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ABSTRACT

Variability in tropical cyclone activity in the eastern Pacific basin has been linked to a wide range of climate

factors, yet the dominant factors driving this variability have yet to be identified. Using Poisson regressions

and a track clustering method, the authors analyze and compare the climate influence on cyclone activity in

this region. The authors show that local sea surface temperature and upper-ocean heat content as well as

large-scale conditions in the northernAtlantic are the dominant influence inmodulating easternNorth Pacific

tropical cyclone activity. The results also support previous findings suggesting that the influence of the At-

lantic Ocean occurs through changes in dynamical conditions over the eastern Pacific. Using model selection

algorithms, the authors then proceed to construct a statistical model of eastern Pacific tropical cyclone ac-

tivity. The various model selection techniques used agree in selecting one predictor from the Atlantic

(northern North Atlantic sea surface temperature) and one predictor from the Pacific (relative sea surface

temperature) to represent the best possible model. Finally, we show that this simple model could have pre-

dicted the anomalously high level of activity observed in 2014.

1. Introduction

After years of below-average activity, 2014’s eastern

Pacific (EPAC) tropical cyclone (TC) season surged

with one of the busiest seasons on record, with a total

of 22 storms; 16 became hurricanes (HRs), and 9 of

these were major hurricanes (MHRs). It was the most

active year since 1992, the busiest season on record,

and while most of these storms dissipated without af-

fecting landmasses, there were notable exceptions,

such asHurricaneOdile, which wreaked havoc in Cabo

San Lucas in Baja California when it landed as a cat-

egory 3 hurricane (down from category 4). As pointed

out by Molinari and Vollaro (2000), the EPAC basin is

the most active in terms of number of storms per unit

area and unit time, and although a majority of these

dissipate before making landfall, a nonnegligible

number of TCs do impact the western coast of Mexico,

either by hitting it directly or by brushing against the

coast (Jáuregui 2003). In fact, besides being a cata-

strophic hazard, these TCs are also an important con-

tributor of boreal summer precipitation for a large

area of northwestern Mexico (Englehart and Douglas

2001) as well as the southwestern United States

(Corbosiero et al. 2009; Ritchie et al. 2011; Wood and

Ritchie 2013). (A complete list of acronyms used in

this paper is given in Table A1.)

Unlike the Atlantic, where many of the climate fac-

tors modulating TC activity have been identified (Caron

et al. 2015a), the factors modulating EPAC TC activity

remain somewhat elusive. This makes it difficult to

* Supplemental information related to this paper is available at

the Journals Online website: http://dx.doi.org/10.1175/JCLI-D-15-

0377.s1.

Corresponding author address: Louis-Philippe Caron, Climate

ForecastingUnit, Catalan Institute of Climate Sciences, Dr. Trueta

203, 3rd floor, Barcelona 08005, Spain.

E-mail: louis-philippe.caron@bsc.es

9678 JOURNAL OF CL IMATE VOLUME 28

DOI: 10.1175/JCLI-D-15-0377.1

� 2015 American Meteorological Society

http://dx.doi.org/10.1175/JCLI-D-15-0377.s1
http://dx.doi.org/10.1175/JCLI-D-15-0377.s1
mailto:louis-philippe.caron@bsc.es


produce reliable seasonal forecasts of cyclone activity in

this basin and, consequently, of rainfall for regions that

derive a large part of their summer precipitation from

these TCs. In effect, few groups produce TC forecasts

for the region and even fewer make those forecasts

widely available. One notable exception is the Climate

Prediction Center (CPC), who (correctly) predicted

above-average activity for 2014, based in part on ex-

pected El Niño conditions.

Camargo et al. (2007a) showed that El Niño–
Southern Oscillation (ENSO) impacts potential in-

tensity (a measure of the instability of the ocean–

atmosphere system; Bister and Emanuel 1998) and

vertical wind shear, two factors known to influence

cyclogenesis, over the eastern North Pacific basin.

More recently, Balaguru et al. (2013) and Jin et al.

(2014) showed that EPAC TC activity was tied to local

changes in upper-ocean heat content (UOHC), which

they further linked to ENSO. In particular, Jin et al.

(2014) showed that the heat accumulated during the

boreal winter during El Niño events could be

discharged a few months later in the region supporting

cyclogenesis. Irwin and Davis (1999) further demon-

strated that ENSO could shift the cyclogenesis loca-

tion westward in that basin.

However, there is accumulating evidence that ENSO is

not the prime modulator of TC activity in the EPAC

basin despite its influence on some large-scale fields as-

sociated with cyclogenesis. While Gray and Sheaffer

(1991) and Romero-Vadillo et al. (2007) found an in-

crease in the number of intense hurricanes (categories 3–

5) during El Niño events, Whitney and Hobgood (1997)

found ‘‘little differences in the frequencies, maximum

intensities, or relative intensities of TCs over the eastern

North Pacific between El Niño and non–El Niño years.’’

Collins and Mason (2000) later showed that while part of

the cyclone variability in the western part of the EPAC

could be explained by changes in the climatological en-

vironment with links to ENSO, cyclone variability in the

eastern part could not, and because the number of cy-

clones forming in the eastern region (east of 1168W) is

significantly larger than in the western part, ENSO could

not explain basinwide variations in TC activity. Similar

results were recently obtained by Jien et al. (2015) by

dividing the basin into two regions at 1128W.

While the extent to which ENSO impacts EPAC TC

activity has yet to be fully understood, the influence of El

Niño on Atlantic tropical cyclone activity is fairly well

documented (Klotzbach 2011; Kim et al. 2009; Camargo

et al. 2007a; Landsea et al. 1999; Shapiro and Goldenberg

1998; Gray 1984) but is measured to be of the opposite

sign as that suggested for the EPAC. In this case, the in-

fluence occurs mainly through changes in vertical wind

shear, driven by changes in upper-level winds, over the

Atlantic main development region (Goldenberg and

Shapiro 1996). Changes in tropospheric humidity

(Camargo et al. 2007a) and vertical stability (Tang and

Neelin 2004) have also been implicated. This opposite

reaction to ENSO could partly explain the significant

anticorrelation in storm counts detected between the

two basins (Frank and Young 2007; Collins 2010).

