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ABSTRACT

Essay on Analyst Herding

Cyrus Aghamolla

This study investigates a dynamic model of analyst forecasting where the ordering of

forecasts and analysts’ information endowments are endogenously determined. Analysts

are probabilistically informed, potentially biased, and can increase their informedness

through information acquisition. I characterize the unique equilibrium which holds for

general distributions. The results show that analysts with less bias, greater precision,

or a greater likelihood of being informed forecast earlier. Moreover, the main results

show (perhaps surprisingly) that analysts always choose to be imperfectly informed, even

though information acquisition is costless. This arises from the incentive to induce more

timely forecasting by the other analyst. Likewise, analysts choose a positive bias level

in equilibrium in order to gain a strategic advantage in their forecast timing. I discuss

a number of empirical implications and extend the model to allow analysts to learn over

time.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

A rich empirical literature has documented a well-known regularity that sell-side analysts

may strategically time their forecasts for the purpose of observational learning.1 Indeed,

the notion that analysts can learn from each other (or more specifically, from the reports of

those who have forecasted before them) is a ubiquitous and pervasive phenomenon persis-

tent through two decades of research.2 Meanwhile, a disparate yet equally rich literature

has shown that analysts tend to upwardly bias their forecasts,3 and that information ac-

quisition/production plays a crucial role in an analyst’s responsibilities (e.g. Ivkovic and

Jegadeesh (2004), Chen, Cheng, and Lo (2010), Livnat and Zhang (2012), Keskek, Tse,

and Tucker (2014), Altschuler, Chen, and Zhou (2015), Brown et al. (2015)). A natu-

ral question thus arises: If analysts can learn from each other, then how does this affect

1See De Bondt and Forbes (1999), Hong, Kubik, and Solomon (2000), Welch (2000), Cooper, Day, and
Lewis (2001), Zitzewitz (2001), Gleason and Lee (2003), Hong and Kubik (2003), Clement and Tse (2005),
Jegadeesh and Kim (2010), Clement, Hales, and Xue (2011), Shroff, Venkataraman, and Xin (2014), and
Keskek, Tse, and Tucker (2014).

2Welch (2000) finds that“the buy or sell recommendations of security analysts have a significant positive
influence on the recommendations of the next two analysts” (p. 369). This finding has been reinforced in
numerous subsequent studies, namely Cooper et al. (2001), Clement and Tse (2005), Jegadeesh and Kim
(2010), Keskek et al. (2014), and Shroff et al. (2014).

Analysts can also potentially access other analysts’ reports through their buy-side clients before they
have been publicly released (see Irvine, Lipsett, and Puckett (2007)). Anecdotal evidence suggests that
this is not unusual.

3For example, see De Bondt and Thaler (1990), Francis and Philbrick (1993), Dugar and Nathan
(1995), McNichols and O’Brien (1997), Das, Levine, and Sivaramakrishnan (1998), Lin and McNichols
(1998), Easterwood and Nutt (1999), Michaely and Womack (1999), Kothari (2001), Lim (2001), Jackson
(2005), Brenhardt et al. (2006), Chen and Jiang (2006), and Raedy, Shane, and Yang (2006), among
others.
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their forecast timing, and, more importantly, their central responsibility of information

acquisition/discovery? Although these aspects of analyst behavior have received consid-

erable attention in the empirical literature, few theoretical studies examine the strategic

interdependence between analyst forecast timing, information acquisition, and the role of

bias.

In this paper, I seek to bridge this gap by providing a unified theory of analyst fore-

casting where the timing of the forecast, information acquisition, and level of affiliation

are endogenously chosen. The results show that the forecast order is determined by the

analyst’s information quality, information endowment, and potential bias, where the more

precise, better informed, or less biased analyst forecasts earlier in expectation. Moreover,

due to strategic considerations regarding the subsequent forecast timing, analysts choose

to be imperfectly informed in equilibrium, even when information acquisition is costless.

This result establishes a direct theoretical link between the learning incentives of analysts

and their information acquisition, which has heretofore not been captured in the theoret-

ical literature. The results also show that analysts choose to be affiliated in equilibrium,

thus providing a theoretical justification for why an analyst may choose employment in

which she may encounter a conflict of interest.

The setting is one where each of two analysts must first acquire information and

then decide when to issue a forecast of a firm’s terminal value. Each analyst has an

incentive to delay her forecast in order to observe the report and the corresponding private

information of her peer. The additional information from the first analyst’s forecast (the

“leader”) complements the private information of the remaining analyst (the “follower”),

and allows for a more accurate prediction by the follower. The key feature of the model

is that there may be uncertainty as to the information endowment of each analyst, and

this endowment probability is endogenously determined. This assumption differs from

virtually all other models of analyst forecast timing, which typically assume that an analyst

receives a (potentially noisy) signal of the firm’s value with probability one. Although

conventional in the theoretical literature, the assumption that an analyst is always endowed

with useful information does not seem entirely plausible in practice. Indeed, allowing for

the probabilistic endowment of information leads to results that help explain a number of
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empirical regularities which have not been captured by previous studies.

Prior to the forecasting decision, each analyst independently chooses the probability

for which she receives information in the following stage, and this decision is publicly

observable. The likelihood of receiving information can be thought of as an analyst’s

choice of how many firms or industries to follow; analysts considered specialists who focus

on a particular industry are more likely to have insightful information as compared to

generalists who follow several industries.4 The choice of endowment probability can be

equivalently represented as an observable effort decision that an analyst makes in each

forecasting period, where the amount of effort determines the likelihood that the analyst

receives information. Moreover, high informedness can be alternatively interpreted as an

analyst’s decision to join a firm that has a reputation for extensive information production,

such as firms which commonly perform due diligence in the underwriting stage of IPOs,

and thus typically receive superior information with a high likelihood. Similarly, high

informedness can represent an analyst whose firm specializes in one particular industry

or has established lines of communication with certain company executives, whereas less

informedness captures an analyst whose firm covers a wide range of industries with a

dispersed network of executives, yet with less depth.5 At the firm level, high informedness

can be thought of as a brokerage house or investment-banking firm which emphasizes their

research division through a larger allocation of resources.

The analysts’ payoff depends on their squared forecast error and the timeliness of their

forecast, which is captured by discounting. Several studies document that an analyst’s

compensation crucially depends on their accuracy.6 The forecast error in the analyst’s

4This is consistent with the analysis of Clement and Tse (2005), who find that analysts who follow
many industries are more likely to herd. Indeed, the authors conclude that this is “due to analysts’ inability
to develop and use specialized knowledge when they follow many companies or industries” (p. 329).

5As noted in Brown et al. (2015), executives may privately disclose immaterial information for the
analyst’s broader “mosaic.” They conclude that “information conveyed in private conversations with man-
agement is extremely valuable to sell-side analysts in the post-Reg FD environment” (p. 20). The survey
of executives in Soltes (2014) has a similar conclusion that frequent private communication with executives
and management plays a significant role for sell-side analysts.

6See Stickel (1992), Mikhail, Walther, and Willis (1999), Hong, Kubik, and Solomon (2000), Hong
and Kubik (2003), and Wu and Zhang (2009). Additionally, Hong and Kubik (2003) state: “Even if the
compensation of analysts does not depend explicitly on forecast accuracy, to generate investment banking
business or trading commissions in the longer run, analysts need to cultivate a reputation for forecast
expertise among the buy-side” (p. 314).
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utility can also indirectly capture the payoff from a subsequent stock recommendation

which is more profitable given the analyst’s forecast accuracy, as evidenced in Loh and

Mian (2006), Ertimur, Sunder, and Sunder (2007), and Brown et al. (2015). Likewise,

timeliness is also an important determinant of an analyst’s compensation,7 as expedi-

tious forecasts can generate trading volume and affect promotions (Cooper et al. (2001),

Groysberg, Healy, and Maber (2011)). In subsequent analysis, I allow the analysts to

be potentially biased in that their compensation may also depend on an endogenously

chosen distortion parameter. This represents the analyst’s choice of employment, whether

at a brokerage house, investment-banking firm, or independent research institution. As

shown in a number of studies (e.g. Dugar and Nathan (1995), Lin and McNichols (1997),

Michaely and Womack (1999), Mola and Guidolin (2009)), analysts employed by broker-

age houses and investment banks, rather than those employed by independent research

firms, tend to issue more biased forecasts. While the advantages of working for the former

may seem intuitively obvious (e.g. greater resources), this study offers a novel explanation

for an analyst’s choice of affiliated employment, wherein affiliation arises from a strategic

advantage in the forecast timing.

The results concerning the timing of forecasts show that the expected forecast order is

determined by (i) the quality, or precision, of the analyst’s information, (ii) the analyst’s

likelihood of being informed, and (iii) the magnitude of the analyst’s bias. We see that

analysts who have better quality information, are more likely to be informed, or have

less potential bias forecast earlier. Moreover, the main result shows that analysts always

choose to be imperfectly informed–that is, to be uninformed with positive probability–even

when information acquisition is costless. This emerges due to the analyst’s incentive to

induce the other analyst to forecast earlier and observe their private information. Similarly,

analysts choose employment where their compensation potentially relies on issuing a biased

forecast in order to induce more timely forecasting by the other analyst.

The equilibrium of the forecasting subgame resembles that of a war of attrition with

private information, where each informed analyst mixes between issuing a forecast and

7See Schipper (1991) for a discussion and Cooper et al. (2001), Hong and Kubik (2003), Jackson
(2005), Groysberg et al. (2011), and Loh and Stulz (2011) for empirical support.
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remaining quiet at every instant. Mixing occurs in equilibrium as analysts strategically

mimic uninformedness in order to induce their peer to forecast earlier. We see that the path

of the probabilistic forecast time follows an exponential distribution which reaches one at

an endogenously determined terminal time. Because the model allows for heterogeneity

in the analysts’ precision, distribution, endowment, discount rate, and bias, the mixing

probabilities can vary between the two analysts. If this is the case, then the analyst with

the “slower” mixing rate will forecast with discrete probability at the beginning of the

forecasting subgame, thus leading her expected forecast time to be earlier in equilibrium.

In the information acquisition subgame which precedes the forecasting stage, each

analyst simultaneously chooses her likelihood of receiving private information. Since the

analyst with a relatively higher likelihood of receiving information forecasts earlier in

expectation, each analyst has an incentive to select an endowment probability just below

the other’s. This leads to an equilibrium choice of endowment probability that is less than

one for both analysts.

The results help explain a number of empirical regularities. With regard to herding,

the results show that the forecast order is determined by the precision and endowment

of the analysts’ information. This helps explain the findings of Cooper et al. (2001),

Clement and Tse (2005), and Keskek et al. (2014), who document evidence supporting

the hypothesis that analysts with superior information forecast earlier. The results also

support the conclusions of Shroff, Venkataraman, and Xin (2014), wherein the forecasts of

analysts who follow the leader also contain material information. Moreover, the results of

the model comport nicely with the empirical findings of Cooper et al. (2001), who conclude

that forecasting ability is best measured by the timeliness of the forecast rather than the

forecast error. Perhaps most surprisingly, the results help explain why affiliated analysts

provide more accurate forecasts than independent analysts, as found in Jacob, Lys, and

Neale (1999) and Jacob, Rock, and Weber (2008). The results imply that, rather than due

to differences in resources or access to non-public information, analysts who join brokerage

or investment-banking firms gain an informational advantage through the strategic timing

of forecasts (i.e. the empirical results are driven by analyst selection of employment).

Moreover, the results are in line with the findings of Das, Levine, and Sivaramakrishnan
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(1998), who document higher levels of bias for analysts’ forecasts when there is relatively

less public information. In addition, the results correspond to the findings of Gu and Xue

(2008), who document that affiliated analysts issue comparatively more accurate earnings

forecasts for firms which are also followed by less biased or independent analysts. The

results also help to explain the trend for analysts to cover more firms, and sheds light on

why some analysts become generalists rather than specialists.

While the model fits nicely with several existing empirical regularities, the results also

offer several avenues for future research in terms of empirical predictions. As mentioned

previously, the results suggest that relatively earlier forecasts should contain less bias

or distortion. Correspondingly, the level of bias or distortion in the forecasts should be

comparatively higher when a firm is covered by more analysts. Moreover, we should see

more timely forecasts overall when the public information is stronger and when a single

highly informed analyst is following the firm. The results of the model also imply that

clustered forecasts which occur later should have comparatively higher forecast errors

than of clustered forecasts which emerge earlier. The results pertaining to information

acquisition indicate that individual forecasts should be relatively less informative, even for

earlier forecasts, when there is increased analyst following. The results also imply that

high analyst following does not necessarily mean a less opaque informational environment

for the firm. Rather, the timeliness of the analysts’ forecasts is more indicative of the

transparency or strength of a firm’s information environment. This follows from the results

which imply that (i) increased analyst following may not reduce information asymmetry,

(ii) analysts forecast earlier when the precision of their private information is higher and

when they are more likely to be informed, and (iii) analysts issue more timely forecasts

when there is better public information. The empirical predictions are further discussed

in section 5.

1.1 Related literature

This study is related to a number of literatures. I first discuss the current study in the

context of the extant literature on forecast timing. Gul and Lundholm (1995) examine a
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model where two agents must make a forecast decision and can benefit from observing the

announcement of their competitor. They characterize the symmetric equilibrium where

agents with good news forecast earlier than agents with bad news. The setting here is

similar to Gul and Lundholm (1995) in that both models involve endogenous timing with

an interdependent value structure. The current model fundamentally differs from Gul

and Lundholm (1995) in four ways: (i) in this setting, agents have uncertainty over the

information endowment, whereas Gul and Lundholm assume agents are informed with

probability one; (ii) the analysts’ payoffs do not depend on the value of the firm, whereas

Gul and Lundholm assume the waiting costs are increasing in the value of the firm, thus

leading to the aforementioned equilibrium; (iii) analysts may be heterogenous in every

dimension, whereas Gul and Lundholm assume agents are homogenous; and (iv) analysts

also engage in information acquisition and choice of employment.8

Guttman (2010), Aghamolla and Hashimoto (2015), and Xue (2015) also explore ana-

lysts’ endogenous forecast timing. Guttman (2010) considers a setting where the analysts’

precision improves over time, though the payoff from forecasting decreases as the pool of

public information improves. Guttman shows how clustering and dispersion of forecasts

can emerge. The current setting varies in that the focus is on the equilibrium properties

when analysts can learn from the forecasts of other analysts, whereas this feature is absent

in Guttman (2010). Moreover, several of the insights of Guttman (2010) also hold in the

single-analyst setting of his model, whereas the strategic interaction between analysts is

a fundamental feature of the current model. In the extensions, I allow for information ar-

rival to occur stochastically over time, accentuate the salience of timeliness through varied

compensation for the leader and follower, as well as show how the payoff function can be

endogenized from a market for information as in Guttman (2010).

