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ABSTRACT

Pricing Models in the Presence of Informational and

Social Externalities

Davide Crapis

This thesis studies three game theoretic models of pricing, in which a seller is interested in optimally

pricing and allocating her product or service to a market of agents, in order to maximize her revenue.

These markets feature a large number of self-interested agents, who are generally heterogeneous

with respect to some payoff relevant feature, e.g., willingness to pay when agents are consumers or

private cost when agents are firms. Agents strategically interact with one another, and their actions

affect other agents’ payoffs, either directly through social influence or competition, or indirectly

through a review system. The seller has demand uncertainty and strives to optimize expected

discounted revenues. I use either a mean-field approximation or a continuum of agents assumption

to reduce the complexity of the problems and provide crisp characterizations of system aggregates

and equilibrium policies.

Chapter 2 considers the problem of an information provider who sells information products, such

as demand forecasts, to a market of firms that compete with one another in a downstream market.

We propose a general model that subsumes both price and quantity competition as special cases.

We characterize the optimal selling strategy and find that it depends on both mode and intensity of

competition. Several important extensions to heterogeneous production costs, information quality

discrimination, and information leakage through aggregate actions are studied.

Chapter 3 considers the problem of optimally extracting a stream of revenues from a sequence

of consumers, who have heterogeneous willingness to pay and uncertainty about the quality of the

product being sold. Using an intuitive maximum likelihood procedure, we characterize the solution

of consumers’ quality estimation problem. Then, we use a mean-field approximation to characterize



the transient dynamics of quality estimates and demand. These allow us to simplify and solve the

monopolist’s problem, and ultimately provide a characterization of her optimal pricing policy.

Chapter 4 considers the problem of a seller who is interested in dynamically pricing her product

when consumers’ utility is influenced by the mass of consumers that have purchased in the past.

Two scenarios are studied, one in which the monopolist has commitment power and one in which she

does not. We characterize the optimal selling strategy under both scenarios and derive comparisons

on equilibrium prices and demands. Our main result is a characterization of the value of price

commitment as a function of the social influence level in the market.
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Chapter 1

Introduction

Pricing and revenue optimization is a growing and expanding area in the field of operations research.

It comprises a set of models and tools that allow a seller, business or individual, to scientifically

approach the problem of setting prices, which is the interface between her product or service and

the market. Initially developed to solve the classic problems of airline, hotel, and retail pricing,

these models have recently evolved to address novel questions that arise in the internet economy

where there is a constant release of information about product characteristics and consumer prefer-

ences and choices. New areas of application include high-frequency auction mechanisms in on-line

advertising, customized pricing, and more broadly dynamic pricing in online markets. Recent ad-

vances in mobile technologies, opened yet another novel and promising area of application which is

pricing in two-sided markets. In these types of markets there is usually a company that sets prices,

or provides prices recommendation to sellers, and the exchange happens between independent buy-

ers and sellers on the platform. In this context pricing is the mean of both demand and supply

management. New models that will be developed will likely build on the latter set of models on

dynamic pricing in online markets, to which part of this thesis contributes.1

Microeconomics is a discipline that starts by modeling the behavior of individual agents who

interact in a market, and builds up to make statements and predictions about aggregate economic

1For an overview of this field and a treatment of its typical problems see Talluri and van Ryzin [2005] and Phillips
[2005].
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outcomes. Game theory is the subset of models that deal with situations in which agents strate-

gically interact, i.e., situations in which the actions of an agent directly affect the payoff of other

agents. For example, a monopolistic seller changing her present or future price, or two firms who

compete by lowering their prices in order to attract more demand. Game theoretic models have

been applied extensively in recent years to online markets. On the practical side, algorithmic game

theory drives most of the online advertising industry. On the theoretical side, games of incomplete

information and games with a large number of agents have been a prominent area of research,

because they allow to understand drivers and outcomes of agents’ decision in online markets. In

particular, performing mean-field approximations or building models with a continuum of agents

are common practices that dramatically simplify the analysis. These models abstract from reality

since they imply that a single agent has a negligible impact on other agents’ payoffs, however they

are very powerful because of their computational tractability and they allow to draw insightful

predictions about system behavior in large and complex markets. Finally, I would argue that these

models are plausible for studying online markets, where there are many agents and their individual

impact on system aggregate is small.

This thesis draws tools from and strives to contribute to the literature in both game theoretic

models and revenue optimization. Although the three problems being studied are different in nature,

there are at least few common themes that characterize all the models in this thesis that is worth

emphasizing. There is a seller that interacts with a large market of agents, consumers or other

businesses, and seeks to optimally allocate and/or price its product or service. Agents’ payoffs are

affected by the actions of other agents, either directly through social externalities or competition,

or indirectly through some information release mechanism. Agents’ heterogeneity, and the ability

of the seller to optimize over it, plays a key role in determining optimal pricing and equilibrium

strategies. Finally, we always use either a mean-field approximation or a continuum of agents

assumption to reduce aggregate uncertainty and generate crisp insights on the structure of optimal

policies for the seller. In the remainder of this chapter I provide a more detailed introduction to

the content of each chapter.

Chapter 2 is motivated by the growing interest in markets for information and studies the
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problem of optimal sale of information, such as demand forecasts, to a set of competing firms.

We show that the nature and intensity of competition among the information provider’s potential

customers have a first-order impact on her optimal selling strategy and profits. More specifically, our

analysis illustrates that the value the provider can extract from her customers is largely determined

by the trade-off between (i) the direct (positive) effect that more precise information has on their

profit as it enables them to make more informed decisions and (ii) the strategic effects that may

arise due to the fact that the information provider’s customers may interact with one another in

other markets. We present our findings in an environment that features a monopolistic information

provider who can sell informative signals to a set of firms that compete with one another in a

downstream market. We find that, when firms compete by setting prices, it is always optimal for

the information provider to sell her most informative signal to the entire market of firms. This

is a consequence of the fact that in this case firms’ actions are strategic complements. On the

other hand, when firms compete by setting quantities, it might be optimal for the provider to

sell to a smaller fraction of firms at higher prices. Moreover, we find that in the presence of cost

heterogeneity, if the providers excludes some firms from the sale, she always chooses the most

inefficient firms. An important extension is the scenario in which private information can leak

though aggregate actions, in this case we characterize the impact of the intensity of leakage on the

provider’s equilibrium strategy and profits.

Taken together, our findings provide a step towards understanding the intricacies involved in

markets for information. Unlike traditional markets for physical goods, it is relatively inexpensive to

offer a diverse menu of information products that differ in their precision and pricing. Our results

highlight that the value that a given buyer can extract from procuring such products depends

not only on the product’s characteristics (such as its price and precision), but also on the seller’s

market share and the environment in which her customers interact. Our modeling framework

provides several qualitative insights in how an information provider may optimally incorporate the

characteristics of such strategic interactions into her selling strategy.

Chapter 3 is motivated by the widespread adoption of online review systems by consumers in

a number of industries, online retail, food and hospitality to name a few. We study the optimal
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pricing problem of a monopolist that launches a product for sale to a stream of consumers that

arrive on the market with heterogeneous willingness to pay and are uncertain about the product

quality. Upon purchasing the product, consumers leave a binary like/dislike review based on their

experienced utility net of price. Future consumers use the public review information in order to

form a quality estimate and make their purchase decision. Our first result is a characterization of

the quality estimate of consumers. We propose an intuitive maximum likelihood procedure that

consumers use to make inference about the product quality from the observed amount of likes

and dislikes. First, we characterize the maximum-likelihood estimator and study its asymptotic

properties. Then, we characterize the learning transient based on a mean-field approximation.

Finally, we solve for the pricing policy that maximizes the seller’s discounted revenue.

This chapter strives to contribute in three ways. First, in terms of modeling, by specifying a

social learning environment that tries to capture aspects of online reviews as well as the possible

bounded rationality of consumers. Second, by proposing a tractable methodological framework,

based on mean-field approximations, to study the learning dynamics and related price optimization

questions in the presence of social learning. This approach is flexible and applicable in other related

settings where the microstructure of the learning process and nature of information are different.

Third, in addressing some of the pricing questions faced by revenue maximizing sellers in such

settings.

Chapter 4 is motivated by the empirically observed fact that, in markets where consumers are

connected and can observe the adoption patterns of other consumers, the popularity and appeal of

products depends on the mass of consumers that purchase in the early stages of the product life-

cycle. We study the problem of a seller that offers a product for sale to a large market of consumers

and can set different prices for two periods, an introductory period and a mature period. Consumers

are heterogeneous in their private valuation for the product and their overall willingness to pay is

affected by the mass of consumers that purchased before them. Two different scenarios are studied,

one in which the seller has commitment power and one in which she does not.

We find that the optimal price path is generally increasing, i.e., the seller offers a lower price in

the introductory period and a higher price in the mature period. Moreover, equilibrium prices vary
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with the level of social influence in the market, and can be very different depending on whether the

seller has commitment power or not. We characterize the equilibrium thresholds that consumers use

to make purchase decisions based on their private valuations, and we find that, under both scenarios,

these thresholds are such that the consumers with lower valuations never buy the product when

the social influence level is low and everybody buys when the social influence level is high. The

most important result provides a characterization of the value of price commitment as a function

of the social influence level.



Chapter 2

Information Sale and Competition

2.1 Introduction

Recent advances in information technology have streamlined the process of mining, aggregating,

and processing high volume data about economic activity. Arguably, it is widely believed that the

availability of more accurate information about the business environment and market conditions

can be hugely beneficial to firms across a wide variety of industries. For example, in a cross-industry

study, Brynjolfsson et al. [2011] document that firms that emphasize data-driven decision making

and invest heavily in information technology outperform their peers by a wide margin.

Such a realization has in turn led to a sizable demand for Business-to-Business information

services. Several firms ranging from Nielsen N.V. to Thomson-Reuters and IRI Worldwide have

built their business models around collecting, customizing, and selling information products to

other market participants. For example, the market research firm IRI Woldwide offers its clients a

variety of consumer, shopper, and retail market analyses focused on the consumer packaged goods

industry, whereas the Economist Intelligence Unit sells industry-wide market analysis reports.1

1IRI offers an array of information products at different price points. For example, the Basic “Market Advantage
Solution” includes a summary of industry sales and a detailed analysis of pricing strategies employed by a firm’s
competitors. The Premium “Market Advantage Solution”, on the other hand, provides a more in-depth analysis of
sales and competitors’ pricing strategies along with more specialized analytics services. The Basic product is priced
around $10,000 whereas the price for the Premium offering can range between $100,000 and $500,000. Similarly, the
Economist Intelligence Unit offers several information products for a variety of industries. For example, their basic
product for telecommunications industry provides a general overview of the industry and is priced at $205, whereas
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We present our main findings in the context of an environment that involves a monopolistic

information provider who can sell potentially informative signals to a collection of firms that com-

pete with one another in a downstream market. More specifically, we assume that the customer

firms face demand uncertainty and that the provider is endowed with a private signal that is (par-

tially) informative about the actual demand realization, thus creating potential gains from trade.

Crucially for our argument — and in line with the observation that many real-world information

providers offer a variety of information products of varying qualities — we allow for a setting in

which the provider can offer information products that are potentially less precise than her private

information. In other words, the provider can potentially distort the informativeness of the signal

at her disposal by reducing its accuracy.

As our main result, we show that the optimal selling strategy of the provider is largely dependent

on the nature and intensity of competition among its potential customers in the downstream market.

More specifically, we first show that when firms engage in price competition (Bertrand), the provider

finds it optimal to sell her signal with no distortion to the entire set of firms. This is due to the

fact that in a Bertrand market, firms’ actions are strategic complements and hence, each firm’s

marginal benefit of procuring a more accurate signal is increasing in the fraction of its competitors

that purchase the provider’s information product. Therefore, the provider would obtain maximal

profits by flooding the market with highly precise signals.

The situation, however, can be dramatically different if the information provider’s customers

compete with one another in quantities (Cournot). For such a downstream market, we show

that the provider may no longer find it optimal to sell an undistorted version of her signal to

all firms. Rather, she may find it optimal to either (i) reduce the quality of her information

product by selling a signal of a lower precision than the one she possesses; (ii) strategically limit

her market share by excluding a subset of its customers from the sale; or finally (iii) employ both

strategies simultaneously by reducing the quality and quantity of the products offered. This is

due to the fact that in a Cournot market, firms’ actions are strategic substitutes, which leads to

a more specialized report that includes finer information on network and pricing strategies costs $2,950. They also
offer customized reports at prices that are negotiated on a case-by-case basis.
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the emergence of two opposing effects. On the one hand, obtaining additional information about

demand directly benefits firms as they can better align their production decisions with underlying

market conditions. On the other hand, however, the provider’s signal can also serve as a correlating

device among its customers’ equilibrium actions. In particular, providing the information product

to an extra firm can only increase the correlation in the firms’ production decisions, an outcome

that reduces each firm’s profit and hence, can adversely affect the provider’s bottom line. Therefore,

when downstream competition is intense enough (for example, when firms’ products are sufficiently

substitutable), this latter, strategic channel would dominate the positive effect of reducing demand

uncertainty, implying that the information provider would be better off by restricting the quantity

and/or quality of the information products that it offers its customers. Interestingly, unlike in

Bertrand competition, the provider’s profits in a Cournot market are decreasing in the intensity

of competition and may end up being significantly lower than in the absence of any competition

among the downstream firms.

Finally, we discuss a number of extensions to our benchmark setup. First, we let the provider

offer a menu of information products with potentially different precisions and at different prices. We

provide an explicit characterization of the optimal selling strategy as a function of the nature and

intensity of competition. We show that when firms compete in quantities and offer substitutable

products, there is a continuum of selling strategies that lead to the same equilibrium profits for

the provider. In addition, we explore the implications of firm heterogeneity for the provider’s

selling strategy. More precisely, we consider a setting in which firms differ in their production

costs and show that it is optimal for the provider to sell higher precision information products (at

higher prices) to the more efficient firms, i.e., the optimal menu features information products with

precisions that are decreasing in the firms’ production costs.

Taken together, these findings provide a step towards understanding the intricacies involved in

markets for information. Unlike traditional markets for physical goods, it is relatively inexpensive to

offer a diverse menu of information products that differ in their precision and pricing. Our results

highlight that the value that a given buyer can extract from procuring such products depends

not only on the product’s characteristics (such as its price and precision), but also on the seller’s
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market share and the environment in which her customers interact. Our modeling framework

provides several qualitative insights in how an information provider may optimally incorporate the

characteristics of such strategic interactions into her selling strategy.

2.1.1 Related literature

Our paper is related to the extensive literature that studies firms’ strategic considerations in sharing

information with one another in oligopolistic markets. For example, Vives [1984], Gal-Or [1985], Li

[1985], and Raith [1996] provide conditions under which firms find it optimal to share their private

information about market conditions with their competitors.

Relatedly, a more recent collection of papers, such as Li [2002], Li and Zhang [2008], Shin and

Tunca [2010], Shamir [2012], Ha and Tong [2008], Ha et al. [2011] and Shang et al. [forthcoming],

studies information sharing incentives in vertical supply chains. For instance, Shamir and Shin

[2013] determine conditions under which firms can credibly share their demand forecasts with one

another, whereas Cui et al. [forthcoming] provide a theoretical and empirical assessment of the

value of information sharing in two-stage supply chains. This literature, for the most part, focuses

on firms’ information sharing strategies according to which each firm decides whether or not to

disclose its information in full to other firms. In contrast, we consider a setting in which a third-

party decides not only the price but also the accuracy of the information product(s) she makes

available to a set of competing firms. This allows for richer equilibrium outcomes that highlight

the interplay between the nature of competition, the optimal selling strategy, and the profits for

the information provider.

Our work is also related to the growing theoretical literature on the social and equilibrium

value of public information. Morris and Shin [2002] illustrate that public disclosure of informa-

tion regarding a payoff-relevant parameter may adversely affect social welfare as it may crowd out

agents’ reliance on their private information. Angeletos and Pavan [2007] extend this framework

and provide a complete taxonomy of conditions under which private and public signals are effi-

ciently utilized in equilibrium. Relatedly, Bergemann and Morris [2013] study games of incomplete

information with the goal of providing equilibrium predictions that are robust to all possible in-
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formation structures. Their analysis illustrates that information disclosure policies that involve a

partial sharing of a firm’s private information may lead to higher equilibrium payoffs.

The question of optimal sale of information has also been studied in the context of trading

in financial markets. For example, Admati and Pfleiderer [1990] consider a monopolistic seller of

information interacting with a set of traders. They argue that if market prices aggregate agents’

private signals, agents may find it optimal to free-ride on the information revealed via prices (as

opposed to purchasing signals from the seller), thus diluting the equilibrium value of information.

In contrast, our paper focuses on a different type of inter-firm strategic interaction, as firms in our

framework cannot free-ride on the information generated by the actions of other firms.

Finally, our work is related to the more recent work of Bergemann and Bonatti [forthcoming],

who explore selling information in the form of cookies in the context of online advertising as well

as Xiang and Sarvary [2013] who consider a market for information with competition on both

the demand and supply sides of the market. In a similar application context, Babaioff et al.

[2012] study the design of optimal mechanisms for a data provider to sell information to a single

buyer and provide conditions under which a single round of communication is sufficient for profit

maximization.

Outline of the Paper: The rest of the paper is organized as follows. Section 2.2 contains the

model and shows that our framework nests Bertrand and Cournot competition as special cases.

We provide a characterization of the equilibrium in Section 2.3, where we show that the nature of

downstream competition has a first-order impact on the monopolist’s optimal information selling

strategy. In Section 2.4, we generalize our setting by allowing the monopolist to discriminate both

on prices and on the quality of information offered to its customers. In Section 2.5 we allow for

some degree of information leakage through aggregate actions and study the effect of leakage on

the seller’s equilibrium strategy and profits. Section 2.6 and Section 2.7 present two extensions, for

the case of heterogeneous firm and for the discrete version of our model with a finite number of

firms. Section 2.8 concludes. All the proofs are presented in the Appendix.
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2.2 Model

Firms: Consider an economy consisting of a unit mass of firms indexed by i ∈ [0, 1] that compete

with one another in a downstream market. Each firm i takes an action ai ∈ R in order to maximize

its profit

π(ai, A, θ) = γ0aiθ + γ1aiA−
γ2

2
a2
i , (2.1)

where A =

∫ 1

0
aidi denotes the aggregate action taken by the firms, θ ∈ R is an unknown payoff-

relevant parameter, and {γ0, γ1, γ2} are some exogenously given constants. Depending on the

context, action ai may represent the quantity sold or the price set by firm i. As we will show in

Subsection 2.2.2, the above framework nests Cournot and Bertrand competitions as special cases.

For the time being, however, we find it more convenient to work with the general setup above

without taking a specific position on the mode of competition.

The unknown parameter θ is randomly drawn by nature before firms choose their actions. As we

will discuss in the following subsections, this parameter can represent the intercept of the (inverse)

demand curve in the downstream market. All firms hold a common prior belief on θ, which for

simplicity we assume to be the (improper) uniform distribution over the real line.2 Even though

firms do not know the realization of θ, each firm i observes a noisy private signal

xi = θ + εi , εi ∼ N(0, 1/κx),

with κx capturing the signals’ precision. The noise terms εi are independently distributed across

firms.

Given firm i’s profit function in (2.1), we let

β = − ∂2π

∂a∂A
/
∂2π

∂a2
=
γ1

γ2
, (2.2)

2More formally, suppose that θ is distributed according to a Gaussian distribution with mean 0 and variance σθ.
By letting σθ → ∞, we obtain a distribution with full support over (−∞,∞) that, in the limit, assigns the same
probability to all intervals of identical Lebesgue measures.
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denote the degree of strategic complementarity in firms’ actions. Note that β > 0 corresponds to an

economy in which firms’ actions are strategic complements: the benefit of taking a higher action to

firm i increases the higher the actions of other firms are. In contrast, when β < 0, firms face a game

of strategic substitutes, where i’s incentives for taking a higher action decrease with the aggregate

action A. Finally, β = 0 corresponds to a market in which firms face no strategic interactions.

Throughout the paper, we assume that γ2 > max{2γ1, 0}. This assumption, which implies

that β ∈ (−∞, 1/2), is made to guarantee that firm i’s profit is strictly concave in ai and that i’s

marginal profit is more sensitive to its own action ai than to the aggregate action A.

Information Provider: In addition to the competing firms, the economy contains a monopolist

who possesses some private information about the realization of the unknown parameter θ that it

can potentially sell to the firms before they take their actions. The provider has access to a private

signal z with precision κz given by

z = θ + ζ , ζ ∼ N(0, 1/κz),

where the noise term ζ is independent of εi’s. Given that our main focus is on the market for

information, we assume that this signal has no intrinsic value to the provider and that she can only

benefit from the signal by selling it to the firms.

The key feature of our model is that the provider has control over both the “quantity” and

“quality” of information sold to the firms: the information provider not only chooses the set of firms

I ⊆ [0, 1] that she decides to trade with, but can also choose the precision of the signal offered to

the firms. More specifically, she offers a signal

si = z + ξi , ξi ∼ N(0, 1/κξ),

to firm i ∈ I at price pi, where ξi is independent from z and 1/κξ captures the variance of the

noise introduced by the provider into si. This specification thus captures the idea that the provider

can control the quality of the information sold to the firms: by choosing a smaller κξ, the provider
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can “damage” the signals offered to the firms.3 Throughout the paper, we refer to si as the market

signal sold to firm i.

In general, the noise added to different firms’ signals by the provider may be correlated with

one another. To capture this idea formally, we assume that in addition to their precision κξ,

the provider can also determine the correlation between different firms’ market signals by setting

ρξ = corr(ξi, ξj) ∈ [0, 1]. Our specification thus accommodates situations in which the information

provider offers identical or conditionally independent signals to any subset of the firms as special

cases.

Putting the above together, the market signal si offered to firm i ∈ I can be rewritten as

si = θ + ηi , ηi ∼ N(0, 1/κs) and corr(ηi, ηj) = ρ,

where κs = (1/κz + 1/κξ)
−1 is the signal’s precision and ρ = (κξ + ρξκz)/(κξ + κz). Note that

by construction, signals sold by the provider cannot be more precise than the information she

possesses; that is, κs ≤ κz.

We remark that given firms’ ex ante symmetry, we can assume, without loss of generality, that

I = [0, λ], where λ ∈ [0, 1] captures the fraction of firms that the information provider decides to

trade with. Also note that even though we assume that the seller chooses the fraction of firms

she wants to trade with before offering them her information products, as we show in Section 2.4,

our setting is isomorphic to an environment in which the provider announces the features of her

product(s) — i.e., price and precision — and firms subsequently decide whether to purchase the

products.

Finally, with some abuse of terminology, we refer to the firms who purchase the market signal

si as informed firms, whereas firms that were denied the signal or decided not to purchase it from

the information provider are simply referred to as being uninformed.

3Note that in our baseline setting, the provider offers a signal of the same precision to all firms i ∈ I; that is,
κξ is independent of i. We relax this assumption in Section 2.4 and show that all our insights are robust to this
assumption.
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2.2.1 Contracts and Equilibrium

Once the seller’s and the firms’ private signals are realized, the former has the option to sell

potentially informative signals about θ to the latter. To capture this idea formally, we assume that

the information provider makes a take-it-or-leave it offer (κξ, pi, ρξ) to a fraction λ of the firms,

where κξ captures the quality of the market signal offered to firm i and pi is the corresponding

firm-specific price.

Following the seller’s offer, each firm i ∈ [0, λ] then decides whether to accept (bi = 1) or reject

(bi = 0) its corresponding offer. This stage is then followed by the competition subgame between

the firms in which they choose their actions ai. Note that whereas the strategy of an uninformed

firm i is a mapping from its private signal xi to an action, the strategy of an informed firm maps

the pair (xi, si) to an action.

Given this setup, we have the following natural solution concept:

Definition 2.2.1. An equilibrium consists of a fraction λ of firms that receive an offer, a set of

individual prices {pi}i∈[0,λ], market signal precision κξ and correlation ρξ chosen by the information

provider, acceptance/rejection decisions bi ∈ {0, 1} for each firm, and firm-specific strategies such

that:

(i) The information provider maximizes her profits.

(ii) Firm i ∈ [0, λ] accepts the provider’s offer only if it is individually rational to do so, taking

the acceptance/rejection decisions of other firms as given.

(iii) Once the provider’s offers are accepted or rejected, the firms’ actions constitute a Bayes-Nash

equilibrium of the competition subgame.

2.2.2 Examples

As already mentioned, Cournot and Bertrand competition can be derived as special cases of our

general framework above. This feature of the model enables us to provide a comparison of the

optimal information selling strategies in markets with different modes and intensities of competition.
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The following simple examples illustrate how in the presence of linear demand functions, various

forms of competition can induce quadratic profit functions in the form of Equation (2.1). We will

use these examples in the subsequent sections to discuss the implications of our results for the

optimal trading strategies of the information provider.

Example 2.2.1 (Cournot competition). Consider a market in which firms sell a possibly differen-

tiated product to a downstream market and compete by setting quantities. Firm i faces an inverse

demand function given by

ri = γ0θ − (1− δ)Q− δqi, (2.3)

where qi is the quantity sold by firm i, Q =
∫ 1

0 qidi is the aggregate quantity sold to the downstream

market, and θ captures the intercept of the (inverse) demand curve. In this setting, δ ∈ [0, 1]

represents the degree of product differentiation among firms, as a smaller δ corresponds to a more

homogenous set of products.4 Assuming that firms’ marginal cost of production is zero, it is then

immediate that their profit function πi = riqi is simply a special case of our framework in (2.1),

with action ai representing the quantity sold by firm i.

Note that in this environment, the degree of strategic complementarity defined in (2.2) is equal

to β = (δ − 1)/2δ < 0, thus implying that firms face a game of strategic substitutes. Parameter

β also captures the intensity of competition between the firms. In particular, given that β is

increasing in δ, a larger β corresponds to a market in which products are more differentiated. In

the extreme case that β → 0, the products are no longer substitutes and each firm essentially

becomes a monopolist in its own market. At the other extreme, as β → −∞, the products become

perfect substitutes and the oligopoly converges to a perfectly competitive market.

Example 2.2.2 (Bertrand competition). Next, consider a market in which firms compete in prices

and face a linear demand function given by

qi = γ0θ + (φ− 1)R− φri,

4See Myatt and Wallace [2015] for microfoundations for this demand system.
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where ri is the price set by firm i and R =
∫ 1

0 ridi is the average price in the market. Note that

this demand system can be obtained by inverting (2.3) and setting φ = 1/δ > 1. Once again,

it is immediate that firm i’s profit function πi = riqi would coincide with (2.1), where action ai

now represents the price set by firm i. Furthermore, it is straightforward to verify that, in this

environment, β = (φ − 1)/2φ > 0, thus implying that the competition game between the firms

exhibits strategic complementarities, the degree of which is increasing in φ.

Example 2.2.3. Once again consider the Cournot competition setting described in Example 2.2.1,

but instead suppose that firms produce homogeneous products, i.e., δ = 0, and have quadratic

production costs given by c(qi) = q2
i /2. The profit of firm i is then given by

π(qi, Q, θ) = γ0qiθ − qiQ−
1

2
q2
i ,

which again fits within our general framework.

We conclude this section by remarking that even though, for the sake of tractability and expo-

sition, we focus on an environment consisting of a continuum of firms, as we show in Subsection

2.7, our results and qualitative insights carry over to a setting with finitely many firms.

2.3 Optimal Sale of Information

In this section, we present our main results and characterize the information provider’s optimal

information selling strategy. Our results show that the seller’s strategy is highly sensitive to the

mode and intensity of competition in the downstream market as expressed by β.

2.3.1 Competition Subgame

We start our analysis by studying the equilibrium in the competition subgame between the firms

once the contracts offered by the information provider are accepted or rejected. Without loss of

generality, let [0, `] denote the set of firms who accept the seller’s offer, where, clearly, ` ≤ λ. Our

first result generalizes the results of Angeletos and Pavan [2007] and provides a characterization of
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the firms’ equilibrium strategies in the competition subgame.

Proposition 2.3.1. The competition subgame between the firms has a unique Bayes-Nash equilib-

rium in linear strategies. Furthermore, the equilibrium strategies of the firms are given by

ai =


α[(1− ω)xi + ωsi] if i ∈ [0, `]

αxi if i ∈ [`, 1]

,

where

ω =
κs

(1− β`ρ)κx + κs

and α = γ0/(γ2 − γ1).

Proposition 2.3.1 states that the equilibrium action of an informed firm is a weighted sum of its

original private signal and the signal it obtains from the information provider. More importantly,

however, it shows that the weights firm i assigns to its two signals not only depend on their relative

precisions, but also on the fraction of informed firms, `, as well as correlation ρ in the market

signals. In particular, the equilibrium weight that each informed firm assigns to the market signal

si is increasing in the degree of strategic complementarities β, regardless of the values of ρ and

`.5 This is due to the fact that in the presence of stronger strategic complementarities, firms have

stronger incentives to coordinate with one another, and as a result, rely more heavily on their

market signals, which can function as (imperfect) coordination devices. On the other hand, in

the absence of strategic considerations (i.e., when β = 0), the optimal strategy of all firms would

be independent of ` and ρ, making the weight assigned to each signal proportional to its relative

precision.

Relatedly, Proposition 2.3.1 also establishes that for a given positive (negative) β, the equilib-

rium weight that informed firms assign to their market signals is increasing (decreasing) in ` and

5Recall that ρ ≥ 0.



CHAPTER 2. INFORMATION SALE AND COMPETITION 18

ρ. To see the intuition underlying this observation, suppose that β > 0.6 In such an economy,

firms face a game of strategic complements, as for example would be the case if they compete à la

Bertrand as in Example 2.2.2. Given that firms value coordinating their actions with one another,

a given informed firm i assigns a higher weight to its market signal — above and beyond what its

relative precision would justify — the more other firms base their own decisions on the signal sold

by the information provider (i.e., higher `) and the more informative si is about the signals of other

firms (i.e., higher ρ).

With Proposition 2.3.1 at hand, in the remainder of this section, we turn to the the seller’s

problem and characterize her optimal information selling strategy as a function of the mode and

intensity of competition in the downstream market. In order to present our results in the most

transparent manner, we study Bertrand and Cournot competition separately.

2.3.2 Bertrand Competition

First, consider the case in which firms compete with one another à la Bertrand. As already

mentioned in Example 2.2.2, such a market corresponds to a special case of our general framework

with β > 0. Also, recall that the information provider needs to choose the fraction of firms with

whom she trades (λ), the precision of the signal offered to the firms (κs) and the correlation induced

in the noise terms (ρξ). We have the following result:

Proposition 2.3.2. If β > 0, the information provider sells her signal without any distortions to

all firms; that is, κ∗s = κz and λ∗ = 1. Furthermore, the provider’s expected profit is given by

Π∗ = α2
(γ2

2

)(κz
κx

)
κz + κx

[(1− β)κx + κz]2
. (2.4)

The above result thus establishes that under Bertrand competition, it is always optimal for the

provider to sell her signal z to the entire set of firms without any additional noise. To understand

the intuition underlying this result, recall that in a Bertrand market, the firms’ actions are strategic

complements: setting a lower price becomes more attractive the lower the prices of other competing

6The argument for β < 0 is identical.
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firms are. Such strategic complementarities induce a strong coordination motive among the firms.

Therefore, providing the market signal to an additional marginal firm, not only increases the profits

of the seller directly (via sales to that new marginal firm), but also increases the surplus of all other

firms who have already acquired the signal. This extra surplus can thus be appropriated by the

seller via higher prices, leading to even higher profits. Consequently, the information provider

always finds it optimal to sell to the entire market of firms. An identical argument then shows

that the provider would not distort the signal either: sharing a more precise signal with a new firm

increases the value of the market signal to the rest of the informed firms.

Proposition 2.3.2 also characterizes the expected profit of the seller. From (2.4), it is easy to

verify that Π∗ is increasing in the quality of information available to the monopolist (κz), but

is decreasing in the precision of the firms’ private signals (κx). The intuition underlying these

observations is simple. Given that the information provider always has the option to reduce the

precision of the signals it offers to the firms, her profits can never decrease by having access to a

more precise signal. On the other hand, however, the extra benefit of the market signal to the firms

is lower the more informed they are to begin with, thus reducing the provider’s expected profits.

More importantly, however, (2.4) also shows that the monopolist’s expected profit increases

in the degree of strategic complementarities β. Recall from Example 2.2.2 that β = (φ − 1)/2φ,

where 1/φ = δ is the degree of product differentiation among the firms. Therefore, increasing

β is essentially equivalent to a lower degree of product differentiation, and hence, more intense

competition. Thus, as β increases, coordination becomes more important to the firms, increasing

the value of the seller’s signal which in turn leads to higher expected profits.

As a final remark, note that since it is never optimal for the information provider to add noise

to the signals, the correlation ρξ = corr(ξi, ξj) is immaterial for her profits.

2.3.3 Cournot Competition

We next focus on the case in which firms compete with one another à la Cournot. Recall from

Example 2.2.1 that such a market is a special case of our general setup with β < 0. In this case,

firms choose quantities and their actions are strategic substitutes. Note that, unlike the case of
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Bertrand competition, firms no longer value coordination per se. The following two propositions

provide a characterization of the optimal information selling strategy of the monopolist as a function

of the degree of strategic substitutability among the actions of downstream firms.

Proposition 2.3.3. If −(1+κz/κx) ≤ β < 0, the information provider sells her signal without any

distortions to all firms; that is, κ∗s = κz and λ∗ = 1. Furthermore, the provider’s expected profit is

given by

Π∗ = α2
(γ2

2

)(κz
κx

)
κz + κx

[(1− β)κx + κz]2
. (2.5)

Thus, in a Cournot market with a weak enough intensity of competition, the seller finds it

optimal to follow the same strategy as in a Bertrand market: sell an undistorted version of her

signal to the entire set of firms. The intuition underlying this result is straightforward: acquiring

information about the demand intercept (θ) allows each firm i to better match its supply decision

to the underlying demand and as a consequence, to increase its profit. The monopolist can then

appropriate the increase in i’s sales by demanding a higher price in exchange for the signal. There-

fore, the provider is always better off by making the most precise version of her signal available to

all firms i.

Even though the seller follows the same strategy as in the Bertrand market, comparing expres-

sions (2.4) and (2.5) implies that her expected profit is lower under Cournot competition (β < 0).

This is due to the fact that unlike Bertrand competition, firms do not have an incentive to coordinate

their actions, undermining the role of the market signal as a coordination device.

Interestingly, the predictions of Propositions 2.3.2 and 2.3.3 no longer hold if the intensity at

which downstream firms compete with one another in a Cournot market is high. We have the

following result:

Proposition 2.3.4. If β < −(1 + κz/κx), the information provider maximizes her expected profit

by following any information selling strategy that is a solution to the following equation:

(κz + βλ∗κ∗s)κx + κzκ
∗
s = 0. (2.6)
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Furthermore, her expected profit is given by

Π∗ = −α2
(γ2

2

) κz
4βκ2

x

. (2.7)

The key observation here is that the pair κ∗s = κz and λ∗ = 1 does not satisfy (2.6), leading to

the following corollary:

Corollary 2.3.1. Suppose that β < −(1 + κz/κx). Then, either κ∗s < κz or λ∗ < 1.

