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ABSTRACT. Along the base of glaciers and ice sheets, the sliding of ice over till depends critically on
water drainage. In locations where drainage occurs through Röthlisberger channels, the effective pres-
sure along the base of the ice increases and can lead to a strengthening of the bed, which reduces glacier
sliding. The formation of Röthlisberger channels depends on two competing effects: (1) melting from tur-
bulent dissipation opens the channel walls and (2) creep flow driven by the weight of the overlying ice
closes the channels radially inward. Variation in downstream ice velocity along the channel axis, re-
ferred to as an antiplane shear strain rate, decreases the effective viscosity. The softening of the ice
increases creep closure velocities. In this way, even a modest addition of antiplane shear can double
the size of the Röthlisberger channels for a fixed water pressure or allow channels of a fixed radius to
operate at lower effective pressure, potentially decreasing the strength of the surrounding bed.
Furthermore, we show that Röthlisberger channels can be deformed away from a circular cross
section under applied antiplane shear. These results can have broad impacts on sliding velocities and po-
tentially affect the total ice flux out of glaciers and ice streams.

KEYWORDS: glacier hydrology, glacier mechanics, ice rheology, ice streams, subglacial processes

1. INTRODUCTION
Observations show a definitive link between subglacial hy-
drology and glacier sliding (Iken and Bindschadler, 1986;
Kamb, 1987; Fischer and Clarke, 1997). Furthermore, obser-
vations show that the style of subglacial drainage influences
sliding speed (Kamb and others, 1985; Brugman, 1986;
Raymond, 1987). There are generally thought to be two
modes of drainage in subglacial hydrology: (1) concentrated
channels such as Röthlisberger channels (R-channels) in-
cised into the ice (Röthlisberger, 1972; Shreve, 1972;
Weertman, 1972) or Nye channels eroded into hard
bedrock (Weertman, 1972; Nye, 1973; Walder and Hallet,
1979), that operate at low water pressure relative to the over-
burden pressure of the overlying ice, (2) distributed water
systems, including a network of linked cavities (Lliboutry,
1979; Anderson and others, 1982; Walder, 1986) or canals
(Walder and Fowler, 1994; Fowler and Ng, 1996; Ng,
1998) connected by thin sheets of water at high pressure
(Flowers and Clarke, 2002a; Creyts and Schoof, 2009;
Hewitt, 2011).

In water-saturated basal sediments, glacier sliding can also
occur by till deformation (Alley and others, 1986). Till of low
permeability, high water content and high pore pressure,
commonly underlies regions of fast flow of glaciers and ice
sheets (Clarke and others, 1984; Blankenship and others,
1986; Kamb, 2001). Observations indicate that till typically
behaves as a perfectly plastic material with a yield stress
that depends on the effective pressure, the overburden pres-
sure of the ice less the pore pressure (Kamb, 1991; Tulaczyk
and others, 2000; Cuffey and Paterson, 2010). Changes in till
effective pressure often occur by flow in subglacial hydrology
systems instead of Darcy flow because the permeability of till

is too small (Boulton and others, 1974; Clarke, 1987;
Engelhardt and others, 1990). Thus, water flow through sub-
glacial hydrologic systems along the ice/till interface can
locally depress the till yield stress, leading to till deformation
and glacier sliding.

A sliding law that connects the basal shear stress τb to the
basal sliding velocity ub and effective pressureN at the bed is

τb ¼ ξNcudb
jubj

; ð1Þ

where ξ is a constant of proportionality. The effective pres-
sure,

N ¼ σo � pw; ð2Þ

is given as hydrostatic ice overburden pressure σo less the
water pressure pw, and the exponents are c≥ 0, d≥ 1
(Lliboutry, 1968; Budd and others, 1979; Schoof, 2005).
This sliding law indicates that increasing the effective pres-
sure along the basal interface decreases the basal sliding vel-
ocity for a constant basal shear stress (Schoof, 2010a, b;
Hewitt, 2013). In this way, basal sliding velocities are
larger over distributed hydrologic systems, which operate at
lower effective pressure than channels. Thus, a switch to a
channelised drainage system strengthens the bed. For hydro-
logically controlled surging glaciers, such as the hundredfold
speedup of the Variegated Glacier in Alaska, which occurs
about every two decades (Eisen and others, 2005), a transi-
tion from a distributed system to channelised drainage
increases the strength of the bed and can terminate a surge
(Fowler, 1987; Kamb, 1987; Björnsson, 1998).
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Transitions in sliding velocity across ice-stream margins
can also be related to subglacial hydrology. Surface velocity
data show that ice drainage in Antarctica is not uniform but
rather focused in regions of fast-flowing ice called ice
streams (Joughin and Tulaczyk, 2002; Joughin and others,
2002; Rignot and others, 2011). Satellite altimetry data
reveal connected subglacial hydrological systems beneath
the Siple Coast Ice Streams with prominent subglacial lakes
along the margins of the Whillans Ice Stream (Gray and
others, 2005; Fricker and others, 2007; Fricker and
Scambos, 2009). This agrees with radar and borehole data
that suggest variation in subglacial hydrology across ice-
stream shear margins (Bentley and others, 1998; Vogel and
others, 2005; Engelhardt and Kamb, 2013).

Models suggest that heat generated by shear in the ice-
stream margins can lead to the development of temperate
ice, which is ice at the local melting temperature that main-
tains some mechanical strength (Schoof, 2012; Suckale and
others, 2014; Perol and Rice, 2015). Further work by deform-
ation in the temperate ice produces melt water. Above a crit-
ical threshold, melt water drains to the bed and can be
evacuated by subglacial hydrology (Perol and others, 2015).

Extensive antiplane shearing within the ice, i.e. variation
in downstream velocity ux over a (y, z) cross section,
occurs at both the base of surging glaciers and across ice-
stream shear margins. This antiplane shearing decreases the
viscosity of ice, and here we examine how this affects R-
channel closure. In an ice-stream shear margin, we schemat-
ically represent a subglacial hydrologic system with a single
R-channel that we place near the transition between the
locked, frozen till under the ridge and the slipping, failed
till under the stream (Fig. 1a) (Perol and Rice, 2011;
Suckale and others, 2014; Perol and others, 2015). The ice
in this region is strongly sheared as it transitions from the
plug flow in the centre of the stream to the much slower
motion in the ridge. Under a mountain glacier, the antiplane
shear arises from differential ice velocity with depth (Fig. 1b).

In this paper, we analyse the effects of including the exist-
ing antiplane shear on the creep closure of R-channels. We
show that the amount of antiplane shear present in the ice
can substantially increase the size of the R-channels or de-
crease the effective pressure, which can affect the duration
of glacier surges and the location of ice-stream shear
margins.