Xue (2015) investigates a herding model with both an affiliated and independent ana-

lyst, where the affiliated analyst receives a more precise signal and the independent analyst

8In terms of technical assumptions, Gul and Lundholm limit their setting to uniformly distributed
signals with a finite support, whereas the results in the forecasting subgame here hold for general and
heterogenous distributions. Gul and Lundholm also characterize the unique symmetric pure strategy Nash
equilibrium, however, there are also a multiplicity of asymmetric equilibria and potential mixed strategy
equilibria. In contrast, the results in the forecasting subgame here are characterized by a unique perfect
Bayesian equilibrium without refinements.
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can acquire costly information. Xue shows that the independent analyst acquires more

information in the presence of the affiliated analyst in order to induce the affiliated an-

alyst to issue a less biased forecast. The model here differs from Xue (2015) in that the

strategic timing of forecasts is a fundamental feature of this setting, whereas timing is

largely fixed in Xue’s model. The current setting also allows for two-sided and costless

information acquisition and two-sided endogenous choice of affiliation.9 Aghamolla and

Hashimoto (2015) examine an endogenous timing model with several analysts and show

results regarding delay and clustering in analyst forecasting. The current setting differs

in that the primary focus is on the interdependence of forecast timing and information

acquisition.

This study is also related to the endogenous investment timing literature, particularly

Chamley and Gale (1994) and Zhang (1997). These papers show investment cascades

following the investment choice of the first agent. In contrast, due to the continuous

firm value, the equilibrium here does not involve an information cascade as an informed

analyst never disregards her private information. Moreover, the present model does not

include an unknown cost (as in Zhang (1997)) and exhibits delay in continuous time

(unlike Chamley and Gale (1994)). This paper also builds on the literature concerning

reputations in repeated games with two-sided private information, as in Kreps and Wilson

(1982), Fudenberg and Tirole (1986), and Abreu and Gul (2000), by endogenizing the ex

ante reputation. Kim and Lee (2014) study a concession game where two agents may

acquire information about an unknown state variable which affects the payoffs of both

agents in the event that the game ends suddenly. Among many differences, Kim and Lee

assume that the game terminates with a Poisson arrival and that there is never private

information of an agent’s informedness–agents pay a fixed cost to acquire information with

probability one and this is publicly observed. Kim and Lee rather focus on the effects of

disclosure rules of the unknown termination payoff, whereas the focus of this study is on

the effects of multiple analysts on information acquisition.

The current setting varies from reputational herding models (Scharfstein and Stein

9The results in Xue (2015) also critically depend on the discrete structure of the message space (though
continuous signal), whereas this is continuous in the current setting.
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(1990), Trueman (1994)), in that the forecast order is endogenous and the analysts’ utility

is indirectly affected by their type through the forecast error, rather than explicitly through

a market belief of the type. These models also assume that the agents’ payoff does not

depend on the value of the realized outcome. This paper is also related to studies which

examine analyst information acquisition. These studies consider information acquisition in

the context of dynamic cheap talk with unknown alignment (Meng (2015)), varying levels

of public information (Fischer and Stocken (2010)), or when the analyst’s compensation

is based on trading commissions (Hayes (1998)). Among other differences, these studies

focus primarily on single-analyst settings, whereas the current model examines information

acquisition in the presence of strategic interaction between analysts. This paper also differs

from Ottaviani and Sørenson’s (2006) reputational cheap talk model as the focus of this

study is on the effects of endogenous timing on information acquisition, whereas these are

both exogenous in their setting.

The paper proceeds as follows. The following section describes the model, while Section

3 analyzes the equilibrium and presents the results. Section 4 examines the model when

analysts may choose their level of affiliation and Section 5 discusses empirical implications

and predictions. Section 6 explores a number of extensions and the final section concludes.

All proofs are relegated to the Appendix unless otherwise specified.
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Chapter 2

Model

The model is composed of two analysts i ∈ {1, 2} who first simultaneously make an infor-

mation acquisition decision and then decide when to issue a forecast. Time is assumed to

be continuous following the analysts’ information acquisition decision at date 0. I assume

that analysts are uninformed with probability xi ∈ [0, 1] and receive information with

probability 1−xi. The information acquisition subgame at time 0 consists of three stages

(as depicted in Figure 1). In the first stage of t = 0, each analyst chooses their probability

of receiving information. Correspondingly, in the following stage, each analyst’s choice of

xi is publicly revealed and analysts receive private information with probability 1− xi.
1,2

An analyst is said to be uninformed if she does not receive a signal of the firm value.

An informed analyst receives a signal yi = vi + εi, where vi is a random variable drawn

from some distribution Gi (vi) which has mean µi and variance σ2i , and εi is a zero mean

error term drawn from a distribution Θi. I assume that Gi and Θi are such that the

conditional variance of vi, denoted by ω2
i , is constant for all realizations of yi.

3 The

1This is equivalent to assuming that analysts make an observable effort decision, ei ∈ [e, e], which maps
into the likelihood of receiving information, i.e. Υ : [e, e] 7→ [0, 1]. An observable effort decision can be
thought of as the analyst’s acquisition of a useful data set, meetings with management teams or executives,
and non-deal road shows where the analyst connects buy-side investors/clients with the executives of a
firm they cover.

2I assume that information acquisition is costless to emphasize that the result is not driven by acqui-
sition costs but rather from strategic considerations in the forecast timing. Allowing costly information
acqusition does not qualitatively affect the results.

3All of the results hold if an informed analyst instead receives a perfect signal yi = vi, however, I allow
Θi to be non-degenerate for richer comparative statics.
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conditional variance ω2
i can be thought of as the analyst’s experience or prior forecasting

ability (see Clement and Tse (2005)). The total firm (terminal) value, V , is the sum of

the two components:

V = v1 + v2.

The components v1 and v2 are assumed to be independent, however, the results would

not qualitatively change if they are correlated. The firm value takes an additive structure

to capture complementarities in the informed analysts’ information. The additive nature

can be thought of as a firm with two segments in disparate industries, where analysts

differ in their industry specialities and thus acquire information pertaining to their area of

expertise. However, because each analyst must forecast the total expected terminal value

of the firm, she benefits from observing the forecast of her peer. Note that all of the results

continue to hold under an alternative specification where analysts instead receive a joint

Normal signal, i.e. where V = v and yi = v+ εi, where v ∼ N
(

µv, σ
2
v

)

and εi ∼ N
(

0, σ2i
)

.

This is discussed further in Section 6.3. I assume that the value is additively separable

for richer comparative statics (e.g. with regard to σ2i ), and to allow for more general

distributions of v.

The forecasting subgame begins in the final stage of t = 0, where each analyst decides

when to issue a forecast in continuous time. Analyst i’s utility is given by:

ui =
[

s− (mi − V )2
]

e−riτi · I, (2.1)

where mi is analyst i’s forecast, ri is analyst i’s rate of time preference, and τi ∈ [0,∞)

is the time in which analyst i issues her forecast.4 The value s is the compensation the

analyst receives from issuing a forecast, where σ2i < s < σ21 + σ22 , and I is an indicator

function equal to one if a forecast is made.5,6 Each analyst’s utility is decreasing in her

4Section 6.4 discusses endogenizing the payoff function to incorporate the demand for information (as
in Guttman (2010)).

5An analyst who does not issue a forecast receives a payoff of 0.

6Allowing the uninformed type to rather be partially informed would not qualitatively affect the results.
In this case, we would instead have the analyst’s type be one of two precision levels, ρ ∈ {ρH , ρL}, which
are privately observed by each analyst, where ρH,i =

1

ω2

H,i

, ρL = 1

ω2

L,i

, and ω2

H,i + σ2

j < s < ω2

L,i + σ2

j . For

notational and expositional ease, I set ρL = 0.
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Figure 2.1: Timeline of the time 0 stage game.

Analysts choose their
endowment probabilities. 

Endowment probabilities 
are publicly revealed.

Analysts learn if they are 
informed and observe the

corresponding private signal, 
if informed.

Analysts begin the
forecasting subgame

and decide when 
to  issue a forecast, 

�� � �����.
Time proceeds 
continuously. 

Time 0, Stage 2. Time 0, Stage 1. Time 0, Stage 3. 

squared forecast error, as illustrated by the disutility (mi − V )2. The discount rate, e−riτi ,

is meant to capture the importance of timeliness of the forecast. Figure 2.1 presents a

timeline of the model.

In Section 6.2, I allow for the compensation s to vary in the forecast order to further

examine the importance of timeliness. The baseline model also does not include potential

biases in the analysts’ payoff function; this is explored in Section 4. The equilibrium

concept employed is perfect Bayesian equilibrium. The following section characterizes the

equilibrium of the baseline model.
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Chapter 3

Equilibrium

I first analyze the equilibrium of the forecasting subgame, taking xi as given. Following

the characterization of the equilibrium forecasting strategies, I solve for the endogenous

choice of xi which occurs in the information acquisition subgame.

3.1 Forecasting subgame

In the forecasting subgame, each analyst decides when to issue a forecast. As we can see

from the utility structure, each analyst receives a strictly higher payoff if she first observes

the announcement of the other analyst before issuing her forecast. Recall that the first

analyst to issue a forecast is referred to as the leader, and the second to forecast is referred

to as the follower. An informed analyst who forecasts first submits the report:

mi = E (vi|yi) + E (vj) .

We see that the expected utility from an informed leader who forecasts at time t is Eui =
(

s− ω2
i − σ2j

)

e−rit, and that of an informed follower is Eui =
(

s− ω2
i − ω2

j

)

e−rit. An

uninformed analyst only issues a forecast when another forecast has been made, and

simply repeats the forecast made by the leader. We see that there is a natural incentive

to mimic uninformedness, as an analyst will not delay issuing her forecast if she believes

her peer to be uninformed. An informed analyst thus trades off the benefit of waiting
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to observe the other analyst’s forecast with the cost of waiting from a discounted payoff.

The equilibrium of the forecasting subgame is akin to a war of attrition with two-sided

asymmetric information (e.g. Kreps and Wilson (1982), Ponsati and Sakovics (1995)).

The equilibrium is derived in a number of steps and produces a tractable closed-form

characterization of the strategies. We see that any equilibrium forecast strategy must

have the following properties:

Claim 1: There does not exist an equilibrium in pure strategies.

Suppose we have an equilibrium where analyst 1 forecasts at time t1 with probability

one. In this case, analyst 2 will either forecast immediately after t1, i.e. at time t2 = t1+δ

for δ > 0, or forecast immediately, i.e. at t2 = 0. If analyst 2 forecasts an instant after

t1, then analyst 1 can do strictly better by saving the discounting costs and forecasting

immediately at time 0. However, if analyst 2 does not observe a time 0 forecast from

analyst 1, then analyst 2’s posterior that analyst 1 is uninformed must go to one, in which

case analyst 2 is better off forecasting an instant after time 0 than at some later time.

Consequently, this provides an incentive for an informed analyst 1 to delay her forecast

time. A similar argument can be made for analyst 2. Hence, any equilibrium must be in

mixed strategies.

Let analyst i’s forecast strategy be denoted by F̄i (t), which represents the probability

that an informed analyst i forecasts by time t. Let the corresponding hazard rate be

denoted by hi (t) ≡
f̄i(t)

(1−F̄i(t))
Similarly, let Fi (t) denote the unconditional probability that

analyst i issues a forecast by time t.1

Claim 2: Informed analysts will have forecasted with probability one by an endoge-

nously determined, common terminal time T .

To see this, suppose that for an informed analyst 1, her equilibrium path F̄1 (t) reaches

one at some time T1. This implies that an informed analyst 1 would have forecasted with

certainty prior to T1 and the posterior that analyst 1 is uninformed must go to one. Hence,

an informed analyst 2 will not delay forecasting if she believes that analyst 1 is uninformed

with probability 1, and thus will forecast by T1 as well. Therefore, F̄1 (T ) = F̄2 (T ) = 1

1I use the conditional probability in the exposition to better convey the intuition of the equilibrium.
All of the claims hold for the corresponding unconditional probability.
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at some endogenously determined terminal time T . A similar argument can be made for

analyst 2. This implies that the common terminal time must be the minimum of T1 and

T2.

Claim 3: F̄i (t) must be continuous for all t > 0.

Suppose analyst i’s strategy F̄1 (t) had a discontinuity at some time t, then analyst 2

could do strictly better by not forecasting until an instant after time t, i.e. t+ δ, rather

than issuing a forecast at an instant before time t, i.e. t − δ. Hence, analyst 2 would

strictly prefer to wait in the interval [t− δ, t], but this implies that analyst 1 could do

strictly better by forecasting with discrete probability at time t− δ than at time t.

Claim 4: F̄i (t) must be strictly increasing until it reaches one.

Suppose F̄1 (t) was constant on some interval, [a, b], which implies that analyst 1 will

not forecast in this interval. Analyst 2 can then do strictly better by either forecasting

with discrete probability at an instant before time a or an instant after time b. If analyst

2 does not forecast with positive probability until an instant after time b, then analyst 1

can do strictly better by forecasting with discrete probability at time a than at time b,

but this violates Claim 3. Likewise, Claim 3 is violated if analyst 2 forecasts with discrete

probability an instant before time a.

Claim 5: At most one analyst can have a discrete mass point at time 0.

By Claims 3 and 4, an analyst may forecast with discrete probability only at time

0. However, both analysts cannot have a mass point, since otherwise one analyst can do

strictly better by waiting at time 0 with probability one rather than forecasting.

Claims 1-5 indicate that F̄i (t) must be continuous, strictly increasing, and reaches one

at some time T for i ∈ {1, 2}. To get a sense of the equilibrium mixing condition, we can

examine the local incentive constraint for an informed analyst i.2 This is given by the

following indifference condition:

[

s− ω2
i − σ2j

]

e−rit = βj (t)hj (t)∆t
(

s− ω2
i − ω2

j

)

e−rit (3.1)

+ [1− βj (t)hj (t)∆t]
(

s− ω2
i − σ2j

)

e−ri(t+∆t),

2The solution can be alternatively derived using local incentive compatibility conditions, which are
sufficient since equation (3.3) is supermodular in t.
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where βj (t) is the posterior probability that analyst j is informed by time t and hj (t) is

analyst j’s hazard rate. The LHS is analyst i’s payoff from forecasting at time t, given

that analyst j has not yet forecasted. The RHS of equation (3.1) is analyst i’s payoff

from waiting one unit of time, ∆t,3 and potentially observing analyst j’s forecast. If

analyst j issues a forecast in the interval [t, t+∆t], then analyst i observes this forecast

and issues her own forecast, for a payoff of
(

s− ω2
i − ω2

j

)

e−rt. However, if analyst j does

not forecast in this interval, then analyst i issues a forecast at time t+∆t, for a payoff of
(

s− ω2
i − σ2j

)

e−ri(t+∆t), where βj (t)hj (t)∆t captures the probability that an informed

analyst j issues a forecast in the interval [t, t+∆t]. Hence, in equilibrium, each analyst

must be indifferent between forecasting immediately and waiting an additional instant.

