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ABSTRACT

The Role of Hippocampus in Signal Processing and Memory

Lyudmila Kushnir

Historically, there have been two lines of research on mammalian hippocampus. The

first one is concerned with the role of hippocampus in formations of new memories and owes

its origin to the seminal study by Brenda Milner and William Scoville of a single memory

disorder patient, widely known as H.M. The second line of research views the hippocampus

as the brain area concerned with orienting and navigating in space. It started with John

O’Keefe’s discovery of place cells, pyramidal neurons in the CA3 area of hippocampus, that

fire when the animal enters a particular place in its environment.

I argue that both lines of discoveries seem to be consistent with a more general view of

hippocampus as a brain area strongly involved in the integration of sensory, and possibly

internal, information.

The first part of the thesis presents an investigation of the effect of limited connectivity

constraint on the model network in the framework of pattern classification. It is shown

that feed-forward neural classifiers with numerous long range connections can be replaced

by networks with sparse feed-forward connectivity and local recurrent connectivity without

sacrificing the classification performance. The limited connectivity constraint is relevant

for most biological networks, and especially for the hippocampus.

The second part describes a decoding analysis from the calcium signal recorded in mouse

dentate gyrus. The animal’s position can be decoded with approximately 10cm accuracy

and the neural representation of position in the dentate gyrus have close to maximal di-

mensionality. The analysis also suggests that cells with single firing field and cells with

multiple firing fields contribute approximately equal amount of information to the decoder.
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Chapter 1

Introduction

1.1 Hippocampus role in integration of information

Historically, there have been two lines of research on mammalian hippocampus. The first

one is concerned with the role of hippocampus in formations of new memories and owes its

origin to the seminal study by Brenda Milner and William Scoville [1] of a single memory

disorder patient, widely known as H.M. This patient had his medial temporal lobe struc-

tures surgically removed for the relief of medically intractable epilepsy. The surgery was

immediately followed by a severe persistent anterograde amnesia, while sparing the short-

term memory and long-term memories that were formed before the surgery. This finding

strongly suggested a crucial role of hippocampus in creation of episodic memories.

The second line of research views the hippocampus as the brain area concerned with

orienting and navigating in space. It started with John O’Keefe’s discovery of place cells

[2], pyramidal neurons in the CA3 area of hippocampus, that fire when the animal enters

a particular place in its environment.
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Both lines of discoveries seem to be consistent with a more general view of hippocam-

pus as a brain area strongly involved in the integration of sensory, and possibly internal,

information [3], [4], [5],[6],[7]. Indeed, both processes - navigating in space and forming new

episodic memories can be seen as merging different aspects of experience together to form

an integrated representation - of a particular location in one case and of an episode in the

other. One could argue, that in both cases there is an added aspect to the perception of

information - a sense of recognition of a particular place and a “feel” of the episodic memory.

The later appeared to be missing in the patient H.M., whose hippocampus was surgically

removed (see below). Quoting Dr. Susanne Corkin [8] “...he has memories of his childhood,

(. . .) although these memories seem to be semanticized.”

1.1.1 The role in memory

The importance of hippocampus in formation of new episodic memories was first pointed out

in [1], based on a study of memory disorder patient, widely known as patient H.M. In 1953

this patient had undergone a surgical resection of the anterior two thirds of his hippocampi,

parahippocampal cortices, entorhinal cortices, piriform cortices, and amygdalae [9] as a

treatment for a severe epilepsy, that could not be controlled otherwise. Although the lesion

extended to almost entire medial temporal lobes, his profound memory deficits described

below are believed to be due to hippocampal removal and not removal of other structures

based on the studies of other patients [10],[11].

The most profound deficit that was observed in patient H.M. immediately after the

surgery was the inability to form new explicit memory, referred to as anterograde amnesia

[1]. This impairment was long-lasting and expanded to all kinds of memory tests, all

stimulus materials and all sensory modalities [8](review),[12],[13]. Some of his memories

about the events that happened before the surgery were also compromised (retrograde

2



amnesia), but to a much lesser extend [14].

A fact, that appeared paradoxical at the time of discovery, was that H.M. was still

able to acquire new sensorimotor skills, as was first demonstrated by Brenda Milner in

the mirror-tracking task [15]. Further studies [16],[17] indicate that despite relatively poor

initial performance (probably due to side effects of the antiepileptic drug on the cerebellum),

H.M. improved consistently over several days of testing and was able to retain this new skill

for years [18]. He still didn’t show any recollection of having done the task before or feeling

of familiarity.

Another implicit memory effect, that was observed to be spared in the patient H.M., is

the repetition priming of certain forms (see [8] for review). In [19] authors report an interest-

ing difference in H.M.’s scores on two kinds of repetition priming - word stem completion

priming and perceptual identification priming. The first effect consists in the increased

likelihood that a subject will complete a three-letter stem to a word, that was previously

studied. Perceptual identification priming is a decreased latency to identify previously stud-

ied word compared to unstudied words. H.M. did not show word stem completion priming

to the words that came into common usage after the onset of his amnesia, while exhibiting

robust perceptual priming to both kinds of words - common before or after the onset of his

amnesia.

As pointed out in [8], H.M. showed normal priming in category exemplar production

task, but not in category decision task (M. M. Keane et al., unpublished data).

In contrast, the difference in H.M.’s (and other patients with medial temporal lobe

lesions) performance on the tasks goes the other way around - his performance on category

sorting task (assigning given words to one of the given categories) was close to control levels,

while he his score on category fluency task (mean number of examples named from a given

category in 1 min) was less than half of that of healthy participants [20].
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Figure 1.1: The hippocampal Network: The hippocampus forms a principally uni-
directional network, with input from the Entorhinal Cortex (EC) tht forsms connections
with the Dentate Gyrus (DG) and CA3 pyramidal neurons via the Perforant Path (PP -
split into lateral and medial). CA3 neurons also receive input from the DG via the Mossy
Fibres (MF). They send axons to CA1 pyramidal cells via the Schaffer Collateral Pathway
(SC), as well as to CA1 cells in the contralateral hippocampus via the Associational Com-
misural (AC) Pathway. CA1 neurons also receive inputs direct from the Perforant Path
and send axons to the Subiculum (Sb). These neurons in turn send the main hippocampal
output back to the EC, forming a loop.

1.1.2 The role in coding of space

The second line of research is along investigating the observed strong spatial modulation

of the activity in various hippocampal areas [2],[21],[22]. Spatially tuned cells observed

in the areas CA1 and CA3 (see figure 1.1) got the name “place cells” for their selective

firing in one or a few regions of the environment [2],[21]. In contrast, firing patterns of the

cells in the entorhinal cortex, constitute a hexagonal grid [22] and are referred to as “grid

cells”. Investigations of the spatial tuning properties of the principal neurons in the dentate

gyrus, granule cells are more sparse due to technical difficulties [23], but those that exist

report multiple firing fields for these cells [24],[25]. Numerous studies of firing patterns of

hippocampal neurons are reviewed in [26].
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Although firing of place cells in CA1 and CA3 areas are often very localized, it is not

nearly as reliable in the time domain [27]. In other words, the cell doesn’t reliably fire every

time the animal crosses the firing field of the cell, even if when the cell does fire, the animal

is usually located within the firing field. The authors of [27] compared the distribution of

the discharges of a typical place cell during passes through the cell’s firing field to a model

with Poisson variance of the location specific firing rate. Their finding was that variability

in the firing of place cells is much higher than expected from a random model. These poses

a question of whether the animals position can be reliably decoded from the activity of

place cells.

1.1.3 Neurophysiology of the hippocampus.

The most studied areas of the hippocampus are CA3, CA1 and the dentate gyrus. The

CA3 area has strong recurrent connectivity and is often thought of as an attractor network

with different attractors corresponding to stored representations of sensory experiences

([28],[29]). Besides strong recurrent input, each CA3 pyramidal cell receives an input from

the layer II of entorhinal cortex either directly or via the perforant path through the dentate

gyrus.

The principal cells of the dentate gyrus are granule cells, whose mossy fiber axons

synapse onto CA3 principal neurons, pyramidal cells. The mossy fibers terminate with

very strong synapses - activating one is enough to drive the pyramidal neuron [30]. Also,

the connectivity is remarkably sparse - a typical pyramidal neuron is connected to approxi-

mately 50 granule cells [31]. Such a sparse connectivity looks even more unusual in the light

of extremely low (1%- 5%) activity levels observed in the granule cell layer [23]. Experi-

ments addressing this issue are relatively few compared to the investigations of the CA3 and

CA1 area, in part due to technical difficulties of working in the area - the cells are small,
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densely packed and sparsely firing [32], [33]. The sparse activity implies that a substantial

number of pyramidal cells receive zero input from the dentate gyrus for a typical pattern

of activity.

We model sparse activity and sparse, but strong feedforward connectivity in the frame-

work of pattern classification problem (see section 2.4.4) and demonstrate that high classi-

fication performance can still be achieved.

The functional role of the dentate gyrus is usually seen as separating neural representa-

tions of similar environments if this separation is behaviorally relevant - pattern separation

[23],[34], [35]. The theoretical framework for this separation was provided in [36], where the

authors demonstrate that even a random entorhinal cortex to dentate gyrus connectivity

would suffice to increase the separation of the entorhinal cortex correlated activity patterns.

It also suggests that the level of activity in the dentate gyrus controls the trade off between

the animals ability to generalize and to discriminate between similar environments.

There is also another prominent neurophysiological feature of the dentate gyrus that

should be mentioned. The dentate gyrus is one of only two areas in mammalian brain, that

integrate newly born neurons throughout animals life. Adult neurogenesis is an abundant

process in non-mammalian vertebrates, but was spared by the evolution only in the dentate

gyrus and the olfactory bulb. [23]. What is different about the computation in these

areas compared to other regions of the mammalian brain, that makes integration of new

units necessary, (or at least helpful) is not understood. It was also a largely controversial

question in the near past, whether the adult neurogenesis has any functional significance at

all, given it’s relatively low rates - 0.004% in middle aged rodents. However, evidence points

to its functional relevance - aberrant adult neurogenesis has been argued to contribute to

a growing list of psychiatric and neurological conditions, (see [23] for review).
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1.2 Generalization - main feature of information integration

Both lines of hippocampus research described above can be seen in the framework of in-

formation integration [37],[3],[6],[5],[4]. The role of hippocampus in memory is consistent

with the view that hippocampus is involved in relating different aspects of experiences to

each other and finding the "correct place" for the new memory in the structure of existing

knowledge before storing it. For example, the most striking deficit of the patient H.M.

and other patients with hippocampal damage, namely the inability to form new episodic

memories, can be seen as inability to integrate different sensory inputs together with in-

ternal preexisting associations to form an episodic memory. A few less profound deficits

are also consistent with this point of view. In [20] the authors report, that H.M. scored

substantially lower than controls on category fluency but not on category sorting task.

Category fluency task requires a subject to name as many examples as he can of a given

category (for example, birds or musical instruments), while category sorting task requires

to assign each item on the list to one of the suggested categories. One could argue, that

the former task relies more on the integration of information (in this case internal) to recall

the examples one after the other, while the latter task could be performed only using the

already organized long term memory storage, that is believed to be mediated by the cortex.

Another similar argument is that later observations of the patient H.M. demonstrate his

preserved ability to acquire new semantic information if he could relate it to some preop-

erational knowledge. For example, when solving cross-word puzzles, he could learn that

polio vaccine was invented by Salk, even though it was announced after his lesion (in 1955

the operation was in 1953), supposedly because he already had a concept of the disease in

the long-term memory [38]. In [8], Dr. Corkin claims that the information in the H.M.’s

brain is fragmented and lacking in detail, in contrast to absent. The evidence she provides

is the patient’s performance on "Famous Faces Test II", where he was shown photographs
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of people who were famous in decades following his operation and asked to name them.

H.M. could not do it even after being given a few semantic cues, however, he named 18 out

36 individuals using phonemic cues. He still could not say anything about these people,

which is consistent with the traces of the information acquired after 1953 being present,

but lacking any organization.

The role of hippocampus in space encoding could also be seen in the framework of

information integration, as opposed to internal map or "brain’s GPS" view. Different

location in space are inevitably associated with different patterns of sensory inputs and

building a representation of the space is in a sense the same process as organizing this

different patterns into a meaningful structure representing the topology of the environment.

1.3 Classification as a minimal problem in generalization

Information integration or information organization are still vaguely defined concepts and

it is unclear how to model them mathematically. Our understanding of how the information

is represented in the brain and what are the relevant organizational structures are still very

limited. However, I will try to argue that there is an aspect of an information integration

in general that is easy to formulate mathematically and without which is extremely hard

to imagine any information processing.

This general aspect is classification of incoming signals, which is a necessary step in

“making sense ” out of received information and relating it to previously acquired knowledge.

The brain receives a high dimensional input from the sensory systems and process them in

the context of it’s own internal states. It is hard to argue, that multiple combinations of

sensory input patterns and internal signal can “mean the same thing” to the brain, and that

neural representations of these patterns can nevertheless be very far from each other in the

neural space. When we consider a specific brain area, presumably representing a specific
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stage in information processing, “different signals mean the same thing” can be put into

more concrete terms - different inputs into a brain area (both sensory and internal) elicit

the same output. Learning in the brain area can then be seen as adjusting the connectivity

of the network in such a way that the input patterns that belong to the same class (mean

the same thing to the animal) elicit the same output, while patterns that belong to different

classes elicit different outputs.

When the hippocampus is viewed as a temporary storage of episodic memories, the

classification problem that it has to be able to solve is classifying the patterns of sensory

inputs over different modalities together with the internal signals into categories, so that

the new memories can be successfully integrated into the long term structure. For example,

forming an episodic memory of a conversation with a newly met person presumably requires

integration of visual and auditory information together with emotional signals from the

limbic system, in order to create the concept of that person and recall the entire experience

later, when the person’s name is mentioned, for example.

In the space coding framework, the classification problem for hippocampus would be,

again, integrating inputs across the modalities and categorizing them as corresponding to a

specific location in space. One can imagine that different instances of the animal being at

a certain location will lead to very different inputs into hippocampus because of different

directions of sight, positions of the nose or internal variables. Still, these different input

patterns should be perceived as similar when the space is concerned. Learning the repre-

sentation of space is, in a sense, learning to divide different input patterns into categories

corresponding to different spacial locations.

It should be emphasized, that we view categorization of input patterns not necessarily

as a final description of the functional role of the hippocampus, but as minimal task that
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its organization should allow it to preform. Also, it is natural to assume that this dimen-

sionality reduction process is necessary to compress the information before it is stored in

memory.

1.3.1 Theoretical models of the classification problem.

The first model of the neural network, that performed binary classification of the input

patterns - perceptron, was proposed in 1957 by Rosenblatt, [39]. Its operation is extremely

simple - a fully connected readout evaluates the weighted sum of the input components

and compares it to the threshold (linear threshold readout). If the result is positive, the

input patterns is classified as belonging to one class, and if it is negative - as belonging

to the other class. Training the perceptrons means tuning the coefficients (weights) with

which the different input components enter the sum to lead a specified binary output on

a specified set of input patterns (training set). These coefficients can be thought of as the

strength of the synaptic connections from the model input neurons to the model readout

neuron.

It was also shown by Rosenblatt [39] that if a set of weights leading a desired output on

the training set exists, it can be found by an online learning rule that “learns” one pattern at

a time. The capacity of the perceptron, meaning the maximal number of training patterns

the network can learn was derived by Cover in [40] and is equal to 2N , where N is the

number of input components. It should be stressed, that this result is only valid for the

set of uncorrelated patterns. In a more general case, N is the dimensionality of the input

representation.

The learning rule proposed by Rosenblatt, which is often called “perceptron learning

rule”, although is guaranteed to find a solution for the weights is slow often slow and requires

a multiple presentation of the same training pattern. There have been proposed numerous

10



alternative learning rules that lead the same scaling of the capacity with the dimensionality

of the input. A particularly simple one that has an advantage of biological plausibility is a

Hebb-like learning rule, that we use in the theoretical investigation of chapter 2. As shown

there, this learning rule leads to a linear scaling of the perceptrons capacity for a finite

tolerated error rate, although the coefficient in front of N is less than 2.

In this light, the sparse feedforward connectivity from the dentate gyrus to the CA3 area

mentioned above is very puzzling - the dentate gyrus representations are thought to be high

dimensional (decorrelated), which means that the classification capacity of an isolated CA3

readout neuron is severely limited by the number of synapses it receives (which is of the

order of 50). If the brain would rely on a computation performed by a single CA3 neuron,

the number of distinct classes of responses of the CA3 area would only be of the order

of 2 × 50, which looks too small (this argument does not take into account the existence

of direct connection from the entorhinal cortex to the dentate gyrus). Apparently, the

computation is carried out by the population of CA3 neurons, but it is not clear how.

In the following chapter we propose a way to integrate the computations of many CA3

readouts via recurrent dynamics and show that these solves the problem posed by limited

connectivity. The classification capacity of the proposed network grows linearly with the

total number of units even when the number of connections per unit remains unchanged.

