, USA), and 500 ng was used for measuring DNA methylation by Illumina’s 

HumanMethylation450 BeadChip kit (Illumina, San Diego, CA, USA). Quantile normalization 
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was applied to the methylation score (β), which is a continuous measure from 0 to 1 for each 

CpG site, with 0 representing no methylation and 1 representing complete methylation. Of the 

413 samples for which DNA methylation was measured, 13 were excluded for reasons that have 

been described previously [24]. β values with a P for detection > 0.05 were excluded. A logit-

transformation was applied to quantile-normalized β values, and ComBat software was used to 

adjust for potential batch effects [35]. 

Gene Expression 

As described previously [24], RNA was isolated from peripheral blood mononuclear 

cells, which had been stored at -80ºC in Buffer RLT, using the RNeasy Micro Kit from QIAGEN 

(Valencia, CA, USA). Illumina’s TotalPrep 96 RNA Amplification kit was used to synthesize 

cRNA from 250 ng RNA, and 750 ng of cRNA was used to measure gene expression via 

Illumina’s HumanHT-12-v4 BeadChip kit, which evaluates >30,000 genes. Gene expression data 

were available for 1799 participants, including the 400 participants for which there was also 

complete DNA methylation data. A log2-transformation was applied to quantile normalized 

mRNA expression values, and ComBat software was used to adjust for potential batch effects 

[35].  

Statistical Methods 

Separate linear regression models were used to examine associations between creatinine-

adjusted urinary arsenic (uAsCr), measured continuously, and the logit-transformed β for each 

CpG site or the log2-transformed expression value for each gene. A total of 1959 CpG sites and 

78 mRNA transcripts, representing the 47 candidate genes, were evaluated. Models were run in 

all participants, and were adjusted for age and sex. Analyses were also run separately by sex and 
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adjusted for age. Since arsenic was not associated with white blood cell type fractions [24], 

which were estimated using the method by Houseman et al. [36], we did not adjust for cell type 

distribution in our models. A Bonferroni correction was used to adjust for multiple comparisons, 

which was based on the number of probes representing each gene. 

RESULTS 

General characteristics of the study participants have been reported previously [24]. 

Participants were between 25 and 65 years old. 53% of the participants were male. The mean (± 

SD) uAsCr concentration was 302 ± 365 µg/g creatinine for the 1799 participants with gene 

expression measures and 302 ± 365 µg/g creatinine for the subset that also had DNA methylation 

measures. 

DNA Methylation 

Before correcting for multiple comparisons, a total of 178 CpG sites (out of 1959 CpG 

sites), representing 40 of the 47 candidate genes, were differentially methylated by arsenic 

exposure (P < 0.05), either in the whole sample or in men or women alone (Supplemental 

Material, Table S1). When restricting to sex-stratified analyses, a total of 146 CpG sites were 

differentially methylated by arsenic exposure; 51 sites were differentially methylated in men 

only, 94 in women only, and 1 site (cg03315649), located in a CpG island within the gene body 

of KDM4B, was differentially methylated in both men (t-statistic: -2.14, P = 0.033) and women 

(t-statistic: -3.01, P = 0.003).  
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Table 1. Candidate genes 

Pathway Gene Target of arsenic 

according to 

CTD? 

Additional reasons for inclusion 

Arsenic 

metabolism 

   

 AS3MT Unknown Evidence that arsenic inhibits its own methylation (PMIDs: 10409394, 24598884) 

Evidence that arsenic induces AS3MT expression in human PBMCs in vitro (PMID: 

24154821) 

One-carbon 

metabolism 

   

 AHCY* Yes  

 BHMT Yes  

 CBS* Yes  

 DHFR* Yes  

 GAMT*      Unknown Arsenic reduces hepatic creatine concentrations in mice (PMID: 25753946) 

 GNMT* Unknown  

 GSS* Yes  

 MAT1A Yes  

 MAT2A Yes  

 MAT2B Yes  

 MTHFD1 Unknown Arsenic alters MTHFD1 protein levels post-translationally (Patrick Stover, Cornell 

University, personal communication), but potential effects on DNA methylation and 

mRNA expression unknown 

 MTHFR Unknown  

 MTR* Unknown  

 MTRR Unknown  

 PEMT Unknown Evidence that choline is altered by arsenic in rodents (PMID: 24448970, PMID: 

19073202, 23085348) and potentially humans (PMID: 27052531) 
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Epigenetic 

regulation 

   

 DNMT1 Yes  

 DNMT3A Yes  

 DNMT3B Yes  

 DOT1L Unknown Related to 5-hmC, which is altered by arsenic in multiple tissues in rats (PMID: 

25256144) and is associated with 5-hmC in human WBCs (PMID: 26364164) 

 EHMT1 Yes  

 EHMT2 Yes  

 EZH2* Yes  

 HDAC4* Yes  

 HDAC5 Yes  

 KDM2B Yes Arsenic is positively associated with DNA methylation in the promoter region among 

men only (unpublished data). Arsenic is positively associated with its target, 

H3K36me2, in human PBMCs among men only (PMID: 26967670) 

 KDM4B Yes  

 KDM5B Unknown Altered by arsenic in mouse brain (PMID: 26193056) 

 MLL* Unknown Altered by arsenic in mouse brain (PMID: 26193056). Arsenic exposure is also 

associated with methylation of its target, H3K4, in human PBMCs (PMID: 23064002) 

and WBCs (PMID: 21385672)  

 NSD1 Unknown Arsenic alters methylation of its target, H3K36, in cultured A549 cells (PMID: 

18321869) and is associated with H3K36me2 in human PBMCs among men only 

(PMID: 26967670) 

 PRDM2* Yes  

 TET1 Unknown Arsenic alters its product (5-hmC) in multiple rat tissues (PMID: 25256144) and is 

associated with 5-hmC in human WBCs in a sex-dependent manner (PMID: 26364164)  

 TET2* Yes Arsenic alters its product (5-hmC) in multiple rat tissues (PMID: 25256144) and is 

associated with 5-hmC in human WBCs in a sex-dependent manner (PMID: 26364164) 

 TET3 Unknown Arsenic alters its product (5-hmC) in multiple rat tissues (PMID: 25256144) and is 

associated with 5-hmC in human WBCs in a sex-dependent manner (PMID: 26364164) 
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DNA repair 

 

   

 MSH2* Yes  

 OGG Yes  

 PARP1 Yes  

 PCNA Yes  

 POLB* Yes  

 XRCC1 Yes  

 XRCC2 Unknown  

 XRCC3* Yes  

 XRCC4 Yes  

 XRCC5* Yes  

 XRCC6* Unknown  

Tumor 

suppression 

   

 EGFR Yes  

 P53* Yes  

 

Abbreviations used: 5-hmC, 5-hydroxymethylcytosine; CTD, Comparative Toxicogenomics Database; H3K4, lysine 4 of histone H3; H3K36, 

lysine 36 of histone H3; H3K36me2, di-methylation at lysine 36 of histone H3; PBMC, peripheral blood mononuclear cell; WBC, white blood cell 

 

*In the current study, mRNA expression was found to be significantly associated with arsenic exposure in either men, women, or the whole 

sample, after adjusting for multiple comparisons 
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After adjusting for multiple comparisons using a Bonferroni correction (based on the 

number of probes per gene), arsenic exposure was associated with differential methylation of 5 

CpG sites located in 4 genes, either in the whole sample, or in men or women alone (Table 2, 

Figure 1). Differences by sex were observed for 3 of the 4 differentially methylated genes. 

Among women, but not men, arsenic exposure was inversely associated with methylation at a 

CpG site (cg02978542) within the transcription start site (TSS) of MTHFR. In contrast, among 

women, but not men, arsenic exposure was positively associated with methylation at a CpG site 

(cg05998850) located within the gene body of XRCC5. Among both men and women, arsenic 

exposure was negatively associated with methylation at a CpG site (cg03315649) located within 

the gene body of KDM4B. Arsenic exposure was also inversely associated with methylation 

levels at two CpG sites within PCNA. However, one site (cg09011324), located in the TSS of 

PCNA, was only differentially methylated among women, whereas the other site (cg22960971), 

located within the gene body, was differentially methylated among both men and women (Table 

1). Arsenic exposure was also positively associated with the methylation of two CpG sites within 

the gene body of AS3MT, although this was not statistically significant after adjusting for 

multiple comparisons (Supplemental Material, Table S1). 

mRNA Expression 

Before correcting for multiple comparisons, 22 of the 47 genes examined were found to 

be differentially expressed by arsenic exposure (P < 0.05), either in the whole sample or in men 

or women alone (Supplemental Material, Table S2). When restricting to sex-stratified 

analyses, 14 genes were significantly associated with arsenic exposure among men and 11 genes 

were significantly associated with arsenic exposure among women. Of these genes, only 6 were 
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significantly associated with arsenic exposure in both men and women: GSS, EZH2, MLL, 

POLB, PRDM2, and XRCC6. 

After adjusting for multiple comparisons, arsenic exposure was associated with 

differential expression of 18 genes (Table 3, Figure 1). Of these genes, 6 were differentially 

expressed among men only, and 5 among women only. There was also a suggestive inverse 

association between arsenic exposure and AS3MT expression among men (P = 0.051) (data not 

shown). 

Genes that were both differentially methylated and expressed by arsenic exposure 

After correcting for multiple comparisons, XRCC5 was the only gene for which both 

DNA methylation and gene expression were significantly associated with arsenic exposure. 

Among women, arsenic exposure was positively associated with methylation at a CpG site 

(cg05998850) within the gene body of XRCC5 (P = 0.002) and was also negatively associated 

with XRCC5 mRNA levels (P = 0.003) (Tables 1 and 2, Figure 1). 
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Table 2. Genes that were differentially methylated by arsenic exposure after adjusting for multiple comparisons, either in the whole 

sample, in men, or in women 

 

 

Abbreviations used: CpG, cytosine guanine dinucleotide; TSS200, within 200 basepairs of a transcription start site; 5’UTR, within the 5’ untranslated region; 

N_Shore, within North shore 
 

a
P cutoff is based on an alpha of 0.05, which was adjusted using the Bonferroni method to account for the number of probes  

representing the gene on the microarray 
b
t-statistic and corresponding P-value are from linear regression models. Whole sample analyses were adjusted for age and sex. Sex-stratified analyses were 

adjusted for age. 

*P value was statistically significant after adjusting for multiple comparisons, using the Bonferroni correction

 CpG Label CpG Location # 

Probes 

P 

Cutoff
a
 

Whole Sample  

(n = 400) 

Men 

(n = 212) 

Women 

(n = 188) 

     t-statistic
b
 P t-statistic

b
 P t-statistic

b
                                                                                                                         P 

One-Carbon 

Metabolism 

          

MTHFR cg02978542 1
st
Exon/TSS200/ 

5’UTR, Island 

24 0.002 -3.08 0.002 -0.76 0.446 -3.48 6.30 E-04* 

Epigenetic 

Regulation 

          

KDM4B cg03315649 Body, Island 

 

118 4.24 E-4 -3.67 2.80 E-04* -2.14 0.033 -3.01 0.003 

DNA  

Repair 

          

PCNA cg09011324 TSS200/5'UTR, 

Island 

15 0.003 -2.64 0.009 -0.14 0.890 -3.66 3.30 E-04* 

PCNA cg22960971 Body/N_Shore 

 

15 0.003 -3.49 5.30 E-04* -1.92 0.056 -2.98 0.003* 

XRCC5 cg05998850 Body 

 

20 0.003 1.12 0.265 -1.75 0.082 3.14 0.002* 
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Table 3. Genes that were differentially expressed by arsenic exposure after adjusting for multiple comparisons, either in the whole 

sample, in men, or in women 

 Probe Label  # 

Probes 

P 

Cutoff
a
 

Whole Sample  

(n = 1799) 

Men  

(n = 991) 

Women  

(n = 808) 

     β
b
 P β

b
 P β

b
 P 

One-carbon 

metabolism 

          

AHCY ILMN_1657862  1 0.050 2.62 E-05 0.110 4.27 E-05 0.036* 2.14 E-06 0.936 

CBS ILMN_1804735  1 0.050 2.28 E-05 0.035* 1.06 E-05 0.448 4.05 E-05 0.019* 

DHFR (variant 1) ILMN_1759872  2 0.025 6.59 E-05 0.008* 7.01 E-05 0.022* 6.19 E-05 0.133 

GAMT (variant 1) ILMN_1756469  3 0.017 -3.98 E-05 0.001* -2.37 E-05 0.133 -6.49 E-05 0.001* 

GAMT (variant 1) ILMN_1794595  3 0.017 -1.89 E-05 0.091 -9.50 E-07 0.947 -4.72 E-05 0.008* 

GNMT ILMN_1736238  1 0.050 3.62 E-06 0.578 -7.62 E-06 0.350 2.12 E-05 0.044* 

GSS ILMN_1683462  1 0.050 3.66 E-05 1.08 E-04* 4.04 E-05 8.64 E-04* 3.22 E-05 0.033* 

MTR ILMN_1670801  1 0.050 -2.81 E-05 0.022* -3.24 E-05 0.043* -2.17 E-05 0.262 

Epigenetic 

regulation 

          

EZH2 (variant 2) ILMN_1708105  3 0.017 4.09 E-05 1.46 E-05* 3.29 E-05 0.007* 5.18 E-05 5.28 E-04* 

EZH2 (variant 2) ILMN_2364529  3 0.017 3.58 E-05 1.30 E-04* 2.86 E-05 0.015* 4.53 E-05 0.003* 

EZH2 (variant 1) ILMN_1652913  3 0.017 3.17 E-05 0.003* 2.72 E-05 0.047 3.83 E-05 0.028 

HDAC4 ILMN_1764396  1 0.050 -2.32 E-05 0.071 -3.78 E-05 0.017* -8.31 E-07 0.969 

MLL ILMN_1668683  1 0.050 -6.59 E-05 6.80 E-08* -5.45 E-05 4.92 E-04* -8.13 E-05 2.86 E-05* 

PRDM2 (variant 2) ILMN_1652992  4 0.013 -2.03 E-05 0.002* -1.98 E-05 0.026 -2.07 E-05 0.038 

TET2 ILMN_1788818  1 0.050 2.18 E-05 0.008* -3.19 E-06 0.757 5.94 E-05 8.23 E-06* 

Tumor suppression           

TP53 ILMN_1779356  1 0.050 2.47E-05 0.075 4.93E-05 0.006* -9.68E-06 0.660 

DNA  

repair 

          

MSH2 ILMN_1737413  2 0.025 -2.42E-05 0.016* -2.05E-05 0.116 -3.08E-05 0.051 

POLB ILMN_1767894  1 0.050 5.01E-05 3.77 E-05* 3.85E-05 0.016* 6.99E-05 2.15 E-04* 

XRCC3 ILMN_1696266  1 0.050 9.88 E-06 0.420 3.13 E-05 0.047* -2.18 E-05 0.262 

XRCC5 ILMN_2105983  1 0.050 -2.84E-05 0.015* -9.92E-06 0.509 -5.47E-05 0.003* 

XRCC6 ILMN_1743097  2 0.025 -4.61E-05 1.96 E-04* -3.60E-05 0.023* -6.24E-05 0.002* 
 

aP cutoff is based on an alpha of 0.05, which was adjusted using the Bonferroni method to account for the number of probes  

representing the gene on the microarray 
bβ and corresponding P-value are from linear regression models. Whole sample analyses were adjusted for age and sex. Sex-stratified analyses were adjusted for age. 

*P value was statistically significant after adjusting for multiple comparisons, using the Bonferroni correction 
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A 

 

 

B 

 

 

 

Figure 1. Venn diagrams representing genes that were differentially methylated (A) or expressed 

(B) by arsenic exposure in males (blue) compared with females (pink). The intersections show 

genes that were differentially methylated or expressed in both males and females. Arrows 

indicate whether associations with urinary arsenic exposure were positive (↑) or negative (↓). 

Sample sizes for DNA methylation: 212 for men, 188 for women. Sample sizes for mRNA 

expression: 991 for men, 808 for women
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Comparison with previous findings 

Many, but not all, of our findings were consistent with previous studies (Tables 4 and 5). 

However, we also observed several novel associations between arsenic exposure and the 

methylation or expression of genes involved in the OCM pathway. For example, we observed a 

significant inverse association between arsenic exposure and the methylation of MTHFR, which 

was driven by women. Among women, arsenic exposure was also positively associated with the 

expression of GNMT and negatively associated with the expression of GAMT. 