Taking ∆t→ 0 and by L’Hôpital’s rule, equation (3.1) becomes:

(

s− ω2
i − σ2j

)

ri = βj (t) hj (t)
(

σ2j − ω2
j

)

. (3.2)

Equation (3.2) illustrates the trade-off of waiting for analyst i. The cost of delaying the

forecast, which is the loss from discounting (given by the LHS), must exactly offset the

benefit of waiting, which is the expected improvement in the error of analyst i’s forecast

(given by the RHS).

For strategies Fi (t) and Fj (t), an informed analyst i’s expected utility is given as:

ui = max
t

∫ t

0

(

s− ω2
i − ω2

j

)

e−riafj (a) da+ (1− Fj (t))
(

s− ω2
i − σ2j

)

e−rit. (3.3)

Thus, in order for analyst i to be indifferent at every time t, ui must be constant at

all times. Note that the global constraint in equation (3.3) is expressed in terms of the

unconditional probability that analyst j forecasts by time t, Fj (t).

Let Ti denote the endogenous terminal time for analyst i, at which an informed analyst

i would have forecasted with probability one. Due to the heterogeneity in the analysts’

preferences, we may have that F̄j (t) may reach one earlier than F̄i (t), and thus implying

that Tj < Ti. We see how this can arise by considering equation (3.1). Analyst j must set

3More precisely, intervals of time, ∆t, are assumed to be vanishingly small, and can rather be thought
of as the limit ∆t→ 0.
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F̄j (t) so that analyst i is indifferent at every instant. If analyst i’s LHS payoff is relatively

higher than analyst j’s, then analyst j will be mixing at a higher rate (i.e. forecasting

with greater probability) than analyst i in equilibrium, thus leading F̄j (t) to reach one

at an earlier time than F̄i (t). Intuitively, if analyst i has a lower option value of waiting

(e.g. if ω2
j > ω2

i ), then analyst j must forecast with a relatively higher probability at

each instant to keep analyst i indifferent, which leads to Tj < Ti. However, by Claim 2,

the terminal time for informed analysts i and j must be equal. Hence, we have that both

informed analysts must forecast by time T = min {T1, T2}. In order for this to be the case,

analyst i must forecast with discrete probability at t = 0+ to align the path of beliefs, so

that Ti is reached at the same time as Tj . The atom at time 0 is uniquely determined

by the degree of the heterogeneity in the parameters, thus establishing uniqueness of the

forecasting subgame equilibrium. Moreover, this implies that the analyst with the lower

option value of waiting forecasts earlier in equilibrium. The solution to the forecasting

subgame is characterized as follows:

Lemma 1 There is a unique perfect Bayesian equilibrium of the forecasting subgame where

(i) an uninformed analyst forecasts if and only if a forecast by the other analyst is made;

(ii) both informed types will have forecasted by time T = min
{

− 1
cj
ln (xj) ,−

1
ci
ln (xi)

}

;

and (iii) the strategy profiles for informed types are given by:

(Fi (t) , Fj (t)) =





























































Fi (t) = 1− x
−ci/cj
j xie

−cit

Fj (t) = 1− e−cjt







if Tj < Ti







Fi (t) = 1− e−cit

Fj (t) = 1− e−cjt







if Tj = Ti







Fi (t) = 1− e−cit

Fj (t) = 1− x
−cj/ci
i xje

−cjt







if Tj > Ti

where ci =
s−ω2

j−σ2

i

σ2

i −ω2

i

rj and cj =
s−ω2

i−σ2

j

σ2

j−ω2

j

ri.

In the symmetric case where the analysts’ preferences are homogeneous, neither analyst

forecasts with discrete probability at time 0 since it is already the case that Tj = Ti. In the

heterogeneous case, the above result states that the analyst with the lower option value
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Figure 3.1: Forecasting paths and the time 0 mass point.

�� �	
�

�
 �

of waiting forecasts at t = 0+ with probability 1− x
−ci/cj
j xi or 1− x

−cj/ci
i xj if Tj < Ti or

Tj > Ti, respectively. Lemma 1 also provides a theoretical basis for the use of the leader-

follower test statistic, which assumes an exponential arrival of forecasts, by studies that

empirically investigate analyst herding (e.g. Cooper et al. (2001), Shroff et al. (2014)).

Figure 3.1 illustrates the time 0 mass point.

The option value of waiting is captured by the precision levels, 1
ω2

i

, likelihood of en-

dowment, 1− xi, public information, σ2i , and the incremental cost of waiting, ri. We can

pin down the expected forecast order according to the analyst who forecasts with discrete

probability at time 0:

Corollary 1 Ceteris paribus, the forecasting time is earlier when analysts have more pre-

cise information
(

T is decreasing in 1
ω2

i

)

, and the analyst with more precise information

forecasts earlier with higher probability.

The above Corollary states that the analyst with better information (higher precision)

is expected to forecast first in equilibrium. Moreover, we see that the overall forecasting

time improves when just one of the analysts has better information. This corresponds to

the findings of Cooper et al. (2001), Clement and Tse (2005), and Keskek et al. (2014)
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who find that analysts with superior information issue more timely forecasts. A similar

result holds for the endowment probability:

Corollary 2 Ceteris paribus, the forecasting time is earlier when analysts are more likely

to be informed, and the analyst with a higher probability of receiving information forecasts

earlier.

When the probability of being informed, 1 − xi, is treated as exogenously given, the

result in Corollary 2 states that the analyst with a higher 1 − xi (lower xi) will forecast

earlier in equilibrium. As we will see in the solution of the information acquisition subgame,

this incentivizes the analysts to choose a lower endowment probability to induce the other

analyst to forecast earlier. The level of public information and the discount rate have a

similar effect on the option value of waiting:

Corollary 3 Ceteris paribus, the forecasting time is earlier when analysts have a higher

rate of time preference or have better public information
(

T is decreasing in ri and in 1
σ2

i

)

.

The analyst with a higher discount rate forecasts earlier and the analyst whose segment

has worse public information
(

higher σ2i
)

forecasts earlier.

As we expect, discounting speeds up the timing of the forecast and the more impatient

analyst forecasts first in equilibrium. Similarly, the better the pool of public information,

the more timely the forecasts. This occurs since the option value of waiting is decreasing

in the precision of public information, 1
σ2

i

, thus speeding up the forecast times. Surpris-

ingly, we see that the analyst whose segment has worse public information, that is, whose

distribution has a higher variance, forecasts earlier. To see this intuitively, suppose that

max
{

σ2i , σ
2
j

}

= σ2i . This implies that analyst j has a comparatively higher option value of

waiting since she can reduce her forecast error more by observing the forecast of analyst i.

Hence, the analyst whose segment has relatively worse public information forecasts earlier

in equilibrium.
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3.2 Information acquisition

Prior to the forecasting subgame, each analyst simultaneously chooses the probability to

which she receives information, 1 − xi. In the subsequent stage, the endowment like-

lihoods are publicly revealed and analysts, if informed, privately observe their signals.

The choice of xi is costless and indeed both analysts may choose to receive information

with probability one. However, from the equilibrium of the forecasting subgame, analysts

have a strategic advantage from being imperfectly informed. As shown in Corollary 2,

the analyst with a higher endowment probability forecasts earlier. When choosing xi, an

analyst weighs the cost of being potentially uninformed–not receiving a signal with higher

probability–and the benefits from inducing the other analyst to forecast earlier. To find

the optimal choice of xi, it is useful to first examine the simplified case where only one

analyst chooses her xi, keeping the other’s fixed. Note that in a single-analyst setting, the

analyst will choose to be perfectly informed with probability one.

3.2.1 One-sided choice of xi

For the analysis in this section, I assume xj is fixed and known in order to analyze the

equilibrium behavior of analyst i. This provides insights that will be helpful when exam-

ining the two-sided choice of xi in the following subsection. We see from Lemma 1 that

the equilibrium payoff for an informed analyst i is given as:

(1− Fj (0))
(

s− ω2
i − σ2j

)

+ Fj (0)
(

s− ω2
i − ω2

j

)

.

Fj (0) is the potential atom at time 0, where Fj (0) = 0 if Ti ≥ Tj and Fj (0) = 1−x
−cj/ci
i xj

if Ti < Tj. Hence, the equilibrium payoff of an informed analyst i is s − ω2
i − σ2j when

Ti ≥ Tj . This arises due to the equilibrium condition that the analysts’ utility is kept

constant at every instant in the forecasting subgame.

First, note that when one, and only one, analyst is known to be informed with probabil-

ity one, i.e. when 1−xj = 1, the unique equilibrium is where analyst j forecasts immedi-

ately. In this case, analyst i’s strategy is to issue a forecast only upon observing a forecast

by analyst j. To see this for xj = 0 and xi > 0, note that there cannot exist an equilibrium
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in which an informed analyst i forecasts with a pure strategy at a time t before analyst j,

as analyst i then has a strictly profitable deviation of mimicking uninformedness at time t

and withhold forecasting. Also, there cannot be any equilibrium in mixed strategies as in

Lemma 1. Mixing breaks down in this case as analyst j would forecast with probability

one once her posterior that analyst i is uninformed goes to one, however this violates the

condition that analyst i would be indifferent at every instant–as she would strictly prefer

to delay forecasting a moment before analyst j forecasts for sure.4 Hence, any equilibrium

must entail a pure strategy of analyst j forecasting prior to analyst i, in which case analyst

j then prefers to forecast immediately and save the discounting costs. We can also see

this from the indifference condition. The argument implies that Fi (t) = 0 for all t, and

we can see from equation (3.1) that
[

s− ω2
j − σ2i

]

e−rt >
[

s− ω2
j − σ2i

]

e−r(t+∆t) . Hence,

analyst j strictly prefers to forecast immediately than wait in equilibrium when xj = 0

and xi > 0.

Lemma 2 When xj = 0 and xi > 0, analyst j forecasts at t = 0 with probability one, for

all ω2
i , ri, and σ

2
i .

This implies that, when xj is fixed and equal to zero, analyst i has a dominant strategy

of choosing arbitrarily small xi > 0 and inducing analyst j to forecast at time 0 with

probability one. This is summarized in the following lemma:

Lemma 3 When xj = 0, then analyst i chooses xi = δ, where δ > 0 and arbitrarily small,

for all ω2
i , ri, and σ

2
i .

When xj > 0, then analyst i must weigh the benefit of inducing analyst j to forecast

earlier with the cost of not receiving private information. Note that when xj > 0, analyst

i will either choose xi > xj or xi = 0, since analyst i receives a strictly higher expected

payoff by setting xi = 0 than xi ∈ (0, xj). To focus on the dynamics and economic forces

driving information acquisition, I assume that ri = rj , σ
2
i = σ2j , and ω

2
i = ω2

j = 0.5 For

4This is not a concern when both analysts are potentially uninformed as the posterior that both analysts
are uninformed goes to one at the same time. However, this is precluded when one analyst is known to be
informed at time 0.

5See Section 6.1 for analysis of information acquisition when analysts are heterogeneous.
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fixed xj > 0, we see that analyst i maximizes her payoff by setting xi as a function of xj

only when xj ≤
1
2 :

Lemma 4 For fixed xj > 0, analyst i sets xi such that

xi =











(

xjσ
2

xj(s−σ2)+σ2

)
1

2

if xj ∈
(

0, 12
]

0 if xj ∈
(

1
2 , 1

]

where xi > xj when xj ≤
1
2 .

Lemmas 3 and 4 imply that analyst i chooses to be imperfectly informed whenever

xj ≤
1
2 , and that the optimal xi is a function of xj when xj ∈

(

0, 12
]

. When ci = cj , we see

from Lemma 1 that the size of the atom for analyst j is captured by the expression 1−
xj

xi
,

and thus the smaller the ratio, the more likely it is that analyst j issues a forecast at time

0. Increasing xi, however, means that analyst i receives information with lower probability.

Absent a signal, analyst i only forecasts by herding with an informed analyst j’s forecast.

Lemmas 3 and 4 show that there is an interior solution to xi for a fixed xj ≤ 1
2 . When

xj exceeds
1
2 , the cost of being potentially uninformed with greater probability dominates

and analyst i is better off receiving information with probability one and forecasting for

sure at time 0. Symmetry of the analysis in the section is also necessary for analytical

tractability, however, in Section 6.1 I examine the case where analysts are heterogeneous.

These preliminary results prove useful when examining the two-sided choice of xi in the

following section.

3.2.2 Two-sided choice of xi

I now consider when both analysts simultaneously choose their endowment probabilities.

First, we see that there is no equilibrium in pure strategies. For example, consider the

case where xj >
1
2 , then, by Lemma 4, analyst i’s best response is xi = 0. However, if

this is the case, then by Lemma 3, analyst j can do strictly better by setting xj = δ < 1
2 ,

in which case analyst i can do strictly better by setting xi > xj. Hence, any equilibrium

selection of xi must include mixing over the interval [0, q], where q =
(

σ2

s+σ2

)
1

2

. We see

that q ∈
(

1
2 , 1

)

since σ2

s+σ2 < 1.
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Analyst i thus faces the following problem:

max
xi







E
[

I{xi≤xj}

[

(xi) (xj) 0 + xi (1− xj)
(

s− σ2
)

+ (1− xi)
(

s− σ2
)]

]

+E
[(

1− I{xi≤xj}

) [

(xi) (xj) 0 + xi (1− xj)
(

s− σ2
)

+ (1− xi)
[

s−
(

xj

xi

)

σ2
]]]







.

(3.4)

The first term in equation (3.4) is analyst i’s payoff when she selects an xi less than

xj, whereas the second term captures analyst i’s payoff when xi exceeds xj. Let Ψ (x)

denote the cumulative distribution function of the analysts’ symmetric mixed strategy

distribution. Equation (3.4) can thus be expressed as:

ui (xi) =

∫ xi

0

[

xi (1− xj)
(

s− σ2
)

+ (1− xi)
(

s− σ2
)]

dΨ(xj) (3.5)

+

∫ q

xi

[

xi (1− xj)
(

s− σ2
)

+ s− xis−

(

xj

xi

)

σ2 + xjσ
2

]

dΨ(xj) ,

We see that the gain from xi > xj appears in the second term of equation (3.5), where the

extent of the gain is given by the ratio
xj

xi
. The potential loss from a higher xi appears in

both terms, however, this is somewhat mitigated by the positive probability that analyst

j receives information. A preliminary result concerning the strategy Ψ (x) is given by the

following:

Lemma 5 Ψ(x) is differentiable.

Lemma 5 states that Ψ′ (y) exists and hence the mixing strategy can be expressed

in terms of its probability density function ψ (x), i.e. Ψ (x) =
∫ x
0 ψ (k) dk. The proof of

Lemma 5 also shows that ui is constant for all x ∈ [0, q], as is necessary for analyst i to be

indifferent. Derivations from equation (3.5) lead to an expression for ψ (x). The following

Theorem states one of the central results of the model:

Theorem 1 In the information acquisition stage, there exists a unique symmetric mixing

distribution Ψ(x), in which each analyst i ∈ {1, 2} selects xi according to Ψ(x). In the

forecasting subgame, each analyst follows the strategy as stated in Lemma 1, with {x1, x2}

as specified from the information acquisition stage.

