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Rationale: Basic research implicates alveolar endothelial cell apopto-
sis in the pathogenesis of chronic obstructive pulmonary disease
(COPD) and emphysema. However, information on endothelial
microparticles (EMPs) in mild COPD and emphysema is lacking.
Objectives: We hypothesized that levels of CD311 EMPs phenotypic
for endothelial cell apoptosis would be elevated in COPD and asso-
ciated with percent emphysema on computed tomography (CT).
Associations with pulmonary microvascular blood flow (PMBF), dif-
fusing capacity, and hyperinflation were also examined.
Methods: The Multi-Ethnic Study of Atherosclerosis COPD Study
recruited participants with COPD and control subjects age 50–79
years with greater than or equal to 10 pack-years without clinical
cardiovascular disease. CD311 EMPs were measured using flow
cytometry in 180 participants who also underwent CTs and spirom-
etry. CD62E1 EMPs phenotypic for endothelial cell activation were
also measured. COPDwas defined by standard criteria. Percent em-
physema was defined as regions less than2950 Hounsfield units on
full-lung scans. PMBF was assessed on gadolinium-enhanced mag-
netic resonance imaging. Hyperinflation was defined as residual
volume/total lung capacity. Linear regression was used to adjust
for potential confounding factors.
Measurements and Main Results: CD311 EMPs were elevated in
COPD compared with control subjects (P ¼ 0.03) and were notably
increased in mild COPD (P ¼ 0.03). CD311 EMPs were positively
related to percent emphysema (P¼ 0.045) and were inversely asso-
ciated with PMBF (P ¼ 0.047) and diffusing capacity (P ¼ 0.01). In

contrast, CD62E1 EMPs were elevated in severe COPD (P ¼ 0.003)
and hyperinflation (P ¼ 0.001).
Conclusions: CD311 EMPs, suggestive of endothelial cell apoptosis,
were elevated in mild COPD and emphysema. In contrast, CD62E1

EMPs indicative of endothelial activation were elevated in severe
COPD and hyperinflation.

Keywords: chronic obstructive pulmonary disease; emphysema; anti-

gens, CD31; endothelium; pulmonary disease

Chronic obstructive pulmonary disease (COPD) is the third
leading cause of death in the United States (1) and is projected
to be the third leading cause of death worldwide by 2020 (2).
COPD is defined as airflow obstruction that is not fully revers-
ible (3). Many patients with COPD have emphysema, which is
characterized by the destruction of alveolar walls with perma-
nent loss of lung architecture and parenchyma (4).

Cigarette smoking, the primary cause of COPD (3), is known
to cause endothelial dysfunction (5). Cigarette smoke is deliv-
ered directly to pulmonary endothelial cells and contains mul-
tiple factors including acrolein that cause endothelial apoptosis
(6). Increased endothelial cell apoptosis has been observed in
the lung tissue of patients with emphysema compared with con-
trol subjects (7, 8). Additionally, reductions in vascular endo-
thelial growth factor (VEGF) and its receptor have been noted
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AT A GLANCE COMMENTARY

Scientific Knowledge on the Subject

Prior research using animal models has implicated the pri-
mary destruction of the pulmonary capillary bed in the path-
ogenesis of chronic obstructive pulmonary disease (COPD)
and emphysema. The relevance of these findings to clinical
disease in humans is incompletely understood. Endothelial
microparticles are microscopic vesicles released into the
blood in response to endothelial cell perturbation.

What This Study Adds to the Field

This paper demonstrates that endothelial microparticles sug-
gestive of endothelial cell apoptosis are elevated in COPD
and, notably, mild COPD and are positively related to percent
emphysema on computed tomography. These cellularmarkers
link endothelial cell apoptosis with COPD and emphysema.
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in lung tissue of patients with severe emphysema (8) and COPD
(9). In murine models, blockade of VEGF receptor and ceram-
ide up-regulation cause alveolar endothelial apoptosis and
emphysema-like changes (10–12); however, the relevance of this
work to clinical disease is unclear because the applicability of animal
models of COPD to human disease remains controversial (13).

Studies in humans show that endothelial dysfunction, assessed
by flow-mediated dilation of the brachial artery, is present in early
COPD and is linearly related to decrements in FEV1 and greater
percentage of emphysema-like lung (hereafter referred to as per-
cent emphysema) on computed tomography (CT) among smokers
with and without COPD (14, 15). Flow-mediated dilation, how-
ever, does not provide information at the cellular level.

Endothelial microparticles (EMPs) (0.1 ,1.5 mm in diame-
ter) are vesicles shed from endothelial plasma membranes into
the circulation in response to endothelial cell perturbation (16).
An EMP contains a number of endothelial cell surface proteins,
the composition of which is dependent on the stimulus contribut-
ing to its release (17). EMPs expressing CD31 (platelet-endothelial
cell adhesion marker 1) are phenotypic for endothelial cell apo-
ptosis (16, 17). In contrast, EMPs expressing CD62E (E-selectin)
are phenotypic for endothelial activation (16, 17), and EMPs ex-
pressing CD51 (vitronectin receptor) are less specific, reflecting
chronic injury (18, 19).