Therefore, when firms compete with one another à la Cournot and offer goods that are strong

substitutes — corresponding to a large enough negative β — it is optimal for the seller to distort

the information (κ∗s < κz) and/or exclude a fraction of the firms from the sale (λ∗ < 1).

To see the intuition underlying the above result, recall that in a Cournot market, firms’ actions

are strategic substitutes, i.e., increasing a firm’s supply leads to higher marginal profit the lower

the supply decisions of its competitors are. Therefore, providing the market signal to an additional

firm i affects its profit through two distinct channel. On the one hand, a more precise market signal

enables i to better match its supply to the realized demand. On the other hand, however, making

such a signal available to i increases the correlation in the firms’ actions, as now i’s action would

be more correlated with the market parameter θ. The presence of this second effect implies that

the strategic value of the seller’s signal to firm i and consequently i’s willingness to pay for it are

decreasing in the fraction of firms that accept the provider’s offer. When the competition among the

firms is sufficiently intense (i.e., the goods they offer are sufficiently substitutable), this strategic

effect would dominate the first effect, thus making it profitable for the information provider to

restrict her offer to a strict subset of the firms (λ∗ < 1).

By Proposition 2.3.4, an alternative optimal strategy for the monopolist would be to distort

the information she sells to the market. In fact, as Equation (2.6) suggests, the fraction λ of

the firms that the monopolist trades with and the precision κs of the signal offered to the firms

are substitutes: as the monopolist increases her market share, she finds it optimal to increasingly

distort the signals.

Note that the information provider’s expected profit decreases in the degree of strategic substi-
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Figure 2.1: Optimal selling strategy for different levels of β (left); Equilibrium profit as a function
of β (right). We use the following set of parameters for this example: α = γ2 = 1 for the firms’
payoff functions and κx = 1, κz = 2 for the signal precisions of the firms’ private signals and the
provider’s information respectively.

tutability (|β|) of the firms’ actions. This is a consequence of the fact that the strategic value of the

seller’s signal and consequently a firm’s willingness to pay for it decrease as the market becomes

more competitive. This is in contrast with the case of Bertrand competition where the seller’s

expected profit increases with the intensity of competition among the firms as they have a stronger

incentive to purchase the market signal and coordinate their actions.

We also remark that regardless of the value of β and the strategy adopted by the information

provider, she never has an incentive to introduce correlation into market signals, i.e., it is always

optimal to set ρ∗ξ = 0. Increasing the correlation in the signals provided to downstream firms would

invariably increase the correlation among their actions and lead to lower profits for the seller.

Finally, note that the threshold − (1 + κz/κx) at which the seller finds it optimal to limit her

market share and/or strategically distort the market signal is decreasing in the ratio κz/κx, implying

that the more informed the information provider is relative to her customers, the more likely it is

that she will be able to fully exploit her informational advantage by selling it to the entire market

of firms without distortion.

Figure 2.1 illustrates the optimal selling strategy and the equilibrium profit of the information

provider for the following set of parameters: α = γ2 = 1, κx = 1, and κz = 2. It turns out that

for these parameters the threshold at which the seller finds it optimal to strategically distort the
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β = 0 β = −3 β = −5 β = −10 β = −20

Π∗
β

/
Π∗

0 1 .250 .150 .075 .038

Πno-dist
β

/
Π∗

0 1 .250 .141 .053 .017

Increase in Profits (%) 0% 0% 6.67% 40.83% 120.42%

Table 2.1: Comparing profits under the optimal information selling strategy with selling the
provider’s signal undistorted to the entire market.

market signal is equal to −3. Note that as the left plot highlights for values of β greater than the

threshold, the provider sets the precision of the market signal to κ∗s = 2, i.e., she does not distort

the information she has at her disposal, and does not exclude any firms from the sale (λ∗ = 1).

On the other hand, for values of β lower than the threshold, the seller finds it optimal to distort

the information she provides to the market and limit her market share (in particular, her optimal

selling strategy is given by Equation (2.6)). The right plot illustrates how the provider’s profit

varies with the intensity of competition. Note that the seller is always better off when firms view

their actions as strategic complements (β > 0) as opposed to strategic substitutes.

We conclude this section by exploring the extent to which an information provider can increase

her profits by strategically distorting the information she provides to her downstream customers

and/or limiting her market share. In Table 2.1 we compare the profits for a provider that optimally

sells her information to the firms (Π∗β) with the profits for a provider that sells the information she

has at her disposal as is to the entire market (Πno-dist
β ). We benchmark Π∗β and Πno-dist

β against the

profits for a provider that follows her optimal strategy in the absence of competition, i.e., when

β = 0. The first two rows of the table clearly highlight the effect of intensifying the competition

among the firms on the providers’s profits. Furthermore and quite importantly, as we report in the

third row of the table the provider earns significantly higher profits under competition when she

distorts her market signal and/or limits her market share — the increase in her profits by following

the optimal strategy characterized in Proposition 2.3.4 ranges from 6.67% to 120.42% as the extent

to which firms view their actions as strategic substitutes increases.
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2.4 Information Quality Discrimination

In our baseline model presented in Section 2.2 and analyzed in Section 2.3, we assumed that the

information provider can only offer a single product to the entire market, in the sense that she

offers a market signal of the same precision to all firms. In this section, we relax this assumption

by allowing the seller to offer signals that potentially differ in both price and precision. Formally,

the information provider makes a take-it-or-leave-it offer to each firm i ∈ [0, 1], specifying the

signal precision κsi and price pi. Note that as in our earlier setting, the seller cannot offer a signal

of a higher precision than her own private signal, that is, κsi ≤ κz for all i. Furthermore, it is

immediate to verify that the baseline model of Section 2.2 is a special case of this more general

model, as the monopolist can simply exclude firm i by either charging pi = ∞ or providing a

completely uninformative signal with precision κsi = 0. The following result, which generalizes

Propositions 2.3.2–2.3.4, shows that all our earlier insights remain valid under this more general

specification.

Proposition 2.4.1. The optimal information selling strategy for the information provider is given

as follows:

(a) If β ≥ −(1 + κz/κx), the information provider offers an undistorted version of her signal to

all firms at price

p∗ = α2
(γ2

2

)(κz
κx

)
κz + κx

[(1− β)κx + κz]2
.

(b) If β < −(1 + κz/κx), the information provider offers a market signal of precision κ∗si to firm

i at price p∗i , where {κ∗si}i∈[0,1] solve

∫ 1

0

κ∗si
κx + κ∗si

di = − κz
βκx

(2.8)
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and

p∗i = α2
(γ2

2

) κ∗si
4κx(κx + κ∗si)

. (2.9)

Statement (a) of the above result shows that the information provider offers an undistorted

version of her signal to all firms in the downstream market if either they compete à la Bertrand,

or alternatively, if the intensity of the Cournot competition is not strong enough. In this sense,

this result generalizes Propositions 2.3.2 and 2.3.3, establishing that the seller has no incentive to

discriminate among the firms in either price or information quality.

Statement (b) of Proposition 2.4.1 considers the setting in which firms’ actions are strong

strategic substitutes, for example, when they compete à la Cournot and produce goods that are

highly substitutable. Consistent with the discussion in Subsection 2.3.3, this result shows that the

information provider finds it optimal to either distort the signals sold to the downstream firms or

strategically restrict her market share. In particular, it is easy to verify that κ∗si = κz for all i

does not satisfy the optimality condition (2.8). The intuition underlying this result parallels those

behind Proposition 2.3.4 and Corollary 2.3.1: providing high quality signals to all firms increases

the induced correlation in their actions, which in turn reduces their profit when their actions are

strong strategic substitutes. Thus, the monopolist would be better off by limiting its market share

or reducing the quality of the signals sold to the firms. Note, however, that the optimal strategy

of the information provider is not unique. Rather, any signal precision profile {κ∗si} that satisfies

(2.8) would lead to the same expected profit. Nevertheless, irrespective of the strategy chosen by

the monopolist, her incentive to lower the precision of the market signals increases as firms’ actions

become stronger strategic substitutes. In particular, as β → −∞, the downside of coordination

among firms that trade with the monopolist is so strong that essentially no trade takes place in

equilibrium: the information provider offers a completely uninformative signal κ∗si → 0 to all firms

at price p∗i → 0.

Example 2.4.1 (Selling two products). Consider a Cournot market in which β < −(1 + κz/κx).

Suppose that the information provider can offer two distinct information products: a premium
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product of precision κ̄s at price p̄ and an inferior product of precision κs < κ̄s at price p. Let λ̄

and λ denote the fraction of firms offered the premium and inferior products, respectively, where

by construction λ̄ + λ ≤ 1. Condition (2.8) implies that it is optimal for the seller to design her

information products such that

λ̄

(
κ̄s

κx + κ̄s

)
+ λ

(
κs

κx + κs

)
= − κz

βκx
.

The above equation highlights the trade-off between information quality and quantity faced by the

information provider in designing her menu of products. In particular, increasing the precision κ̄s

of the premium product requires either a reduction in its supply λ̄, or alternatively, a reduction in

the precision or the supply of the inferior product.

Note that, by selling a premium product the information provider is placing the well-informed

firms at an advantage vis-à-vis their less-informed competitors. This enables her to charge the

former set of firms a higher price. In fact, as equation (2.9) highlights, p̄ > p.

We end this discussion by remarking that the ability to discriminate on information quality does

not offer the seller any advantage compared to our benchmark model of Sections 2.2 and 2.3. In

particular, equation (2.8) always has a solution such that κsi = κs for a fraction λ of the firms and

κsi = 0 for the rest. In other words, offering two information products, one with non-zero precision

at a strictly positive price and another with zero precision at zero price, is sufficient for the seller

to maximize her expected profit.

2.5 Information Leakage

Firms’ actions typically reflect the payoff-relevant information they have at their disposal. Thus,

a seller of information may need to take into account the dilution in the value of information to

the competing firms due to its leakage through their actions. This section explores an extension of

our benchmark setting that directly incorporates information leakage through the firms’ actions.

In particular, in addition to its private and market signals xi and si, respectively, firm i also has

access to signal Si which centered around the aggregate action that is in the market. The precision
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of this signal about the aggregate action can be viewed as a measure of information leakage.

To illustrate clearly the effect leakage on the information provider’s optimal selling strategy

and profits, we focus on equilibria in which all firms purchase the provider’s information, i.e.,

λ = 1. Note that this is without loss of generality since there always exists a profit maximizing

selling strategy that induces such equilibrium behavior. Moreover, we assume that ρξ = 0, i.e.,

the provider sells information signals that are independent conditional on the realization of state θ

(this is, again, without any loss of generality as we establish in Section 2.3). Thus, the information

provider optimizes over the precision κs of her information product. Moreover, in addition to signals

xi and si, firm i observes signal Si that takes the following form

Si = A+ νi , νi ∼ N(0, 1/κν),

where the noise terms νi’s are independently distributed across firms and the precision κν measures

the extent of information leakage in the market. In particular, when κν = ∞ then signal Si is

perfectly informative of the aggregate action A whereas when κν = 0 then Si does not convey

any payoff-relevant information to firm i, i.e., there is no information leakage, and the setting is

equivalent to our benchmark model.

We extend the firms’ strategy space by allowing them to condition their actions on firm Si.

In particular, firms specify a supply function that depends on the information they have at their

disposal, i.e., signals xi, si, and Si. In other words, firm i’s action is a map from the signal

space to the space of supply functions, i.e., a function ai(xi, si, Si), as opposed to a scalar as in

our benchmark model.7 Given the strategies of all firms i ∈ [0, 1] the aggregate action satisfies

A =

∫ 1

0
a(xi, si, Si) di. The equation has a unique solution for a linear-quadratic framework with

Gaussian noise. We denote the unique solution by Â
(
{a(xi, si, Si)}i∈[0,1]

)
.8 The profit of firm i for

7Our approach builds on Vives [2011] that studies competition among firms that possess private payoff-relevant
information. Using supply functions and having firms condition on a (potentially noisy) signal about the aggregate
action, allows us to directly incorporate information leakage into our benchmark model and study how the provider’s
optimal selling strategy and profits vary as a function of the extent of leakage in a market.

8This solution, which we characterize in the proof of Proposition 2.5.1, depends on state θ, the provider’s noise ζ,
and the coefficients of the firm’s equilibrium strategies.
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any given realization of signals is given as

πi = γ0a(xi, si, Si)θ + γ1a(xi, si, Si)A−
γ2

2
a(xi, si, Si)

2,

where Si = A + νi and A = Â
(
{a(xj , sj , Si)}j∈[0,1]

)
. Given signals (xi, si, Si), firm i determines

its equilibrium strategy ai = a(xi, si, Si) so as maximizes its expected profit E[πi|xi, si, Si] in the

competition subgame, taking the strategies of other firms as given.

The following proposition summarizes our findings regarding the effect of information leakage

on the provider’s optimal selling strategy and equilibrium profits.

Proposition 2.5.1. Let Π∗ denote the equilibrium profits of the information provider in the pres-

ence of leakage. For sufficiently small κν , we obtain that

(a)
∂Π∗

∂κν
< 0 for all β ∈ (−∞, 1/2).

(b) There exists −(1 + κz/κx) < β̄ < 0 such that κ∗s < κz for all β ∈
[
− (1 + κz/κx), β̄

)
.

Part (a) of Proposition 2.5.1 establishes that the monopolist’s equilibrium profits decrease in

the presence of information leakage. This is true regardless of the value of β, i.e., whether actions

are strategic complements or substitutes (Bertrand or Cournot competition). As one would expect,

when firms are able to (partially) infer their competitors’ information by observing a signal about

their aggregate action, the value of the provider’s information decreases and, thus, her profits go

down.

More importantly, part (b) of Proposition 2.5.1 establishes that the range of β’s for which the

information provider finds it optimal to distort her information in the presence of leakage is wider

than when firms determine their actions based solely on signals xi and si. The provider’s incentives

to distort the information she sells to the downstream market grow stronger as her ability to extract

surplus from the firms when increasing the precision of signal si is hindered by information leakage.

That said, even in the presence of leakage, distorting her information is never optimal when firms’s

actions are strategic complements, i.e., as in Bertrand competition. 9

9Note that this does not imply that the optimal selling strategy is the same as in the absence of leakage. In
particular, the provided is forced to sell her information at a lower price.
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Figure 2.2: The provider’s equilibrium profits (left) and her optimal selling strategy (right) as
functions of β for different levels of information leakage. We use the following set of parameters for
this example: α = γ2 = 1 for the firms’ payoff functions and κx = 1, κz = 2 for the signal precisions
of the firms’ private signals and the provider’s information respectively. We plot the provider’s
profits and the precision of the signal she sells to the downstream market (κ∗s) as a function of β
for three levels of information leakage κν = 0 (no leakage), κν = 1, and κν = 10.

Figure 2.2 illustrates the equilibrium profits and the provider’s optimal selling strategy for

different levels of leakage. As can be clearly seen in the left plot shows the provider’s profits are

decreasing in the level of information leakage in the market irrespective of the value of β. The right

plot explores the impact of leakage on the provider’s optimal selling strategy. In particular, she

finds it optimal to distort the information she sells to the downstream market for a wider range of

β’s than in the absence of leakage. In addition and as already mention above, distortion is never

optimal in the presence of strategic complementarities (β > 0) irrespective of the level of leakage.

Table 2.2 presents our numerical solutions for different level of leakage at different values of

β. We report both the equilibrium profits and the optimal precision in three different scenarios,

our baseline where there is no leakage (κν = 0) as well as two scenarios with low and high leakage

intensity respectively. These allow us to appreciate how severely leakage decreases the equilibrium

profits. In particular, comparing the equilibrium profits when the level of leakage is high to the

equilibrium profits in the absence of leakage, we see that at β = 1/3 the equilibrium profit with high

leakage is only 5% of the corresponding profit when there is no leakage. Moreover, when β < 0 the

negative effect of leakage on profits is more severe the higher the level of strategic substitutability,
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Leakage Level β = −4 β = −3 β = −2 β = −1 β = 0 β = 1/3

κν = 0 .0625 .0833 .1200 .1875 .3333 .4218

Equilibrium Profits κν = 1 .0082 .0014 .0189 .0420 .1134 .1606

κν = 10 .0002 .0003 .0005 .0008 .0050 .0209

κν = 0 1 2 2 2 2 2

Optimal Precision κν = 1 .40 .65 2 2 2 2

κν = 10 .08 .12 .16 .36 2 2

Table 2.2: Equilibrium profit and optimal precision for different levels of information leakage.

when β = −4 we see that the equilibrium profits under high leakage are extremely low, less than

.5% of the corresponding profits in the absence of leakage. Moreover, the second part of the table

highlights the impact on information leakage on the optimal selling strategy when β is negative,

for example, when β = −2 it is optimal to sell a signal with full precision when leakage is absent

or low, but when leakage is high the seller dramatically decreases the signal precision to only 8%

of her best signal precision.

2.6 Heterogeneous Firms

Our analysis thus far focused on an environment consisting of a continuum of homogenous firms.

In this section, we discuss how our results are affected by introducing heterogeneity among the

firms (in terms of their production costs). Once again, consider the environment presented in

Example 2.2.1, where firms compete with one another in quantities. We generalize this setting

in two dimensions, by (i) allowing heterogeneity in firms’ production costs and (ii) introducing a

transaction cost borne by the information provider whenever she trades with a downstream firm.

More specifically, we assume that downstream firms are heterogeneous with respect to their

costs of production: firm i faces a quadratic production cost of Ci(qi) = ciq
2
i /2, where qi is the

quantity produced by i and ci > 0. The firm’s profit is thus given by

πi(qi, Q, θ) = γ0qiθ + γ1qiQ−
1

2
ciq

2
i , (2.10)
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where Q denotes the aggregate quantity in the market and γ1 < 0 is some constant. Note that even

though the above expression is similar to (2.1), the extent of strategic complementarities can no

longer be captured by a single parameter β, as now firms face potentially heterogeneous production

costs.

As for transaction costs, we assume that the seller incurs a cost equal to vκsi whenever she sells

a signal of precision κsi to firm i, where v > 0. This cost can, for example, capture the idea that

the firm cannot provide verifiable and/or credible information to its customers at no cost. Rather,

it needs to spend resources to ensure its customer that the market signal is indeed as informative as

claimed. Alternatively, it can be thought of as the cost associated with customizing the provider’s

information to meet the customer’s informational needs. As in Section 2.4, we allow the seller to

discriminate along both signal precision and price. We have the following result:

Proposition 2.6.1. There exist v > v such that

(a) if v > v, the information provider does not transact with any of the firms; that is, κ∗si = 0 for

all i.

(b) if v < v, the information provider sells her signal with no distortion to all firms; that is,

κ∗si = κz for all i.

(c) For any v ∈ (v, v), then there exist c∗ such that

κ∗si =


0 if ci > c∗

κz if ci <
κ2x

(κx+κz)2
c∗

κx

(√
c∗/ci − 1

)
otherwise.

.

The above result thus establishes that the information provider finds it optimal to follow an

information selling strategy that involves offering a signal to firm i with a precision that is decreasing

in the firm’s cost ci, i.e., the provider sells higher quality signals to more efficient firms. Formally,

κ∗si is always non-increasing in ci. However, note that this does not mean that the monopolist sells

her best available information to all firms, even when transactions are costless. Rather, due to the
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presence of strategic interactions between downstream firms (and in line with our earlier results),

the provider may either sell distorted signals to some firms or simply even exclude them by offering

non-informative signals κ∗si = 0 altogether. Thus, Proposition 2.6.1 generalizes Propositions 2.3.4

and 2.4.1 to the case in which firms face heterogeneous production costs.

We end this discussion by remarking that, depending on the parameter values, the threshold

v in the above result may be negative, thus ruling out the case in which the information provider

sells an undistorted signal to all firms. In fact, as the proof of the proposition highlights, v < 0

whenever

∫ 1

0

1

ci
di < − 1

γ1
(1 + κz/κx),

which reduces to the condition of Proposition 2.3.4 when firms face identical production costs.

2.6.1 Cost dispersion and optimal information selling strategy

This subsection considers a setting in which the firms that compete in the downstream market can

be of one of two types that differ in their production costs. In particular, type i ∈ {1, 2} firms have

production costs that take the form Ci(qi) = ciq
2
i /2 and the two types have equal mass. We let

1

c1
=

1

c
+ δ and

1

c2
=

1

c
− δ,

for some δ > 0. Note that since the two types have equal mass, c is equal to the average cost

coefficient in the market and δ can be viewed as a measure of dispersion in costs. The following

proposition characterizes the effect of increasing the dispersion (increasing δ) on the optimal selling

strategy.

Proposition 2.6.2. Let κ∗s1 and κ∗s2 be the optimal signal precisions offered to firms of type 1 and

type 2. Then, for any δ < 1
/ (
c
√

2
)

we have:

∂κ∗s1
∂δ
≥ 0 and

∂κ∗s2
∂δ
≤ 0.
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δ = .5 δ = 1 δ = 2 δ = 4

κ∗s1 1.334 1.505 1.819 2

κ∗s2 .976 .789 .409 0

Profits 1.067 1.076 1.114 1.251

Table 2.3: Optimal information selling strategy and equilibrium profits as a function of the cost
dispersion between the two types of firms. For this example, we use the following set of parameters:
κx = 1, κz = 2, c = 1/6, γ1 = 3/5, and γ0 = 10.

Proposition 2.6.2 establishes that as the cost dispersion among the downstream firms increases,

the provider finds it optimal to sell increasingly more accurate signals to the efficient type while

decreasing the accuracy of the signals she sells to the type that has high production costs.

Table 2.3 reports a set of numerical results that shed additional light on the effect of cost

dispersion on the provider’s information selling strategy and equilibrium profits. In particular,

when the dispersion between the firms’ production costs is sufficiently high, the monopolist may

find it optimal to exclude the less efficient type altogether from the information sale. Moreover, the

provider’s profits are increasing in the dispersion (although she may be selling to a smaller subset

of firms).

2.7 Finite Number of Firms

To simplify the exposition and allow for a tractable analysis, most of the paper focused on an

environment with a continuum of firms. In this section, we show that our qualitative insights

regarding the monopolist’s optimal information selling strategy carry over to a market consisting

of finitely many firms. In particular, we focus on a Cournot oligopoly with a finite set of firms

N = {1, ..., n} which compete with one another in quantities. The inverse demand function in the

market is given by

r = γ0θ + γ1Q,
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where Q = 1
n

∑
i∈N qi is the average quantity, qi is the quantity produced by firm i, r denotes the

market price, and γ1 < 0 is some constant. We assume that firm i faces quadratic production costs

given by c(qi) = γ2q
2
i /2. Therefore, firm i’s profit can be expressed as

πi = γ0qiθ +
n− 1

n
γ1qiQ−i −

(γ2

2
− γ1

n

)
q2
i ,

where Q−i = 1
n−1

∑
j 6=i qj . Note that firm i’s profit function has the same form as the one when a

continuum of firms compete. Finally, the degree of strategic substitutability among firms’ actions

is given by

βn = − ∂2πi
∂qi∂Q−i

/
∂2πi
∂q2

i

=
n− 1

n

γ1

γ2 − 2γ1/n
.

As in the environment with a continuum of firms, we assume that each firm i observes a noisy

private signal xi about the realization of θ and that the information provider can offer a market

signal si to firm i. We denote with K the set of firms that the information provider trades with,

where |K| = k ≤ n. Lemma 2.9.5 in the Appendix provides a complete characterization of the

equilibrium for the competition subgame for any k, which can be viewed as the discrete analog

of Proposition 2.3.1 in Section 2.3. Finally, for the remainder of this section, we assume that the

provider sells an information signal to all firms, i.e., K = N , and we focus on characterizing the

signal’s precision that maximizes the provider’s profit (note that as we argued in Section 2.3 there

always exists an optimal information selling strategy that involves selling a signal to all firms). We

obtain the following characterization for the optimal signal precision:

Proposition 2.7.1. The optimal information selling strategy is given as follows:

(a) If βn ≥ − (1 + κz/κx), the information provider offers an undistorted version of her signal,

i.e.,κ∗s = κz, to all k firms.

(b) If βn < − (1 + κz/κx), the information provider offers a signal of lower precision, i.e.,

κ∗s = − κz
βn + κz/κx

< κz.
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Furthermore, the seller’s expected profit is given as

Π∗ =



n α2
n

(γ2

2
− γ1

n

)(κz
κx

)
κz + κx

[(1− βn)κx + κz]2
if βn ≥ − (1 + κz/κx)

n α2
n

(γ2

2
− γ1

n

) κz
−4βnκ2

x

otherwise

,

where αn = γ0

/ (
c− n+1

n γ1

)
.

Proposition 2.7.1 establishes that the insights underlying our main results remain unchanged

when the downstream market is composed of a finite number of firms. Additionally, it is straight-

forward to verify that as n grows to infinity we recover the results of Section 2.3.3, both in terms of

the optimal strategy as well as in terms of the profits for the information provider.10 Finally, since

βn ↓ β we obtain that the set of markets for which the monopolist chooses to distort is increasing

in n.

2.8 Conclusions

This paper considers the problem of selling information to a set of firms that compete in a down-

stream market. We establish that both the information provider’s optimal selling strategy as well

as her profits depend critically on the environment in which its cutomers operate. In particular, our

results highlight that the extent of strategic substitutability and complementarity in the latter’s

actions has a first-order impact on the former’s optimal strategy: when the firms’ actions are strate-

gic complements, the provider finds it optimal to sell an undistorted version of her information to

the entire market of firms, whereas if their actions are strategic substitutes, the optimal strategy

involves offering an inferior information product, and/or limiting the supply of information.

Our results are largely driven by the following trade-off: on the one hand, information about

market conditions, e.g., demand realization, has always a direct positive effect on firms’ profits as

10Note that as n → ∞ expected profits diverge, however average profits 1
n

Π∗ converge to the result we obtained
for a continuum of firms.
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they can better align their actions with the underlying environment. On the other hand, however,

in the presence of strategic substitutability among the firms, the provider’s signal may have an

additional (adverse) effect by increasing the correlation between the firms’ actions. It turns out

that this latter effect may dominate the former when firms’ view their actions as strong strategic

substitutes, in which case the provider finds it optimal to degrade the quality of her information

products and/or exclude a subset of the firms from the sale.

We showcase the implications of our results in the context of Bertrand and Cournot competition

thus complementing the extensive prior literature in operations management that explores vertical

and horizontal information sharing in a supply chain. We extend our findings to the case when

firms differ in their production costs and establish that the optimal selling strategy involves offering

several information products with varying precisions and at different prices. In particular, we show

that in equilibrium, the information provider offers more precise signals to the more efficient firms

at higher prices in order to maximize her profit.
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2.9 Proofs

With the exception of our results in Section 2.6, firms in our model are otherwise ex ante symmetric.

Therefore, unless otherwise noted, we assume without loss of generality that the price offered by

the provider to the firms is non-decreasing in the firms’ index; that is, pi ≥ pj for i > j. Given

that excluding a firm i from trade is equivalent to offering a price pi = ∞, the above assumption

also implies that the set of firms that are offered a contract by the provider is of the form [0, λ] for

some λ ∈ [0, 1].

Let ` denote the fraction of firms who accept the provider’s offer. In view of the above assump-

tion, it is immediate that

` = sup{i ∈ [0, λ] : bi = 1},

and that bi = 1 for all i ≤ `.

Proof of Proposition 2.3.1

The first-order condition for firm i’s problem with respect to action ai is given by

E

[
∂

∂ai
π(ai, A, θ)

∣∣∣∣∣Ii
]

= 0,

where Ii = {xi} if i ∈ [`, 1] and Ii = {xi, si} if i ∈ [0, `]. Consequently,

ai = E [βA+ (1− β)αθ|Ii] ,

where β = γ1/γ2 is the degree of strategic complementarity in the downstream market as defined

in (2.2) and α = γ0/(γ2 − γ1). Thus, the firms’ equilibrium actions are given by

ai =


E [βA+ (1− β)αθ|xi] ∀i ∈ [`, 1],

E [βA+ (1− β)αθ|xi, si] ∀i ∈ [0, `].
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Noticing that E [θ|xi] is linear in xi and E [θ|xi, si] is linear in xi and si, we conjecture that equilib-

rium strategies are linear functions of xi and si and then verify our hypothesis. In particular, we

conjecture that

ai =


c0xi ∀i ∈ [`, 1]

c1xi + c2si ∀i ∈ [0, `]

,

for some constants c0, c1, c2 ∈ R.

Replacing the candidate equilibrium strategy of an uninformed firm i ∈ (`, 1] in its first-order

condition yields

c0xi = E
[
β

(∫ `

0
c1xj + c2sjdj +

∫ 1

`
c0xjdj

)
+ (1− β)αθ

∣∣∣xi]
= [β`(c1 + c2) + β(1− `)c0 + (1− β)α]xi,

where we are using the fact that E[θ|xi] = E[xj |xi] = E[sj |xi] = xi. Consequently, the equilibrium

strategy coefficients must satisfy c0 = β`(c1 +c2)+β(1−`)c0 +(1−β)α for any admissible ` ∈ [0, 1],

which implies

c0 = α and c1 + c2 = α. (2.11)

On the other hand, replacing the candidate equilibrium strategy of an informed firm i ∈ [0, `]

in its first-order condition yields

c1xi + (α− c1)si = E
[
β

(∫ `

0
c1xj + (α− c1)sjdj +

∫ 1

`
αxjdj

)
+ (1− β)αθ

∣∣∣xi, si] , (2.12)

where we use the expressions for the coefficients we derived in (2.11). We can now use the above
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expression to solve for c1. To this end, note that let

E[θ|xi, si] = E[xj |xi, si] = δ1xi + (1− δ1)si

E[sj |xi, si] = δ1(1− ρ)xi + [1− δ1(1− ρ)]si,

where δ1 = κx/(κx + κs). Consequently, we can rewrite (2.12) as

c1xi + (α− c1)si =[β`c1δ1 + β`(α− c1)δ1(1− ρ) + β(1− `)αδ1 + (1− β)αδ1]xi

+ [β`c1(1− δ1) + β`(α− c1)(1− δ1(1− ρ)) + β(1− `)α(1− δ1) + (1− β)α(1− δ1)]si,

and conclude that the equilibrium coefficient c1 must satisfy

c1 = β`c1δ1ρ+ αδ1(1− β`ρ).

Solving for c1 thus implies that

c1 = α
(1− β`ρ)κx

(1− β`ρ)κx + κs
,

and hence,

c2 = α− c1 = α
κs

(1− β`ρ)κx + κs
.

Combining the above, we conclude that firms’ actions at equilibrium are given by

ai =


αxi ∀i ∈ [`, 1]

α (1−β`ρ)κx
(1−β`ρ)κx+κs

xi + α κs
(1−β`ρ)κx+κs

si ∀i ∈ [0, `]

,

completing the proof.
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Two Auxiliary Lemmas

We state and prove two lemmas that we use in the remainder of the appendix. The first lemma

characterizes the expected surplus of an informed firm, whereas the second lemma shows that, for

any given λ, the provider always finds it optimal to charge a constant price to all firms i ∈ [0, λ].

Lemma 2.9.1. The expected surplus of each firm from buying the market signal is given by

∆(`, κs, ρ, κx) = α2
(γ2

2

)(κs
κx

)
κs + κx

[(1− β`ρ)κx + κs]2
, (2.13)

where ` denotes the fraction of informed firms.

Proof. Let a1
i := α

κssi + (1− β`ρ)κxxi
κs + (1− β`ρ)κx

denote the equilibrium action of an informed firm and let

a0
i := αxi denote the equilibrium action of an uninformed firm. Recall that ` denotes the fraction

of informed firms, and thus the aggregate equilibrium action is A =
∫ `

0 a
1
i di+

∫ 1
` a

0
i di. By replacing

the equilibrium actions in the expressions for the firms’ payoffs and then taking the expectations

conditional on θ, we get

E
[
π(a1

i , A, θ)|θ
]

= α2
(γ2

2

)[
θ2 +

2β`ρκs
[(1− β`ρ)κx + κs]2

− (1− β`ρ)2κx + κs
[(1− β`ρ)κx + κs]2

]
, (2.14)

and

E
[
π(a0

i , A, θ)|θ
]

= α2
(γ2

2

)[
θ2 − 1

κx

]
. (2.15)

Next note that we can use the two conditional expectations (2.14) and (2.15) to compute the

(unconditional) expectation for a firm’s surplus given by

∆ := E
[
π(a1

i , A, θ)
]
− E

[
π(a0

i , A, θ)
]
.
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Applying the law of total expectation yields

∆ = α2
(γ2

2

)(κs
κx

)
κs + κx

[(1− β`ρ)κx + κs]2
,

which completes the proof of the lemma.

Lemma 2.9.2. The provider sets pi = p∗(λ) for all i ∈ [0, λ], where p∗(λ) is equal to the expected

equilibrium surplus of an informed firm when the fraction of informed firms is λ. Furthermore,

p∗(λ) is such that all firms that receive the provider’s offer accept in equilibrium, thus ` = λ.

Proof. Consider the simultaneous game of accepting/rejecting the provider’s offer. Recall that in

such game each firm i ∈ [0, λ] accepts the offer if her expected surplus is bigger than her individual

price pi while taking the decisions of the rest of the firms as given.

We suppose that a fraction ` ∈ [0, λ] of firms has accepted the provider’s offer, and we write

the optimal decision of each firm i ∈ [0, λ] as a function of firm’s i individual price. We have

bi(pi) =


1 if ∆(`) > pi

0 if ∆(`) < pi

∈ {0, 1} if ∆(`) = pi

,

where ∆(`) is given by equation (2.13) and denotes the expected surplus of an informed firm when

a fraction ` is informed.

We can write the provider’s optimization problem as follows

max
{pi}i∈[0,λ]

∫ λ

0
pibi(pi)di

s.t. bi(pi) =


1 if ∆(`) > pi

0 if ∆(`) < pi

∈ {0, 1} if ∆(`) = pi

, ∀i ∈ [0, λ]. (2.16)
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Before solving for the provider’s optimal selling strategy, we rewrite the set of constraints (2.16) as



sup
i∈[0,λ]

pi ≤ ∆(λ) if ` = λ

inf
i∈[0,λ]

pi ≥ ∆(0) if ` = 0∫ λ

0
I{pi<∆(`)}di ≤ ` ≤

∫ λ

0
I{pi≤∆(`)}di if ` ∈ (0, λ)

,

Recall that without loss of generality the pricing schedule p : [0, λ] → R+ is non-decreasing, thus

we can further simplify the set of constraints as


pλ ≤ ∆(λ) if ` = λ (2.17a)

p0 ≥ ∆(0) if ` = 0 (2.17b)

p` ≤ ∆(`) and p`+ ≥ ∆(`) if ` ∈ (0, λ). (2.17c)

The proof proceeds by showing that for any equilibrium of the subgame that results from a

fraction ` of the firms accepting the provider’s offer, there exists an optimal pricing schedule such

that pi = ∆(`) for all i ≤ ` and pi =∞ for all i > `. There are three cases to consider.