1.1. Classical R-channel theory
In an R-channel, liquid water flows turbulently through a
conduit. The turbulent eddies dissipate heat at the wall
and melt the ice, increasing the size of the channel.
Simultaneously, the mass of ice surrounding the channel vis-
cously creeps inward, closing the hole. In equilibrium, the
creep closure of the ice is exactly balanced by the melting in-
curred by the turbulence.

For a single channel in a subglacial hydrologic system,
Nye (1953) derives the creep closure velocity ur, which in
polar coordinates is written as

urðrÞ ¼ �A
N
n

� �n a2

r
; ð3Þ

where r is the distance from the centre of the channel, a is the
radius of the channel and N is the effective pressure. The
parameters A and n come from the ice rheology of a shear-

thinning fluid with a power-law relationship between devia-
toric stress and strain rates,

_εE ¼ AτnE ; ð4Þ

where the subscript E indicates the second invariant of the
tensor, A (s−1 Pa−n) is the ice softness, and n is the rheologic-
al power, with n >1 indicating shear thinning (Cuffey and
Paterson, 2010). Depending on the creep mechanism and
the stress magnitude, values from n= 1 to n= 4 are appropri-
ate (Steinemann, 1954; Durham and others, 1997; Goldsby
and Kohlstedt, 2001). We take n= 3 following Glen
(1955), as is common in glaciology. We give representative
values for parameters in Table 1. Nye (1953) compares the
predictions from Eqn (3) with published data on the closure
of tunnels in a variety of glaciers and finds that the closure ex-
pression works well in most cases, but fails when the stress
state in the overlying ice is not exclusively hydrostatic
(Haefeli, 1951; Glen, 1956; Weertman, 1972).

Fig. 1. Antiplane shear in ice streams and mountain glaciers: (a)
Schematic representation of an R-channel in an ice stream shear
margin. The ice flows at several hundred m a−1 in the stream with
velocity us while staying nearly stagnant in the ridge, which leads
to an antiplane shear field around the R-channel. The inset shows
a cross section of ice. Flow is out of the page (i.e. antiplane) and
represented by dots enclosed by circles (arrow tips). The
magnitude of the antiplane velocity is proportional to the size of
the arrow tips. (Adapted from Schoof, 2004; Suckale and others,
2014; Perol and others, 2015.) (b) Schematic representation of an
R-channel at the base of a mountain glacier. The velocity in the
ice increases with height above the bed which leads to vertical
shear around the R-channel.
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To model the flow of melt water, we treat the R-channel as
a semicircular conduit for fully developed turbulence. The
Manning–Strickler parameterisation for a turbulent flow in
a rough-walled pipe is given as

Q ¼ AcR
2=3
h sin1=2ðαÞ

nm
;

where nm (s m−1/3) is the Manning roughness coefficient,Q is
the water discharge, sin (α) is the slope driving flow (i.e. the
bed slope in the idealised ice stream, or the local surface
slope in the flat-bedded mountain glacier; Fig. 1; Table 1),
Ac is the cross-sectional area, and Rh is the hydraulic
radius, which is defined as Rh≡ Ac/Pr for the wetted perim-
eter Pr (Henderson, 1966; Clarke, 2003). For a semicircular
channel, we follow Weertman (1972) and write the flow
rate as a function of the channel diameter D as

Q ¼ πD8=3 sin1=2ðαÞ
213=3ð1þ 2=πÞ2=3nm

: ð5Þ

In the R-channel analysis, the water and ice are assumed to
be at the melting temperature (Röthlisberger, 1972). Thus,
all of the energy generated by the turbulent flow goes into
melting at the channel walls. In steady state, with symbols
defined in Table 1, we can write (Weertman, 1972):

π

2
ρiceLDumelt ¼ ρwg sinðαÞQ: ð6Þ

In equilibrium, the melt velocity umelt has the same magni-
tude as the creep closure velocity, ucr= |ur(r= a)| but in op-
posite direction. The diameter of the R-channel is found by
inserting Q from Eqn (5) into Eqn (6) and solving for D,
using the fact that umelt is the same as ucr. The closed-form so-
lution for the diameter of an R-channel is

D ¼ 4 1þ 2
π

� �2=5 ρiceL
ρwg

ucrnm
sin3=2ðαÞ

 !3=5

: ð7Þ

Inserting the Nye solution, Eqn (3), we find that

DNye ¼ 27=3ð1þ 2=πÞ2=3ρiceL
nnρwg

ANnnm
sin3=2ðαÞ

 !3=2

: ð8Þ

Superimposed antiplane motion softens the ice, which
increases the creep closure velocity ucr beyond that predicted
by the Nye solution and, thereby, increases the channel diam-
eter D for a given water pressure in the channel.

2. MODEL
We use the standard coordinate system in glaciology with z
running from the bed to the surface, y across glacier, and x
down glacier. The in-plane terms act in the y–z plane (e.g.
σrr and σθr) and the antiplane terms act in the downstream
or x-direction (e.g. σrx or σθx). Figure 2a corresponds to
Figure 1a and relates the quarter circle domain to an R-
channel in an idealized ice-stream shear margin. In the
centre of the ice stream the flow velocity is us and in
the ridge there is no flow. To impose antisymmetry about
the z-axis, we translate the system to a reference frame
by �y _γ far ¼ us=2. In this reference frame, the margin is sta-
tionary and the stream and the ridge are moving at us/2
and −us/2 respectively. The same setup for a mountain
glacier is depicted in Figure 2b, where the coordinate
system has been rotated 90° to convert the vertical shear in
the ice column into lateral shear. Under this rotation, the
model domains for the idealized ice-stream shear margin
and the mountain glacier coincide and they are shown dimen-
sionally and non-dimensionally in Figures 2c, d, respectively.

Wemodel a single R-channel incised into the ice in an idea-
lised ice-stream shear margin or mountain glacier. Several sim-
plifications are made in this analysis. We consider a perfectly
flat bed without protrusions, cavities or till deformation. For
basal boundary conditions, we use stress-free conditions at
the base of the ice stream and no slip conditions at the bed
of the mountain glacier. We neglect connections to other sub-
gacial drainage pathways outside the R-channel. Furthermore,
we neglect sediment transport and erosion of the sediment
beneath the R-channel, prohibiting the formation of Nye chan-
nels or canals. These simplifications allow us to focus on the
effects of ice deformation on the closure of R-channels.