Plasma EMP levels are increased in various vascular-related
disorders. CD311 EMPs are elevated in cardiovascular disease
(19), end-stage renal disease (20), pulmonary arterial hyperten-
sion (21), sleep apnea (22), severe hypertension (23), and type 2
diabetes (24). CD62E1 EMPs are also elevated in cardiovascu-
lar disease (25), pulmonary arterial hypertension (21), and sleep
apnea (22). CD511 EMPs are elevated in type 1 diabetes (26)
and multiple sclerosis (18). Plasma EMPs are also elevated in
symptomatic and asymptomatic smokers compared with non-
smokers, and among nonsmokers exposed to cigarette smoke
(27, 28).

CD311 EMPs were recently associated with an isolated re-
duction in the diffusing capacity of carbon monoxide (DLCO)
(27) and with COPD and its exacerbations (29). The clinical
relevance of the former, however, is uncertain and the power
of the latter study was not adequate to examine mild COPD or
emphysema.

We therefore examined the relationships of circulating levels
of EMPs with COPD in a study designed specifically to test the
hypothesis that CD311 EMPs are elevated in mild COPD and
emphysema on CT scan. In addition, we examined relationships
of EMPs to pulmonary microvascular blood flow (PMBF)
assessed on magnetic resonance imaging (MRI), and to DLCO

and hyperinflation. Some of the results have previously been
reported in abstract form (30, 31).

METHODS

Study Sample

The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study en-
rolled cases of COPD and control subjects from two prospective
population-based cohort studies, MESA (32) and the Emphysema
and Cancer Action Project (EMCAP) (33), who were 50–79 years
old with a 10 or more pack-year smoking history and who did not have
clinical cardiovascular disease, stage IIIb-V kidney disease, asthma
before age 45 years, other lung disease, prior lung resection, cancer,
allergy to gadolinium, claustrophobia, metal in the body, pregnancy, or
weight greater than 300 lb. We selected all eligible participants in the
MESA Lung Study (34) and oversampled participants with COPD or
emphysema from the remainder of MESA and EMCAP, in addition
to a small number from neither study. The current report includes
participants from the one site (Columbia University) where EMPs
were measured.

Protocols were approved by the institutional review boards of the
participating institutions and the NHLBI. Written informed consent
was obtained from all participants.

Endothelial Microparticles

Preparation of EMP samples and measurement using flow cytometry
were performed as previously described (17, 19) and as detailed in
the online supplement. To exclude the possibility of the unintended
measurement of platelet microparticles, EMPs were defined as micro-
particles positively labeled by CD31 and negatively labeled by CD42,
which is expressed only on platelets (19) (CD311 EMPs); positively
labeled by CD51 and negatively labeled by CD42 (CD511 EMPs); and
positively labeled by CD62E (CD62E1 EMPs).

Spirometry

Spirometry was conducted in accordance with American Thoracic Society/
European Respiratory Society (ATS/ERS) guidelines (35) on a dry-rolling-
sealed spirometer (Occupational Marketing, Inc., Houston, TX). COPD
was defined as a post-bronchodilator ratio of FEV1 to FVC less than 0.70
(2, 3). COPD severity was classified as follows: mild, FEV1 greater than
or equal to 80% predicted; moderate, 50–80% predicted; and severe,
FEV1 less than 50% predicted (3).

Percent of Emphysema-like Lung

All participants underwent full-lung CTs on General Electric 64-slice he-
lical scanners following the MESA-Lung/SPIROMICS full-inspiration
protocol (see online supplement) (36). Image attenuation was assessed
using APOLLO software (VIDA Diagnostics, Coralville, IA) at a single
reading center by trained readers without knowledge of other partic-
ipant information. Percent emphysema was defined as the percentage
of total voxels within the lung field below 2950 Hounsfield units
(HU).

Magnetic Resonance Imaging

Images were obtained using a 1.5-T whole-body MR (Signa LX; GE
Healthcare, Waukesha, WI) with phased-array coil for signal reception.
Participants underwent dynamic first-pass contrast-enhanced MR of the
thorax at functional residual capacity using a coronal three-dimensional
gradient echo time resolved imaging of contrast kinetics sequence with
a temporal resolution of 1.2–1.8 seconds per frame. After a nonenhanced
mask scan, a bolus of 0.1 mmol/kg bodyweight gadolinium–diethylenetri-
amine pentaacetic acid (Magnevist; Berlex, Wayne, NJ) was injected at 5
ml per second, followed by a saline flush of 20 ml at the same injection
rate. Regional PMBF was assessed from a g-variate function fitted to the
signal intensity-time curve of the lung parenchyma (37). Slope increase
was defined as the maximum signal increase per time interval.

DLCO and Plethysmography

Single-breath DLCO was measured with a Sensormedics Autobox 220
Series instrument (Viasys Healthcare, Yorba Linda, CA) following
ATS/ERS guidelines (38). Body plethysmography was performed using
a V6200 Series Autobox (Sensormedics, Yorba Linda, CA) following
ATS/ERS recommendations (39).

Covariates

Age, sex, race and ethnicity, educational attainment, smoking status,
pack-years, and medical history were self-reported. Height, weight,
blood pressure, oxygen saturation, high-density lipoprotein, low-density
lipoprotein, and fasting plasma glucose weremeasured using standardized
approaches, and smoking status was confirmed by cotinine (see online
supplement).

