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ABSTRACT

Making Software More Reliable by Uncovering Hidden
Dependencies

Jonathan Bell

As software grows in size and complexity, it also becomes more interdependent. Multiple internal

components often share state and data. Whether these dependencies are intentional or not, we have

found that their mismanagement often poses several challenges to testing. This thesis seeks to make

it easier to create reliable software by making testing more efficient and more effective through

explicit knowledge of these hidden dependencies.

The first problem that this thesis addresses, reducing testing time, directly impacts the day-to-

day work of every software developer. The frequency with which code can be built (compiled,

tested, and package) directly impacts the productivity of developers: longer build times mean a

longer wait before determining if a change to the application being build was successful. We have

discovered that in the case of some languages, such as Java, the vast majority of build time is spent

running tests.Therefore, it’s incredibly important to focus on approaches to accelerating testing,

while simultaneously making sure that we do not inadvertently cause tests to erratically fail (i.e.

become flaky).

Typical techniques for accelerating tests (like running only a subset of them, or running them

in parallel) often can’t be applied soundly, since there may be hidden dependencies between tests.

While we might think that each test should be independent (i.e. that a test’s outcome isn’t influenced

by the execution of another test), we and others have found many examples in real software projects

where tests truly have these dependencies: some tests require others to run first, or else their outcome

will change. Previous work has shown that these dependencies are often complicated, unintentional,

and hidden from developers. We have built several systems, VMVM and ELECTRICTEST, that

detect different sorts of dependencies between tests and use that information to soundly reduce

testing time by several orders of magnitude.



In our first approach, Unit Test Virtualization, we reduce the overhead of isolating each unit test

with a lightweight, virtualization-like container, preventing these dependencies from manifesting.

Our realization of Unit Test Virtualization for Java, VMVM eliminates the need to run each test in its

own process, reducing test suite execution time by an average of 62% in our evaluation (compared

to execution time when running each test in its own process).

However, not all test suites isolate their tests: in some, dependencies are allowed to occur be-

tween tests. In these cases, common test acceleration techniques such as test selection or test par-

allelization are unsound in the absence of dependency information. When dependencies go unno-

ticed, tests can unexpectedly fail when executed out of order, causing unreliable builds. Our second

approach, ELECTRICTEST, soundly identifies data dependencies between test cases, allowing for

sound test acceleration.

To enable more broad use of general dependency information for testing and other analyses,

we created PHOSPHOR, the first and only portable and performant dynamic taint tracking system

for the JVM. Dynamic taint tracking is a form of data flow analysis that applies labels to variables,

and tracks all other variables derived from those tagged variables, propagating those tags. Taint

tracking has many applications to software engineering and software testing, and in addition to our

own work, researchers across the world are using PHOSPHOR to build their own systems. Towards

making testing more effective, we also created PEBBLES, which makes it easy for developers to

specify data-related test oracles on mobile devices by thinking in terms of high level objects such as

emails, notes or pictures.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

As software grows in size and complexity, it also becomes more interdependent. Multiple internal

components often share state and data. Whether these dependencies are intentional or not, we have

found that their mismanagement often poses several challenges to testing. This thesis seeks to make

it easier to create reliable software by making testing more efficient and more effective through

explicit knowledge of these hidden dependencies.

Hypothesis: We can make it easier to create reliable software by making testing more efficient and

more effective through explicit knowledge of these hidden dependencies.

Faster, More Reliable Builds

As software grows, the time and complexity of building (compiling, linking, testing) these appli-

cations has grown as well, and today’s developers are faced with increasingly slow builds of hours

to days per application. Moreover, sometimes these builds fail, often non-deterministically, after

having run for a long time. These slow and flaky builds hurt programmer agility, as the frequency

with which code can be built directly impacts the productivity of developers: longer build times

mean a longer wait before determining if a change to the application being built was successful.

To characterize the problem better and gain insight into possible remedies, we performed an

empirical analysis of build times of open source software, downloading the 1,966 largest and most

popular Java projects from GitHub. We attempted to build them automatically “out-of-the-box”

(simply using maven to build them using their existing build script), and instrumented the build

system to record the amount of time spent in each phase of the build, successfully running 351
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builds. Looking across all projects, 41% of the build time (per project) was spent testing, and

testing was the single most time consuming build step. Eliminating the projects with particularly

short build times (those taking less than 10 minutes to execute all phases of the build), the average

testing time increased significantly to nearly 60%. In the projects that took more than an hour to

build, nearly all time (90%) is spent testing. Clearly, running tests can take a very long time, and a

reduction in testing time can be a big win for developers towards reducing total build time.

We have created two stable approaches to accelerate testing. These approaches leverage ob-

servations about test dependencies to improve different aspects of testing. While we might assume

each test is independent (i.e., that a test’s outcome is not influenced by the execution of another test),

we and others have found many examples in real software of tests dependencies: some tests require

others to run first, or their outcome will change. Previous work has shown that these dependencies

are often complicated and hard to find [163].

Efficiently Isolating Tests. In our first approach, Unit Test Virtualization (published at ICSE

where it received a distinguished paper award [20]), we looked at ways to speed up testing in

projects that isolate the in-memory state of each test case in an attempt to prevent dependencies

from occurring. One way to isolate JUnit tests is to execute each in its own JVM. However, unit

tests are often fairly quick (for instance, taking only 100s of milliseconds), while the time to create a

new JVM for each test is relatively steep: 1-2 seconds. With Unit Test Virtualization, we replace this

heavyweight approach of running each test in its own JVM with a lightweight, virtualization-like

container within a single JVM. Our realization of Unit Test Virtualization for Java, VMVM reduces

test suite execution time by an average of 62% in our evaluation (compared to execution time when

running each test in its own process).

After publishing VMVM and releasing it on GitHub, we began discussing commercialization

with the build acceleration company, Electric Cloud. After reaching out to several of Electric

Cloud’s clients with very long running builds (some taking over 10 hours), we determined that

VMVM would not be applicable in some of their environments because they did not isolate their

test cases. In our evaluation of VMVM, we found that 41% of 591 open source projects studied

isolate their tests — so we were aware that while VMVM would help many projects, it would not

be applicable to all projects.

Detecting Data Dependencies Between Tests. For projects that do not isolate their tests, not
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only would VMVM not be applicable, but out-of-the-box test acceleration techniques such as test

selection or test parallelization would be unsound. When dependencies go unnoticed, tests can

unexpectedly fail when executed out of order, causing unreliable builds. Our second approach,

ELECTRICTEST (published at FSE [22]), identifies data dependencies between test cases, allowing

for automatic and sound test acceleration.

ELECTRICTEST improves significantly on the prior state of the art in detecting dependencies be-

tween tests. The previous approach, DTDetector [163] required executing the various combinations

of tests in order to expose dependencies. ELECTRICTEST monitors test execution, detecting data

dependencies between tests, adding on average a 20x slowdown to test execution when detecting

dependencies. In comparison, applying DTDetector to these same projects showed an average slow-

down of 2,276x (using an unsound heuristic not guaranteed to find all dependencies), in most cases

requiring more than 10308 times the amount of time needed to run the test suite normally in order

to exhaustively find all dependencies. ELECTRICTEST makes automated test dependency detection

feasible, allowing developers to soundly perform test selection, parallelization, or minimization by

ensuring that dependencies are detected and respected.

Dynamic Data Flow Analysis

Dynamic taint tracking is a form of information flow analysis that identifies relationships between

data during program execution. Inputs to the program are labeled with a marker (“tainted”), and

these markers are propagated through data flow. Traditionally, dynamic taint tracking is used for

information flow control, or detection of code-injection attacks. However, dynamic taint tracking

also has many software engineering applications.

Taint Tracking in the JVM. In Java, associating metadata (such as tags) with arbitrary vari-

ables is very difficult: previous techniques have relied on customized JVMs or symbolic execution

environments to maintain this mapping [34, 85, 103], limiting their portability and restricting their

application to large and complex real-world software. Without a performant, portable, and accurate

tool for performing dynamic taint tracking in Java, software engineering research can be restricted.

For instance, Huo and Clause’s OraclePolish [85] uses the Java PathFinder (JPF) symbolic execu-

tion runtime to implement taint tracking to detect brittle test cases, and due to limitations in JPF,

could only be used on 35% of the test cases studied.
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To close this gap, we created PHOSPHOR, published originally at OOPSLA [19], with a followup

formal demonstration at ISSTA [21]. PHOSPHOR provides taint tracking within the Java Virtual

Machine (JVM) without requiring any modifications to the language interpreter, VM, or operating

system, and without requiring any access to source code. PHOSPHOR can be easily configured to

propagate taint tags through data flow only, or through data flow and control flow. PHOSPHOR

can also be configured to combine tags through bitwise OR’ing, through arbitrary dynamic means

(using a callback), or can be used simply for applying labels to variables (without propagation),

enabling analyses like dynamic def-use pair detection. PHOSPHOR is released under an MIT license

on GitHub, and in the year since its publication has been picked up by researchers at UCLA, The

University Of Washington [143], The University of Lisbon, Penn State and Duke.

When using taint tracking in information flow control applications, we aim to enforce policies

about where data goes. For instance, we may want to ensure that some sensitive data not be exfil-

trated from our application or device, or audit that it is properly deleted from all storage locations

at some point. Previous system-level tools that provide such functionality require that developers

specify (in code) what data is sensitive: but this can be error-prone, and prevents end-users from

specifying what data is sensitive to them. As an example of how taint tracking can be used to sup-

port testing, we created the PEBBLES system for Android (OSDI [132]), creating a new level of data

abstraction called logical data objects (LDO), which system level data protection tools can use to

track data in unmodified applications.
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Chapter 2

Efficiently Isolating Test Dependencies

As developers fix bugs, they often create regression tests to ensure that should those bugs recur,

they will be detected by the test suite. These tests are added to existing unit test suites and in an

ideal continuous integration environment, executed regularly (e.g., upon code check-ins, or nightly).