First, for case (2.17a), the problem simplifies to

max
{pi}i∈[0,λ]

∫ λ

0
pidi

s.t. pλ ≤ ∆(λ).

In this case a fraction ` = λ of firms accepts and as we show below it is optimal for the provider

to set pi = ∆(λ) for all i ∈ [0, λ]. Suppose, for the sake of contradiction, that p is optimal but

u := sup{i ∈ [0, λ] : pi < ∆(λ)} ≥ 0. If u = 0, then we have pi = ∆(λ) except for a set of measure

0, so this case is immaterial. If u > 0, the maintained assumption that p is non-decreasing implies

that

pi < ∆(λ), ∀i < u and pi = ∆(λ), ∀i ≥ u.
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This implies that we can construct pricing schedule p′ such that

pi < p′i ≤ ∆(λ), ∀i < u and p′i = pi, ∀i ≥ u,

that is feasible and achieves a higher objective value. Thus, it must be that pi = ∆(λ) for all i ≤ λ.

For case (2.17b), ` = 0 and the objective function is always equal to 0. Thus, p can be chosen such

that pi =∞ for all i ∈ [0, λ].

Finally, for case (2.17c), the problem simplifies to

max
{pi}i∈[0,λ]

∫ `

0
pidi

s.t. p` ≤ ∆(`)

p`+ ≥ ∆(`).

First, we show that the provider can always set pi = ∞,∀i > `. Note that the individual price of

each firm i > ` does not affect the objective function of the provider. This implies that all feasible

solutions p that differ only on (`, λ] attain the same objective value, so it is without loss of generality

to focus on solutions that are such that pi =∞ for all i > `. Next, we show that pi = ∆(`), ∀i ≤ `.

Suppose, for the sake of contradiction, that p is optimal but u := sup{i ∈ [0, `] : pi < ∆(`)} ≥ 0.

If u = 0 we have pi = ∆(`), except for a set of measure 0. If u > 0, the assumption that p is

non-decreasing implies that

pi < ∆(`), ∀i < u and pi = ∆(`), ∀i ≥ u,

which in turn implies that we can construct a pricing schedule p′′ such that

pi < p′′i ≤ ∆(`), ∀i < u and p′′i = pi, ∀i ≥ u,

that is feasible and achieves a higher objective value. Thus, it must be that pi = ∆(`) for all i ≤ `.

Thus, there always exists an optimal pricing schedule such that pi = ∆(`) for all i ≤ ` and
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pi = ∞ for all i > `, which implies that only a fraction ` of firms accepts the provider’s offer

and the latter’s optimal profit is ` · ∆(`). Without loss of generality the provider sets λ = ` and

pi = ∆(λ) for all i ∈ [0, λ]. Thus, all firms accept her offer in equilibrium and the provider’s profit

is given by λ ·∆(λ). Setting p∗(λ) = ∆(λ) completes the proof.

Proof of Proposition 2.3.2

By Lemma 2.9.2, the provider’s problem simplifies to choosing λ, κy and ρ in order to maximize the

expected profit Π := λ · p∗(λ, κs, ρ, κx) = λ ·∆(λ, κs, ρ, κx), subject to the constraints imposed by

the information structure. Replacing the expected surplus (2.13) into the objective function yields

Π(λ, κs, ρ, κx) = λ α2
(γ2

2

)(κs
κx

)
κs + κx

[(1− βλρ)κx + κs]2
, (2.18)

and thus the provider’s problem can be rewritten as

max
ρ,κs,λ

Π(λ, κs, ρ, κx)

s.t.
κs
κz
≤ ρ ≤ 1 (2.19)

κs ≤ κz

0 ≤ λ ≤ 1.

Note that the partial derivative of Π with respect to ρ, i.e.,

∂Π

∂ρ
= λ α2γ2

βλκs(κx + κs)

[(1− βλρ)κx + κs]3
, (2.20)

is positive for β ∈ (0, 1/2), which implies that ρ∗ = 1. Replacing this into (2.18) and differentiating

with respect to λ yields

∂Π

∂λ
= α2

(γ2

2

)(κs
κx

)
(κx + κx)[(1 + βλ)κx + κs]

[(1− βλ)κx + κs]3
. (2.21)
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Similarly, the partial derivative with respect to κs is given by

∂Π

∂κs
= λ α2

(γ2

2

) (1− βλ)κx + (1− 2βλ)κs
[(1− βλ)κx + κs]3

. (2.22)

In addition, note that (2.21) and (2.22) are positive for β ∈ (0, 1/2), so the provider finds it optimal

to set λ∗ = 1 and κ∗s = κz. Replacing ρ∗, λ∗ and κ∗s into (2.18) yields

Π∗ = α2
(γ2

2

)(κz
κx

)
κz + κx

[(1− β)κx + κz]2
, (2.23)

which completes the proof.

Proof of Proposition 2.3.3

Consider the provider’s expected profit (2.18) and her profit-maximization problem (2.19), and let

−(1 + κz/κx) ≤ β < 0. In this case, the partial derivative of Π with respect to ρ given in (2.20)

is negative, which implies that the provider finds it optimal to set the level of correlation to its

minimum, i.e., ρ∗ξ = 0 or ρ∗ = κs/κz. Replacing this into (2.18) and differentiating with respect to

κs yields

∂Π

∂κs
= λ α2

(γ2

2

) (1 + βλκs/κz)κx + κs
[(1− βλκs/κz)κx + κs]3

, (2.24)

while differentiating with respect to λ yields

∂Π

∂λ
= α2

(γ2

2

)(κs
κx

)
(κx + κs)[(1 + βλκs/κz)κx + κs]

[(1− βλκs/κz)κx + κs]3
. (2.25)

The assumption on β implies that (2.24) and (2.25) are positive, which results in λ∗ = 1 and

κ∗s = κz. The proof follows by replacing the optimal values for ρ∗, λ∗, and κ∗s into expression

(2.18).
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Proof of Proposition 2.3.4

Consider the provider’s expected profit (2.18) and her profit-maximization problem (2.19), and let

β < −(1 + κz/κx). First, note that in this case (2.20) is negative, so the provider finds it optimal

to set ρ∗ = κs/κz. Replacing this into (2.18) and differentiating with respect to κs and λ we again

obtain (2.24) and (2.25) respectively. Both (2.24) and (2.25) are equal to 0 if and only if

(κz + βλκs)κx + κzκs = 0. (2.26)

Moreover, Π is unimodal in both κs and λ, which implies that the set of optimal allocations (κ∗s, λ
∗)

is given by the solutions to (2.26).

Finally, replacing κ∗s, ρ
∗ = κ∗s/κz and λ∗ =

(κx + κ∗s)κz
−βκxκ∗s

into (2.18) yields

Π∗ = −α2
(γ2

2

) κz
4βκ2

x

,

which completes the proof.

Proof of Proposition 2.4.1

We solve the game by backward induction, i.e., first, we characterize the firms’ equilibrium actions in

the competition subgame that results from a (subset) of them obtaining the provider’s information

signal; then, we solve for their acceptance/rejection decisions; and, finally, we turn to the provider’s

problem and complete the proofs of parts (a) and (b) of the proposition.

Recall that the provider possesses a signal z = θ + ζ, with ζ ∼ N(0, 1/κz), and offers to firm

i ∈ [0, 1] a signal si = z + ξi with ξi ∼ N(0, κξi). Without loss of generality we assume that the

provider does not add any correlation to the signal she sells, i.e., corr(ξi, ξj) = 0. The market signal

si offered to firm i ∈ [0, 1] can be rewritten as

si = θ + ηi, ηi ∼ N(0, 1/κsi),
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where κs = (1/κz + 1/κξi)
−1 and Cov(si, sj) = 1/κz.

We have the following auxiliary lemma.

Lemma 2.9.3. The competition subgame between the firms has a unique Bayes-Nash equilibrium

in linear strategies, given by

a(κsi, κs−i) = α[(1− ωi)xi + ωisi] for all i ∈ [0, 1],

where

ωi =

(
κsi

κx + κsi

)/(
1− βκx

κz

∫ 1

0

κsi
κx + κsi

di

)

and α = γ0/(γ2 − γ1).

Proof. The first-order optimality condition of firm i with respect to action ai implies that in equi-

librium

ai = E[βA+ (1− β)αθ|xi, si]. (2.27)

Assume that each firm i ∈ [0, 1] uses a linear strategy cixi + hisi, for some constants ci, hi ∈ R.

Then, we can rewrite the equilibrium condition (2.27) as

cixi + hisi = E
[
β

∫ 1

0
(cjxj + hjsj)dj + (1− β)αθ

∣∣∣xi, si] . (2.28)

Using equations

E[sj |xi, si] =
κx(1− κsi/κz)

κx + κsi
xi +

κsi(1 + κx/κz)

κx + κsi
si,

and

E[θ|xi, si] = E[xj |xi, si] =
κx

κx + κsi
xi +

κsi
κx + κsi

si,

which are obtained using the formula for the conditional expectation of Gaussian random vectors,
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we can rewrite (2.28) as

cixi + hisi =β

[(
κx

κx + κsi
xi +

κsi
κx + κsi

si

)∫ 1

0
cjdj +

(
κx(1− κsi/κz)

κx + κsi
xi +

κsi(1 + κx/κz)

κx + κsi
si

)∫ 1

0
hjdj

]
+ (1− β)α

(
κx

κx + κsi
xi +

κsi
κx + κsi

si

)
.

Note that the equilibrium coefficients (ci, , hi) for i ∈ [0, 1], must solve the following sets of equations

ci = β
κx

κx + κsi

∫ 1

0
cjdj + β

κx(1− κsi/κz)
κx + κsi

∫ 1

0
hjdj + (1− β)α

κx
κx + κsi

∀i ∈ [0, 1], (2.29)

and

hi = β
κsi

κx + κsi

∫ 1

0
cjdj + β

κsi(1 + κx/κz)

κx + κsi

∫ 1

0
hjdj + (1− β)α

κsi
κx + κsi

∀i ∈ [0, 1]. (2.30)

Integrating with respect to di over [0, 1] in (2.29) and (2.30) yields a linear-system of two equations,

which implies that

∫ 1

0
cidi = α

(
1−

(
1 + β

κx
κz

)∫ 1

0

κsi
κx + κsi

di

)/(
1− βκx

κz

∫ 1

0

κsi
κx + κsi

di

)

and

∫ 1

0
hidi = α

(∫ 1

0

κsi
κx + κsi

di

)/(
1− βκx

κz

∫ 1

0

κsi
κx + κsi

di

)
.

Replacing the above expressions into (2.29) and (2.30) yields

ci = α
κx

κx + κsi

(
1− βκx + κsi

κz

∫ 1

0

κsi
κx + κsi

di

)/(
1− βκx

κz

∫ 1

0

κsi
κx + κsi

di

)

and

hi = α
κsi

κx + κsi

/(
1− βκx

κz

∫ 1

0

κsi
κx + κsi

di

)
.
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Finally, noting that ci + hi = α and setting hi = αωi completes the proof.

The next step in our analysis involves studying the firms’ acceptance/rejection decisions that

precede the competition subgame. We restrict attention to subgame perfect equilibria in which all

firms accept the provider’s offers. This is without loss of generality, since the case in which there

is a firm i that rejects the provider’s offer is surplus-equivalent to the case in which the provider

offers a signal of precision κsi = 0 at price pi = 0 to firm i, and firm i accepts the offer.

The equilibrium acceptance/rejection decisions can be characterized as follows. Each firm i ∈

[0, 1] accepts the provider’s offer if

∆i = E[π(a(κsi, κs−i))]− E[π(a(0, κs−i))] ≥ pi,

i.e., if price pi is lower than the expected surplus of firm i. Thus, it is optimal for the provider to

offer pi = ∆i for all i ∈ [0, 1].

Using the equilibrium characterization from Lemma 2.9.3, we can compute the expected surplus

∆i of firm i, which, in turn, is equal to price pi, i.e.,

pi = α2
(γ2

2

)( κsi
κx + κsi

)(
1

κx

)/[
1− βκx

κz

∫ 1

0

κsi
κx + κsi

di

]2

. (2.31)

The provider’s expected equilibrium profit is given by

Π(κs, β) =

∫ 1

0
pidi = α2

(γ2

2

)( 1

κx

∫ 1

0

κsi
κx + κsi

di

)/[
1− βκx

κz

∫ 1

0

κsi
κx + κsi

di

]2

, (2.32)

and her problem can now be simply written as

max
{κsi}i∈[0,1]

Π(κs, β) (2.33)

s.t. 0 ≤ κsi ≤ κz ∀i ∈ [0, 1].

The following lemma allows us to further simplify the optimization problem above and charac-

terize the set of optimal solutions.
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Lemma 2.9.4. The objective function of problem (2.33) depends on {κsi}i∈[0,1] only through a

constant

D =

∫ 1

0

κsi
κx + κsi

di. (2.34)

Furthermore, for any optimal solution {κ∗si}i∈[0,1] of problem (2.33), there exist a constant solution

κ̄s that is feasible and achieves the same objective value of {κ∗si}i∈[0,1].

Proof. The first statement follows directly from expression (2.32). For the second statement, let

{κ∗si}i∈[0,1] be an optimal solution of problem (2.33), with corresponding D∗ =

∫ 1

0

κ∗si
κx + κ∗si

di. De-

fine constant κ̄s as κ̄s :=
D∗κx

1−D∗
. Note that

κ̄s
κx + κ̄s

= D∗, which implies that κ̄s achieves the

same objective value as {κ∗si}i∈[0,1]. Finally, we need to verify that κ̄s is feasible. By the feasibil-

ity of {κ∗si}i∈[0,1], i.e., 0 ≤ κ∗si ≤ κz for all i ∈ [0, 1], it follows that 0 ≤ D∗ ≤ κz
κx + κz

and thus

0 ≤ κ̄s ≤ κz. This implies that the constant κ̄s is feasible and it achieves the maximum objective

value, which completes the proof.

Lemma 2.9.4 allows us to solve a simplified problem, in which the provider offers a signal of

precision κs to all firms i ∈ [0, 1]. Furthermore, using the optimal value for κs together with equation

(2.34) allows us to characterize the set of optimal solutions for the original problem (2.33). In

particular, replacing κs for κsi in problem (2.33), the provider’s problem simplifies to

max
κs

Π = α2
(γ2

2

)(κs
κx

)
κs + κx

[(1− βκs/κz)κx + κs]2
(2.35)

s.t. 0 ≤ κs ≤ κz.

Proof of part (a): Let β ≥ −(1 + κz/κx) and consider the simplified problem (2.35). Differen-

tiating the objective with respect to κs yields

∂Π

∂κs
= α2

(γ2

2

) (1 + βκs/κz)κx + κs
[(1− βκs/κz)κx + κs]3

. (2.36)

The assumption on β implies that (2.36) is positive, which means that it is optimal to set κ∗s = κz.
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By Lemma 2.9.4, this implies that any solution {κ∗si}i∈[0,1] to problem (2.33) that is feasible and

such that

∫ 1

0

κ∗si
κx + κ∗si

di =
κz

κx + κz
,

is an optimal solution. Thus, problem (2.33) has a unique optimal solution in this case, i.e.,κ∗si =

κz, ∀i ∈ [0, 1]. Replacing this solution into (2.31) we obtain

p∗i = α2
(γ2

2

)(κz
κx

)
κz + κx

[(1− β)κx + κz]2
= p∗.

Proof of part (b): Let β < −(1 + κz/κx) and consider problem (2.35). In this case, the partial

derivative given in (2.36) evaluated at κ∗s = κz is negative, so the provider is better off by offering

noisy signals to the firms. Solving for the optimal κs using a firm’s first-order optimality condition

yields

κ∗s =
κx

−(1 + βκx/κz)
< κz.

By Lemma 2.9.4, this implies that any solution {κ∗si}i∈[0,1] to problem (2.33) that is feasible and

such that

∫ 1

0

κ∗si
κx + κ∗si

di = − κz
βκx

, (2.37)

is an optimal solution. Finally, replacing (2.37) into (2.31) yields

p∗i = α2
(γ2

2

) κ∗si
4(κx + κ∗si)κx

.
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Proof of Proposition 2.5.1

Throughout this proof we rescale firms’ profit so that α = γ0/(γ2 − γ1) = 1, this is without loss of

generality and it simplifies the notation. We conjecture that equilibrium strategies are linear in xi,

si, and Si, and then we verify our hypothesis. In particular, we conjecture that

a(xi, si, Si) = b1xi + b2Si + b3si.

By definition A =

∫ 1

0
a(xi, si, Si) di, we thus have A = b1θ + b2A+ b3z which implies that

A =
b1θ + b3z

1− b2
.

Using the above equation for A, firm’s i expected profit simplifies to

E[πi|xi, si, Si] = γ0aiE[θ|xi, si, Si] + γ1ai
b1E[θ|xi, si, Si] + b3E[z|xi, si, Si]

1− b2
− γ2

2
a2
i

= aiE[θ|xi, si, Si]
(
γ0 +

γ1b1
1− b2

)
+ aiE[z|xi, si, Si]

(
γ1b3

1− b2

)
− γ2

2
a2
i .

Taking the first-order condition with respect to ai,
∂

∂ai
E[πi|xi, si, Si] = 0, and recalling that z =

ζ + θ, we can express the equilibrium action of firm i as

ai =

[
(1− β) + β

b1 + b3
1− b2

]
E[θ|xi, si, Si] + β

(
b3

1− b2

)
E[ζ|xi, si, Si]. (2.38)

Before proceeding, we make a change of variable, setting κs = tκz with t ∈ [0, 1].

The conditional expectations in (2.38) are given respectively by

E[θ|xi, si, Si] = κx
(1− b2) 2κz + (1− t)b23κν

D
xi + κν

(1− b2) [b1 + (1− t)b3]κz
D

Si +

+tκz
(1− b2) 2κz − b1b3κν

D
zi, (2.39)
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and

E[ζ|xi, si, Si] = −κx
(1− b2) 2tκz + b3 (b1 + b3) (1− t)κν

D
xi + κν

(1− b2) [b3(1− t)κx − b1tκz]
D

Si +

+tκz
b1 (b1 + b3)κν + (1− b2) 2κx

D
zi, (2.40)

where

D = κν
[
b21κz + b3(1− t) (b3 (κx + κz) + 2b1κz)

]
+ κz (1− b2) 2 (tκz + κx) ,

which are obtained using the formula for the conditional expectation of Gaussian random vectors.

Substituting (2.39) and (2.40) into (2.38), and identifying b1, b2, b3, yields the following system of

equations, which the equilibrium coefficients must satisfy:

b1 = κx
(1− β)b23(1− t)κν + (1− b2) [βb1 + (1− β) (1− b2) + βb3(1− t)]κz

D
(2.41)

b2 = κν
b1
{

[βb1 + (1− β) (1− b2)] + βb23(1− t) + b3(1− t) [2βb1 + (1− β) (1− b2)]
}
κz + βb23(1− t)κx

D

(2.42)

b3 = tκz
(1− b2) [βb1 + (1− β) (1− b2)]κz + b3 [β (1− b2) (κx + κz)− (1− β)b1κν ]

D
. (2.43)

Let a1
i := b1xi + b2Si + b3si denote the equilibrium action of firm i and let a0

i := b̃1xi + b̃2Si denote

the action that firm i takes if she deviates from the equilibrium path and does not observe si, her

information set is thus (xi, Si) and the coefficients b̃1, b̃2 can be characterized following the same

procedure used for b1, b2, b3. We have

b̃1 = κx
(1− β)b23κν + (1− b2) [βb1 + (1− β) (1− b2) + βb3]κz

κx
[
b23κν + (1− b2) 2κz

]
+ (b1 + b3) 2κνκz

, (2.44)

b̃2 = κν
βb23κx + (b1 + b3) [βb1 + (1− β) (1− b2) + βb3]κz

κx
[
b23κν + (1− b2) 2κz

]
+ (b1 + b3) 2κνκz

, (2.45)

note that this coefficients must depend on b1, b2, b3, since they are derived under the assumption

that firms i deviates, while all other firms are playing their equilibrium strategy. Using a1
i and a0

i
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we can characterize the expected profits of a firm that observes (xi, si, Si) as

E[πi(a
1
i , A)] = γ2

[
1

2κθ
+ (β − 1/2)

(
1

κz

)
b23

(b1 + b3)2
− b21

2κx
− b22

2κν
−
(

1− t
tκz

)
b23
2

]
,

and the expected profit of a firm that does not observe si as

E[πi(a
0
i , A)] = γ2

[
1

2κθ
+ (β − b̃2/2) b̃2

(
1

κz

)
b23

(b1 + b3)2
− b̃21

2κx
− b̃22

2κν

]
.

The equilibrium surplus of a firm is now ∆ := E[πi(a
1
i , A)] − E[πi(a

0
i , A)], in Lemma 2.9.2 we

proved that in the simultaneous acceptance/rejection game the monopolist offers to each firm a

price pi = ∆, and all firms accept the offer. Thus, the expected equilibrium profit of the monopolist

is Π =

∫ 1

0
pi di = ∆, i.e.

Π(t, κν , β) = γ2

{[
(1− b̃2)β − (1− b̃22)/2

]( 1

κz

)
b23

(b1 + b3)2
− b21 − b̃21

2κx
− b22 − b̃22

2κν
−
(

1− t
tκz

)
b23
2

}
.

(2.46)

Proof of part (a): Recall the change of variable κs = tκz, the provider needs to chose t ∈ [0, 1].

Clearly it is never optimal to set t ≤ 0, with this observation the provider problem simplifies to:

maximize Π(t, κν , β) subject to t ≤ 1. Define

Π∗(κν) := max
t

Π(t, κν , β) s.t. t ≤ 1,

we are interested in characterizing how the maximum profit changes when we introduce some

leakage, i.e.,we want to sign

∂Π∗

∂κν
(κν)

∣∣∣∣
κν=0

.

We will use the envelope theorem for constrained optimization problems. In particular, the La-

grangean associated to the provider’s problem is

L(t, µ, κν , β) = Π(t, κν , β) + µ(1− t),
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by the envelope theorem we have that

∂Π∗

∂κν
(κν) =

∂L

∂κν
(t∗, µ∗, κν , β)

∣∣∣∣
t∗=t∗(κν),µ∗=µ∗(κν)

=
∂Π

∂κν
(t∗, κν , β)

∣∣∣∣
t∗=t∗(κν)

, (2.47)

where the second equality holds because the constraint itself does not depend on κν .

First, differentiating (2.46) with respect to κν yields

∂Π

∂κν
(t, κν , β) =γ2

(
K0 +K1 +K2 +K3 +K4 +K5 +K6

)
, (2.48)

where

K0 =
b̃2b̃

κν
2 − b̃

κν
2 β

(b1 + b3)2κz
b23

K1 =
2(1− b̃2)β − (1− b̃22)

(b1 + b3)2κz
b3b

κν
3

K2 =
2(1− b̃2)β − (1− b̃22)

(b1 + b3)3κz
b23(bκν1 + bκν3 )

K3 =− b1b
κν
1 − b̃1b̃

κν
1

κx

K4 =− b2b
κν
2 − b̃2b̃

κν
2

κν

K5 =− 1− t
tκz

b3b
κν
3

K6 =
b22 − b̃22

2κ2
ν

,

and where

bκνj :=
∂

∂κν
bj(t, κν), j = 1, 2, 3 and b̃κνk :=

∂

∂κν
b̃k(t, κν), k = 1, 2. (2.49)

Next, we need to evaluate (2.48) at κν = 0, to do so we first compute and evaluate all the coefficients

at κν = 0 and then we replace them in (2.48).
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Evaluating equations (2.41)-(2.45) at κν = 0 yields

b1(t, 0) =
(1− βt)κx

tκz + (1− βt)κx
, b2(t, 0) = 0, b3(t, 0) =

tκz
tκz + (1− βt)κx

,

b̃1(t, 0) = 1, b̃2(t, 0) = 0.

Differentiating (2.41)-(2.45) with respect to κν , and then evaluating at κν = 0 yields

bκν1 (t, 0) = −
κx
[
(1− βt)2κx + (1− t)tκz

]
2

[(1− βt)κx + tκz] 4
,

bκν2 (t, 0) =
(1− βt)2κx + (1− t)tκz

[(1− βt)κx + tκz] 2
,

bκν3 (t, 0) = −
tκz [κx + (1− 2β)tκx + tκz]

[
(1− t)tκz + (1− βt)2κx

]
[(1− βt)κx + tκz] 4

,

b̃κν1 (t, 0) = − t
2κ2
z + (1− βt)2κ2

x + t(2− βt)κxκz
κx [(1− βt)κx + tκz] 2

,

b̃κν2 (t, 0) =
t2κ2

z + (1− βt)2κ2
x + t(2− βt)κxκz

κx [(1− βt)κx + tκz] 2
.

Replacing the above sets of coefficients into Equation (2.48) and simplifying, yields the following

expression

∂Π

∂κν
(t, κν , β)

∣∣∣∣
κν=0

= γ2
c5t

5κ5
z + c4t

4κ4
zκx + c3t

3κ3
zκ

2
x + c2t

2κ2
zκ

3
x + c1tκzκ

4
x

2κ2
x [tκz + (1− βt)κx] 5

(2.50)

where

c5 = −1, c4 = 3βt− 5, c3 = −[(5β2 − 1)t− 14β + 2]t− 9,

c2 = −7 + t{−4 + 19β + t[1 + (4 + t)β − (15 + 4t)β2 + 5tβ3]},

c1 = 2(βt− 1)2((2β − 1)t− 1).

Now we can proceed to the last step to sign
∂Π∗

∂κν
(κν)

∣∣∣∣
κν=0

, there are two relevant cases.
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Case 1: β ∈ (−∞, 0). Recall that t ∈ [0, 1], and consider Equation (2.50). It is easy to see

that denominator is always positive, we next show that the numerator is always negative. Note

that coefficients c5, c4 and c1 are always negative. Moreover, we have that (5β2 − 1)t− 14β + 2 >

−14β + 1 > 0, which implies that c3 is negative for all β < 0 and t ∈ [0, 1]. Finally, noting that

1 + (4 + t)β − (15 + 4t)β2 + 5tβ3 < 1 it is easy to verify that c2 is negative. This establishes that

∂Π

∂κν
(t, κν , β)

∣∣∣∣
κν=0

< 0 for all β < 0 and t ∈ [0, 1]. In particular,

∂Π

∂κν
(t∗, κν , β)

∣∣∣∣
t∗=t∗(κν),κν=0

< 0 ∀β < 0.

Case 2: β ∈ [0, 1/2). Recall that when κν = 0 we have t∗ = 1 for all β in this interval. We

next substitute t∗ = 1 in Equation (2.50) and show that it is negative. Note that the denominator

simplifies to 2κ2
x [κz + (1− β)κx] 5 < 0, and the numerator simplifies to

−κz
[
κ4
z + (5− 3β)κxκ

3
z + (10− 14β + 5β2)κ2

xκ
2
z + (1− β)(10− 14β + 5β2)κ3

xκz + 4(1− β)3κ4
x

]
.

Noting that 10− 14β + 5β2 is positive, since it is a convex quadratic with negative determinant, it

is easy to see that the numerator is always negative. This establishes that

∂Π

∂κν
(t∗, κν , β)

∣∣∣∣
t∗=t∗(κν),κν=0

< 0 ∀β ∈ [0, 1/2).

Combining the results of Case 1 and Case 2, we can now apply the envelope theorem, and use

Equation (2.47) to conclude that

∂Π∗

∂κν
(κν)

∣∣∣∣
κν=0

< 0 ∀β ∈ (−∞, 1/2),

which completes the proof of part (a).

Proof of part (b): Let β̂ = −(1 +κz/κx). When κν = 0, we know from Proposition 2.3.3 that β̂

is exactly the level of β where the provider’s constraint κs ≤ κz becomes non-binding, i.e.,κ∗s = κz
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is the unconstrained optimum at β = β̂. Adapting to the change of variable, we have

arg max
t

Π(t, 0, β̂) = 1,

and

∂

∂t
Π(t, 0, β̂)

∣∣∣∣
t=1

= 0. (2.51)

We want to show that ∃ K̄ such that ∀ κν ≤ K̄, ∃ T̄ such that ∀ t ∈ [1− T̄ , 1) the following holds

Π(t, κν , β̂) > Π(1, κν , β̂),

which means that when there is some leakage it is optimal for the seller to distort her signal at

β = β̂, and then we will use the continuity of Π to establish the final result.

In order to prove the above, let us define

g(κν , β) =
∂

∂t
Π(t, κν , β)

∣∣∣∣
t=1

,

and show that
∂g

∂κν
(0, β̂) < 0. For a generic β, we have

∂g

∂κν
(0, β) = γ2

(
G0 +G1 +G2 +G3 +G4 +G5 +G6 +G7 +G8 +G9

)
, (2.52)



CHAPTER 2. INFORMATION SALE AND COMPETITION 59

where

G0 =
b̃2b̃

κν
2 − βb̃

κν
2

κz (b1 + b3)2 2bt3b3

∣∣∣∣∣
t=1,κν=0

G1 =
b̃2b̃

t
2 − βb̃t2

κz (b1 + b3)2 2bκν3 b3

∣∣∣∣∣
t=1,κν=0

G2 =
b̃κν2 + b̃t2 − βb̃

t,κν
2 + b̃2b̃

t,κν
2

κz (b1 + b3)2 b23

∣∣∣∣∣
t=1,κν=0

G3 =− (bκν1 + bκν3 ) (b̃2b̃
t
2 − βb̃t2)

κz (b1 + b3)3 2b23

∣∣∣∣∣
t=1,κν=0

G4 =
2β(1− b̃2) + (b̃22 − 1)

κz (b1 + b3)2

(
bκν3 bt3 + bt,κν3 b3

) ∣∣∣∣∣
t=1,κν=0

G5 =− 2β(1− b̃2) + (b̃22 − 1)

κz (b1 + b3)3

[(
bt,κν1 + bt,κν3

)
b23 + 2 (bκν1 + bκν3 ) bt3b3

] ∣∣∣∣∣
t=1,κν=0

G6 =− bκν1 bt1 − b̃
κν
1 b̃t1 + b1b

t,κν
1 − b̃1b̃t,κν1

κx

∣∣∣∣∣
t=1,κν=0

G7 =− bκν2 bt2 − b̃
κν
2 b̃t2 + b2b

t,κν
2 − b̃2b̃t,κν2

κν

∣∣∣∣
t=1,κν=0

G8 =
b2b

t
2 − b̃2b̃t2
κ2
ν

∣∣∣∣
t=1,κν=0

G9 =
bκν3 b3
κz

∣∣∣∣∣
t=1,κν=0

,

and where

btj :=
∂

∂t
bj(t, κν), bt,κνj :=

∂2

∂κν∂t
bj(t, κν), for j = 1, 2, 3 ,

b̃tk :=
∂

∂t
b̃k(t, κν), b̃t,κνk :=

∂2

∂κν∂t
b̃k(t, κν), for k = 1, 2 ,

,

and the remaining coefficient were defined in (2.49). The first step in the computation of the

second-derivative above is to evaluate all the coefficients at t = 1 and κν = 0, which is done as
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follows.

Evaluating (2.41)-(2.45) at (t = 1, κν = 0), and solving the resulting system yields

b1(1, 0) =
(1− β)κx

κz + (1− β)κx
, b2(1, 0) = 0, b3(1, 0) =

κz
κz + (1− β)κx

, b̃1(1, 0) = 0, b̃2(1, 0) = 0.

Differentiating (2.41)-(2.45) with respect to κν , evaluating at (t = 1, κν = 0), and solving the

resulting system yields

bκν1 (1, 0) = − (1− β)4κ3
x

[(1− β)κx + κz] 4
,

bκν2 (1, 0) =
(1− β)2κx

[(1− β)κx + κz] 2
,

bκν3 (1, 0) = −(1− β)2 [2(1− β)κx + κz]κxκz
[(1− β)κx + κz] 4

,

b̃κν1 (1, 0) = −(1− β)2κ2
x + (2− β)κxκz + κ2

z

κx [(1− β)κx + κz] 2
,

b̃κν2 (1, 0) =
(1− β)2κ2

x + (2− β)κxκz + κ2
z

κx [(1− β)κx + κz] 2
.

Differentiating (2.41)-(2.45) with respect to t, evaluating at (t = 1, κν = 0), and solving the

resulting system yields

bt1(1, 0) = − κxκz
[(1− β)κx + κz] 2

, bt2(1, 0) = 0, bt3(1, 0) =
κxκz

[(1− β)κx + κz] 2
,

b̃t1(1, 0) = 0, b̃t2(1, 0) = 0.

Finally, differentiating (2.41)-(2.45) with respect to both t and κν , evaluating at (t = 1, κν = 0),
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and solving the resulting system yields

bt,κν1 (1, 0) =
2(1− β)2 [3(1− β)κx + κz]

[(1− β)κx + κz] 5
κ2
xκz,

bt,κν2 (1, 0) = − 3(1− β)κx + κz
[(1− β)κx + κz] 3

κz,

bt,κν3 (1, 0) =
−3(1− β)3κ3

x + 5(1− β)2κ2
xκz + 5(1− β)κxκ

2
z + κ3

z

[(1− β)κx + κz] 5
κz,

b̃t,κν1 (1, 0) = − 2βκxκz
[(1− β)κx + κz] 3

,

b̃t,κν2 (1, 0) =
2βκxκz

[(1− β)κx + κz] 3
.

We now substitute the coefficients in the Equation (2.52), and simplify it, to get

∂g

∂κν
(0, β) = −γ2

κz
[
(1− β)2

(
β2 + β + 2

)
κ3
x + 5(1− β)2κ2

xκz + (4β2 − 9β + 4)κxκ
2
z + (1− 2β)κ3

z

]
[(1− β)κx + κz] 6

.

It is easy to verify that the above equation is strictly negative for all β ∈ (−∞, 1/2), and in

particular it is strictly negative at β̂ = −(1+κz/κx). Moreover, noting that g(0, β̂) = 0 holds, since

it is a restatement of (2.51), we can conclude that ∃K̄ such that ∀κν < K̄ we have g(κν , β̂) < 0.

This in turn implies that ∃ T̄ such that ∀ t ∈ [1− T̄ , 1) we have

Π(t, κν , β̂) > Π(1, κν , β̂).

Thus, at β = β̂ it is optimal for the seller to set t∗ < 1, i.e.,κ∗s < κz.

