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All Rights Reserved



ABSTRACT

Essays on Cloud Pricing and Causal Inference

Çınar Kılcıoğlu

In this thesis, we study economics and operations of cloud computing, and we propose new matching

methods in observational studies that enable us to estimate the effect of green building practices

on market rents.

In the first part, we study a stylized revenue maximization problem for a provider of cloud

computing services, where the service provider (SP) operates an infinite capacity system in a market

with heterogeneous customers with respect to their valuation and congestion sensitivity. The SP

offers two service options: one with guaranteed service availability, and one where users bid for

resource availability and only the “winning” bids at any point in time get access to the service. We

show that even though capacity is unlimited, in several settings, depending on the relation between

valuation and congestion sensitivity, the revenue maximizing service provider will choose to make

the spot service option stochastically unavailable. This form of intentional service degradation is

optimal in settings where user valuation per unit time increases sub-linearly with respect to their

congestion sensitivity (i.e., their disutility per unit time when the service is unavailable) – this is

a form of “damaged goods.” We provide some data evidence based on the analysis of price traces

from the biggest cloud service provider, Amazon Web Services.

In the second part, we study the competition on price and quality in cloud computing. The

public “infrastructure as a service” cloud market possesses unique features that make it difficult to

predict long-run economic behavior. On the one hand, major providers buy their hardware from

the same manufacturers, operate in similar locations and offer a similar menu of products. On the

other hand, the competitors use different proprietary “fabric” to manage virtualization, resource

allocation and data transfer. The menus offered by each provider involve a discrete number of



choices (virtual machine sizes) and allow providers to locate in different parts of the price-quality

space. We document this differentiation empirically by running benchmarking tests. This allows us

to calibrate a model of firm technology. Firm technology is an input into our theoretical model of

price-quality competition. The monopoly case highlights the importance of competition in blocking

“bad equilibrium” where performance is intentionally slowed down or options are unduly limited. In

duopoly, price competition is fierce, but prices do not converge to the same level because of price-

quality differentiation. The model helps explain market trends, such the healthy operating profit

margin recently reported by Amazon Web Services. Our empirically calibrated model helps not

only explain price cutting behavior but also how providers can manage a profit despite predictions

that the market “should be” totally commoditized.

The backbone of cloud computing is datacenters, whose energy consumption is enormous. In

the past years, there has been an extensive effort on making the datacenters more energy efficient.

Similarly, buildings are in the process going“green”as they have a major impact on the environment

through excessive use of resources. In the last part of this thesis, we revisit a previous study

about the economics of environmentally sustainable buildings and estimate the effect of green

building practices on market rents. For this, we use new matching methods that take advantage

of the clustered structure of the buildings data. We propose a general framework for matching

in observational studies and specific matching methods within this framework that simultaneously

achieve three goals: (i) maximize the information content of a matched sample (and, in some cases,

also minimize the variance of a difference-in-means effect estimator); (ii) form the matches using a

flexible matching structure (such as a one-to-many/many-to-one structure); and (iii) directly attain

covariate balance as specified —before matching— by the investigator. To our knowledge, existing

matching methods are only able to achieve, at most, two of these goals simultaneously. Also, unlike

most matching methods, the proposed methods do not require estimation of the propensity score or

other dimensionality reduction techniques, although with the proposed methods these can be used

as additional balancing covariates in the context of (iii). Using these matching methods, we find

that green buildings have 3.3% higher rental rates per square foot than otherwise similar buildings

without green ratings —a moderately larger effect than the one previously found.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Data made available in social networks, media and entertainment, electronic commerce, and mo-

bile is exploding. Firms across industries are increasingly focusing on the use of data analytics

to generate insightful and actionable insights to improve their profitability and growth, improve

customer experience, design new and better products and services. Together these trends have led

to a significant increase in IT storage and computing requirements across industries, and apart

from significant infrastructure investments in computing and data storage clusters, they have led

to increased support, management and maintenance costs. The operating loads of these large cor-

porate storage and computing clusters exhibit significant intraday and seasonal variability, and

additionally firms want flexibility for rapid growth in resource requirements as their needs evolve

and mature. In this environment, cloud computing –a form of outsourcing of the aforementioned

physical IT infrastructure resources– has become a cost effective alternative for these firms.

In broad terms, cloud computing refers to the provision of computing resources, such as storage,

data management, and processing, over a network of remote servers hosted on a remote data center

location and accessible via the internet, which is broadly available and at abundant speeds. Cloud

computing uses two key pieces of technology. The first is virtualization, the ability to create

a simulated environment that can run software just like a physical computer. Virtualization is

governed by the “cloud fabric,” which functions as the hypervisor, scheduler and manages fault

tolerance. The second piece is network communication protocol, both within the datacenter and
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between different datacenters. While both technologies have been around for decades, there have

been many proprietary advances and thus the quality of the service offered can vary, even when

datacenters use the same underlying physical hardware. An analogy is the operating system of a

single computer—firms invest in operating system technology to improve performance given the

expected capabilities of the underlying hardware.

Currently, Amazon, Google, and Microsoft are the leading providers of cloud computing services

to a variety of customers, ranging from individuals and small firms, to global media companies

and government agencies. These customers differ with respect to their resource needs, duration,

valuation and sensitivity to service level. For instance, while a researcher who does not have a

strict time constraint and has a limited budget may prefer to procure computing power anytime

within a week and pay little. On the other hand, an online retailer that hosts its web servers in

the cloud is very sensitive to service availability and the quality (speed) of the rendered service.

This heterogeneity with respect to price and congestion sensitivity allows service providers to offer

a menu of product options to segment and better serve this market, essentially offering hosted

computing resources at different price levels depending on their anticipated service availability

(e.g., as measured by the % of time that the resource will be available).

Chapters 2 and 3 of this thesis focus on economics and operations of cloud computing. Specif-

ically, Chapter 2 studies a stylized revenue maximization problem for a monopolistic provider of

cloud computing services, where the service provider (SP) operates an infinite capacity system in

a market with heterogeneous customers with respect to their valuation and congestion sensitivity.

The SP offers two service options: one with guaranteed service availability, and one where users bid

for resource availability and only the “winning” bids at any point in time get access to the service.

In this part, we focus on only one “product” with two service levels. The work in this chapter is

done in collaboration with Costis Maglaras. In Chapter 3, we study multiple product, single service

level (guaranteed service) case, first under monopoly, then under duopoly. In this chapter, we allow

the SP to offer a menu of products, which involves a discrete number of choices (virtual machine

sizes) with respective price points. The quality of a product is determined by the virtual machine

size and firm technology. This work is done jointly with Justin M. Rao.
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The backbone of cloud computing is datacenters. Through cloud, each datacenter hosts thou-

sands of tenants at the same time which essentially provides a more efficient energy use compared

to the case where each tenant owns an in-house server that requires energy for running the ser-

vice, cooling the server room etc. However, the energy consumed by datacenters is massive. The

National Resources Defense Council (NRDC) states:

In 2013, U.S. data centers consumed an estimated 91 billion kilowatt-hours of elec-

tricity. This is the equivalent annual output of 34 large (500-megawatt) coal-fired power

plants, enough electricity to power all the households in New York City twice over. Data

center electricity consumption is projected to increase to roughly 140 billion kilowatt-

hours annually by 2020, the equivalent annual output of 50 power plants, costing Amer-

ican businesses $13 billion per year in electricity bills and causing the emission of nearly

150 million metric tons of carbon pollution annually. (Whitney and Delforge, 2014)

In the past years, there has been an extensive effort on increasing the energy efficiency of

datacenters, both to save on costs and to be environmentally green. Similar to datacenters, buildings

are also in the process of going green as they have a major impact on the environment through

excessive use of resources, such as energy and water, and large carbon dioxide emissions. Chapter 4

revisits a previous study about the economics of environmentally sustainable buildings. To be able

to estimate the effect of green building practices on market rents, new matching methods, which

achieve three critical goals simultaneously that current matching methods cannot provide all at

once, are proposed; and the economic performance of green buildings is studied using one of this

proposed matching methods under statistical causal inference setting. The research in this chapter

is done in collaboration with José R. Zubizarreta.

The rest of this chapter introduces the following chapters in depth by positing the research

questions and objectives along with their connection to the literature.



CHAPTER 1. INTRODUCTION 4

1.1 Revenue Maximization for Cloud Computing Services

In Chapter 2, we study a problem of market segmentation for a revenue maximizing (monopolist)

service provider (SP) of cloud computing resources that offers two classes of service: guaranteed

(on-demand instances) and best effort (spot instances). The latter is procured via a second price

auction. This problem is motivated by the service menu offered by Amazon Web Services (AWS),

the largest SP in the market currently. Insights extracted from asymptotic analysis of large scale

multi-server systems suggest that the observed variation in spot prices is not consistent with the

natural stochastic fluctuations between a two-class priority service system. Moreover, it is typically

believed that these SP’s are not capacity constrained in this stage, but rather experiencing a rapid

phase of infrastructure investment aiming to capture market share. Motivated by these observations,

we study a SP that operates a system with infinite capacity, and note that under that assumption

there is no competition for scarce resources between the two service classes or amongst the users

bidding for spot service; specifically all users bidding higher than the SP’s reserve price get access

to uninterrupted service. The quality of a product is defined as the fraction of time the product

is available to customers. While guaranteed service offers 100% availability with a fixed price, the

quality level and the payment depend on customers’ bids in best effort service. Each customer

gains some positive utility from the service proportional to the time that the service is received

and suffers a negative utility proportional to the length of time that the service is unavailable. The

market is heterogeneous, and, specifically, users differ with respect to two parameters: valuation

per hour of service and disutility per hour of service disruption (sensitivity to congestion). The

former is how much customers are willing to pay for one hour service, and the latter is how much

disutility one hour of service interruption creates. For example, for an online retailer hosting its

web servers, valuation is the customer’s willingness to pay to have the web server running for one

hour, and sensitivity to congestion is the cost of not having the server running, which may include

the lost revenue or profit margin as well as lost goodwill from affected customers. Both valuation

and sensitivity to congestion are private information and thus unknown to the SP. All users are

assumed to have infinite duration service requirements.
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We formulate and solve the deterministic SP’s revenue maximization problem. We treat two

cases separately. First, we study the case where valuation per unit time grows sub-linearly as a

function of the disutility per unit time of service disruption, i.e., where (valuation/time)/(cong.

sens./time) ↓ as (cong. sens./time) ↑. In other words, for users that are congestion sensitive,

disutility due to service disruption grows faster than the user’s valuation. This case is the main

focus of this chapter and we extensively analyze the solution to the revenue maximization problem

under this regime. In practice, user’s valuation from a rented resource is bounded above by the

valuation attained from a resource owned; while disutility due to service disruption is not bounded

and can be multiple times of the valuation depending on use cases. This observation motivates the

reason of focusing on this sub-linear increase case. In the first part of our analysis, we assume that

the user’s valuation per unit time of service is an affine, increasing, function of her congestion cost

per unit time of service disruption. In this case, user types are one-dimensional, and we assume

that user congestion costs per unit time are independent identically distributed (i.i.d.) draws from

a continuous distribution, with a strictly positive density function and bounded support. We model

the prevailing spot price as a discrete process (e.g., in $.01 increments per hour) and focus on the

associated steady state distribution. We assume that the SP can select the steady state distribution,

i.e., the long run average fraction of time for which the spot price spends at each price level; if

the SP’s reserve price is constant through time, then the steady state distribution will reduce to

a point mass at that respective level. (We discuss the validity of the assumption of using steady

state distribution in the last section of the chapter.) Users (have infinite service time requirements)

observe the steady state distribution of the spot price path, and choose between guaranteed and

spot, and, if they select the spot service option, they also determine how much to bid. We prove

that i) the SP should set the price levels of the spot service option such that the lowest spot price

level will be below the lowest valuation across all users in the market (that is, nobody is priced

out); ii) it is optimal to use two distinct price levels in spot service for positive fractions of time,

respectively, and offering more than two price levels does not generate more revenue for the SP; and

iii) the fraction of time that the spot service price is “high” depends on the coefficients of the affine

relation between congestion cost rate and valuation rate, but not the distribution of types itself.
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These “high” periods make the spot service option stochastically unavailable and create intentional

service degradation —a form of “damaged goods.” In the last part of our analysis, we show that

it may be optimal for the SP to offer multiple (> 2) price levels for the spot service option, if the

valuation rate grows sub-linearly with respect to the congestion cost rate but the respective relation

is general (not affine).

For completeness, the second case we study is one where the valuation rate increases faster than

the user’s congestion cost rate. In this case, we prove that it is never optimal to offer spot service.

Intuitively, in this setting congestion sensitive users are willing to pay increasingly high amounts,

and the SP is not willing to sacrifice any revenue from these high types by offering an incentive

compatible lower priced spot price option. Therefore, if more congestion sensitive customers have

comparatively higher valuations, then it is optimal to serve only the high-valuation market segment

by offering the high quality service. This case is analyzed in the Appendix.

Next, we analyze the price traces of over 1,000 products that the dominant provider in the

market offers for a six-month period, and present descriptive statistics that sheds light on the

dynamics of the spot price. This work, by no means, claims that the dominant provider in the

market sets the prices as described here. It provides an alternative explanation to the observed

spot prices which is found to be not consistent with the asymptotic analysis of large scale multi-

server systems. Calibrating our model on the observed data, we offer some insight on the dynamics

of spot price valuations, and characterize the relative magnitude of valuation rate to the congestion

rate; the latter may be as much as 10 times larger than the former.

Lastly, we verify our state independent, stationary model using data and show that utilities

under the state dependent transient system converges to the utilities under the steady state when

users have service times in the order of days.

Our work is related to the literature on “economics of queues,” which goes back to the work

of Naor (1969) that introduced the study of strategic customer behavior in a queueing setting.

Mendelson (1985) and Mendelson and Whang (1990) studied (primarily) social welfare optimization

in an M/M/1 system serving a market of heterogeneous, utility maximizing customers. Afèche

(2013) studied the revenue maximization problem for a SP operating in a market with two segments
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that differ with respect to their delay sensitivity, and importantly showed that the SP may use the

notion of “strategic delay” to optimally segment the market and optimize the system’s revenue rate.

Strategic delay amounts to (artificially) increasing the realized waiting time of some customers

beyond the waiting time that they would experience due to the system’s congestion effects. This

is akin to the idea of “damaged goods” introduced earlier on in economics and marketing, e.g.,

Deneckere and McAfee (1996) and McAfee (2007) that showed that profit maximizing firms may

intentionally “crimp” their products to price discriminate, and Pareto improve performance; these

papers provide striking examples from high-tech industry; see also, Anderson and Dana (2009).

Our model does not involve any congestion phenomena that arise due to the dynamics of a

finite capacity physical system, and as such resembles in its nature the marketing and economics

references on damaged goods. In terms of model formulation and motivation, however, it is closer

to several papers from the economics of queues literature that we highlight below. Afèche and

Pavlin (2015) studied a model with one-dimensional types, where the valuation is a linear function

of the delay cost parameter. For this model they characterized for a SP that operates an M/M/1

system. We will consider the same model in §2.2.3 and study the SP’s revenue maximizing solution

in that case. Our model differs from the one above in its utility function: specifically, users extract

value from the service and pay only when service is available, and incur disutility but stop paying

when service is interrupted. Our result that shows that the use of “damaged goods” may be optimal

is similar to theirs. The affine model is an example of a model where valuation grows sub-linearly

as a function of the congestion sensitivity. §2.3.3 shows that when the monotonicity result holds

but the relation between the two parameters is general, then the optimal solution may involve

again the use of damaged goods but the structure of the optimal policy is more complex. In the

Appendix, we look at the case where the valuation rate grows super-linearly as a function of the

congestion cost parameter, which is akin to the model studied in Katta and Sethuraman (2005).

Our utility function is again different and the details of the analysis are not the same, but one

of the key findings that the use of damaged goods is not needed is consistent with their results

(considered when capacity grows large and the system becomes uncongested). Nazerzadeh and

Randhawa (2015) look at a similar model as the one studied in Katta and Sethuraman (2005)
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and among other things show that in the unconstrained capacity setting, offering one service level

performs “well,” which is consistent with our findings.

Our work is also related to the stream of work that studies economic optimization problems in a

queue in the context of large scale systems. Maglaras and Zeevi (2003) showed that in a single type

market where demand is elastic, the revenue maximizing operating regime in an M/M/C system

where the system size C and the market potential grow large is the so-called heavy-traffic regime.

Maglaras et al. (2015) extended this analysis to multiple types of customers, establishing again,

under some conditions, the phenomenon of strategic delay mentioned above. Finally, our model

operates as a two class priority system. The asymptotic behavior of such a system in a multi-server

setting was studied in Maglaras and Zeevi (2005).

Abhishek et al. (2012) ask a question similar to ours and analyze the problem of the SP using

tools from mechanism design to show that offering only high a quality (guaranteed service) product

with a fixed price generates more revenue than offering both high and low quality products at

the same time. This result is in contrast to our findings in §2.3.3, as well as those in Afèche and

Pavlin (2015). In our model of §2.3.3, users with valuation vi have congestion cost parameter

κi (deterministic), whereas in Abhishek et al. (2012) such users may have a random congestion

cost parameter with distribution Fi. If we approximate our model in their setting by letting the

capacity grow large, and, more importantly, restrict the support of their congestion rate parameter

to a narrow support (centered around κi), then one of the key conditions needed for their main

finding no longer holds, therefore removing the apparent inconsistency. Afèche and Mendelson

(2004) studied the revenue maximization problem in a queue with priority auctions and generalized

delay cost structure. They show that in some cases, revenue maximizing uniform pricing provides

no or only little surplus loss. Moreover, using priority auctions instead of uniform pricing yields

lower prices and higher utilization in the system.

In a recent study, Mitra and Wang (2015) consider a monopoly broadband access internet

service provider that offers a guaranteed service with a usage fee, and a best effort service free of

charge. In profit maximization setting, they show why best effort service “harvests” possibly new

guaranteed service clients; at its core lies a stylized model for the dynamics of adoption of new
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users (applications) that start as best effort users (subsidized) and then some of these transition to

successful applications that switch to guaranteed service quality.

Armbrust et al. (2010) provide an overview of cloud computing from different perspectives

including cloud computing economics. Xu and Li (2013) show that throttling the resource generates

more revenue than uniform usage pricing and performance guarantees can be provided with an extra

fee. In their model customers differ only with respect to their valuation per unit time and each

customer is allowed to choose different number of resources. Borgs et al. (2014) study a multiperiod

pricing problem where the SP offers a service with varying capacity in a market that customers are

strategic and heterogeneous in their valuations, arrival and departure periods. They used the cloud

computing market as an example of such a setting, and provided an efficient algorithm to find a

dynamic pricing mechanism that satisfies service guarantees. Savin et al. (2005) look at the problem

of capacity allocation of rental equipment used by two customer types, with stochastic rental period

requirements. They formulate the problem as a queueing control problem and provide a heuristic

control based on a fluid model approximation. Baron (2003) considers a system (similar to cloud

computing) that the SP shares her computing resources. He presents token-bucket admission control

and pricing schemes. In this work customers compete for the shared resource.

Our work provides descriptive statistics and some analysis on a rich data set from a leading SP.

Similar datasets have been analyzed in different works to find possible explanations for the observed

price fluctuations. Agmon Ben-Yehuda et al. (2011) draw the conclusion that the SP varies her

reserve price over time. They empirically show that the spot prices seem to follow trends that show

significant regularity when views under an appropriate prism, and could be the result of the SP’s

control of the reserve price.

1.2 Competition on Price and Quality in Cloud Computing

While the importance of the technologies that cloud computing uses is widely researched in the

systems community (see e.g., Nurmi et al., 2009; Rimal et al., 2009), the“infrastructure as a service”

public cloud marketplace is often described as “commoditized” from an economic competition per-
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spective (Marston et al., 2011). The reasoning is putatively straightforward. Since cloud providers

use similar, if not identical, physical hardware they cannot meaningfully differentiate their products

and thus profit margins should converge to zero. In Chapter 3, we begin our analysis by empirically

assessing this claim by running a series of benchmarking workloads across two major provider’s var-

ious service levels (“virtual machine” (VM) size), similar to the approach used in Li et al. (2010).

We find different run-times for similarly described offerings, such as “2 virtual cores, 4GB memory.”

While run-time decreases for both providers as one moves to larger VMs, the price-performance

trade-offs are different, which means there are different feasible price-quality combinations. We

formalize this insight with a two-parameter model of the firm’s production technology and the

calibrated model achieves good fit to our data.

The fitted parameters are used in our theoretical model as one source of differentiation across

firms. We view these technologies as fixed for our analysis, imagining they are the result of countless

engineering decisions made over the years. Endowed with a technology, firms then choose perfor-

mance menus, which provides a second source of potential differentiation. A performance menu

is a set of VMs with different CPU, memory and disk configurations. For example, Amazon Web

Services (AWS) offers about 20 different VM configurations, ranging from low performance “micro”

to high performance “extra large.” We model customers as having heterogeneous types with vary-

ing sensitivity to job completion time, but with a common job completion valuation and workload

requirement. Customers choose optimally from the price-quality menus provided by firms.

We start with the monopoly case. There are a number of reasons this is a useful starting point

even though most large regional markets are not currently characterized by monopoly. First, SEC

Filings reveal that AWS is currently many times larger than the next closest competitor, indicating

that one provider “pulling away” from the competition is certainly not implausible. Second, smaller

countries often have only a single major provider with a datacenter within national boundaries.

Finally, a customer that has used a given provider for some time could face large switching costs,

leading to potential monopolistic dynamics targeted at “locked in” customers.

For the monopoly case, we characterize the optimal base price, quality level and associated

customer demand functions. Interestingly, under some conditions, offering an additional quality
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level does not generate more revenue. We provide sufficient conditions for when a firm should offer

multiple quality levels. The conditions show that when the quality level is increasing almost linearly

in price and there are some customer types in the system that are highly sensitive to delay, offering

an additional higher quality products, up to a point, generates more revenue.

The results also reveal an interesting dynamic with respect to customer valuations and quality.

When valuations increase, the optimal strategy for the service provider is to intentionally degrade

the quality level of lower tier offerings as opposed to increasing the unit price. While this might

sound counter-intuitive at first, it is readily understood by recognizing that customers are paying

per time-unit. A higher quality product is not only more expensive, but offers faster runtime—the

faster runtime reduces the net payment on the margin. As valuations increase, there is an incentive

to make the low quality options less attractive to “high types.” By damaging the product, it is

effectively more expensive and less attractive due to increased delay. This “double dividend” for

damaging the good has previously been observed in the computing hardware and shipping/transport

industries (Deneckere and McAfee, 1996). Overall, the results for the monopoly case highlight the

nuanced role of competition in this marketplace.

We next move on to the duopoly case. We start by characterizing the Nash equilibrium when

each service provider is restricted to offer only one quality level. In this case the higher quality

provider attracts high-type customers (the ones that are more sensitive runtime delays) at a higher

price. In other words, there is stable differentiation on the quality dimension. When providers are

allowed to offer multiple quality levels, we no longer have a closed form solution. We thus simulate

the game under different market settings where providers compete in base price level. Interestingly,

prices do not converge and instead display Edgeworth cycles (as in Maskin and Tirole, 1988).

The intuition for these cycles is the standard one, with a a bit of tweak. Despite the quality

differentiation, the goods are relatively good substitutes for each other and thus Bertrand-like price

competition leads to successive undercutting of price, albeit at different price levels (the tweak).