1.4 Thesis structure

In the second chapter, ‘Classifiers with limited connectivity’ we investigate theoretically the

effect of limited connectivity constraint on the model network in the pattern classification

framework. The limited connectivity constraint is relevant for most biological networks, and

especially for the hippocampus. We think of the dentate gyrus as an input layer and the

CA3 - a layer of readouts that performs classification of the dentate gyrus activity patterns.
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We model the activity patterns in dentate gyrus as random and uncorrelated, which is

consistent with its suggested role in pattern separation. The feedforward connectivity from

the dentate gyrus to the CA3 area has been observed to be extremely sparse, about 50

incoming synapses per CA3 neuron, and the activity in the dentate gyrus - to be extremely

sparse. We model both of these features and show that the classification capacity can still

exhibit a favorable scaling with the number of neurons, not connections per neuron.

In the third chapter ‘Decoding position form dentate gyrus calcium recordings’ I discuss

the decoding analysis performed in collaboration with Fabio Stefanini of the data collected

by Mazen Kheirbek under supervision of René Hen and Stefano Fusi. We decode the spatial

position of an animal freely exploring its environment (50cm× 50cm box).

Besides being interesting in itself, the study described in chapter 3 can be seen as pro-

viding a justification for one of the assumptions made in the theoretical model of chapter

2, namely the assumption that the dentate gyrus activity patterns are uncorrelated. The

decoding analysis described in chapter 3 allows to estimate the dimensionality represen-

tation of space, and it turns out to be similar to the number of locations within the box

defined with the decoding accuracy. This means that the representation has a maximal

possible dimensionality. The fact that the performance of linear and non-linear decoders

lead similar results is also consistent with this conclusion.
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Chapter 2

Classifiers with limited connectivity

The capacity of a perceptron scales linearly with the number of synaptic connections that

converge to a single readout [40], thus limited feedforward connectivity in the hippocampus

is puzzling - it is unclear how the brain can take advantage of the large number of neurons in

the dentate gyrus (about a million in the rodent) when the connectivity to the downstream

CA3 area is so low (about 50 converging synapses in the rodent). In this chapter we address

the problem posed by extremely sparse feedforward connectivity from the dentate gyrus to

the CA3 area of mammalian hippocampus. As discussed in the introduction, we believe it

is fruitful to think of the hippocampal network in the framework of pattern classification,

which immediately makes one think of the basic model for pattern classification, namely

the perceptron [41].

The following should not be viewed solely as a model of hippocampus, however, but

rather as a theoretical investigation of the classification performance of perceptron-like

neural networks under limited connectivity constraint, which is relevant in many brain

areas, especially when long-range connections are considered.

One possible way to overcome the limitations of classification capacity imposed by
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sparse connectivity is to combine multiple sparsely connected perceptrons together and

determine the collective decision by majority vote, as in committee machines. The number

of classifiable random patterns would then grow linearly with the number neurons, even

if the number of connections per neuron remains fixed ([42]). However, implementing the

majority vote on the neural level would require a fully connected downstream unit, and the

problem would simply be moved to the next layer.

We propose a different approach in which the readout is implemented by connecting

multiple perceptrons in a recurrent attractor neural network. We show with analytical

calculations that the number of random classifiable patterns can grow unboundedly if the

number of both input units and perceptrons grow in proportion to each other, while the

connectivity of each perceptron, recurrent connectivity and the connectivity of downstream

readout all remain finite.

Our solution is still valid even when the input neural representations are sparse, which is

surprising given the limited connectivity constraint. Paradoxically, in the case of sparse in-

put representations, the capacity can be made very similar to the dense case, while majority

vote scheme implies a much lower capacity.

2.1 Review of the results on perceptron-based classification

models

In this section we review the previous results obtained for the capacity of network classifiers

based on linear threshold units. We first talk about the first network model for classification

introduced by Rosenblatt in 1957, [39], which consists ofN input units and a fully connected

readout. The famous 2N result for the classification capacity of the perceptron discussed

further, implies the linear scaling of the capacity not with the number of input units, but
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with the number of connections.

Also reviewed here are the results for multi-layered classification networks. Although

some consider a case of limited feedforward connectivity, the final classification decision

is taken based on majority vote of the ensemble of readouts (committee machine). This

voting procedure is assumed to be easily implementable, but it nevertheless requires an ad-

ditional readout with fully connectivity. As the number of committee members also have to

increase unboundedly to achieve an arbitrarily large classification capacity, introducing this

additional readout defeats the point of having a network classifier with limited connectivity.

2.1.1 Cover’s Capacity

A classical result of Cover [40] is that the expectation value of the maximal number Pmax

of random N − dimensional patterns, which can be separated into two classes by a linear

threshold readout is 2N .

This result is based on a theorem du to Winder, Joseph, Cameron, Perkins, Schlafli and

others [43][44][45][46], that states that the number of inequivalent ways to linearly separate

generic P vectors in RN is given by

C(P,N) = 2
N−1∑

k=0

(
P − 1

k

)
(2.1)

To estimate the maximal capacity Cover compared the combinatorial number C(P,N)

with the number of ways to randomly assign labels ±1 to P patterns, which is equal to 2P .

The function
C(P,N)

2P
(2.2)

for large N and P has a step-like behavior, being almost a constant except for a sudden
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Figure 2.1: Illustration of the Cover’s capacity. The probability for a perceptron to learn P
patterns without errors is plotted as a function of P for the dimensionality of input N = 20.
We see that classification performance drops very sharply around P = 2N . For larger N
the drop becomes even more step-like.

drop at

Pmax = 2N (2.3)

More precisely,
C(P,N)

2P

∣∣∣∣
P=2N

=
1

2
(2.4)

rapidly going to 1 for P < Pmax and to 0 for P > Pmax, see figure 2.1

The computed capacity corresponds to the case of perceptron network architecture

consisting of N input units and 1 fully connected readout. Also notice that Cover’s capacity

computation is a function of the architecture of the network only and not the training

algorithm. The capacity achieved when restricted to a concrete algorithm might be smaller

than the theoretical limit.

16



2.1.2 Capacity bounds on associative memory in recurrent networks

In [47] Hopfield introduced a content-addressable memory model as a dynamical physical

system in which memory pattern ν is represented by a stable attractor point sν in the state

space of the dynamical system. The time evolution of the dynamical system is a flow in

state space defined by equations of motions (possibly stochastic). If the initial state s is

sufficiently closed to an attractor point sν , the flow in time t will bring the trajectory s(t)

to sν .

We say that this dynamical system has capacity P if any prescribed set of P points in its

state space can be made to be the set of the stable attractors by adjusting the connectivity

of the network. This adjustment of the strength of connections models biological learning.

Hopfield [47] considered a neural network modeled by a stochastic dynamics of N units.

The state of unit i at time t is represented by a variable si(t) taking value in {0, 1}. The

network evolves according to a transition rule

si 7→ sign




N∑

j=1

wijsj


 (2.5)

Where wij is a connection strength between i and j units.

The stable attractor state si has to satisfy the equation

si = sign




N∑

j=1

wijsj


 (2.6)

Given a set of P patterns represented by P states sν , the learning rule considered in

[47] (after Hebb [48] and Cooper [49]) is

wij =

P∑

µ=1

(sµi −
1

2
)(sµj −

1

2
) (2.7)
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Assuming that the pattern representation variables sνi are randomly distributed with equal

probability of taking values 0 and 1, we find that the expectation value of the current into

the i-th unit

hνi =
N∑

j=1

wijs
ν
j (2.8)

is equal to

〈hνi 〉 = N(si −
1

2
) (2.9)

The non-zero expectation value of hνi comes from the µ = ν term in the sum of (2.7).

The diagonal term µ = ν is the signal term and the contribution of the non-diagonal

terms µ 6= ν is the noise.

When the noise is not too large compared to the signal (the number of patterns P is

not too large), (2.9) together with (2.7) implies that the patterns sν are fixed points of the

recurrent dynamics. A more involved computation required to ensure that the fixed points

are stable.

In [50] [51] Amit, Gutfreund and Sompolinsky have analyzed the capacity of stochatstic

Hopfield model with temperature parameter β−1. In [50] it was found that for finite number

P of patterns and large number of neurons N → ∞ there exists a critical temperature

β−1c = 1 and the second-order phase transition from a disordered state at higher temperature

β−1 > β−1c to a phase with 2P degenerate ground states, each one correlated with one of

the trained patterns sν . In [51] the analysis was performed in the scaling limit P = αN

for a constant α by the replica method [52] and mean field theory. It was found that for

α < αc with αc ' 0.14 the model exhibit associative memory and at low temperature there

exists 2P dynamically stable degenerate states.

Hence the conclusion of Amit-Gutfreund-Sompolinsky was that Hopfield model with
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Hebb learning rule has a capacity which scales linearly with N

Pmax ' αcN, αc ' 0.14 (2.10)

However, in [53] [54] [55] Gardner showed that there could exists specially designed

learning rule in which the capacity of Hopfield model can scale faster with N and achieves

a bound of

Pmax ' 2N (2.11)

Let us call suitable those network weight parameters (wij) which produce necessary at-

tractors in the state space to store a given set of patters. Gardner’s approach computes

the relative volume of the suitable weight parameters to the total volume of the weight

parametric space over some prior measure as a function of the number of stored patterns.

As the number P of stored patterns increases, the volume of suitable weight parameters

decreases, and at certain threshould value Pmax goes to zero. Gardner’s approach deter-

mines only possibility of existence of suitable weight parameters and its relative volume in

the parametric space for a given set of patterns, but not actually the learning rule.

In [56] Abbott and Kepler determined efficient learning rules which achieve the Cover’s

bound for recurrent Hopfield network (see also review on learning algorithms [57])).

2.1.3 Capacity bounds for multi-layered networks

In [58] Mitchison and Durbin considered a multi-layered network of an N -units input layer,

a single layer of M intermediate linear threshold readouts and a final layer of S output

units (also linear threshold), under the assumtions that all the weights in the network are

plastic and that

N ≥M ≥ S (2.12)
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They derived a lower and upper bound on the maximal capacity Pmax

2N < Pmax < Nγ log γ; γ = 1 +M/S (2.13)

Mitchison and Durbin also considered a simpler case of multi-layer network: N input

units, M intermediate units and S = 1 final readout unit. The weights between N -layer

and M -layer were assumed plastic, but the weights between the M -layer and the final S-

readout were fixed to 1. With this architecture the final readout unit performs a consensus

operation (majority vote): the final output is 1 if majority of the intermediate units are 1,

and 0 otherwise. Such network is called a committee machine [59]. Even for the restricted

case of committee machine exact combinatorial computation analgous to Cover [40] is hard.

Still, numerical estimates showed that theoretical capacity (not specifying a learning rule)

of committee machine asymptotically scales as

Pmax ' 2MN (2.14)

Kwon and Oh [42], and Monasson and Zucchini [60] analyzed the capacity of a committee

machine by the asymptotic behavior of order parameters. Their results are in agreement

with the bounds of Mitchison and Durbin. The most relevant result in the present context

is the classification capacity for a committee of readouts with non-overlapping connections

derived in [42] Pmax ' 8
√

2/πN
√

logM . Again, the calculation does not provide a set of

weights (or a learning rule) to achieve this capacity.

2.2 Fully connected readout

In this section we derive the classification capacity of a single linear threshold readout

achieved with the simple learning rule that we employ throughout this chapter. We assume
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that the input patterns and labels are random and uncorrelated, meaning that the activity

of each input unit as well as the label is chosen independently, that makes calculations

analytically tractable. We use simple Hebbian-like learning rule, that is not optimal and

thus leads a capacity that is lower than Cover’s 2N result [40] but has the same scaling

with the number of inputs.

2.2.1 Input statistics

We assume that pairs (ξµ, ηµ) of a pattern ξµ and a label ηµ for µ = 1 . . . P are drawn

from a random ensemble of P pairs (pattern, label). The pattern components ξµi on all N

input units and label ηµ are random mutually independent variables. We assume that each

component ξµi is activated to 1 with probability f called coding level and otherwise is 0,

and that label ηµ takes value in one of the two classes η = +1 with probability y and η = 1

otherwise:

ξµi =





1, with probability f

0, with probability 1− f
ηµ =





1, with probability y

−1, with probability 1− y
(2.15)

2.2.2 Learning rule and the synaptic current

The Hebb-like learning rule, that we use to train the weights {wi} of the classifier is:

wi =
1√
P




P∑

µ=1

(ξµi − f)(ηµ + 1− 2y)− (1− f)(1− 2y)


 (2.16)
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In the case of equal probability of a pattern to belong to either class, y = 1
2 , the learning

rule simplifies to:

wi =
1√
P

P∑

µ=1

(ξµi − f)ηµ (2.17)

When one of the learned patterns {ξνi } is presented, the response of the linear threshold

readout is given by sign
(∑N

i=1wiξ
ν
i − θ

)
. Here and in all that follows we set the threshold

θ to zero. Plugging in the expression for {wi} from the learning rule, we can write for the

synaptic current hν ,

hν =
N∑

i=1

wiξ
ν
i (2.18)

as follows

hν =

N∑

i=1

wiξ
ν
i =

N∑

i=1

1√
P




P∑

µ=1

(ξµi − f)(ηµ + 1− 2y)− (1− f)(1− 2y)


 ξνi (2.19)

We split the sum over patterns into the contribution from the same pattern {ξν} that is

presented, and the other terms, to get

hν =
1√
P


(1− f)ην

N∑

i=1

ξνi +
N∑

i=1




P∑

µ 6=ν
(ξµi − f)(ηµ + 1− 2y)


 ξνi


 (2.20)

Here we also used that on the same patterns (ξνi )2 = ξνi because ξνi takes value 0 or 1. The

first term is the signal term and the second term is noise term.

We see that the synaptic current depends on the number nν of input units that are

active

nν =

N∑

i=1

ξνi (2.21)

The value of nν is in binomial distribution of N trials with probability f that we denote by

B(N, f).
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From the equation (2.20) for the current we find

hν =
1√
P

(1− f)nνην + 2
√
f(1− f)y(1− y)nνzν (2.22)

where we have introduced noise random variable zν with the zero mean and unit variance

coming from the summation over µ in the second term in (2.20). The coefficient is concluded

from the fact that each individual term (ξµi − f)ηµ has variance

[f(1− f)2 + (1− f)f2][y(2− 2y)2 + (1− y)4y2] = 4f(1− f)y(1− y) (2.23)

and the fact that the ξµi variables are mutually independent. By central limit theorem the

noise variable zν can be approximated as Gaussian in the limit P → ∞ with finite f and

nν .

If a pattern belongs to either class with equal probability (y = 1
2), the expression for hν

simplifies to

hν =
1√
P

(1− f)nνην +
√
f(1− f)nνzν (2.24)

The mean value of nν over the binomial distribution B(N, f) is determined by the

number of inputs N and the coding level f

〈nνk〉 = Nf (2.25)

2.2.3 Classification capacity of a fully connected readout

As the number of learned patterns P increases, the signal (the first term) in (2.24) de-

creases like 1/
√
P , while the noise term (the second term) in (2.24) remains constant. To

characterize the performance of a single readout we compute the average sign of the input
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current hν over different realizations of the input patterns:

〈sgn(hν)〉nν ,zν = ην〈erf
√
nν(1− f)√

8Pfy(1− y)
〉nν (2.26)

There are two limits in (2.26) that can be analyzed analytically and that we will discuss.

Dense regime

One limit that we call a dense regime, is when the mean value of the active input units is

large: 〈nν〉 = Nf � 1. In this case the approximation plugging in 〈nν〉 instead of nν gives

a reasonable estimate and (2.26) can be simplified to

〈sgn(hν)〉nν ,zν = ηνerf

√
N(1− f)

8Py(1− y)
(2.27)

The above expression characterizes the classification performance of the classifier, as it

measures the proportion of times that the sign of the current coincides with the class of

the input pattern. To express this result in the terms of classification capacity, we have to

specify a tolerated error rate ε, which is equivalent to the requirement 〈sgn(hν)ην〉nν ,zν >

1− 2ε. Then, solving (2.27) for P gives single unit capacity in the dense regime:

P =
1− f

8y(1− y)[erf−1(1− 2ε)]2
N (2.28)

Sparse regime

Another limit that we call a sparse regime is when the number of input units nν is equal

to 0 or 1 in the vast majority of cases (〈nν〉 = Nf � 1). In this case the equation (2.26)
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should be rewritten as

〈sgn(hν)〉nν ,zν = Nferf

√
(1− f)

8Pfy(1− y)
ην (2.29)

Since this expression is only valid in the limit Pfy � 1 (Gaussian noise assumption, see

(2.24)) and Nf � 1, we can only apply this analysis to the case high tolerated error rate

ε, namely in the case when

1− 2ε� Nf (2.30)

The error function can be approximated by a linear function of its argument without lost

of generality to get

〈sgn(hν)〉nν ,zν = Nf

√
(1− f)

2πPfy(1− y)
ην (2.31)

Which leads to the capacity in the sparse regime (Nf � 1), for high tolerated error rate

(2.30)

P =
(1− f)Nf

2πy(1− y)(1− 2ε)2
N (2.32)

If the condition (2.30) is not satisfied, we can not compute the capacity P in the sparse

regime explicitly, but there is still some analysis we can carry out. First, it is clear, that the

classification accuracy can not differ from chance level (12) by more than 1 − e−Nf , which

is the probability to have at least one active input in a pattern. So, if the tolerated error

rate ε < e−Nf − 1
2 ≈ 1

2 − Nf , the capacity, as defined here is zero. In the intermediate

case, when ε > e−Nf − 1
2 but (2.30) does not hold, we can put an upper bound Pmax <

A
fy ,

where A� 1 is a constant.