Statistical Analysis

Because EMP counts were skewed in distribution, values were log-
transformed to improve normality. Associations between EMPs and
COPD severity were initially tested with a linear contrast assuming
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the ranked categories of COPD severity were equally spaced, in analysis
of variance. Linear regression models were then used to adjust for po-
tential confounders, which were selected based on biologic plausibility
and examination of correlations with covariates (see Table E1 in the
online supplement). The base model was adjusted for age, sex, race and
ethnicity, and cohort of selection. We then additionally adjusted for
smoking status and pack-years. The full model was additionally ad-
justed for potential confounders of educational attainment, diabetes,
hypertension, oxygen saturation, physician-diagnosed sleep apnea,
height, weight, and body mass index in addition to statin use (which
may raise EMP levels [40]), high-density lipoprotein (which may affect
endothelial health and is related to percent emphysema [41]), and
white blood cell count (which, if fragmented, could theoretically be
included in CD311 counts [42]). Models for percent emphysema were
additionally adjusted for milliamperes. Models for pulmonary perfu-
sion were additionally adjusted for cardiac output. Additional details
on the statistical methods and sensitivity analyses are included in the
online supplement.

RESULTS

The study included 180 participants with spirometry, CT, and
EMP measures (Figure 1). The mean age of the participants
was 68 (SD, 7) years and 58% had COPD (22% mild, 25%
moderate, and 11% severe). Thirty-two percent smoked cur-
rently and the median pack-years was 38 (interquartile range,
23.3–52.3). The race-ethnic distribution was 57% white, 25%
African-American, 16% Hispanic, and 2% Chinese-American.
Participants with more severe COPD were more likely to be
male, white, and have greater pack-years (Table 1). Of this pop-
ulation, 149 participants completed the gadolinium-enhanced
MRI for the perfusion analysis, whereas 118 participants com-
pleted DLCO and plethysmography (Figure 1).

EMPs and COPD and Its Severity

CD311 EMP levels were elevated in COPD compared with con-
trol subjects in the fully adjusted model (adjusted mean differ-
ence, 0.21 log EMP per microliter; 95% confidence interval [CI],
0.02–0.40; P ¼ 0.03). Levels of CD511 and CD62E1 EMPs were
also higher in COPD compared with control subjects, but these
differences did not attain statistical significance in the fully

adjusted model (adjusted mean differences of 0.23 log CD511

EMP per microliter, 95% CI20.02 to 0.48, P ¼ 0.07; and 0.20 log
CD62E1 EMP per microliter, 95% CI 20.03 to 0.42, P ¼ 0.08).

CD311 EMPs differed by COPD severity (Table 2; see Figure
E1) and were significantly elevated not only in severe COPD but
also in mild COPD compared with control subjects in adjusted
analyses. The magnitude of the association of CD311 EMPs with
mild COPD increased with adjustment particularly for age and
race-ethnicity, differences that had attenuated the association in
the unadjusted analysis. In contrast, CD511 EMPs were not sig-
nificantly elevated and CD62E1 EMPs were only elevated in
severe COPD compared with control subjects.

CD311 EMPs were inversely related to the percent pre-
dicted FEV1 (P ¼ 0.04), as were CD62E1 EMPs (P ¼ 0.02).
However, depiction of these relationships using generalized ad-
ditive models, which do not force the multivariate relationship
to be linear, showed different relationships of EMPs to the
percent predicted FEV1 with an early increase in CD311 EMPs
and a late increase for CD62E1 EMPs (Figure 2).

EMPs and Percent Emphysema

CD311 EMPs were significantly associated with percent emphy-
sema in adjusted models (Table 3). CD311 EMPs were increased
monotonically across categories of percent emphysema and the
relationship of the continuous measures was linear without evi-
dence of a threshold effect (Figure 3). In contrast, there was no
significant increase in CD511 EMPs or CD62E1 EMPs with
percent emphysema.

EMPs, PMBF, and Diffusing Capacity

CD311 EMPs were inversely related to pulmonary microvascu-
lar perfusion as assessed by slope increase on contrast-enhanced
MR among the 149 participants who completed (Table 4). No
significant associations were found between changes in slope
increase and the mean number of CD511 or CD62E1 EMPs.

CD311 EMPs were inversely associated with DLCO and
DLCO/VA, whereas there was no association of CD511 or CD62E1

EMPs with diffusing capacity in the fully adjusted model (Table 4,
Figure 4a).

Figure 1. Flowchart of study participants. COPD ¼ chronic
obstructive pulmonary disease; CT ¼ computed tomogra-

phy; EMP ¼ endothelial microparticle; MESA ¼ Multi-Ethnic

Study of Atherosclerosis.
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EMPs and Hyperinflation

As Table 4 shows, in contrast to findings for percent emphy-
sema and pulmonary perfusion, CD62E1 EMPs were highly
significantly related to hyperinflation characterized by both
higher RV and RV/TLC ratio (Figure 4b), whereas CD311

EMPs displayed no association with RV or RV/TLC ratio
(Table 4).