However, ENSO cannot explain the slow variation

observed in the EPAChurricane record (Zhao and Chu

2006) or why this slow variation is also anticorrelated to

hurricane activity in the Atlantic (Wang and Lee 2009).

In fact, this slow variability makes the EPAC the only

basin supporting TC activity with the peculiar feature

of displaying a downward trend over the recent past

(Kossin et al. 2007).

Wang and Lee (2009) linked this longer time-scale

variability to changes in the Atlantic multidecadal os-

cillation (AMO), which has an opposite influence on

cyclogenesis conditions in the EPAC compared to the

NorthAtlantic; whereas in theAtlantic, a positiveAMO

phase is generally associated with lower wind shear

conditions, Wang and Lee (2009) suggest that in the

EPAC it is associated with higher wind shear as a result

of anomalous upper-level easterly wind over part of the

EPAC. Links between EPAC TC activity and vertical

circulation over the tropical Atlantic were also noted by

Zhang and Wang (2015), who found that an anti-

correlation in the strength of the Hadley cells over the

EPAC and the Atlantic, with associated change in ver-

tical wind shear, could explain some of the observed

anticorrelation.

Finally, besides the aforementioned climate factors,

EPAC TC activity has also been linked to the slowly

varying Pacific decadal oscillation (PDO; Martinez-

Sanchez and Cavazos 2014; Lupo et al. 2008; Raga et al.

2013), to the North Atlantic Oscillation (NAO; Raga

et al. 2013), and to the quasi-biennial oscillation (QBO;

Whitney and Hobgood 1997), though this last relation-

ship could not be reproduced in a more recent analysis

(Camargo and Sobel 2010).

The goal of this paper is to compare the strength of the

various climate influences that have been linked to

EPAC cyclone activity and to determine the pre-

dominant climate factors that can explain the observed

variability as well as those that ought to be considered

in a seasonal forecast of EPAC TC activity. Section 2

describes the data used in this paper, section 3 gives a

brief description of the Poisson regression used in this

study, and results are presented in sections 4 and 5. An

evaluation of our suggested seasonal forecast with out-

of-sample data is presented in section 6, and a conclu-

sion is given in section 7.
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2. Data

a. Climate data

The choice of climate indices used in this study is

based on previous literature discussing climate–cyclone

interactions in the eastern Pacific. We first include a

series of climate factors linked to the Pacific—namely,

the ENSO, PDO, Pacific–North American pattern

(PNA),1 EPAC sea surface temperature (SST), and

EPAC UOHC. Data for ENSO, PDO, and PNA are

taken directly from the NOAA Earth System Research

Laboratory (ESRL). The ENSO index is the bivariate

ENSO time series calculated by combining the stan-

dardized Southern Oscillation index (SOI) and the

standardized Niño-3.4 SST time series (Smith and

Sardeshmukh 2000). The PDO (Zhang et al. 1997) is the

leading principal component of monthly SST anomalies

in the North Pacific Ocean, poleward of 208N, while the

PNA (Barnston and Livezey 1987) is the second leading

empirical orthogonal function of Northern Hemisphere

(208–908N) sea level pressure monthly anomaly co-

variance. EPAC SST is taken relative to the mean

tropical SST (RSST), limited by 308S and 308N, and is

taken as the average of NOAA extended reconstructed

SSTs (ERSST; Smith et al. 2008) andMet Office Hadley

Centre reconstructed SSTs (HadISST; Rayner et al.

2006) measured over 158N, 308N, 1208W, and 1008W.

EPACUOHC is derived from theEN4 dataset provided

by the Met Office (Good et al. 2013) and is averaged

over the same region as the EPAC SST over the first

110m. Because the EPAC main development region is

usually considered to start at around 8–108N, we redid

the entire analysis by extending the southern boundary

of both EPAC SST and UOHC to 88N. The results were

not significantly impacted.

Because of the anticorrelation in TC activity ob-

served between the Atlantic and the eastern Pacific, we

also include a series of climate factors that have been

linked to Atlantic TC activity—namely, the Atlantic

meridional mode (AMM; Vimont and Kossin 2007;

Kossin and Vimont 2007), AMO (Zhang andDelworth

2006; Knight et al. 2006), and NAO (Jagger et al. 2001;

Elsner and Kocher 2000; Elsner et al. 2000), as well as

western Sahel rainfall (Fink et al. 2010; Landsea and

Gray 1992; Landsea et al. 1992), dust concentration

over the tropical Atlantic (Evan et al. 2006, 2008),

subpolar gyre (SPG) temperature (Smith et al. 2010;

Dunstone et al. 2011), and tropical Atlantic SST

(Vecchi et al. 2011; Swanson 2008; Camargo et al.

2013). The AMM (defined by Chiang and Vimont

2004), the AMO (linearly detrended SST averaged

between 08 and 708N), and the NAO (difference in

pressures between Iceland and the Azores) are taken

directly from the ESRL database. Sahel rainfall data

come from the Joint Institute for the Study of the

Atmosphere and Ocean (JISAO; Mitchell 2013),

which uses Sahel averaging regions from Janowiak

(1988) (108N, 208N, 208W, 108E). Dust concentration

over the tropical Atlantic is derived from Evan and

Mukhopadhyay (2010) and is averaged over 88N, 208N,

608W, and 108W. Atlantic SST is again measured with

respect to the tropical mean and is the mean of ERSST

and HadISST averaged over the region limited by 88N,

208N, 808W, and 408W, while the subpolar gyre tem-

perature is measured over 508N, 708N, 608W, and

208W. Finally, we also include the QBO, given by the

zonal winds at 30 hPa, which are provided by the

University of Berlin (Naujokat 1986).