Having low input sparseness is harmful for the capacity, low output sparseness - helpful.

See [61] and [62] for alternative analysis of stochastic training of perceptron.
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Figure 2.2: Network architecture for the cases of fully connected readout, majority vote
scheme and recurrent readout. Only the last one can be considered as a classifier with
limited connectivity.

2.3 Sparsely connected readouts: majority vote

We consider the network shown in the middle of figure 2.2 which consists of the input layer

(green) and the readout layer (orange). The collective decision of the ensemble of readout

units is determined by majority vote.

2.3.1 Network topology

The input layer of N neurons is presented with a random and uncorrelated patterns ξµ =

(ξµi )i=1...N from a set of P patterns (ξµ)µ=1...P that the network has to classify.

The readout layer M consists of M = |M| linear threshold readouts. Each readout

unit is connected to a randomly chosen CF out of N input units. Hence, the feedforward
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connectivity CF is the number of feedforward inputs that each readout receives. The CF

is an important parameter in the problem as it determines the classification capacity (see

previous section) of a readout unit considered in isolation.

2.3.2 Scaling regime

We will keep the connectivity parameters CF , CR and C and coding level f to fixed con-

stant values, while sending both the number of input units N , the number of intermediate

readouts M and the number of patterns P to infinity

P,M,N →∞; f, CF , CR, C are constant (2.33)

This is different from classical linear threshold classifier (perceptron), considered in the

previous section, where the number of connections received by the readout is always equal

to the number of input units. We want to recover the linear scaling of the capacity with

the number of input units, that is known to hold for the perceptron [40], in this limited

connectivity case.

2.3.3 Input statistics

As in the previous section, we assume that pairs (ξµ, ηµ) of a pattern ξµ and a label

ηµ for µ = 1 . . . P are drawn from a random ensemble of P pairs (pattern, label). The

pattern components ξµi on all N input units and labels ηµ are random mutually independent

variables. We assume that each component ξµi is activated to 1 with probability f called

coding level and otherwise is 0, and that label ηµ takes value in one of the two classes η± 1
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with equal probability:

ξµi =





1, with probability f

0, with probability 1− f
ηµ =





1, with probability 1
2

−1, with probability 1
2

(2.34)

2.3.4 Single readout

Here and everywhere further, we assume that the output sparseness parameter y = 1
2 to

simplify the formulas.

We will start by ignoring the readout connectivity in the intermediate layer for now and

will include it in the next section. Each intermediate layer unit, that we from now on call

intermediate readout is identical to the readout unit considered in the previous section with

the difference that the role of N is now played by CF - number of units that the readout is

actually connected to. The synaptic current into the readout k now becomes

hνk =
1√
P


(1− f)ην

∑

i∈Ik

ξνi +
∑

i∈Ik




P∑

µ 6=ν
(ξµi − f)ηµ


 ξνi


 (2.35)

The only difference from equation (2.20) is the input indices run over Ik, which is the subset

of CR out of N inputs that are connected to the readout k.

The number of active inputs nν will now acquire a readout index

nνk =
∑

i∈Ik

ξνi (2.36)

And so will the noise variable zνk

zνk =
1√

f(1− f)nνk

∑

i∈Ik




P∑

µ 6=ν
(ξµi − f)ηµ


 ξνi (2.37)

28



So, the synaptic current into the readout k in response to the input pattern ν is now

hνk =
1√
P

(1− f)nνkη
ν +

√
f(1− f)nνkz

ν
k (2.38)

Now nνk is drawn from a binomial distribution B(Cf , f) of CF trials with probability f ,

〈nνk〉 = CF f (2.39)

and zνk is gaussian with zero mean and unit variance.

As before, we can compute the expectation value of the sign (hνk) over different realiza-

tions of input patterns.

〈sgn(hνk)〉nνk,zνk =

〈
erf
√
nνk(1− f)√

2Pf

〉

nνk

ην (2.40)

Which can be simplified in the limit Pf � nνk which is valid by the assumption of our

scaling regime P →∞ and CF = const:

〈sgn(hνk)〉nνk,zνk =

√
2(1− f)

πPf

〈√
nνk
〉
nνk
ην (2.41)

The expectation value 〈√nνk〉 is computed in the binomial distribution B(CF , f)

〈
√
nνk〉 =

CF∑

n=0

(
CF
n

)
fn(1− f)CF−n

√
n (2.42)

In the limit of large CF and finite λ = CF f the binomial distribution B(CF , f) turns

into Poisson distribution P(λ). Consequently,

〈
√
nνk〉 =

∞∑

n=0

1

n!
λne−λ

√
n, (CF is large, λ = CF f is finite) (2.43)
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Dense regime

In the dense regime of large CF and CF f & 1

〈
√
nνk〉 =

√
CF f (2.44)

Sparse regime

In the sparse regime of large CF and CF f . 1

〈
√
nνk〉 = CF f (2.45)

For illustration we display the exact 〈√n〉 in Poisson distribution, in Binomial distribu-

tion at CF = 50 and the approximation

〈√n〉λ = min(λ,
√
λ) =





λ, λ < 1 (sparse)
√
λ, λ > 1 (dense)

(2.46)

that we use through out the text. At CF = 50 there is no practical difference between

Poisson and binomial distribution, and the elementary approximation (2.46)

differs from the exact expectation value for no more than 23% achieved at the boundary

of the sparse and dense regime λ = 1 as 〈√n〉λ=1 = 0.773

2.3.5 Majority rule for the ensemble of readouts

It follows from the above, that as the number of patterns learned by the network grows, the

probability of a single readout to classify a pattern correctly approaches the chance level.

However, there is always a slight tendency towards the correct answer (the expected value

of the sign of the margin is positive for any finite P , however large), that can be utilized
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by having a growing number of such readouts that take a collective decision by majority

vote. This scheme is known by the name of committee machine and has been shown to

largely exceed the performance of a single classifier. It is important to note that in order

for the capacity of a committee machine to keep increasing as new members are added,

the members responses should be sufficiently independent from each other. In the case of

limited connectivity, that we consider, the correlations automatically become smaller and

smaller as we increase the number of input units. This happens because the probability of

a typical pair of readouts to have a common input and thus correlated responses decreases.

In order for correlations not to be a limiting factor of the classification capacity, we need to

increase the number of input units linearly with the number of readouts. If one introduces

some other mechanism of reducing the correlations between the responses of readouts with

common inputs (like making different readouts learn different sets of patterns), a sublinear

scaling of the number of input units N with the number of readouts M will be sufficient.

The collective signal of M readouts is given by

rν =
1

M

M∑

k=1

rνk , rνk = sgn(hνk) (2.47)

where hνk is given in (2.24). Positive rνην means that the pattern ν is classified correctly.

Let us start with independent readouts. In this case rν can be though of as drown from

a normal distribution with the mean given by (2.41) and the variance

cov(rν , rν) =
1

M
(1 +O(P−1)) (2.48)

The probability pcorrect to classify a pattern correctly (rνην > 0) can then be easily com-

puted, and the requirement pcorrect > 1−ε leads to the expression for classification capacity
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Pmax =
〈√n〉2
f

1− f
π(erf−1(1− 2ε))2

M (2.49)

This result only holds for the case of independent readouts, which can be achieved either

by a special mechanism that makes different readouts learn different patterns, or by simply

making the connections non-overlapping (no input unit is connected to more than one

readout). The latter case implies a linear scaling of the number of input units with the

number of readouts N = CFM .

We assume the reasoning below to be applied to a test pattern ν but do not explicitly

write the label symbol ν to make equations cleaner.

To derive an analogous expression for the overlapping case without a decorrelation

mechanism, we need to compute the variance

cov(rν , rν) = 〈(r − 〈r〉)2〉 (2.50)

of the mean readout variable rν defined by (2.47) with more precision:

cov(rν , rν) =
1

M2

M∑

k=1

M∑

l=1

cov(rνk , r
ν
l ) =

=
1

M2

M∑

k=1

cov(rk, rk) +
1

M2

M∑

k=1

M∑

l=1

(1− δkl)cov(rk, rl)
M→∞

=

=
1

M
cov(rk, rl)k=l + cov(rk, rl)k 6=l (2.51)

where we split the sum to the diagonal and the non-diagonal term. We want to compute

the covariance keeping the terms of the order 1/M , 1/N and 1/P assuming that M,N,P

scale linearly M,N,P →∞.

The diagonal term contains the factor 1/M2 andM terms, therefore we simply take the
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leading contribution as in (2.48)

1

M2

M∑

k=1

cov(rk, rk) =
1

M

(
1 +O(P−1)

)
(2.52)

In the non-diagonal term there are M(M − 1) equivalent terms with common factor

1/M−2 which gives (1 − 1/M) coefficient. Therefore, for the desired precision we shall

compute covariance for two different readouts k and l

cov(rνk , r
ν
l )k 6=l = 〈rkrl〉 − 〈rk〉〈rl〉 (2.53)

keeping terms of order 1/M, 1/N or 1/P .

The covariance cov(rk, rl) vanishes if rk and rl are independent variables, which is the

case when readout k and readout l do not share common input.

If readout k and readout l share commont input, then the covariance cov(rk, rl) can be

contributed by the correlation in the current (2.38).

Let |Ikl| be the number of common inputs to readout k and l in the architecture of the

network |Ikl| = |Ik ∩ Il|. Let nkl ≤ |Ikl| be the number of active neurons in common input

set Ikl. In the limit N → ∞ and fixed |Ik| = |Il| = CF the probability to have overlap of

size |Ikl| is approximated by

Prob(|Ik ∩ Il| = |Ikl|) =
1

|Ikl|!

(
C2
F

N

)|Ikl|
(2.54)

Recalling, that we are interested in the limit of large number of stored patterns P , that

will imply the large number of the input units N , we will ignore the probability of two

readouts to have more than |Ikl| = 1 common inputs. The estimate (2.54) implies that

restriction to |Ikl| = 1 is consistent for C2
F /N � 1. Therefore, we restrict to the case
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|Ikl| = 1 with

Prob[|Ikl| = 1] =
C2
F

N
(2.55)

Even though for our estimates it is sufficient to consider |Ikl| = 1 common input, we will

keep |Ikl| explicitly in the equations below to keep track of the meaning of the respective

terms.

Consequently CF − |Ikl| is the total number of non-common inputs for the readout k

or readout l defined by network architecture. Some of those neurons might be active or

non-active, so let n′k ≤ CF − |Ikl| and n′l ≤ CF − |Ikl| be the respective total number of

independent active non-common inputs for readout k or readout l.

When the readouts share nkl active inputs, the noise term in (2.38) for each readout

should be split into two contributions: one comes from the common input in Ikl, we call it

zkl, and the other one is independent from the other readout, called respectively zk or zl

from the complementary non-common inputs in Ik or Il but not in Ikl.

Hence for the purpose of estimating the correlator (2.53) we shall write the current

(2.38) in terms of independent random variables nkl, n′k, n
′
l and zkl, zk, zl

hk =
1√
P

(1− f)(n′k + nkl)η +
√
f(1− f)nklzkl +

√
f(1− f)n′kzk

hl =
1√
P

(1− f)(n′l + nkl)η +
√
f(1− f)nklzkl +

√
f(1− f)n′lzl

(2.56)

The variables nkl, n′k, n
′
l are in the independent binomial distributions nkl ∈ B(|Ikl|, f) and

n′k, n
′
l ∈ B(CF − |Ikl|, f). The random variables z, zk, zl are in the independent standard

Gaussian distributions.

The covariance (2.53)

cov(rk, rl) = 〈sgn(hk), sgn(hl)〉 − 〈sgn(hk)〉〈sgn(hl)〉 (2.57)
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where the average is over nkl, n′k, n
′
l and z, zk, zl is contributed only by the cases with

nkl > 0. For nkl = 0 the covariance vanishes because the remaining random variables are

independent (2.57).

For nkl > 0 the signal term can be ignored compared to noise (including the signal term

will lead to corrections suppressed by 1
P ) but because of (2.55) we need to keep only O(1)

terms in (2.57) in the scaling limit N,M,P → ∞. We can drop the second term in (2.57)

because it is of order O(1/P ).

First we integrate over zk and zl and find

〈sgn(hk)〉zk = erf

(
zkl√

2

√
nkl
n′k

)

〈sgn(hl)〉zl = erf

(
zkl√

2

√
nkl
n′l

) (2.58)

To proceed further we need to use the table integral1

∫ ∞

0
erf(az)erf(bz)e−c

2z2dz =
1

c
√
π

tan−1
ab

c∆
∆ =

√
a2 + b2 + c2 (2.59)

which for our purposes is conveniently presented as

cov

(
erf

(
az√

2

)
, erf

(
bz√

2

))

z∈N(0,1)

=
2

π
tan−1

1√
(a−2 + 1)(b−2 + 1)− 1

(2.60)

This leads to the result

cov

(
erf

(
zkl√

2

√
nkl
n′k

)
, ferf

(
zkl√

2

√
nkl
n′l

))

z

=
2

π
tan−1

1√
(n′k/nkl + 1)(n′l/nkl + 1)− 1

(2.61)
1See equation 18 on page 158 in [63]
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and finally to

cov(rk, rl)k 6=l =
2

π

〈
θ(nkl) tan−1

1√
(n′k/nkl + 1)(n′l/nkl + 1)− 1

〉

nkl∈B(|Ikl|,f),n′k,n
′
l∈B(CF−|Ikl|)

where θ(nkl) is the step function (as explained after equation (2.57)).

In the approximation C2
F /N � 1 we consider only the case of |Ikl| = 1 and then

the probability that the single common input neuron in the overlap Ik ∩ Il is active, i.e.

nkl = |Ikl| = 1, is f . Therefore, the average over B(|Ikl|, f) gives factor f and leads to

cov(rk, rl)k 6=l =
1

N
ϕCF ,f where

ϕCF ,f =
2fC2

F

π

〈
tan−1

1√
(n′k + 1)(n′l + 1)− 1

〉

n′k,n
′
l∈B(CF−1,f)

(2.62)

so that each n′k and n
′
l are independently drawn from the binomial distributionB(CF−1, f).

Dense regime

In the dense regime ( CF f & 1 ) from (2.62) we find

ϕCF ,f =
2CF
π

(2.63)

and

〈cov(rk, rl)k 6=l =
2CF
πN

(2.64)

Sparse regime

In the sparse regime ( CF f . 1 and CF � 1, f � 1) from (2.62) we find

ϕCF ,f = fC2
F (2.65)
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and

cov(rk, rl)k 6=l =
fC2

F

N
(2.66)

Correction to classification capacity

Hence, the diagonal (2.48) and the non-diagonal term (2.62) in (2.51) we obtain corrected

standard deviation σr of the collective signal rν (2.47)

σr =

√
1

M
+

1

N
ϕCF ,f (2.67)

where ϕCF ,f is in (2.62)(2.63)(2.65). The mean of rν is like in (2.41)

µνr =

√
2(1− f)

πPf
〈
√
nνk〉ην (2.68)

where
√
nνk is computed in (2.42)(2.44)(2.45).

This implies the classification capacity in case when no care is taken to decorate the

readouts, and the connections overlap by chance, is

Pmax =
〈√nk〉2
f

1− f
[erf−1(1− 2ε)]2π

M

1 + M
N ϕCF ,f

(2.69)

where ϕCF ,f is in (2.62)(2.63)(2.65).

If both the number of input units N and the number of readouts M should increase in

proportion to each other, the capacity P increases linearly with N and M .

In the dense limit, using (2.44) and (2.63) it simplifies to

Pmax =
1− f

[erf−1(1− 2ε)]2π

CFM

1 + M
N

2CF
π

(2.70)
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and in sparse limit it simplifies to

Pmax =
1− f

[erf−1(1− 2ε)]2π

MC2
F f

1 + M
N C

2
F f

(2.71)

2.3.6 Optimizing the architecture for a given number of units

We see from the previous expression, that classification capacity of our version of a com-

mittee machine depends on both, number of input and readout units. In biological as well

as in machine learning context it is natural to constrain the total number of units and ask

what will be the way to divide them between input and readout layer that maximizes the

classification capacity. (With the caveat of keeping the input units independent from each

other, not sure anymore this is such a natural thing to do). This leads to the relation

between number of input units N and number of readouts M as well as the expression of

Pmax in terms of total number of units (M +N):

N = Mϕ
1
2
CF ,f

Pmax =
〈√nk〉2
f

1− f
[erf−1(1− 2ε)]2π

M +N
(

1 + ϕ
1
2
CF ,f

)2 (2.72)

where 〈√nk〉 is in (2.42)(2.44)(2.45) and ϕCF ,f is in (2.62)(2.63)(2.65).