 

Table 4. Comparison of DNA methylation findings with previous studies 

Differentially 

methylated genes 

Our findings Findings from previous studies 

One-carbon 

metabolism 

  

MTHFR Negatively associated with 

cg02978542 methylation in females 

No previous studies 

Epigenetic 

Regulation 

  

KDM4B Negatively associated with 

cg03315649 methylation in both 

males and females 

PMID: 25304211: Prenatal arsenic exposure 

positively associated with methylation of a 

different CpG site (cg13559217) in cord blood 

(males and females combined) 

DNA  

Repair 

  

PCNA Negative association with 

cg09011324 methylation in females 

 

Negative association with 

cg22960971 methylation in both 

males and females 

PMID: 12899209: Higher protein expression in skin 

tissue from individuals with worsening degrees of 

arsenicosis. (Proportion of males and females not 

specified). 
PMID: 15345372: Increased mRNA in livers of 

arsenic-exposed female Tg.AC mice 

PMID: 16507464: Increased mRNA in livers of 

adult male C3H mice exposed to arsenic in utero  

PMID: 16876216: Arsenic-induced increase in 

mRNA in arsenic-transformed rat liver epithelial 

cells (TRL1215) (sex unknown) 

XRCC5 Positive association with 

cg05998850 methylation in females 

PMID: 19818359: Increased protein expression in 

arsenic-exposed E7 immortalized human 

uroepithelial cells (sex unknown) 

 

Abbreviations used: CpG, Cytosine-guanine dinucleotide 
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Table 5. Comparison of mRNA expression findings with previous studies 

Differentially 

expressed genes 

Our findings Findings from previous studies 

One-Carbon 

Metabolism 

  

AHCY Positive association in males PMID: 18487201: Increased mRNA and protein 

expression in arsenic-exposed human prostate epithelial 

cell line 

CBS Positive association, only 

significant in females 

PMID: 25304211: Prenatal arsenic (maternal arsenic) 

exposure positively associated with cg11815682 methylation 

in newborn cord blood (males and females combined) 

PMID: 18487201: Increased mRNA expression in arsenic-

exposed human prostate epithelial cell line 

DHFR Positive association, only 

significant in males 

PMID: 25304211: Prenatal arsenic (maternal arsenic) 

exposure negatively associated with cg08244028 methylation 

in newborn cord blood (males and females combined) 

GAMT Negative association in 

females 

No previous studies 

GNMT Positive association in females No previous studies 

GSS Positive association in both 

males and females 

PMID: 18487201: Protein expression increased in arsenic-

exposed prostate epithelial cell line 

PMID: 12634122: mRNA expression decreased in 

arsenic-exposed human keratinocytes (male-derived) 

MTR Negative association, only 

significant in males 

PMID: 25697676: Increased mRNA in serum from arsenic-

exposed male rats 

Epigenetic 

Regulation 

  

EZH2 Positive association in both 

males and females (Variant 2, 

ILMN_1708105). 

Positive association in both 

males and females (Variant 2, 
ILMN_2364529) 

Positive association in both 

males and females (Variant 1, 

ILMN_1652913) 

PMID: 22426358: Increased protein expression in arsenic-

exposed C2C12 cells (immortalized mouse myoblast cells, 

female-derived) 

PMID: 22843710: Increased protein expression in BALB/c 

3T3 cells (mouse embryonic fibroblast cells, female-derived) 

HDAC4 Negative association, only 

significant in males 

PMID: 25304211: Prenatal arsenic exposure positively 

associated with methylation at five CpG sites (cg16202803, 

cg06107260, cg16360836, cg26673264, cg11707035) and 

negatively associated with mRNA expression in newborn 

cord blood (males and females combined) 

MLL Negative association in both 

males and females 

PMID: 26193056: Increased protein expression in male 

mouse dentate gyrus, decreased in female mouse dentate 

gyrus 

PRDM2 Negative association in both 

males and females (Variant 2, 

ILMN_1652992) 

PMID: 21291286: Higher methylation in promoter region in 

peripheral blood from individuals with arsenic-induced skin 

lesions (males and females combined) 
PMID: 26039340: Hypomethylation at promoter region in 

exfoliated bladder cells from arsenic-exposed adults 

(males and females combined) 

PMID: 12776498: Decreased mRNA in NB4 cells 

(female-derived) 

TET2 Positive association, driven by 

females 

PMID: 25304211: Prenatal arsenic exposure positively 

associated with cg09295382 methylation in newborn cord 
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blood (males and females combined) 

 

Tumor 

Suppression 

  

TP53 Positive association in males 

only 

PMID: 12899209: Higher protein expression in skin samples 

from individuals with worsening degrees of arsenicosis 

(proportion of males and females not specified) 
PMID: 19945496: Decreased expression in BEAS-2B cells 

(human bronchial epithelial cell line, male-derived) 
PMID: 21756780: Increased methylation in blood from those 

with more severe arsenicosis (sex of participants unspecified) 

PMID: 23174854: Increased expression in arsenic-exposed 

keratinocytes (HaCaT, male-derived) 

PMID: 16251483: Increased methylation in blood from those 

exposed to arsenic and in those with arsenic-induced skin 

cancer vs. skin cancer not caused by arsenic exposure (males 

and females combined) 
PMID: 11813266: Increased protein expression in human 

lymphoblastoid cell lines (male-derived) 

PMID: 11507245: Increased protein expression in human 

lymphoblastoid cell lines derived from patients with ataxia 

telangiectasia (sex unspecified) 

DNA  

Repair 

  

MSH2 Negative association in both 

males and females 

PMID: 12634122: Decreased mRNA in human keratinocytes 

(male-derived) 

PMID: 17450239: Non-significant decrease in mRNA in skin 

tissue from those with high arsenic exposure compared with 

controls (proportion of males and females not specified) 

POLB Positive association in both 

males and females 

Snow et al.
a
: Increased protein expression in HaCaT cells 

(male-derived) and GM847 cells (immortalized human 

fibroblasts, sex unknown) 

PMID: 21776218: Increased mRNA in AC16 cells 

(cardiomyocytes, female-derived) 

PMID: 21332098: Negative association with mRNA and 

protein expression in blood from healthy individuals (males 

and females combined, proportions not specified) 

XRCC3 Positive association in males PMID: 17530438: Increased in arsenic-exposed U87MG 

cells (human glioma cell line, male-derived) 

XRCC5 Negative association, driven 

by females 

PMID: 19818359: Increased protein expression in bladder 

epithelial cells (sex unspecified) 

XRCC6 Negative association in males 

and females (ILMN_1743097) 

PMID: 16014739: Decreased expression in mouse 

embryonic fibroblasts (male- and female-derived) 

PMID: 12016162: Increased expression in human fibroblasts 

(male-derived) 

 
a
Snow ET, Schuliga M, Chouchane S, Hu Y (2001). Sub-toxic arsenite induces a multi-component protective 

response against oxidative stress in human cells in Arsenic Exposure and Health Effects IV. Chappell WR, 

Abernathy CO, Calderon RL (Eds.). New York, New York: Elsevier Science Ltd. 
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DISCUSSION 

We observed that arsenic exposure was associated with the methylation and/or expression 

of several candidate genes involved in OCM, DNA repair, epigenetic regulation, and tumor 

suppression/oncogenesis. These associations often differed between men and women, consistent 

with previous reports which have shown that arsenic alters epigenetic modifications, including 

DNA methylation and PTHMs, in a sex-dependent manner [12-18]. 

Among women, arsenic exposure was negatively associated with methylation at a CpG 

site (cg02978542) within the TSS of MTHFR, an enzyme involved in folate metabolism. 

MTHFR methylation and expression have not previously been examined in relation to arsenic 

exposure. Given the findings for MTHFR methylation, we would have expected arsenic exposure 

to be associated with increased MTHFR expression, which would likely be protective, as folate is 

a methyl donor which facilitates arsenic metabolism and excretion [37, 38], and folate deficiency 

is a risk factor for arsenic-induced skin lesions [39]. However, we did not observe significant 

associations between arsenic exposure and MTHFR expression in this study. 

After correcting for multiple comparisons, KDM4B was differentially methylated by 

arsenic exposure in the whole study sample, and in the same direction for both men and women. 

KDM4B codes for a histone demethylase, which removes a single methyl group from the tri-

methylated forms of lysines 9 and 36 on histone H3 (H3K9me3 and H3K36me3, respectively) 

[40]; this leads to increased levels of their di-methyl forms (H3K9me2 and H3K36me2, 

respectively). We have previously observed that arsenic exposure is associated with higher 

global levels of H3K9me2 among both men and women [13] and with higher global levels of 

H3K36me2 among men [18]. Thus, arsenic-induced alterations in histone demethylases, such as 

KDM4B, may explain some of the observed effects of arsenic on PTHMs. 
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After correcting for multiple comparisons, XRCC5 was the only gene that was both 

differentially methylated and differentially expressed by arsenic exposure. XRCC5 assists with 

non-homologous end joining (NHEJ), a mechanism that is important for both DNA repair and 

V(D)J recombination [41]. Among women, arsenic was positively associated with methylation at 

a CpG site (cg05998850) within the gene body of XRCC5 and was negatively associated with 

XRCC5 mRNA expression. Recent evidence suggests that methylation at certain intragenic CpG 

sites is more highly correlated with mRNA levels than is methylation within promoter regions 

[42]. Therefore, it is possible that methylation at cg05998850 regulates XRCC5 expression, 

which should be explored in future studies. In contrast with our findings, a previous in vitro 

study by Chen et al. observed higher XRCC5 protein expression in arsenic-exposed bladder 

epithelial cells [43]. It is possible that tissue and/or sex differences may have contributed to this 

discrepancy, though it is not clear from what sex the cell line used by Chen et al. was derived. 

Several other genes involved in DNA repair were differentially expressed by arsenic 

exposure. Consistent with previous in vitro studies [44-47], arsenic exposure was inversely 

associated with expression levels of XRCC5, XRCC6, and MSH2, which are enzymes involved in 

NHEJ and mismatch repair, respectively [41, 48]. Inhibition of DNA repair is one hypothesized 

mechanism of arsenic carcinogenicity; in particular, arsenic has been shown to inhibit the 

activity of DNA repair enzymes which contain zinc finger domains, such as PARP-1 [49]. Our 

study, along with several others [44-47], suggests that arsenic may also reduce the expression of 

key enzymes involved in DNA repair pathways, including NHEJ and mismatch repair. However, 

three of the candidate genes involved in DNA repair or damage responses did not follow this 

trend. Consistent with previous studies [50-52], we observed that arsenic exposure was positively 

associated with the expression of POLB, a DNA polymerase involved in base excision repair 
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[53], and also with XRCC3, which is involved in homologous recombination [41], although only 

among men. Furthermore, we did not observe associations between arsenic exposure and the 

expression of PCNA, a DNA clamp which is involved in both normal DNA replication and the 

DNA damage response [54]. 

Although the role of OCM in facilitating arsenic metabolism has been well-studied [25], 

the effects of arsenic on the OCM pathway are less well understood. However, two 

metabolomics studies in mice have observed that several metabolites involved in the OCM 

pathway, including betaine, choline, homocysteine, and methionine, are altered by arsenic [55, 

56]. Furthermore, a previous in vitro study, which utilized a normal human prostate epithelial 

cell line, observed that arsenic altered the expression of several genes involved in the OCM 

pathway [57]. In particular, they found that genes involved in the synthesis of glutathione, the 

primary endogenous antioxidant, were upregulated in response to arsenic exposure [57]. 

Similarly, we observed that arsenic exposure was positively associated with the expression of 

two genes involved in glutathione synthesis: CBS among women and GSS among both men and 

women. Several other genes in the OCM pathway were also differentially expressed by arsenic 

exposure, including AHCY, DHFR, GAMT, GNMT, and MTR, and many of these associations 

differed by sex (Figure 2). The effects of arsenic on GAMT, an enzyme involved in creatine 

synthesis [58], had not been examined previously. However, arsenic has been shown to reduce 

hepatic mitochondrial creatine concentrations in mice [56]. Consistent with this, we observed 

that arsenic exposure was negatively associated with GAMT expression, but only among women. 

We also observed a positive association between arsenic exposure and GNMT expression among 

women, but not men. GNMT codes for an enzyme which regulates concentrations of S-

adenosylmethionine (SAM), the universal methyl donor [59]. Arsenic reduces SAM
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Figure 2. One-carbon metabolism genes that were differentially expressed by arsenic exposure, after adjusting for multiple comparisons. Candidate genes are 

italicized. Positive associations between arsenic exposure and mRNA expression were observed for genes indicated in red. Negative associations between arsenic 

exposure and mRNA expression were observed for genes indicated in blue. Significant associations were not observed between arsenic exposure and mRNA 

expression for genes indicated in gray. (♂*): statistically significant among men only. (♀*): statistically significant among women only. Abbreviations used: 5-

mTHF, 5-methyl-tetrahydrofolate; 5,10-mTHF, 5-methylene-tetrahydrofolate; AHCY, S-adenosylhomocysteine hydrolase; AS3MT, arsenic (+3 oxidation state) 

methyltransferase; BHMT, betaine homocysteine methyltransferase; CBS, cystathionine-β-synthase; DHFR, dihydrofolate reductase; DMA, dimethylarsinic 

acid; GAA, guanidinoacetate; GAMT, guanidinoacetate N-methyltransferase; GNMT, glycine N-methyltransferase; GSS, glutathione synthetase; InAs, inorganic 

arsenic; MAT1A, methionine adenosyltransferase 1 (hepatic) MAT2A, methionine adenosyltransferase 2 subunit alpha (non-hepatic); MAT2B, methionine 

adenosyltransferase 2 subunit beta (non-hepatic); MMA, monomethylarsonic acid; MTHFD1, C-1-tetrahydrofolate synthase; MTHFR, methylene 

tetrahydrofolate reductase; MTR, methionine synthase; MTRR, methionine synthase reductase; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PEMT, 

phosphatidylethanolamine N-methyltransferase; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; THF, tetrahydrofolate 
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concentrations in vitro, and it has been hypothesized that this is due to increased consumption of 

SAM via arsenic metabolism, which involves two SAM-dependent methylation reactions [60]. 

However, arsenic metabolism has been estimated to consume very little SAM compared with 

other methylation reactions [25]. In contrast, the non-essential methylation of glycine to 

sarcosine by GNMT can have large impacts on the SAM pool [59]. Thus, arsenic-induced 

increases in GNMT expression and glutathione synthesis may be alternative mechanisms by 

which arsenic depletes SAM concentrations.  

We also observed that arsenic exposure was associated with the expression of several 

genes involved in epigenetic regulation, including histone methyltransferases EZH2, MLL, and 

PRDM2; histone deacetylase HDAC4; and TET2, one of the three enzymes that catalyzes the 

conversion of 5-methylcytosine to 5-hydoxymethylcytosine [61]. Arsenic exposure was 

positively associated with TET2 expression among women, but not men. Interestingly, we have 

previously observed sex-dependent associations between arsenic and 5-hydroxymethylcytosine 

[17]. Arsenic-induced alterations in TET2 expression may be one mechanism mediating this.  

Of the two candidate genes involved in either tumor suppression or oncogenesis, only 

TP53 was differentially expressed by arsenic exposure. Among men, but not women, arsenic was 

positively associated with TP53 expression. Several previous studies, including two studies 

which utilized male-derived cell lines, have similarly observed that TP53 expression is higher 

after arsenic exposure [62-65]. This is consistent with the fact that TP53 is induced by cellular 

stressors [66].  

While not statistically significant, arsenic exposure was also associated with differential 

methylation of several CpG sites within AS3MT and with lower AS3MT expression among men. 

AS3MT codes for the arsenic (+3 oxidation state) methyltransferase, which catalyzes both of the 
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methylation reactions involved in arsenic metabolism (reviewed in [67]). On average, men have 

a lower arsenic methylation capacity compared with women [68]. Although this has largely been 

attributed to sex differences in the OCM pathway [68], arsenic-induced reductions in AS3MT 

expression may be another contributing factor. However, it is important to note that our findings 

contrasted with an in vitro study, which observed that arsenic induces AS3MT expression in 

human PBMCs, although the sex of the cell donor was not specified [69]. 

The majority of genes that were differentially expressed by arsenic exposure were not 

differentially methylated. There are likely several explanations for this. First, given the smaller 

sample size for the methylation analyses, we had reduced statistical power to detect significant 

associations, particularly in sex-stratified analyses. Another possible contributing factor is the 

conservative nature of the Bonferroni correction. Since the average number of probes per gene is 

much larger for the Infinium HumanMethylation450 array compared with the HumanHT-12-v4 

array, the corrected P-value thresholds used for the methylation analyses are much smaller than 

those used for the expression analyses. Furthermore, there may be additional CpG sites which are 

important for regulating gene expression that were not represented on the array. Finally, mRNA 

expression is regulated by additional mechanisms, including PTHMs and microRNAs, which are 

also altered by arsenic exposure [13, 18, 70]. Thus, the expression of some of our candidate 

genes may have been altered via these other epigenetic mechanisms. 

Although our study had many strengths, including a large sample size, sex-stratified 

analyses, DNA methylation and mRNA expression data, and a wide range of arsenic exposures, 

there were several important limitations. First, the study population consisted of individuals with 

arsenicosis. Therefore, our findings may not be generalizable to healthy individuals. Another 

important limitation is that we did not have protein expression data. Some genes, such as 
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MTHFD1, which is involved in the OCM pathway, are altered by arsenic post-translationally 

(Patrick Stover, Cornell University, Personal Communication), which could not be examined in 

our study.  

Although the use of blood-derived DNA and RNA may not be representative of other 

tissue types, arsenic distributes to PBMC progenitors and influences their function. For example, 

aquaglyceroporin 9, an arsenic transporter, is highly expressed in lymphocytes, and arsenic 

trioxide is used as a chemotherapeutic for acute promyelocytic leukemia [71]. Furthermore, 

blood DNA methylation has been used successfully as a biomarker of skin lesion risk [39], and 

many of our findings paralleled previous studies which had access to other target tissues, such as 

skin [46]. Therefore, peripheral blood appears to be an appropriate target tissue for this 

population.  

Since we used a candidate gene approach, other important genes that may be altered by 

arsenic exposure were not assessed. However, a major strength of using a candidate gene 

approach is that it is hypothesis-driven. Additionally, by using this approach we substantially 

increased our statistical power, which allowed us to identify several novel targets of arsenic 

exposure and potential sex differences, which had not previously been examined in a large 

human study.  

CONCLUSIONS 

Previous studies have observed sex-dependent effects of arsenic on epigenetic 

modifications, including alterations in DNA methylation and PTHMs [12-18]. This study 

provides evidence that arsenic may also induce functional changes, such as alterations in mRNA 

expression, differentially by sex. In particular, we observed that arsenic was associated with the 
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expression of genes involved in the OCM pathway, epigenetic regulation, DNA repair, and 

tumor suppression. Dysregulation of these pathways has been implicated in arsenic toxicity. 