Because developers are often creating new tests, as software grows in size and complexity, its test

suite frequently grows similarly. Software can reach a point where its test suite has gotten so large

that it takes too long to regularly execute — previous work has reported test suites in industry taking

several weeks to execute fully [119].

To cope with long running test suites, testers might turn to Test Suite Minimization or Test Suite

Prioritization [159]. Test Suite Minimization techniques such as [38,39,78,79,87,88,137,152] seek

to reduce the total number of tests to execute by approximating redundant tests. However, identify-

ing which tests are truly redundant is hard, and Test Suite Minimization approaches typically rely

on coverage measures to identify redundancy, which may not be completely accurate, leading to a

potential loss in fault-finding ability. Furthermore, Test Suite Minimization is an NP-complete prob-

lem [79], and therefore existing algorithms rely on heuristics. Test Suite Prioritization techniques

such as [53,55,119,134,151] re-order test cases, for example so that given the set of changes to the

application since the last test execution, the most relevant tests are executed first. This technique is

useful for prioritizing test cases to identify faults earlier in the testing cycle, but does not actually

reduce the total time necessary to execute the entire suite.

Rather than focus our approach on reducing the number of tests executed in a suite, we have

set our goal broadly on minimizing the total amount of time necessary to execute the test suite as a
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Begin Test

Initialize application

Run test

Terminate application

End Test, continue to next

Begin
Test Suite

Begin Test

Initialize application

Run test

Reset application

End Test, continue to next

Begin
Test Suite

Traditional Unit Testing

Optimized Unit Testing

Fig. 2.1: The test execution loop: In traditional unit testing, the application under test is restarted for

each test. In optimized unit testing, the application is started only once, then each test runs within

the same process, which risks in-memory side effects from each test case.

whole, while still executing all tests and without risking loss in fault-finding ability. We conducted a

study on approximately 1,200 large and open source Java applications to identify bottlenecks in the

unit testing process. We found that for most large applications each test executes in its own process,

rather than executing multiple tests in the same process. We discovered that this is done to isolate

the state-based side effects of each test from skewing the results for future tests. The upper half of

Figure 2.1 shows an example of a typical test suite execution loop: before each test is executed, the

application is initialized and after each test, the application terminates. In our study we found that

these initialization steps add an overhead to testing time of up to 4,153% of the total testing time

(on average, 618%).

At first, it may seem that the time spent running tests could be trivially reduced by removing

the initialization step from the loop, performing initialization only at the beginning of the test suite.

In this way, that initialized application could be reused for all tests (illustrated in the bottom half of

Figure 2.1), cutting out this high overhead. In some cases this is exactly what testers do, writing

pre-test methods to bring the system under test into the correct state and post-test methods to return

the system to the starting state.

In practice, these setup and teardown methods can be difficult to implement correctly: develop-



CHAPTER 2. EFFICIENTLY ISOLATING TEST DEPENDENCIES 7

ers may make explicit assumptions about how their code will run, such as permissible in-memory

side-effects. As we found in our study of 1,200 real-world Java applications (described further

in §2.1), developers often sacrifice performance for correctness by isolating each test in its own

process, rather than risk that these side-effects result in false positives or false negatives.

Our key insight is that in the case of memory-managed languages (such as Java), it is not actually

necessary to reinitialize the entire application being tested between each test in order to maintain this

isolation. Instead, it is feasible to analyze the software to find all potential side-effect causing code

and automatically reinitialize only the parts necessary, when needed, in a “just-in-time” manner.

In this chapter we introduce Unit Test Virtualization, a technique whereby the side-effects of

each unit test are efficiently isolated from other tests, eliminating the need to restart the system

under test with every new test. With a hybrid static-dynamic analysis, Unit Test Virtualization auto-

matically identifies the code segments that may create side-effects and isolates them in a container

similar to a lightweight virtual machine. Each unit test (in a suite) executes in its own container

that isolates all in-memory side-effects to contain them to affect only that suite, exactly mimicking

the isolation effect of executing each test in its own process, but with much lower overhead. This

approach is relevant to any situation where a suite of tests is executed and must be isolated such as

regression testing, continuous integration, or test-driven development.

We implemented Unit Test Virtualization for Java, creating our tool VMVM (pronounced “vroom-

vroom”), which transforms application bytecode directly without requiring modification to the JVM

or access to application source code. We have integrated it directly with popular Java testing and

build automation tools JUnit [3], ant [9] and maven [11], and it is available for download via

GitHub [17].

We evaluated VMVM to determine the performance benefits that it can provide and show that it

does not affect fault finding ability. In our study of 1,200 applications, we found that the test suites

for most large applications isolate each unit test into its own process, and that in a sample of these

applications VMVM provides up to a 97% performance gain when executing tests. We compared

VMVM with a well known Test Suite Minimization process and found that the performance benefits

of VMVM exceed those of the minimization technique without sacrificing fault-finding ability.

The primary contributions of this chapter are:

1. A categorical study of the test suites of 1,200 open source projects showing that developers
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isolate tests

2. A presentation of Unit Test Virtualization, a technique to efficiently isolate test cases that is

language agnostic among memory managed languages

3. An implementation of our technique for Java, VMVM

(released freely via GitHub [17]), evaluated to show its efficacy in reducing test suite runtime

and maintaining fault-finding properties

2.1 Motivation

This work would be unnecessary if we could safely execute all of an application’s tests in the same

process. Were that the case, then the performance overhead of isolating test cases to individual

processes could be trivially removed by running each test in the same process. We have discovered,

however, that developers rely on process separation to ensure that their tests are isolated and execute

correctly.

In this section, we answer the following three motivation questions to underscore the need for

this work.

MQ1: Do developers isolate their unit tests?

MQ2: Why do developers isolate their unit tests?

MQ3: What is the overhead of the isolation technique that developers use?

2.1.1 MQ1: Do Developers Isolate Their Tests?

To answer MQ1 we analyzed the 1,200 largest open source Java projects listed by Ohloh, a website

that indexes open source software [5]. At time of writing, Ohloh indexed over 5,000 individual

Min Max Avg Std dev

LOC 268 20,280.14k 519.40k 1,515.48k

Active Devs 3.00 350.00 15.88 28.49

Age (Years) 0.17 16.76 5.33 3.24

Table 2.1: Statistics for subjects retrieved from Ohloh
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# of Tests in

Project

# of Projects Creating New

Processes Per Test

Lines of Code

in Project

# of Projects Creating New

Processes Per Test

0-10 24/71 (34%) 0-10k 7/42 (17%)

10-100 81/235 (34%) 10k-100k 60/200 (30%)

100-1000 97/238 (41%) 100k-1m 115/267 (43%)

> 1000 38/47 (81%) > 1m 58/82 (71%)

All Projects 240/591 (41%) All Projects 240/591 (41%)

Table 2.2: Projects creating a process per test, grouped by tests per project and by lines of code per

project

sources such as GitHub, SourceForge and Google Code, comprising over 550,000 projects and

over 10 billion lines of code [26]. We restricted ourselves to Java projects in this study due to the

widespread adoption of test automation tools for Java, allowing us to easily parse configuration files

to determine if the project isolates its test cases (a process described further below).

Using the Ohloh API, we identified the largest open source Java projects, ranked by number of

active committers in the preceding 12 months.

From the 1,200 projects, we downloaded the source code for 2,272 repositories (each project

may have several repositories to track different versions or to track dependencies). We captured this

data between August 15 and August 20, 2013. Basic statistics (as calculated by Ohloh) for these

projects appear in Table 2.1, showing the aggregate minimum, maximum, average and standard

deviation for lines of code, active developers, and age in years. A complete description of the entire

dataset appears in our technical report on VMVM [18].

The two most popular build automation systems for Java are ant [9] and maven [11]. These sys-

tems allow developers to write build scripts in XML, with the build system managing dependencies

and automatically executing pre-deployment tasks such as running tests. Both systems can be con-

figured to either run all tests in the same process or to create a new process for each test to execute

in. From our 1,200 projects, we parsed these XML files to identify those that use JUnit as part of

their build process and of those, how many direct JUnit to isolate each test in its own process. Then,

we parsed the source files for each of the projects that use JUnit to determine the number of tests in

each of these projects.

Next, we broke down the projects both by the number of tests per project and by the number
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of lines of code per project. Table 2.2 shows the result of this study. We found that 81% of those

projects with over 1,000 tests create a new process for each test when executing it — only 19%

do not isolate their tests in separate processes. When grouping by lines of code, 71% of projects

with over one million lines of code create new processes for each test case. Overall, 41% of those

projects in our sample that use JUnit create separate processes for each test. With these findings, we

are confident in our claim that it is common practice, particularly among large applications (which

may have the longest running test suites), to isolate each test case into its own process.

2.1.2 MQ2: Why Isolate Tests?

Understanding now that it is common practice for developers to isolate unit tests into separate pro-

cesses, we next sought to answer MQ2 — why developers isolate tests.

Perhaps in the ideal unit testing environment each unit test could be executed in the same ap-

plication process, with pre-test and post-test methods ensuring that the application under test is in

a “clean” state for the next test. However, handwritten pre-test and post-test teardown methods can

place a burden on developers to write and may not always be correct. When these pre-test and post-

test methods are not correct tests may produce false negatives, missing bugs that should be caught

or false positives, incorrectly raising an exception when the failure is in the test case, not in the

application begin tested.

For example, Muşlu et al. [100] discuss a bug in the Apache Commons CLI library that took

approximately four years from initial report to reach a confirmed fix. This bug could be detected by

running the application’s existing tests independently of each other, but when running on the same

instance of the application (using only the developer-provided pre and post-test methods to reset the

application), it did not present because it was masked by a hidden dependency between tests that

was not automatically reset.

There can be many confounding factors that create such hidden dependencies between tests.