2.4 Sparsely connected readout: recurrent dynamics

The majority rule scenario already overcomes the limitations of readouts connectivity, but

this is not the final answer to constructing a classifier with limited connectivity. The reason

is that we still need to implement the majority rule and bring the classification signal to

the level of a single unit. The naive way to do it would require another final readout that
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would have to sample the entire population of M intermediate layer readouts. Since M

has to scale linearly with the number of learned patterns P , the connectivity of the final

readout would also have to scale linearly with P and would exceed any predetermined limit

for sufficiently large number of learned patterns.

To implement the majority vote of the intermediate readouts while keeping the connec-

tivity of any unit in the network limited, we introduce the recurrent connectivity in the

readout layer. Our goal is to have two attractor states of the intermediate layer dynamics,

that will be far away from each other (in terms of the Hamming distance), and to have the

slight imbalance in the feedforward input, determined by the class of the presented pattern,

biasing the network to choose one or the other. The fact that the attractors are far away

and do not become closer when the number of learned patterns P increases, implies that

the final readout will be able to discriminate between this states, and thus indicate the

class of the presented pattern, even if it’s connectivity doesn’t scale with P . It turns out

that for two-way classification it is enough to have random recurrent connectivity with suf-

ficiently large but not increasing with P number of connections per unit, and the weights

of these recurrent connection don’t have to be tuned (no learning required for recurrent

connections).

Let CR be the number of recurrent connections per unit in the intermediate layer and

let α be weights on recurrent connections. The recurrent connections weights are assumed

to be symmetric.

We want to compute the probability of the network of recurrently connected readouts

to go to the correct attractor (the one assigned to the class of the input pattern presented)

as a function of the number of input units N , readout units M and various parameters of

the network.
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2.4.1 Network topology

The recurrent readout network show on the right of figure 2.2 consists of the input layer

(green), the intermediate readout layer (orange) and the final readout unit (purple). As

before, the input layer of N neurons is presented with a random and uncorrelated patterns

ξµ = (ξµi )i=1...N from a set of P patterns (ξµ)µ=1...P that the network has to classify.

The readout layer that we sometimes call intermediate layer M consists of M = |M|

linear threshold readouts. Each readout unit is connected to a randomly chosen CF out

of N input units. Hence, the feedforward connectivity CF is the number of feedforward

inputs that each readout receives. The CF is an important parameter in the problem as

it determines the classification capacity (see section 2.2) of a readout unit considered in

isolation. The intermediate layer is recurrently connected for the purpose that will be

explained later. The number of recurrent connections a typical readout receives is denoted

by CR. For the case of binary classification, the probability that two readouts are connected

is the same for each pair. The recurrent connections are not plastic and can be chosen to

be all of equal strength.

The final layer consists of a single readout unit that is connected to a randomly chosen

subset of C readout units in the second layer, with the strength of all connections taken

equal.

LetM be the number of readout units in the intermediate layer, and Jkl the connectivity

matrix of the recurrent network in the intermediate layer for k, l ∈ [1 . . .M ] so that

Jkl =





1 if readout k and l are connected

0 if readout k and l are not connected
(2.73)
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Let the CR be the number of recurrent connections per unit

M∑

l=1

Jkl = CR, ∀k ∈ [1 . . .M ] (2.74)

We will carry this calculation in the mean field approximation. Let mν
k be the average

activity of the unit k in the recurrent network in response to the input pattern ν in the

recurrent dynamics.

Discrete time dynamical model

We model the recurrent dynamics as a probabilistic dynamical process in discrete time t

with the probabilistic transition rule from a network state at time t to a network state at

time t+ 1. Let sk(t) ∈ [0, 1] for k ∈ [1 . . .M ] be the dynamical variable describing the state

of neuron k at time t in recurrent network.

Let h̃νk be the total input current in the neuron k

h̃νk(t) =
M∑

l=1

αJkls
ν
l (t) + hνk (2.75)

where the first term describes the current from the recurrent connections and the second

term describes the constant in time current from the input layer.

The probabilistic transition rule from the state at time t to the state to time t+ 1 is

sk(t+ 1) =





1, with probability 1

1+e
−2βh̃ν

k
(t)

−1, with probability e−2βh̃k(t)

1+e
−2βh̃ν

k
(t)

(2.76)

Here β is the inverse temperature parameter for the statistical model of the recurrent
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dynamics. The recurrent dynamics has joint probability stationary distribution

Prob[{sk}] ∼ exp

(
M∑

k=1

βskh̃k

)
(2.77)

In certain regimes (see below) we will be able to approximate the probabilistic dynamics

or equivalently, the stationary distribution, by mean field method.

2.4.2 Regimes

We consider two different regimes of the recurrent dynamics described above: uniform

regime and two subnetworks regime.

Uniform regime is defined as a regime where all the recurrently connected readouts

when averaged over the statistical ensemble, follow the same dynamical trajectory, and

considering them all as identical gives a good approximation for the network’s evolution. In

terms of mean field approximation, we define a uniform regime as a regime when introducing

one order parameter m is enough.

The two subnetworks regime, on the other hand is characterized by the necessity to

split the population M of recurrently connected readouts into two populations

• population Mν
f of free units, that receive zero feedforward input

• population Mν
IR of input receiving units, that receive non-zero feedforward input

We remark that the identity of free units and input receiving units depends on the input

pattern ν.

It is clear that dense input representation CF f � 1 is sufficient condition for the recur-

rent network of the intermediate layer to be in the uniform regime, because the proportion

of units with zero feedforward input is negligible.
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The sparse input representation CF f . 1 requires more careful treatment. If the input

representations is sparse CF f . 1 but the dynamical noise in the intermediate layer is high

enough to "mix" the two populations, then the entire network can be considered as one.

It will become clear from the section 2.4.3 that the high noise requirement is β−1 � √f .

But if noise is low, β−1 � √f , and input representation is spare CF f . 1, the recurrent

network is in the two subnetworks regime.

The two subnetworks regime is somewhat complicated in the general case, but there

is an assumption, that makes it tractable. If the feedforward connections are very strong

relative to the recurrent ones and dynamical noise is not too high, the input receiving units

can be considered enslaved to the input, namely sνk = sign (hνk), for k ∈Mν
IR. This case is

considered in the section 2.4.4. There, high and low dynamical noise subsections refer to

comparison between the noise and external input to the subnetwork of free units, that is

coming from the enslaved ones.

To summarize, the uniform regime, studied in section 2.4.3 is characterized by

high dynamical noise β−1 �
√
f

or

low dynamical noise and dense input CF f � 1

(2.78)

In section 2.4.4 we consider a special case of two subnetwork regime when the following

conditions are met

(sparse input CF f . 1) and (low noise β−1 �
√
f) and (CRαe−CF f �

√
f)

(2.79)

There is also an intermediate regime, when the last condition is not satisfied. In this

case two subnetwork are coupled and this makes it harder to track analytically. We discuss

43



it qualitatively in the end of the section 2.4.4.

2.4.3 Uniform regime

The following is under the assumptions (2.78)

Let mν be the stochastic average activity of the recurrent network state variables for

the recurrent dynamics described in (2.76). In uniform regime the average activity of the

networkmν is the only order parameter for themean field equation. The mean field equation

is

mν =
1

M

M∑

k=1

tanh (β (CRαm
ν + hνk)) (2.80)

The standard deviation σh of hνk is given from (2.38) by

σhνk =
√
f(1− f)nνk (2.81)

Consider the mean field equation (2.80). When µh � σh (which is true for sufficiently

large number of learned patterns P ), this equation has three solutions (two attractors and

one unstable) if the following conditions are met

β−1 < CRα

σh .

√
2

π
CRα (2.82)

In the dense regime CF f � 1, see (2.44), we can approximate the external current hνk to

be drawn from the normal distribution with mean µh and standard deviation σh

σh =
√
f2(1− f)CF

from (2.44).
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The meaning of the first condition is that the effective temperature β−1 should be

smaller than the typical recurrent network current scale CRα. The meaning of the second

condition is that the noise in σh in the source should be smaller then the typical recurrent

network current CRα.

The second condition needs to be imposed independently in the low dynamical noise

limit β−1 � σh. In this limit we can replace tanh(βx) by by sgn(x) and apply (2.41) to

get (2.82). In the high dynamical noise limit β−1 � σh the first condition automatically

implies the second condition.

The graphical representation of the mean field equation under the above conditions is

shown on figure 2.4.

The sigmoid curve on the plot represents the right-hand side of equation (2.80) as a

function of the average activity m, that we denote by f(m), and the straight line at slope

1 represents the left-hand side of the equation. The two stable solutions at m ≈ 1 and

m ≈ −1 correspond to the two attractor states mentioned above. We want the network

to evolve to the m ≈ 1 state when the input pattern is positive (the feedforward currents

hνk are drawn from the distribution with a positive mean) and to the m ≈ −1 state when

the input pattern is negative (hνk are drawn from the distribution with a negative mean).

This becomes possible if we initialize the network close to m = 0 (see section 2.6), which is

typically to the right of the point of unstable equilibrium mu for positive patterns and to

the left of mu for negative patterns.

To proceed further, we will need to estimate the distribution of the value of average

activity at the point of unstable equilibrium, mν
u over different realizations of {hνk} from

the same class of patterns ην . This can be done at two limiting cases that we call high

dynamical noise β−1 � σh and low dynamical noise β−1 � σh.
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High dynamical noise

The results of this section are valid for both dense and sparse regimes. Under the following

assumptions

CRα > β−1 (2.83)

for dense input: CF f � 1 β−1 �
√
f2(1− f)CF

for sparse input: CF f . 1 β−1 �
√
f

The condition on β−1 follows from the expression for σh in (2.81). Since nνk ∈ B(CF , f),

we have in dense regime the typical
√
nνk '

√
CF f and in sparse regime f � 1 and the

typical non-zero
√
nνk ' 1.

The above conditions imply that near m = 0 and we can replace the hyperbolic tangent

in the mean field equation with its argument to get the equation for unstable equilibrium

mν
u

mν
u =

1

M

M∑

k=1

β(CRαm
ν
u + hνk)

Solving this equation gives

mν
u = − 1

CRα− β−1
1

M

M∑

k=1

hνk

Which leads the following expressions for the mean µu and standard deviation σu of mu

µu = − 1

CRα− β−1
µh

σu =
σh

CRα− β−1

√
1

M
+
CF
N

(2.84)

Where the µh and σ2h are the mean and the variance the feedforward current hνk and for
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large P are given by (see (2.38) and (2.44))

µh =
1√
P
f(1− f)CF η

ν

σ2h = cov(hνk, h
ν
k) = CF f

2(1− f) (2.85)

To derive (2.84) we need the variance of the mean source current

h̄ν =
1

M

M∑

k=1

hνk (2.86)

Like in (2.51) the variance of h̄ν is contributed by the diagonal terms and the non-

diagonal terms, in the limit M →∞ approximated by

cov(h̄ν , h̄ν) =
1

M
cov(hνk, h

ν
k) + cov(hνk, h

ν
l )k 6=l (2.87)

For the non-diagonal terms, neglecting 1
P corrections coming from the signal, using

representation (2.56), we find in the same way as in the computation of (2.57)

cov(hνk, h
ν
l )k 6=l = f(1− f)〈nkl〉 (2.88)

from the covariance of the zkl terms. Here 〈nkl〉 is the expectation value of the number of

common active input neurons for readouts k and l (see details in section 2.3.5). Therefore,

comparing with (2.38) we find

cov(hνk, h
ν
l )k 6=l = cov(hk, hk)

〈nkl〉
〈nk〉

(2.89)
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The 〈nkl〉 in the limit N,M →∞ and finite CF , f can be estimated as

〈nkl〉 = fN

(
CF
N

)2

=
C2
F

N
f (2.90)

which gives
〈nkl〉
〈nk〉

=
CF
N

(2.91)

and therefore

cov(hνk, h
ν
l )k 6=l =

CF
N

cov(hk, hk) (2.92)

Hence (2.87) reduces to

cov(h̄ν , h̄ν) =

(
1

M
+
CF
N

)
σ2h (2.93)

and implies (2.84).

We can now compute the probability that the network of recurrent readouts evolves to

the attractor that corresponds to the class of the input pattern. This happens when the

initial state of the network, characterized by the average activity m0 is on the correct side

of the unstable equilibrium mu (see figure 2.4, namely

(mν
0 −mν

u)ην > 0 (2.94)

We will assume that the average activity of the recurrent network in initial state m0 is

distributed as if each unit was set to be in one of the two states with equal probabilities,

namely

m0 ∼ N (0,
1

M
) (2.95)

for large M . We will discuss the initialization of the network further in the section 2.6.
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Condition (2.94) is satisfied with probability

prob[(mν
0 −mν

u)ην > 0] =
1

2


1 + erf


 |µu|√

2
(
σ2u + 1

M

)






Which leads to the capacity of the network classifier in the uniform regime for high

dynamical noise βσh � 1

Pmax =
(1− f)

2[erf−1(1− 2ε)]2
CFM

1 + M
N CF + (CRα−β−1)2

CF f2(1−f)

(2.96)

When the last term in the denominator can be ignored (CRα ≈ β−1), the answer

differs from the majority vote result for the dense case only by numerical factors 2/π, while

being valid even in the sparse regime. However, making the last term in the denominator

negligible requires more and more fine tuning as f approaches zero.

Low dynamical noise and dense input

The results of this section are only valid in the dense case (CF f � 1), when hνk is a gaussian

variable.

We consider the limit of low dynamical noise

β−1 �
√
f2(1− f)CF (2.97)

which implies that for almost all the readouts βhνk � 1 we can replace hyperbolic tangent

in (2.80) by the sign function to get

mν
u = g(mν

u) (2.98)
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where

g(m) =
1

M

M∑

k=1

sign(CRαm+ hνk) (2.99)

This is a stochastic function over different realizations of {hνk}. The mean 〈g(m)〉 can be

found by integrating over the distribution of hνk (see (2.85))

〈g(m)〉 = erf
(
CRαm+ µh√

2σh

)
(2.100)

Where, again µh and σh are the mean and standard deviation of hνk respectively as in (2.85).

Now it is easy to derive the second condition of (2.82) for the existence of three solutions

to the mean field equation (2.80). Indeed, in the low noise approximation, the equation

becomes:

m = erf
(
CRαm+ µh√

2σh

)

and it has three solutions if the derivative of the right hand side at m = 0 is larger than

one (see figure 2.4). Assuming µh/σh � 1, which is true for sufficiently large number of

patterns, and recalling that the derivative of the error function at zero is equal to 2/
√
π

immediately leads the second line of (2.82).

We now return to estimating the distribution ofmu, the unstable solution. For µh � σh,

which is always the case if the number of stored patterns P is large enough, we assume that

CRαmu is also small compared to σh and check the self-consistency later. Then, we can

use the approximation for the error function at small arguments to get

〈g(m)〉 =

√
2

π

CRαm+ µh
σh

(2.101)
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the variance of g(m) can be written as as sum of the diagonal and the non-diagonal terms

cov(g(m), g(m)) =
1

M
+ cov(sgn(CRαm+ hk), sgn(CRαm+ hl))〉k 6=l (2.102)

which is similar to the expression (2.51) for variance of 1
M

∑M
k=1 sgn(hk) computed pre-

viously in (2.67), with the only difference that here the distribution of hk is shifted by

CRαm. However, because the mean of the distribution did not change the final result and

CRαmu + µh is still negligible compared to σh, we can write

cov(g(m), g(m)) =
1

M
+
ϕCF ,f
N

(2.103)

As a sum of large number M of weakly correlated terms, g(m) can be assumed to be

normally distributed and can be written as

g(m) =

√
2

π

CRαm+ µh
σh

+

√
1

M
+
ϕCF ,f
N

z (2.104)

Where z is a gaussian variable with zero mean and unit variance.

Plugging the expression for g(m) into the equation (2.98), and solving for mu we get

mu = − 1√
2
π
CRα
σh
− 1

√
2

π

µh
σh

+
1√

2
π
CRα
σh
− 1

√
1

M
+

1

N
ϕCF ,fz (2.105)

where ϕCF ,f is (2.62)(2.63).

So, the distribution of mu which is the unstable (close to zero) solution to the equation

51



(2.98) is normal with the mean and standard deviation

µu = − 1√
2
π
CRα
σh
− 1

√
2

π

µh
σh

σu =
1√

2
π
CRα
σh
− 1

√
1

M
+

1

N
ϕCF ,f (2.106)

where µh and σh can be taken from (2.85).

Again, assuming the average activity of the initial state of the network m0 ∼ N (0, 1
M ),

leads to classification capacity, obtained similarly to (2.96)

Pmax =
1− f

[erf−1(1− 2ε)]2π

CFM

1 + M
N

2
πCF +

(√
2
π
CRα
σh
− 1
)2 (2.107)

where we have used the dense regime approximations for ϕCF ,f (2.63).

The capacity is decreased compared to the majority vote scenario (2.70).