Sensitivity Analyses

Sensitivity analyses demonstrated similar associations for CD311

EMPs and COPD with additional adjustment for use of long-
acting b agonists, inhaled corticosteroids, long-acting anticholiner-
gics, and omega-3 polyunsaturated fatty acids, and an interaction
term between cohort and case status. The results also did not
change after restriction to MESA and EMCAP cohorts; former

TABLE 1. CLINICAL CHARACTERISTICS OF PARTICIPANTS IN THE MESA COPD STUDY WITH MEASURES OF ENDOTHELIAL
MICROPARTICLES STRATIFIED BY COPD SEVERITY

Control Subjects (n ¼ 76)

COPD

Mild (n ¼ 39) Moderate (n ¼ 46) Severe/Very Severe (n ¼ 19)

Age, mean (SD), yr 68.9 (5.6) 69.2 (6.7) 67.3 (8.3) 66.2 (7.3)

Sex, male, No. (%) 39 (51.3) 27 (69.2) 26 (56.5) 14 (73.7)

Race–ethnicity

White, No. (%) 40 (52.6) 25 (64.10) 25 (55.6) 13 (68.4)

African American, No. (%) 14 (18.4) 10 (25.6) 15 (32.6) 6 (31.6)

Other, No. (%) 22 (29.0) 4 (10.3) 6 (13.0) 0 (0.0)

Educational attainment

<High school degree, No. (%) 23 (30.3) 7 (18.4) 12 (26.1) 3 (15.8)

Some college/associate degree/vocational

school, No. (%)

22 (29.0) 8 (21.1) 11 (23.9) 8 (42.1)

>College degree, No. (%) 31 (40.8) 24 (61.5) 23 (50.0) 8 (42.1)

Height, mean (SD), cm 166.43 (9.76) 171.15 (8.80) 169.42 (9.69) 171.78 (10.61)

Weight, mean (SD), kg 79.60 (18.20) 79.05 (14.70) 77.91 (19.89) 81.26 (20.43)

Body mass index, mean (SD), kg/m2 28.63 (5.73) 26.89 (3.89) 26.90 (5.55) 27.31 (5.21)

Cigarette smoking status

Former, No. (%) 56 (73.7) 29 (74.4) 23 (50.0) 14 (68.42)

Current, No. (%) 20 (26.3) 10 (25.6) 23 (50.0) 5 (26.32)

Pack-years of smoking, median (IQR) 32.0 (20.7–47.5) 40.4 (25.0–63.0) 40.0 (36.0–54.7) 40.0 (20.0, 67.5)

Low-density lipoprotein, mean (SD), mg/dl 110.99 (33.57) 108.05 (31.03) 95.54 (29.25) 102.37 (30.95)

High-density lipoprotein, mean (SD), mg/dl 56.69 (16.69) 59.54 (18.15) 59.87 (21.58) 56.74 (18.64)

Triglycerides, mean (SD), mg/dl 103.92 (42.37) 99.77 (40.04) 108.43 (47.53) 125.11 (70.37)

Cholesterol, mean (SD), mg/dl 188.51 (41.24) 187.54 (37.54) 177.09 (32.43) 184.05 (40.98)

Systolic blood pressure, mean (SD), mm Hg 121.86 (17.28) 120.80 (14.33) 125.45 (15.11) 126.89 (12.19)

Diastolic blood pressure, mean (SD), mm Hg 69.66 (9.93) 71.59 (9.64) 72.83 (9.02) 76.50 (9.72)

Hypertension, No. (%) 25 (32.89) 14 (35.90) 19 (41.30) 8 (42.11)

Fasting plasma glucose, median (IQR),mg/dl 98.5 (92.0–110.0) 100.0 (89.0–108.0) 102.0 (97.0–113.0) 100.0 (87.0–115.0)

Diabetes mellitus, No. (%) 13 (17.1) 6 (15.4) 6 (15.4) 5 (26.3)

Medication use

Statin, No. (%) 32 (42.1) 18 (46.2) 22 (47.8) 6 (31.6)

ACE inhibitors or angiotensin antagonists, No. (%) 17 (22.4) 13 (33.3) 16 (34.8) 5 (26.3)

Calcium channel blockers, No. (%) 9 (11.8) 2 (5.1) 10 (21.7) 6 (31.6)

b-Blockers, No. (%) 9 (11.8) 5 (12.8) 9 (19.6) 2 (10.5)

Omega-3, No. (%) 12 (15.8) 3 (7.7) 6 (13.0) 0 (0.0)

Inhaled or systemic corticosteroids, No. (%) 3 (4.0) 3 (7.7) 6 (13.0) 17 (89.5)

Aspirin, No. (%) 39 (51.3) 23 (59.0) 22 (47.8) 6 (31.6)

Short-acting b agonists, No. (%) 0 (0.0) 2 (5.1) 9 (19.6) 15 (79.0)

Long-acting b agonists, No. (%) 2 (2.6) 1 (2.6) 2 (4.4) 4 (21.1)

Short-acting anticholinergics, No. (%) 0 (0.0) 0 (0.0) 3 (6.5) 2 (10.5)

Long-acting anticholinergics, No. (%) 1 (1.3) 2 (5.1) 6 (13.0) 15 (79.0)

White blood cell count, mean (SD), billion/L 6.42 (1.67) 6.31 (1.37) 7.17 (1.98) 7.71 (2.43)

Neutrophils, mean (SD), % 58.45 (8.63) 58.39 (8.65) 57.09 (11.76) 62.42 (10.40)

