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ABSTRACT

Prognostic Modeling in the Presence of Competing Risks: an application to Cardiovascular

and Cancer Mortality in Breast Cancer Survivors

Nicole M. Leoce

Currently, there are an estimated 2.8 million breast cancer survivors in the United States.

Due to modern screening practices and raised awareness, the majority of these cases will be

diagnosed in the early stages of disease where highly effective treatment options are available,

leading a large proportion of these patients to fail from causes other than breast cancer. The

primary cause of death in the United States today is cardiovascular disease, which can be

delayed or prevented with interventions such as lifestyle modifications or medications. In

order to identify individuals who may be at high risk for a cardiovascular event or cardiovas-

cular mortality, a number of prognostic models have been developed. The majority of these

models were developed on populations free of comorbid conditions, utilizing statistical meth-

ods that did not account for the competing risks of death from other causes, therefore it is

unclear whether they will be generalizable to a cancer population remaining at an increased

risk of death from cancer and other causes.

Consequently, the purpose of this work is multi-fold. We will first summarize the major

statistical methods available for analyzing competing risk data and include a simulation study

comparing them. This will be used to inform the interpretation of the real data analysis,

which will be conducted on a large, contemporary cohort of breast cancer survivors. For

these women, we will categorize the major causes of death, hypothesizing that it will include

cardiovascular failure. Next, we will evaluate the existing cardiovascular disease risk models

in our population of cancer survivors, and then propose a new model to simultaneously

predict a survivor’s risk of death due to her breast cancer or due to cardiovascular disease,

while accounting for additional competing causes of death. Lastly, model predicted outcomes

will be calculated for the cohort, and evaluation methods will be applied to determine the

clinical utility of such a model.
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Chapter 1

Introduction

Currently, there are an estimated 2.8 million breast cancer survivors in the United States

[ACS, 2014]. Under modern screening practices, the majority of breast cancer cases are

caught in the early stages, where effective, nearly curative, treatment therapies may exist.

Subsequently, a large proportion of breast cancer survivors will ultimately fail from some-

thing other than breast cancer. At present, cardiovascular disease (CVD) is the leading

cause of mortality in the United States, including for early stage breast cancer survivors

[Singla et al., 2012]. While focusing on their risk of cancer recurrence, it is possible that

many breast cancer survivors are underestimating their risk of cardiovascular disease and

cardiovascular mortality[Ganz, 2009]. Evidence has also shown that several of the standard

breast cancer treatment regimens are associated with additional cardio-toxic side effects

[Gagliardi et al., 1998, Nichols et al., 2013, Azim Jr et al., 2011], and whether they may con-

tribute to an increased risk of cardiovascular events, has not been well studied.

Given the expected long term survival, and possible increase in risk of cardiovascular

events due to cancer treatments, primary care physicians and oncologists should be aware

of the need to counsel breast cancer survivors for increased CVD risk. Currently, there are

several CVD risk prediction models that have been developed for the general population

that are used in clinical practice [Wilson et al., 1998, Adult Treatment Panel (ATP), 2001,
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Ridker et al., 2007, Conroy et al., 2003], however, a breast cancer survivor-specific model

may more accurately predict a survivor’s risk by combining known CVD risk factors with

breast cancer disease and treatment information, while also accounting for the competing

risk of cancer death.

While the literature describing cardiovascular disease and mortality following breast can-

cer treatment is limited, there have been a handful of studies that have examined these

outcomes in this patient population. In 2004, Schairer et al. [Schairer et al., 2004] were

among the first to examine cause of death for breast cancer patients using SEER data from

1973-2000. In a sample of over 430,000 women, they found that probability of death from

breast cancer versus other causes varied substantially according to stage, tumor size, ER

status, and age at diagnosis in both white and black patients. Greater probability of breast

cancer death was associated with higher stage disease, ER negative tumors, and African

American race. Other major causes of death included cardiovascular disease (33%), other

cancers (20%), circulatory disease (11%), respiratory diseases (9%), and other diseases (26%,

excludes aforementioned disease categories). While the primary focus of this study was not

to examine cardiovascular disease mortality, it was one of the earliest ones to demonstrate

that the leading cause of death for breast cancer patients, especially those diagnosed with

localized disease, may in fact be cardiovascular disease.

In 2011, two additional studies were published using SEER data [Patnaik et al., 2011] .

Patnaik et al. used the SEER-Medicare linked database data for all breast cancer diagnoses

between 1992 and 2000, examining causes of death and comorbid conditions related to cause

of death. In a study of 63,566 women with a median follow-up of 105 months, 47% were still

alive at the time of analysis, 15% were deceased due to breast cancer and 36% due to other

causes. While the primary focus of the study was to determine how comorbid conditions

influence cause of death, they also found that cardiovascular disease was the primary cause

of death in the study population, with 15.9% (95% CI 15.6% to 16.2%), failing from the

cause. The study was not, however, limited to early stage disease, for which the rates of
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death from breast cancer are expected to be even lower. The authors also showed that within

each cancer stage, as age increased, women were more likely to die of cardiovascular disease.

Schonberg et al. [Schonberg et al., 2011] used SEER-Medicare linked data, matching

66,039 breast cancer cases (including DCIS) with non-cancer controls in an effort to see how

a breast cancer diagnosis impacts overall survival. The data showed that women diagnosed

with DCIS or stage I cancer had slightly lower overall mortality than the controls, however,

cardiovascular disease was the most common cause of death, as well as for women ages ≥ 80

years with stage II disease. They also found that women with DCIS or stage I disease had

no differences in 10-year survival from non-cancer controls, but those with stage II disease

or higher had worse overall survival than their matched controls.

Bardia et al. [Bardia et al., 2012] used data from the ELPH trial, whose primary goal

was to look at the effect of 2 years of aromatase inhibitors on surrogate markers of response,

to compare the 10 year predicted risk of breast cancer recurrence and 10 year predicted

risk of cardiovascular disease in 415 postmenopausal, HR+, non-metastatic breast cancer

survivors. They prospectively collected data on age, family history of heart disease, smok-

ing, Body Mass Index (BMI), diabetes status, systolic blood pressure and whether on anti-

hypertensive medications, HDL cholesterol, and total cholesterol, to sufficiently calculate a

modified Framingham risk score for cardiovascular disease. A breast cancer recurrence risk

score was calculated using Adjuvant! Online. The endpoint of interest was an indicator

variable of whether a patient had a greater predicted risk of a CVD event than breast cancer

recurrence at 10 years.

The results showed that 38% of the study had a low (<10%) 10 year risk of CVD, 50% had

a moderate (10-25%) risk, and only 12% were considered high risk (>25%). In comparing

the model based risks of CVD and breast cancer recurrence, 43% of women had a 10-year

predicted risk of a CVD event equivalent to their risk of a breast cancer recurrence, and

37% had a predicted risk of a CVD event higher than the risk of a breast cancer recurrence.

Specifically, women with stage I disease (67.5% of cohort), tumors less than 2 cm, grade 1

3



or 2 disease, negative lymph nodes, or heart age over 65 years were more likely to have a

higher 10 year predicted risk of CVD than cancer recurrence.

A limitation of the study was that the endpoints were based on model-predicted outcomes,

rather than prospectively collected follow-up information. Additionally, CVD risk estimates

were based on a tool that was developed for use in the general population, and does not

take into account any increased risk associated from the use of breast cancer treatments, or

modifications of traditional risk factors from their use. Thus, it may have overestimated the

10-year cardiovascular disease risk. No model evaluation was performed, possibly due to the

fact that cardiovascular event data was not collected, or due to low numbers of events.

In 2012, Singla et al.[Singla et al., 2012] re-capitulated the above information in an edi-

torial piece. This piece also highlighted the potential cardio-toxic effects related to several

breast cancer therapies, in order to raise awareness of the need to counsel breast cancer

survivors, particularly those receiving several therapies, for their risk cardiovascular disease,

in addition to their potential cancer recurrence.

In summary, while the mortality due to cardiovascular disease among breast cancer sur-

vivors has been documented, the literature is somewhat limited and data sources are largely

from a claims-based population. There has been only one study [Bardia et al., 2012], that

has calculated a cardiovascular disease (Framingham) risk score in a cancer population, but

it was not able to validate the risk score with actual follow-up data, therefore its clinical

utility remains unknown. In addition, there have been no studies to examine whether can-

cer characteristics or treatments may modify the predicted risk of cardiovascular disease and

cardiovascular related mortality in this population. Development of a breast cancer survivor-

specific cardiovascular disease risk model may aid oncologists and primary care physicians

in counseling survivors who would especially benefit from increased awareness of their CVD

risk and possible risk-lowering interventions.

In order to develop such a model, one must first acknowledge that the risk of death

from competing causes remains high in this patient population. As the current aim is to
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create such a model on a cohort of breast cancer survivors, I first review the statistical

methods available for competing risk modeling, in Chapter 2. In Chapter 3, I summarize the

published risk models for CVD, as well as the current models for predicting breast cancer

recurrence and mortality. Focus will be placed on the statistical methodology used, handling

of competing events, inclusion of covariates, and prediction for a new patient. Chapter 4 is

reserved for prognostic model validation and evaluation techniques, specifically in the area

of predicting disease risk.

Chapter 5 focuses on the comparison of the two most popular model choices, the cause-

specific hazards (CSH) model and the subdistribution hazards (SH) model, and review pub-

lished simulations that have evaluated the two approaches side by side. Before creating

my own simulation study to compare the two methods, as well as include newly proposed

multi-state (MS) framework [Putter, 2014], I review the available approaches for generating

data for such a simulation. Due to the inconsistency of the data generation methods used

in previous studies, the simulation is repeated for several methods of data generation, over

a range of censoring percentages.

Finally, in Chapter 6, I perform an analysis on a real data set consisting of over 20,000

women diagnosed with stage I-III breast cancer within the Kaiser Permanente Northern

California (KPNC) health care delivery system between January 1, 2000 and December 31,

2010. I first summarize the cohort’s breast cancer and cardiovascular disease risk factors

and outcomes, before evaluating the performance of the current cardiovascular risk models

in this population. Next, I develop a new model that can be used to predict a patient’s

risk of failure from cardiovascular disease versus her breast cancer, and evaluate the model

performance. Conclusions and limitations are summarized in Chapter 7.
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Chapter 2

Statistical Methods for Modeling

Disease Risk

A disease prediction model is defined in a general sense as a mathematical equation used

to quantify the risk that an individual will experience a particular disease outcome in a

specified time-period. Such models are useful tools for clinicians and patients and have a

variety of purposes, including counseling patients on general disease risk, screening for high

risk patients who could benefit from further testing, surveillance, or interventions, or even to

select patients for randomized controlled trials. After disease onset, they can also be useful

for patient prognosis or survival estimation.

The choice of statistical model depends on how risk is to be described and the handling of

competing events. Pure risk assumes that there are no other competing events, and models

the probability of an event occurring in a specified time frame, conditioning on the person

being alive at the beginning of the interval, in the presence of known risk factors. Absolute

risk, models the probability that an event will occur in a certain time interval, given that

the person is alive and event free at the start of the interval, with certain risk factors, in the
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presence of competing risks. This is also called the “crude risk” or “cumulative incidence”.

When the probability of competing events is rare, the pure and absolute risks are nearly

equal. Models can be further complicated in the presence of right censoring, which may be

due to death, drop-out, or loss to follow-up.

Popular methods for disease-specific risk models include, but are not limited to: Logis-

tic regression models, Relative Risk Models, Parametric Accelerated Failure Time (AFT)

Model (Weibull Regression or modification), Cox Proportional Hazards Models, and Semi-

Parametric AFT Models. These models can include censored data, but do not specifically

model competing events. Some models that can account for competing outcomes include

the Cause Specific Hazards (CSH) Model, the Fine and Gray Subdistribution Hazards (SH)

model, and a multi-state (MS) model.

2.1 Concepts and Notation

First I introduce some concepts and notation that are essential for the discussion of time

inherent risk prediction modeling. Note that the terms “failure” and “event” may be used

interchangeably in the proceeding sections.

Let T be a continuous variable representing survival (or failure) time, which may be

observed or censored.

Let X be a vector of covariates.

To handle censoring, Ti is a bivariate vector (Yi, δi), where

Yi = min(Ti, Ci)

and,

δi =


1 if Yi = Ti, (event observed)

0 if Yi = Ci , (event censored)
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2.1.1 Cumulative Distribution Function

The cumulative distribution function, or cdf, is a function that tells us the probability

that a variable will be less than or equal to a value t. In survival analysis, it can be thought

of as the probability of an event by time t, and is sometimes referred to as the cumulative

incidence. In its simplest form, ignoring covariates, it can be denoted:

F (t) = Pr{T ≤ t}

2.1.2 Survivor Function

In survival analysis, it is more useful to talk about the survivor function, which is the

probability of surviving beyond a time, t, is the complement of the cumulative distribution

function, and is usually denoted:

S(t) = Pr{T > t} = 1− F (t)

Since T cannot be negative, S(0) = 1. S is also non-increasing, meaning that as time

increases, the probability of survival cannot increase.

2.1.3 Probability Density Function

The probability density function, or pdf, is the derivative of the cdf, and is a way of

describing the distribution of a variable. In survival analysis, the pdf, cdf, and survivor

function are related as follows:

f(t) =
dF (t)

dt
= −dS(t)

dt
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2.1.4 Hazard Function

In survival data, it is more common to describe the distribution using the hazard function.

The hazard rate is defined as the instantaneous risk of failure, or event rate, at time t,

conditioning on having survived until t, which makes it a conditional density, and without

covariates, is usually denoted:

h(t) = lim
dt→0

Pr(t ≤ T ≤ t+ dt|T ≥ t)

dt

It must be non-negative. It is related to the survivor function and cumulative density

function by:

h(t) =
f(t)

S(t)
=

f(t)

1− F (t)
= − d

dt
logS(t)

such that additionally,

S(t) = exp
[
−
∫ t

0

h(u)du
]

= exp[−H(t)]

where

H(t) =

∫ t

0

h(u)du

is the cumulative hazard function (which is a measure of risk, not a probability)

2.2 Relative Risk Model

Ignoring the time aspect, if we wish to model the probability of disease Pr(Y = 1), we

can treat the outcome as a binary variable. While the logistic model has been the most

commonly implemented model for binary data, it has been argued that relative risks can

provide a more interpretable description of associations between disease prevalence and risk

factors, than an odds ratio [Lumley et al., 2006]. While in the case of rare events, the odds

ratio approximates the relative risk, that does not justify its use for studies of more common
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disease outcomes. One of the historical reasons for preference of logistic regression may have

been the result of lack of computing capabilities, but recently the relative risk model has

been implemented in standard software packages such as SAS, SPSS, Stata, and R.

The relative risk model is a generalized linear model of the form:

log(Pr[Y = 1|X]) = log(µ) = Xβ = β0 + β1x1 + . . .+ βpxp,

with a log link and V (µ) = µ(1− µ).

Its estimation can be done via maximum likelihood with some additional constraints such

that the predicted value remains ≤ 1. There has been some debate over which optimization

method to use, and it has been argued that when the MLE sits on the boundary of the

parameter space, nonlinear least squares is a better option. Other methods of tricking the

software by using a Poisson working model or Cox regression have also been applied.

Some important limitations of the Relative Risk model for prediction are that it does

not include information about time to an event, but rather a binary outcome of whether

the disease has occurred or not, presumably in a fixed interval with no complications of

censoring. For this reason, it is important that it only be used for categorizing associations

with disease and not for individual risk predictions.

2.3 Time to Event Models

2.3.1 Parametric Models

Parametric Accelerated Failure Time (AFT) Model

Often referred to as the AFT model [Wei, 1992], this class of models are fully parametric

models that can be used to model an individual’s survival time, Ti > 0.

If Xi = (Xi1, . . . , Xik) is a vector of covariates, then the model is:
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log(Ti) = β0 + β1xi1 + β2xi2 + . . .+ βpxip + σεi,

where εi is a random error term, and β0, . . . , βp and σ are parameters to be estimated. This

models a linear relationship between the log of time and the covariates.

Exponentiating both sides gives an alternate way of expressing the model:

Ti = exp[β0 + β1xi1 + β2xi2 + . . .+ βpxip + σεi],

though it is preferable to use the log transformation to ensure that the predicted values of

T remain positive.

The model can also be written in terms of the hazard:

h(t|X) = h0(t exp(Xβ)) exp(Xβ)

Table 2.1: Choice of error distribution and corresponding distribution of time, AFT Model

Distribution of ε Distribution of T

Extreme value (2 parameter) Weibull

Extreme value (1 parameter) Exponential (constant hazard)

Log-gamma Gamma

Logistic Log-logistic

Normal Log-normal

While it is generally estimated by maximum likelihood, when there is no censoring, the

AFT model can also be estimated by least squares. Similarly, if the εi are assumed to be

normally distributed, the OLS estimates will also be the ML estimates (called the log-normal

model). In the presence of non-normally distributed εi, or censoring, maximum likelihood

estimation is used. Generally, the choice of error distribution (εi) has an associated T
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distribution, which gives the model its name. Some commonly used distribution choices and

corresponding models are listed in table 2.1.

In analysis of human failure time data, the Weibull model has been the most popular

AFT model. So much so, in fact, that if the distribution is not specified in the literature, a

Weibull model is assumed for an AFT model. The appeal of using a Weibull distribution (of

which the exponential distribution is a special case with shape parameter equal to 1) is that

it is the only family of distributions that is closed under both the AFT and proportional

hazards models. This means that it can be estimated either in terms of the survival times or

the hazard, and get equivalent results. In this way, parameters can be interpreted in terms

of either their effect on survival time, or on the hazard.

The effect of explanatory variables in the original time scale (survival time) is to change

the time scale by a factor γ = exp[Xβ] which will either accelerate (or degrade) the failure

time, depending on the sign of Xβ. A γ greater than one will increase the survival time,

while a factor less than one is harmful on survival.

A major disadvantage is the parametric assumption on the survival time (regression

diagnostics or tests for deviations from Weibull can suggest whether assumption is violated).

The advantages are that it relaxes the assumption of proportional hazards, the formula for

predicted probabilities is simple, and when the fit is good, they can provide more precise

estimates. Because it directly models the effect of covariates on survival time, interpretation

of effects is considered more straightforward [Orbe et al., 2002]. This method was used in

the 1991 Framingham Model for cardiovascular disease. It is available in most standard

software packages (e.g. Survreg in R, Stata, Proc lifereg in SAS).

Parametric Proportional Hazards Model

Similar to a Cox model, except the baseline hazard is specified, rather than estimated

from the data. The rationale is that if an adequately specified baseline hazard could be found,

it would improve estimation efficiency and enable full likelihood estimation to be done. The
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Weibull distribution has been a popular choice. This method also allows for time-varying

hazard ratios. [Royston and Mahesh, 2002]. Interpretation of coefficients is the same as in

the Cox model. This is used in many of the Breast Cancer prediction models, where the

baseline hazard is calculated from population incidence data, but coefficient estimation is

done on the observed cohort.

2.3.2 Semi-Parametric Models

Semi-Parametric AFT Model

The semi-parametric AFT model also linearly relates the covariates to the log of the

failure time:

log(Ti) = β1xi1 + β2xi2 + . . .+ βpxip + εi

However, it differs from the fully parametric AFT model in that it does not specify a

distribution for the error term, εi. It is also assumed that censoring is independent of failure

time. Note that an intercept term is not calculated in the presence of censoring. Estimation

can be done using either a rank-based approach [Jin et al., 2003] or an extension of the least

squares approach [Jin et al., 2006].

The semiparametric AFT model provides an attractive alternative because it directly

relates the effect of explanatory variables on the survival time allowing an easier interpre-

tation of the results. However, its use has been limited due to its computational difficul-

ties, especially in presence of censoring, and further analytical and graphical methods are

needed for model checking and outlier detection. Presently, an R package has been written

[Huang and Jin, 2007] that corresponds to the method of Jin, 2006 [Jin et al., 2006]. This

method can also accommodate multiple failure times and clustered data.
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Cox Proportional Hazards Model

In 1972, (Sir) David Cox published his paper “Regression Models and Life Tables”, in

which he details what has come to be known as the Cox Proportional Hazards Model or Cox

Regression [Cox, 1972]. Two major contributions from this paper include the concept of pro-

portional hazards (though the model can also be extended to accommodate non-proportional

hazards), and a new estimation method known as partial likelihood.

The model takes the following form:

hi(t) = h0(t) exp(β1xi1 + β2xi2 + . . .+ βpxip),

where h0(t) is the baseline hazard (unspecified, non-negative, and constant over time), and

(xi1, xi2, . . . , xik) is a vector of covariates. It can be alternatively written in integrated form

as:

H(t) =

(∫ t

0

h0(u)du

)
exp (Xβ) = H0(t) exp (Xβ)

Estimation is done by partial likelihoods, rather than the full likelihood, because when

the likelihood function is factored into 2 parts, one depending on h0(t) and the β vector, and

the other only depending on the β vector, partial likelihoods only maximizes the portion

depending on β alone. Partial likelihood is valid when there are no ties in event time. In

the presence of ties, Breslow or Efron approximations to the partial log-likelihood can be

used. This is a product, over the event times, of a quotient that compares the hazard of the

individual with the event at tj to the hazard of all the individuals at risk at tj

L(β) =
∏

Yiuncensored

expXiβ∑
Yj≥Yi exp(Xjβ)

Such that the log of the partial likelihood is:

l(β) = logL(β) =
∑

Yiuncensored

{Xiβ − log
∑
Yj≥Yi

exp(Xjβ)}

14



Coefficients can be interpreted as their effect on the hazard function, hi(t). The effect

of the covariate is multiplicative on the hazard, meaning, values greater than 1 indicate an

increase in the hazard rate, while those between 0 and 1 indicate a decrease in the hazard

rate.

Some of its advantages over the parametric models are that it does not make any assump-

tions on the distribution of survival times, can accommodate time dependent covariates, can

allow for stratified analyses, can allow for discrete or continuous measures of time, and can

accommodate tied data. The interpretation of covariate effects is a bit less intuitive since

it is on the hazard of an event, rather than directly on survival time. Since it has be-

come standard in most software packages, predictions can also be made easily. This method

has been used extensively in disease prediction modeling, one such example being the 1998

Framingham model for cardiovascular disease.

A disadvantage of this method is that it makes the assumption of proportional hazards,

meaning, that the effect of each covariate is the same at any time-point. If the effect of a vari-

able is known to vary with time, then it would violate the proportional hazards assumption.

This can be checked using residuals (Martingale or Schoenfeld), or adding a time-dependent

covariate to the model [Kalbfleisch and Prentice, 2002]. If the proportional hazards assump-

tion is violated, then a stratified analysis, or inclusion of a time-dependent variable should

satisfy the violation. Interpretation of the time-dependent variable would also be altered.

A second disadvantage is that in the presence of competing terminal events, the compet-

ing event would be treated as a censored observation, which has been shown to lead to

over-estimation of a predicted risk [Pepe and Mori, 1993, Dignam and Kocherginsky, 2008].

Conclusion

The above models all focus on the analysis of a single endpoint, and do not take into

account that there may be other outcomes whose occurrence would preclude the occur-

rence of the event of interest, which is known as a “competing event”. It has been shown
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[Dignam and Kocherginsky, 2008] that when there is a nontrivial percentage of competing

risks, failure to account for them could lead to overestimation of the results. Therefore, when

competing risks are present, every effort should be made to include them in the analysis.

2.4 Models for Competing Risks

Very often in studies of human disease processes, there are multiple possible endpoints or

events. Under certain scenarios it is likely that a patient may experience more than one event,

for example, a disease recurrence, hospitalization for treatment complication, or additional

unrelated illness. The fact that the subject could experience any number of these events,

in any order, means that they are not necessarily competing events. In an analysis where a

subject may die from a different event prior to experiencing the outcome of interest, such as

a cardiovascular death before a cancer recurrence, the event that would preclude the event

of interest is considered the “competing event”. This specific type of competing event is also

called a terminal event, one that would make the patient no longer at risk for experiencing

any further outcomes. Analyses which involve a terminal event and non-terminal event are

also referred to as semi-competing risks.

2.4.1 Definitions and notation

Competing risk framework requires some additional definitions and notations beyond

traditional survival, or time-to-event, analyses.

Cause-specific density

A cause-specific density represents the unconditional probability that a subject fails at

time t of cause j, in the presence of covariates x, and can be written

fj(t, x) = lim
dt→0

Pr(t ≤ T ≤ t+ dt, J = j|x)

dt
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The overall density of deaths at time t is the summation of the j individual causes of

death at time t:

f(t, x) =
m∑
j=1

fj(t, x)

Cause-specific hazards

A cause-specific hazard rate represents the instantaneous risk of dying at time t, of cause

j, conditioning on having survived to time t, and in the presence of covariates, x, is denoted:

hj(t, x) = lim
dt→0

Pr(t ≤ T ≤ t+ dt, J = j|T ≥ t, x)

dt

Similarly, the overall hazard , h(t), is the summation of the m cause-specific hazards, up

to time t:

h(t, x) =
m∑
j=1

hj(t, x)

The cumulative cause-specific hazard, Hj(t) equals the cause-specific hazard, hj summed

from the start of observation time, until time t. Then, the cumulative (overall) hazard, is

the sum of all mutually exclusive hazards, such that:

H(t) =
m∑
j=1

Hj(t)

and has corresponding survivor function S(t), which is the probability of remaining event

free past time t, and S(t) = exp[−H(t)].
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Cumulative Incidence Function

The cumulative incidence is defined as the probability of failing from cause, j, by a

specified time, t, and is denoted:

Fj(t) = Pr(T ≤ t, J = j) =

∫ t

0

fj(u)du =

∫ t

0

S(u)hj(u)du

for t > 0.

It is the integration up to t of the individual cause-specific densities. It involves the

probability of having not failed from some other event up to time t, denoted S(u), and the

cause-specific hazard for the event of interest, hj(u). It is also known as the sub-distribution,

marginal probability function, crude incidence, and absolute cause-specific risk.

2.4.2 Cause Specific Hazards Model

In the presence of covariates, the standard method for analyzing competing events data

would be to model the cause-specific hazard functions of the different failures under a pro-

portional hazards assumption. This is also sometimes referred to as a stratified Cox model.

The model takes the form:

hj(t;X) = h0j(t) exp(Xβj)

Here, the cause-specific hazard is modeled as a function of a baseline hazard, h0j, and a

set of covariates, X. When failure type j is modeled, the other failure types are regarded as

censored at the time of failure and standard Cox methods are used. This method assumes

that causes of failure are not interrelated, an assumption that is difficult to verify statisti-

cally, and requires background knowledge on the subject matter from experts in the field

[Kalbfleisch and Prentice, 2002].

A stratified accelerated failure time model can also be used.
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hj(t;X) = h0j

{∫ t

0

exp [Xβj]du

}
exp [Xβj]

If it is assumed that the hazards of the various causes are proportional, then a propor-

tional risk model can also be used:

hj(t;X) = h0j(t) exp [γj +Xβj]

This assumption can be checked graphically by plotting log h0j(t), versus t.

Under this model, the covariate effects on the cause-specific hazard of the event of interest

cannot be directly interpreted in terms of the cumulative incidence function, but are rather

only on the hazard of the failure type being modeled. This may be particularly useful when

studying the effect of a treatment that is specific to the outcome of interest, but not the

other failures, such as a chemotherapy agent that may improve survival from cancer but

should not have an effect on deaths from other causes.

Advantages of this model are that it can be fit on any standard software that can fit a

Cox model, by stratifying on cause of failure or event type. A disadvantage is that it does

not have a direct interpretation in terms of survival probabilities for each event type.

2.4.3 Fine and Gray Model of the Subdistribution Hazard

In the presence of covariates, the cumulative incidence function (probability that an event

of type j has occurred by time t) can be written:

Fj(t;X) =

∫ t

0

fj(u;X)du

Using the relationship between the survival function, hazard function , and the cumulative

incidence function

h(t) =
f(t)

S(t)
=

f(t)

1− F (t)
,
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the subdistribution hazard (hazard of the cumulative incidence) for cause j, thought of as

the hazard for an individual who either fails from cause j or does not, can be written:

h∗j(t;X) =
fj(t)

1− Fj(t)

By mimicking a proportional hazards model, the Fine and Gray model is specified as:

h∗j(t;X) = h∗0j(t) exp[Xβj],

where h∗j0(t) is the baseline subdistribution hazard for failures of type j, and exp [Xβj] is

the relative risk associated with the covariates.

Estimation follows the partial likelihood approach used in a standard Cox model since a

proportional hazards assumption is imposed on the subdistribution hazards.

L(β) =
n∏
i=1

( exp (Xiβ)∑
jεRi

wijexp(Xjβ)

)δi=1

The weights, wij, are used when censoring occurs. Patients who do not experience the event

of interest before t are given a weight of 1, whereas patients who experience competing events

before t are given a weight:

wij =
G̃(Ti)

G̃(min(Tj, Ti))

where G̃ is the Kaplan-Meier estimate of the survival function of the censoring distribution,

which is the cumulative probability that a patient is still being followed at time t.

This looks very similar to the Cox proportional hazards model, except that the modified

risk set, R, includes both those who are alive and at risk for the event of interest at time

t, and also those who have failed prior to time t from some other cause, and thus have an

infinite failure time for cause j:

h∗j(t;X) = lim
dt→0

Pr(t ≤ T ≤ t+ dt and J = j|T > t or T ≤ t and J 6= j)

dt
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For patient prediction, the baseline subdistribution hazard can be obtained using a vari-

ation of Breslow’s estimator that incorporates the modified risk sets and the gradual reduc-

tion of weights for those who failed from competing causes and were retained in the risk set

[Kohl et al., 2015], estimated by

Ĥ1,0(t) =
n∑
i=1

∫ t

0

1∑
a∈R(s)

wa(s) exp(xaβ̂)
dNi(s),

where R(s) denotes the risk set defined above, wa(s) are the weights, β̂ are the coefficient

estimates from the SH model, and dNi(s) is the increment in the counting process Ni(t) =

I(ti ≤ t|j = 1), describing the status of subject i with respect to event type 1 in the interval

[t, t + dt]. (This counting process changes from 0 to 1 at the event time ti if the event type

1 occurred at that time.)

For the cause-specific hazard, the risk set decreases at each time point at which there is

a failure of another cause, while the Fine and Gray risk set continues to include those who

have failed from other causes prior to time t.

Though this may not seem to be a very intuitive way of classifying the at-risk set, for

mutually exclusive event types, those who fail from one cause are not vulnerable to fail from

another. It is also a “convenient” way to model the cumulative incidence function due to

the log-log transformation, corresponding to a proportional hazards model

log(− log(1− Fj(t, x))) = log(− log(1− Fj0(t))) +Xβj

which means that the covariate effect is to shift the transformed cumulative incidence

function up or down by an amount, such that the interpretation becomes more straight-

forward: positive coefficients indicate increases in the cumulative incidence function, and

negative coefficients indicate decreases in the CIF.

The model is semi-parametric, and when censoring is absent, or always observed (such
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as in a finite time-fixed study with complete follow-up through the end of study), can be

estimated by a partial likelihood approach, analogous to the proportional hazards model,

with the only difference being in the definition of the risk set. In the presence of right cen-

soring, an inverse probability of censoring weighting (IPCW) approach is used to construct

the score function for the partial likelihood.

It is important to note that under this method, any covariate effects on the cumulative

incidence may either be direct effects, such as strictly lowering the cumulative incidence

of that specific failure type, or indirect effects, such as the cumulative incidence of the

failure of interest is lowered due to increases in competing failure types. Currently, there

are packages in R (cmprsk) and Stata (stcrprep) to estimate the model, and SAS macros

(cuminc, cumincv, and PSHREG [Kohl et al., 2015]) to estimate the predicted cumulative

incidence function.