Theorem 1 states that there is a unique mixing strategy that both analysts follow to
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choose their endowment probabilities in the information acquisition stage. This implies

that both analysts will always be imperfectly informed, even though they can receive in-

formation with probability one at zero cost! We see that this arises due to each analyst’s

incentive to induce the other analyst to forecast with higher probability at time 0, that is,

to give the other analyst the atom. Consequently, both analysts choose to be imperfectly

informed in equilibrium. The result implies that the strategic timing of forecasts when

there is an opportunity to herd (or observationally learn) leads to inefficient information

acquisition, even in the face of zero costs of acquiring information. If one accepts the

results from the empirical literature that observational learning among analysts is a ubiq-

uitous and pervasive phenomenon, then the result implies that the very nature of analyst

forecasting leads to inefficient information acquisition when there are multiple analysts

covering a given firm. Theorem 1 also has implications regarding price efficiency, as less

information acquisition results in less efficient prices.

The choice of xi can be considered as an analyst’s decision of how many industries

or firms to follow; as documented by Clement and Tse (2005), analysts who follow more

industries or firms are more likely to herd. In this respect, Theorem 1 helps explain the

trend for analysts to cover more firms or become generalists instead of specialists, as this

gives them an advantage in the forecast timing. Theorem 1 also implies that analysts have

less incentive to acquire information when there is increased analyst following. This implies

that individual forecasts will be less informative and that we should see more uninformed

herding with greater analyst following. In addition, this suggests that increased analyst

following does not necessarily mean a less opaque information environment for the firm.

This has implications for proxy variables relying on analyst following as a measure for firm

transparency. An alternative measure is to use the timeliness of the forecasts, as Corollary

2 shows that analysts forecast earlier when they are more likely to be informed.

The choice of endowment probability can also be thought of as an effort choice of ac-

quiring information that is made by the analyst at the beginning of each earnings quarter.

Observable effort can take the form of scheduled meetings and calls with executives that

may increase the likelihood that the analyst has insightful information. This is equivalent

to a one-to-one mapping, Υ, of a costless effort choice, ei ∈ [e, e], into the endowment
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probability, given as Υ : [e, e] 7→ [0, 1], where Υ is strictly increasing in effort. Hence, an

analyst who puts in a high level of effort is more likely to receive to useful information.

The result in Theorem 1 holds under this alternative formulation as well–analysts choose

an inefficient effort level, even though effort is costless, in order to be imperfectly informed.

Note that the results are qualitatively unchanged if information acquisition was assumed

to be costly; analysts still choose an inefficient level of acquisition when there are multiple

analysts.

In addition, the analysts’ choice of informedness can be considered in terms of employ-

ment, where higher informedness corresponds to an analyst’s choice of employment at a

boutique research firm which specializes in a particular industry or at a brokerage firm

which places significant emphasis on their research division. Hence, this helps to explain

why some analysts may join a brokerage house or investment-banking firm whose research

division has limited resources. Similarly, we can consider this from a brokerage house

or investment-banking firm’s perspective, as they may allocate fewer resources into their

research division.
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Chapter 4

Forecasting with Bias

The previous section examines analyst forecast timing when analysts may be probabilis-

tically informed, receive imprecise information, and can acquire information. Although

these are practically relevant features of analyst forecasting, we have also seen through a

voluminous literature that analysts generally issue biased forecasts (see Kothari (2001) for

a review). However, very few studies to date, to the best of my knowledge, have examined

endogenous analyst forecast timing when analysts may be potentially biased.1 A number

of models attribute this bias to arising from trading commissions (e.g. Jackson (2005),

Beyer and Guttman (2011)) or to curry favor with management (e.g. Das et al. (1998),

Lim (2001)). In this section I show how analyst bias may arise also from the strategic

considerations stemming from the endogenous timing of forecasts.

I first examine the model when the potential bias is exogenously given, and then

consider the model with an endogenous bias. Suppose that with probability pi ∈
[

0, 12
]

,

analyst i’s utility function relies on issuing a forecast with an upward bias, and with

probability 1− pi, analyst i’s utility is the same as in Section 2:

ui =







[

s− (mi − bi − V )2
]

e−riτi · I,
[

s− (mi − V )2
]

e−riτi · I,

with probability pi ∈
[

0, 12
]

with probability 1− pi,

1One exception is Xue (2015), who considers a forecasting model with an analyst who has a known
bias and an unbiased analyst. Among several differences, the setting here allows for two-sided bias and
bias acquisition. See Section 1.1 for a more detailed discussion of Xue (2015) in relation with this study.
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where bi > 0 is a bias term and all other terms are defined as in Section 2. That is,

analyst i has bias bi with probability pi and is unbiased with probability 1 − pi (similar

to Morgan and Stocken (2003) and Meng (2015)), and I assume that pi and bi are such

that pibi < σi for i ∈ {1, 2}. For simplicity, in this section I assume that ω2
i = ω2

j = 0 so

that an informed analyst perfectly observes the value of her segment. The analysis follows

similarly from Section 3. An informed analyst i’s local incentive constraint is given by:

[

s− σ2j
]

e−rit = βj (t)hj (t)∆t
(

s− p2jb
2
j

)

e−rit (4.1)

+ [1− βj (t)hj (t)∆t]
(

s− σ2j
)

e−ri(t+∆t),

where p2jb
2
j is the expected forecast error an informed analyst i incurs after observing

analyst j’s potentially biased forecast. We see from equation (4.1) that the higher the

forecast error from analyst j’s potential bias, p2jb
2
j , the lower is analyst i’s option value

of waiting. The derivation of the equilibrium forecasting behavior when analysts are

potentially biased is similar to that of Lemma 1. Note that, unlike with xi, there is no

updating on the probability that the analyst is biased as both the biased and unbiased

analyst follow the same strategy for their forecast time. We see this in the RHS of equation

(4.1), where analyst j, regardless of whether or not she is biased, mixes in accordance with

the expected forecast error analyst i retains after observing a forecast from analyst j. The

following result presents the equilibrium:

Proposition 1 There is a unique perfect Bayesian equilibrium of the forecasting subgame

when analysts are potentially biased where (i) an uninformed analyst forecasts if and only

if a forecast by the other analyst is made; (ii) both informed types will have forecasted by

time T = min
{

− 1
cj
ln (xj) ,−

1
ci
ln (xi)

}

; and (iii) the strategy profiles for informed types
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are given by:

(Fi (t) , Fj (t)) =





























































Fi (t) = 1− x
−ci/cj
j xie

−cit

Fj (t) = 1− e−cjt







if Tj < Ti







Fi (t) = 1− e−cit

Fj (t) = 1− e−cjt







if Tj = Ti







Fi (t) = 1− e−cit

Fj (t) = 1− x
−cj/ci
i xje

−cjt







if Tj > Ti

where ci =
s−σ2

i

σ2

i −p2i b
2

i

rj and cj =
s−σ2

j

σ2

j−p2jb
2

j

ri.

Proposition 1 captures the unique forecasting equilibrium when analysts are potentially

biased. We see that the mixing rate, ci, is characterized by the squared bias, p2i b
2
i , of

analyst i. As in the equilibrium in Lemma 1, when the final forecast times are misaligned,

one analyst must forecast with discrete probability at time 0 to align the path of beliefs.

Moreover, the relative biases determine the size of the atom at time 0. When Ti > Tj ,

then analyst i forecasts with probability 1− x
−ci/cj
j xi at time 0, and hence the greater is

p2jb
2
j relative to p2i b

2
i , the greater the probability that analyst i issues a forecast at time 0.

We see how this arises from the local incentive constraint in equation (4.1). When p2jb
2
j is

high, analyst i has a lower option value of waiting, and thus analyst j’s mixing strategy

must entail a higher rate of forecasting at every time t to keep analyst i indifferent. The

higher mixing rate leads analyst j to reach her terminal time more quickly than analyst

i, i.e. Tj < Ti. Therefore, to align the terminal times, analyst i has an atom at time 0.

This leads to the following ordering according to the potential bias:

Proposition 2 Ceteris paribus, the forecasting time is earlier when analysts are more

biased (T is decreasing in pibi), and the analyst who is less biased forecasts earlier with

higher probability.

Proposition 2 shows that the overall forecasting time by informed analysts is earlier

when analysts are more biased, and that the terminal time for forecasts speeds up as

just one of the analysts becomes more biased. We also see that the less biased analyst
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forecasts earlier in equilibrium. This occurs since the less biased analyst forecasts with

discrete probability at time 0 to align the path of beliefs. Moreover, the greater the bias

of analyst j, the higher the likelihood that analyst i issues a forecast at time 0.

Proposition 2 implies that analysts can benefit from bias if it induces their peer to

forecast earlier. As in the preceding section, I now endogenize pi by allowing analysts

to simultaneously choose pi in the first stage of time 0. In the second stage, pi becomes

publicly revealed and analysts privately learn whether they are informed, their signal (if

they are informed), and whether they have a conflict of interest (i.e. if their utility depends

on bi). The analysts then continue in the third stage of time 0 with the forecasting subgame

where time proceeds continuously. Moreover, I assume that xi = xj, σi = σj , and ri = rj

to focus on the analyst’s acquisition of bias.

The choice of bias probability, pi, can be interpreted as the analyst’s choice of em-

ployment, such as a brokerage house, investment banking firm, or independent research

institution. Several studies suggest that analysts face a potential conflict of interest when

employed at the former two, and document that these analysts typically issue distorted

forecasts (e.g. Dugar and Nathan (1995), Lin and McNichols (1997), Michaely and Wom-

ack (1999), Mola and Guidolin (2009)). Thus, an analyst who chooses a high pi can

be thought of as affiliated and has joined the research division within a brokerage house,

whereas analysts who choose a low pi can be thought of as independent or whose firms have

a reputation for maintaining the “Chinese wall.” The equilibrium when pi is endogenously

chosen is stated in the following result:

Theorem 2 In the bias acquisition stage, the equilibrium choice of p is

(i) pi = 0, pj =
1
2 if bi < bj,

(ii) pi =
1
2 , pj = 0 if bi > bj,

(iii) pi =
1
2 , pj = 0 or pi = 0, pj =

1
2 if bi = bj,

and the equilibrium forecasting strategies are given as in Proposition 1.

When analysts are able to choose their level of bias or the likelihood to which their

payoff depends on a biased report, we see that analysts have a natural incentive to choose

positive levels of each due to the equilibrium effects in the forecasting subgame. However,
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the analyst who would receive the compensation with a greater bias, bi, has an advantage

over the other. We see that the unique outcome when bi 6= bj is where the analyst with

the higher bi sets pi =
1
2 to induce the other analyst to forecast earlier. Moreover, pi =

1
2

maximizes the probability of a time 0 forecast by analyst j when bi > bj . When the

bias levels are equal, bi = bj, we have two asymmetric equilibria where one chooses the

maximum bias likelihood and the other sets this likelihood to zero. Note that the results

of Theorem 2 would be qualitatively identical if analysts were allowed to choose the bias

level bi while keeping pi fixed.

The above result also provides a theoretical justification for an analyst’s choice of

employment for which she may encounter a conflict of interest. Theorem 2 states that the

choice of affiliation arises due to the strategic advantage the analyst gains in the forecasting

subgame from having a larger potential bias.
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Chapter 5

Empirical Implications

5.1 Relation to existing empirical studies

The results help elucidate a number of empirical regularities documented in the literature.

As shown in Corollaries 1 and 2, analysts are more likely to be the leading forecasters

when they have comparatively more precise information or a higher likelihood of receiving

information. This corresponds to the findings of Cooper et al. (2001), Clement and

Tse (2005), and Keskek et al. (2014), who find that analysts with superior information

or greater forecasting ability issue more timely forecasts. Interestingly, the results of the

model concerning the time 0 forecast by the more precise analyst almost exactly correspond

to the findings of Keskek et al. (2014). They find ”that the timing of individual analysts’

forecasts within an information production phase is strongly related to forecast quality”

(p. 1507). The time 0 forecast by one of the analysts occurs at the end of the information

production/discovery stage of the model, and is made by the analyst with comparatively

more precise information. Indeed, the economic forces driving the results of the model–that

more precise analysts have a lower option of waiting–seem to govern analysts’ behavior in

practice.

The corresponding empirical results concerning follower or herding analysts are also

captured by the model. As Hong et al. (2000), Clement and Tse (2005), and Jegadeesh

and Kim (2010) find, herding analysts are more likely to be of weaker ability. Recall that

the likelihood of receiving information corresponds to an analyst’s level of specialization



CHAPTER 5. EMPIRICAL IMPLICATIONS 32

or focus; analysts who are particularly specialized, or who work in specialized research

departments, are more likely to receive information than analysts who follow multiple

industries or who can be considered generalists. Moreover, the model shows that pure

imitation herding occurs only by uninformed analysts, who simply repeat the forecast (or

the ”consensus”) made by the leader. This is in line with the results of Jegadeesh and

Kim (2010), and particularly of Clement and Tse (2005), who document this phenomenon

as ”uninformed herding” (p. 310), and find that analysts who follow more industries are

more likely to herd. The results also help to explain the general trend for analysts to cover

more firms. The results give an endogenous explanation for why some analysts become

generalists and others specialists, as it is driven by strategic considerations in the forecast

timing.

The results capture several other important properties of analyst forecasting. As docu-

mented in Cooper et al. (2001), timeliness of the forecast is a more informative indication

of an analyst’s forecasting ability rather than the forecast error. The results of the model

confirm Cooper et al. (2001)’s conclusions as the more precise analyst forecasts earlier,

even though her resulting forecast error may be higher than the subsequent analysts who

issue less timely forecasts. Furthermore, Cooper et al. (2001) find that leaders have a

greater market impact than followers. The results of the model imply that an analyst

leader will always be informed, thus conveying material information and inciting a market

reaction, whereas the follower analyst may sometimes be uninformed and thus issuing a

forecast that has little effect. Likewise, a follower may also be informed, albeit with a lower

precision, and thus will sometimes elicit a market reaction. The latter effect is evidenced

by Shroff et al. (2014), who find that the forecasts of follower analysts can also contain

useful information.

This study is also relevant to the empirical papers investigating the properties and in-

teractions of affiliated and independent analysts. We see from Proposition 2 that affiliated

or biased analysts are more likely to observe material information of the other analysts

before forecasting, which implies that affiliated analysts should have a lower forecast er-

ror than independent analysts. This phenomenon is documented by Jacob et al. (1999)

and Jacob et al. (2008), who find that affiliated analysts issue more accurate forecasts
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than independent analysts. We also see that affiliated analysts have a lower forecast error

when independent/unbiased analysts are also following the firm, which comports with the

findings of Gu and Xue (2008). The results also correspond to the findings of Das et al.

(1998), where analysts issue more biased forecasts when public information is weaker.

5.2 Empirical predictions

A number of empirical predictions emerge from the analysis in this study. The results

imply that the posterior probability that an analyst is uninformed increases over time as

she delays issuing her forecast. This implies that analysts who forecast after the leader are

more likely to exhibit uninformed herding at later stages in the forecasting period rather

than earlier. Hence, one empirical prediction is that clustering of forecasts that occurs

later contains less information than clustering which emerges earlier. Moreover, herding

which occurs later will be more in line with an informational cascade rather than herding

which occurs earlier, which would rather be closer to observational learning. This also

implies that forecasts of follower analysts will induce less market reaction when made in

a later stage rather than earlier.