All of the climate indices are computed as the average

for the July–September (JAS) period, the official hur-

ricane season in the EPAC region, except for the west-

ern Sahel precipitation (June–September) and the NAO

[both May–June (MJ) and JAS]. All data cover the pe-

riod 1966–2013 except for the dust time series (1966–

2008). Because of the unusual nature of the 2014 hurri-

cane season with respect to the recent past, data for 2014

are not used in the analysis but will be used to evaluate

our statistical seasonal forecast in a later section. The

climate indices are shown in Fig. 1.

b. Hurricane data

Hurricane data are taken from the second-generation

North Atlantic Hurricane Database (HURDAT2;2

Landsea and Franklin 2013) maintained by the National

Hurricane Center. Unlike the Atlantic basin where the

TC record extends back to the end of the nineteenth

century, data in the EPAC are more limited, beginning

only in 1949. Even so, it is likely that a significant

number of storms were missed prior to the satellite era

and, despite some recent effort in that direction (Raga

et al. 2013), there currently exists no solid estimation as

to what that number might be. This stands in contrast to

the Atlantic basin where such estimates are becoming

available (Vecchi and Knutson 2008; Landsea et al.

2010; Vecchi and Knutson 2011; Chenoweth 2014). As

such, we restrict our analysis to the satellite era and only

consider hurricane data from 1966 onward. We con-

struct annual time series for total number of cyclones,

1 Although the PNA is not discussed in the TC literature, given

its influence near the region of interest, we include it as a potential

influence nonetheless. 2 Downloaded on 4 June 2014.
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total number of cyclones that lasted 48h or more [long-

duration TCs (LTCs)], total number of hurricanes, and

total number of major hurricanes (hurricanes of cate-

gories 3–5) using all storms present in the database of

tropical storm intensity or higher. A time series of TCs

with a lifetime of 48 h or more is included in order to

address the artificial trend in short-duration storms

present in the tropical cyclone record as a result of

the constant improvement of satellite capabilities

(Landsea et al. 2010). Each of the TC time series is

shown in Fig. 2.

It was noted byWhitney and Hobgood (1997) that the

EPAC hurricane data collected at the dawn of the sat-

ellite era (1966–70) are likely biased low in terms of

intensity. As such, we redid the entire analysis using only

data from 1971 onward. The significance of some of the

weaker relationships (p values of ;5%) between

hurricanes/major hurricanes and climate factors were

impacted negatively (viz., PDO–HR, NAO–MHR,

and PNA–MHR relationships). However, it had little

impact on the relationships that were highly signifi-

cant, the model selection analysis, and the skill of the

hindcasts.

c. Clustering

The clusteringmethod used here is based on amixture

of quadratic regression models, which are used to fit the

geographical shape of tropical cyclone tracks. For each

FIG. 1. Standardized time series of various climate indices used in this study: (a) AMO, (b) Atlantic (ATL) RSST, (c) dust con-

centration, (d) EPACUOHC, (e) EPACRSST, (f) ENSO, (g) PDO, (h) Sahel rainfall, (i) SPG temperature, (j) PNA, (k) NAO (MJ),

and (l) QBO.
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component (longitude and latitude), the mixture model

uses a polynomial regression curve of storm position

versus time. Each tropical cyclone track is then

assigned to one of the K different regressions. Each

model is defined by a set of different parameters, re-

gression coefficients, and a noise matrix. Details of the

technique are given in Gaffney et al. (2007), where it is

applied to extratropical North Atlantic storms. This

cluster technique has been widely applied to tropical

cyclones in various regions—namely, in the western

North Pacific (Camargo et al. 2007b,c), North Atlantic

(Kossin et al. 2010), eastern North Pacific (Camargo

et al. 2008), Southern Hemisphere (Ramsay et al.

2012), and Fiji region (Chand and Walsh 2009). More

recently it was used to evaluate the similarity of model

tracks to observations and to examine possible

changes in model tracks in future climates (Daloz

et al. 2015).

In Camargo et al. (2008) the technique was applied to

all eastern North Pacific TCs of tropical storm intensity

and higher for the period 1950–2006. Here, the analysis

covers the period 1966–2013 and we not only consider

all TCs but also examine the characteristics of the

clusters for storms lasting 48 h or more and storms that

have reached hurricane status. Clusters of major

hurricanes only were excluded from this analysis be-

cause there were not a sufficiently large number of

storms in the resulting time series to apply this par-

ticular methodology. Camargo et al. (2008) showed

that the ideal number of clusters for describing TC

activity in the EPAC region is three. Each of these

clusters is shown in Fig. 3 (for the hurricane case) and

Fig. S1 (for the TCs lasting . 48 h), while Table 1

displays howmany storms are contained in each cluster

for each category of storms. It was also shown (Camargo

et al. 2008) that the relationship with ENSO is significant

in only one of the clusters (cluster 1), which includes the

storms with significant westward shift in genesis and

tracks compared to most of the TCs in the basin. The

modulation of EPAC storms in intraseasonal time scales

by the Madden–Julian oscillation (MJO) has also been

well established (Maloney and Hartmann 2000) and was

shown to be statistically significant for cluster 2.