2.4.4 Semi-Competing Risks Model

When studies involve a terminal event that censors a non-terminal event, for example

death from any cause (terminal) and disease relapse (non-terminal), this is called semi-

competing risks data. With such data, it may not be possible to make non-parametric

inferences on the non-terminal event without imposing some additional assumptions, due

to the dependent censoring. If only the time and type of the first event are recorded, then

the data can be analyzed using traditional approaches. However, it will often be the case

that the dependence between the two events is of scientific interest, and inferences on the

non-terminal event are desired. Additionally, the joint distribution is only important (can

only be identified) in the“lower wedge” (the space where the event of interest is not censored

by the terminal event).

Several methods for this type of analysis have been examined [Fine et al., 2001,

Peng and Fine, 2007, Hsieh and Huang, 2012]. If the two events are positively correlated,

then a gamma frailty model can be used [Fine et al., 2001].
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In the presence of a discrete covariate, Hsieh et. al. [Hsieh et al., 2008] proposed a two-

stage approach in which the first stage is to specify an Archimedean copula model for the

dependence structure between the two event times. Here, separate copula models are as-

sumed for separate classes of a discrete covariate to allow for different dependence structures

between groups. It is further assumed that censoring is not related to the covariates. In the

second stage, the regression parameter is modeled in terms of the marginal distribution for

the non-terminal event using the following model:

h(t) = −X ′θ + ε,

where X is the p × 1 discrete covariate vector, θ is the p × 1 parameter vector, h(t) is a

monotonic increasing function, and ε is the error term. If the error term follows an extreme

value distribution, then the model becomes the Cox proportional hazards model. If it follows

the standard logistic distribution, then it becomes the proportional odds model. If instead,

h(t) = log(t), then it is an accelerated failure time model. Regardless of model choice,

estimating equations are proposed to test for covariate effects.

Another analytic choice is to use a time-varying effect in a Cox proportional hazards

model for the non-terminal event [Hsieh and Huang, 2012], while assuming a copula model

for the dependence structure between the two events. Under the copula model, the joint

distribution of the two events can be expressed as a function of the marginal distributions

and the association parameter through the copula function C. This makes it possible to

discuss the marginal distributions of the terminal and non-terminal events separately, as

well as their dependence.

Pr(T1 > s, T2 > t|X) = CPr(T1 > s|X), P r(T2 > t|X), α0(s, t), 0 ≤ s ≤ t

Where T1 and T2 are the non-terminal and terminal event times, respectively, C(T1, T2, α)

is the copula function, and α is the association parameter. The parameters are estimated
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using conditional likelihood

The method of [Hsieh and Huang, 2012] can be performed using nlminb in R.

One controversy over this method is whether the marginal distribution of the non-

terminal event is meaningful, such as a disease progression in the absence of death

[Kalbfleisch and Prentice, 2002]. However, there remain specific instances where this in-

formation may be of value, such as evaluating a new drug or treatment, especially on the

subset of patients that would remain alive long enough to benefit from it. Additionally,

the method presented in [Hsieh and Huang, 2012] does not include covariates, but instead

focuses on estimating the marginal distributions of the two events. To make comparisons

between the placebo and treatment groups, they use plots of the estimated survival of each

group, which may be valid in a randomized, controlled, double-blind trial, but not necessar-

ily in an observational study. Prior work by the same authors presented an analytic method

for discrete covariates only, but variance estimation was predominantly based on resampling

techniques [Hsieh et al., 2008].

2.5 Multi-State Models

Multi-state models can be considered as a generalization of competing risk models, and

can also be used to analyze the transition to an intermediate event in an illness-death process,

such as the movement to disease recurrence prior to death. These intermediate events may

provide additional information on the disease/recovery process that can aid in treatment,

and also allow for greater prognostic accuracy for patients. In this type of model, move-

ment to event states are called transitions, and can be modeled using standard statistical

software, with some extra data preparation [Putter et al., 2007, Putter, 2014]. Data need

to be entered in the counting process style, in which a period of observation (episode) is

described by a starting time, an ending time, and a reason for ending (transition or cen-

soring) [Willekens and Putter, 2014]. Specifically, for a multi-state model this means that
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Figure 2.1: Competing Risks as a multi-state formulation

each subject has as many rows as the number of transitions for which they are at risk

[de Wreede et al., 2010]. The data preparation and analysis methods discussed here can be

found in the mstate package in R.

In the multi-state setting, a competing risk model can be represented as a series of

transitions from an initial state, to a number of different endpoints, as illustrated in Figure

2.1.

A fundamental concept in multi-state models is the transition intensity or hazard rate

αgh(t), which denotes the instantaneous risk of a transition from state g into state h at time

t. It is defined as:

αgh(t) = lim
dt→0

Pr(X(t+ dt) = h|X(t) = g)

dt

These intensities can be gathered into an S × S matrix, A(t), with diagonal elements

Agg(t) =
∑

h6=g Agh(t). Individuals who have no transition (do not experience any of the

endpoints) remain in state g.

Then transition probability matrix, P (s, t) is the quantity of interest. It has elements

Pgh(s, t) = P (X(t) = h|X(s) = g), which denote the transition probability from state g to

state h in the time interval (s, t]. Specifically for the case of competing risks models, the

cumulative incidence function expresses the probability of failing of cause j before time t

and is given by P1j(0, t). Classical survival models that have only a single transition, from
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being alive to death, can be written as a two-state model S(t) = 1− P12(0, t) = P11(0, t)

The effect of covariates can be modeled using the semi-parametric Cox proportional

hazards model, treating each transition as its own stratum:

αgh(t|X) = αgh,0(t) exp(βTghX),

where αgh,0(t) is the baseline transition hazard from g to h, and the vector βgh represents the

covariate effects on transition gh. This is equivalent to performing separate Cox regressions

for each of the transitions g → h. In the above model, the covariates are fixed at baseline

and allowed to have a different effect on each transition. However, it is also possible to

specify time-varying covariates, as well as forcing them to have an identical effect on each

transition, if biologically meaningful. It is also possible to specify that the transition hazards

remain proportional. Using subject-specific transition rates and the Cox model, the package

also gives estimates of subject-specific transition probabilities and the associated variance-

covariance matrices, based on the Aalen-Johansen estimator.

In recent years the number of packages for the estimation of multistate models has

increased rapidly, with R being the language of choice. The use of multi-state mod-

els for modeling competing risk data has also been detailed by Beyersmann and Al-

lignol [Beyersmann et al., 2012] (package MVNA), Jackson [Jackson et al., 2003] (package

msm), and Ferguson [Ferguson et al., 2012](package MsSurv), though methods of data en-

try, model specification, and estimation differ between authors. None of these packages

has been extended to cover the Fine and Gray model in a multi-state setting since stan-

dard errors of the estimated hazards and cumulative incidence functions are not available

[de Wreede et al., 2010].
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Discussion

In addition to the aforementioned methods for handling competing events, there have

been other methods proposed by Klein and Andersen [Klein and Andersen, 2005], Zhang

and Scheike [Zhang et al., 2008], Gerds and Scheike [Gerds et al., 2012], and Ishwaran and

Gerds[Ishwaran et al., 2014] that examine additive hazards, pseudovalues, binomial regres-

sion, or random forests. Quantile regression [Portnoy, 2003] and transformation models

[Cheng et al., 1995, Chen et al., 2002] including those with a cure fraction [Zeng et al., 2006]

are other examples of methods that have also been used to analyze right-censored survival

data, but have not been adapted to the competing risk setting. Due to the lack of readily

available software to implement some of these more complex methods, combined with the

user-friendly interpretation of the subdistribution hazards model and cause specific hazards,

in a way that is analogous to the Cox PH model, they have remained the most widely applied

models in the field of competing event analysis to date.
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Chapter 3

Established Disease Risk Models

3.1 Models for Predicting Risk of Cardiovascular Dis-

ease and Mortality

Focusing on externally validated, widely used risk models applicable to females, there

are several major cardiovascular disease (CVD) risk models used in practice in the U.S.

today: the Framingham Risk Score (FRS) [D’Agostino Sr et al., 2001] , FRS Adult Treat-

ment Panel III (ATP-III) for hard CHD [Wilson et al., 1998], the Systematic Coronary Risk

Evaluation (SCORE) model for CVD mortality [Conroy et al., 2003], and the Reynolds risk

score [Ridker et al., 2007]. Due to the age distribution of our population of breast can-

cer survivors, it may also be useful to investigate models that were developed on an older

population, or one with a prior history of CVD, such as the SCORE OP (older persons)

[Cooney et al., 2015], the Coronary Risk in Elderly (CORE) model [Koller et al., 2012], and

the Framingham risk score for those with a history of a CVD event [D’Agostino et al., 2000].

This is not a comprehensive list of available cardiovascular disease risk models, but rather

a summary of models that may be most useful for our patient age and geographical distri-

bution, as well as containing covariates that can easily be obtained from patient electronical

medical records. The use of genetic assays or complex biomarkers as predictors for these
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mortality endpoints, while currently being pursued in the literature, is beyond the scope of

this work.

3.1.1 Framingham Models

Perhaps the most widely used cardiovascular disease risk model in the United States

remains the Framingham Risk Score. It was first established in the 1950s and 1960s, when

investigators from the Framingham Heart Study developed a series of equations that could be

used by clinicians to predict a person’s risk of coronary heart disease (CHD), which included

the following clinical endpoints: coronary heart disease, brain infarction (stroke), intermit-

tent claudication (atherosclerosis), and congestive heart failure (in the absence of coronary

or rheumatic heart disease ) [Gordon et al., 1973]. Risk factors examined were: age, gen-

der, systolic blood pressure (BP), serum cholesterol, cigarette smoking, glucose intolerance,

and left ventricular hypertrophy (LVH). In 1973, a handbook containing tables from these

equations was produced, followed shortly by a pocket reference card for physicians.

1976 Model

The 1976 function [Kannel et al., 1976] was based on a logistic regression model, in which

the endpoint included any occurrence of coronary heart disease, congestive heart failure,

cerebrovascular disease, or intermittent claudication. Individual models were also presented

for each type of heart disease, but use of the conglomerate endpoint was recommended for

screening for high risk individuals. The model was developed on an all-white cohort aged 37

to 75, and separate models were calculated for men and women. A person’s risk of disease

in the next 8 years is calculated based on a set of variables measured at baseline, conditional

on being free of disease at baseline. The female specific equation for the overall risk of CHD

in the next 8 years was based on 320 female cases of CHD during follow-up, and contained
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the following coefficients and covariates:

P (CHD) = [1 + exp{−(−16.46 + 0.27 ∗ Age +−0.001 ∗ Age2

+0.016 ∗ Serum cholesterol + 0.014 ∗ SBP + 0.04 ∗ smoking

+0.875 ∗ LVH + 0.682 ∗ glucose intolerance

−0.0002 ∗ cholesterol ∗ age)]−1}

Authors recommended that persons in the highest decile be considered as high-risk. No

model validation or checking techniques were presented in this paper.

1991 Model

In 1991, the Framingham investigators updated the equations with a larger, more con-

temporary data set, with baseline evaluations between 1968-1975 [Anderson et al., 1991b,

Anderson et al., 1991a]. They combined the original cohort with new offspring data, and

created models that could predict outcomes from ages 30 to 74. The study included 5,573

persons (2,983 women and 2,590 men). In addition, information was now collected on high

density lipoprotein (HDL), instead of just total serum cholesterol. Risk factors examined

were age (years), sex (female=1), SBP (average of 2 measurements, mm Hg), DBP (average

of 2 measurements, mm Hg), cholesterol (total serum cholesterol), HDL cholesterol (mg/dl),

smoking (1= current smoking or quit within past year), diabetes (treatment with insulin or

oral agents or fasting glucose of 140 mg/dl or above10), and ECGLVH.

In the updated analysis, an accelerated failure time (AFT) model (Weibull distribution)

was used to create the model, with two variations. Let T denote the time from baseline until

the first occurrence of any CHD, µ a location parameter, and σ a scale parameter for log(T ).

Then

log(T )− µ
σ

∼ extreme value distribution

implying that T follows the Weibull distribution. Then assume that µ depends on risk factors
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as:

µ = β0 + β1X1 + · · ·+ βpXp

and that

log(σ) = θ0 + θ1µ

The models were estimated using maximum likelihood in Proc NLIN in SAS, and all events

occurring in the first four years were coded as 4 years to avoid influence of early onset outliers.

Two forms were presented for the results: the actual mathematical equations, updated

to include HDL, and also a point scoring system for 5 or 10-year predictions, based on the

equations 7. The authors also note that either SBP or DBP is to be used, not both, and

recommend SBP for users without a strong preference. In order to use the model to make

predictions, several interim calculations are necessary, and will be presented for females,

using SBP. The first step is to calculate an interim value, a, that is based on the risk factors:

a = 11.1122− 0.9119 ∗ log (SBP)− 0.2767 ∗ smoking

−0.7181 ∗ log (cholesterol/HDL)− 0.5865 ∗ ECGLVH

Next, a second interim value, m, is calculated based on a, log of age, and diabetes, and

again has different values for men and women. For women the calculation is:

m = a− 5.8549 + 1.8515 ∗ [log(age/74)]2 − 0.3758 ∗ diabetes

Then, µ and σ are computed (for women) as:

µ = 4.4181 +m

σ = exp(−0.3155− 0.2784 ∗m)
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Lastly, select a prediction time frame between 4 and 12 year, denoted t and compute:

u =
log(t)− µ

σ

and then the predicted probability for t is:

p = 1− exp(−eu)

To simplify predictions, a worksheet was also provided, and can be found in Appendix:

7.

While no specific model validation is presented in the original paper, the authors explain

that the variable selection was based on previous studies and that log transformation of

continuous covariates, as well as a quadratic term for age in the female model, were chosen

for “improved model fit”, though the evaluation metric was not explicitly stated. They warn

that the equation is to be used only when there is information on all the risk factors, and

while some important risk factors such as family history and obesity were not included, they

should be taken into account when counseling patients. Additionally, the risk for patients

with very high values for SBP or fasting glucose (the upper percentiles) may not be as

accurately predicted by the model, as well as for populations with very low CHD incidence.

A companion paper [Anderson et al., 1991a] was also published in the same year that

presents detailed equations for each of the individual endpoints, separately for men and

women, and uses the same cohort and statistical methods. In this paper, the details for the

confidence interval calculation, hazard ratios, and excess risk are also outlined. Comparisons

with the overall model for CHD conclude that, with the exception of stroke, the individual

models perform similarly to the overall model in identifying the highest risk decile.
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1998 Model - ATP III Model

In 1998, Framingham investigators again modified the equation to include the Joint

National Committee (JNC-V) blood pressure categories and the National Cholesterol Ed-

ucation Program (NCEP) ATP III cholesterol categories [Wilson et al., 1998]. This model

is sometimes referred to as the Framingham-ATP III model or modified Framingham risk

score. The analysis was based on the same cohort used in the 1991 paper, with 12 years

of follow-up. The endpoint of CHD included angina pectoris, recognized and unrecognized

myocardial infarction, coronary insufficiency, and coronary heart disease death. Hard CHD

events included total CHD without angina pectoris.

In this analysis, Cox models were used, though AFT models were also considered (re-

sults not shown), with separate models for each gender. Again, corresponding score sheets

were presented for simplification in risk calculation, and are in appendix 7. The overall C

index [Pencina and DAgostino Sr, 2004] was used to evaluate discrimination and whether in-

dividual covariates could be considered independent predictors of CHD. Results were nearly

identical when blood pressure and cholesterol were entered as continuous or categorical co-

variates, thus for ease of application, categories were presented.

Similarly to the 1991 equations, predictions are calculated in a step-wise fashion where

first the β coefficients from the model are used to calculate a value, L, for an individual as

follows:

L = 0.33766 ∗ age− 0.00268 ∗ age2 − 0.26138(chol < 160)

+ 0.20771(chol 200 - 239) + 0.24385(chol 240 - 279) + 0.53513(chol ≥ 280)

+ 0.84312(HDL < 35) + 0.37796( HDL 35 - 44) + 0.19785(HDL 45 - 49)

− 0.42951(HDL ≥ 60)− 0.53363(BP optimal)− 0.06773(BP high normal)

+ 0.26288(BP stage I hypertension) + 0.46573(if BP stage II-IV hypertension)

+ 0.59626(diabetes) + 0.29246(smoker)
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Next, the function is evaluated at the mean level of each variable, call it G. For women,

using cholesterol, the value is 9.92545, using LDL, it was 9.914136. This value is subtracted

from L to get the value A. Next, A is exponentiated such that:

B = expA

Lastly, the value is inserted into a survival function to calculate the 10 year probability of

CHD:

P = 1− [s(t)]B

where s(t) = 0.96246 if using cholesterol and 0.9628 if using LDL. This calculation can be

done much more concisely using the conversion to a point system in the provided score sheet.

Framingham 2000 and 2001

The original Framingham models were developed on a population that was consid-

ered healthy at baseline, but growing interest in predicting recurrent events, or events in

an already high-risk individual, began to emerge, such that in 2000 a model was devel-

oped that could be applied to persons with a previous history of cardiovascular disease

[D’Agostino et al., 2000]. The subsequent CHD endpoints are mainly hospitalizations for

any of: myocardial infarction, coronary insufficiency, angina pectoris, and coronary death.

Authors again chose an accelerated failure time (AFT) model with a Weibull distribution,

and the following risk factors were included in the final model (for women): age, log ratio

of total cholesterol to HDL cholesterol, diabetes, log-transformed SBP, and smoking. This

study also examined alcohol consumption and triglyceride levels, but neither was found to

significantly improve prediction. This paper presented a worksheet for predicting a CHD

even in the next 2 years, as well as a description for calculating a 4 year risk based on the

model estimates.

Other concerns over the earlier versions of the Framingham risk scores were its inclusion
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of non-fatal endpoints, inclusion of endpoints not routinely examined in clinical trials, and

generalizability to other populations. To address this, in 2001, D’Agostino and colleagues

presented an analysis in JAMA in which they evaluated the Framingham model on 6 new

cohorts from a variety of populations: Atherosclerosis Risk in Communities Study (ARIC

,black and white), Physicians Health Study (PHS, white, men only), Honolulu Heart Program

(HHP, Japanese American, men only), the Puerto Rico Heart Health Program (PR, Hispanic,

men only), the Strong Heart Study (SHS, native American), and the Cardiovascular Health

Study (CHS, white) [D’Agostino Sr et al., 2001]. They also altered the endpoint definition

to include only “hard CHD” events, namely, coronary death or myocardial infarction. For

each cohort they evaluated the prediction using the betas from the 1998 Framingham Model

and also calculated new betas for the same risk factors but on each of the current cohorts,

calling it a “Framingham recalibrated” model. They again evaluated the best Cox model

using the C-index. For female specific models, a number of coefficients were not statistically

significant, possibly due to low numbers of observed events. Several differences in RRs were

seen in a few of the non-Framingham cohorts, specifically Japanese American and Hispanic

men and Native American women. As a result of this paper, it was advised that when the

Framingham model did not seem to fit a particular cohort well, one should recalibrate the

existing risk factor categories to the cohort under investigation, in order to produce more

accurate predictions.

Framingham 2008

In 2008, the investigators presented an analysis in Circulation, in which they created a

single endpoint that is the first of any CVD event, including CHD coronary death, myocardial

infarction, coronary insufficiency, angina, cerebrovascular events (including ischemic stroke,

hemorrhagic stroke, and transient ischemic attack), peripheral artery disease (intermittent

claudication), and heart failure [D’Agostino Sr et al., 2008]. The authors explain that while

individual risk factor effects may vary from one specific CVD endpoint to another, there is
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enough commonality of risk factors to allow for a single, general, risk prediction tool that

can predict overall risk as well as the individual endpoints. They also created a tool that

can calculate a person’s “heart age”, which would be the age of a person with the same

predicted CVD risk, but with all risk factors in normal ranges. Authors believed that this

simplified tool would be of greater use in a general practice setting, rather than examining

several individual assessment methods. For this tool they elected to use a Cox proportional

hazards model, and evaluated predictions at 10 years.

To create the prediction model, information about CVD events on follow-up was obtained

with from medical histories, physical examinations in clinic, hospitalization records, and com-

munication with personal physicians. Sex-specific functions were created, and all continuous

variables were log-transformed. An additional modification was to model the effect of sys-

tolic blood pressure differently for those already on anti-hypertensive medication. Two risk

scores were presented, one based on all traditional risk factors (age, HDL cholesterol, total

cholesterol, SBP, BP treatment, smoking and diabetes), and another on nonlaboratory-based

predictors (age, body mass index, systolic blood pressure, antihypertensive medication use,

current smoking, and diabetes status). The rationale was that this tool could be used in

settings where laboratory based testing was not always feasible, such as in populations with-

out regular access to healthcare, or a quick primary care consultation. Of the 4,522 women,

456 developed a cardiovascular event during follow-up, and the equations to predict 10-year

CVD risk were calculated using the following:p̂ = 1− S0(t)exp[
∑p

i=1 βiXi−
∑p

i=1 βiX̄i]

Where, in the lab-based model for women; S0(t) = 0.95012 ,
∑p

i=1 βiX̄i = 26.1931, and

p∑
i=1

βiXi = 2.32888 ∗ log(age) + 1.20904 ∗ log(total chol)− 0.70833 ∗ log(HDL)

+0.52873 ∗ smoker + 2.76157 ∗ log(SBP) ∗ (not on BP meds)

+2.82263 ∗ log(SBP) ∗ (on BL meds) + 0.69154 ∗ diabetes

and in the non-laboratory based model for women: S0(t) = 0.94833 ,
∑p

i=1 βiX̄i was not
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provided, and

p∑
i=1

βiXi = 2.72107 ∗ log(age) + 0.51125 ∗ log(BMI)

+2.81291 ∗ log(SBP) ∗ (not on BP meds) + 0.61868 ∗ smoker

+2.88267 ∗ log(SBP) ∗ (on BL meds) + 0.69154 ∗ diabetes

Models were evaluated for discrimination and calibration by use of the C-statistic and

Hosmer-Lemeshow statistic, respectively. The C-statistic for women was 0.793, indicating

good discrimination, while the Hosmer-Lemeshow statistic of 7.79, on 9 degrees of freedom,

indicated excellent calibration. Calibration plots also showed good calibration for both sexes.

Current models were also compared to previous ones using net reclassification improvement

based on patient’s predicted risk categories, and the current model showed a nearly 8%

improvement over the previous Framingham model.

Other Framingham based publications of note

While there have been numerous validation studies of the Framingham models,

there are two worth pointing out due to their use of publicly available NHANES data

[Liao et al., 1999][Gaziano et al., 2008].

In 1999, Liao et al. used pooled National Health and Nutrition Examination Survey

(NHANES) I and II data, and the variables used in Framingham Model, to fit separate

models for blacks and whites. This was the first study to examine the performance of the

newest Framingham model in an African American population. They found similar results

overall, with only age risk significantly different between black and white women. When the

model for white women was used to predict risk for black women , the predicted cumulative

CHD mortality was very similar to the observed values, suggesting there may be a smaller

difference in CHD deaths by race for women than was observed in men (where the model

developed on a predominantly white population overestimated black CHD mortality).
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In 2008, Gaziano and colleagues [Gaziano et al., 2008] also used NHANES data to assess

whether a risk algorithm that did not include laboratory based tests could predict as accu-

rately as one that did, in order to have a screening tool for low-income settings. The results

showed that using BMI instead of cholesterol can as accurately predict risk of CHD events.

Summary

Though it has been widely accepted, modified, and validated, the main criticism of the

Framingham models is its generalizability, due to their development on a predominantly

white cohort. Other limitations are the exclusion of other known risk factors including, but

not limited to: family history, obesity, physical activity, use of hormonal therapy and anti-

hypertensive therapy. However, the risk factors in the models remain the most important risk

factors associated with CVD, and recalibration of the model parameters has proven useful

for populations that may not be directly comparable to the one on which it was developed.

It remains the most widely used CVD risk model in the United States today, both clinically

and for research purposes.

3.1.2 ATP III guidelines

The third Adult Task Force (ATP) updated the guidelines for management of high choles-

terol in 2001 [Adult Treatment Panel (ATP), 2001]. Their goal was to prevent coronary

heart disease in patients who are considered high risk for CHD, and recommend assessment

of LDL, HDL and total cholesterol every five years. They define cutoffs for normal range for

each type of cholesterol and list other high-risk factors:

• Cigarette smoking

• Hypertension (BP ≥ 140/90mmHg or on antihypertensive medication)

• Low HDL cholesterol (<40 mg/dL)
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• Family history of premature CHD (<55 in male first-degree relative, <65 in female

first-degree relative)

• Age (men ≥ 45 years; women ≥ 55 years)

If a person has a high HDL cholesterol (≥ 60mg/dL), then one risk factor is subtracted

from the count. If a person has type 2 diabetes, they are classified as having a CHD risk

equivalent. Presence of any 2 or more of these risk factors would then lead to calculation

of a person’s 10-year risk via the 1998 Framingham model for hard coronary heart disease

endpoints (myocardial infarction + CHD death)[Wilson et al., 1998]. The rationale for the

cutoff of two risk factors is that persons with zero or one risk factor, would most likely have

a 10-year model-based risk of CHD less than 10%, and therefore it is not necessary to obtain

the full information for the Framingham calculation. The remainder of the publication lists

guidelines for clinical management of cholesterol in the various combinations of risk groups,

as well as recommendations to improve adherence, and does not focus on validation of the

risk prediction algorithm.

3.1.3 SCORE model

The goal of the Systematic Coronary Risk Evaluation (SCORE) project was to de-

velop a risk assessment method for cardiovascular risk in Europe. Prior to its develop-

ment, risk assessment in Europe had been carried out using Framingham scoring, however,

there was some concern that the model developed on U.S. data would overestimate the

risk of CHD in Europe, as was shown to be the case in both German and Dutch stud-

ies [Thomsen et al., 2002, Hense et al., 2003]. Additionally, the Framingham definition of

non-fatal endpoints is different than what is used in many other cohort studies and clinical

trials, and thus can be difficult to replicate. The SCORE project elected to examine only

fatal cardiovascular disease events for ease in model development, as well as reproducibility

across studies, citing issues with recreating the Framingham endpoint as a primary rea-

39



son. The justification was that most countries reliably capture mortality data, but do not

uniformly collect data on non-fatal endpoints. In this study, cardiovascular mortality was

defined as ICD-9 codes 401-414, 426-443, 798.1, and 798.2, excluding codes for “definitely

non-atherosclerotic causes of death” (ICD-9: 426.7, 429.0, 430.0, 432.1, 437.3, 437.4, and

437.5

Data from 12 cohort studies in Europe were combined, yielding sample sizes of 88,080

women and 117,098 men. Risk functions were calculated using a Weibull proportional haz-

ards model that had two parts: the first modeled the shape of the baseline survivor function

(which was calculated separately for each of cohort and gender), and the second calculated

the relative risk for each of the risk factors (which was assumed to not vary from cohort to

cohort or by gender). The Weibull model was chosen over the Cox model so that the risk

estimation equation could be written as a formula, but the authors verified the results with

a Cox model to ensure that the additional assumption of the Weibull distribution did not

significantly alter model performance. Lastly, the investigators decided not to model age as

a risk factor, but rather construct the hazard function based on the person’s age, so that

survival could be estimated for the full range of observed ages in the study, rather than just

the length of follow-up on study. (This is similar to what is done in many breast cancer

risk models) The other risk factors included were sex, smoking, systolic blood pressure, and

cholesterol (entered 2 ways: either total cholesterol or total/HDL ratio).

The female cohort experienced 7,934 cardiovascular deaths, of which 5,652 were deaths

from coronary heart disease. Separate estimation equations were calculated for coronary

heart disease and for non-coronary cardiovascular disease so that a person’s total risk could

be partitioned into its coronary and non-coronary components. It also allows one to calculate

the reduction in end-points of each type resulting from specific risk factor interventions.

Separate models were built for high and low-risk populations, but both contained the same

set of covariates; gender, smoking status, total cholesterol or ratio of total to HDL, and

systolic blood pressure. Discrimination was assessed using the area under the ROC curve,
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and diagnostic performance was assessed by examining the positive clinical (diagnostic)

likelihood ratios for various thresholds of risk. Charts were also presented for ease of risk

estimation and correspond to a persons 10-year risk. Equations for calculations of other

lengths of time were provided in the appendices and appear below:

Step 1: Calculate the underlying risks for coronary heart disease and for non-coronary

cardiovascular disease for the person’s current age and their age in ten years, using the values

for α and p provided in table 3.1. The underlying survival probability, S0,is given by:

S0(age) = exp [−(exp (α))(age− 20)p]

S0(age + 10) = exp [−(exp (α))(age− 10)p]

Table 3.1: α and p Coefficients for Step 1 - Women

CHD Non-CHD CVD

α p α p
low-risk -29.8 6.36 -31.0 6.62
high-risk -28.7 6.23 -30.0 6.42

Step 2: Using the coefficients in table 3.2, calculate the weighted sum,w, of the risk

factors cholesterol, smoking and systolic blood pressure. Two weighted sums will have to be

calculated, one for CHD and one for non-CHD CVD.

w = βchol(cholesterol− 6) + βSBP (SBP− 120) + βsmoker ∗ smoker

Step 3: Combine the underlying risks for CHD and for non-coronary CVD, at the

person’s age and at their age ten years from now (four calculations) which were calculated

in step 1 with the weighted sum of risk factors from step 2 for the two end-points, to get the
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Table 3.2: β Coefficients for Step 2 - Women

CHD Non-CHD CVD
Current smoker 0.71 0.63

Cholesterol (mmol/L) 0.24 0.02
Systolic BP (mmHg) 0.018 0.022

survival probability at each age for each cause:

S(age) = [S(age)]exp(w)

S(age + 10) = [S(age + 10)]exp(w)

Step 4: For each cause, calculate the 10-year survival probability based on the survival

probability for the current age and their age plus 10:

S10(age) = S(age + 10)/S(age)

Step 5: Calculate the 10 year risk for each endpoint:

Risk10 = 1− S10(age)

Step 6:Combine the 10-year risks for CHD and non-coronary CVD by adding:

CVDRisk10(age) = CHDRisk(age) + Non-CVDRisk(age)

Some limitations of the SCORE models are that they were only calculated on the age

range from 45 to 64, and do not include information on diabetes, due to the lack of uniformity

with which the information was collected across cohorts. They also only use a single blood

pressure and cholesterol value for each person which is thought to reflect their usual levels,

but may not always be the case. Strengths of the model are the size of the cohort upon

which it was developed, as well as the ability to separately model CHD and non-CHD CVD
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risk. The utility of this model in a US female population is yet to be evaluated.

SCORE OP Model

Due to the limitation of its development on a population less than 65 years of age, in

2015, Cooney and colleagues re-evaluated the SCORE model on a pooled European cohort of

over 40,000 individuals over 65 years of age [Cooney et al., 2015]. They excluded those with

a history of myocardial infarction at baseline, and kept the existing covariates and endpoint

definitions from the original SCORE model. In terms of statistical method, the model for

older persons was fit using Cox proportional hazards regression, rather than a Weibull model.

Five and ten year survival estimates, as well as beta coefficients, were provided in the write-

up, so as to allow for calculation of an individual’s risk. Two dimensional worksheets were

also made available with a point scoring system. Internal validation of the model yielded an

AUC of 0.74 overall and of 0.78 on women only. However, the model did not evaluate the

use of blood pressure lowering medication, and did not account for deaths from other causes.

3.1.4 CORE Model

Due to the growing evidence that traditional CVD risk models extrapolated poorly to

an elderly (over 70) population, Koller and colleagues [Koller et al., 2012] sought to cre-

ate a model that could be used in an aging, possibly frailer population, that must also

account for the increased risk of death from competing causes. Data were drawn from 2

large and similarly designed cohort studies on cardiovascular disease in elderly persons, the

Cardiovascular Health Study (CHS) in the United States and Rotterdam Study (RS) in the

Netherlands. The endpoint definition for this study was time to first CHD event, which

included nonfatal MI and fatal CHD. Sex-specific models were created using age, systolic

blood pressure (BP), use of blood pressure lowering medication, diabetes, total and HDL

cholesterol, and smoking. Several new biomarkers and risk factors were assessed for incre-

mental value in predictive accuracy, under a competing-risk model based on the methods of
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Fine and Gray. Prognostic accuracy was assessed at 10 years with a modified Harrell’s C-

statistic [Wolbers et al., 2009, Wolbers et al., 2014], as well as a calibration plot of observed

versus predicted risk.