We treat the ice as a homogeneous fluid with a Glen’s law
rheology, i.e. Eqn (4). The effective stress and strain rates are
given in polar coordinates as

τE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ðσ rr � σθθÞ2 þ σ2

θr þ σ2
rx þ σ2

θx

r
; ð9Þ

_εE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ε2rr þ _ε2θr þ _ε2rx þ _ε2θx

q
: ð10Þ

Relating the deviatoric stress and strain rates using Eqn (4),
we write the strain rates in cylindrical polar coordinates as

_εrr ¼ ∂ur
∂r

¼ 1
2
Aτn�1

E ðσrr � σθθÞ; ð11Þ

_εθθ ¼ 1
r
∂uθ
∂θ

þ ur
r
¼ 1

2
Aτn�1

E ðσθθ � σrrÞ; ð12Þ

_εθr ¼ 1
2

1
r
∂ur
∂θ

þ ∂uθ
∂r

� uθ
r

� �
¼ Aτn�1

E σθr; ð13Þ

_εrx ¼ 1
2
∂ux
∂r

¼ Aτn�1
E σ rx; ð14Þ

_εθx ¼ 1
2r

∂ux
∂θ

¼ Aτn�1
E σθx; ð15Þ

where _εxx ¼ 0 due to the plane strain constraint, and _εrr þ
_εθθ ¼ 0 due to the mass conservation.

Rather than using an infinite domain (e.g. Nye, 1953), we
follow Evatt (2015) and consider a finite domain that runs
from r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 þ z2
p ¼ a to r= b as shown in Figure 2. We

Table 1. Parameters similar to those from Siple Coast Ice Streams
(Engelhardt and Kamb, 1997; Cuffey and Paterson, 2010; Suckale
and others, 2014)

ρice 910 kg m−3 Ice density
ρw 1000 kg m−3 Water density
g 9.8 m s−2 Gravity
L 333 500 m2 s−2 Latent heat per mass
nm 0.025 s m−(1/3) Manning coefficient
sin (α) 0.001 – Surface slope
A 2.18 × 10−24 s−1 Pa−n Ice softness
n 3 – Rheological power
N 5 × 105 Pa Effective pressure
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do this for two reasons, firstly, it is more general and, se-
condly, the addition of antiplane shear can dominate in-
plane motion in the far-field if the domain is too large. On
the outer boundary of the finite domain, the normal stress is
equal to the overburden (hydrostatic) pressure of the ice,
ρicegH(1− z/H), where H is the glacier thickness (Nye,
1953; Evatt, 2015). Assuming that b/H≪ 1 and therefore,
that the overburden stress is nearly constant around the

domain, we write the constant compressive overburden
stress as σo= ρicegH. On the boundary of the channel, the
normal stress is the water pressure inside the channel, pw
(<σo) following Spring and Hutter (1981). Due to incompress-
ibility and the pressure independence of the assumed rhe-
ology, we can add to our stress field the uniform tensile
stress σoδij, which has no effect on the flow field and
removes any traction on the outer wall. This gives σrr(r= a)=
σo− pw=N at the channel wall. Thus, the in-plane boundary
conditions are

σrrðr ¼ aÞ ¼ σo � pw ¼ N; σrrðr ¼ bÞ ¼ 0:

In the antiplane direction, the shear stress on the inner
channel is zero. On the outer boundary, we impose an anti-
plane velocity ux that varies linearly with distance y= bcos(θ)
to represent far-field shearing. In this way, we write the anti-
plane boundary conditions as

σ rxðr ¼ aÞ ¼ 0; uxðr ¼ bÞ ¼ _γ farb cosðθÞ:

In order to isolate the effects of antiplane shear generated by
differential velocity within the ice, we apply the following
boundary conditions along the base of the glacier or idealised
ice-stream shear margin,

σθrðr; θ ¼ 0Þ ¼ 0; σθxðr; θ ¼ 0Þ ¼ 0:

In a mountain glacier with rotated axes, these boundary condi-
tions represent symmetry conditions (Fig. 2b). In the idealised
ice-stream shear margin, however, these boundary conditions
represent how the basal ice interacts with the till. We assume
that the till deforms plastically (Kamb, 1991; Tulaczyk and
others, 2000; Cuffey and Paterson, 2010) and σθx(θ= 0)≡
σzx(z= 0)= τb, where τb is the basal shear stress supported
by the till and less than or equal to the plastic yield stress
of the till τy. If the basal shear stress τb is small compared
with a characteristic antiplane shear stress within the ice
τfar, then the assumption σθx(r; θ= 0)≈ 0 is well justified
(Schoof, 2012). In recent numerical simulations, Perol and
others (2015) find a basal shear stress of τb≈ 60− 75 kPa
near an R-channel in an ice-stream shear margin. If we
estimate the characteristic antiplane shear stress as
τ far ¼ ð _γ far=2AÞ1=n ≈ 75 kPa, using _γ far ¼ 2 × 10�9 s−1 and
A= 2.18 × 10−24 Pa−n s−1 (cf. Fig. 3; Table 1), we find that
τfar and σxz from the simulations by Perol and others (2015)
are of similar magnitude. Thus, near the channel σθx(r; θ=
0)≈ 0 is potentially a poor approximation to the subglacial hy-
drology influenced basal boundary conditions prescribed by
Perol and others (2015). Furthermore, including in-plane trac-
tion along the ice/till interface, i.e. σθr(r; θ= 0)= τb, would
inhibit channel closure at the base (Weertman, 1972). It is
likely all the same that this is a small effect due to the small
channel closure velocities. Nevertheless, our goal is to isolate
the effects of antiplane shear within the ice and therefore, we
neglect antiplane and in-plane basal shear (Hutter and
Olunloyo, 1980; Barcilon and Macayeal, 1993; Haseloff and
others, 2015). These channels can also be thought of as fully
circular englacial channels, as the conditions σθx(r; θ= 0)= 0
and σθr(r; θ= 0)= 0 enforce symmetry across the y-axis.

Along the vertical axis of the quarter circle domain we
apply the boundary conditions:

σθrðr; θ ¼ π=2Þ ¼ 0; uxðr; θ ¼ π=2Þ ¼ 0:

Fig. 2. Schematic representation for the quarter model domain
shown in (a) an idealised ice stream shear margin and (b) a
mountain glacier that has been rotated to translate vertical shear to
lateral shear. These map to the physical space and boundary
conditions for in-plane (blue) and antiplane (red) motion around a
channel: (c) dimensionally and (d) non-dimensionally. In-plane
motion occurs in the y–z plane and antiplane motion occurs in
the x-direction. The coordinates are in a translating reference
frame moving at �y _γ far, so that the system is antisymmetric about
the z-axis.
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These represent symmetry and antisymmetry conditions
and are consistent with the boundary conditions applied
at the outer edge. For the mountain glacier with rotated
axes, the condition ux= 0 amounts to a no slip boundary
condition at the base, which is an approximation unless
the base is frozen to the bed or pore pressure is depressed
in the basal till (Hindmarsh, 2004; Cuffey and Paterson,
2010).