Monocytes, mean (SD), % 7.63 (2.34) 8.77 (2.55) 8.14 (2.40) 8.84 (1.89)

Lymphocytes, mean (SD), % 30.09 (6.87) 29.51 (7.87) 31.70 (10.68) 25.53 (8.35)

Hemoglobin, mean (SD), g/L 13.74 (1.38) 14.14 (0.89) 13.80 (1.24) 14.23 (1.03)

Platelet count, mean (SD), billion/L 223.81 (59.14) 222.56 (48.45) 235.87 (57.77) 231.84 (53.91)

FEV1 percent of predicted, mean (SD) 99.05 (17.77) 91.42 (10.50) 68.50 (7.87) 38.86 (7.16)

FVC percent of predicted, mean (SD) 98.01 (17.19) 108.68 (13.52) 91.66 (13.35) 74.48 (22.17)

FEV1/FVC ratio, mean (SD), % 0.77 (0.04) 0.63 (0.06) 0.57 (0.09) 0.38 (0.07)

DLCO % predicted, mean (SD), %, n ¼ 118 67.52 (10.98) 64.31 (11.93) 56.15 (14.37) 40.07 (13.91)

DLCO VA % predicted, mean (SD), %, n ¼ 118 80.21 (13.03) 70.31 (14.91) 72.50 (20.94) 59.02 (19.70)

RV % predicted, mean (SD), %, n ¼ 118 69.22 (19.41) 84.15 (19.35) 96.32 (29.06) 136.81 (28.57)

TLC % predicted, mean (SD), %, n ¼ 118 88.72 (12.55) 100.15 (11.47) 92.81 (13.33) 99.49 (12.73)

RV/TLC ratio, mean (SD), %, n ¼ 118 0.31 (0.08) 0.31 (0.06) 0.39 (0.08) 0.49 (0.08)

Percent emphysema2910, median (IQR) 10.83 (5.02–18.59) 22.87 (12.78–34.02) 18.26 (10.31–30.06) 37.59 (28.07–39.95)

Percent emphysema2950, median (IQR) 0.74 (0.40–1.43) 2.74 (1.05–5.20) 2.44 (0.76–6.31) 14.27 (6.16–26.68)

Oxygenation saturation, mean (SD), % 93.30 (6.78) 96.70 (2.28) 94.97 (7.11) 95.17 (3.01)

Home oxygen therapy, No. (%) 1 (1.32) 0 (0.00) 1 (2.17) 8 (42.11)

Sleep apnea, self-reported, No. (%) 5 (6.58) 3 (7.69) 5 (10.87) 3 (15.79)

Definition of abbreviations: ACE ¼ angiotensin-converting enzyme; COPD ¼ chronic obstructive pulmonary disease; DLCO ¼ diffusing capacity of the lung for carbon

monoxide; IQR ¼ interquartile range; MESA ¼ Multi-Ethnic Study of Atherosclerosis; RV ¼ residual volume; VA ¼ alveolar volume.
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smokers; white participants; and those without hypertension, dia-
betes, asthma after the age of 45, or sleep apnea (see Figure E2).
The relationship of CD311 EMPs to mild COPD and percent em-
physema were also consistent across these sensitivity analyses (see
Figures E3 and E4, respectively), as was the relationship of CD62E1

EMPs to RV/TLC ratio (see Figure E5). Restriction to participants
without subclinical cardiovascular disease strengthened the associa-
tion of CD311 EMPs and percent emphysema (see Figure E4) and
slightly attenuated the association of CD311 EMPs with COPD
status and attenuated the association with mild COPD (see Figures
E2 and E3, respectively). Such restriction yielded similar associations
between CD62E1 EMPs and the RV/TLC ratio (see Figure E5).

To better define the apoptotic phenotypes, we additionally
adjusted analyses of CD311 EMPs with COPD and percent
emphysema for CD62E1 EMPs. Such further adjustment yielded
similar although slightly attenuated associations for COPD status
(P ¼ 0.11) and percent emphysema (P ¼ 0.06).

DISCUSSION

CD311 EMPs, which are suggestive of endothelial cell apopto-
sis, were elevated in COPD compared with control subjects and

this elevation was observed not only in severe COPD but also in
mild COPD. Higher levels of CD311 EMPs were also associ-
ated with the percent emphysema on CT scan, reduced PMBF,
and lower DLCO. In contrast, elevations in CD62E1 EMPs were
observed only in severe COPD and with hyperinflation. These
findings suggest endothelial cell apoptosis early in the patho-
genesis of COPD and emphysema, and endothelial activation in
severe, hyperinflated COPD.

This is the first study of which we are aware to demonstrate
that EMPs are increased in mild COPD and are related to a mea-
sure of emphysema. The findings, obtained using precise cellular
measures linked to state-of-the-art structural and functional im-
aging in a general-population sample, are consistent with prior
work in murine models that suggests a mechanistic role of
VEGFR blockade and ceramide up-regulation as a cause of alve-
olar endothelial apoptosis to epithelial apoptosis and emphysema-
like changes (10, 12). Together, these findings suggest a role of
endothelial damage and potentially apoptosis in the pathogenesis
of emphysema-predominant COPD.