The women’s model was based on 5,878 individuals and the following is the linear pre-

dictor calculation used in predicting a woman’s risk: linear predictor (LP) =
∑p

k=1 βkXik

LP = [0.463 ∗ (age− 75)/10)]− 0.262 ∗ [((age− 75)/10)2] + [0.288 ∗ bp treatment]

+[bp treatment ∗ 0.08 ∗ (SBP− 130)/10] + 0.330 ∗ diabetes

+[bp NO treatment ∗ 0.127 ∗ (SBP− 130)/10] + 0.125 ∗ eversmoke

+0.041 ∗ (total chol− 5)− 0.432 ∗ (HDL chol− 1)

In order to calculate a risk at a specific time t, one must have an estimate of the linear

predictor, as well as the baseline cumulative subdistribution hazard, to use the following

formula:

Ii(t|xi) = 1− exp
(
− exp

( p∑
k=1

βkXik

)
·
∫ t

0

λ̄1,0(s)ds
)

The paper provides this value for several timepoints in the appendix. Then, for U.S.

women, whose 10 year cumulative subdistribution hazard was 0.125, and the calculation for

the 10 year predicted risk becomes:

1− exp[−0.125 ∗ exp(LP )]

Although this model demonstrated generalizability in aging U.S. and European popula-

tions, it did not demonstrate any statistically significant improvements over the Framingham

model (only 0.02 to 0.03 changes in the C-statistic). This exemplifies the need for further

work in cardiovascular risk prediction in the elderly.
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3.1.5 Reynolds Risk Score

Despite its widespread adoption, it has been shown that up to 20% of female in-

stances of heart disease occur in the absence of traditional Framingham risk factors

[Khot et al., 2003]. In a 2007 article published in JAMA, Ridker, Cook, and colleagues

examined a panel of new and traditional cardiovascular risk factors in a cohort of 24,558

healthy US female participants 45 years or older from the Womens Health Study (WHS)

[Ridker et al., 2007, Cook et al., 2006]. Endpoints examined included incident myocardial

infarction, stroke, coronary revascularization, or cardiovascular death, of which there were

766 such events over a median follow-up of 10.2 years.

Cox proportional hazards models were built on two-thirds of the data set (n = 16, 400;

504 events) and evaluated on the remainder (n = 8, 158; 262 events). Variables were selected

via stepwise methods and with the use of regression trees, while final inclusion criteria was

based on Bayes Information Criteria (BIC). Additionally, the ATP-III and Framingham

models were both examined and re-calculated (original variables used, but new regression

coefficients calculated), and the performance of these models was assessed in the current

cohort, using both new and previously published coefficients.

The investigators presented two new models, and compared to the ATP-III and Fram-

ingham equations, the new models showed improvement in each of the summary statistics

examined (Entropy, Yates Slope, Brier Score, and C-statistic), over both the originally pub-

lished and re-calculated models. Reclassification was also examined compared to the ATP-III

model. Additionally, while both of the novel models had very similar performance, the clin-

ically simpler one was selected, and contained the following risk factors: age, systolic blood

pressure, hemoglobin A1c (if diabetic), current smoking, total and HDL-C, high-sensitivity

C-reactive protein (hsCRP), and parental history of myocardial infarction before age 60

years. This model was named the Reynolds Risk Score. Authors propose using the new

model for women due to its large, prospectively collected sample, and inclusion of markers

shown elsewhere to be more accurate predictors of risk. The model can be used to pre-
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dict a woman’s 10-year risk of disease and is simple and free to implement on the website

http://www.reynoldsriskscore.org, and appears below:

Risk = 1− 0.98634exp [B−22.325]

where

B = 0.0799 ∗ age + 3.137 ∗ log(SBP) + 0.180 ∗ log(hsCRP)

+1.382 ∗ log(total cholesterol)1.172 ∗ log(HDL)0.438 ∗ (famhist)

+0.134 ∗ hemoglobin A1c (if diabetic) + 0.818 ∗ (smoker)

Limitations of the Reynolds Risk Score may include its generalizability, as it was de-

veloped on a predominantly white, middle-class population, and reliance on self-report for

several key variables.

3.1.6 Summary of CVD Models

While there has been widespread public health interest in evaluating a person’s risk of

cardiovascular disease for at least the last fifty years, the current prediction algorithms are

subject to several areas of limitations.

In terms of risk factors and data collection, many of the cohorts upon which models were

derived contained only a single measurement for key risk factors such as blood pressure,

cholesterol, or C-reactive protein, and would be more accurately represented by an average

of two or more measurements, or collection of measurements over time. Secondly, other risk

factors may be based on patient self-report, such as family history or smoking behaviors,

which are subject to patient bias or human error.

Additional challenges include the generalizability of the models to minority racial and

ethnic groups, as many were developed on a predominantly white, middle-class population.

Prospectively collected data sets of both sufficient size and containing all key risk factors
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and endpoint information are limited, and validation data sets may be underpowered. While

the risk factors may be the same, risk functions derived from one population may not be

applicable to a second population in terms of calculating predicted absolute risk. It has

also been shown that several models may under-perform for observations in the highest and

lowest percentiles of some of the risk factors.

A further limitation arises with trying to directly compare the performance across models

due to the lack of uniformity of endpoint definition. The endpoint of the original Framingham

models includes soft CVD endpoints, which are not often captured in other cohorts or clinical

trials. A remedy to this would be to use a straightforward and uniformly defined endpoint

such as cardiovascular mortality. Another inconsistency across studies is in the choice of

statistical model used, and time frame for which predictions are valid.

Issues in model validation include inconsistent reporting and use of model validation

metrics, ranging from C-statistics and indices, to AUCs, reclassification percentages, and

several others. Additionally, some validation studies will use the exact coefficients from the

original models, while others will use the same variables but recalculate, or “recalibrate”

them to fit their data set. The latter should not be considered a true validation, but rather

an extension of a previously published model to a new population.

Some concerns for a model’s use in clinical practice should also be mentioned. Many of

the models suggest using a cut-off of twenty percent or higher to indicate a person who is at

“high-risk”, however, as it has been shown that several of these models can give a variable

range of results, perhaps a more rigorous cut-point analysis is warranted in order to correctly

classify patients into high and low risk categories.

Lastly, the majority of these models have been developed on middle-aged, healthy cohorts,

but their applicability in older, or frailer populations, with comorbid conditions, has not been

routinely assessed. There have been few validation studies on older populations and while

they were restricted to those who were considered healthy at baseline, the models were still

found to have poor performance in those greater than 65 years of age.
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Given that there is an increase in cancer survivorship, it may be useful to evaluate the

current models in a cohort of survivors, as well as propose a new model for CVD risk, that

may also include information on cancer disease and treatment characteristics that could alter

a person’s risk and improve prediction over the established risk factors alone. This would

require the use of competing risk methodology, to account for deaths from non-CVD causes,

which is not routinely practiced in the current literature on CVD risk modeling.
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Figure 3.1: Summary of CVD Risk Models

49



3.2 Models for Predicting Breast Cancer Recurrence

or Mortality

An accurate estimate of disease prognosis is an essential piece in deciding which breast

cancer treatment(s) an individual should undergo. In the recent era of multi-modal adju-

vant therapies, a patient must weigh the risks of treatment with the benefit, usually given

in terms of survival. Recently, several prognostic models have been created to aid clinicians

and patients in making informed decisions regarding treatment options. While their gener-

alizability has been variable, especially when transporting across countries and age groups,

they are similar in the inclusion of pathological covariates, as well as their utility in research

and patient decision making.

Below, some of the more commonly referenced models for use in breast cancer prognosis

are summarized. These models were chosen due to their inclusion of traditional disease risk

factors, that can be obtained from administrative and registry based data, and do not rely on

genetic assay or microarray data. A more comprehensive overview of breast cancer recurrence

and mortality models, including those that also examine tumor genetic information, can be

found in Engelhardt et. al. [Engelhardt et al., 2014]

While these models have been validated and are widely used, some have been shown to

have poorer performance in specific subgroups of women, such as those less than 35 or over

75 years old[Wishart et al., 2010, Olivotto IA, 2005].

3.2.1 Nottingham Prognostic Index

Using data from 500 consecutive patients treated with mastectomy for primary breast

cancer in Nottingham City Hospital, a Cox model of overall survival was employed to deter-

mine which breast cancer factors could best determine prognosis. The model was developed
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on 387 patients with complete data, and the following index was proposed:

I = (0.17 ∗ size) + (0.76 ∗ nodes) + (0.82 ∗ grade),

where larger values of I indicate poorer prognosis [Haybittle et al., 1982]. The performance

of the index was evaluated at 5 years post-diagnosis, for both recurrence and survival, and

categories of risk were proposed based on the following index values: high risk (>4.4),

medium risk (2.8 - 4.4), low risk(<2.8). This model assumes that adjuvant chemotherapy

was not used.

However, this initial index was published in 1982 and based on a very small data set.

Since then, survival for breast cancer has greatly improved, and an update to the NPI was

published in 2007, based on cases diagnosed from 1990-1999 [Blamey et al., 2007a].

The updated NPI is calculated quite simply as:

lymph node (LN) stage (1 to 3) + Grade (1 to 3) + maximum diameter (cm) ∗ 0.2

which yields a range of NPI from 2.08 (node negative, grade 1, 0.4 cm) to 6.8 (node stage

3, grade 3, size 4.9 cm). Three prognostic groups were still constructed: poor prognosis

group (5.5 - 7.0), medium prognosis group (3.5 - 5.4), and excellent prognosis group (2.0

- 3.4). One criticism of the index was that it did not provide estimates for a survival

probability or absolute risk [Lundin, 2007], rather just a general “prognosis”. It is able to

stratify patients into 3 groups with distinct differences in survival, but it may not be as

useful for predicting an individual patient survival or absolute risk. However, a companion

paper [Blamey et al., 2007b] was published that described how to calculate individual 10

year survival estimates, based on a curve fitting technique that resulted in the following

formula:

3.0079 ∗ NPI2 + 12.295 ∗ NPI + 83.84
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This could be calculated for any 0.1 change in NPI, to provide better counseling at the

individual level.

3.2.2 Kattan Nomogram

In 2004, Kattan and colleagues sought to create a continuous prognostic model (rather

than a risk-group based model) that could better predict breast cancer mortality risk

[Kattan et al., 2004]. Five-hundred and nineteen women who had been treated with mas-

tectomy and axillary lymph node dissection, without chemotherapy, at Memorial Sloan-

Kettering Cancer Center between 1976 and 1979 were included. The competing-risk method

(Fine and Gray) was used to predict disease-specific survival, as a large number of the cohort

had died from other causes. The accuracy of the new prognostic model was evaluated using

the concordance index.

Age, multifocality, tumor size (cm), grade, lymph node involvement, and staining (IHC,

H&E), were included as risk factors in the model. For ease of use, the model was presented

in nomogram form, whereby points could be assigned to the value of each risk factor and the

total score corresponded to a predicted 15-year disease specific survival. Estimates from the

new model were compared to the NPI and found to be more accurate (higher C-index). Since

the cohort on which the tool was developed did not receive any chemotherapy, the authors

stated that it could provide a decision aid to women considering adjuvant chemotherapy, by

providing an estimate of disease specific survival in the absence of treatment.

3.2.3 Adjuvant! Online

Another prognostic model/decision tool to aid women in the decision of whether to

undergo adjuvant chemotherapy, Adjuvant! Online, was created in 2001 as an internet-based

computer program providing 10-year prognosis predictions for early breast cancer patients

[Ravdin et al., 2001], (http://www.adjuvantonline.com). Its primary goal was to give an

estimate of the net benefit in survival of an individual patient’s decision to undergo adjuvant
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chemotherapy, based on their personal and disease related risk factors and the known efficacy

of different adjuvant chemotherapy regimens. The tool was derived from women ages 35 to

59 who were diagnosed between 1988 and 1992.

Simply described, the risk calculation is done in two steps. The first is to estimate a

patient’s risk of failure (defined as either death or relapse) and the second is to multiply

that risk by the proportion of failures that a given adjuvant therapy is known to prevent,

while accounting for competing risk of death from non-breast cancer related causes. Actuarial

methods were used iteratively, at yearly increments post-diagnosis, to estimate patient overall

survival (based on patient age from U.S. mortality statistics) and breast cancer survival

(based on SEER registry data). The estimates of breast cancer survival are based on an

individual’s tumor size, the number of involved lymph nodes, and estrogen receptor (ER)

status. A limitation of the SEER data is that it does not reliably capture relapse or cause

of death information, therefore, estimates of breast cancer related mortality were derived

indirectly from total age adjusted survival using SEER Stat2 software, while estimates of

recurrence were assumed to be slightly higher than breast cancer mortality at any given time

since it was assumed that there would always be a proportion who had relapsed but not yet

died. Estimates can also be adjusted for the presence of comorbid conditions. Information

on additional prognostic factors that arise in the literature but were not included in the

development of the initial tool, can be used to refine the 10 year estimates under the section

labeled “Prognostic Factor Impact Calculator”, which uses a Bayesian method to make

adjustments based on relative risks and prevalence of positive test results.

Once the individual survival calculations are made, the program will also produce a series

of predictions and graphs based on the use of endocrine therapy (5 years of adjuvant tamox-

ifen) with or without chemotherapy (either CMF-like, anthracycline-based, or anthracycline-

and taxane-based). Estimates of improvement in survival attributed to the various therapies

are based on randomized controlled clinical trials from the Early Breast Cancer Trialists

Collaborative Group.
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Individual risk calculations must be done using the online tool, by a trained profes-

sional, making it a bit of a “black box” for users, unlike some of the simpler tools such

as the NPI, or paper based worksheets such as the Kattan nomogram. While its primary

purpose was to aid in patient treatment decision making, it has also been used in patient

selection for randomized controlled trials, and has begun to be validated in breast cancer

populations in other countries [Olivotto IA, 2005, Campbell et al., 2009, Mook et al., 2009],

though prognosis may be overestimated in certain high risk groups (young age, high-grade

and HER2-positive patients) [Hajage et al., 2011].

3.2.4 CancerMath

Michaelson and Chen [Michaelson et al., 2011] developed the SNAP (size, nodes, and

prognostic factors) method from 1,352 breast cancer patients treated at the University of

Southern California Van Nuys Breast Center between 1966 and 2006. It uses the “binary

biological model of cancer metastasis”, that is a complex set of equations, combined with

national mortality data, to predict the risk of death for the first 15 years after diagnosis.

It incorporates data from the breast cancer trials to assess the survival impact of various

adjuvant therapies. This model includes the risk factors from previous prognostic models

(age, grade, tumor size, nodal involvement, ER, PR, HER2), and also includes histologic

subtype, as the authors postulate that the type of cell has a distinct biological pathway that

plays a role.

Though the web based calculator is extremely user friendly, and the output easy to

interpret, the mathematics underlying the screens are complex and likely not reproducible

by a third party (http://www.lifemath.net/cancer/index.html). To date there has been

one published validation of SNAP [Michaelson et al., 2011], found in the paper detailing its

development. They found that SNAP provided accurate estimates of risk of death when

examined in large patient data sets.
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3.2.5 Oxford or Options Model

In 2010, after discovering that Adjuvant! Online was not directly transferable to the UK

population, Campbell and colleagues [Campbell et al., 2010] sought to estimate and exter-

nally validate a new UK-specific prognostic model for predicting recurrence free survival in

women with early stage breast cancer. Data consisted of 1,844 consecutive women diagnosed

at a single hospital between January 1986 and January 2001. A parametric, accelerated fail-

ure time model was used to model the time until the first recurrent event with the following

risk factors: number of positive axillary lymph nodes, tumor grade (1, 2, or 3), tumour size

(cm), ER status (positive or negative), and patient age (years). In addition, indicator vari-

ables for use of adjuvant radiation, chemotherapy, and hormonal therapy were included to

control for the effects of the different treatment options patients could have received, as well

as be able to estimate the survival times when used as a prognostic model, in the absence of

such treatments. The rationale for the use of the AFT model over the more commonly used

Cox proportional hazards model, was that it is more straightforward to calculate a predicted

time until event on an external observation when a distributional assumption is imposed, as

well as make predictions beyond the range of the observed data, rather than the use of a

“baseline hazard” as is done in the Cox model. In addition, 573 women (31% of the sample)

had experienced a recurrent event in the follow-up time period.

Assuming a gamma distribution for survival times, with ancillary parameters 1.698 for

shape and 0.567 for scale, the fitted AFT model was as follows:

log Ti = 0.402 ∗ ln(positive nodes) + 0.898 ∗ tumor size2 + 1.045 ∗ tm size2 ∗ ln (tm size)

+ 0.647 ∗ grade + 1.015 ∗ age + 1.209 ∗ ER + 1.543 ∗ radiation + 1.23 ∗ hormonal therapy

+ 0.357 ∗ chemotherapy + 1.226 ∗ ER ∗ hormonal therapy + 1.023 ∗ chemotherapy ∗ age

+ 1.418 ∗ ln(positive nodes) ∗ chemotherapy
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Table 3.3: Hazard Ratios from the PREDICT Model for Breast Cancer Survival

Prognostic variable (category) HR (ER+) HR (ER-)
Nodes positive (0, 1, 2 to 4, 5 to 9,10+) 1.75 1.55
Tumor size mm (<10, 10 to 19, 20 to 29, 30 to 49, 50+) 1.43 1.44
Grade (Low, intermediate, high) 2.33 1.50
Screen detected 0.70 0.86
Chemotherapy 0.73 0.82
Hormonal therapy 0.95 1.43

When evaluated on an external data set from the same country of origin, the authors found

that the model performed well, having an overall C-index of 0.76.

3.2.6 PREDICT Model

Another web-based prediction tool developed in the UK, PREDICT, was launched in

2010 (www.predict.nhs.uk) and can estimate 5 and 10 year breast cancer specific survival

following primary surgery [Wishart et al., 2010]. The model was derived from the cancer

registry information on 5,694 breast cancer patients treated in East Anglia from 1999 to

2003 and used the following factors: age at diagnosis, tumour size (categorical), tumor

grade (Low, Intermediate, High), number of positive nodes (categorical), ER status, mode

of detection (screening versus not), and use of adjuvant chemotherapy or hormonal therapy.

A Cox proportional hazards model was used to model the time until breast cancer death, and

competing causes of death were modeled separately, adjusted for age at diagnosis. Separate

models were created for ER positive and negative subgroups, due to the differing effectiveness

of treatments.

An external data set of 5,468 patients was used for validation, and the model was

well calibrated and showed good discrimination (AUC = 0.79, analogous to C-index). It

has since been further externally validated and updated to include information on HER2

[Wishart et al., 2012] and Ki67 [Wishart et al., 2014].
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3.2.7 Summary of BC Models

There has been increasing development and validation of breast cancer prognostic models

in the last decade, with the main goal of helping to aid a patient’s decisions on whether

or not to undergo adjuvant chemotherapy, in early stage disease. The models have been

developed using a variety of statistical techniques, some quite complex, while still presenting

results in a manner that is understandable to a clinician, and possibly, to a patient. Model

validation continues to be assessed, especially in populations outside of where the models were

developed, with mixed results. In the era of microarrays, genomic information is also being

used to predict survival, and combining genetic with clinical factors should be the next steps

in prognostic model building. While newer biomarkers may show only small incremental

improvements in prediction, the risk factors of grade, tumor size, and nodal involvement

remain the strongest clinical risk factors. Age at diagnosis also plays an important role,

especially through its importance in predicting competing risk of death from other causes.
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Figure 3.2: Summary of Breast Cancer Prognosis and Decision Making Models
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Chapter 4

Disease Risk Model Evaluation

Before a model can be adopted into clinical practice, it is important to evaluate its utility

on independent samples of patients, called validation. Validation can only be performed when

the true outcome is already known. There are numerous methods and performance metrics

available for model evaluation, and it is important that one first assess the goals of the

model in order to choose the best evaluation procedure. Two important concepts in model

evaluation are calibration and discrimination. Calibration refers to how closely the predicted

outcomes are to the observed outcomes. Discrimination refers to the ability of a model (or

medical test) to differentiate between individuals that experience and do not experience the

outcome of interest, and has many summary measures to choose from.

Generally, the predicted output from a disease risk model will be on a continuous scale,

either predicting a person’s remaining lifetime risk, or risk in a specified time period (e.g.

5-year risk, 10-year risk, etc.). Very often, clinicians and investigators have dichotomized or

established cut-points that take the continuous outcome measure and classify patients into

risk groups, such as high, medium, and low-risk, or high versus all else. Risk categories are

easier to interpret and convey meaningful results to patients, despite the potential loss of
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information. Additionally, many of the established performance evaluation metrics are for

binary or categorical outcomes, rather than a continuous scale.

In the following sections, common methods for quantifying accuracy of a diagnostic test,

predictive model, or biomarker are summarized, and these terms are used interchangeably,

though the main application will be for quantifying output from a predictive model, rather

than a biomarker or medical test.

4.1 Traditional Measures of Overall Performance

Traditional measures of overall model performance quantify how close the predictions are

to the actual observed outcomes and have included measures explained variation (R2) and

the Brier score [Steyerberg et al., 2010].

4.1.1 Explained Variation or R2

Variations of R2 have been proposed for different model types, but generally take the

form of (Y − Ŷ )2, or the squared distance between observed and predicted, where lower

values indicate a better fitting model. It is well established for linear regression, and has been

adapted by Nagelkerke [Nagelkerke, 1991] to more general models that are fit using maximum

likelihood methods. It is bounded by 1 and is interpreted as the “power of explanation” of

the model.

R2 = 1− exp
[
− 2

n
{l(β̂)− l(0)}

]
where l(β̂) = logL(β̂) and l(0) = logL(0) denote the log likelihoods of the fitted and the

null model, respectively. For certain models, such as logistic regression and the Cox model,

where the maximum R2 cannot achieve a value of 1 using the above definition, it is redefined

to:

R̄2 = R2/max(R2)
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where max(R2) = 1− exp{2n−1l(0)} = 1− L(0)2/n.

4.1.2 Brier Score

The Brier score [Brier, 1950], or mean probability score, is the average difference between

the observed and predicted (or expected) events. It was originally proposed for weather

forecasting to include multiple categories

1

n

r∑
j=1

n∑
i=1

(fij − Eij)2,

where the fij are the forecasted probabilities, Eij is an indicator for whether the event

occurred in class j or not, and the r classes are chosen to be mutually exclusive such that

n∑
j=1

fij = 1, i = 1, 2, 3, . . . n

In disease prediction modeling, it has been adapted to measure the average discrepancies

between true disease status and estimated predictive values, providing an overall “goodness

of fit” for the model.

B =
n∑
i=1

(fi −Oi)
2

n
=

1

n

n∑
i=1

(fi −Oi)
2

where fi and Oi are the forecasted and observed values, respectively.

The Brier score ranges from 0 to 0.25 when there is 50% disease incidence, where 0

indicates a perfect prediction and 0.25 indicates useless. It can also be scaled to range

between 0 and 1, as Nagelkerke’s approach to R2, and this scaled measure becomes is very

similar to Pearson’s correlation coefficient[Steyerberg et al., 2010]. It has also been adopted

for survival outcomes [Gerds and Schumacher, 2006].
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4.2 Calibration

As stated previously, a well-calibrated model is one in which the predicted values do not

systematically differ from the observed values. Assessing calibration can be done visually

with the use of a calibration plot, where the observed values are plotted against the predicted

values. While somewhat arbitrary, this is usually done by grouping observations by decile

of risk [Steyerberg et al., 2010]. A perfectly calibrated model would have values that all fall

on the 45-degree line.

Figure 4.1: Sample calibration plot for cardiovascular risk models

4.2.1 Hosmer-Lemeshow Statistic

Originally developed for logistic regression, the Hosmer-Lemeshow statistic measures

goodness of fit by grouping the data into a specified number of equally sized subgroups

(usually deciles) and compares the observed and predicted outcomes across the groups

[Agresti, 2002]. Well-calibrated models should have similar observed and expected event

rates in each subgroup. The statistic follows a Chi-squared distribution with (G−2) degrees

of freedom, where G denotes the number of subgroups (usually deciles) created for model

assessment:

H =
G∑
g=1

Og − Eg
Ngπg(1− πg)
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and Og and Eg denote the observed and expected event rates, respectively, in each subgroup

g. In a formal test, the null hypothesis is no difference in observed and predicted outcomes,

and large values of the test statistic indicate a poor fitting model. However, with large

samples, it is common to reject the null hypothesis, even though the model may appear to

fit the data well.

4.3 Discrimination

4.3.1 Binary Data

In the simplest case of a binary test and outcome, where patients are either diseased

(D = 1) or healthy (D = 0), and censoring and time-dependence are not issues, there are

several standard metrics for quantifying predictive ability.

Let the binary variable, D, denote a person’s (known) disease status:

D =


0 for healthy

1 for diseased

Let Y denote the result of the test, and assume that higher values of the test are indicative

of disease:

Y =


0 negative for disease

1 positive for disease

For a binary test, there are four possible outcomes, as detailed in the table below:

D = 0 D = 1
Y = 0 True negative False negative
Y = 1 False positive True positive

In two of these scenarios, the test performs correctly; the test can be positive for a patient

with disease (true positive), and can be negative for a patient without disease (true negative).
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However, the test can have two types of errors: calling a patient positive in the absence of

disease (false positive), and calling a diseased patient negative (false negative).

Sensitivity, Specificity, PPV, and NPV

Sensitivity and specificity are conditional probabilities that quantify how well a test

can differentiate between diseased and non-diseased individuals. If a test (or predictive

model) has a dichotomous output, or an established cutpoint that dichotomizes patients

into “diseased” or “healthy”, sensitivity refers to the probability that a test is positive, given

that a patient has the disease. It is also called the true positive fraction, or TPF.

Sensitivity = Pr(Test = 1|D = 1)

Specificity is defined as the probability that the test is negative, given that the patient does

not have disease.

Specificity = Pr(Test = 0|D = 0)

Another commonly used measure is the false positive rate, or FPR, which is 1-Specificity.

This refers to the probability that the patient did not have disease in the presence of a

positive test result Pr(D = 0|Test = 1). Generally, the goal of any test is to maximize the

sensitivity, or ability to detect disease in diseased individuals, while minimizing the FPR.

While the sensitivity and specificity describe how well the test performs, in the real-world

setting, for counseling patients on their test results when disease status is not yet known,

it may be more helpful to understand the positive and negative predictive values (PPV and

NPV) of a test. PPV refers to the probability that a patient has disease, given that the test

was positive:

PPV = Pr(D=1|Test=1)

NPV refers to the probability that a patients does not have disease, given that they have a
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negative test result:

NPV = Pr(D=0|Test=0)

These also depend on the population prevalence of the disease, and cannot be calculated in

case-control studies.

Diagnostic Likelihood Ratios

Diagnostic likelihood ratios, or DLRs, are an alternative to PPV and NPV that summa-

rize predicting disease status from a test result, without depending on disease prevalence.

This is extremely useful for screening, when the true disease status is not yet known. They

are defined as:

positive DLR = DLR+ =
Pr [Y = 1|D = 1]

Pr [Y = 1|D = 0]

negative DLR = DLR− =
Pr [Y = 0|D = 1]

Pr [Y = 0|D = 0]

They give the ratio of the likelihood observed test result in diseased versus healthy

patients. DLRs can take any values between zero and infinity. A perfect test would have a

DLR+ value of infinity and a DLR− value of zero.

Discrimination or Yates slope

Discrimination slope in the binary context is defined as difference of mean predicted

probabilities of events and non-events. The mean probability score is written:

P̄S(f, d) = (
1

N
)

N∑
i=1

(fi − di)2

where fi is the forecast, or predicted probability of an event, and di denotes whether it is an

event (1) or nonevent (0). This is the same as the Brier score, but for the specific case of

binary data.
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4.3.2 Continuous Data

The output from regression models is very often a continuous value. The same is true

for many medical tests, including markers measured from human serum, blood pressure,

temperature, and others. Some tests or evaluations may also be ordinal in nature and take

on categories such as “severe”, “moderate”, or “mild”. If we again assume that larger values

are more indicative of disease, it is possible to create a binary test result from a continuous

or ordinal test using a cutpoint of c as follows:

Y =


positive if Y ≥ c

negative if Y < c

and then use any of the measures described previously for binary data.

Receiver Operating Characteristic (ROC) Curve

The ROC curve is the set of all TPFs and FPFs calculated at every possible value of Y .

It is a monotone, increasing function in the positive quadrant. A useless test would be one

for which TPF (c) = FPF (c) for all values of c, and would be the 45-degree line, while a

perfect test would have some value of c such that TPF (c) = 1 and FPF (c) = 0 and would

lie along the upper and left borders of the quadrant. Better tests lie are ones that lie closer

to the upper left corner.

The ROC curve can be summarized using numerical indices. The most common is called

the area under the curve, or AUC, and is defined as:

AUC =

∫ 1

0

ROC(t)dt

The AUC can take values between 0.5 (useless test) and 1.0 (perfect test). The value

itself, can be interpreted as the probability that in two randomly chosen individuals (one

diseased, one non-diseased), the value for the diseased individual will be higher than the
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Figure 4.2: Sample ROC curve

non-diseased individual.

Another summary index for the ROC curve is the partial AUC, or pAUC. If it is only

desirable to compare tests within a specific acceptable false positive rate, say t0, then the

AUC calculation can be restricted to:

pAUC(t0) =

∫ t0

0

ROC(t)dt

A third commonly used way of comparing ROC curves is to choose a specific false positive

fraction and look at the corresponding true positive fraction value. However, this ignores a

large amount of information from the curves.

Additionally, when comparing two models on the same set of patients, it is possible to

compare the 2 AUCs [DeLong et al., 1988], or the change in AUC, ∆AUC.

Some advantages of ROC curves are that one does not need to define cutoffs for the

continuous value, but rather can examine accuracy across the entire range of values. It is

also possible to compare results across different markers or predictive models on the same

cohort, does not depend on disease prevalence, and can be estimated for case-control and

cohort studies.

Some disadvantages are that the AUC may be an oversimplification of a test’s per-

formance and may not be relevant for clinical practice. Additionally, it has been shown
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[Vickers et al., 2011] that a statistically significant improvement in predictive accuracy will

not always yield a statistically different AUC value when comparing two models.

C-statistic, Probability, or Index

Equivalent to the Area Under the ROC Curve, the C-statistic can be interpreted as the

probability that a subject from the event group has a higher predicted probability of having

an event than a subject from the non-event group [Pencina and DAgostino Sr, 2004]. Let Y

be a random variable describing the predicted probabilities of having an event for subjects

who had events, and V be another random variable describing the predicted probabilities

for those who did not have an event. Then C = P (Y ≥ V ) for continuous V and Y , and

C = P (Y > V ) + 0.5 ∗ P (Y = V ) for discrete V and Y .

Hanley and McNeil [Hanley and McNeil, 1982] first noticed the relationship between this

measure and the Mann Whitney statistic, which can be re-defined as follows: let Y1, Y2, . . . , Yk

be the predicted probabilities of having an event in the event group, and V1, V2, . . . , Vn be

the predicted probabilities in the non-event group, such that for each pair of subjects (i, j),

where the first one comes from the event-free group and the second one comes from the

event group, assign a 1 if Yj > Vi, a 0.5 if Yj = Vi and 0 otherwise. Then, summing over

all possible pairs of subjects will yield the Mann-Whitney statistic, denoted WV Y . The area

under the curve is equal to 1
kn
WV Y .

4.4 Reclassification Methods

Another important area of research is to determine whether existing risk prediction mod-

els can be improved with the addition of new biomarkers or other risk factors. The improve-

ment in risk prediction is often referred to as the incremental value or prediction increment,

and recently has been evaluated by use of the net reclassification index [Pencina et al., 2008].
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Risk Reclassification

Consider an established model, such as the Framingham risk score, or Gail model (de-

noted Model 1, and then consider a scenario in which a single, new predictor is added to the

established model (denoted Model 2 ). If cutpoints have been established that classify pa-

tients into high risk, intermediate risk, low risk, etc., a two-way table can be constructed that

shows the distribution of patients by each model. Furthermore, the cells that are off-diagonal

are the ones in which reclassification has occurred.