That is, prices move in parallel down to a point of very low returns for the firm. At this point, a

war of attrition ensues and one firm “leads” the pair back up to a higher price point and the cycle

repeats.
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Past research has shown that these types of cycles, though commonly predicted, are empirically

quite rare. Exceptions occur in markets where prices change flexibly and there are other sources of

price volatility (e.g. due to cost shifters such as oil prices in the retail gasoline market Noel, 2007).

Perhaps unsurprisingly, then, we do not observe classical Edgeworth cycles in cloud computing. It

turns out, however, that once we consider important market features the observed price patterns

share qualitatively similar features with classic cycles.

The most important dynamic is the relatively rapid reductions in the cost per compute cycle due

to technological advances, which are commonly attributed to Moore’s law. In reality the situation

is more complex, with Moore’s law slowly giving way and other advances breaking through (Chien

and Karamcheti, 2013). Nonetheless, these advances provide both a real decline in costs for the

provider and a strong consumer perception that prices should fall, not rise. In practice, cloud

providers tend to replace physical hardware approximately every three years. The release of new

hardware enables new, superior “generations” of VMs. But the old generations can nonetheless be

virtualized on the new hardware, just with less physical resources required than before and thus

at a lower cost. This means constant prices for older generations are effective increases relative

to costs. We examine historical prices and observe that the largest provider, AWS, tends to offer

newer generations at lower prices and keep older generation prices relatively high. Indeed we

document that older, inferior generations are often priced higher than the comparable VMs in the

new generations. So while the model predicts varying intensity of price competition over time, in

practice we observe this variance across products by release date. In other words, some “regions” of

the product space have vigorous competition—we view this as substantively similar to the cycling

prediction.

Further, we highlight that our model predicts that price differences can be maintained in equi-

librium and the market will not totally commoditized. Interestingly, in the Summer of 2015 one

major provider dropped prices rather substantially and the other two major providers did not follow

suit. Our model gives a rigorous explanation as to why.

To the best of our knowledge, this is the first study that models the cloud computing products

from price-quality perspective under competition. The analysis draws on three main streams of
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literature. The first is from economics and marketing literature on price-quality competition. Most

papers here focus on the case when players are symmetric and each player chooses one quality

and one price under competition or one player chooses two distinct quality levels under monopoly

(Maskin and Tirole, 1988; Moorthy, 1988; Shaked and Sutton, 1982). Here we have two asymmetric

players each choosing multiple quality levels and prices, and both quality levels and prices are

interdependent, which is why we have to rely on simulations at times.

The second stream of literature is on cloud pricing. Abhishek et al. (2012) and Xu and Li (2013)

look at the problem from a higher level and try to find the best pricing strategy by offering the

same product in different pricing mechanisms. In this work, we aim to find a revenue maximizing

price-quality menu with fixed prices. There are papers on competition in an oligopoly market with

multiple providers. Feng et al. (2014) studies non-cooperative competition model in a cloud market

and computes an equilibrium price. However, each player has single product type in this study.

Anselmi et al. (2014) studies the price competition in cloud computing by considering all three

layers of cloud. Our focus in this study is only the IaaS market.

The third stream is the analysis reports prepared by private cloud companies (CloudHarmony1,

Cloud Spectator2, ProfitBricks3). They investigate the performance of different cloud providers

from different angles. Although their methodology contains extensive performance analysis, it does

not have a solid economic framework, and performance values and units prices are not incorporated

into the analysis in a transparent manner.

1https://cloudharmony.com

2http://cloudspectator.com

3https://www.profitbricks.com

https://cloudharmony.com
http://cloudspectator.com
https://www.profitbricks.com
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1.3 Maximizing the Information Content of a Balanced Matched

Sample in a Study of the Economic Performance of Green

Buildings

Buildings have a major impact on the environment through greenhouse gas emissions and excessive

use of natural resources. For example, the United States Environmental Protection Agency (EPA)

reported that in 2013 nearly 39% of total U.S. carbon dioxide emissions were due to residential and

commercial buildings.4 For the same year, the U.S. Energy Information Administration reported

that about 40% of total U.S. energy consumption was from these types of buildings.5 At the same

time, there is growing scientific consensus that current levels of carbon dioxide and related green-

house gas emissions greatly increase the risks of climate change, and that excessive use of resources

can lead to resource depletion and habitat degradation. For these reasons, the construction and

operation of buildings can have a substantial impact on the earth’s environment.

In an interesting and relevant study, Eichholtz et al. (2010) analyzed the effect of environmen-

tally sustainable building practices on their rents and selling prices. This is an important study

subject for the reasons already stated and also because there is not much empirical evidence for

the development of environmentally sustainable or green buildings. Among the available evidence,

there are the results of a study by the U.S. General Service Administration Public Buildings Ser-

vice that analyzed the performance of 22 green buildings and found that, compared to national

averages, green buildings have 36% fewer carbon dioxide emissions and 25% less energy use, in

addition to 19% lower aggregate operational costs and 27% higher occupant satisfaction.6 Given

the environmental and social benefits of green buildings, one important question is how much these

benefits affect the rent of green commercial buildings. This is important to investors, developers

and property owners in order to invest in green buildings.

In their study, Eichholtz et al. (2010) analyzed a large sample of commercial green- and non-

4http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2015-Main-Text.pdf, Ta-
ble ES-7.

5http://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf, Table 2.1.

6http://www.gsa.gov/graphics/pbs/Green_Building_Performance.pdf.

http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2015-Main-Text.pdf 
http://www.eia.gov/totalenergy/data/monthly/pdf/mer.pdf
http://www.gsa.gov/graphics/pbs/Green_Building_Performance.pdf
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green-rated buildings in the United States. Using linear regression and propensity score methods,

they found that buildings with green ratings have 2.8% higher rental rates per square foot compared

to similar buildings without green ratings. In Chapter 4, we revisit this important question using

new matching methods that adjust more precisely for covariates and better exploit the structure of

the buildings data.

In the United States, green buildings are certified as energy-efficient or sustainable by different

agencies. The EPA gives the “Energy Star” certification to commercial buildings if their amount

of energy used meets certain criteria.7 The Green Building Council (USGBC) labels a building as

LEED (Leadership in Energy and Environmental Design) based on its performance in different cat-

egories such as indoor environmental quality, site sustainability and water conservation. Following

Eichholtz et al. (2010), we consider a building to be green if it is certified as Energy Star or LEED

and focus our analysis on commercial buildings.

To estimate the effect of energy efficiency and sustainability on the economic returns of buildings,

we compare green-rated buildings to similar non-green-rated buildings in the same market. For this,

we use multivariate matching methods and find matches of green and non-green buildings that are

nearby and similar along a number of covariates, including age, amenities, number of stories, quality

and whether the building was recently renovated. However, standard matching methods do not

have the flexibility to exploit the particular structure of the buildings data and will typically result

in imbalanced or inefficient analyses. In particular, the data consists of 694 green buildings and

7,411 non-green buildings, organized in 694 geographic clusters. In each of these clusters, there is

one green building and one or more non-green buildings not further apart than one quarter mile

from the green building. While some clusters have only one non-green building, others have as

many as 83 non-green buildings. As a result of this structure, pair matching (or matching with a

1 : 1 ratio) would result in many non-green buildings not being used in the analysis, and matching

with a fixed 1 : κ ratio (where κ is an integer greater than 1) would result in some clusters not

being used at all. Naturally, for our analyses we would like to use a flexible matching ratio in

7Specifically, the EPA can give the “Energy Star” certification to buildings in the top quarter of energy efficiency
compared to similar buildings nationwide. The energy efficiency calculation is done by the EPA using a scoring
algorithm that takes into account the characteristics of the building, such as size, location, number of occupants.
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order to match as many buildings as possible, while precisely balancing covariates. However, to our

knowledge existing matching methods are not able to achieve all of these goals simultaneously. To

analyze the effect of energy efficiency and sustainability on the economic returns of buildings, in this

work we build on the method of cardinality matching and propose a general matching framework to

maximize the information content of a balance matched sample. Within this framework, we present

new matching methods that simultaneously achieve three goals: (i) to maximize the information

content of a matched sample and, in some cases, minimize the variance of a widely used effect

estimator; (ii) to form the matched groups of the matched sample using a flexible matching structure

(such as a one-to-many/many-to-one or, in a sense, a full matching structure; Rosenbaum, 1989,

Hansen, 2004); and (iii) to directly attain covariate balance as specified —before matching— by the

investigator. On the one hand, standard matching methods are not designed to achieve goals (i) and

(iii), but on the other hand, cardinality matching does not allow flexible matching structures beyond

a one-to-many fixed matching ratio. Achieving these three goals simultaneously poses a number of

difficulties. First, maximizing the size of matched sample with a flexible matching ratio requires a

different notion of sample size than the one used in cardinality matching, since, for instance, two

one-to-one treated and control matches should not count the same as one one-to-two match. This

requires defining the information content of the matched sample. Second, the differential weighting

of the different matched groups needs to be taken into account when assessing covariate balance

and in the analyses, but this poses a number of challenges in building a mathematical program and

in computing its optimal solutions. Third, a sound implementation of this method needs to take

advantage of modern advancements in parallel computing.
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Chapter 2

Revenue Maximization for Cloud

Computing Services

In this chapter, we study a stylized revenue maximization problem for a cloud computing provider.

Section 2.1 offers a short introduction to the services and pricing that we encounter in today’s

cloud computing SPs. This section provides a basis for Chapter 3 as well. Section 2.2 describes

our model, which we analyze in Section 2.3. Section 2.4 offers a more detailed look into the pricing

data from the currently largest provider of cloud computing, Amazon Web Services, and briefly

discuss some of its implications. Finally, Section 2.5 builds a state-dependent model and shows how

it converges to our main model after users stay in the system for few days.

2.1 Glimpse of Cloud Computing Market and Pricing Mechanisms

In this section, we describe the market and practice, then motivate our analysis. In Section 2.4 we

will return and take a closer look at the data.

The two key participants in the market for cloud computing are users and providers. The

users can be individuals or companies requiring temporary (short-term) or permanent (long-term)

computing resources that can be reached over the internet. The providers are the operators of

the cloud computing services. Currently there are many small and large SPs in the market, with
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Amazon, Google, and Microsoft being the leading providers. There are three main services that

cloud providers offer: software-as-a-service (SaaS), platform-as-a-service (PaaS), and infrastructure-

as-a-service (IaaS). In this work we are focusing on IaaS service, where the product is defined as

the bundle of a machine type, an operating system, and a location.

Each provider offers its products under one or multiple price models. The dominant provider

in the market is Amazon and it offers the richest pricing options. Currently, Amazon rents out its

computing resources under three different pricing models: pay-as-you-go (on-demand instances),

pay-as-you go under contract (reserved instances), and second price auction (spot instances). On-

demand and reserved instances offer guaranteed service and in the sequel, we will focus on a model

with only 2 service options: guaranteed and best effort, which we refer to “on-demand” and “spot.”

Although there are multiple providers in the market and they compete, as of May 2015, Amazon’s

IaaS cloud is ten times larger than the next 14 competitors combined (Leong et al., 2015).

We are focusing on two pricing models: on-demand and spot. Each product has a fixed hourly

price in the on-demand market and users continue paying this fixed rate as long as they use the

service. Amazon has no control of ending a running service, while customers can end their service

at any point in time with no penalty. The spot market has a more complicated pricing structure.

For each product, Amazon sets a reserve price, possibly time-varying, and customers bid their

maximum willingness-to-pay per hour for that product. The spot price at any time point is defined

as the minimum bid accepted at that time, which in some cases may be the reserve. The spot

price fluctuates over time in response to variations to the available capacity not utilized by the

“guaranteed” instances rented by Amazon, and to the number of active spot customers and their

corresponding bids. If the bid of a particular customer falls below the spot price, this customer is

temporarily out of access to the cloud (priced out) until the spot price falls again at or below her

bid.

The data on hand shows the the spot price exhibits significant fluctuations over time. They may

be around one tenth of the corresponding on-demand prices; and, can and do fluctuate to up to five

or ten times of the corresponding on-demand prices; interrupting service for many spot instance

customers, resulting in some form of disutility. If customers in the spot market bid sufficiently high
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and continuously pay the prevailing spot price (even when it is above the price of on-demand), in

the long run they will receive uninterrupted service. The corresponding time-average spot price is

cheaper than the corresponding on-demand price for some of the products, but certainly not all.

We present further descriptive statistics in Section 2.4.

Another choice customers make is whether to use cloud or in-house resources for their computing

needs, and there are multiple size of products that can be chosen under the cloud option. Table 2.1

shows the configuration and prices for a product family (m4 machine types) with Linux operating

system residing in us-west-2 (Oregon) region. The table offers a glimpse on the magnitude of

these per hour costs that later on are traded off against disutility from service disruption per hour.

Among these products, we analyze m4.xlarge machine more closely. Hourly on-demand price for

this product is $0.254/hr, while it can go up to $0.374 in other regions. This product was available

both in spot and on-demand markets approximately in the last 80 days of our time window. Usage

in this period cost $486 in on-demand market, while it was between $113 to $207 (depending on

the subregion selected) in spot market. One year of continuous usage of this product costs $2,208

in on-demand market. As a comparison, a similar in-house server (HP ProLiant DL380 Gen9 -

Xeon E5-2620V3 2.4 GHz - 16 GB, which has 6 cores) costs around the same to purchase without

any IT, rack space, or peripheral costs for mounting, networking, etc.. However, if one wants to

rent a product for long-term continuous usage, reserved instances offers much cheaper options.

For instance, the same product can be rented by paying $1,271 upfront for one year of usage (see

Armbrust et al., 2010 for a more detailed cost analysis). We study the optimal price-product size

menu selection in Chapter 3.

Table 2.1: Prices in on-demand and reserved markets for a group of products and their configura-
tions

Machine name # cores # RAM price/hr on-demand price/year reserved price/year

m4.large 2 8 $0.126 $1,103.76 $635
m4.xlarge 4 16 $0.252 $2,207.52 $1,271
m4.2xlarge 8 32 $0.504 $4,415.04 $2,541
m4.4xlarge 16 64 $1.008 $8,830.08 $5,082
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2.2 Model Formulation

2.2.1 Detour: Asymptotic Behavior of Large Scale Multi-Server Systems

In the sequel we will motivate why we will adopt a system model with infinite capacity. To do that,

we will review known results from multi-server priority systems with large capacity (like the ones

operated by cloud SPs).

We briefly discuss a system where the SP has a finite processing capacity C and offers two

nonsubstitutable service classes: guaranteed-rate (G) service and best-effort (BE) service. In the

former, customers receive a constant service rate as long as there is capacity and are blocked oth-

erwise; in the latter, service rate is dependent on the number of customers in the whole system.

G service has priority over BE. BE users get one unit of capacity, if this is available, or share the

available capacity (not used by G users) equally if there are more BE users connected than the

available number of servers, thus experiencing congestion. Customers arrive to the system accord-

ing to independent Poisson processes and the service requirements are exponentially distributed.

Maglaras and Zeevi (2005) studied this system and showed that when the system size grows large,

the G class occupies αC+B(t)
√
C servers, where 0 < α < 1 and B(t) is standard Brownian motion,

and the remaining capacity, (1−α)C−B(t)
√
C, is available to BE service. A similar analysis could

be carried through under the auction model for BE service. The important observation is that the

variation in the available capacity for BE users will be second order, and this would result in fluc-

tuations of the prevailing spot price that would also be second order (i.e., small). This prediction

does not agree with what we observe in the data. This suggests that perhaps a different mechanism

gives rise to the fluctuations to the spot price that may be exogenous to the capacity dynamics of

the BE class, as defined crudely by their supply-demand imbalance.

The above discussion has three important caveats that are worth noting. First, the model

assumes the same (or reasonably similar) service durations for both services. Second, the model

assumes each customer has unit demand. If users may demand a random number of servers and

this follows a heavy-tailed distribution, it may be possible to observe big price spikes. The observed

frequency and duration of price spikes would require frequent, random arrival of users with unusually
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large capacity needs that are short-lived (which may be implausible). Last, the model assumes that

in equilibrium, the fraction of the overall system capacity consumed by each of the two service

classes are comparable (and first order). If BE service used a very small fraction of the total

capacity and the overall system was heavily utilized, then significant spot price fluctuations could

emerge; e.g., the BE usage is of order
√
C, which is the same as the order of magnitude of the G

service class, thus resulting in fluctuations of BE available capacity that are of the same order as the

overall capacity used by BE. Nevertheless, in this case the revenue generated from BE service would

be insignificant, rendering the parameter regime less interesting. Cloudyn, a cloud management

platform, estimated in October 2013 that the spot instances only consume 3%–5% of all instances

with 40% monthly increase. Since then, Amazon invested heavily on its spot instances, developed

new features and alternative product groups, and acquired a few companies working on spot market

optimization. Therefore, we believe that the size of the spot market has reached to a significant

level. It also seems unlikely that the data centers of large-scale cloud computing SPs are operating

at full utilization at this point in time of rapid expansion and effort to capture market share.

2.2.2 The Infinite Capacity Model

Motivated from the above we will model the market as follows. The SP has infinite capacity and

operates multiple resources and offers a service (or a product) from two distinct channels: guaran-

teed (G, on-demand instances) and best effort (BE, spot instances). Customers differ with respect

to their willingness-to-pay for a unit-time service, v, and their congestion sensitivity parameter, κ.

We assume that each customer has unit demand and infinite service time. Customers are individual

utility maximizers and they make two decisions: i) which service to choose, and ii) if BE is chosen,

how much to bid. A customer’s decision is independent of the size of her demand. Although the

decision of which service to choose might be dependent on the service time and the current state

of the system, we show later in Section 2.5 that these effects disappear if the service time is at

least a couple of days. Moreover, since customer decisions become state independent, coupled with

infinite capacity, the arrival distribution (stationary or non-stationary) plays no role in the system

dynamics.
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Let i denote the service class such that i = 1 for G service and i = 2 for BE service. G service

is offered with a fixed price pG per unit time and each customer paying this price gets a dedicated

resource. The price for BE service, pBE(t), is a RCLL (right-continuous with left limits) discrete-

level stochastic process in the interval [p, p] with N price levels (p = pN ≤ pN−1 ≤ . . . ≤ p1 = p).

We will not characterize the dynamics at this stage, but assume that users with infinite service

level requirements decide based on the steady state probability mass function associated with

{pBE(t), t ≥ 0} which is denoted by π = (π1, π2, . . . , πN ), and assumed to exist, has support

P = [p, p] ∈ (0,∞). In this option, customers place their bids and the SP offers service to each BE

user whose bid is larger than or equal to the prevailing spot price pBE(t), and interrupts service to

all bidders below pBE(t). That is, a BE user that bids b is active ∀t s.t. pBE(t) ≤ b and interrupted

∀t s.t. pBE(t) > b. We assume interruptions have no cost to the SP and an interrupted job resumes

without any additional setup cost (if service disruptions are infrequent and service times are long—

infinite in our model—this modeling idealization may be reasonable). It is worth noting that in

our infinite capacity model the price dynamics are controlled by the SP as opposed to stochastic

supply-demand imbalance effects.

Users are heterogeneous and characterized by their idiosyncratic (monetary) valuation per unit

time of receiving service v and disutility (congestion sensitivity) parameter κ, which measures the

monetary loss per unit of time where the service is unavailable. Consider a user with valuation v

and congestion sensitivity parameter κ and bid $b for BE service. For a user that selects BE service

and bids $b, we will define α(b) to be the fraction of time her service is active, and p(b) to be the

payment per unit time:

α(b) =
∑
i:pi≤b

πi and p(b) =
∑
i:pi≤b

πipi.

The net utilities for the two service options are:

U1(v, κ) = v − pG and U2(v, κ, b) = α(b)v − κ(1− α(b))− p(b).

That is, customers extract the per unit value $v when their service is active; when their service is
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interrupted they forgo this value and incur a cost of $κ per unit time. They only pay while their

service is active, captured by pG and p(b) for each option, respectively.

The optimal BE bid for a user with parameters v and κ is

b(v, κ) = argmax
p≤b≤p

U2(v, κ, b).

Lemma 1. Without loss of generality, b(v, κ) ∈ {p1, p2, . . . , pN}.

Moreover, if there are multiple bids that achieve the maximum, we assume that the lowest

maximizing bid is selected. We let U2(v, κ) := U2(v, κ, b(v, κ)). A user with parameters v and κ

chooses service-i∗(v, κ), where

i∗(v, κ) = argmax
i=1,2

{Ui(v, κ) : Ui(v, κ) ≥ 0} and set i∗(v, κ) = 0 if Ui(v, κ) < 0 for i = 1, 2,

where i = 0 represents the no-buy option.

In the next part, we will formulate our revenue maximization problem for the case where there

is an affine relation between v and κ.

2.2.3 Revenue Maximization Problem

We study a market where the valuation rate v grows more slowly than her corresponding congestion

sensitivity parameter κ; i.e., users with increasing congestion sensitivity may indeed value the

service more, but their valuation does not grow as fast as the corresponding disutility from service

interruption.

This market regime has two assumptions: i) valuations increase with congestion sensitivity; ii)

valuation over congestion sensitivity ratio is increasing in congestion sensitivity. Both assumptions

are aligned with the real world. First, as users value the service more, their disutility from service

disruption hurts them more. Second, user valuations are capped by the valuation gained from a

server that is owned rather than rented. On the other hand, congestion sensitivity does not have a

clear upper bound and this value may be very high for businesses doing critical work that requires
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100% uptime.

We consider a continuum of user types indexed by η. A type η user has a positive willingness-

to-pay v := A+ η per unit time of service and a positive congestion sensitivity parameter κ := Bη,

where A,B are positive constants common across all consumers. User types are assumed to be

independent and identically distributed (i.i.d.) draws from a continuous distribution F with density

f , which is assumed strictly positive and continuously differentiable on the interval N = [η, η] ⊆

[0,∞). Let F̄ = 1 − F . Hence, v and κ are linearly dependent and user heterogeneity is one

dimensional. Note that in this setting, both the valuation rate (v = A+ η) and the congestion rate

(κ = Bη) are increasing function of the user type η, and that relative rate of growth of v/κ = A+η
Bη

is decreasing in their type. We summarize this model for ease of reference below:

Model 1: v = A+ η, κ = Bη, A,B > 0, η ∼ F. (2.1)

The SP offers the BE service on an N -price grid given by p1 ≥ p2 ≥ . . . ≥ pN ≥ 0 and let

π = (π1, π2, . . . , πN ), where πi is the fraction of time the prevailing BE service price is pi (1Tπ = 1

and π ≥ 0). Guaranteed service price is pG. Define π̄k =
∑N

j=k πj and p̄k =
∑N

j=k πjpj , and

redefine the net utility function for BE as

U2(η, pk) = π̄k(A+ η)−B(1− π̄k)− p̄k, k = 2, . . . , N

for a type η customer bidding pk. Note that U1(η) takes the form of U1(v, κ) and U2(η, b) takes the

form of U2(v, κ, b) with one dimensional user types.

Let SG denote the interval for customer types that choose G service, and sets SiBE the interval

for customer types that choose BE service and bid pi (i = 2, 3, . . . , N):

SG = {η|U1(η) ≥ U2(η, pi), i = 2, 3, . . . , N and U1(η) ≥ 0} and

SiBE = {η|U2(η, pi) ≥ U2(η, pk), k 6= i;U2(η, pi) > U1(η), and U2(η, pi) ≥ 0}, i = 2, 3, . . . , N.