3. Methodology

Analyses are based upon Poisson regressions, which

is a common approach to model event counts in many

contexts. The idea is to represent the mean of a Poisson

distribution as a function of a set of predictors. When

FIG. 2. Time series of EPAC (a) TCs, (b) TCs that lasted .48 h (LTCs), (c) HRs, and

(d) MHRs for the period 1966–2013. The time series are expressed as anomalies with respect

to the mean.
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covariates are time varying, the mean is very often

depicted as follows:

l
k
5 exp(b

0
1b

1,k
X

1,k
1b

2,k
X

2,k
1⋯1b

p,k
X

p,k
) , (1)

where lk is the conditional mean (upon the predictors)

of the Poisson distribution at time index k, Xj,k is the

value of the jth predictor at time k, and p is the total

number of predictors in the model (excluding the con-

stant b0). Note that Eq. (1) is also known as the loga-

rithmic link function since the log of themean is linear in

the predictors. In this case, bj,k is interpreted as the

percentage change in lk when Xj,k changes by one unit.

When investigating predictors of Atlantic TCs, the

Poisson regression has been used by numerous authors:

Solow and Nicholls (1990), Elsner (2003), Elsner and

Jagger (2006), Villarini et al. (2010), Kozar et al. (2012),

and Caron et al. (2015a), to name only a few. Poisson

regressions have also been successfully used to construct

genesis indices for global TC frequency and relate them

to environmental variables in present and future climates

(Tippett et al. 2011; Camargo et al. 2014). For an over-

view of the Poisson regression in climatology, one should

refer to Elsner and Jagger (2013), and for a more general

and comprehensive treatment of count regressions in

statistics, we refer to Cameron and Trivedi (2013).

It has been shown by Gourieroux et al. (1984) that the

value of bj,k is robust tomodel misspecification, meaning

that the direction and size of the relationship does not

depend on the underlying Poisson assumption. How-

ever, since we are largely interested in the significance of

the relationships here, model misspecification may po-

tentially affect some elements of the analysis. For this

reason, we further validate the robustness of our results

using Huber–White (sandwich) standard errors and

negative binomial regressions. Finally, because the

FIG. 3. The three clusters of eastern North Pacific hurricane tracks for the 1966–2013 period.
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number of observations in the eastern Pacific basin is

rather small, bootstrapped p values are also computed.

Overall, the focus will be on relationships that have very

high significance (p values well below 5%) and that are

also backed by solid geophysical explanations. Details of

robustness analyses are provided in the supplementary

material (Tables S1–S4).

4. Climate influence on eastern Pacific tropical
cyclone activity

We summarize the results of the different Poisson

regressions in Fig. 4, which shows to what extent, for

each possible pair of predictand and predictor, a single

covariate (p5 1) can help explain the number of storms

basinwide or for a given cluster. This is done by exam-

ining the statistical significance of the predictor with its p

value (bilateral test), which is computed with the

maximum-likelihood estimates of a Poisson regression

[Eq. (1)]. Red (blue) color represents a positive (nega-

tive) relationship between the predictor (climate factor)

and the predictand (TC time series), whereas the tone of

the color indicates the significance of the relationship

(darker means more significant). Analyzing each possi-

ble pair makes the process prone to finding significant

predictors by chance (multiple testing bias), further

emphasizing the importance of focusing on relationships

whose p values are well below 5%.

Initially concentrating on basinwide activity (i.e., TCs,

LTCs, HRs, and MHRs), we see that the strongest pre-

dictors in the Atlantic are SPG(2), Atlantic RSST(2),

and dust(1), as well as NAO (MJ)(1) and AMO(2),

whereas in the Pacific, the best predictors are EPAC

RSST(1), EPAC UOHC(1), and, to a lesser extent,

PNA(2). A link between the PNA and typhoons in the

western Pacific has already been established (Choi and

Moon 2013), but to our knowledge, such a link has yet to

TABLE 1. Number of storms per cluster for the 1966–2013 period.

TCs LTCs (.48 h) HRs MHRs

Cluster 1 125 98 62 33

Cluster 2 303 256 195 94

Cluster 3 340 270 159 58

FIG. 4. Heat map showing p values of Poisson regressions for each pair of (left) predictand and (top) predictor.

Blue (red) color refers to a negative (positive) relationship between the two (sign of the bs). Cx denotes cluster

number x.
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be made for the EPAC. It is unclear at this time if there

is a clear physical mechanism linking EPAC TC activity

and the PNA or if this link is the result of the correlation

between the PNA with other climate indices (Table 2).

Interestingly, two climate indices local to the Pacific,

ENSO and PDO, are significantly positive only when the

strongest storms are considered (with p values of 4% and

below 0.1%, respectively). Moreover, we have found no

link at all between the QBO and any of the TC time se-

ries, in agreement with findings by Camargo and Sobel

(2010) and Collins and Mason (2000). Finally, robustness

analyses shown in Table S1 of the supplementary mate-

rial further confirm the statistical significance of these

relationships. The smaller number of observations for the

dust time series implies that bootstrapped p values are

adjusted upward, yet they still remain below 5%.

To better understand the respective impact of the

Pacific andAtlantic variability on EPACTC activity, we

perform a similar analysis for each of the cluster time

series (Fig. 4). Here, we detect large differences in the

behavior of the three clusters. Cluster 1 is influenced

both by factors from the Atlantic and the Pacific and is

noticeably the only cluster significantly impacted by

ENSO, as noted by Camargo et al. (2008). Since cluster 1

is composed mostly of storms forming in the western

part of the basin, this result is also consistent with Collins

(2010). On the other hand, cluster 3’s variability seems

largely tied to local thermodynamic conditions (more

specifically, SSTs and UOHC), with only weak links to

any other climate indices. This result supports the recent

work of Jin et al. (2014), who showed that ocean heat

content in the upper layer of the EPAC is important in

modulating TC activity (as measured by accumulated

cyclone energy) in that region (clusters 1 and 3 have on

average the longest tracks and combined represent

around 60% of all TCs). Strong ties between TC activity

and thermodynamic factors in this region had also been

noticed by Collins and Mason (2003).

Cluster 3 stands in contrast to cluster 2, which shows

no particular Pacific influence and appears to be entirely

modulated by the Atlantic basin, with statistically sig-

nificant relationship to dust concentration, SPG tem-

perature, Sahel precipitation, and Atlantic RSST.