Risk Model 2
Risk Model 1 Low Intermediate High
Low n1 n2 n3

Intermediate n4 n5 n6

High n7 n8 n9

This makes it possible to calculate the percent reclassified, as the sum of all the off-

diagonal cells, divided by the total number of subjects. This summary measure may be

useful in that it gives some indication of how many persons would change risk categories,

and possibly treatment decisions, under a new model.

Cook and Ridker [Cook and Ridker, 2009], proposed calculating a reclassification cali-

bration statistic, analogous to the Hosmer-Lemeshow goodness-of-fit statistic but using re-

classified categories instead of deciles. It is calculated as follows:

X2
RC =

K∑
k=1

(Ok − nkp̄k)2

nkp̄k(1− p̄k)
,

where nk is the number of observations in cell k, Ok is the observed number of events in

cell k, and p̄k is the averaged predicted risk in cell k for the model. The statistic follows an

approximate chi-squared distribution with K − 2 degrees of freedom.

However, it has been shown [Pepe, 2011] that in most instances, as long as the original

model is an adequate fit of the data, the enhanced model will accept the null hypothesis

of a good fit, and this test is useless. Moreover, the reclassification calibration test of the
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baseline model should reject the null hypothesis, as it has already been established that the

new biomarker or predictor, has an association with the outcome. In fact, the reclassification

calibration statistic for the original model is the same as the Pearson Chi-squared statistic

for association between the new risk factor, controlling for the risk factors in the original

model.

In summary, if the new biomarker has been shown in preliminary analyses to be a risk

factor, the reclassification calibration test of the baseline model will be rejected when there

is a sufficiently large sample size, and therefore it has been argued that there is “no point in

performing this test” [Pepe, 2011].

Net Reclassification Index

Another way of comparing two models, on the basis of reclassification, is to compute the

Net Reclassification Index or Improvement, or NRI.

NRI = P (up|disease)− P (down|disease)

+P (down|nondiseased)− P (up|nondiseased),

where “up” refers to a person being moved into a higher risk category under the new model,

and “down” refers to a person being placed in a lower risk category under the new model.

This general formula can be used for any number of categories. It is similar to the percent

reclassified, but it distinguishes between movement in the correct and incorrect directions.

It can also be rewritten into the sum of improvements for diseased (moving into higher

categories) and nondiseased (moving into lower categories):

NRI = [P (up|disease)− P (down|disease)]

+[P (down|nondiseased)− P (up|nondiseased)]

= relative improvement(diseased) + relative improvement(nondiseased)
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Interpretation of the NRI is difficult, however, because by summing the 2 components, it

is not possible to see the relative contributions of each, and it has been argued that it may

be better to report the two components separately, or the changes in proportions of subjects

in each of the risk categories, with “+” or “-” to denote movement into a higher or lower

category [Pepe, 2011, Kerr et al., 2014].

Some limitations of the use of risk categories in general are that it is assumed that the

categories have been defined based on rigorous and uniformly agreed upon criteria, though

this is often not the case. Additionally, it has been shown that substantial reclassification

can occur even without substantial improvement in model performance.

Category-Free Net Reclassification Index

A category-free net reclassification index was proposed [Pencina et al., 2008] to deal with

the criticism of arbitrarily defined categories. It is calculated as the net proportion of diseased

patients for whom the risk under the new model is higher than the risk under the baseline

model plus the net proportion of nondiseased individuals for whom the risk under the new

model is lower than the risk from the baseline model:

NRI = [Proportion(risknew > riskbase|disease)

−Proportion(risknew < riskbase|disease)]

+[Proportion(risknew < riskbase|non-diseased)

−Proportion(risknew > riskbase|non-diseased)]

While use of the NRI gained momentum in the last few years, a recent paper by Pepe

et al. [Pepe et al., 2014] showed that it yielded false positive conclusions at an alarmingly

high rate, compared to the change in AUC and a likelihood ratio statistic, which showed a

positive effect in 9.8% and 5% of simulations, respectively. It warned against its use to draw

conclusions about predictive capability of new biomarkers and instead recommends the use
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of a standard test, such as a likelihood ratio test, to test the statistical significance of the new

risk factor in the predictive model. Then they recommend using more clinically meaningful

ways of describing the improvement in prediction such as net benefit and relative utility.

Integrated Discrimination Index

The integrated discrimination improvement (IDI) integrates the NRI over all possible cut-

offs [Pencina et al., 2008]. It is the difference in Yates, or discrimination slopes between 2

models, which is the mean difference in predicted probabilities between events and nonevents.

IDI = (¯̂pevents − ¯̂pnonevents)new model

−(¯̂pevents − ¯̂pnonevents)old model,

where ¯̂pevents is the mean of the model-based predicted probabilities of an event for those

who develop events, and ¯̂pnonevents is the mean of the model-based predicted probabilities of

an event for those who do not develop an event. An asymptotic test for the null hypothesis

of IDI = 0 can be constructed as follows, since the actual events do not depend on the

model:

z =
ˆIDI√

(ŝeevents)2 + (ŝenonevents)2

Values of the IDI can be interpreted as the improvement in discrimination of the new

model, and be formally tested for the null hypothesis of no improvement. However, because

these measures all condition on event status, they cannot be used for time to event data.

4.5 Methods for Censored and Survival Data

In survival analysis, discrimination is defined as the model’s ability to separate those with

longer event-free survival from those with shorter event-free survival within some time frame

of interest [Pencina et al., 2012a]. Discrimination of statistical models with dichotomous
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outcomes is most commonly quantified by the AUC, sometimes called the C or concordance

index, but this does not take into account any time component or the fact that observations

may be censored. Several different versions of the C-index for survival data have been

proposed.

In general, for any pair of bivariate observations (X1, Y1) and (X2, Y2), the concordance

probability is defined as the probability that (Y2 > Y1) given that (X2 > X1). This idea can

be extended to survival analysis, where T is the length of time until the event of interest and

X is a predictor variable, such that the observed data are (Y, δ,X), where Y = min(T,Q),

Q is the censoring time and δ = I{T ≤ Q}. Then the concordance probability is defined as:

CT,X = P (X2 > X1|T2 > T1)

Several variations of this measure have been proposed.

Harrell’s C-index

Harrell’s C-index was first proposed in 1996 [Harrell Jr et al., 1996] and extends the idea

of the AUC to the case of right-censored survival time outcomes and assesses the amount of

agreement or concordance between predictions and outcomes comparing not only events and

nonevents but also two events that happened at different points in time. Briefly, 2 subjects

are described as comparable if we can determine which one survived longer (i.e. they have not

both been censored, or if one has been censored, it takes place after the other has experienced

the event). The pair is considered concordant if their predicted probabilities of survival and

observed survival times go in the same direction, meaning, that for every comparable pair,

the person with the longer survival time, also has the higher predicted probability of survival.

Then, the overall C-index is defined as the probability of concordance given comparability:

CY,X =

∑n
i=1

∑n
j=1[δiI{Yi < Yj}I{Xi < Xj}+ δjI{Yj < Yi}I{Xj < Xi}]∑n

i=1

∑n
j=1[δiI{Yi < Yj}+ δjI{Yj < Yi}]
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In order for two subjects to be considered comparable, the subject with the shorter

observed time must be the one who experienced an event, while the subject with longer

observed time could either have experienced the event at a later time or have been censored.

However, the exclusion of pairs where the person with shorter follow-up time was censored,

means that this version of the C-Index may depend on censoring and caution should be used

when there is a fair amount of censoring present in the data set [Liu and Jin, 2009].

Chambless and Diao’s C statistic

Chambless and Diao [Chambless and Diao, 2006] defined a time-dependent AUC as:

AUC(t) = P (Zi > Zj|Di(t) = 1, Dj(t) = 0)

Where Zi and Zj are two predicted probabilities for an event and non-event. It is the

probability that in two randomly chosen subjects, one who experienced the event and one

who did not, the model predicted risk will be higher for the person who experienced the

event.

They derive the sample estimator using Bayes’ formula to obtain:

CCD =
E((1− S(t|Pj))S(t|Pi)I(Pi < PJ))

E((1− S(t|Pj))E(S(t|Pi)))

Where S and I are the survival and indicator functions and E denotes expectation.

It can be thought of as a standardized average of event probabilities multiplied by survival

probabilities, from all (discordant) pairs whereZi > Zj. Persons that are censored before

time t do not contribute to the calculation and it focuses only on event versus nonevent

comparisons. Survival times enter the definition only implicitly, by calculation of the index

only at a specified time, t.
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Gönen and Heller’s Concordance Probability

Gonen and Heller proposed a method to estimate a variant of the c-statistic that is

not sensitive to the degree of censoring, is a simple function of the Cox model, and does

not require imputation of survival times [Gönen and Heller, 2005]. Unlike the previously

mentioned c-indices, this one calculates the probability that of any two subjects, the one with

the worse model-based risk profile will have the shorter survival time. It is the probability

of time, based on risk profile, which is the reversal of the other C-indices:

K = P (Tj > Ti|Pi ≥ Pj)

This definition is applied to Cox regression models and uses the proportional hazards no-

tion to derive an estimator for K. Assuming that subjects are ordered according to increasing

linear predictors βTX, (or equivalently, decreasing predicted probabilities of survival) it can

be formulated as

K =
2

N(N − 1)

∑
i<j

{ I(βTXi > βTXj)

1 + exp(βTXj − βTXi)
+

I(βTXi < βTXj)

1 + exp(βTXi − βTXj)

}
Features of this estimator are that it depends only on the linear predictors values, so it

can be calculated from only the Cox regression coefficients and risk factor levels, and that is

handles censoring automatically through the Cox regression coefficients, estimated using the

full survival data. For any two subjects, the expression under summation takes values that

range from 0.5 to 1.0. When linear predictors are very close to each other it approaches 0.5

and when they are further apart it approaches 1. This gives this index an interpretation of

a measure that assigns a distance to each pair of subjects and then averages these distances

over all pairs. Higher values indicate better discrimination.
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Discussion

In survival data, the C-index summarizes the models ability to discriminate those with

longer event-free survival from those with shorter event-free survival in a given time, T .

Chambless and Diao’s definition is the closest to the definition of the AUC in the binary

case, but does not include censored observations in its calculation. Gönen and Hellers K,

deviates from the classical definition in that it focuses on the distance between the model

based predictions rather than true outcomes, and also must fulfill the proportional hazards

assumption. Of all the C-indices proposed, only Harrell’s is invariant to transformations and

is fully nonparametric, based only on ranks.

In a 2012 paper by Pencina et al. [Pencina et al., 2012b], the various C-indices were

calculated for the Framingham risk score on both real and simulated data, and were found

to have very different results. Thus, the authors concluded that different versions of the

C-index should not be compared across studies and that care should be taken in interpreting

results. Similarly, the choice of index should be made a priori, and the authors recommend

that in situations where prediction is long-term and in which not all subjects experience the

event of interest, Harrell’s C would be the best choice. However, in clinical trials or other

studies of shorter duration where the focus is completely on event status (which is close to

binary), Chambless and Diao’s may be a good choice.

Recently, Wolbers and colleagues [Wolbers et al., 2014] have described a method for

adapting Harrell’s C to a subdistribution hazards model, however, software is not currently

available.

4.6 Decision Analysis

Sometimes the goal of a test or prediction model is to inform clinical decision mak-

ing, such as whether to initiate a medical intervention, referral for more invasive testing,

or beginning a preventive strategy or treatment. In these circumstances, where there is
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a clinical decision to be made, perhaps more important than the statistical measures of

model performance, are evaluating the real-world impacts the model would have. Addi-

tional methods for evaluating models in the context of decision making and clinical util-

ity have been established and include net benefit and decision (or relative utility) curves

[Kerr et al., 2014, Pepe et al., 2013, Vickers et al., 2008].

Net Benefit

Net benefit, or NB, refers to the change associated with the use of the new marker or

risk factor. It is the average benefit of the intervention among those who otherwise would

have an event, B, minus the cost of the intervention to nonevents, C. For example, if the

risk model has a threshold used to classify patients into high and low risk, where those in

the high risk group would receive an intervention, then the net benefit is:

NB = B ∗ P (event) ∗ P (high risk|event)− C ∗ P (nonevent) ∗ P (high|nonevent)

A rational choice for a threshold is Cost/Benefit, when one does not already exist.

Predictiveness Curve

Another graphical approach to evaluating the performance of a model, called the pre-

dictiveness curve, was developed by Pepe et al. in 2008 [Pepe et al., 2008]. This work was

motivated by the apparent contradictions seen in evaluating biomarkers in that a marker

that is strongly related to risk, even after controlling for other risk factors, often seems to

add little improvement in classification performance.

The predictiveness curve combines concepts from both risk modeling and performance

evaluation and can simultaneously assess model fit and clinical utility in the population.

To create it, the individual predicted values from the model are ordered from lowest to
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highest and plotted on the curve by percentile of distribution. This is analogous to a plot of

goodness-of-fit, similar to concepts for the Hosmer-Lemeshow statistic, which formally tests

it.

For example, in the plot below from Pepe [Pepe et al., 2008], at 90 percent on the x-axis,

the risk value is roughly 0.10, indicating that 90 percent of the cohort have predicted values

lower than 0.10. The graph can also be used to fix a risk percentage and determine what

percentage of the population have at least that as their risk score. Using 0.20 risk as an

example, about 98 percent of the population have a score lower than 0.20.

Figure 4.3: Sample Predictiveness curve

Another useful property of the predictiveness curve is that the explained variation, or R2

can be calculated from it as:

R2 =

∫ 1

0

(pred(ν)− ρ)2dν/ρ(1− ρ)

where ρ = disease prevalence in the study population, and pred(ν) is the risk value at the νth

percentile. The denominator is so that the value of R2 remains in the range from 0 (a useless

prediction) to 1 (predicts perfectly). It is also helpful to add a horizontal line to the plot at

the disease prevalence, which would be a model in which all patients were assigned the same

risk, and thus would be a useless model. The total gain can also be visually assessed as the

area between the predictiveness curve and the useless model reference line.
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Strengths of the predictiveness curve are that once a model has been developed, it is

easy to plot, and intuitive to understand for clinicians. It has been extended for case control

studies, and can also be used in the setting of a time dependent outcome by defining the

event in a fixed interval of time, or plotting several possible time intervals.

Decision Curve Analysis

Another method for evaluating and comparing prediction models that incorporates clin-

ical consequences is decision curve analysis [Vickers and Elkin, 2006]. Examples of clinical

consequences are a false positive, where a patient would be referred for additional, possibly

invasive, medical testing, who does not have disease, or a false negative, in which a patient

who has the disease, misses the opportunity to be put on medication or other intervention.

This method only requires the data set on which the models are tested, and can be applied

to models that have either continuous or dichotomous results.

It starts by assuming that the threshold probability of a disease at which a patient would

consider an intervention is informative of how the patient weighs the relative consequences

of a false-positive and a false-negative prediction. At a predicted risk of 1, the patient would

likely opt for treatment, whereas at a probability near 0, the patient will forgo it. Define

a threshold between 0 and 1, pt at which a patient will be uncertain of whether or not to

treat. Then, define the Net Benefit as:

Net Benefit =
true positive count

n
− false positive count

n

(
pt

1− pt

)

In this formula, true positive count and false positive count are the number of patients with

true and false positive results at the threshold of pt, and n is the total number of patients.

In order to create the decision curve, the net benefit must be calculated for a range

of corresponding thresholds, pt, and the authors provide a simple to follow, step by step

algorithm for doing so:
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1. Chose a value for pt.

2. Calculate the number of true and false positive results using pt as the cut-point for

determining a positive or negative result.

3. Calculate the net benefit of the prediction model.

4. Vary pt over an appropriate range and repeat steps 2 and 3.

5. Plot net benefit on the y-axis against pt on the x-axis.

6. Repeat steps 1 through 5 for each model under consideration.

7. Repeat steps 1 through 5 for the strategy of assuming all patients are positive.

8. Draw a straight line parallel to the x-axis at y = 0 representing the net benefit associ-

ated with the strategy of assuming that all patients are negative, (“treat none”).

Plotting the net benefit against threshold probability yields the decision curve. Below is a

sample curve from the original paper, and note how the lines corresponding to the “treat

all” (45-degree line) and “treat none” intersect at disease prevalence.

Figure 4.4: Sample Decision curve

The authors also provide a modification to the net benefit calculation that subtracts off

a penalty for “test harm” in the case of an invasive medical test, or way of quantifying the
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consequence of a false negative relative to a false positive (for example it being considered 50

times worse to miss a diseased patient than to send a healthy patient for additional testing

or intervention). It can also be considered as the number of patients a clinician would feel

comfortable testing, in order to find one who has disease.

The net benefit at a particular threshold has a simple interpretation as: compared to as-

suming all patients are free of disease, it is the number of additional diseased patients treated

per 100 patients, without an increase in the number of false positive results. Other benefits

of the decision curve are that it can also be used to compare several different models, and

methods have been developed to correct for overfitting, estimate confidence intervals, apply

to censored and competing risk data (including competing risk), and to calculate decision

curves directly from predicted probabilities [Vickers et al., 2008]. Packages are available in

Stata and R and are located at http://www.decisioncurveanalysis.org.

Discussion

Though there is much debate over how best to assess the performance and utility of a

predictive model, one general consensus is that any new marker or risk factor must first show

statistical significance in order to be considered. However, as statistical significance does not

necessarily imply clinical significance or improvement in model prediction, the goal of the

model and how it will be used clinically, should be taken into account when assessing its per-

formance. Both the AUC and Net Reclassification Index have been criticized as they are not

clinically meaningful and are broad summaries of changes in risk models [Kerr et al., 2014].

It has been suggested that it may be best to present several, complementary evaluation

methods, such as first assessing the statistical significance of the risk factors, then present-

ing measures such as the AUC or C-index, and following up with an example of clinical

implications for decision making [Vickers et al., 2011]. Regardless of the evaluation method

chosen, model validation is always best performed on an external data source, meaning one
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separate from the data set upon which it was created.

In our analysis of real data we will present the AUCs when validating the established CVD

risk models in our cohort of breast cancer survivors, and present calibration plots. When

developing our new models, we will first present tables of risk factor estimates, in order

to demonstrate their statistical significance, and thus inclusion in the multivariate model.

Once a final model has been selected, we will calculate the AUCs, and corresponding 95%

confidence intervals, for a range of time points of prediction, noting that they will likely be an

overstatement of model performance until they can be validated on an external data source.

Areas of future work can exam the model performance in a decision analysis framework,

once we have obtained adequate clinical input in regards to potential “treatment” options

and thresholds.
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Chapter 5

Comparison of Competing Risk

Models

In order to use the competing risks methods for the analysis of the breast cancer data,

I first evaluate and compare the models under consideration through simulations, for their

robustness and estimation precision. With competing risks data, patients are at risk for a

number of possible causes of failure or events, differing from traditional survival analysis

under which only a single failure is analyzed, and competing failures are treated as censored

observations. In the last two decades, there have been several noteworthy analysis methods

proposed for analyzing multiple covariates in the presence of competing risks. The simplest

way is to analyze each endpoint in its own Cox model, called a cause-specific hazards model.

To analyze the effect of covariates on the cumulative incidence function, Fine and Gray

proposed a method that is based on the proportional subdistribution hazards of the cumu-

lative incidence function, whereas Klein and Andersen’s method [Klein and Andersen, 2005]

is based on calculating pseudovalues from a jackknife statistic from the cumulative incidence

curve. Klein [Klein, 2006] has also proposed an additive hazards model. More recently,

several groups have been favoring a multi-state modeling approach, including Beyersmann,

Allignol and Schumacher [Beyersmann et al., 2012], as well as Putter, de Wreede and Fiocco
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[Putter et al., 2007, de Wreede et al., 2010], where failures are modeled as transitions from

one state to another.

While the availability of software for these methods is variable, the most popular methods

presented in the literature for analyzing data with competing risk endpoints remain the

cause-specific hazards (CSH) and subdistribution hazards (SH) (also known as the Fine-

Gray) models. Both of these models extend a proportional hazards model, however, their

interpretation is slightly different, due to the way the competing events are handled. The

cause specific hazards model studies the effect of a covariate only on the hazard of the

event of interest, and treats all other failures as censored observations. The subdistribution

hazards model studies the effect of the covariate on the cumulative hazard function, or

cumulative event probability, defined as the probability of failing from cause k at a specific

time, given that that person has not yet failed from cause k. While the results of both

models are reported as a “hazard ratio”, the estimates of the hazard ratio from each model

on a single data set can be very different, and even opposite in direction. In addition,

a data set cannot simultaneously satisfy the proportionality assumptions of both models

[Latouche et al., 2007, Beyersmann et al., 2007], and could be further complicated by time-

varying effects. While the choice of model depends on the scientific question of interest,

it has been argued recently that there is merit in presenting the results of both models

side-by-side [Latouche et al., 2013, Dignam et al., 2012] to get a complete understanding of

the effect of covariates, especially if the research question is for prognosis. Even when

the subdistribution hazards model has been incorrectly specified, the hazard ratio can be

interpreted as a time averaged effect of the covariate on the cumulative event probability

[Beyersmann et al., 2009, Grambauer et al., 2010].

The following chapter will first review the existing literature that compares the CSH and

SH models through simulations, highlighting important findings, as well as gaps. Next, in

order to create my own simulation to compare the performance of the two models, I must

also include data generation techniques, as there has been no consensus on how to most
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accurately generate data that simulate a competing risk process. Lastly, I evaluate the two

models, using a number of data generation methods, and include a simulation of a multi-

state model for the generation process that most closely resembles the real data of Chapter

6.

5.1 Previous Simulation Studies of Competing Risks

Though the use of competing risks analysis methods has become widespread in the litera-

ture, simulation studies evaluating their properties, as well as directly comparing the results

of CSH and SH models is scarce [Allignol et al., 2011, Beyersmann and Schumacher, 2007].

Several papers have been presented examining various facets of a competing risk analysis,

however, most have only examined a single binary covariate, while altering other components

such as dependence between outcomes, degree of censoring, and magnitude of covariate ef-

fects. The relationship between competing causes of failure and covariates that may act

on one or more causes, can become rather complex, and the results from different analytic

methods may yield differing, sometimes contradictory results.

The first paper to investigate the subdistribution hazards model through simulations was

the original paper by Fine and Gray in 1999. The goals of the simulations they presented

were to compare the results of their censoring complete estimation (when potential censoring

time is always observable, i.e. no loss to follow-up, such as in clinical trials) with an adapted

IPCW (inverse probability of censoring weighting) estimating function for right-censored

data estimators. However, it was also the first paper to describe a method for simulating

data that follow this type of model.

The authors ran two sets of simulations. Each set contained two covariates which were

used to generate two independent causes of failure. In the first set of simulations, the covari-

ates were standard normal, and in the second they were Bernoulli. Censoring percentages

ranged from no censoring to 68% censored, and were examined for data sets of N=200, for
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1,000 replicates. The simulation results are only presented for the first cause of failure, as the

second cause was not generated under a subdistribution satisfying the model’s proportion-

ality assumption. The results showed that the two estimating techniques presented in the

paper provided nearly identical results, thus even in the presence of censoring, the weighted

estimating equation proved to be as efficient as the score function based on partial likelihood.

The paper then compared the results of a SH model with a CSH model in a data set of

breast cancer patients treated with tamoxifen, in which the goal was predicting breast cancer

recurrence while accounting for non-cancer death without recurrence. The results of the two

models were quite similar in the real data set, largely because the covariates associated with

an increased risk of breast cancer recurrence do not have an effect on the cause-specific hazard

of death without recurrence, but the authors state that the advantage of the subdistribution

hazards approach is that one can see the effect of each covariate directly on the cumulative

incidence.

The next paper evaluating the subdistribution hazards model through simulations was

in 2007 by Latouche and colleagues [Latouche et al., 2007]. The goal of the paper was to

evaluate the “prognostic influence of an exposure on a specific cause of failure.” To do so,

the authors focus on a single failure type of interest and a single binary covariate, where

the covariate relationship was generated from a cause-specific hazards, but a subdistribution

hazards model is fit. Data for a second cause of failure were generated under a latent

failure time model using an absolutely continuous bivariate exponential distribution, denoted

(T1, T2) ACBV E(a1, a2, a12), where a12 = 0 denotes independent failure times. Each data set

contained 400 observations divided into two equally balanced groups, representing a single

binary covariate under investigation.

When the covariate did not have an effect on the competing cause of failure, the CSH

estimates were close to the true parameter values for the cause of failure under investigation,

especially for smaller values of the effect. When the covariate had a protective effect on the

competing cause of failure (negative coefficient), this led to an increase in the hazard ratio
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for the first cause of failure. By decreasing the risk of the competing cause, it increases the

risk of the primary cause of failure, thus inflating the hazard ratio. Conversely, when the

covariate effect on the competing cause is positive, indicating an increase in the risk of the

competing event, this will lead to a decrease in the coefficient estimate on the primary cause

of failure. This is because observing an increase in events in the competing group will lead

to fewer failures from the primary cause. Thus the authors conclude that when the covariate

has an effect on the competing cause of failure, the parameter estimate for the effect on

the primary event under investigation may be incorrect under the subdistribution hazards

model.

In a letter to the editor regarding the Latouche et al. paper, Beyersmann and colleagues

[Beyersmann and Schumacher, 2007] build upon the previous work, and through simulations,

show that even when the SH models are incorrectly specified, they may still be useful. They

begin by detailing the relationship between the subdistribution hazards α1 and α2 and the

cause specific hazards, λ1 and λ2, in terms of the cumulative incidence function, as follows:

F1(t) = 1− exp

(
−
∫ t

0

α1(u)du

)
=

∫ t

0

P (T > u) · λ1(u)du, (5.1)

Where P (T > u) depends on both cause specific hazards:

P (T > u) = exp

(
−
∫ u

0

λ1(ν) + λ2(ν)dν

)
.

The right hand side of equation (5.1) is the usual definition of the cumulative incidence

function, while the middle part is the representation of failure times in terms of the subdis-

tribution hazard. Differentiating equation (5.1) with respect to t gives the following formula,

a relationship between the cause specific hazard and subdistribution hazard

λ1(t) =

(
1 +

P (T ≤ t, ε = 2)

P (T > t)

)
· α1(t) =

(
1 +

F2(t)

P (T > t)

)
· α1(t) (5.2)
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The authors state that this relationship has two important implications. The first is

that the right hand side of equation (5.2) is time dependent, meaning that a proportional

model for the subdistribution hazard, will not imply a proportional model for the cause-

specific hazard, and vice versa. This was shown in the simulation study by Latouche et

al.[Latouche et al., 2007].

The second implication is that the impact of a covariate may be different on the cause-

specific hazard and the subdistribution hazard. For example, in the case where a binary

covariate has an increase on λ1, and an even stronger positive effect on λ2, this will usually

lead to a decreasing effect on the subdistribution hazard α1, because more people will fail

from the second cause, leaving fewer to fail from the first. This phenomenon was also

exemplified in the simulation results of Latouche et al.[Latouche et al., 2007].

In conclusion, the authors state that the proportional subdistribution hazards model is

appealing because it allows for interpretation of covariate effects in terms of the cumulative

incidence function. It also seems that even when the model is mis-specified, that is, the

proportional cause specific hazards model holds, it can still be used to offer an average effect

of a covariate on the cumulative incidence function.

Prompted by the results of their 2007 papers, Beryersmann, Latouche, et al.

wrote a follow-up paper on simulating competing risks data in survival analysis

[Beyersmann et al., 2009]. They explain that the majority of simulation studies in the com-

peting risks setting have utilized the latent failure time approach, rather than simulating

data based on (possibly time dependent) cause specific hazards, the quantities to be mod-

eled. A thorough literature search from 2000 to 2008 revealed that even the few articles that

simulated data based on cause-specific hazards, assumed constant hazards, which may not

always be realistic in the medical setting. Additionally, they notice a trend in the literature

to present the results of both analyses side by side and wanted to examine the results in a

controlled setting.

They illustrate their method by examining the least false parameter of a subdistribution
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hazards model. The definition of a least false parameter is an estimator from a mis-specified

model, or more simply put: when a particular model is specified and known to be true, if

we fit a different class of models (e.g. fitting a proportional subdistribution hazards model

when a proportional cause-specific hazards model is known to be true) but still estimate

the parameter from the incorrectly specified model. While it has been shown that under a

proportional cause-specific hazards model, the subdistribution hazards model will be mis-

specified, the results from this model are still useful, and the least false parameter may be

interpreted as a time-averaged effect on the cumulative event probability.

Using a single, binary covariate and hazard rates chosen to mimic data from their ONKO-

KISS study, the authors found that after 500 simulations of 10,000 individuals each, the

hazard estimate for the least false parameter from the SH model was within 0.1 percent of

the effect simulated under the CSH model. In a second simulation of 1,000 runs, where each

run contained a data set comprised of 1,616 individuals, as in the actual study, the estimate

of the least false parameter was asymptotically the same as in the first set of simulations,

and the empirical coverage of the 95% confidence interval was 95.3%, indicating accurate

results, despite a misspecified model. Thus they conclude that even under a misspecified SH

model, the estimate β̂, is asymptotically consistent for the least false parameter β̃, and can

be interpreted as a time-averaged subdistribution hazard ratio. However, these simulations

only evaluated a single, binary covariate.

Building upon the work of the previous paper, Grambauer, Schumacher and Beyersmann

[Grambauer et al., 2010] present a simulation study in 2010 to further examine the prop-

erties of the least false parameter (LFP) from a subdistribution hazards model, when the

cause specific hazards model is the correct model. They once again study a single binary

predictor and two competing events, with data generated to mimic the ONKO-KISS study

of bloodstream cancer patients undergoing peripheral blood stem-cell transplantation. It ad-

vances the previous work by examining a range of censoring percentages, and four different

scenarios of covariate effect, aiming to connect the interpretation from proportional CSH
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and proportional SH models. To the best of the authors’ knowledge, theirs and the 2009

Beyersmann paper are the only ones to study the effects from CSH and SH models side by

side through simulations, at time of publication.

The four different scenarios of the effect of a binary covariate and two competing events

are as follows:

1. effect only on the CSH of interest

2. effect only on the competing CSH

3. effect on both CSHs in the same direction

4. effect on both CSHs in opposite directions

For each scenario, N=1000 data sets were generated under a proportional cause specific

hazards model, with either n=200 or n=1000 observations, and results were presented for 60

per cent censoring. The authors examined a range of censoring, but stated that the degree

of censoring did not greatly alter the results, and thus were not shown. For scenario 1, where

the covariate only has an effect on the event of interest, the LFP is close to the true β values

for all values examined, with very little bias.

For scenario 2, where the covariate has an effect on only the competing event type,

instead of finding LFP estimates of zero when modeling the effect of a covariate on the

primary failure of interest, they take a sign opposite of the effect on the competing cause of

failure. For instance, if the covariate is known to increase the hazard of the second cause of

failure, the β estimate will have a negative sign, indicating a decrease in risk, for the hazard

of the first cause of failure. Conversely, if the covariate is known to have a protective effect

for the competing cause of failure, the LFP will demonstrate an increase in risk for the cause

of failure of interest. This is due to the fact that as individuals are at an increased risk, and

subsequently fail from one cause, they will not be able to experience the competing event,

and thus their risk for the competing event will decrease, and vice versa.

For scenario 3, where the covariate has the same directional effect on both competing

events, the results from the SH hazards model were generally somewhat attenuated, but
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in the expected direction and with very little bias. Results were not presented depicting

whether this effect was also seen when modeling for the competing event. Conversely, for

scenario 4, where the directional effect was opposite on the two competing causes, the hazard

ratio estimates for the first cause of failure are somewhat overestimated, which is expected

under the same explanation given for scenario 2. The results for the second cause of failure

are not presented, but one would expect to see slightly overestimated results in the correct

direction.