To complete the proof, note that by continuity of Π(t, κν , β) with respect to β, there exists

β̄ ∈ (0, β̂) such that Π(t, κν , β̂) − Π(1, κν , β̂) > 0 for all β ∈ [β̂, β̄), and thus κ∗s < κz for all

β ∈ [β̂, β̄).
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Proof of Proposition 2.6.1

Following the same steps as in the proof of Proposition 2.4.1 we can derive the equilibrium quantity

decisions of each firm i in the competition subgame. These, in turn, allow us to compute the

equilibrium surplus of a firm i that observes a signal of precision κsi as

∆i = E[π(q(κsi, κs−i))]− E[π(q(0, κs−i))] = K

(
κsi/ci
κx + κsi

)/
κx(1− γ1Dκx/κz)

2,

where K =
γ2

0/2(
1− γ1

∫ 1
0

1
ci
di
)2 and D =

∫ 1

0

κsi/ci
κx + κsi

di.

Moreover, firm i ∈ [0, 1] accepts the provider’s offer {pi, κsi} if and only if ∆i ≥ pi. Thus, it is

optimal for the provider to offer pi = ∆i for all i ∈ [0, 1] and leave no surplus to the firms.

The provider’s equilibrium profit is then given by

Π(κs, D) =

∫ 1

0
(pi − vκsi)di = K

D

κx(1− γ1Dκx/κz)2
− v

∫ 1

0
κsidi,

and her problem can be written as

max
{κsi}i∈[0,1]

Π(κs, D)

s.t. D =

∫ 1

0

κsi/ci
κx + κsi

di

0 ≤ κsi ≤ κz ∀i ∈ [0, 1].

Differentiating the objective with respect to κsi yields

dΠ

dκsi
=
∂Π

∂D
· ∂D
∂κsi

+
∂Π

∂κsi
= K · 1 + γ1Dκx/κz

ci(κx + κsi)2(1− γ1Dκx/κz)3
− v, (2.53)

for all i ∈ [0, 1].

Proof of Part (a): Let v = K/(cminκ
2
x). Suppose that v > v and consider the profile of precisions
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{κsi = 0}i∈[0,1], with corresponding D = 0. Evaluating (2.53) at the profile above yields

dΠ

dκsi
=

K

ciκ2
x

− v,

for all i ∈ [0, 1]. Our assumption on v then implies that, at {κsi = 0}i∈[0,1], we have
dΠ

dκsi
< 0

for all i ∈ [0, 1], thus the provider can only increase her profit by decreasing κsi for some i. Then

the non-negativity constraint on κsi imply that the optimal solution is to set κ∗si = 0 for all i ∈ [0, 1].

Proof of Part (b): Let v = K
κz +

(
1 + γ1

∫ 1
0

1
ci
di
)
κx

cmax

[
κz +

(
1− γ1

∫ 1
0

1
ci
di
)
κx

]3 . Suppose that v < v and consider

the profile of precisions {κsi = κz}i∈[0,1], with corresponding D =
κz

κx + κz

∫ 1

0

1

ci
di. Evaluating

(2.53) at the profile above yields

dΠ

dκsi
= K

κz +
(

1 + γ1

∫ 1
0

1
ci
di
)
κx

ci

[
κz +

(
1− γ1

∫ 1
0

1
ci
di
)
κx

]3 − v,

for all i ∈ [0, 1]. Our assumption on v then implies that, at {κsi = κz}i∈[0,1], we have
dΠ

dκsi
> 0 for

all i ∈ [0, 1], thus the provider can only increase her profit by increasing κsi for some i. Then, the

constraint κsi ≤ κz ∀i ∈ [0, 1], imply that the optimal solution is to set κ∗si = κz for all i ∈ [0, 1].

Proof of Part (c): Consider now the remaining case in which v takes an intermediate value.

Let κ∗si be the optimal solution, with corresponding D∗ =

∫ 1

0

κ∗si/ci
κx + κ∗si

di. Substituting the optimal

solution into equation (2.53) yields

dΠ

dκsi
= K

1 + γ1D
∗κx/κz

ci(κx + κ∗si)
2(1− γ1D∗κx/κz)3

− v, (2.54)

for all i ∈ [0, 1].
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Let c∗ =
K(1 + γ1D

∗κx/κz)

v κ2
x(1− γ1D∗κx/κz)3

. If ci > c∗ we have

dΠ

dκsi
<

(
κ2
x

(κx + κ∗si)
2
− 1

)
v,

which implies that dΠ/dκsi < 0 for all κ∗si ≥ 0, thus it is optimal to set κ∗si = 0.

If ci <
κ2
x

(κx + κz)2
c∗ we have

dΠ

dκsi
>

[(
κx + κz
κx + κ∗si

)2

− 1

]
v,

which implies that dΠ/dκsi > 0 for all κ∗si ∈ [0, κz], thus it is optimal to set κ∗si = κz in this case.

Finally, for intermediate values of ci the optimal κ∗si must be a solution to dΠ/dκsi = 0, thus

κ∗si =

√
K(1 + γ1D∗κx/κz)

civ(1− γ1D∗κx/κz)3
− κx = κx

(√
c∗/ci − 1

)
.

Proof of Proposition 2.6.2

Consider the optimal thresholds v and v characterized in the Proof of Proposition 2.6.1, adapting

to the two-type environment we have

v =

(
1

c
+ δ

)
K

κ2
x

and v =

(
1

c
− δ
)
K

κz + (1 + γ1/c)κx

[κz + (1− γ1/c)κx]3
,

where K =
γ2

0/2

(1− γ1/c)
2 . It is easy to see that when v > v or v < v the optimal precisions are not

affected by a marginal increase in dispersion. For intermediate values of v there are four relevant

cases. Before proving the result for each of the cases, recall from Proposition 2.6.1 that the optimal
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selling strategy has the following structure

κ∗sk =


0 if 1

ck
< 1

c∗

κz if (κx+κz)2

κ2xc
∗ < 1

ck

κx

(√
c∗/ck − 1

)
otherwise

, k = 1, 2 , (2.55)

where

c∗ =
K(1 + γ1D

∗κx/κz)

v κ2
x(1− γ1D∗κx/κz)3

,

which is always positive when v ∈ (v, v), and

D∗ =
1

2

(
1

c
+ δ

)
κ∗s1

κx + κ∗s1
+

1

2

(
1

c
− δ
)

κ∗s2
κx + κ∗s2

. (2.56)

Moreover, differentiating c∗ with respect to δ yields
∂c∗

∂δ
=

∂c∗

∂D∗

(
∂D∗

∂δ
+
∂D∗

∂c∗
∂c∗

∂δ

)
, which implies

that

∂c∗

∂δ
=

∂c∗

∂D∗
∂D∗

∂δ

/(
1− ∂c∗

∂D∗
∂D∗

∂c∗

)
. (2.57)

Note that
∂c∗

∂D∗
=

2γ1K(2 + γ1D
∗κx/κz)

v κxκz(1− γ1D∗κx/κz)4
is always negative since γ1 < 0 and 2+γ1D

∗κx/κz > 0.

We now proceed with the proof of the four relevant cases.

Case (i): (1/c+ δ), (1/c− δ) ∈
[

1

c∗
,
(κx + κz)

2

κ2
xc
∗

]
. The optimal precision takes intermediate values

for both firm types, replacing the optimal precisions from (2.55) into (2.56) yields

D∗ =
1

c
− 1√

c∗

(
1

2

√
1

c
+ δ +

1

2

√
1

c
− δ

)
.

Note that
∂D∗

∂δ
> 0 by concavity of the square root, therefore we can verify from (2.57) that

∂c∗

∂δ
< 0.
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Differentiating the optimal precision of type 2 firms with respect to δ yields

∂κ∗s2
∂δ

=
∂

∂δ

[
κx

√
c∗
(

1

c
− δ
)
− κx

]

=
κx

2
√
c∗
(

1
c − δ

) [−c∗ +
∂c∗

∂δ

(
1

c
− δ
)]

,

which is always negative since
∂c∗

∂δ
< 0. For type 1 firms we have

∂κ∗s1
∂δ

=
κx

2
√
c∗
(

1
c + δ

) [c∗ +
∂c∗

∂δ

(
1

c
+ δ

)]

=
κxc
∗

2
√
c∗
(

1
c + δ

)
1 +

∂c∗

∂D∗

√
1
c + δ

(√
1
c + δ −

√
1
c − δ

)
√

1
c − δ

[
4c∗3/2 − ∂c∗

∂D∗

(√
1
c + δ +

√
1
c − δ

)]
 ,

which is positive if and only if

(
δ −

√
1

c
+ δ

√
1

c
− δ

)
∂c∗

∂D∗
+ 2

√
1

c
+ δ c∗3/2 > 0,

which is always positive if δ < 1
/

(c
√

2).

Case (ii): (1/c+ δ) ∈
[

1

c∗
,
(κx + κz)

2

κ2
xc
∗

]
and (1/c− δ) < 1

c∗
. In this case, κ∗s1 takes intermediate

values and κ∗s2 = 0, replacing the optimal precisions into (2.56) yields

D∗ =
1

c
−

√
1
c + δ
√
c∗

.

Note that
∂D∗

∂δ
< 0, which implies that

∂c∗

∂δ
> 0 and therefore

∂κ∗s1
∂δ

=
κx

2
√
c∗
(

1
c + δ

) [c∗ +
∂c∗

∂δ

(
1

c
+ δ

)]
> 0,

For type 2 firms we have
∂κ∗s2
∂δ

= 0, which follows from κ∗s2 = 0 and continuity of the optimal

threshold with respect to δ.



CHAPTER 2. INFORMATION SALE AND COMPETITION 67

Case (iii): (1/c− δ) ∈
[

1

c∗
,
(κx + κz)

2

κ2
xc
∗

]
and (1/c+ δ) >

(κx + κz)
2

κ2
xc
∗ . In this case, κ∗s2 takes inter-

mediate values and κ∗s1 = κz, replacing the optimal precisions into (2.56) yields

D∗ =
1

2

1

c
−

√
1
c − δ√
c∗

+
1

2

(
κz

κx + κz

)(
1

c
+ δ

)
.

Note that
∂D∗

∂δ
< 0, which implies that

∂c∗

∂δ
> 0 and therefore

∂κ∗s2
∂δ

=
κx

2
√
c∗
(

1
c − δ

) [−c∗ +
∂c∗

∂δ

(
1

c
− δ
)]

< 0,

For type 1 firms we have
∂κ∗s1
∂δ

= 0.

Case (iv): (1/c− δ) < 1

c∗
and (1/c+ δ) >

(κx + κz)
2

κ2
xc
∗ . In this case, κ∗s2 = 0 and κ∗s1 = κz, and

∂κ∗s1
∂δ

=
∂κ∗s2
∂δ

= 0.

Combining the above cases, we have that δ < 1
/

(c
√

2) implies
∂κ∗s1
∂δ
≥ 0 and

∂κ∗s2
∂δ
≤ 0, thus

proving the result.

Proof of Proposition 2.7.1

We begin by stating a lemma which is the discrete analogue of Proposition 2.3.1 presented in Section

2.3. The proof of the lemma follows similar arguments and is therefore omitted.

Lemma 2.9.5. The competition subgame between the firms has a unique Bayes-Nash equilibrium

in linear strategies. Furthermore, the equilibrium quantities of the firms are given by

qi =


αn[(1− ωk,n)xi + ωk,nsi] if i ∈ K

αnxi if i ∈ N \K
,
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where

ωk,n =
κs(

1− βn k−1
n−1ρ

)
κx + κs

,

and αn = γ0/
(
γ2 − n+1

n γ1

)
.

Using the above lemma we can characterize the expected equilibrium profits of an uninformed

and of an informed firm, respectively as

E
[
π1|θ

]
= α2

n

(γ2

2
− γ1

n

)[
θ2 +

2βnρκs
[(1− βnρ)κx + κs]2

− (1− βnρ)2κx + κs
[(1− βnρ)κx + κs]2

]
,

and

E
[
π0|θ

]
= α2

n

(γ2

2
− γ1

n

)[
θ2 − 1

κx

]
,

where we used the assumption that k = n. The provider extracts all surplus generated by the

information she sells. Thus, we can use the law of total expectation to characterize the provider’s

expected profit as

Π(κs, ρ, κx) = n
(
E
[
π1
]
− E

[
π0
])

= n α2
n

(γ2

2
− γ1

n

)(κs
κx

)
κs + κx

[(1− βnρ)κx + κs]2
.

Thus, the provider’s optimization problem is

max
ρ,κs

Π(κs, ρ, κx)

s.t.
κs
κz
≤ ρ ≤ 1

κs ≤ κz.
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Differentiating the objective with respect to ρ yields

∂Π

∂ρ
= 2n α2

n

(γ2

2
− γ1

n

) βnκs(κx + κs)

[(1− βnρ)κx + κs]3
, (2.58)

which is always negative since βn < 0. Thus, it is optimal for the provider to set ρ∗ = κs/κz.

Replacing ρ∗ into the objective and then differentiating with respect to κs yields

∂Π

∂κs
= n α2

n

(γ2

2
− γ1

n

) (1 + βnκs/κz)κx + κs
[(1− βnλκs/κz)κx + κs]3

.

When βn ≥ −(1 + κz/κx), the above expression is always positive and it is optimal to set κ∗s = κz.

Otherwise, the optimal precision is given by the solution to

(1 + βnκs/κz)κx + κs = 0,

which implies that κ∗s = −κz/(βn + κz/κx). Substituting the optimal strategy into the objective,

we can easily characterize the optimal profits as

Π∗ =



n α2
n

(γ2

2
− γ1

n

)(κz
κx

)
κz + κx

[(1− βn)κx + κz]2
if βn ≥ − (1 + κz/κx)

n α2
n

(γ2

2
− γ1

n

) κz
−4βnκ2

x

otherwise

,

thus completing the proof.

2.10 Measure Theoretic Framework

In Appendix 2.10, we provide formal conditions for an “exact law of large numbers” to hold in our

context. Our discussion largely builds on the results in Sun [2006] and Sun and Zhang [2009]. We

show that, within the appropriate measure theoretic framework, our environment with a continuum

of firms retains the most important measure theoretic properties of an environment with a finite

number of firms. The main results are a Fubini property, which allows us to exchange the order of
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integration, and a strong law of large numbers for pairwise independent random variables, which

allows us to work with aggregate uncertainty. In what follows we will first introduce formally our

measure theoretic framework, which entails a definition of an extension of the Lebesgue unit interval

as our set of firms, and then state formally the properties mentioned above.

Consider a measure space ([0, 1],L,m) of firms, where L is the σ-algebra of Lebesgue measurable

sets and m is the Lebesgue measure, and a probability space capturing the uncertainty in the

model (Ω,F ,P), where Ω is the sample space, F is the σ-algebra of events, and P is a probability

measure. As per the discussion in Sun [2006], our objective is to define an extension ([0, 1], I,M )

of the measure space ([0, 1],L,m) such that L ⊆ I and the restriction of M on L coincides with m.

To this end, consider the Cartesian product [0, 1]×Ω, and endow it with the product σ-algebra

I ⊗ F := σ(R), which is the σ-algebra generated by the class of measurable rectangles

R := {I × F | I ∈ I and F ∈ F}.

In addition, define the product measure M ⊗ P with the property that

M ⊗ P(I × F ) = M(I) · P (F ), ∀ I ∈ I, F ∈ F .

Since M and P are probability measures, and thus σ-finite, the desired property is straightforward

from the product measure theorem (see Billingsley [2008]). After having defined the product space

([0, 1]× Ω, I ⊗ F ,M ⊗ P), the next step is to define a Fubini extension. Before proceeding with

the formal definition, we introduce some additional notation. In particular, for a process f :

[0, 1] × Ω → R we let fi denote the random variable f(i, ·) : Ω → R and fω denote the random

variable f(·, ω) : [0, 1]→ R.

Next, we define an extension ([0, 1]× Ω, I � F ,M � P) of the product space described above,

such that I⊗F ⊆ I�F and the restriction of M �P on I⊗F coincides with M ⊗P . The extension

([0, 1]× Ω, I � F ,M � P) satisfies the following Fubini-type property: for any M � P -integrable

process f on ([0, 1]× Ω, I � F), we have that fi is P − integrable and fω is M − integrable. In
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addition,

∫
Ω
fi dP is M − integrable, and

∫
[0,1]

fω dM is P − integrable.

Finally,

∫
[0,1]×Ω

f(i, ω) d(M � P)(i, ω) =

∫
[0,1]

(∫
Ω
fi(ω) dP (ω)

)
dM(i) =

∫
Ω

(∫
[0,1]

fω(i) dM(i)

)
dP (ω).

Throughout the paper, and with special reference to the derivations presented in Appendix 2.9,

we assume that all relevant quantities lie in the Fubini extension of the product probability space

constructed above. For additional details we refer the interested reader to Sun [2006] that provides

a detailed treatment of the construction and establishes that there are Fubini extensions in which

one can construct processes with pairwise independent random variables taking any distribution

and Sun and Zhang [2009] that show that this result holds for the case in which the index space is an

extension of the Lebesgue unit interval. Moreover, we require any process f on ([0, 1]×Ω, I�F) to

be measurable, which is consistent with the information structure specified throughout the paper.

This assumption, coupled with the fact that M � P is a probability measure, implies that f is

M � P -integrable. Thus, the Fubini-type property above holds for any random variable in the

paper. Showing existence of conditional expectations is immediate.

The other important relation that we use in the paper is a law of large numbers for stochastic

processes depending on a continuous parameter. Sun [2006] proves such a law, which he calls an

exact law of large numbers, in the framework of a Fubini extension. In the following lemma, we

adapt and present a key auxiliary result stemming from his work.

Lemma 2.10.1. Consider a process f : [0, 1] × Ω → R and assume it is square integrable with

respect to M � P. If the random variables {fi}i∈[0,1] are uncorrelated, then for any set I ∈ I such

that M(I) > 0, we have

∫
I
f(i, ω) dM(i) =

∫
I×Ω

f(i, ω) d(M � P)(i, ω) for P − almost all ω ∈ Ω.
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This lemma essentially states that the sample average of a random variable over any set of firms

I with positive measure is exactly equal to its expectation. We use this result in the derivations

of Appendix 2.9 and, specifically to claim that

∫
[0,1]

ε(i, ω) dM(i) =

∫
[0,1]

ξ(i, ω) dM(i) = 0. We

should clarify that we slightly abuse notation throughout the paper to simplify the exposition of

our analysis and results. In particular, we write

∫ 1

0
fi di instead of

∫
[0,1]

fi dM(i).



Chapter 3

Monopoly Pricing in the Presence of

Social Learning

3.1 Introduction

Launching a new product involves uncertainty. Specifically, consumers may not initially know the

true quality of the new product, but learn about it through some form of a social learning process,

adjusting their estimates of its quality along the way, and making possible purchase decisions

accordingly. The dynamics of this social learning process affect the market potential and realized

sales trajectory over time. The seller’s pricing policy can tactically accelerate or decelerate learning,

which, in turn, affects sales at different points in time and the product’s lifetime profitability. This

paper studies a monopolist’s pricing decision in a market where quality estimates are evolving

according to such a learning process.

Consumers arrive at the market according to a Poisson process and face the decision of either

purchasing a product with unknown quality, or choosing an outside option. They differ in their

base valuation for the observable attributes of the product, which, together with the product

quality, determines their willingness-to-pay. These base valuation parameters are assumed to be

independently and identically drawn from a known distribution. If consumers knew the true product

quality, then the distribution of the base valuations would map directly into a willingness-to-pay
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(WtP) distribution and, in turn, into a demand function that the monopolist could use as a basis

of her pricing decision.

In our model the quality is unknown, and consumers’ prevailing estimate of the unknown quality

evolves according to a social learning mechanism. Consumers who purchase the product experience

its true quality plus some small quality disturbance, which is independent and identically distributed

across purchasers. Purchasers report whether they “liked” or “disliked” the product, i.e., if their ex-

post utility was positive or negative, respectively. Consumers do not report their base valuations,

so a positive review may result from a high quality or high idiosyncratic quality preference. An

arriving consumer observes the history of purchase decisions and reviews made prior to his arrival,

combines this information with his prior quality estimate, infers the associated product quality,

and makes his own purchase decision. The sequence of purchase decisions affects the evolution

of the observable information set, and, as such, the dynamics of the market response over time.

Optimizing the monopolist’s pricing policy requires detailed understanding of the learning dynamics

and not just its asymptotic properties.

It is typical to assume that fully rational agents (consumers) update their beliefs for the unknown

quality of the product through a Bayesian analysis that takes into account the sequence of decisions

and reviews, and accounts for the fact that each such decision was based on different information

available at that time. This sequential update procedure introduces a formidable analytical and

computational onus on each agent that may be hard to justify as a model of actual choice behavior.

Instead, we postulate a non-Bayesian and fairly intuitive learning mechanism, where consumers

assume that all prior decisions were based on the same information, and under this bounded

rationality assumption, consumers pick the maximum likelihood estimate (MLE) of the quality

level that would best explain the observed sequence of positive and negative reviews (non-purchase

decisions are not observable). New reviews change the available information and the resulting MLE

over time, and, of course, the rate at which consumers choose to purchase and later on submit new

reviews about their experiences.

As a motivating example consider the launch of a new hotel. It is typically hard to evaluate

the quality of such premises without first hand experience or word-of-mouth, which explains the
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importance that online review sites such as Tripadvisor have had on the hospitality industry.1

Assume the hotel is sufficiently differentiated from its competitors to be considered a monopoly in

some category; e.g., it may be the only hotel with a private beach in the area. Suppose it offers

better services than what consumers think at first. Initially some consumers’ idiosyncratic tastes

would convince them to choose this hotel; perhaps they have strong preferences for having a private

beach. These consumers would recommend the hotel by posting a review, which, in turn, increases

future demand, as potential consumers learn that the hotel is better than previously thought.2 The

price charged by the hotel affects this learning process by controlling the number of guests who

review the hotel and their degree of satisfaction. By accounting for the learning process the hotelier

may be able to avoid a sluggish start and realize the establishment’s full potential demand faster.

Regarding the learning mechanism, the information reported by consumers is subject to a self-

selection bias, since only consumers with a high enough base valuations purchase the product. The

intuitive MLE procedure takes into account this crucial point, and, as we show in Section 3.3.2,

the resulting quality estimate converges to the true product quality almost surely.

Detailed understanding of the learning trajectory is essential in optimizing the tradeoff between

learning and the monopolist’s discounted revenue objective. Second, Section 3.3.3 derives a mean-

field (fluid model) asymptotic approximation for the learning dynamics motivated by settings where

the rate of arrival of new consumers to the system grows large. Proposition 3.3.3 shows that the

asymptotic learning trajectory is characterized by a system of differential equations. Restricting

attention to uniformly distributed base valuations across consumers and focusing on the case where

the markets prior quality estimate is below the true quality, Section 3.3.4 derives the closed form

transient of the fraction of likes and dislikes over time, as well as that of the associated quality

estimate. The transient dynamics imply that the instantaneous demand function evolves over

time according to an ODE, which itself depends on the seller’s price, i.e., it emerges endogenously

through the interplay between consumer behavior and the seller’s decisions. The solution of the

1According to TripAdvisor 90% of hotel managers think that review websites are very important to their business
and 81% monitor their reviews at least weekly.

2Many empirical papers found that positive consumer reviews increase sales. For example, Luca [2011] finds that
a one star increase in the average consumer review on a popular review site (on a five star scale) translates to a 5-9%
increase in sales for restaurants in Seattle, WA.
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mean-field model gives a crisp characterization of the dependence of the learning trajectory on

the price, and specifically show that the time-to-learn decreases if the monopolist lowers her price.

This result naturally exploits the suitability of mean field approximations to characterize transient

behavior of discrete and stochastic systems. The paper illustrates that method in the context of

the specific consumer learning model described above, however, the approach is fairly general and

can be used to describe the transient learning dynamics under a broader set of micro consumer

behavioral models, see Ifrach [2012, Sections 2.2 and 3.2].

Third, we study the seller’s pricing problem under the assumption that the seller knows the

true product quality, but that the consumers do not use the seller’s price as a signal of quality.

Section 3.4 studies the monopolist’s problem of choosing the static price that optimizes her infinite

horizon discounted revenues. Proposition 3.4.1 characterizes the optimal solution, which exists and

is unique, and lies in the interval of two natural price points: (a) the optimal price assuming that

consumers do not learn and always make purchase decisions based on their prior quality estimate;

and (b) the optimal price in a setting where consumers knew the true quality all along. The

learning transient and its speed in relation to the seller’s discount factor determines the optimal

price. Intuitively, if the learning transient is slow relative to the discounting of revenues, then she

prices almost as if all consumers made purchasing decisions based on their prior on the quality;

and, if learning is fast, then the seller’s price will approach the one that the monopolist would set

if all consumers knew the true product quality.

Lastly, Section 3.5.1 studies a model where the seller has some degree of dynamic pricing

capability, namely she can change her price once, at a time of her choosing. In this case the

monopolist may sacrifice short term revenues in order to influence the social learning process in the

desired direction and capitalize on that after changing the price. Proposition 3.5.1 shows that when

consumers initially underestimate the true quality, the first period price is lower than the second

period one. This policy accelerates learning and increases revenues considerably. The numerical

experiments of Section 3.5.2 suggest that a pricing policy with two prices performs very well, and

that the benefit of implementing more elaborate pricing policies may be small.

We conclude this section with a brief literature review. The social learning literature is fairly
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broad. Much of this work can be classified into two groups depending on the learning mechanism,

which is either Bayesian or non-Bayesian. Banerjee [1992] and Bikhchandani et al. [1992] are

standard references in economics on observational learning where each agent observes a signal and

the decisions of the agents who made a decision before him, but not their consequent satisfaction

(in fact preferences are homogeneous). Agents are rational and update their beliefs in a Bayesian

way. They show that at some point all agents will ignore their own signals and base their decisions

only on the observed behavior of the previous agents, which will prevent further learning and may

lead to herding on the bad decision.

For social learning to be successful, an agent must be able to reverse the herd behavior of

his predecessors. Smith and Sørensen [2000] show that this is the case if agents’ signals have

unbounded strength. Goeree et al. [2006] show that this is achieved with enough heterogeneity in

consumers’ preferences. Our Assumption 3.2.1, which is key in proving learning, is similar in nature

to that of Goeree et al. [2006].3 Social learning has been studied in great generality by Arieli and

Mueller-Frank [2014].

Several papers have considered variations of the observational learning model with imperfect

information. Acemoglu et al. [2011] and Acemoglu et al. [2014] greatly contribute to the under-

standing of the interplay between social learning and the structure of the social network. Acemoglu

et al. [2011] identify conditions on the network under which social learning is successful and, alter-

natively, herding may prevail. Acemoglu et al. [2014] consider agents who can delay their decision

in order to obtain information from others by utilizing their social network. Jadbabaie et al. [2012]

consider a model where consumers communicate over a social network and update their information

in a non-Bayesian way. They provide conditions for learning to occur in this setting. Herrera and

Hörner [2013] consider a case where agents can observe only one of two decisions of their predeces-

sors, which in the language of our model means that the number of no purchase decisions is not

observed. Instead, consumers know the time of their arrival, which is associated with the number

of predecessors who chose the unobservable option. They show that this relaxation does not change

3See the surveys by Bikhchandani et al. [1998], and, more recently, by Acemoglu and Ozdaglar [2011] for many
extensions to this model.
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the asymptotic learning result of Smith and Sørensen [2000].

There is a growing literature in economics that studies non-Bayesian learning mechanisms that

employ simpler and perhaps more plausible learning protocols. Ellison and Fudenberg [1993, 1995]

consider settings in which consumers exchange information about their experienced utility and use

simple decision rules to choose between actions. The nature of word-of-mouth in our paper is

similar, although we consider reviews and not utilities directly.

A few papers in the operations management literature have considered social learning. In Debo

and Veeraraghavan [2009] consumers observe private signals about the unknown value of the service

and decide whether or not to join a queue, where congestion conveys information about the value of

the service. Debo et al. [2012] study a server who chooses her service rate to signal quality, again in

a queueing context. Related applications in inventory systems and retailing explore how stock outs

or observed inventory positions may also signal product quality. The mean field approach of this

paper may be applicable in studying transient learning phenomena in these operational settings.

Some recent papers have considered models of social learning in the presence of consumer

reviews. Ifrach et al. [2015] study a Bayesian model where both the quality of the product and the

reviews can assume only two possible values and they provide conditions for learning. Besbes and

Scarsini [2015] deal with a model where customers only observe the sample mean of past reviews,

and show under which conditions customers can recover the true quality of the product based on

the feedback they observe. They use stochastic approximation techniques to obtain their results. In

our model the decision rule is not fully rational, yet consumers do account for the self-selection bias

in their predecessors review, unlike other models that studied consumer reviews (e.g., Li and Hitt

[2008]). Lafky [2014] experimentally deals with the fundamental issue of why people rate products

and which biases arise in the behavior of reviewers.

Mean-field approximations have been used extensively in the area of revenue management4;

perhaps the first reference in that area is Gallego and van Ryzin [1994]. More broadly, the use of

mean-field approximations that rely on an appropriate application of the functional strong law of

large numbers to study the transient behavior of stochastic processes has a fairly broad literature

4Talluri and van Ryzin [2005] provides a good overview of that work.



CHAPTER 3. MONOPOLY PRICING IN THE PRESENCE OF SOCIAL LEARNING 79

that we will not review here. The particular result we will employ, due to Kurtz [1978], was

originally derived for studying the asymptotic behavior of Markov Chain models with process-

dependent transition parameters, used to analyze diffusion and epidemic systems.

The learning dynamics in our model give rise to a sales trajectory which, when properly inter-

preted, resembles the famous Bass diffusion model, see Bass [2004].5 Contrary to the Bass model

that specifies up front a differential equation governing social dynamics, we start with a micro

model of agents’ behavior and characterize its limit as the number of agents grows large. This limit

—given by a differential equation as well—induces a macro level model of social dynamics. The

application of mean-field approximation to our model bridges the literature on social learning and

that on social dynamics by filling the gap between the detailed micro level model of agent behavior,

and the subsequent macro level model of aggregate dynamics.

Several papers have studied pricing when agents are engaged in social learning or embedded in

a social network. Bose et al. [2006] consider pricing in the classic Bayesian observational learning

model when a monopolist and agents are equally uninformed about the value of the good. Campbell

[2013] studies the role of pricing in the launching of a new product in a model of social interaction

that builds on percolation theory, where the latter focuses on dynamic pricing. Candogan et al.

[2012a] consider optimal pricing strategies of a monopolist selling a product to consumers who are

embedded in a social network and experience externalities in consumption. Strategic behavior of

firms and consumers in the presence of social learning has been studied by Papanastasiou et al.

[2014]; Papanastasiou and Savva [2014], where in particular study a two period problem and study

the effect of the firm’s pricing policy on consumer purchase decisions as well as the impact of early

adaptor reviews on downstream demand.

Also related is the literature on pricing of experience goods, whose quality can be determined

only upon consumption; see, e.g., Bergemann and Välimäki [1997] and Vettas [1997]. Most of

these papers consider consumers that are homogenous ex-ante, i.e., before consuming the good.

Bergemann and Välimäki [1997] consider a duopoly and heterogeneous consumers on a line who

report their experienced utility, and show that the expected price path for the new product is

5In particular, by considering a population with finite mass, and by simplifying consumers’ decisions.
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increasing when consumers initially underestimate the quality; our Proposition 3.5.1 is consistent

with their findings.

3.2 Model

3.2.1 The Monopolist’s Pricing Problem

A sequence of consumers, indexed by i = 1, 2, . . . , sequentially decide whether to purchase a newly

launched good or service (henceforth, the product), or choose an outside alternative. The intrinsic

quality of the product, denoted with q, is initially unknown and can take values in the interval

[qmin, qmax] with qmin ≥ 0. The quality experienced by consumer i, if he chooses to buy the

product, is subject to a random disturbance εi and given by qi := q+εi. This quality shock reflects

variability in service levels (e.g., waiting times), production defects or exogenous factors influencing

the way the product is consumed (e.g., weather).

Consumers are heterogeneous; this is represented by a parameter αi that determines consumer

i’s base valuation, e.g., that would correspond to the observable attributes of the product. His

utility from consuming the product is

ui = αi + qi − p,

where p is the price charged by the monopolist, which, for the time being, we assume to be fixed.6

The utility derived from choosing the outside alternative is normalized to zero for all consumers.

Preference parameters, {αi}∞i=1, are i.i.d. random variables drawn from a known distribution

function F . We denote the corresponding survival function by F̄ (·) := 1 − F (·), and assume that

F has a differentiable density f , which is uniformly bounded by some constant fmax and has con-

nected support [αmin, αmax], or [0,∞). The αi can be interpreted as an idiosyncratic premium that

consumer i is willing to pay for the product. The failure rate of the quality preference distribution

is defined as h(x) := f(x)/F̄ (x). Throughout this paper we will assume that F has an increasing

6The functional form of the utility function does not play a big role in the subsequent analysis. For example, another
tractable alternative would be a vertically differentiated market in which utility takes the form ui = αi · qi − p.
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failure rate (IFR), that is, h is strictly increasing for all x ≥ 0.

The quality disturbances are short-lived; they are i.i.d. random variables with mean zero and

independent of the underlying quality, as well as of the preference parameters. To simplify the

analysis, we assume that εi follows a symmetric, two-point distribution: specifically, εi takes the

values {−ε̄, ε̄} with equal probabilities 0.5. It is natural to think that the quality disturbances εi

are small relative to the magnitude of the unknown quality q. Moreover, both q and the εi’s are

expressed in the units of the consumer’s utility, e.g., in dollars.

Heterogeneity in terms of the αi’s implies that even if the product quality, q, was known, not

all consumers would make the same decision: only those with αi ≥ α∗ := p− q would purchase the

product, assuming that they are risk neutral with respect to quality disturbances. Equivalently,

only consumers with WtP α + q ≥ p would purchase; the distribution of α gives rise to a WtP

distribution α+ q for the product.

The product is launched at time t = 0, and consumers arrive thereafter according to a Poisson

process with rate Λ, independent of the product’s quality and consumers’ preference parameters.

Denote by ti the random time consumer i enters the market and makes his purchasing decision.

Consumer i does not re-enter the market regardless of his decision at ti; this assumption is reasonable

if the time horizon under consideration is not too long.

Consumers initially have some common prior conjecture on the quality of the product, q0 ∈

[qmin, qmax]. This prior conjecture could be the expected value of some prior distribution of the

quality, or could simply be consumers’ best guess given the product’s marketing campaign and

previous encounters with the monopolist in other categories.

The information transmission in our model is often called word-of-mouth communication. A

consumer i who purchased the product, truthfully reports a review about his experience with the

product, denoted by ri that takes two values: ‘like’, denoted by rL and ‘dislike’, denoted by rD. A

consumer who purchases the product reports that he likes it if his ex-post utility was nonnegative,

taking into account the unknown quality and quality disturbance, as well as his preference param-

eter; he reports that he dislikes it if his ex-post utility was negative. Consumers report neither

their preference parameter nor the quality disturbance they faced and, as such, reviews are not
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fully informative. For example, a ‘like’ could result from a high preference parameter, the product

being of high quality or a positive quality shock (not necessarily all).7 This binary report is a

simplification of the star rating scales of online review systems. Consumers who did not purchase

the product do not report a review and are not observed. We will denote their decision by ri = rO.