The results also suggest several predictions concerning the overall timing and speed to

which forecasts are made. When a single highly informed analyst is following the firm, the

forecasting time for all analysts who cover the firm should be earlier. Moreover, as we see

in Corollary 1, the timeliness of forecasts crucially depends on the precision of the most

informed analyst, rather than on the number of analysts who are covering the firm. Hence,

the ability of the lead analysts dictate the overall forecast timing, rather than the number

of analysts. Similarly, Corollary 2 implies that the overall timeliness of the forecasts

improves with the specialization of the lead analysts. Thus, if one highly specialized

analyst is following the firm, this should significantly improve the overall forecasting times

of all the analysts who are following the same firm.

Several paradoxical or counter-intuitive predictions also emerge. The results in Theo-

rem 1 imply that individual analysts will have higher forecast errors when more analysts

are following the firm. This occurs since the strategic forecast timing induces less informa-
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tion acquisition by an analyst when other analysts are following the same firm. Hence, we

should see relatively less accurate forecasts and more uninformed herding when the firm

has a greater analyst following. The results in Theorem 2 imply that the level of bias or

distortion in the forecasts should be relatively higher when more analysts are following the

firm. We thus have the empirical prediction that firms who have a higher analyst following

can be met with forecasts which entail comparatively greater uninformed herding, greater

bias, and less accuracy. This suggests that analyst following may not necessarily be in-

dicative of the transparency of a firm’s information environment. As described shortly, an

alternative measure is the timeliness of forecasts.

Furthermore, the results imply that independent or unaffiliated analysts issue more

timely forecasts. The expected forecasting times for all analysts following a firm should be

earlier when the firm is followed by affiliated analysts, and the speed of the overall fore-

casting times has a monotonic relation with the level of bias of the affiliated analysts. For

example, the results imply that forecasts are made in a more timely fashion and informa-

tion aggregation should occur more quickly when analysts affiliated with the underwriting

bank are following a recently public firm after its IPO quiet period.

The results also have implications for the firm’s informational environment. The re-

sults imply that the timeliness of analysts’ forecasts, rather than the number of analysts

following the firm, is a more suitable measure for the strength or transparency of a firm’s

informational environment. This follows from three distinct implications of the model:

(i) Corollaries 1 and 2 show that the forecasting time is earlier when analysts have more

precise information and when they are more likely to be informed, respectively; (ii) The-

orem 1 implies that increased analyst following may not necessarily lead to a reduction

in information asymmetry; and (iii) Corollary 3 shows that forecasts will be more timely

as public information improves. Taken together, there is a strong theoretical argument

that the timeliness of forecasts may be more informative than analyst following of the

opaqueness of a firm’s informational environment.

There are also predictions concerning the role of public information on the timing of

analysts’ forecasts. For multi-segmented firms, the results imply that analysts who spe-

cialize in the industry/segment with worse public information will forecast earlier than
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analysts who are following the same firm but whose industry specialization has compara-

tively stronger public information. However, the overall forecasting time of both analysts

in a multi-segmented firm is always expedited as public information improves (in either

segment).
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Chapter 6

Extensions

6.1 Information acquisition with heterogeneous analysts

In the information acquisition model of section 3.2, I assumed that analysts were ex

ante symmetric to highlight the economic forces driving information acquisition as well

as to make the analysis analytically tractable for the two-sided acquisition choice. In

this section, I allow analysts to be heterogeneous when there is a one-sided information

acquisition choice (i.e. where ω2
i 6= ω2

j , σ
2
i 6= σ2j , or ri 6= rj). This substantially complexifies

the analysis and the two-sided acquisition choice under this setting is no longer tractable,

however, even the one-sided acquisition choice shows very interesting properties when

there are heterogeneous analysts.

In the one-sided acquisition choice, assume that analyst i must choose her endowment

likelihood, 1−xi, when analyst j’s endowment probability, 1−xj , is fixed and within (0, 1).

In the homogeneous case, analyst i can induce analyst j to have the atom by setting xi even

slightly higher than xj. However, under heterogeneity, this no longer holds. For example,

if an informed analyst i receives an ex ante more precise signal, she may still have the

mass point at time zero even if xi > xj . Similarly, if her discount rate, ri or the ex ante

variance of her distribution, σ2i , is sufficiently higher (see Corollary 3), analyst i may still

have the mass point when xi is above xj. Hence, under heterogeneity, analyst i’s strategy

is to choose xi sufficiently larger than xj such that this compensates for the difference in,

for example, their relative signal precisions so as to induce analyst j to forecast at time
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0 with discrete probability. However, if the requisite xi to induce analyst j’s atom is too

high so that it becomes unprofitable for analyst i, she would then rather set xi = 0 and

forecast immediately. Likewise, if the parameters are such that analyst j has the mass

point ex ante (for example, if analyst j’s signal is much more precise than analyst i’s),

then xi will be determined so as to maximize analyst j’s mass point at time 0.

Let u0i ≡ ui (xi = 0) be analyst i’s expected utility from setting xi = 0 and forecasting

immediately, i.e. xi = 0 = s − ω2
i − σ2j . Similarly, let u∗i ≡ ui (xi = x∗i ) denote expected

utility for analyst i when she she sets her endowment probability to x∗i . When analysts

are allowed to be heterogeneous, the optimal information acquisition choice by analyst i

is given by the following Proposition:

Proposition 3 For fixed xj ∈ (0, 1), analyst i sets xi such that:

xi =







x∗i

0

if u∗i ≥ u0i

otherwise,

where x∗i is the solution to:

x
−

cj

ci

i

(

1−
cj

ci
+
cj

ci
x−1
i

)

=
1

σ2j − ω2
j

[

(

s− ω2
j − σ2i

)

+
σ2i − ω2

i

xj

]

(6.1)

where ci =
s−ω2

j−σ2

i

σ2

i −ω2

i

rj and cj =
s−ω2

i−σ2

j

σ2

j−ω2

j

ri for all ω2
i , σ

2
i , and ri.

The above Proposition states that analyst i sets xi according to equation (6.1) when

it is profitable to induce analyst j to have the atom at time 0. Otherwise, she chooses

to be perfectly informed and forecast immediately with probability one. If analyst i has

the mass point ex ante (for example, if ω2
i < ω2

j ), then she will either set xi = x∗i > xj

to induce analyst j to have the mass point instead of herself, or set xi = 0 if the ex ante

discrepancy is sufficiently large such that it becomes unprofitable (since xi must be set

very high) to induce analyst j to have the mass point.

Proposition 3 can perhaps be more easily understood through the use of a numerical

example. I focus on the more interesting case in which analyst i has the mass point at time

zero ex ante. For the example, suppose that the analysts are heterogeneous in the precision
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Table 6.1: Optimal xi when ω
2
i = 4, ω2

j = 6, s = 20, ri = rj = 0.5, and σ2i = σ2j = 12

xi Ti Tj u∗i u0i αi αj

xj = 0.01 0.32 9.03 13.82 6.58 4 0 0.80

xj = 0.05 0.48 5.83 8.99 5.01 4 0 0.65

xj = 0.1 0.57 4.52 6.91 4.17 4 0 0.55

xj ≥ 0.115 0 0 ≤ 6.49 < 4 4 1 0

of their signals (as denoted by the conditional variance ω2
i ) when informed. Specifically,

let ω2
i = 4 and ω2

j = 6, while the other parameters are symmetric: s = 20, ri = rj = 1
2 ,

and σ2i = σ2j = 12.1 In this example, if xi = xj, then analyst i would have the mass point

at time 0 according to Corollary 1. We have that
cj
ci

= 8
3 and equation (6.1) is given as

x
− 8

3

i

(

−5
3 +

8
3x

−1
i

)

= 1
3 +

8
(xj)(6)

. Let αi denote the time 0 mass point for analyst i and αj

similarly for analyst j. Table 6.1 shows the optimal xi for varying values of xj.

This example highlights very interesting properties of the optimal information acqui-

sition choice with heterogeneous analysts. First, we see that the xi required to overcome

analyst i’s precision advantage is always significantly higher than xj. Analyst i must adopt

a substantially higher likelihood of not receiving information so as to reduce the option

value of waiting for analyst j. This then increases analyst j’s time at which her posterior

goes to 1, Tj, thus leading analyst j to have the mass point at time 0 rather than analyst

i (since Tj > Ti). Second, we see that this strategy of being substantially uninformed is

optimal for analyst i. Specifically, when xj = 0.1, analyst i chooses to be uninformed with

57% probability, which gives her an expected payoff higher than that of being informed

with probability one. Third, we see that the threshold level at which analyst i chooses to

be informed with probability one is reached much more quickly than if analysts were ex

ante homogeneous. In the example above, analyst i chooses to be perfectly informed and

forecast immediately whenever xj exceeds 0.1. This is in contrast to the symmetric case

in Lemma 4, where there is a much higher threshold
(

xj >
1
2

)

necessary to induce analyst

i to set xi = 0. The reason for this is related to the first property of the example–that xi

must significantly exceed xj in order to compensate for analyst i’s ex ante precision ad-

1This is primarily for expositional ease. The numerical results are qualitatively similar if analysts are
also heterogeneous in r and σ2.
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vantage. As xj increases, analyst i must adopt a comparatively higher probability of being

uninformed to induce analyst j to have the mass point, however, this becomes unprofitable

at some point for analyst i as it rather lowers her expected payoff.

Lastly, this example shows the downward pattern in analyst i’s expected utility as

analyst j becomes less informed (as xj increases). This occurs as analyst i can induce a

relatively larger mass point for lower levels of xj (i.e. αj is decreasing in xj), and also

since analyst j’s relatively lower endowment probability has a direct effect on analyst i’s

expected utility. It is also interesting to note from this example that the requisite xi

necessary for analyst j to have the mass point becomes larger as analyst i’s precision

advantage increases. Consequently, this leads to a lower xj threshold necessary to induce

analyst i to choose to be perfectly informed. This is apparent if we rather have ω2
i = 2 in

the numerical example. In this case, the threshold where xi = 0 is reached is with a much

lower threshold xj. Similar examples can be shown for when analysts are heterogeneous in

the variances of their distributions and in their discount rates. Although the analysis in the

two-sided acquisition choice is no longer tractable with heterogenous analysts, one-sided

acquisition under heterogeneity preserves the equilibrium features of the homogeneous

model and also provides additional insights.

6.2 Compensation depends on forecast order

As noted by Groysberg, Healy, and Maber (2011), analysts are rewarded for issuing timely

forecasts through promotions and trading commissions from increased volume. In the

baseline model, timeliness of the forecast is captured by the discounted compensation the

analyst earns when she delays the forecast. An analyst who forecasts earlier saves on the

discounting costs, however, they are not necessarily rewarded more for forecasting first.

To emphasize the importance of timeliness, I allow for the analyst’s salary to vary by

the order in which she forecasted and examine the equilibrium effects in the forecasting

subgame. Specifically, the analysts’ utility function is given by:

ui =
[

sk − (mi − V )2
]

e−riτi · I,
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where k ∈ {L,F}. The leader receives a salary sL, and the follower receives sF , where

sL > sF > σ2i and sL < σ2i + sF < σ21 + σ22. I assume here that ω2
i = ω2

j = 0, so that

informed analysts receive a perfect signal of the value of their segment vi, however, the

results in this section would not be qualitatively affected if signals were imperfect and

with different variances. The remaining structure is the same as in the baseline model.

Each analyst now has a lower option value of waiting given the difference in salaries.

The local incentive constraint for an informed analyst i is given as:

[

sL − σ2j
]

e−rit = βj (t)hj (t)∆t (sF ) e
−rit (6.2)

+ [1− βj (t)hj (t)∆t]
(

sL − σ2j
)

e−ri(t+∆t),

We see from equation (6.2) that analyst j must forecast with a higher rate since the LHS

is now relatively larger. The equilibrium of the forecast subgame is given as:

Proposition 4 When the analysts’ compensations are determined by the forecast order,

the equilibrium of the forecasting subgame consists of strategies (Fi (t) , Fj (t)) as defined in

Lemma 1, except where cj =
sL−σ2

j

σ2

j
−(sL−sF )

ri and ci =
sL−σ2

i

σ2

i
−(sL−sF )

rj. The overall forecasting

terminal time is decreasing in the difference sL − sF .

Because the option value of waiting is lower, each analyst must mix with a higher

rate of forecasting to keep the other analyst indifferent in equilibrium. This consequently

lowers the overall forecasting time. Moreover, the forecasts are more quickly issued as the

reward for forecasting first increases. This is expected as the option value of waiting is

decreasing in the difference sL− sF . We see that delay continues to persist in the forecast

time, as the option value of waiting is positive. However, delay vanishes in the limit where

sL − sF → σ2i , since the value of waiting then tends to zero. The equilibrium of the

information acquisition subgame remains qualitatively unaffected.

Note that this alternative specification is equivalent to a setting where an analyst who

forecasts first is punished less severely in terms of the disutility they receive from the

forecast error, i.e. if the utility function was rather:

ui =
[

s− αk (mi − V )2
]

e−riτi · I,
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where αk ∈ (0, 1) for k ∈ {L,F}, αL < αF , and αLσ
2
i < αFσ

2
i < s < αL

(

σ21 + σ22
)

. In

this case, the leader’s forecast error has a coefficient αL, whereas the coefficient on the

forecast error is αF for the follower. This specification conveys the intuitive notion that

analysts who forecast early may be punished less severely for inaccuracies as relatively

less information is available at the time of their forecast. This setting is equivalent to the

preceding specification where the analysts’ compensation depends on the forecast order

and yields qualitatively identical results to Proposition 4 and to the results in Section 3.

6.3 Alternative value function

The baseline model assumes that the total value of the firm, V , is the sum of the values of

two segments: V = v1 + v2. I impose this structure to allow for general and heterogenous

distributions of vi, however, the results in both the forecasting subgame and informa-

tion acquisition subgame are qualitatively unaffected under alternative value structures.

Specifically, if we have a single segment, V = v , where each analyst receives an imperfect

signal, yi = v + εi, with some probability 1 − xi, then the results go through as long as

the conditional variance of v is decreasing in the number of signals and does not depend

on the value of yi.

For example, suppose that v ∼ N
(

µv, σ
2
v

)

and εi ∼ N
(

0, σ2εi
)

, where σ2εi > 0. As

in the baseline case, each analyst is informed with probability 1 − xi and has a payoff

function as in equation (2.1). Let ω2
i denote the conditional variance for an informed

analyst i who observes yi = v + εi, i.e. ω2
i = (E (v|yi)− v)2, where ω2

i < s < σ2v . Let

φ2 denote the conditional variance for an informed analyst who observes both y1 and

y2, i.e. φ
2 = (E (v|y1, y2)− v)2. We see that each analyst has an incentive to delay her

forecast to observe the forecast of her peer, as φ2 < ω2
i . I assume that the signals are

independent, however, the results would not be qualitatively affected if there is correlation.