Therefore, sex-dependent perturbations in these pathways may contribute to some of the 

observed sex differences in susceptibility to arsenic toxicity. However, additional studies will be 

needed to determine if the alterations in DNA methylation and gene expression observed in this 

study translate to increased risks of developing arsenic-related health outcomes. 
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CHAPTER SIX SUPPLEMENTAL MATERIAL 

Table S1. Genes that were differentially methylated by arsenic exposure before adjusting for 

multiple comparisons (P < 0.05), either in the whole sample, in men, or in women 

    Whole Sample  

(n = 400) 

Men  

(n = 212) 

Women  

(n = 188 ) 

Gene CpG Label # 

Probes 

P Cutoffa t- 

statisticb 

P t-

statisticb 

P t- 

statisticb 

P 

Arsenic 

metabolism 

         

AS3MT cg15744005 13 3.85 E-03 1.99 0.047* 1.85 0.065 1.06 0.290 

AS3MT cg26626287 13 3.85 E-03 2.75 0.006*  1.56 0.121  2.25 0.026* 

One-carbon 

metabolism 

         

AHCY cg07721779 27 1.85 E-03 -2.09 0.037* -0.82 0.412 -2.13 0.035* 

AHCY cg23636941 27 1.85 E-03 1.59 0.111  2.04 0.043*  0.33 0.744 

CBS cg06118533 44 1.14 E-03 2.06 0.040* 1.32 0.188  1.58 0.115 

CBS cg09128751 44 1.14 E-03 -1.20 0.230  0.39 0.699  -1.98 0.049 

CBS cg11815682 44 1.14 E-03 2.31 0.021*  1.39 0.167  1.96 0.051 

CBS cg21006325 44 1.14 E-03 2.01 0.046*  1.23 0.219  1.58 0.116 

CBS cg22633722 44 1.14 E-03 2.11 0.035*  2.52 0.012*  0.61 0.543 

DHFR cg18200270 17 2.94 E-03 -2.02 0.044*  -0.01 0.991  -2.72 0.007* 

GAMT cg09507386 15 3.33 E-03 -1.84 0.066  -2.59 0.010*  -0.20 0.845 

GAMT cg23191024 15 3.33 E-03  1.05 0.293  2.14 0.034*  -0.63 0.530 

GNMT cg07604616 36 1.39 E-03 -1.79 0.075  -0.13 0.899  -2.34 0.020* 

GNMT cg10056627 36 1.39 E-03 2.05 0.041*  0.95 0.345  1.97 4.98 E-02* 

GSS cg13607138 13 3.85 E-03  2.32 0.021*  1.89 0.060  1.42 0.156 

GSS cg00352780 13 3.85 E-03 1.33 0.185 2.30 0.023*  -0.22 0.825 

MAT1A cg07959747 8 6.25 E-03  -1.80 0.073  -2.14 0.033*  -0.54 0.589 

MAT1A cg09936400 8 6.25 E-03  1.83 0.067  0.35 0.726  2.19 0.030* 

MAT2B cg01290068 23 2.17 E-03  0.92 0.359  1.99 0.048*  -0.60 0.546 

MAT2B cg17334359 23 2.17 E-03  -2.45 0.015*  -2.22 0.028*  -1.34 0.182 

MAT2B cg19597031 23 2.17 E-03  -1.82 0.070  0.03 0.977  -2.66 0.008* 

MTHFD1 cg05143420 21 2.38 E-03  2.79 0.005*  1.24 0.215  2.59 0.010* 

MTHFR cg02978542 24 2.08 E-03  -3.08 0.002*  -0.76 0.446  -3.48 6.30 E-04* 

MTHFR cg17514528 24 2.08 E-03 -2.11 0.035 -1.19 0.237 -1.72 0.088 

MTHFR cg18276943 24 2.08 E-03  1.23 0.219  2.05 0.042*  -0.22 0.823 

MTR cg02901985 22 2.27 E-03  -1.15 0.250  1.01 0.315  -2.34 0.021* 

MTR cg17038444 22 2.27 E-03  1.91 0.056  0.30 0.761  2.18 0.031* 
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    Whole Sample  

(n = 400) 

Men  

(n = 212) 

Women  

(n = 188 ) 

Gene CpG Label # 

Probes 

P Cutoffa t- 

statisticb 

P t-

statisticb 

P t- 

statisticb 

P 

One-carbon 

metabolism 

(cont.) 

         

MTR cg25552893 22 2.27 E-03 2.66 0.008*  1.73 0.085  2.06 0.040* 

PEMT cg14265254 46 1.09 E-03  0.12 0.903  1.97 4.99 E-02*  -1.53 0.128 

PEMT cg15627593 46 1.09 E-03  -2.49 0.013*  -0.63 0.528  -2.73 0.007 

PEMT cg21680729 46 1.09 E-03  -1.90 0.058  -2.12 0.035*  -0.65 0.518 

PEMT cg23714707 46 1.09 E-03 2.66 0.008*  1.80 0.074  1.91 0.058 

PEMT cg26177311 46 1.09 E-03  1.97 0.049*  1.50 0.135  1.31 0.193 

PEMT cg27291501 46 1.09 E-03  -1.15 0.250  1.27 0.205  -2.50 0.013 

Epigenetic 

regulation 

         

DNMT1 cg02762710 22 2.27 E-03  1.67 0.095  0.06 0.955  2.13 0.035* 

DNMT3A cg08316074 79 6.33 E-04  2.75 0.006*  1.41 0.161  2.37 0.019* 

DNMT3A cg10525105 79 6.33 E-04 0.94 0.346  -1.18 0.239  2.38 0.018* 

DNMT3A cg11354105 79 6.33 E-04  1.58 0.115  0.10 0.923  2.16 0.032* 

DNMT3A cg23903708 79 6.33 E-04  -2.38 0.018*  -2.70 0.008*  -0.76 0.449 

DNMT3B cg22052056 20 2.50 E-03  -2.36 0.019*  -0.72 0.475  -2.61 0.010* 

DOT1L cg03336268 53 9.40 E-04  1.31 0.191  2.06 0.041*  -0.06 0.953 

DOT1L cg04173586 53 9.40 E-04  -2.87 0.004*  -1.67 0.096  -2.37  0.019* 

DOT1L cg04248042 53 9.40 E-04  -1.20 0.231  0.46 0.645  -1.98 4.96 E-02* 

EHMT1 cg01219549 81 6.20 E-04 2.23 0.026*  -0.06 0.949  3.09 0.002* 

EHMT1 cg10615711 81 6.20 E-04 -0.21 0.833  -2.29 0.023*  1.81 0.072 

EHMT1 cg13434216 81 6.20 E-04 -2.43 0.016*  -1.58 0.116  -1.83 0.069 

EHMT1 cg13555335 81 6.20 E-04 -1.27 0.206  -2.57 0.011  0.56 0.578 

EHMT1 cg13791668 81 6.20 E-04 1.45 0.149  -0.22 0.823  2.22 0.027* 

EHMT1 cg13922757 81 6.20 E-04 -2.63 0.009*  -0.96 0.336  -2.67 0.008* 

EHMT1 cg14156842 81 6.20 E-04 1.31 0.191  -0.24 0.810  1.98 0.049* 

EHMT1 cg14459021 81 6.20 E-04 2.22 0.027*  2.01 0.046*  1.17 0.244 

EHMT1 cg14469972 81 6.20 E-04 1.43 0.153  0.02 0.986  2.02 0.045* 

EHMT1 cg17942750 81 6.20 E-04 2.15 0.032*  1.18 0.240  1.80 0.074 

EHMT1 cg18819574 81 6.20 E-04 1.15 0.249  -0.51 0.613  2.04 0.043* 

EHMT2 cg01168115 177 2.80 E-04 2.56 0.011*  1.94 0.054  1.69 0.093 

EHMT2 cg02760218 177 2.80 E-04 2.35 0.019*  0.77 0.442  2.63 0.009* 
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    Whole Sample  

(n = 400) 

Men  

(n = 212) 

Women  

(n = 188 ) 

Gene CpG Label # 

Probes 

P Cutoffa t- 

statisticb 

P t-

statisticb 

P t- 

statisticb 

P 

Epigenetic 

regulation 

(cont.) 

         

EHMT2 cg06824988 177 2.80 E-04 2.03 0.043*  1.27 0.205  1.55 0.123 

EHMT2 cg07829740 177 2.80 E-04 2.79 0.005*  2.06 0.041*  1.85 0.066 

EHMT2 cg09277816 177 2.80 E-04 -1.26 0.209  0.62 0.535  -2.28 0.024* 

EHMT2 cg13613346 177 2.80 E-04 -2.04 0.042*  -2.11 0.036*  -0.91 0.363 

EHMT2 cg19577206 177 2.80 E-04 -1.86 0.064  -2.81 0.006  0.05 0.961 

EHMT2 cg21141346 177 2.80 E-04 1.67 0.096  -0.45 0.652  2.71 0.007* 

EHMT2 cg21252609 177 2.80 E-04 1.24 0.215  2.02 0.044  -0.08 0.934 

EHMT2 cg21786114 177 2.80 E-04 -2.04 0.042*  -0.47 0.638  -2.27 0.024* 

EHMT2 cg22397673 177 2.80 E-04 1.54 0.125  -0.27 0.788  2.36 0.019 

EHMT2 cg22706070 177 2.80 E-04 2.25 0.025*  2.22 0.027*  0.98 0.327 

EHMT2 cg24899451 177 2.80 E-04 0.74 0.457  2.11 0.036* -0.99 0.323 

EHMT2 cg25633383 177 2.80 E-04 2.10 0.036*  2.34 0.020*  0.83 0.409 

EHMT2 cg25644015 177 2.80 E-04 2.09 0.037*  1.71 0.089  1.32 0.190 

HDAC4 cg00116699 427 1.20 E-04 -1.85 0.065  -2.05 0.042*  -0.60 0.552 

HDAC4 cg00731459 427 1.20 E-04 2.11 0.035*  2.55 0.011*  0.50 0.619 

HDAC4 cg01114124 427 1.20 E-04 -1.38 0.170  -2.24 0.026*  0.09 0.930 

HDAC4 cg01786275 427 1.20 E-04 1.48 0.140  0.11 0.912  2.05 0.042* 

HDAC4 cg01790646 427 1.20 E-04 -0.78 0.436  1.26 0.209  -2.23 0.027* 

HDAC4 cg01974660 427 1.20 E-04 -0.86 0.391  1.17 0.242  -2.22 0.028* 

HDAC4 cg03475776 427 1.20 E-04 -1.36 0.175  0.95 0.341  -2.78 0.006* 

HDAC4 cg04346861 427 1.20 E-04 2.29 0.023*  0.91 0.365  2.22 0.027* 

HDAC4 cg04521026 427 1.20 E-04 -2.55 0.011*  -1.33 0.185  -2.23 0.027* 

HDAC4 cg05114739 427 1.20 E-04 2.20 0.028*  1.93 0.055  1.18 0.238 

HDAC4 cg05903736 427 1.20 E-04 -2.06 0.040*  -0.70 0.484  -2.16 0.032* 

HDAC4 cg06223736 427 1.20 E-04 -1.99 0.047* -0.65 0.519  -2.10 0.037* 

HDAC4 cg06533788 427 1.20 E-04 1.42 0.155  -0.29 0.769  2.26 0.025* 

HDAC4 cg06855182 427 1.20 E-04 1.48 0.139  -0.31 0.760  2.38 0.018* 

HDAC4 cg07150777 427 1.20 E-04 2.22 0.027*  0.23 0.816 3.04 0.003* 

HDAC4 cg07215298 427 1.20 E-04 -3.78 1.8 E-04* -3.62 3.7 E-04* -1.81 0.072 

HDAC4 cg07554496 427 1.20 E-04 2.10 0.036*  0.61 0.541  2.31 0.022* 
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    Whole Sample  

(n = 400) 

Men  

(n = 212) 

Women  

(n = 188 ) 

Gene CpG Label # 

Probes 

P Cutoffa t- 

statisticb 

P t-

statisticb 

P t- 

statisticb 

P 

Epigenetic 

regulation 

(cont.) 

         

HDAC4 cg07673080 427 1.20 E-04 1.99 0.048*  2.84 0.005*  0.18 0.857 

HDAC4 cg08107308 427 1.20 E-04 -2.59 0.010*  -1.67 0.097  -1.97 0.050 

HDAC4 cg09234543 427 1.20 E-04 1.61 0.108  -0.32 0.746  2.55 0.012* 

HDAC4 cg09669931 427 1.20 E-04 2.79 0.006*  1.12 0.265  2.86 0.005* 

HDAC4 cg09799039 427 1.20 E-04 2.72 0.007*  2.15 0.033*  1.70 0.090 

HDAC4 cg10045864 427 1.20 E-04 -2.20 0.028*  -1.76 0.080  -1.32 0.187 

HDAC4 cg10546410 427 1.20 E-04 1.34 0.182  2.00 0.047*  0.09 0.928 

HDAC4 cg10639368   427 1.20 E-04 2.03 0.043*  3.18 0.002*  -0.02 0.981 

HDAC4 cg10973720 427 1.20 E-04 0.95 0.344  -1.09 0.276  2.46 0.015* 

HDAC4 cg11349429 427 1.20 E-04 1.21 0.227  -0.68 0.496  2.24 0.026* 

HDAC4 cg11534215 427 1.20 E-04 1.08 0.281  -1.13 0.260*  2.51 0.013* 

HDAC4 cg12793681 427 1.20 E-04 2.18 0.030*  1.19 0.234  1.88 0.062 

HDAC4 cg13278833 427 1.20 E-04 -2.12 0.035*  -0.81 0.419  -2.10 0.037* 

HDAC4 cg14780600 427 1.20 E-04 1.08 0.281  -0.77 0.444  2.28 0.024* 

HDAC4 cg15142485 427 1.20 E-04 -0.65 0.515  1.93 0.055  -2.72 0.007* 

HDAC4 cg15929228 427 1.20 E-04 1.52 0.130  2.13 0.034*  0.18 0.854 

HDAC4 cg16325984 427 1.20 E-04 1.87 0.063  0.35 0.724  2.22 0.028* 

HDAC4 cg16468346 427 1.20 E-04 -2.02 0.044*  -2.86 0.005*  -0.10 0.924 

HDAC4 cg17156828 427 1.20 E-04 1.37 0.172  -0.75 0.452  2.55 0.012* 

HDAC4 cg17285931 427 1.20 E-04 -2.07 0.039*  -1.49 0.137  -1.42 0.157 

HDAC4 cg19367293 427 1.20 E-04 2.00 0.046*  1.29 0.200  1.55 0.123 

HDAC4 cg20854286 427 1.20 E-04 1.10 0.311  -1.15 0.251  2.29 0.023* 

HDAC4 cg20859099 427 1.20 E-04 2.17 0.031*  0.66 0.507  2.31 0.022* 

HDAC4 cg21190228 427 1.20 E-04 -2.18 0.029*  -0.75 0.452  -2.26 0.025* 

HDAC4 cg23870168 427 1.20 E-04 1.69 0.093  2.07 0.040*  0.33 0.740 

HDAC4 cg25236416 427 1.20 E-04 2.79 0.006*  1.43 0.153  2.39 0.018* 

HDAC4 cg25521439 427 1.20 E-04 -1.32 0.189  0.93 0.354  -2.68 0.008* 

HDAC4 cg26673264 427 1.20 E-04 -2.24 0.025*  -0.80 0.425  -2.25 0.026* 

HDAC4 cg26913798 427 1.20 E-04 1.97 4.98 E-02*  1.41 0.161  1.37 0.174 

HDAC4 cg26975040 427 1.20 E-04 -1.23 0.218  0.46 0.647  -2.00 0.046* 
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    Whole Sample  

(n = 400) 

Men  

(n = 212) 

Women  

(n = 188 ) 

Gene CpG Label # 

Probes 

P Cutoffa t- 

statisticb 

P t-

statisticb 

P t- 

statisticb 

P 

Epigenetic 

regulation 

(cont.) 