2.4.4 Two subnetworks regime

The results of this section are valid if

(sparse input CF f . 1) and (low noise β−1 �
√
f) and (CRαe−CF f �

√
f)

(2.108)

In this section we consider sparse input representation, which is characterized by the

average number of active units connected to a single readout being of the order, or even

less than one CF f . 1. And the strength of feedforward connections are so strong, that the

state of the units that receive a non-zero feedforward input are set at sνk = sign (hνk) and

neither the dynamical noise nor the recurrent input is enough to flip them. This regime

might be relevant for describing the mammalian hippocampal network, where the activity
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. . .
. . .

N
Mf

MIR

Figure 2.3: Illustration for the two subnetwork regime. The orange circles represent free
units of the intermediate layer, all their feedforward inputs are silent for the given input
patterns. They participate in the recurrent dynamics analyzed in section 2.4.4 The red
circles denote input receiving units in the same layer.

level in the dentate gyrus was estimated to be around 1%-5%, [23] and the feedforward

connectivity from dentate gyrus to CA3 to be around CF = 50 incoming synapses per CA3

cell [31].

In this case a substantial fraction of input currents hνk is equal to zero, and it would be

wrong to assume that hνk comes from a normal distribution as we did before.

We consider the readouts with zero feedforward input separately. We call them free

units and denote by Mν
f ⊂M. Notice that that the identities of free units will depend on

the input pattern ν.

We assume that the feedforward connections are much stronger than the recurrent ones,

so that those units that receive a non-zero input. We call them input receivers and denote

by Mν
IR. The input receivers are enslaved to the input: the state of the unit k in response

to input pattern ν is given by sνk = sign (hνk).

In the Poisson regime CF � 1 and CF f finite (2.43) the average number is the number
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of free readout units is

Mf = |Mf | = e−CF fM (2.109)

and the average number of input receiving units is

MIR = |MIR| = M −Mf = (1− e−CF f )M (2.110)

The typical number of free units linked to a given free unit is e−CF fCR.

Then the mean field equation for the subnetwork of free units reads:

m̃ν =
1

Mf

Mf∑

k=1

tanh
(
β
(
CRαe

−CF fm̃ν +Hν
k

))
(2.111)

and m̃ν is the average activity of the subnetwork of free readouts. The index k runs over all

the free units and the index l runs over the input receivers. TheHν
k (not to be confused with

hνk) denotes the external input to the subnetwork of free units coming from the enslaved

input receivers

Hν
k =

MIR∑

l=1

αJklsign (hνl ) (2.112)

the summation is, again, over the input receiving units.

On average, the free unit k receives CR inputs, and (1− e−CF f )CR of them come from

input receivers. So the above sum will have on average CR(1 − e−CF f ) terms. Assuming

that this is a large number, Hν
k is a gaussian variable with the mean and standard deviation

given in the leading order by

µH = αCR(1− e−CF f )〈sign (hνk)〉nk 6=0

σH = α
√
CR(1− e−CF f )

(2.113)
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The conditions for having three fixed points of the free subnetwork dynamics are anal-

ogous to (2.82)

β−1 < CRαe
−CF f

√
CR

e−CF f√
1− e−CF f

> f(β) = O(1)
(2.114)

And in the limit βσh � 1, the second condition is
√
CR

e−CF f√
1−e−CF f

>
√

π
2

To find the point of unstable equilibrium m̃u we consider two limiting regimes.

High free recurrent dynamical noise

Suppose we are in the regime of high free recurrent dynamical noise β−1 � σH which means

that

β−1 � α
√
CR(1− e−CF f ) (2.115)

Such regime allows three fixed points by (2.82) if β−1 is in the window

α
√
CR(1− e−CF f )� β−1 < CRαe

−CF f (2.116)

This window is non-empty if CR is sufficiently large but CF f of order of 1

CR > e2CF f − eCF f (2.117)

In this regime of high free noise (2.115) the mean field equation for the free subnetwork

(2.111) can be approximated by:

m̃ν
u = βCRαe

−CF fm̃u + β
1

Mf

Mf∑

k=1

MIR∑

l=1

Jklα sign (hνl ) (2.118)

Each input receiving unit has CR outgoing connections and approximately e−CF fCR of
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them terminate on a free unit. Since the strength of these connections is α, the above

equation can be rewritten as

m̃u = βCRαe
−CF fm̃u + βCRαe

−CF f 1

Mf

MIR∑

l=1

sign (hl) (2.119)

Recalling that Mf = Me−CF f and MIR = M(1− e−CF f ) and solving for m̃u leads

m̃ν
u = − βCRα

βCRαe−CF f − 1
(1− e−CF f )r̄ν (2.120)

r̄ν =
1

MIR

MIR∑

k=1

sgn(hνk) (2.121)

To find the mean and variance of r̄ν we need to compute two quantities: 〈sign (hνk)〉k∈MIR

and cov(sign (hνk) , sign (hνl ))k 6=l;k,l∈MIR
. Since both averages are zero for zero hνk and the

probability of hνk to differ from zero is given by (1− e−CF f )

〈sign (hνk)〉k∈MIR
=

1

1− e−CF f 〈sign (hνk)〉k∈M

cov(sign (hνk) , sign (hνl ))k 6=l;k,l∈MIR
=

1

(1− e−CF f )2
cov(sign (hνk) , sign (hνl ))k 6=l;k,l∈M

(2.122)

which leads the expressions for the mean and the variance of r̄ν expressed in term of rν

〈r̄ν〉 =
1

1− e−CF f 〈r
ν〉 =

1

1− e−CF f

√
2

π

〈√nνk〉√
Pf

ην (2.123)

cov(r̄ν , r̄ν) =
1

MIR
+

ϕCF ,f
(1− e−CF f )2

1

N
(2.124)

Here rν denotes the average sign (hk)
ν over all readouts, considered in the section 2.3.5 for

which the mean and variance is computed in (2.67)(2.68) and ϕCF ,f from 2.62. We ignored
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the factor
√

1− f in 〈rν〉, because f is small in the sparse regime.

From the mean and variance of r̄ν follows the mean and variance of the distribution of

the m̃ν
u in (2.120) by the linear relation. Then, following the same line of arguments as in

section 2.4.3 around equation (2.96), but applying to the free recurrent network with the

number of units Mf = Me−CF f , leads the expression for the capacity of network classifier

with sparse input representation CF f . 1 and strong feedforward synapses:

Pmax =
1

π[erf−1(1− 2ε)]2
MC2

F f

γ + M
N C

2
F f

γ = 1− 2βCRα− eCF f
(βCRα)2

(2.125)

We used sparse regime 〈√nνk〉 = fCF in (2.45) and sparse ϕCF ,f = fC2
F from 2.65. The

parameter γ was computed as follows:

γ =
M

Mf

(
βCRα

βCRαe−CF f − 1

)2

+
M

MIR
(1− e−CF f )2 (2.126)

where the first term comes from the initialization noise (2.95) on the free subnetwork, and

the factor that multiplies M
Mf

in the first term comes from the factor (2.120) relating m̃ν
u

to r̄ν , and the second term comes from the principal contribution 1
MIR

to cov(r̄ν , r̄ν) in

(2.124).

Introducing a new parameter

∆ = βCRαe
−CF f − 1 (2.127)

allows to express the relation of γ to other parameters in the problem in a more clear way:

γ = 1− e−CF f
(

1− ∆2

(∆ + 1)2

)
, 1− e−CF f < γ < 1 (2.128)
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For the bounds on γ we used condition (2.114). The first condition for having three fixed

points (2.114) in terms of ∆ is ∆ > 0. The lower bound on γ corresponds to majority vote

with units that receive zero input not voting (and not increasing the variance). The γ = 1

corresponds to majority rule.

When CF f � 1, γ can be made of the order CF f and this will allow for very small f

without sacrificing the capacity. In this regime

Pmax =
1

π[erf−1(1− 2ε)]2
MCF

1 + MCF
N

(2.129)

However, this would mean βCRα = 1 + ∆ with ∆� 1, which is kind of a fine tuning.

The counterintuitive increase in classification capacity relative to majority vote can be

clarified. The signal is now r̄ν , the average of the sign of the input current taken over only

those units that receive a non-zero input, while in the majority rule scenario, the average

rν was taken over all the units. So the signal to noise ratio of the information coming form

the input layer is improved.

However, the free neurons that do not receive any information and whose state is com-

pletely random in the case of majority vote scenario, still contribute to the noise in the

recurrent readout scheme by their random initial state. Let us now consider the subnetwork

of free units in the recurrent readout scheme. When the noise is too low βCRαe
−CF f � 1,

the fluctuations of the external input, coming from the input receivers, is as important as

fluctuations in the initial state and there is no improvement compared to the majority vote,

as seen from (2.125). When the noise increases (β decreases), but no too much, so that

there are still three fixed points of the recurrent dynamics (βCRαe−CF f > 1) and the noise

is not enough to flip input receiving units, the situation changes. Now the role of initial

condition is diminished relative to the external input that is not affected by noise, and the

decrease in the variance of external signal becomes more important than the same amount
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of variance in the initial condition. This makes it possible to outperform the majority rule.

If we now fix the total number of units (input plus readout), and divide them between

layers in the optimal way as described in section 2.3.6, the expression for capacity becomes

Pmax = C2
F f

1

[erf−1(1− 2ε)]2π

M +N
(
γ

1
2 + ϕ

1
2
CF ,f

)2

and the optimal relation between the number of readouts M and the number of input units

N is

N = Mγ−
1
2ϕ

1
2
CF ,f

(2.130)

Low free recurrent dynamical noise

Now we assume the regime of low free recurrent dynamical noise β−1 � σH where σH =

α
√
CR(1− e−CF f ) from (2.113) is the variance of the currentH (2.112) from input receiving

neurons. In this regime the mean field equation (2.111) can be rewritten as

m̃ν
u = 〈g(m̃ν

u)〉 (2.131)

where

g(m̃ν
u) =

1

Mf

Mf∑

k=1

gk(m̃
ν
u), gk(m̃

ν
u) = sign

(
CRe

−CF fm̃ν
u + H̃ν

k

)
(2.132)

Here H̃k is rescaled by α−1 compared to Hk of (2.112)

H̃ν
k =

MIR∑

l=1

Jklsign (hνl ) (2.133)
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Figure 2.4: Graphical solution for the mean field equation 2.80. Two cases are possible
depending on the values of equation parameters. The lower panel represents a regime with
only one solution, which is stable. This regime is not suitable for our purposes. In the
top two panels the equation has two stable solutions (blue dots) and the external input
determines the location of the intermediate unstable solution (the red dot). If initialized
at m = 0, the network will evolve to the right stable solution for a “positive” input pattern
and to the left stable solution for a negative input pattern. ms denotes the absolute value
of average network activity for the stable solutions, and mu - for the unstable one.
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In the averaging in the mean field equation (2.131) the input current H̃ν
k defined by hνl is

treated as a fixed external parameter. Consequently, mean field equation defines average

activity m̃ν
u as implicit function of all inputs (hνl ). This implicit function and the probability

distrubution of input variables (hνl ) induces the probability distribution on the mean activity

m̃ν
u. We proceed to find it, and with this understanding we omit explicit pattern reference

ν but assuming it implicitly in all equations below.

On average each free subnetwork unit receives CR(1 − e−Cff ) connections from input

receivers. Therefore the mean of H̃ is

〈H̃k〉 = CR(1− e−CF f )〈sign (hl)〉l∈MIR
(2.134)

and the variance of H̃ is

cov(H̃, H̃) = CR(1− e−CF f ) (2.135)

For small m̃u from (2.132) and (2.41) we compute the mean of g(m̃u)

〈g(m̃u)〉 =

√
2

π

CRe
−CF fm̃u + CR(1− e−CF f )〈sign (hl)〉l∈MIR√

CR(1− e−CF f )
(2.136)

Next we want to compute the variance of g(m̃u). For this, we want to compute the

correlation of individual terms k and p in (2.132)

cov(gk(m̃u), gp(m̃u))k 6=p = cov
(
sign

(
CRe

−CF fm̃u + H̃k

)
, sign

(
CRe

−CF fm̃u + H̃p

))
k 6=p

(2.137)

There are two cases of contributions to the correlation, that we will call case I and case

II, see figure 2.5.

The case I contribution to this correlation comes from the free units k and p being

connected to the same input receiving unit r. We neglect the probability that the overlap
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Figure 2.5: Two sources of input correlations for the subnetwork of free units (orange
circles), referred in the text as case I and case II. On the left diagram two free units are
connected to the same input receiving unit in the readout layer (red circle). On the right
diagram there is no input receiving unit that is connected to both free units, but the
correlation arises from an active unit in the input layer (green circle), which is connected to
the two free units indirectly. The probabilities to observe these cases and their contribution
to input correlations are computed in section 2.4.4, subsection “Low free recurrent dynamical
noise”

will be over more than one input receiving unit since we keep connectivity CR fixed when

we scale the number of units M . The probability of case I contribution is

pI =
CR
M

CR(1− e−CF f ) (2.138)

The case II contribution comes from the possibility that there is an input layer unit

that is active and connects to both via different input receiving neurons. The probability

of case II contribution

pII = f
C2
F

N
C2
R(1− e−CF f )2 (2.139)

To derive these probabilities, recall that the average number of connections from a free

unit k to input receiving units is CR(1 − e−CF f ) and the probability of any two readouts

to be connected to the same active input is fC2
F /N by (2.55).
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In the case I the relevant correlation is

covI(gk(m̃u), gp(m̃u)) = cov

(
sign

(
CRe

−CF fm̃u + sign (hr) +
√
CR(1− e−CF f )zk

)
,

sign
(
CRe

−CF fm̃u + sign (hr) +
√
CR(1− e−CF f )zp

))

k 6=p

=

=
2

π
cov

(
CRe

−CF fm̃u + sign (hr)√
CR(1− e−CF f )

,
CRe

−CF fm̃u + sign (hr)√
CR(1− e−CF f )

)
=

2

π

1

CR(1− e−CF f )

(2.140)

We approximated CR − 1 by CR and used error function integral (2.136, 2.41) at small

argument on standard Gaussian variables zk and zp to transform the first line to the second

line.

In the case II the relevant correlation

covII(gk(m̃u), gp(m̃u)) =

=

cov

(
sign

(
CRe

−CF fm̃u + sign (hr) +
√
CR(1− e−CF f )zk

)
,

sign
(
CRe

−CF fm̃u + sign (hs) +
√
CR(1− e−CF f )zp

))

k 6=p,r 6=s

=

=
2

π

〈
CRe

−CF fm̃u + sign (hr)√
CR(1− e−CF f )

CRe
−CF fm̃u + sign (hs)√
CR(1− e−CF f )

〉
=

=
2

π

1

CR(1− e−CF f )

2

π

〈
tan−1

√
1

(nr + 1)(ns + 1)− 1

〉

nr,ns∈B(CF−1,f)

=

=
2

π

1

CR(1− e−CF f )

ϕCF ,f
fC2

F

(2.141)

where nr and ns are from binomial distribution on CF−1 trials with probability f computed

as in (2.62) from the correlation of the sign (hr) and sign (hs).

Now we can compute 2.137 in the leading order as pI, pII probability weighted sum of
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the contributions from case I and case II:

cov(gk(m̃u), gp(m̃u)) = pIcov
I(gk(m̃u), gp(m̃u)) + pIIcov

II(gk(m̃u), gp(m̃u)) =

=
2

π

CR
M

+
2

π

ϕCF ,f
N

CR(1− e−Cff ) (2.142)

At the diagonal terms we have simply

cov(gk(m̃u), gk(m̃u)) = 1 (2.143)

Alltogether, combining the contribution from diagonal and non-diagonal terms as in (2.87)

we find

cov(g(m̃u), g(m̃u)) =
1

Mf
+

2

π
CR

(
1

M
+
ϕCF ,f
N

(1− e−Cff )

)
(2.144)

We will assume that that CF f . 1 so that Mf 'M and that even though CR does not

scale linearly with M,N,P still

CRe
−CF f � 1 (2.145)

then we can, in fact, drop the diagonal term in (2.144) and take the approximation

cov(g(m̃u), g(m̃u)) =
2

π
CR

(
1

M
+
ϕCF ,f
N

(1− e−Cff )

)
(2.146)

Given the mean (2.136) and the variance (2.146) of g(m̃u), and recalling that g(m̃u)

is a sum of large number of random variables with low correlation we approximate g(m̃u)

in terms of standard Gaussian random variable z and plug into the mean field equation
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(2.131), restoring the label ν

m̃ν
u =

√
2

π

CRe
−CF fm̃ν

u + CR(1− e−CF f )〈sign (hνl )〉l∈MIR√
CR(1− e−CF f )

+ (cov(g(m̃ν
u), g(m̃ν

u)))
1
2 z

(2.147)

The solution is

m̃ν
u = µu + σm̃νuz (2.148)

where under the assumption (2.145)

µνu = −
√

2

π
eCF f

〈√n〉√
Pf

ην (2.149)

(small f approximation to (2.41))

and

σ2m̃νu = e2CF f (1− e−CF f )

(
1

M
+
ϕCF ,f
N

(1− e−CF f )

)
(2.150)

for which we used (2.146).