The indifference condition for an informed analyst i is then given by:

[

s− ω2
i

]

e−rit = βj (t)hj (t)∆t
(

s− φ2
)

e−rit (6.3)

+ [1− βj (t)hj (t)∆t]
(

s− ω2
i

)

e−ri(t+∆t).
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The analysis is qualitatively similar to the baseline case. Moreover, the properties of the

forecast order are preserved in this setting as well. The equilibrium of the forecasting

subgame is given in the following result:

Proposition 5 When the firm value and signals are joint normal, the equilibrium of the

forecasting subgame consists of strategies (Fi (t) , Fj (t)) as defined in Lemma 1, except

where cj =
s−ω2

i

ω2

i −φ2
ri and ci =

s−ω2

j

ω2

j−φ2
rj . The corresponding results in Corollaries 1, 2, 3,

and Theorem 1 continue to hold.

The proof of Proposition 5 proceeds similarly from the results in Section 3. We see that

the option value of waiting is given by the decrease in the forecast error from observing the

other analyst’s forecast, ω2
i − φ2, and that this determines the mixing rate. Proposition 5

also states that the forecast order is still determined by the analysts’ relative precision and

likelihoods of receiving information; all else equal, the analyst with a lower ω2
i forecasts

earlier and the analyst with a higher 1 − xi forecasts earlier. The equilibrium of the

information acquisition stage is qualitatively unaffected as well, since analysts continue

to have an incentive to receive information with probability less than one in order to

induce the other analyst to forecast earlier. The results concerning forecasting with a

potential bias and bias acquisition as shown in Section 4 continue to hold under this

alternative specification as well. The normal framework is used in the following subsection

to explore the model’s robustness when informational content of the forecast is included

in the analysts’ payoff function.

6.4 Compensation depends on informational content of fore-

cast

The baseline model captures the importance of accuracy through the squared error of the

analyst’s forecast. This depicts an analyst’s incentive to disseminate accurate information

to their buy-side clients and retail investors. It can also be argued that an analyst’s

compensation or payoff also relies on the informational content of the report, that is,

the new information (or interpretation/insight) that an analyst brings to the market. As
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mentioned previously (see footnote 2), analysts may obtain useful information from other

analysts in other non-public channels before the forecasts have been widely distributed

(e.g. through their common buy-side clients). However, it may also be the case that

analysts are rewarded on the market impact/reaction of their report or on completely new

information that they contribute.

To investigate this further, assume that, as in Section 6.3, V = v, v ∼ N
(

µv, σ
2
v

)

, and

εi ∼ N
(

0, σ2εi
)

, where σ2εi > 0, and each analyst, if informed, receives a signal yi = v + εi.

The information content of the forecast can be captured as in Admati and Pfleiderer

(1986) and Guttman (2010). Let πi ≡
1
ω2

i

denote the conditional precision of an informed

analyst i’s forecast, and let ρt ≡
1
ϕ2
t

denote the precision of publicly available information.

The additional component of the utility function that depends on new information is

represented as:

Ct = log

(

πi + ρt

ρt

)

. (6.4)

Note that ρt is constant except when a forecast is released by one of the analysts. Since

there is no further private information gathering by either analyst after time 0, πi is fixed

but ρt may increase after a forecast is released. To examine the effects of information

content-based compensation, consider the alternative utility function which incorporates

Ct:

ui =
[

s+ Ct − (mi − V )2
]

e−riτi · I. (6.5)

In this case, there is an additional benefit in forecasting early, as Ct is relatively larger for

the analyst that forecasts first. However, the benefit of learning from the other analyst is

maintained through the disutility in the forecast error. Hence, the payoff structure in equa-

tion (6.5) is qualitatively equivalent to that in Section 6.2, as there is an additional benefit

to the leader. It is straightforward to show that the qualitative equilibrium properties of

Section 2 are preserved under this alternative utility structure as well. Thus, compensa-

tion partly based on the informational contribution of the forecast does not qualitatively

affect the results when analysts prefer to have a lower forecast error.
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6.4.1 Endogenous payoff function

As shown by Admati and Pfleiderer (1986) and Guttman (2010), equation (6.4) can be

derived endogenously from the payoff that an analyst receives from selling her forecast to

an uninformed investor. The same argument can be applied here to endogenously generate

the analyst’s payoff function, discounted to the time in which she issues her forecast:

ui = Cte
−riτi · I, (6.6)

where the risk aversion parameter in Guttman (2010) is set to γ = 1
2 and where signals

and values are normally distributed as in Section 6.3 (i.e. an informed analyst receives

a signal yi = v + εi, where v ∼ N
(

µv, σ
2
v

)

, εi ∼ N
(

0, σ2εi
)

, where σ2εi > 0). Under the

payoff structure in equation (6.6), an additional assumption on the information structure is

necessary to capture analysts’ observational learning from their peers. For example, there

may exist complementarities in the analysts’ information sets such that the precision of

analyst i’s signal is improved upon observing the forecast and learning the information

of analyst j. This may happen, for instance, when analysts have different comparative

advantages and backgrounds such that the information released by one analyst may help

with the discovery, analysis, or interpretation of the information of another analyst. For

example, suppose analyst 1 specializes in firm-specific expertise and analyst 2’s advantage

is with overall industry expertise. A report/forecast by analyst 2 on the financial soundness

of major suppliers or customers may allow analyst 1 to better assess the firm’s long-run

strategy and direction, thus allowing her to make a more accurate forecast.

To capture complementarity in the information sets of the two analysts, we can assume

that the errors, ε1 and ε2, covary so that there is additional benefit to observing the

forecast, and thus the signal, of the other analyst, i.e. by setting cov (ε1, ε2) = c 6= 0.2

2For c to result in a reduction of the conditional variance, the following condition must be satisfied:

σ2

1σ
2

2

σ2
v (σ

2

1
+ σ2

2
) + σ2

1
σ2

2

>
σ2

1σ
2

2 − c2

σ2
v (σ

2

1
+ σ2

2
) + σ2

1
σ2

2
− 2σ2

v − c2

In the notationally less cumbersome symmetric case where σ2

1 = σ2

2 ≡ σ2

i , c must satisfy:

c >
σ2

i − σ4

i + 2σ2

v − 2σ2

vσ
2

i

σ2

i
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In this case, the results of the baseline model are qualitatively preserved as long as there

is sufficient reduction in the conditional variance of analyst i’s signal upon observing the

forecast of analyst j. Alternatively, complementarities can be depicted as in Kim and

Verrechia (1994, 1997), where each informed analyst receives a private signal of the firm’s

value or earnings, yi = v+εi, as well as an additional signal regarding the error of the other

analyst’s information, Oi = εj − δi, where δi ∼ N
(

0, σ2δi
)

. In this case, the signal Oi is

only helpful to analyst i if she observes the forecast of analyst j, thus giving her additional

information beyond the signal of analyst j, represented as yi,O ≡ yj − Oi = v + δi. For

example, analyst i has private information regarding the random error in analyst j’s report

due to her understanding of analyst j’s firm or information discovery/analysis methods

(e.g. the model that analyst j uses to generate her forecasted numbers). This plausible

alternative information structure also generates benefits to observational learning by the

analysts when σ2δi is sufficiently low (and similarly for σ2δj ). The qualitative equilibrium

properties under this utility and information structure are also preserved as the economic

forces driving the model–the benefit to waiting and from inducing more timely forecasting

by the other analyst–continue to hold.

One should note, however, that the above specifications do not generate significant

insights beyond the utility representation in the baseline model and also cause the anal-

ysis to be far more algebraically cumbersome. Nevertheless, these alternative utility and

information structures allow the payoff function to be endogenized from an investor’s de-

mand for information and demonstrate that the results are robust to alternative modeling

specifications.

6.5 Commitment to forecasting time

The baseline model assumes that analysts are not committed to any particular forecast

time and can issue their forecast as time proceeds. However, it is plausible that an analyst

may announce the date in which she expects to release her forecast, and thus, in some

or, in the case of negative covariance,
c < −σ2

i − 2σ2

v.
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sense, committing ex ante to a forecast time. In this extension, I consider the alternative

model in which analysts publicly announce a forecast time to which they are committed

and cannot issue a forecast at any other time. I first examine the case in which the

selection of forecast times is sequential, where analyst j selects her forecast time τj and

then, having observed τj, analyst i selects her forecast time τi. Under this setting, analyst

j will choose her forecast time τj in order to induce analyst i to forecast immediately.

That is, she will set τj such that analyst i finds it more profitable to set τi = 0 rather than

an instant after analyst j’s forecast time, τi = τj + ε. This is given by:

e−riτ∗j
(

s− ω2
i − ω2

j

)

≤ s− ω2
i − σ2j , (6.7)

which is an equilibrium strategy for analyst i if this is more profitable for analyst j than

from forecasting immediately:

e−rjτ∗j
(

s− ω2
i − ω2

j

)

≥ s− σ2i − ω2
j .

If the above condition does not hold, then analyst j sets τj = 0 and analyst i sets τi = ε,

as any τj < τ∗j will induce analyst i to set τi = τj + ε. In this case, analyst j can do

strictly better by forecasting immediately. This analysis assumes that both analysts are

perfectly informed, however, endogenizing information acquisition leads to a similar result

as the main result of the baseline model. If there is some probability xi that analyst i is

uninformed, analyst j’s payoff must satisfy

e−rjτ
∗

j
((

s− ω2
i − ω2

j

)

(1− xi) +
(

s− σ2i − ω2
j

)

(xi)
)

≥ s− σ2i − ω2
j .

Similarly, if analyst j was also probabilistically uninformed, a lower forecast time would

be required to satisfy equation (6.7). In this case, the equilibrium information acquisition

strategy again involves mixing over xi.

In the case where the selection of the committed forecast time is simultaneous, the

equilibrium entails mixing over the selection of τi. This is similar to the argument made

in Claim 1–no two pure strategy forecast times can be mutual best responses. Information



CHAPTER 6. EXTENSIONS 47

acquisition is less clear in this context though it seems to be the case that it remains to be

inefficient if it leads to more density over lower values of τi in the forecast time selection

stage.

6.6 Learning over time

In the baseline model, analysts can only learn their private information at time 0, at which

point they are either informed or uninformed. However, it may be the case that analysts

receive information at different points in time and can also learn new private information

by delaying their forecast. In this section, I extend the baseline setting by allowing analysts

to learn information over time. Suppose information arrives for each analyst according to

a Poisson process with intensity λ. The remaining structure is the same as in the baseline

model, where V = v1 + v2, analysts have utility as in equation (2.1), and yi = vi. The

signal and the arrival time T are privately observed by each analyst. The arrival time is

thus exponentially distributed, where the probability of being informed for each analyst

is:

Ω (t) = 1− e−λt.

We see that delay by an informed analyst will be present in this setting as well. I conjecture

that an analyst who learns information at time T will wait an additional amount of time

t (T ) before forecasting, where t (T ) is the delay strategy based on the arrival time T . The

time the forecast is issued is thus T+t (T ). There are two simplifying conditions regarding

a symmetric pure strategy t (T ). The first is that an analyst who receives information at

time 0 will issue her forecast immediately, i.e. t (0) = 0. The benefit of delaying the

forecast is the option value of observing the other analyst’s forecast. If t (T ) ≥ t (T ′), then

an analyst can only observe the forecast of those who received information before them.

Thus, an informed analyst at time 0 can only learn information if the other analyst was

also informed at time 0. However, the option value in this case is zero since the event

has zero probability. Alternatively, if t (0) > t (T ′), where T ′ > 0, this would contradict

the single-crossing condition necessary for a symmetric pure strategy equilibrium. This

implies that t (T ) is increasing, at least initially, and is never strictly decreasing for all T .
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According to the strategy t (T ), an analyst who receives information at time T can

only observe the forecast of an analyst who received information between time T − t (u)

and time T . An analyst who received information prior to time T − t (u) would have

already forecasted, and an analyst who receives information after time T will delay their

forecast until some time after T + t (T ). Therefore, the relevant interval for an informed

analyst i at time T is the probability of information arrival for analyst j in the interval

[u+ t (u) , T ]. Let k (u) = u + t (u) ≡ T , and so k−1 (T ) = u. For notational ease, let

ξ (T ) ≡ k−1 (T ). The informed analyst’s payoff can be expressed as:

Vi = max
h

∫ T

ξ(T )
s · e−r(u+t(u)−T ) · λe−λ(u−ξ(T ))du+ (1− Ω (T − ξ (T ))) e−r(t(T ))

(

s− σ2j
)

(6.8)

The first term in equation (6.8) is analyst i’s expected payoff from waiting an addi-

tional time t (T ) before forecasting and observing the other analyst’s forecast. The second

term is analyst i’s expected payoff from waiting until time T + t (T ) and not observing

analyst j’s forecast.

The solution to the problem involves solving for the functional form of the delay period,

t (T ). However, this is unfortunately analytically intractable without imposing further

conditions. Suppose we can set a blocked interval, where analysts may learn information

but are prohibited from issuing a forecast. This can be thought of as the early stages

of an IPO process, where analysts affiliated with the underwriting banks learn material

information but disclosure is prohibited. Let B denote the end point of the blocked

interval, [0, B). We can thus choose B which induces the strategy t (T ) to be constant for

all arrival times T :

Proposition 6 Suppose there is a time interval where analysts are not able to forecast,

then the equilibrium forecasting strategy follows a constant delay time given that B = t∗,

where

t∗ =
ln

(

σ2 (λ+ r)− rs
)

λ+ r
.

The above Proposition states that the delay time is constant and equal to B when

analysts may learn information but cannot forecast in the interval [0, B). This is a spe-

cial case since analysts who learn information within the blocked interval have the same
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incentives as those who learn information after time B.
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Chapter 7

Conclusion

This study offers a unified theory for analyst forecast timing, information acquisition,

and choice of employment. I characterize the unique equilibrium of the forecasting game

to show that the forecast order is determined by the precision of the analysts’ signals,

the likelihood the analysts’ privately receive information, the level of the analysts’ biases,

the public information in the analysts’ segments, and the analysts’ discount rates. The

results capture several significant and interesting properties of the forecast order and

allow for endogenous information acquisition. I show that there exists a unique symmetric

equilibrium for which analysts choose to be imperfectly informed. This occurs due to the

analysts’ incentive to gain a strategic advantage in the forecasting subgame. Similarly,

when the choice of employment is endogenized, one of the analysts chooses to be affiliated

in equilibrium.

The key novelty of the model is that I allow analysts to be probabilistically informed

and analysts choose this probability prior to their forecasting decision. The uncertain

nature of information acquisition is of practical relevance and departs from the extant an-

alyst herding literature. Allowing for uncertainty over the information endowment leads to

number of interesting results that shed light on empirical regularities which have heretofore

not been captured in the theoretical literature. Moreover, the results provide several av-

enues for future research through empirical predictions. The main result captures the link

between an analyst’s primary responsibility of information acquisition/production and the

strategic nature of the forecast timing. The results also provide a theoretical justification
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for an analyst’s choice of affiliated employment.