Scaling all lengths by the channel radius a, we have
r= aR and the dimensionless outer radius B= b/a, which
defines the domain size. We scale the antiplane shear
strain rate by _γ far and the in-plane components of strain
rate by ANn, which is the dimensional scaling of the Nye
strain rate, so that _εrr ¼ ANn _Err. A consequence of this
scaling is that the strain rates will not necessarily be close
to unity: at the edge of the channel _Err ¼ n�n, which is
1/27 for n= 3. We can non-dimensionalise the effective
strain rate in the same way as the in-plane strain rates,
which gives

_EE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_E
2
rr þ _E

2
θr þ S2 _E

2
rx þ _E

2
θx

� �r
; ð16Þ

where S is the strain rate ratio of antiplane to in-plane strain
rates

S ¼ _γ far
ANn : ð17aÞ

This ratio represents the importance of the superimposed
antiplane shear strain rate _γ far, as compared with a charac-
teristic in-plane strain rate ANn.

The strain rate ratio S can also be written as:

S ¼ n�n _γ far
_εNye
θθ

 !
; ð17bÞ

¼ 2
τ far
N

� �n
; ð17cÞ

where we use

_εNye
θθ ¼ A

N
n

� �n

and τ far ¼
_γ far
2A

� �1=n

:

Thus, S represents the importance of the antiplane strain rate
imposed on the outer edge of the domain to the in-plane
creep closure of the channel.

Since the stress driving creep closure at the edge of the
channel scales with N, we non-dimensionalise the in-plane
stresses so that σrr=NΣrr. Following the above convention
for the antiplane strain rates, we scale antiplane stresses by
SN so that σrx= SNΣrx. We now write the effective stress as
τE=NTE, where

TE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
ðΣrr � ΣθθÞ2 þ Σ2

θr þ S2 Σ2
rx þ Σ2

θx

� �r
: ð18Þ

The velocities scale as the strain rates multiplied by the
channel radius so that

ur ¼ AaNnUr and ux ¼ AaNnSUx: ð19Þ

The equations for mass and momentum conservation now

become

1
R

∂
∂R

ðRΣrrÞ þ 1
R
∂Σθr

∂θ
� Σθθ

R
¼ 0; ð20Þ

1
R

∂
∂R

ðRΣθrÞ þ 1
R
∂Σθθ

∂θ
þ Σθr

R
¼ 0; ð21Þ

1
R

∂
∂R

ðRΣrxÞ þ 1
R
∂Σθx

∂θ
¼ 0; ð22Þ

_Err þ _Eθθ ¼ dUr

dR
þUr

R
þ 1
R
∂Uθ

∂θ
¼ 0: ð23Þ

The boundary conditions, in non-dimensional form (Fig. 2d),
are then

ΣrrðR ¼ 1Þ ¼ 1; ΣrrðR ¼ BÞ ¼ 0;

ΣrxðR ¼ 1Þ ¼ 0; UxðR ¼ BÞ ¼ B cosðθÞ;

ΣθrðR; θ ¼ 0Þ ¼ 0; ΣθxðR; θ ¼ 0Þ ¼ 0;

ΣθrðR; θ ¼ π=2Þ ¼ 0; UxðR; θ ¼ π=2Þ ¼ 0:

2.1. Reasonable strain rate ratio values
Here we estimate the size of the antiplane strain rate _γ far
using data from the the Worthington Glacier, Alaska
(Harper and others, 2001), which is shown in Figure 3a,
and the Upper Whillans Ice Stream shear margin surface vel-
ocity data shown in Figure 3b (Echelmeyer and Harrison,
1999; Truffer and Echelmeyer, 2003, 2005). These data
give the estimates of _γ far ¼ 2 × 10�8 s−1 for mountain gla-
ciers and _γ far ¼ 4 × 10�9 s−1 for ice-stream shear margins.
We then combine the value for the antiplane strain rate _γ far
with a representative value for the effective pressure N to
compute the strain rate ratio S ¼ _γ far=AN

n. We also note
that the actual value can vary quite significantly, leading to
changes in the value of S. The ranges of S we find for reason-
able parameter values are S∼ 10−4

–10−2 for mountain gla-
ciers and S∼ 10−3

–10−1 for ice-stream shear margins.
These ranges serve as guidelines for what values of S are rele-
vant to channels in antiplane shear, as in how channel size
and shape might vary with S.

2.1.1. Mountain glaciers
We estimate the strain rate ratio S as

S∼
u

AhNn ;

where u and h are the velocity difference and height of basal
shear (Fig. 3a). For example, data from Harper and others
(2001) and Bartholomaus and others (2011) as well as
Cuffey and Paterson (2010), suggest the estimates

u ≈ 21 m a�1; A ≈ 2:4 × 10�24 s�1 Pa�n;

h ≈ 33 m and N ≈ 1:35 × 106 Pa:

The effective pressure is similar to the values reported by
Kavanaugh and Clarke (2000), Flowers and Clarke (2002b)
and Schoof and others (2014). Combining these estimates
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we find a strain rate ratio of

S ≈ 10�3:

By varying the parameters slightly we find a representative
range of S∼ 10−4

–10−2.

2.1.2. Ice-stream shear margins
The scaling for the strain rate ratio in ice-stream shear
margins is similar to the scaling for mountain glaciers
except that the length scale L is now the width of the shear
margin (Fig. 3b), so that

S∼
us

ALNn :

The velocity profile in the ice stream and its shear margin are
approximately uniform with depth allowing us to use the
measured surface velocity us to describe the flow at the
base (Kamb, 2001). Using the data from Echelmeyer and
Harrison (1999), Joughin and Tulaczyk (2002), as well as
Cuffey and Paterson (2010), we choose the parameters

us ≈ 320 m a�1; A ≈ 2:18 × 10�24 s�1 Pa�n;

L ≈ 2500 m and N ≈ 5 × 105 Pa:

Since R-channels operate at lower water pressure (larger ef-
fective pressure) than water flow through linked cavities or
sediments, the value for the effective pressure used here is
larger than found by Blankenship and others (1987) for the
water-saturated subglacial till under Ice Stream B (Whillans
Ice Stream). Moreover, the water pressure beneath the ice
streams is still closer to the overburden pressure than in
mountain glaciers (Engelhardt and Kamb, 1997, 1998;
Tulaczyk and others, 2001). These parameters lead to strain
rate ratio of about

S ≈ 10�2;

which varies in the range S∼ 10
−3

–10−1 for slightly different
parameter values.