Note that bidding p1 (or higher) means receiving uninterrupted BE service, equivalent to G
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service. If p̄1 < pG, then SG becomes empty, which makes G service obsolete. However, bidding

p1 is essentially receiving G service. Therefore we need to include p̄1 ≥ pG as a constraint in our

model so that the uninterrupted service is labeled as G.

Then the SP’s revenue maximization problem is:

maximize
pG,p1,p2,...,pN ,π

pG ·
∫
η∈SG

f(η)dη +

N∑
i=2

p̄i ·
∫

η∈SiBE

f(η)dη (2.2)

subject to π̄1 ≥ pG (2.3)

1Tπ = 1 and π ≥ 0 (2.4)

p1 ≥ p2 ≥ . . . ≥ pN ≥ 0 and pG ≥ 0. (2.5)

This formulation can be simplified further by removing (2.3) and setting p1 high enough in the

solution, since p1 does not have an effect in (2.2).

As mentioned in the introduction, the monotonicity of v/κ as κ grows plays a crucial role. In

the following section, we will analyze this infinite capacity stylized model, and, specifically consider

the SP’s revenue maximization problem under the setting of sub-linear increase in valuation with

congestion sensitivity. We will consider two models of customer heterogeneity (v, κ). In Section

2.3.1–2.3.2, we will consider that types are continuous; in Section 2.3.3, we will consider a discrete

model. Super-linear increase in valuation with congestion sensitivity case is treated briefly in the

Appendix.

2.3 Main Results

2.3.1 BE randomizes between 2 price levels (high/low).

The SP will offer the BE service at two price levels $pH , $pL with pH ≥ pL, and choose π, the

fraction of time the BE service is priced at $pL. A customer that bids $pL for BE will enjoy the

service for π fraction of time, and if she bids $pH , she enjoys the service without interruption, and

pays πpL+(1−π)pH . From Lemma 1, customers do not bid any other amount. Guaranteed service
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is priced at $pG. Without loss of generality we will assume that πpL + (1− π)pH > pG, that is, if a

user wants guaranteed service, then she will choose the G service option at $pG. We will add this

as a constraint to our downstream revenue optimization formulation.

In this special case, the utilities for two services can be written as a function of η as

U1(η) = (A+ η)− pG and U2(η) = π(A+ η)−Bη(1− π)− πpL = π(A+ η − pL)−Bη(1− π).

Note that we do not need the bid value in U2 function as it is pL for all customers choosing the BE

service.

We will first assume that the utility gained from the BE service is non-decreasing in η for any

η, i.e.,

U ′2(η) ≥ 0 ⇐⇒ π −B +Bπ ≥ 0 ⇐⇒ π ≥ B

1 +B
, (2.6)

which implies a constraint on the choice of π to the SP.

Later on we will formulate and solve the problem for the case π < B
1+B and show that the

respective solution is sub-optimal. We redefine SG and SBE and let

SG = {η|U1(η) ≥ U2(η), and U1(η) ≥ 0} and SBE = {η|U2(η) > U1(η), and U2(η) ≥ 0},

denote the sets of customer types that choose G and BE service, respectively. From (2.6) and the

fact that U ′1(η) ≥ U ′2(η) for any B > 0 and 0 ≤ π ≤ 1, we get that

SG = {η|η ≥ ηH and η ≥ pG −A} and SBE = {η|η < ηH and η ≥ ηL},

where ηH and ηL satisfy

(1 +B)(1− π)ηH = pG − πpL − (1− π)A and (π −B(1− π))ηL = π(pL −A). (2.7)

That is, customer type η chooses G if η ≥ ηH and η ≥ pG−A, chooses BE if ηL ≤ η < ηH , and
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does not join the system if η < ηL. The marginal types ηL, ηH are controlled by the SP through

pG, pL, pH , and π. Here we are restricting our analysis to the case that ηH ≥ ηL. If ηL > ηH , then

the BE service becomes unattractive, and the SP is offering only G service (this is also the case

when ηL = ηH); Based on this observation, we can disregard from consideration the case where

ηL > ηH .

We will first assume that ηH ≥ pG − A and formulate and solve SP’s revenue maximization

problem. Then we will show that any solution with ηH < pG − A is sub-optimal and verify the

assumption is satisfied under the optimal solution.

Assuming ηH ≥ pG −A, the revenue function of the SP is

R1 = pGF̄ (ηH) + πpL(F (ηH)− F (ηL))

= (pG − πpL)F̄ (ηH) + πpLF̄ (ηL)

= [ηH(1 +B)(1− π) + (1− π)A] F̄ (ηH) + [π(A+ ηL)−BηL(1− π)] F̄ (ηL) := R(ηH , ηL, π).

The SP’s revenue maximization problem is:

maximize
ηH ,ηL,π

R(ηH , ηL, π) (2.8)

subject to ηL ≤ ηH , π ≥
B

1 +B
, π ≤ 1. (2.9)

In contrast, if ηH < pG −A, the revenue function reduces to

R2 = pGF̄ (pG −A) + πpL(F (ηH)− F (ηL)) ≤ pGF̄ (ηH) + πpL(F (ηH)− F (ηL)) = R1,

and the corresponding constraint set is smaller than in (2.9). It follows that any solution with

ηH < pG −A is sub-optimal.

Next we solve (2.8)–(2.9) in terms of ηH , ηL, and π. These three parameters uniquely determine

pG and pL from (2.7), and we show that the optimal solution satisfies pG ≥ pL.

Proposition 1. Consider the model specified by (2.1) and let (η∗H , η
∗
L, π

∗) be an optimal solution
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to (2.8)–(2.9), and p∗G and p∗L be the optimal prices corresponding to the solution triple. Then,

1. π∗ =
B

1 +B
,

2. η∗L = η with p∗L = A,

3. η∗H = p∗G −A.

(All proofs are given in the Appendix.) We can simplify the revenue maximization problem to

maximize
ηH

(
ηH +

A

1 +B

)
F̄ (ηH) +

B

1 +B
A. (2.10)

Proposition 2. Under the model specified by (2.1) with two price levels for the BE service, it is

optimal to offer G and BE services if and only if

f(η) <

(
η +

A

1 +B

)−1

. (2.11)

Once η∗H and π∗ are identified, the optimal price pair (p∗G, p∗L) can be chosen so as to satisfy

Proposition 1. We mentioned earlier that without loss of generality we will restrict attention to

prices such that

(1− π∗)p∗H + π∗p∗L > p∗G, (2.12)

i.e., it is sub-optimal for users that want uninterrupted service to choose BE but submit a high bid

($pH). Any choice of pH that satisfies (2.12) will suffice.

To establish that Proposition 1 indeed characterizes the globally optimal solution, we need to

rule out any solution where π <
B

1 +B
and, as a consequence, U2(η) is decreasing in η. If U2(η) ≤ 0,

there is no BE service, i.e., reducing to a one-service solution. Assuming U2(η) > 0, SG and SBE

can be written as

SG = {η|η ≥ ηH and η ≥ pG −A} and SBE = {η|η < ηH and η ≤ ηL},
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where ηH and ηL satisfy (2.7). Then the SP’s revenue maximization problem is:

maximize
ηH ,ηL,pG,π

pG ·
∫
η∈SG

f(η)dη + πpL ·
∫

η∈SBE

f(η)dη subject to 0 ≤ π < B

1 +B
. (2.13)

Proposition 3. Consider the model specified by (2.1) with two price levels for the BE service. The

optimized revenue rate for (2.13) is bounded above by the optimized objective in (2.10). Therefore,

π <
B

1 +B
is sub-optimal.

2.3.2 Can the SP do better by offering BE with N >2 price levels?

In this section we are allowing the SP to choose more than two price levels as in Section 2.2.3.

Similar to the two-price-level case, we assume that the utility gained from the BE service is

non-decreasing in η for any η and π̄i values, i.e.,

U ′2(η, pi) ≥ 0, i = 2, 3, . . . , N ⇐⇒ π̄i ≥
B

1 +B
, i = 2, 3, . . . , N

⇐⇒ πN ≥
B

1 +B
.

This assumption ensures that as users value more and become more congestion sensitive, the utility

they receive from the BE service does not decrease.

With the addition of this assumption, the problem (2.2)–(2.5) becomes

maximize
pG,p2,p3,...,pN ,π

pG ·
∫
η∈SG

f(η)dη +

N∑
i=2

p̄i ·
∫

η∈SiBE

f(η)dη (2.14)

subject to πN ≥
B

1 +B
, 1Tπ = 1, π ≥ 0 (2.15)

p2 ≥ p3 ≥ . . . ≥ pN ≥ 0 and pG ≥ 0. (2.16)

Proposition 4. Consider the model specified by (2.1) and let k∗ be the number of distinct price

levels offered in BE service at the optimal solution of (2.14)–(2.16). Then, an optimal solution is

to use k∗ = 2 with the structure specified in Proposition 1.
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Once again, for the model in (2.1) with the affine relation between (v, κ), it is optimal to offer

G service and BE service with two-price-level if and only if (2.11) is satisfied.

2.3.3 General Dependence Between Valuation and Congestion Sensitivity

So far we have restricted attention to the affine dependence between (v, κ) that allowed us to solve

the resulting revenue maximization problem in closed form. In this subsection we briefly consider

a market where the (v, κ) dependence is general, yet still v/κ grows sub-linearly with respect to κ,

and primarily show that in such a setting the SP may wish to offer more than 2 price levels for BE

service.

Suppose there are n customer types and N price levels in BE service (N > n). Let κ1 > κ2 >

. . . > κn > 0 with v1 ≥ v2 ≥ . . . ≥ vn > 0 such that v1
κ1
< v2

κ2
< . . . < vn

κn
. The fraction of users that

are of type i is λi. Let p1 ≥ p2 ≥ . . . ≥ pN ≥ 0 be the price levels with π = (π1, π2, . . . , πN ) such

that πj is the fraction of time the system is in price level pj (1Tπ = 1 and π ≥ 0).

Model 2: v1 ≥ v2 ≥ . . . ≥ vn > 0, κ1 > κ2 > . . . > κn > 0,
v1

κ1
<
v2

κ2
< . . . <

vn
κn
. (2.17)

The objective of the SP is to maximize its revenue rate by offering a price vector (pG,p) and an

availability vector π. As previously, one can restrict attention to customer bids in {p1, p2, . . . , pN}.

Proposition 5. Consider the model specified by (2.17) and let p∗ be the optimal price when there

is only G service. Then, it is optimal to offer G and BE services together if and only if p∗ > vn.

Proposition 5 shows that if some customer types choose not to buy under the optimal single

service level (only G) solution, then the SP can extract more revenue by offering the second service

level (BE). We have shown above that when there is linear dependence between v and κ, it is

enough to offer BE service with two price levels. The example given below shows that when (v, κ)

have a general dependence structure and still v grows sub-linearly with respect to κ, i.e., the model

in (2.17), it may be optimal to use k > 2 price levels. In particular, the following example shows

that the property proven in Proposition 4 no longer holds (the relation between (v, κ) is quadratic):
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Example: Three customer types with λ = (1, 1, 1), v = (4, 2, 1), κ = (16, 4, 1). The optimal

solution is pG = 4, p = (p1, 6, 2/3), π = (1/7, 3/28, 3/4) where p1 > 20.

2.4 Data

We first offer a description of price data from AWS (a cloud computing platform offered by Amazon),

and then offer a brief calibration and discussion of our model on AWS data. This section links the

observed data with our model and provides useful insights about customer characteristics and price

points set by Amazon.

2.4.1 Descriptive Statistics

Amazon is the biggest cloud computing SP. They offer over 1,000 products to the IaaS market in 9

regions globally. For each product, the price trace of the last 90 days is made publicly available by

Amazon. We have obtained price traces from August 2013 onwards for the spot instances using an

automated script that we programmed, which runs everyday and downloads and stores the price

traces of the last 24 hours, for all products. This script has enabled us to have a longer time frame

for the price history. Amazon does not disclose any information other than the price traces.

We have analyzed the data traces from March 1, 2015 to August 31, 2015 for 1,122 products.

The products are categorized under five different classes by AWS: “compute optimized,”“general

purpose,”“GPU instances,”“memory optimized,” and “storage optimized.” In each of these classes

there are multiple machine sizes. Moreover, prices differ with respect to the location of the product

and the operating system the product has. To facilitate reporting statistics on pools of different

products with different on-demand prices, we normalize the spot and on-demand prices of each

product by the respective on-demand price. In this manner, a normalized spot price is unit-less

and expressed and understood as a multiple of the underlying on-demand price; all products have

a normalized on-demand price equal to 1. To get a better sense of pricing dynamics, first we look

at the descriptive statistics per product. For each product, we calculate: the average normalized

spot price; the normalized spot price range; the average uptick and downtick inter-arrival times;
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the average magnitudes of the corresponding spot price jumps; and, the fraction of time the spot

price is greater than on-demand price. Table 2.2 shows that the mean of the average normalized

spot prices across products is about half of the on-demand price. More than 92% of the products

have a time-average spot price less than 1, which means that for more than 92% of the products,

procuring spot instances, with sufficiently high bids so as never to be shut off, would cost less than

on-demand instances for the whole 6-month period. We discuss this result more in Section 2.4.2.

Further, summary statistics shows that the range of spot price fluctuations is wide, more than three

times of the corresponding on-demand price on average. The average inter-arrival time of an uptick

(downtick) price change is in the order of hours, and the average magnitude of an uptick (downtick)

is about one third of the on-demand prices. Lastly, for most products the spot price is below the

corresponding on-demand price for more than 90% of the time. Figure 2.1 shows the distribution

of each of these categories (with a few outliers discarded in each plot).

Table 2.2: Summary of descriptive statistics per product
Min 1st Qu. Median Mean 3rd Qu. Max

Average normalized spot price 0.037 0.213 0.366 0.515 0.780 3.756
Normalized spot price range 0.000 0.829 1.511 3.216 4.772 39.050
Avg. uptick inter-arrival time (hrs) 0.000 3.071 7.115 35.200 27.930 1428.000
Avg. downtick inter-arrival time (hrs) 0.000 3.088 6.924 33.950 27.200 1111.000
Average uptick magnitude 0.000 0.144 0.284 0.449 0.537 9.740
Average downtick magnitude 0.000 0.143 0.290 0.459 0.537 12.150
Fraction of time spot>on-demand 0.000 0.000 0.008 0.072 0.066 1.000

Next, we assume that a user selects spot service and bids sufficiently high so that she is never

outbid and would enjoy uninterrupted service. For each different possible time of arrival, we record

the average price she would pay per hour if she stayed in the system for 1 hour, 1 day, 1 week, or 1

month. For each of the 4 usage durations, we average across time of arrival. The results are reported

in Figure 2.2. These plots show that most Windows products have higher spot prices compared to

Linux/UNIX products, i.e., the potential gain from the spot market is less for Windows products.

The four panels in Figure 2.2 are similar, suggesting that the usage duration does not play an

important role on the selection between spot (at maximum bid) versus on-demand.

To illustrate the fluctuations in the prevailing spot prices over time, we focused on the running
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Figure 2.1: Histogram of descriptive statistics per product

averages of the prevailing spot prices for daily, weekly, and monthly usage updated daily for every

class of product. Figure 2.3 summarizes how the average spot price fluctuates over time under daily,
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Figure 2.2: Average prices for different duration of usage

weekly, and monthly usage of “GPU Instances” for Linux/UNIX and Windows machines; there are

18 such products for each operating system in total. While the solid line represents the average

price of all products in this class, the blue (shaded) area denotes ± one standard deviation band

from the average price (computed across the respective 18 data points in each time point). For this

product class, prices for both operating systems follow similar patterns whereat the spot market is

cheaper than the on-demand market until the beginning of August. The standard deviation also

increased during that period, implying also increased variation across different “GPU Instances”

products during this peak period. We observe different patterns in other product classes.
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Figure 2.3: Average price change over time with different usage times
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2.4.2 Data Evidence

We can use the AWS data to calibrate our model primitives. To repeat, the model of Section 2.2.3

assumes a linear dependence between valuation and congestion rates, which implies that valuation

grows sub-linearly relative to the congestion rate. The results of Section 2.3.2 suggest that it suffices

for the SP to offer the spot price service with just two price levels (high/low). We proceed as follows.

We assume the model specified in Section 2.2.3 is in force and that the SP follows the optimal

policy derived in Section 2.3.1. We compute the empirical spot price occupancy distribution, and

approximate it with a two-level (pH , pL, π) distribution. We then derive the implied user valuation

and congestion model parameters. We will approximate the empirical distribution by the triple

(pH , pL, π) that is closest in the sense of the Kantorovich metric, where pH is the high price, pL

is the low price, and π is the fraction of time the price is equal to pL. (The Kantorovich metric

between two random variables X and Y in R is defined as K(X,Y ) =
∫
R |FX(x)− FY (x)| dx, where

FX and FY are the cumulative distribution function of X and Y , respectively.)

Assuming that user types are distributed uniformly on (0, ηmax), the parameters A,B, ηmax can

be calculated using the results from Section 2.3.1. Specifically, for given (pH , pL, π),

B =
π

1− π
, A = pL, ηmax = 2(pG −A) +

A

1 +B

where pG = 1 since the price path is normalized based on the G service price. Using these parameters

we can get the implied valuation and congestion sensitivity parameter for each user type η: her

valuation rate is equal to A + η and her congestion sensitivity parameter is equal to Bη. Lastly,

we analyze if the implied parameters satisfy the conditions on pH and pL, i.e. whether pG <

(1−π)pH +πpL, pH > 1, pL < 1 hold. Our analysis containing the data for the period Mar. 1, 2015

– Aug. 31, 2015 has shown that out of 1,122 products, only 63 of them satisfy all these conditions.

The summary statistics of the normalized price path of these 63 products is given in Table 2.3.

Calibrating our model on the observed data we get the parameters shown in Table 2.4.

The normalized estimated parameters suggest the following:

• Valuation per unit time: (A+ η) ∼ U(0.6, 1.5).
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Table 2.3: Summary statistics of price paths
Avg. Price Price Range Reserve Price Price>1

1.446 6.438 0.608 29%

Table 2.4: Estimated parameters on average
A B ηmax ηH pL pH π

0.638 14.992 0.835 0.362 0.638 5.291 0.784

• Congestion cost per unit of downtime: Bη ∼ U(0, 12.5). Specifically, we note that congestion

costs when the system is down, due to lost revenue and possibly lost goodwill/reputation, can

be up to 4x-10x of the valuation per unit time.

• Fraction of downtime: 1− π = 0.216.

• Congestion cost per unit time (due to service interruption): ∼ U(0, 2.7).

• Lowest valuation per unit time choosing G: A+ ηH = 1.

These parameter estimates suggest that for high customer types, the disutility from service disrup-

tion in spot service is of the same order of magnitude (or higher) as the valuation itself, and as a

result, only the least congestion-sensitive users will choose that option. In our data, this seems to

be the lower 40% of the distribution that wants G service.

Finally, as noted earlier, for more than 92% of the products, a user would be better off selecting

the spot option and bid sufficiently high so as to receive continuous uninterrupted service for the

whole 6-month period. Based on our model, this would suggest insufficient degradation of the spot

service option by the SP so as to incentivize congestion sensitive customers to choose the on-demand

service option. Assuming the estimated parameters on Table 2.4 also hold for all offered products

and the demand for each of these products is the same, our back-of-the-envelope calculation shows

that Amazon could almost double the revenue extracted from these products by further optimizing

the pricing of the spot option. Of course, this calculation disregards other (unmodeled) economical

and technological considerations that may affect such tactical pricing decisions, and for which we

lack transparent data.
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2.5 Discussion: State Dependent Bidding

In this section, we are going to create a state dependent model where users observe the state,

current spot price, and choose their bid accordingly. The system is modeled as a Discrete Time

Markov Chain (DTMC) and transitions between the states happen based on this DTMC (with no

absorbing state). We assume that user arrivals happen at the beginning of a period and users are

not allowed to change their bid over time.

Let R(b,m, pi) be the amount a user pays by bidding b for a job of length m periods when the

state of the system is pi at the time of arrival. Let T (b,m, pi) be the number of periods the system

is down to complete m period job by bidding b when the initial state is pi. Finally, let Pij be the

transition probability from state i to j, where
∑

j Pij = 1 ∀i and Pij ≥ 0 ∀i, j.

We will analyze the system where there are two states low price L and high price H.

Under the two-state DTMC model, if the user bids pl when the current price level is pl:

E[R(pL,m, pL)] = mpL and E[T (pL,m, pL)] =
(m− 1)(1− PLL)

(1− PHH)
.

If the user bids pL when the current price level is pH :

E[R(pL,m, pH)] = mpL and E[T (pL,m, pH)] =
1 + (m− 1)(1− PLL)

(1− PHH)
.

Before analyzing the cases when she bids pH , let’s simplify the notation and define

RL(m) := E[R(pH ,m, pL)] and RH(m) := E[R(pH ,m, pH)]

If she bids pH when the current price level is pL:

RL(m) = pL + (1− PLL)RH(m− 1) + PLLRL(m− 1) and E[T (pH ,m, pL)] = 0,
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and if she bids pH when the current price level is pH :

RH(m) = pH + PHHRH(m− 1) + (1− PHH)RL(m− 1) and E[T (pH ,m, pL)] = 0,

with RL(0) = RH(0) = 0

If the system is in steady state, that is, the payment and processing time are independent of

the initial state, and the user bids pL:

E[R(pL,m)] = mpL and E[T (pL,m)] =
m(1− π)

π
,

where π = (π, 1− π) is the steady state distribution for the states (pL, pH), respectively, and using

πP = π,

π =
1− PHH

2− PLL − PHH
.

If the system is in steady state and the user bids pH :

E[R(pH ,m)] = m(πpL + (1− π)pH) and E[T (pH ,m)] = 0.

Note that we drop the third parameter in the functions R and T in steady state formulations.

We want to see the effect of state dependency on customer choice. More precisely, we want

to see how customer utility (as a function of payment and total downtime) changes based on the

initial state of the system, and compare it with the utility under the steady state.

If the user bids pL, the payment function becomes independent of the initial state of the system;

however, the downtime depends on the initial state. If the user bids pH , then the payment function

depends on the initial state, not the downtime. Therefore, for the case that the user bids pL, we

are going to compare the downtime with the downtime under steady state; for the case that the

user bids pH , the comparison will be on the payment.

When the user bids pL, the ratio of expected downtime over the whole processing time under
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steady state is

E[T (pL,m)]

m+ E[T (pL,m)]
=

m(1− π)

π

m+
m(1− π)

π

= 1− π

It is easy to see that

E[T (pL,m, pL)]

m+ E[T (pL,m, pL)]
−−−−→
m→∞

1− π and
E[T (pL,m, pH)]

m+ E[T (pL,m, pH)]
−−−−→
m→∞

1− π.

We pick the duration of one period as 1 hour. The data shows that the transitions from low

price to high price or vice versa in every few hours. Based on that observation, we set PLL =

0.8, PHH = 0.5, which means that a low to high jump occurs in every 5 hours on average, while a

high to low jump occurs in every 2 hours on average. Lastly, using Table 2.4, we pick pH to be 8.8

times pL. Figure 2.4 shows if the user stays in the system at least for a few days, then the observed

downtime is almost equal to the steady state case.
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Figure 2.4: Transient behavior of fraction of downtime

Next we will compare the payment functions when the user bids pH . The payment function
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under steady state is

E[R(pH ,m)] = m(πpL + (1− π)pH)

= m

(
(1− PHH)pL

2− PLL − PHH
+

(1− PLL)pH
2− PLL − PHH

)
.