         

HDAC4 cg27074582 427 1.20 E-04 -0.97 0.335  1.11 0.269  -2.45 0.015* 

HDAC4 cg27144223 427 1.20 E-04 -1.87 0.063  -0.18 0.856  -2.53 0.012* 

HDAC5 cg08531489 22 2.27 E-03 -1.52 0.128  0.45 0.650  -2.44 0.016 

HDAC5 cg11049075 22 2.27 E-03 -0.90 0.368  0.87 0.384  -2.20 0.029* 

HDAC5 cg25334369 22 2.27 E-03  1.37 0.171  2.03 0.043*  -0.02 0.981 

KDM2B cg04682193 84 6.00 E-04 -1.98 0.048*  -0.98 0.329  -1.75 0.082 

KDM2B cg09411874 84 6.00 E-04 1.98 0.048*  1.53 0.129  1.24 0.218 

KDM2B cg10507156 84 6.00 E-04 1.58 0.116  -0.18 0.858  2.31 0.022* 

KDM2B cg16655291 84 6.00 E-04 2.25 0.025* 1.28 0.204  1.75 0.082 

KDM2B cg23877401 84 6.00 E-04 -2.57 0.011*  -0.74 0.460  -2.79 0.006* 

KDM2B cg26509318 84 6.00 E-04 -1.34 0.182  0.41 0.683  -2.07 0.040* 

KDM2B cg26995224 84 6.00 E-04 2.17 0.031*  1.81 0.072  1.29 0.200 

KDM4B cg02302043   118 4.20 E-04  -1.32 0.187  -2.15 0.033*  0.19 0.847 

KDM4B cg03315649 118 4.20 E-04 -3.67 2.8 E-04* -2.14 0.033*  -3.01 0.003* 

KDM4B cg05877783 118 4.20 E-04 -1.07 0.284  -2.15 0.032*  0.64 0.520 

KDM4B cg09527670 118 4.20 E-04 2.03 0.043*  1.62 0.107  1.28 0.203 

KDM4B cg11645724 118 4.20 E-04 -2.08 0.038*  -1.58 0.116  -1.35 0.178 

KDM4B cg18362538 118 4.20 E-04 -1.22 0.224  -2.23 0.027*  0.48 0.634 

KDM4B cg20347343 118 4.20 E-04 1.18 0.238  2.31 0.022*  -0.53 0.595 

KDM4B cg22960833 118 4.20 E-04 -1.10 0.270  -2.19 0.030*  0.52 0.604 

MLL cg02871053 18 2.78 E-03 -2.00 0.047*  -1.59 0.113  -1.22 0.226 

NSD1 cg10821304 28 1.79 E-03 -1.80 0.073  -2.14 0.033  -0.46 0.649 

NSD1 cg17493885 28 1.79 E-03 1.68 0.094  0.07 0.948  1.99 0.048* 

NSD1 cg19731612 28 1.79 E-03 2.00 0.046*  -0.31 0.754  2.55 0.012* 

PRDM2 cg06604289 65 7.70 E-04 -2.14 0.033*  -0.77 0.441  -2.22 0.028* 

PRDM2 cg06991148 65 7.70 E-04 2.19 0.029*  0.35 0.725  2.82 0.005* 

PRDM2 cg10444683 65 7.70 E-04 2.28 0.023*  0.69 0.492  2.38 0.018* 

PRDM2 cg21605566 65 7.70 E-04 1.97 4.95 E-02*  1.42 0.158  1.36 0.175 

TET1 cg05400741 30 1.67 E-03  1.53 0.126  -0.03 0.976  2.12 0.035* 

TET1 cg12548760 30 1.67 E-03 1.57 0.118  0.20 0.840  1.99 0.048* 
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    Whole Sample  

(n = 400) 

Men  

(n = 212) 

Women  

(n = 188 ) 

Gene CpG Label # 

Probes 

P Cutoffa t- 

statisticb 

P t-

statisticb 

P t- 

statisticb 

P 

Epigenetic 

regulation 

(cont.) 

         

TET2 cg14330655 21 2.38 E-03 2.25 0.025*  2.07 0.040*  1.09 0.276 

TET3 cg25299214 14 3.57 E-03 0.99 0.325  -0.84 0.399  2.01 0.046* 

Tumor 

suppression 

         

EGFR cg20706768 58 8.60 E-04 2.07 0.039*  1.12 0.265  1.78 0.077 

EGFR cg10550611 58 8.60 E-04 -2.19 0.029*  -2.72 0.007*  -0.55 0.582 

EGFR cg16751451 58 8.60 E-04 1.35 0.179  -0.22 0.824  2.05 0.042* 

EGFR cg21901928 58 8.60 E-04 1.84 0.066  0.10 0.922  2.54 0.012* 

EGFR cg27637738 58 8.60 E-04 -1.83 0.067  -2.21 0.028*  -0.45 0.653 

TP53 cg01620719 39 1.28 E-03 -2.18 0.030*  -1.54 0.124  -1.54 0.124 

TP53 cg05479194 39 1.28 E-03 2.42 0.016*  2.00 0.046*  1.47 0.142 

TP53 cg12373934 39 1.28 E-03 -0.56 0.579  1.45 0.148  -2.06 0.040* 

DNA 

repair 

         

MSH2 cg14282180 14 3.57 E-03 -1.82 0.069  0.19 0.848  -2.65 0.009* 

MSH2 cg19180827 14 3.57 E-03 -0.95 0.344  0.87 0.384  -2.10 0.037* 

MSH2 cg25746226 14 3.57 E-03 -1.60 0.111  0.67 0.502  -2.69 0.008* 

PARP1 cg17127702 19 2.63 E-03 -0.22 0.827  1.89 0.060  -2.35 0.020* 

PCNA cg01195281 26 1.92 E-03 1.24 0.216  -0.61 0.544  2.29 0.023* 

PCNA cg01511104 26 1.92 E-03 2.05 0.041*  1.85 0.065  1.12 0.264 

PCNA cg09011324 26 1.92 E-03 -2.64 0.009*  -0.14 0.890  -3.66 3.3 E-04* 

PCNA cg22960971 26 1.92 E-03 -3.49 5.30 E-04* -1.92 0.056  -2.98 0.003* 

XRCC1 cg02455501 12 4.17 E-03 -2.47 0.014*  -1.73 0.085  -1.74 0.083 

XRCC1 cg15107336 12 4.17 E-03 -1.84 0.066  -0.50 0.614  -2.10 0.037* 

XRCC2 cg22488067 13 3.85 E-03 1.34 0.182  2.00 0.047*  -0.09 0.929 

XRCC2 cg05898482 13 3.85 E-03 1.04 0.297  2.65 0.009*  -0.79 0.429 

XRCC3 cg05182418 37 1.35 E-03 -0.38 0.702  -2.73 0.007*  1.88 0.062 

XRCC3 cg12798040 37 1.35 E-03 -2.78 0.006*  -2.78 0.006*  -1.29 0.198 

XRCC3 cg13255208 37 1.35 E-03 -1.59 0.113  0.55 0.584  -3.02 0.003* 

XRCC3 cg27077050 37 1.35 E-03 -1.48 0.140  -0.14 0.890 -1.98 0.049* 

XRCC4 cg07357445 25 0.002  1.41 0.160  -0.32 0.750  2.15 0.033* 

XRCC4 cg15676060 25 0.002  0.45 0.655  2.02 0.045*  -1.31 0.193 
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(n = 400) 

Men  

(n = 212) 

Women  

(n = 188 ) 

Gene CpG Label # 

Probes 

P Cutoffa t- 

statisticb 

P t-

statisticb 

P t- 

statisticb 

P 

DNA repair 

(cont.) 

         

XRCC4 cg19756313 25 0.002 -1.33 0.186  0.19 0.846  -1.99 0.048* 

XRCC4 cg25112586 25 0.002  -1.52 0.130  0.05 0.959  -2.01 0.045* 

XRCC5 cg05998850 20 2.50 E-03 1.12 0.265  -1.75 0.082  3.14 0.002* 

XRCC6 ch22757911F 20 2.50 E-03 2.04 0.042*  2.30 0.023*  0.66 0.510 

 

Abbreviations used: CpG, cytosine guanine dinucleotide 

aP cutoff is based on an alpha of 0.05, which was adjusted using the Bonferroni method to account for the number of probes  

representing the gene on the microarray 
bt-statistic and corresponding P-value are from linear regression models. Whole sample analyses were adjusted for sex and age. 

Sex-stratified analyses were adjusted for age. 

*P value was statistically significant before adjusting for multiple comparisons (P < 0.05)
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Table S2. Genes that were differentially expressed by arsenic exposure before adjusting for multiple comparisons (P < 0.05) either in 

the whole sample, in men, or in women 

    Whole Sample  

(n = 1799) 

Males  

(n = 991) 

Females  

(n = 801) 

Gene Probe # Probes P 
Cutoffa 

βb P βb P βb P 

One-carbon 
metabolism 

         

AHCY ILMN_1657862 1 0.050 2.62 E-05 0.110 4.27 E-05 0.036* 2.14 E-06 0.936 

CBS ILMN_1804735 1 0.050 2.28 E-05 0.035* 1.06 E-05 0.448 4.05 E-05 0.019* 

DHFR ILMN_1759872 2 0.025 6.59 E-05 0.008* 7.01 E-05 0.022* 6.19 E-05 0.133 

DNMT3A ILMN_1654945 3 0.017 1.84 E-05 0.109 3.11 E-05 0.031* 3.18 E-07 0.986 

GAMT ILMN_1756469 3 0.017 -3.98 E-05 0.001* -2.37 E-05 0.133 -6.49 E-05 9.60 E-04* 

GAMT ILMN_1794595 3 0.017 -1.89 E-05 0.091 -9.50 E-07 0.947 -4.72 E-05 0.008* 

GNMT ILMN_1736238 1 0.050 3.62 E-06 0.578 -7.62 E-06 0.350 2.12 E-05 0.044* 

GSS ILMN_1683462 1 0.050 3.66 E-05 1.08 E-04* 4.04 E-05 8.64 E-04* 3.22 E-05 0.033* 

MAT2B ILMN_1811367 3 0.017 -3.59 E-05 0.037* -2.65 E-05 0.247 -5.06 E-05 0.056 

MTR ILMN_1670801 1 0.050 -2.81 E-05 0.022* -3.24 E-05 0.043* -2.17 E-05 0.262 

Epigenetic 

regulation 

         

EZH2 ILMN_1708105 3 0.017 4.09 E-05 1.46 E-05* 3.29 E-05 0.007* 5.18 E-05 5.28 E-04* 

EZH2 ILMN_2364529 3 0.017 3.58 E-05 1.3 E-04* 2.86 E-05 0.015* 4.53 E-05 0.003* 

EZH2 ILMN_1652913 3 0.017 3.17 E-05 0.003* 2.72 E-05 0.047* 3.83 E-05 0.028* 

HDAC4 ILMN_1764396 1 0.050 -2.32 E-05 0.071 -3.78 E-05 0.017* -8.31 E-07 0.969 

MLL ILMN_1668683 1 0.050 -6.59 E-05 6.80 E-08* -5.45 E-05 4.92 E-04* -8.13 E-05 2.86 E-05* 

NSD1 ILMN_1707175 2 0.025 -2.05 E-05 0.025* -2.14 E-05 0.078 1.90 E-05 0.182 

PRDM2 ILMN_2258543 4 0.013 -1.71 E-05 0.029* -1.70 E-05 0.085 -1.73 E-05 0.172 

PRDM2 ILMN_1652992 4 0.013 -2.03 E-05 0.002* -1.98 E-05 0.026* -2.07 E-05 0.038* 

TET2 ILMN_1788818 1 0.050 2.18 E-05 0.008* -3.19 E-06 0.757 5.94 E-05 8.23 E-06* 
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    Whole Sample  

(n = 1799) 

Males  

(n = 991) 

Females  

(n = 801) 

Gene Probe # Probes P 
Cutoffa 

βb P βb P βb P 

Tumor 
suppression 

         

EGFR ILMN_1798975 4 0.013 9.20 E-06 0.073 1.51 E-05 0.021* 3.86 E-07 0.962 

TP53 ILMN_1779356 1 0.050 2.47 E-05 0.075 4.93 E-05 0.006* -9.68 E-06 0.660 

DNA  

Repair 

         

MSH2 ILMN_1737413 2 0.025 -2.42 E-05 0.016* -2.05 E-05 0.116 -3.08 E-05 0.051 

POLB ILMN_1767894 1 0.050 5.01 E-05 3.77 E-05* 3.85 E-05 0.016* 6.99 E-05 2.15 E-04* 

XRCC3 ILMN_1696266 1 0.050 9.88 E-06 0.420 3.13 E-05 0.047* -2.18 E-05 0.262 

XRCC5 ILMN_2105983 1 0.050 -2.84 E-05 0.014* -9.92 E-06 0.509 -5.47 E-05 0.003* 

XRCC6 ILMN_1743097 2 0.025 -4.61 E-05 1.96 E-04* -3.60 E-05 0.022* -6.24 E-05 0.002* 

 

aP cutoff is based on an alpha of 0.05, which was adjusted using the Bonferroni method to account for the number of probes  

representing the gene on the microarray 
b β and corresponding P-value are from linear regression models. Whole sample analyses were adjusted for sex and age. Sex-stratified analyses were adjusted for age 

 

*P value was statistically significant before correcting for multiple comparisons (P < 0.05) 
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ABSTRACT: 

Background: Posttranslational histone modifications (PTHMs) are altered by arsenic, an 

environmental carcinogen. PTHMs are also influenced by nutritional methyl donors involved in 

one-carbon metabolism (OCM), which may protect against epigenetic dysregulation.  

Methods: We measured global levels of three PTHMs, which are dysregulated in cancers 

(H3K36me2, H3K36me3, H3K79me2), in peripheral blood mononuclear cells (PBMCs) 

collected from 324 participants enrolled in the Folic Acid and Creatine Trial, a randomized trial 

in arsenic-exposed Bangladeshi adults. Sex-specific associations between blood OCM indices 

(folate, cobalamin, choline, betaine, homocysteine) and PTHMs were examined at baseline using 

regression models. We also evaluated the effects of FA supplementation (400 µg/day for 12 

weeks), compared with placebo, on PTHMs. 

Results: Associations between choline and H3K36me2 differed by sex (Pinteraction < 0.01). This 

was also true for associations between cobalamin and H3K79me2 (Pinteraction < 0.05). Among 

men, plasma choline was positively associated with H3K36me2 (P < 0.01), and among women, 

plasma cobalamin was positively associated with H3K79me2 (P < 0.01). FA supplementation 

did not alter any of the PTHMs examined (P > 0.05). 

Conclusion: OCM indices may influence PTHMs in a sex-dependent manner, and FA 

supplementation, at this dose and duration, does not alter PTHMs in PBMCs. 

Impact: This is the first study to examine the influences of OCM indices on PTHMs in a 

population that may have increased susceptibility to cancer development due to widespread 

exposure to arsenic-contaminated drinking water and a high prevalence of 

hyperhomocysteinemia. 



 
 

210 
 

INTRODUCTION: 

 More than 150 different methyltransferases, including DNA methyltransferases and 

lysine histone methyltransferases, depend on methyl donations from S-adenosylmethionine 

(SAM) [1]. Synthesis of SAM via one-carbon metabolism (OCM) involves the remethylation of 

homocysteine (Hcys) to methionine, which requires nutritional methyl donors and cofactors, 

such as folate, cobalamin, choline, and betaine. There are important sex differences in the OCM 

pathway. For example, plasma Hcys concentrations are higher in men, and there is evidence that 

this may be due to both higher methyl demand for creatine synthesis as a result of greater muscle 

mass [2] and also lower remethylation and transmethylation rates among men [3]. Circulating 

concentrations of folate, cobalamin, and choline also differ by sex [4, 5]. 

Hyperhomocysteinemia (HHcys) and insufficient intake of nutritional methyl donors 

have been implicated in the development of human cancers [6]. Studies in rodents have 

demonstrated that this may be mediated by alterations in epigenetic modifications [7, 8], 

including PTHMs [9, 10]. Nutritional methyl donors have also been shown to modify, or buffer 

against, epigenetic dysregulation caused by environmental toxicants. For example, mice exposed 

in utero to the endocrine disruptor bisphenol A have reduced levels of DNA methylation in 

several tissues, but this phenotype can be prevented with maternal supplementation with folic 

acid (FA), cobalamin, choline, and betaine [11]. Similarly, Bangladeshi adults exposed 

chronically to arsenic, a human carcinogen, have higher global levels of DNA methylation in 

leukocytes, but only in those that are folate sufficient (plasma folate >9 nmol/L) [12]; this may 

be a protective compensatory mechanism, as leukocyte hypomethylation and folate deficiency 

are both risk factors for arsenic-induced skin lesions [13]. Concurrent exposure to arsenic and a 

methyl deficient diet also alters global DNA methylation in the mouse liver in a sex-dependent 
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manner [14]. We, and others, have previously observed sex-specific effects of arsenic exposure 

on global levels of DNA methylation and PTHMs in human populations [15-18]. However, the 

relationships between OCM indices and PTHMs, and potential differences by sex, have not been 

investigated. 

We therefore examined sex-specific associations between OCM indices and global levels 

of PTHMs in a population in Bangladesh that may have increased susceptibility to cancer 

development due to a high prevalence of HHcys and widespread exposure to arsenic-

contaminated drinking water. We also examined the effect of folic acid (FA) supplementation 

(400 µg/day for 12 weeks) on PTHMs. We selected three PTHMs (histone H3 lysine 36 di- and 

tri-methylation (H3K36me2 and H3K36me3, respectively), and histone H3 lysine 79 di-

methylation (H3K79me2)), which are dysregulated in several types of cancer [19-24] and are 

altered by arsenic and/or nutritional methyl donors in experimental models [25-28]. PTHMs 

were measured in peripheral blood mononuclear cells (PBMCs) collected from participants in the 

Folic Acid and Creatine Trial (FACT). FACT is a randomized clinical trial that was originally 

designed to examine whether FA and/or creatine supplementation can be used as therapeutic 

approaches to reduce blood arsenic concentrations; the primary findings of this trial have been 

published [29]. 

 

STUDY PARTICIPANTS AND METHODS:  

 

Region and Participants 

Participants for the FACT study were recruited from the Health Effects of Arsenic 

Longitudinal Study, a prospective cohort study that initially recruited 11,746 adults living in a 25 

km
2
 region in Araihazar, Bangladesh [30]. FACT is a double-blind randomized, placebo-
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controlled trial [29]. FACT participants were between the ages of 20 and 65 and had been 

drinking from household wells with water arsenic ≥50 μg/L, the Bangladesh standard for safe 

drinking water. Exclusion criteria included: pregnancy, nutritional supplement use, and known 

health problems, including cancers. Informed consent was obtained by Bangladeshi field staff 

physicians, and this study was approved by the Institutional Review Board of Columbia 

University Medical Center and the Bangladesh Medical Research Council.  