Suggestions for future theoretical work that build on the model here include endog-

enizing the market’s perception of the analyst’s type in the forecasting game as part of

her compensation. The model assumes that an analyst’s compensation only depends on

her forecast error and timeliness, however, it may be the case that an analyst’s perceived

ability (informed or uninformed) may also have some impact on her compensation. An-

other possible extension includes an exogenous shock to the public information that occurs

either at some known or unknown time. It seems that this would induce further delay by

analysts, or push to immediate forecasting if an analyst’s compensation depends on their

perceived ability. This work provides useful insights on the economic forces which drive

analyst behavior and offers several avenues for future theoretical and empirical research.
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Appendix A

Appendix of Proofs

Proof of Lemma 1. By Claims 1-5, Fj (t) must be such that an informed analyst i’s

utility is constant for all t. This is given by:

ui =

∫ t

0

(

s− ω2
i − ω2

j

)

e−riafj (a) da+ (1− Fj (t))
(

s− ω2
i − σ2j

)

e−rit

Taking the FOC with respect to t, we have

(

s− ω2
i − ω2

j

)

e−ritfj (t)− fj (t)
(

s− ω2
i − σ2j

)

e−rit− (1− Fj (t))
(

s− ω2
i − σ2j

)

e−ritri = 0

fj (t)
(

σ2j − ω2
j

)

− (1− Fj (t))
(

s− ω2
i − σ2j

)

ri = 0

fj (t) +
Fj (t)

(

s− ω2
i − σ2j

)

ri

σ2j − ω2
j

=

(

s− ω2
i − σ2j

)

ri

σ2j − ω2
j

Let cj =
(s−ω2

i−σ2

j )ri
σ2

j−ω2

j

and multiplying the above equation by ecjt, we have

fj (t) e
cjt + Fj (t) e

cjt · cj = cje
cjt
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which is equivalent to

d
(

Fj (t) e
cjt

)

dt
= cje

cjt

Fj (t) e
cjt = ecjt − α

Fj (t) = 1− αe−cjt

We see that Fj (t) follows an exponential path, which implies that the constant hazard

rate is equal to cj . Thus,

d

dt
ln (1− Fj (t)) = −cj

ln (1− Fj (t))− ln (1− Fj (0)) = −cjt

Fj (t) = 1− (1− Fj (0)) e
−cjt

Thus, α = 1− Fj (0), and is analyst j’s potential atom at t = 0. By similar argument for

analyst i, we have

Fi (t) = 1− (1− Fi (0)) e
−cit

where

ci =
s− ω2

j − σ2i

σ2i − ω2
i

rj

The endogenous terminal time to the game is given by T = min {T1, T2}. To determine

T , we have that

1− e−ciTi = 1− xi

−ciTi = ln (xi)

Ti = −
1

ci
ln (xi)
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Hence, T = min
{

− 1
ci
ln (xi) ,−

1
cj
ln (xj)

}

. Suppose that Ti > Tj. Then Fj (0) = 0 and

Fi (0) is determined by

1− (1− Fi (0)) e
−ciTj = 1− xi

(1− Fi (0)) e
−ciTj = xi

Fi (0) = 1− xi exp

(

ci

(

−
1

cj
ln (xj)

))

Fi (0) = 1− x
−

ci
cj

j xi

And hence Fi (t) = 1−

(

x
−

ci
cj

j xi

)

e−cit.

Proof of Corollary 1. Recall that T = min
{

− 1
cj
ln (xj) ,−

1
ci
ln (xi)

}

, which is

T = min







−
σ2j − ω2

j
(

s− ω2
i − σ2j

)

ri

ln (xj) ,−
σ2i − ω2

i
(

s− ω2
j − σ2i

)

rj

ln (xi)







which we see is decreasing in 1
ω2

i

and 1
ω2

j

, which implies the first part of the claim. Assuming

xi = xj , ri = rj, and σ
2
i = σ2j , then if Ti > Tj,

−
1

ci
ln (xi) > −

1

cj
ln (xj)

σ2i − ω2
i

s− ω2
j − σ2i

ln (xi) <
σ2j − ω2

j

s− ω2
i − σ2j

ln (xj)

σ2 − ω2
i

s− ω2
j − σ2

>
σ2 − ω2

j

s− ω2
i − σ2

Then,

(

σ2 − ω2
i

) (

s− ω2
i − σ2

)

>
(

σ2 − ω2
j

) (

s− ω2
j − σ2

)

σ2s− ω2
i s− ω2

i σ
2 + ω4

i − σ4 + σ2ω2
i > σ2s− ω2

j s− ω2
jσ

2 + ω4
j − σ4 + σ2ω2

j

−ω2
i s+ ω4

i > −ω2
j s+ ω4

j

s
(

ω2
j − ω2

i

)

>
(

ω2
j − ω2

i

) (

ω2
j + ω2

i

)
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If ω2
j − ω2

i > 0, then

s > ω2
j + ω2

i

which holds since s > ω2
j + σ2i > ω2

j + ω2
i . If ω

2
j − ω2

i < 0, then

s < ω2
j + ω2

i

However, this can never be the case since s > ω2
j + σ2i . Thus, if Ti > Tj, then it must be

that ω2
j > ω2

i , and so 1
ω2

i

> 1
ω2

j

, and analyst i has the atom at time 0. Hence, the analyst

with more precise information forecasts earlier.

Proof of Corollary 2. Recall that T = min
{

− 1
cj
ln (xj) ,−

1
ci
ln (xi)

}

, which is

T = min







−
σ2j − ω2

j
(

s− ω2
i − σ2j

)

ri

ln (xj) ,−
σ2i − ω2

i
(

s− ω2
j − σ2i

)

rj

ln (xi)







.

Assuming ω2
i = ω2

j , ri = rj , and σ
2
i = σ2j , then if Ti > Tj ,

−
1

ci
ln (xi) > −

1

cj
ln (xj)

σ2i − ω2
i

s− ω2
j − σ2i

ln (xi) <
σ2j − ω2

j

s− ω2
i − σ2j

ln (xj)

σ2 − ω2

s− ω2 − σ2
ln (xi) <

σ2 − ω2

s− ω2 − σ2
ln (xj)

ln (xi) < ln (xj)

xi < xj

Which is equivalent to 1− xi > 1− xj.

Proof of Corollary 3. Recall that T = min
{

− 1
cj
ln (xj) ,−

1
ci
ln (xi)

}

, which is

T = min







−
σ2j − ω2

j
(

s− ω2
i − σ2j

)

ri

ln (xj) ,−
σ2i − ω2

i
(

s− ω2
j − σ2i

)

rj

ln (xi)






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which we see is decreasing in ri and rj . Differentiating Ti with respect to σ2j , we have that

− ln (xj)
(

s− ω2
i − σ2j

)

ri + ri

(

ω2
j − σ2j

)

ln (xj)
((

s− ω2
i − σ2j

)

ri

)2

− ln (xj)
(

s− ω2
i − σ2j

)

r > 0,
((

s− ω2
i − σ2j

)

ri

)2
> 0, and ri

(

ω2
j − σ2j

)

ln (xj) > 0 since

ω2
j − σ2j < 0 and ln (xj) < 0. A similar calculation can be done for σ2i . Hence T is

increasing in σ2i and thus decreasing in 1
σ2

i

. Assuming ω2
i = ω2

j , xi = xj, and σ2i = σ2j ,

then if Ti > Tj,

−
1

ci
ln (xi) > −

1

cj
ln (xj)

σ2i − ω2
i

(

s− ω2
j − σ2i

)

rj

ln (xi) <
σ2j − ω2

j
(

s− ω2
i − σ2j

)

ri

ln (xj)

1

rj
>

1

ri

rj < ri

Since analyst i has the atom at t = 0 and ri > rj , this implies that the less patient analyst

forecasts earlier. Similarly, if ω2
i = ω2

j , xi = xj, and ri = rj, then if Ti > Tj ,

−
1

ci
ln (xi) > −

1

cj
ln (xj)

σ2i − ω2
i

(

s− ω2
j − σ2i

)

rj

ln (xi) <
σ2j − ω2

j
(

s− ω2
i − σ2j

)

ri

ln (xj)

(

σ2i − ω2
) (

s− ω2 − σ2j
)

>
(

σ2j − ω2
) (

s− ω2 − σ2i
)

σ2i s− ω2σ2i − σ2i σ
2
j − ω2s+ ω4 + ω2σ2j > σ2j s− ω2σ2j − σ2i σ

2
j − ω2s+ ω4 + ω2σ2i

σ2i
(

s+ 2ω2
)

> σ2j
(

s+ 2ω2
)

σ2i > σ2j

Proof of Lemma 4. Assuming xj is fixed, analyst i faces the following maximization
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problem:

max
xi

{

(1− xi)
[(

x−1
i xj

) (

s− σ2
)

+
(

1− x−1
i xj

)

(s)
]

+ xi (1− xj)
(

s− σ2
)}

= max
xi

{

(1− xi) s− (1− xi)

(

xj

xi

)

σ2 + xi (1− xj)
(

s− σ2
)

}

= max
xi

{

(1− xi) s−

(

xj

xi

)

σ2 + xjσ
2 + xi (1− xj)

(

s− σ2
)

}

Taking the FOC, this becomes

−s+

(

xj

x2i

)

σ2 + (1− xj)
(

s− σ2
)

= 0

xj

x2i
=
xjs+ σ2 − xjσ

2

σ2

x2i = xj
σ2

xj (s− σ2) + σ2

xi = (xj)
1

2

(

σ2

xj (s− σ2) + σ2

)

1

2

We see that

(xj)
1

2

(

σ2

xj (s− σ2) + σ2

)

1

2

> xj

σ2

xj (s− σ2) + σ2
> xj

σ2 − σ2xj > x2j
(

s− σ2
)

s <
σ2 (1− xj)

x2j
+ σ2

which requires that
1− xj

x2j
≥ 1.

To see that xi = 0 when xj >
1
2 , limit the choice of xi to be either xi = xj or xi > xj .
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Then analyst i will choose xi > xj if and only if:







(xi) (xj) 0 + xi (1− xj)
(

s− σ2
)

+(1− xi)
[

(1− Fj (0))
(

s− σ2
)

+ Fj (0) (s)
]







>







(

s− σ2
)

(1− x̂i)

+xi

(

s− σ2j

)

(1− xj) + (x̂i) (xj) 0







(1− xi)
[

(1− Fj (0))
(

s− σ2
)

+ Fj (0) (s)
]

>
(

s− σ2j
)

(1− x̂i)

where xi > x̂i on the RHS and x̂i = xj on the LHS. Then,

(1− xi)

[(

xj

xi

)

(

s− σ2
)

+

(

1−
xj

xi

)

(s)

]

>
(

s− σ2
)

(1− xj)

(1− xi)

[

s−

(

xj

xi

)

σ2
]

>
(

s− σ2
)

(1− xj)

xis+

(

xj

xi

)

σ2 < σ2 + xjs

s (xi − xj) + σ2
(

xj − xi

xi

)

< 0

Let xi = xj + κ, then

s (κ)− σ2
(

κ

xi

)

< 0

s <
σ2

xi

s <
σ2

xj + κ

s (xj + κ) < σ2

Since s
2 < σ2, then this holds as long as xj ≤ 1

2 . This implies that analyst i’s payoff is

greater by setting xi = xj when xj >
1
2 then by setting xi > xj , given that xi is restricted

to the interval [xj , 1]. However, we know that analyst i can do strictly better by setting

xi = 0 when xi = xj which implies that xi = 0 when xj >
1
2 .
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Proof of Lemma 5. Analyst i’s expected utility is given as

ui =

∫ x

0

[

x (1− y)
(

s− σ2
)

+ (1− x)
(

s− σ2
)]

dΨ(y) (A.1)

+

∫ q

x

[

x (1− y)
(

s− σ2
)

+ s− xs−
(y

x

)

σ2 + yσ2
]

dΨ(y) .

Where xi = x and xj = y. It follows from equation (A.1) that ui is continuous on [0, q]

since Ψ (x) is continuous by definition. Define Fi := {xi|ui (xi) = maxui}. From Lemma

4 and since Ψ (x) is nondecreasing, Fi is dense in [0, q]. Hence, ui is constant for x ∈ [0, q]

and so Fi = [0, q]. This implies that ui is differentiable. The fundamental theorem of

calculus and differentiability of ui imply that Ψ (x) is differentiable on [0, q].

Proof of Theorem 1. Analyst i’s maximization problem is:

max
xi



















E
[

I{xi≤xj}

[

(xi) (xj) 0 + xi (1− xj)
(

s− σ2
)

+ (1− xi)
(

s− σ2
)]

]

+E





(

1− I{xi≤xj}

)





(xi) (xj) 0 + xi (1− xj)
(

s− σ2
)

+(1− xi)
[

(

s− σ2
)

(

1−
(

1−
xj

xi

))

+ s
(

1−
xj

xi

)]



























= max
xi







E
[

I{xi≤xj} + xi (1− xj)
(

s− σ2
)

+ (1− xi)
(

s− σ2
)

]

+E
[(

1− I{xi≤xj}

) [

xi (1− xj)
(

s− σ2
)

+ (1− xi)
[

s−
(

xj

xi

)

σ2
]]]







= max
xi







E
(

I{xi≤xj}

[

xi (1− xj)
(

s− σ2
)

+ s− xis− σ2 + xiσ
2
]

)

+E
((

1− I{xi≤xj}

) [

xi (1− xj)
(

s− σ2
)

+ s− xis−
(

xj

xi

)

σ2 + xjσ
2
])







Hence, setting the equation above equal to ui and taking expectation, we have:

ui =

∫ x

0

[

x (1− y)
(

s− σ2
)

+ (1− x)
(

s− σ2
)]

ψ (y) dy (A.2)

+

∫ q

x

[

x (1− y)
(

s− σ2
)

+ s− xs−
(y

x

)

σ2 + yσ2
]

ψ (y) dy

Where xi = x and xj = y for ease of exposition. By Lemma 5, Ψ (y) is differentiable and

analyst i’s utility must be constant over all choices of xi. Taking the FOC of equation
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(A.2) with respect to x, we have:











[

x (1− x)
(

s− σ2
)

+ (1− x)
(

s− σ2
)]

ψ (x) +
(

σ2 − s
) ∫ x

0 yψ (y) dy

−
[

x (1− x)
(

s− σ2
)

+ s− xs−
(

x
x

)

σ2 + xσ2
]

ψ (x)

+
∫ q
x

[

−ys− σ2 + yσ2 +
( y
x2

)

σ2
]

ψ (y) dy











= 0





[

s− xs− σ2 + σ2x
]

ψ (x) +
(

σ2 − s
) ∫ x

0 yψ (y) dy −
[

s− xs− σ2 + xσ2
]

ψ (x)

+
∫ q
x

[

−ys− σ2 + yσ2 +
( y
x2

)

σ2
]

ψ (y) dy



 = 0

(

σ2 − s
)