In conclusion, the authors state that even when a subdistribution hazards models is mis-

specified, it can be interpreted as a time averaged effect on the cumulative incidence function

and offers a complementary analysis to the traditional cause specific hazards approach.

In 2012, Dignam et al. [Dignam et al., 2012] present a simulation study to further elu-

cidate when the results of the CSH and SH may differ. They expand the literature by also

examining the results when there is dependence between events. For the simulation, two

event times were generated from a bivariate survival distribution, and a censoring time was

generated independently. They also examine a single binary predictor, under four different

covariate-outcome relationships, with a range of censoring percentages, and dependence (cor-

relation of 0.60) between the competing risks, versus independent events. The four scenarios

examined were:

1. equal hazards in both groups (null covariate effect)

2. only the first cause of failure is affected by the covariate, and the hazard of group B

being twice as high as group A

3. both events influenced by group, hazard of group B twice that of group A for both

events

4. both events influenced by group, but the effect is greater for the first cause of failure

than the second

The results presented were based off of 3,000 simulated data sets, each of 250 observa-

tions with approximately 33% censoring. Findings for independent competing risks were as
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follows: under scenario 1, null covariate effect, both models performed as expecting, finding

no covariate effect. Under scenario 2, the CSH model gives a hazard ratio estimate for group

B that is twice that of group A for the first cause of failure, and equivalent for the second

cause of failure, as expected. However, the SH hazard model gives a slightly smaller group

effect for the first cause of failure (1.79) and also indicates that group B is less likely than

group A to fail from the second cause of failure, despite the fact that the data were generated

under equal hazards for cause 2. The explanation for this is that because fewer people in

group A fail from the first cause, they are more likely to fail from the second cause. For

scenario 3, the CSH found both hazards twice as high for group B as expected. However,

the SH model had attenuated hazards for both causes (HR=1.29), due to the fact that for

each cause of failure, a number of individuals fail from the competing cause. For scenario 4,

the CSH model shows the correct effects for both causes of failure, but the SH model finds a

reduced HR for the first cause of failure and a null effect for the second cause of failure. The

explanation for the null effect is that because fewer group A individuals fail from the first

cause, there are more available to fail from the second cause, thus the cumulative incidence

of the second cause is similar between the groups.

When the simulations were repeated with moderate correlation between the event times

for the causes of failure, the results for scenarios 1 and 3 were similar to those of independent

competing risks. For scenario 2, the CSH and SH have very similar hazard ratios, showing a

favorable effect for group B. The authors postulate that the dependence between the events

causes the group effect for failure 1 to also be seen in failure 2. Similarly, for scenario 4, the

two models give very similar estimates of group effect.

The last set of simulations presented investigated the impact of censoring, specifically

for scenario 2, where group B has twice the hazard of group A but only for the first cause

of failure. When there is no censoring, the SH find a significantly lower hazard for group

B for event 2 because more of these patients have failed from the first cause. However, as

censoring increases, the estimates become closer to the CSH estimates, and eventually show
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a null effect.

Based on their simulation study and real data example, the authors conclude that the

effect of a covariate on either the cause-specific hazard of an event or the cumulative in-

cidence of that event can differ for the same set of data. Covariate effects in the CSH

model are only on the failure type of interest, regardless of their effect on the compet-

ing events, since those who fail from the other events are removed from the at-risk set.

However, in the SH model, the effect of the covariate is on the overall cumulative inci-

dence, and may be a result of its direct effect on the event of interest, or an indirect

effect of making the competing causes of failure more (or less) likely to occur. Both re-

sults have merit, and the choice of analytic method depends on the scientific question of

interest. Dignam et al. suggest that for prognostic modeling, it is valid to model the

cumulative incidence. He and other authors propose presenting both analyses together,

to gain a true understanding of the effects of covariates on the various types of failure

[Dignam et al., 2012, Latouche et al., 2013, Beyersmann et al., 2007, Wolbers et al., 2009].

Building upon the previous work, the current simulation will seek to compare the 2 model

types when there is more than one covariate present, and when there is interest in predicting

for more than one specific cause of failure. I will generate two covariates (risk factors) for

each of 2 causes of failure, and assume that the risk factors for one cause of failure are not

associated with the competing cause. Instead of examining a single binary covariate, I will

generate one binary and one standard normal covariate for each endpoint. As the previous

papers did not follow a uniform method to generate their competing risk data, I will include

results for a variety of data generation techniques, which I will outline in the next section.

Lastly, I will suggest an optimal method for data generation when there is more than one

failure type of interest to be modeled, and using that method, extend the simulation to a

multistate modeling approach described in [Putter, 2014].
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5.2 Generating Competing Risks Data

Competing risk analyses are based on cause or event-specific hazards, which completely

determine the competing risk process [Putter et al., 2007]. However, in a review of simulation

studies of competing risks in the literature, Beyersmann et al. [Beyersmann et al., 2009]

found that the majority of studies generated data that was not based on the cause specific

hazards, but rather used the flawed latent failure time approach, or the unit exponential

mixture distribution from Fine and Gray’s original paper. A review of these methods follows.

5.2.1 Simulating using a unit exponential mixture distribution

In their original article presenting the proportional subdistribution hazards regression

model, Fine and Gray [Fine and Gray, 1999] used simulated data to investigate their esti-

mation. They limited the simulation to only two causes of failure and define the cumulative

incidence function for the event of interest (ε = 1) as

F1(t; Z) = Pr(T ≤ t, ε = 1|Z) = 1−
(

1− p(1− exp(−t))
)exp(βZ)

where p is the probability of a type 1 failure for an individual with all covariate values equal

to zero, and β represents the vector of proportional subdistribution log-hazard ratios for the

failure time ε = 1.

For failures of type 1, the subdistribution was generated using a unit exponential mixture

with mass (1 − p) at ∞ when Zi = (0, 0), and the following proportional subdistribution

hazards model when the covariates had nonzero values.

Pr(Ti ≤ t, εi = 1|Zi) = 1− [1− p {1− exp(−t)}]exp(Zi1β11+Zi2β12)

The subdistribution for failures of type 2 were then generated by setting Pr(εi = 2|Zi) =

1 − Pr(εi = 1|Zi) and using an exponential distribution with rate parameter exp(Zi1β21 +
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Zi2β22) for Pr(Ti ≤ t, εi = 2,Zi). When censoring was included, censoring times were

generated from the uniform [a, b] distribution.

Data generation is performed by first generating the covariate values, and then using the

marginal event type probability to determine the cause of failure. Next, the event time is

derived based on event type and covariate values, when Z 6= 0. In the original paper, each

simulated data set contained 2 causes of failure and two covariates Zi = (Zi1, Zi2).

5.2.2 Simulating from a proportional hazards model

The simulation of data from a Cox proportional hazards model was first proposed by

Leemis in 1987, [Leemis, 1987] and again by Bender et al. in 2005 [Bender et al., 2005].

Generating data from this model is not straightforward for several reasons, the first being

that the Cox model is formulated through the hazard function, and not on individual survival

times. Furthermore, the effect of the covariates is also in terms of the hazard function and

must be translated into survival time. When the baseline hazard is constant, as in a Cox

model, it can be calculated fairly easily using the relationship between survival time and

the hazard function, as detailed below. While a bit more complex, the authors also provide

details for simulating from the more Cox-Weibull and Cox-Gompertz models.

Recall the survival function of the Cox proportional hazards model

S(t|x) = exp[−H0(t) exp(β′x)]

where

H0(t) =

∫ t

0

h0(u)du

is the cumulative baseline hazard. Using the relationship between the survival function and

the distribution function yields

F (t|x) = 1− exp[−H0(t) exp(β′x)]
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If Y is a random variable with distribution function F , then U = F (Y ) follows a uniform

distribution on the interval [0, 1], as does (1− U). Then

U = exp[−H0(T ) exp(β′x)]

If h0(t) > 0 for all t then H0 can be inverted, and the survival time T of the Cox model can

be written as

T = H−1
0 [− log(U) exp(−β′x)]

where U is a random variable from the Uniform [0,1] distribution, and H−1
0 is the inverse of

a cumulative baseline hazard function. For the exponential distribution, the survival times

can be simulated through the following formula:

T = − log(U)

λ exp(β′x)

where the corresponding hazard function is given by

h(t|x) = λ exp(β′x)

and covariates can easily be incorporated through exp(−β′x). This has become known as

simulating via the “inversion method” or the method of Bender.

The inversion method was adapted for simulation of competing risks by simply repeating

the data generating process for the number of failures under investigation, generally two.

In this way there would now be a number of generated survival times, (Yi1, Yi2, · · · , Yij),

however, in the case of competing risks, only one can be observed. In order to decide on

the observed failure, a latent failure time approach was used. Briefly, the latent failure time

model was first conceptualized by Prentice et al. in 1978 [Prentice et al., 1978] and states

that each failure type has its own associated failure time but only the first can be observed.

Therefore T = min(Yi1, Yi2, · · · , Yij) and Yij, the time of failure from cause j, which would
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be observed if the possibility of failure from causes other than j were removed.

5.2.3 Simulating from a Multi-State framework

After increasing criticism of the latent failure time model in conjunction with the Bender

approach, Beyersmann et al [Beyersmann et al., 2009], described how to simulate competing

risk data from a proportional cause-specific hazards model. For simplicity, they only present

the method for two competing causes, but mention that it can be extended to more than two.

They first present the competing risk setting as a simple multistate model with a beginning

state and two absorbing states:

0

2

1

Initial State

Event of interest

Competing event

α01(t)

α02(t)

Figure 5.1: Competing Risks as a Multi-State Formulation

In this setting, the competing risk process is completely determined through the cause

specific hazards (CSHs)

α0i(t)dt = P (T ∈ dt,XT = i|T ≥ t), i = 1, 2

which, in turn, completely determine the survival function

P (T > t) = exp(−
∫ t

0

α01(u) + α02(u)du)
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and the sum of the CSHs equal the all cause hazard:

α01(t) + α02(t) · dt = P (T ∈ dt|T ≥ t)

Therefore, when running a simulation, to determine which event occurs at survival time

T , one can use the following probability: given that an individual fails at time T , the

probability that the individual fails from cause 1 is

P (XT = 1|T ∈ dt, T ≥ t) =
P (T ∈ dt,XT = 1|T ≥ t)

P (T ∈ dt|T ≥ t)
=

α01(t)

α01(t) + α02(t)

Then, CSH driven competing events data can be simulated in four simple steps:

1. Define the CSHs (α01(t) and α02(t)) as functions of time, and possibly depending on

covariates [Bender et al., 2005].

2. Simulate the survival times T with all cause hazard α01(t) + α02(t).

3. After the times have been generated, run a binomial experiment that decides on failure

cause 1 with probability α01(T )/((α01(T ) + α02(T )).

4. If desired, generate independent censoring times, C.

It is important to mention that under a proportional CSH model, a subdistribution haz-

ards model will be misspecified. Thus data simulated from one may not yield accurate results

when analyzed via the other. The authors provide details in the appendix for simulating

under a SH model, which they purport is less biologically plausible and more challenging. In

addition, the subdistribution hazards model only analyzes a single event of interest, while all

other failures are subsumed into a single competing event. If the goal is to assess the effect

of covariates on a specific failure type, a CSH model would be the more appropriate choice.
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5.3 New Simulation Results

Here I examine the performance of the subdistribution hazards (SH) model, and cause-

specific hazards model (CSH) side by side, using several methods of data generation. For

simplicity, I include only two causes of failure, however, results for both causes are presented.

To build upon previous work, I also include 2 distinct covariates (one standard normal, and

one Bernoulli), for each cause of failure, as the primary interest is in the ability to use the

coefficients from the models to make individual predictions. This is meant to mimic the real

data analysis that will be presented in the following chapter. The simulations are repeated

for a range of censoring distributions, and repeated to include the newly proposed multi-state

model [Putter, 2014].

5.3.1 Fine and Gray Approach

In the first set of simulations, data were generated following the process described in the

original Fine and Gray paper, and recreate the simulations from their Tables 1 and 2. Two

causes of failure were generated, each sharing the same set of covariates Zi = (Zi1, Zi2). In the

first table, the covariates were assumed to be i.i.d. standard normal and the true parameter

values were (p, β11, β12, β21, β22, ) = (0.3, 0.5, 0.5,−0.5, 0.5). Four different censoring scenarios

were examined, and for the uncensored observations, roughly one-third failed from type 1

and two-thirds from failure type 2. Each simulated data set contained 200 observations, and

results are presented for 1,000 runs.

Building upon the original simulations, results are presented for both the failure type “of

interest” (failure 1), and the competing failure type (failure 2). Additionally, results from

two cause-specific proportional hazards models (one for each failure cause) are presented.

For the cause-specific models, the competing cause is treated as a censored observation when

modeling the cause of interest, and vice versa.

For completeness, the second set of simulation parameters presented in Fine and Gray’s
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Failure
Modeled

Censored
Fail from
cause

Covariate
SH

E(β)(SE)
Empirical
Coverage

CSH
E(β)(SE)

Empirical
Coverage

Failure1
0%

33%
β11 = 0.5 0.51 (0.13) 94.2% 0.20 (0.14) 38.6%
β12 = 0.5 0.50 (0.14) 93.1% 0.65 (0.13) 81.7%

Failure 2 67%
β21 = −0.5 -0.46 (0.10) 98.2% -0.53 (0.10) 91.6%
β22 = 0.5 -0.16 (0.09) 0% 0.18 (0.09) 10.7%

Failure1
25%

25%
β11 = 0.5 0.50 (0.14) 94.3% 0.29 (0.15) 68.0%
β12 = 0.5 0.51 (0.14) 94.6% 0.60 (0.14) 92.0%

Failure 2 50%
β21 = −0.5 -0.59 (0.11) 92.6% -0.57 (0.11) 89.9%
β22 = 0.5 -0.06 (0.10) 1.9% 0.20 (0.10) 19.0%

Failure1
50%

16.7%
β11 = 0.5 0.51 (0.17) 94.7% 0.36 (0.18) 86.6%
β12 = 0.5 0.51 (0.16) 95.5% 0.56 (0.17) 94.5%

Failure 2 33.3%
β21 = −0.5 -0.64 (0.13) 90.5% -0.62 (0.13) 86.2%
β22 = 0.5 0.15 (0.12) 18.1% 0.23 (0.12) 39.0%

Failure1
68%

11%
β11 = 0.5 0.50 (0.24) 92.1% 0.41 (0.23) 90.8%
β12 = 0.5 0.51 (0.22) 94.0% 0.55 (0.22) 95.1%

Failure 2 22%
β21 = −0.5 -0.67 (0.17) 89.2% -0.64 (0.16) 84.8%
β22 = 0.5 0.21 (0.16) 47.7% 0.26 (0.16) 61.6%

Table 5.1: Results using Fine and Gray Simulation Plan: Standard Normal Covariates

paper are also presented below in Table 5.2, along with the results from corresponding

cause-specific hazards models. Here the covariates were assumed to be i.i.d. Bernoulli (0.5)

, and the true parameter values were (p, β11, β12, β21, β22, ) = (0.6, 1,−1, 1, 1). Four different

censoring scenarios were again examined, with 200 observations per data set, over 1,000 runs.

In Fine and Gray’s original paper, simulation results were only presented for cause 1,

where the data were generated from an exponential mixture model, and are very similar to

the E(β) and (SE) shown in Table 5.1. Additionally, the empirical coverage, defined as the

number of 95% confidence intervals that contain the true parameter value, is close to 95%

for failure 1, under all censoring scenarios. Omitted from the authors’ original paper, is the

performance of the model when modeling a second failure cause, Failure 2. As the model

is only designed to show the relationship of covariates on the overall cumulative incidence

curve, it was not developed to estimate the relationship of individual covariates on more

100



than one failure type’s cumulative incidence.

As can be seen from the results, the β estimates for failure 2 are not as close to the true

value for the beta coefficients. For β21, where the covariate effect is protective for failure

2 but increases the risk for a failure 1 event, the estimates are slightly biased, though the

empirical coverage is still good. For β22, where there is an increased risk on both causes of

failure, the estimates are not accurate for the effect on failure 2, and the empirical coverage

ranges from zero to extremely low at best. There are two explanations for this: 1) the

data for cause 2 were not generated from an exponential distribution and do not follow a

proportional subdistribution hazards model, and 2) when a covariate has an effect on both

causes of failure, under the subdistribution hazards model it is an estimate of the effect via

a direct effect on the primary cause of failure and an indirect effect, by its effect on the

competing cause [Dignam et al., 2012].

In terms of the performance of the CSH models, as the data for failure 1 were generated

under the subdistribution hazards model, they will violate the assumption of the proportional

hazards model [Grambauer et al., 2010], and we see biased estimates for the CSH models and

poor empirical coverages, as expected. For failure cause 2, where the data were generated

under an exponential distribution, the estimates are slightly inflated for β21, and slightly

attenuated for β22, thus further demonstrating that treating competing failures as censored

observations can give biased results.

When the simulations were repeated using the Fine and Gray method of data generation,

but with Bernoulli covariates (Table 5.2), similar results were observed: performance of the

subdistribution hazards model was excellent for failure cause 1, but poor for failure cause

2, due to the assumptions under which each cause of failure was generated, and the fact

that each covariate was related to both causes of failure. The performance of the cause

specific hazards model was similar to its performance under the first set of simulations; the

parameter estimates were inconsistent, inaccurate, and highly variable across the different

levels of censoring.
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Failure
Modeled

Censored
Fail from
cause

Covariate
SH

E(β)(SE)
Empirical
Coverage

CSH
E(β)(SE)

Empirical
Coverage

Failure1
0%

60%
β11 = 1.0 1.01 (0.19) 95.3% 0.83 (0.20) 83.6%
β12 = −1.0 -1.00 (0.19) 96.1% -0.39 (0.20) 12.8%

Failure 2 40%
β21 = 1.0 -0.99 (0.27) 0% -0.76 (0.25) 0%
β22 = 1.0 1.20 (0.23) 86.6% 1.14 (0.25) 94.1%

Failure1
25%

45%
β11 = 1.0 1.02 (0.23) 94.9% 0.93 (0.24) 93.9%
β12 = −1.0 -1.02 (0.22) 96.3% -0.54 (0.24) 48.9%

Failure 2 30%
β21 = 1.0 -0.75 (0.27) 0% -0.58 (0.26) 0%
β22 = 1.0 1.49 (0.27) 60.4% 1.39 (0.29) 77.8%

Failure1
50%

30%
β11 = 1.0 1.03 (0.30) 96.2% 0.98 (0.30) 95.3%
β12 = −1.0 -1.02 (0.29) 95.1% -0.64 (0.31) 77.7%

Failure 2 20%
β21 = 1.0 -0.51 (0.30) 0% -0.38 (0.29) 0%
β22 = 1.0 1.66 (0.34) 54.5% 1.57 (0.35) 67.1%

Failure1
68%

19%
β11 = 1.0 1.04 (0.49) 96.6% 1.04 (0.46) 96.7%
β12 = −1.0 -1.05 (0.47) 96.2% -0.83 (0.46) 93.7%

Failure 2 13%
β21 = 1.0 -0.12 (0.37) 28.1% -0.06 (0.36) 16.4%
β22 = 1.0 1.98 (0.94) 59.6% 1.98 (1.62) 68.6%

Table 5.2: Results using Fine and Gray Simulation Plan: Bernoulli Covariates
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5.3.2 Proportional Hazards with Latent Failure Approach

In order to more accurately assess the side-by-side performance of the CSH and SH

models, especially with multiple covariates per failure type, it was necessary to create new

simulations. The first set of new simulations generates two failure times using a unit ex-

ponential mixture distribution for each, examining two distinct covariates for each type of

failure, one standard normal and one Bernoulli (0.5). This is equivalent to a real world set-

ting in which there are two (or more) causes of failure, but each has a different set of known

risk factors. For generating cause of failure, it assumes a latent failure time model where the

observed failure is the minimum of the two independent failure times: Ti = min(Ti1, Ti2).

Results for N = 500 observations per data set, k = 1, 000 runs, appear in Tables 5.3 and 5.4.

In Table 5.3 only the relevant covariates are included for each failure type, meaning, that

when failure 1 is being modeled, only Z1 and Z2 are included as covariates in the model.

Similarly, when modeling failure type 2, I only include Z3 andZ4 in the model. For the CSH

models this is appropriate, as the coefficients are interpreted in terms of the change on the

hazard of a specific event type. For the SH model, however, the effect of covariates is on

the cumulative hazard, which can be directly, through their effect on the cause of failure

of interest, or indirectly, by their effect on competing causes of failure. This illustrated by

Table 5.4, which shows results for all covariates in all models.
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Failure

Modeled
Censored

Fail from

cause
Covariate

SH

E(β)(SE)

Empirical

Coverage

CSH

E(β)(SE)

Empirical

Coverage

Failure1

0%

40%
β11 = 0.5 0.43 (0.07) 84.2% 0.50 (0.07) 95.4%

β12 = 1.0 0.87 (0.15) 84.4% 1.00 (0.15) 95.5%

Failure2 60%
β21 = 0.75 0.42 (0.07) 0.5% 0.75 (0.07) 96.0%

β22 = −0.5 -0.28 (0.12) 56.6% -0.50 (0.12) 95.7%

Failure1

3%

41%
β11 = 0.5 0.43 (0.07) 84.9% 0.50 (0.07) 95.9%

β12 = 1.0 0.87 (0.15) 85.3% 1.00 (0.15) 95.6%

Failure2 56%
β21 = 0.75 0.45 (0.07) 1.5% 0.75 (0.07) 95.7%

β22 = −0.5 -0.30 (0.12) 63.8% -0.51 (0.12) 95.2%

Failure1

16%

37%
β11 = 0.5 0.44 (0.08) 88.4% 0.50 (0.08) 96.3%

β12 = 1.0 0.89 (0.16) 87.2% 1.00 (0.16) 95.5%

Failure2 47%
β21 = 0.75 0.57 (0.07) 32.9% 0.75 (0.07) 96.4%

β22 = −0.5 -0.38 (0.13) 85.2% -0.51 (0.13) 94.8%

Failure1

32%

32%
β11 = 0.5 0.46 (0.08) 93.1% 0.50 (0.08) 95.6%

β12 = 1.0 0.93 (0.17) 92.3% 1.01 (0.17) 95.7%

Failure2 36%
β21 = 0.75 0.65 (0.08) 78.2% 0.75 (0.08) 96.4%

β22 = −0.5 -0.44 (0.15) 93.0% -0.50 (0.15) 95.9%

Failure1

48%

25%
β11 = 0.5 0.48 (0.09) 94.5% 0.50 (0.09) 95.4%

β12 = 1.0 0.96 (0.19) 94.2% 1.00 (0.20) 95.4%

Failure2 27%
β21 = 0.75 0.70 (0.09) 92.5% 0.75 (0.09) 96.2%

β22 = −0.5 -0.48 (0.18) 95.7% -0.51 (0.18) 95.8%

Table 5.3: Latent Failure time approach, exponential distributions, separate covariates
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Looking in greater detail at Table 5.3, for the first cause of failure, we see that the

coefficients from the SH model and the empirical coverages are slightly lower than expected.

As censoring increases, we see improvement in both the estimates and the coverage, as

subjects are less likely to fail from the competing cause of failure as well. Results are

similar when modeling the second cause of failure, with biased estimates and poor coverage,

especially at low levels of censoring. For the CSH model, the coefficient estimates and the

empirical coverages all perform well for both causes of failure, regardless of the censoring.

This further illustrates the point made by Beyersmann [Beyersmann and Schumacher, 2007]

and Grambauer [Grambauer et al., 2010], that when the cause specific hazards model is

correctly specified, the subdistribution hazards model will be incorrect.

In Table 5.4, all covariates were included in all models to illustrate the indirect effect of

a covariate on the subdistribution hazard. Looking at the first rows in the table, where we

model the hazard of failure type 1, with known associated covariates Z1 and Z2 we see similar

results to Table 5.3, with attenuated estimates and reduced coverage for the SH model, but

excellent performance of the CSH model. However, when we look at the covariates that

are not associated with the first cause of failure, Z3 and Z4, we see nontrivial coefficient

estimates, and in the opposite direction of their known effect on the hazard of the second

cause of failure. Specifically, the covariate Z3 was generated such that it increases the hazard

of the second cause of failure, but we observe a negative coefficient when modeling the first

cause of failure. As explained in Dignam 2012 [Dignam et al., 2012], this is considered an

indirect effect on the hazard for failure type 1 because as it increases subjects’ risk for failing

from the second cause of failure, it makes them less likely to fail from the first cause, thus

appearing as a protective effect for that failure type. Conversely, Z4, was generated with a

protective effect on the hazard of failing from cause 2, but when modeling the first cause

of failure, we see that it increases the hazard for failure type 1. This is also due to the

indirect effect, whereby subjects who are at a decreased risk for failing from cause 2, have

an increased risk of failing from the other cause of failure.
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Failure
Modeled

Censored
Fail from
cause

Covariate
SH

E(β)(SE)
Empirical
Coverage

CSH
E(β)(SE)

Empirical
Coverage

Failure1
0% 40%

β11 = 0.5 0.44 (0.07) 87.4% 0.50 (0.07) 95.8%
β12 = 1.0 0.89 (0.15) 86.9% 1.01 (0.15) 95.5%
β13 = 0 -0.30 (0.07) - 0.002 (0.08) -
β14 = 0 0.20 (0.14) - -0.003 (0.14) -

Failure2
0% 60%

β21 = 0 -0.29 (0.06) - -0.003 (0.06) -
β22 = 0 -0.60 (0.13) - 0.005 (0.12) -
β23 = 0.75 0.45 (0.07) 0.5% 0.76 (0.07) 95.3%
β24 = −0.5 -0.30 (0.12) 60.8% -0.51 (0.12) 95.6%

Failure1
3% 41%

β11 = 0.5 0.44 (0.07) 88.3% 0.50 (0.07) 95.9%
β12 = 1.0 0.89 (0.15) 87.9% 1.01 (0.15) 95.5%
β13 = 0 -0.30 (0.07) - 0.002 (0.07) -
β14 = 0 0.20 (0.14) - -0.003 (0.14) -

Failure2
3% 56%

β21 = 0 -0.28 (0.06) - -0.003 (0.06) -
β22 = 0 -0.57 (0.13) - 0.004 (0.13) -
β23 = 0.75 0.48 (0.07) 2.0% 0.76 (0.07) 95.4%
β24 = −0.5 -0.32 (0.12) 67.7% -0.51 (0.12) 94.9%

Failure1
16% 37%

β11 = 0.5 0.45 (0.08) 90.6% 0.50 (0.08) 95.8%
β12 = 1.0 0.91 (0.15) 89.2% 1.01 (0.16) 95.5%
β13 = 0 -0.27 (0.07) - 0.003 (0.08) -
β14 = 0 0.18 (0.15) - -0.003 (0.15) -

Failure2
16% 47%

β21 = 0 -0.23 (0.07) - -0.003 (0.07) -
β22 = 0 -0.46 (0.14) - 0.0008 (0.14) -
β23 = 0.75 0.59 (0.07) 37.4% 0.76 (0.07) 95.7%
β24 = −0.5 -0.40 (0.13) 87.9% -0.51 (0.13) 95.0%

Failure1
32% 32%

β11 = 0.5 0.47 (0.08) 94.2% 0.51 (0.08) 96.0%
β12 = 1.0 0.94 (0.17) 92.2% 1.01 (0.17) 95.7%
β13 = 0 -0.22 (0.08) - 0.0007 (0.09) -
β14 = 0 0.15 (0.16) - - 0.0005 (0.16) -

Failure2
32% 36%

β21 = 0 -0.17 (0.07) - -0.001 (0.08) -
β22 = 0 -0.34 (0.15) - 0.0009 (0.15) -
β23 = 0.75 0.66 (0.08) 79.3% 0.75 (0.08) 96.2%
β24 = −0.5 -0.45 (0.15) 94.2% -0.51 (0.15) 95.7%

Failure1
48% 25%

β11 = 0.5 0.48 (0.09) 94.7% 0.50 (0.09) 95.1%
β12 = 1.0 0.97 (0.19) 94.5% 1.01 (0.20) 95.5%
β13 = 0 -0.16 (0.09) - 0.001 (0.10) -
β14 = 0 0.11 (0.18) - 0.002 (0.19) -

Failure2
48% 27%

β21 = 0 -0.12 (0.09) - -0.0005 (0.09) -
β22 = 0 -0.23 (0.17) - 0.0003 (0.18) -
β23 = 0.75 0.71 (0.09) 92.4% 0.76 (0.09) 96.3%
β24 = −0.5 -0.48 (0.18) 95.7% -0.51 (0.18) 96.0%

Table 5.4: Latent Failure time approach, exponential distributions, separate covariates, all
variables in both models
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In the CSH models, for the variables that are not associated with the specific cause being

modeled, we see a non-significant coefficient, and they would ultimately be removed from the

model. The results remain fairly consistent over the range of censoring distributions, with

the exception being when we have nearly 50% censored observations, we see very similar

results between the CSH and SH models, with accurate estimates and excellent empirical

coverages. While statistically, a 50% censored sample seems undesirable, this is very common

in clinical studies, especially in the setting where patients may fail quickly from their disease,

or go on to be cured and remain alive until the end of study follow-up, when they would be

censored.

5.3.3 Multi-State Approach

However, despite the excellent performance of the CSH models under the previous data

generation methods, use of the latent failure time model for the generation of competing risk

data has come under much criticism recently, for both the difficult to verify assumption of in-

dependence between events, and the lack of biological plausibility [Beyersmann et al., 2009].

Therefore, we also investigated the performance of the SH and CSH models under the same

set of model and simulation parameters, but instead using the Beyersmann approach of data

generation, as detailed in section 5.2.2.

Using these methods, we once again define two covariates (one Bernoulli and one standard

normal) for each of 2 causes of failure, with the true β = (0.5, 1.0, 0.75,−0.5). Results for

N = 500 observations, over 1,000 simulations, appear in Tables 5.5 and 5.6.

Once again, we see excellent estimation and empirical coverage for the CSH models,

across the entire range of censoring distributions. This is to be expected, as data were

generated under a proportional hazard model. Since the CSH model holds, the SH model

will be incorrectly specified, and we see this in the attenuated estimates and poor coverage of

the SH models. Similarly to the latent failure approach, we see improvement in the SH model

as the amount of censoring increases, and by approximately 50% censored observations, the
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SH model performs nearly identically to the CSH model.

The results in Table 5.6, where all covariates are included in all models, again illustrate

the indirect effect that a risk factor may have on the subdistribution hazard. Once again, β3

and β4, were generated such that they were only associated with failure 2, however, when we

model failure 1 using the SH model, we see an effect for each that is opposite in sign to their

effect on the second cause of failure. That is, β3 was generated to have an increased risk

on the hazard of failure type 2, but under a SH model for failure 1, we see a negative sign

(protective effect), indicating a reduced risk of failure from cause 1. This is due to the fact

that as subjects are at an increased risk to fail from cause 2, they are less likely to fail from

cause 1. This also resulted in an attenuated estimate for β3 when modeling failure 2 as the

event type of interest under a SH model. Similarly, β4 was generated to have a protective

effect on the hazard of failure 2, and when modeling failure 1, we see that it increases the

hazard of that failure, due to the fact that subjects who are less likely to fail from cause

2, indirectly become at an increased risk for failure 1. This is not seen in the CSH models,

where only the relevant covariates have a statistically significant association with the failure

cause being modeled.

Results from the multi-state model are identical to the CSH models, as they were analyzed

using a Cox proportional hazards model with 2 absorbing states, and no intermediate events.