Interestingly, dust concentration is the predictor that

returns the smallest p values among all the predictands

(all below 0.5%). As previously mentioned, there

exists a known link between the amount of precipitation

over the Sahel region and the amount of dust over the

tropical Atlantic (Wang et al. 2012), so it is not sur-

prising to find a highly significant relationship for Sahel

precipitation in this particular case.

Cluster 2 storms tend to form just off the coast ofCentral

America, at the edge of the basin, suggesting that a large

number of these storms have their origin in African east-

erly waves (AEWs), which have intensified upon reaching

the EPAC owing to conditions generally favorable to cy-

clogenesis (Collins and Mason 2000). Poisson regressions

between TC activity and the number of AEWs (derived

from ERA-40; Uppala et al. 2005; S. Rowell and

K. Hodges 2014, personal communication) crossing over

to the Pacific during the EPAC hurricane season do not

return significant p values for any of the cluster 2 pre-

dictands (not shown). The fact that there is no relationship

between the absolute number of AEWs crossing into the

Pacific and EPAC TC activity has been previously noted

(Molinari and Vollaro 2000; Leppert et al. 2013).

To explain the influence of the Atlantic on cluster 2,

we first note that the predictors local to the Atlantic

basin that show the strongest link to the overall EPAC

TC activity (SPG, Atlantic RSST, Sahel rainfall, dust

TABLE 2. Correlation between predictors. Values statistically significant at the 5% level are shown in bold.

AMM AMO SPG Sahel Dust

ATL

RSST

NAO

(MJ)

NAO

(JAS) ENSO PNA

EPAC

RSST

EPAC

UOHC PDO QBO

AMM 1.00 0.76 0.36 0.49 20.36 0.80 20.06 20.13 20.26 0.32 20.09 20.19 20.18 0.17

AMO 1.00 0.39 0.38 20.35 0.66 20.11 20.34 20.09 0.38 20.09 20.15 20.21 0.01

SPG 1.00 0.49 20.56 0.53 20.31 20.23 20.16 0.28 20.15 20.45 20.28 0.07

Sahel 1.000 20.42 0.59 20.19 20.21 20.44 0.21 20.35 20.46 20.54 0.00

Dust 1.00 20.31 0.06 0.20 20.19 20.37 20.04 0.37 0.19 20.12

ATL RSST 1.00 20.22 20.32 20.48 0.35 20.43 20.42 20.42 0.20

NAO (MJ) 1.00 0.02 0.33 20.19 0.24 0.20 0.14 0.06

NAO (JAS) 1.00 0.11 20.01 0.19 0.17 0.17 0.07

ENSO 1.00 20.02 0.52 0.39 0.51 20.02

PNA 1.00 20.21 20.11 20.01 20.05

EPAC RSST 1.00 0.53 0.34 20.07

EPAC

UOHC

1.00 0.63 20.07

PDO 1.00 0.05

QBO 1.00
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concentration, and AMO) are all correlated to some

degree (see Table 2) and act in concert to modify large-

scale fields by, for example, enhancing or inhibiting

convective activity and TC formation over the Atlantic

MDR (Wang et al. 2012; Klotzbach and Gray 2014;

Dunstone et al. 2011). Using principal component (PC)

analysis, we find that the proportion of variance ex-

plained by each of the five PCs of theAtlantic predictors

is 57%, 17%, 14%, 8%, and 5%, respectively. Regress-

ing each of the EPAC TC time series onto each of these

PCs (Fig. 5), we find that only the first principal com-

ponent is significantly linked (positively)3 to changes in

basinwide TC (and clusters 1 and 2) activity, suggesting

that all the Atlantic predictors are capturing the same

influence over EPAC TC activity.

Figure 6b shows the composite difference in JAS ver-

tical wind shear (derived from NCEP reanalyses (Kalnay

et al. 1996) for the 10 years with the highest (1984, 1972,

1983, 1982, 1974, 1991, 1986, 1992, 1971, and 1985) and

lowest (2005, 1998, 2003, 2006, 2004, 1999, 2008, 1966,

1969, and 2007) first principal components. It shows that

for years where the first principal component is high,

seasonal vertical wind shear at the eastern edge of the

North Pacific decreases; this reduction is collocated with

the area where wind shear is maximum in a basin where

wind shear conditions are generally favorable to cyclone

formation (between 1208 and 808W in Fig. 6a). When a

similar analysis is performed using other large-scale fields

generally understood to influence cyclogenesis, none of

them respond in such a way that could explain the ob-

served change in EPAC TC activity (Fig. S2). Similarly, a

regression of the first principal component onto vertical

wind shear returns statistically significant negative re-

lationships over most of the eastern North Pacific where

TCs tend to form (Fig. S3a).

These results support those of Camargo et al. (2007a),

who identified, using an entirely different approach based

on genesis indices, changes in vertical wind shear as the

main climate factor modulating EPAC TC activity. Fur-

thermore, the results corroborate findings by Wang and

Lee (2009) that vertical wind shear is the pathway

through which the Atlantic influences EPACTC activity.

5. Model selection

a. Methods

The analysis of section 3 mainly focused on whether

each variable, taken individually, had a link to EPAC

TC frequency. This is a preliminary step in order to

build a more complete model, one that may include

one or several covariates. The goal of this section is to

construct a model that has both an adequate in-

sample fit and predictive power by combining the

results of section 3 with model selection algorithms.

Model selection algorithms look for predictors that opti-

mize the in- or out-of-sample fit (as measured by the gain

in log-likelihood or reduction in prediction errors) in

comparison with the complexity of the model (as mea-

sured by the number of predictors in themodel). Formore

details on model selection methods, we refer to James

et al. (2013, chapters 5 and 6) and Hastie et al. (2009,

chapters 3 and 7).