Study Design 

As described previously [29], FACT participants (n = 622) were randomized to one of 

five treatment arms: placebo (n = 104), 400 µg FA/day (n = 156), 800 µg FA/day (n = 154), 3 g 

creatine/day (n = 104), and 3 g creatine + 400 µg FA/day (n = 104) (Supplemental Material, 

Figure S1). Due to ethical considerations, all participants received arsenic-removal water filters 

(READ-F filter, Brota Services International, Bangladesh) at baseline to be used during the 24 

week study period and thereafter.  

Whole blood samples were collected from participants at baseline, week 12, and week 

24; sample collection and handling have been described previously [15, 29]. For the current 

study, we used histones isolated from baseline (i.e., pre-intervention)-collected PBMCs from a 

subset of participants with all necessary biological samples and complete data for relevant 

covariates (n = 324), as well as available PBMCs collected at week 12 from participants in the 

placebo (n = 60) and 400 µg FA (n = 107) treatment arms (Supplemental Material, Figure S1). 

The 400 µg FA dose was selected based on the U.S. recommended dietary allowance for adults 

[31]. 
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Folate and Cobalamin 

Plasma folate and cobalamin were measured by radio-protein-binding assay 

(SimulTRAC-SNB, MP Biomedicals). The intra- and inter-assay CVs were 5% and 13%, 

respectively, for folate and 6% and 17%, respectively, for cobalamin. Folate in whole blood 

hemolysate was also measured by radio-protein-binding assay (SimulTRAC-S, MP Biomedicals) 

in participants from the placebo, 400 µg FA/day, and 800 µg FA/day treatment arms, as 

described previously [29]; red blood cell (RBC) folate was calculated by dividing these measures 

by [%hematocrit/100]. The intra- and inter-assay CVs for RBC folate were 4% and 9%, 

respectively. 

Plasma Choline and Betaine 

 Plasma choline and betaine concentrations were measured by LC-MS/MS, using the 

method of Holm et al. [32], with some modifications, as described previously [33]. The intra- 

and inter-assay CVs for plasma choline were 2.2% and 5.8%, respectively, and were 2.5% and 

5.6%, respectively, for plasma betaine. 

Plasma Homocysteine 

Plasma total homocysteine (Hcys) was measured by HPLC with fluorescence detection, 

based on a method described by Pfeiffer et al. [34]. The intra- and inter-assay CVs were 5% and 

7%, respectively. 

Blood Arsenic and Selenium 

Total blood arsenic and selenium (bSe) concentrations were measured using a Perkin-

Elmer Elan DRC II ICP-MS equipped with an AS10+ autosampler based on a previously 
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described method [35]. The intra- and inter-assay CVs for arsenic were 2.7% and 5.7%, 

respectively, and were 1.5% and 4.6%, respectively, for bSe. 

Urinary Creatinine  

Urinary creatinine (uCr) was measured by a method based on the Jaffe reaction [36], and 

the intra- and inter-assay CVs were 1.3% and 2.9%, respectively 

Histone Isolation 

Histones were isolated from PBMCs by acid extraction, as described previously [15, 16]. 

Isolated histones were diluted in 4 M urea, and aliquots were stored at -80ºC.  

 

H3K36me2, H3K36me3, H3K79me2 

 

 Although we previously identified a specific cleavage product of histone H3 which 

interferes with the measurement of downstream PTHMs, H3K36me2, H3K36me3, and 

H3K79me2 are not impacted by H3 cleavage [37]. These PTHMs were measured by sandwich 

ELISA [16]. The intra- and inter-assay CVs, respectively, for each ELISA method were as 

follows: H3K36me2: 3.4% and 9.6%, H3K36me3: 4.9% and 11.9%, and H3K79me2: 7.1% and 

7.0%. Since there were limited histone aliquots for the final assays, and since samples with poor 

reproducibility were excluded, final sample sizes for H3K36me2 (n = 318) and H3K36me3 (n = 

306) were smaller than the final sample size for H3K79me2 (n = 321). 

Statistical methods 

Differences in continuous and categorical variables between men and women and also 

between participants with and without PTHM measures and with and without RBC folate 

measures were assessed using Wilcoxon rank-sum and Chi-square tests, respectively. 
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Transformations were applied to variables with skewed distributions to stabilize variances for 

parametric model assumptions and to reduce the influence of extreme values. Natural log-

transformations were applied to H3K36me3, H3K79me2, bSe, RBC folate, and plasma folate, 

choline, betaine, cobalamin, and Hcys. An inverse transformation (1/x) was applied to 

H3K36me2. 

Due to the distribution of H3K36me2, a generalized linear model with an inverse-link 

function (which effectively back-transforms the inverse-transformed H3K36me2 variable) was 

used to examine associations between the log-transformed OCM indices and the harmonic mean 

of H3K36me2. Linear models were used to examine associations between log-transformed OCM 

indices and log(H3K36me3) and log(H3K79me2). Plasma folate, choline, betaine, cobalamin, 

and Hcys were included simultaneously in models. Alternative models replacing plasma folate 

with RBC folate were applied to the subset of participants with RBC folate measures (n = 250). 

Models were run separately by sex, and the Wald test was used to determine if associations 

between each OCM variable and PTHM differed by sex. Models were additionally adjusted for 

hypothesized confounders of the relationships between OCM indices and PTHMs, and any 

variables that were associated with PTHMs in bivariate analyses. Age, education, TV ownership, 

log(bSe), and cigarette smoking (for analyses of H3K36me3 and H3K79me2 in men) were 

included as covariates in final models. All covariates were included as continuous variables, 

except for TV ownership, cigarette smoking status, and education; the latter was included as a 

binary variable (education >5 y vs. ≤5 y) because many participants had 0 or few years of 

education. In sensitivity analyses, we also examined models that 1) were additionally adjusted 

for log(BMI) and log-transformed arsenic measures and 2) evaluated each of the OCM indices 

individually. The difference in the within-person change for each PTHM between the two 
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treatment arms (400 µg FA vs. placebo) was examined using the Wilcoxon rank-sum test. In 

exploratory analyses, we also examined potential differences in the effects of FA on PTHMs 

separately by sex. The significance level was set at P < 0.05 for all statistical tests. Analyses 

were conducted using SAS (version 9.3, Cary, NC) and R (version 3.1.3). 

RESULTS: 

General Characteristics, Nutritional Indices, and PTHMs 

General characteristics of the study participants have been described previously [29], and 

are presented separately by sex in Supplemental Material, Table S1. Participants were between 

24 and 54 years old with a median BMI of 19.2 kg/m
2
. Median plasma choline and betaine 

concentrations were 11.0 and 42.8 µmol/L, respectively. Approximately, 23% of participants 

were folate deficient (plasma folate <9 nmol/L [38]) and 24% were cobalamin deficient (plasma 

cobalamin <151 pmol/L [38]). The prevalence of HHcys (plasma Hcys ≥13 µmol/L) was 40.7%. 

Compared with women, men in the study sample were generally older; were less likely to own a 

TV (an indicator of socioeconomic status in this population); had lower BMIs; had higher bAs, 

choline, betaine, and Hcys concentrations; and were more likely to be folate deficient and to 

have HHcys. Men were also much more likely to have ever smoked cigarettes. The prevalence of 

ever smoking was 56.2% in men compared with 1.2% in women. Baseline measures of PTHMs 

did not differ significantly between men and women. 

Study participants with PTHM measures were generally comparable to the rest of the 

FACT participants, but were slightly older, had lower plasma folate, betaine, and choline 

concentrations, and were less likely to own TVs (Supplemental Material, Table S2). The 

subset of participants with RBC folate measures had lower plasma cobalamin concentrations and 
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uCr concentrations and were more likely to own TVs, but were otherwise comparable to FACT 

participants who did not have RBC folate measures (Supplemental Material, Table S3). 

Sex-Specific Associations between OCM Indices and PTHMs 

Sex-specific associations between OCM indices and PTHMs are shown in Figure 1. 

Alternative models, which replaced plasma folate with RBC folate, are shown in Supplemental 

Material, Figure S2. Plasma betaine was excluded from final models as it was not associated 

with any of the PTHMs in men or women after adjusting for plasma choline, and its addition to 

models did not alter coefficients for any of the other OCM indices. 

H3K36me2 

Log(RBC folate) was negatively and significantly associated with H3K36me2 among 

men (β: -0.23; 95% CI: -0.41, -0.05; P = 0.01). There was a similar trend among women (β: -

0.08; 95% CI: -0.21, 0.04; P = 0.19). Neither log(plasma folate) nor log(cobalamin) was 

associated with H3K36me2 in men or women. Associations between log(choline) and 

H3K36me2 differed by sex (P < 0.01). Log(choline) was positively associated with H3K36me2 

in men (β: 0.39; 95% CI: 0.11, 0.66; P < 0.01), but not women (β: -0.11; 95% CI: -0.36, 0.14; P 

= 0.40). There was also a negative association between log(Hcys) and H3K36me2 among men 

(β: -0.19; 95% CI: -0.30, -0.07; P < 0.01), but not women (β: 0.00; 95% CI: -0.16, 0.15; P = 

0.97). 

H3K36me3 

Similar to the findings for H3K36me2, log(RBC folate) was inversely associated with 

log(H3K36me3) in men (β: -0.19; 95% CI: -0.38, 0.01; P = 0.06). Log(plasma folate) was not 

significantly associated with log(H3K36me3) in either men or women. Among women, both 
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log(cobalamin) (β: 0.11; 95% CI: 0.00, 0.22; P = 0.05) and log(choline) (β: 0.35; 95% CI: 0.08, 

0.62; P = 0.01) were positively associated with log(H3K36me3). There was a similar trend for 

log(choline) and log(H3K36me3) among men (β: 0.17; 95% CI: -0.09, 0.43; P = 0.21). 

Log(Hcys) was inversely associated with log(H3K36me3) in men (β: -0.15; 95% CI: -0.29, -

0.02; P = 0.03), but this was not significant among women. 

H3K79me2 

 Although not significant, both log(RBC folate) (β: -0.18; 95% CI: -0.38, 0.02; P = 0.08) 

and log(plasma folate) (β: 0.11; 95% CI: -0.28, 0.05; P = 0.18) were inversely related to 

log(H3K79me2) among women. There was a similar trend for log(RBC folate) among men (β: -

0.17; 95% CI: -0.43, 0.08; P = 0.18). Additionally, both log(choline) (β: 0.28; 95% CI: -0.06, 

0.62; P = 0.10) and log(cobalamin) (β: 0.23; 95% CI: 0.09, 0.37; P < 0.01) were positively 

associated with log(H3K79me2) in women, but not men, and the associations between 

log(cobalamin) and log(H3K79me2) differed by sex (P < 0.05). Log(Hcys) concentrations were 

not significantly associated with log(H3K79me2) in either men or women. 

Sensitivity Analyses 

 Associations between OCM indices and PTHMs were very similar after additionally 

adjusting for BMI (Supplemental Material, Table S4) and measures of arsenic exposure (data 

not shown). Associations were also similar when OCM indices were examined individually, 

rather than in the same model, although some of the effects were slightly attenuated 

(Supplemental Material, Table S5). 
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A         H3K36me2 

 

 

 

B          H3K36me3 

 

 

 

C         H3K79me2 
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Figure 1. Sex-specific associations between OCM indices and PTHMs in FACT participants 

Estimated regression coefficients and 95% confidence intervals for associations between each 

OCM index and (A) H3K36me2, (B) H3K36me3, and (C) H3K79me2 are shown separately by 

sex. The dashed line represents the null (β = 0). Associations with confidence intervals that do 

not cross the null are statistically significant (P < 0.05). Asterisks (*P < 0.05, **P < 0.01) 

indicate sex differences with P-values calculated from the Wald test. OCM indices were natural 

log-transformed and were included simultaneously in models. Models were adjusted for age, 

education, TV ownership, and log(bSe). Analyses for H3K36me3 and H3K79me2 in men were 

additionally adjusted for cigarette smoking status. H3K36me2 was inverse-transformed and was 

modeled using a generalized linear model with an inverse-link function. H3K36me3 and 

H3K79me2 were natural log transformed and were modeled using linear models. Sample sizes 

for the main analyses were as follows H3K36me2: n = 159 for men, n = 159 for women; 

H3K36me3: n = 154 for men, n = 152 for women; H3K79me2: n = 162 for men, n = 159 for 

women. Abbreviations used: bSe, blood selenium; FACT, Folic Acid and Creatine Trial; 

H3K36me2, di-methylation at lysine 36 of histone H3; H3K36me3, tri-methylation at lysine 36 

of histone H3; H3K79me2, di-methylation at lysine 79 of histone H3; Hcys, homocysteine; 

OCM, one-carbon metabolism; PTHM, posttranslational histone modification 

 

 

 

Effect of FA Supplementation on PTHMs 

Baseline characteristics of participants with PTHM measures were generally comparable 

between the 400 µg FA and placebo treatment arms, except for uCr, which was significantly 

higher in the 400 µg FA group (Supplemental Material, Table S6). However, uCr was not 

associated with any of the PTHMs at baseline, nor was it associated with the intra-person change 

in any of the PTHMs. 

Compared with placebo, FA supplementation (400 µg/day for 12 weeks) did not alter any 

of the PTHMs (Table 1). In sex-stratified analyses, there was also no effect of FA compared 

with placebo on any of the PTHMs (Table 1). 

 



 
 

221 
 

Table 1. Within-person change
a
 in PTHM from baseline to week 12 in FACT participants by 

treatment arm 

PTHM 400 µg FA Placebo Test for group difference 

 Median (IQR) Median (IQR) P
b
 

All Participants    

H3K36me2
c
 -0.05 (-0.39, 0.11) -0.15 (-0.43, 0.11) 0.39 

H3K36me3
d
 0.02 (-0.28, 0.27) 0.02 (-0.23, 0.30) 0.77 

H3K79me2
e
 -0.06 (-0.28, 0.14) -0.05 (-0.24, 0.04) 0.80 

Males    

H3K36me2
f
 -0.06 (-0.31, 0.11) -0.07 (-0.44, 0.16) 0.75 

H3K36me3
g
 0.00 (-0.28, 0.23) 0.05 (-0.23, 0.47) 0.44 

H3K79me2
h
 -0.03 (-0.19, 0.21) -0.03 (-0.28, 0.09) 0.70 

Females    

H3K36me2
i
 -0.05 (-0.44, 0.10) -0.17 (-0.37, 0.04) 0.35 

H3K36me3
j
 0.04 (-0.31, 0.28) 0.02 (-0.22, 0.12) 0.62 

H3K79me2
k
 -0.13 (-0.47, 0.08) -0.05 (-0.18, 0.04) 0.46 

 

Abbreviations used: FA, folic acid; FACT, Folic Acid and Creatine Trial; H3K36me2, di-

methylation at lysine 36 of histone H3; H3K36me3, tri-methylation at lysine 36 of histone H3; 

H3K79me2, di-methylation at lysine 79 of histone H3; IQR, inter-quartile range; PTHM, 

posttranslational histone modification 

 
a
Median (IQR) 

b
P from Wilcoxon rank-sum test for treatment group difference 

c
400 µg FA n = 103, Placebo n = 56 

d
400 µg FA n = 98, Placebo n = 55 

e
400 µg FA n = 97, Placebo n = 56 

f
400 µg FA n = 52, Placebo n = 27 

g
400 µg FA n = 50, Placebo n = 28 

h
400 µg FA n = 50, Placebo n = 29 

i
400 µg FA n = 51, Placebo n = 29 

j
400 µg FA n = 48, Placebo n = 27 

k
400 µg FA n = 47, Placebo n = 27 
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DISCUSSION: 

Since lysine histone methyltransferases are dependent on SAM, many PTHMs are 

sensitive to nutritional methyl donors and other OCM indices [9, 25, 26, 39-42]. However, few 

studies have examined the influences of nutritional methyl donors on PTHMs in human 

populations. This has been particularly understudied in populations with a high prevalence of 

HHcys or chronic exposure to environmental carcinogens, such as arsenic. In this study of 

arsenic-exposed Bangladeshi adults, we observed sex-dependent associations between several 

OCM indices and three PTHMs (H3K36me2, H3K36me3, and H3K79me2), which were selected 

because they are dysregulated in cancers [19-24] and are altered by nutritional methyl donors 

and/or arsenic in experimental studies [25-28].  

Although the nutritional methyl donors and cofactors examined in this study were 

generally positively associated with the PTHMs examined, this was not the case for folate. We 

had hypothesized a priori that folate would be positively associated with PTHMs. However, 

plasma folate was not associated with these PTHMs, and supplementation with 400 µg FA/day 

for 12 weeks did not alter them. In contrast, among men we observed inverse relationships 

between RBC folate and PTHMs, similar to a previous in vitro study, which found that mild 

folate deficient conditions induced higher global levels of H3K36me2 in a prostate cancer cell 

line [25]. There is evidence that tetrahydrofolate may facilitate histone demethylation by 

accepting one-carbon groups as they are removed from histones [43, 44]. Thus, folate may have 

dual roles in regulating PTHMs, complicating predictions of its net effects on these marks. 

Although we observed discrepancies between the findings for RBC and plasma folate, this may 

not be surprising, as RBC folate is a better indicator of long-term folate status. Since both RBCs 
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and PBMCs originate from hematopoietic stem cells, RBC folate may also better reflect folate 

status during the epigenetic programming of PBMC progenitor cells.   

There are several possible explanations for the sex differences observed in our study. 

