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Abstract

We estimate a Hierarchical Bayesian models for daily rainfall that incorporates two novelties for

estimating spatial and temporal correlations. We estimate the within site time series correlations

for a particular rainfall site using multiple data sources at a given location, and we estimate the

across site covariance in rainfall based on location distance. Previous rainfall models have captured

cross site correlations as a functions of site specific distances, but not within site correlations across

multiple data sources, and not both aspects simultaneously. Further, we incorporate information

on the technology used (satellite versus rain gauge) in our estimations, which is also a novel

addition. This methodology has far reaching applications in providing more accurate and complex

weather insurance contracts based combining information from multiple data sources from a single

site, a crucial improvement in the face of climate change. Secondly, the modeling extends to many

other data contexts where multiple datasources exist for a given event or variable where both

within and between series covariances can be estimated over time.

Keywords: Precipitation Models, Index Insurance, Spatio-Temporal Models

2



1. INTRODUCTION

The ability to simulate a realistic time-series of daily rainfall is crucial in modeling climate impacts,

particularly in locations with limited weather observations. Simulated rainfall is widely used as an

input into many end-user applications across agriculture, health, hydrology and ecology. Weather

generators, or simulators, are often used “fill in” missing observations, examine uncertainty or to

investigate situations where historical records are not sufficiently long to include extreme events.

However, the current explosion of climate adaptation programs has substantially increased the

practical demands placed on weather simulators, demands that often exceed the capabilities of

state of the art.

One particularly salient example is the increase in weather index insurance in developing

countries for which payouts are based on rainfall deficits. These projects have grown from a

couple hundred farmers to tens of millions over the past decade Greatrex et al. (2015). The price

of the insurance must cover the payouts. Price is therefore is driven by the probability of a payout,

which is driven by the probability of the rainfall deficits relevant to major crop losses. Naturally,

insurance projects have relied heavily on rainfall models to drive insurance price calculations.

Because payout formulas are closely tied to specific rainfall features relevant to the crops insured,

it is important for rainfall models to accurately characterize the relevant details for infrequent, tail

events. These rainfall features are often challenging for rainfall models, such as onset, inter-annual

variability, consecutive dry days, climate teleconnections, and local spatial relationships. Because

of these challenges, there are reports of initial applications of weather models leading to spurious

results and unpredictable prices Giannini et al. (2009). As a result, insurance companies often

include substantial increases in the insurance price to protect against their lack of confidence in

the rainfall models Osgood and Shirley (2012).

Perhaps a greater challenge is data poverty; insurance projects must often be implemented

where there are few historical ground based rainfall observations. In some cases, networks of new

gauges are installed, and in others, new satellite datasets are used. These alternative datasets often

provide a great deal of additional knowledge about rainfall patterns at the site of interest. However,

it is a non-trivial challenge to combine these multiple information sources, especially as satellites

measure rainfall in a fundamentally different way to gauges, with different spatial statistics. In

addition, in order to use these new sources of information, statistics and probabilities must be
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informed by any information available for the long histories necessary to characterize the extreme

tail events that drive large insurance payouts. Often the historical record is captured over a region,

but not by any individual data source. Typically, the data is in the form of a series of different

rain gauges across the region in which only a subset of rain gauges are operational during different

years or decades.

Projects such as insurance need tools that can utilize short histories of new gauges, as well

as the overlapping experiences of historical gauges in the region while utilizing information from

other sources, such as satellite estimates to provide the best distributions possible. They also

need to be able to condition on climate processes to quantify impacts of decadal processes, climate

change, and ENSO Bell et al. (2013). This paper provides advances in methodology towards such

a tool, based on a Hierarchical Bayesian approach. Our model incorporates two novel aspects

to simultaneously take into account site-specific correlations across multiple data-sources, plus

cross-site spatial correlations.