For instance, methods may have side effects that are undocumented. In a complex codebase with

hundreds of thousands of lines of code, it may be very difficult to identify all potential side effects

of an action. When a tester writes the test case for a method, they will be unable to properly

reset the system state if they are unaware of that method’s implicit side effects. To avoid this sort

of confusion, testers may decide to simply execute each test in a separate process — introducing
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significant runtime overhead to their test suite.

In the remainder of this subsection, we describe these dependencies as they appear in the Java

programming language and show a real-world example of one such dependency. Although some

terminology is specific to Java, these concepts apply similarly to other languages.

Consider the following real Java code snippet from the Apache Tomcat project shown in Listing

2.1. This single line of code is taken from the “CookieSupport” class, which defines a series of con-

figuration constants. In this example, the field “ALLOW EQUALS IN VALUE” is defined with the

modifiers static final. static signifies that it can be referenced by any object, regardless

of position in the object graph. The final modifier indicates that its value is constant — once it is

set, it can never be changed. The value that it is assigned on the right hand side of the expression is

derived from a “System Property” (a Java feature that mirrors environmental variables).

This initializer is executed only once in the application: when the class containing it is ini-

tialized. If a test case depends on the value of this field then it must set the appropriate system

property before the class containing the field is initialized. Imagine the following test execution:

first, a test executes and sets the system property to false. Then the initializer runs, setting the field

ALLOW EQUALS IN VALUE to false. Then the next test executes, setting the system property to

true, expecting that ALLOW EQUALS IN VALUE will be set to true when the field is initialized.

However, because the value has already been set it will remain as it is: false, causing the second

test to fail unexpectedly. This scenario is exactly what occurs in the Tomcat test suite and in fact,

in the source code for several tests that rely on this property the following comment appears: “Note

because of the use of static final constants in Cookies, each of these tests must be executed in a new

JVM instance” [1].

Although the above example was from a Java application, the sort of leakage that occurred could

happen in practically any language, provided that the developers follow a similar pattern. In any

situation where a program reads in some configuration from a file and stores it in memory, there is

the potential for such leakage.

1 p u b l i c s t a t i c f i n a l b o o l e a n ALLOW EQUALS IN VALUE = Boolean . va lueOf ( System . g e t P r o p e r t y

( ` ` o rg . apache . t o mc a t . u t i l . h t t p . S e r v e r C o o k i e . ALLOW EQUALS IN VALUE ' ' , ` ` f a l s e ' ' ) ) .

b o o l e a n V a l u e ( ) ;

Listing 2.1: CookieSupport.java: An example of Java code that breaks test independence
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There are certainly other potential sources of leakage between test executions. For instance in

Java, the system property interface mentioned above allows developers to set properties that are

persisted for the entire execution of that process. There are also various forms of registries provided

by the Java API to allow developers to register services and lookup environments — these too,

provide avenues through which data could be leaked between executions.

While in some cases it is possible (although perhaps complicated and time consuming) to write

post-test methods to efficiently reset system state, take note that our example, the static final

field can not be manually reset. The only option left to developers is to re-architect their codebase

to make testing easier, for example by removing such fields (at the cost of the time to re-architect

it and potential defects introduced by the new implementation) or to isolate each test to a separate

process.

2.1.3 MQ3: The Overhead of Test Isolation

To gauge the overhead of test isolation we compared the execution time of several application test

suites running in isolation with the execution time running without isolation. From the set of ap-

proximately 50 projects that include build scripts with JUnit tests that executed without modification

or configuration on our test machine, we selected 20 projects for this study with the aim of including

a mix of both widely used and recognizable projects (e.g., the Apache Tomcat project, a popular

JSP server with 8537 commits and 15 recent 47 contributors overall), and smaller projects as well

(e.g., JTor, an alpha-quality Tor implementation in Java with only 445 commits and 6 contributors

overall). Additional information about each project including a direct link to the project repository

can be found in our technical report [18].

Modifying each project’s build scripts, we ran the test suite for each project twice: once with

all tests executing in the same process, and once with one process per test. Then we calculated the

overhead of executing each test in a separate process as 100× Tn−To
To

, where Tn is the absolute time

to execute all of the tests in their own process, and To is the absolute time to execute all of the tests

in the same process. We performed this study on our commodity server running Ubuntu 12.04.1

LTS and Java 1.7.0 25 with a 4-core 2.66Ghz Xeon processor and 8GB of RAM.

Table 2.3 shows the results of this study. For each project studied, we have included the total

lines of code in the project (as counted by Ohloh), the overhead of isolating each test in its own pro-
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Project LOC (in k) Test

Classes

Overhead

Apache Ivy 305.99 119 342%

Apache Nutch 100.91 27 18%

Apache River 365.72 22 102%

Apache Tomcat 5692.45 292 42%

betterFORM 1114.14 127 377%

Bristlecone 16.52 4 3%

btrace 14.15 3 123%

Closure Compiler 467.57 223 888%

Commons Codec 17.99 46 407%

Commons IO 29.16 84 89%

Commons Validator 17.46 21 914%

FreeRapid Downloader 257.70 7 631%

gedcom4j 18.22 57 464%

JAXX 91.13 6 832%

Jetty 621.53 6 50%

JTor 15.07 7 1,133%

mkgmap 58.54 43 231%

Openfire 250.79 12 762%

Trove for Java 45.31 12 801%

upm 5.62 10 4,153%

Average 475.30k 56.4 618%

Table 2.3: Overhead of isolating tests in new processes. Bolded applications normally isolate each

test case. Additional descriptions of each subject appear in Table 2.5.
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cess, and an indicator as to whether that project executes each test in its own process by default. On

average, the overhead of executing each test in its own process is stunningly high: 618% on aver-

age. We investigated further the subjects “Bristlecone” and “upm,” the subjects with the lowest and

highest overhead respectively. We observed that Bristlecone had a low number of tests total (only

four test classes in total), with each test taking on average approximately 20 seconds. Meanwhile,

in the upm subject, there were 10 test classes total, and each test took on average approximately

0.15 seconds. In general, in test suites that have very fast tests (such as upm), the testing time can

be easily dominated by setup and teardown time to create new processes. On the other hand, for test

suites with longer running tests (such as Bristlecone), the setup and teardown time is masked by the

long duration of the tests themselves.

2.2 Approach

Our key insight that enables Unit Test Virtualization is that it is often unnecessary to completely

reinitialize an application in order to isolate its test cases. As shown in Figure 2.2, Unit Test Virtual-

ization fits into a traditional unit testing process. During each test execution, Unit Test Virtualization

determines what parts of the application will need to be reset during future executions. Then, during

future executions, the affected memory is reset just before it is accessed. This section describes how

we determine which parts of the application need to be reset and how we reset just those compo-

nents.

Unit Test Virtualization relies on both static and dynamic analyses to detect what memory areas

need to be reset after each test execution. This approach leverages the runtime performance benefits

of static analysis (i.e., that the analysis is precomputed) with the precision of dynamic analysis.

Before test execution, a static analysis pass occurs, placing each addressed memory region into

one of two categories: Ms (“safe”) and Mu (“unknown”). Memory areas that are in Ms can be

guaranteed to never be shared between test executions, and therefore do not need to be reset. An

area might be in Ms because we can determine statically that it is never accessed, or that it is always

reset to its starting condition at the conclusion of a test. This static analysis can be cached at the

module-level, only needing to be recomputed when the module code changes. All stack memory

can be placed in Ms because we assume that the test suite runner (which calls each individual test)
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Fig. 2.2: Unit Test Virtualization at the high level

does not pass a pointer to the same stack memory to more than one test (we also assume that code

can only access the current stack frame, and no others). We find this reasonable, as it only places

a burden on developers of test suite runners (not developers of actual tests), which are reusable and

often standardized.

Memory areas that are placed in Mu are left to a runtime checker to identify those which are

written to and not cleared. As each test case executes, memory allocations and accesses are tracked,

specifically tracking each allocation that occurs in Mu. During future executions we ensure that

accesses to that same location in Mu are treated as if the location hadn’t been accessed before.

This is a general approach and indeed is left somewhat vague, as the details of exactly how

Ms is built and how Mu is checked at runtime will vary from language to language. Further detail

for the implementation of Unit Test Virtualization as applied to Java programs is provided in the

Implementation section that follows.

2.3 Implementation

To evaluate the performance of Unit Test Virtualization we created a fully-functioning implemen-

tation of it for Java. We call our implementation VMVM, named after its technique of building

a Virtual Machine-like container within the Java Virtual Machine. VMVM (pronounced “vroom-

vroom”) is released under an MIT license and is available on GitHub [17]. VMVM is compatible

with any Java bytecode, but the runtime depends on newer language features, requiring a JRE ver-
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Test Case 1 Test Case 2

Object A Object B

Object C Object D
Static Fields

Test RunnerObject Graph

Fig. 2.3: A leaked reference between two tests. Notice that the only link between both test cases is

through a static field reference.

sion 5 or newer. We integrated VMVM with the popular test utility JUnit and two common build

systems: ant and maven, to reset the test environment between automated test executions with no

intervention. VMVM requires no modification to the host machine or JVM, running in a completely

unmodified environment. This detail is key in that VMVM is portable to different JVMs running on

different platforms. VMVM requires no access to source code, an important feature when testing

applications that use third party libraries (for which the source may not be available).

Architecturally, VMVM consists of a static bytecode instrumenter (implemented with the ASM

instrumentation library [31]) and a dynamic runtime. The static analyzer and instrumenter identify

locations that may require reinitializing and insert code to reinitialize if necessary at runtime. The

dynamic runtime tracks what actually needs to be reset and performs this reinitialization between

each JUnit test. These components are shown at a high level in Figure 2.4.