Thus, the results are shown in Table 5.5 but are not repeated in Table 5.6, as the columns

would be identical to those for the CSH results.
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Failure
Modeled

Censored
Fail from
cause

Covariate
SH

E(β)(SE)
Empirical
Coverage

CSH
E(β)(SE)

Empirical
Coverage

Failure1
0% 57%

β11 = 0.5 0.37 (0.06) 49.4% 0.51 (0.06) 94.5%
β12 = 1.0 0.74 (0.12) 42.6% 1.01 (0.13) 95.8%
β13 = 0 -0.36 (0.06) - -0.003 (0.07) -
β14 = 0 0.24 (0.12) - 0.002 (0.12) -

Failure2
0% 43%

β21 = 0 -0.29 (0.07) - -0.0007 (0.07) -
β22 = 0 -0.61 (0.15) - 0.00003 (0.15) -
β23 = 0.75 0.59 (0.08) 28.1% 0.76 (0.08) 94.7%
β24 = −0.5 -0.39 (0.14) 86.9% -0.50 (0.14) 95.3%

Failure1
12% 50%

β11 = 0.5 0.40 (0.07) 69.2% 0.50 (0.07) 95.5%
β12 = 1.0 0.81 (0.13) 68.8% 1.02 (0.14) 95.8%
β13 = 0 -0.31 (0.06) - -0.003 (0.07) -
β14 = 0 0.20 (0.13) - 0.0002 (0.13) -

Failure2
12% 38%

β21 = 0 -0.25 (0.07) - -0.0004 (0.08) -
β22 = 0 -0.52 (0.15) - 0.0008 (0.15) -
β23 = 0.75 0.63 (0.08) 50.3% 0.76 (0.08) 95.0%
β24 = −0.5 -0.42 (0.15) 90.2% -0.50 (0.15) 94.8%

Failure1
32% 39%

β11 = 0.5 0.45 (0.08) 87.6% 0.50 (0.08) 95.5%
β12 = 1.0 0.91 (0.15) 90.7% 1.01 (0.15) 95.4%
β13 = 0 -0.22 (0.07) - -0.002 (0.08) -
β14 = 0 0.15 (0.14) - -0.001 (0.15) -

Failure2
32% 29%

β21 = 0 -0.18 (0.08) - -0.0005 (0.09) -
β22 = 0 -0.37 (0.17) - -0.001 (0.17) -
β23 = 0.75 0.69 (0.09) 77.9% 0.76 (0.09) 94.7%
β24 = −0.5 -0.45 (0.17) 94.4% -0.50 (0.17) 95.2%

Failure1
50% 29%

β11 = 0.5 0.48 (0.09) 95.0% 0.50 (0.09) 94.6%
β12 = 1.0 0.96 (0.18) 94.8% 1.01 (0.18) 95.3%
β13 = 0 -0.15 (0.08) - 0.0009 (0.09) -
β14 = 0 0.10 (0.17) - - 0.002 (0.17) -

Failure2
50% 22%

β21 = 0 -0.12 (0.10) - 0.0002 (0.10) -
β22 = 0 -0.24 (0.20) - 0.001 (0.20) -
β23 = 0.75 0.73 (0.10) 87.1% 0.76 (0.10) 94.6%
β24 = −0.5 -0.48 (0.20) 95.0% -0.51 (0.20) 95.0%

Table 5.6: Beyersmann approach, all variables in both models
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5.4 Discussion

In this new set of simulations, I compared the results from a set of CSH and SH models,

when there were two causes of failure of interest. The results were examined under three

different methods of data generation, and assumed each failure type to have its own subset

of known risk factors. The risk factors were either standard normal or Bernoulli distributed,

and results were repeated a range of censoring, from 0% up to 50%.

In terms of the subdistribution hazards model, most of the methods of data generation

available, do not follow the proportionality assumptions of the subdistribution hazards model

and lead to incorrect β estimates and poor empirical coverage. One exception to this is the

original Fine and Gray method of data generation, however, the model only performs well

for the first cause of failure that is analyzed. When the second cause of failure was modeled,

coefficient estimates were not close to the true parameter values. This is due to the fact that

the data for failure 2 were not generated under a proportional hazards assumption, but when

the simulation was repeated with failure 2 generated from a unit exponential distribution,

the results did not improve. Under these simulations, when the performance of the SH model

was improved, the results from the CSH model were poor. However, as censoring increased,

the results from the two models became very similar. Both models seemed to perform slightly

better when the covariates were standard normal versus Bernoulli.

Using the latent failure time approach led to improved results for the CSH models, where

the estimated values were equal to the true parameter values for over 95% of the simulations,

regardless of censoring amount, or distribution of the covariate. The corresponding SH results

showed more accurate results for the failure type that had fewer events (and thus greater

censoring), but coverage was only moderate, until censoring neared about 50%. At this

percentage of censoring, the CSH and SH models gave nearly identical results.

Lastly, when the exercise was repeated using the Beyersmann approach, the CSH models

again performed as expected, while the SH model estimates were attenuated under the case

of no censoring, but asymptoted to the CSH estimates as the amount of censoring increased,
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especially once there was 50% censoring present.

The major findings are that the simulation results are highly sensitive to the method

used to generate the data, and echo what was found by Latouche, Beyersmann and others,

that if the CSH model is correctly specified, the SH model will not be, and the results may

be very different between the two. However, we found that even when the model may be

incorrectly specified, when there is a high degree of censoring present, the two methods

give nearly equivalent results. This may be useful in the analysis of real data. We also

demonstrated that the results of the multi-state model with absorbing states, were identical

to the cause-specific hazards model.

It is important to note that aside from the original Fine and Gray method, none of the

simulation results presented had data generated from a subdistribution hazards model. To

the best of our knowledge, Beyersmann (2009) was the first and only author to describe how

it could be done, but due to the complex programming and lack of biological plausibility,

did not pursue it. A Pubmed search of citations revealed only 12 citing the original article,

however, none of them generated data from the subdistribution hazards model.

While the goal of our real data analysis is risk prediction, rather than estimation of risk

factor effect on a specific cause of failure, based on the similar results between the two models

studied through simulation, given the high degree of censoring, we expect to see very similar

results between the two methods.
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Chapter 6

Application to Real Data

For the data analysis, a cohort was obtained from Kaiser Permanente Northern California

(KPNC). This study included all women who were diagnosed with stage I to III breast cancer

in the KPNC health care delivery system from January 1, 2000 to December 31, 2010, with

follow-up through April 30, 2015. The KPNC coverage area includes 23 counties in the

San Francisco Bay Area and the Central Valley of California, from Sacramento to Fresno

[Kurian et al., 2013].

The first aim is to assess the performance of the existing cardiovascular disease risk models

in a cohort of breast cancer survivors. To do this, the model predicted risk was calculated

for each woman across a number of previously published, female-specific, risk models. The

performance of the model prediction was assessed using the area under the curve (AUC) as

a measure of discrimination, and model fit was assessed by calibration plots.

For the second aim, a model will be created, using established risk factors, to predict

a woman’s risk of breast cancer mortality and cardiovascular disease mortality, following

a stage I-III breast cancer diagnosis. This will use available competing risk methodology

discussed in the previous chapters, to examine two competing causes of failure, while also

accounting for all other competing causes of death, collectively included as a “death from

other” category.
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Electronic medical records (EMR) were used to obtain patient demographic and disease

specific information. Covariates were selected based on the existing literature of cardiovas-

cular and breast cancer prognostic models, as well as their availability in the KPNC EMR

database. Patient age was age at first diagnosis of breast cancer, race was coded as White,

Black, Asian/Pacific Islander, or Other. Breast cancer covariates included type of surgery

(lumpectomy, mastectomy, bilateral mastectomy), stage, grade, lymph nodes (number exam-

ined and status), estrogen receptor (ER) and progesterone receptor (PR) positivity, HER2

status, tumor size (cm), and laterality. Treatment variables included whether or not the

patient received any radiation, chemotherapy, or hormonal therapy. A modified Charlson

Comorbidity Index was used to summarize the patients’ other comorbidities.

Cardiovascular disease risk factors corresponding to the Framingham models were ex-

tracted for this patient population from the time frame of 6 months post cancer diagnosis,

up to 18 months post diagnosis. For those who still had missing risk factor information, data

prior to breast cancer diagnosis was included, in order to obtain more complete risk factor

data. Covariates included total cholesterol, HDL cholesterol, LDL cholesterol, systolic blood

pressure (average of 2 measurements), smoking status, diabetes, and whether prescribed

blood pressure lowering medication. History of cardiovascular disease was also collected and

was defined as the occurrence of any of the ICD-9 codes in Table 6.1 at any time prior to,

up through 6 months post, breast cancer diagnosis [D’Agostino et al., 2000].

Table 6.1: Cardiovascular Event ICD-9 Codes

Event Type ICD9 Code
Myocardial infarction 410, 412
Coronary insufficiency 411, 414
Angina pectoris 413
Ischemic stroke 434
Hemorrhagic stroke 431, 432
Transient ischemic attack 435
Congestive heart failure 428
Intermittent claudication 440.21

Patient outcome data included disenrollment from KPNC (defined as >90 day lapse in
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enrollment), and date and cause of death. Patients who were still alive were censored at their

disenrollment date or on April 30, 2015, the last date of data collection. For all analyses,

cause of death was coded as breast cancer death (ICD 10 code: C50), cardiovascular death

(ICD 10 codes: I00-I99 ) or other. All analyses were approved by the Institutional Review

Board of the KPNC Division of Research.

6.1 Statistical Methods Summarized

Patient and disease characteristics were summarized with descriptive statistics including

means, standard deviations, and percentages. Cumulative incidences of death by cause of

death were plotted over time to graphically display the outcomes, as well as estimate the

incidence of death from each cause.

In the first set of analyses, the performance of previously developed cardiovascular dis-

ease models was assessed. Patient-level risk scores were calculated based on the originally

published models either by use of score sheets, or direct calculation using model based pa-

rameter estimates. Discrimination ability of each model was assessed at the recommended

time frame for prediction (e.g. 5 or 10 years) by the AUC (area under the ROC curve), with

95% confidence intervals calculated using the methods of DeLong [DeLong et al., 1988]. Cal-

ibration was assessed by plotting the observed and predicted number of events for each decile

of risk. In order to create the Framingham recalibrated model, the published risk factor cat-

egories from the 2008 Framingham Model [D’Agostino Sr et al., 2008] were used in a Cox

proportional hazards model where the parameter estimates were calculated for the current

cohort. For this model, discrimination was also assessed on a continuous time scale using

Harrell’s C-index [Harrell Jr et al., 1996].

In the next set of analyses, prognostic models were created on the same set of patients,

to predict the risk of death from cardiovascular disease and breast cancer, examining three

types of models: a cause specific hazards model (CSH), subdistribution hazards model (SH)
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(also known as Fine and Gray models), and a multi-state model (MS). In this analysis all

states are absorbing states, meaning once a patient transitions into the state, they cannot

move from it. This is logical since we are only modeling the transition from disease diagnosis

to death. The transition intensities (hazards) are calculated using a proportional intensity

regression model, which is similar to the Cox regression model, provided the data have been

entered in the counting process style of format, and are presented as hazard ratios.

All three model types were run on both the full cohort, and a reduced cohort who did

not contain missing covariate information, with the exception of smoking. This is called the

complete case (CC) analysis. All possible two-way interactions were examined, and final

multivariate models only contained covariates whose p-value remained ≤ 0.05. Due to the

non-linear effect of age, it was modeled categorically. For ease of prediction age was not used

as the time scale, but rather included as a covariate. For missing covariates, a “missing”

category was included, in order to analyze the full data set, as well as examine whether

there was any relationship between missing data and outcome. A separate analysis utilizing

the reweighting approach described in Xu et. al. [Xu et al., 2009, Xu et al., 2011], was

performed to assess the effect of the missing smoking variable on the parameter estimates in

the Cox model. Models stratified by age and breast cancer stage were also examined.

All analyses were performed in SAS version 9.4 for windows (SAS Institute, Cary, NC), or

R version 3.1.2 (http://cran.us.r-project.org/), using the cmprsk, mstate, cmisc and survival

libraries.

6.2 Results

6.2.1 Description of Cohort and Outcomes

There were 20,462 women diagnosed with stage I-III breast cancer between 2000 and 2010

in KPNC. Demographic and breast cancer characteristic appear in Table 6.3. The mean age

at diagnosis was 60 (range 21 to 103). The majority of the sample was white (79%) and
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non-Hispanic (90%). Over half the sample (52%) was diagnosed with stage 1 disease, and

the majority were treated with surgery (57% lumpectomy and 41% mastectomy).

Table 6.2: Summary of Outcomes and Event data

Event Type N(%) Median time to event

in months, (IQR)

Disenroll from KP 209 (1.0%) 28 (15 - 50)

Death 2,729 (18.2%) 44 (23 - 69)

Breast Cancer death 842 (5.3%) 40 (38 - 43)

CVD death 696 (4.7%) 43 (40 - 46)

Other cancer 321 (2.3%) 51 (47 - 55)

All other causes 870 (5.9%) 45 (42 - 48)

Survivors 17,733 (81.8%) 7.2 years (5.2 - 10.5)

>5 years follow-up 13,685 (66.9%)

>10 years follow-up 5,106 (25.0%)

Summary of Non-fatal events

Any Non-fatal CVD event 8,023 (74.2%) 52 (22 - 90)

CHD event 2,395 (22.5%) 35 (15 - 68)

Stroke 2,637 (30.9%) 56 (28 - 91)

Peripheral artery disease 5,738 (71.3%) 79 (49 - 117)

Heart failure 2,277 (23.2%) 40 (16 - 76)

There were 17,773 (81.8%) women who were alive at last follow-up, and median follow-up

for survivors was 7.5 years. The cumulative incidence curves appear in Figure 6.1. There

were 2,729 (18.2%) deaths overall, 842 (5.3%) deaths due to breast cancer, 696 (4.7%) due to

cardiovascular events, and 321 (2.3%) due to other cancers. Of the 870 (5.9%) other deaths,

the largest subgroups of causes included respiratory unspecified (198, 7.3%) septicemia (92,

3.4%), respiratory arrest (91, 3.3%), pneumonia (70, 2.6%) and Alzheimer’s (37, 1.4%). Data
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on intermediate cardiovascular events (non-fatal) following a breast cancer diagnosis were

also collected and appear in Table 6.2.

Table 6.3: Patient and Breast Cancer Characteristics (N=20,462)

N %
Age (at cancer diagnosis)
21-34 302 1.48
35-39 571 2.80
40-44 1340 6.55
45-49 2167 10.59
50-54 2604 12.72
55-59 2962 14.47
60-64 2866 14.01
65-69 2482 12.13
70-74 2004 9.79
75+ 3164 15.46
Race
White 16166 79.0
Black 1507 7.36
Asian/Pacific Islander 2719 13.29
Other/Unknown 70 0.34
Hispanic
Yes 1999 9.77
No 18455 90.19
Unknown 8 0.04
Smoking status
Current smoker 2430 11.88
Former smoker 3095 15.13
Non-smoker 7389 36.11
Unknown 7548 36.89
Charlson comorbidity
0 13130 64.17
1-2 6137 29.99
3+ 1163 5.68
unknown 32 0.16
Surgery
None 560 2.74
Lumpectomy 11583 56.60
Mastectomy 8309 40.60
Unknown 10 0.05

N %
Bilateral Cancer 138 0.67
Grade
1 well differentiated 4734 23.13
2 - moderately differentiated 8336 40.74
3 poorly differentiated 5481 26.79
4 diffuse 259 1.27
Unknown 1652 8.07
Stage
1 10843 52.99
2 7806 38.15
3 1813 8.86
Tumor size
≤ 2 cm 13727 67.09
(2,5] cm 5723 27.97
>5 cm 838 4.10
Diffuse or Unknown 174 0.85
ER/PR
positive 11917 58.24
Negative 2689 13.14
Unknown/not done 5856 28.62
HER2
Positive 1,862 9.10
Negative 11,938 58.34
Unknown/not done 6,662 32.56
Positive Lymph Nodes
0 14150 69.15
1-3 4429 21.65
>3 1851 9.05
None examined/unknown 32 0.16
Treatments received
Any chemotherapy 8683 42.43
Any hormonal therapy 8199 40.07
Any radiation 6621 32.36

Table 6.4 gives the distribution of cardiovascular disease risk factors in our population, as
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Figure 6.1: Cumulative Incidence of Mortality by Cause of Failure
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well as the female population from which the original Framingham equations were derived.

As the original cohort was young and healthy at baseline, while the current cohort is selected

based on their diagnosis of cancer, it is not surprising that the distribution of age is quite

different between the two populations (mean age of 60 versus 49.6 in Framingham). The

proportion of diabetes was also higher in the KPNC population (13% versus 4%), as well as

those with a prior history of a CVD event (14% versus 0% in Framingham). The proportion

of smoking was higher in the Framingham cohort, however, this could be due to the nearly

one third that are missing smoking information. In addition, roughly 10% of the sample

are missing cholesterol information, while 27% have been prescribed blood pressure lowering

medication.

Looking in greater detail at the timing of the blood pressure and cholesterol information,

relative to date of breast cancer diagnosis, the majority of blood pressure measurements

were taken within a year of cancer diagnosis, with only 10% occuring a year after diagnosis.

The cholesterol information was slightly more difficult to obtain, with 1,622 (8%) having

information prior to breast cancer diagnosis and another 11% missing it altogether.

6.2.2 Evaluation of Published Cardiovascular Disease Risk Models

Currently, the majority of cardiovascular disease prediction models have been developed

and validated on cohorts that are considered healthy at baseline. Some have been eval-

uated on older (greater than 65 years) populations, and found to have poor performance

[Koller et al., 2012, Cooney et al., 2015], with AUCs in the range (0.67-0.68) for women.

Their performance in a population with comorbid conditions, or at high risk for death from

competing events, has not been studied. The first set of analyses focuses on evaluating the

major cardiovascular disease prediction models in our cohort of cancer survivors.

In evaluating these prediction models on our population, it is important to note that

not all models predict for the same outcomes or on the same time period. For example, the

Framingham models predict for “hard CHD events”, which they define as coronary death or
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Table 6.4: Cardiovascular disease risk factors compared to Framingham women

KPNC Framingham
N % or SD %

Age 60.0 (mean) (SD=12.8) 49.6 (SD=11.1)
HDL Cholesterol
<35 7338 35.9 4
35-44 4957 24.2 15
45-49 2342 11.5 12
50-59 2928 14.3 28
60+ 515 2.5 41
Missing 2382 11.6 0
Total Cholesterol
<160 2350 11.5 8
160-199 6431 31.4 30
200-239 6191 30.3 33
240-279 2571 12.6 20
280+ 750 3.7 9
missing 2169 10.6 0
Systolic blood pressure
<120 (optimal) 5145 25.1 35
120-129 (normal) 4967 24.3 21
130-139 (high normal) 4600 22.5 15
140-149 (stage I hypertension) 2179 10.7

19
150-159 (stage I hypertension) 1499 7.3
160+ (stage II-IV hypertension) 914 4.5 10
missing 1158 5.7 0
On blood pressure
lowering medication 5499 26.9 n/a
Smoker
No 7389 36.1 62
Yes (current) 2430 11.9 38
Quit 3095 15.1 n/a
Missing 7548 36.9 0
Diabetic 2669 13.0 4
History of any CVD event 2854 14.0 0
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CHD events (ICD codes 402, 410-414, 429.2, and 429.9), while the 2008 model can be used to

predict the “earliest of any event”, including stroke, peripheral artery disease, and congestive

heart failure. They can predict either a 5 or 10-year risk. The European models (CORE

and SCORE) use a cardiovascular mortality endpoint, as mortality is the least subjective

endpoint to capture. In order to validate the model performance for a given time point, we

can only include patients who have been followed for the corresponding length of time. Any

competing events occurring prior to the follow-up period are also removed from the data set

used for evaluation. Although this is known to cause bias, these models were created using

methodology that did not account for competing events, and must therefore be evaluated in

the same manner.

Our data set includes cases diagnosed from 2000-2010, thus at least half of the study

will not have been followed for 10 years, a common prediction horizon for a number of the

cardiovascular models. Therefore, it is first important to understand whether there are major

differences between the groups with and without 10 years of follow-up. In our study there

were only 25% survivors who were alive and followed for at least 10 years. Compared to the

survivors with less than 10 years of follow-up, the women with longer follow-up had significant

differences (p<0.01) in race (more white, fewer Asian), smoking (more likely to be current

and former smokers than never smokers (counter-intuitive), Charlson score (lower scores),

systolic blood pressure (slightly higher BP), whether on blood pressure lowering medication

(less likely to be on it), breast cancer stage (fewer stage 3), ERPR positivity (more positives),

and whether they received radiation or chemotherapy (more received both). This comparison

may be further biased because the group of survivors with less than 10 years of follow-up

includes women who may still experience one of the fatal endpoints prior to 10 years post

diagnosis, whereas the group of women surviving for 10 years or more are known to be event

free at 10 years. Therefore, the results of the model performance may not be generalizable

to the cohort as a whole.

Table 6.5 lists the cardiovascular disease risk models evaluated on the current data set. It
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Table 6.5: Summary of CVD Model performance in KP BC survivors

Risk Model Endpoint Time period Sample Events AUC
definition predicts for size (95% CI)

Framingham Hard CHD 2 years 10,211 304 0.70 (0.67, 0.73)
2000 Hard CHD 4 years 9,529 596 0.74 (0.72, 0.76)
Framingham Hard CHD 5 years 8,236 699 0.71 (0.69, 0.73)
2001 Hard CHD 10 years 1,976 952 0.64 (0.62, 0.67)

CORE
Hard CHD 5 years 8,180 692 0.75 (0.73, 0.77)
Hard CHD 10 years 1,963 943 0.75 (0.73, 0.78)

Framingham Hard CHD Continuous 11,019 966 0.62 (0.56, 0.68)
recalibrated Hard CHD 5 years 8,236 699 0.78 (0.76, 0.80)

Hard CHD 10 years 1,976 952 0.76 (0.74, 0.79)
Framingham Earliest event 10 years 4,478 3,734 0.66 (0.64, 0.68)
2008
SCORE CVD death 10 years 1,308 188 0.73 (0.69, 0.78)
SCORE OP CVD death 10 years 1,300 184 0.76 (0.72, 0.80)

gives the time period for which the model predicts, the definition of an event for that model,

and the sample size from the current cohort on which the evaluation is based. The results

are grouped by outcome definition. The model evaluation metric that is reported is the

area under the curve (AUC). This is the most commonly reported measure of discrimination

in the cardiovascular disease risk modeling literature, with AUCs usually in the (0.66-0.86)

range [D’Agostino Sr et al., 2001], when evaluated on independent cohorts who are healthy

at baseline and similar in age distribution.

Generally, the models demonstrated moderate discrimination on our cohort, with AUCs

ranging from 0.64 (Framingham model for hard events evaluated at 10 years) to 0.78 (Fram-

ingham model recalibrated to our data set, Table 6.6, evaluated at 5 years). However, it is

important to note that these validations exclude women who have died from breast cancer

or other causes, prior to any cardiovascular event, and may therefore over-estimate risk, by

artificially reducing the at-risk set. This can be seen when we evaluate the model continu-

ously, rather than at a fixed time-point, such as in the Framingham recalibrated model using

Harrell’s C-index [Harrell Jr et al., 1996] (which is analogous but not equal to an AUC),

yielding a C-index of only 0.62. The SCORE OP model which was developed specifically for
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Table 6.6: Parameter Estimates and Relative Risks for Framingham model Recalibrated to
KP data set, complete cases (N=11,019)

Framingham Women KP BC Women
Beta RR (95% CI) Beta RR (95% CI)

Age 0.17 1.19 (0.97-1.45) 0.04 1.04 (0.99, 1.10)
Age squared 0.001 0.0002
Blood Pressure
<120 (optimal) 0.74 0.48 (0.22-1.05) -0.14 0.87 (0.72, 1.06)
120-129 (normal) reference reference
130-139 (high normal) 0.37 0.69 (0.34-1.42) 0.06 1.06 (0.90, 1.26)
140-159 (stage I hypertension) 0.22 1.24 (0.69-2.24) -0.027 0.97 (0.81, 1.17)
160+ (stage II-IV hypertension) 0.61 1.84 (1.00-3.39) 0.299 1.35 (1.01, 1.79)
Total Cholesterol
<160 0.21 1.23 (0.27-5.64) -0.009 0.99 (0.82, 1.19)
160-199 reference reference
200-239 0.44 1.55 (0.81-2.96) -0.177 0.84 (0.71, 0.99)
240-279 0.56 1.74 (0.90-3.40) 0.058 1.06 (0.86, 1.30)
280+ 0.89 2.44 (1.21-4.93) -0.045 0.96 (0.68, 1.36)
HDL Cholesterol
<35 0.73 2.08 (1.00-4.31) 0.513 1.67 (1.22,2.29)
35-44 0.60 1.82 (1.05-3.16) 0.252 1.29 (1.07,1.55)
45-49 0.60 1.82 (1.05-3.14) 0.121 1.13 (0.92,1.39)
50-59 reference reference
60+ 0.54 0.58 (0.33-1.02) -0.138 0.87 (0.74,1.03)
Diabetes 0.87 2.38 (1.40-4.06) 0.808 2.24 (1.94,2.60)
Smoker 0.98 2.65 (1.77-3.97) 0.529 1.70 (1.46,1.98)

an older population, had an AUC of 0.76, but did not significantly outperform any of the

other models.

Additionally, plots of observed versus expected events were examined by decile of risk for

each established model. Overall, the plots indicated poor calibration in our data set. The

majority of the models underestimated the actual number of events, with the exception of

the recalibrated Framingham model evaluated at 5 years, which overestimated risk except

for the highest decile. The Framingham models that predicted in the 2 and 4 year horizon,

were the best suited to our data set, likely due to the large percentage of the cohort having

not been followed for the full 5 or 10 years, as well as the exclusion of competing breast

cancer and other deaths.
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Figure 6.2: Calibration Plots of Framingham Models
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Figure 6.3: Additional Calibration Plots of Framingham Models
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Figure 6.4: Calibration Plots of CORE and SCORE Models
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Discussion: Aim I

While most of the cardiovascular disease risk models were established on a cohort that

was younger and without a history of CVD events or comorbid complications, they still

showed moderate discrimination in our cohort of breast cancer survivors. The model perfor-

mance was widely influenced by the horizon for which it was predicting, as the more narrow

prediction intervals (2 and 4 years) had better calibration to our data set. This was likely

due to the shortened follow-up for a proportion of the data, as well as failures from compet-

ing causes being treated as censored observations at their time of failure. The Framingham

model that could predict the first of any event, including strokes, PAD, etc., was not well

suited to our data set, likely due to the fact that 14% of these women already had a doc-

umented event prior to their breast cancer diagnosis. This number could possibly be even

higher if any of these women had an event prior to their enrollment in KP, which was not

captured in the database. The SCORE models which only used cardiovascular mortality as

an endpoint, performed slightly better at 10 years than the Framingham models, which also

include myocardial infarction, however, the narrow definition for CVD or CHD death used

by the model, greatly reduced the sample size upon which it was evaluated and may not be

as clinically useful when the goal is to identify women for potential interventions.

Due to the limitations of the current sample, the next set of analyses will use the tradi-

tional cardiovascular and breast cancer recurrence risk factors, to create a new model that

can potentially be used to identify breast cancer survivors who may be at an increased

risk of cardiovascular death. By also modeling risk of breast cancer mortality, it can help

clinicians identify which subsets of patients are at greater risk for breast cancer mortality

versus cardiovascular mortality, to focus health and intervention strategies once a woman

has completed her primary treatment for breast cancer and entered the remission phase.
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6.3 Modeling the Risk of Breast and Cardiovascular

Mortality

The next set of analyses examines the risk factors associated with cardiovascular and

breast cancer mortality, using the competing risk methodology of CSH models, SH models,

and Multi-state models. The endpoint of breast cancer death was chosen over recurrence

due to the limitations of administrative data in reliably capturing breast cancer disease

recurrence. Since the cardiovascular disease model performance was slightly better in our

cohort when using mortality as the endpoint, and 14% of the sample had a history of a CVD

event prior to cancer diagnosis, the mortality endpoint was chosen over non-fatal events for

the cardiovascular disease process as well. Using a multi-state design, it would also have

been possible to model the process from cancer diagnosis to intermediate non-fatal CVD

events (such as peripheral artery disease or stroke), and then death, however, due to the

variations in CVD event histories prior to breast cancer diagnosis, it was not pursued.

Table 6.7 describes the bivariate relationship between each risk factor and the outcome of

interest in both a cause specific hazards (CSH) model (Cox) and a subdistribution hazards

(SH) model (Fine and Gray). For the CSH models, the other events are censored at their time

of occurrence, such that in the CSH model for cardiovascular death, the primary outcome of

interest is cardiovascular death and deaths from breast cancer or other causes are treated as

censored. In the Fine and Gray model for cardiovascular disease death, breast cancer and

other deaths continue to be included in the risk set, so as to not overestimate the true risk

of death from any one cause.

In comparing the results between the CSH and the SH models on the same cause of

failure, we see that the estimates are very close between the two. This is comparable with

the simulation results that showed when there is a large degree of censoring, the two models

give nearly identical results. Many of the known risk factors for cardiovascular disease show

statistically significant relationships with CVD death, but a handful of the breast cancer
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disease characteristics do as well. This could be due to the large sample size and will be

further examined in the multivariate models.