The best-known variable selection algorithm is the

stepwise regression, with the forward method being the

most popular. In a forward stepwise (Poisson) regression,

the initial model is the Poisson distribution with constant

mean, and each iteration seeks the predictor that adds the

most to the log-likelihood. Variables are added until the

gain in fit does not compensate the added complexity of

FIG. 5. Heat map showing p values of Poisson regressions for each

pair of (left) predictand and (top) predictor (principal components).

Blue (red) color refers to a negative (positive) relationship between

the two (sign of the bs). The variance explained by each of the five

principal components is 57%, 17%, 14%, 8%, and 5%, respectively.

Tropical cyclones (TC), TCs that lasted .48 h (LTC), hurricanes

(HR), major hurricanes (MHR), and cluster number x (Cx).

3 A positive first principal component means less convective

activity in the Atlantic.
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the model. Information criteria such as the Akaike or

Bayes information criteria (AIC or BIC) are generally

used to weigh the gain in fit against the complexity of a

statistical model. We note that the forward method has

been applied in TC studies in the past by Kozar et al.

(2012) and Villarini et al. (2010).

When the number of potential predictors is small, as is

the case in this paper, another algorithm that can be used

is one known as the best-subset selection. As the name

suggests, it looks for the optimal combination of pre-

dictors among all possible cases. Optimality is usually

defined on the basis of the quality of the in-sample fit

FIG. 6. (a) JAS climatology of vertical wind shear over the eastern Pacific. (b) Composite

difference in vertical wind shear between the 10 years with the highest and lowest first principal

component derived from the Atlantic predictors (AMO, Sahel rainfall, SPG, ATL RSST, and

dust concentration). Years with a high first PC are 1984, 1972, 1983, 1982, 1974, 1991, 1986, 1992,

1971, and 1985. Years with a low first PC are 2005, 1998, 2003, 2006, 2004, 1999, 2008, 1966, 1969,

and 2007. Years with a high (low) PC are associated with higher (lower) convective activity in the

Atlantic. Vertical wind shear is measured between 850 and 200 hPa. Units: m s21.
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compared to the complexity of the model, as measured

by an information criterion.

Stepwise and best-subset selection methods are

not without issues. For example, as with multiple/

simultaneous testing, there is a greater probability of

finding a significant relationship by chance, resulting in

underestimated p values. Another concern involves

blindly using the output of the model regardless of its

credibility. For a detailed account of issues related to

automated model selection, we refer to Harrell (2001)

and Burnham and Anderson (2002). It is important to

note that a number of these issues are encountered

and magnified in the field of data mining (machine/

statistical learning), which is concerned with finding

significant patterns within vast amounts of data. This

is obviously not the case in our investigation, which is

supported by geophysical explanations and supple-

mentary statistical analyses.

Rather than looking at the quality of the in-sample fit,

as with the stepwise and best-subset methods, one may

instead consider the out-of-sample predictive capability

of amodel.Onemethod tailored for this purpose is known

as the k-fold cross-validation (CV) technique. The idea is

to split the original sample into k random subsamples.

Subsequently, one subsample is selected for validation

while estimation is performed on the remaining data. The

process is then repeated so that each subsample is used

once for validation. The predictors are chosen tominimize

FIG. 7. Statistical models selected by the different selection algorithms: (a) bestglm (AIC), (b) bestglm (BIC),

(c) forward selection (AIC), (d) forward selection (BIC), (e) fourfold CV, and (f) eightfold CV.
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the average prediction error for each of the subsamples.

Note that CVhas been used inKozar et al. (2012) to assess

the quality of each model; however, the k-fold CV tech-

nique was not applied to select the model itself.

Despite their drawbacks, selection algorithms can be

useful for finding the most influential variables and can

help provide guidance in model construction (McLeod

and Xu 2014). In this section, we will use the forward,

best-subset, and k-fold model selection techniques to

help determine the best sets of predictors of TC fre-

quency in the eastern Pacific basin. The step R function

is used for the forward method, whereas the bestglm R

package of McLeod and Xu (2014) is used for the

second and third methods. To the authors’ knowledge,

the last two techniques have not previously been ap-

plied in TC studies.

b. Best combinations of predictors

As we are interested in forecasting the activity over the

entire basin for the period covering 1966–2013, the

analysis will be conducted on the total number of tropical

cyclones, TCs lasting 48h and longer, hurricanes, and

major hurricanes. All three selection methods described

in the previous subsection are applied to the latter four

predictands. We exclude the QBO and NAO (JAS) as

possible predictors based on the results of the previous

section and the dust concentration since the latter does

not cover the entire period of study.

Figure 7 illustrates which variables are chosen for

each selection algorithm. The first row (Figs. 7a,b) cor-

responds to the best-subset technique, the second row

(Figs. 7c,d) is the stepwise forward approach, and the

last row (Figs. 7e,f) is the k-fold CV approach. For the

first two rows, we applied both the AIC and BIC in-

formation criteria, whereas for the k-fold CV approach,

both four and eight subsamples are used. As the original

sample has 48 observations, each subsample consists of

either 6 or 12 data points for validation purposes.

The two predictors that appear most often are the sub-

polar gyre and the EPAC relative SST. The relationship is

positive for the EPAC relative SST and negative for the

subpolar gyre temperature. This relationship holds true for

almost all TC counts and methods. For major hurricanes,

the subpolar gyre and the EPAC relative SST are clearly

shown to be superior, yet a third predictor appears at

times—either the PDO or the EPACUOHC. The lack of

statistical significance of this third predictor suggests that it

should be discarded.

For a statistical model constructed using SPG and

EPAC relative SST, we verified whether the significance

of both predictors is affected by model misspecification

or by the small sample size. With Huber–White (sand-

wich) standard errors, a negative binomial regression,

or (nonparametric) bootstrap, both covariates remain

highly significant. The complete results may be seen in

Table S2 of the supplementary information.