2.3.1 Java Background

Before describing the implementation details for VMVM, we first briefly provide some short back-

ground on memory management in Java. In a managed memory model, such as in Java, machine

instructions can not build pointers to arbitrary locations in memory. Without pointer manipulation,

the set of accessible memory S to a code region R in Java is constrained to all regions to which R

has a pointer, plus all pointers that may be contained in that region. In an object oriented language,

this is referred to as an object graph: each object is a node, and if there is a reference from object

A to object B, then we say that there exists an edge from A to B. An object can only access other
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Fig. 2.4: Implementation overview of VMVM

objects which are children in its object graph, with the exception of objects that are referred to by

fields declared with the static modifier. The static keyword indicates that rather than a field

belonging to the instances of some object of some class, there is only one instance of that field for

the class, and therefore can be referenced directly, without already having a reference to an object

of that class. It is easy to see how to systematically avoid leaking data between two tests through

non-static references:

Consider the simple reference graph shown in Figure 2.3. Test Case 1 references Object A

which in turn references Object C. For Test Case 2 to also reference Object A, it would be necessary

for the Test Runner (which can reference Object A) to explicitly pass a reference to Object A to Test

Case 2. As long as the test runner never holds a reference to a prior test case when it creates a new

one, then this situation can be avoided easily. That is, the application being tested or the tests being

executed could not result in such a leak: only the testing framework itself could do so, therefore,

this sort of leakage is not of our concern as it can easily be controlled by the testing framework.

Therefore, all memory accesses to non-static fields are automatically placed in Ms by VMVM,

as we are certain that those memory regions will be “reset” between executions.

The leakage problem that we are concerned with comes from static fields: in the same figure,

we mark “Object D” as an object that is statically referenced. Because it can be referenced by any

object, it is possible for Test Case 1 and Test Case 2 to both indirectly access it - potentially leaking

data between the tests. It is then only static fields that VMVM must analyze to place in Mu or

Ms.
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2.3.2 Offline Analysis

VMVM must determine which static fields are safe (i.e., can be placed in Ms). For a static

field to be in Ms, it must not only hold a constant value throughout execution, but its value must not

be dependent on any non-constant values. This distinction is important as it prevents propagating

possibly leaked data into Ms. Listing 2.2 shows an example of a class with three fields that meet

these requirements: the first two fields are set with constant values, and the third is set with a

value that is non-constant, but dependent only on another constant value. We determine that a field

holds a constant value if it is a final field (a Java keyword indicating that it is of constant value)

referencing an immutable type (note that this is imprecise, but accurate).

In normal operation, when the JVM initializes a class, all static fields of that class are initial-

ized. To emulate the behavior of stopping the target application and restarting it (in a fresh JVM),

VMVM does not reinitialize individual static fields, instead reinitializing entire classes at a time.

Therefore, to reinitialize a field, we must completely reinitialize the class that owns that field, ex-

ecuting all of the initialization code of that class (it could be possible to only reinitialize particular

fields, but for simplicity of implementation, we did not investigate this approach). As a perfor-

mance optimization, VMVM detects which classes need never be reinitialized. In addition to having

no static fields in Mu, the initialization code for these classes must create no side-effects for

other classes. If these conditions are met then the entire class is marked as safe and VMVM never

attempts to reinitialize it.

This entire analysis process can be cached per-class file, and as the software is modified, only

the analysis for classes affected need be recomputed. Even if it is necessary to execute the analysis

on the entire codebase, the analysis is fairly fast. We measured the time necessary to analyze the

entire Java API (version 1.7.0 25, using the rt.jar archive) and found that it took approximately 20

seconds to analyze all 19,097 classes. Varying the number of classes analyzed, we found that the

1 p u b l i c c l a s s S t a t i c E x a m p l e {

2 p u b l i c s t a t i c f i n a l S t r i n g s = ” abcd ” ;

3 p u b l i c s t a t i c f i n a l i n t x = 5 ;

4 p u b l i c s t a t i c f i n a l i n t y = x * 3 ;

5 }

Listing 2.2: Example of static fields
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duration of the analysis ranged from 0.16 seconds for 10 classes to 2.74 seconds for 1,000 classes,

12.07 seconds for 10,000 classes, and finally capping out at 21.21 seconds for all 19,097 classes

analyzed.

2.3.3 Bytecode Instrumentation

Using the results of the analysis performed in the previous step, VMVM instruments the application

code (including any external libraries, but excluding the Java runtime libraries to ensure portability)

to log the initialization of each class that may need to be reinitialized. Simultaneously, VMVM

instruments the application code to preface each access that could result in a class being initialized

with a check, to see if it should be reinitialized by force. Note that because we initialize all static

fields of a class at the same time, if a class has at least one non-safe static field, then we must check

every access to that class, including to safe fields of the class. The following actions cause the JVM

to initialize a class (if it hasn’t yet been initialized):

1. Creation of a new instance of a class

2. Access to a static method of a class

3. Access to a static field of a class

4. Explicitly requesting initialization via reflection

VMVM uses the same actions to trigger re-initialization. Actions 1-3 can occur in “normal”

code (i.e., by the developer writing code such as x.someStaticMethod() to call a method),

or dynamically through the Java reflection interface, which allows developers to reference classes

dynamically by name at runtime. Regardless of how the class is accessed, VMVM prefaces each

such instruction with a check to determine if the class needs to be reinitialized. This check is

synchronized, locking on the JVM object that represents the class being checked. This is identical

to the synchronization technique specified by the JVM [94], ensuring that VMVM is fully-functional

in multithreaded environments. Note that programmers can also write C code using the JNI bridge

that can access classes — in these cases, VMVM can not automatically reinitialize the class if it is

first referenced from JNI code (instead, it would not be reinitialized until it is first referenced from

Java code). In these cases, it would require modification of the native code (at the source level) to
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function with VMVM, by providing a hint to VMVM the first time that native code accesses a class.

None of the applications evaluated in §2.4 required such changes.

2.3.4 Logging Class Initializations

Each class in Java has a special method called <clinit> which is called upon its initialization.

For classes that may need to be reinitialized, we insert our logging code directly at the start of this

initializer, recording the name of the class being initialized.

We store this logged information in two places for efficient lookup. First, we store the initializa-

tion state of the class in a static field that we add to the class itself. This allows for fast lookups

when accessing a class to determine if it’s been initialized or not. Second, we store an index that

contains all initialized classes so that we can quickly invalidate those initializations when we want

to reinitialize them.

2.3.5 Dynamically Reinitializing Classes

To reinitialize a class, VMVM clears the flag indicating that the class has been initialized. The next

time that the class is accessed (as described in §2.3.3), the initializer is called. However, since we

only instrument the application code (and not the Java core library set), the above process is not

quite complete: there are still locations within the Java library where data could be leaked between

test executions.

For instance, Java provides a “System Property” interface that allows applications to set process-

wide configuration properties. We scanned the Java API to identify public-facing methods that set

static fields which are internal to the Java API, first using a script to identify possible candidates,

then verifying each by hand to identify false positives. In total, we found 48 classes with methods

that set the value of some static field within the Java API. For each of these methods, VMVM

provides copy-on-write functionality, logging the value of each internal field before changing it,

and then restoring that value when reinitializing the application. To provide such support, VMVM

prefaces each such method with a wrapper to record the value in a log, and then scans the log at

reinitialization time to restore the values.
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2.3.6 Test Automation Integration

VMVM plugs directly into the popular unit testing tool JUnit [3] and build automation systems

ant [9] and maven [11]. This integration is important as it makes the transition from isolating tests

by process separation to isolating tests by VMVM as painless as possible for developers.

Both ant and maven rely upon well-formed XML configuration files to specify the steps of the

build (and test) process. VMVM changes approximately 4 lines of these files, modifying them to

include VMVM in the classpath, to execute all tests in the same process, and to notify VMVM after

each test completion so that shared memory can be reset automatically. As each test completes

VMVM marks each class that was used (and not on its list of “safe” classes) as being in need of

reinitialization.

Although we integrated VMVM directly into these popular tools, it can also be used directly in

any other testing environment. Both the ant and maven hooks that we wrote consist of only a single

line of code: VirtualRuntime.reset(), which triggers the reinitialization process.

2.3.7 Supporting Class Reinitialization

VMVM makes several technical modifications to the statically mutable classes to allow them to be

reinitialized. First, VMVM performs some housekeeping: renaming the static re-initializer from

the internal name <clinit> to a configurable name (by default, vmvm clinit ) and adding a

shell <clinit> method that calls the original. This is necessary because <clinit> is a reserved

method name that cannot be called explicitly: it would be impossible to call this method otherwise.

At the same time, VMVM adds instructions to dynamically log the initialization of the class.

VMVM must also make modifications to support reinitializing final static fields. Al-

though a final field can’t be changed, if it is a reference to an object, the contents of that object

may change. For this reason, VMVM strips the final modifier from all mutable static fields of

these classes. Note that this occurs after the code has been compiled though, so the compiler will

still verify that there are no attempts to modify the value of a final field. We manually protect against

the code that tries to dynamically set the value of a (no longer) final field with reflection by wrapping

all reflective calls with a check to ensure that they do not reference a previously final field.

VMVM makes special accommodations for static fields of interfaces, since Java imposes several

requirements on interfaces that limit VMVM from accomplishing the above tasks. In Java, all static
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fields of interfaces must be final, preventing VMVM from removing the modifier. Also, the only

static method allowed is the <clinit> method, preventing VMVM from renaming the method.

In these cases, VMVM modifies all mutable static fields to be a wrapper object that contains the

original object. In this way, the actually value of the final field (now, a reference to a wrapper

object) does not change when performing a reinitalization: only the contents of that wrapper object

change (which represents the original field).

2.3.8 Usage

VMVM is available for download via github [17], and is designed to be easy for developers to use,

in a two step process.