To find the pattern capacity we need to add the initialization noise on Mf variables like

in (2.95) to get effective variance of m̃ν
u

σ2init + σ2m̃u =
1

Mf
+ e2CF f (1− e−CF f )

(
1

M
+
ϕCF ,f
N

(1− e−Cff )

)
=

= e2CF f
(

1

M
+
ϕCF ,f
N

(1− e−Cff )2
) (2.151)

and require that the initial state of the network is on the correct side of unstable equilibrium

with probability 1 − ε. Again, the difference difference between the initial state m0 and

the unstable equilibrium mu can be assumed to be Gaussian with the mean (2.149) and
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variance (2.151), which leads

Pmax =
〈√n〉2
f

1

[erf−1(1− 2ε)]2π

M

1 + M
N (1− e−CF f )2ϕCF ,f

(2.152)

or in the sparse approximation (2.42) for 〈√n〉 and ϕCF ,f

Pmax =
1

[erf−1(1− 2ε)]2π

MC2
F f

1 + M
N (1− e−CF f )2C2

F f
(2.153)

Compared to the majority rule this regime gives advantage for relatively low number of

inputs N , while the high noise regime (2.125) gives advantage for relatively low number of

readouts M .

Besides the uniform and two subnetwork regimes, there is also an intermediate case

that we do not analyze here. It is realized when the relative strength of the feedforward

and recurrent connections is such, that input receiving units are follow the sign of the

external input in the beginning of patterns presentation, when the recurrent network is in

the disordered state, but are flipped when the subnetwork of free units synchronizes and

the recurrent inputs become more consistent.

2.5 Summary of limited connectivity results

uniform high noise (2.96)

Pmax =
(1− f)

2[erf−1(1− 2ε)]2
MCF

1 + M
N CF + (CRα−β−1)2

CF f2(1−f)

(2.154)
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uniform low noise, dense (2.107)

Pmax =
1− f

π[erf−1(1− 2ε)]2
MCF

γun + M
N

2
πCF

(2.155)

γun = 1 +

(√
2

π

CRα

(CF f2(1− f))
1
2

− 1

)2

(2.156)

2-network high noise; sparse (2.125)

Pmax =
1

π[erf−1(1− 2ε)]2
MC2

F f

γ + M
N fC

2
F

γ = 1− 2βCRα− eCF f
(βCRα)2

(2.157)

2-network low noise; sparse (2.153)

Pmax =
1

π[erf−1(1− 2ε)]2
MC2

F f

1 + M
N (1− e−CF f )2C2

F f
(2.158)

For small f the results are very suggestive when presented in terms of the total number

of feedforward connections CF = MCF and the density parameter of input representation

λ = CF f . Denote once and for all a chosen error tolerance parameter

cε =
1

[erf−1(1− 2ε)]2
(2.159)

Majority dense (2.70):

Pmax =
cε
π

CF
1 + 2

πCF /N
(2.160)

Majority sparse (2.71):

Pmax =
cε
π

CFλ
1 + CFλ/N

(2.161)
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Recurrent uniform high noise (2.96):

Pmax =
cε
2

CF
1 + CF /N

(2.162)

if we maximize in the limit CRαβ → 1 .

Recurrent uniform low noise, dense (2.107):

Pmax =
cε
π

CF
1 + 2

πCF /N
(2.163)

if we maximize in the limit
√

2
πCRα→ σh

Recurrent two-subnetwork high noise, sparse (2.125):

Pmax =
cε
π

CF
λ−1(1− e−λ) + CF /N

(2.164)

if we maximize by adjusting ∆→ 0 see (2.128)

Recurrent two-subnetwork low noise; sparse (2.153):

Pmax =
cε
π

CFλ
1 + λ(1− e−λ)2CF /N

(2.165)

2.6 Network initialization

We have assumed so far that there is a way to initialize the network of the recurrently

connected readouts at the disordered state (meaning that every unit is up or down with

probability 1/2) every time before the feedforward input is on. This may seem problematic

because the disordered state is unstable and it is not clear how the network is brought there.

In this section we suggest two ways of achieving this with a population of interneurons,

whose input is extremely noisy before the feedforward input is on (ξi = 0, i = 1 . . . N) and
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is equal to zero or canceled by the threshold when the feedforward input is on. The noise

from the interneurons in the absence of the feedforward input should be strong enough,

so that the only fixed point of the recurrent dynamics is the disordered state (m = 0), it

should also be exactly balanced, so that the fixed point is exactly at m = 0.

Spontaneous activity

One way to initialize the recurrent network of the intermediate layer close to m = 0 state

(disordered state) is to have the input layer being spontaneously active before an input

pattern is presented. We want the the feedforward input provided by the spontaneous

activity to be such, that m = 0 is the only fixed point of the dynamics. As discussed

before, this is equivalent to violating one or both of the conditions (2.82). Since we still

want the conditions to be satisfied during the presentation of a test pattern, and we can

not change the inverse temperature parameter β, we require

σsph &

√
2

π
CRα

If the spontaneous activity of the input neuron i is ξspi , the feedforward current into the

readout k is given by

hspk =
∑

i∈Ik

wiξ
sp
i

with wi = 1√
P

∑P
µ=1(ξ

µ
i − f)ηµ which for large number of patterns is distributed normally

with the mean zero and standard deviation
√
f(1− f).

We assume that ξspi are also Gaussian with mean zero and standard deviation ζ. Then,

the variance of the spontaneous feedforward input is

σsph =
√
f(1− f)CF ζ
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It is important that the distribution of ξspi is symmetric. If it is not, the feedforward

spontaneous input, and consequently the initial activity of the recurrent network m, will

have a systematic bias and this might become a limiting factor for the classification capacity.

In the uniform regime this way of network initialization imposes an additional constraint

on the relative strength of the recurrent and feedforward connections. During the sponta-

neous activity, the standard deviation of the feedforward input should be large relative to

the recurrent input, and during the presentation of a pattern - small:

√
π

2

√
CF (1− f)f2 < CRα <

√
π

2

√
CF (1− f)fζ (2.166)

This constrained is easier to satisfy for low f .

Population of interneurons

The other alternative to set the network at m = 0 state before the input is on, involves

two recurrently connected populations of Nint interneurons each: excitatory and inhibitory.

Both of them receive strong excitatory input from the input layer. This input is only present

when the input pattern is on and puts both populations in the ordered state (ψ+
j = 1,

ψ−j = 1). In the absence of the feedforward input the only fixed point is the disordered state.

Each recurrent readout receives exactly Cint connections of strength w+ from the excitatory

population, and Cint connections with strength w− from the inhibitory population. It is

crucial that the noise in the number of incoming connections Cint is much lower than
√
Cint

expected by random connectivity. Another requirement is that

|w+ − w−|Cint � µh

where µh is the mean of feedforward input to a recurrent readout (see (2.24)).
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The total synaptic current into recurrent readout k then now looks like

htotal
k = hνk +

M∑

l=1

αJklsl + w+
Cint∑

j=1

ψ+
j − w−

Cint∑

j=1

ψ−j (2.167)

When the feedforward input is off, the only external input is from interneurons and is zero

mean with the standard deviation (w+ + w−)
√
Cint. If the condition (w+ + w−))

√
Cint >

√
2/πCRα is met, there is only one stable fixed point for the dynamics of the recurrent

readout population with the average activity m0 close to zero.

It is required for the unbounded grows of classification capacity, that 〈m0〉 = 0 when the

mean is taken over different presentations of learned input pattern. In the current scheme,

the noise of the disorder is the activity of the interneuron population and the final size

effects will change from one pattern presentation to another, and the expectation value of

m0 will be exactly zero. We should only make sure that the variance of m0 is not much

larger than 1
M , so that the classification capacity is not lowered much compared to (2.125).

Assuming that β(w+ + w−)
√
Cint � 1, we can approximate the tanh(. . . ) by the

sign (() . . . ) and estimate the variance ofm0 from the mean field equation for the population

of recurrent readouts in the absence of the feedforward input (assuming β(w++w−)
√
Cint �

1):

m0 =
1

M

∑

k

sign
(

(CRαm0 + (w+ + w−)
√
Cintεk)

)

where εk is drown form the Gaussian distribution with zero mean and unit variance. As

discussed before, the solutions of this equation will be distributed normally (for large M)

and will have zero mean and standard deviation

σm0 =
1

1−
√

2
π

CRα
(w++w−)

√
Cint

√
1

M
+ 〈sign (εk) sign (εl)〉k 6=l
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over different realizations of {εk}. It is easy to see that for random connectivity the second

term is of the order Cint
Nint

, so for (w+ + w−)
√
Cint � CRα and Nint ∼ CintM , the variance

of m0 is close to what was assumed in the derivation of classification capacity.

2.6.1 Simulations

The results of the simulation for the high noise uniform case are presented at the figure

(2.6). We simulated the case of sparse (CF f = 2.5) and dense (CF f = 10) input represen-

tations. In agreement with our theoretical results, the parameters of the recurrent network

of intermediate readouts can be found to lead virtually no difference in the classification

capacity for sparse and dense regimes.

To estimate how the classification capacity depends on the network size we employed

two procedures. In the first one, at each new step we chose the size of the network and tried

to learn the number of patterns P which was slightly less than the estimated capacity for the

previous (smaller) network. If we were able to classify the patterns with required accuracy

(error rate of 10%, we increased P ). The blue markers correspond to this procedure. The

red markers were obtained for approaching the capacity from the other side. We started

by trying to learn a number of patterns P which was larger than the theoretical estimate

by a factor of 1.3. We then decreased P before the required accuracy was reached. We did

not model the network initialization here. Instead the initial state of the units was chosen

to be +1 or -1 randomly with equal probability.
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Figure 2.6: The simulation results for the high noise uniform case in the sparse (left) and
dense (right) regimes. The green line is the theoretical prediction of formula 2.96. To
estimate how the classification capacity depends on the network size we employed two
procedures. In the first one, at each new step we chose the size of the network and tried to
learn the number of patterns P which was slightly less than the estimated capacity for the
previous (smaller) network. If we were able to classify the patterns with required accuracy
(error rate of 10%, we increased P ). The blue markers correspond to this procedure. The
red markers were obtained for approaching the capacity from the other side. We started
by trying to learn a number of patterns P which was larger than the theoretical estimate
by a factor of 1.3. We then decreased P before the required accuracy was reached. We did
not model the network initialization here. Instead the initial state of the units was chosen
to be +1 or -1 randomly with equal probability.
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2.7 Chapter conventions

Table 2.1: Notations

Notaion Meaning

µ, ν ∈ [1 . . . P ] pattern indices

i, j ∈ [1 . . . N ] input neuron indices

k, l ∈ [1 . . .M ] medium layer readout indices

N(0, 1) the normal distribution with mean 0 and variance 1

B(N, f) distribution of # of events in N trials with event probability f

P(λ) Poisson distribution with parameter λ

ϕCF ,f covariance in the intermediate layer (2.62) and (2.63)(2.65)

The error function

erf(x) =
2√
π

∫ x

0
e−t

2
dt (2.168)

Small x expansion

erf(x) =
2√
π

(
x− 1

3
x3 + . . .

)
(2.169)

Expectation value of sgn(x+ a) in normal distribution is expressed in terms of the erf

function as

〈sgn(x+ a)〉N(0,σ) =
1√
2π

∫ a

−a
e−

1
2σ2

x2dx = erf

(
a√
2σ

)
(2.170)

Small a/σ expansion

〈sgn(x+ a)〉N(0,σ) =

√
2

π

a

σ
+ . . . (2.171)
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Suppose that a is a signal which scales with the number of patterns as

a =
ã√
P

(2.172)

and suppose we set threshold to the probability of the correct classification p = 1− ε. Then

from the threshold equation

erf

(
ã√

2σ
√
Pmax

)
= 1− 2ε (2.173)

we find capacity

Pmax =
1

(erf−1(1− 2ε))2
ã2

2σ2
(2.174)

2.8 Chapter conclusions

Our study shows that feed-forward neural classifiers with numerous long range connections

connecting different layers can be replaced by networks with sparse long range connectivity

and local recurrent connectivity without sacrificing the classification performance. Our

strategy could be used in the future to design more general scalable network architectures

with limited connectivity, which resemble more closely brain neural circuits dominated by

recurrent connectivity.

We argue that this problem is especially relevant for the hippocampus as the observed

dentate gyrus to CA3 connectivity is very sparse. Our model network also possesses other

features of the hippocampus, in particular, extensive recurrent connectivity of the layer

representing the CA3 area and low activity level in the input layer, that is meant to model

the dentate gyrus.

Although we do not find a clear advantage of having sparse representation if the dentate

gyrus, we show that the model network can operate in the regime when the average number
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of active dentate gyrus cells connected to one CA3 readout is of the order of 1, or even

less. Paradoxically, the classification capacity in this case can be made almost identical

to the case of dense representations. One can argue that low activity level in the dentate

gyrus has advantages that are beyond the presented framework (see, for example [36]), in

which case our results should be considered as justification for the possibility to realize this

advantages despite the limited connectivity.

One can argue that the two-subnetworks regime, described for the case of relatively

very strong feedforward connections and sparse input representations (the regime observed

in the case of mammalian hippocampus for input layer corresponding to the dentate gyrus

and the readout layer - to the CA3 area), assumes a broader parameter regime for achieving

high classification capacity. However, the precise analysis required to make this argument

remains to be done.
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Chapter 3

Decoding position from dentate gyrus

calcium recordings

This project was done in collaboration with Fabio Stefanini, Mazen Kheirbek, René Hen

and Stefano Fusi. The experiments were performed by Mazen Kheirbek, and the following

analysis - by myself and Fabio Stefanini.

3.1 Chapter summary

Hippocampus has been long hypothesized to be involved in coding of space [2],[21]. Cells

with specially tuned firing patterns were observed in the areas CA1, CA3 and the entorhinal

cortex [26]. The dentate gyrus, however has been studied much less due to its sparse

activity and other technical difficulties for electrophysiological recordings. Nevertheless a

few electrophysiological studies address the spatial tuning of the dentate gyrus granule cells

[23],[25] and suggest that they encode spatial information exhibiting firing patterns with

multiple place fields [24],[32]. However, it remains unclear whether these tuning properties

are stable enough to be used to decode the animal’s position.
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With development of calcium imaging techniques [64] and, more recently, miniaturized

head-mounted microscopes [65], it became possible to record the activity of large number

of cells simultaneously in a moving animal. The recordings analyzed here were performed

by Mazen Kheirbek and is the first calcium imaging of the dentate gyrus activity.

In order to establish whether dentate gyrus granule cells encoded spatial information,

we trained two separate decoders, a linear decoder using mean-square linear regression and

a non-linear decoder consisting of a committee of binary classifiers trained on discretized

locations within the cage. We then asked whether the decoders could predict the position

of the mouse based on the recorded Ca2+ data on a single 200 ms time-bin basis.

We demonstrate that the animals position can be decoded from the recorded calcium

signal with approximately 10cm accuracy and that the neural representation of position in

the dentate gyrus have close to maximal dimensionality. Our analysis also suggests that

cells with a single firing field within a box contribute the same amount of information to

the decoder as cells with multiple firing fields.

An often encountered approach in the context of decoding animal’s position from hip-

pocampal activity is a bayesian framework [66],[67],[68]. This implies that the decoder

has an access to the prior distribution of its locations, prior distribution of the population

activity and the distribution of the neural activity at any given location. The output of

a bayesian decoder is than a posterior distribution over the locations given the observed

neural activity, and the predicted position corresponds to the maximum of this distribution.

Although, all three distributions can be estimated over the training data and perfor-

mance can be cross-validated, both the training of the decoder and the decoding procedure

are usually complicated and are hard to see as biologically plausible.

The advantage of the two decoders presented here is that both training and decoding

procedures are relatively simple. The first decoder described below is an ensemble of linear
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threshold classifiers that take a collective decision about the predicted location. The weights

of these linear threshold classifiers (perceptrons) are the only parameters that are tuned

during the training of the decoder. One can think of these weights as synaptic strengths of

a downstream readout neuron. The weights can be learned using an online algorithm [39]

(although we use another training algorithm to speed up training). The collective decision

of the ensemble of perceptrons can be implemented with another layer of linear threshold

units and some winner-take-all interaction between them.

The second decoder that we use is a linear regression decoder whose prediction is a

weighted sum of the activities of the recorded neurons. Again, the training of the de-

coder can be done online, meaning that each new training pattern modifies the regression

coefficients independently of the other training patterns.

After confirming that the position information is consistently represented in the signal,

we turn to analyzing the spatial firing patterns of the recorded units. Because of the sparse

activity in the dentate gyrus [23] it is reasonable to assume that the region of interest

extracted from the calcium data correspond to single cells, not few overlapping neurons.

Following the procedure described in [24] we divide the cells into two populations - cells

with a single firing field cells, or single field cells and the remaining non-single field cells.

We compare the amount of spatial information carried out by the two populations. Our

conclusion is that there is either no significant difference between the two populations, or

the slight difference is in favor of non-single field cells.

In agreement with [24], 30% to 40% of the cells were classified as single field. It should

also be pointed out that there is an evidence that spatially tuned cells in the areas CA1

and CA2, and also in the dentate gyrus, that look like single field in a standard box often

exhibit multiple firing fields in larger environments [25].