We contend that a statistical model constructed using

EPAC RSST and SPG temperature is relatively suc-

cessful in capturing annual TC variability in the EPAC

because it implicitly integrates both the local thermo-

dynamic influence (significant for clusters 1 and 3) and

the dynamical influence driven by the Atlantic (signifi-

cant for clusters 1 and 2) known to influence cyclogen-

esis in that region. In the remaining portion of the paper,

we will more thoroughly evaluate the skill with which

this statistical model is able to predict TC activity over

the EPAC basin.

c. Goodness of fit

To measure the ability of the subpolar gyre and the

EPAC relative SST to form a complete model, Table 3

(top) shows the x2 goodness-of-fit (GOF) test for the

resultingmodel of each selectionmethod. It shows that a

Poisson model with the latter two predictors is an ade-

quate model for tropical cyclones, long duration TCs,

and hurricanes. Note that even if the goodness-of-fit test

cannot be rejected with a simple constant mean Poisson

distribution, the p values are much smaller with the

simple model, indicating that the in-sample fit is better

when both predictors are added. The likelihood ratio

TABLE 3. The x2 GOF and likelihood ratio tests (LRTs) to assess the quality of in-sample fit of models chosen by selection algorithms.

x2 GOF test Poisson bestglm (BIC) bestglm (AIC) Forward (BIC) Forward (AIC) 4-fold CV 8-fold CV

TC 0.1588 0.9167 0.9167 0.9167 0.9167 0.9167 0.9167

LTC 0.0891 0.9309 0.9309 0.9309 0.9309 0.9309 0.9309

HR 0.3779 0.9865 0.9865 0.9865 0.9865 0.8772 0.9865

MHR 0.0000 0.0088 0.0107 0.0104 0.0104 0.0107 0.0107

LRT Poisson bestglm (BIC) bestglm (AIC) Forward (BIC) Forward (AIC) 4-fold CV 8-fold CV

TC — 0.000 006 0.000 006 0.000 006 0.000 006 0.000 006 0.000 006

LTC — 0.000 001 0.000 001 0.000 001 0.000 001 0.000 001 0.000 001

HR — 0.000 012 0.000 012 0.000 012 0.000 012 0.000 163 0.000 012

MHR — 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000 0.000 000
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test (LRT), which is used to compare the quality of the

in-sample fit of two nested models, also confirms the

statistical significance of adding these two covariates

(p values of the LRT are well below 0.1%) compared

to a simple Poisson distribution. The LRT figures are

shown in the bottom part of Table 3.

As for major hurricanes, the x2 goodness-of-fit test

shows a p value of about 1% across techniques, meaning

that despite the high significance of the covariates found,

the lack of fit is important. One important reason for this

lack of fit is the inability of the chosen models to capture

the interannual variability of MHRs, as will be made

clearer in section 6.

6. Out-of-sample hindcast

Section 5 showed that the SPG temperature and the

EPAC RSST were the two most important predictors

(among those considered) in trying to explain TC fre-

quency in the eastern Pacific. In this section, we analyze

the out-of-sample prediction capability of SPG and

EPAC relative SST and compare it with four other

plausible models.

The following fivemodels are investigated: one simple

Poisson distribution with constant mean and four Pois-

son regressions constructed using one variable from the

Atlantic basin and one variable from the Pacific basin. In

addition to SPG temperature and EPAC RSST, we in-

clude Atlantic RSST and EPAC OHC. The latter is

closely tied to EPACRSST, while the former is themost

significant Atlantic predictor after SPG temperature

(Fig. 4).

To assess the predictive capacity of a model, Elsner

and Jagger (2013) suggest four different metrics. The

mean absolute error (MAE) and the mean-square er-

ror (MSE) compute the sample mean of errors in ab-

solute terms and in squared terms, respectively. The

MAEp and MSEp measures are similar, but the error

(either in absolute or squared terms) is weighted by the

probability mass function of the underlying model.

Therefore, the MAEp and MSEp also rely on the rel-

evance of the distributional assumptions.

Each of the five models is fitted with data from 1966

to 2009. Using the observed values of the predictors

between 2010 and 2014, it is possible to compute the

mean number of events in each of these years and

compare it with the realized number of storms. This is

also known as an out-of-sample hindcast.

When building a statistical model in this context, we

expect that the added complexity should yield better

predictions than a simple Poisson distribution. There-

fore, each entry in Tables 4, S3, and S4 corresponds to

the relative reduction (in percent) in the forecast

metric provided by a model compared with the same

metric obtained with a simple Poisson distribution with

constant mean. In Table 4 (top), we find that SPG tem-

perature and EPAC RSST are the predictors that per-

formbest for all predictands. The percentage reduction in

the MSE is between 65% and 85% for TCs, LTCs, and

hurricanes, whereas it is approximately 35% for major

hurricanes.

A usual rule of thumb for validation exercises is that

70% of the sample is used for estimation (training),

whereas 30% of the sample is used for forecast (vali-

dation). Therefore, we redo the same out-of-sample

exercise, estimating the five models with data from

1966 to 2000, and perform predictions from 2001 to 2014.

Table 4 (bottom) confirms the relevance of SPG and

EPAC relative SST over the 14 predicted years. The

other forecast metrics for both periods are shown in the

supplementary information (Tables S3 and S4) with

similar conclusions.

In Fig. 8, we illustrate the predictive performance of

all five models over the years 2001–14. The bars corre-

spond to the actual number of events in each year,

whereas each line represents the predicted mean

TABLE 4. Reduction (%) in the MSE compared to a simple Poisson distribution with constant mean. (top) Estimation over 1966–2009

and prediction over 2010–14; (bottom) estimation over 1966–2000 and prediction over 2001–14. MAE, MSEp, and MAEp are shown in

Tables S3 and S4 in the supplementary information.