We can plot E[R(pH ,m)]
m , E[R(pH ,m,pL)]

m , and E[R(pH ,m,pH)]
m for given pL, pH , PLL, and PHH ; and

see how the normalized payment functions per unit time change as the required processing time

increases. (E[R(pH ,m,pL)]
m , and E[R(pH ,m,pH)]

m are normalized using E[R(pH ,m)]
m .) Using the same pa-

rameters as before, similar to our conclusion on downtime, Figure 2.5 shows that the expected

payments given the initial state converge to the expected payment under steady state after a few

days.
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Figure 2.5: Transient behavior of payment
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Chapter 3

Competition on Price and Quality in

Cloud Computing

In this chapter, we study the optimal price-quality menu to offer for cloud computing providers. In

Section 3.1, we provide the basics of our model and validate it. In Section 3.2, we study the revenue

maximization problem under monopoly. Section 3.3 discusses the problem under duopoly. Section

3.4 highlights some possible model extensions. In Section 3.5, we reconcile our model predictions

and real-world behavior. Finally, we discuss our findings and conclude our work in Section 3.6.

3.1 Model

On the customer side, there are n customer types indexed by i, where customer type i has a

valuation (vi), delay sensitivity (ci), both per unit time of workload1 under nominal quality level,

and arrival rate (λi). We assume there is only one type of workload which can be parallelizable

up to a certain extent, and all customer types need to run the same workload. We relax this

assumption and discuss the results in §3.4.

On the provider side, there are m different service providers indexed by j, where service provider

j chooses a base quality level qj1 (0 < qj1 < q̄j), where q̄j is the maximum base quality level that can

1We use workload and job interchangeably throughout the chapter.
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be offered, price per unit time for the base quality level pj1, and number of quality levels to offer Lj .

Each service provider has an inherent performance scaling factor αj determined by the structure

and technology used (which will later estimate, 0.5 < αj < 1), and each offers a price-quality menu

(pjk, qjk), where pjk = 2k−1pj1, qjk = 2k−1αk−1
j qj1 for k = 1, 2, . . . , Lj .

The size of a workload is defined as the time it takes to complete the job using a baseline quality

product. We are assuming job completion time function W (w, q) := w
q where w is the completion

time of a job under baseline quality and q is the quality level.

The utility of customer type i with workload w, choosing quality level k of service provider j is

Uijk = viw − ciW (w, qjk)− pjkW (w, qjk)

= w

(
vi −

ci + 2k−1pj1

2k−1αk−1
j qj1

)
,

with Uij0 = 0 representing the no-buy option.

Then, customer type i chooses quality level k∗ of service provider j∗, where

j∗ = argmax
j∈{1,2,...,m}

{ max
k∈{0,1,2,...,Lj}

Uijk} and k∗ = argmax
k∈0,1,2,...,Lj∗

Uij∗k.

Service providers are revenue maximizers.2 Assuming each customer type has workload w, the

revenue function for service provider j is

Πj(pj1, qj1) = w

∑
i∈Sj1

λi
pj1
qj1

+
∑
i∈Sj2

λi
pj1
αjqj1

+ . . .+
∑
i∈SjLj

λi
pj1

α
Lj−1
j qj1

 ,
where Sjk is the set of customer types that choose quality level k of service provider j (k =

1, 2, . . . , Lj).

Model Validity. All big cloud providers offer different product families to their customers, and

2We later discuss how to incorporate costs in the analysis.
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each product family is customized for special kind of workloads. Amazon has t2, m4, c4 3; Google

has standard, high-mem4; and Microsoft has A, D, G5, to name a few. In most of these product

families companies offer 4 different product sizes with different prices; however, what they actually

pick is a base level product configuration and a price for this base level. Once the base level is

picked, second product is configured as the double the size of the base product with twice the price,

third product is configured as the double of the second product, and finally fourth is configured as

the double of the third product. Price - Configuration menu for Microsoft’s D product family with

Linux Machine for Central US region is given in Table 3.1 as an example of this structure.

Table 3.1: Azure price – configuration menu
Product Cores Ram Disk Sizes Unit Price

D1 1 3.5 GB 50 GB $0.077/hr

D2 2 7 GB 100 GB $0.154/hr

D3 4 14 GB 200 GB $0.308/hr

D4 8 28 GB 400 GB $0.616/hr

To validate our price-quality model, we have picked two service providers (a and b) with one

product family for each. Therefore, we have products ai and bi, lower i indicating smaller size

product, with unit prices 2i−10.100 and 2i−10.126 (i = 1, 2, 3, 4) for providers a and b, respectively.6

The workload we have chosen for this experiment is DaCapo7 (Blackburn et al., 2006). DaCapo is

a benchmark suite that runs different Java workloads with non-trivial memory loads. We have run

the workload once a day for one week at the same time for both providers with different product

sizes in similar regions. Average running times and cost values are summarized in Table 3.2.8

Contrary to the previous literature (Ou et al., 2012; Schad et al., 2010; Wang and Ng, 2010), our

experiment with one type of workload has shown that the job completion time does not vary too

much over time for the same product (the average standard deviation in completion time is less

3https://aws.amazon.com/ec2

4https://cloud.google.com/compute

5https://azure.microsoft.com/en-us/services/virtual-machines

6For anonymity, names are filtered and unit prices are transformed.

7http://www.dacapobench.org

8In total cost calculations, it is assumed that cost is incurred per second basis.

https://aws.amazon.com/ec2
https://cloud.google.com/compute
https://azure.microsoft.com/en-us/services/virtual-machines
http://www.dacapobench.org
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than 5% of the mean completion time per product), unless the product is a burstable type product,

or has a shared CPU (t2 product family in AWS, f1-micro in Google).

Table 3.2: Price-quality comparison
Product Unit Price Avg. Comp. Time Total Cost

a1 $0.100/hr 738.14 sec $0.021

a2 $0.200/hr 490.47 sec $0.027

a3 $0.400/hr 383.90 sec $0.043

a4 $0.800/hr 360.57 sec $0.080

b1 $0.126/hr 719.71 sec $0.025

b2 $0.252/hr 468.00 sec $0.033

b3 $0.504/hr 360.71 sec $0.051

b4 $1.008/hr 308.71 sec $0.086

Figure 3.1 shows how products are located in time/cost space for this specific workload. User

utility increases as we move towards the origin, as it signals faster performance and lower cost.

Interestingly, all product offerings are Pareto efficient, that is, there is no product that is both

cheaper and faster than any other products. Therefore, each product can be chosen by a rational

customer based on her time/cost trade-off. Since users differ with respect to time sensitivity, they

will choose different performance level.

Assuming w = 1000 for the workload we are experimenting with, we try to estimate the scaling

factor and base quality level for both products. We find that (α1, q1) = (0.693, 1.355), and (α2, q2)

= (0.616, 1.733) for service providers a and b. respectively. The mean percentage absolute error

of our fit is 8% for both providers.9 Hence, we can conclude that our model with quality level

function 2k−1αk−1
j qj1 is fairly realistic. Note that in reality, α value is not only provider dependent,

but also workload dependent. No matter how good infrastructure one provider has, if the workload

to be run is not parallelizable, α value would end up being low. We are doing our analysis for a

specific type of workload which is fairly parallelizable, and we discuss possible extensions to this in

§3.4. Reader may refer to Amdahl (1967) and Gustafson (1988) for detailed analysis on maximum

achievable performance gain with parallelization formulations based on workload type.

9The accuracy of our fit is not dependent on w = 1000 assumption. Any w would yield the same accuracy.
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Figure 3.1: Completion time vs total cost

3.2 Revenue Maximization under Monopoly

After describing our model and validate it, we start our analysis with a monopolistic, revenue

maximizing service provider, and therefore, drop the subscript j. In the first part of this section,

we allow the provider to set both base price and quality level, and in the second part we maximize

the provider’s revenue for a given base quality level and we provide some numerical examples.

3.2.1 Optimal Price-Quality Menu

The service provider chooses base quality level q1, base price level p1 and number of quality levels

to offer L; scaling factor α is endogenous.

The revenue of the monopolistic service provider when she offers only one quality level (q1):

Π1(p1, q1) =
∑

i∈I(p1,q1)

λip1
w

q1
,
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where I(p1, q1) is the set of customer types that choose to buy the product when the price is p1

and the quality level is q1.

When the service provider offers two quality levels (q1, 2αq1), the revenue becomes

Π2(p1, q1) =
∑

i∈I1(p1,q1)

λip1
w

q1
+

∑
i∈I2(p1,q1)

λip1
w

αq1
,

where I1(p1, q1) is the set of customer types that choose to buy the low quality product and I2(p1, q1)

is the set of customer types that choose to buy the high quality product when the price-quality

menu is {(p1, q1), (2p1, 2αq1)}.

Lemma 2. I1(p1, q1) ∪ I2(p1, q1) ⊇ I(p1, q1). for any (p1, q1).

Proposition 6. Offering an additional quality level generates at least as much revenue as offering

fewer number of quality levels.

Proposition 6 shows that offering a higher quality level does not cannibalize the service provider’s

revenue. The next step is to formulate customer preferences on different quality levels.

Proposition 7. If ci ∈
[
0,

2p1(1− α)

2α− 1

)
, then customer type i chooses the first quality level given

that her utility is nonnegative. Similarly, if ci ∈
[

2k−1p1(1− α)

2α− 1
,
2kp1(1− α)

2α− 1

)
, then customer type

i chooses quality level k given that her utility is nonnegative.

So far we have assumed that all customer types have the same valuation v and workload re-

quirement w. From this point on, we make an additional assumption that there is a continuum

of customer types that differ with respect to the delay sensitivity parameter, c, where c ∼ U(0, c̄).

Moreover, we assume that the number of quality levels can be at most 4, which is aligned with

what we observe in the market.10

10There are a few product families with 5 or 6 quality levels, such as Google’s n1-standard and n1-highmem families.
We only choose 4 quality levels here for simplification.
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We start with the revenue maximization problem with one quality level:

maximize
p1,q1

Π1(p1, q1) =
1

c̄

p1

q1
(min{vq1 − p1, c̄})

subject to 0 < q1 ≤ q̄1, p1 ≥ 0.

(3.1)

Let (p∗1, q
∗
1) be the optimal base price and quality level and Π∗1 be the optimal revenue for (3.1).

Then, using first order conditions, it can easily be shown that

p∗1 =


vq̄

2
, if q̄ ≤ 2c̄

v

vq̄ − c̄, if q̄ >
2c̄

v

, and Π∗1 =


v2q̄

4c̄
, if q̄ ≤ 2c̄

v

v − c̄

q̄
, if q̄ >

2c̄

v

.

As the number of quality levels offered increases, the revenue maximization problem gets more

complicated, and the closed form solutions have multiple cases. Therefore, we only present the

results for the case where there are exactly four quality levels assuming q̄ is high enough that it is

not binding in the problem.11 The revenue function can be written as

Π4(p1, q1) =
1

c̄

p1

q1

{
1

α3

[
min

{
8α3vq1 − 8p1, c̄

}
−min

{
8p1(1− α)

2α− 1
, c̄

}]
+

1

α2

[
min

{
8p1(1− α)

2α− 1
, c̄

}
−min

{
4p1(1− α)

2α− 1
, c̄

}]
+

1

α

[
min

{
4p1(1− α)

2α− 1
, c̄

}
−min

{
2p1(1− α)

2α− 1
, c̄

}]
+ min

{
2p1(1− α)

2α− 1
, c̄

}}
.

(3.2)

Proposition 8. Let the optimal price and base quality level in (3.2) be (p∗1, q
∗
1). Then

p∗1 =
c̄

8

[√
α6 + 2α5 − 3α4 − 8α2 + 8α

α3 + α2 − 6α+ 4
− 1

]
and q∗1 =

c̄+ 8p∗1
8α3v

. (3.3)

Proposition 8 shows that as c̄ increases, both p∗1 and q∗1 increase. Moreover, as v increases p∗1

does not change while q∗1 decreases. It means that as customers are willing to pay more for the

11The formulation presented assumes the third quality level is chosen by at least some customer types.
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service, instead of increasing the unit price, the provider would deliberately degrade the quality level

and sell it with the same unit price, which increases the revenue in return since the processing time

becomes longer. The intuition for this result is that increasing the base price makes some customer

types choose lower quality levels. Since higher quality products always generate more revenue to

the provider, this shift lowers the impact of revenue increase coming from the price increase. On the

other hand, decreasing the base quality level does not make any changes on customer preferences

and all customer types pays more for the service completion.

Next, we provide sufficient conditions on the optimal number of quality levels to offer under

monopoly.

Proposition 9. Sufficient conditions for offering multiple quality levels:

1. If vq̄

(
2α− 2α− 1

α

)
≤ c̄ and

2

3
< α < 1, offering two quality levels generate more revenue

than offering only one quality level.

2. If 2αvq̄

(
2α− 2α− 1

α

)
≤ c̄ and

2

3
< α < 1, offering three quality levels generate more

revenue than offering two quality levels.

3. If 4α2vq̄

(
2α− 2α− 1

α

)
≤ c̄ and

2

3
< α < 1, offering four quality levels generate more

revenue than offering three quality levels.

3.2.2 Optimal Price Menu under Fixed Quality Levels

While controlling both price and quality levels at the same time potentially generates more revenue

to the service provider, another interesting question is to find the optimal prices given quality levels.

When the service provider offers only one quality level p1, the optimal price is similar to what we

presented in the previous section:

p∗1 =


vq1

2
, if q1 ≤

2c̄

v

vq1 − c̄, if q1 >
2c̄

v

. (3.4)
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When there are two quality levels, (q1, 2αq1), the optimal price menu is (p∗1, 2p
∗
1), where

p∗1 = max
{2vαq − c̄

2
,
vq(2α− 1)

2α

}
, (3.5)

only if p∗1 ≤
c̄(2α− 1)

2(1− α)
; otherwise offering one quality level is preferred to offering two.

When there are more than two quality levels, the optimal price depends on multiple conditions

and it is beyond the scope of this exercise. Instead, we provide some numerical examples.

Numerical Examples. In this part, we are going to illustrate cases on how many quality

levels the monopolistic service provider offers in the optimal solution given its base quality level,

scaling factor, and customer characteristics.12

1. If service provider a from the previous section with (α, q1) = (0.693, 1.355) is the only provider

in the market with v = 0.488 and c̄ = 0.961, then the optimal price is indeed $0.100 and

offering 4 quality levels is the revenue maximizing strategy. In other words, if service provider

a has (α, q1) = (0.693, 1.355) and offers 4 quality levels with base price level $0.100, then, we

can infer the market conditions as v = 0.488 and c̄ = 0.961 (using Proposition 8).

2. If service provider b from the previous section with (α, q1) = (0.616, 1.733) is the only provider

in the market with v = 0.488 and c̄ = 0.961 (as above), then the optimal price is $0.423 and

only the base quality level product is being chosen by some customers and the rest choose

the no-buy option. Setting a price of $0.126 in this market generates less revenue although

all four quality levels are chosen by some customer types and there is no customer type that

chooses the no-buy option.

These examples show that given market conditions and selected product quality, the monop-

olistic service provider may choose to offer multiple products (as in Example 1 above) or choose

to offer only one product with a price level that may be too high for low customer types (as in

Example 2). This behavior is intuitive when the service provider has a relatively high base quality

12The optimal prices found here are searched on a grid with $0.001 increments. Therefore, the sensitivity of the
optimal prices is $0.001.
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level and a low scaling factor as higher product types do not provide much higher quality than the

base quality, which is already high for the market.

3.3 Revenue Maximization under Duopoly

In this section we extend our previous analysis to duopoly case where providers have their own base

quality levels and scaling factor set and announced, and they compete with the base price. We still

assume that each provider can offer at most 4 quality levels and customers have common valuation

v and workload w, and different delay sensitivities c ∼ U(0, c̄).

We start with a simple model where each provider offers only one quality level. Let (p1, q1) and

(p2, q2) be the price and quality for the first and second providers, respectively. Without loss of

generality, assume q1 < q2. Then, customers with lower type (lower delay sensitivity) choose the

first provider, while high types choose the second. Customer type ĉ is indifferent between the first

and second provider, where

ĉ =
p2q1 − p1q2

q2 − q1
,

assuming ĉ ≥ 0.13 Given p2, the objective function of the first provider is

R1(p1) =
1

c̄

p1

q1
ĉ =

1

c̄

p1

q1

p2q1 − p1q2

q2 − q1

and given p1, the objective function of the second provider is

R2(p2) =
1

c̄

p2

q2

[
max

{
min

{
vq2 − p2, c̄

}
− p2q1 − p1q2

q2 − q1
, 0
}]

.

Proposition 10. Let pe1 and pe2 be the equilibrium prices for the first and second provider. Then

13In Nash equilibrium, ĉ is indeed nonnegative, which could be derived using Proposition 10.
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the Nash equilibrium satisfies

pe1 =
pe2q1

2q2
and pe2 = argmax

p2∈{0,px2 ,p
y
2}
R(p2),

where R(p2) is evaluated for p1 = pe1, and

px2 = max
{
vq2 − c̄,

2vq2(q2 − q1)

4q2 − q1

}
, py2 = min

{
vq2 − c̄,

2c̄(q2 − q1)

3q1

}
.

As we point out in the previous section, when we allow the service provider to have more than

one quality level, the solution depends on v, c̄, and the base quality level in a more complicated

way. Therefore, it is not straightforward to find closed-form solutions for duopoly case. Instead we

simulate the market with different parameters.14 In our simulation model, first, service provider a

from the previous section sets its monopoly price. Second, given a’s price, service provider b finds

its best response. Then, service provider a finds its best response given b’s price, so on and so forth.

We iterate this game for 100 times to see if the game reaches a Nash equilibrium that neither of

the players would want to change their prices. We analyze four different cases below. In none of

the cases we reach a Nash equilibrium. Each case has a different Edgeworth cycle with different

price ranges and periodicity. These case are depicted in Figure 3.2 and described below.

1. v = 0.488, c̄ = 0.961: We have shown that the optimal price for a in this market is $0.100

when there is monopoly, while it is $0.423 for b; and we have concluded that if b is the

monopoly, there is no point of offering more than one quality level. However, when there is

competition, offering more than one quality level becomes preferable to offering only one level

for b.

The price competition makes a decrease its monopoly prices by more than 50%. The price

for a varies between $0.035 and $0.042 in the cycle, while it is $0.026 and $0.032 for b (Figure

3.2(a)).

2. v = 0.5, c̄ = 0.25: a only uses the base quality level under monopoly, where the optimal

14As before, we use a price grid with $0.001 increments.
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Figure 3.2: Price paths under duopoly with different parameter settings

price is $0.4275, which is found using (3.4). Under duopoly, we have found that only the

first quality level is used in both providers in the Edgeworth cycle, and the prices range from

$0.427 to $0.481 for a, $0.615 to $0.617 for b (Figure 3.2(b)).

Since higher quality levels are not selected in either of the providers, we can assume that

each provider offers only one quality level and try to find the equilibrium prices that could

potentially be aligned with Figure 3.2(b). Under this assumption, the equilibrium prices can

be calculated by using Proposition 10 as pe1 = $0.018 and pe2 = $0.045.

However, when we relax this assumption and let both providers to offer four quality levels,

these prices are no longer equilibrium prices because they are so low that high type customers

prefer higher quality levels; and therefore, the equilibrium is no longer sustained.

3. v = 0.5, c̄ = 0.5: two quality levels are used in a under monopoly with the optimal price of
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$0.220, which is found using (3.5). Under duopoly, first two quality levels are used in a and

only one quality level is used in b in the cycle. The price ranges in the Edgeworth cycle are

from $0.22 to $0.286 and from $0.367 to $0.433 for a and b, respectively (Figure 3.2(c)).

4. v = 0.5, c̄ = 2: all four quality levels are used in a under monopoly. Under duopoly, all

quality levels in both providers are used as well. In this setting, the price varies more for both

providers in the Edgeworth cycle (Figure 3.2(d)).

While the price of a is higher than the price of b in Cases 1 & 4, it is reversed in Cases 2 &

3. It is important to note that the price cycle ranges depend on the initial price level we start the

iterative pricing procedure. For instance, if we start Case 2 with a lower price level for provider a,

we reach a price cycle with ranges from $0.005 to $0.006 and from $0.003 to $0.004 for providers a

and b, respectively. In this solution, both providers generate lower revenue although all four quality

levels are selected by some customer types, which in turn, pushes the prices for provider a to be

higher than provider b in the price cycle, contrary to the one quality level case.

3.4 Model Extensions

There are many avenues to explore by using our price-quality model as a building block. In this

work, we have assumed there is one common workload for all customer types, which implies that

the scaling factor, α, only depends on the provider in our model. In reality customers have different

workloads and the scaling factor is a combination of the type of workload and the scaling perfor-

mance of the provider. One potential way to modify the model would be to write the scaling factor

as α = βγ, where β ∈ [0.5, 1] is a workload dependent parameter that denotes how parallelizable

the workload is, and γ is the scaling factor of the provider. Assuming that our DaCapo workload

has β = 0.8, since it is moderately parallelizable, γ values become 0.866 and 0.770 for providers a

and b, respectively. We have simulated scenarios where β is uniformly distributed between 0.5 and

1 and reached similar results with Edgeworth cycles.

Another extension is to solve profit maximization problem instead of revenue maximization.

However, this would add an additional layer of complication on the cost side. At the simplest level,
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unit cost of a product depends on the configuration that the provider uses, rather than the quality

level, and the scale of the provider, since economies of scale plays an important role. With enough

information on cost, the model can be modified for profit maximization.

The cloud computing market is a fast growing market and in such market dynamics, sometimes

players aim to maximize their market share in the short run before revenue or profit maximization,

which could potentially generate higher profits to a player in the long run once the it has its own

customer base. In market share maximization case, the duopoly prices are determined based on

how much providers can handle profit loss in the short run. In the extreme case, both set prices

equal to zero. On the other hand, in zero profit case prices would be set based on costs which may

give rise to interesting results as the quality levels and the scaling factors play an important role.

One potential work would be to extend our duopoly game to a two-stage game in which providers

first compete in quality and then compete in price.

3.5 Reconciling Model Predictions and Real-World Behavior

As mentioned in the introduction, price cycles in cloud computing are not observed in practice.

In the computing, technological advances mean costs are constantly falling. This provides both

a market perception that prices should not rise and means that constant prices can be effectively

viewed as price increases relative to costs. In Figure 3.3 we show AWS prices for the “general

compute” (m series), large size, with the number indicating the generation. Later generations

can only run on newer, higher performance hardware. This new hardware can also run the older

generations more cost effectively than before. While this is only one product family, the trends are

representative.

A few interesting observations can be derived from the figure. First, in the most recent time

period, the best VM sells at the lowest price, whereas the worst sells at the highest price. Second,

during the price war period of April 2014, the then-newest generation saw a larger price decrease

than the older generation. Finally, the oldest generation is still offered and sold in the marketplace.

Relative to the falling prices of new generations, this constant price can be conceptualized as a price
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increase. While these patterns are certainly not equivalent to Edgeworth cycles, they do evidence

“price wars” in one segment of the product space (new generations) and relatively high prices in

other parts.