There have been a myriad of published methodologies on stochastic weather generation, as

comprehensively described in Wilks and Wilby (1999), Sansó and Guenni (2000) and Verdin

et al. (2015). We aim to give a brief overview to explain how our model fits in with weather

generator literature. The concept of probabilistically modeling weather has existed since the early

1900s, leading to the first statistical model of rainfall in Gabriel and Neumann (1962). These

statistical models were formalized as stochastic weather generators, conceived as a parametric,

two step process as proposed by Richardson (1981). Daily rainfall occurrence was modeled as

a Markov chain, then other weather variables including rainfall intensity were randomly sampled

from a pre-specified distributions (typically Gamma for rainfall). In recent years weather generator

research has focused on four main areas: 1. Better capturing the rainfall occurrence and intensity

distributions; 2. Incorporating spatial correlations to allow estimation at a point with little or no

input data 3. Including multiple data sources and covariates; and 4. Increasing computational

efficiency and tool development.

To better capture rainfall distributions, rainfall intensity models in the “standard” parametric

approach have moved from exponential Richardson (1981), to gamma Thom (1958); Katz (1977);

Buishand (1978); Coe and Stern (1984); Wilks (1992) and more recently to mixed gamma with

generalized Pareto distributions Lennartsson et al. (2008), or Weibull distributions Wilks (1989);
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Furrer and Katz (2008). More complex Markov Chains have been suggested for rainfall occurrence

Jones and Thornton (1993); Dastidar et al. (2010), followed by recent research utilizing probit

GLMs, allowing simulated temperatures to be better conditioned on rainfall occurrence Verdin

et al. (2015). Semi-parametric and non parametric approaches have also been devised, including

a mix of Markov chains and re-sampling Apipattanavis et al. (2007), semi-empirical histograms to

model wet/dry spell length and rainfall intensity Racsko et al. (1991); Semenov (2008) and fully

non-parametric resampling Young (1994); Lall and Sharma (1996); Rajagopalan and Lall (1999),

or ensemble reordering Ghile and Schulze (2009). In parallel to this research, new techniques have

been utilized including Maximum Likelihood Fassò and Finazzi (2011) and Bayes Theorem Sansó

and Guenni (2000).

Many of these techniques have allowed the incorporation of spatial information. Jones and

Thornton (1993) used third order splines to interpolate their input parameters to locations with no

observations. Wilks (1998) incorporated spatial correlations into a Richardson weather generator

by driving it with a grid of spatially correlated random numbers, followed by Baigorria and Jones

(2010) who developed this approach through the use of correlation matrices and orthogonal Markov

chains. Kleiber et al. (2012) utilized latent Gaussian processes to model spatial occurrence and

rainfall amounts, an approach further extended in Kleiber et al. (2012) and Verdin et al. (2015)

to include other variables. The approaches above would allow spatial correlations of statistics,

but individual pixels-ensemble members would still remain independent. To overcome this issue,

Greatrex (2012) proposed utilizing the geostatistical technique of sequential simulation to create

stochastically generated, spatially correlated maps of rainfall.

There has been less research on the incorporation of multiple datasets. Furrer and Katz (2008)

incorporated ENSO into a rainfall generator via the use of GLMs. Fassò and Finazzi (2011) used

Maximum Likelihood Estimation to model heterogeneous environmental data, albeit to model

air quality from satellite and ground based datasets, rather than to model rainfall. Hauser and

Demirov (2013) utilized a Hidden Markov model linked with either polynomial regression or an

artificial neural network to model rainfall conditioned on sea surface temperatures in the sub-

polar North Atlantic. This approach was also used by Carey-Smith et al. (2014) to incorporate

varying seasonality into a Richardson weather generator. In non-parametric research, Srivastav

and Simonovic (2015) used a maximum entropy bootstrap to simulate daily weather data in
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Canada. To our knowledge, there has been no published research on the incorporation of multiple

within-site realizations of rainfall, for example from gauges and satellites.

Hierarchical bayesian estimation is yet another approach equipped to model spatial as well as

temporal relationships. These model and estimates the functional relationship between weather

series over time. This was first proposed in Sans and Guenni (2015), then extended by Sansó and

Guenni (2000) to incorporate 1) spatial correlation for the joint distribution of weather series from

several stations and 2) the non-stationarity of rainfall data. The authors show that their model

is able to simulate weather data and summary statistics for a large number of stations, some of

which have poor quality data. Lima et al. (2015) extended the methodology to model multi-site

daily rainfall occurrence in order to investigate the distribution of the rainy season in Brazil.