Most prior work on endothelial cells in COPD has been lim-
ited to small studies using specimens collected at autopsy or sur-
gery. Reductions in the level of VEGF, a key cytokine involved

TABLE 2. ENDOTHELIAL MICROPARTICLE COUNTS BY COPD SEVERITY

Control Subjects (n ¼ 76 ) Mild (n ¼ 39) Moderate (n ¼ 45) Severe (n ¼ 19)

P Value for Linear Trend

Across COPD Severity

CD311 endothelial microparticles per microliter, log-transformed

Mean (SD) 7.11 (0.58) 7.12 (0.49) 7.26 (0.71) 7.52 (0.51) 0.01

Predicted mean, model 1* 7.10 7.30 7.27 7.49† 0.02

Predicted mean, model 2‡ 7.10 7.32† 7.30 7.51† 0.01

Predicted mean, model 3x 7.07 7.31† 7.27 7.40† 0.03

CD511 endothelial microparticles per microliter, log-transformed

Mean (SD) 6.80 (0.79) 6.91 (0.68) 6.94 (0.78) 7.17 (0.83) 0.07

Predicted mean, model 1 6.80 7.06 6.89 7.00 0.43

Predicted mean, model 2 6.80 7.08 6.94 7.02 0.80

Predicted mean, model 3 6.71 7.12† 6.85 6.83 0.47

CD62E1 endothelial microparticles per microliter, log-transformed

Mean (SD) 5.98 (0.62) 6.09 (0.68) 6.02 (0.71) 6.35 (0.69†) 0.047

Predicted mean, model 1 5.98 6.15 6.11 6.53† 0.05

Predicted mean, model 2 5.98 6.16 6.12 6.54† 0.05

Predicted mean, model 3 5.98 6.22 6.11 6.51† 0.03

Definition of abbreviations: COPD ¼ chronic obstructive pulmonary disease.

*Model 1 adjusted for age, sex, race and ethnicity, and cohort.
y P value less than 0.05, compared with control subjects.
zModel 2 adjusted for variables in model 1 in addition to smoking status, and pack-years.
xModel 3 adjusted for variables in model 2 in addition to educational attainment, body mass index, height, weight, diabetes mellitus, hypertension, oxygen

saturation, white blood cell count, sleep apnea, high-density lipoprotein, and statin use.

Figure 2. Endothelial microparticles
and severity of chronic obstructive

pulmonary disease. Smoothed re-

gression plots of the relationship of

counts of CD311 (dark line) and
CD62E1 (dashed line) endothelial

microparticles to the percent pre-

dicted FEV1. The plots were ob-
tained from regression models

adjusted for age, sex, race and eth-

nicity, cohort, smoking status, pack-

years, educational attainment, body
mass index, height, weight, diabe-

tes mellitus, hypertension, oxygen

saturation, white blood cell count,

sleep apnea, high-density lipopro-
tein, and statin use. The hash marks

denote data points. EMP ¼ endo-

thelial microparticle.
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in endothelial cell survival, reductions in VEGFR, and increased
endothelial apoptosis have been observed in the lung tissue of
patients with emphysema or COPD compared with those with-
out (8, 43). Peinado and coworkers (44) demonstrated increased
endothelial progenitor cells (EPCs) in the pulmonary arteries of
patients with COPD, suggesting endothelial injury and repair in
early COPD. Reductions in circulating EPCs (45), however,
may reflect reduced reparative capacity caused by smoking-
related suppression of EPC generation in the bone marrow or
increased margination of EPCs with increased repair.

EMPs, by contrast, directly reflect endothelial perturbation
unrelated to the bone marrow. Consistent with our findings
for COPD, Takahashi and coworkers (29) recently showed that
CD311 EMPs were elevated in COPD compared with control
subjects and during COPD exacerbations. The current study

expands on their findings and demonstrates both that CD311

EMPs are elevated in mild COPD and that there is a strong,
graded, and specific relationship of CD311 EMPs to percent
emphysema, findings that are consistent with animal models
and that suggest that EMPs are not merely a biomarker in
COPD but that endothelial apoptosis may be involved in the
pathogenesis of emphysema and COPD.

Unlike CD311 EMPs, CD62E1 EMPs in the current study
were elevated predominantly in severe COPD and related to
functional measures of pulmonary hyperinflation rather than
structural measures of pulmonary emphysema. Elevations in
CD62E1 EMPs are suggestive of endothelial activation (17),
particularly in response to inflammatory cytokines and specifi-
cally in response to tumor necrosis factor-a (17). Elevated tu-
mor necrosis factor-a is well-described in severe COPD (46)

TABLE 3. PREDICTED MEAN COUNTS OF ENDOTHELIAL MICROPARTICLES BY QUINTILE OF PERCENTAGE OF EMPHYSEMATOUS
LUNG ON COMPUTED TOMOGRAPHY

N ¼ 180

Computed Tomography Percent Emphysema
Difference Per Log

Increase in Percent

Emphysema (95% CI) P Value

Quintile 1

(n ¼ 36)

Quintile 2

(n ¼ 36)

Quintile 3

(n ¼ 36)

Quintile 4

(n ¼ 36)

Quintile 5

(n ¼ 36)