Finally we note some caveats to the realism of our model. We calibrated the model using

certain benchmark workloads, but in practice customers will have heterogenous needs and we,

by no means, captured all of them. Further, providers may innovate to serve a particular niche,

such as genomics, with customized offerings. These “menu choices” could be incorporated into our

model but at present we do not address this layer of detail. Finally, customers vary in terms of

sophistication and how “active” they are in their choice processes. Out of simplicity we ignore these

complexities, but concede they could play a significant role in market dynamics and thus are a
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fruitful area for future research.

3.6 Discussion and Conclusion

The public cloud “infrastructure as a service” market possesses interesting features that make it

hard to predict important facets of competition, such as market shares and provider margins, in the

long-run. On the one hand, major providers buy their hardware from the same manufacturers (who

in turn generally use the same chipsets and so forth), operate in similar locations and offer seemingly

similar products (e.g. VMs specified by number of virtual cores, RAM and disk). On the other

hand, the competitors use different proprietary“fabric”to manage virtualization, resource allocation

and data transfer. Just as a laptop would tend to run applications differently depending on the

operating system, this opens up the space for performance differentiation in the cloud. Further, the

menus offered by each provider involve a discrete number of choices and allow providers to locate

in different parts of the price-quality space. Our empirical work documents such differentiation.

Our theoretical model gives a long-run view on competition. First, the monopoly case highlights

how additional competitors can block “bad equilibrium” where performance is intentionally slowed

down or options are unduly limited. In duopoly, price competition is fierce, but prices do not

converge to the same low level because of price-quality differentiation. The model also predicts

Edgeworth cycles and we have discussed institutional factors that help explain why these are not

observed. Once these factors are taken into consideration, the observed patterns can be viewed

as being qualitatively similar to the model’s predictions: periods of constant prices punctuated by

price wars that do not necessarily end with providers having the same prices, and older generations

having substantially less vigorous competition than the newest offerings. Further, in Q2 2015

Amazon itemized AWS earnings for the first time and revealed the service has a health operating

profit. Our empirically calibrated model helps not only explain price cutting behavior but also how

providers can manage a profit despite predictions that the market“should be”totally commoditized.
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Chapter 4

Maximizing the Information Content

of a Balanced Matched Sample in a

Study of the Economic Performance

of Green Buildings

In this chapter, we investigate the effect of green building practices on market rents using new

matching methods in observational studies. The chapter is organized as follows. In Section 4.1,

we give an overview of matching in observational studies. In Section 4.2, we review cardinality

matching, discuss different matching structures, and finally present a definition of the information

content of a matched sample for a simple difference-in-means effect estimator. In Section 4.3, we

first introduce a general framework for matching to maximize the information content of a balanced

matched sample, then show that cardinality matching is a particular case of this framework, and

present a formulation for matching with a variable one-to-many ratio (in two other appendices,

we present formulations for matching to minimize the variance of the difference-in-means effect

estimator and matching with a flexible one-to-many/many-to-one or full matching structure). In

Section 4.4, we evaluate the building matches in terms of covariate balance and effective sample sizes,
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and also describe the details of the computational implementation. In Section 4.5, we investigate

the economic effects of green buildings. In Section 4.6, we discuss the new matching methods

proposed. In Section 4.7, we close with a summary and remarks.

4.1 Overview of Matching in Observational Studies

In observational studies of causal effects, matching methods are often used in an attempt to compare

like with like; i.e., units that are the same ideally in every respect except in their assignment to

a treatment (Cochran and Rubin, 1973). In our study, these units are buildings similar in terms

of age, amenities, number of stories, etc., except in their green building practices. Of course,

this comparison can be assessed in terms of observed covariates only, and with matching methods

(the same as with other regression or weighting methods of adjustment for observed covariates)

the question about the influence of unobserved covariates in effect estimates remains open (for

instance, see Chapter 4 of Rosenbaum, 2002 for a formal discussion). With standard matching

methods, other devices such as differential effects, evidence factors, multiple control groups and

sensitivity analyses can be used to limit and assess the influence of such unobserved covariates (see

Rosenbaum, 2015 for a review of these devices).

The appeal of matching as a method of adjustment lies in part in its conceptual simplicity

(comparing like with like while keeping the unit of analysis intact; Rosenbaum and Silber, 2001),

that its adjustments are an interpolation instead of an extrapolation based on a parametric model

(Rosenbaum, 1987; Imbens, 2015), and in the fact that it is conducted without using outcomes,

thus preventing exploratory expeditions in the data to choose the form of adjustments that better

suits the hypotheses of the investigation (Rubin, 2008). It is for this last reason that matching is

considered to be part of the design as opposed to the analysis of an observational study (Rosenbaum,

2010). However, some matching methods are cumbersome in practice.

The main goal of matching is to find matched groups with similar or balanced observed covariate

distributions (Stuart, 2010). Ideally, these groups would be formed by units identical in every way

(by “clones” of treated and control units), but usually this is not feasible in practice. There is a
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curse of dimensionality in exact matching: as the number of observed covariates increases, there is

a combinatorial explosion in the resulting types of units. In fact, with two binary covariates there

are 22 or four types of units, but with twenty binary covariates there are 220 or over a million types

of units. Thus, for an observational study of the typical size (like our building study with a few

thousand observations), there will not be enough units to match each treated unit to one control

exactly. It is for this reason, and also because randomization does not produce exact matches

but balance in expectation, that weaker, aggregate forms of covariate balance than exact matching

tend to be pursued in practice, leaving exact matching for a few covariates of overriding prognostic

importance (see Sections 3.3 and 9.3 of Rosenbaum, 2010 for a detailed exposition of this argument).

The propensity score (Rosenbaum and Rubin, 1983) is an important tool used to achieve aggregate

covariate balance.

The propensity score is the probability of treatment assignment given the observed covariates.

It constitutes a dimensionality reduction technique in which a P -dimensional observed covariate is

summarized into a single scalar with important theoretical properties. Informally, theorems 1 and

3 in Rosenbaum and Rubin (1983) state that matching on the propensity score tends to balance the

P observed covariates used to estimate the score, and that for balancing the P covariates it suffices

to balance the one-dimensional propensity score. However, these are stochastic properties that hold

over repeated realizations of the data-generation mechanism, and for a given realization (this is, for a

given data set), even if the true treatment assignment is known, it is not certain that the propensity

score will balance the observed covariates (especially if the covariates have many categories or are

sparse; see Zubizarreta et al., 2011 and Yang et al., 2012 for related discussions). Also, in practice

the true assignment mechanism is unknown, and this makes the task of balancing the observed

covariates even more difficult due to misspecification of the propensity score model. Furthermore,

while matching on the propensity score is typically used for balancing means, in some settings it

is desirable to balance other features of the distribution of the P observed covariates, such as the

marginal distributions (Rosenbaum et al., 2007), and this can be very difficult by matching on the

propensity score (for a related argument in the context of weighting see, for instance, Zubizarreta,

2015). It is for these reasons that matching on the propensity score involves a considerable amount
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of guesswork in practice.

A recent method that addresses these limitations is optimal cardinality matching, or cardinality

matching for short (Zubizarreta et al., 2014). Cardinality matching solves an integer programming

problem to maximize the cardinality or size of a matched sample subject to constraints on covariate

balance. These constraints allow the investigator to balance the covariates directly and in a very

precise manner. In their weakest form, these constraints can require the means to be balanced (see

Zubizarreta, 2012 for details), but they can also require other forms of distributional balance such

as fine balance (Rosenbaum et al., 2007) and strength-k matching (Hsu et al., 2015).1 In this way

cardinality matching directly balances covariates.

Other interesting matching methods that aim at covariate balance include coarsened exact

matching (Iacus et al., 2012), balance optimization subset selection (Nikolaev et al., 2013), genetic

matching (Diamond and Sekhon, 2013), and refined covariate balance via network flows (Pimentel

et al., 2015). Other related weighting methods include inverse probability tilting (Graham et

al., 2012), entropy balancing (Hainmueller, 2012), stable balancing weights (Zubizarreta, 2015),

calibration weighting (Chan et al., 2016), and the overlap weights (Li et al., 2016).

The flowcharts in Figure 4.1 compare the basic steps involved in cardinality matching and in

standard matching methods based on the propensity score or other summary measures of the ob-

served covariates (such as the Mahalanobis distance). While standard matching methods can entail

many iterations to meet the covariate balance requirements by fine-tuning the summary measure,

cardinality matching directly finds the largest matched sample that meets these requirements. In a

sense, with cardinality matching subject matter knowledge of the scientific question at hand comes

naturally into the matching problem through the balancing constraints, finding the largest matched

data set that satisfies the investigator’s specifications for covariate balance or comparability between

treated and control units. For simplicity, in Figure 4.1(a) we omit the decisions involved in propen-

sity score matching about overlap, but typically additional steps would be present (for example, see

1Fine balance forces the marginal distributions of a nominal variable to be identical, but without constraining
units to be matched within each of the categories of a nominal variable (see Chapter 10 of Rosenbaum, 2010 for
details); whereas strength-k matching is a stronger form of balance in which low dimensional joints are forced to be
identical: out of K nominal covariates, each of the

(
K
k

)
possible interactions of covariates is finely balanced, so the

joint distributions of each of the
(
K
k

)
combinations of covariates is perfectly balanced.
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Chapter 15 of Imbens and Rubin, 2015 for an extensive discussion). In contrast, with cardinality

matching the possibility of covariate distributions exhibiting limited overlap is addressed in terms

of the original covariates, finding the largest match that meets the investigator’s specifications for

covariate balance.
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Figure 4.1: Flowcharts of common matching methods and cardinality matching
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4.2 Review: Cardinality Matching; Matching Structures; Infor-

mation Content

4.2.1 Cardinality Matching

As described above, most matching methods target covariate balance indirectly, by matching treated

and control units (green and non-green buildings) that are close on a summary measure of the co-

variates such as the propensity score. Unlike these matching methods, cardinality matching uses

the original covariates to match units and directly balance their covariate distributions (Zubizarreta

et al., 2014). Specifically, cardinality matching finds the largest matched sample that satisfies the

investigator’s specifications for covariate balance. Following Zubizarreta (2012), these specifications

for covariate balance may not only require mean balance, but perhaps also other forms of distri-

butional balance such as fine balance (Rosenbaum et al., 2007), x-fine balance (Zubizarreta et al.,

2011), strength-k matching (Hsu et al., 2015), and exact matching (Rosenbaum, 2010, Section 9.3),

all this on several covariates simultaneously. For example, cardinality matching will find the largest

matched sample in which all the marginal distributions of the covariates are balanced. In this

manner, cardinality matching focuses on covariate balance in aggregate, allowing the investigator

to re-match the treated and control units in the balanced matched sample to emphasize covariates

that are strongly correlated with the outcome. As illustrated in Zubizarreta et al. (2014), this has

the effect of reducing the heterogeneity of matched-group differences in outcomes and, in turn, also

reducing sensitivity to biases due to unmeasured confounders (see Rosenbaum, 2005 for a detailed

exposition of this argument and Baiocchi, 2011 for an original alternative approach).

From a computational standpoint, cardinality matching requires solving a linear integer pro-

gramming problem, and while it has not been found a polynomial time algorithm to solve the

cardinality matching problem, there is considerable structure in this problem and many instances

of it can be solved in time that from a user perspective is comparable to that of common matching

methods (see Appendix C.1). At the present, cardinality matching is solved with the optimiza-

tion solvers CPLEX, GLPK, Gurobi and Symphony via the statistical package designmatch for R

(Zubizarreta, 2012; Zubizarreta and Kilcioglu, 2016).
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Figure 4.2: Different matching structures

4.2.2 Matching Structures

In its simplest form, a matched sample is assembled by pairs of treated and control units selected

from larger reservoirs of both types of units. As in our buildings study, the reservoir of controls

is often much larger than the one of the treated units, and it is feasible to match more than one

control to each treated unit. One possible way of doing this is by matching with a fixed 1 : κ

ratio and either matching each treated unit to κ controls or not matching it at all. A more flexible

structure is a variable 1 : κ ratio, in which each treated unit is matched at most to κ controls

(if matched at all). The most flexible structure is matching with a one-to-many/many-to-one

structure, or, loosely speaking, full matching (Rosenbaum, 1989; Hansen, 2004). (In rigor, the term

full match refers not only to a one-to-many/many-to-one structure but to an optimal design for an

observational study in which all the treated units are matched to controls forming groups as similar

as possible in terms of a summary of the covariates, s(x); see Section 10.3.6 of Rosenbaum, 2002.

In this sense, a one-to-many/many-to-one matching structure always dominates a many-to-many

structure Rosenbaum, 1991. Also, by matching without replacement it is straightforward to conduct

inference with existing methods Rosenbaum, 1993, 2001.) We denote the one-to-many/many-to-

one structure as 1 : κC/κT : 1, where κC is the maximum number of control units matched to each

treated unit, and κT is the maximum number of treated units matched to each control. These

different matching structures are illustrated in Figure 4.2 below.
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Figure 4.3: Different matching structures with the same number of matches
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Figure 4.4: Different matching patterns with the same number of matched units

It is desirable to extend cardinality matching to matching with a variable one-to-many or a one-

to-many/many-to-one structure, but a question that arises is how to define the size of the matched

sample with these flexible matching structures. Naturally, five 1 : 1 matches of green and non-green

buildings (exemplified in Figure 4.3(a)) should count more than than two 1 : 2 matches plus one

1 : 1 match (Figure 4.3(b)), and this, in turn, should count more than one 1 : 5 match (Figure

4.3(c)). Although the first and second matchings have the same number of different controls, in the

second matching there are only two different treated units; so, subject to the same constraints on

covariate balance, the first matching should be preferable. Intuitively, there is more information in

the first match. In the following section we formalize this notion using the concept of information

content of a matched sample for a difference-in-means effect estimator.
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4.2.3 Information Content of a Matched Sample

Let i ∈ I = {1, 2, ..., I} index the set of matched groups and j ∈ Ji = {1, 2, ..., Ji} index the set

of units (in our study, buildings) within each of these matched groups. Using this notation, for

example in Figure 4.2(a), Ji = 2 for each i ∈ I and the matched groups constitute pairs, and in

Figure 4.2(c), J1 = 4 and J2 = 3 and so the groups form quadruples and triples, respectively. To

accommodate the more general one-to-many/many-to-one or full matching structure, we adopt the

convention that the first unit in each group is either a treated unit and all the other units are

controls, or that the first unit is a control and all the other units are treated.

Following Haviland et al. (2007), we pose a simple treatment effect model

Yij = αi + βZij + εij (4.1)

where Yij is the observed outcome of unit j in matched group i, αi is a group effect for all the

units in group i (this indicates there is dependence between units in each group, but that it may

be eliminated by taking differences within groups), Zij is the treatment assignment indicator, and

εij is a residual term with εij ∼ N (0, σ2). Here, we assume the outcome variance is constant across

units. Consider the matched group difference in outcomes

Di = Zi1

(
Yi1 −

∑
j 6=1 Yij

κi

)
+ (1− Zi1)

(
−Yi1 +

∑
j 6=1 Yij

κi

)
(4.2)

where κi is the number of controls units in matched group i. We can calculate the variance of this

difference and find that

Var(Di) = σ2

(
1 +

1

κi

)
∝

(
2

1
1 + 1

κi

)−1

. (4.3)

In other words, the variance of the difference is inversely proportional to the harmonic mean of the

number of treated and control units in each matched group (Kalton, 1968; see also Hansen and

Bowers, 2008). We denote h(κ) as the harmonic mean of the number of units in a matched group
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with a 1 : κ (or κ : 1) matching ratio

h(κ) =
2

1

1
+

1

κ

=
2κ

1 + κ
. (4.4)

In this manner, in a 1 : 1 match or pair match, h(1) = 1; in a 1 : 2 match, h(2) = 4/3; in a 1 : 3

match, h(3) = 3/2; and so on.

We call the information content of a matched sample the sum of the harmonic means of the

number of treated and control units in each matched group,
∑

i∈I h
(κi); that is, the sum of the

Fisher information of the matched groups. In this way, for example, the information content of two

1 : 1 matches will be 50% larger than the information of one 1 : 2 match (1 + 1 = 2 instead of 4/3),

and the information of three 1 : 1 matches will be the same as the information of two 1 : 3 matches

(1 + 1 + 1 = 3/2 + 3/2).

Another way of defining the information content in a matched sample about the parameter β

is the reciprocal of the variance of an effect estimator, for example of the average of the group

differences

δ̂ =
1

I

∑
i∈I

(
Zi1

(
Yi1 −

∑
j 6=1 Yij

κi

)
+ (1− Zi1)

(
−Yi1 +

∑
j 6=1 Yij

κi

))
. (4.5)

However, we find that this particular definition is somewhat restrictive, as other estimators may

be preferable in practice such as regressing the group differences in outcomes on group differences

in covariates as in Rubin (1979), or using the weighted M-statistics in Rosenbaum (2014). Also,

this definition is less intuitive and more difficult to implement in practice (see Appendix C.2), and

has a weaker connection with cardinality matching. Clearly, if the matching ratio given by κi is

constant, then maximizing the information content is equivalent to cardinality matching with a

fixed 1 : κ ratio as in Zubizarreta et al. (2014), so this provides a more general framework and a

richer interpretation for cardinality matching.

For these reasons we consider maximizing the sum of the harmonic means of the number of

treated and control units in each matched group; in other words, maximizing the sum of the Fisher
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information of the matched groups. Building upon this notion of information content, in the next

section we present a general matching framework and specific matching formulations that maximize

the information content of a matched sample subject to covariate balance and matching structure

constraints.

4.3 Maximizing the Information of a Balanced Matched Sample

4.3.1 A General Matching Framework

Let t ∈ T = {1, . . . , T} index the set of treated units (in our study, green buildings) and c ∈ C =

{1, . . . , C} index the set of controls (non-green buildings), with T ≤ C. Define p ∈ P = {1, . . . , P}

as the label of the P observed covariates. Each treated unit t ∈ T has a vector of observed covariates

xt = {xt,p1 , . . . , xt,pP }, and each control c ∈ C has a similar vector xc = {xc,p1 , . . . , xc,pP }. We

introduce the decision variable mtc, which is 1 if treated unit t is matched with control c, and 0

otherwise.

In the abstract, we want to solve

max
m
{I(m) : m ∈M∩ B} (4.6)

where I(m) is the information content of the matched sample, and M and B are matching and

balancing constraints, respectively. This general formulation pursues the goal of finding the largest

matched sample —or, in general, the matched sample with the largest information content— that

satisfies certain requirements for matching structure M and covariate balance B. Generally, the

requirements for covariate balance are guided by scientific knowledge of the research question at

hand (in our study, what drives buildings’ rent). Ideally one would match with a flexible matching

structure, but as we discuss below this imposes computational restraints. We now discuss the

specific forms of I, M and B when matching with a 1 : κ fixed ratio, a 1 : κC variable ratio, and,

due to space considerations, we relegate the case of matching with a flexible 1 : κC/κT : 1 matching

ratio to Appendix C.3.
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4.3.2 Matching with a Fixed 1 : κ Ratio

Matching with a fixed 1 : κ ratio is equivalent to cardinality matching. In (4.6), I, M and B take

the forms

I(m) =
∑
t∈T

∑
c∈C

mtc, (4.7)

M =

{∑
c∈C

mtc = κ, t ∈ T if κ > 1 and
∑
c∈C

mtc ≤ κ, t ∈ T if κ = 1;

∑
t∈T

mtc ≤ 1, c ∈ C;mtc ∈ {0, 1}, t ∈ T , c ∈ C

}
,

(4.8)

B =

{
−εp

∑
t∈T

∑
c∈C

mtc ≤
∑
t∈T

∑
c∈C

mtc(f(xt,p)− f(xc,p)) ≤ εp
∑
t∈T

∑
c∈C

mtc,

mtc ∈ {0, 1}, t ∈ T , c ∈ C; p ∈ P

}
,

(4.9)

where εp ≥ 0 is a given constant, and f(·) is a suitable transformation of the covariates. For

example, if f(x·,p) = x·,p, then (4.9) constrains the matched samples to have means that differ at

most by εp for covariate p. Also, if f(·) is a binary indicator for the categories of a nominal covariate

p and εp = 0, then (4.9) requires the matched samples to have the same number of treated and

control units within each category, but without constraining which units are matched together.2

Similar ideas can be used to balance the interactions of several nominal covariates. See Zubizarreta

(2012) and Zubizarreta et al. (2014) for more balancing examples.

4.3.3 Matching with a Variable 1 : κC ratio

To generalize cardinality matching for maximizing the information content of the matched sample

with a variable 1 : κC matching ratio, we introduce a new decision variable nt, the number of control

2This technique is called fine balance (Rosenbaum et al., 2007) and it has the effect of exactly balancing the mean
of every linear combination of the categories of the covariates finely balanced.
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units that treated unit t is matched to, which is bounded above by κC . Then problem (4.6) becomes

I(m,n) =
∑
t∈T

h(nt), (4.10)

M =

{∑
c∈C

mtc = nt, t ∈ T ;nt ≤ κC , t ∈ T ;
∑
t∈T

mtc ≤ 1, c ∈ C;

mtc ∈ {0, 1}, t ∈ T , c ∈ C;nt ≥ 0, t ∈ T

}
,

(4.11)

B =

{
−εp

∑
t∈T

h(nt) ≤
∑
t∈T

h(nt)xt,p −
∑
c∈C

(∑
t∈T

mtc
h(nt)

nt

)
xc,p ≤ εp

∑
t∈T

h(nt),

p ∈ P,mtc ∈ {0, 1}, t ∈ T , c ∈ C;nt ≥ 0, t ∈ T

}
.

(4.12)

Here, we let f(x) = x for mean balance. Note that by using transformations of the covariates,

it is possible to balance statistics other than means (e.g., by mean balancing indicators for the

quantiles of x in the treated units it is possible to approximately balance its marginal distribution;

see Zubizarreta, 2012 for details). Also, note that h(κ) is an increasing, convex transformation of

κ; that is, h(κ) increases as κ increases at a decreasing rate. However, this optimization problem

has the expressions h(nt) and mtc
h(nt)

nt
which are not linear in mtc and nt. To linearize h(nt), we

define a new decision variable m
(r)
t , which is 1 if treated unit t is matched with at least r controls,

and 0 otherwise (t ∈ T , r ∈ {1, . . . , κC−1}). This new decision variable can be written using linear

constraints as

m
(r)
t ≤ nt −

r−1∑
s=1

m
(s)
t , t ∈ T , r ∈ {1, . . . , κC−1} (4.13)

κCm
(r)
t ≥ nt −

r−1∑
s=1

m
(s)
t , t ∈ T , r ∈ {1, . . . , κC−1}. (4.14)

Here we do not need to define the decision variable m
(κC)
t since m

(κC)
t = nt −

∑κC−1
s=1 m

(s)
t ;
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therefore, it is not a decision variable. Using the m
(r)
t ’s, we can rewrite h(nt) as

w
(1)
t := h(nt)

=

κC−1∑
s=1

(
h(s) − h(s−1)

)
m

(s)
t +

(
h(κC) − h(κC−1)

)(
nt −

κC−1∑
s=1

m
(s)
t

)
.

(4.15)

Hence, we can write the objective function in the linear form:
∑

t∈T w
(1)
t .