First, consistent with other reports [4, 5], plasma choline, betaine, and Hcys concentrations were 

higher among men, and men were more likely to be folate deficient. Given that long range 

allosteric interactions normally regulate SAM concentrations, it is possible that PTHMs are only 

perturbed under conditions of nutritional deficiencies or excess. There are also underlying sex 

differences in the OCM pathway. For example, phosphatidylethanolamine N-methyltransferase, 

which catalyzes phosphatidylcholine synthesis, is up-regulated by estrogen [45]. Furthermore, 

there are sex differences in epigenetic regulation. For example, many histone methyltransferases 

and histone demethylases bind to androgen receptor [46], and the presence or absence of 

androgen has been shown to influence the particular PTHMs targeted by these enzymes [47]. 

Additionally, some histone demethylase genes reside exclusively on the Y chromosome [48].  

Both epidemiological and animal studies have shown that susceptibility to arsenic 

toxicity differs by sex, with some outcomes preferentially affecting males and others females. 

For example, men are more susceptible to developing cancers of the skin, liver, and bladder after 

chronic exposure to arsenic [49-51]. It is possible that differential effects of arsenic and OCM 

indices on epigenetic marks, such as PTHMs, contribute to these differences. We have 

previously observed that arsenic exposure is associated with DNA methylation and PTHMs in a 

sex-dependent manner [15-17, 52]. The findings from this study suggest that some of the OCM 

indices analyzed, e.g. choline and cobalamin, also influence certain PTHMs differentially by sex. 

Our findings may also have important implications for targeted clinical interventions. 

While the majority of epigenetic therapies are still being evaluated in vitro and/or in preclinical 
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studies, others are in early clinical trials or have already been approved by the Food and Drug 

Administration [53]. Many of these epigenetic therapies target the OCM pathway. For example, 

EPZ-5676, which is currently in a Phase I trial for the treatment of MLL-rearranged leukemia, is 

a SAM-competitive inhibitor of DOT1L, a histone methyltransferase which targets H3K79 [54]. 

Thus, it is possible that nutritional factors and/or the use of supplements that influence SAM 

concentrations could counteract the effects of EPZ-5676 and other epigenetic drugs. By analogy, 

there is evidence that antifolates, such as methotrexate, are more effective in patients with low 

baseline folate concentrations and less effective in individuals taking FA supplements (reviewed 

in [55]). Thus, a better understanding of how methyl donors influence the epigenetic machinery 

may ultimately inform therapeutic approaches that target specific epigenetic marks. 

The data reported herein suggest that OCM indices influence PTHMs in a sex-dependent 

manner and further demonstrate that FA supplementation, at least at a dose of 400 µg/day for 12 

weeks, does not influence PTHMs in PBMCs. Nevertheless, we cannot rule out the possibility 

that PTHMs in other target tissues, or other PTHMs, may have been influenced by FA 

supplementation. Thus, understanding the effects of FA and other nutritional donors on PTHMs 

in human populations merits additional study. 
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CHAPTER SEVEN SUPPLEMENTAL MATERIAL 

Table S1. General baseline characteristics by sex for FACT participants with PTHM measures 

 All Participants (n = 324) Males (n = 162) Females (n = 162)  

Characteristic Median (range) Median (range) Median (range) P
a
 

Age (y) 39 (24-54) 42 (25-54) 37 (24-54) <0.01 

BMI (kg/m
2
)
b
 19.2 (13.9-31.6) 18.7 (15.4-27.9) 20.0 (13.9-31.6) <0.01 

Blood Arsenic (µg/L) 8.7 (1.0-80.2) 9.5 (2.5-52.0) 7.9 (1.0-80.2) 0.04 

bSe (µg/L) 134 (74-203) 135 (90-191) 132 (74-203) 0.16 

RBC Folate (nmol/L)
c
 451 (148-3800) 434 (155-1150) 461 (148-3800) 0.34 

Plasma Folate (nmol/L) 12 (3-120) 12 (3-120) 13 (4-42) 0.10 

Plasma Cobalamin (pmol/L) 215 (58-871) 217 (58-610) 213 (58-871) 0.49 

Plasma Choline (µmol/L) 11.0 (6.0-20.0) 11.9 (6.0-20.0) 10.7 (6.0-19.5) <0.01 

Plasma Betaine (µmol/L) 42.8 (14.3-98.4) 47.0 (20.9-89.4) 37.3 (14.3-98.4) <0.01 

Plasma Hcys (µmol/L) 11.4 (4-102) 14 (6-102) 9 (4-56) <0.01 

H3K36me2
d
 (% of total H3) 1.44 (0.68-6.87) 1.45 (0.68-4.00) 1.43 (1.00-6.87) 0.66 

H3K36me3
e
 (% of total H3) 1.61 (0.48-6.44) 1.56 (0.48-4.09) 1.63 (0.52-6.44) 0.10 

H3K79me2
f
 (% of total H3) 1.27 (0.29-9.46) 1.26 (0.29-9.46) 1.29 (0.29-9.41) 0.96 

Folate Deficient
g
 (%) 23.2 28.4 17.9 0.03 

Cobalamin Deficient
h
 (%) 24.4 24.1 24.7 0.90 

HHcys (%)
i
 40.7 62.4 19.1 <0.01 

Ever Smoked Cigarette (%) 28.8 56.2 1.2 <0.01
j
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Ever Used Betel Nut (%) 26.9 29.0 24.8 0.40 

Education >5 y (%) 22.5 21.0 24.1 0.51 

Own TV (%) 38.3 32.7 43.8 0.04 

 

Abbreviations used: BMI, body mass index; bSe, blood selenium; FACT, Folic Acid and Creatine Trial; H3, histone H3; H3K36me2, 

di-methylation at lysine 36 of histone H3; H3K36me3, tri-methylation at lysine 36 of histone H3; H3K79me2, di-methylation at lysine 

79 of histone H3; Hcys, homocysteine; HHcys, hyperhomocysteinemia; PTHM, posttranslational histone modification; RBC, red 

blood cell 

 
a
P was from Wilcoxon rank-sum test and Chi square test for sex difference for continuous and categorical variables, respectively 

b
Whole sample, n = 315; Men, n = 160; Women, n = 155 

c
Whole sample, n = 250; Men, n = 125 ; Women, n = 125 

d
Whole sample, n = 318; Men, n = 159; Women, n = 159 

e
Whole sample, n = 306; Men, n = 154; Women, n = 152 

f
Whole sample, n = 321; Men, n = 162; Women, n = 159 

g
Plasma folate <9 nmol/L 

h
Plasma cobalamin <151 pmol/L 

i
Plasma Hcys >13 µmol/L 

j
P was from Fisher’s exact test, since there were only two female smokers 
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Table S2. Baseline characteristics of FACT participants with vs. without PTHM measures 

 PTHMs Measured (n = 324) PTHMs Not Measured (n = 285)  

Characteristic Median (range) Median (range) P
a
 

Age (y) 39 (24-54) 37 (24-55) 0.05 

BMI (kg/m
2
)
b
 19.2 (13.9-31.6) 19.5 (14.3-27.6) 0.44 

Blood Arsenic (µg/L) 8.7 (1.0-80.2) 8.8 (1.8-35.0) 0.38 

bSe (µg/L) 134 (74-203) 137 (89-226) 0.10 

RBC Folate (nmol/L)
c
 451 (148-3800) 435 (172-1067) 0.55 

Plasma Folate (nmol/L) 12 (3-120) 15 (4-168) <0.01 

Plasma Cobalamin (pmol/L) 215 (58-871) 216 (51-864) 0.58 

Plasma Choline (µmol/L) 11.0 (6.0) 11.9 (6.4-20.1) 0.01 

Plasma Betaine (µmol/L) 43 (14-98) 45 (12-116) 0.05 

Plasma Hcys (µmol/L) 11 (4-102) 11 (5-107) 0.42 

Folate Deficient
d
 (%) 23.1 15.8 0.03 

Cobalamin Deficient
e
 (%) 24.4 23.5 0.88 

HHcys
f
 (%) 40.7 36.1 0.28 

Ever Smoker (%) 28.8 25.3 0.38 

Education >5 y (%) 22.5 21.4 0.12 

Own TV (%) 38.3 50.9 <0.01 
 

Abbreviations used: BMI, body mass index; bSe, blood selenium; FACT, Folic Acid and Creatine Trial; Hcys, homocysteine; HHcys, 

hyperhomocysteinemia; PTHM, posttranslational histone modification; RBC, red blood cell;  

 
a
P was from by Wilcoxon rank-sum test and Chi Square test for difference between those with vs. without PTHM measures for 

continuous and categorical variables, respectively 
b
n = 315 in those with PTHMs measured, n = 284 in those without PTHMs measured  

c
n = 250 in those with PTHMs measured, n = 146 in those without PTHMs measured 

d
Plasma folate <9 nmol/L 

e
Plasma cobalamin <151 pmol/L 

f
Plasma Hcys >13 µmol/L 
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Table S3. Baseline characteristics of FACT participants with vs. without RBC folate measures 

 

 RBC Folate Measured (n = 250) RBC Folate Not Measured (n = 74)  

Characteristic Median (Range) Median (Range) P
a
 

Age (y) 39 (24-54) 38 (26-54) 0.52 

BMI (kg/m
2
)
b
 19.1 (13.9-31.6) 19.7 (14.8-26.9) 0.73 

Plasma Folate (nmol/L) 13 (3-120) 12 (3-50) 0.81 

Plasma Cobalamin (pmol/L) 209 (58-634) 247 (69-871) 0.04 

Plasma Choline (µmol/L) 11.0 (6.0-19.5) 11.3 (6.0-20.0) 0.64 

Plasma Betaine (µmol/L) 43.2 (14.3-89.4) 40.5 (19.1-98.4) 0.49 

Plasma Hcys (µmol/L) 12 (5-102) 11 (4-31) 0.21 

Blood Arsenic (µg/L) 8.8 (1.0-80.2) 8.2 (2.2-53.9) 0.53 

bSe (µg/L) 134 (74-203) 134 (92-186) 0.39 

uCr (mg/dL) 46 (6-233) 59 (7-252) 0.04 

H3K36me2
c
 (% of total H3) 1.46 (0.68-6.87) 1.39 (1.01-5.98) 0.41 

H3K36me3
d
 (% of total H3) 1.61 (0.48-6.00) 1.61 (0.54-6.44) 0.45 

H3K79me2
e
 (% of total H3) 1.25 (0.29-9.46) 1.32 (0.70-5.87) 0.52 

Folate Deficient (%)
f
 23.6 21.6 0.72 

Cobalamin Deficient (%)
g
 26.0 18.9 0.21 

HHcys (%)
h
 41.6 37.8 0.56 

Male (%) 50.0 50.0 0.99 

Ever Smoker (%) 26.9 35.1 0.17 
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Education >5 y (%) 22.8 21.6 0.83 

Own TV (%) 41.6 27.0 0.02 

 

Abbreviations used: BMI, body mass index; bSe, blood selenium; H3K36me2, di-methylation at lysine 36 of histone H3; H3K36me3, 

tri-methylation at lysine 36 of histone H3; H3K79me2, di-methylation at lysine 79 of histone H3; Hcys, homocysteine; HHcys, 

hyperhomocysteinemia; uCr, urinary creatinine 

 
a
P was from Wilcoxon rank-sum test and Chi Square test for difference between those with vs. without RBC folate measures for 

continuous and categorical variables, respectively 
b
n = 245 for those with RBC folate measures,  n = 70 for those without RBC folate measures 

c
n = 245 for those with RBC folate measures, n = 73 for those without RBC folate measures 

d
n = 239 for those with RBC folate measures, n = 67 for those without RBC folate measures 

e
n = 249 for those with RBC folate measures, n = 72 for those without RBC folate measures 

f
Plasma folate <9 nmol/L 

g
Plasma cobalamin <151 pmol/L 

h
Plasma Hcys >13 µmol/L 
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Table S4. Associations
a
 (β (95% CI)) between OCM indices and PTHMs by sex in FACT participants, comparing models additionally 

adjusting for BMI  

 
 H3K36me2 H3K36me3 H3K79me2 

 Males
b
 Females

c
 Males

d
 Females

e
 Males

f
 Females

g
 

Plasma Folate
h
 -0.02 (-0.12, 0.07) -0.01 (-0.13, 0.11) -0.04 (-0.13, 0.05) -0.02 (-0.15, 0.11) -0.02 (-0.13, 0.10) -0.10 (-0.27, 0.06) 

Plasma Folate
i
 -0.04 (-0.14, 0.05) 0.00 (-0.11, 0.12) -0.05 (-0.14, 0.04) 0.00 (0.13, 0.14) -0.01 (-0.12, 0.11) -0.11 (-0.28, 0.05) 

Plasma Folate
j
 -0.05 (-0.14, 0.05) 0.00 (-0.12, 0.12) -0.05 (-0.14, 0.04) -0.01 (-0.14, 0.13) -0.01 (-0.13, 0.11) -0.12 (-0.29, 0.04) 

Plasma Folate
k
 -0.04 (-0.14, 0.05) 0.00 (-0.12, 0.12) -0.05 (-0.13, 0.04) -0.01 (-0.14, 0.13) -0.02 (-0.13, 0.10) -0.12 (-0.29, 0.04) 

       

RBC Folate
h
 -0.30 (-0.49, -0.10)** -0.08 (-0.21, 0.05) -0.13 (-0.31, 0.05) 0.03 (-0.14, 0.19) -0.08 (-0.34, 0.17) -0.18 (-0.38, 0.02)

#
 

RBC Folate
i
 -0.23 (-0.41, -0.05)* -0.08 (-0.21, 0.04) -0.19 (-0.38, 0.01)

#
 0.03 (-0.13, 0.20) -0.17 (-0.43, 0.08) -0.18 (-0.38, 0.02)

#
 

RBC Folate
j
 -0.23 (-0.41, -0.05)* -0.07 (-0.20, 0.06) -0.19 (-0.38, 0.01)

#
 0.04 (-0.13 0.20) -0.17 (-0.43, 0.08) -0.16 (-0.35, 0.04) 

RBC Folate
k
 -0.24 (-0.42, -0.05)* -0.07 (-0.20, 0.06) -0.22 (-0.41, -0.02)* 0.04 (-0.13, 0.20) -0.15 (-0.41, 0.11) -0.15 (-0.35, 0.04) 

       

Cobalamin
h
 0.00 (-0.11, 0.11) -0.01 (-0.13, 0.11) -0.01 (-0.12, 0.10) 0.12 (0.01, 0.23)* -0.03 (-0.17, 0.11) 0.25 (0.11, 0.39)** 

Cobalamin
i
 -0.02 (-0.13, 0.09) -0.01 (-0.11, 0.12) -0.01 (-0.12, 0.10) 0.11 (0.00, 0.22)* 0.01 (-0.14, 0.15) 0.23 (0.09, 0.37)** 

Cobalamin
j
 -0.01 (-0.12, 0.10) -0.02 (-0.12, 0.08) 0.00 (-0.11, 0.11) 0.12 (0.01, 0.24)* 0.00 (-0.14, 0.15) 0.23 (0.09, 0.37)** 

Cobalamin
k
 -0.01 (-0.13, 0.10) -0.02 (-0.12, 0.08) -0.01 (-0.12, 0.10) 0.13 (0.01, 0.24)* 0.02 (-0.13, 0.16) 0.23 (0.09, 0.37)** 

       

Choline
h
 0.30 (0.01, 0.60)* -0.08 (-0.33, 0.18) 0.18 (-0.08, 0.43) 0.37 (0.10, 0.64)** 0.06 (-0.27, 0.39) 0.29 (-0.05, 0.63) 

Choline
i
 0.39 (0.11, 0.66)** -0.11 (-0.36, 0.14) 0.17 (-0.09, 0.43) 0.35 (0.08, 0.62)* 0.00 (-0.34, 0.33) 0.28 (-0.06, 0.62) 

Choline
j
 0.42 (0.14, 0.70)** -0.13 (-0.38, 0.13) 0.21 (-0.04, 0.47) 0.36 (0.09, 0.64)* 0.00 (-0.34, 0.34) 0.20 (-0.14, 0.55) 
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Choline
k
 0.42 (0.14, 0.70)** -0.16 (-0.43, 0.10) 0.17 (-0.09, 0.43) 0.33 (0.04, 0.62)* 0.03 (-0.31, 0.37) 0.16 (-0.20, 0.51) 

       

Hcys
h
 -0.18 (-0.29, -0.06)** -0.02 (-0.17, 0.13) -0.15 (-0.28, -0.02)* -0.14 (-0.31, 0.03) 0.08 (-0.10, 0.25) 0.18 (-0.03, 0.39) 

Hcys
i
 -0.19 (-0.30, -0.07)** 0.00 (-0.16, 0.15) -0.15 (-0.29, -0.02)* -0.12 (-0.30, 0.05) 0.06 (-0.12, 0.23) 0.16 (-0.06, 0.38) 

Hcys
j
 -0.19 (-0.31, -0.07)** 0.00 (-0.16, 0.16) -0.15 (-0.28, -0.02)* -0.15 (-0.32, 0.03) 0.06 (-0.12, 0.24) 0.17 (-0.05, 0.39) 

Hcys
k
 -0.19 (-0.31, -0.07)** 0.00 (-0.15, 0.16) -0.15 (-0.28, -0.02)* -0.14 (-0.32, 0.04) 0.06 (-0.12, 0.24) 0.18 (-0.04, 0.40) 