In the end of the chapter we determine the number of principal components that are
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useful for position decoding. This number should be similar to the dimensionality of the

spatial representation. This may be much smaller than the dimensionality given by the

standard PCA analysis, namely the number of principal components with the explained

variance higher than a chosen threshold. The difference is due to the fact that the variability

of population activity along some directions in the neural space may be very large, but

independent from the animal location (coding for other variables) and thus will not improve

the cross-validated performance.

The estimated dimensionality of the representation of space in the dentate gyrus turns

out to be maximal for the given accuracy, consistent with its hypothesized role in dimen-

sionality expansion [36],[69],[70],[71],[72].

3.2 Description of the experiment and the acquired data

We used miniaturized head-mounted microscopes to perform functional Calcium imaging

of dentate gyrus granule cells as mice foraged in an open field box. The size of the box was

50cm× 50cm and the recording sessions were10 min long.

We started by extracting putative Ca2+ events from the fluorescence traces using pub-

lished methods [73] and convolved the temporal events with decaying exponentials to extract

putative signals for the granule cells (see figure 3.1).

The decoding seemed to work in five out of six animals who explored the box at least a

little bit. Number of putative single units recorded in each animal, animal’s mobility and

the total number of events is summarized in the last three columns of the table of figure 3.4.

The mobility was defined as percentage of time bins that belonged to intervals of mobility

(see section 3.3.2). As expected the distribution of the visitation numbers over the discrete

locations in the box were not uniform. All animals (except for the one mouse for which the

decoding did not work and that was not included in the analysis) spent most time in the
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Figure 3.1: A, gradient index lens (GRIN) is implanted above the dorsal DG, and a minia-
turized microscope is used to image the activity of DG GCs. B. AAVdj-CamKII-GCaMP6f
expression in DG GCs for functional Ca2+ imaging. C. Example Isolated DG GC units from
a representative imaging session. D, Standard deviation Ca2+ traces from the extracted
independent components from C.

corners, some time close to the walls and less in the center.

3.3 Position decoding

In this section we describe our approach to decoding animal’s position from the putative

Ca2+ events in the dentate gyrus granule cells.

3.3.1 Cross-validation

Any neural decoding procedure is predicting animal’s behavior or sensory stimulus by look-

ing at the neural activity in a particular brain region. The way the neural activity is

processed to obtain the prediction involves some number of free parameters that are being

tuned to establish the correspondence between the predictor (in this case neural activity)

and the predicted variable (in our case the animal’s position). The procedure of finding
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these free parameters is usually referred to as training the model or training the decoder.

To claim that a certain behavioral or sensory variable is represented by the recorded

neural activity, the performance of the decoder should be cross-validated, meaning that

the data used to train the the decoder can not be used in estimating the accuracy of the

decoding.

Our data consists of a 10min - long calcium recordings with the measurements taken

each 200ms, which makes 3000 data points. After filtering for speed (see section 3.3.2),

about 2000 data points remain, depending on the animal. We divide these points into 5

equal sets of 400 data points and train 5 decoders each using 4 out of five sets ( 1600

recordings) together with the corresponding positions of the animal as training data. We

then use a decoder trained on a given set of 1600 points to predict animal’s position during

the remaining 400 time bins based on the neural activity recorded during these time bins

(which was not used to train the decoder).

In this way, we get the decoder predictions for the entire time of the recording, but

never use the same data for training and prediction. Thus, our decoding is cross-validated.

3.3.2 Filtering for the animal’s speed

It has bee hypothesized before [74] that the animals position is represented by neural

activity in the hippocampus only when the animal is in motion. We confirm that the

decoding performance increases when we first filter the data by the speed of the animal,

and use only filtered data for training. We can still make predictions for the times when the

animal is not moving or moving very slowly, and in the results section we present both, the

performance of the decoder when the animal is moving fast, and when it is moving slowly

or stands still.

The filtering procedure is as follows. We first choose a threshold for speed v0, (most
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our results are presented for two values of the threshold - 1cm and 2.5 cm) and a time

duration t0 (equal to 1s). The periods of duration longer than t0 during which the speed

is higher than v0 we call mobile and include in the training of the decoder. The periods of

duration longer than t0 during which the animal’s speed was less v0 we call immobile and

do not include in the training data for the decoder. When a mobile period is interrupted

by a period shorter than t0 during which the speed is less than v0, this short period is still

considered mobile and vice versa. Our results were obtained using t0 = 1s and one of two

speed thresholds - v0 = 1cm/s or v0 = 2.5cm/s (we specify which one).

The decoding results are consistently better when the analysis is restricted to the time

intervals classified as mobile according to the procedure described above. One of the hy-

pothesis was that it is due to elevated activity levels when the animal is moving. However,

we didn’t observe a consistent correlation of the total number of events in a time bin

(combined over all cells) with the animal’s speed (see figure 3.2). Neither we observed a

significant difference between the average activity of the population during periods of mo-

bility and immobility (see figure 3.3). We conclude that the observed difference in decoding

performance is due to decreased accuracy in representation of space in the immobile state.

Whether a variable other than current location (future location for example) is represented

by the same population of neurons in the immobile state remains to be determined (see

also figure 3.11).

3.3.3 Description of the committee of perceptrons decoder (non-linear

decoder).

We first divide the arena into 64 equally sized squares (8 × 8 grid), that we later refer to

as locations. We then train a maximal margin linear threshold classifier for each pair of

locations, which makes it M = 63 × 64/2 binary classifiers. We often refer to this binary
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Mouse DG1 DG2 DG4 DG5 DG10

Speed-activity 
correlation -0.07 -0.02 -0.03 0.28 0.37

p-value 7E-05 0.4 0.1 6E-54 4E-99

Figure 3.2: Coefficient of correlation between the animals speed and the number of events
combined across the cells. Contrary to our expectation, a significant positive correlation is
only observed for two out of five animals. The p-values are relative to the null hypothesis
that there is no correlation between the two variables.
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Figure 3.3: Mean and standard deviations of the total number of events in a time bin
during intervals classified as mobile (blue) or immobile (red). Again, there is no significant
difference in the activity between mobile and immobile states.
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classifiers as perceptrons. Each perceptrons discriminates between a pair of locations. For

training, for example the perceptron that discriminates between location 1 and location

42, we only use the training data recorded at the times when the animal was at these

locations (and that belong to the training period for the given cross-validation run see

section 3.3.1). Each time stamp of calcium recording contributes a neural pattern with an

appropriate label. Because the animal spends unequal amount of time in different locations,

the training sets for most binary classifiers are unbalanced, but we found that balancing

them does not improved the cross-validated performance.

The decoded position for a given neural activity pattern from the test interval is pre-

sented, is determined as follows. Let the activity pattern be {ri} where i is the number of

ROI, each of M binary classifiers gives a response

ηjt = sign

(
N∑

i=1

wji ri,t − θj
)

= ±1 (3.1)

For each location, let’s say “42” there are 63 perceptrions each of which corresponds to the

pair of locations with one location in the pair being “42”. Namely, there is a perceptron

that classifies a neural activity pattern as corresponding to location “42” or to location

1, another perceptron distinguishes 42 from 2, and so on. We then need to combine the

responses of all the perceptrons to determine the decoded location. The way to do it is

to count for every location the number of classifiers whose responses indicate that neural

activity pattern corresponds to this location and choose the location with the highest score

(the maximum score is 63).

The easy way to do it, is to introduce a coding matrix, whose columns are the ideal

responses of the entire ensemble of perceptrons to a pattern corresponding to a given loca-

tion (the actual responses could never be ideal because the classifiers always give +1 or -1,

but virtually never 0). If we choose the first classifier to discriminate between location “1”
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and location “2”, the second - between “1” and “3”... the 64th - between “2” and “3” and so

on, and assign output +1 to the first location in the pair and -1 to the second, the coding

matrix will be:

C =




1 −1 0 · · · 0 0

1 0 −1 · · · 0 0

· · ·

1 0 0 · · · 0 −1

· · ·

0 1 −1 · · · 0 0

· · ·

0 0 0 0 1 −1




If the outputs of all the perceptrons are written as M -dimensional row-vector η, then the

decoded location is determined as a position of maximal element in the row vector of the

product of the output and the coding matrix, ηtC.

The decoded position is then taken to be the center of the 6cm× 6cm square predicted

by the decoder.

3.3.4 Description of the linear regression decoder.

To make sure that the statements, that we make about the accuracy of the decoding in

different conditions or using different subsets of cells, are not the artifacts of the chosen

decoder, but are actually representative of the neural representations of position, we intro-

duce another decoder, and repeat the analysis. The second decoder is a linear regression

decoder that predicts X and Y coordinates of the animal independently based on linear
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regression model. The predicted x and y coordinates at moment t are given by

Xpr(t) =

N∑

n=1

a(x)n rn(t) + x0

Ypr(t) =
N∑

n=1

a(y)n rn(t) + y0

where the sum is taken over the cells. The coefficients a(x)n and a(y)n are tuned to min-

imize the decoding error over the training set (again, the decoder’s performance is cross-

validated).

3.3.5 Lasso algorithm for regularization.

We were also able to improve the accuracy of the linear regression decoder by applying a

regularization algorithm to avoid overfitting to the training data. This algorithm is called

“lasso" (least absolute shrinkage and selection operator) and was introduced in [75] based

on [76]. The procedure is to tune a(x)n and a(y)n not to minimize the mean squared error as

done in the usual linear regression, but a cost function given by

Costx =

T∑

t=1

(X −Xpr)
2 + λ

N∑

n=1

|a(x)n | (3.2)

where λ is a parameter. The fact that the second sum contains the absolute values of the

coefficients (L1 norm) and not the square for example, guarantees that the optimization

procedure will find a solution for {a(x)n } with some of the coefficients in the set {a(x)n } being

equal to zero. Which coefficients are non-zero (which cells are included in the decoder) is

optimized to minimize the mean squared error on the training set. Changing the parameter

λ changes the relative importance of the new term and thus the number of non-zero coeffi-

cients. The best cross-validated performance is observed for the values of λ corresponding
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to between 100 and 200 non-zero coefficients (100 to 200 cells included in the decoding).

When α is decreased and more cells are included, the decoder tends to overfit and the

performance on the test set decreases.

The lasso algorithm also provides a way to rank the cells according to the amount of

information they provide about the decoded variable (see section 3.4.2).

3.3.6 Results

We were able to decode position with accuracy of about 10cm in a 50cm by 50cm box for 5

out of 6 animals. Table 3.4 summarizes the decoding performance as measured by median

decoding error for these animals. We also present the chance level for this measure and the

p-value (see section 3.3.7).

Another way to represent the accuracy of the decoding is to compute the percentage

of times that the predicted location is within 10cm from the actual location of the animal

(percentage close). The choice of 10cm is motivated by the median errors across five animals.

The decoding results relative to this measure of performance are summarized in the table

on figure 3.5. The chance level for this measure and the p-values were computed in a similar

way (see section 3.3.7).

The higher chance performance in the immobile periods is observed because the animal

stops mostly in the corners and just knowing the prior distribution leads a relatively high

performance. The fact that the chance performance is even higher than 25%, indicates

that the mouse spends highly unequal amount of time in the four corners. The p-values

higher than 0.5, especially for DG5 and DG10, is a reflection of the fact, that the decoder

consistently predicts a wrong location (more often than by chance). See figure 3.11, panels

a), b) and c)

The decoding performance seem to increase when we the threshold for classifying a time
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period as mobile or immobile to v0 = 2.5cm as seen from figure 3.6 Another measure of the

performance is the percentage of time the decoded location is within 10cm of the actual

location. Increasing the threshold velocity increases the performance The performance of

the linear regression decoder is summarized in the figure 3.7. The performance is slightly

worse than in the case of ensemble of perceptrons, but still very significantly above chance.

3.3.7 Computing the chance level and p-value

The chance level for decoding performance reported in tables of figures 3.4,3.5 and 3.6

was computed as the median error distance (or percentage close) measured for the shuf-

fled decoder’s predictions. The p- values are relative to the null hypothesis that there is

no information about animal’s position in the recorded calcium signal, and the decoder’s

prediction are drawn randomly from a certain prior distribution. The p-values defined in

this way can be estimated by performing many shufflings of the decoder’s predictions and

counting the number of times when the performance thus obtained is better than the per-

formance computed on unshuffled predictions (when the actual distribution of the locations

in the test data is used instead of the distribution of the predictions, the p-values are still

very low). However there are substantial autocorrelations in both, the recorded calcium

traces and the animals locations that should be taken into account.

If the prediction errors at different time points were independent form each other, p-

value would have been easy to compute - we would have to shuffle the decoder’s predictions

many times and calculate the proportion of times when the shuffled predictions lead to a

lower median error (or higher percentage close) than the actual ones. However, neither

the animals positions, nor the decoder’s predictions are independent when two proximal

moments in time are considered, and thus the prediction errors are also correlated. The
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Median 
Error, 

cm

Chance 
Error, 

cm
p-value

Median 
error, 

immobile

Chance 
Error, 

immobile

p-value,  
immobile

Number 
of cells 

recorded
Mobility

Total # 
events in 
10 min

DG1 11.5 24.4 < 1E-04 24.6 27.4 0.05 300 0.4 23 255 
(78 per cell)

DG2 10.5 25.3 < 1E-04 19.3 24.7 0.05 638 0.5 39 457 
(62 per cell)

DG4 4.7 28.8 < 1E-04 24.0 31.3 0.0004 356 0.2 37 953 
(107 per cell)

DG5 8.5 27.9 < 1E-04 33.0 28.8 0.36 432 0.8 11 243 
(26 per cell)

DG10 15.0 22.0 < 1E-04 16.4 15.5 0.62 136 0.7 2 280 
(17 per cell)

Table 1, Median error of decoding over periods of mobility and immobility 
(threshold speed 1cm/s)

Figure 3.4: Table of the decoding results for the non-linear decoder. Cross-validated median
decoding error was computed over 10min session of free exploration of a 50cm by 50cm box,
separately for mobile and immobile periods. The reported chance level is the median error
over the decoder predictions shuffled in time. The p-values were estimated as the percentage
of shufflings that lead a lower median error than the unshuffled predictions. To compute the
p-values we used only the data points separated by a time interval, longer than a certain
length (τ0). This thinning out of the data was done to get rid of autocorrelations. See
section 3.3.7 and figure 3.8 for details.
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Fraction 
Error< 
10cm

Chance 
level p-value

Fraction 
Error< 
10cm, 

immobile

Chance 
level, 

immobile

p-value,  
immobile

Number 
of cells 

recorded
Mobility

Total # 
events in 
10 min

DG1 0.47 0.14 <1E-4 0.21 0.15 0.002 300 0.4 23 255 
(78 per cell)

DG2 0.49 0.16 <1E-4 0.37 0.37 0.4 638 0.5 39 457 
(62 per cell)

DG4 0.69 0.16 <1E-4 0.3 0.38 0.56 356 0.2 37 953 
(107 per cell)

DG5 0.57 0.14 <1E-4 0.18 0.38 0.98 432 0.8 11 243 
(26 per cell)

DG10 0.34 0.16 <1E-4 0.29 0.37 0.96 136 0.7 2 280 
(17 per cell)

Table 2, Accuracy of the decoding measured as the fraction of times when the decoding error 
is less than 10cm    (threshold speed 1cm/s)

Figure 3.5: Table of the decoding results for the non-linear decoder. Cross-validated per-
formance is expressed as a fraction of times the decoded position is within 10cm of the
actual one. The reported chance level is the median error over decoder predictions shuf-
fled in time. The p-value was computed as the percentage of shufflings that lead a lower
median error than the unshuffled predictions, when only the data points separated by a
time interval longer than τ were included. This thinning out of the data was done to get
rid of the correlations. See section 3.3.7 and figure 3.8. The higher chance performance
in the immobile periods is observed because the animal stops mostly in the corners and
just knowing the prior distribution leads a relatively high performance. The fact that the
chance performance is even higher than 25%, indicates that the mouse spends highly un-
equal amount of time in the four corners. The p-values higher than 0.5, especially for DG5
and DG10, is a reflection of the fact, that the decoder consistently predicts a wrong location
(more often than by chance). See figure 3.11, panels a), b) and c)
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Fraction 
Error< 
10cm

Chance 
level p-value

Fraction 
Error< 
10cm, 

immobile

Chance 
level, 

immobile

p-value,  
immobile

Number 
of cells 

recorded
Mobility

Total # 
events in 
10 min

DG1 0.57 0.15 <1E-04 0.26 0.14 <1E-04 300 0.4 23 255 
(78 per cell)

DG2 0.52 0.16 <1E-04 0.30 0.32 0.1 638 0.5 39 457 
(62 per cell)

DG4 0.76 0.15 <1E-04 0.29 0.37 0.89 356 0.2 37 953 
(107 per cell)

DG5 0.59 0.14 <1E-04 0.37 0.19 <1E-04 432 0.8 11 243 
(26 per cell)

DG10 0.34 0.16 <1E-04 0.20 0.28 0.998 136 0.7 2 280 
(17 per cell)

Table 3, accuracy of the decoding measured as fraction of times when the decoding error 
is less than 10cm    (threshold speed 2.5cm/s)

Figure 3.6: Table of the decoding results for the non-linear decoder. Cross-validated perfor-
mance is expressed as a fraction of times the decoded position is within 10cm of the actual
one. The threshold speed to classify the interval as mobile or immobile is v0 = 2.5cm/s,
see section 3.3.2
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Median 
Error, 

cm

Chance 
Error, 

cm
p-value

Number of 
cells 

recorded
Mobility

Total # 
events in 10 

min

DG1 16.1 21.6 7E-04 300 0.4 23 255 
(78 per cell)

DG2 15.3 22.0 4E-05 638 0.5 39 457 
(62 per cell)

DG4 17.3 25.8 0.01 356 0.2 37 953 
(107 per cell)

DG5 15.2 25.5 8E-08 432 0.8 11 243 
(26 per cell)

DG10 13.6 19.3 5E-03 136 0.7 2 280 
(17 per cell)

Table 4, Median error of decoding over periods of mobility with  
linear regression decoder (threshold speed 1cm/s)

Figure 3.7: Median decoding error for the linear regression. The decoder was trained and
tested on mobile intervals only. The speed threshold v0 = 1cm/s

93



animal’s positions at consecutive moments are correlated because of the finite speed of the

animal, and the decoder’s predictions are correlated because of the time-correlations in the

recorded calcium signal.