We make the following assumptions on the set of feasible prices.

Assumption 3.2.1. The price p charged by the monopolist belongs to [pmin, pmax], where

(i) pmax is such that F̄ (pmax − qmin + ε̄) > 0. (Equivalently pmax < αmax + qmin − ε̄.)

(ii) pmin is such that F̄ (pmin − qmax + ε̄) < 1. (Equivalently pmin > αmin + qmax − ε̄.)

Assumption 3.2.1–(i) implies that, even at the lowest possible quality level, there will always

be some consumers who choose to buy the product (this follows from pmax < αmax + qmin), and

moreover, at least some of these consumers will like the product—the latter ensures that new

information about q will enter the learning process; if this assumption is violated and pmax >

αmax + qmin− ε̄, then at q = qmin all buyers with a negative shock would dislike and all buyers with

a positive shock would like. Assumption 3.2.1–(i) is similar to the “unbounded belief assumption”

often used in Bayesian social learning in the sense that it implies that some new information will

enter the system over time, which will ultimately allow the market to learn the unknown product

quality. Assumption 3.2.1–(ii), states that there are always some low-WtP consumers who will

dislike the product if they get a negative disturbance realization. It is easy to verify that both

conditions are satisfied if the support of α’s is sufficiently wide relative to the unknown quality

[qmin, qmax] and the magnitude of the subsequent quality disturbances ε̄ is small.

We define the following quantities: Li :=
∑i−1

j=1 1
{
rj = rL

}
is the number of consumers who

purchase and like the product out of the first i− 1 consumers, and, similarly, Di is the number of

consumers who purchase and dislike the product. The information available to consumer i before

making his decision is

Ii = (Li, Di). (3.1)

7This assumption is motivated by the fairly anonymous reviews that one may get online today. One possible
extension would consider a model where consumers gather two sets of information, one from a process like the one
above, and the other from a smaller set of their “friends” whose quality preferences are known with higher accuracy.
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The index ‘i’ itself is not observable. Before describing the evolution of information and consumers’

decision rule, we introduce the monopolist’s pricing problem, which is the main focus of this paper.

The monopolist seeks to choose a static price p to maximize her discounted expected revenue, R(p),

as follows,

max
p

R(p) = max
p

E

[ ∞∑
i=1

e−δti p1
{
ri(p) 6= rO

}]
= max

p

∞∑
i=1

E
[
e−δti pP

(
ri(p) 6= rO | Ii

)]
, (3.2)

where δ > 0 is the monopolist’s discount factor, and the expectation is with respect to consumers’

arrival times, the idiosyncratic quality preferences αi’s, and the sequence of quality disturbances

εi’s. The monopolist is assumed to know the true quality, the prior quality estimate, as well as

the distribution of quality preferences and disturbances. Expression (3.2) reveals the complexity of

the pricing problem in the presence of social learning. Consumers’ purchasing decisions influence

future revenues through the information available to successors. As such, the dynamic of the social

learning process must be understood in order to solve for the optimal price. Section 3.5 considers a

problem where the seller can select two prices as well as the optimal time to switch between them.

3.2.2 Decision Rule

We introduce a plausible non-Bayesian decision rule that consumers are assumed to employ to

decide whether to purchase the product. It is composed of two parts: consumer i (a) uses his

available information to form a quality estimate q̂i, and (b) purchases the product if and only if his

estimated utility is non-negative αi + q̂i − p ≥ 0.

In broad terms, consumers try to answer the following question: given the observed number of

likes and dislikes, the distribution of idiosyncratic quality preferences, and the distribution of the

quality shocks that affect the experienced quality, what value of intrinsic quality best explains the

observed data assuming that all past purchasers made decisions based on the same quality estimate?

The crucial simplification is that consumers disregard the fact that reviews have been submitted

sequentially, and that the information available to the respective purchasers was itself evolving over

time. Review information is typically aggregated in the form we postulate, but review aggregator
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sites often allow users to expand the information set and view the sequence and timestamps of

the various reviews. Accessing this information is, however, cumbersome, and using this detailed

information is computationally hard (perhaps implausible). Our simplifying behavioral assumption

is a form of bounded rationality on the consumers’ regard. Disregarding the sequence of reviews

and processing the aggregated number of likes and dislikes, consumers are assumed to invoke a

maximum likelihood estimation (MLE) procedure to compute their quality estimate.

Under the assumption that a consumer was using the correct value for q, the probability of a

‘like’ conditional on a purchase is

P(consumer j likes | consumer j buys, q̂j = q)

=
P(αj + qj − p ≥ 0, αj + q − p ≥ 0)

P(αj + q − p ≥ 0)

=
.5P(αj + q + ε̄− p ≥ 0, αj + q − p ≥ 0)

P(αj + q − p ≥ 0)
+
.5P(αj + q − ε̄− p ≥ 0, αj + q − p ≥ 0)

P(αj + q − p ≥ 0)

= .5 + .5
F̄ (p− q + ε̄)

F̄ (p− q)

= .5 + .5G(p− q)

where the second equality follows from Bayes’ rule and

G(x) := F̄ (x+ ε̄)/F̄ (x). (3.3)

Similarly, the probability of observing a dislike conditional on a purchase is

P(consumer j dislikes | consumer j buys, q̂j = q)

= 1− P(consumer j likes | consumer j buys, q̂ = q) = .5− .5G(p− q).

The likelihood of observing (Li, Di) likes and dislikes under the assumption that all consumers were
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acting under the same quality estimate is

Li(q) = (.5 + .5G(p− q))Li(.5− .5G(p− q))Di .

Next, consumers introduce the effect of their prior quality estimate into their learning mechanism.

In order to do this, the prior quality estimator q0 must be transformed into a number of fictitious

reviews, L0 and D0, that are consistent with q0 under our maximum likelihood learning mechanism.

We assume that the total weight assigned to the prior estimator will be the one that is equivalent

to the expected number of positive and negative reviews over a length of time of w time units. One

can also think of 1/w as the standard error of the prior quality estimate q0, i.e., the longer the

accumulation period of prior information the more certain the consumers are about their prior.

With that in mind, we define L0 and D0 to be the expected number of like and dislike fictitious

reviews under the assumption that the quality prior q0 is equal to the true product quality as

follows:

L0 = wΛP(customer i buys & likes | q̂i = q = q0) = .5wΛ
[
F̄ (p− q0) + F̄ (p− q0 + ε̄)

]
, (3.4)

and

D0 = wΛP(customer i buys & dislikes | q̂i = q = q0) = .5wΛ
[
F̄ (p− q0)− F̄ (p− q0 + ε̄)

]
. (3.5)

Incorporating the effect of the prior quality estimate, consumers will pick the quality estimate q̂i

in the interval [qmin, qmax] so as to maximize the weighted likelihood function defined by

Lwi (q) = (.5 + .5G(p− q))L0+Li(.5− .5G(p− q))D0+Di . (3.6)

It is useful to spell out the probability that consumer i will like, dislike or not purchase the

product when his quality estimate, q̂i, is different from q. Consumer i reports a positive review if

he buys the product (αi + q̂i − p ≥ 0) and has a positive experience (αi + qi − p ≥ 0), where in the
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later we have to account for the disturbance εi.

P(ri = rL) = P(αi + q̂i − p ≥ 0, αi + qi − p ≥ 0)

= P(α1 ≥ p−min(qi, q̂i))

= .5F̄ (p−min(q − ε̄, q̂i)) + .5F̄ (p−min(q + ε̄, q̂i)).

Similarly, the probability of a dislike is

P(ri = rD) = P(αi + q̂i − p ≥ 0, αi + qi − p < 0)

= F̄ (p− q̂i)− .5F̄ (p−min(q − ε̄, q̂i))− .5F̄ (p−min(q + ε̄, q̂i))

and the probability of no purchase is given by

Pr(ri = rO) = P(αi + q̂i − p < 0) = F (p− q̂i).

We finish this section with few brief comments.

Price as a signal. The seller’s price conveys information about the product quality, but we

assume that consumers do not adjust their quality estimate in response to that information; likewise

the monopolist does not need to take that consideration into account.

Prior weight. All consumers assign the same weight to their common prior quality estimate. The

weight assigned to the prior w is assumed to be constant over time, that is, consumers arriving later

in time still assign the same weight to the prior, but due to the accumulation of review information,

these consumers end up slowly “forgetting” their prior estimate as it becomes less significant in

the MLE procedure. The weight w is a measure of inertia of the learning process, or measure

of confidence in the prior estimate in the absence of other new information. As time goes by and

more reviews accumulate in the system, consumers place increasingly more confidence in the review

information versus their prior information, which is reflected into the fact that the effect of L0 and
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D0 on the weighted likelihood (3.6) becomes negligible as Li and Di grow.

No purchases. The MLE procedure described above can also be used to study social learning in

a model where consumers are informed on the number of previous consumers who decided not to

purchase. In that context, it is not hard to show that the quality estimator has similar properties to

the ones of the estimator that we then characterize. This is not surprising, since statistical estimates

can only improve with more information, but it is important because it shows the robustness of our

estimation procedure.

Consumer learning. Different information models and micro models of consumer behavior could

be considered. For example, consumers may only observe reviews from a random sample of their

predecessors, which grows large in an appropriate sense; or, consumers may weigh their predecessors’

reviews such that later reviews are more influential than earlier ones. The latter could also be done

by the review site that acts as an information aggregator; see Ifrach [2012, Sections 2.2 and 3.2].

3.3 Asymptotic learning and the associated learning transient

In this section we will establish that consumers eventually learn the true quality of the product,

and subsequently approximate the learning transient via the solution of an ordinary differential

equation derived as a mean-field limit in a large market.

3.3.1 The consumer’s MLE problem

Our first result characterizes the maximum-likelihood (MLE) quality estimate used by consumer i.

First, we define

li :=
L0 + Li
Bi

, di :=
D0 +Di

Bi
and Bi := L0 + Li +D0 +Di, (3.7)

where li denotes the prevailing fraction of likes and di denotes the prevailing fraction of dislikes for

consumer i, then we can state the following proposition.
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Proposition 3.3.1. The MLE quality estimator

q̂i = argmax {Lwi (q) : qmin ≤ q ≤ qmax} , (3.8)

is unique and given by

q̂i =


proj[qmin,qmax](q

∗) if li > di,

qmin if li ≤ di,
(3.9)

where q∗ solves the following equation

G(p− q∗) = li − di = 2li − 1. (3.10)

(All proofs can be found in the Appendix.) The maximum likelihood estimate q̂i has appealing

properties. Equation (3.10) shows that it depends on the data only through the fraction of like

reviews. Moreover, by Lemma 3.6.1 (in the Appendix) we know that the function G(p − q) is

increasing in q, which implies that the estimator is increasing in the fraction of like reviews, as one

would expect. Lemma 3.6.1 also implies that G(p− q) is invertible for every q ∈ [qmin, qmax], which

means that (3.10) defines a one-to-one mapping between li and q̂i. We will exploit this observation

in the subsequent analysis.

3.3.2 Asymptotic learning

The stochastic learning process converges in the sense that the quality estimate q̂i converges to the

true quality q almost surely. Assumption 3.2.1 implies that new information continues to enter the

system since some consumers will always choose to purchase and as a result review the product.

This, in turn, ultimately guarantees that learning is achieved.

Proposition 3.3.2. Consider the sequential learning process described in the previous section,

where consumer i estimates the prevailing quality q̂i through (3.9). Then, q̂i → q as i→∞ almost

surely.
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The above result serves as a sanity check that learning is achieved under the proposed decision

rule; this result addresses the question that underlies most of the literature on social learning

of whether agents eventually learn the true state of the world. The ultimate goal of this paper

is to study the pricing question described in the previous section for which one needs to have

a more explicit characterization of the learning transient for the underlying stochastic learning

process. This is intractable, however, as is in almost all social learning models in the literature,

both Bayesian and non-Bayesian.8 Our approach is to approximate the learning transient through

a set of intuitive and tractable ordinary differential equations.

3.3.3 Approximation of learning dynamics in a large market

The proposed approximation is relevant in large market settings, and will be justified through

an asymptotic argument as the arrival rate of consumers making purchase decisions grows large,

rescaling processes so that the time scale within which information gets released and learning

evolves is the one of interest. The mean-field or fluid model approximation yields a tractable

characterization of the learning dynamics and provides insight on their dependence on the micro

model of consumer learning behavior and other problem primitives, including the seller’s price. We

comment at the end of this section on the generality of this approach.

We consider a sequence of systems indexed by n. In the n-th system consumers’ arrival process

is Poisson with rate Λn := nΛ. The state variables of the n-th system at time t is given by

Xn(t) := (Ln(t), Dn(t))), where Ln(t) is the number of consumers who report like by time t in the

n-th system, and Dn(t) is defined analogously. The superscript n indicates the dependence on the

arrival rate. Denote the scaled state variable X̄n(t) := Xn(t)/n and similarly for L̄n(t) and D̄n(t).

This state variable comprises the information available to the first consumer arriving after time t.

We will keep the prior initialization weight w constant, so the number of reviews associated with

the prior quality estimate will stay proportional to the fictitious number of purchasers that would

8Typical results establish that learning is achieved (or not) as i→∞, and in some cases the rate of convergence;
see, e.g., Acemoglu et al. [2009] for a characterization of the rate of convergence of Bayesian social learning for some
social networks.
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flow through the system over a fixed time window, e.g., a week.9

We carry the notation from the previous section with the necessary adjustments. Specifically,

with some abuse of notation, in the n-th system we have from (3.7) that

ln :=
Ln0 + Ln

Bn
=
L̄n0 + L̄n

B̄n
=: l̄n,

where Bn := Ln0 + Ln + Dn
0 + Dn and B̄n := Bn/n. Similarly, dn := (D0 + Dn)/Bn = (D̄0 +

D̄n)/B̄n =: d̄n. The fractions of likes and dislikes are independent of n, conditional on X̄n. Sim-

ilarly, q̂n(Xn(t)) is directly defined through (3.9) and (3.10). We also note that q̂n(X̄n(t)) =

q̂n(Xn(t)) through the normalized definitions of l̄n and d̄n, and, moreover, that the mapping q̂n

itself does not depend on n, that is, the same quality estimation procedure is applied throughout

the scaling that we consider, and simply evaluated at the appropriate state Xn(t).

Building on the above we define the functions γL and γD such that

γL(X̄n) := P
(
ri = rL | Ii = Xn

)
= .5

[
F̄
(
p−min(q − ε̄, q̂(X̄n))

)
+ F̄

(
p−min(q + ε̄, q̂(X̄n))

)]
,

with the interpretation that γL(X̄n) is the probability that a consumer who observes information

Xn reports rL. Similarly,

γD(X̄n) := F̄
(
p− q̂(X̄n)

)
− γL(X̄n).

Note that the above expressions imply that γL and γD are independent of n.

With this notation in mind, we use a Poisson thinning argument to express the scaled state

variables as a Poisson processes with time dependent rates. Let N := (NL, ND) be a vector of

independent Poisson processes with rate 1. Then,

L̄n(t) =
1

n
NL

(
Λn
∫ t

0
γL(X̄n(s)) ds

)
,

9It is possible to scale wn differently, of course, in which case we would need to apply the corresponding time
change in the X̄n(t) process. The above assumption simplifies the transient analysis without affecting, however, the
resulting structure and insights.
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and similarly for D̄n. The following shorthand notation is convenient,

X̄n(t) =
1

n
N

(
Λn
∫ t

0
γ(X̄n(s)) ds

)
, (3.11)

where γ := (γL, γD). The dependence of the state-dependent rate functions γL and γD on the state

X̄n(t) enters through the quality estimate q̂(X̄n(t)).

If the rate processes inside the expressions (3.11) did not depend on the state X̄n(t) itself, then

a straightforward application of the functional strong law of large numbers for the Poisson process

would yield a deterministic limit for X̄n(t) as n grew large. Our model is a bit more complex, but

because the evolution of the state X̄n(t) depends on the decisions made by all predecessors, one

would expect it to vary slowly relative to the increasing number of consumers arriving at any given

point in time. Intuitively, considering a short time interval [t, t+∆], one would expect that the large

pool of heterogeneous consumers arriving in that interval, each with a different quality parameter

α, and making decisions based on similar information given by X̄n(s) for some s ∈ [t, t+ ∆], would

lead to a deterministic but state-dependent evolution of X̄n for large n; effectively, the stochastic

nature of the decisions due to consumer heterogeneity is “averaged out” in such a setting.

This argument is made precise in Proposition 3.3.3 that derives a deterministic limiting char-

acterization for the system behavior as n grows large using Kurtz [1978, Theorem 2.2] through a

sample path analysis based on a strong approximation argument and a subsequent application of

Gronwall’s inequality.

Proposition 3.3.3. For every t > 0,

lim
n→∞

sup
s≤t
|X̄n(s)− X̄(s)| = 0 a.s.,

where X̄(t) = (L̄(t), D̄(t)) is deterministic and satisfies the integral equation,

X̄(t) = Λ

∫ t

0
γ(X̄(s)) ds. (3.12)
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To better understand (3.12) consider the expression for the scaled number of likes,

L̄(t) = Λ

∫ t

0
γL(X̄(s)) ds = Λ

∫ t

0
P
(
rs = rL | Is = X̄(s)

)
ds.

This means that the scaled number of ‘likes’ at t is the sum over the mass of consumers who report

a ‘like’ in each s ≤ t, and this mass depends on past reviews via X̄(·). It follows that the scaled

number of consumers that arrive by time t is Λt and that the number of people that purchased the

product and submitted a report is B̄(t) := L̄0 + D̄0 + L̄(t) + D̄(t). It is convenient to derive from

(3.12) the expressions for (l̄(t), d̄(t)) in the limiting (fluid) model, since these quantities determine

the decision of an arriving consumer:

l̄(t) := l(X̄(t)) =
L̄0 + L̄(t)

B̄(t)
and d̄(t) := d(X̄(t)) =

D̄0 + D̄(t)

B̄(t)
= 1− l̄(t). (3.13)

From the definition of (γL, γD), (3.10) and (3.13), it follows that (L̄, D̄) is absolutely continuous

and therefore differentiable almost everywhere. We refer to time t where (L̄, D̄) is differentiable as

regular. At regular points t, (L̄, D̄) satisfies the differential equations:

˙̄L(t) = .5Λ
[
F̄ (p−min(q − ε̄, q̂t)) + F̄ (p−min(q + ε̄, q̂t))

]
, (3.14)

and

˙̄D(t) = Λ
[
F̄ (p− q̂t)− .5

[
F̄ (p−min(q − ε̄, q̂t)) + F̄ (p−min(q + ε̄, q̂t))

]]
= ΛF̄ (p− q̂t)− ˙̄L(t), (3.15)

where q̂t is the maximum-likelihood estimator defined in (3.10) and evaluated at (l̄(t), d̄(t)).

Finally, as mentioned in the introduction, the approach of employing a mean field approximation

to characterize the transient of the social learning process can be used to study additional micro

learning models in other settings of interest. One key characteristic that underlies this approach

is that each individual consumer has a diminishing influence on the others, and as such on the
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aggregate behavior, as the size of the population scales. This condition typically holds when agents

decisions depend on system aggregates. This is related to the literature on the diffusion of products,

innovation, and epidemics, often called social dynamics, that focuses on the evolution of system

aggregates, such as the fraction of adopters. The approach described above allows one to determine

how the structure of the micro model of consumer behavior affects the aggregate learning dynamics.

3.3.4 Transient learning dynamics: uniformly distributed valuations

In the remainder of the paper we will assume that α ∼ U [0, ᾱ]10 and, without loss of generality,

we will normalize qmin = 0. This allows us to simplify the ODEs (3.14) and (3.15) as follows. At

regular times t, we have

˙̄L(t) = Λ

(
ᾱ+ .5 min(q − ε̄, q̂t) + .5 min(q + ε̄, q̂t)− p

ᾱ

)
and ˙̄D(t) = Λ

(
ᾱ+ q̂t − p

ᾱ

)
− ˙̄L(t),

(3.16)

and the quality estimator can now be written as

q̂t = p− ᾱ+
ε̄

2(1− l̄(t))
= p− ᾱ+

ε̄

2

(
1 +

L̄0 + L̄(t)

D̄0 + D̄(t)

)
. (3.17)

The subsequent analysis of the paper will primarily focus on the learning transient when the prior

estimate q0 initially underestimates the true quality of the product, i.e., q0 < q, and, moreover,

focus on the portion of the learning transient over which q̂t < q − ε̄ (we refer to this as “phase 1”).

When ε̄ is small, this first phase of the learning process is the most important to understand. 11

Underestimating prior (q0 < q); phase 1 of learning q̂t < q − ε̄. At times where the

prevailing quality estimate is such that q̂t < q− ε̄, the consumers who purchase with ᾱ+ q̂t− p ≥ 0

are guaranteed to have a positive ex-post utility realization since ᾱ+ q− ε̄− p ≥ ᾱ+ q̂t− p ≥ 0. As

10It follows that F̄ (x) = 1− x/ᾱ for all x ∈ [0, ᾱ], and that G(x) = (ᾱ− x− ε̄)/(ᾱ− x) for all x ∈ [0, ᾱ− ε̄].
11The Appendix studies the case where the prior overestimates the true quality q0 > q, and also shows how to

approximate the evolution of the learning ODEs at times where q − ε̄ < q̂t < q + ε̄ for the case where ε̄ is small.
Moreover, note that equation (3.17) corresponds to the solution of equation (3.10) when l̄(t) ≤ 1 − ε̄/2ᾱ, otherwise
we have a different solution. We only consider the above solution since in the relevant cases l̄(t) is never too close to
1.
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a result only like reviews will be submitted as long as q̂t < q− ε̄. In this case, the ODEs (3.16) can

be solved in closed form and the solutions can then be used together with (3.17) to characterize the

learning trajectory for q̂t. We do this in Proposition 3.3.4, which is the main result of this section.

Before presenting the result, we formally define the time-to-learn

τ := inf{t : t ≥ 0, |q − q̂t| ≤ ε̄}.

This is the time it takes q̂t to reach within ε̄ of q and it measures the duration of the learning phase.

Proposition 3.3.4. Consider the ODEs for the learning dynamics given in (3.16) and assume that

q0 < q. Then, for t ≤ τ ,

q̂t = p− ᾱ+ (ᾱ+ q0 − p) exp

(
t

w

)
. (3.18)

Moreover,

τ = w log

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)
. (3.19)

Proposition 3.3.4 characterizes the learning transient in the underestimating case. In particular,

expression (3.18) describes the learning trajectory of the quality estimate q̂t for all t ≤ τ , and

expression (3.19) characterizes the time-to-learn as a function of the relevant model parameters,

i.e., the market heterogeneity ᾱ, the distance q−q0 of prior quality from true quality, and the price.

First, expression (3.18) shows that q̂t starts at the prior estimate q0 at time 0 and it increases

monotonically to reach q − ε̄ at time τ . Moreover, the lower the prior weight w, the faster the

learning trajectory, i.e., when consumers place less weight on their prior estimate, they are more

sensitive to the review information and as a result the quality estimator is updated faster.

Furthermore, note that expression (3.19) can be rewritten as

w log

(
1 +

q − q0 − ε̄
ᾱ+ q0 − p

)
,

which allows us to make some interesting comparative statics observations on the learning transient.

In particular, note that the time-to-learn τ is decreasing in the maximum (or equivalently the range

of the) base valuation ᾱ, because if consumers have higher valuations, more consumers choose to
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buy (and review) the product and thus information accumulates faster. Moreover, τ is increasing

in (q − q0), i.e., the more severely consumers underestimate quality, the longer it takes to learn

q. Finally, the expression for τ highlights that the speed of the learning transient is proportional

to w, which is a natural time scale if we think of learning as the process of accumulating enough

information to overcome the bias of the prior estimate q0.12

Before moving to the revenue maximization problem, we make one last important observation

that relates the learning process to the monopolist’s pricing decision.

Corollary 3.3.1. The time-to-learn τ is increasing in p.

This result can be explained as follows. Let

dt(p) := F̄ (p− q̂t) =
ᾱ+ q̂t − p

ᾱ
,

which denotes the instantaneous demand function at time t in our large market setting. At any

given t ≤ τ , a price increase affects the instantaneous demand function through two channels: first,

a direct channel, a higher price means a lower instantaneous demand at time t; second, through

q̂t, a higher price means a lower q̂t at time t.13 Therefore, by increasing the price, the monopolist

effectively decreases the rate at which consumers are buying (and reviewing) the product, thus

slowing down learning. Finally, using the characterization of q̂t from (3.18) we can rewrite dt(p),

12Note that the specific way in which the ODEs for the transient analysis depend on w is determined by the
assumptions that we make on w in the large market approximation. In particular, recall our assumptions that as
the arrival rate of consumers scales, the prior weight itself scales, and likewise the reviews corresponding to the prior
Ln0 , D

n
0 , all scale proportionally to the scaling constant n. This assumption is desirable because it implies that the

ensuing transient of the quality estimate evolves on the natural time-scale of the system, e.g., if we measure time in
days, then the prevailing quality estimate also evolves in the time frame of days. We could have assumed that the
prior weight scales, for example, with order of

√
n reviews, in which case we would have obtained the same ODE

characterization after an appropriate rescaling of time. To understand how the analysis relates to the study of a
system of original interest, consider an example where Λ̂ = 1000 consumers per day, and ŵ = 100 reviews. These
parameters are then embedded in a sequence of systems of growing scale, say Λn = 10 · n and wn = 1 · n, which we
then study asymptotically to obtain tractable characterizations of their evolution; the 100th system in that sequence
is the original system we wanted to analyze. We could have just as well defined a different sequence, for example
Λn = 10 ·n and wn = 10 ·

√
n. This modeling choice affects the downstream scaling of the system processes as briefly

explained above, but not the results.

13This can easily be verified by differentiating (3.18) with respect to p and noting that, for all 0 < t ≤ τ , ∂q̂t/∂p =
1− exp (t/w) < 0.
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for all t ≤ τ , as

dt(p) =

(
ᾱ+ q0 − p

ᾱ

)
exp

(
t

w

)
.

The instantaneous demand function thus takes the linear form dt(p) = at − bt · p with at = (1 +

q0/ᾱ) exp(t/w) and bt = (1/ᾱ) exp(t/w). Note that the instantaneous demand is positive for all

p ∈ [pmin, pmax], which follows directly from Assumption 3.2.1, and that both the slope bt and the

intercept at are increasing in t. Thus, when consumers initially underestimate quality (q0 < q), the

instantaneous demand and consequently the instantaneous revenue are increasing with t. Similarly,

note that as time passes and the quality estimate increases, the monopolist can achieve the same

instantaneous demand with a higher price, thus generating more revenue. In the following sections,

we will further elaborate on these insights and we will study the pricing strategy of the monopolist.

The overestimating case q0 > q and the analysis of the ODEs after time τ in the case of a

small quality disturbance ε̄ are briefly reviewed in the Appendix. In both cases the transient is

more complicated and its solution cannot be written in closed form, however, numerical solutions

are very simple to attain and one can still establish useful structural properties, such as the fact

that the quality estimate monotonically converges to the true value q from below (above) in the

underestimating (overestimating) case.

3.4 Static Price Analysis

In this section we solve the monopolist’s problem of choosing a static price to maximize her revenue

as given in (3.2). Following the analysis of the previous section, the stochastic learning trajectory

is replaced by its deterministic mean field approximation. This enables us to solve an otherwise

intractable problem. The next two sections focus on the price optimization problem, for the case

in which consumers initially underestimate quality through their prior, i.e., q0 < q. Adapting by

the mean-field approximation, we can write the seller’s discounted revenue as

R̄(p) = Λ

∫ ∞
0

e−δtπt(p) dt = Λ

(∫ τ

0
e−δtπt(p) dt+

∫ ∞
τ

e−δtπt(p) dt

)
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where πt(p) = p · dt(p) denotes the instantaneous revenue function at time t, and τ is the time-

to-learn that was defined in the previous section. We assume that once the learning process has

converged to q̂τ = q − ε̄, revenues are accrued from then on according to q̂t = q for t ≥ τ . This is

safe in our setting since ε̄ is a small quantity, and it leads to the following revenue function

R̃(p) = Λ

(∫ τ

0
e−δtπt(p) dt+

∫ ∞
τ

e−δtπ∞(p) dt

)
, (3.20)

where π∞(p) denotes the instantaneous revenue at the true quality (q̂∞ = q).14 The monopolist’s

revenue maximization problem can be written as

maximize
{
R̃(p) : pmin ≤ p ≤ pmax

}
. (3.21)

Before stating our main result, we define

pm(q0) := argmax
p∈[pmin,pmax]

{π0(p)} and pm(q) := argmax
p∈[pmin,pmax]

{π∞(p)} ,

which are the static monopoly prices at q0 and q respectively.15 The following proposition charac-

terizes the optimal monopoly price in the presence of social learning.

Proposition 3.4.1. Consider the case q < q0. For ε̄ sufficiently small, the monopolist revenue

optimization problem (3.21) has a unique optimal solution p∗ = p∗(δ, w) that satisfies the following:

(a) p∗ ∈ [pm(q0), pm(q)].

(b) p∗(δ, w)→ pm(q) as δw → 0 and p∗(δ, w)→ pm(q0) as δw →∞ .

Proposition 3.4.1 characterizes the (unique) solution of the monopolist’s revenue maximization

problem. In particular, Part 3.4.1 states that the optimal price is straddled between two natural

14Lemma 3.6.4 in the Appendix provides an intuitive characterization of the revenue function (3.20) and establishes
a bound on |R̃(p)− R̄(p)|, which is of order ε̄.

15Note that Assumption 3.2.1?? implies that the constraints in the definition of pm(q) are never binding and
pm(q) = (ᾱ + q)/2. Moreover, Assumption 3.2.1?? implies that the constraints in the definition of pm(q0) are not
binding if and only if (ᾱ+ q0)/2 > qmax − ε̄, which is always true for reasonable values of ᾱ and q0.
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end points: the price that a monopolist would charge if consumers did not engage in social learning

and based their purchase decisions only on their prior estimate q0; the price that a monopolist

would charge if consumers were fully informed of the product quality q.

Part 3.4.1 highlights the importance of the monopolist’s patience level δ and the weight w,

that consumers attach to their prior, on the optimal price with social learning. In particular, if

the monopolist is very patient (δ ≈ 0), then the optimal price is close to the price under full

information, since in this case the learning transient is short relative to the extent of revenue

discounting. However, if the monopolist is very impatient (δ � 0), then she finds it optimal to

significantly decrease her price, in the limit learning is not important and the monopolist prices as

if q̂t = q0 for all t ≥ 0. Finally, note that the prior weight w is a natural time unit that determines

the learning speed and the effect of discounting on revenues.

In what follows, we numerically illustrate the solution to (3.21) for different model parameters

and derive some observations regarding comparative statics. We consider the underestimating case

(q0 < q) with a demand rate of 10 potential consumers per week. The most important parameters

in the pricing problem are the monopolist’s discount factor δ, the error in consumers prior estimate

q0 relative to the true quality, and the maximum base valuation ᾱ. As already noted, the learning

transient also scales proportionally to the weight w attached to the prior estimate.

We consider three different prior estimates q0 ∈ {.40, .20, .10}, with a prior weight of w = 10.

The true quality is q = 2, and we set the small quality disturbance term ε̄ to 5% of the true quality.

The monopolist is either patient, semi-patient, or impatient, corresponding to annualized discount

rates δ ∈ {2.5%, 7.5%, 15%}. We fix ᾱ = 4 and we think that this is a reasonable value for this

parameter, which corresponds to a maximum quality premium of 2q.16

The left plot in Figure 3.1 highlights how the optimal price p∗ varies with the prior q0 and the

monopolist’s patience level. The monopoly price under full information pm(q), which is normalized

to 1, and the monopolist price at q0 are also plotted in black. In line with our theoretical result,

we see that the optimal price with social learning is always between the static monopoly price at

q0 and the static monopoly price at q. Moreover, the price p∗ is closer to the static monopoly price

16Note that if ᾱ� q then learning becomes less important.
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Figure 3.1: Optimal Static Price and Learning Phase Duration.

under full information when the monopolist is more patient and consumers’ prior estimate q0 is

closer to q. On the contrary, when the monopolist is impatient, her optimal price is always closer

to the static monopoly price at q0. The right plot in Figure 3.1 reports the learning phase duration

τ∗ for different values of q0 and different patience levels. It always takes 5.5 to 8.5 weeks for the

quality estimate to get ε̄-close to q. This observation is not surprising, since the facts that w = 10

and q − ε̄ = 1.9 imply that τ∗ scales with

10 log

(
ᾱ+ 1.9− p∗

ᾱ+ q0 − p∗

)
,

however, the numerical results highlight that it always takes significantly longer to learn q when the

monopolist is more patient. For the parameter values considered, learning q when the monopolist

is patient always takes 15%− 25% longer than when the monopolist is impatient.
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3.5 Two Price Analysis

Social learning implies a time varying demand process. As such, the ability to modify the price over

time is valuable. Indeed, it is common for sellers to modify the prices of their products in proximity

to their launching, for example by setting a low introductory price. Many factors and consider-

ations, possibly separate from social learning, can support such pricing policies. A few examples

include learning-by-doing, demand estimation, and endogenous timing of the purchasing decision

(consumers with high valuations purchase first). These considerations are not part of our study

which exclusively focuses on the impact of social learning on the dynamics of the pricing decision,

and highlights the appeal of the tractable mean field approximation of the learning phenomenon to

analyze the otherwise complex revenue optimization problem. For concreteness we focus on a two

period pricing problem.

3.5.1 Optimal Prices

Consider the situation in which the monopolist can adjust her price once. She sets an initial price p0

until time s, then p1, and she can optimally choose (p0, p1, s) to maximize her discounted revenue

objective. In this setting, we will show that the monopolist may choose to sacrifice short-term

revenue to optimally speed up learning.

At the time of the price change consumers aggregate all information into a new prior q1 := q̂s,

i.e., the new prior equals the prevailing quality estimate at the time of the price change. Thus,

q1 = p0 − ᾱ+ (ᾱ+ q0 − p0) exp
( s
w

)
,

moreover consumers use the following weight for the new prior,

w1 = w + Λ

∫ s

0
F̄ (p− q̂t) dt = w

[
1 + Λ

(
exp

( s
w

)
− 1
) ᾱ+ q0 − p0

ᾱ

]
.

The (q1, w1) specification incorporates the fact that the reviews before time s were under a

different price point. From time s onward the problem is analogous to the single price version
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studied in the previous section. In particular, after time s the learning process evolves according to

equation (3.18), with initial condition q1, price p1, and prior weight w1. The expected discounted

revenue of the monopolist is given by

R̄(p0, p1, s) = Λ

(∫ s

0
e−δtπt(p0) dt+

∫ ∞
s

e−δtπt(p1) dt

)
.