The aim of this paper is to present an extension of the Hierarchical Bayes approach to incorpo-

rate two new novelties. While we do not focus on the aspect of non-stationarity aspect in rainfall

series, the novelty of our approach is our ability to account for two levels of the rainfall time series

information at each site: 1) both the location of the measurement and 2) the instrument used to

measure rainfall are incorporated. In addition, we 3) estimate the the spatial covariance between

all these series and 4) the noise or error in recording rainfall due to the instrument itself. By

incorporating several layers of information sources for each site in which we would like to predict

weather, we are adding more information to the parameter estimates and, hopefully, improving

out-of-sample predictions. Because we used daily data to fit our model, our simulated data and

out-of-sample predictions are daily, which allows us to compute statistics sensitive to daily mea-

surements: probability of rainfall, dry spells, and extreme rainfall. We focus on a case study in a

data-sparse region, the Tigray region of Ethiopia.

2. DATA

We model a set of 15 time series of daily rainfall in Ethiopia during the time period from 1992 to

2010, where these 15 time series come from six different locations, and each location has at least

two time series of daily rainfall associated with it. The reason we observed multiple time series

for each location is that for each location we have multiple sources of data, including rain station

data and satellite-based rainfall proxy data. The statistical challenge to modeling such data is to

separately estimate the spatial variability between locations and the within-location measurement-
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based variability. A standard hierarchical model with sets of 15 exchangeable parameters – one

for each time series – would conflate these two sources of variation. The model we introduce here

– a hierarchical Bayesian model with one level for locations, and another level for multiple data

sources within a location – explicitly models each of these two sources of variation.

Figure 1 shows the six locations from which the daily rainfall time series are measured. The

names of the locations are Hagere Selam, Maykental, Mekele, Abi Adi, Agibe, and Adi Ha. The

last of these, Adi Ha, is the location we are most interested in, because we wish to provide rainfall

insurance for farmers who live there. Specifically, we want to model rainfall at one of the automated

rain stations at Adi Ha, which is one of the 15 time series in our data set, but is also the series

that has the least amount of observed data – only about 200 days worth of data from 2009.

Figure 1: A map of the 6 locations, where the green squares denote ARC pixels and the pins

denote rain station locations. The inset in the upper right corner shows the area of the map with

a red rectangular box; this region is in north central Ethiopia.

The specifics of the data are as follows:

• For the first five locations, we have rain station data as well daily measurements from a

satellite product called ARC, which is a rainfall proxy based on the temperature of the

clouds over an area of about one hundred square kilometers. This comprises 5× 2 = 10 time
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series.

• For the sixth location, Adi Ha, we have five separate data sources:

1. One reliable rain station from which we only have 200 days of data from 2009-2010;

this is the time series in which we have the most interest, because it is a new, accurate

rain station on which we want to base insurance contracts.

2. One unreliable rain station from which we have about 7 years of data from 2000-2009,

with about 2 years of missing data interspersed.

3. The ARC satellite proxy.

4. Two additional satellite proxies that are different from ARC.

Figure 2 shows the range of observed and missing data for each of these 15 time series; note

that the time scale goes back to 1961 for one of the rain stations, but for simplicity, we only

consider the time span of 1992-2010 in our model fit, because this span contains most of the data.

Data Overlap

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

(1) hagereselam_station

(2) maykental_station

(3) mekele_station

(4) abiadi_station

(5) agibe_station

(1) hagereselam_ARC

(2) maykental_ARC

(3) mekele_ARC

(4) abiadi_ARC

(5) agibe_ARC

(6) adiha_ARC

(6) adiha_cup

(6) adiha_rfe2

(6) adiha_cmorph

(6) adiha_new

Year

Rain Station
Satellite Product

Figure 2: A visualization of the observed data for each of the 15 time series we model. The black

hash marks denote rain station data, and the red hash marks denote satellite-based data.