3. ANALYSIS
The estimates for S from mountain glaciers and ice streams
show that it is a small quantity. In this limit of small antiplane
shear, we are able to derive a closed-form solution for the
antiplane velocity, which allows us to benchmark the com-
bined in-plane and antiplane finite element code that is
used for later calculations. After examining the small S
limit, we then turn to the opposite limit, when antiplane
motion dominates, and find a scaling for the creep closure
as a function of S. The reader who is primarily interested in
how the R-channel diameter scales with S and non-circular
R-channels can skip to the next section.

For our numerical solutions, we use the existing numerical
finite-element method (FEM) package ABAQUS (Dassault
Systémes, 2012). To model the fully coupled problems,
where the ice viscosity is a function of both the in-plane
and the antiplane components, we construct a single-
element thick, three-dimensional FEM model constrained
to deform by a combination of plane strain and antiplane
strain. We couple the displacements of the nodes on opposite
faces to ensure that the model maintains a state of combined
antiplane and plane strain. We generate the FEM using iso-
parametric elements with significant refinement near the
channel boundary. We compare numerical solutions to the
known in-plane Nye solution without antiplane shearing
and find a nodal error of <0.8%.

3.1. Small antiplane velocity benchmark
Here, we show that when S is very small we can derive an
analytical solution for the antiplane velocity. The reason for
considering this limit is that when the applied antiplane
shear is sufficiently small, the in-plane motion dominates
throughout the domain and sets the viscosity of the ice.
Thus, the creep closure of the R-channel is given by the
Nye solution. Evatt (2015) gives a derivation for the finite
domain Nye solution, which in the dimensionless variables
used here is given as

Ur ¼ � n�n

R
B2

ðB2=n � 1Þn : ð24Þ

In this limit, the effective deviatoric stress is only a function of
R and given as

TE ¼ 1
2
ðΣrr � ΣθθÞ ¼ 1

nR2=n
1� 1

B2=n

� ��1

:

Fig. 3. Velocity data for computing the magnitude of the antiplane
strain rate _γ far: (a) Ice velocity with depth for Worthington Glacier,
Alaska from Harper and others (2001). (b) Ice stream shear margin
surface velocity data between stations S17 and UpB on the Upper
Whillans Ice Stream, Siple Coast, West Antarctica from January
1994 to January 1995 (Echelmeyer and Harrison, 1999; Truffer and
Echelmeyer, 2003, 2005). The green circles indicate the portion of
the shear zone used to calculate the slope shown in the figure.
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Using Eqns (14) and (15), we can insert the effective stress
into the in-plane force balance, Eqn (20), and find

Rð2=nÞ�1 ∂
∂R

R3�ð2=nÞ ∂Ux

∂R

� �
þ ∂2Ux

∂θ2
¼ 0: ð25Þ

This is an equidimensional, linear equation for the antiplane
velocity ux. The antiplane boundary conditions are

∂Ux

∂θ

				
θ¼0

¼ 0;
∂Ux

∂R

				
R¼1

¼ 0 and UxðR ¼ BÞ ¼ B cosðθÞ:

A method to solve Eqn (25) subject to these boundary condi-
tions is described in Appendix A. The solution for the anti-
plane velocity ux is

Ux ¼ B
ðRλþ=λþÞ � ðRλ�=λ�Þ
ðBλþ=λþÞ � ðBλ�=λ�Þ cosðθÞ; ð26Þ

where λ+ and λ− are positive and negative solutions to the
characteristic polynomial, Eqn (A1) for k= 1. Equation (26)
also shows that points at the edge of the channel displace
in the antiplane direction as if the interior underwent a homo-
geneous deformation rate and therefore, similar to an Eshelby
(1957) inclusion in a composite solid. Figure 4 shows the nu-
merical strain rate _Γ

N
xy computed from the full ABAQUS simu-

lation with S= 10−4. The error between _Γ
N
xy and the

derivative of Eqn (26), ∂Ux/∂Y is <0.1% and serves as a
good benchmark for the ABAQUS simulations.

3.2. Region of validity
We now consider under what conditions the analytical solu-
tion for the antiplane velocity is valid. From the Nye solution,
Eqn (24), we can see that the in-plane velocity decays as 1/R.
The antiplane velocity, however, is largest along the outer
edge. Thus, for the perturbation solution to be valid through-
out the domain, we require that the ratio of antiplane shear
strain rate to the minimum in-plane strain rate is small, i.e.

_γ far
_εrrðR ¼ BÞ ¼ nnSðB2=n � 1Þn≪1:

We can rearrange the right-hand side to find the critical non-
dimensional radius

Bcr ¼ 1þ 1
nS1=n

� �n=2

: ð27Þ

Thus, the outer radius must satisfy the inequality B≪ Bcr in
order for the entire domain to be dominated by in-plane
creep closure. This condition states that the domain size
must decrease as S increases. For S= 10−3 and n= 3, we
have that Bcr= 10 and, thus for B= 10, this inequality is
violated as S approaches 10−3 but not unity as one might ini-
tially expect.

If the size of the domain is much larger than Bcr, the per-
turbation solution is no longer valid near the boundary and
there is a transition to a region that is antiplane dominated
(Weertman, 1972). The small S scaling of Eqn (27) predicts
that the transition will occur at a radius R∼1=

ffiffiffi
S

p
, as this is

when _Err∼S. Close to the channel, the dominant flow of ice
is inward creep closure of the channel. In the far field, ice
predominantly flows downstream. The transition radius,
R∼1=

ffiffiffi
S

p
, represents the crossover between the inward

creep closure dominated flow and the antiplane flow
downstream.

3.3. Limit of large antiplane velocity
Here we consider very large values of S, when antiplane
shear strain rate strongly dominates the in-plane strain rate.
In this limit, the non-dimensional effective stress and strain
rate, from Eqns (9) and (10), reduce to

TE ¼ S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ2
rx þ Σ2

θx

q
and _EE ¼ S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_E
2
rx þ _E

2
θx

q
: ð28Þ

Thus, the effective viscosity of the ice is set by the antiplane
motion. In this regime, the non-linearity of the equations in
the in-plane direction disappears and the channel will
close like a Newtonian (n= 1) fluid with a spatially variable
viscosity, much like the observations of Haefeli (1951) and
Glen (1956). Here we seek to determine how the creep
closure velocity Ur depends on S.