As in the static price case, we study the situation in which once the learning process has

converged to q̂t = q − ε̄, revenues are accrued from then on according to q̂t = q. In this setting, it

is without loss of generality to focus the attention on policies such that s ≤ τ .17 Which leads to

the following revenue function

R̃(p0, p1, s) = Λ

(∫ s

0
e−δtπt(p0) dt+

∫ τ

s
e−δtπt(p1) dt+

∫ ∞
τ

e−δtπ∞(p1) dt

)
. (3.22)

This setting is the natural extension to the static price case, indeed if p0 = p1 = p one can easily

verify that the revenue function as well as the learning process would be identical to the static price

case. The monopolist solves the following optimization problem

maximize R̃(p0, p1, s)

s.t. p0, p1 ∈ [pmin, pmax] (3.23)

s ≤ τ,

and the following proposition provides a characterization of the optimal pricing policy.

Proposition 3.5.1. Consider the case q0 < q and assume that ε̄ is sufficiently small. Let (p∗0, p
∗
1, s
∗)

be the optimal solution to (3.23). Then, the optimal prices (p∗0, p
∗
1) are such that p∗0 ≤ p∗1 and

p∗1 ∈ [pm(q1), pm(q)].

Proposition 3.5.1 states that, when consumers underestimate quality, the optimal price p∗1 is

always between the static monopoly price pm(q1) and monopoly price under full information, pm(q).

17A formal argument is provided in the Appendix.



CHAPTER 3. MONOPOLY PRICING IN THE PRESENCE OF SOCIAL LEARNING 102

Figure 3.2: Optimal Prices and Learning Phase Duration.

Moreover, the optimal price path is increasing. This supports the intuition that the monopolist has

an incentive to lower the initial price in order to speed up learning.

Figure 3.2 displays numerical solutions to (3.23) for different model parameters, which provide

some additional insights on the optimal pricing policy.18 The left plot in Figure 3.2 shows the

optimal prices p∗1 (above) and p∗0 (below) for different priors and different monopolist’s patience

levels. We clearly see that, in the two-price case, the monopolist may find it optimal to initially

price below pm(q0) in order to speed up learning, and then switch to a price which is very close

to the full information monopoly price pm(q) in order to extract more revenues. Moreover, if

the monopolist is more patient, i.e., δ is small, then the first period price p∗0 is lower. This has

interesting implications for the speed of learning: the right plot in Figure 3.2 shows that a patient

monopolist, who is willing to sacrifice initial revenues by under-pricing more aggressively, achieves

faster learning than an impatient one.

18The choice of parameter values for the numerical experiments is the same as the one described in Section 3.4.
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q0 static two prior true

.40 4.25 3.13 9.86 5.30
Patient .20 6.18 4.05 12.37 7.25

.10 7.19 4.67 13.72 8.42

.40 12.05 9.21 14.66 14.05
Semi-Patient .20 15.31 11.61 18.13 18.72

.10 17.06 12.91 19.97 21.44

.40 19.32 16.29 20.41 23.64
Impatient .20 23.78 20.18 24.83 30.50

.10 26.09 22.22 27.12 34.32

Table 3.1: %-gap in revenues relative to full information scenario.

3.5.2 Revenue Comparison of Pricing Policies

In this section we numerically compare the revenue performance of the optimal static price policy

and the optimal two prices policy. Our measure of revenue performance for a given policy is

the %-gap between the total revenue attained by using that policy and the total revenue that

the monopolist would attain in an ideal scenario in which consumers know q and the monopolist

charges the monopoly price under full information.19 We also report revenue performances for two

benchmark policies: prior and true. For these cases, revenues are computed under the assumption

that consumers follow the learning process specified in our model, but the monopolist does not take

it into account and she charges the static price pm(q0) and the static price pm(q) respectively.

The first two columns in Table 3.1 show the revenue performance of the static price and of the

two prices policies respectively. The optimal two-period pricing policy performs consistently better

than the optimal static price, and the relative revenue improvement becomes more significant as

the seller’s discount factor increases. In the last two columns of Table 3.1 we report the revenue

performance of the prior and true policies respectively. By comparing the static price policy to

these two benchmark policies we can appreciate the effectiveness of taking social learning into

account when devising an optimal pricing policy.

19Note that when consumers underestimate quality, the latter provides an upper bound on the revenue that can
be attained in our model by any policy.
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3.6 Proofs

Throughout this appendix, given a real number x we denote its orthogonal projection onto a closed

real interval [a, b] as proj[a,b](x), given a vector y = (y1, . . . , yk) we define |y| = ‖y‖1 =
∑k

j=1 |yj |,

and given a function y(t) of time, ẏ(t) denotes its derivative.

Proofs of Section 3.3

Lemma 3.6.1. The function G(x) defined in (3.3) is non-increasing for all x ≤ αmax, and is

strictly decreasing for all x ∈ [αmin− ε̄, αmax− ε̄]. Equivalently, G(p− q) is non-decreasing in q for

all q ≥ p− αmax and is strictly increasing in q for all q ∈ [qmin, qmax].

Proof. First note that G(x) is a well-defined function if and only if x ≤ αmax. If x < αmin − ε̄ then

G(x) = 1. If x ∈ [αmin−ε̄, αmin) then G(x) is strictly decreasing because in this case G(x) = F̄ (x+ε̄)

and

dG(x)

dx
= −f(x+ ε̄) < 0.

If x ∈ [αmin, αmax − ε̄) we have

dG(x)

dx
=
F̄ (x+ ε̄)

F̄ (x)
(h(x)− h(x+ ε̄)) < 0,

where the strict inequality follows from the assumption that α is IFR, or equivalently h(x)−h(x+

ε̄) < 0. Finally, if x ≥ αmax − ε̄, then G(x) = 0. Thus proving that G(x) is non-increasing for all

x ≤ αmax and strictly decreasing for all x ∈ [αmin − ε̄, αmax − ε̄].

A direct consequence of the above lemma is that G(p− q) is invertible for every q ∈ [p−αmax +

ε̄, p− αmin + ε̄]. This follows from the fact that G is invertible wherever it is strictly monotone.

Proof of Proposition 3.3.1. Taking logs of the weighted likelihood function in (3.6) yields

log(Lwi (q)) = (L0 + Li) log(.5 + .5G(p− q)) + (D0 +Di) log(.5− .5G(p− q)),
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and differentiating the log-likelihood with respect to q we obtain

d

dq
log(Lwi (q)) =

L0 + Li
1 +G(p− q)

G′(p− q)− D0 +Di

1−G(p− q)
G′(p− q)

=

(
L0 + Li +D0 +Di

(1 +G(p− q))(1−G(p− q))

)
G′(p− q)(li − di −G(p− q)). (3.24)

Lemma 3.6.1 and Assumption 3.2.1 imply that 0 < G(p − q) < 1 for all q ∈ [qmin, qmax] and

moreover that G(p − q) is strictly increasing in q for all q ∈ [qmin, qmax]. We will now use these

observations and (3.24) to construct the unique optimal solution to problem (3.8).

First, note that 0 < G(p − q) < 1 implies that the denominator in (3.24) is always positive.

Since G(p − q) is strictly increasing in q, then li − di − G(p − q) is strictly decreasing in q. If

li − di −G(p− qmin) ≤ 0, then

d

dq
log(Lwi (q)) ≤ 0 for all q ∈ [qmin, qmax],

thus q̂i = qmin maximizes the log-likelihood. If li − di − G(p − q′) > 0 for some q′ ∈ [qmin, qmax],

then

d

dq
log(Lwi (q)) > 0 for all q < q′.

This implies that the quality that maximizes the log-likelihood is the solution to

d

dq
log(Lwi (q)) = 0 ⇐⇒ G(p− q) = li − di,

given by q∗ if li − di − G(p − qmax) ≤ 0, or by qmax if li − di − G(p − qmax) > 0. Note that since

G(p− q) is strictly increasing for all q ∈ [qmin, qmax] then q̂i = q∗ is always unique in [qmin, qmax].

Summarizing the above conditions, the quality estimate that maximizes the log-likelihood can

be defined as follows: if li ≤ di then li−di−G(p−qmin) ≤ 0 and thus q̂i = qmin; otherwise, if li > di

then q̂i = proj[qmin,qmax](q
∗). To complete the proof, note that di = 1− li implies li−di = 2li−1.

The following lemma is instrumental in the proof of Proposition 3.3.2.

Lemma 3.6.2. Suppose that Assumption 3.2.1?? holds, then
∑∞

i=1(Bi)
−2 <∞ almost surely.
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Proof. The proof will proceed as follows. First, we rewrite the process {Bi, i = 1, 2, . . . } in a more

convenient form {B0 +Xi, i = 1, 2, . . . }, where B0 := L0 +D0 is the total number of initial reviews

associated to the prior q0, defined in (3.4) and (3.5), and Xi is an appropriately defined sequence

of random variables. Then, we bound from below the process {Xi, i = 1, 2, . . . } with a process

{Yi, i = 1, 2, . . . }, which is more tractable for the purpose of the analysis. Finally, we use the

Strong Approximation Theorem Glynn [1990, Theorem 5] to show that
∑∞

i=1(B0 + Yi)
−2 < ∞

almost surely and complete the proof.

Note that Assumption 3.2.1?? implies that for all i there exists an η > 0 such that for all

admissible p the following is true:

P(i-th customer buys | Ii−1, p) ≥ P(i-th customer buys | qmin, p) ≥ 2η,

where Ii is defined as in (3.1). Thus, we can rewrite Bi in the form Bi = B0 +
∑i

j=1 χj(ηj), where

χj is a Bernoulli random variable with success (i.e., purchase) probability ηj > η for all j, and ηj

depends on Ij and the price p. Let Xi =
∑i

j=1 χj for all i = 1, 2, . . . .

Next, define the random variables ξj = χj(ηj) · υ(η/ηj), where the random variable υ(η/ηj) is

Bernoulli with success probability η/ηj , independent of χj . That is, ξj is a random sample of the

customers that purchased. It is easy to verify that the distribution ξj is Bernoulli with success

probability η and that ξj is independent of ξk for all j 6= k. Let Yi =
∑i

j=1 ξj and note that, by

construction, Yi +B0 ≤ Xi +B0 = Bi for all i = 1, 2, . . . .

Finally, the Strong Approximation Theorem Glynn [1990, Theorem 5] implies that there exist

a probability space that supports a standard Brownian motion W and a sequence Y ′i such that

{Y ′i : i ≥ 1} D= {Yi : i ≥ 1}, and

Y ′i = i · η + σηW (i) +O(log i) a.s.,

and W (·) is a standard Brownian motion. (The symbol
D
= denotes equality in distribution.) In the
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sequel we write Yi instead of Y ′i . Rewriting the above expression we have that

Yi = (i) ·
(
η + ση

W (i)

i
+O

(
log i

i

))
a.s.

From the strong law of large numbers for the standard Brownian motion we know that W (i)/i→ 0

a.s., which implies that, for any ε > 0, there exists a constant M1 > 0 such that W (i)/i < ε for all

i > M1 and almost all sample paths. Similarly, there exists a constant M2 > 0 such that the error

term O(log(i)/i) < M2 for all i = 1, . . . . It follows that there exists a constant M3 > 0 such that

∞∑
i=1

(B0 + Yi)
−2 =

∑
i≤M1

(B0 + Yi)
−2 +

∑
i>M1

(B0 + Yi)
−2 < M1 ·B−2

0 +
∑
i>M1

M3

i2
<∞ a.s.

Noting that Bi ≤ B0 +Yi for all i = 1, 2, . . . implies that
∑∞

i=1(Bi)
−2 ≤

∑∞
i=1(B0 +Yi)

−2 completes

the proof.

Proof of Proposition 3.3.2. We study the evolution of li, and relate it to q̂i using (3.10). It is easy

to verify that li evolves according to the stochastic recursion

li = proj[lmin,lmax]

[
li−1 + (Bi)

−1
(
L0 + Li−1 + 1

{
ri−1 = rL

}
− (L0 + Li−1)Bi/Bi−1

)]
= proj[lmin,lmax]

[
li−1 + (Bi)

−1
(

(1− li−1)1
{
ri−1 = rL

}
− li−11

{
ri−1 = rD

})]
,

where lmin = 0.5(1+G(p−qmin)) and lmax = 0.5(1+G(p−qmax)). Setting Yi = (1− li)1
{
ri = rL

}
−

li1
{
ri = rD

}
, the iterative process can be rewritten as

li = proj[lmin,lmax]

[
li−1 + (Bi)

−1Yi−1

]
,

which is equivalent to the recursion

li = li−1 + (Bi)
−1Yi−1 + (Bi)

−1Zi−1,

where the projection term Zi−1 := li − li−1 − (Bi)
−1Yi−1.
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This stochastic recursion process belongs to the class of processes studied in Kushner and Yin

[2003]. We next show that the assumptions of Kushner and Yin [2003, Chapter 5, Theorem 2.1]

hold and then identify the equilibrium point of the process using a Lyapunov function. For this

purpose, it is useful to define the maximum likelihood quality estimate as a function of the fraction

of likes

q̂(li) := p−G−1(2li − 1),

and note that Lemma 3.6.1 implies that G−1(2li − 1) is well-defined for all li ∈ [lmin, lmax].

Assumption (A.2.1). By subadditivity of the absolute value, it follws that

|Yi| ≤ (1− li)1
{
ri = rL

}
+ li1

{
ri = rD

}
∀i,

and thus

|Yi|2 ≤ (1− li)21
{
ri = rL

}
+ l2i 1

{
ri = rD

}
+ 2(1− li)li1

{
ri = rL

}
1
{
ri = rD

}
= (1− li)21

{
ri = rL

}
+ l2i 1

{
ri = rD

}
≤ 1 ∀i,

since
{
ri = rL

}
and

{
ri = rD

}
are mutually exclusive. It then follows that supiE|Yi|2 ≤ 1 <∞.

Assumption (A.2.2). We have that

E[Yi | l0, Yj , j < i] = (1− li)P(ri = rL)− liP(ri = rD)

= .5
[
F̄
(
p−min(q + ε̄, q̂(li))

)
+ F̄

(
p−min(q − ε̄, q̂(li)))

)]
− liF̄

(
p− q̂(li)

)
= .5

[
F̄
(
p−min(q̂(li), q + ε̄)

)
+ F̄

(
p−min(q̂(li), q − ε̄)

)
− F̄

(
p− q̂(li) + ε̄

)
− F̄

(
p− q̂(li)

)]

where the last equality follows by substituting

li = .5(1 +G(p− q̂(li))) = .5

(
1 +

F̄ (p− q̂(li) + ε̄)

F̄ (p− q̂(li))

)
.
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Thus, we can define the function

g(li) := E[Yi | l0, Yj , j < i], (3.25)

which is measurable since F (·) is measurable. Finally, note that the above derivation implies that

finite difference bias terms βi = 0,∀i, which follows from the fact that the distribution function F

is known.

Assumption (A.2.3) follows from the fact that F is continuous.

Assumption (A.2.4) is shown in Lemma 3.6.2.

Assumption (A.2.5) is immediate since βi = 0, ∀i, as the proof of Assumption (A.2.2) shows.

Before applying the theorem it is useful to further decompose li as follows. First note that

Yi := g(li) + M̄i, where the function g(li) is the drift function that we defined in (3.25) and M̄i is

a martingale difference noise given by

M̄i = (1− li)1
{
ri = rL

}
− li1

{
ri = rD

}
− g(li).

Then, it is straightforward to see that

li = li−1 + (Bi)
−1g(li−1) + (Bi)

−1Zi−1 + (Bi)
−1M̄i−1.

Now we can apply Kushner and Yin [2003, Chapter 5, Theorem 2.1], to conclude that li converges

almost surely to the set of locally asymptotically stable points of the ODE l̇ = g(l) that we denote

with S. We next show that the ODE has a unique locally asymptotically stable point denoted by

l∗ := .5(1+G(p−q)). For that purpose we define the candidate Lyapunov function V (l) = (l− l∗)2.

We need to show that V̇ (l) = ∇V (l)g(l) < 0 for all l ∈ [0, 1]/{l∗} and V̇ (l∗) = 0. See Khalil [2002]

for details on Lyapunov stability. Thus, we have to show that g(l) > (<)0 when l < (>)l∗ (or

equivalently when q̂(l) < (>)q).

Case 1: l < l∗ (or equivalently q̂(l) < q). In this case min(q̂(l), q + ε̄) = q̂(l) and g(l) =

.5
[
F̄ (p − min(q̂(l), q − ε̄)) − F̄ (p − q̂(l) + ε̄)

]
. In addition, −min(q̂(l), q − ε̄) ≥ −q̂(l) + ε̄. If
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q̂(l) ≤ q − ε̄, then g(l) = .5
[
F̄ (p− q̂(l))− F̄ (p− q̂(l) + ε̄)

]
> 0, since F̄ is a decreasing function. If

q > q̂(l) > q − ε̄, then g(l) = .5
[
F̄ (p− q + ε̄)− F̄ (p− q̂(l) + ε̄)

]
> 0, since q̂(l) < q. We conclude

that g(l) > 0 in this case.

Case 2: l > l∗ (or equivalently q̂(l) > q). In this case g simplifies to

g(l) = .5
[
F̄
(
p−min(q̂(l), q + ε̄)

)
+ F̄

(
p− q + ε̄

)
− F̄

(
p− q̂(l) + ε̄

)
− F̄

(
p− q̂(l)

)]
,

which can be shown to be negative, using −min(q̂(l), q + ε̄) > −q̂(l) and that F̄ is decreasing.

We conclude that V̇ (l) < 0 at all points l 6= l∗. It is easy to verify through the above expressions

that at l = l∗ and q̂(l) = q we get that V̇ (l∗) = 0. Also, by construction V (l∗) = 0, which establishes

that S = {l∗} and that li → l∗ almost surely. Applying the continuous mapping theorem, we get

that q̂i → q almost surely, which completes the proof.

Lemma 3.6.3. [(a)]

1. For all x, y, z ∈ R we have

|min(x, y)−min(z, y)| ≤ |x− z| and |max(x, y)−max(z, y)| ≤ |x− z|.

2. For x1, x2 ≥ a > 0 and y1, y2 ≥ b > 0

∣∣∣ x1

x1 + y1
− x2

x2 + y2

∣∣∣ ≤ 1

a
(|x1 − x2|+ |y1 − y2|).

Proof. 1 Minimum operator: If x, z ≥ y or x, z ≤ y this holds trivially. If x ≤ y and z ≥ y then

|min(x, y) −min(z, y)| = |x − y| = y − x ≤ z − x = |x − z|. For the maximum operator take −x,

−y, and −z.
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2 From the triangular inequality,

∣∣∣ x1

x1 + y1
− x2

x2 + y2

∣∣∣ ≤ ∣∣∣ x1

x1 + y1
− x1

x1 + y2

∣∣∣+
∣∣∣ x1

x1 + y2
− x2

x2 + y2

∣∣∣
=

x1

x1 + y1

∣∣∣ y1 − y2

x1 + y2

∣∣∣+
y2

x1 + y2

∣∣∣x1 − x2

x2 + y2

∣∣∣
≤ 1

a
(|x1 − x2|+ |y1 − y2|).

Proof of Proposition 3.3.3. Throughout this proof, to reduce the notational burden and without

loss of generality, we rescale time such that Λ = 1. We verify the conditions of Theorem 2.2 of

Kurtz [1978]. First we note that Xn(t) ∈ Z2
+, X̄n(t) = Xn(t)/n ∈ {k/n | k ∈ Z2

+} as required. To

satisfy the conditions of the theorem we validate the construction (3.12) and then show that the

following inequalities hold

γ(x) ≤ Γ1(1 + |x|) and |γ(x)− γ(y)| ≤ Γ2|x− y| (3.26)

for x, y ∈ R2 and x, y ≥ [L0, D0] componentwise, and for some finite constants Γ1 and Γ2.

The integral form of X̄n(t) in (3.12) follows from Poisson arrivals and Poisson thinning of the

standard Poisson process N . For example, L̄n(t) can be written in the form,

L̄n(t) =
1

n

∫ t

0
1
{
rs = rL | X̄n(s)

}
dAn(s)

=
1

n
NL

(∫ t

0
P
(
rs = rL | X̄n(s)

)
ds

)
=

1

n
NL

(∫ t

0
γL
(
X̄n(s)

)
ds

)
,

where An is a Poisson process with rate n and, with some abuse of notation, rs is a review given

by a consumer arriving at time s. The second equality follows by splitting the Poisson process into

likes, dislikes, and outside options; the probability with which an arriving consumer submits one

of these reviews depends on his quality preference and on his observable information Xn(s). The

Poisson thinning property guarantees that the process that counts only those consumers who like
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the product is still Poisson with rate proportional to the probability of liking the product. Similarly,

this can be shown for Dn(t).

Finally, focusing on the rate conditions required for Theorem 2.2 of Kurtz [1978]. The first

inequality in (3.26) holds for Γ1 = 1 since γk are probabilities for k = L,D. We derive the last

inequality there for γL in two steps. First, we observe that γL(Xn(t)) depends on Xn(t) through

q̂(Xn(t)). It follows from Lemma 3.6.31 and the fact that the density of α is uniformly bounded

by fmax that γL is Lipschitz continuous in q ∈ [qmin, qmax]. Second, we show that q̂(x) is Lipschitz

continuous in x = Xn(t). Lemma 3.6.32 for a = L0 and b = D0 establishes that q∗, defined in (3.10),

is Lipschitz continuous in x = Xn(t). The projection operator of q∗ onto [qmin, qmax] preserves the

Lipschitz property. Similarly, one can show that γD is Lipschitz continuous, which establishes that

γ is Lipschitz. Finally, invoking Theorem 2.2 of Kurtz [1978] we complete the proof.

Proof of Proposition 3.3.4. The ODEs (3.16) reduce to

˙̄L(t) = Λ

(
ᾱ+ q̂t − p

ᾱ

)
and ˙̄D(t) = 0,

noting that D̄(t) = 0 and plugging (3.17) into the expression for ˙̄L(t) yields a linear ODE for L̄(t),

i.e., ˙̄L(t) =
Λε̄

2ᾱ
(1 + L̄0/D̄0 + L̄(t)/D̄0). This equation is readily solvable in closed form, and the

particular solution with initial condition L̄0 is given by

L̄(t) = (L̄0 + D̄0)

[
exp

(
Λε̄

2ᾱD̄0
t

)
− 1

]
. (3.27)

The trajectory for q̂t can now be obtained by replacing (3.27) and D̄(t) = 0 into (3.17), which yields

q̂t = p− ᾱ+
ε̄

2

(
L̄0 + D̄0

D̄0

)
exp

(
Λε̄

2ᾱD̄0
t

)
,

and the time-to-learn can be calculated by setting q̂τ = q − ε̄ and then solving for τ , which yields

τ =
2ᾱD̄0

Λε̄
log

(
2(ᾱ+ q − ε̄− p)

ε̄

(
D̄0

L̄0 + D̄0

))
.
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Rewriting (3.4) and (3.5) for α uniformly distributed we get that

L̄0 =
wΛ(ᾱ+ q0 − p− ε̄/2)

ᾱ
and D̄0 =

wΛε̄

2ᾱ
,

and plugging them in q̂t and τ yields

q̂t = p− ᾱ+ (ᾱ+ q0 − p) exp

(
t

w

)
and τ = w log

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)
.

In the sequel, we provide a sketch for the solution of the ODE’s derived in the main body of

the paper for the cases not considered in Proposition 3.3.4.

Overestimating prior (q0 > q); phase 1 of learning q̂t > q + ε̄. The following proposition

characterizes the trajectories for L̄(t) and D̄(t) in this case. From these one can easily obtain the

trajectory for q̂t by using (3.17).

Proposition 3.6.1. Consider the ODEs for the learning dynamics given in (3.16) and assume that

q0 > q. Then, for t ≤ τ ,

L̄(t) = Λ

(
ᾱ+ q − p

ᾱ

)
t, (3.28)

and D̄(t) is defined implicitly by

(
1 +

L̄(t) + D̄(t)

L̄0 + D̄0

)ᾱ+q−p(
1 +

(ε̄/2)L̄(t)− (ᾱ+ q − p)D̄(t)

(ε̄/2)L̄0 − (ᾱ+ q − p)D̄0

)ε̄/2
= 1. (3.29)

Proof. (Sketch only.) In this case the ODEs (3.16) reduce to

˙̄L(t) = Λ

(
ᾱ+ q − p

ᾱ

)
and ˙̄D(t) =

Λ

ᾱ

[
p− ᾱ+

ε̄

2

(
1 +

L̄0 + L̄(t)

D̄0 + D̄(t)

)
− q
]
.

It can be easily verified that the solution for L̄(t) with initial conditions L̄0 is given by (3.28), and
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substituting it into the ODE for dislikes yields

˙̄D(t) =
Λ

ᾱ

[
ε̄

2
+
ε̄

2

(
ᾱ+ q − p

ᾱ

)
Λt

D̄0 + D̄(t)
+
ε̄

2

L̄0

D̄0 + D̄(t)
− (ᾱ+ q − p)

]
.

Which is an ODE of the form

˙̄D(t) = a+ b
t

D̄0 + D̄(t)
+ c

1

D̄0 + D̄(t)
,

where

a =
Λ

ᾱ

(
p− ᾱ− q +

ε̄

2

)
, b =

Λ2ε̄

2ᾱ2
(ᾱ+ q − p), c =

Λε̄L̄0

2ᾱ
.

The above ODE may be converted into an equation with separable variables by setting

Z(t) =
bt+ c

D̄0 + D̄(t)
, that is, D̄(t) =

bt+ c

Z(t)
− D̄0.

In fact, we have

˙̄D(t) =
b

Z(t)
− bt+ c

Z(t)2
Ż(t), which implies that Ż(t) = (bZ(t)− aZ(t)2 − Z(t)3)

(
1

bt+ c

)
.

This equation for Z(t) is solvable, which, in turn, leads to the solution for D̄(t) given in (3.29).

Phase 2 of learning q − ε̄ < q̂t < q + ε̄. In this case the ODEs are less tractable, nonetheless

we will establish a useful structural property for q̂t in Proposition 3.6.2, and then provide an

approximation of the q̂t trajectory when ε̄ is small.

Proposition 3.6.2. Assume that q − ε̄ < q̂t0 < q + ε̄ for some t0 > 0. Then, q̂t → q as t → ∞.

Moreover, if q̂t0 < q then q̂t is strictly monotonically increasing for all t ≥ t0, otherwise, if q̂t0 > q

then q̂t is strictly monotonically decreasing for all t ≥ t0.
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Proof. (Sketch only.) The ODEs (3.16) reduce to

˙̄L(t) =
Λε̄

4ᾱ

(
1 +

L̄0 + L̄(t)

D̄0 + D̄(t)

)
+

Λ

2ᾱ
(ᾱ+ q − ε̄− p), (3.30)

˙̄D(t) =
Λε̄

4ᾱ

(
1 +

L̄0 + L̄(t)

D̄0 + D̄(t)

)
− Λ

2ᾱ
(ᾱ+ q − ε̄− p). (3.31)

It follows from Assumption 3.2.1 that p < ᾱ − ε̄, which implies that ˙̄L(t) > 0 for all t, moreover,

using equation (3.17) for q̂t, it is easy to see that ˙̄D(t) > 0 if and only if q̂t > q− ε̄. These, coupled

with the fact that L(t0) and D(t0) are strictly positive, imply that L̄(t) and D̄(t) are positive and

increasing for all t ≥ t0. Using l̄(t) = L̄0 + L̄(t)/(L̄0 + L̄(t) + D̄0 + D̄(t)), we can now write the

ODE for the fraction of likes l̄(t) as

˙̄l(t) =
1

L̄0 + L̄(t) + D̄0 + D̄(t)

[
(1− l̄(t)) ˙̄L(t)− l̄(t) ˙̄D(t)

]
, (3.32)

and noting that L̄0 + L̄(t) + D̄0 + D̄(t) > 0 for all t ≥ t0, we have that the steady state l∗ must be

such that (3.32), evaluated at l∗, is equal to 0. Noting that 1+(L̄0+L̄(t))/(D̄0+D̄(t)) = 1/(1− l̄(t))

and replacing (3.30) and (3.31) into condition (3.32) we find the unique steady state

l∗ =
ᾱ+ q − p− ε̄/2

ᾱ+ q − p
.

It is easy to verify that ˙̄l(t) > 0 if and only if l̄(t) < l∗. Recalling that q̂t = p− ᾱ+
ε̄

2(1− l̄(t))
and

replacing in l∗ for l̄(t) we can readily verify that quality in steady state is equal to q. Moreover,

since q̂t is increasing in l̄(t), it follows from ˙̄l(t) > 0 ⇔ l̄(t) < l∗ that dq̂t/dt > 0 ⇔ q̂t < q. Thus,

if q̂t0 < q then q̂t is strictly monotonically increasing in t, otherwise it is strictly monotonically

decreasing.

When ε̄ is small we can approximate the trajectories of L̄(t) and D̄(t) as follows. Note that the

initial conditions for the system of ODEs defined by (3.30) and (3.31), when q̂τ = q − ε̄, are given
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by (t0 = τ, L̄τ , D̄τ ,
˙̄Lτ ,

˙̄Dτ ) where

L̄τ = w
Λ

ᾱ
(ᾱ+ q − 2ε̄− p), D̄τ = w

Λ

2ᾱ
ε̄, ˙̄Lτ =

Λ

ᾱ
(ᾱ+ q − ε̄− p), ˙̄Dτ = 0. (3.33)

First, note that we can write

L̄(t) = L̄τ +

∫ τ+t

τ

˙̄L(s) ds = L̄τ + ˙̄Lτ t+

∫ τ+t

τ
( ˙̄L(s)− ˙̄Lτ ) ds,

D̄(t) = D̄0 +

∫ τ+t

τ

˙̄D(s) ds = D̄0 +

∫ τ+t

τ

˙̄D(s) ds.

From (3.30) and (3.33) it is easy to see that ˙̄L(s)− ˙̄Lτ = ˙̄D(s), and (3.31) and (3.33) imply that

˙̄D(s) =
Λε̄

4ᾱ

(
L̄(s)

D̄(s)
− L̄τ
D̄τ

)
.

We already established that ˙̄D(s) > 0 if and only if q̂s > q − ε̄, it follows from the definition of τ

and Proposition 3.6.2 that ˙̄D(s) > 0 for all s > τ . Using this property, it is easy to verify that

˙̄D(s) <
Λε̄

4ᾱ

(
L̄(s)− L̄τ

D̄τ

)
≤ Λε̄

4ᾱ

(
Λ(s− τ)

D̄τ

)
= O(ε̄).

Setting χ(t) =
∫ τ+t
τ

˙̄D(s) ds, we can rewrite L̄(t), D̄(t) as follows

L̄(t) = L̄τ + ˙̄Lτ t+ χ(t) and D̄(t) = D̄0 + χ(t),

which allow us to express the ratio for the number of likes to dislikes as

L̄(t)

D̄(t)
=

L̄τ + ˙̄Lτ t+ χ(t)

D̄0

(
χ(t)

D̄0 + χ(t)

)
=

L̄τ + ˙̄Lτ t

D̄0
− χ(t)

D̄0

(
L̄τ + ˙̄Lτ t

D̄0
− 1

)
+ ξ + ξ′,

where

ξ =
L̄τ + ˙̄Lτ t+ χ(t)

D̄0

(
χ(t)

D̄0
− χ(t)

D̄0 + χ(t)

)
= O(ε̄) and ξ′ = −

(
χ(t)

D̄0

)2

= O(ε̄2).
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When ε̄ is small, the ratio of likes to dislikes can be approximated by

L̄(t)

D̄(t)
=
L̄τ
D̄0

+
˙̄Lτ
D̄0

t− L̄τ − D̄0

D̄2
0

χ(t)−
˙̄Lτ
D̄2

0

χ(t)t.

Substituting the above ratio into equation (3.31), and differentiating twice one obtains a third

order, non-homogeneous linear ODE, that is solvable in terms of the matrix exponential (not in

closed form due to the non-homogeneous coefficients).

Proofs of Section 3.4

Lemma 3.6.4. The monopolist’s revenue function (3.20) can be written as

R̃(p) = Λ [h0(p) · π0(p) + h∞(p) · π∞(p)]

where

h0(p) =

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)1−δw
− 1

1/w − δ
and h∞(p) =

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)−δw
δ

.

Moreover, R̃(p) is such that |R̃(p)− R̄(p)| ≤ ε̄[Λ(p/ᾱ)h∞(p)].

Proof. First, recall that when q0 < q − ε̄ we have

q̂t = p− ᾱ+ (ᾱ+ q0 − p) exp

(
t

w

)
and τ = w log

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)
,
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substituting into the first term in the right-hand side of (3.20) yields

∫ τ

0
e−δtπt(p) dt =

∫ τ

0
e−δt

(ᾱ+ q̂t − p)p
ᾱ

dt

=
(ᾱ+ q0 − p)p

ᾱ
·

[
et(1/w−δ)

1/w − δ

]τ
0

=
(ᾱ+ q0 − p)p

ᾱ
·

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)1−δw
− 1

1/w − δ

= π0(p) · h0(p).

Similarly, the second term in the right-hand side of (3.20) simplifies to

∫ ∞
τ

e−δtπ∞(p) dt =

∫ ∞
τ

e−δt
(ᾱ+ q − p)p

ᾱ
dt

=
(ᾱ+ q − p)p

ᾱ
·
[
e−δt

δ

]∞
τ

=
(ᾱ+ q − p)p

ᾱ
·

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)−δw
δ

= π∞(p) · h∞(p).

Thus we have established that R̃(p) = Λ [h0(p) · π0(p) + h∞(p) · π∞(p)].

To establish the bound, note that q̂t ≥ q − ε̄ for all t ≥ τ implies the following inequality

|R̃(p)− R̄(p)| = Λ
( p
ᾱ

)∫ ∞
τ

e−δt(q − q̂t) dt

≤ ε̄ · Λ
( p
ᾱ

)∫ ∞
τ

e−δt dt

= ε̄ · Λ
( p
ᾱ

) ( ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)−δw
δ

= ε̄ · Λ
( p
ᾱ

)
h∞(p).

Proof of Proposition 3.4.1. The proof will proceed as follows. First we establish that for ε̄ suffi-

ciently small the revenue maximization problem (3.21) admits a unique optimal solution. Then we

establish its properties, proving in order Part 3.4.1 and Part 3.4.1.
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Consider the expression for R̃(p) given in Lemma 3.6.4. Differentiating with respect to p once,

we get

R̃′(p) = Λ
[
h′0(p) · π0(p) + h0(p) · π′0(p) + h′∞(p) · π∞(p) + h∞(p) · π′∞(p)

]
.

and, differentiating twice, we get

R̃′′(p) = Λ
[
h′′0(p) · π0(p) + 2h′0(p) · π′0(p) + h0(p) · π′′0(p)

+h′′∞(p) · π∞(p) + 2h′∞(p) · π′∞(p) + h∞(p) · π′′∞
]
.