Table 6.7: Bivariate Results for each outcome of interest

Cardiovascular Death Breast Cancer Death

CSH Model SH Model CSH Model SH Model

HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI)

Age (at diagnosis) 1.09(1.08, 1.10) 1.08 (1.08, 1.09) 1.01 (1.01,1.02) 1.01(1.00, 1.01)

Age categories

21-39 Reference Reference Reference Reference

40-49 0.68(0.34, 1.34) 0.69(0.35, 1.38) 0.68(0.49, 0.94) 0.69 (0.50, 0.95)

50-54 0.89(0.45, 1.75) 0.92(0.46, 1.81) 0.55(0.39, 0.78) 0.56(0.40, 0.79)

55-59 0.90(0.46, 1.76) 0.93(0.47, 1.81) 0.55(0.39, 0.77) 0.55(0.39, 0.77)

60-64 1.27(0.66, 2.43) 1.30(0.68, 2.49) 0.59(0.42, 0.82) 0.59(0.42, 0.83)

65-69 1.94 (1.03, 3.65) 1.98(1.05, 3.73) 0.48(0.34, 0.69) 0.48(0.34, 0.69)

70-74 3.83(2.06, 7.11) 3.79(2.04, 7.05) 0.65(0.45, 0.92) 0.62(0.44, 0.88)

75+ 9.06(7.97, 16.5) 8.29(4.54, 15.1) 1.09(0.80, 1.49) 0.96(0.70, 1.32)

Race

White 2.44 (1.77, 3.36) 2.37 (1.72, 3.27) 1.46 (1.16, 1.84) 1.42 (1.13, 1.79)

Black 4.23 (2.90, 6.16) 4.01 (2.76, 5.84) 2.01(1.48, 2.74) 1.90 (1.40, 2.60)

Asian/Pacific Islander Reference Reference Reference Reference

Other/Unknown 2.40 (0.58, 9.94) 2.29 (0.56, 9.44) 1.78 (0.56, 5.65) 1.72 (0.54, 5.47)

Non- Hispanic 1.82 (1.31, 2.52) 1.80 (1.30, 2.50) 1.05 (0.83, 1.32) 1.03(0.82, 1.30)

Smoking status

Current 2.29 (1.76, 2.98) 2.22 (1.70, 2.88) 2.07 (1.62, 2.64) 2.00 (1.57, 2.55)

Former 1.77 (1.36, 2.31) 1.74 (1.34, 2.27) 1.45 (1.13, 1.86) 1.42 (1.11, 1.82)

Non-smoker Reference Reference Reference Reference

Unknown 2.36 (1.92, 2.90) 2.32 (1.89, 2.83) 2.48 (2.07, 2.97) 2.43(2.04, 2.90)

Diabetes 2.12 (1.77, 2.52) 2.06 (1.72, 2.45) 0.98(0.80, 1.21) 0.95 (0.77, 1.16)

Charlson comorbidity

0 Reference Reference Reference reference

1-2 2.43(2.06, 2.86) 2.35 (1.99, 2.77) 1.01 (0.87, 1.18) 0.97 (0.84, 1.13)

3+ 7.33(5.94, 9.04) 6.30 (5.11, 7.76) 1.53 (1.16, 2.01) 1.27 (0.96, 1.67)

unknown 1.52 (0.21, 10.8) 1.51 (0.21, 10.9) 1.51 (0.38, 6.04) 1.52 (0.38, 6.09)

Bilateral 1.82 (0.90, 3.64) 1.86 (0.91, 3.77) 0.74 (0.28, 1.97) 0.73 (0.27, 1.93)

Surgery

None 3.20 (2.30, 4.46) 2.79 (1.99, 3.90) 5.75 (4.33, 7.61) 5.12 (3.86, 6.81)

Lumpectomy Reference Reference Reference Reference

Mastectomy 1.52 (1.31, 1.77) 1.46 (1.25, 1.70) 2.78 (2.40, 3.22) 2.71 (2.33, 3.14)

Unknown 6.82 (1.70, 27.4) 6.85 (1.87, 25.1) 3.95 (0.56, 28.2) 3.91 (0.59, 25.7)

Grade

Well differentiated Reference Reference Reference Reference

Moderately differentiated 1.22 (0.99, 1.50) 1.19(0.97, 1.47) 4.52 (3.21, 6.36) 4.48 (3.18, 6.30)

Poorly differentiated 1.45 (1.16, 1.80) 1.34 (1.08, 1.68) 10.9 (7.77, 15.2) 10.5(7.52, 14.7)

Diffuse 0.95 (0.45, 2.04) 0.92 (0.43, 1.96) 9.75(5.66, 16.8) 9.80 (5.67, 16.9)

Unknown 1.96 (1.49, 2.56) 1.90 (1.45, 2.49) 5.77 (3.89, 8.56) 5.63 (3.80, 8.35)

Stage

1 Reference Reference Reference Reference

2 1.56 (1.33, 1.83) 1.51 (1.28, 1.76) 5.09(4.18, 6.20) 4.99 (4.09, 6.07)

3 2.22 (1.74, 2.82) 1.90 (1.49, 2.42) 15.9 (12.9, 19.7) 14.9 (12.0, 18.3)

Tumor size ≤2 cm Reference Reference Reference Reference

(2,5] cm 1.63 (1.39, 1.92) 1.54 (1.31, 1.81) 4.00 (3.43, 4.66) 3.86 (3.31, 4.51)

>5 cm 2.23 (1.63, 3.04) 1.93 (1.41, 2.64) 8.59 (6.91, 10.7) 7.94 (6.39, 9.87)

Diffuse or Unknown 4.32 (2.58, 7.24) 3.29 (1.95, 5.55) 18.7 (13.6, 25.6) 16.1(11.7, 22.2)

ER/PR

positive 0.85(0.68, 1.05) 0.91 (0.74, 1.13) 0.31 (0.27, 0.37) 0.32 (0.28, 0.38)

Negative Reference Reference Reference Reference

Unknown/not done 0.63 (0.49, 0.81) 0.67 (0.53, 0.87) 0.34 (0.28, 0.41) 0.35 (0.29, 0.42)

HER2

Positive Reference Reference Reference Reference

Negative 1.32 (0.98, 1.78) 1.34 (1.00, 1.81) 0.60 (0.48, 0.73) 0.59(0.48, 0.73)

Unknown/not done 1.21(0.89, 1.65) 1.23(0.90, 1.67) 0.74 (0.60, 0.92) 0. 74(0.60, 0.92)

Positive Lymph Nodes

0 Reference Reference Reference Reference

1-3 1.14 (0.95, 1.37) 1.11 (0.93, 1.34) 2.35 (1.98, 2.77) 2.33 (1.97, 2.76)
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Table 6.7: Bivariate Results for each outcome of interest

Cardiovascular Death Breast Cancer Death

CSH Model SH Model CSH Model SH Model

HR (95%CI) HR (95%CI) HR (95%CI) HR (95%CI)

>3 1.71 (1.36, 2.16) 1.52 (1.21, 1.92) 7.51 (6.40, 8.81) 7.17 (6.12, 8.42)

None examined/unknown 4.69 (1.75, 12.6) 4.53 (1.66, 12.4) 3.07 (0.76, 12.3) 2.85 (0.70, 11.6)

Adjuvant Online

Node Categories

0 Reference Reference Reference Reference

1-3 1.14 (0.95, 1.37) 1.11 (0.93, 1.34) 2.35(1.98, 2.78) 2.33 (1.97, 2.76)

4-9 1.49 (1.13, 1.96) 1.37(1.04, 1.81) 5.45(4.49, 6.60) 5.28 (4.35, 6.40)

≥ 10 2.40 (1.66, 3.47) 1.93 (1.33, 2.80) 13.8 (11.2, 16.9) 12.6 (10.3, 15.5)

None examined/unknown 4.69 (1.75, 12.6) 4.54 (1.66, 12.4) 3.07 (0.77, 12.3) 2.85 (0.70, 11.6)

Treatments received

Any chemotherapy 0.48 (0.41, 0.57) 0.48 (0.41, 0.57) 2.25 (1.95, 2.58) 2.30(2.00, 2.65)

Any hormonal therapy 0.92 (0.79, 1.07) 0.95 (0.81, 1.10) 0.55 (0.48, 0.64) 0.56 (0.48, 0.65)

Any radiation 0.69(0.58, 0.82) 0.70 (0.60, 0.83) 0.81 (0.70, 0.94) 0.83 (0.71, 0.96)

Blood Pressure

<120 (optimal) Reference Reference Reference Reference

120-129 1.14 (0.88, 1.48) 1.14 (0.88, 1.48) 0.99 (0.81, 1.22) 0.99 (0.81, 1.22)

130-139 1.40 (1.09, 1.79) 1.40 (1.09, 1.80) 1.04(0.84, 1.28) 1.04 (0.84, 1.28)

140-149 1.66 (1.24, 2.21) 1.64 (1.23, 2.19) 1.32 (1.04, 1.68) 1.31 (1.03, 1.67)

150-159 2.20 (1.64, 2.94) 2.17 (1.62, 2.91) 1.01 (0.75, 1.36) 0.99 (0.73, 1.33)

160+ 3.33 (2.46, 4.50) 3.20 (2.37, 4.32) 1.63 (1.20, 2.20) 1.55 (1.15, 2.10)

Total Cholesterol

<160 Reference Reference Reference Reference

160-199 0.89(0.67, 1.17) 0.91 (0.69, 1.20) 1.00 (0.79, 1.27) 1.02 (0.80, 1.30)

200-239 0.85 (0.65, 1.13) 0.88 (0.66, 1.16) 0.93 (0.72, 1.18) 0.95 (0.74, 1.21)

240-279 0.79 (0.57, 1.11) 0.81 (0.58, 1.13) 1.07 (0.81, 1.41) 1.09 (0.82, 1.44)

280+ 0.83 (0.51, 1.37) 0.84 (0.51, 1.39) 1.17 (0.79, 1.73) 1.19 (0.80, 1.76)

HDL Cholesterol

<35 2.44 (1.64, 3.64) 2.24 (1.50, 3.34) 2.81 (2.03, 3.88) 2.61 (1.89, 3.61)

35-44 1.38 (1.08, 1.76) 1.35 (1.06, 1.73) 1.44 (1.17, 1.78) 1.42 (1.15, 1.74)

45-49 1.00 (0.75, 1.35) 1.00 (0.75, 1.34) 1.04 (0.81, 1.33) 1.03 (0.80, 1.32)

50-59 0.91 (0.72, 1.15) 0.91 (0.72, 1.15) 1.08 (0.89, 1.31) 1.08 (0.89, 1.31)

60+ Reference Reference Reference Reference

Log cholesterol ratio 1.41 (1.03, 1.93) 1.37 (0.99, 1.90) 2.04 (1.57, 2.64) 1.98 (1.53, 2.56)

History of CVD 6.44 (5.50, 7.54) 5.91 (5.05, 6.91) 1.40 (1.16, 1.69) 1.24(1.02, 1.50)

The first set of models, Tables 6.8 and 6.9 use cardiovascular death as the primary out-

come of interest. We investigate both the full dataset, where missing covariates are included

as a category labeled “missing”, and then investigate only the complete case analysis, with

the exception of the smoking variable, which is missing for a large percentage of the data

set. Additionally, models that stratified by history of CVD prior to breast cancer diagnosis,

were examined, but the sample size was greatly reduced, and the parameter estimates were

similar to the complete case analysis (not shown).

Age, race, smoking status, history of CVD, and Charlson comorbidity score were all sig-

nificantly associated with the risk of death from cardiovascular disease. Interestingly, several

of the breast cancer risk factors were also associated with risk of death from CVD: grade,

tumor size, number of positive lymph nodes, radiation (full data set only), chemotherapy
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and HER2NEU (CSH models only). Only ages greater than 70 had an increased risk in

CVD death, and the hazard doubled after age 75. Compared to the reference group of

Asian/Pacific Islander, the black subgroup was also at a nearly two-fold increased risk of

CVD death (2.6 Cause Specific Hazard Ratio, 2.5 Subdistribution Hazard Ratio). Those

who were current smokers were also at an increased risk (2.7 CSHR, 2.5 SHR), while those

who had quit were at a slightly increased risk (1.4 CSHR and SHR), though this was not

statistically significant in the complete case model. Interestingly, the group that was missing

information on smoking habits, yielded hazard ratios that were very similar to the current

smokers in terms of their risk of death due to cardiovascular disease (2.5 CSHR, 2.4 SHR). In

terms of a history of CVD, those with a prior event had twice the risk of those with no prior

history (2.1 CSHR, 2.0 SHR). The only traditional CVD risk factor that remained statisti-

cally significant in the model was HDL cholesterol, with only the lowest group (HDL<35)

having an increased risk (1.5 CSHR and SHR). Blood pressure and the use of blood pressure

lowering medication, as well as diabetes, were not significantly associated with risk of CVD

mortality in this population.

All three models gave very similar estimates for the risk factors, and had nearly the same

subset of risk factors that were statistically significant. The estimates from the CSH and MS

models are expected to be identical, however, the two models included a slightly different

subset of variables, which is responsible for the slight differences seen in the parameter

estimates. Tables 6.14 and 6.15 detail which variables remained in each of the multivariate

models. For the endpoint of CVD death, the CSH and multi-state models contained the

same subset of risk factors with the exception of HER2 (CSH only) and ERPR (Mstate

only). The SH model included HER2 but did not find ERPR, chemotherapy or type of

breast cancer surgery to be significantly associated with the cumulative incidence of CVD

death. This may be due to the relationship between age, stage of breast cancer at diagnosis,

and use of chemotherapy. In this cohort, the youngest group of patients were diagnosed, on

average, with higher stages of disease, and thus had the highest rates of mastectomy and
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chemotherapy usage, as well as the lowest rates of CVD death.

Table 6.8: Models for Cardiovascular Mortality, 696 events

CSH Model SH Model MS Model

HR (95%CI) HR (95%CI) HR (95%CI)

Age Categories

21-39 Reference Reference Reference

40-49 0.81 (0.41,1.60) 0.81(0.41,1.60) 0.81 (0.13,1.49)

50-54 0.98 (0.49,1.95) 1.02 (0.51,2.06) 1.03 (0.34,1.72)

55-59 1.03 (0.52,2.03) 1.09(0.56,2.13) 1.04 (0.36,1.72)

60-64 1.33(0.68,2.55) 1.36 (0.70,2.63) 1.34 (0.68,2.00)

65-69 1.87 (0.98,3.58) 1.97 (1.04,3.75) 1.88 (1.23,2.53)

70-74 3.37 (1.78,6.37) 3.46 (1.85,6.48) 3.40 (2.76,4.04)

75+ 6.28 (3.36,11.8) 6.09(3.30,11.2) 6.27 (5.64,6.90)

Race

White 1.42 (1.02,1.97) 1.38(0.99,1.90) 1.42 (1.09,1.75 )

Black 2.57 (1.76,3.77) 2.47 (1.68,3.63) 2.53 (2.15,2.91)

Asian/Pacific Islander Reference Reference Reference

Other/Unknown 1.41 (0.34,5.84) 1.26 (0.31,5.14) 1.48 (0.06,2.90)

Smoking status

Current 2.70 (2.06,3.54) 2.49 (1.89,3.28) 2.59 (2.32,2.86)

Former 1.38 (1.06,1.80) 1.36(1.03,1.78) 1.36 (1.09,1.63)

Non-smoker Reference Reference Reference

Unknown 2.46(1.99,3.03) 2.38(1.92,2.94) 2.28 (2.07,2.49)

History of CVD

No prior history Reference Reference Reference

History of event 2.09 (1.70, 2.58) 2.01 (1.63,2.49) 2.10 (1.89,2.31)

Unknown 1.57(1.11, 2.20) 1.42(0.99,2.02) 1.53 (1.19,1.87)

HDL Cholesterol

<35 1.52 (1.02,2.28) 1.47 (0.98,2.22) 1.54 (1.14,1.94 )

35-44 1.02(0.80,1.31) 1.04 (0.81,1.34) 1.04 (0.79,1.29)

45-49 0.84 (0.62,1.13) 0.88 (0.65,1.17) 0.84 (0.54,1.14)

50-59 0.81(0.64,1.02) 0.81 (0.64,1.03) 0.81 (0.58,1.04)

60+ Reference Reference Reference

unknown 1.30 (1.00, 1.68) 1.35 (1.03,1.77) 1.32 (1.06, 1.58)

Charlson comorbidity

0 Reference Reference Reference

1-2 1.44(1.20, 1.73) 1.38 (1.15,1.66) 1.44 (1.26,1.62)

3+ 2.29(1.77,2.95) 1.95(1.51,2.53) 2.28 (2.03,2.53)

Grade

Well differentiated Reference Reference Reference

Moderately differentiated 1.13 (0.92, 1.40) 1.12(0.91,1.39) 1.11 (0.90,1.32)

Poorly differentiated 1.56 (1.28,1.98) 1.36(1.07,1.73) 1.45 (1.20,1.70)

Diffuse 1.16(0.54,2.50) 1.03(0.46,2.31) 1.05 (0.28,1.82)

Unknown 1.57 (1.19,2.06) 1.58(1.19,2.09 ) 1.52 (1.24, 1.80)

Tumor size

≤2 cm Reference Reference Reference

(2,5] cm 1.43(1.20, 1.71) 1.33(1.11, 1.59) 1.43 (1.25,1.61)

>5 cm 1.87(1.33,2.63) 1.51(1.06, 2.15) 1.91(1.57, 2.25)

Diffuse or Unknown 4.25(2.46,7.34) 3.12(1.76, 5.46) 3.74(3.20,4.28)

HER2

Positive reference - -

Negative 1.21(0.89,1.64) - -

Unknown/not done 0.97(0.71,1.34) - -

Adjuvant Online

Node Categories

0 Reference Reference Reference

1-3 1.24 (1.02, 1.51) 1.17(0.97, 1.41) 1.23 (1.03,1.43)

4-9 1.55(1.14, 2.10) 1.28(0.96, 1.72) 1.51 (1.21,1.81)

10+ 2.29 (1.53,3.44) 1.59(1.05, 2.42) 2.35 (1.95,2.75)

None examined/unknown 2.29(0.83,6.32) 2.86(0.92, 8.94) 2.52 (1.51,3.53)

Radiation 0.82 (0.68,0.98) 0.82 (0.69,0.97) 0.82 (0.64,0.99)

Chemotherapy 0.80(0.64,0.99) 0.77 (0.55,0.99)

Surgery

None 1.90 (1.33,2.73) - 1.95 (1.59,2.31

Lumpectomy Reference - Reference

Mastectomy 1.05(0.88,1.25) - 1.05 (0.88,1.22)

133



Table 6.8: Models for Cardiovascular Mortality, 696 events

CSH Model SH Model MS Model

HR (95%CI) HR (95%CI) HR (95%CI)

Unknown 3.05(0.74,12.6) - 3.35 (1.93,4.77)

ER/PR

Positive - - 0.82 (0.59,1.05)

Negative - - Reference

Unknown/not done - - 0.67 (0.41,0.93)

Table 6.9: Models for Cardiovascular Mortality, complete data (N=11,152, 267 events)

CSH Model SH Model MS Model

HR (95%CI) HR (95%CI) HR (95%CI)

Age Categories

21-39 Reference Reference Reference

40-49 1.25(0.28,5.64) 1.21(0.26,5.50) 1.27 (0.24, 2.78)

50-54 2.00(0.46,8.80) 1.99(0.45,8.80) 2.06 (0.58,3.54)

55-59 2.26(0.52,9.77) 2.17(0.50,9.33) 2.33 (0.87,3.79)

60-64 2.88(0.67,12.3) 2.65(0.62,11.3) 2.93 (1.47,4.39)

65-69 4.10(0.97,17.3) 3.93(0.93,16.6) 4.23 (2.79, 5.67)

70-74 7.41(1.77,31.0) 6.79(1.64,28.1) 7.61 (6.18, 9.04)

75+ 15.45(3.76,63.6) 12.7(3.14,51.7) 16.1 (14.7, 17.6)

Race

White 1.59(0.90,2.81) 1.56(0.89,2.74) 1.51 (0.96, 2.06)

Black 3.53(1.84,6.76) 3.38(1.75,6.51) 3.35 (2.72, 3.98)

Asian/Pacific Islander Reference Reference Reference

Other/Unknown 2.88(0.37,22.5) 3.73(0.43,32.2) n/a

Smoking status

Current 2.71(1.76,4.17) 2.60(1.67,4.03) 2.71 (2.28, 3.14)

Former 1.38(0.90,2.11) 1.39(0.90,2.14) 1.39 (0.97, 1.81)

Non-smoker Reference Reference Reference

Unknown 2.73(1.96,3.79) 2.80(2.02,3.88) 2.69 (2.36,3.02)

History of CVD 2.33(1.74,3.11) 2.22(1.65,2.98) 2.31 (2.02,2.60)

HDL Cholesterol

<35 1.77(1.06,2.97) 1.86(1.11,3.12) 1.82 (1.30,2.34)

35-44 1.17(0.85,1.62) 1.20(0.87,1.68) 1.19 (0.87,1.51)

45-49 0.89(0.60,1.32) 0.96(0.64,1.42) 0.89 (0.49,1.29)

50-59 0.70(0.50,0.98) 0.72(0.51,1.00) 0.70 (0.36,1.04)

60+ Reference Reference Reference

Charlson comorbidity

0 Reference Reference Reference

1-2 1.45(1.09,1.91) 1.44(1.08,1.90) 1.45 (1.17, 1.73)

3+ 2.35(1.55,3.57) 1.85(1.20,2.84) 2.36 (1.94,2.78)

Grade

Well differentiated Reference Reference

Moderately differentiated 1.15 (0.87, 1.52) 1.21 (0.89, 1.53)

Poorly differentiated 1.39 (1.01,1.89) 1.60 (1.25,1.95)

Diffuse 1.44 (0.62,3.32) 1.94 (1.01,2.87)

Tumor size

≤2 cm Reference Reference Reference

(2,5] cm 1.76(1.34,2.32) 1.73(1.32,2.27) 1.76 (1.49,2.03)

>5 cm 1.73(0.97,3.09) 1.66(0.90,3.04) 1.68 (1.10, 2.26)

HER2

Positive Reference

Negative 1.56(1.04,2.37)

Adjuvant Online

Node Categories

0 Reference Reference Reference

1-3 1.04(0.76,1.42) 1.03(0.75,1.41) 1.02 (0.71, 1.33)

4-9 1.83(1.20,2.79) 1.78(1.16,2.73) 1.77 (1.35, 2.19)

10+ 2.85 (1.55,5.25) 2.07(1.08,3.96) 2.72 (2.11,3.33)

134



In evaluating risk factors for breast cancer (BC) death, models on the full data set and

the subset with only complete risk factor data were examined and compared, with results

in Tables 6.10 and 6.11. Once again, aside from the reduction in sample size leading to a

loss of statistical power, the two models were quite similar. The majority of the risk factors

found in the model on the full cohort, remained in the complete case model, and had very

similar point estimates.

In both analyses, age greater than 70 was significantly associated with an increased risk

of BC death, as well as smoking (both former and current smokers). Only the CSH models

found an effect for race, with both the black and white groups having slightly higher risks

than the Asian population. The cardiovascular risk factor of HDL less than 40 was also

associated with an increased risk, relative to the reference category of HDL greater than

60. This was unexpected and may be either a spurious result or perhaps it is a marker for

healthier lifestyle that could not be captured under the current limited set of covariates.

The known risk factors for breast cancer recurrence, namely grade, tumor size, and lymph

node involvement, were all also significantly associated with risk of death from disease.

ER/PR positive disease was also at a decreased risk relative to receptor negative cases.

Type of surgery was significantly associated with risk of breast cancer death. Compared

to the group who received a lumpectomy, the groups receiving both a mastectomy and no

surgery, both were at an increased risk of death. However, it is likely that the mastectomy

group presented with higher staged disease, whereas the group who did not undergo surgery

could have done so due to comorbid conditions or older age. Lastly, in the model on the

full cohort, use of radiation and chemotherapy were also associated with a decrease in the

hazard of breast cancer death. However, as treatments received were not randomly assigned

as in a clinical trial, there is likely confounding between patient age, comorbidity and use of

chemotherapy. In fact, regardless of stage at diagnosis, the youngest group of women had

the highest rates of chemotherapy, and a trend of decreasing chemotherapy use is seen with

increasing age, across all stages of disease.
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Table 6.10: Models for Breast Cancer Mortality, 842 events)

CSH Model SH Model MS Model

HR (95%CI) HR (95%CI) HR (95%CI)

Age Categories

21-39 Reference Reference Reference

40-49 1.08(0.78,1.49) 1.10 (0.79, 1.54) 1.09 (0.76,1.42)

50-54 0.97(0.68,1.38) 1.00 (0.70,1.43) 0.97 (0.62,1.32)

55-59 1.08 (0.76,1.52) 1.11(0.79,1.58) 1.11 (0.77,1.45)

60-64 1.18(0.82,1.70) 1.34(0.94,1.90) 1.30 (0.96,1.64)

65-69 1.19(0.83,1.71) 1.14 (0.79,1.65) 1.19 (0.83,1.55)

70-74 1.63(1.13,2.33) 1.50(1.03,2.19) 1.65 (1.29,2.01)

75+ 2.45(1.77,3.38) 2.07(1.48,2.90) 2.47 (2.15,2.79)

Race

White 1.31(1.03,1.66) 1.30 (1.06,1.54)

Black 1.66(1.21,2.28) 1.64 (1.33,1.95)

Asian/Pacific Islander Reference Reference

Other/Unknown 1.73(0.54,5.50) 1.65 (0.49,2.81)

Smoking status

Current 1.97(1.54,2.52) 1.96 (1.53,2.51) 1.96 (1.71,2.21)

Former 1.32(1.03,1.70) 1.38(1.07,1.78) 1.33 (1.08,1.58)

Non-smoker Reference Reference Reference

Unknown 2.33 (1.94,2.80) 2.22(1.85,2.65) 2.29 (2.11,2.47)

HDL Cholesterol

<35 1.91 (1.38,2.65) 1.72 (1.20,2.45) 1.92 (1.59, 2.25)

35-44 1.27 (1.03,1.57) 1.24 (0.99,1.53) 1.28 (1.07, 1.49)

45-49 0.88 (0.68,1.14) 0.89 (0.69,1.14) 0.90 (0.65,1.15)

50-59 0.99(0.82,1.20) 0.98(0.81, 1.19) 0.99 (0.80,1.18)

60+ Reference Reference Reference

Unknown 1.59 (1.29,1.96) 1.39(1.11,1.73) 1.57 (1.36,1.78)

Grade

Well differentiated Reference Reference Reference

Moderately differentiated 2.87(2.03,4.06) 2.90(2.05, 4.09) 2.86 (2.51,3.21)

Poorly differentiated 4.34 (3.05,6.17) 4.19(2.92, 6.01) 4.34 (3.99,4.69)

Diffuse 4.59 (2.63, 8.02) 4.86(2.74,8.62) 4.59 (4.03, 5.15)

Unknown 2.65 (1.77,3.97) 2.77 (1.87,4.13) 2.63 (2.23,3.03)

Tumor size

≤2 cm Reference Reference Reference

(2,5] cm 2.13(1.81,2.52) 2.10(1.76,2.50) 2.13 (1.96,2.30)

>5 cm 3.20(2.51,4.08) 2.87(2.21, 3.73) 3.19 (2.95,3.43)

Diffuse or Unknown 5.49(3.90,7.73) 4.26(2.88, 6.31) 5.26 (4.92,5.60)

Adjuvant Online

Node Categories

0 Reference Reference Reference

1-3 1.71 (1.44,2.04) 1.69 (1.41,2.02) 1.71 (1.5,4 1.88)

4-9 3.07(2.49,3.79) 3.00(2.41,3.73) 3.04 (2.83,3.25)

10+ 6.49(5.17,8.15) 5.80(4.51,7.46) 6.48 (6.25,6.71)

None examined/unknown 2.13(0.52,8.70) 1.81 (0.41,8.02) 2.13 (0.72,3.54)

ER/PR

Positive 0.48 (0.40, .57) 0.52 (0.43,0.62) 0.48 (0.31,0.65)

Negative Reference Reference Reference

Unknown/not done 0.54 (0.45,0.66) 0.56(0.46,0.69) 0.53 (0.34,0.72)

Surgery

None 3.20(2.38,4.30) 2.78 (2.05,3.77) 3.25 (2.95,3.55)

Lumpectomy Reference Reference Reference

Mastectomy 1.32(1.12,1.55) 1.29 (1.10,1.51) 1.33 (1.17, 1.49)

Unknown 1.94 (0.27,14.2) 2.17 (0.56,8.37) 1.96 (0.03,3.95)
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Table 6.11: Models for Breast Cancer Mortality, complete cases (N=11,783, 469 events)

CSH Model SH Model MS Model

HR (95%CI) HR (95%CI) HR (95%CI)

Age Categories

21-39 Reference Reference Reference

40-49 1.06(0.67,1.66) 1.07(0.67,1.71) 1.06(0.61,1.51)

50-54 0.96(0.60,1.55) 0.96(0.59,1.56) 0.96(0.48,1.44)

55-59 0.99(0.62,1.60) 0.95(0.58,1.56) 0.99 (0.51,1.47)

60-64 1.33(0.83,2.12) 1.29(0.79,2.10) 1.33 (0.86,1.80)

65-69 1.15(0.71,1.88) 1.08(0.65,1.79) 1.15 (0.66,1.64)

70-74 2.05(1.27,3.31) 1.86(1.14,3.05) 2.05 (1.57,2.53)

75+ 3.15(2.02,4.90) 2.58(1.63,4.08) 3.15 (2.71,3.59)

Smoking status

Current 1.83(1.30,2.57) 1.77(1.25,2.50) 1.82 (1.48,2.16)

Former 1.47(1.05,2.07) 1.48(1.05,2.10) 1.47 (1.13, 1.81)

Non-smoker Reference Reference Reference

Unknown 2.12(1.65,2.71) 2.11(1.65,2.70) 2.12 (1.87, 2.37)

HDL Cholesterol

<35 1.65(1.07,2.54) 1.52(0.98,2.36) 1.65 (1.22, 2.08)

35-44 1.50(1.18,1.92) 1.49(1.16,1.92) 1.50 (1.25,1.75)

45-49 0.89(0.66,1.21) 0.89(0.65,1.22) 0.89 (0.58,1.20)

50-59 0.95(0.75,1.20) 0.96(0.75,1.21) 0.95 (0.71,1.19)

60+ Reference Reference Reference

Grade

Well differentiated Reference Reference Reference

Moderately differentiated 2.54(1.69,3.83) 2.53(1.68,3.81) 2.54(2.13,2.95 )

Poorly differentiated 3.35 (2.19,5.13) 3.24(2.08,5.05) 3.35(2.92,3.78)

Diffuse 4.12(2.15,7.90) 4.42(2.26,8.64) 4.12 (3.4, 4.77)

Tumor size

≤2 cm Reference Reference Reference

(2,5] cm 2.07(1.67,2.55) 1.98(1.58, 2.48) 2.07 (1.86, 2.28)

>5 cm 2.75(1.96, 3.87) 2.52(1.75,3.65) 2.75 (2.41,3.09)

Adjuvant Online

Node Categories

0 Reference Reference Reference

1-3 2.02(1.60,2.53) 1.99(1.57,2.51) 2.02 (1.79,2.25)

4-9 3.67(2.78,4.83) 3.58(2.69,4.78) 3.66 (3.38,3.94)

10+ 7.67 (5.58,10.5) 7.04(5.01,9.88) 7.67 (7.35,7.99)

ER/PR

Positive 0.41(0.33,0.51) 0.44(0.35,0.55) 0.41(0.20,0.62)

Negative Reference Reference Reference

Surgery

None 2.12(1.24,3.62) 1.86(1.07,3.25) 2.12 (1.58,2.66)

Lumpectomy Reference Reference Reference

Mastectomy 1.24(1.01,1.52) 1.23(1.00,4.50) 1.24 (1.04,1.44)

Reweighting Approach for CSH model

To examine the effect of missingness, we used the methods of Xu et al. [Xu et al., 2009,

Xu et al., 2011], by applying weights to the subset of the cohort that had complete informa-

tion on smoking status, and re-running the cause specific hazards models. This method has

not been adapted or evaluated for use in a SH or MS model. The weighting is performed

in two steps. The first step weights each complete subject by the inverse of the observation

probability, π(wi), to correct for the selection bias introduced by running a complete case
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analysis. π(wi) can be estimated from a logistic regression model on Ri, the indicator for

whether the covariate is observed or missing. The second step is to impose a time-variant

selection probability on the “pseudo-unbiased” samples from the first step (to improve es-

timation efficiency), using the empirical estimator of the marginal observation probability

given a risk set at time t;

π̂∗(t) =

∑n
i=1 RiYi(t)∑n
i=1 Yi(t)

This can be done provided that the data are entered in counting process style, with one

row per each patient for each observed failure time interval, (ta, tb]. The final weight then

becomes: π̂∗(t)
π(wi)

, and can be implemented in standard software using a weight statement in a

Cox model.

Results using this reweighting approach for the endpoint of CVD mortality appear in

Table 6.12. Parameter estimates for the relevant covariates are not appreciably different

than the results on the full cohort using an unweighted approach. There is, however, a slight

reduction in power due to the smaller sample size. If the reweighted estimates are instead

compared to the unweighted estimates of the complete case analysis, shown in Table 6.9, the

results are also quite similar, with overlapping confidence intervals between the two models

for the majority of the covariates.