To start, we use quantities that are averaged over θ∈ [0, π]
and consider deviations from axisymmetric creep closure in a
later section. Mass conservation can then be written as

∂Ur

∂R
þUr

R
¼ 0;

where any Uθ dependence integrates out, and we can write
the solution Ur in the form,

Ur ¼ �C
R
: ð29Þ

Now in the large S limit, the in-plane rheology is given as

_Err ¼ 1
2
Sðn�1Þ=n _E

2
rx þ _E

2
θx

� �ðn�1Þ=ð2nÞ
ðΣrr � ΣθθÞ: ð30Þ

Along the channel, the radial stress and hoop stress scale as

Σrr � Σθθ∼f ðn; BÞ

from the boundary conditions, where Σrr= 1 and Σθθ is

Fig. 4. Horizontal antiplane strain rate ∂Ux/∂Y for S≪ 1, small
antiplane perturbation of in-plane flow field: ABAQUS numerical
solution _Γ

N
xy to the full problem with S= 10−4. The maximum

value of horizontal strain rate is <0.1% from the analytical
solution of 3.7472 as calculated from the derivative of Eqn (26)
and is located on the top of the channel.
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independent of S and an unknown function of n and B. The
radial antiplane strain rate _Erx along the hole is zero and
therefore we are left with

Err∼Sn�1=n _E
n�1=n
θx f ðn; BÞ:

The average in-plane strain rate scales with the in-plane vel-
ocity as

Err∼� Eθθ∼�Ur

R
;

and inserting the strain rate scaling at R= 1 gives

Ur
		 		∼Sðn�1Þ=n;

which can be seen in Figure 5 for three different values of n
and B= 10.

4. R-CHANNEL DIAMETER WITH S
In the previous two sections, we examined the creep closure
velocity in the limits of small and large antiplane strain rate.
Here we show the influence of antiplane shear on the size of
R-channels. For the small antiplane shear case, e.g. S≪ 1,
there is no change to the standard Röthlisberger analysis
and we can insert the parameters from Table 1 into Eqn (8)
and find that

DNye ¼ 27=3ð1þ 2=πÞ2=3ρiceL
nnρwg

ANnnm
sin3=2ðαÞ

 !3=2
≈ 2:3 m:

This is consistent with Vogel and others (2005), who show
flowing water with a depth of 1.6 m at the base of the
dormant Kamb ice-stream shear margin.

For arbitrary S, we turn to numerical simulations to deter-
mine the average creep closure velocity �ucr as a function of
the applied antiplane strain rate _γ far and a fixed effective pres-
sure N. Figure 6 shows that for S≲10�3, the Nye solution
holds and the predicted channel size is exactly that found
above. As S increases, it leaves the small perturbation
range and we find that for S∼ 10−2, the diameter roughly

doubles in size. For very large S, we can use the scaling
from the last section to show that the diameter of the
channel should scale as D∼S3ðn�1Þ=ð2nÞ. As S increases the
R-channel size increases, which can be seen from Eqn (7):
for a constant N, if �ucr increases then D must also increase.
A larger diameter also implies larger discharge Q and there-
fore, sufficient available water is required for the channel
shape to increase at constant effective pressure.

If the channel pressure is allowed to vary, our results indi-
cate that adding in antiplane shear allows channels at a given
diameter (or flow rate) to operate at higher water pressures
(lower effective pressure). For an R-channel with a fixed
diameter, the flow rate through the channel is fixed by Eqn
(5), and the creep closure rate of the channel is then fixed
by Eqn (6). Our results in Figure 5 show that the creep
closure velocity increases with S ¼ _γ far=ðANnÞ. Thus, to
maintain a fixed creep closure rate with a fixed far-field
strain rate _γ far, the channel pressure must increase, leading
to a lower effective pressure and a reduction in the strength
of the bed.

5. DISCUSSION
Here we discuss implications of increasing antiplane shear
around R-channels to subglacial hydrology and extend our
analysis to determine non-circular R-channel shapes. In
Figure 6, we show the average R-channel diameter as a func-
tion of the strain rate ratio S, assuming a semicircular
channel. Our numerical simulations do, however, allow for
analysis of the expected shape and how the deviations
from circular vary with applied antiplane shear. After discuss-
ing non-circular R-channels, we describe how our results for
the diameter of an R-channel in regions of antiplane shear
might influence subglacial hydrology and glacier sliding.
We discuss the implications of these results to surging gla-
ciers and describe how the transition between channelised
drainage and linked-cavity systems may be facilitated by in-
cluding shear in the R-channel analysis. Finally, we examine
the relationship between the outer boundary of the domain
and the applied antiplane shear and its implications for sub-
glacial hydrology.

Fig. 5. Large S scaling for the average creep closure Ur
		 		 at R= 1.

Black circles are ABAQUS simulation results (linear spacing in S)
and black lines follow scaling with a best-fit coefficient of
proportionality. The outer radius for these simulations is B= 10.

Fig. 6. R-channel diameter as a function of the antiplane to in-plane
strain rate ratio S. Representative ranges of S for ice streams and
mountain glaciers are based estimates from data (Echelmeyer and
Harrison, 1999; Harper and others, 2001; Truffer and Echelmeyer,
2005). Error bars denote RMS deviations from axisymmetry.
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5.1. Non-circular R-channels
There is a small but growing literature on non-circular
R-channels. Hooke and others (1990) consider channel
cross sections given by the space between the arc of a
circle and its chord and find better agreement with water
pressure data from Austdalsbreen and Storglaciären than
standard semicircular R-channels. Fowler and Ng (1996)
model low, broad canals in sediments during jökulhlaups.
In their model, the height of the channel is governed by the
creep closure of ice and the width of the channel is deter-
mined by erosion of the sediments. This method provides
more reasonable values for the Manning roughness coeffi-
cient and yields an improved simulation of the 1972
Grímsvötn jökulhlaup. Cutler (1998) uses a finite element
model to determine the seasonal evolution of an R-channel
cross section and examine the effects of variable water
input. He finds that all channels tend toward low, broad
shapes. Furthermore, for two channels with equivalent
areas, the channel with a lower width-to-height ratio (i.e.
more circular) will expand faster, stealing water from neigh-
bouring channels. More recently, Dallaston and Hewitt
(2014) study the stability of R-channels under coupled inter-
facial melting and creep closure. They show that circular
channels under axisymmetric in-plane loading with a con-
stant melt rate are unstable to linear perturbations for both
shear-thinning and Newtonian viscosities. Moreover, they
show that this instability can be stabilised by the addition
of a uniform heat source that diffuses to the free boundary
of the channel.