Noting that π′′0(p) = π′′∞(p) = −2/ᾱ, the latter equation simplifies to

R̃′′(p) = Λ

{[
h′′0(p) · π0(p) + h′′∞(p) · π∞(p)

]
+ 2

[
h′0(p) · π′0(p) + h′∞(p) · π′∞(p)

]
− 2

ᾱ
[h0(p) + h∞(p)]

}
,

where

h0(p) + h∞(p) =

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)1−δw
− 1

1/w − δ
+

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)−δw
δ

,

h′0(p) · π′0(p) + h′∞(p) · π′∞(p) =

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)−1−δww(q0 − q + ε̄)[p(q − q0) + ε̄(ᾱ− 2p+ q0)]

ᾱ(ᾱ+ q0 − p)3
,

h′′0(p) · π0(p) + h′′∞(p) · π∞(p) =(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)−δww(q0 − q + ε̄)[(p− q − ᾱ)(q − q0) + ε̄(3(α− p+ q)− δw(q − q0))− ε̄2(2− δw)]p

ᾱ(ᾱ+ q − ε̄− p)2(ᾱ+ q0 − p)2
.

It follows from Assumption 3.2.1–(ii) that the revenue function R̃(p) = R̃(p, ε̄) ∈ C∞(ε̄) for all

p ∈ [0, pmax]. This can be easily verified by noting that pmax < ᾱ− ε̄ implies that the quantity

ᾱ+ q − ε̄− p
ᾱ+ q0 − p

in h0 and h∞ is always bounded away from 0. The statement above implies that R̃′′(p, ε̄) is a

continuous function of ε̄ for all p ∈ [pmin, pmax], in particular it is continuous at ε̄ = 0. We will

now prove that, when ε̄ is sufficiently small, the revenue function R̃(p) is strictly concave for all
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p ∈ [pmin, pmax]. Evaluating second-derivative R̃′′(p, ε̄) at ε̄ = 0 yields

R̃′′(p, 0) =

Λ ·
2−

(
ᾱ+ q − p
ᾱ+ q0 − p

)−δw ( 2

δw
+ (q − q0)

(
2ᾱ− 2p− q + 3q0 − δw(q − q0)

(ᾱ+ q0 − p)2
− ᾱ+ q

ᾱ+ q − p
· (q − q0)(δw − 1)

(ᾱ+ q0 − p)2

))
ᾱ(1/w − δ)

.

(3.34)

Case 1: δw > 1. The denominator of the above equation is always negative. Moreover, since

ᾱ+ q

ᾱ+ q − p
> 1 for all p ∈ (0, ᾱ+ q0)

and the numerator of (3.34) is strictly increasing in this term, replacing (ᾱ+ q)/(ᾱ+ q− p) with 1

we find that the numerator of (3.34) is strictly bigger than

2

(
1−

(
ᾱ+ q − p
ᾱ+ q0 − p

)−δw ( 1

δw
+

q − q0

ᾱ+ q0 − p

))
(3.35)

and since δw > 1, replacing 1/δw with 1 we find that the above quantity is strictly bigger than

2

(
1−

(
ᾱ+ q − p
ᾱ+ q0 − p

)1−δw
)
. (3.36)

Now note that q > q0 and δw > 1 imply that

(
ᾱ+ q − p
ᾱ+ q0 − p

)1−δw
< 1 for all p < ᾱ+ q0.

This implies that (3.36) is strictly bigger than 0 and so is the numerator of (3.34). Thus, we

conclude that R̃′′(p, 0) < 0 for all p ∈ (0, ᾱ+ q0).

Case 2: δw < 1. The denominator in equation (3.34) is always positive. Moreover, since

ᾱ+ q

ᾱ+ q − p
> 1 for all p ∈ (0, ᾱ+ q0)
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and the numerator is strictly decreasing in this term, replacing (ᾱ + q)/(ᾱ + q − p) with 1 we

find that the numerator of (3.34) is strictly smaller than the quantity in (3.35). Moreover, since

δw < 1, replacing 1/δw with 1 in (3.35) we find that the quantity in (3.35) is strictly smaller than

the quantity in (3.36). Now note that q > q0 and δw < 1 imply that

(
ᾱ+ q − p
ᾱ+ q0 − p

)1−δw
> 1 for all p < ᾱ+ q0.

This implies that (3.36) is strictly smaller than 0 and so is the numerator of (3.34). Thus, we

conclude that R̃′′(p, 0) < 0 for all p ∈ (0, ᾱ+ q0).

Case 1 and Case 2 establish that R̃′′(p, 0) < 0 for all p ∈ (0, ᾱ + q0). Moreover, since R̃′′(p, ε̄)

is continuous at ε̄ = 0, there exists ε′ > 0 such that R̃′′(p, ε̄) < 0 for all ε̄ < ε′. In particular,

this implies that when ε̄ is sufficiently small, R̃(p) is strictly concave for all p ∈ [pmin, pmax], and

therefore Problem (3.21) admits a unique optimal solution.

Proof of Part 3.4.1. First, note that, since R̃(p) is strictly concave, then R̃′(p) is strictly decreasing

for all p ∈ [pmin, pmax].

Now, note that R̃′(p, ε̄) is a continuous function of ε̄ at ε̄ = 0 for all p ∈ [0, pmax]. This

follows directly from R̃(p, ε̄) ∈ C∞(ε̄) for all p ∈ [0, pmax], which was established above. We will

now prove that p∗ ∈ [pm(q0), pm(q)]. By definition, pm(q0), pm(q) ∈ [pmin, pmax], and it is easy to

verify that that pm(q0) = max{pmin, (ᾱ + q0)/2}. If pm(q0) = pmin then clearly p∗ ≥ pm(q0). If

pm(q0) = (ᾱ+ q0)/2, then evaluating the first-derivative R̃′(p, ε̄) at (pm(q0), 0) yields

R̃′(pm(q0), 0) = Λ · q − q0

ᾱδ

(
2
ᾱ+ q

ᾱ+ q0
− 1

)−δw
> 0

since q > q0, thus p∗ > pm(q0). It follows from Assumption 3.2.1?? that pm(q) = (ᾱ + q)/2, so

evaluating the first-derivative at (pm(q), 0) we have

R̃′(pm(q), 0) = Λ · (q − q0)

1−
(

ᾱ+ q

ᾱ+ 2q0 − q

)1−δw

ᾱ(1/w − δ)
. (3.37)
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Note that q > q0 implies that (
ᾱ+ q

ᾱ+ 2q0 − q

)1−δw
> 1,

which in turn implies that when δw > 1 the denominator in (3.37) is always strictly negative

and the numerator is always strictly positive. When δw < 1 the reverse inequalities hold for the

denominator and numerator in (3.37), therefore R̃′(pm(q), 0) < 0. By continuity of R̃′(p, ε̄) at ε̄ = 0,

there exists ε′′ > 0 such that R̃′(pm(q0), ε̄) > 0 and R̃′(pm(q), ε̄) < 0 for all ε̄ < ε′′. Thus proving

that, for ε̄ sufficiently small, we have p∗ ∈ [pm(q0), pm(q)].

Proof of Part 3.4.1. Setting R̃′(p) = 0, we get the following first-order condition for the monopolist’s

problem

h′0(p) · π0(p) + h0(p) · π′0(p) + h′∞(p) · π∞(p) + h∞(p) · π′∞(p) = 0.

Dividing both sides of the above equation by h0(p), and then dividing again by 1 + h∞(p)/h0(p),

the first-order condition can be rewritten as

(1− ω(p)) · π′0(p) + ω(p) · π′∞(p) + ξ(p) = 0 (3.38)

where

ω(p) =
h∞(p)/h0(p)

1 + h∞(p)/h0(p)
=

(ᾱ+ q0 − p)(1− δw)

ᾱ+ q0 − p+ δw

(
q − ε̄− q0 − (ᾱ+ q0 − p)

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)δw)
(3.39)

and

ξ(p) =
(h′0(p)/h0(p)) · π0(p) + (h′∞(p)/h0(p)) · π∞(p)

1 + h∞(p)/h0(p)

= ε̄ · p(q0 − q + ε̄)(1− δw)δw

ᾱ(ᾱ+ q − ε̄− p)

(
ᾱ+ q0 − p+ δw

(
q − ε̄− q0 − (ᾱ+ q0 − p)

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)δw)) .
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Clearly, as δ → 0 or w → 0 we have ω(p)→ 1 and ξ(p)→ 0 for all p ∈ (0, ᾱ+ q0), consequently the

left-hand side of (3.38) goes to π′∞(p). Finally, let p∗ = p∗(δ, w) be the unique solution of (3.38)

and note that by strict concavity R′′(p∗) < 0, then p∗ converges to the solution of π′∞(p) = 0, i.e.

p∗(δ, w) → pm(q) as δ → 0 or w → 0. For the other case, as δ → ∞ or w → ∞ we have ω(p) → 0

for all p ∈ (0, ᾱ+ q0). This is easy to verify by first dividing numerator and denominator in (3.39)

by δw, next noting that

ᾱ+ q − ε̄− p
ᾱ+ q0 − p

> 1

since q0 < q − ε̄, and then taking the limit. Moreover, as δ →∞ or w →∞ we have ξ(p)→ 0 for

all p ∈ (0, ᾱ + q0), this can be verified as follows. Divide numerator and denominator by δw and

note that

ξ(p) = ε̄ · A+B · δw
C

δw
+D ·

(
ᾱ+ q − ε̄− p
ᾱ+ q0 − p

)δw ,

for the obvious choices of A,B,C and D. It is easy to see that since

ᾱ+ q − ε̄− p
ᾱ+ q0 − p

> 1,

then ξ(p) → 0 as δ → ∞ or w → ∞. Thus, the left-hand side of (3.38) goes to π′0(p) and p∗

converges to the solution of π′0(p) = 0, i.e. p∗(δ, w) → (ᾱ + q0)/2 as δ → ∞ or w → ∞, if

(ᾱ + q0)/2 ≥ pmin. Otherwise, if pmin > (ᾱ + q0)/2 then p∗(δ, w) → pmin as δ → ∞ or w → ∞.

Recalling that pm(q) = max{pmin, (ᾱ+ q0)/2} completes the proof.
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Proofs of Section 3.5

First, we argue that setting s ≤ τ in the monopolist’s problem is without loss of generality. We

define formally the discounted revenue, for a generic s > 0, as

R̃(p0, p1, s) =

Λ

(∫ min{s,τ}

0
e−δtπt(p0) dt+

∫ max{s,τ}

min{s,τ}
e−δt[πt(p1)1{s ≤ τ}+ π∞(p0)1{s > τ}] dt+

∫ ∞
max{s,τ}

e−δtπ∞(p1) dt

)
.

When s ≤ τ the above equation reduces to (3.22), when s > τ the revenue function is given by

R̃(p0, p1, s) = Λ

(∫ τ

0
e−δtπt(p0) dt+

∫ s

τ
e−δtπ∞(p0) dt+

∫ ∞
s

e−δtπ∞(p1) dt

)
.

Suppose that R̃(p∗0, p
∗
1, s
∗) is optimal and s∗ > τ , clearly it must be that p∗1 = argmax

p1∈[pmin,pmax]
{π∞(p1)}.

But this implies that R̃(p∗0, p
∗
1, τ) ≥ R̃(p∗0, p

∗
1, s
∗), thus it is without loss of generality to consider

only policies such that s ≤ τ .

Before proving the proposition, we introduce the following definition

τk := inf{t : t ≥ 0, |q − q̂t| ≤ ε̄ | qk, pk}, k = 0, 1,

where τk denotes the time that the prevailing quality estimate reaches within ε̄ from q, starting from

a prior qk and a price pk. This is analogous to the simpler definition of τ = inf{t : t ≥ 0, |q− q̂t| ≤ ε̄}

that was introduced previously, and it simplifies the exposition of the following proofs.

The following lemma is needed for the proof of Proposition 3.5.1.

Lemma 3.6.5. The monopolist’s revenue function (3.22) can be written as

R̃(p0, p1, s) = Λ
[
h0(s) · π0(p0) + e−δs [hs(p1) · πs(p1) + h∞(p1) · π∞(p1)]

]
,



CHAPTER 3. MONOPOLY PRICING IN THE PRESENCE OF SOCIAL LEARNING 125

where

h0(s) =
es(1/w−δ) − 1

1/w − δ
, hs(p1) =

(
ᾱ+ q − ε̄− p1

ᾱ+ q1 − p1

)1−δw1

− 1

1/w1 − δ
, h∞(p1) =

(
ᾱ+ q − ε̄− p1

ᾱ+ q1 − p1

)−δw1

δ
.

Proof. (Sketch only.) First, note that q0 < q − ε̄ and that s ≤ τ implies that q1 ≤ q − ε̄. Thus, for

all t ≤ τ the quality estimate is given by

q̂t =


p0 − ᾱ+ (ᾱ+ q0 − p0) exp

(
t
w

)
if t < s

p1 − ᾱ+ (ᾱ+ q1 − p1) exp
(
t−s
w1

)
if t ≥ s

.

Following the argument of the proof of Lemma 3.6.4, we establish the desired result.

Proof of Proposition 3.5.1. First we establish that p∗1 ∈ [pm(q1), pm(q)]. Differentiating R̃ twice

with respect to p1 and then evaluating at ε̄ = 0 yields

∂2

∂p2
1

R̃(p0, p1, s)

∣∣∣∣∣
ε̄=0

= Λ · e−sδ ·
2−

(
ᾱ+ q − p1

ᾱ+ q1 − p1

)−δw1

ᾱ(1/w1 − δ)
·

2

δw1
+ (q − q1)

(
2ᾱ− 2p1 − q + 3q1 − δw1(q − q1)

(ᾱ+ q1 − p1)2
− ᾱ+ q

ᾱ+ q − p1
· (q − q1)(δw1 − 1)

(ᾱ+ q1 − p1)2

)
ᾱ(1/w1 − δ)

.

(3.40)

The following two cases establish that the equation above is always negative.

Case 1: δw > 1. The denominator of the equation (3.40) is always negative. Since

ᾱ+ q

ᾱ+ q − p1
> 1 for all p1 ∈ (0, ᾱ+ q1)

and the numerator of (3.40) is strictly increasing in this term, replacing (ᾱ+ q)/(ᾱ+ q − p1) with
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1 we find that the numerator of (3.40) is strictly bigger than

2

(
1−

(
ᾱ+ q − p1

ᾱ+ q1 − p1

)−δw1
(

1

δw1
+

q − q1

ᾱ+ q1 − p1

))
(3.41)

and since δw1 > 1, replacing 1/δw1 with 1 we find that the above quantity is strictly bigger than

2

(
1−

(
ᾱ+ q − p1

ᾱ+ q1 − p1

)1−δw1
)
. (3.42)

Now note that q > q1 and δw1 > 1 imply that

(
ᾱ+ q − p1

ᾱ+ q1 − p1

)1−δw1

< 1 for all p1 < ᾱ+ q1.

This implies that (3.42) is strictly bigger than 0 and so is the numerator of (3.40). Thus, we

conclude that (3.40) is strictly smaller than 0 for all p1 ∈ (0, ᾱ+ q1).

Case 2: δw < 1. The denominator in equation (3.40) is always positive. Since

ᾱ+ q

ᾱ+ q − p1
> 1 for all p1 ∈ (0, ᾱ+ q1)

and the numerator of (3.40) is strictly decreasing in this term, replacing (ᾱ+ q)/(ᾱ+ q−p1) with 1

we find that the numerator of (3.40) is strictly smaller than the quantity in (3.41). Moreover, since

δw1 < 1, replacing 1/δw1 with 1 in (3.41) we find that the quantity in (3.41) is strictly smaller than

the quantity in (3.42). Now note that q > q1 and δw1 > 1 imply that

(
ᾱ+ q − p1

ᾱ+ q1 − p1

)1−δw1

> 1 for all p1 < ᾱ+ q1.

This implies that (3.42) is strictly smaller than 0 and so is the numerator of (3.40). Thus, we

conclude that (3.40) is strictly less than 0 for all p1 ∈ (0, ᾱ+ q1).

Case 1 and Case 2 prove that

∂2

∂p2
1

R̃(p0, p1, s)

∣∣∣∣∣
ε̄=0

< 0 for all feasible s, p0 and p1 ∈ (0, ᾱ+ q1).
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Moreover, since
∂2

∂p2
1

R̃(p0, p1, s) as a function of ε̄, is continuous at ε̄ = 0 for all feasible s, p0 and

p1 ∈ [0, pmax], it follows that, when ε̄ is sufficiently small, R̃(p0, p1, s) is strictly concave in p1 for

all feasible s, p0 and p1 ∈ [pmin, pmax].

We next show that p∗1 ∈ [pm(q1), pm(q)]. By definition, pm(q1), pm(q) ∈ [pmin, pmax], and it is

easy to verify that that pm(q1) = max{pmin, (ᾱ+ q1)/2}. If pm(q1) = pmin then clearly p∗ ≥ pm(q1).

If pm(q1) = (ᾱ+ q1)/2, then evaluating the first-derivative at p1 = pm(q1) and ε̄ = 0 yields

∂

∂p1
R̃(p0, p

m(q1), s)

∣∣∣∣∣
ε̄=0

= Λ · e−δs · q − q1

ᾱδ

(
2
ᾱ+ q

ᾱ+ q1
− 1

)−δw1

> 0

since q > q1. It follows from Assumption 3.2.1?? that pm(q) = (ᾱ + q)/2, so evaluating the

first-derivative at p1 = pm(q) and ε̄ = 0 we have

∂

∂p1
R̃(p0, p

m(q), s)

∣∣∣∣∣
ε̄=0

= Λ · e−δs · (q − q1)

1−
(

ᾱ+ q

ᾱ+ 2q1 − q

)1−δw1

ᾱ(1/w1 − δ)
. (3.43)

Note that q > q1 implies that (
ᾱ+ q

ᾱ+ 2q1 − q

)1−δw1

> 1,

which implies that when δw1 > 1 the denominator in (3.43) is always strictly negative and the nu-

merator is always strictly positive. When δw1 < 1 the reverse inequalities hold for the denominator

and numerator in (3.43). Therefore

∂

∂p1
R̃(p0, p

m(q), s)

∣∣∣∣∣
ε̄=0

< 0.

By continuity at ε̄ = 0 it follows that

∂

∂p1
R̃(p0, p

m(q1), s) > 0 and
∂

∂p1
R̃(p0, p

m(q), s) < 0,

when ε̄ is sufficiently small.

Finally, to establish that p∗0 ≤ p∗1 we first obtain an equivalent problem (see Boyd and Vanden-
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berghe [2004, Chapter 4, Section 4.1.3] for the formal definition of equivalent optimization problems)

by making a change of variable. Noting that s ≤ τ if and only if s ≤ τ0, we replace the last con-

straint in the monopolist’s optimization problem and set φ = s/τ0, equivalently s = φτ0. We let

the monopolist choose φ ∈ [0, 1] instead of s. It is clear that the optimal solution (p∗0, p
∗
1, s
∗) of the

original problem, can be readily obtained from the optimal solution (p∗0, p
∗
1, φ
∗) of the transformed

problem and vice versa, thus the two problems are equivalent. Making the change of variable in

the monopolist’s objective (3.22) yields

R̃(p0, p1, φ) = Λ

(∫ φτ0

0
e−δtπt(p0) dt+

∫ φτ0+τ1

φτ0

e−δtπt(p1) dt+

∫ ∞
φτ0+τ1

e−δtπ∞(p1) dt

)
,

and the associated monopolist’s problem is

max R̃(p0, p1, φ)

s.t. p0, p1 ∈ [pmin, pmax]

φ ∈ [0, 1].

Let (p∗0, p
∗
1, φ
∗) be the optimal solution to the above problem and suppose, by contradiction, that

p∗0 > p∗1. We will now construct a solution (p′0, p
′
1, φ
′) that strictly dominates (p∗0, p

∗
1, φ
∗). Let

p′0 = p∗1 < p∗0 and note that τ0(p′0) < τ0(p∗0) since

∂τ0

∂p0
=

w(q − ε̄− q0)

(ᾱ+ q − ε̄− p0)(ᾱ+ q0 − p0)
> 0 for all p0 ∈ [pmin, pmax].

Moreover, one can immediately verify that

q1(p0, φ) = p0 − ᾱ+ (ᾱ+ q0 − p0)

(
ᾱ+ q − ε̄− p0

ᾱ+ q0 − p0

)φ

is decreasing in p0 for all φ ∈ [0, 1], thus q1(p∗0, φ
∗) ≤ q1(p′0, φ

∗). Set φ′ ≤ φ∗ to be such that

q1(p∗0, φ
∗) = q1(p′0, φ

′) and note that φ′ is always feasible since φ∗ is feasible. Finally, set p′1 =

argmaxp1{R̃(p′0, p1, φ
′)}. Now, consider the revenue function evaluated at the new solution and
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note that

∫ φ′τ0(p′0)

0
e−δtπt(p

′
0) dt >

∫ φ′τ0(p′0)

0
e−δtπt(p

∗
0) dt,

since by construction q̂t ≤ q1(p∗0, φ
∗) and πt(p0) is a strictly concave function of p0 which is maxi-

mized at p0 = (ᾱ+ q̂t)/2 ≤ p′0 < p∗0. Finally, note that our choice of p′1 implies that the continuation

value of the policy (p′0, p
′
1, φ
′) after φ′τ0(p′1) is not smaller than the continuation value of the policy

(p∗0, p
∗
1, φ
∗). Thus, we reach the contradiction R̃(p′0, p

′
1, φ
′) > R̃(p∗0, p

∗
1, φ
∗). It must be p∗0 ≤ p∗1.



Chapter 4

Dynamic Pricing, Social Influence,

and Price Commitment

4.1 Introduction

The overall popularity of many types of products is influenced and amplified by the mass of con-

sumers that purchase in the early release stages and spread the word about the product. The types

of products we have in mind are cultural products, like books or movies, for which the urge to

adopt a popular product is driven by preference for conformity or sharing with peers. This type

of social influence is pervasive in today’s economy, where information on the behavior of peers, or

even socially distant consumers, is readily available at the touch of a finger. A seller that wants to

launch a new product must therefore take the social influence channel into account when devising

her optimal pricing strategy.

This chapter studies a model of a seller that is launching a new product to a large market

of consumers. There are two periods in the selling season, an introductory period and a mature

period. Consumers are on the market at the beginning of the selling season and remain on the

market until they purchase the product or the selling season ends. Consumers are influenced by

other consumers that purchased before them, i.e., their net utility at the time they are making a

decision is increasing in the mass of consumers that have already purchased, we call the intensity
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of this effect the level of social influence. Motivated by the increasing sophistication of pricing in

cultural and online markets, we want to study the optimal dynamic pricing policy of the seller.

We consider two scenarios: (I) is a scenario in which the seller is able to commit upfront or pre-

announce a sequence of prices for the entire selling season; (II) is a scenario in which the seller does

not have such a commitment power and thus engages in “responsive pricing”, which means that she

can change her price at the beginning of the mature period.

Our main result compares the equilibrium profit that the seller attains in scenario (I) to the

equilibrium profits she attains in scenario (II) as the level of social influence in the economy varies.

We show that when social influence is low, then committing upfront to a sequence of prices always

yields higher profits than not doing so, however, when social influence is high the profits in the two

scenarios are equal and the value of price commitment for the seller is zero.

In our other results, we derive a complete characterization of the market equilibria in the two

scenarios, in terms of seller’s optimal pricing decisions, consumers’ optimal purchasing decisions

and equilibrium profits. Our analytic characterization of the optimal solutions allows us to drive

interesting sensitivity analysis conclusions on prices and demands. In particular, we see that when

social influence is present it is generally optimal to offer an introductory price in the first period

and a higher price in the second period. Finally, we show that the difference between mature and

introductory prices is always increasing in the level of social influence. Which means that the seller

chooses to use the first period discounted price as a lever to generate hype about her product and

then exploit with a higher price in the second period. The seller uses this lever more aggressively

the higher the impact of early purchases on late ones.

Before moving to a survey of the literature we want to highlight the normative nature of our

results. In this model, we try to specify plausible assumptions on how social influence affects

consumers’ decisions in markets for cultural products. Then, we derive results that dictate how a

seller should optimally price her product, in the absence of other exogenous constraints. In reality,

cultural markets have historically been subjected to various types of constraints. Orbach [2004]

and Orbach and Einav [2007] show that pricing of motion pictures in movie theaters is affected

by regulatory and legal constraints that severely limit the ability of a seller to engage in dynamic
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pricing and price differentiation. Similar constraints apply to other types of cultural products,

such as books in physical bookstores. In these cases, our results may not reflect actual behavior of

sellers. However, our model captures some of the most significant features of the effects of dynamic

pricing in cultural markets when consumers behave strategically, and all our propositions should be

regarded as normative statements. Finally, we note that new markets for cultural products, where

books and movies are sold on line in different formats, have less regulatory constraints and one can

easily conduct experiments and empirical tests on the value of social influence in cultural markets

that may inform future extensions of this work.

4.1.1 Related Literature

The question of conditioning a pricing strategy on some social parameter has received increased

attention in the operations research community, Candogan et al. [2012b] study static price dis-

crimination when consumers are embedded in a social network, and characterize optimal individual

prices as a function of consumers network positions. Our model is a two-period model with inter-

temporal externalities, where the choices of early consumers affect the payoffs of late consumers,

and it is more related to Jing [2011] and Yu et al. [2015]. These papers study two-period dynamic

pricing models, and although they frame the externality from the introductory period to the next

in the form of social learning, they propose reduced form models of information transmission or

social learning intensity, that generate similar dynamics to our model of social influence.

Social influence is considered a key driver of consumers’ decisions in economics and related

disciplines. In this chapter, we model the social influence channel in a similar fashion to Arthur

[1989], i.e., we assume that a consumer utility is increasing in the installed base of a product when

the consumer makes a purchase. This can be considered a reduced form model of product adoption,

via word-of-mouth effects, in the style of Bass [1969], or as a boundedly rational model of network

effects in which consumers only take into account past adoptions, see Arthur [1994]. In particular,

we do not consider rational expectations over network effects as in Katz and Shapiro [1985]. Our

modeling framework is motivated by recent experimental evidence on consumer choice in cultural

markets, see Salganik et al. [2006], Salganik and Watts [2009], and Moretti [2011].
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The question of the value of price commitment has been considered, first in the economics and

then in the management science literature. Coase [1972], considers a monopolist that sells a good to

a large market of consumers with heterogeneous valuations, and discusses how a monopolist should

set the price in order to maximize profit. The optimal price should be decreasing over time, in order

to extract more value from consumers with high valuations in the initial periods. Further work by

Stokey [1979], Bulow [1982] and Besanko and Winston [1990] study more complex dynamic pricing

models and quantify Coase’s insights. Recent works in operations research tackle a similar problem

with more refined models of price commitment, sometimes paired with capacity commitment, see

Aviv et al. [2009], Su and Zhang [2008] and Besbes and Lobel [2015].

A recent stream of papers considers problems related to the value of price commitment in the

presence of strategic consumers, which is the main question of our work. Aviv and Pazgal [2008]

consider both a price commitment and a responsive pricing scenario and compare outcomes to a

benchmark in which consumers are myopic. Similar questions are addressed by Liu and Zhang

[2013] in the context of a two-firm competition game, and by the works of Cachon and Swinney

[2009] and Papanastasiou and Savva [forthcoming], however, none of these works studies the value

of price commitment in the presence of social influence. Our model is more related to the latter of

the above works, who studies a two-period dynamic pricing model where the main results depend

on an exogenous social learning intensity parameter. We study a different model, with an exogenous

level of social influence, but we believe that our main result sheds more light on their contrasting

result on the value of price commitment.

The rest of the chapter is organized as follows. Section 4.2 contains our model and formally

introduces our measure of social influence and the seller’s problem. In Section 4.3 we fully char-

acterize the optimal prices of the seller when she can commit to a pricing policy upfront, and the

equilibrium decisions of consumer. In Section 4.4 we characterize optimal prices and consumers’

decisions when the seller does not have commitment power. Section 4.5 presents our main result

on the value of price commitment for the seller and Section 4.6 concludes. All proofs are presented

in the Appendix.
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4.2 Model

Monopolist The market features a monopolist launching a new product, which is made available

for purchase in two consecutive time periods t = 1, 2 , at unit price pt. We will consider two possible

scenarios.

(I) Price Commitment. The monopolist commits to (p1, p2) at the beginning of period 1.

(II) Responsive Pricing. The monopolist does not have commitment power, she sets p1 at the

beginning of period 1 and she sets p2 at the beginning of period 2.

Consumers There is a population of consumers whose size is normalized to one and consumers

are indexed by i ∈ [0, 1]. The value of the product for a consumer i has two components: (i) a

private value component or individual willingness to pay, and (ii) a social influence component.

Consumers are heterogeneous in their private value αi for the product, {αi}i∈[0,1] are i.i.d.

random draws from a known distribution U [0, ᾱ]. On top of their private value, a consumer product

valuation is affected by the mass of consumers that have already bought the product at the time

he chooses to purchase. In particular, the social influence effect goes from one period to the next,

i.e., early consumers influence late consumers.

The net (undiscounted) utility of a consumer i that purchases the product at time t is

uit = αi + βst−1 − pt, t = 1, 2 , (4.1)

where st ∈ [0, 1] denotes the fraction of consumers that purchase the product in period t, and

since the new product is first available in period 1, we assume that s0 = 0. The parameter β > 0

measures the absolute intensity of social influence, given this parameter and the commonly known

distribution of private valuations, we define

γ =
∂u

∂s

/
sup{αi} =

β

ᾱ
, (4.2)

which measures the intensity of social influence relative to consumers’ maximum private valuation.
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This is our metric for the level of social influence, and the main driver of our results.

Each consumer purchases at most one unit of the product, thus if a consumer decides to purchase

in period 1 he will not be on the market in period 2. Moreover, we assume that a consumer that

purchases in period t does not extract any utility from the product in period t+1. This assumption

captures diminishing returns of consumption, which are common for cultural products like books

or movies (see Varian [2000] and Rao [2015]).

Purchasing Decision Consumers are impatient and they discount their payoffs in period 2 by

δ ∈ (0, 1). Their purchasing decision can be spelled out as follows: (i) consumer i purchases the

product in period 1 if his utility in the current period is higher than both the utility from not

purchasing and the discounted utility in period 2, i.e., ui1 ≥ max{0, δui2}; (ii) if consumer i is still

on the market in period 2, he purchases if ui2 ≥ 0. Equivalently, replacing consumer utilities (4.1)

into the above inequalities and recalling our assumption s0 = 0, we can express the above decision

rule in terms of the consumers’ private valuations as follows:

(i) consumer i purchases in period 1 if

αi ≥ max

{
p1,

p1 − δp2 + δβs1

1− δ

}
= λ1; (4.3)

(ii) if consumer i is still on the market in period 2, he purchases if

αi ≥ p2 − βs1 = λ2. (4.4)

The key feature of this decision rule is its simple threshold form, there are two thresholds λ1 and

λ2 that consumers use to make decisions based on their private valuations. In equilibrium, the

thresholds are determined by solving a fixed point equation.

Monopolist Objective The monopolist is also impatient and discounts future profits by δ, i.e.,

we assume that consumers and seller have the same discount factor. The seller is interested is
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setting a sequence of prices (p1, p2) in order to maximize her discounted expected profit

Π(p1, p2) = p1D1(p1, p2) + δp2D2(p1, p2), (4.5)

where D1(p1, p2) and D2(p1, p2) are the expected demands in periods 1 and 2 at prices (p1, p2). The

monopolist objective is clearly the same in the two scenarios, whether she has commitment power

or not, however the optimization problem she faces is different, as it can be its solution, which we

characterize in the two following sections.

4.3 Price Commitment

In the scenario where the seller has price commitment, her problem is to optimally choose (p1, p2) in

order to maximize (4.5) at the beginning of t = 1. Given (p1, p2), consumers compute the optimal

thresholds (λ1, λ2) consistent with decision rules (4.3) and (4.4). In this section, we present our

characterization of the optimal prices and thresholds that are a solution to the game described

above. We also show how the equilibrium profits change as a function of the level of social influence

(γ) and other relevant model parameters. Proposition 4.3.1 presents the results for the case in

which γ is small.

Proposition 4.3.1. If γ < 2 the equilibrium prices are such that p∗1 ≤ p∗2 and the equilibrium

thresholds are such that

1 > λ∗1 > λ∗2 > 0.

Moreover, the equilibrium profit for the seller is

Π∗ =
1− δ + γδ

4− (2− γ)2δ
ᾱ. (4.6)

The above proposition states that, when γ < 2, it is always optimal for the seller to set an

introductory price in period 1 that is lower than the price she sets for period 2. This means that,

even in the presence of low levels of social influence, when the monopolist has commitment power
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she finds it optimal to set a higher price in the mature period and extract consumers’ boosted

valuations.

Moreover, Proposition 4.3.1 shows that when γ is low the seller always finds it optimal to price

in such a way that she induces positive sales in both periods (λ∗1 > λ∗2) and not all the potential

demand is fulfilled (λ∗2 > 0). In particular, the seller prefers to exclude consumers with lower

valuations by charging higher prices and sell only to consumers with higher private valuations, thus

extracting more surplus from each consumer that purchases.

The equilibrium profit of the seller is increasing in the level of social influence γ. To see why this

is the case note that a higher γ induces higher valuations in period 2 while leaving them unchanged

in period 1. Moreover, the equilibrium profit is also increasing in the patience level δ. This is

a consequence of the fact that, as both seller and consumers become more patient part of the

sales shift to period 2, where the effect of social influence induces higher valuations for consumers.

Note also that the equilibrium profit that the seller can extract is proportional to the consumers’

maximum willingness to pay.

Our next result characterizes the equilibrium under price commitment when the social influence

level is high.

Proposition 4.3.2. If γ ≥ 2 the equilibrium prices are such that p∗1 ≤ p∗2 and the equilibrium

thresholds are such that

ᾱ/2 = λ∗1 > λ∗2 = 0.

Moreover, the equilibrium profit for the seller is

Π∗ = ᾱ(1− δ + γδ)/4. (4.7)

Proposition 4.3.2 shows that when the seller has commitment power and γ ≥ 2, it is again

optimal to set a lower introductory price in period 1 and a higher price in period 2. In this case,

since the level of social influence is high the seller has even more incentives to price low in period

1 to generate more demand in the current period and then price high in period 2 to capitalize on

inflated valuations.
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Moreover, the seller always sets prices so that all consumers buy by the end of period 2, i.e.

she engages in exhaustive sales. In particular, when γ is high enough the seller finds it optimal to

split the market, by selling to the half of the consumers with higher valuations (αi > ᾱ/2) in the

introductory period and extracting inflated valuations from all remaining consumers in the mature

period. Finally, note that the optimal profit in this case, (4.7), is always higher than the case when

γ is low, (4.6), and it is still increasing in both γ and δ.