The next step is to write mtc
h(nt)

nt
in linear form. Define

w
(2)
t :=

h(nt)

nt

=

κC−1∑
s=1

(
h(s)

s
− h(s−1)

s− 1

)
m

(s)
t +

(
h(κC)

κC
− h(κC−1)

κC − 1

)(
nt −

κC−1∑
s=1

m
(s)
t

)
,

(4.16)

where h(0)

0 is set to 0. The expression of interest becomes mtcw
(2)
t which is still not linear. Therefore,

we define the decision variable qtc = mtcw
(2)
t , which is equal to w

(2)
t if mtc = 1, 0 otherwise. It can

be written using linear constraints as

qtc ≤ mtc, t ∈ T , c ∈ C (4.17)

qtc ≤ w
(2)
t , t ∈ T , c ∈ C (4.18)

qtc ≥ w
(2)
t − (1−mtc), t ∈ T , c ∈ C. (4.19)

Lastly, we define wc =
∑

t∈T qtc, c ∈ C, and rewrite mean balancing constraints

− εp
∑
t∈T

w
(1)
t ≤

∑
t∈T

w
(1)
t xt,p −

∑
c∈C

wcxc,p ≤ εp
∑
t∈T

w
(1)
t , p ∈ P (4.20)

This program is no longer a pure integer programming (IP) problem, as cardinality matching;

it is a mixed integer programming (MIP) problem with considerably less structure than the MIP

problem solved by Zubizarreta (2012). In fact, the constraints (4.13)-(4.20) make the program quite

complicated to solve in general.
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4.3.4 Matching with a Flexible 1 : κC/κT : 1 Ratio

One step further is to formulate (4.6) to match with a flexible 1 : κC/κT : 1 matching ratio or full

matching. Due to space constraints, this is discussed in Appendix C.3.

4.4 Description of the Matches

In our study, we find the matched sample of green and non-green buildings with largest information

content (4.10) that satisfies the matching structure (4.11) and that balances the original covariates

in the sense of (4.12). In particular, we match with a variable 1 : κC matching ratio because each

geographic cluster has only one green building and a variable number of non-green buildings. We

choose κC = 4 because the gains from matching with a higher 1 : 5 or a 1 : 6 ratio are not very

marked assuming the same number of treated units are matched (see Table 2 of Haviland et al.,

2007) and because increasing the maximum matching ratio by one adds 2T constraints and T binary

variables to the mathematical program making it more difficult to solve (see Section 4.4.4 below).

4.4.1 Covariate Balance

Table 4.1 shows the absolute standardized differences in means of the observed covariates before

and after matching with a variable 1 : 4 ratio. In the table, before matching there are a number

of substantial differences, most notably in the building classes, age (>40 years) and amenities,

whereas after matching all these differences are smaller than 0.1. Within the framework of (4.6),

we designed the matched sample to be balanced in this way.

4.4.2 Information of the Matched Samples

Table 4.2 below shows the information content or, loosely speaking, the effective samples sizes of

the samples matched with fixed 1 : 1, 1 : 2, 1 : 3 and 1 : 4 ratios, and with a variable 1 : 4 ratio.

With a 1 : 1 ratio or pair matching, the resulting information content is 666, meaning that 666

buildings were paired. With fixed 1 : 2, 1 : 3 and 1 : 4 ratios, the information content is equivalent

to 757, 708, and 642 pairs, whereas with a variable 1 : 4 ratio it is 941. In other words, matching
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Table 4.1: Standardized differences in means before and after matching

Covariate Standardized difference in means
Before matching After matching

Building size 0.362 0.076
Building class A 1.005 0.096
Building class B -0.650 0.053
Building class C -0.557 -0.068
Net contract 0.127 0.020
Employment growth 0.043 0.000
Employment growth missing -0.010 0.000
Age ≤10 years 0.323 0.049
Age 11-20 years 0.400 0.034
Age 21-30 years 0.392 0.018
Age 31-40 years -0.066 -0.044
Age >40 years -0.974 -0.050
Age missing -0.150 -0.007
Renovated -0.389 0.033
Stories low -0.145 -0.066
Stories intermediate 0.032 0.046
Stories high 0.141 0.031
Stories missing -0.061 -0.014
Amenities 0.474 0.079

with a variable 1 : 4 ratio produces an effective sample size 47% larger than matching with a fixed

1 : 4 ratio. This shows the gains from matching with a variable ratio.

Table 4.2: Effective sample sizes as measured by I in (4.10)
Matching structure Information or effective sample size

1 : 1 fixed 666
1 : 2 fixed 757.3
1 : 3 fixed 708
1 : 4 fixed 641.6

1 : 4 variable 940.6

4.4.3 Comparison to Optimal Matching

Following the suggestion of a reviewer, we compare our method to optimal matching as implemented

in optmatch (Hansen, 2007). In optimal matching, we calculate the Mahalanobis distance with

propensity score calipers as suggested in Rosenbaum and Rubin (1985). For a strict comparison,
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in both methods we use a variable 1 : 4 matching ratio. As a result, with optimal matching the

effective sample size is somewhat smaller than with our method (730 versus 940.6) and there are

substantial imbalances in several covariates (more than half of the covariates exhibit differences

in means larger than 0.1 standard deviations). Arguably, covariate balance could be improved by

recalculating the covariate distances, but this would involve iteration in order to achieve covariate

balance (as described in Figure 1(a) above). With the proposed method, the differences in means

are constrained to be at most 0.1 standard deviations by design. However, optmatch is optimal in

another important sense — it minimizes the total sum of covariate distances between matched units

— and it runs in polynomial time, so relatively large data sets can be handled quickly (Hansen

and Klopfer, 2006). As we discuss in the following section, computation is an important aspect to

consider in the implementation of our method.

4.4.4 Computation and Details of the Implementation

Matching with a variable 1 : κC ratio, (4.10)-(4.20), as in our study, and also matching with a

flexible 1 : κC/κT : 1 ratio, (C.16)-(C.42), as in Appendix C.3, have more complicated structure

than cardinality matching, mainly due to the harmonic means used in the objective function and

mean balancing constraints. Specifically, while cardinality matching with a 1 : 1 ratio and mean

balancing has T × C binary decision variables and T + C + 2 × P constraints, matching with a

variable 1 : κC ratio with harmonic means has additional T × (κC+C) continuous decision variables

and T × (2× κC + 3× C − 1) constraints, after some simplifications.

Although these two matching problems are considerably larger than cardinality matching, by

using optimization solvers such as CPLEX and Gurobi it is still possible to reach solutions with a

small optimality gap in a reasonable amount of time depending on the problem size (see Appendix

C.4 for a simulation study using the buildings data). Nemhauser (2013) reports that algorithmic

speed in solvers such as CPLEX and Gurobi has increased 256000 times between 1991 and 2013.

This, combined with a modest computer speedup of 1000 times, translates into the ability to

solve problems that took nearly seven years in the early 1990’s to one second today (Nemhauser,

2013). These major improvements have been made possible by a combination of advancements in
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preprocessing and heuristics for finding good feasible solutions quickly, branch-and-bound methods

to reduce the feasible set, linear programming implementations as the basic tool for solving IP

and MIP problems, and parallel computing (Bixby and Rothberg, 2007, Linderoth and Lodi, 2010,

Nemhauser, 2013; see also Bertsimas, 2014 for a related discussion and applications of MIP to

statistical and machine learning).

In addition to these optimization techniques, we used exact matching constraints on the location

covariate (see Appendix C.5), and divided the problem into 10 subproblems to solve each of them in

parallel. Using the R packages doParallel and foreach (Weston and Calaway, 2014), we solved the

10 subproblems independently and simultaneously using 10 processors with 15-minute time limit.

Among these subproblems, one gives the optimal solution within the time limit, and the others

give solutions with about 2% optimality gap at the end of the specified time. This computational

implementation method enables us to solve this problem under 20 minutes. It would take more

than 2 hours to reach the same solution if no parallel computing methods were used. At the present

time, the code that we used for the analyses is available upon request, but soon it will be available

within the package designmatch for R.

4.5 Economic Performance of Green Buildings

From our balanced matched sample, we find that green buildings have 3.3% higher rental rates per

square foot than otherwise similar non-green buildings. The 95% confidence interval associated to

this estimate is [1.3%, 5.5%] (obtained using the inferential procedures in Hansen et al., 2014). For

comparison, this estimate is moderately larger than the one of Eichholtz et al. (2010), who reported

that green buildings have rental rates 2.8% higher per square foot than similar non-green buildings

(with 95% confidence interval of [1%, 4.6%]).

In principle, our estimand is not the same as the one of Eichholtz et al. (2010), since our

approach restricts the analysis to the sample with largest information that is balanced, usually

discarding some treated units (in our study, these are 19 out of the 694 green buildings available

before matching). To get a better understanding of our matched sample, in Table C.2 of Appendix
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C.6 we provide a description of the samples of green buildings before matching, after matching,

and of those green buildings that were unmatched and left out from the analyses. Overall, this

sample closely resembles that of all the available green buildings before matching, so in principle

these results can be generalized to a population of buildings of similar characteristics.

Next, when conducting a sensitivity analysis to hidden biases, we find that for an unobserved

covariate to explain away the estimated effect of 3.3% it would need to simultaneously increase the

odds of a building having green ratings and of a positive difference in rent both by a factor of 1.9,

so the results are only moderately insensitive to hidden biases (see Rosenbaum and Silber, 2009

and Hansen et al., 2014 for details of this analysis).

To interpret these results, let us remember that about 30% of building operating costs are

driven by energy consumption and that green buildings typically have 25% less energy use and

in aggregate 19% lower operating costs. Therefore, in rough terms, savings from operating costs

overcome the extra amount paid for a green building rent if the rent to operating costs ratio is 5.75

(= 0.19/0.033) or more. Thus, it is an economically sound decision for some companies to prefer

green buildings and pay more rent. Moreover, as Eichholtz et al. (2010) mention, even a small

improvement on the energy use of existing buildings has a big impact not only on the economy but

also on the environment. In this way, companies are also willing to pay more to “go green” for a

sustainable environment.

4.6 Discussion of the Proposed Matching Methods

The main objective of matching in observational studies is to balance observed covariates and

thereby remove biases due to systematic differences in their distributions (Cochran, 1965, Section

2.2). As discussed in Section 8.7 of Rosenbaum (2010), efficiency is a secondary concern in obser-

vational studies. The explanation for this is that if there is a bias that does not decrease as the

sample size increases, then it tends to dominate the mean squared error in large samples, resulting

in a very precise estimate of the wrong quantity (Haviland et al., 2007). For these reasons, in view

of the bias-variance —or, stated differently, the balance-precision— tradeoff involved in matching,



CHAPTER 4. MAXIMIZING THE INFORMATION OF A MATCHED SAMPLE 78

we give priority to balance over precision, and, subject to removing systematic biases by balancing

covariates, we maximize precision, or more specifically, the information content of the matched

sample.

The framework we proposed in Section 4.3.1 encompasses these objectives in a general way.

Within this framework, cardinality matching is a special case when matching with a fixed 1 : κ

ratio. Also, the formulations presented in Section 4.3.3, and in Appendices C.2 and C.3, are

different methods for maximizing the information content of a balanced matched sample. Ideally,

if the outcome model follows (4.1) and if the outcome analyses use the effect estimator (4.5),

then one would solve the matching problem in Appendix C.2, but as discussed this is a very

complicated optimization problem because the number of matched pairs I is also a decision variable.

Interestingly, if the solution to the cardinality matching problem uses all the available treated units,

then this solution also minimizes the variance of the effect estimator (4.5). With other estimators

or non-constant variances across units, the formulations in Section 4.3.3 and Appendix C.3 for

matching with a 1 : κC variable ratio and the more flexible 1 : κC/κT : 1 matching ratio, respectively,

may be more appropriate.3 As discussed in Section 4.2.3, these formulations are not only easier

to implement but also more intuitive as they maximize the sum of the Fisher informations of the

matched groups.

Building on cardinality matching, the proposed methods do not require estimation of the propen-

sity score as they directly balance the original covariates. Nonetheless, the propensity score may

be used as an additional covariate in the balancing constraints B. In this work we mainly discussed

mean balancing constraints, but other constraints can be implemented for distributional balance

such as fine balance (Rosenbaum et al., 2007) and strength-k matching (Hsu et al., 2015); for a

related discussion, see Zubizarreta (2012).

3 In model (4.1) we assumed that the variance is constant across units. One way to relax this assumption is to
suppose instead that the variance in the treated group is f times bigger than the variance in the control group. Then
h(κ) becomes the sum of the harmonic means of 1 (treated unit) and κi/f (“control” units) for each matched group (as
opposed to 1 and κi, as before). As another example, suppose that the variance in one category of a binary covariate
is f times bigger than in the other category. Then the weighting becomes h(κi)/f for the matched group with greater
variance and emphasizing to match f times as many groups from the strata with smaller variance. Extending this
example, there may be important strata and one could estimate the variance in those strata and plug in the estimates,
but this would require using the outcomes for matching. In general, if the variances vary arbitrarily, then the weights
become intractable.
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Assessing overlap or lack of common support in covariate distributions is a widespread practice

undertaken in observational studies in order to avoid extrapolating or fabricating results from

regression models that assume a particular functional form (Rosenbaum, 2010, Section 18.2; Imbens

and Rubin, 2015, Chapter 14). This is typically done in two steps: first, by trimming the sample

on the propensity score, and second, by checking balance. For instance, Imbens (2015) suggests

dropping units with extreme values of the estimated propensity score (Crump et al., 2009) and then

checking balance in normalized differences in average covariates. As in cardinality matching, the

methods proposed in this work directly “trim” the sample to satisfy the requirements for covariate

balance of the original covariates. To the extent that these requirements balance the covariates

adequately, these methods will avoid extrapolation by restricting the analysis to the matched treated

and control samples that overlap the most (again, in the sense of information and the balance

requirements).

Of course, restricting the analysis to the samples of treated and control units that overlap will

typically change the estimand. In the case that treated units are matched to a subset of the controls,

the estimand will cease to be the average treatment effect on the treated and it will become a more

local estimand, the average treatment effect on the matched treated units. In view of this limitation

of the data, one way to proceed without further modeling assumptions is by describing both the

matched and unmatched samples as in Appendix C.6. This provides a basic understanding of the

population to which, in principle, the results of the matched analysis can be generalized (Hill, 2008;

see also Traskin and Small, 2011 and Fogarty et al., 2015). Another way to proceed is by weighting

the matched samples to a target population of greater policy interest perhaps by using the method

in Zubizarreta (2015).

In cardinality matching, finding the largest balanced matched sample is followed by re-matching

the pairs or groups that constitute the matched sample to minimize their total sum of covariate

distances. If these covariates are predictive of the outcome, this re-matching will reduce hetero-

geneity within matched groups and therefore sensitivity to biases due to unobserved covariates

(Rosenbaum, 2005). A possible direction for future research would be to extend the proposed

methods along these lines. Also, the proposed methods can be used for adjustment in observational
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studies with a time-dependent treatment and time-dependent covariates via risk set matching (Li

et al., 2001, Lu, 2005). Under weaker identification assumptions than those of “no unmeasured

confounders,” the proposed methods can also be used for treatment effect estimation with an in-

strumental variable (Baiocchi et al., 2010, Zubizarreta et al., 2013) or a discontinuity design (Keele

et al., 2015).

4.7 Summary

In this chapter, we revisited the study of Eichholtz et al. (2010) about the market performance

of green buildings. To analyze the effect of energy efficiency and sustainability on the economic

returns of buildings, we used new matching methods that take more advantage of the clustered

structure of the buildings data than standard matching methods. We proposed a general framework

for matching in observational studies and specific matching methods within this framework that

simultaneously achieve three goals: (i) maximize the information content of a matched sample

(and, in some cases, also minimize the variance of a widely used effect estimator); (ii) form the

matches using a flexible matching structure (such as a one-to-many/many-to-one structure); and

(iii) directly attain covariate balance as specified —before matching— by the investigator. To

our knowledge, existing matching methods are only able to achieve, at most, two of these goals

simultaneously. Using these methods, we obtained a larger effective sample size and found that

green buildings have 3.3% higher rental rates per square foot than otherwise similar buildings

without green ratings (a moderately larger effect than the one previously found by Eichholtz et al.,

2010). Thus, besides being environmentally responsible it is also an economically sound decision

to pursuit environmentally sustainable building practices.
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Appendix A

Appendix to Chapter 2

A.1 Super-Linear Increase in Valuation with Congestion Sensitiv-

ity

This section uses the discrete type (v, κ) model of Section 2.3.3 but assumes that v1
κ1
≥ v2

κ2
≥ . . . ≥

vn
κn

, i.e., that the valuation rate grows super-linearly with respect to the corresponding congestion

sensitivity rate.

Model 3: v1 ≥ v2 ≥ . . . ≥ vn > 0, κ1 > κ2 > . . . > κn > 0,
v1

κ1
≥ v2

κ2
≥ . . . ≥ vn

κn
. (A.1)

The objective of the SP is to maximize its revenue by offering price vector p and availability

vector π. Similar to Lemma 1, in this setting users need only consider bids that are equal to one

of the offered price points. Here we do not introduce a separate G service at first. User types that

bid equal to the highest price level, p1, receive uninterrupted service (i.e., G service) and pay p1.

Hence, we first consider only BE service first, find the optimal pricing mechanism in this case, and

then introduce a separate G service with price p1. The next proposition characterizes the structure

of the optimal solution when the SP maximizes its revenue over the price grid and associated π’s.

Proposition 11. Consider the model specified by (A.1). Let k∗ be the number of distinct price

levels offered in BE service. Then, k∗ ≤ 2.
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Proposition 11 shows that it is optimal to offer BE service with at most two price levels. Let

these price levels be pH and pL with pH ≥ pL, and π is the fraction of time BE service is priced

at pL. If pH = pL, then the solution has only one service level, which is uninterrupted service. If

pH > pL, then customers that bid pH enjoys uninterrupted service by paying πpL + (1 − π)pH .

In this case, in addition to BE service we can offer G service with price pG := πpL + (1 − π)pH .

Customer types bidding pH previously are now indifferent between bidding pH for BE service or

paying pG for G service. To ensure that these customer types choose G service over BE service with

bid pH , we can increase pH without changing pG. Now, these customers are no longer indifferent

between the two options. Note that this change would not affect the choice of customer types that

choose to bid pL.

Next, we compare the optimal revenue that the SP makes with at most two service levels, i.e.,

two price levels, with the optimal revenue under one service level. Proposition 12 shows that the

revenue under the former case is bounded above by the latter, or equivalently, offering one price

level is optimal.

Proposition 12. Consider the model specified by (A.1). Then, k∗ = 1.

Offering BE service with one price level means that the price is constant over time and customer

types that bid this constant price get uninterrupted service, which is equivalent to G service, and

the rest of the customer types do not get any service. Thus, we conclude that offering only G

service is optimal if (v, κ) follows (A.1).

The result above is consistent with the policy identified in Katta and Sethuraman (2005),

whereat the authors showed that for the model considered in this section that optimal policy for a

SP operating a system with congestion effects (arising through the operation of an M/M/1 system)

is optimal not to inject any strategic delay. In a large scale system, the service level that arises

due to stochastic congestion effects becomes small, and in an infinite capacity system altogether

disappears; i.e., if the SP can avoid congestion effects, she will indeed select to do so. This is what

we see in our model as well. (Similarly to what we mentioned earlier the structure of the user utility

function is different in our model, so a direct application of these earlier findings is not possible.)
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A.2 Proofs

Proof. Proof of Proposition 1

1. Suppose π∗ =
B

1 +B
+ ε, ε > 0 and π̄ =

B

1 +B
, where π̄ is not one of the optimal values for

π. Then,

R(η∗H , η
∗
L, π̄)−R(η∗H , η

∗
L, π

∗) = ε
{

[(1 +B)η∗H +A] F̄ (η∗H)− [(1 +B)η∗L +A] F̄ (η∗L)
}
< 0

⇐⇒ [(1 +B)η∗H +A] F̄ (η∗H) < [(1 +B)η∗L +A] F̄ (η∗L)

=⇒ η∗H = η∗L + γ (γ > 0)

However, decreasing η∗H by γ increases R. Therefore, (η∗H , η
∗
L, π

∗) is not the optimal solution.

Contradiction.

2. If π∗ = B
1+B , then the willingness to pay for BE service is A B

1+B , which is independent of

the customer types. Therefore, η∗L is either η or η. If η∗L = η, then η∗H ≥ η since η∗L ≤ η∗H .

However, R(η, η, B
1+B ) = 0, and R(ηH , ηL,

B
1+B ) is nonnegative for all η ≤ ηL ≤ ηH ≤ η.

Therefore, η∗L = η. Finally, if η∗L = η, then p∗L = A.

3. η∗H = η∗H(1 +B)(1− π∗) = p∗G −A+ π∗(A− p∗L) ⇐⇒ η∗H − π∗(A− p∗L) = η∗H = p∗G −A.

Proof. Proof of Proposition 2 The first order condition for the objective function is

d

dηH

[(
ηH +

A

1 +B

)
F̄ (ηH)

]∣∣∣∣
ηH=η∗H

= 0

⇒F̄ (η∗H)−
(
η∗H +

A

1 +B

)
f(η∗H) = 0

⇒f(η∗H) =
F̄ (η∗H)

η∗H +
A

1 +B
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⇒: If there are two services offered, then ηH > η, which implies

d

dηH

[(
ηH +

A

1 +B

)
F̄ (ηH)

]∣∣∣∣
ηH=η

> 0 ⇒ f(η) <
1

η +
A

1 +B

⇐: Suppose (2.11) holds and the SP offers only G. This implies η∗H = η. However, if (2.11)

holds

d

dηH

[(
ηH +

A

1 +B

)
F̄ (ηH)

]∣∣∣∣
ηH=η∗H

> 0,

which contradicts the optimality condition of ηH .

Proof. Proof of Proposition 3 We allow 0 ≤ π ≤ B
1+B instead of strict inequality and show the

proposition holds for this larger feasible region. We analyze four collectively exhaustive alternatives

for the bounds of SG and SBE below.

• Case 1: ηL ≥ ηH and ηH ≥ pG −A: The revenue function becomes

R̄1 = [ηH(1 +B)(1− π) + πηL −B(1− π)ηL +A] F̄ (ηH) + [πηL −B(1− π)ηL +Aπ]F (ηH)

= [ηH + (ηL − ηH)(π −B(1− π)) +A] F̄ (ηH) + [πηL −B(1− π)ηL +Aπ]F (ηH)

R̄1 is non-decreasing in π. Hence η = B
1+B is the optimal solution. In the optimal π,

R̄1 = (ηH +A)F̄ (ηH) +
AB

B + 1
F (ηH) ≤

(
ηH +

A

1 +B

)
F̄ (ηH) +

AB

B + 1
.

Hence, the solution is sub-optimal.

• Case 2: ηL ≥ ηH and ηH < pG − A: If ηL ≥ ηH , then U1(ηH) = U2(ηH) ≥ U2(ηL) = 0 since

U2(η) is decreasing in η. Then, U1(ηH) ≥ U1(pG − A) = 0. Since U1(η) is increasing in η,

pG −A ≤ ηH . Therefore, this case is not possible.

• Case 3: ηL ≤ ηH and ηH > pG − A: If ηL ≤ ηH , then U1(ηH) = U2(ηH) ≤ U2(ηL) = 0 since
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U2(η) is decreasing in η. Then, U1(pG − A) = 0 ≥ U1(ηH). Since U1(η) is increasing in η,

pG −A ≥ ηH . Therefore, this case is not possible.