We complement these studies by examining how anti-
plane shear modifies initially circular channels. To analyse
the effect of shear on the shape of the channel, we break
the creep closure into an average and fluctuating compo-
nent, i.e.

ur ¼ �ucr þ u0r:

Our previous analysis neglected u0r=�ucr as a very small quan-
tity. This assumption is reasonable because the maximum
value of u0r=�ucr for S= 10−1 is 0.1. However, we wish to
look at channels that deviate from circular. In keeping with
the idea that u0r=�ucr≪1, we ignore small variations in diam-
eter and derive Eqn (7) identically as before. We then insert
ur in the place of �ucr in Eqn (7), which gives approximately

D ¼ 4 1þ 2
π

� �2=5 ρiceL
ρwg

�ucrnm
sin3=2ðαÞ

 !3=5
1þ 3

5
u0r
�ucr


 �
: ð31Þ

Inserting u′r, which is dependent on θ, from the simulations
into Eqn (31), we plot the cross section of the channels for
three values of S in Figure 7. We can see that the deviations
from circular are not noticeable at S= 2 × 10−3 and it is not
until S≳ 10−2 that the deviations become significant. The
extent to which the channels deviate from circular are
plotted as error bars in Figure 6.

The channel shapes predicted by our simulations indicate
that when the superimposed antiplane strain rate increases,
the creep closure velocity increases on the top of the
channel (i.e. along the z-axis of Fig. 2) and decreases on
the sides (along y-axis) relative to the average creep closure
velocity �ucr. This makes sense, in light of Figure 4, where
the antiplane strain rate concentrates on the top of the
channel and since the viscosity is lower, the channel

closes faster locally. Thus, using a melt rate proportional to
the creep closure velocity (i.e. steady-state non-uniform
melting), circular channels deform and melt into channels
that are taller than they are wide. In mountain glaciers
under vertical antiplane shear our simulations predict chan-
nels that are wider than tall, which is in agreement with the
observations (e.g. Fountain, 1993; Hock and Hooke, 1993;
Fountain and Walder, 1998). In idealised ice-stream shear
margins, the antiplane shear straining is along the axis of
the channel and our simulations indicate that channels that
are taller than wide might form.

5.2. Implications for subglacial hydrology
In models of subglacial hydrology, the downstream ice vel-
ocity typically is ignored in the creep closure of the R-chan-
nels. Here we find that for low ice flow velocities, it is
reasonable to neglect the effect of shear on the channel
size, but in regions of high-velocity gradients, the channel
size can increase significantly for a fixed pressure difference.
This equivalently implies that for a fixed volume flux of water
(or equivalently R-channel diameter), the channel will
operate at a higher water pressure (lower effective pressure).
Therefore, decreasing the effective pressure by accounting
for antiplane shear, can increase the basal sliding velocity
for a constant basal shear stress.

By including the feedback between antiplane shear and
effective pressure, the transition between channelised and
distributed drainage occurs at a lower effective pressure
and a switch between the two styles of drainage may be
facilitated. For hydrologically controlled surging glaciers,
systems of channels can coexist with distributed drainage
networks (Fowler, 1987, 1989, 2011). If the flux of water in
the system increases slightly, then the effective pressure in
the distributed network increases but decreases in the chan-
nels. The channelised portion of the hydrologic system can
be unstable. As the flow rate increases, if the effective pres-
sure in the channels decreases more than the distributed
drainage effective pressure, then the drainage through chan-
nels can shut off. This mechanism leaves only a distributed
drainage network that favours sliding. Traditionally, the
basal sliding velocity ub is related to the effective pressure
in the distributed network via Eqn (1), and therefore, there

Fig. 7. Numerical prediction for the shape of R-channels as a
function of S: The vertical shear present in mountain glaciers leads
to short, broad channels that are wider than tall (cyan dot dashed
curves) and the lateral shear in idealised ice stream shear margins
leads to channels that are taller than wide (blue dashed curves).
The azimuthally averaged velocity results in semicircular channels
(black solid curves).
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is a transition from channels to distributed drainage when
SΛ= ub/(AHNn) reaches a critical value. This relationship
can then be inserted into Eqn (1) to give a multivalued
sliding law, where one branch is consistent with surging be-
haviour (Clarke and others, 1984; Fowler, 1989; Sayag and
Tziperman, 2009). If we include the S dependence in the
R-channel analysis, the effective pressure in the channels
would decrease with increasing S, facilitating the transition
to a distributed network for a fixed critical SΛ.

5.3. Transitions in rheology around R-channels
Spatial transitions in ice rheology can also have profound
implications for subglacial hydrology. For a small applied
antiplane strain rate, we derive a condition on the outer
radius, which ensures that the effective viscosity is domi-
nated by in-plane creep closure throughout the domain.
The inequality that the outer radius must satisfy sets an
upper limit on the outer radius of the domain B based on S,
i.e. Eqn (27). If the outer radius is larger than Bcr, a transition
to an antiplane-dominated region occurs. Weertman (1972)
also finds a transition from an in-plane-dominated to anti-
plane-dominated region and shows that the in-plane-domi-
nated region deforms as a power-law fluid with n= 3 and
the antiplane-dominated region in the far-field deforms as a
Newtonian fluid with n= 1. In the case of a channel
beneath an idealised glacier that slides over a flatbed
without protrusions, a transition in ice rheology has implica-
tions for subglacial hydrology. The water pressure gradient,
which drives the flow of water at the base of the glacier
and is the derivative of the hoop stress, changes sign for dif-
ferent values of the rheological power n. Weertman finds that
for n >2 (n <2) water is driven into (out of) an R-channel.
Thus, in the antiplane-dominated limit water is driven out
of the channel and driven into the channel in the in-plane-
dominated limit. Weertman finds that the distance to this
transition radius scales as R∼1=Sn=2τ , where Sτ= τ/N and τ
is the antiplane basal shear stress. For Sτ= 1/30, Weertman
shows that R-channels can pull water from a distance of
r∼ 160a. Here we find that the transition scales as
R∼1=

ffiffiffi
S

p
, which leads to the prediction that R-channels

can only pull water from a distance of about r∼a=
ffiffiffi
S

p
≈ 6a

or three channel diameters for S≈ 1/30. Thus, our analysis
predicts a tighter spacing of channels as compared with
Weertman’s results, which has implications for the dendritic
structure of channels.

6. CONCLUSION
Using an idealised, theoretical framework, we analyse how
antiplane shear can affect the in-plane creep closure of an
R-channel. For a small perturbation in S ¼ _γ far=ðANnÞ, the ef-
fective viscosity is independent of the antiplane motion at
leading order and therefore, there is no effect on the creep
closure of the R-channel. With the ice viscosity set by the
in-plane Nye solution, we find an analytical solution for
the antiplane velocity ux. In the finite domain, the outer
radius must satisfy an inequality or else there is a transition
to an antiplane-dominated region near the edge of the
domain. For very large S, the entire domain is antiplane dom-
inant and we derive a scaling for the average creep closure as
a function of S. Combining the insight from both regimes, our
analysis shows that small amounts of antiplane shear (S≪
10−3) have no effect on the R-channel size, but even

moderate amounts (S∼ 10−2) of antiplane shear can double
the average diameter of the R-channel. The dependence on
antiplane shear in the R-channel analysis can affect glacier
sliding by modulating the water pressure and therefore, the
transition between channelised and distributed systems in
surging glaciers. We also analyse the shape of R-channels
under applied antiplane shear. We find agreement with
observations of channels that are wider than tall beneath
mountain glaciers as well as predict channels that are taller
than wide could potentially form near zones of lateral anti-
plane shear.