CD311 endothelial microparticles per microliter, log-transformed

Mean (SD) 7.09 (0.50) 7.27 (0.49) 7.07 (0.59) 7.13 (0.55) 7.41 (0.79) 0.13

Predicted mean, model 1* 7.09 7.14 7.22 7.31 7.57 0.082 (0.019 to 0.145) 0.01

Predicted mean, model 2† 7.07 7.13 7.21 7.32 7.60 0.089 (0.026 to 0.152) 0.006

Predicted mean, model 3‡ 7.01 7.06 7.11 7.18 7.27 0.075 (0.002 to 0.149) 0.045

CD511 endothelial microparticles per microliter, log-transformed

Mean (SD) 6.86 (0.69) 7.13 (0.68) 6.75 (0.77) 6.74 (0.67) 7.02 (0.98) 0.85

Predicted mean, model 1 6.81 6.85 6.90 6.98 7.17 0.059 (20.032 to 0.150) 0.20

Predicted mean, model 2 6.80 6.84 6.91 6.99 7.20 0.068 (20.023 to 0.159) 0.14

Predicted mean, model 3 6.88 6.91 6.93 6.96 7.00 0.032 (20.088 to 0.152) 0.60

CD62E1 endothelial microparticles per microliter, log-transformed

Mean (SD) 5.94 (0.60) 5.92 (0.68) 6.05 (0.73) 6.11 (0.56) 6.22 (0.71) 0.03

Predicted mean, model 1 5.91 6.00 6.05 6.12 6.24 0.078 (20.001 to 0.156) 0.05

Predicted mean, model 2 5.94 6.03 6.08 6.15 6.25 0.079 (0.00 to 0.158) 0.05

Predicted mean, model 3 5.98 6.03 6.07 6.12 6.20 0.058 (20.039 to 0.155) 0.24

Definition of abbreviation: CI ¼ confidence interval.

*Model 1 adjusted for age, sex, race and ethnicity, and cohort.
yModel 2 adjusted for variables in model 1 in addition to smoking status, and pack-years.
zModel 3 adjusted for variables in model 2 in addition to educational attainment, body mass index, height, weight, diabetes mellitus, hypertension, oxygen

saturation, white blood cell count, sleep apnea, high-density lipoprotein, statin use, and high milliamperes.

Figure 3. CD311 endothelial mi-

croparticle count and percent

emphysema on computed to-

mography. Smoothed regression
plot of the relationship of counts

of CD311 endothelial micropar-

ticles to the percentage of em-

physema-like lung on computed
tomography (dark line). The ligh-

ter lines are 95% confidence inter-

vals. The plot was obtained from

a regression model adjusted for
age, sex, race and ethnicity, co-

hort, smoking status, pack-years,

educational attainment, body
mass index, height, weight, dia-

betes mellitus, hypertension, oxy-

gen saturation, white blood cell

count, sleep apnea, high-density
lipoprotein, statin use, and high

milliamperes. The hash marks de-

note data points. EMP ¼ endothe-

lial microparticle; HU ¼ Hounsfield
unit.
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and we speculate that in contrast to CD311 EMPs, CD62E1

EMPs were elevated as a secondary, late response caused by
inflammation in severe COPD.

The present study has several strengths including precisely
measured EMPs by flow cytometry; relatively large, population-
based sample size; and state-of-the-art assessment of the major
phenotypes by spirometry, CT scan, gadolinium-enhanced MRI,
diffusing capacity, and plethysmography. Still, there are several
reasons why the present results may not support the translation
of experimental murine findings on endothelial apoptosis to the
human diseases of COPD and emphysema.

First, it is not certain that pulmonary circulation was the or-
igin of the EMP elevation as we sampled EMPs in the peripheral
venous circulation. Cell-surface or other markers that defini-
tively label EMPs as pulmonary or systemic are, unfortunately,
lacking. Recently, the absence of von Willebrand factor was
proposed as a marker for alveolar capillary endothelial cells
(29), as has the presence of angiotensin-converting enzyme
(CD143) (27). Although we did not use these markers, three
lines of reasoning suggest that the origin of the excess EMPs is
pulmonary. First, CD311 EMPs were specifically associated
with novel measures of PMBF on contrast-enhanced MRI in
addition to DLCO, the latter association being previously ob-
served in smokers without COPD (27). Second, patients in this
study were specifically selected for COPD and we excluded
patients with diseases likely to increase EMPs of systemic ori-
gin, such as clinical cardiovascular disease and significant renal
disease. Third, the findings were similar in secondary analyses
restricted to patients free of hypertension, diabetes, and sleep
apnea, which may increase EMPs of systemic origin. Further-
more, restriction to patients free of subclinical cardiovascular
disease slightly attenuated the association with COPD status,
attenuated that of mild COPD, and strengthened the relation-
ship with percent emphysema.

For obvious reasons, unlike in animal studies, human studies
of COPD pathology are limited to observation and cannot in-
clude experimentation (i.e., inducing COPD). Therefore, the
results may be potentially biased by unmeasured explanatory
factors that elevate EMPs and also cause COPD. We adjusted,
however, for precise measures of multiple potential confounders
and, if anything, the results of the fully adjusted models were of
greater significance than the unadjusted results. Furthermore, this
potential limitation is offset by the fact that the results apply di-
rectly to patients with clinical disease from the general population.