 
Abbreviations used: BMI, body mass index; FACT, Folic Acid and Creatine Trial; H3K36me2, di-methylation at lysine 36 of histone H3; H3K36me3, tri-

methylation at lysine 36 of histone H3; OCM, one-carbon metabolism; PTHM, posttranslational histone modification; RBC, red blood cell 

 
a
Models include all nutritional indices (except for RBC folate) simultaneously; RBC folate models were run separately but included plasma cobalamin, choline, 

and Hcys in models. All nutritional indices are natural log-transformed. 
b
n = 159 for models 

a
 and 

b
, n = 157 for models 

c 
and 

d
; n = 122 for all RBC folate models 

c
n = 159 for models 

a
 and 

b
, n = 152 for models 

c 
and 

d
; n = 123 for all RBC folate models 

d
n = 154 for models 

a
 and 

b
, n = 152 for models 

c 
and 

d
; n = 121 for all RBC folate models 

e
n = 152 for models 

a
 and 

b
, n = 146 for models 

c 
and 

d
; n = 118 for RBC folate models 

a
 and 

b
, n = 114 for RBC folate models 

c 
and 

d
 

f
n = 162 for models 

a
 and 

b
, n = 160 for models 

c 
and 

d
; n = 125 for all RBC folate models 

g
n = 159 for models 

a
 and 

b
, n = 153 for models 

c 
and 

d
; n = 124 for RBC folate models 

a
 and 

b
, n = 120 for RBC folate models 

c 
and 

d 

h
Unadjusted Model 

i
Main Model (adjusted for age, education, TV ownership, and log(bSe); for H3K36me3 and H3K79me2 in men, these models were additionally adjusted for 

cigarette smoking status) 
j
Main Model (excluding those without BMI measures) 

k
Main Model (additionally adjusted for log(BMI)) 

#
P < 0.10, *P < 0.05, **P < 0.01 
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Table S5. Associations
a
 (β (95% CI)) between OCM indices and PTHMs by sex in FACT participants, comparing nutrients in model 

alone vs. included simultaneously 

 
 H3K36me2 H3K36me3 H3K79me2 

 Males
b
 Females

c
 Males

d
 Females

e
 Males

f
 Females

g
 

Plasma Folate
h
 -0.04 (-0.14, 0.05) 0.00 (-0.11, 0.12) -0.05 (-0.14, 0.04) 0.00 (0.13, 0.14) -0.01 (-0.13, 0.11) -0.11 (-0.28, 0.05) 

Plasma Folate
i
 -0.01 (-0.11, 0.09) 0.00 (-0.11, 0.11) -0.02 (-0.11, 0.07) 0.05 (-0.07, 0.18) -0.01 (-0.12, 0.10) -0.13 (-0.29, 0.04) 

       

RBC Folate
h
 -0.23 (-0.41, -0.05)* -0.08 (-0.21, 0.04) -0.19 (-0.38, 0.01)

#
 0.03 (-0.13, 0.20) -0.17 (-0.43, 0.08) -0.18 (-0.38, 0.02)

#
 

RBC Folate
i
 -0.11 (-0.30, 0.08) -0.08 (-0.21, 0.03) -0.08 (-0.26, 0.10) 0.05 (-0.11, 0.21) -0.15 (-0.38, 0.08) -0.16 (-0.36, 0.04) 

       

Cobalamin
h
 -0.02 (-0.13, 0.09) -0.01 (-0.11, 0.12) -0.01 (-0.12, 0.10) 0.11 (0.00, 0.22)* 0.01 (-0.14, 0.15) 0.23 (0.09, 0.37)** 

Cobalamin
i
 0.01 (-0.11, 0.13) 0.00 (-0.10, 0.09) 0.00 (-0.11, 0.11) 0.10 (-0.01, 0.21)

#
 0.00 (-0.14, 0.14) 0.19 (0.05, 0.33)** 

       

Choline
h
 0.39 (0.11, 0.66)** -0.11 (-0.36, 0.14) 0.17 (-0.09, 0.43) 0.35 (0.08, 0.62)* 0.01 (-0.34, 0.33) 0.28 (-0.06, 0.62) 

Choline
i
 0.37 (0.08, 0.66)* -0.10 (-0.34, 0.14) 0.17 (-0.09, 0.43) 0.28 (0.01, 0.54)* 0.00 (-0.33, 0.33) 0.22 (-0.12, 0.56) 

       

Betaine
h
 0.04 (-0.20, 0.27) 0.01 (-0.16, 0.18) -0.08 (-0.31, 0.15) 0.05 (-0.15, 0.25) 0.12 (-0.17, 0.42) -0.02 (-0.26, 0.22) 

Betaine
i
 0.17 (-0.05, 0.40) -0.02 (-0.17, 0.14) 0.06 (-0.14, 0.26) 0.17 (-0.01, 0.35)

#
 0.07 (-0.18, 0.32) 0.08 (-0.14, 0.31) 

       

Hcys
h
 -0.19 (-0.30, -0.07)** 0.00 (-0.16, 0.15) -0.15 (-0.29, -0.02)* -0.12 (-0.30, 0.05) 0.06 (-0.12, 0.23) 0.16 (-0.06, 0.38) 

Hcys
i
 -0.17 (-0.29, -0.05)** -0.01 (-0.15, 0.13) -0.14 (-0.27, -0.01)* -0.12 (-0.28, 0.05) 0.06 (-0.11, 0.23) 0.18 (-0.02, 0.39) 
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Abbreviations used: FACT, Folic Acid and Creatine Trial; H3K36me2, di-methylation at lysine 36 of histone H3; H3K36me3, tri-methylation at lysine 36 of 

histone H3; H3K79me2, di-methylation at lysine 79 of histone H3; Hcys, homocysteine; OCM, one-carbon metabolism; PTHM, posttranslational histone 

modification; RBC, red blood cell  

 
a
All models were adjusted for age, education, TV ownership, and log(bSe); for H3K36me3 and H3K79me2 in men, these models were additionally adjusted for 

cigarette smoking status 
b
n = 159, n = 122 for RBC folate models 

c
n = 159, n = 123 for RBC folate models 

d
n = 154, n = 121 for RBC folate models 

e
n = 152, n = 118 for RBC folate models 

f
n = 162, n = 124 for RBC folate models 

g
n = 159, n = 124 for RBC folate models 

h
All nutrients included simultaneously (RBC folate or plasma folate and cobalamin, choline, and Hcys); models for RBC folate included cobalamin, choline, and 

Hcys; models for plasma betaine included plasma folate, cobalamin, choline, and Hcys. All nutrients were natural log-transformed. 
i
Nutrient examined individually in models 

#
P < 0.10, *P < 0.05, **P < 0.01 
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Table S6. Baseline characteristics of FACT participants with PTHM measures at baseline in 400 µg FA and placebo groups 

 400 µg FA (n = 107) Placebo (n = 60)  

Characteristic Median (Range) Median (Range) P
a
 

Age (y) 38 (25-53) 38 (25-53) 0.29 

BMI (kg/m
2
)
b
 19.3 (13.9-27.0) 19.5 (15.4-31.6) 0.37 

RBC Folate (nmol/L)
c
 424 (148-3800) 472 (186-1159) 0.74 

Plasma Folate (nmol/L) 13 (3-120) 13 (3-33) 0.53 

Plasma Cobalamin (pmol/L) 213 (58-634) 220 (60-462) 0.76 

Plasma Choline (µmol/L) 11.0 (6.0-19.5) 10.9 (6.8-17.3) 0.86 

Plasma Betaine (µmol/L) 42.4 (14.3-85.6) 43.4 (14.6-81.2) 0.84 

Plasma Hcys (µmol/L) 11.4 (5.2-66.6) 11.7 (5.3-33.1) 0.77 

Blood Arsenic (µg/L) 8.4 (2.3-80.2) 8.7 (1.0-34.7) 0.83 

bSe (µg/L) 135 (91-195) 136 (90-197) 0.93 

uCr (mg/dL) 46 (6-233) 40 (6-121) 0.03 

H3K36me2
d
 (% of total H3) 1.48 (1.02-6.87) 1.56 (0.68-3.86) 0.61 

H3K36me3
e
 (% of total H3) 1.62 (0.48-6.00) 1.67 (0.80-4.16) 0.51 

H3K79me2
f
 (% of total H3) 1.20 (0.59-9.46) 1.16 (0.29-3.46) 0.18 

Folate Deficient (%)
g
 26.2 18.3 0.25 

Cobalamin Deficient (%)
h
 23.4 26.7 0.63 

HHcys (%)
i
 39.3 46.7 0.35 
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Male (%) 50.5 51.7 0.88 

Ever Smoker (%)
j
 28.6 31.7 0.68 

Education >5 y (%) 22.4 16.7 0.37 

Own TV (%) 42.1 40.0 0.80 

 

Abbreviations used: BMI, body mass index; bSe, blood selenium; FA, folic acid; FACT, Folic Acid and Creatine Trial; Hcys, 

homocysteine; HHcys, hyperhomocysteinemia; PTHM, posttranslational histone modification; RBC, red blood cell; uCr, urinary 

creatinine 

 
a
P was from Wilcoxon rank-sum test and Chi-square test for difference between 400 µg FA 

 and placebo groups for continuous and categorical variables, respectively 
b
n = 104 for 400 µg FA, n = 59 for Placebo group 

c
n = 103 for 400 µg FA group 

d
n = 105 for 400 µg FA, n = 56 for Placebo group 

e
n = 102 for 400 µg FA, n = 57 for Placebo group 

f
n = 106 for 400 µg FA, n = 60 for Placebo group 

g
Plasma folate <9 nmol/L 

h
Plasma cobalamin <151 pmol/L 

i
Plasma Hcys >13 µmol/L 

j
n = 104 for 400 µg FA 
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Figure S1. FACT design and sampling for current study. A) FACT design (primary outcome: 

blood arsenic). Bangladeshi adults (n = 622) who met eligibility criteria for the FACT study were 

randomized to five treatment arms: placebo, 400 µg folic acid (FA) per day, 800 µg FA per day, 

3 g creatine per day, and 3 g creatine + 400 µg FA per day. Participants also received arsenic-

removal water filters at baseline to reduce their exposure to arsenic-contaminated drinking water. 

The study duration was 24 weeks. At week 12, half of the participants in the FA treatment arms 

were switched to placebo for the duration of the study. The number of participants in each 

treatment group are shown. 12 participants were dropped from the study for various reasons 

which have been reported previously [1]. Therefore, a total of 610 participants were included in 

the primary analyses, which examined the effects of these nutritional interventions on blood 

arsenic concentrations; the main findings from this trial have been reported [1]. B) Participants 

selected for cross-sectional analyses (secondary outcome: posttranslational histone modifications 

(PTHMs)). Baseline-collected (i.e., pre-intervention) samples from 324 FACT participants were 

included in cross-sectional analyses for the current study, which examined associations between 

one-carbon metabolism (OCM) indices and global levels of PTHMs. All participants from the 

placebo and 400 µg FA/day treatment arms who had complete information for predictors (OCM 

indices), PTHMs, and potential confounders were included in these analyses (n = 75 for placebo 

group, n = 121 for 400 µg FA/day group); an additional 128 participants with complete 

information for all relevant variables were randomly selected from the remaining three treatment 

arms. The distribution of these participants are shown by treatment arm. C) Participants selected 

for examination of FA treatment effects on PTHMs (secondary outcome: PTHMs). Participants 

with PTHM measures at both time points of interest (baseline and week 12) were included in 

analyses for the current study to examine the effect of 400 µg FA/day (n = 107) vs placebo (n = 

60) for 12 weeks on PTHMs. Abbreviations used: FA, folic acid; FACT, Folic Acid and Creatine 

Trial; OCM, one-carbon metabolism; PTHM, posttranslational histone modification 
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B        H3K36me3 
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C       H3K79me2 
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Figure S2. Sex-specific associations between OCM indices and PTHMs in FACT participants 

with RBC folate measures. Estimated regression coefficients and 95% confidence intervals for 

associations between each OCM index and (A) H3K36me2, (B) H3K36me3, and (C) H3K79me2 

are shown separately by sex. The dashed line represents the null (β = 0). Associations with 

confidence intervals that do not cross the null are statistically significant (P < 0.05). Asterisks 

(**P < 0.01, ***P < 0.001) indicate sex differences with P-values calculated from the Wald test. 

OCM indices were natural log-transformed and were included simultaneously in models. Models 

were adjusted for age, education, TV ownership, and log(bSe). Analyses for H3K36me3 and 

H3K79me2 in men were additionally adjusted for cigarette smoking status. H3K36me2 was 

inverse-transformed and was modeled using a generalized linear model with an inverse-link 

function. H3K36me3 and H3K79me2 were natural log-transformed and were modeled using 

linear models. Sample sizes were as follows: H3K36me2: n = 122 for men, n = 123 for women; 

H3K36me3: n = 121 for men, n = 118 for women; H3K79me2: n = 125 for men, n = 124 for 

women. Abbreviations used: FACT; Folic Acid and Creatine Trial; H3K36me2, di-methylation 

at lysine 36 of histone H3; H3K36me3, tri-methylation at lysine 36 of histone H3; H3K79me2, 

di-methylation at lysine 79 of histone H3; Hcys, homocysteine; OCM, one-carbon metabolism; 

PTHM, posttranslational histone modification; RBC, red blood cell 
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CHAPTER EIGHT 

Conclusions and future directions 

A. Summary of main findings 

The overarching goal of this dissertation was to gain a better understanding of how 

nutrients involved in one-carbon metabolism (OCM) influence two mechanisms implicated in 

arsenic toxicity. The main objectives were 1) to examine the relationships between S-

adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), and arsenic metabolism, and the 

potential modifying effects of folate and cobalamin, two nutrients involved in the OCM pathway, 

and 2) to characterize the effects of arsenic and OCM indices on epigenetic modifications, with a 

particular focus on posttranslational histone modifications (PTHMs). Since susceptibility to 

arsenic toxicity differs by sex [1], we further investigated whether the effects of arsenic and 

OCM indices were sex-dependent. We tested these hypotheses using data from three 

epidemiological studies in arsenic-exposed Bangladeshi adults: the Folate and Oxidative Stress 

(FOX) study, the Folic Acid and Creatine Trial (FACT), and the Bangladesh Vitamin E and 

Selenium Trial (BEST). 

Chapter 3 (Specific Aims 1a and 1b). 

We hypothesized that 1) SAM would be associated with a ↓ proportion of inorganic 

arsenical species (%InAs) in blood and urine, 2) the associations between SAM and the 

proportions of monomethyl (%MMA) and dimethyl (%DMA) arsenical species in blood and 

urine would be modified by folate and cobalamin nutritional status, and 3) SAH would be 

associated with an arsenic metabolite profile indicative of reduced methylation capacity (i.e., 

↑%InAs, ↑%MMA, ↓%DMA in blood and urine). 
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Main findings from Chapter 3 (Specific Aims 1a and 1b). 

In Chapter 3, we observed that among FOX participants, blood SAM was negatively 

associated with the %InAs in urine, while the associations between SAM and the methylated 

arsenic metabolites (%MMA and %DMA) differed depending on folate and cobalamin 

nutritional status. Among individuals who were deficient for both folate and cobalamin, SAM 

was associated with an arsenic metabolite profile indicative of reduced methylation capacity (i.e., 

↑%MMA, ↓%DMA), which has been associated with cancers, cardiovascular disease, and other 

adverse health outcomes ([2-7] and reviewed in [8]). Since folate and cobalamin play important 

roles in the regeneration of SAM, these findings suggest that when folate and cobalamin 

concentrations are low, available SAM is used primarily for the synthesis of MMA, a toxic 

intermediate of arsenic metabolism, at the expense of DMA, a less toxic metabolite that is 

rapidly eliminated in urine. Although blood SAH was not associated with any of the arsenic 

metabolites, plasma homocysteine (Hcys) was associated with an arsenic metabolite profile 

indicative of reduced methylation capacity (↑%MMA, ↓%DMA), suggesting that plasma Hcys 

may be a better biomarker of hepatic SAH concentrations than blood SAH itself. This is 

consistent with a hypothesis by James et al. that Hcys is an “exportable form of SAH” [9]. To 

our knowledge, this is the first human study to examine the relationships between SAM, SAH, 

and arsenic metabolites.  

In Chapter 3, we also observed decreasing ratios of DMA to MMA concentrations in 

blood (µg/L) among individuals with increasing concentrations of blood InAs or MMA, 

suggesting that both InAs and MMA may inhibit the second arsenic methylation step (i.e., the 

methylation of MMA to DMA). While these findings are associative and do not establish 
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causality, they support previous experimental studies conducted in primary rat and human 

hepatocytes, which demonstrated that the production of methylated metabolites, particularly 

DMA, decrease with exposure to increasing concentrations of InAs [10], and in silico models, 

which predict that MMA inhibits its own methylation, likely via substrate inhibition (Michael 

Reed and Fred Nijhout, Duke University, personal communication). 

Collectively, these findings suggest that individuals deficient for both folate and 

cobalamin, and individuals exposed to higher concentrations of arsenic, have a reduced capacity 

to completely methylate InAs to DMA. Consequently, these individuals may be more susceptible 

to arsenic toxicity. 

Chapter 4. 

 In our early analyses of PTHMs, we identified a specific cleavage product of histone H3 

in human peripheral blood mononuclear cells (PBMCs). The objectives of this chapter were to 1) 

briefly describe and characterize this cleavage product, 2) determine the prevalence of H3 

cleavage among PBMC samples, and 3) evaluate the impact of H3 cleavage on the measurement 

of PTHMs located upstream vs. downstream of H3 cleavage sites. 

Main findings from Chapter 4. 