• Case 4: ηL ≤ ηH and ηH ≤ pG −A: The revenue function for this case is

R̄4 = [ηH + (ηH − ηL)(−π +B −Bπ) +A] F̄ (ηH + (ηH − ηL)(−π +B −Bπ))

+ [πηL −B(1− π)ηL +Aπ]F (ηL).

Let R̄ηL4 be the revenue function for a fixed ηL value and (ηηLH , πηL) be the optimal solution

to the problem

maximize
ηH ,π

RηL4 (ηH , π) (A.2)

subject to ηH ≥ ηL, π ≤
B

1 +B
, π ≥ 0. (A.3)

We can easily show that πηL = B
1+B . Suppose πηL < B

1+B with ηηLH = ηL. Then, R̄ηL4 (ηL, π
ηL) =

(ηL +A) F̄ (ηL)+[(πηL −B +BπηL)ηL +AπηL ]F (ηL). This function is increasing in π. Hence

ηL is not the optimal solution, contradiction. Similarly, suppose πηL < B
1+B with ηηLH > ηL.

However, the solution can be improved by decreasing ηH and increasing π simultaneously,

contradiction. Hence, πηL = B
1+B . Then

RηL4 = max

{
max
ηH

(ηH +A) F̄ (ηH) +
AB

1 +B
F (ηL) s.t. ηH ≥ ηL,

(
ηL +

A

1 +B

)
F̄ (ηL) +

AB

1 +B

}

≤ max
ηH

(
ηH +

A

1 +B

)
F̄ (ηH) +

AB

1 +B
s.t. ηH ≥ ηL.

The solution of (A.2)–(A.3) is bounded above by the problem

maximize
ηH

(
ηH +

A

1 +B

)
F̄ (ηH) +

AB

1 +B
s.t. ηH ≥ ηL.

i.e., R̄4 = max
ηL

R̄ηL4 is bounded above by R1. Hence the solution under ηL ≤ ηH and ηH ≤

pG −A is sub-optimal.
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Therefore, π ≤ B

1 +B
is sub-optimal.

Proof. Proof of Proposition 4 We start with the following lemma.

Lemma 3. For any given (pG, p2, . . . , pN ,π) that satisfies p2 ≥ p3 ≥ . . . ≥ pN ≥ 0, 1Tπ = 1,

πN ≥
B

1 +B
, and π ≥ 0, there exist η1 ≥ η2 ≥ . . . ≥ ηN such that

SG = {η|η ≥ η1} and SiBE = {η|ηi ≤ η ≤ ηi−1}, i = 2, 3, . . . , N,

and similarly, for any given (η1, η2, . . . , ηN ≥ 0,π) that satisfies η1 ≥ η2 ≥ . . . ≥ ηN , 1Tπ = 1,

πN ≥
B

1 +B
, and π ≥ 0, there exists a set of price levels pG and p2 ≥ p3 ≥ . . . ≥ pN ≥ 0.

Assuming η1 ≥ . . . ≥ ηN , the revenue function of the SP is

R = pGF̄ (η1) + p̄2(F (η1)− F (η2)) + . . .+ p̄N (F (ηN−1)− F (ηN ))

= (pG − p̄2)F̄ (η1) + (p̄2 − p̄3)F̄ (η2) . . .+ (p̄N−1 − p̄N )F̄ (ηN−1) + p̄N F̄ (ηN )

=

N−1∑
i=1

[πi(A+ ηi) +Bηiπi] F̄ (ηi) + [πN (A+ ηN )−BηN (1− πN )] F̄ (ηN ).

Therefore, the revenue maximization problem becomes

maximize
η,π

N−1∑
i=1

πi [(A+ ηi) +Bηi] F̄ (ηi) + [πN (A+ ηN )−BηN (1− πN )] F̄ (ηN ) (A.4)

subject to η1 ≥ η2 ≥ . . . ≥ ηN , πN ≥
B

1 +B
, 1Tπ = 1, π ≥ 0. (A.5)

Lemma 4. There exists an optimal solution to the problem above such that at most one of the

optimal (π1, π2, . . . , πN−1) values is nonnegative.

From Lemma 4, the problem can be simplified to

maximize
ηH ,ηL,π

(1− π) [(A+ ηH) +BηH ] F̄ (ηH) + [π(A+ ηL)−BηL(1− π)] F̄ (ηL)

subject to ηH ≥ ηL, π ≥
B

1 +B
, π ≤ 1.
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which is equivalent to the two-price-level problem.

Proof. Proof of Proposition 5 ⇒: Assume there are G and BE services in the optimal solution and

p∗ ≤ vn. If p∗ ≤ vn, then p∗ = vn by the optimality of p∗, which implies there is no customer type

that chooses no-buy option. If offering G and BE services together generates more revenue, then

there is at least one customer type that chooses BE over G.

When there is only G service, the optimal revenue is R1 =
∑n

i=1 λivn. When there are two

services, the optimal revenue is R2 =
∑

i∈S1
λipG +

∑
i∈S2

λip̄[i], where S1 is the set of customer

types that chooses G and S2 is the set of customer types that chooses BE (S1 ∩ S2 = ∅ and

S1 ∪ S2 = {1, 2, . . . , n}). pG is the optimal price for G service, which implies pG = vM where

M = max{i|i ∈ S1}, and p̄[i] =
∑N

j=[i] πjpj which is the payment of customer type i with her

optimal bid value p[i].

Now we will show that p̄[i] < pG = vM ∀i ∈ S2. Suppose p̄[k] ≥ pG = vM , k ∈ S2. Since k ∈ S2,

π̄[k]vk−(1−π̄[k])κk− p̄[k] ≥ vk−vM , where π̄[k] =
∑N

j=[k] πj . If p̄[k] ≥ vM , then π̄[k]vk−(1−π̄[k])κk ≥

vk, which is not possible since π̄[k] < 1. Therefore, p̄[i] < pG = vM ∀i ∈ S2.

R2 =
∑
i∈S1

λipG +
∑
i∈S2

λip̄[i] <
n∑
i=1

λipG ≤
n∑
i=1

λip
∗,

where the second inequality comes from the optimality of p∗ in one product case. Therefore,

offering G and BE services together does not generate more revenue than offering only G service.

Contradiction.

⇐: Let H = argmin
1≤i≤n

{p∗ ≥ vi}. From the optimality of p∗, vH = p∗, and the set of customer

types {1, 2, . . . ,H} choose G. If we offer a BE service such that no customer types from the set

{1, 2, . . . ,H} prefer BE and at least one customer type from the set {H + 1, H + 2, . . . , n} chooses

BE, then the revenue generated by G and BE services together becomes higher than that of G

service only.
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Set π =
κH − κH+1

vH − vH+1 + κH − κH+1
, p2 =

κHvH+1 − κH+1vH
κH − κH+1

and p1 =∞. Then,

vi − p∗ ≥ πvi − (1− π)κi − πp2 for i ≤ H and πvH+1 − (1− π)κH+1 − πp2 ≥ 0,

which implies all customer types i ≤ H choose G and customer type H + 1 chooses BE service.

Proof. Proof of Proposition 11 Let p[i] be the optimal bid for customer type i. Therefore, customer

type i either makes a bid of p[i] or leaves the system with no purchase. Clearly, customers with

high valuations prefer bidding higher, that is, p[i] is non-increasing in i. Let s ∈ {1, 2, . . . , n} be

the highest customer index that makes a bid, which is determined by p and π. Therefore, s is not

a decision variable. However, an alternative way to solve the problem is to find the optimal p and

π for any possible s value, and then choose the s that generates the maximum revenue. Now we

characterize and solve the revenue maximization problem for a given s value.

For any k ∈ {1, 2, . . . , n− [i]}, type i customer prefers bidding p[i] over p[i]+k if

U2(vi, κi, p[i]) ≥ U2(vi, κi, p[i]+k)

π̄[i]vi − κi(1− π̄[i])− p̄[i] ≥ π̄[i]+kvi − κi(1− π̄[i]+k)− p̄[i]+k

(π̄[i] − π̄[i]+k)(vi + κi) ≥ p̄[i] − p̄[i]+k, i = 1, . . . , s (A.6)

and prefers bidding p[i] over p[i]−k if

U2(vi, κi, p[i]−k) ≤ U2(vi, κi, p[i])

⇔ π̄[i]−kvi − κi(1− π̄[i]−k)− p̄[i]−k ≤ π̄[i]vi − κi(1− π̄[i])− p̄[i]

⇔ (π̄[i]−k − π̄[i])(vi + κi) ≤ p̄[i]−k − p̄[i]. i = 1, . . . , s (A.7)

Lastly, type i customer prefers bidding p[i] over no bidding (i.e., leaving the system with no

purchase) if

π̄[i]vi − κi(1− π̄[i])− p̄[i] ≥ 0. i = 1, . . . , s (A.8)
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Lemma 5. π̄[i]vi − κi(1− π̄[i]) is decreasing in i (i ≤ s).

Lemma 6. (A.8) can be simplified to

π̄[s]vs − κs(1− π̄[s])− p̄[s] ≥ 0. (A.9)

For a given s, the objective function for the SP is

Rs =
s∑
i=1

λip̄[i] =
s−1∑
j=1

j∑
i=1

λi(p̄[j] − p̄[j+1]) +
s∑
i=1

λip̄[s].

Therefore, the revenue maximization problem can be written as

maximize
π,p

Rs =

s−1∑
j=1

j∑
i=1

λi(p̄[j] − p̄[j+1]) +

s∑
i=1

λip̄[s] (A.10)

subject to (π̄[i] − π̄[i]+k)(vi + κi) ≥ p̄[i] − p̄[i]+k i = 1, . . . , s; k = 1, 2, . . . , N − [i] (A.11)

(π̄[i]−k − π̄[i])(vi + κi) ≤ p̄[i]−k − p̄[i] i = 1, . . . , s; k = 1, 2, . . . , [i]− 1 (A.12)

π̄[s]vs − κs(1− π̄[s])− p̄[s] ≥ 0 (A.13)

p1 ≥ p2 ≥ . . . ≥ pN ≥ 0 (A.14)

1Tπ = 1, π ≥ 0. (A.15)

Lemma 7. Let (π∗,p∗) denote an optimal solution to the problem above. Then,

p∗[1] = p∗[1]+1 = . . . = p∗[2]−1 = v1 + κ1,

p∗[2] = p∗[2]+1 = . . . = p∗[3]−1 = v2 + κ2,

...

p∗[s−1] = p∗[s−1]+1 = . . . = p∗[s]−1 = vs−1 + κs−1,

p∗[s] = p∗[s]+1 = . . . = p∗N = vs + κs −
κs
π̄∗[s]

.

(A.16)
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Lemma 7 simplifies the revenue maximization problem to

maximize
π

Rs =

s−1∑
j=1

j∑
i=1

λi(π̄[j] − π̄[j+1])(vj + κj) +

s∑
i=1

λi
[
π̄[s](vs + κs)− κs

]
subject to π̄[s] ≥

κs
vs + κs

, 1Tπ = 1, π ≥ 0.

This problem has N decision variables. It can be simplified further using the following change

of variables

α0 = 1− π̄[1]

αi = π̄[i] − π̄[i+1] i = 1, 2, . . . , s− 1

αs = π̄[s]

where αi can be interpreted as the time that the price level is equal to vi +κi for i = 1, 2, . . . , s− 1,

α0 as the time that the price level is above v1 + κ1 and αs as the time that the price level is at its

minimum.

Therefore, the problem becomes

maximize
α0,α1,...,αs

Rs =
s∑
j=1

j∑
i=1

λiαj(vj + κj)−
s∑
i=1

λiκs (A.17)

subject to αs ≥
κs

vs + κs
, α0 + α1 + . . .+ αs = 1, α0, α1, . . . , αs ≥ 0. (A.18)

Lemma 8. Let (α∗0, α
∗
1, . . . , α

∗
s) denote the optimal solution to (A.17)–(A.18) and k = argmax

j∈{1,...,s}
{(vj+

κj)
∑j

i=1 λi}. If k = s, α∗0 = α∗1 = . . . = α∗s−1 = 0, α∗s = 1, else α∗0 = . . . = α∗k−1 = α∗k+1 = . . . =

α∗s−1 = 0, α∗k = vs
vs+κs

, α∗s = κs
vs+κs

.

Lemma 8 shows that the SP offers at most two price levels, and there is no price level higher

than the bid of the highest value customer. Since this result holds for any s, it also holds for the

optimal s. Therefore, the optimal solution has at most two price levels.

Proof. Proof of Proposition 12 The proposition is equivalent to the following statement.



APPENDIX A. APPENDIX TO CHAPTER 2 102

Let Π2 be optimal revenue that the SP achieves by offering at most two price levels:

Π2 = max
1≤s≤n

Rs,

and Π1 be the optimal revenue by offering only one price level:

Π1 = vk∗
k∗∑
i=1

λi

where k∗ = argmax
j∈{1,2,...,n}

{
vi
∑j

i=1 λi

}
. Then, Π2 = Π1.

If k∗ = n, i.e., all customers are served with the price vn, degrading the service for some

customers would not increase the revenue, therefore, k∗ < n is the first condition to offer two price

levels. We need to find two indexes, k and k, the high-level threshold and low-level threshold,

respectively, such that customer types {1, 2, . . . , k} bid high price level, {k+1, k+2, . . . , k} bid low

price level, and {k + 1, k + 2, . . . , n} leave the system (k ≤ k ≤ n). Thus, the optimal solution for

the two-price case can be written as

Π2 = (1− αk)(vk + κk)

k∑
i=1

λi + αk(vk + κk)

k∑
i=1

λi − κk
k∑
i=1

λi,

Since αk =
κk

vk+κk
from Lemma 8, the optimal revenue for two-price level case becomes

Π2 =
vk

vk + κk

(
vk + κk

) k∑
i=1

λi.

Next we need to find k and k such that Π2 > Π1. Note that Π2 is decreasing in k. Therefore,

k = k. However, this means that no customer type bids low price level, which is equivalent to one

price level solution. Therefore, Π2 = Π1.

A.3 Additional Proofs

Proof. Proof of Lemma 1 Bidding a value between two price levels is the same as bidding the
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lower price level amount in terms of availability of the product and payment amount, therefore

sub-optimal.

Proof. Proof of Lemma 3 SiBE contains all η values that satisfy the following constraints

U2(η, pi) ≥ U2(η, pi+j), j = 1, . . . , N − i (A.19)

U2(η, pi) ≥ 0, (A.20)

U2(η, pi) ≥ U2(η, pi−j), j = 1, . . . , i− 2 (A.21)

U2(η, pi) ≥ U1(η). (A.22)

There exists an η
i

such that any η ≥ η
i

satisfies (A.19) and (A.20). Similarly, there exists an

ηi such that any η ≤ ηi satisfies (A.21) and (A.22). Hence, SiBE = {η|η
i
≤ η ≤ ηi}. For the rest of

the analysis, we assume η
i
≤ ηi for i = 2, 3, . . . , N .

Next, we will show that ηi+1 ≤ η
i

for i = 2, 3, . . . , N − 1. Suppose there exists an i such

that ηi+1 > η
i
. Then, since π̄i ≥ π̄i+1 ≥ 0, U2(ηi+1, pi) > U2(ηi+1, pi+1). However, from A.21,

U2(ηi+1, pi+1) ≥ U2(ηi+1, pi). Contradiction. Therefore, ηi+1 ≤ ηi for i = 2, 3, . . . , N − 1.

Now, we will find conditions for η
i
, ηi for i = 2, 3, . . . , N . First, we show that U2(η

i
, pi) =

U2(η
i
, pi+1) for i = 2, 3, . . . , N − 1. Suppose it is not true, which implies U2(η

i
, pi) = U2(η

i
, pi+k) >

U2(η
i
, pi+1) for some k > 1. Moreover, U2(ηi+1, pi+1) ≥ U2(ηi+1, pi+k). Since η

i
≥ ηi+1 and

U ′2(η, pi+1) ≥ U ′2(η, pi+k), U2(η
i
, pi+1) ≥ U2(η

i
, pi+k). Contradiction. Therefore, U2(η

i
, pi) =

U2(η
i
, pi+1). For i = N , U2(η

N
, pN ) = 0. Second we show that U2(ηi, pi) = U2(ηi, pi−1) for

i = 3, 4, . . . , N . Suppose not true, which implies U2(ηi, pi) = U2(ηi, pi−k) > U2(ηi, pi−1) for some

k > 1. Moreover, U2(η
i−1
, pi−1) ≥ U2(η

i−1
, pi−k). Since η

i−1
≥ ηi and U ′2(η, pi−1) ≥ U ′2(η, pi−k),

U2(ηi, pi−1) ≥ U2(ηi, pi−k). Contradiction. Therefore, U2(ηi, pi) = U2(ηi, pi−1). For i = 2,

U2(η2, p2) = U1(η2). From the two conditions on η
i

and ηi, we reach η
i−1

= ηi for i = 3, 4, . . . , N .

Next step is to rename the boundaries. Let ηi = η
i

for i = 2, 3, . . . , n and η1 = η2. This

concludes the first part of the proposition.

For any given (η1, η2, . . . , ηN ,π) that satisfies η1 ≥ η2 ≥ . . . ≥ ηN , 1Tπ = 1, πN ≥
B

1 +B
, and

π ≥ 0, the following prices satisfy p2 ≥ p3 ≥ . . . ≥ pn ≥ 0 and they are aligned with SG and SiBE ,



APPENDIX A. APPENDIX TO CHAPTER 2 104

i = 2, 3, . . . , N :

pG = A+ η1,

pi = A+ ηi +Bηi, i = 2, 3, . . . , N − 1,

pN = A+ ηN +BηN −
BηN
πN

.

Proof. Proof of Lemma 4 Let (η∗,π∗) be an optimal solution. Assume that there are two π∗i

(i = 1, 2, . . . , N − 1) values such that π∗j > 0, π∗k > 0, and all others are equal to 0. Without loss

of generality, j < k which implies η∗j ≥ η∗k. If η∗j = η∗k, then another optimal solution would be

π∗j := π∗j +π∗k and π∗k := 0, which has only one nonnegative πi value for i = 1, . . . , N −1. If η∗j > η∗k,

then there are three possible cases:

Case 1: [(A+ η∗j ) + Bη∗j ] = [(A+ η∗k) + Bη∗k]: π
∗
j := π∗j + π∗k and π∗k := 0 is another optimal solution

where at most one π value is nonnegative.

Case 2: [(A + η∗j ) + Bη∗j ] > [(A + η∗k) + Bη∗k]: π∗j := π∗j + π∗k and π∗k := 0 give a better solution,

contradiction.

Case 3: [(A + η∗j ) + Bη∗j ] < [(A + η∗k) + Bη∗k]: π∗j := 0 and π∗k := π∗j + π∗k give a better solution,

contradiction.

Therefore, there cannot be two nonnegative πi values (i = 1, 2, . . . , N−1). Using the same idea,

we can generalize the result to more than two nonnegative value case.

Proof. Proof of Lemma 5 From (A.8) and prices being nonnegative,

π̄[i] ≥
κi

vi + κi
, i = 1, . . . , s
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and since vi
κi

is decreasing in i,

κi+1

vi+1 + κi+1
≥ κi
vi + κi

. i = 1, 2, . . . , s− 1.

Using these two inequalities and π̄[i] being decreasing in i, for any i = 1, 2, . . . , s− 1,

π̄[i]vi − κi(1− π̄[i]) = π̄[i](vi + κi)− κi

= π̄[i+1](vi + κi) + (π̄[i] − π̄[i+1])(vi + κi)− κi

= π̄[i+1] [vi + κi − (vi+1 + κi+1)] + (π̄[i] − π̄[i+1])(vi + κi)− κi + π̄[i+1](vi+1 + κi+1)

≥ κi+1

vi+1 + κi+1
(vi + κi)− κi+1 + (π̄[i] − π̄[i+1])(vi + κi)− κi + π̄[i+1](vi+1 + κi+1)

≥ κi
vi + κi

(vi + κi)− κi+1 + (π̄[i] − π̄[i+1])(vi + κi)− κi + π̄[i+1](vi+1 + κi+1)

= π̄[i+1](vi+1 + κi+1)− κi+1 + (π̄[i] − π̄[i+1])(vi + κi)

≥ π̄[i+1](vi+1 + κi+1)− κi+1

= π̄[i+1]vi+1 − κi+1(1− π̄[i+1])

Proof. Proof of Lemma 6 Using Lemma 5, it can easily be shown that

π̄[i+1](vi + κi)− κi ≥ π̄[i+1](vi+1 + κi+1)− κi+1. i = 1, 2, . . . , s− 1

Then, using (A.6), for any i = 1, 2, . . . , s− 1,

π̄[i]vi − κi(1− π̄[i])− p̄[i] = π̄[i](vi + κi)− κi − p̄[i+1] − (p̄[i] − p̄[i+1])

≥ π̄[i](vi + κi)− κi − p̄[i+1] − (π̄[i] − π̄[i+1])(vi + κi)

= π̄[i+1](vi + κi)− κi − p̄[i+1]

≥ π̄[i+1](vi+1 + κi+1)− κi+1 − p̄[i+1].
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Therefore,

π̄[1]v1 − κ1(1− π̄[1])− p̄[1] ≥ π̄[2]v2 − κ2(1− π̄[2])− p̄[2] ≥ . . . ≥ π̄[s]vs − κs(1− π̄[s])− p̄[s] ≥ 0.

Proof. Proof of Lemma 7 First, we need to show that (A.16) is a feasible solution. Since vi + κi is

decreasing in i, and (A.13) implies π̄∗[s] ≥
κs

vs+κs
> 0, the solution satisfies (A.14). (A.15) is trivially

satisfied since (A.16) does not impose anything on π and uses the optimal π∗, which is also feasible.

(A.13) holds with equality. Trivially (A.11) and (A.12) are also satisfied. Therefore, (A.16) is a

feasible solution. Now we need to show that this solution is optimal. The objective function is

equivalent to

Rs =
s∑
i=1

λip̄[i],

where all p̄[i] variables have nonnegative coefficients. Moreover, (A.16) provides a solution where

all p variables are equal to their upper bounds. Therefore, the solution is an optimal solution.

Proof. Proof of Lemma 8 Suppose k = s and α∗s = 1 − ε with α∗j = ε (0 ≤ j < s, ε > 0). Since

(vs + κs)
∑s

i=1 λi > (vj + κj)
∑j

i=1 λi, αs = 1, αj = 0 gives a higher objective function value.

Contradiction. Similarly, if k < s, α∗s has to be equal to its lower bound in the optimal solution.

If argmax
j∈{1,...,s}

{(vj + κj)
∑j

i=1 λi} is not unique, there are alternative optimal solutions which has a

solution given above. This proves that the SP offers at most two price levels. Moreover, since k > 0,

α∗s = 0, which means the fraction of time the price level is above v1 +κ1 is equal to zero. Therefore,

the price never goes beyond the bid of the highest value customer, which is equal to v1 + κ1.
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Appendix B

Appendix to Chapter 3

B.1 Proofs

Proof of Lemma 2. Suppose i ∈ I(p1, q1) and i 6∈ I1(p1, q1) ∪ I2(p1, q1). If i ∈ I(p1, q1), then

vi ≥
ci + p1

q1
. If i 6∈ I1(p1, q1) ∪ I2(p1, q1) then vi <

ci + p1

q1
and vi <

ci + 2p1

2αq1
. Contradiction.