First, developers use VMVM to instrument their applications (including dependent libraries)

with instructions to support efficient re-initialization. This process uses the ASM [31] byte code

manipulation library to automate the instrumentation. VMVM provides a simple interface for in-

strumenting applications, taking as input a folder containing an application (and all of its dependent

libraries) and outputting another folder containing a replica of the input, but with VMVM instrumen-

tation added. The specific usage syntax is java -cp lib/asm-all-4.1.jar:vmvm.jar

edu.co

lumbia.cs.psl.vmvm.Instrumenter <folder-to- instrument> <dest>.

The second step, after instrumenting their application, is for developers to modify their appli-

cation test scripts to execute test cases in the same process, and to notify VMVM when a test case

completes so that it can reinitialize the effected portions of the application. This notification is made

by simply calling our API method, VirtualRuntime.reset(). This entire process is simpli-

fied, as there are two common build automation systems used in Java, ant and maven, for which

we provide the necessary code and detailed instructions to include VMVM in the testing process.

2.3.8.1 Using VMVM with ant projects

For ant projects, developers must only modify their ant build.xml file to add to the classpath two

jars (the VMVM jar and the VMVM-ANTMVN-LISTENER jar file, which contains classes specific

for interacting with ant), to add our ant JUnit test listener to the configuration, and to execute all test

cases in the same process. Specifically, the following lines are added:
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1<c l a s s p a t h>

2 <p a t h e l e m e n t p a t h =” an t−mvn−f o r m a t t e r . j a r ” />

3 <p a t h e l e m e n t l o c a t i o n =”vmvm . j a r ” />

4< / c l a s s p a t h>

5<jvmarg v a l u e =”−X b o o t c l a s s p a t h / a:vmvm . j a r : a s m−a l l −4.1 . j a r ” />

6<f o r m a t t e r c l a s s n a m e =” edu . co lumbia . c s . p s l . vmvm . A n t J U n i t T e s t L i s t e n e r ” e x t e n s i o n =” . xml ” />

To modify ant’s configuration to execute all of the test cases in the same process, a developer would

add the option forkMode="once" to the junit tag of the build.xml file.

2.3.8.2 Using VMVM with maven projects

Developers can modify their maven projects to use the VMVM isolation mechanism by the same

two jar files in their test configuration, similar to the process for ant-based systems. In the case of

maven, we provide test execution listener that hooks into the surefire testing plugin — developers

simply modify their testing configuration to include our jars in the test classpath, and to register our

listener:

1<c o n f i g u r a t i o n>

2 <a d d i t i o n a l C l a s s p a t h E l e m e n t s>

3 <a d d i t i o n a l C l a s s p a t h E l e m e n t>vmvm . j a r< / a d d i t i o n a l C l a s s p a t h E l e m e n t>

4 <a d d i t i o n a l C l a s s p a t h E l e m e n t>an t−mvn−f o r m a t t e r . j a r< / a d d i t i o n a l C l a s s p a t h E l e m e n t>

5 < / a d d i t i o n a l C l a s s p a t h E l e m e n t s>

6 <p r o p e r t i e s>

7 <p r o p e r t y>

8 <name> l i s t e n e r< / name>

9 <v a l u e>edu . co lumbia . c s . p s l . vmvm . MvnVMVMListener< / v a l u e>

10 < / p r o p e r t y>

11 < / p r o p e r t i e s>

12< / c o n f i g u r a t i o n>

2.4 Experimental Results

To evaluate the performance of VMVM we pose and answer the following three research questions

(RQ):

RQ1: How does VMVM compare to test suite minimization in terms of performance and fault-

finding ability?
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RQ2: In general, what performance gains are possible when using VMVM compared to creating a

new process for each test?

RQ3: How does VMVM impact fault-finding ability compared to using traditional isolation?

We performed two studies to address these research questions. Both studies were performed in the

same environment as our study from §2.1 — on our commodity server running Ubuntu 12.04.1 LTS

and Java 1.7.0 25 with a 4-core 2.66Ghz Xeon processor and 8GB of RAM.

2.4.1 Study 1: Comparison to Minimization

We address RQ1, comparing VMVM to Test Suite Minimization (TSM), by turning to a study

performed by Zhang et al. [161]. Zhang et al. applied TSM to Java programs in the largest study that

we could find comparing TSM algorithms using Java subjects. In particular, they implemented four

minimization techniques (each implemented four different ways, for a total of 16 implementations):

a greedy technique [39], Harrold et al’s heuristic [79], the GRE heuristic [38, 39], and an ILP

model [25]. Zhang et al. studied the reduction of test suite size and reduction of fault-finding ability

of these TSM implementations using four real-world Java programs as subjects, comparing across

several versions of each. The programs were selected from the Software-artifact Infrastructure

Repository (SIR) [52]. The SIR is widely used for measuring the performance of TSM techniques,

and includes test suites written by the original developers as well as seeded faults for each program.

We downloaded the same 19 versions of the same four applications evaluated in [161] from the

SIR and instrumented them with VMVM. We executed each test suite twice: once with each test

case running in its own process, and once with all test cases running in the same process but with

VMVM providing isolation. The test scripts included by SIR with each application isolate each test

case in its own process, so to execute them with VMVM we replaced the SIR-provided scripts with

our own, running each in the same process and calling VMVM to reset the environment between

each test. For each version of each application, we calculated the reduction in execution time (RT )

for both VMVM and TSM as RT = 100 × |Tn|−|Tnew|
|Tn| where Tn is the absolute time to execute

each test in its own process, and Tnew is the absolute time to execute all of the tests in the same

process using VMVM, or the absolute time to execute the minimized test suite. For each version

of the application with seeded tests we calculated the reduction in fault-finding ability (RF ) as
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RF = 100 × |Fn|−|Fvmvm|
|Fn| where Fn is the number of faults detected by executing each test in its

own process and Fvmvm is the number of faults detected by executing all tests in the same process

using VMVM. Zhang et al. similarly calculated RS as the reduction in total suite size (number of

tests) and RF .

LOC

(in k)

Test

Classes

TSM VMVM

RT

Combined

RTApplication RS RT

Ant v1 25.83k 34 3% 4% 39% 40%

Ant v2 39.72k 52 0% 0% 36% 37%

Ant v3 39.80k 52 0% 1% 36% 37%

Ant v4 61.85k 101 7% 4% 34% 37%

Ant v5 63.48k 104 6% 11% 25% 26%

Ant v6 63.55k 105 6% 11% 26% 27%

Ant v7 80.36k 150 11% 21% 28% 38%

Ant v8 80.42k 150 10% 18% 27% 37%

JMeter v1 35.54k 23 8% 2% 42% 42%

JMeter v2 35.17k 25 4% 1% 41% 42%

JMeter v3 39.29k 28 11% 5% 44% 48%

JMeter v4 40.38k 28 11% 5% 42% 47%

JMeter v5 43.12k 32 16% 8% 50% 52%

jtopas v1 1.90k 10 13% 34% 75% 77%

jtopas v2 2.03k 11 11% 31% 70% 76%

jtopas v3 5.36k 18 17% 27% 48% 68%

xml-sec v1 18.30k 15 33% 22% 69% 73%

xml-sec v2 18.96k 15 33% 26% 79% 80%

xml-sec v3 16.86k 13 38% 19% 54% 55%

Average 37.47k 51 12% 13% 46% 49%

Table 2.4: Test suite optimization with VMVM and with Harrold et al’s Test Suite Minimization

(TSM) technique [79]. We show reduction in test suite size (RS, calculated by [161]) for TSM as

well as reduction in test execution time (RT ) for TSM, VMVM, and the combination of VMVM

with TSM.

Table 2.4 shows the results of this study (RF is not shown in the table, as it is 0 in all cases).



CHAPTER 2. EFFICIENTLY ISOLATING TEST DEPENDENCIES 26

Note that for each subject, Zhang et al. compared 16 minimization approaches, yet we display

here only one value per subject. Specifically, Zhang et al. concluded that using Harrold et al’s

heuristic [79] applied at the test case level using statement level coverage (one of the 16 approaches

evaluated in their work) yielded the best overall reduction in test suite size with the minimal cost

to fault-finding ability. Therefore, in this experiment, we compared VMVM to this recommended

technique.

To answer RQ1, we found that in almost all cases the reduction in testing time was greater from

VMVM than from the TSM technique. On average, VMVM performed quite favorably, reducing

the testing time by 46%, while the TSM technique reduced the testing time by only 13%. We also

investigated the combination of the two approaches: using VMVM to isolate a minimized test suite,

with results shown in the last column of Table 2.4. We found that in some cases, combining the

two approaches yielded greater reductions in testing time than either approach alone. However, the

speedup is not purely additive, since for every test case removed by TSM, the ability for VMVM to

provide a net improvement is lowered (as it reduces the time between tests).

The RF values observed for VMVM are constant at zero, and every test case is still executed

in the VMVM configuration. Although the TSM technique also had RF = 0 on all seeded faults,

such a technique always risks a potential loss of fault finding ability. In fact, studies using the

same algorithm on other subjects have found RF values up to 100% [121] (i.e., finding no faults).

In general, our expectation is that VMVM results in no loss of fault-finding ability because it still

executes all tests in a suite (unlike TSM). Our concerns for the impact of VMVM on fault-finding

ability are instead related to its correctness of isolation: does VMVM properly isolate applications?

We evaluate the correctness of VMVM further from this perspective in the following study of 20,

large, real-world applications.