∫ x

0
yψ (y) dy +

∫ q

x

[

−ys− σ2 + yσ2 +
( y

x2

)

σ2
]

ψ (y) dy = 0

So we have

(

σ2 − s
)

∫ x

0
yψ (y) dy +

∫ q

x

[

y

(

σ2 − s+
σ2

x2

)

− σ2
]

ψ (y) dy = 0

Which becomes





(

σ2 − s
) ∫ x

0 yψ (y) dy +
∫ q
0

[

y
(

σ2 − s+ σ2

x2

)

− σ2
]

ψ (y) dy

−
∫ x
0

[

y
(

σ2 − s+ σ2

x2

)

− σ2
]

ψ (y) dy



 = 0





∫ x
0

[

(

σ2 − s
)

y −
(

y
(

σ2 − s+ σ2

x2

)

− σ2
)]

ψ (y) dy

+
∫ q
0 y

(

σ2 − s+ σ2

x2

)

ψ (y) dy −
∫ q
0 σ

2ψ (y) dy



 = 0





∫ x
0

[

(

σ2 − s
)

y −
(

y
(

σ2 − s+ σ2

x2

)

− σ2
)]

ψ (y) dy

+
∫ q
0 y

(

σ2 − s+ σ2

x2

)

ψ (y) dy −
∫ q
0 σ

2ψ (y) dy



 = 0

Which is
∫ x

0

[

σ2 − y
σ2

x2

]

ψ (y) dy +

(

σ2 − s+
σ2

x2

)

µ− σ2 = 0 (A.3)

Multiplying the entire equation by x3, we have

∫ x

0
σ2

[

x3 − xy
]

ψ (y) dy −
(

x2
(

s− σ2
)

− σ2
)

µx− x3σ2 = 0
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Differentiating the above with respect to x, we have

σ2
(

x3 − x2
)

ψ (x) +

∫ x

0
σ2

[

3x2 − y
]

ψ (y) dy − 3x2
(

s− σ2
)

+ σ2µ− 3x2σ2 = 0

which is

ψ (x)−

∫ x

0

3x2 − y

x2 − x3
ψ (y) dy =

3x2s− σ2µ

σ2 (x3 − x2)

Which is a Volterra equation of the second kind. K (x, y) = 3x2−y
x2−x3 and h (x) = 3x2s−σ2µ

σ2(x3−x2)

for x, y ∈ [0, q] are discontinuous at x = 0. We have that
∫ x
0 |K (x, y)| dy converges for all

x except for x = 0 in [0, q] and is finite in any region [ǫ, ǫ+ q] except for x = 0 in [0, q].

Note that we can divide [0, q] into k smaller intervals with bounds (ai, ai+1) such that
∫ x
ai
|K (x, y)| dy ≤ 1 since we can find ai such that x2 − x3 >

∣

∣3x2 (x− ai)−
1
2

(

x2 − a2i
)
∣

∣,

by setting ai close to x. Hence, by Evans (1910), there exists a unique solution to ψ (x).1

Proof of Proposition 1. By Claims 1-5, Fj (t) must be such that an informed analyst

i’s utility is constant for all t. This is given by:

ui =

∫ t

0

(

s− p2jb
2
j

)

e−riafj (a) da+ (1− Fj (t))
(

s− σ2j
)

e−rit

Taking the FOC with respect to t, we have

(

s− p2jb
2
j

)

e−ritfj (t)− fj (t)
(

s− σ2j
)

e−rit − (1− Fj (t))
(

s− σ2j
)

e−ritri = 0

Proceeding as in the proof of Lemma 1 yields the result.

1Evans (1910) shows this by dividing K (·) into two components, one constant and the other a function
of the arguments. For the solution, an approximating series can be constructed in which each term is
constructed by first solving a singular differential equation and then solving an integral for the inhomo-
geneity of the subsequent differential equation. Alternatively, equation (A.3) can be expressed as a Volterra
equation of the third kind:

ψ (x) x−

∫ x

0

2x

1− x
ψ (y) dy =

2xsµ

σ2 (x− 1)

in which we can apply von Wolfersdorf (2007).
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Proof of Proposition 2. Recall that T = min
{

− 1
cj
ln (xj) ,−

1
ci
ln (xi)

}

, which is

T = min







−
σ2j − p2jb

2
j

(

s− σ2j

)

ri

ln (xj) ,−
σ2i − p2i b

2
i

(

s− σ2i
)

rj
ln (xi)







which we see is decreasing in p2i b
2
i and thus pibi. Analyst i has an atom at time 0 if Ti > Tj ,

and so

−
1

ci
ln (xi) > −

1

cj
ln (xj)

σ2i − p2i b
2
i

s− σ2i
ln (xi) <

σ2j − p2jb
2
j

s− σ2j
ln (xj)

When xi = xj , then

σ2i − p2i b
2
i

s− σ2i
>
σ2j − p2jb

2
j

s− σ2j

We see from the above that the bias p2i b
2
i only lowers T , thus reducing the overall time

until the posterior is reached and strengthening the analyst’s position. This becomes

(

σ2i − p2i b
2
i

) (

s− σ2j
)

>
(

σ2j − p2jb
2
j

) (

s− σ2i
)

σ2i s+ p2i b
2
iσ

2
j − p2i b

2
i s− σ2i σ

2
j > σ2j s− p2jb

2
js+ p2jb

2
jσ

2
i − σ2i σ

2
j

σ2i s+ p2i b
2
iσ

2
j − p2i b

2
i s > σ2j s− p2jb

2
js+ p2jb

2
jσ

2
i

When σ2i = σ2j , then

p2i b
2
iσ

2
j − p2i b

2
i s > −p2jb

2
js+ p2jb

2
jσ

2
i

−p2i b
2
i s+ p2jb

2
js > p2jb

2
jσ

2
i − p2i b

2
i σ

2
j

s
(

p2jb
2
j − p2i b

2
i

)

> σ2
(

p2jb
2
j − p2i b

2
i

)

If p2jb
2
j − p2i b

2
i > 0, then s > σ2. If p2jb

2
j − p2i b

2
i < 0, then s < σ2, but this cannot happen.

Thus we must have that p2i b
2
i < p2jb

2
j if Ti > Tj . Hence, the player who is less biased

forecasts earlier.
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Proof of Theorem 2. We see from Proposition 1 that the equilibrium payoff for an

informed analyst i is given as

(1− Fj (0))
(

s− σ2j
)

+ Fj (0)
(

s− p2jb
2
j

)

.

From Proposition 2, when xi = xj, σi = σj , and ri = rj , if p
2
jb

2
j < p2i b

2
i , then Fj (0) > 0,

and Fj (0) = 0 otherwise. Assume that in the case of indifference, the analyst sets pi to be

the lowest value which achieves the same payoff. When bi > bj , then analyst i can induce

an atom by analyst j by setting pi =
1
2 , since then p

2
i b

2
i > p2jb

2
j for any choice of pj . In this

case, Fj (0) > 0 and Fi (0) = 0, and so an informed analyst j has an equilibrium payoff of

s − σ2i for any choice of pj , and thus sets pj = 0. Fj (0) is maximized when pi =
1
2 and

hence is a best response to any choice of pj. A similar argument holds for bi < bj which

gives pi = 0, pj =
1
2 . When bi = bj , any choice of pi <

1
2 is met with a pj > pi, and vice

versa. Hence, at least one of pj or pi must be equal to 1
2 . If pi =

1
2 , then analyst j is

indifferent to any choice of pj ∈
[

0, 12
]

, since if pj =
1
2 , then neither analyst has an atom,

and if pj <
1
2 , then only analyst j has an atom. In either case, analyst i will never have

an atom, and analyst j receives the same expected utility, thus setting pj = 0.

Proof of Proposition 3. Analyst i’s program is given as:

max
xi











(1− xi)

[(

x
−

cj

ci

i xj

)

(

s− ω2
i − σ2j

)

+

(

1− x
−

cj

ci

i xj

)

(

s− ω2
i − ω2

j

)

]

+xi (1− xj)
(

s− ω2
j − σ2i

)











= max
xi























(1− xi)







x
−

cj

ci

i xjs− x
−

cj

ci

i xjσ
2
j − x

−
cj

ci

i xjω
2
i

+s− x
−

cj

ci

i xjs− ω2
i + x

−
cj

ci

i xjω
2
i − ω2

j + x
−

cj

ci

i xjω
2
j







+xi (1− xj)
(

s− ω2
j − σ2i

)























= max
xi

{

(1− xi)

[

−x
−

cj

ci

i xjσ
2
j + s− ω2

i − ω2
j + x

−
cj

ci

i xjω
2
j

]

+ xi (1− xj)
(

s− ω2
j − σ2i

)

}

= max
xi











[

−x
−

cj

ci

i xj

(

σ2j − ω2
j

)

+ s− ω2
i − ω2

j + x
1−

cj

ci

i xj

(

σ2j − ω2
j

)

− xis+ ω2
i xi + ω2

jxi

]

+

xi (1− xj)
(

s− ω2
j − σ2i

)










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Taking the FOC with respect to xi, we have







cj
ci
x
−

cj

ci
−1

i xj

(

σ2j − ω2
j

)

+
(

1−
cj
ci

)

x
−

cj

ci

i xj

(

σ2j − ω2
j

)

−s+ ω2
i + ω2

j + (1− xj)
(

s− ω2
j − σ2i

)






= 0







cj
ci
x
−

cj

ci
−1

i xj

(

σ2j − ω2
j

)

+
(

1−
cj
ci

)

x
−

cj

ci

i xj

(

σ2j − ω2
j

)

−s+ ω2
i + ω2

j + s− xjs− σ2i + σ2i xj − ω2
j + xjω

2
j






= 0







cj
ci
x
−

ci
cj

−1

i xj

(

σ2j − ω2
j

)

+
(

1−
cj
ci

)

x
−

cj

ci

i xj

(

σ2j − ω2
j

)

+ω2
i − xjs− σ2i + σ2i xj + xjω

2
j






= 0

which is

cj

ci
x
−

cj

ci
−1

i +

(

1−
cj

ci

)

x
−

cj

ci

i =
xjs+ σ2i − σ2i xj − xjω

2
j − ω2

i

xj

(

σ2j − ω2
j

)

x
−

cj

ci

i

(

1−
cj

ci
+
cj

ci
x−1
i

)

=
s− σ2i − ω2

j
(

σ2j − ω2
j

) +
σ2i − ω2

i

xj

(

σ2j − ω2
j

)

where ci =
s−ω2

j−σ2

i

σ2

i −ω2

i

rj and cj =
s−ω2

i −σ2

j

σ2

j−ω2

j

ri.

When analyst i has the atom ex ante, then she sets xi = x∗i , where x
∗
i is the solution to

equation (6.1) when u∗i ≥ ui (xi = 0) = s− ω2
i − σ2j . Otherwise, she can do strictly better

by receiving information with certainty and forecasting immediately. When analyst j has

the atom ex ante, then she sets xi according to equation (6.1) to maximize the size of the

mass point for analyst j.

Proof of Proposition 4. By Claims 1-5, Fj (t) must be such that an informed analyst

i’s utility is constant for all t. This is given by:

ui =

∫ t

0
(sF ) e

−riafj (a) da+ (1− Fj (t))
(

sL − σ2j
)

e−rit

Taking the FOC with respect to t, we have

(sF ) e
−ritfj (t)− fj (t)

(

sL − σ2j
)

e−rit − (1− Fj (t))
(

sL − σ2j
)

e−ritri = 0
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Proceeding as in the proof of Lemma 1 yields the result. The terminal time is given as

T = min







−
σ2j − (sL − sF )
(

sL − σ2j

)

ri

ln (xj) ,−
σ2i − (sL − sF )
(

sL − σ2i
)

rj
ln (xi)







which is decreasing in sL − sF .

Proof of Proposition 5. We have that

ui =

∫ t

0

(

s− φ2
)

e−riafj (a) da+ (1− Fj (t))
(

s− ω2
i

)

e−rit

Taking the FOC with respect to t, we have

(

s− φ2
)

e−ritfj (t)− fj (t)
(

s− ω2
i

)

e−rit − (1− Fj (t))
(

s− ω2
i

)

e−ritri = 0

Proceeding as in the proof of Lemma 1 yields the result. The terminal time is given as

T = min







−
ω2
i − φ2

(

s− ω2
i

)

ri
ln (xj) ,−

ω2
j − φ2

(

s− ω2
j

)

rj

ln (xi)







which we see is decreasing in 1
ω2

i

and 1
ω2

j

. Assuming xi = xj and ri = rj, then if Ti > Tj ,

−
1

ci
ln (xi) > −

1

cj
ln (xj)

ω2
j − φ2

s− ω2
j

ln (x) <
ω2
i − φ2

s− ω2
i

ln (x)

ω2
j − φ2

s− ω2
j

>
ω2
i − φ2

s− ω2
i

ω2
j s− φ2s− ω2

i ω
2
j + φ2ω2

i > ω2
i s− φ2s− ω2

jω
2
i + ω2

jφ
2

ω2
j > ω2

i

Thus, if Ti > Tj , then it must be that ω2
j > ω2

i , and so 1
ω2

i

> 1
ω2

j

, and analyst i has the

atom at time 0. Hence, the analyst with more precise information forecasts earlier. Results

for Corollaries 2 and 3 follow similarly. Analyst i’s expected utility from the information
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acquisition stage is given as Theorem 1 holds as the only change is

ui =

∫ x

0

[

x (1− y)
(

s− ω2
j

)

+ (1− x)
(

s− ω2
i

)]

ψ (y) dy (A.4)

+

∫ q

x

[

x (1− y)
(

s− ω2
j

)

+ (1− x) (s− φ) + (φ− ωi)
y

x
− (φ− ωi) y

]

ψ (y) dy

where q ∈ (0, 1) is a fixed parameter as a determined by the Normal analog for Lemma 4.

Equation (A.4) is qualitatively identical to equation (A.2) and hence the proof of Theorem

1 can be replicated.

Proof of Proposition 6. When t (T ) is constant for all T , ξ (T ) = T − t, and so equation

(6.8) becomes:

Vi = max
t

∫ T

T−t
s · e−r(u+t−T ) · λe−λ(u−T+t)du+ (1− Ω (t)) e−rt

(

s− σ2
)

.

The FOC with respect to t is

− (r + λ)

∫ T

T−t
λse−r(u+t−T )−λ(u−T+t)du+ λs+ e−t(λ+r) (− (r + λ))

(

s− σ2
)

= 0

− (r + λ)λs

[

e−r(u+t−T )−λ(u−T+t)

− (r + λ)

]T

T−t

+ λs+ e−t(λ+r) (− (r + λ))
(

s− σ2
)

= 0

λs
[

e−t(r+λ) − 1
]

+ λs+ e−t(λ+r) (− (r + λ))
(

s− σ2
)

= 0

e−t(λ+r)
[

λs− (r + λ)
(

s− σ2
)]

= 0

Thus,

t∗ =
ln

(

σ2 (λ+ r)− rs
)

λ+ r
.

Which is an equilibrium delay strategy when B = t∗.