Elevated CD311 EMP levels in mild COPD is not necessar-
ily synonymous with CD311 EMP elevations in early COPD,
because not all patients with mild COPD progress to severe
COPD (47). However, low lung function is the major determi-
nant of accelerated decline in lung function characteristic of
COPD (48, 49), and percent emphysema predicts decline in
lung function (48). Longitudinal studies are needed to defini-
tively confirm or refute whether elevated CD311 EMPs contrib-
utes to lung function decline and progression of emphysema.

Annexin V on CD311 EMPs has been used to confirm the
apoptotic nature of endothelial cells of origin (50). We did not
measure CD311/annexin V1 EMPs, which limits a definitive
statement on the apoptotic nature of the CD311 EMPs. How-
ever, Jimenez and coworkers (17) showed a distinct elevation of
CD311 EMPs in response to the presence of apoptotic agents
which, along with our observed findings for CD311 EMPs that were
relatively independent of CD62E1 EMPs, implies that the eleva-
tions of CD311 EMPs discussed herein are suggestive of apoptosis.

Finally, case-control studies can be subject to selection bias;
however, the nested design of the current study, in which the
sampling probabilities within MESA and EMCAP were known,
minimized the possibility of this bias. A small number of partic-
ipants were recruited from outside the two cohorts and exclusion
of these participants yielded consistent results.

TABLE 4. THE ASSOCIATION OF ENDOTHELIAL MICROPARTICLES WITH PULMONARY MICROVASCULAR BLOOD FLOW, DIFFUSING
CAPACITY, AND HYPERINFLATION

Slope Increase* (n ¼ 149)

(per AU/s increase) P Value

DLCO (n ¼ 118) (per ml

CO/min/mm Hg increase) P Value

RV (n ¼ 118) (per

milliliter increase) P Value

RV/TLC ratio

(n ¼ 118)

(per unit

increase) P Value

CD311 endothelial microparticles per microliter, log-transformed

Mean difference,

model 1†
20.014 (20.027 to 20.001) 0.04 20.034 (20.056 to 20.012) 0.003 0.065 (20.097 to 0.228) 0.43 0.653 (20.495

to 1.802)

0.26

Mean difference,

model 2‡
20.015 (20.028 to 20.002) 0.02 20.038 (20.061 to 20.015) 0.001 0.106 (20.057 to 0.270) 0.23 0.910 (20.237

to 2.057)

0.12

Mean difference,

model 3x
20.015 (20.029 to 20.001) 0.047 20.030 (20.053 to 20.007) 0.01 0.141 (20.052 to 0.333) 0.15 1.089 (20.212

to 2.390)

0.10

CD511 endothelial microparticles per microliter, log-transformed

Mean difference,

model 1

20.007 (20.025 to 0.010) 0.42 20.030 (20.063 to 20.002) 0.07 0.113 (20.121 to 0.347) 0.34 0.519 (21.143

to 2.182)

0.54

Mean difference,

model 2

20.009 (20.027 to 0.009) 0.33 20.033 (20.066 to 20.001) 0.046 0.161 (2.076 to 0.397) 0.35 0.808 (20.864

to 2.481)

0.34

Mean difference,

model 3

20.011 (20.031 to 0.001) 0.26 20.029 (20.062 to 0.004) 0.08 0.074 (20.020 to 0.356) 0.58 0.738 (21.267

to 2.742)

0.47

CD62E1 endothelial microparticles per microliter, log-transformed

Mean difference,

model 1

0.011 (20.004 to 0.027) 0.15 20.025 (20.055 to 0.006) 0.10 0.202 (20.009 to 0.414) 0.06 1.821 (0.335

to 3.306)

0.016

Mean difference,

model 2

0.011 (20.005 to 0.027) 0.17 20.029 (20.059 to 0.001) 0.06 0.240 (0.026 to 0.455) 0.03 2.043 (0.545

to 3.540)

0.008

Mean difference,

model 3

0.012 (20.005 to 0.028) 0.17 20.022 (20.053 to 0.009) 0.17 0.390 (0.180 to 0.601) ,0.001 2.853 (1.147

to 4.558)

0.001

Definition of abbreviations: AU ¼ arbitrary units; DLCO ¼ diffusing capacity of carbon monoxide; RV ¼ residual volume.

* Adjusted for variables in model 3 in addition to cardiac output.
yModel 1 adjusted for age, sex, race and ethnicity, and cohort.
zModel 2 adjusted for variables in model 1 in addition to smoking status, and pack-years.
xModel 3 adjusted for variables in model 2 in addition to educational attainment, body mass index, height, weight, diabetes mellitus, hypertension, oxygen

saturation, white blood cell count, sleep apnea, high-density lipoprotein, and statin use.
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In conclusion, CD311 EMPs were elevated in COPD in
a pattern consistent with endothelial apoptosis in mild COPD.
CD311 EMPs were also positively related to percent emphy-
sema and correlated with reductions in pulmonary microvascular
perfusion assessed by MRI and diffusing capacity. In contrast,

CD62E1 EMPs suggestive of endothelial activation were ele-
vated in severe COPD and with hyperinflation. These cellular
markers may implicate endothelial apoptosis in the pathogenesis
of COPD and emphysema.
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