2.4.2 Study 2: More Applications

To further study the overhead and fault-finding implications of VMVM we applied it to the same

20 open source Java applications used for our motivating study. Most of the applications are well-

established, averaging approximately 452,660 lines of code and having an average lifetime of 7

years. These applications are significantly larger than the SIR applications used in Study 1, for

which the average application had only 25,830 lines of code. Additional information about each
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LOC

(in k)

Age

(Years)

# of Tests Overhead False Positives

Project Revisions Classes Methods VMVM Forking RT VMVM No Isolation

Apache Ivy 1233 305.99 5.77 119 988 48% 342% 67% 0 52

Apache Nutch 1481 100.91 11.02 27 73 1% 18% 14% 0 0

Apache River 264 365.72 6.36 22 83 1% 102% 50% 0 0

Apache Tomcat 8537 5,692.45 12.36 292 1,734 2% 42% 28% 0 16

betterFORM 1940 1,114.14 3.68 127 680 40% 377% 71% 0 0

Bristlecone 149 16.52 5.94 4 39 6% 3% -3% 0 0

btrace 326 14.15 5.52 3 16 3% 123% 54% 0 0

Closure Compiler 2296 467.57 3.85 223 7,949 174% 888% 72% 0 0

Commons Codec 1260 17.99 10.44 46 613 34% 407% 74% 0 0

Commons IO 961 29.16 6.19 84 1,022 1% 89% 47% 0 0

Commons Validator 269 17.46 6.19 21 202 81% 914% 82% 0 0

FreeRapid Downloader 1388 257.70 5.10 7 30 8% 631% 85% 0 0

gedcom4j 279 18.22 4.44 57 286 141% 464% 57% 0 0

JAXX 44 91.13 7.44 6 36 42% 832% 85% 0 0

Jetty 2349 621.53 15.11 6 24 3% 50% 31% 0 0

JTor 445 15.07 3.94 7 26 18% 1,133% 90% 0 0

mkgmap 1663 58.54 6.85 43 293 26% 231% 62% 0 0

Openfire 1726 250.79 6.44 12 33 14% 762% 87% 0 0

Trove for Java 193 45.31 11.86 12 179 27% 801% 86% 0 0

upm 323 5.62 7.94 10 34 16% 4,153% 97% 0 0

Average 1356.3 475.30 7.32 56.4 717 34% 618% 62% 0 3.4

Average (Isolated) 1739.3 743.16 8.86 58.7 419 12% 648% 56% 0 6.8

Average (Not Isolated) 973.3 207.43 5.79 54.1 1,015 57% 588% 68% 0 0

Table 2.5: Reduction in testing time (RT) and number of false positives for VMVM over 20 subjects.

Here, false positives refer to tests that failed but should have passed. There were no cases of tests

passing when intended to fail. We also include the overhead of isolation from both VMVM and

creating a new process for each test, as compared to using no isolation at all. Bolded projects

isolated their tests by default. The average is segregated into projects that isolate their tests by

default, and those that did not isolate their tests.
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project appears in our accompanying technical report [18].

For each subject in this study we executed the test suite three times, each time recording the

duration of the execution and the number of failed tests. First, we executed the test suite isolating

each test case in its own process (what we will refer to as “traditional isolation”). Second, we

executed the test suite with no isolation, with all test cases executed in the same process (which

we will refer to as “not isolated”). Finally, we instrumented the subject with VMVM and executed

all tests cases in the same process but with VMVM providing isolation. We then calculated the

reduction in execution time RT as in Study 1 to address RQ2. Half of these subjects isolate test

cases by default (i.e., half do not normally isolate their tests), yet we include these subjects in this

study to show the potential speedup available if the subject did indeed isolate its test cases.

To answer RQ3 (beyond the evidence found in the first study) we wanted to exercise VMVM in

scenarios where we knew that the test cases being executed had side-effects. When tests have side-

effects on each other they can lead to false positives (e.g., a test case that fails despite the code begin

tested being correct) and false negatives (e.g., a test case that passes despite the code being tested

being faulty). In practice, we were unable to identify known false negatives, and therefore studied

the effect of VMVM on false positives, identifiable easily as instances where a test case passes

in isolation but fails without isolation. We evaluated the effectiveness of VMVM’s isolation by

observing the false positives that occur for each subject when executed without isolation, comparing

this to the false positives that occur for each subject when executed with VMVM isolation. We use

the test failures for each subject in traditional isolation as a baseline. In all cases, the same tests

passed (or failed) when using VMVM and when using traditional isolation.

The results of this study are shown in Table 2.5. Note that for each application we executed our

study on the most recent (at time of writing) development version, identified by its revision number

shown in Table 2.5.

On average, the reduction in test suite execution time RT was slightly higher than in Study 1:

62% (56% when considering only the subjects that isolate their tests by default), providing strong

support for RQ2 that VMVM yields significant reductions in test suite execution time. We identified

the “Bristlecone” subject as a worst case style scenario that occurred in our study. In our original

motivating study (described previously in Table 2.3), we found that there was almost no overhead

(3%) to isolating the tests in this subject, due to the relatively long amount of time spent executing
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each individual test, and the very few number of tests. Therefore, we were unsurprised to see

VMVM provide no reduction in testing time for this subject (and in fact, a slight overhead). On

the other hand, we identified the “upm” subject as a near best case: with fast tests, the overhead of

creating a new process for each test was very high (4,153%), providing much room for VMVM to

provide improvement.

In no cases did we observe any false positives when isolating tests with VMVM, despite observ-

ing false positives in several instances when using no isolation at all. That is, no test cases failed

when isolated with VMVM that did not fail when executed with traditional isolation. This finding

further supports our previous finding for RQ3 from Study 1, that VMVM does not decrease fault

finding ability.

2.4.3 Limitations and Threats to Validity

The first key potential threat to the validity of our studies is the selection of subjects used. However,

we believe that by using the standard SIR artifact repository (which is used by other authors as well,

e.g., [78,83,137] and more) we can partially address this concern. The applications that we selected

for Study 2 were larger on average, a deliberate attempt to broaden the scope of the study beyond

the SIR subjects. It is possible that they are not representative of some class of applications, but we

believe that they show both the worst and best case performance of VMVM: when there are very

few, long running tests and when there are very many, fast running tests.

Our initial claim that these subjects represent the largest Java projects is based on two assump-

tions: first that number of contributing developers is an indicator of project size, and second that

the projects in the Ohloh repository are a representative sample of all Java projects. We believe that

we have captured all of the “largest” Java projects in our dataset regardless of the metric, given the

very large number of projects retrieved. Additionally, given the overall size of Ohloh’s data (which

includes all repositories from, among other sources, GitHub and SourceForge) we believe that our

study is at least as broad as previous work by other authors that utilized primarily test subjects from

the SIR.

Unit Test Virtualization is primarily useful in cases where the time between tests is a large factor

in the overall test suite execution time. Consider an extreme example: if some tests require human

interaction, and others are fully automated, then the reduction in total cost of execution by removing
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the interaction-based tests from the suite may be significantly higher than what VMVM can provide

by speeding up the automated component. If such a scenario arises, then it may be efficient to

combine VMVM with Test Suite Minimization in order to realize the benefits of both approaches.

However, in the programs studied, this is not the case: no test cases require tester input, and the

setup time for each test was significant enough for VMVM to provide a (sometimes quite sizable)

speedup.

Although we provide a high level approach to Unit Test Virtualization that is language agnostic

(particularly among memory managed languages), we implemented it in Java. The performance

benefits that we revealed could be biased to the language features of Java. For instance, it may

be that Java programmers more frequently isolate their unit tests in separate processes than other

developers, in which case this approach may not provide such large performance benefits to test

suites in other languages.

The final limitation that we discuss is the level of isolation provided by VMVM. VMVM is de-

signed to be a drop-in replacement for “traditional” isolation where only in-memory state is isolated

between test cases. It would be interesting to extend VMVM beyond this “traditional” isolation to

also isolate state on disk or in databases. Such isolation would need to be integrated with current

developer best practices, and we consider it to be outside of the scope of this thesis.

There is room for further research in the implementation of VMVM that may be interesting to

pursue: for instance, it may be possible to use program slicing to identify initializers for individual

fields, hence relieving the need to reinitialize entire classes at a time. Alternatively, we could use

the precise information about exactly what dependencies matter to guide our resetting. VMVM was

published at ICSE 2014, where it received an ACM SIGSOFT Distinguished Paper Award [20], is

currently available publicly on GitHub [17], and has been the basis for an industrial collaboration

with the bay area build acceleration company, ElectricCloud.

2.5 Related Work

Unit Test Virtualization can be seen as complementary to Test Suite Minimization (TSM), an ap-

proach where test cases that do not increase coverage metrics for the overall suite are removed, as

redundant [79]. This optimization problem is NP-complete, and there have been many heuristics
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developed to approximate the minimization [38, 39, 78, 79, 87, 88, 137, 152]. TSM can be limited

not only by imprecision of minimization approximations but also by the strength of optimization

criteria (e.g., statement or branch coverage), a problem potentially abated by optimizing over mul-

tiple criteria simultaneously (e.g., [83]). We have shown that it is feasible to combine TSM with

Unit Test Virtualization, minimizing both the number of tests executed and the amount of time spent

executing those tests.

The effect of TSM on fault finding ability can vary greatly with the structure of the application

being optimized and the structure of its test suite. Wong et al. found an average reduction of

fault finding ability of less than 7.28% in two separate studies [152, 153]. On larger applications,

Rothermel et al. reported a reduction in fault finding ability of over 50% for more than half of the

suites considered [121]. Rothermel et al. suggested that this dramatic difference in results could be

best attributed to the difference in the size of test suites studied, suggesting that Wong et al’s [152]

selection of small test suites (on average, less than 7 test cases) reduced the opportunities for loss of

fault finding effectiveness [121]. The test suites studied in our first study averaged 51 test classes,

and the suites in the second study averaged 56 test classes and over 700 individual test methods.

Similar to TSM is Test Suite Prioritization, where test cases are ordered to maximize the speed at

which faults are detected, particularly in regression testing [53,55,119,134,151]. In this way, large

test suites can still run in their entirety, with the hopes that faults are detected earlier in the process.

We see Test Suite Prioritization and Unit Test Virtualization as complementary (and perhaps, able

to be used simultaneously): Unit Test Virtualization increases the rate at which test suites execute,

while prioritization increases the rate at which faults are detected by a test suite. To safely perform

any of these test selection techniques (in the presence of test order dependencies), it is necessary to

either isolate the tests (e.g. with VMVM), or to precisely identify those dependencies so that they

can be respected by downstream techniques (a technique described further in 3).