Table 1 contains some background information and summary statistics related to each time
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series of daily rainfall. For each time series we record the latitude, longitude, and elevation of the

location where measurements were made, and the number of days of observed data. The maximum

distance between locations is about 70 kilometers (between Mekele in the southeast and Maykental

in the northwest).

Table 1: Background information about the 15 time series

Site Latitude Longitude Elev. (m) Num. Obs

1 Hagere Salaam 13◦ 38’ 49” 39◦ 10’ 19” 2625 4887

2 Hagere Salaam (ARC) ” ” ” 5632

3 Maykental 13◦ 56’ 13” 38◦ 59’ 49” 1819 5620

4 Maykental (ARC) ” ” ” 5632

5 Mekele 13◦ 28’ 1” 39◦ 31’ 1” 2247 6205

6 Mekele (ARC) ” ” ” 5632

7 Abi Adi 13◦ 37’ 19” 39◦ 0’ 10” 1849 4205

8 Abi Adi (ARC) ” ” ” 5632

9 Agibe 13◦ 33’ 43” 39◦ 3’ 43” 1952 4722

10 Agibe (ARC) ” ” ” 5632

11 Adi Ha (ARC) 13◦ 43’ 48” 39◦ 05’ 38” 1713 5632

12 Adi Ha (Rain Station - Manual) ” ” ” 2769

13 Adi Ha (RFE2) ” ” ” 2920

14 Adi Ha (CMorph) ” ” ” 2190

15 Adi Ha (Rain Station - Automatic) ” ” ” 186

In this part of Ethiopia, the rainy season lasts roughly from June to October. Figure 3 shows

the percentage of rainy days and the average amount of rain as a function of the time of year for

each time series. The basic modeling strategy will be to use a set of periodic functions to model

rainfall as a function of the season of the year.

We are also interested in the difference, on average, between the measurements of rainfall based

on the ARC satellite proxy and the rain stations. Comparing rainfall frequencies pooled over 5-day

periods, averaging across all parts of the year and all five locations with exactly one rain station
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Figure 3: Plots of the percentage of rainy days (pooled into 5-day bins) and the average amount

of rain as a function of the season. The gray lines are for each of the 15 individual time series,

and the black lines are averaged across all 15 time series.

and one ARC measurement, we find that the ARC records about 3% fewer days of rainfall than

the rain stations. Across locations, this difference ranges from about -6% (Hager Selam) to +1%

(Agibe).

3. THE MODEL

We fit a tobit model for daily rainfall at multiple locations, with multiple time series observed at

each site. Let us first set up some notation. Let S = 6 denote the number of locations where we

measure rainfall, and JJJ = {2, 2, 2, 2, 2, 5} is the vector denoting the number of daily rainfall time

series observed for each of the S locations. The total number of days in our time series is N = 6679

days, from 1/1/1992 through 7/28/2010. Let Ystj denote the amount of rainfall, measured in mm,

for location s ∈ (1, ..., S), day t ∈ (1, ..., N), and time series j = (1, ..., Js). Last, let dik denote the

Euclidian distance between site i and k, for i, k ∈ (1, ..., S) in kilometers × 100.

We model Ystj using a hierarchical Bayesian tobit regression model, as specified below:
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Ystj =


Wstj if Wstj > 0 (1) Observed rainfall

0 if Wstj ≤ 0,

WWW st ∼ NJs(1Zst+XXX
ARC
s βARC

s , 1
γst

ΣΣΣs), (2) Latent rainfall

ZZZt ∼ NS(XXXtβββ
Z , τ2VVV ), (3) Spatial mean rainfall

βZps ∼ N(µp, σ
2
p), for p = 1, 2, ..., 23

µp | σ2p ∼ N(µ0, σ
2
p/κ0),

σ2p ∼ Inv-χ2(v0, σ
2
0),

τ ∼ Inv-Gamma(shape = aτ , scale = bτ ),

VVV = {vik}, vii = 1, vik = exp(−λdik),

λ ∼ gamma(shape = aλ, scale = bλ),

XXXt = (1, t, t2, sin(2πtω1), cos(2πtω1), ..., sin(2πtω4), cos(2πtω4),

Xnino
Jan[t]

, Xnino
Feb[t]