Re-weighted results for breast cancer mortality also yielded similar results to the cause

specific hazards model on the full cohort (not shown), thus the model created using the full

cohort was selected for evaluation of predictive accuracy.
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Table 6.12: Reweighting Approach for CSH model of CVD (N=12,914)

CSH Model RWE Model

(696 events) (320 events)

HR (95%CI) HR (95%CI)

Age Categories

21-39 Reference Reference

40-49 0.81 (0.41, 1.60) 0.85 (0.32, 2.27)

50-54 0.98 (0.49 ,1.95) 0.77 (0.28, 2.15)

55-59 1.03 (0.52, 2.03) 1.02 (0.38, 2.70)

60-64 1.33 (0.68, 2.55) 1.47 (0.57, 3.79)

65-69 1.87 (0.98, 3.58) 1.75 (0.69, 4.46)

70-74 3.37 (1.78, 6.37) 3.21 (1.28, 8.06)

75+ 6.28 (3.36, 11.8) 4.76 (1.92, 11.8)

Race

White 1.42 (1.02, 1.97) 1.75 (0.99, 3.08)

Black 2.57 (1.76, 3.77) 2.85 (1.51, 5.40)

Asian/Pac Isl Reference Reference

Smoking status

Current 2.70 (2.06, 3.54) 2.03 (1.50, 2.75)

Former 1.38 (1.06, 1.80) 1.19 (0.90, 1.58)

Non-smoker Reference Reference

History of CVD

No prior history Reference Reference

History of event 2.09 (1.70, 2.58) 1.93 (1.41, 2.64)

Unknown 1.57 (1.11, 2.20) 1.34 (0.79, 2.28)

HDL Cholesterol

<35 1.52 (1.02, 2.28) 1.89 (1.07, 3.34)

35-44 1.02 (0.80, 1.31) 1.03 (0.71, 1.49)

45-49 0.84 (0.62, 1.13) 0.87 (0.56, 1.35)

50-59 0.81 (0.64, 1.02) 0.84 (0.59, 1.20)

60+ Reference Reference

Unknown 1.30 (1.00, 1.68) 1.30 (0.88, 1.90)

Charlson

0 Reference Reference

1-2 1.44 (1.20, 1.73) 1.28 (0.97, 1.68)

3+ 2.29 (1.77, 2.95) 2.03 (1.41, 2.91)

Grade

1 Reference Reference

2 1.13 (0.92, 1.40) 1.18 (0.85, 1.65)

3 1.56 (1.28, 1.98) 1.77 (1.23, 2.55)

4 1.16 (0.54, 2.50) 0.52 (0.11, 2.59)

Unknown 1.57 (1.19, 2.06) 1.76 (1.17, 2.66)

Tumor size

≤2 cm Reference Reference

(2,5] cm 1.43 (1.20, 1.71) 1.71 (1.32, 2.24)

>5 cm 1.87 (1.33, 2.63) 2.55 (1.58, 4.11)

Diffuse/Unk 4.25 (2.46, 7.34) 5.38 (2.35, 12.3)

Node Categories

0 Reference Reference

1-3 1.24 (1.02, 1.51) 1.26 (0.94, 1.70)

4-9 1.55 (1.14, 2.10) 1.25 (0.78, 2.00)

10+ 2.29 (1.53, 3.44) 1.69 (0.90, 3.18)

Radiation 0.82 (0.68, 0.98) 0.69 (0.52, 0.91)

Chemotherapy 0.80 (0.64, 0.99) 0.56 (0.40, 0.78)

HER2

Positive 1.21 (0.89, 1.64) 0.65 (0.25, 1.68)

n/a 0.97 (0.71, 1.34) 0.45 (0.32, 0.63)

Surgery

None 1.90 (1.33, 2.73) 2.43 (1.50, 3.92)

Lumpectomy Reference

Mastectomy 1.05(0.88, 1.25) 1.00 (0.77, 1.31)
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Models Stratified by Stage and Age

Due to the relationship between age and CVD mortality, and stage of disease and breast

cancer mortality, models stratified by stage and age were also examined.

The cumulative incidence curves by stage of breast cancer (Figure 6.5) indicate a clear

pattern of higher risk of breast cancer death for higher staged disease. There is a slight

trend of increasing risk of CVD death for higher stage cancer as well, though all stages have

a less than 5% occurrence of CVD death by 10 years, therefore, the apparent stacking of the

curves may not translate into a clinically meaningful difference.

Table 6.13: Outcomes by Stage and Age

N BC death CVD death Other death Censored

Stage 1 10,843 127 (1.6%) 294(3.9%) 551 (7.5%) 9871 (87.0%)

Stage 2 7,806 444 (7.6%) 316 (5.6%) 497 (8.6%) 6549 (78.2%)

Stage 3 1,813 271 (18.6%) 86 (6.2%) 143 (10.2%) 1313 (65.0%)

Total 20,462 842 (5.3%) 696 (4.7%) 1191 (8.2%) 17733 (81.8%)

Age<40 873 49 (9.5%) 11 (1.5%) 31 (5.1%) 782 (83.9%)

Age 40-50 4,003 163 (5.6%) 40 (1.3%) 85 (2.8%) 3715 (90.3%)

Age 50-65 7,936 283 (4.7%) 117 (1.9%) 250 (4.2%) 7286 (89.2%)

Age 65+ 7,650 347 (5.5%) 528 (9.5%) 825 (14.9%) 5950 (70.1%)
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Figure 6.5: Cumulative Incidence of Mortality by Stage

In running models stratified by stage of breast cancer, for the CVD endpoint there are

no major differences seen across the 3 stages, and the stratification leads to a great deal

of power loss, especially for the stage 3 group that experiences only 86 CVD deaths across

the entire follow-up period. Therefore, we refer to the previous, unstratified model for the

prediction of CVD mortality.

For the models predicting breast cancer death, stratified by stage, we again see a reduc-

tionin statistical power, especitally for the stage 1 patients, who experience only 127 breast

cancer deaths over the course of the study. For this stage, continuing to smoke, higher grade

of disease, and ER/PR negativity remain the only risk factors associated with an increased

risk of breast cancer death. For the stage 2 women, of whom 444 died from their disease, age
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Figure 6.6: Cumulative Incidence Curves by Age
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75 or older, smoking, higher grade, larger tumor size, increasing number of positive nodes,

having no surgery, and ER negativity all remained significant predictors of an increased

risk of breast cancer death. For the 1,813 women with stage 3 disease, age 75 and higher,

smoking, poorly differentiated tumor, ER/PR negativity, HER2 negativity and having no

surgery, were all associated with an increased risk.

In the cumulative incidence curves stratified by age, we see a clear increase in the cu-

mulative incidence of CVD death for older ages, as well as deaths due to other causes. In

fact, for the 75+ group, the lowest death risk seems to be from breast cancer. Contrarily,

for the younger ages, the greatest mortality risk is death from breast cancer, and the lowest

cunulative incidence of death is due to CVD. While differences in death risk are seen by age,

stratified models (age <50 vs age 50+) did not yield major differences in the hazard ratios

for the remainder of the risk factors examined, and thus only the unstratified results are

presented.

6.3.1 Comparison of Model Estimation and Risk Factor Inclusion

Tables 6.14 and 6.15 list the risk factors that were included in each of the models. As

expected, when the analysis was performed on only the complete case data, the sample

size and power were reduced, and fewer variables remained statistically significant compared

to the models on the full data set. For the variables that remained in both models, the

parameter estimates were fairly close between the full data set and the complete case analysis,

and the levels of a risk factor that were statistically significant remained consistent from one

model to the next.

As was seen in the simulation analysis, as the degree of censoring increases, the param-

eter estimates from the different model types (CSH, SH, and MS) become nearly identical,

especially in the situation where risk factors are only directly related to a single cause of fail-

ure. Therefore, for this analysis, any model choice is appropriate for risk factor estimation.

However, we can expect to see differences in the individual risk predictions.
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Table 6.14: Variables Included in Multivariate Models

CVD death, all data Breast Cancer death, all data
(N=20,462 : 695 events) (N=20,462 : 842 events)
CSH SH Mstate CSH SH Mstate

Age X X X X X X
Race X X X X X
Smoking X X X X X X
History CVD X X X
HDL X X X X X X
Charlson X X X
Grade X X X X X X
Tumor size X X X X X X
Her2Neu X X
Lymph Nodes X X X X X X
Radiation X X X
Chemo X X
Surgery X X X X X
ERPR X X X X

Table 6.15: Variables Included in Complete Case Multivariate Models

CVD death, complete data Breast Cancer death, complete data
(N=11,152 : 267 events) (N=11,783 :469 events)

CSH SH Mstate CSH SH Mstate
Age X X X X X X
Race X X X
Smoking X X X X X X
History CVD X X X
HDL X X X X X X
Charlson X X X
Grade X X X X X
Tumor size X X X X X X
Her2Neu X
Lymph Nodes X X X X X X
Surgery X X X
ERPR X X X
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6.3.2 Model Performance

To further evaluate the choice of statistical model, we examine how the model performs

when used for prediction. Due to the low percentage of events and high degree of censoring,

no data splitting (into a training and test set) was done in this primary analysis. While the

best method of model validation would include examination on an external data set, none was

available at current time, and remains a limitation to evaluating the model generalizability.

Therefore, the results of model performance should be interpreted with caution, as they will

likely overstate the model’s capabilities.

Calculating Individual Predicted Values

To assess the models’ performances, predicted values were calculated at 3, 5 and 10 years

after breast cancer diagnosis.

For the cause specific hazards, the model based prediction can be performed using the

method described in [D’Agostino Sr et al., 2008] and others, by evaluating the below formula

for the probability of the event by the time-point of interest:

p̂ = 1− S0(t)exp[
∑p

i=1 βiXi−
∑p

i=1 βiX̄i],

where S0(t) is the baseline survival at follow-up time t (t = 3, 5 or 10 years), provided in

Table 6.16, βi are the estimated regression coefficients from Tables 6.8 and 6.10), Xi is the

individual’s value of the risk factor, X̄i is the corresponding sample mean, and p denotes the

number of risk factors.

For the subdistribution hazards model, the probability of an event by a given time, t,

depends on the covariates and the baseline cumulative subdistribution hazard and can be

calculated just as straightforwardly, using [Wolbers et al., 2009] :

p̂∗ = 1− exp
(
− exp

( p∑
k=1

βkXik

)
·
∫ t

0

λ̄1,0(s)ds
)
,
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where
∫ t

0
λ̄1,0(s)ds is the baseline cumulative subdistribution hazard at time t and

∑p
k=1 βkXik

is the linear predictor for a patient based on their risk factors and the coefficients from the

subdistribution hazards models in Tables 6.10 and 6.8. To obtain the baseline cumulative

subdistribution hazards, the SAS macro %DACIF [Zhang and Zhang, 2011] was used.

Calculation of the patient-specific transition probabilities from the multi-state model is

done in two steps [Putter, 2014]. The first step uses the estimated parameters and baseline

transition hazards along with the patient-specific covariate values to obtain the matrix of

patient-specific transition hazards, including the hazard of remaining in the initial state

at time t. The second step uses the patient specific transition hazards, along with the

variance-covariance matrix, to obtain the patient specific transition probabilities using the

Aalen-Johansen estimator [Aalen and Johansen, 1978]:

P̂(s, t) =
∏
s<u≤t

(I + dΛ̂(u)),

where Λ̂(t)) is the matrix of patient specific transition hazards at time t, and for our specific

model is as follows:



−
∑

h6=g Λgh(t) α̂01(t) α̂02(t) α̂03(t)

0 0 0 0

0 0 0 0

0 0 0 0


,

and I is the (SxS) identity matrix where S denotes the number of possible states. Calcula-

tions can be done using the mstate package in R.

Prediction Results

Table 6.17 summarizes the average risk (and standard deviation) for each failure type at

3, 5 and 10 years. Across all thre time points examined, the risk of breast cancer death was

higher than the risk of cardiovascular death in this cohort.
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Table 6.16: Survival and Cumulative Subdistribution Baseline Hazard estimates for making
predictions

S0(t) 3 years 5 years 10 years
Cardiovascular Survival 0.9848 0.9745 0.9541
Breast Cancer Survival 0.9803 0.9661 0.9460
Cumulative Subdistribution Baseline Hazard
CVD 0.0006056 0.0010126 0.001768
Breast Cancer 0.00355 0.00614 0.00952

Table 6.17: Average Predicted Risks at Selected Timepoints

3 years 5 years 10 years

BC deaths (observed) 1.9%(0.001) 3.3% (0.001) 5.1%(0.002)

CSH 4.2% (0.08) 6.9% (0.11) 10.2% (0.14)

SH 3.8% (0.06) 6.3% (0.09) 9.2% (0.12)

MS 1.9% (0.03) 3.3% (0.04) 4.9% (0.05)

CVD deaths (observed) 1.5%(0.001) 2.5%(0.001) 4.3%(0.002)

CSH 3.4% (0.06) 5.5% (0.09) 9.1% (0.14)

SH 0.7% (0.01) 1.2% (0.02) 2.1% (0.03)

MS 1.5% (0.02) 3.2% (0.03) 4.1% (0.04)

Though the CSH model is known to over-estimate the true risk, with the high degree of

censoring in this cohort, the two models give very similar results for breast cancer mortality.

For the endpoint of CVD death, there is a greater discrepancy in predicted risk between the

two models, which increases with increasing time. A possible explanation for this is that a

large proportion of the breast cancer deaths occur within 5 years of diagnosis, which can

especially be seen in Figure 6.5, the cumulative incidence curves for each cause of failure,

whereas the cumulative incidence of CVD death increases at a fairly constant rate over the

time period. Thus, the endpoint of CVD death is more affected by the competing cause of

BC death, and how the risk set is defined, which varies between the two models, leads to big

differences in predicted risk.
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Looking in greater detail at the predicted risks stratified by stage, Table 6.18, we can see

the wide differences in predicted risk of breast cancer death by stage across all 3 timepoints,

with 5 year risk greater than 20% for stage 3 diesase. The corresponding stratification for

CVD mortality risk shows little to no difference based on stage, with generally low risk across

the entire length of follow-up.

Table 6.18: Average Predicted Risk at Selected Timepoints, by Stage (SH Model)

Predicted BC

mortality risk 3 years 5 years 10 years

Stage 1 1.4% (0.012) 2.4% (0.02) 3.6% (0.03)

Stage 2 5.1% (0.06) 8.4%(0.09) 12.5% (0.12)

Stage 3 13.1% (0.12) 21.0% (0.17) 28.6%(0.20)

Predicted CVD

mortality risk 3 years 5 years 10 years

Stage 1 0.6% (0.01) 0.9% (0.02) 1.7% (0.03)

Stage 2 0.8% (0.014) 1.4% (0.02) 2.4% (0.04)

Stage 3 1.1% (0.02) 1.8% (0.03) 3.0%(0.05)

Multi-state Model Output

In addition to the predicted risk at selected timepoints, a user-friendly feature of the

multi-state model is the graphical representation of a person’s risk over time. In the sample

figure below we see the patient’s risk of transitioning to any of the three states at any point

in time.
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Figure 6.7: Sample Multi-state Prediction Curve

This patient was a 75 year old, white female with stage 3, grade 3 breast cancer, a history

of CVD, Charlson score of 2, highl total cholesterol, poor HDL and smoking missing. Her 5

year predicted risk of breast cancer mortality was 31% from the MS model, 90% from the

CSH model, and 74% from the SH model. Her 5 year predicted risks of CVD mortality were

27% from the MS model, 85% from the CSH model, and 23% from the SH model. Her actual

outcome was death due to breast cancer at 3.5 years post-diagnosis.

Discrimination and Calibration

To summarize model discriminative ability, we again examine the AUCs at 3, 5 and 10

years. Results are summarized in Table 6.19. While the AUCs indicate good discrimination,

149



they are inflated due to evaluating the models on the same data set upon which they were

created. No internal cross-validation was performed, as the best method of model validation

is truly on an external data source [Steyerberg et al., 2010].

Table 6.19: Summary of AUC for selected models and timepoints

3 years 5 years 10 years

CVD - CSH 0.85 (0.83, 0.87) 0.85 (0.84,0.87) 0.85 (0.83,0.86)

CVD - SH 0.84 (0.82,0.86) 0.85 (0.83,0.86) 0.84 (0.82,0.85)

CVD - MS 0.84 (0.82,0.86) 0.85 (0.83,0.86) 0.82 (0.81,0.84)

BC - CSH 0.87 (0.86,0.89) 0.85 (0.84,0.87) 0.82 (0.80,0.83)

BC - SH 0.87 (0.85,0.88) 0.85 (0.84,0.86) 0.81 (0.80,0.83)

BC - MS 0.82 (0.80,0.84) 0.80 (0.78,0.87) 0.77 (0.75,0.79)

Plots of observed versus predicted appear as both bar charts and traditional calibration

plots in the following pages. For cardiovascular mortality, the plots indicate that using CSH

models, the predicted risk is slightly higher than the observed event rate, with the exception

of the 10 year mark, when a large portion of our data set has been censored. Conversely,

the MS and SH models have similar observed and predicted risks for all except the highest

decile of risk, for which it largely underestimated the event rate. A possible reason could

be due to the low CVD event rate in our population. Regardless of decile of predicted risk,

at 3 years, there is a less than 5% event rate for every decile except the highest, which still

has a less than 10% event rate. This is still the case at 5 years, with the exception of the 2

highest deciles having observed rates of slightly higher than 5% and 15%, respectively.

Interestingly, the same pattern does not hold for the breast cancer deaths, where the

plots indicate only slight over-estimation of risk by the CSH and SH models at both 3 and 5

years, but otherwise good calibration. The MS model, however, shows excellent calibration

at 3 and 5 years. At 10 years, the CSH and SH models slightly underestimate the event rate,

while the MS model has a greater degree of under-estimation. However, this time-point is
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subject to a high degree of overall censoring and reduced sample size, thus evaluation at 3

and 5 years remains more meaningful in this cohort.
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6.4 Summary

In summary, while the previously established models of CVD risk have adequate discrim-

ination in our cohort, the calibration is poor. This is likely due to a number of reasons,

including the high proportion of competing events seen in our data set, but not accounted

for under the traditional survival methods used to create the original models. It could also

be due to the fact that our data set does not have 10 years of follow-up for a large percent-

age of the cohort, and removing those with less follow-up and those failing from competing

causes, heavily biases the sample used for model evaluation. However, even for the shorter

prediction horizons, such as 2 - 5 years, poor calibration is still seen.

In our analysis of CVD death using competing risk methodology, we discovered that

many of the traditional CVD risk factors were not as prognostic in this data set. This

could be influenced by the nontrivial amounts of missing data, such as for smoking status,

or timeframe for which risk factors such as cholesterol measurements were collected. The

additional risk of breast cancer mortality in this population led to the finding that some

of the breast cancer risk factors, such as lymph nodes, grade and tumor size, were also

associated with an increased risk of CVD death, as well as patient characteristics including

Charlson comorbidity, smoking, and history of a CVD event.

Lastly, it is plausible that in this data set, the CVD event rate happens to be much lower

than the population upon which the original models were created. We found that in this

cohort, the occurrence of CVD death is higher than 5% only for those aged 70 or more,

and is an extremely rare event for the remainder of the cohort. This could be due to the

differences in distribution of risk factors between the two populations, as well as the high

risk of competing causes of death in our study.

While we were not able to directly evaluate the established breast cancer recurrence risk

models because recurrence was not routinely collected in our data set, we found that the

risk factors included in the traditional models such as tumor size, lymph node involvement

and grade, remained highly predictive of breast cancer mortality in this patient population.
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Figure 6.8: Calibration Plots for CVD Endpoint

Figure 6.9: Calibration Plots for Multi-State Models: CVD Mortality
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Figure 6.10: Calibration Plots for BC Endpoint

Figure 6.11: Calibration Plots for Multi-State Models: Breast Cancer Mortality

154



Additional covariates of ERPR status, surgery, and smoking were also significantly associated

with breast cancer mortality. Stage, while not included in the models due to its potential

co-linear effect with tumor size and nodes, was seen to be highly predictive in stratified

cumulative incidence curves, though a specific stratified analysis did not reveal additional

findings beyond the unstratified models.

The AUCs for the models were very high, possibly due to the fact that they were cal-

culated on the same data set from which the models were built. However, despite the good

discrimination, some were not well calibrated and seemed to over-estimate a woman’s risk

at 3 and 5 years. Perhaps setting a risk/treatment threshoold such as >5% at 3 years, or

>10% risk at 5 years, and evaluating the models under decision analytic techniques would

further promote the model’s clinical utility, beyond traditional measures of discrimination

and calibration.

Regardless, our findings indicate that following a breast cancer diagnosis, a woman’s risk

of breast cancer mortality is far greater than her risk of CVD mortality, and the primary

focus remains breast cancer mitigation and treatment. Specific subgroups, such as those

greater than 65 years old, or those with a prior history of CVD, are at the greatest risk for a

CVD event. However, use of the model for women outside those distinct subgroups may help

identify additional patients with specific combinations of risk factors that would establish

them as high risk for a CVD event or mortality, for which beneficial interventions may be

available.

Lastly, we have demonstrated the utility of a multi-state model when there is interest in

predicting for more than one competing event. The multi-state model demonstrated the best

calibration of the three models at 3 and 5 years, and the individual plot of patient risk over

time provides a user-friendly graphical summary that can be easily understood by clinicians

and patients.
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Chapter 7

Concluding Remarks

To the best of our knowledge, this is the first study to validate any established CVD

risk models in a cancer population, or to model the simultaneous risk of CVD versus breast

cancer death via competing risk methodology. There are likely a number of reasons why it

has not been previously persued. The first could be lack of an awareness of a public health

burden. For many cancers, no curative therapy exists, and the primary focus for the patient

and oncologist is on managing the cancer; other causes of death are trivial. However, for

certain early stage cancers where there is potential for cure, such as in breast cancer, once

a patient has entered the remission phase, they may become as at-risk for other causes of

death as the general population. We have explored some of the major causes of death for a

cohort of early stage breast cancer patients, but there are likely other cancers, such as early

stage colorectal and low grade prostate, for which competing causes of death could equal or

perhaps surpass the burden of cancer mortality, and patient awareness is beneficial.

Another difficulty arises in obtaining a large enough sample size, with all relevant co-

variates. Cancer overall is not a rare disease, but when studying a specific cancer diagnosis,

each site must be thought of as its own disease and disease process. In focusing on a single

site, such as breast cancer, with less than 300,000 cases diagnosed in the U.S. each year, it

is a relatively rare disease. Thus any analysis of a cancer site would likely require a coop-
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erative group arrangement in order to obtain a meaningful sample size, which can become

very costly and logistically complex. In addition, many of the cooperative groups may fo-

cus solely on the specific cancer diagnosis and treatment, and thus may not collect data on

risk factors for competing causes of failure. One solution to this is to examine data from

clinical trials, where more extensive data are collected on side effects, toxicities, and patient

vitals. However, once the trial is closed or patients have reached the primary trial endpoint,

follow-up is not continued and there becomes a high degree of administrative censoring.

A further challenge may be due to the current healthcare delivery system. A large pro-

portion of cancer patients likely receive their oncologic care from an onocology specialist or

specialty institution that may focus exclusively on cancer care. This could lead to difficulties

in data collection and availability. For instance, the current CVD risk models require data

on serum levels such as cholesterol, which may not be monitored or stored electronically in

the oncology setting. Oncologists not associated with the same institution as the patient’s

primary care physician will also not have access to detailed patient histories including prior

non-cancer events or patient medications. Similarly, primary care physicians may not have

detailed information on cancer characteristics for their patients who have had a cancer di-

agnosis, but receive their care elsewhere. An integrated healthcare delivery system with

linked electronic medical records, would allow access to more comprehensive patient data

for research questions such as these that may bridge more than one general area of patient

health. Another solution could be to develop models that contain alternative risk factors,

ones that would be readily available, such as BMI or questionnaire data on lifestyle habits

and history of health issues, which is a potential area of future research.

Despite these limitations, we have reported on an extremely large cohort of breast cancer

patients from Kaiser Permanente in Northern California. Our analyses indicate that while

the previously published CVD risk models have moderate discrimination in this cohort, the

calibration is poor. Some of the risk factors that have been traditionally associated with

CVD risk, are not as prognostic in this population, and there could be several reasons for
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this. While our cohort size was large, we chose to focus on cardiovascular mortality rather

than intermediate, non-fatal events, and thus had a low number of events leading to reduced

statistical power. We also elected to include all of the risk factors as categorical covariates,

which increases the number of variables in the model.

Our cohort was also very different from the healthy cohorts upon which the models

were developed. The current cohort was on average, much older, with a range of comorbid

conditions, including their cancer diagnosis. We also did not exclude patients with a prior

history of CVD, in order to present a more “real-world” setting, though it is likely that

patients with a history of CVD are already well aware of their mortality risks from heart

disease, despite their new cancer diagnosis. In fact, those with a history of CVD were

at an increased risk for death from CVD but not from breast cancer. Our data set was

also affected by missing information, especially for smoking and cholesterol. Rather than

exclude patients with missing information, we elected to broaden the time frame for which

cholesterol data was obtained, but it is possible that data not collected within a short time

of the breast cancer diagnosis, may not be a good indication of patient health surrounding

the time of their primary breast cancer treatment. However, an analysis using only complete

cases revealed similar results to the analysis that included missing information as its own

“missing” category, and only those with very low HDL cholesterol remained at an increased

risk.

Another reason for the poor calibration could be due to the methodology upon which the

original models were developed. None of the previously published CVD models used methods

to account for competing risk of death, as it was a trivial issue for their young, healthy

cohorts. Therefore, we would expect these models to over-estimate the risk of CVD death in

our patient population, and this is reflected in several of the calibration plots, especially those

predicting for 5 years or less. However, some of the calibration plots indicate the opposite

effect, that the model is understimating the observed event rate. This is likely due to the

discrepancy in time frame for which these models predicts (generally 10 years) and the fact
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that we do not have 10 years of follow-up for a large proportion of our cohort. In excluding

patients who are still alive but have not yet been followed for 10 years, we are reducing our

overall sample size, while keeping the same number of failures (as most failures are observed

before 10 years) and thus increasing the observed event rate in our sample. As the cumulative

incidence of both BC and CVD death continues to increase between years 5 and 10 post-

diagnosis, it would be interesting to repeat the analysis once 10 years of follow-up have been

achieved for the majority of survivors. Alternatively, perhaps predicting risk at 10 years is

not useful for a woman undergoing treatment for her primary breast cancer diagnosis, and

understanding her risk of competing events, such as CVD, in the next 5 years would be more

beneficial, especially while weighing treatment decisions. The majority of the established

CVD models chose 10 years as their timepoint for predicition, likely due to the low number

of observed events. For example, in the 1998 Framingham paper [Wilson et al., 1998],the

sample of 2,856 women, yielded only 227 events, and no information was provided on the

timing of these events. However, it is possible that for a breast cancer patient, her greatest

risk may be in the next 5 years following her diagnosis, and established models would be

more useful if calibrated to predict in that time horizon.

It also may be possible that the cancer disease process modifies the body in such a way

that traditional CVD risk factors are no longer as prognostic. This is especially echoed in

the multivariate models presented for CVD death, where a number of the breast cancer char-

acteristics are significantly associated with increased risk of CVD death, but the traditional

CVD risk factors are not. Unfortunately, we did not have specific treatment information on

type and duration of chemotherapy and hormonal therapies, and were unable to determine

whether this could be treatment related. There was also confounding with age, stage of

diagnosis and aggressiveness of treatment. For example, younger women were more likely

to have stage 3 disease, and regardless of stage at diagnosis, were also much more likely to

receive chemotherapy. Older women (greater than 75) were less likely to receive any surgery

or chemotherapy, but also remain the most at risk for death from other causes. However, an
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analysis stratified by age did not reveal any major differences in the covariate effects of the

remaining risk factors.

Another possibility is that we are missing other relevant covariates. Our data was limited

to what is historically collected for cancer registries, and traditional risk factors included in

the Framingham models. In doing so, we are missing information on exposures such as

alcohol, diet, BMI, reproductive factors, or possible genetic information related to breast

cancer or CVD, including family history and known genetic mutations. Lastly, our sample

had a high proportion of other causes of mortality that were not directly analyzed as an

endpoint, but rather accounted for under a general “death from other” category, the largest

subgroup of which was “other cancer”. Perhaps an additional transition from diagnosis to

death from other cancer, or including it with breast cancer deaths, would be worthwhile in

presenting a more complete picture of risks following a breast cancer diagnosis, especially

if it is possible that the “other” cancers included a number of breast cancers that had

metastasized.

Nevertheless, this is the first study to evaluate CVD risk models in a cancer population,

as well as develop a prognostic model that evaluates risk of cancer death and CVD death.

While the number of CVD deaths was small, it was similar to the number of BC deaths

observed during the follow-up period, indicating that the risk for CVD death remains as

high in breast cancer survivors as the risk for BC death. Based on the current data set, if

clinicians elect to use the Framingham models, it is recommended to choose the model that

predicts in a 2 or 4 year horizon. If longer prediction is of interest, or simultaneous estimates

of BC and CVD mortality risk, our models showed good performance, especially the user-

friendly multi-state model, though their generalizability to an outside patient population

still remains to be assessed.

In terms of the methodology utilized in our analysis, we found no major differences in

the results between the three model types. This is likely due to the low number of events

relative to our sample size, and the high degree of censoring. Perhaps a better model choice
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for this population would have even been a transformation model with a cure fraction as

detailed by Zeng et al. [Zeng et al., 2006], however, it has not yet been extended to include

competing events, and software availability remains limited.

One further area of methodological debate is the choice of the time scale for the model.

While the greatest predictor of mortality is clearly patient age, we chose not to use age as

the time-scale, but rather include it as a covariate in the model, as well as a stratification

variable in sensitivity analyses. The debate over choice of time scale is ongoing, with no

general consensus over which should be used[Korn et al., 1997, Cheung et al., 2003], as the

two methods have been shown to produce differing results on the same set of data. Ad-

ditionally, we elected to use age at breast cancer diagnosis as the starting point, but this

is a left-truncated entry time; by the time a woman has been diagnosed, the cancer has

already been present for an unknown amount of time. Currently it is not possible to analyze

left truncated data using a subdistribution hazards model, and thus was not pursued in the

current work. However, due to the different effects of age on each competing endpoint in the

analysis, it remains an interesting area of future research, especially under the multi-state

modeling approach.

In simulation studies of available methods for analyzing competing risk data, only the

CSH and SH models have been evaluated. The major findings of these studies have been

that the covariate effect on the CSH for a specific cause may be different from its effect on

the cumulative incidence of the cause, and that if one of the model choices holds, the other

will be misspecified. This means that if the proportionality assumption of the CSH model

is met, then the corresponding SH model may be violated. However, it has become widely

accepted that even when the model is mis-specified, it may still be useful if the covariate

effect is interpreted as a time-average effect [Latouche et al., 2013].

Our simulation did not aim to address the behavior of a covariate that is known to

be associated with more than one cause of failure, as that has been reported previously

[Dignam and Kocherginsky, 2008, Allignol et al., 2011]. We rather turned to the goal of
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prediction and deciding which methodl to use when creating a disease prognostic model.

Based on the previously published risk models for CVD and breast cancer recurrence, we see

no overlap in covariates other than age, and possibly smoking. Therefore, our simulations

focus on the accuracy of covariate effect under each model specification, when each endpoint

has its own independent set of risk factors. Regardless of the method of data generation

or degree of censoring, we found that the CSH and MS models give accurate parameter

estimates for both the binary and standard normal covariates that were generated. Given

the excellent performance of the CSH model in simulations, one could infer that the SH

model would possibly be mis-specified, and this is apparent given the poor estimation for

the covariate effect. However, as the censoring percentage increases, we see the SH model

results asymptote to the CSH and MS model results. Even when the parameter estimates

are identical, the one difference that remains between the two models is in the inclusion of

covariates. Since the SH model models not the specific event of interest, but the cumulative

incidence of events, covariates that are associated with competing causes of failure will

have a non-trivial hazard ratio for the subdistribution hazard. This was shown both in

the simulation results and in the real data analysis. Therefore, while the estimates for the

primary risk factors will be similar for the three models when there is a high degree of

censoring, the SH model will likely include covariates that are strongly related to all causes

of failure, while a parsimonious CSH model should only include covariates that act upon the

failure type being modeled. The multi-state model should include covariates related to all

failure types or transitions.

While it has been described in the literature that the model choice depends on the

question of interest, and CSH models should be used when interest lies in the effect of a

covariate on a specific cause of failure, whereas SH models should be reserved for absolute

risk prediction, we have shown through simulation and real data analysis, that when the

degree of censoring is high, as is often the case in a retrospective study with short follow-up,

the models give nearly identical results. However, even though we evaluated our models on
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the same data set that was used to create them, there is room for improvement in model

calibration. Perhaps neither one of our models is the optimum choice, and one that can

be adapted to change after a cure threshold has been reached, or even Bayesian methods

incorporating a prior distribution based on population data, would be better suited for this

type of competing risk analysis, and are potential areas of future exploration. Additionally,

new evaluation methods for the simultaneous prediction of multiple endpoints, have yet to

be developed and are another area of future research.
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Appendices

Appendix A: Cardiovascular Disease Risk Models Work-

sheets

1. Framingham 1991 worksheet

2. Framingham 1998 worksheet

3. DAgostino2008worksheet

4. SCORE worksheet
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Appendix B: Breast Cancer Recurrence Models

1. Nottingham Prognostic Index

2. Kattan Nomogram

3. Adjuvant!Online

4. CancerMath

5. Predict

6. Oxford Model
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