Muşlu et al. studied the effect of isolating unit tests on several software packages, finding

isolation to be helpful in finding faults, but computationally expensive [100]. Holmes and Notkin

created an approach to identify program dependencies using a hybrid static-dynamic analysis [82],

which could be used to detect hidden dependencies between tests. Pinto et al. studied the evolution

of test suites throughout several versions of seven real-world Java programs, measuring the sort

of changes made to the test suites [116]. It would be interesting to study specifically the kinds of
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modifications made to test suites in order to support isolation of unit tests.

Unit Test Virtualization can be seen as similar in overall goal to sandboxing systems [8, 86, 93,

112]. However, while sandbox systems restrict all access from an application (or a subcomponent

thereof) to a limited partition of memory, our goal is to allow that application normal access to

resources, while recording such accesses so that they can be reverted, more similar to checkpoint-

restart systems (e.g., [28, 36, 43, 56, 62]). Most relevant are several checkpointing systems that

directly target Java. Nikolov et al. presented recoverable class loaders, allowing for more efficient

reinitialization of classes, but requiring a customized JVM [106], whereas VMVM functions on

any commodity JVM. Xu et al. created a generic language-level technique for snapshotting Java

programs [155], however our approach eliminates the need for explicit checkpoints, instead always

reinitializing the system to its starting state.

Unit Test Virtualization may be more similar to microrebooting, a system-level approach to

reinitializing small components of applications [33], although microrebooting requires developers to

specifically decouple components to enable microrebooting, while Unit Test Virtualization requires

no changes to the application under test.

2.6 Conclusions

Unit Test Virtualization is a powerful new approach to reduce the time necessary to execute long

test suites by reducing the overhead of isolating individual tests. We have shown the applicability

of such an approach by studying 1,200 of the largest Java applications, showing that of the largest,

over 80% isolate their test cases, and in general, 40% do. We implemented Unit Test Virtualization

for Java, creating our tool VMVM (pronounced “vroom-vroom”), and showed that in our sample

of applications, it reduced testing time by up to 97% (on average, 62%), while still executing all

test cases and without any loss of fault finding ability. We are interested in exploring further the

research challenges challenges of implementing Unit Test Virtualization for non-memory managed

languages such as C, as well as the technical challenges in extending VMVM to other languages that

target Java byte code (such as Scala).There is also further room for research in the implementation of

VMVM: for instance, it may be possible to use program slicing to identify initializers for individual

fields, hence relieving the need to reinitialize entire classes at a time.
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Chapter 3

Detecting Data Dependencies Between

Tests

In our outreach efforts after creating VMVM, we came across several companies with test suites that

took over 10 hours to run. While they were initially excited by the possibility of speeding up their

testing process with VMVM, it quickly became clear that VMVM would be unable to help them:

VMVM provides efficient isolation, but the tests were already un-isolated. We found that in extreme

cases of very long running test suites, developers had already abandoned all test case isolation, in

search of faster tests. Even in some of the open source software we studied, we found plenty of

cases of test suites that did not employ any isolation.

So, perhaps, to make testing faster, these developers may turn to techniques such as Test Suite

Minimization (which reduce the size of a test suite, for instance by removing tests that duplicate

others) [38, 39, 78, 79, 87, 88, 137, 152], Test Suite Prioritization (which reorders tests to run those

most relevant to recent changes first) [53, 55, 119, 134, 151], or Test Selection [64, 80, 109] (which

selects tests to execute that are impacted by recent changes). Alternatively, given a sufficient quan-

tity of cheap computational resources (e.g. Amazon’s EC2), we might hope that we could reduce

the amount of wall time needed to run a given test suite even further by parallelizing it.

All of these techniques involve executing tests out of order (compared to their typical execution

— which may be random but is almost always alphabetically), making the assumption that individ-

ual test cases are independent. If some test case t1 writes to some persistent state, and t2 depends on
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that state to execute properly, we would be unable to safely apply previous work in test paralleliza-

tion, selection, minimization, or prioritization without knowledge of this dependency. Previous

work by Zhang et al. has found that these dependencies often come as a surprise and can cause

unpredictable results when using common test prioritization algorithms [163].

This assumption is part of the controlled regression testing assumption: given a program P and

new version P ′, when P ′ is tested with test case t, all factors that may influence the outcome of

this test (except for the modified code in P ′) remain constant [120]. This assumption is key to

maintaining the soundness of techniques that reorder or remove tests from a suite. In the case of

test dependence, we specifically assume that by executing only some tests, or executing them in a

different order, we are not effecting their outcome (i.e., that they are independent).

One simple approach to accelerating these test suites is to ignore these dependencies, or hope

that developers specify them manually. However, previous work has shown that inadvertently de-

pendent tests exist in real projects, can take significant time to identify, and pose a threat to test suite

correctness when applying test acceleration techniques [95, 163]. Zhang et al. show that dependent

tests are a serious problem, finding in a study of five open source applications 96 tests that depend

on other tests [163]. In our own study we found many test suites in popular open source software

do not isolate their tests, and hence, may potentially have dependencies [21].

While a technique exists for detecting tests that are dependent on each other, its runtime is

not favorable (requiring O(n!) test executions for n tests to detect all dependencies or O(n2) test

executions with an unsound heuristic that ignores dependencies between more than two tests) [163],

making it impractical to execute. Moreover, the existing technique does not point developers to the

specific code causing dependencies, making inspection and analysis of these dependencies costly.

Our new approach and tool, ELECTRICTEST, detects dependencies between test cases in both

small and large, real-world test suites. ELECTRICTEST monitors test execution, detecting depen-

dencies between tests, adding on average a 20x slowdown to test execution when soundly detecting

dependencies. In comparison, we found that the previous state of the art approach applied to these

same projects showed an average slowdown of 2,276x (using an unsound heuristic not guaranteed

to find all dependencies), often requiring more than 10308 times the amount of time needed to run

the test suite normally in order to exhaustively find all dependencies. Moreover, the existing tech-

nique does not point developers to the specific code causing dependencies, making inspection and
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analysis of these dependencies costly.

With ELECTRICTEST, it becomes feasible to soundly perform test parallelization and selection

on large test suites. Rather than detect manifest dependencies (i.e., a dependency that changes

the outcome of a test case, the definition in previous work by Zhang et al, DTDetector [163]),

ELECTRICTEST detects simple data dependencies and anti-dependencies (i.e., read-over-write and

write-over-read). Since not all data dependencies will result in manifest dependencies, our approach

is inherently less precise than DTDetector at reporting “true” dependencies between tests, though it

will never miss a dependency that DTDetector would have detected. However, in the case of long

running test suites (e.g. over one hour), the DTDetector approach is not feasible. On popular open

source software, we found that the number and type of dependencies reported by ELECTRICTEST

allow for up to 16X speedups in test parallelization.

Our key insight is that, for memory-managed languages, we can efficiently detect data depen-

dencies between tests by leveraging existing efficient heap traversal mechanisms like those used by

garbage collectors, combined with filesystem and network monitoring. For ELECTRICTEST, test

T2 depends on test T1 if T2 reads some data that was last written by T1. A system that logs all

data dependencies will always report at least as many dependencies as a system that searches for

manifest dependencies. Our approach also provides additional benefits to developers: it can report

the exact line of code (with stack trace) that causes a dependency between tests, greatly simplifying

test debugging and analysis.

3.1 Motivation

To motivate our work, we set out to answer three motivating questions to ground our approach:

MQ1: For those projects that take a long time to build, what component of the build dominates

that time?

MQ2: Are existing test acceleration approaches safe to apply to real world, long running test

suites?

MQ3: Can the state of the art in test dependency detection be practically used to safely apply test

acceleration to these long running test suites?
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3.1.1 A Study of Java Build Times

In our previous work [23], we studied 20 open source Java applications to determine the relative

amount of build time spent testing, finding testing to consume on average 78% of build time. The

longest of these projects took approximately 40 minutes to build, while the shortest completed in

under one minute. Given a desire to target projects with very long build times, we wanted to make

sure that those very long running builds were also spending most of their time in tests. If we are sure

that most of the time spent building these projects is in the testing phase, then we can be confident

that a reduction in testing time will have a strong impact in reducing overall build time.

For this study, we downloaded the 1,966 largest and most popular Java projects from the open

source repository site, GitHub (those 1,000 with the most forks and stars overall, and those 1,000

with the most forks over 300 MB, as of December 23rd, 2014). From these projects, we searched

for only those with tests (i.e., had files that had the word “test” in their name), bringing our list to

921 projects.

Next, we looked at the different build management systems used by each project: there are

several popular build systems for Java, such as ant, maven, and gradle. To measure the per-step

timing of building each of these projects, we had to instrument the build system, and hence, we

selected the most commonly used system in this dataset. We looked for build files for five build

systems: ant, maven, gradle, set, and regular Makefiles. Of these 921 projects, the majority (599)

used maven, and hence, we focused our study on only those projects using maven due to resource

limitations creating and running experiments.

We utilized Amazon’s EC2 “m3.medium” instances, each running Ubuntu 14.04.1 and Maven

3.2.5 with 3.75GB of RAM, 14 GB of SSD disk space, and a one-core 2.5Ghz Xeon processor. We

tried to build each project first with Java 1.8.0 40, and then fell back to Java 1.7.0 60 if the newer

version did not work (some projects required the latest version while others didn’t support it). For

each project, we first built it in its entirety without any instrumentation, and then we built it again

from a clean checkout with our instrumented version of Maven in “offline” mode (with external

dependencies already downloaded and cached locally).