 In Chapter 4, we presented Western blots showing differential cleavage of histone H3 in 

a subset of human PBMC samples collected from FACT participants. Although H3 cleavage or 

“clipping” has been observed in many other species and in other human cell types (reviewed in 

[11-13]), this is the first study to describe H3 cleavage in human PBMCs. We observed extensive 

H3 cleavage in approximately one third of the PBMC samples examined. Furthermore, we 

demonstrated that PTHMs located downstream of published H3 cleavage sites [14], such as di-
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methylation at lysine 9 of histone H3, are reduced or non-detectable in samples with extensive 

cleavage. In contrast, PTHMs located upstream of cleavage sites, such as di-methylation at lysine 

36 of histone H3 (H3K36me2) and di-methylation at lysine 79 of histone H3 (H3K79me2), were 

not affected by H3 cleavage. 

 Currently, it is unclear if H3 cleavage is a biological or methodological phenomenon. A 

recent publication provides an in-depth description of the difficulties in distinguishing between 

histone degradation and biological histone “clipping” [11]. We did not observe that age, sex, 

nutritional status, cigarette smoking status, or most other general characteristics among FACT 

participants, were associated with the presence or absence of H3 cleavage in PBMCs. However, 

we did observe that H3 cleavage was significantly more prevalent among those who had ever 

chewed betel nut, a stimulant and established human carcinogen that is commonly used in parts 

of Asia, including Bangladesh [15]. Whether or not this relationship is causal merits additional 

investigation.  

Regardless of the underlying cause of H3 cleavage, our findings have important 

implications for molecular epidemiology studies. Moving forward, Western blot analysis can be 

used to screen banked or recently collected samples for histone cleavage to determine if it is 

appropriate to measure certain PTHMs. However, previous studies which did not screen for 

histone cleavage, and which measured potentially affected PTHMs, should be interpreted with 

caution.  

Chapter 5 (Specific Aims 2a and b). 

We hypothesized that arsenic exposure would be associated with global levels of three 

PTHMs located on histone H3: H3K36me2, H3K79me2, and tri-methylation at lysine 36 of 
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histone H3 (H3K36me3), measured in PBMCs collected from FACT participants. These PTHMs 

were selected because they are dysregulated in cancers [16-21] and influenced by arsenic and/or 

nutritional methyl donors in experimental models [22-25]. We also selected H3K36me2 and 

H3K79me2 based on our preliminary data on a) lysine demethylase 2B, a histone demethylase 

which targets H3K36me2, and on b) 5-hydroxymethylcytosine (5-hmC) [26], since H3K79me2 

has been shown to regulate the expression of TET1, one of the enzymes which converts 5-

methylcytosine (5-mC) to 5-hmC [27, 28]. Our candidate PTHMs are not affected by H3 

cleavage. Given that previous studies have observed sex-dependent effects of arsenic on DNA 

methylation [26, 29-31] and other PTHMs [32, 33], we further hypothesized that the associations 

between arsenic and our candidate PTHMs would differ by sex. We also hypothesized that 

PTHMs would be stable after the use of arsenic-removal water filters, since epigenetic 

dysregulation may be one mechanism contributing to the persistent cancer risks observed in 

populations that were previously exposed to arsenic [34]. 

Main findings of Chapter 5 (Specific Aims 2a and b). 

In Chapter 5, we observed that the associations between creatinine-adjusted urinary 

arsenic (uAsCr) and H3K36me2 differed significantly by sex. Arsenic exposure was positively 

associated with global levels of H3K36me2 among men, but not women. Our findings support 

several previous epidemiological and experimental studies, which have also observed sex-

dependent effects of arsenic on epigenetic modifications [26, 29-33], including PTHMs [32, 33]. 

In particular, these findings parallel our previous observation that arsenic exposure is positively 

associated with global levels of 5-mC among Bangladeshi men, but not women [26]. Since 5-mC 

and PTHMs are highly interrelated [35, 36], and since PTHMs are thought to be more labile than 

5-mC [35], alterations in H3K36me2 may mediate the sex-dependent effects of arsenic on 5-mC. 
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This has potential public health implications, as DNA hypomethylation has been associated with 

an increased risk of developing arsenic-induced skin lesions [37]. Therefore, the potential 

mediating effects of H3K36me2 and other PTHMs should be examined in future studies. 

In Chapter 5 we also observed that H3K36me2 declined simultaneously with the use of 

arsenic-removal water filters. However, in sex-stratified analyses, this was observed among both 

men and women and only achieved statistical significance among women. Since we did not have 

a comparison group that did not receive arsenic-removal water filters, we cannot rule out the 

possibility that the decline in H3K36me2 was caused by extrinsic factors. The potential 

reversibility of arsenic-induced alterations in PTHMs, and downstream epigenetic marks such as 

DNA methylation, will need to be evaluated in future studies. This is a largely understudied 

research area that is important for understanding the contribution of epigenetic dysregulation to 

arsenic-induced health outcomes. 

Importantly, we did not observe associations between arsenic exposure and either 

H3K36me3 or H3K79me2, nor did we observe alterations in these marks as a consequence of 

arsenic-removal, suggesting that arsenic exposure does not perturb these PTHMs in PBMCs. 

However, we cannot rule out the possibility that arsenic exposure may influence these PTHMs in 

other target tissues. 

Chapter 6 (Specific Aim 2c). 

We hypothesized that uAsCr would be associated with gene-specific DNA methylation 

and mRNA expression, measured in whole blood and PBMCs, respectively, collected from 

Bangladeshi adults with arsenicosis. Based on our prior research, we were interested in genes 

involved in pathways implicated in arsenic toxicity, including OCM, arsenic metabolism, 
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epigenetic regulation, DNA repair, and tumor suppression [38-43]. We selected a total of 47 

relevant candidate genes. Since previous studies have observed sex-dependent effects of arsenic 

on several epigenetic marks [26, 29-33], we further hypothesized that these associations would 

differ by sex. 

Main findings of Chapter 6 (Specific Aim 2c). 

 In Chapter 6, we observed that uAsCr was associated with the differential methylation 

and expression of several genes involved in OCM, epigenetic regulation, DNA repair, and tumor 

suppression/oncogenesis. Although our findings generally supported previous studies which 

evaluated many of the same genes, we identified several novel associations. In particular, we 

observed differential methylation or expression of several genes involved in the OCM pathway, 

including MTHFR, GAMT, and GNMT, which had not previously been examined in relation to 

arsenic exposure. 

 To our knowledge this was the first large (n = 1799) human study to examine the 

relationships between arsenic exposure and gene expression separately in men and women. 

Similar to a previous small human study (n = 29) [44], we observed many sex differences. These 

findings support our observations from Chapter 5 and the findings of previous studies [26, 29-

33], which demonstrated that arsenic exposure is associated with epigenetic modifications, 

including both DNA methylation and PTHMs, in a sex-dependent manner. For many outcomes, 

susceptibility to arsenic toxicity has been shown to differ by sex [1]. Sex-specific alterations in 

epigenetic modifications, and corresponding changes in gene expression, may be one mechanism 

contributing to this. 
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Chapter 7 (Specific Aims 3a and 3b). 

 We hypothesized that OCM indices, including folate, cobalamin, choline, and betaine 

would be associated with higher global levels of histone methylation marks, while Hcys would 

be inversely associated with these marks. We additionally hypothesized that folic acid (FA) 

supplementation would increase global levels of certain histone methylation marks, since lysine 

histone methyltransferases are SAM-dependent enzymes, and several previous studies have 

observed that global levels of histone methylation marks are increased by FA or reduced by 

folate deficiency [23, 24, 45, 46]. Since arsenic has been shown to alter PTHMs in a sex-

dependent manner [32, 33], and circulating concentrations of OCM indices differ by sex [47, 48], 

we further hypothesized that these relationships would differ for men and women. 

Main findings of Chapter 7 (Specific Aims 3a and 3b). 

 In Chapter 7, we observed sex-dependent associations between several OCM indices and 

PTHMs. In particular, the associations between choline and H3K36me2, and between cobalamin 

and H3K79me2, differed significantly between men and women. Positive associations were 

observed between choline and H3K36me2 among men and between cobalamin and H3K79me2 

among women. However, 400 µg FA per day for 12 weeks did not significantly influence any of 

the PTHMs examined; this finding was consistent with cross-sectional analyses, which did not 

find that plasma folate was associated with PTHMs in either men or women. Although our 

findings suggest that FA does not alter PTHMs, we cannot rule out the possibility that a higher 

dose or a longer duration may alter these PTHMs. It is also possible that other PTHMs, or 

PTHMs in other target tissues, may have been affected by this dose of FA for 12 weeks.  
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Nutritional methyl donors have been shown to protect against toxicant-induced epigenetic 

dysregulation. For example, one study in mice demonstrated that methyl donor supplementation 

prevents DNA hypomethylation caused by in utero exposure to bisphenol A [49]. Folate and 

hyperhomocysteinemia have also been shown to modify associations between arsenic and global 

levels of DNA methylation in human populations [26, 50]. Nutritional methyl donors may also 

protect against or modify arsenic-induced alterations in global PTHMs. However, a more in 

depth understanding of the effects of nutritional methyl donors on individual PTHMs is needed. 

Our findings suggest that FA supplementation, at a dose based on the recommended dietary 

allowance for folate, does not alter global levels of H3K36me2, H3K36me3, or H3K79me2 in 

PBMCs. However, choline and cobalamin may influence these PTHMs, and in a sex-dependent 

manner. To rule out potential reverse causality, the effects of these nutrients on PTHMs will 

need to be confirmed in prospective studies.  

 

B. Future directions 

Although our findings begin to fill some of the many gaps in the literature, they also 

highlight areas that require additional research. In particular, there is a need for studies which 1) 

examine the relationships between blood SAM and SAH concentrations with their respective 

concentrations in the liver, 2) evaluate the causes and consequences of histone cleavage, 3) 

investigate the impact of arsenic-induced alterations in epigenetic modifications on health and 

disease, and 4) examine the potential role of PTHMs in mediating arsenic-induced alterations in 

5-mC and 5-hmC. The latter can be more fully examined in the near future, as global 5-mC and 

5-hmC levels have been measured in samples collected from the FACT study and are currently 
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being analyzed in relation to arsenic exposure. Other possible future directions are outlined 

below. 

1. New and complementary approaches 

Combining multiplex laboratory techniques with cluster analysis 

Until recently, large epidemiological studies were limited to measuring individual 

PTHMs. However, multiplex assays are now available which allow for the simultaneous 

measurement of PTHMs, and in a relatively high throughput capacity. Since it is the combination 

of PTHMs which ultimately influences chromatin structure, these methods may improve the 

ability to use PTHMs as biomarkers. Future studies can combine multiplex assays with cluster 

analysis to group individuals according to their overall epigenetic profile. For example, multiple 

PTHM measures could be combined with 5-mC and 5-hmC measures. This overall epigenetic 

profile could then be examined in relation to environmental exposures, such as arsenic, and 

related health outcomes. Similar methods have been used previously to predict cancer prognosis 

based on PTHM profiles (e.g., see [51]). 

Gene-specific approaches 

Although our findings contribute to growing evidence that arsenic and OCM indices alter 

global levels of PTHMs in a sex-dependent manner [32, 33], there is a dearth of information on 

their impacts at the gene-specific level, particularly in humans. This is largely due to the expense 

of available laboratory methods. However, as these methods become more affordable, they will 

be critical for better understanding the functional consequences of alterations in global PTHMs. 

In particular, ChIP-seq, which combines chromatin immunoprecipitation with next generation 

sequencing, and ATAC-seq, which maps transposase-accessible chromatin [52], can be used 
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such that arsenic exposure and OCM indices can be examined in relation to PTHM levels within 

particular genes and also in relation to the overall chromatin landscape. 

Mathematical models 

Our group has previously used mathematical models of the OCM pathway to successfully 

predict the effect of FA supplementation on blood arsenic concentrations [53]. Recently, DNA 

methyltransferases have been incorporated into these models [54]. As we learn more about the 

properties and kinetics of enzymes involved in PTHM regulation (e.g., [55-57]), this information 

can be incorporated into similar mathematical models to make predictions about how 

perturbations in the OCM pathway might affect certain PTHMs. These models could then be 

used to inform the selection of nutrients, doses, and candidate PTHMs to examine in future 

studies. 

2. Discerning the role of exposure timing 

Our studies provide compelling evidence that arsenic is associated with PTHMs, DNA 

methylation, and gene expression in a sex-dependent manner in adults. However, early life 

exposure to arsenic may have more profound effects on epigenetic modifications. The perinatal 

period is thought to be particularly vulnerable to epigenetic dysregulation [58], and there is 

evidence that individuals are more susceptible to arsenic toxicity after early life exposure. For 

example, while most animal models do not develop cancers after exposure to arsenic in 

adulthood, in utero exposure to arsenic induces tumor development in adult mice, and in a sex-

dependent manner [59]. There is also evidence from human populations that the risk of 

developing cancers and other adverse health outcomes is greater after in utero or early life 

exposure to arsenic [60-62]. However, for some outcomes postnatal exposure to arsenic may be 
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more important than prenatal exposure. For example, one study observed that early childhood, 

but not prenatal, exposure to arsenic was associated with a lower attained body weight and length 

among girls [63].  

Few studies have evaluated the importance of exposure timing on arsenic-induced 

epigenetic dysregulation. One possibility would be to take advantage of a unique study, nested 

within the Health Effects of Arsenic Longitudinal Study (HEALS) cohort, consisting of 

adolescents (14-17.5 years) with four different arsenic exposure patterns: 1) low lifetime 

exposure (water arsenic <10 µg/L), 2) moderate lifetime exposure (10 µg/L< water arsenic <50 

µg/L), 3) high lifetime exposure (water arsenic ≥50  µg/L), and 4) high perinatal exposure (water 

arsenic ≥50 µg/L), but moderate exposure thereafter (water arsenic <50 µg/L). PBMCs have 

been collected from these adolescents. Thus, epigenetic marks and gene expression can be 

examined in relation to these four distinct lifetime exposure patterns to ascertain the contribution 

of early life exposure to arsenic. Animal studies, which can easily control the timing of exposure, 

can also complement epidemiological studies, such that the contributions of pre- vs. postnatal, or 

early vs. late life, exposure to arsenic can be evaluated in relation to epigenetic outcomes. 

3. Mechanistic studies of sex differences 

The mechanisms underlying the sex-dependent effects of arsenic on epigenetics remain 

largely unknown. In epidemiological studies, it is difficult to distinguish between the 

contributions of biological sex vs. gender. While it is important to understand the gender-related 

factors which contribute to sex differences (e.g., differences in co-exposures, such as UV 

radiation and cigarette smoke), it is also essential to understand the contributions of biological 

sex. Although animal models of arsenic toxicity have important limitations, they offer many 
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advantages for studying the role of biological sex. One particularly well-suited model is the four 

core genotype mouse model (Figure 1), which distinguishes between gonadal vs. genetic 

contributions to biological sex differences [64].  

 

 

Figure 1. Four core genotype mouse model. This model dissociates genetic sex from gonadal 

sex. This is accomplished by creating two additional “sex” genotypes by deleting the gene 

responsible for testis development (Sry) from the Y chromosome in male animals (XY) and 

inserting an Sry transgene in an autosome in female animals (XX). The result is four core 

genotypes (clockwise from top left): 1) genetically female animals (XX) without the Sry gene, 

which develop ovaries (purple), 2) genetically male animals (XY) without the Sry gene, which 

develop ovaries (red), 3) genetically female animals (XX) with the Sry transgene, which develop 

testes (green), and 4) genetically male (XY) animals with the Sry gene, which develop testes 

(blue). Genetic contributions to sex differences can then be determined by comparing animals 

with the same gonads but with different genotypes (e.g., purple compared with red or green 

compared with blue). Gonadal contributions to sex differences can be determined by comparing 

animals with the same genotype but with different gonads (e.g., purple compared with green or 

red compared with blue). Figure adapted from McCarthy et al. [65]. 
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The effects of arsenic exposure and nutritional interventions on epigenetic modifications, 

gene expression, and tumor development could be examined in this model to better understand 

how sex-related genes and/or hormones modify these relationships. Better understanding these 

mechanisms will be important for developing public health interventions which effectively 

reduce disease burden among both men and women in arsenic-exposed populations. 

 

C. Conclusions 

Collectively, the studies presented in this dissertation provide evidence that 1) 

deficiencies in folate and cobalamin, and exposure to high arsenic concentrations, reduce arsenic 

methylation capacity, and 2) arsenic and OCM indices influence PTHMs in a sex-dependent 

manner. This dissertation also presents the first data demonstrating sex-specific associations 

between arsenic exposure and gene expression in a large human study and the first evidence 

from a randomized clinical trial that FA supplementation for 12 weeks, at a dose based on the 

recommended dietary allowance for folate, does not alter global levels of PTHMs in human 

PBMCs.  

Since arsenic metabolism facilitates urinary arsenic excretion, our data suggest that 

individuals who are deficient for folate and cobalamin, and individuals exposed to higher 

concentrations of arsenic, may be particularly susceptible to arsenic toxicity. Our findings also 

suggest that both arsenic exposure and nutrients involved in the OCM pathway influence PTHMs 

in a sex-dependent manner, and that arsenic additionally alters gene-specific DNA methylation 

and mRNA expression differentially by sex. While it is tempting to speculate that these findings 

may explain some of the sex differences in susceptibility to arsenic toxicity, the clinical 

implications of these epigenetic alterations will require further investigation. Nevertheless, our 
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findings contribute to a growing body of evidence that arsenic and OCM indices influence 

epigenetic modifications, including PTHMs, and that these effects may differ by sex. Our 

findings are timely, given the recent initiative by the National Institutes of Health to better 

understand biological sex differences, with the hope that this will reduce inconsistencies between 

studies and generate findings that will ultimately lead to improvements in health among both 

men and women [66]. 
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