Before concluding this section, we remark its most important results. Propositions 4.3.1 and

4.3.2 together establish that, under price commitment, when γ < 2 the monopolist finds it optimal

to exclude some consumers from the sale, while she sells to all consumers when γ ≥ 2. Moreover,

the seller always finds it optimal to set an increasing price path (p∗1 ≤ p∗1), and the equilibrium

profit is continously increasing in the level of social influence.

4.3.1 Sensitivity Analysis of Equilibrium Prices and Demands

In this subsection we present and discuss a comprehensive result that summarizes the sensitivity

of equilibrium prices and consumers’ demands to the relevant model parameters, for all levels of

social influence. In particular we are interested in how the above quantities vary with the social

influence and patience levels. We have the following result.

Proposition 4.3.3. Let (p∗1, p
∗
2, λ
∗
1, λ
∗
2) be the equilibrium prices and thresholds under price com-

mitment and let (D∗1, D
∗
2) be the corresponding equilibrium demands in periods 1 and 2. Then,

(a) For all γ > 0, the optimal prices have the following properties:

(a.i)
∂p∗1
∂γ
≤ 0 and

∂p∗2
∂γ
≥ 0; (a.ii)

∂

∂δ
(p∗2 − p∗1) ≥ 0.

(b) For all γ > 0, the equilibrium demands have the following properties:

(b.i) D∗1 ≥ D∗2; (b.ii)
∂D∗1
∂δ
≤ 0 and

∂D∗2
∂δ
≥ 0; (b.iii)

∂

∂γ
(D∗1 −D∗2) ≤ 0.

Part (a) of the above proposition establishes two properties of the equilibrium prices. Property
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(a.i) says that the introductory price in period 1 is always decreasing in the level of social influence

and the equilibrium price in period 2 is always increasing, clearly this implies that the difference

between the two prices, or the introductory mark-down, is increasing in the intensity of social

influence. Property (a.ii) says that the difference between the optimal price in period 2 and the

optimal price in period 1 is increasing in the patience level, which is a consequence of the fact

that with higher patience, the monopolist is more willing to sacrifice first period revenues to induce

higher valuations in the second period and the consumers discount second period utility by a smaller

factor.

Part (b) of the above proposition presents three properties of the equilibrium demands. Property

(b.i) says that demand is always higher in the introductory period, this mirrors the fact that

it is always optimal for the seller to set an increasing price path. Property (b.ii) states that

the equilibrium demand in the introductory period is decreasing in the discount factor and the

equilibrium demand in the mature period is increasing in the discount factor. Property (b.iii)

states that the difference between period 1 demand and period 2 demand is non-increasing in the

level of social influence. Note that when γ < 2 this difference is decreasing and when γ ≥ 2 the

demand is always split equally between the two periods.

4.4 Responsive Pricing

In the responsive pricing scenario, where there is no commitment power, the seller’s expected profit

in period 2 is π2 = p2D2 and her expected discounted profit in at the beginning of period 1 is

π1 = p1D1 + δπ2. The game unfolds as follows: the seller chooses p1 at the beginning of period 1 in

order to maximize π1, then observes how many consumers have purchased in the introductory period

(λ1) and chooses p2 in the beginning of period 2 in order to maximize π2, finally the remaining

consumers make their optimal purchase decision in period 2. In this section, we characterize the

equilibrium prices and thresholds in the subgame perfect equilibrium of the game described above,

which we solve by backward induction. Moreover, we discuss how equilibrium profits are affected

by social influence and patience levels.
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The next proposition presents the equilibrium characterization for low levels of social influence,

in this case equilibrium prices require a more detailed discussion, that we will present in Proposition

4.4.3. We have the following result.

Proposition 4.4.1. If γ <
5δ − 2 +

√
4− 4δ + 17δ2

4δ
the equilibrium thresholds are such that

1 > λ∗1 > λ∗2 > 0.

Moreover, the equilibrium profit for the seller is

Π∗ =
(2− δ)2 + 4γδ

2[(8− 6δ) + 8γδ − 2γ2δ]
ᾱ. (4.8)

Proposition 4.4.1 states that, when γ is small enough, in equilibrium the seller sales in both

periods (λ∗1 > λ∗2) and not all the potential demand is fulfilled (λ∗2 > 0). The seller excludes

consumers with lower valuations from the sale, and the qualitative insights are the same as in the

case with price commitment. However, quantitatively the equilibrium prices, thresholds and profits

are different. Note that the equilibrium profits are still increasing in all the parameters of interest,

i.e., the social influence and patience levels and the maximum private valuation of consumers.

Our next result presents the equilibrium characterization for the cases in which the level of

social influence is high.

Proposition 4.4.2. If γ ≥ 5δ − 2 +
√

4− 4δ + 17δ2

4δ
the equilibrium prices are such that p∗1 ≤ p∗2

and the equilibrium thresholds are such that

ᾱ/2 = λ∗1 > λ∗2 = 0.

Moreover, the equilibrium profit for the seller is

Π∗ = ᾱ(1− δ + γδ)/4. (4.9)

The above proposition states that, when γ is higher than a given threshold, it is always optimal
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for the seller to set a lower introductory price in period 1 and a higher price in period 2. This is

in line with the optimal pricing strategy with price commitment and different from the responsive

pricing with low social influence, as we will see in Proposition 4.4.3. Moreover, the seller sells to

all consumers by the end of period 2 and sets prices in such a way that the demand splits evenly

between period 1 and period 2.

Most importantly, note that when the social influence level is high enough, all the equilibrium

quantities are both qualitatively and quantitatively the same as in the price commitment case. The

intuition behind this result is that, when the equilibrium sales become exhaustive, the seller is able

to sustain the same level of equilibrium prices that he would be willing to set if she had commitment

power.

In the next subsection, we provide a comprehensive characterization of how equilibrium prices

change as a function of the level of social influence in the responsive pricing scenario.

4.4.1 Equilibrium Prices and Social Influence

In Section 4.3, we saw that under price commitment the equilibrium price in period 1 is always

lower than the equilibrium price period 2. We already anticipated that results can be much different

in the absence of commitment power, and our next result establishes that with responsive pricing

an increasing price schedule is not always optimal.

Proposition 4.4.3. The seller’s optimal prices (p∗1, p
∗
2) have the following properties.

(i) There exist a threshold 0 < γ̃ <
5δ − 2 +

√
4− 4δ + 17δ2

4δ
such that

p∗1 ≥ p∗2 if γ ≤ γ̃ and p∗1 ≤ p∗2 if γ > γ̃.

Moreover, γ̃ → 0 as δ → 1.

(ii)
∂p∗1
∂γ
≤ 0 and

∂p∗2
∂γ
≥ 0 for all γ > 0.

Property (i) of the above proposition focuses on the responsive pricing scenario with low levels

of social influence, i.e., the equilibrium characterized in Proposition 4.4.1. This property states that
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there exist a threshold γ̃ such that when the level of social influence is lower than this threshold,

then the equilibrium price in period 1 is higher than the equilibrium price in period 2. Otherwise,

for high levels of social influence we get an increasing price scheme, which is qualitatively the same

as in the price commitment scenario. Moreover, note that γ̃ approaches zero as δ approaches 1.

Property (ii) of the above proposition states that the introductory price is always decreasing in the

level of social influence and the price in the second period is always increasing. This holds for all

γ, even when the level of social influence is very low and p∗1 ≥ p∗2.

4.5 Value of Price Commitment

In both scenarios analyzed above, the price commitment in Section 4.3 and the responsive pricing

in Section 4.4, the seller was able to chose different prices in periods 1 and 2, the difference between

the two scenarios is that in the first one we endow the seller with some commitment power. In

this section, we ask what is the value of having commitment power to the seller. Our main result

characterizes the value of price commitment as a function of the level of social influence. The value

of price commitment is calculated as the equilibrium profit under price commitment minus the

equilibrium profit under responsive pricing.

Let Π∗PC be the equilibrium profit under price commitment, characterized in Propositions 4.3.1

and 4.3.2, and let Π∗RP be the equilibrium profit under responsive pricing, characterized in Propo-

sitions 4.4.1 and 4.4.2. We are now ready to state our main result.

Theorem 4.5.1. The value of price commitment for the seller is characterized as follows.

(a) If γ < 2, the value of price commitment is strictly positive, i.e. Π∗PC −Π∗RP > 0.

(b) If γ ≥ 2, the value of price commitment is zero, i.e. Π∗PC −Π∗RP = 0.

Theorem 4.5.1 establishes that, in a market with many heterogeneous consumers and social

influence, commitment power can never decrease the seller’s equilibrium profit. This is in line

with most works in the literature that find that for dynamic monopoly pricing models having a

commitment mechanism is generally valuable.
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Statement (a) of the theorem states that when the level of social influence is low, the seller

always achieves strictly higher profit under price commitment than under responsive pricing. More

importantly, Statement (b) states that if the level of social influence is high enough, the ability

to commit to a pricing schedule does not give the seller any additional profit with respect to the

responsive pricing case.

We now provide some further explanations that allow to better appreciate why the above theo-

rem holds. Recall that in our model the total demand is normalized to one, and in particular it is

finite. When the level of social influence is high enough, it is optimal to set the price for period 2

in such a way that all demand is exhausted, and this is true irrespective of whether the seller has

commitment power. Thus, in both price commitment and responsive pricing scenarios, the optimal

period 2 price is the boundary solution that corresponds to exhaustive sales. Consequently, the

period 1 prices, which are pinned down by the best responses for period 1, are equivalent, and the

seller attains the same equilibrium profits in the two scenarios.

When the level of social influence is low, a seller with commitment power finds it optimal to

set prices in such a way that the consumers with low valuations are excluded from the sale, i.e.,

the optimal price in period 2 is always an interior solution. However, when the seller does not have

commitment power she finds it optimal to set a lower price in period 2. This hurts the seller in

two ways, by decreasing period 1 profits, since a higher fraction of consumers purchases in period

2 at a lower price, and also by decreasing period 2 valuations, since the social influence component

of utility is reduced by less consumers purchasing in period 1. As a result, in the absence of price

commitment the seller makes strictly lower profits when the level of social influence is low enough.

4.6 Conclusion

This chapter studies a two-period pricing model with a seller that launches a new product to a large

market of consumers and she is able to set different prices for each of the two periods. Consumers are

heterogeneous in their private valuations, and their overall valuation for the product is also affected

by how many consumers have already purchased, through a positive social influence channel with
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exogenous intensity level. We study two scenarios, one in which the seller has commitment power

and one in which she does not. The optimal purchase decision of consumers always takes a simple

threshold form. We characterize the equilibrium in the two scenarios in terms of equilibrium prices

and thresholds and then compare the results.

In the presence of price commitment, we show that it is always optimal for the seller to set an

increasing pricing schedule. We also show that it is always optimal to exclude some consumers from

sale when the level of social influence is low and to sell to everyone when the level of social influence

is high. In the responsive pricing scenario we have a similar result on consumers’ equilibrium

decisions but different results on pricing. In particular, the seller still excludes some consumers

from sale when the level of social influence is below a given threshold, and sells to everyone when

it is above. In the latter case the seller finds it optimal to set an increasing price path, however,

when there is no price commitment and the level of social influence is very low the seller sets a

decreasing price path.

Our main result concerns the characterization of the value of price commitment in this model

as a function of the social influence level. We find that, when the level of social influence is below

a given threshold, then price commitment is always strictly valuable. However, for high levels of

social influence, a monopolist that engages in responsive pricing does equally well than one that

has access to commitment mechanism.
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4.7 Proofs

Recall that tail distribution of a U [0, ᾱ] random variable is

F (x) =


1 if x ≤ 0

1− x/ᾱ if x ∈ [0, ᾱ]

0 if x ≥ ᾱ

. (4.10)

Note that given consumers’ threshold purchasing decision, the expected demands in period 1 and

2 can be written as

D1 = F (λ1) and D2 =
[
F (λ2)− F (λ1)

]+
,

and the expected discounted profits (4.5) can be rewritten as

Π(p1, p2) = p1F (λ1) + δp2

[
F (λ2)− F (λ1)

]+
. (4.11)

The following lemma characterizes consumers’ equilibrium thresholds as a function of the seller’s

prices (p1, p2) and we will use it for the proofs of propositions 4.3.1 and 4.3.2.

Lemma 4.7.1. Let (p1, p2) be the prices set by the seller for period 1 and period 2, consumers’

equilibrium thresholds are determined as follows.

(a) If p1 ≤
p1 + δ(β − p2)

ᾱ(1− δ) + βδ
ᾱ, then

λ1 =
p1 + δ(β − p2)

ᾱ(1− δ) + βδ
ᾱ and λ2 =

βp1 − ᾱ(1− δ)(β − p2)

ᾱ(1− δ) + βδ
.

(b) If p1 >
p1 + δ(β − p2)

ᾱ(1− δ) + βδ
ᾱ, then

λ1 = p1 and λ2 = p2 − β(1− p1/ᾱ).

Proof. In equilibrium all consumers make their optimal purchase decision in period 1 according to
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(4.3), since the private valuations are uniformly distributed it must be that s1 = 1−λ1/ᾱ. Replace

s1 in (4.3) and suppose that

p1 ≤
p1 − δp2 + δβ(1− λ1/ᾱ)

1− δ
,

then the equilibrium threshold in period 1 must solve

λ1 =
p1 − δp2 + δβ(1− λ1/ᾱ)

1− δ
,

which implies that

λ1 =
p1 + δ(β − p2)

ᾱ(1− δ) + βδ
ᾱ. (4.12)

Proof of part (a): If p1 ≤
p1 + δ(β − p2)

ᾱ(1− δ) + βδ
ᾱ then it follows from (4.3) that (4.12) is the equilibrium

threshold in period 1, and the equilibrium threshold in period 2 is obtained replacing s1 = 1−λ1/ᾱ

into (4.4) as follows

λ2 = p2 − β (1− λ1/ᾱ) =
βp1 − ᾱ(1− δ)(β − p2)

ᾱ(1− δ) + βδ
,

Proof of part (b): If p1 >
p1 + δ(β − p2)

ᾱ(1− δ) + βδ
ᾱ it follows from (4.3) that λ1 = p1 and replacing into

(4.4) yields λ2 = p2 − β(1− p1/ᾱ).

Proof of Proposition 4.3.1

Using the tail distribution F defined in (4.10) we can write the seller’s problem as

max
p1,p2

p1(1− λ1/ᾱ) + δp2(λ1 − λ2)/ᾱ

s.t. λ1 − λ2 ≥ 0 (4.13)

ᾱ ≥ λ1, λ2 ≥ 0

p1, p2 ≥ 0.
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Suppose that p1 ≤
p1 + δ(β − p2)

ᾱ(1− δ) + βδ
ᾱ, we will later verify that this is always true in equilibrium.

From Lemma 4.7.1 it follows that the optimal consumers’ threshold for period 1 is

λ1 =
p1 + δ(β − p2)

ᾱ(1− δ) + βδ
ᾱ, (4.14)

and the optimal threshold for period 2 is

λ2 =
βp1 − ᾱ(1− δ)(β − p2)

ᾱ(1− δ) + βδ
. (4.15)

Replacing (4.14) and (4.15) into the objective function of Problem (4.13) yields

Π =
−ᾱp2

1 + ᾱ2(1− δ)p1 + (2ᾱ− β)δp1p2 + ᾱβδp2 − ᾱδp2
2

ᾱ[ᾱ(1− δ) + βδ]
, (4.16)

and the associated Hessian is

H =
1

ᾱ[ᾱ(1− δ) + βδ]

 −2ᾱ (2ᾱ− β)δ

(2ᾱ− β)δ −2ᾱδ

 .
Note that Π is jointly concave in (p1, p2) if and only if det(H) ≥ 0, i.e.

4ᾱ2 − (2ᾱ− β)2δ ≥ 0,

which holds when β/ᾱ ≤ 2
(

1 + 1/
√
δ
)

and it is always true in this case since γ = β/α < 2. Thus,

the optimal prices (p∗1, p
∗
2) must solve the first-order conditions

∂Π

∂p1
= 0 and

∂Π

∂p2
= 0, which are

given by

−2ᾱp1 + ᾱ2(1− δ) + (2ᾱ− β)δp2

ᾱ[ᾱ(1− δ) + βδ]
= 0 and

(2ᾱ− β)δp1 + ᾱβδ − 2ᾱδp2

ᾱ[ᾱ(1− δ) + βδ]
= 0.
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It follows that

p∗1 =
2ᾱ2(1− δ) + 2ᾱβδ − β2δ

4ᾱ2 − (2ᾱ− β)δ
ᾱ =

2(1− δ) + 2γδ − γ2δ

4− (2− γ)2δ
ᾱ, (4.17)

and

p∗2 =
2ᾱ2(1− δ) + ᾱβ(1 + δ)

4ᾱ2 − (2ᾱ− β)δ
ᾱ =

2(1− δ) + γ(1 + δ)

4− (2− γ)2δ
ᾱ. (4.18)

Replacing (p∗1, p
∗
2) into (4.14) and (4.15) and simplifying yields

λ∗1 =
2(1− δ) + 3γδ − γ2δ

4− (2− γ)2δ
ᾱ and λ∗2 =

(2− γ)[(1− δ) + γδ]

4− (2− γ)2δ
ᾱ. (4.19)

Moreover, it is easy to verify our assumption that p∗1 ≤
p∗1 + δ(β − p∗2)

ᾱ(1− δ) + βδ
ᾱ, note that the right-hand

side is equal to λ∗1 and clearly λ∗1 ≥ p∗1, and it is easy to verify that all the constraints of Problem

(4.13) hold under the condition γ < 2. In particular, note that λ∗2 > 0 if and only if γ < 2. To see

that λ∗1 > λ∗2 note that

λ∗1 − λ∗2 =
γ

4− (2− γ)2δ
ᾱ > 0.

To see that p∗1 ≤ p∗2 note that, subtracting (4.17) from (4.18) yields

p∗2 − p∗1 =
γ(1− δ + γδ)

4− (2− γ)2δ
ᾱ, (4.20)

which is always positive. Finally, replacing (p∗1, p
∗
2) into (4.16) and simplifying yields

Π∗ =
(1− δ) + γδ

4− (2− γ)2δ
ᾱ.
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Proof of Proposition 4.3.2

Consider the optimal solution of Problem (4.13) characterized in Proposition 4.3.1. In particular,

note that the optimal consumers’ threshold for period 2 becomes negative when γ ≥ 2. In this

case we need to solve the seller’s problem with the constraint that λ2 ≤ 0, which using the tail

distribution (4.10) can be written as

max
p1,p2

p1(1− λ1/ᾱ) + δp2λ1/ᾱ

s.t. λ1 − λ2 ≥ 0 (4.21)

ᾱ ≥ λ1 ≥ 0

λ2 ≤ 0

p1, p2 ≥ 0.

Suppose that p1 ≤
p1 + δ(β − p2)

ᾱ(1− δ) + βδ
ᾱ, we will later verify that this is always true in equilibrium.

From Proposition 4.7.1 it follows that the optimal consumers’ thresholds for period 1 and period 2

are given by (4.14) and (4.15) respectively. Replacing (4.14) and (4.15) into the objective function

of Problem (4.21) yields

Π =
−p2

1 + ᾱ(1− δ)p1 + 2δp1p2 + βδ2p2 − δ2p2
2

ᾱ(1− δ) + βδ
, (4.22)

and the associated Hessian is given by

H =
1

ᾱ(1− δ) + βδ

 −2 2δ

2δ −2δ2

 .

Clearly the profit function is concave in p2, solving the first-order condition
∂Π

∂p2
= 0 yields the best

response

p̂2(p1) =
βδ + 2p1

2δ
.
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The constraint λ2 ≤ 0 imposes the following upper bound on p2, i.e.

p̄2(p1) =
β[ᾱ(1− δ)− 2p1]

ᾱ(1− δ)
,

note that p̂2(p1) ≤ p̄2(p1) if and only if

p1 ≤
ᾱβ(1− δ)δ

2ᾱ(1− δ) + 2βδ
= p̄1.

If p1 ≤ p̄1, replacing p̂2(p1) into (4.22) yields

Π(p1, p̂2(p1)) =
β2δ2

4[ᾱ(1− δ) + βδ]
+ p1,

thus clearly it is optimal to set p1 = p̄1. Then it must be that p1 ≥ p̄1, which implies p̂2(p1) ≥ p̄2(p1)

and the best response p̂2(p1) is not feasible. Replacing p̄2(p1) into (4.22) yields

Π(p1, p̄2(p1)) =
[−p2

1 + ᾱ(1− δ)p1][ᾱ(1− δ) + βδ]

α2(1− δ)2

which is a concave quadratic in p1, thus solving the first-order condition to get p∗1 and then replacing

p∗1 into p̄2(p1) to get p∗2 yields

p∗1 = ᾱ(1− δ)/2 and p∗2 = β/2 = ᾱγ/2 (4.23)

and replacing (p∗1, p
∗
2) into (4.14) and (4.15) yields λ∗1 = ᾱ/2 > p∗1, clearly λ∗2 = 0. It is easy to

verify our assumption that p∗1 ≤ λ∗1, as well as that all constraints hold at the optimal solution.

Further note that clearly λ∗1 > λ∗2 = 0, and

p∗2 − p∗1 = ᾱ(γ − 1 + δ)/2, (4.24)

which is always positive. To complete the proof note that replacing (p∗1, p
∗
2) into (4.22) yields

Π∗ = ᾱ(1− δ + γδ)/4.
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Proof of Proposition 4.3.3

Proof of Part (a): For property (a.i), note that when γ < 2, differentiating p∗1 and p∗2 with respect

to γ yields

∂p∗1
∂γ

= −2ᾱγδ(2− 2δ + γδ)

[4− (2− γ)2δ]2
≤ 0 and

∂p∗2
∂γ

=
4− 8δ + 4δ2 + 4δ(1− δ)γ + δ(1 + δ)γ2

[4− (2− γ)2δ]2
ᾱ ≥ 0,

where the first inequality is immediate, and the second inequality follows from the fact that the

numerator of ∂p∗2/∂δ is a convex quadratic in γ with determinant δ(−1 + 2δ − δ2) ≤ 0 for all

δ ∈ (0, 1). When γ ≥ 2, differentiating p∗1 and p∗2 with respect to γ yields

∂p∗1
∂γ

= 0 and
∂p∗2
∂γ

= ᾱ/2 ≥ 0.

For property (a.ii), note that when γ < 2, differentiating (4.20) with respect to δ yields

∂

∂δ
(p∗2 − p∗1) =

γ3ᾱ

[4− (2− γ)2δ]2
≥ 0.

When γ ≥ 2, differentiating (4.24) with respect to δ yields
∂

∂δ
(p∗2 − p∗1) = ᾱ/2 > 0. Which completes

the proof of Part (a).

Proof of Part (b): For property (b.i), note that the equilibrium demands are given by D∗1 = 1−λ∗1/ᾱ

and D∗2 = (λ∗1 − λ∗2)/ᾱ. When γ < 2, using the optimal thresholds λ∗1 and λ∗2 from (4.19), we can

compute the difference between period 1 and period 2 demands as

D∗1 −D∗2 = 1− 2λ∗1/ᾱ+ λ∗2/ᾱ =
(2− γ)(1− δ)
4− (2− γ)2δ

, (4.25)

which is always positive in this case. When γ ≥ 2 the optimal thresholds are given by λ∗1 = ᾱ/2

and λ∗2 = 0, replacing them into the above expressions for D∗1 and D∗2 yields D∗1 = D∗2 = 1/2, and

thus D∗1 −D∗2 = 0. For property (b.ii), note that when γ < 2 we have

∂D∗1
∂δ

=
∂

∂δ
(1− λ∗1/ᾱ) =

2γ(γ − 2)

[4− (2− γ)2δ]2
,
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which is always negative in this case, and

∂D∗1
∂δ

=
∂

∂δ
(λ∗1 − λ∗2)/ᾱ =

γ(γ − 2)2

[4− (2− γ)2δ]2
,

which is always positive. When γ ≥ 2 we have
∂D∗1
∂δ

=
∂D∗2
∂δ

= 0. Finally, for property (b.iii), note

that when γ < 2 differentiating (4.25) with respect to γ yields

∂

∂γ
(D∗1 −D∗2) = −(1− δ)[4 + (2− γ)2δ]

[4− (2− γ)2δ]2
≤ 0,

and when γ ≥ 2 we have
∂

∂γ
(D∗1 −D∗2) = 0.

Proof of Proposition 4.4.1

We solve the game by backward induction. Using the tail distribution F defined in (4.10), the

seller’s problem in period 2 can be written as

max
p2

p2(λ1 − λ2)/ᾱ

s.t. λ1 − λ2 ≥ 0 (4.26)

ᾱ ≥ λ1, λ2 ≥ 0

p2 ≥ 0.

The optimal consumers’ threshold in period 2 is given by λ2 = p2 − β(1− λ1/ᾱ), and replacing it

into the objective of Problem (4.26) yields

π2 =
−p2

2 + [β + (1− β/ᾱ)λ1]p2

ᾱ
,

which is a concave quadratic in p2. Solving the first-order condition
∂π2

∂p2
= 0 yields the best response

p̂2(λ1) =
ᾱβ + (ᾱ− β)λ1

2ᾱ
.
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Now we turn to the fist period decisions. The consumers’ optimal threshold in period 1 must be a

solution to the following fixed point equation

λ1 =
p1 − δp̂2(λ1) + δβ(1− λ1/ᾱ)

1− δ
,

solving for for λ1 yields

λ̂1(p1) =
2p1 + βδ

(2− δ)ᾱ+ βδ
ᾱ.

The monopolist problem in the first period is

max
p1

p1(1− λ1/ᾱ) + δp1π2(λ1)

s.t. λ1 − λ2 ≥ 0 (4.27)

ᾱ ≥ λ1, λ2 ≥ 0

p1 ≥ 0

replacing p̂2(λ1) and then λ̂1(p1) into the objective of Problem (4.27) yields

π1 =
p2

1[(3δ − 4)ᾱ2 − 4ᾱβδ + β2δ] + p1[(2− δ)2ᾱ2 + ᾱβδ(4− δ)]ᾱ+ ᾱ2β2δ

ᾱ[(2− δ)ᾱ+ βδ]2
. (4.28)

Note that π1 is concave in p1 if and only if

∂2π1

∂p2
1

= 2β2δ − 8βδ − (8− 6δ) ≤ 0,

which is true when β/ᾱ ≤ (2 +
√

1 + 4/δ) and in particular it is always true in this case since

γ = β/ᾱ <
5δ − 2 +

√
4 + δ(17δ − 4)

4δ
< (2 +

√
1 + 4/δ). Thus, the optimal price for period 1 must

solve the first-order condition
∂π1

∂p1
= 0, which implies that

p∗1 =
(2− δ)2ᾱ2 + (4− δ)ᾱβδ − 2β2δ

(8− 6δ)ᾱ2 + 8ᾱβδ − 2β2δ
ᾱ =

(2− δ)2 + (4− δ)γδ − 2γ2δ

(8− 6δ) + 8γδ − 2γ2δ
ᾱ. (4.29)
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Replacing p∗1 into λ̂1(p1) and simplifying yields

λ∗1 =
(2− δ)2 + 3γδ − γ2δ

(8− 6δ) + 8γδ − 2γ2δ
2ᾱ,

replacing λ∗1 into the best response p̂2(λ1) and simplifying yields

p∗2 =
(2− δ) + (2 + δ)γ

(8− 6δ) + 8γδ − 2γ2δ
ᾱ, (4.30)

and replacing λ∗1 and p∗2 into λ2 = p2 − β(1− λ1/ᾱ) yields

λ∗2 =
(2− δ)2 − (2− 5δ)γ − 2γ2δ

(8− 6δ) + 8γδ − 2γ2δ
ᾱ.

It is easy to verify that all constraints hold at the optimal solution, and in particular, note that

λ∗2 > 0 if and only if γ <
5δ − 2 +

√
4 + δ(17δ − 4)

4δ
. Moreover, note that λ∗1 > λ∗2 since

λ∗1 − λ∗2 =
2− δ + γ(2 + δ)

(8− 6δ) + 8γδ − 2γ2δ
ᾱ > 0.

Finally, note that the equilibrium profit can be computed by replacing p∗1 into (4.28) and simplifying

to get

Π∗ =
(2− δ)2 + 4γδ

2[(8− 6δ) + 8γδ − 2γ2δ]
ᾱ,

thus completing the proof.

Proof of Proposition 4.4.2

Consider the optimal consumers’ threshold for period 2 characterized in Proposition 4.4.1, and note

that the threshold becomes negative when γ ≥ 5δ − 2 +
√

4− 4δ + 17δ2

4δ
. In this case, we need to

solve the seller’s problem with the constraint that λ2 ≤ 0. Using the tail distribution (4.10), the
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seller’s problem in the second period can be written as

max
p2

p2λ1/ᾱ

s.t. λ1 − λ2 ≥ 0 (4.31)

ᾱ ≥ λ1 ≥ 0

λ2 ≤ 0

p2 ≥ 0.

The constraint λ2 ≤ 0 imposes the following upper bound on the period 2 price

p2 ≤ β(1− λ1/ᾱ) = p̄2(λ1).

Note that the above condition must hold with equality at the optimal solution because the objective

of Problem (4.31) is always increasing in p2, which implies that the optimal consumers’ threshold

for period 1 must be a solution to the following fixed point equation

λ1 =
p1 − δp̄2(λ1) + δβ(1− λ1/ᾱ)

1− δ
,

solving for for λ1 yields λ̄1(p1) = p1/(1− δ).

The seller’s problem in period 1 is

max
p1

p1(1− λ1/ᾱ) + δp1π2(λ1)

s.t. λ1 − λ2 ≥ 0 (4.32)

ᾱ ≥ λ1 ≥ 0

λ2 ≤ 0

p1 ≥ 0.
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Replacing p̄2(λ1) and then λ̄1(p1) into the objective of Problem (4.32) yields

π1 =
ᾱ(1− δ) + βδ

ᾱ(1− δ)
p1 −

ᾱ(1− δ) + βδ

ᾱ2(1− δ)2
p2

1, (4.33)

which is a concave function of p1. Solving the first-order condition yields

p∗1 = ᾱ(1− δ)/2, (4.34)

replacing p∗1 into λ̄1(p1) yields λ∗1 = ᾱ/2 = ᾱγ/2, and replacing λ∗1 into p̄2(λ1) yields

p∗2 = ᾱγ/2. (4.35)

Clearly λ∗2 = 0, and it can be easily verified that all constraints hold at the optimal solution.

Finally, note that clearly λ∗1 > λ∗2 and that we compute the equilibrium profit by replacing p∗1 into

(4.33) and simplifying, which yields Π∗ = ᾱ(1− δ + γδ)/4, thus completing the proof.

Proof of Proposition 4.4.3

For property (i), note that when γ <
5δ − 2 +

√
4− 4δ + 17δ2

4δ
the optimal prices are given by (4.29)

and (4.30), subtracting p∗1 from p∗2 yields

p∗2 − p∗1 =
2− 3δ + δ2 − γ(2− 3δ + δ2)− γ2δ

(8− 6δ) + 8γδ − 2γ2δ
ᾱ,

where the denominator is always positive and the numerator is positive when

γ >
−2 + 3δ − δ2 +

√
4 + 4δ − 11δ2 + 2δ3 + δ4

4δ
= γ̃(δ),

thus p∗2 − p∗1 is positive if γ > γ̃(δ) and it is negative otherwise. Clearly γ̃(δ)→ 0 as δ → 1. When

γ ≥ 5δ − 2 +
√

4− 4δ + 17δ2

4δ
the optimal prices are given by (4.34) and (4.35), subtracting p∗1 from

p∗2 yields p∗2 − p∗1 = ᾱ(γ − 1 + δ)/2 which is always positive in this case. Thus completing the proof

of property (i).
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For property (ii), when γ <
5δ − 2 +

√
4− 4δ + 17δ2

4δ
the optimal prices are given by (4.29) and

(4.30), differentiating p∗1 with respect to δ yields

∂p∗1
∂γ

=
−δ2 + γ(−8 + 4δ + 2δ2)− γ2δ(4 + δ)

(8− 6δ) + 8γδ − 2γ2δ
,

which is negative since the numerator is positive for all γ <
5δ − 2 +

√
4− 4δ + 17δ2

4δ
and the nu-

merator is always negative. Moreover, differentiating p∗2 with respect to δ yields

∂p∗2
∂γ

=
8− 10δ + δ2 + γδ(4− 2δ) + γ2δ(2 + δ)

(8− 6δ) + 8γδ − 2γ2δ
,

which is positive since the numerator is positive for all γ <
5δ − 2 +

√
4− 4δ + 17δ2

4δ
and the nu-

merator is always positive. When γ ≥ 5δ − 2 +
√

4− 4δ + 17δ2

4δ
, differentiating the optimal prices

from (4.34) and (4.35) with respect to γ yields

∂p∗1
∂γ

= 0 and
∂p∗2
∂γ

= ᾱ/2 ≥ 0,

thus completing the proof.

Proof of Theorem 4.5.1

Define γ̄RP =
5δ − 2 +

√
4 + δ(17δ − 4)

4δ
, which is the threshold on γ from the no commitment case.

Note that γ̄RP < 2 since

2− γ̄RP =
2 + 3δ −

√
4 + δ(17δ − 4)

4δ
,

which is positive if and only if 8δ(2− δ) > 0, which is clearly true for all δ ∈ (0, 1].

Proof of Part (a): If γ < γ̄RP the equilibrium profit with price commitment is given by (4.6) and

the equilibrium profit with no commitment is given by (4.8), subtracting Π∗RP from Π∗PC yields

Π∗PC −Π∗RP =
δ[2 + (2− γ)δ]2

4[4− (2− γ)2δ][(4− 3δ) + 4γδ − γ2δ]
,
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which is strictly positive for all δ ∈ (0, 1]. To see this, note that the numerator is always positive,

and for the denominator, note that 4−(2−γ)2δ is clearly positive for all γ < 2 and (4−3δ)+4γδ−γ2δ

is positive if γ < 2 +
√

1 + 4/δ, which true since γ̄RP < 2.

If γ ∈ [γ̄RP , 2) the equilibrium profit with price commitment is given by (4.6) and the equilibrium

profit with no commitment is given by (4.9), subtracting Π∗RP from Π∗PC yields

Π∗PC −Π∗RP =
(2− γ)2δ[1 + (1− γ)δ]

4[4− (2− γ)2δ]
,

which is always positive in this case.

Proof of Part (b): It suffices to note that when γ ≥ 2 the equilibrium profit with price commitment is

given by (4.7) and the equilibrium profit with no commitment is given by (4.9), clearly Π∗PC = Π∗RP .

This completes the proof of the theorem.
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