To find an upper bound on the p-values we employ the following procedure. We first

find a minimal time τ0 such that, if two time points are further away from each other than

τ0, the prediction errors measured at this time points can be considered to be independent

from each other. We then thin out the data so that no two time points are closer than τ0

apart and compute the p-value for the tinned out sample.

The problem now is to estimate τ0. For that we need a measure of autocorrelations

in the recorded activity. Since the recorded activity is a vector, we first project it onto

a relevant direction in the neural space, that we choose to be the weight vector of one of

the perceptrons described above (a binary decoder that discriminates between a randomly

chosen pair of locations). Thus, we estimate the autocorrelation in the time series of

ht =
∑N

n=1Wnr
n
t (sum over neurons), where Wn are the weights of one of the perceptrons,

and time points t are chosen to be further apart than τ from each other. As a measure of

autocorrelation we use the Durbin-Watson statistics [77]

d(τ) =
Σ
(τ)
t (ht − ht−1)2∑T
t=1(ht − 〈ht〉)2

which is equal to 2 for the uncorrelated sample. We then plot the dependence of the Durbin-

Watson statistics d from τ (we chose a new perceptron for each τ), see figure 3.8. The value

of τ for which the curves cross the d = 2 value (the red line) is a reasonable estimate for

τ0. We estimate τ0 = 7 in the case of mobile periods and τ0 = 3s in the case of immobile

periods for all the animals.
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Durbin-Watson Statistics for estimating the autocorrelation time  
of calcium traces.
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Figure 3.8: Estimating the autocorrelation time for the recorded calcium traces. We com-
pute the Durbin-Watson statistics d of the population activity projected onto the weight
vector of one of the perceptrons used in the non-linear decoder. The recorded activity was
subsampled in such a way, that no two data points were separated by a time interval shorter
than τ . The plots show the Durbin-Watson statistics for a thinned out data as function of
τ . We used a weight vector from a different perceptron for each value of τ . Initially, the
curves increase, indicating the drop in the autocorrelation of the thinned out sample with
τ , and eventually oscillate around the value d = 2, that corresponds to no autocorrelation.
We estimate the value of τ for which it happens in the mobile case as τ0 = 7s and τ0 = 3s
for immobile case. We use these estimates to compute the upper bound on p-values for the
decoding accuracy (see section 3.3.7). The curves seem to reach d = 2 value consistently
faster for the periods of immobility (speed threshold v0 = 1cm/s), but we did not investi-
gate whether this difference is due to the real difference in autocorrelation times or because
the immobile periods are shorter and more spread out, so that the same τ actually means
longer average time-interval between the points.
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Figure 3.9: Actual and decoded trajectory for one of the animals. The predictions from
the non-linear decoder. The right-most panel shows the shuffled predictions on top of the
actual trajectory for comparison.

3.3.8 Visualizing the decoding performance

To give a feeling of how good the decoding is, we present two ways of visualizing the decoding

results for the best animal. The later reveals an aspect of the decoder’s performance that

is not detectable with either of the measures reported above.

Figure 3.9 shows the actual (blue line) and the decoded (red dots) X-coordinates and

Y-coordinates as functions of time. The last panel shows the actual X-coordinate and the

decoder predictions shuffled in time.

Another useful representation of the decoder’s performance are the distributions of the

decoder’s outputs for a given actual location of the animal, shown in figures 3.10 and 3.11.

The animals actual location is represented by a red square frame, and the distribution of

decoder’s predictions is coded with color map. The intervals of mobility and immobility are

analyzed separately. For both figures the speed threshold was chosen to be v0 = 2.5cm/s.

Figure 3.10 provides an example of good decoding of the corner location independently of

the mobility. In figure 3.11 the distributions of the decoded locations are very different for
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Figure 3.10: An example of good decoding of the corner location in both types of time
intervals - mobile and immobile. Here the speed threshold was chosen to be v0 = 2.5cm/s.
The actual location of the mouse is represented by a red square frame, and the distribution
of decoder’s predictions is coded with color map.

mobile and immobile states (see captions).
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3.4 Analysis of neural representations

In this section we concerned with some aspects of the representation of position in the

dentate gyrus. We first discuss firing patterns of individual cells and divide the cells into

two classes based on their firing properties, namely single field cells and non- single field

cells. We then address the question of how distributed the neural code is by evaluating

the decoding accuracy when a smaller number of cells, than were recorded, is used for

decoding. This analysis also suggests that the two classes of cells contain similar amount

of information about the position, when corrected for the number of cells in the group.

3.4.1 Single cell properties

This section is devoted to analyzing the firing properties of the individual cells recorded in

the experiment. The question we are addressing is whether the observed spatial pattern

of the cell’s firing determines the amount of information that the cell contains about the

animal’s location. We classify all the recorded cells exceeding the activity threshold (10

events in a 10-min session) into two classes - cells with a single firing field, single field cells

and cells with more than one firing field, or non-single field cells. It should be pointed out

that any cell exceeding the activity threshold will have a certain number of firing fields,

determined as described below. It should also be emphasized that the standard place cell

criterion used for the CA3 and CA1 areas can not be applied in the dentate gyrus because

of the extremely sparse activity (last column in the table of figure 3.4).

Following Leutgeb, [24] we identify the firing fields of a cell as follows. We first construct

the firing rates for each location bin (5cm × 5cm) as a total number of spikes occurred in

this location divided by the total time that the animal spent there. We then convolve these

discrete firing rates with a Gaussian filter to obtain a smooth firing rate map. The pixel

corresponding to the global maximum of the firing map and the adjacent pixels with firing
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Figure 3.11: Decoding results in both types of time intervals - mobile and immobile for some
locations. Here the speed threshold was chosen to be v0 = 2.5cm/s. The actual location of
the mouse is represented by a red square frame, and the distribution of decoder’s predictions
is coded with color map. (a)During mobile periods the maximum of the distribution of
predicted locations is close to the actual position (red frame). Seeming worse decoding
compared to figure 3.10 is probably due to a low number of occurrences (14). In contrast,
for immobile periods the decoder consistently predicts another corner (more often than
the actual location). (b)Good accuracy for mobile intervals, and a consistent prediction
of another location during immobile intervals. (c) During mobile intervals the decoder’s
prediction is distributed along the wall, the actual position is predicted slightly less often
than a neighboring corner. For immobile the decoder predicts neighboring corner more
consistently. (d) In this case the decoding is better for immobile intervals.
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rate exceeding 58% of the peak rate were considered to be the first firing field. These pixels

were then deleted from the rate map and the procedure was iterated to find the second

firing field, and so on until no pixels with the rate exceeding 60% of the highest peak for

this cell were found. We also required that the firing field was no smaller than 9 pixels to

remove the “half-fields” at the borders of the box.

Figure 3.12 shows a few examples of the firing patterns and corresponding firing rate

maps for the cells classified as single field (top panel) and non-single field (bottom panel).

3.4.2 Decoding from a subset of cells

In this section we address the question of how distributed are the neural representation

of position in the dentate gyrus. In order get an idea of how many cells is required to

decode the animal’s location with a given accuracy, we plot the dependence of the decoding

performance (in this case median decoding error) from the number of cells included in the

decoding analysis (both training and test).

Ranking of cells based on the non-linear decoder

How fast the decoding performance increases with the number of cells used for the decoding

depends on the order in which the cells are included. On figure 3.13 we plot the dependence

of the median error vs. number of cells when the cells are included in random order (blue

solid line) and when the cells are included in the order based on the absolute value of the

weights assigned to the cells (dashed blue line). We also present the curves for population

of single field cells (two red lines) and non single field cells (two green lines). For all

three populations the ordering according to the weights leads a much faster drop in median

decoding error, compared to the random order.

Some care should be taken in the ranking of the cells according to the decoder’s weights.
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Single field

Non-Single field

Figure 3.12: Firing patterns (top rows) of example single field and non-single field cells
with corresponding firing rate maps (middle rows) and extracted firing fields (see section
3.4.1)
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As discussed in section 3.3.3, each cell gets M = 64×63/2 weights, each assigned by one of

M perceptrons. Also there are five sets of the training data, because of our cross-validation

procedure. All these 5M numbers should be combined to give an average weight assigned

to the cell. We do it in two steps. The first step is to normalize the weights assigned to all

the cells by a given perceptron, in such a way that the maximum weight each perceptron

gives is equal to 1. This step is needed because the uniform rescaling of the weights for

all the cells (and the threshold) does not change the output of the perceptron (see (3.1)),

what matters for estimating the importance of a cell for the given perceptron, is its weight

relative to the weights assigned to other cells by the same perceptron. The second step is to

simply average the absolute value of the weights assigned to the cell over all the perceptrons

and all the training sets. The cell with the highest average absolute value of the weight is

considered the most informative for position decoding.

The ranking of a cell is correlated with the total number of events However, for the

population of non-single field cells, the ordering according to the weights still leads a slightly

faster drop in the decoding error with the number of cells included that ordering based on

activity levels, as illustrated in figure 3.15. The statistical significance of this difference

remains to be determined.

Ranking of the cells based on the linear regression decoder

In the case of linear regression decoder the decoding coefficients a(x)n and a(y)n assigned to a

cell n do not reflect its importance for the decoding. However, the most informative cells

for this decoder can be picked with the lasso algorithm described in section 3.3.5. Changing

the parameter λ in front of the penalty term in (3.2) changes the relative importance of the

number of non-zero coefficients in the cost function, which is the same as number of cells

used decoding. Large value of λ means small number of cells, and vice versa.
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Figure 3.13: Median decoding error as a function of the number of cells used in the decoding.
The solid curves correspond to including the cells in a random order, the dashed lines
represent the order based on the absolute value of the weights assigned to the cell by the
non-linear decoder (see section 3.4.2). The blue lines are for all the recorded cells that fired
more than 10 events during 10min session, red lines - for the cells classified as single field,
and the green lines - for the cells that passed the activity threshold but were not classified
as single field (see section 3.4.1).
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Figure 3.14: Total number of events the cell fires in the course of 10min session is plotted
as a function of the rank, assigned to the cell by the non-linear decoder (see figure 3.13 and
section 3.4.2) . The most informative cells are in the beginning. There is a clear correlation
between the importance of the cell for the decoder and its overall activity, however the
fluctuations are still large. The plots for only single field or only non-single field cells look
very similar.
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Figure 3.15: Median decoding error as a function of the number of cells used in the decoding
for two ways of determining the order in which cells are included. The dashed lines corre-
spond to including the cells according to the weights assigned by the non-linear decoder,
the solid lines correspond to ordering cells based on their activity. The analysis is per-
formed either for all the cells (left upper panel), or for single field (right upper panel) and
non-single field cells separately. When cells are ordered based on the decoder’s weights the
median error drops slightly faster, but the statistical significance of this difference remains
to be determined.
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Figure 3.16: Median decoding error as a function of the number of cells for the linear-
regression decoder. The cells were chosen using the lasso algorithm (see section 3.3.5). The
red curve corresponds to the case when the algorithm chooses from the entire population of
cells. For the dark blue curve the pool of cells was restricted to non-single field population.
The dark green corresponds to single field cells. The apparent group difference in decoding
performance can be explained by the difference in the number of cells in the groups. When
we choose a random subset of non-single field cells matched in number to the single field
group and run the lasso algorithm, the result is almost indistinguishable from the single-
field cells (the light green curve). When the most active non-single field cells in the number
matching the single field population were considered, the curve (light blue) followed the
non-single field curve produced by lasso. This plot is consistent with both groups being
equally useful for the decoding and a strong correlation between the activity level of a cell
and the amount of information it contains about position.

We confirmed that this procedure also leads to a faster drop in the decoding error

compared to including cells in a random order.

The performance of the linear regression decoder as a function of the number of cells

for the two groups is shown on figure 3.16

3.4.3 Principal component analysis

We plot the median decoding error as a function of the number of principal components in-

cluded in the decoding 3.17. The principal components are added in the order of decreasing

explained variance. For both decoders the performance increases faster with the number
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Figure 3.17: Median decoding error as a function of number of included principal com-
ponents of the population activity. The principal components are added in the order of
decreasing explained variance. The left panel corresponds to the non-linear decoder and
the right panel - to the linear regression. Including 25 principal components seems to be
enough to achieve the best decoding performance for the first decoder and 30 - for the
second.

of principal components than with the number of cells, even cells are ordered from most

informative to least informative. If we assume that the ranking of the cells is approximately

correct, this the evidence for a distributed spatial code.

By looking at the plots on 3.17, one can see that including 25 principal components seems

to be enough to achieve the best decoding performance for the committee of perceptrons

decoder and 30 principal components - for the linear regression.

The number of principal components after which the curve flattens is consistent with

the assumption that the position is represented with accuracy about 10 cm. Indeed, in

50cm × 50cm box, there are 25 10cm × 10cm squares, and the maximal dimensionality

of the representation that discriminates only between these squares is 25 [71]. This argu-

ment suggests that the representations in the dentate gyrus have maximal dimensionality,

consistent with its hypothesized role in dimensionality expansion [36],[69],[70],[72].
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3.5 Chapter conclusions

We demonstrated for the first time that animal’s position can be decoded from the activity

of dentate gyrus granule cells in a mouse. With two independent decoders, one linear and

one non-linear, we were able to achieve a cross-validated accuracy of approximately 10cm in

a 50cm×50cm open field box. Similar accuracy of a linear and non-linear decoder, and also

principal component analysis, indicate that the spatial representation in the dentate gyrus

has maximal dimensionality. We also divided the recorded cells into two groups based on

their firing patterns - single field cells and non-single field cells, following [24]. Comparing

the performance of a decoder, which is constraint to use only single field or non-single field

cells, we conclude that there is no or little difference in the amount of information carried

by each group. This result is consistent between both decoders.
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Chapter 4

Conclusion

In this thesis I described two projects related to mammalian hippocampus. Although one

of the projects addresses a purely theoretical problem, that can be formulated without any

reference to the hippocampus, it was inspired by the neurophysiological peculiarity of the

hippocampal structure, namely, the very sparse connectivity between dentate gyrus granule

cells and CA3 pyramidal neurons.

In chapter 2 I presented a theoretical proof of principle, that neural networks with

limited connectivity are plausible in the framework of pattern classification. This is a

novel result, as previous network models for pattern classification required fully connected

readouts in order to exhibit a favorable scaling of the classification capacity with the size

of the network. We argue that this problem is especially relevant for the hippocampus as

the observed dentate gyrus to CA3 connectivity is very sparse. Our model network also

possesses other features of the hippocampus, in particular, extensive recurrent connectivity

of the layer representing the CA3 area and low activity level in the input layer, that is

meant to model the dentate gyrus.

Although we do not find a clear advantage of having sparse representation if the dentate
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gyrus, we show that the model network can operate in the regime when the average number

of active dentate gyrus cells connected to one CA3 readout is of the order of 1, or even

less. Paradoxically, the classification capacity in this case can be made almost identical

to the case of dense representations. One can argue that low activity level in the dentate

gyrus has advantages that are beyond the presented framework (see, for example [36]), in

which case our results should be considered as justification for the possibility to realize this

advantages despite the limited connectivity.

The second project presented here is concerned with the decoding of animal’s position

from the dentate gyrus calcium traces. We show that position of a mouse during free

foraging in a 50cm × 50cm open field box can be decoded with the accuracy of around

10cm. This is the first calcium imaging in the dentate gyrus and the first time that position

was decoded from the dentate gyrus activity. It should also be stressed, that in contrast

to bayesian decoders often used in this context, both of our decoders are relatively simple,

and can be implemented in a neural network. Training of the decoders can also be done in

a biologically plausible way.

The theoretical model of chapter 2 assumes random and uncorrelated patterns in the

dentate gyrus. One of the results of our decoding analysis supports this assumption. In

chapter 3 we estimate the dimensionality of the representation of space in the dentate gyrus

by determining the number of principal components required to achieve the full decoding

performance. We find that this representation have maximal dimensionality, which indicates

that the patterns of neuronal activity representing different locations are not correlated.
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