, ..., Xnino
Dec[t]

),

XARC
sj = 1(jth time series at site s is an ARC product),

βARC
s ∼ N(µARC, τ2ARC),

µARC | τ2ARC ∼ N(µARC
0 , τ2ARC/κ

ARC
o ),

τ2ARC ∼ Inv-χ2(vARC
0 , σ2

ARC

0 ),

ΣΣΣs ∼ Inv-Wishart(v0 = Js,Λ
−1
0 = diag(Js))

γst ∼ gamma(shape = α
2 , scale = 2

α),

where 1 denotes the length-Js vector of ones for location s = 1, .., S. We set the values of

the following hyperparameters, based on exploratory analysis, to be weakly informative prior

distributions for their respective parameters (specifically, we used the method of moments to

compute hyperparameter values that result in a prior with the desired mean and variance):

µ0 = 0;κ0 = 1; v0 = 5;σ20 = 3/5, (1)

aτ = 12; bτ = 110 (2)

µARC
0 = 0;κARC

0 = 1; vARC
0 = 5;σ2

ARC

0 = 3/5, (3)

aλ = 50; bλ = 0.03, (4)

α = 5. (5)
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The explanation of the model is as follows.

1. The first level of the model is a standard tobit regression, where we model the observed

rainfall, Ystj , as being equal to the jth component of the latent rainfall vector, WWW st, if it is

greater than zero, and equal to zero if the jth component of the latent rainfall vector is less

than or equal to zero.

2. Next, for each location s, the length-Js vector of latent rainfall amounts on day t, WWW st, is a

multivariate t random variable centered at the spatial mean rainfall amount for that location

and day, Zst, and offset by an ARC bias effect, βARC
s (where XARC

sj is an indicator variable

of whether time series j at location s is an ARC satellite product). The latent rainfall, WWW st,

is a multivariate-t random variable because it is a scale mixture of multivariate normals with

a mixture weight, 1
γst

, for the covariance, Σs, that is drawn from a gamma distribution.

3. The location-specific covariance matrices ΣΣΣs allow the multiple time series at each location

to be correlated in unique ways. The mixing parameters γst determine the widths of the

tails of the multivariate-t distributions, and are modeled with a gamma prior distribution

with shape and scale parameters equal to 5/2 and 2/5, respectively, which implies that the

multivariate-t distribution, WWW st, has 5 degrees of freedom. (In follow-up models, we could

relax this assumption and estimate from the data how heavy the tails should be; the choice

of 5 degrees of freedom is based on the fits of some simple, exploratory models).

4. The spatial mean rainfall amount for day t, ZZZt, is modeled as a multivariate normal random

variable whose mean depends on the day, t (linearly, quadratically, and periodically, with

periods ωωω = 1
365(1, 2, 3, 4)), and also on effects from El Nino, where the El Nino effect is

an additive constant that depends on the month (allowing El Nino to have different effects

across the 12 months of the year).

5. The covariance matrix of ZZZt, τ
2VVV , depends on τ , a scaling factor, one known input, the

Euclidean distance between locations, and one unknown parameter, λ. The spatial cor-

relation in rainfall between locations is modeled separately from the noise inherent in the

different measurement methods at each location, which is modeled by ΣΣΣs for each location

s = 1, ..., S. The model assumes that the covariances of pairs of Zst’s decay exponentially
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with the Euclidian distance between the pairs of locations at the unknown rate λ, which we

estimate from the data using a relatively flat prior.

6. The rest of the model is straightforward. We shrink the βZps’s for each location toward a

common mean µp. We also model the ARC biases, βARC
s as normal random variables with

an unknown mean, µARC, and variance τ2ARC.

4. FITTING THE MODEL

We sample from the joint posterior distribution of the parameters using an MCMC algorithm

whose full details are specified in the Appendix. For each iteration, each step was a draw from

the full conditional distribution of one of the parameters, except for the draw of λ, which was

accomplished using a random-walk Metropolis step.

We ran the MCMC algorithm for 20,000 iterations in total, using the first 2,000 iterations as

an adaptation period to tune the standard deviation of the proposal distribution for λ.