Our ice-stream shear margin and mountain glacier sche-
matics are simplified in order to understand the effects of
antiplane shear around a single R-channel bounded by
simple ice flow. Ice thermomechanics and drainage are
more diffuse than our model implies and a transition in rhe-
ology will likely be smoother in space. Furthermore, in our
model we neglect the mechanics of unsaturated till near an
R-channel (Ng, 2000), the interaction between channelised
and distributed drainage systems (Hewitt, 2011, 2013;
Werder and others, 2013), and the vertical flow of water
within the temperate shear margin. We do not consider sedi-
ment transport (Walder and Fowler, 1994; Fowler and Ng,
1996; Creyts and others, 2013), which can alter the
channel cross section as the flow rate within an R-channel
increases. Antiplane shear increases the creep closure vel-
ocity, which requires more melting in the steady state, and
therefore, an increase in flow rate through the channel.
Sediment transport may in fact play a stabilising role initiating
sediment deformation and influencing drainage dynamics
(Walder and Fowler, 1994).

The drawbacks to this idealised model highlight several
ways in which our analysis may be extended. Here we
used a stress-free basal boundary condition along the lower
boundary outside of the channel. A frictional sliding law
that incorporates subglacial hydrology along the boundary
would be more appropriate (Budd and others, 1979; Alley
and others, 1986; Perol and others, 2015). In the antiplane
direction, adding basal traction would alter the results by in-
creasing the creep closure velocity near the ice/till interface.
Depending on the ratio of far-field to basal stress, the shape of
the channel would stay closer to circular. It would also be
sensible to require frictional sliding in the in-plane direction,
i.e. σrθ(r, θ= 0)= g(ur, N), where g(ur, N) is a sliding law that
couples the radial creep velocity ur to the effective pressureN
along the boundary (Weertman, 1972). The radial creep
closure is a small quantity and therefore, this traction will
likely also be small. Regardless, the additional traction
would slow the creep closure at the channel wall and exag-
gerate the non-circular channel shapes presented in this
paper.

To better understand the effect of antiplane shear on the
shapes of R-channels, we would perform transient numerical
simulations and iteratively evolve the channel surface in time.
In preliminary numerical simulations of this form, we find that
the channels are not susceptible to a shape instability, which
would form due to a reinforced strain concentration at the top
of the channel. This is consistent with Dallaston and Hewitt
(2014), who show that circular channels can be perturbed
to stable ellipses. To fully capture the stability of R-channel
shapes, we would also couple the ice flow with heat transfer
imparted by the turbulently flowing melt water.

The effects of antiplane shear on the effective pressure in
subglacial hydrologic systems could be incorporated into
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models as a function of time. For example, we can write a
parameterisation for the creep closure velocity as a function
of the strain rate ratio S as

urðr ¼ aÞ ¼ Aa
N
n

� �n

1þ βSðn�1Þ=n
h i

:

This parameterisation reduces to both the small and large S
asymptotics with a single parameter β, which represents the
large S power-law prefactor. The strain rate ratio S could be
written as

S ¼ us � ub
AhNn ;

where the far-field shear strain rate is given as the difference
in surface velocity us and basal slip velocity ub divided by
h=H/(n+ 1), which is the basal shear strain rate in the
Nye (1952) solution for glacier flow down a slope in terms
of the glacier thicknessH divided by the exponent of the ver-
tical coordinate. This parameterisation for S could be incor-
porated in models for subglacial hydrology such as Hewitt
(2011), Bartholomaus and others (2011) or Werder and
others (2013). These models could then be coupled with
an ice flow model to capture switches in subglacial drainage
and surge initiation (Fowler, 1987; Björnsson, 1998;
Oerlemans, 2013).
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APPENDIX A
Equation (25) is a linear, equidimensional equation. We
therefore try for a solution of the form

Ux ¼ Rλf ðθÞ:

Inserting this ansatz, we find the equation

λ½λþ 2� ð2=nÞ�f ðθÞ þ f 00ðθÞ ¼ 0:

Thus,

f ðθÞ ¼A sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ½λþ 2� ð2=nÞ�

p
θ

� �
þ B cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ½λþ 2� ð2=nÞ�

p
θ

� �
:

By symmetry, the velocity is mirrored across the y-axis (Σθx
(r; θ= 0)= ∂Ux/∂θ= 0) and therefore, the solution is propor-
tional to cos (θ). Next we require the solution to be periodic
over 0≤ θ≤ 2π, as in

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ½λþ 2� ð2=nÞ�

p
¼ k; where k ¼ 0; 1; 2; 3; . . . :

Hence, the eigenvalues are

λk ¼ ð1� nÞ=n±
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� ð1=nÞ�2 þ k2

q
: ðA1Þ

The full solution can then be written as an infinite series

Ux ¼
X∞
k¼0

akRð1�nÞ=nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1�ð1=nÞ�2þk2

ph

þbkRð1�nÞ=n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1�ð1=nÞ�2þk2

p i
cosðkθÞ:

The boundary conditions are

∂Ux

∂θ

				
θ¼0

¼ 0;
∂Ux

∂R

				
R¼1

¼ 0 and UxðR ¼ BÞ ¼ B cosðθÞ:

The first condition is satisfied due to symmetry. Setting k= 1
and defining the positive root of the eigenvalue λ1, as λ+ and
the negative λ−, we can write the third condition as

a1Bλþ þ b1Bλ� ¼ B:

The second boundary condition then gives

∂Ux

∂R

				
R¼1

¼ a1λþ þ b1λ� ¼ 0:

Solving for b1 we have

b1 ¼ � a1λþ
λ�

:

Hence, we find that

a1 ¼ B=λþ
ðBλþ=λþÞ � ðBλ�=λ�Þ cosðθÞ;

b1 ¼ �B=λ�
ðBλþ=λþÞ � ðBλ�=λ�Þ cosðθÞ:

Now we can write the full solution as

Ux ¼ B
ðRλþ=λþÞ � ðRλ�=λ�Þ
ðBλþ=λþÞ � ðBλ�=λ�Þ cosðθÞ:
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