2010–14 ATL RSST 1 EPAC RSST ATL RSST 1 EPAC UOHC SPG 1 EPAC RSST SPG 1 EPAC UOHC

TC 74.3 60.4 78.1 50.6

LTC 76.9 56.1 88.2 53.8

HR 44.9 30.4 65.2 37.2

MHR 21.9 8.3 37.1 13.9

2001–14 ATL RSST 1 EPAC RSST ATL RSST 1 EPAC UOHC SPG 1 EPAC RSST SPG 1 EPAC UOHC

TC 52.1 31.8 58.9 27.9

LTC 56.4 34.7 72.8 35.6

HR 41.7 29.1 55.9 33.5

MHR 34.1 13.1 39.9 14.6
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provided by each of the four pairs of predictors. The

figure shows that all four pairs of predictors appear to

capture the decreasing pattern in 2001–04, the sudden

increase in 2005–06, the drop in 2010, and the in-

creasing trend in 2011–14. Note that these models

would have predicted a very active season for 2014

(provided the SST had been accurately forecasted). As

shown numerically in Table 4, the pair formed by SPG

and EPAC relative SST (green line) provides the

smallest forecast error. The exercise also illustrates

why a constant mean assumption would likely fail in

this situation.

It is important to note that according to Gourieroux

et al. (1984), the estimation of the expected annual

number of events lk is robust to model misspecification.

This therefore indicates that the adequacy of the pre-

dicted means we calculated relies not on the Pois-

sonian assumption but rather on the choice of the

predictors.

Having a robust predicted mean is surely a desirable

feature of a model, but as shown in Fig. 8, predicting

interannual variability is also a very important feature.

Figure 8 shows that the pairs of covariates perform very

well in predicting the interannual variability in the

number of TCs, LTCs, and hurricanes. The quality of the

in-sample fit we obtained in section 5 and the robustness

of the results to the various techniques both provided an

important hint that these models would also do well out

of sample.

As for major hurricanes, the predicted mean seems to

be somewhat adequate, but the large interannual vari-

ability explains why the reductions in forecast metrics

are much smaller. This further validates that we indeed

found important covariates, but as both the in-sample fit

and this exercise confirm, there is arguably something

missing from the explanation of the interannual vari-

ability of major hurricanes.

In the presence of model uncertainty, as is the case

with the choice of an appropriate pair of predictors in

the EPAC, it is good practice to average the predicted

mean over all four models. Model averaging is a well-

known technique to help diminish model risk and im-

prove predictions (Krishnamurti et al. 1999; Hastie et al.

2009). Figure 9 shows the evolution of the averaged

predictions over the period 2001–14, in addition to the

2.5%, 25%, 75%, and 97.5% quantiles of a Poisson

distribution with a mean given by this average. Actual

observations of TCs, LTCs, and hurricanes fall most of

the timewithin the 50%and 95%quantiles, but intervals

tend to be very wide. As for major hurricanes, the year

2011 could be considered exceptional on the basis of the

Poisson assumption; however, as previously discussed,

FIG. 8. Out-of-sample seasonal hindcasts for the 2001–14 period. Blue: ATLRSST1EPACRSST. Red: ATLRSST

1 EPAC UOHC. Green: SPG 1 EPAC RSST. Magenta: SPG 1 EPAC UOHC.

15 DECEMBER 2015 CARON ET AL . 9691



the predictors fail to fully explain the interannual

variability.

Overall, the forecast exercise shows that once the

mean seasonal (JAS) temperature over the SPG and the

EPAC regions have been predicted for a given year, it is

then possible to determine with reasonable precision the

level of TC activity in the EPAC basin for that same

year. As shown in Figs. 8 and 9, these variables clearly

help explain the anomalously high level of activity ob-

served in 2014.

7. Concluding remarks

In this article, we have used Poisson regressions to

compare the influence of different climate factors on

modulating EPAC tropical cyclone activity over the

recent past and to identify key factors that should be

taken into consideration in a seasonal hurricane forecast

for this particular region. The results confirm the im-

portance ofAtlantic large-scale conditions onEPACTC

variability and corroborate previous results suggesting

that this influence occurs mainly through modulation of

vertical wind shear over the EPAC basin. The Atlantic

and EPAC basins thus appear as mirror images of each

other in various ways; not only do the TCs anticorrelate

owing to the opposite impact of many of the same

influences, but also, wherein the Atlantic decadal

variability is driven by changes in thermodynamic con-

ditions (Emanuel et al. 2013), the EPAC decadal vari-

ability is driven by changes in dynamical conditions

(resulting from the changes in Atlantic thermodynamic

conditions).

Furthermore, using various model selection algo-

rithms, we demonstrated that a reliable model of

EPAC TC activity can be constructed using one pre-

dictor to account for the North Atlantic influence and

another predictor to account for the conditions in the

Pacific, with the best-performing model being the one

that includes northern Atlantic SPG temperature and

eastern Pacific RSST. This simple statistical model

could even have anticipated the high level of activity

of the 2014 hurricane season, provided the SST

anomalies over these last two regions had been accu-

rately forecasted. Interestingly, while SST forecasts in

the Pacific region run into the ENSO predictability

barrier, the northern North Atlantic is a region where

initialized global climate models show a significant

level of skill at predicting SSTs, even at the multi-

annual level (Doblas-Reyes et al. 2013; Kirtman et al.

2013; García-Serrano et al. 2015). This suggests that

skillful predictions of TC activity in the EPAC, as in

the Atlantic basin (Smith et al. 2010; Caron et al.

2014), might indeed be possible. In fact, much of

the skill found in multiannual forecasts of Atlantic

TC activity is derived from accurate predictions

of SPG temperatures (Dunstone et al. 2011; Caron

et al. 2015b).
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