5. SIMULATION STUDY

We first ran a simulation study, where we simulated data from a set of known parameters. These

parameter values were chosen to approximate values that could have produced our observed data,

based on EDA. The size of the simulated data set was similar to the real data in both dimensions

(the number of time series and the number of days). We find that our model performs well

with simulated data, in which are able to recover know parameters–in particular, our parameter

for across and within site correlation. We were able to precisely estimate the spatial correlation

between locations as well as the variability of different data sources within single locations. Below

we show trace plots for parameters that are lower in the hierarchical model and thus more difficult

to estimate, but also the primary contribution of this model. This includes: λ, τARC , and Σ. All

three parameters were well-estimated, and convergence was relatively quick with a burn-in period

of less than 5,000 draws. All other parameters were also well estimated and available upon request.

Results for Σ are equally as good, converging to the true parameter value before 5,000 itera-

tions. Below we show the results for Site 1, Hagere Salaam. The remaining estimates are displayed

in the Appendix.
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6. RESULTS

Our results are based on three chains of 20,000 after a burn-in of 15,000 iterations with an adaption

parameter of 2,000. We assessed convergence by running the chain for three different starting val-

ues, 4 standard deviations above and below the historical means.The values of the Brooks, Gelman,

and Rubin convergence diagnostic for each of the parameters, were mostly below 1.1 (lambda, tau,

tau.arc, mu.arc), a threshold suggested by Gamerman and Lopes (1997) as satisfactory, except for

the February Nino Effect (βFebruary). Results can be found in the Appendix.1

6.1 Trace Plots of Key Parameters

We ran trace plots for each parameter. Parameters for which are most interested in estimating

and are typically difficult to identify λ, the distance correlation across sites, and Σ, the within site

correlation matrix.

We begin by displaying λ, the parameter determining spatial correlation in our distance matrix.

λ converges to an estimate of about 0.6, while τ , our parameter scaling λ in the covariance matrix

of Z, converges to 8. λ exhibits more autocorrelation than in the simulated data. Thus for two

sites i and k that have an euclidean distance of 1 is approximately 100 kilometers, and the dik

entry of the d matrix will be equal to 1, then vik is exp(−.06 ∗ 1) is .98. In general our spatial

correlations for the V matrix range from .95 to .99.

Tau is estimated at 8.8 mm.

The mean of beta arc (mu.arc) is approximately 0.7 with a variance of 2.2? (tau.arc), so the

ARC satellite has a slightly positive bias on rainfall above and beyond a rain gauge.

7. RAINFALL METRICS MEASURED

We have shown that our model performs well in terms of recovering parameters using simulated

data, and it converges relatively quickly to its posterior estimates using real rainfall data. An

additional motivation of this paper is to be able to predict higher level metrics such as: onset of

rainfall within a season, inter-annual rainfall variability, and the number of consecutive dry days

per year. In developing countries, where smallholder farmers have little savings and or capital to

shield their risk, accuracy in predicting these measures can be the difference between a successful

1We noticed that some of our samples stabilized after under 5,000 iterations, but a strong autocorrelation is

present, such as with tau.
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and devastating harvest. For example, yields can be heavily affected by planting a week too early

or too late with respect to rainfall onset. Knowing consecutive dry days helps in preparing for a

dry season, and inter-annual variability gives us a sense of the upper and lower bounds for rainfall

over time.

We begin by plotting first some basic posterior estimates for mean rainfall and the proportion

of wet days per month. We then follow with some of the harder to predict diagnostics: inter-annual

rainfall variability, probability of consecutive dry days, probability of rainfall onset.

8. DISCUSSION

We have considered a model where rainfall is a latent multivariate t-distribution, driven by seasonal

patterns, satellite measurement error, and within site correlation between time series. The model is

fitted using Monte Carlo methods with Gibbs and Metropolis Hastings sampling. Initial starting

values in the three chains are set at the historical means, and then four standard deviations

above and below the means. The model’s accuracy is tested on simulated data and performs well,

recovering all of our predetermined parameters. The hierarchical structure allows for fitting within

site correlations of various time series measured at a single location, as well across site spatial

correlations. Both features enable us to incorporate information on rainfall patterns that can

improve out of sample simulations of rainfall, as well as tougher to estimate rainfall characteristics:

inter-annual rainfall variability, probability of consecutive dry days, probability of rainfall onset.