Proof of Proposition 6. It is enough to show that Πk+1(p1, q1) ≥ Πk(p1, q1) for any (p1, q1) and

k ≥ 1.

We can easily show the inequality holds for k = 1 case, i.e., Π2(p1, q1) ≥ Π1(p1, q1) for any

(p1, q1).

Π2(p1, q1) =
∑

i∈I1(p1,q1)

λip1
wi
q1

+
∑

i∈I2(p1,q1)

λip1
wi
αq1

≥
∑

i∈I1(p1,q1)

λip1
wi
q1

+
∑

i∈I2(p1,q1)

λip1
wi
q1

≥
∑

i∈I(p1,q1)

λip1
wi
q1

= Π1(p1, q1).

The same procedure follows for any k > 1.

Proof of Proposition 7. Let fk(c) =
c+ 2k−1p1

2k−1αk−1
. fk(c) is linearly increasing in c for any nonnegative

integer k. The slope of fk(c) is
1

2k−1αk−1
which is decreasing in k. Hence, for any k, if

c̄+ 2kp1

2kαkq1
≤
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c̄+ 2k−1p1

2k−1αk−1q1
for a given c̄, then the inequality holds ∀ c ≥ c̄.

Let ck be the level such that fk+1(ck) = fk(ck) (which implies fk+1(c) ≤ fk(c) ∀ c ≥ ck). If

ci ∈ [0, c1), then customer type i chooses the first quality level, and if ci ∈ [ck−1, ck). then customer

type i chooses quality level k.

Finally, if fk+1(ck) =
ck + 2kp1

2kαk
=
ck + 2k−1p1

2k−1αk−1
= fk(ck), then ck =

2kp1(1− α)

2α− 1
for 0.5 < αj <

1.

Proof of Proposition 8. The revenue function can be rewritten as

Π4(p1, q1) =
1

c̄

p1

q1

{
1

α3
min

{
8α3vq1 − 8p1, c̄

}
−
(

1

α3
− 1

α2

)
min

{
8p1(1− α)

2α− 1
, c̄

}
−
(

1

α2
− 1

α

)
min

{
4p1(1− α)

2α− 1
, c̄

}
−
(

1

α
− 1

)
min

{
2p1(1− α)

2α− 1
, c̄

}}
.

First, in the optimal solution, there will be some customer types that choose the highest quality

product (by assumption), which implies

8α3vq1 − 8p1 ≥ c̄ >
8p1(1− α)

2α− 1
. (B.1)

Therefore, the revenue function can be written as

Π4(p1, q1) =
1

c̄

p1

q1

{
1

α3
min

{
8α3vq1 − 8p1, c̄

}
−
(

1

α3
− 1

α2

)
8p1(1− α)

2α− 1

−
(

1

α2
− 1

α

)
4p1(1− α)

2α− 1
−
(

1

α
− 1

)
2p1(1− α)

2α− 1

}
.

Assume (p̄1, q̄1) is a global maximizer of the function above with 8α3vq̄1 − 8p̄1 > c̄. Since

Π4(p̄1, q̄1) ≥ Π4(0, q̄1) ≥ 0, it can easily be shown that Π4(p̄1, q̄1 − ε) ≥ Π4(p̄1, q̄1) for a positive ε.

Hence, 8α3vq∗1 − 8p∗1 = c̄ where (p∗1, q
∗
1) is the optimal base price, base quality level couple. Using

this equality, the revenue function can be rewritten as

Π4(p1) =
1

c̄

{
8α3vp1

c̄+ 8p1

[
1

α3
c̄− 8p1(1− α)2

(2α− 1)α3
− 4p1(1− α)2

(2α− 1)α2
− 2p1(1− α)2

(2α− 1)α

]}
,
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where p1 ∈
[
0,
c̄(2α− 1)

8(1− α)

)
. The upper bound is found by using (B.1). Then,

p∗1 = argmax
0≤p1<

c̄(2α−1)
8(1−α)

{
8α3vp1

c̄+ 8p1

[
1

α3
c̄− 8p1(1− α)2

(2α− 1)α3
− 4p1(1− α)2

(2α− 1)α2
− 2p1(1− α)2

(2α− 1)α

]}
,

Π4(p1) has a global maximum in
[
0, c̄(2α−1)

8(1−α)

)
and the first order conditions give

p∗1 = {p1 > 0 | c̄2(2α− 1) = 4p1(c̄+ 4p1)(1− α)(4− 2α− α2)}.

The positive root of p∗1 is

p∗1 =
−α3c̄− α2c̄+ 6αc̄− 4c̄

8(α3 + α2 − 6α+ 4)
+

√
α6c̄2 + 2α5c̄2 − 3α4c̄2 − 8α2c̄2 + 8αc̄2

8(α3 + α2 − 6α+ 4)
,

which is equivalent to (3.3).

Proof of Proposition 9. 1. vq̄

(
2α− 2α− 1

α

)
≤ c̄ implies q̄ ≤ 2c̄

v
. Hence, the revenue of the

one-quality-level case is
v2q̄

4c̄
. Under the given conditions, the revenue of the two-quality-level

case is
v2q̄(2α− 1)

2αc̄
. For positive v and c̄,

v2q̄(2α− 1)

2αc̄
>
v2q̄

4c̄

when
2

3
< α < 1.

2. Let Π∗2 be the optimal revenue when two quality levels are offered, with the optimal base

quality level q̄ (optimal base quality level has to be equal to q̄ when the condition in the first

point is satisfied), and the optimal base price p∗2. Let Π̄2 be the revenue when the service

provider offers only the second quality level with price 2p∗2. Then Π̄2 > Π∗2, since the second

quality level still gives nonnegative utility to the customer types that chose the first quality

level when the first quality level is present, and they pay more than before. Now, assume
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that the new highest base quality level is 2αq̄, and follow the first item of this proposition.

3. The same idea follows.

Proof of Proposition 10. First, we write down the first order conditions for p1:

pe1 =
pe2q1

2q2
.

Then, we separate the second provider’s problem into two cases, (P1) and (P2), and solve both.

(P1) : maximize
p2

1

c̄

p2

q2

[
vq2 − p2 −

p2q1 − p1q2

q2 − q1

]
subject to p2 ≥ vq2 − c̄.

By taking the derivative of the revenue function and then plugging pc1 for p1, we reach

px2 = max
{
vq2 − c̄,

2vq2(q2 − q1)

4q2 − q1

}
.

(P2) : maximize
p2

1

c̄

p2

q2

[
c̄− p2q1 − p1q2

q2 − q1

]
subject to p2 ≤ vq2 − c̄.

By taking the derivative of the revenue function and then plugging pc1 for p1, we reach

py2 = min
{
vq2 − c̄,

2c̄(q2 − q1)

3q1

}
.

If both (P1) and (P2) give a negative revenue in the optimal solution, then, pe2 = 0 which

generates zero revenue; otherwise, pe2 = argmax
p2∈{px2 ,p

y
2}
R(p2)
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Appendix C

Appendix to Chapter 4

C.1 Computational Complexity of Cardinality Matching

In complexity theory, computational problems are categorized in terms of their inherent difficulty,

usually in connection with the time it takes to find a solution (Papadimitriou, 1994). While some

problems can be solved quickly, with algorithms that run in polynomial time, other problems cannot.

Problems that can be solved with polynomial time algorithms are considered tractable in the sense

that the number of arithmetic steps it takes to solve a problem instance increases as a polynomial

function of the size of the problem. For instance, the assignment problem of matching treated

and controls units to minimize the total sum of covariate distances between matched units (as in

Rosenbaum, 1989) is considered tractable because it has a worst-case time bound of O(U3) where

U is the number of units available before matching (Kuhn, 1955; Bertsekas, 1981; Papadimitriou

and Steiglitz, 1982). General IP and MIP problems are NP-hard in the sense that no polynomial

time algorithm has been found to solve any problem in their general class so far.

Cardinality matching (4.7)-(4.9) is an IP problem and, although a polynomial time algorithm

has not been found to solve this specific problem, from a user standpoint the time it takes in practice

to solve a typical instance of this problem is comparable to the time it takes to solve the assignment

problem. In the cardinality matching problem the constraint matrix defined by (4.8)-(4.9) is not

totally unimodular (meaning that the feasible region it defines is not an integral polyhedron, so
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the problem cannot be solved by relaxing the original problem and solving a linear program as in

the assignment problem), however there is much structure in the constraints (4.8)-(4.9) so it can

be solved in reasonable time with modern optimization solvers.

C.2 Matching to Minimize the Variance of a Difference-in-Means

Effect Estimator

Consider the effect estimator (4.5) and calculate its variance

∑
i∈I

Var(δ̂) =
σ2

I2

∑
i∈I

(
1 +

1

κi

)
. (C.1)

Ideally, within the matching framework of (4.6), we would define the information content I as

the inverse of this variance; however, since the number of matched pairs I is also a decision variable,

the resulting optimization problem is very complicated. A simplification is to fix I by matching all

the treated units with a variable 1 : κC ratio. For fixed I, the variance of the effect estimator is

proportional to ∑
i∈I

Var(δ̂) ∝
∑
i∈I

1

κi
. (C.2)

Put `(κi) = 1
κi

. Since maximizing the inverse of the variance is equivalent to minimizing the

variance, the problem we want to solve can be written as

min
m,n
{V(m,n) : (m,n) ∈M∩ B} (C.3)

where

V(m,n) =
∑
t∈T

`(nt), (C.4)

M =

{∑
c∈C

mtc = nt, t ∈ T ;nt ≤ κC , t ∈ T ;
∑
t∈T

mtc ≤ 1, c ∈ C;

mtc ∈ {0, 1}, t ∈ T , c ∈ C;nt ≥ 1, t ∈ T

}
,

(C.5)
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B =

{
−εpT ≤

∑
t∈T

xt,p −
∑
c∈C

(∑
t∈T

mtc`
(nt)

)
xc,p ≤ εpT,

p ∈ P,mtc ∈ {0, 1}, t ∈ T , c ∈ C;nt ≥ 1, t ∈ T

}
.

(C.6)

Note that the set B above is only written for mean balancing constraints. In a similar way to

the model described in Chapter 4, `(nt) and mtc`
(nt) have to be linearized using m

(r)
t s (t ∈ T , r ∈

{2, 3, . . . , κC − 1}). The only difference is we do not need m
(1)
t , it is set to 1 since all treated units

are forced to be matched with at least one control unit in this formulation. Therefore,

m
(r)
t ≤ nt −

r−1∑
s=2

m
(s)
t − 1, t ∈ T , r ∈ {2, . . . , κC−1} (C.7)

κCm
(r)
t ≥ nt −

r−1∑
s=2

m
(s)
t − 1, t ∈ T , r ∈ {2, . . . , κC−1}, (C.8)

and

wt := `(nt)

= 1 +

κC−1∑
s=2

(
1

s
− 1

s− 1

)
m

(s)
t +

(
1

κC
− 1

κC − 1

)(
nt −

κC−1∑
s=2

m
(s)
t − 1

)
.

(C.9)

To linearize mtc`
(nt), define qtc = mtc`

(nt) which can be formulated as

qtc ≤ mtc, t ∈ T , c ∈ C (C.10)

qtc ≤ wt, t ∈ T , c ∈ C (C.11)

qtc ≥ wt − (1−mtc), t ∈ T , c ∈ C. (C.12)

Lastly, we define wc =
∑

t∈T qtc, c ∈ C, and rewrite mean balancing constraints

− εpT ≤
∑
t∈T

xt,p −
∑
c∈C

wcxc,p ≤ εpT, p ∈ P. (C.13)
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C.3 Matching with a Flexible 1 : κC/κT : 1 Ratio

First, let us define gt and gc

gt =


h(nt) if nt ≥ 2∑

c∈Cmtc
h(nc)

nc
if nt ≤ 1

t ∈ T , (C.14)

gc =


h(nc) if nc ≥ 2∑

t∈T mtc
h(nt)

nt
if nc ≤ 1

c ∈ C. (C.15)

Then, the problem can be formulated as

I(m,n) =
∑
t∈T

gt, (C.16)

M =M1 ∩M2 ∩M3 (C.17)

where

M1 =

{∑
c∈C

mtc = nt, t ∈ T ;nt ≤ κC , t ∈ T ;mtc ∈ {0, 1}, nt ≥ 0, t ∈ T

}
, (C.18)

M2 =

{∑
t∈T

mtc = nc, c ∈ C;nc ≤ κT , c ∈ C;mtc ∈ {0, 1}, nc ≥ 0, c ∈ C

}
, (C.19)

M3 = {(nt − 1)(nc − 1)mtc = 0, t ∈ T , c ∈ C;mtc ∈ {0, 1}, t ∈ T , c ∈ C;

nt ≥ 0, t ∈ T ;nc ≥ 0, c ∈ C} ,
(C.20)

and

B =

{
−εp

∑
t∈T

gt ≤
∑
t∈T

gtxt,p −
∑
c∈C

gcxc,p ≤ εp
∑
t∈T

gt, p ∈ P;

mtc ∈ {0, 1}, t ∈ T , c ∈ C;nt ≥ 0, t ∈ T ;nc ≥ 0, c ∈ C

}
.

(C.21)
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Note that gt, gc and the constraint setM3 have to be written in linear form. Let us define m
(r)
c ,

w
(1)
c and w

(2)
c analogous to m

(r)
t , w

(1)
t , and w

(2)
t . The decision variable m

(r)
c is equal to 1 if control

unit c is matched with at least r number of treated units, and 0 otherwise (c ∈ C, r ∈ {1, . . . , κT −1}).

With linear constraints

m(r)
c ≤ nc −

κT −1∑
s=1

m(s)
c , c ∈ C, r ∈ {1, . . . , κT − 1} (C.22)

κTm
(r)
c ≥ nc −

κT −1∑
s=1

m(s)
c . c ∈ C, r ∈ {1, . . . , κT − 1} (C.23)

Using m
(r)
c ,

w(1)
c :=

κT −1∑
s=1

(
h(s) − h(s−1)

)
m(s)
c +

(
h(κT ) − h(κT −1)

)(
nc −

κT −1∑
s=1

m(s)
c

)
, (C.24)

w(2)
c :=

κT −1∑
s=1

(
h(s)

s
− h(s−1)

s− 1

)
m(s)
c +

(
h(κT )

κT
− h(κT −1)

κT − 1

)(
nc −

κT −1∑
s=1

m(s)
c

)
, (C.25)

where h(0)

0 is set to 0.

Now, we can rewrite gt and gc as

gt =


w

(1)
t , if m

(2)
t = 1∑

c∈Cmtcw
(2)
c , if m

(2)
t = 0

, t ∈ T (C.26)

gc =


w

(1)
c , if m

(2)
c = 1∑

t∈T mtcw
(2)
t , if m

(2)
c = 0

. c ∈ C (C.27)

The expressions mtcw
(2)
c and mtcw

(2)
t are still not in linear form; therefore, we define two new

sets of decision variables utc := mtcw
(2)
c and vtc := mtcw

(2)
t , and formulate them in the following
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way:

utc ≤ mtc, t ∈ T , c ∈ C (C.28)

utc ≤ w(2)
c , t ∈ T , c ∈ C (C.29)

utc ≥ w(2)
c − (1−mtc), t ∈ T , c ∈ C (C.30)

vtc ≤ mtc, t ∈ T , c ∈ C (C.31)

vtc ≤ w(2)
t , t ∈ T , c ∈ C (C.32)

vtc ≥ w(2)
t − (1−mtc). t ∈ T , c ∈ C (C.33)

As the last step, we write gt and gc using conditional constraints

gt ≤ h(κC)m
(2)
t +

∑
c∈C

utc, t ∈ T (C.34)

gt ≤ 1−m(2)
t + w

(1)
t , t ∈ T (C.35)

gt ≥
∑
c∈C

utc − κCm(2)
t , t ∈ T (C.36)

gt ≥ w(1)
t −

(
1−m(2)

t

)
h(κC), t ∈ T (C.37)

gc ≤ h(κT )m(2)
c +

∑
t∈T

vtc, c ∈ C (C.38)

gc ≤ 1−m(2)
c + w(1)

c , c ∈ C (C.39)

gc ≥
∑
t∈T

vtc − κTm(2)
c , c ∈ C (C.40)

gc ≥ w(1)
c −

(
1−m(2)

c

)
h(κT ). c ∈ C (C.41)

Finally, constraint set M3 can be written in linear form as

m
(2)
t +m(2)

c ≤ 2−mtc. t ∈ T , c ∈ C (C.42)
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C.4 Running Times

Here we present the results of a small simulation study to provide a sense of the running times of the

proposed methods. In the original data, we have 694 clusters with one treated (green) building and

multiple control buildings. In the simulation study, we randomly selected 100, 500 and 2000 clusters

with replacement, and for each of these number of clusters we tested our method with different

number of covariates: 5, 10, 20, and 50. For covariate sizes 5 and 10 we randomly selected the

covariates from our covariate set, and for covariate sizes 20 and 50 (since there are not that many

covariates to begin) we included interactions of covariates that are fairly independent of each other.

As in the actual study, we divided each of the optimization problem into 10 subproblems using

exact matching constraints (as explained in Appendix C.5) and solved each of them in parallel. We

gave a time limit of 60 minutes to each of the problems. The results are presented in the following

tables.

Table C.1(a) presents the running times and optimality gaps for the method used in the actual

study; this is, matching with a variable 1 : 4 ratio with the weighted balancing constraints (4.12).

In each cell of the table, the first row shows the running time of the optimization problem, which is

the maximum running time of the 10 subproblems. (Since these problems are run in parallel, the

total running time of the optimization portion is the maximum running time of all the subproblems.

A running time greater than 60 minutes indicates that an optimal solution would be found after

the reported duration.) The second row shows the optimality gaps in terms of the maximum

effective sample size reached in the given time limit and the tightest upper bound found by the

solver after the branch and bound procedure also within the time limit. One can evaluate how

close the provided solution is to the theoretical solution from these numbers. In the table, we

observe that one can obtain relatively small optimality gaps within the time limit for samples of

size (nt, nc) ≈ (500, 5000), and for larger sample sizes if the number of covariates is smaller than

10.

As described in Appendix C.5, one way to decrease the complexity of the problem, and therefore

to reduce computing times is by omitting the weights in the balancing constraints. Table C.1(b)
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presents the results for this approach with a time limit of 15 minutes for each of the optimization

problems. Within this time limit, it is possible to find solutions with a small optimality gap for all

the instances in the table.

Table C.1: Running times and optimality gaps for matching for different combinations of sample
sizes and number of covariates. The running times are reported in minutes and the optimality
gaps appear in terms of two numbers: the best solution found within the given time limit and the
bounding (perhaps infeasible) solution found also within the time limit.

(a) Matching with a variable 1 : 4 ratio with the weighted balancing constraints (4.12)
Number of units Number of covariates

(nt, nc) 5 10 20 50

(100, 1228)
0.1 60.0 60.0 0.1

130.3–130.3 123.1–123.8 77.2–77.5 62.2–62.2

(500, 5237)
60.0 60.0 60.0 60.0

673.4–690.6 655.2–678.4 617.8–646.8 535.7–574.9

(1000, 10806)
60.0 60.0 60.0 60.0

1355.5–1405.8 1332.0–1391.4 1274.4–1365.1 1165.8–1286.8

(2000, 21190)
60.0 60.0 60.0 60.0

2700.3–2876.7 2630.0–2869.2 2468.7–2864.6 2244.4–2750.7

(b) Matching with a variable 1 : 4 ratio with the unweighted balancing constraints (4.9)

Number of units Number of covariates
(nt, nc) 5 10 20 50

(100, 1228)
0.1 0.1 0.1 0.1

132.4–132.4 127.0–127.0 78.9–78.9 66.2–66.2

(500, 5237)
0.1 0.2 15.0 15.0

700.5–700.5 692.1–692.1 658.4–658.4 585.8–592.5

(1000, 10806)
1.7 0.3 15.0 15.0

1405.3–1405.3 1397.2–1397.2 1366.0–1367.9 1288.6–1293.1

(2000, 21190)
0.5 15.0 15.0 15.0

2841.1–2841.1 2827.8–2827.9 2781.0–2782.7 2677.0–2683.5

C.5 Devices for Speed

One tactic for more quickly solving the previous matching problems is exact matching for nominal

covariates of prognostic relevance or which are to be used for subgroup analyses. Let x·,p be a

nominal covariate taking integer values ñ ∈ N ⊂ N. To match exactly for x·,p, one possibility is to
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include the constraint ∑
t∈T

∑
c∈C

mtc

∣∣1xt,p=ñ − 1xc,p=ñ

∣∣ = 0, ∀ñ ∈ N , (C.43)

where 1 is the indicator function. Exact matching constraints reduce the feasible region considerably

and therefore the optimal solution is found faster. Another possibility to match exactly for x·,p is to

divide the dataset into smaller, mutually exclusive and collectively exhaustive pieces based on the

categories of N and solve a matching problem for each piece in parallel. If the problem is run on

a machine with multiple processors and/or multiple cores, each subproblem can be assigned to be

solved independently by a processing unit. The default settings in R do not use all the cores available

in the machine running the code; however, there are some packages available to create a parallel

backend so that independent subproblems can be solved simultaneously on different processing

units (see, for instance, Weston and Calaway, 2014 for the R packages doParallel and foreach).

Other tactics that can be used to attain computational speedups include simplifying the match-

ing problem by eliminating the harmonic mean weights from the balancing constraints (but not

the objective function) or using Yoon (2009)’s entire number to determine the matching ratio for

each unit before matching (Zubizarreta, 2012). However, we do not recommend the first of these

approaches because it results in an inconsistency between the balance criteria used to assess the

quality of the match and the balance criteria needed for unbiased estimation with an estimator that

uses the harmonic mean weights. Also, we are not enthusiastic about the second approach because

it requires that one estimate the propensity score in order to calculate the entire number.

C.6 Description of the Matched Sample

Table C.2 below describes the samples of green buildings before matching, after matching and of

those green buildings that were left out from the matched analyses due to lack of good controls. We

observe that the sample of matched green buildings is very similar to that of all the green buildings

(after all, only 19 green buildings were unmatched and left out from the analyses). Among others,

the unmatched buildings are larger on average, have better quality (are all in class A and have a

higher proportion of amenities), are not very old, less of them are renovated, and have high stories.
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Table C.2: Means and sizes of the samples of green buildings before matching (“All”), after matching
(“Matched”) and of those green buildings that were left out from the analyses due to lack of good
controls (“Unmatched”).

Covariate Sample
All Matched Unmatched

Building size 0.324 0.327 0.520
Building class A 0.794 0.780 1.000
Building class B 0.195 0.207 0.000
Building class C 0.012 0.012 0.000
Net contract 0.058 0.059 0.053
Employment growth 0.035 0.037 -0.028
Employment growth missing 0.009 0.009 0.000
Age ≤10 years 0.143 0.140 0.158
Age 11-20 years 0.241 0.234 0.316
Age 21-30 years 0.434 0.425 0.526
Age 31-40 years 0.111 0.120 0.000
Age >40 years 0.059 0.066 0.000
Age missing 0.013 0.014 0.000
Renovated 0.210 0.213 0.158
Stories low 0.463 0.455 0.211
Stories intermediate 0.267 0.264 0.263
Stories high 0.271 0.281 0.526
Stories missing 0.000 0.000 0.000
Amenities 0.718 0.711 0.895

Sample size 694 675 19
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