The ability to incorporate spatial, temporal, and measurement correlations has important

policy implications. First, food insecurity is generally correlated over time and space in parallel

with rainfall patterns. Thus, predictions that incorporate these spatial patterns can allow for

better response to anticipated droughts and subsequent food shortages in a region. This is crucial

for aid organizations and first responders to such crises. Second, different satellite measurements

can detect and depict different weather patterns depending on their resolution and what they aim

to measure: cloud cover, vegetation, lights, etc. Incorporating multiple information sets around

a particular area can increase the accuracy with which we predict weather patterns by narrowing

the variance around the mean trends. Although this research does not present a new weather

generator for use by end-users, we hope that the methodological advances made will eventually

lead to such a tool.
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9. APPENDIX

The full posterior can be written as

p(θθθ | YYY ) ∝
S∏
s=1

T∏
t=1

Js∏
j=1

p(Ystj |Wstj)p(Wstj | Zst, βARC
s ,Σs, γst)p(Zst | βββZs , τ, λ)

p(βββZs |µµµ,σσσ)p(βARC
s | µARC, τARC)

p(µµµ)p(σσσ)p(τ)p(λ)p(µARC)p(τARC)p(ΣΣΣs)p(γst),

where θθθ denotes the entire vector of parameters,

θθθ = {WWW,ZZZ,βββARC,ΣΣΣ, γγγ,βββZ , τ, λ,µµµ,σσσ, µARC, τARC}.

To sample from this posterior, we use MCMC. First we set initial values of λ, τ , µARC, τARC,

µp and σp (for p = 1, ..., 23), ΣΣΣs (for s = 1, ..., S), and γst (for s = 1, ..., S and p = 1, ..., P ). These

initial values are set to be overdispersed around rough estimates of the parameters based on fits

of smaller, simpler models to the data. Next we sample initial values of

βARC
s | µARC, τARC (for s = 1, ..., S), (6)

βZsp | µp, σp (for s = 1, ..., 6 and p = 1, ..., P ), (7)

ZZZt | βββZ , λ, τ,XXXt (for t = 1, ..., N). (8)

Then, for iteration g = 1, 2, ...., G, where we set G = 5000, we perform the following steps:

1. Sample WWW | YYY ,γγγ,ZZZ,βββARC,ΣΣΣ.

The conditional posterior distribution of the length-Js latent rainfall vector for location s

and day t, WWW st, follows the multivariate normal distribution described in Equation 2 from

Section 3. Each element of this vector can be sampled, conditional on the other elements,

from a univariate normal distribution according to standard methods (cite). This draw is

made in one of three ways:

(a) Case 1: If Ystj > 0, then Wstj = Ystj ; in other words, no sample is drawn, but instead

the value of Wstj is fixed.

(b) Case 2: If Ystj = 0, then the univariate normal distribution from which Wstj is sampled

is truncated on the right by zero, since the model specifies that the latent rainfall

amount must be less than zero in this case.
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(c) Case 3: If Ystj is missing, then the sample is drawn without any truncation, since the

missing observation, Ystj , could have been equal to zero or greater than zero.

2. Sample γγγ |WWW,ZZZ,βββARC,ΣΣΣ, α.

γst ∼ Γ(shape = (Js + α)/2, rate = 2/((WWW st −µµµWst )TΣ−1s (WWW st −µµµWst ) + α)),

where µµµWst = 1Zst +XXXARC
s βARC

s , for s = (1, ..., S) and t = (1, ..., N), and α is set to 5.

3. Sample ZZZ |WWW,γγγ,βββARC,ΣΣΣ,βββZ , τ, λ.

The spatial mean rainfall vector can be sampled in closed form from a multivariate normal

distribution. To compute the mean and variance of its multivariate normal posterior distri-

bution, we “complete the square” twice. First, note that the posterior distribution of ZZZt is

proportional to

p(WWW | YYY ,γγγ,ZZZ,βββARC,ΣΣΣ)p(ZZZ | βββZ , τ, λ),

where both of these terms are multivariate normal probability distribution functions (PDFs).

In the first term, by treating ZZZ as unknown and the other parameters as known, one can see

that it is proportional to the multivariate normal PDF where

ZZZt ∼ NS(µµµZt ,ΣΣΣ
Z
t ),

where the sth element of the mean is given by

µZst = (1)TΣ−1s (WWW st −XXXARC
s βARC

s )/(1TΣ−1s 1),

the variance of the sth element is given by

ΣZ
t[s] = 1/(γst1

TΣ−1s 1),

and the off-diagonal elements of ΣZ
t = 0.

Next, combining this term with the second term, which is also a multivariate normal PDF,

we compute the full conditional posterior distribution for ZZZt:

ZZZt ∼ NS

((
(ΣΣΣZ

t )−1 + (σ2VVV )−1
)−1(

(ΣΣΣZ
t )−1µµµZt + (σ2VVV )−1XXXtβββ

Z
)
,
(

(ΣΣΣZ
t )−1 + (σ2VVV )−1

)−1)
.

4. Sample βββARC |WWW,γγγ,ZZZ,ΣΣΣ, µARC, τARC from

βARC
s ∼ N

(
µWs /σ

2
s(W ) + µARC/τ2ARC

1/σ2s(W ) + 1/τ2ARC

,
1

1/σ2s(W ) + 1/τ2ARC

)
,
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where

µWs =
−(XXXARC

s )TΣΣΣ−1s
∑N

t=1 γst(1Zst −WWW st)∑T
t=1 γst(XXX

ARC
s )TΣ−1s XXXARC

s

and

σ2s(W ) = 1/
N∑
t=1

γst(XXX
ARC
s )TΣ−1s XXXARC

s .

5. Sample ΣΣΣ |WWW,γγγ,ZZZ,βββARC from

Σs ∼ Inv-Wishart
(

df = N + Js, , scale = diag(Js) +
N∑
t=1

γst(WWW st −µµµWst )(WWW st −µµµWst )T
)
,

where µµµWst = 1Zst +XXXARC
s βARC

s .

6. Sample βββZ | ZZZ, λ, τ,µµµ,σσσ.

βββZ is expressed as a 23×S matrix, but its posterior distribution will be drawn from a 23×S =

138-dimensional multivariate normal distribution. The variance, BBB, can be expressed as:

BBB =

((
τ2VVV ⊗ (XXXTXXX)−1

)−1
+
(

Diag(S)⊗Diag(σσσ)
)−1)−1

,

where ⊗ is the Kronecker product. The conditional posterior mean of βββZ can be expressed

as:

β̂ββ
Z

= BBB
(

vec(XXXTZZZ(τ2VVV )−1) + (Diag(S) + Diag(σσσ))−1vec(µµµ1)
)
,

where vec(AAA) indicates the stacked columns of the matrix AAA, and 1 denotes the 1 × 6 matrix

of ones, in this case.

7. Sample σσσ | βββZ ,µµµ.

We draw σp using a random-walk Metropolis step for p = 1, ..., P .

8. Sample µµµ | βββZ ,σσσ.

µp ∼ N
(
σ20β̄

Z
p /(σ

2
p/S + σ20), (1/σ20 + S/σ2p)

−1
)
,

where σ0 = 5 as in equation [].

9. Sample λ | ZZZ,βββZ , τ .

We draw λ using a random-walk Metropolis step.
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10. Sample τ | ZZZ,βββZ , λ, from

τ ∼ Inv-Gamma(a = 1 +NS/2, 1 + 1/2
N∑
t=1

(ZZZt −XXXtβββ
Z)TVVV −1(ZZZt −XXXtβββ

Z).

11. Sample µARC | βARC, τARC, from

µARC ∼ N

(
Sβ̄ARC/τ2ARC

1 + S/τ2ARC

,
√

1 + S/τ2ARC

)

12. Sample τARC | βARC, µARC.

We draw τARC using a random-walk Metropolis step.
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