If a project contained multiple maven build files, we executed maven on the build file nearest the

root of the repository, and we did not perform any per-project configuration. Of these 599 projects,

we could successfully build 351.
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Table 3.1: Typical distribution of time among the various phases of Java builds, showing the top 3

phases only for each category.

Phase All Only projects building in:

Projects >10 min >1 hour

Test 41.22% 59.64% 90.04%

Compile 38.33% 26.25% 8.46%

Package 15.49% 1.05%

Pre-Test 13.51%

Table 3.1 shows the three longest build phases, first for all of these projects, and then filtering to

only those projects that took more than 10 minutes to build (69 projects), and those that took more

than one hour to build (8 projects). When looking across all projects, 41% of the build time (per

project) was spent testing, and testing was the single most time consuming build step. When elim-

inating the cases of projects with particularly short build times (those taking less than 10 minutes

to execute all phases of the build), the average testing time increased significantly to nearly 60%.

In the eight cases of projects that took more than an hour to build, nearly all time (90%) is spent

testing. Therefore, to answer MQ1, we find that testing dominates build times, especially in long

running builds. This conclusion underscores the importance of accelerating testing.

3.1.2 Danger of Dependent Tests

Any test acceleration technique that executes only a subset of tests, or executes them out of order

(e.g., test parallelization or test selection) is unsound in the presence of test dependencies. If the

result of one test depends on the execution of a previous test, then these techniques may cause false

positives (tests that should fail but pass) or false negatives (tests that should pass but fail).

Zhang et al. studied the issue trackers of five popular open source applications to determine

if dependent tests truly exist and cause problems for developers [163]. They found a total of 96

dependent tests, 95 of which would result in a false negative when executed out of order (causing a

test to fail although it should pass), and one which produced a false positive when executed out of

order (causing a test to pass when it should fail). Given that test dependencies exist and can cause

tests to behave incorrectly when executed out of order, we conclude that yes: dependent tests pose
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a risk to existing test acceleration techniques.

If we isolate the execution of each of our test cases, then dependencies would not be possible. In

practice, tests are typically written as single test methods, which are grouped into test classes, which

are batched together into modules. Typically each test method represents an atomic test, while test

classes represent groups of tests that test the same component. The module separation occurs when

a project is split into modules, with a test suite for each module.

Since they are typically testing the same component, individual test methods are never isolated,

although sometimes test classes are isolated. Since they represent different modules of code (that

must compile separately), test modules are always isolated in our experience. We are interested in

detecting dependencies both at the level of individual test methods, and also test classes, which also

are the same granularity used by test selection and parallelization techniques. For the remainder of

this thesis, when we refer to individual tests, we will refer to test classes and test modules.

One approach to solving the dependent test problem is to simply isolate each test to ensure

that no dependencies could occur (e.g., by executing each test in its own process, or by using our

efficient isolation system VMVM [20]). However, if the application does not isolate its tests, and

tests currently depend on each other, then tests may present false negatives or false positives (albeit

deterministically between executions) when isolated.

We examined the 351 Java projects that we built, finding that 18 (or 5%) isolated all of their test

classes, and 41 (or 12%) isolated at least some of their test classes (i.e., some classes were isolated

and others were grouped together and executed without isolation). The majority of projects did not

isolate their tests at all, and therefore are prone to test dependencies occurring, posing a risk to test

acceleration.

This result differs from our 2013 study, which showed 41% of 591 Java projects isolated their

tests [20]. This study examined only projects that built with maven, while our previous study (which

was performed through a static analysis of build scripts) examined both maven and ant-building

projects. In our previous study, we found that of our 591 projects, only approximately 10% of those

that used maven to build and run their tests isolated some or all of their tests, a number much more

similar to what we found here.

Due to the risks that they impose and ability to occur (when tests aren’t isolated), our goal

is to detect dependencies between test classes so that we can (1) inform existing test acceleration
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techniques of the dependencies to ensure sound acceleration, and (2) provide feedback to developers

so that they are aware of dependencies that exist.

3.1.3 Feasibility of Existing Approaches

Finally, we study the existing state-of-the-art approach for detecting dependencies between test

cases to determine if it is feasible to apply to long-running test suites.

If we define a test dependence as the case where executing some set of tests T in a different

order changes the result of the test(s), then identifying test dependencies is NP-Complete [163].

This definition for dependence (henceforth referred to as a manifest dependence) is more narrow

than ours (a distinction described later in §3.2), but is the definition used in the state-of-the-art work

by Zhang et al. [163].

To identify all manifest test dependencies in a suite of n tests we would have to execute every

permutation of those n tests, requiring O(n!) test executions, clearly infeasible for any reasonably

large test suite. Moreover, such a technique would only identify that tests are dependent, and not

the specific resource or lines of code causing the dependence, making it difficult for developers

who wish to examine or remove the dependency. In our study that follows, we estimated that this

exhaustive process often would take more than 1 × 10308 times longer than running the test suite

normally. Zhang et al. propose two techniques to reduce the number of test executions needed

to detect manifest dependent tests, both of which they acknowledge may not scale to large test

suites [163].

In one approach, they reduce the search space to O(n2) by suggesting that most dependencies

manifest between only two tests, with no need to consider every possible n size permutation. How-

ever, this is incomplete: there may be dependencies that only manifest when more than two tests

interact. They further reduce the search space by a constant factor (it is still an O(n2) algorithm) by

only checking test combinations that share common resources (defined to be static fields and files).

If two tests access (read or write) the same file or static field, then they are marked as sharing a com-

mon resource, regardless of whether a true data dependency exists or not. Since this very coarse

dependency detection will likely result in many false positives, Zhang et al. manually inspect each

resource to determine if it is likely to cause a dependence, and if not, ignore it in this process. This

heuristic can limit the search space but it still can remain large, and requires manual effort to rule
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Table 3.2: Testing time and statistics for the 10 longest-running test suites studied with unisolated

tests, plus the 4 projects studied in previous work by Zhang et al. [163]. In addition to the normal

testing time, we estimate the time that needed to run all pairwise combinations of tests, and the time

needed to exhaustively run all combinations.* indicates a slowdown greater than 1× 10308.

Project Test Classes Test Methods

Testing

Time

(mins)

Pairwise Test

Slowdown

Exhaustive Test

Slowdown

Class Method Class Method

Pr
oj

ec
ts

se
le

ct
ed

in
§3

.1
.3

camel 5,919 13,562 109.70 1,865X 8,045X *1E+308X *1E+308X

crunch 62 243 17.58 65X 298X 54E+82X 54E+82X

hazelcast 297 2,623 47.37 147X 2,536X *1E+308X *1E+308X

jetty.project 554 5,603 20.08 35X 2,555X 2E+60X 2E+60X

mongo-java-driver 58 576 74.25 58X 649X 4E+76X 4E+76X

mule 2,047 10,476 117.45 250X 3,438X *1E+308X *1E+308X

netty 289 4,601 62.95 11X 2,725X 62E+82X 62E+82X

spring-data-mongodb 141 1,453 121.38 136X 1,715X 3E+230X 3E+230X

tachyon 53 362 34.47 47X 397X 56E+56X 56E+56X

titan 177 1,191 81.82 181X 398X *1E+308X *1E+308X

Average 960 4,069 68.71 279X 2,276X *1E+308X *1E+308X

Z
ha

ng
[1

63
]

joda-time 122 3,875 0.27 627X 418,016X 3E+204X *1E+308X

xml security 19 108 0.37 59X 1,316X 47E+16X 15E+172X

crystal 11 75 0.07 37X 763X 3E+8X 3E+108X

synoptic 27 118 0.03 183X 3,497X 5E+28X 1E+194X

Average 45 1,044 0.18 226X 105,898X 70E+202X *1E+308X

out some resource accesses that will not cause manifest dependencies.

Table 3.2 shows the estimated CPU time needed to detect the dependent tests in each of the

ten longest building projects from our dataset from §3.1.1 with unisolated tests, along with the four

projects studied by Zhang et al. previously [163]. This experiment was performed on Amazon EC2

“r3.xlarge” instances, each running Ubuntu 14.04.1 and Maven 3.2.5 with 4 virtualized Intel Xeon

X5-2670 v2 2.5Ghz CPUs, 30.5 GB of RAM and 80 GB of SSD storage. Subjects ‘jetty’, ‘titan’

and ‘crunch’ were evaluated on OpenJDK Java 1.7.0 60 (the most recent version supported by the

projects) while the others were evaluated on OpenJDK Java 1.8.0 40.

In the case of the four small projects previously studied by Zhang et al, we used their publicly
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available tool to calculate the pairwise testing time, and estimated the exhaustive testing time. In

the case of our ten projects, we estimate all times, due to scaling limitations of the DTDetector tool.

We estimated all times using the following approach: first we measured the time to run each test

normally and then we calculated the permutations of tests to run for each module of each project

(most of these projects had many modules with tests, and since tests from different modules were

isolated, there was no need to include permutations cross-module). We added a constant time of 1

second to each combination of tests executed to account for the time needed to start and stop the

JVM and system under test (a conservative estimate based on our prior results [20]).

We compare this projected time to the actual time needed to run the test suite in its normal

configuration, presenting the slowdown as TDTDetector/Tnormal. Even the pairwise heuristic (ex-

amining only every 2-pair of tests, rather than all possible permutations) can be cost prohibitive:

adding an overhead of up to 418,016X (minimum 298X for test methods), even though there is

no guarantee of its correctness. A large slowdown appears in both long-building and fast building

projects.

For the four projects previously studied by Zhang et al., the dependence-aware approach showed

approximately one order of magnitude less overhead. However, we were unable to evaluate the

dependence-aware technique on our ten projects due to technical limitations of the DTDetector

implementation: running it requires manual enumeration and configuration of each test to run in

the DTDetector test runner. Given the manual effort required and that this heuristic is unsound, we

chose not to implement it for our ten projects.

As expected, there is no situation in the projects that we studied where the fully exhaustive

method (testing all possible permutations) is feasible. Even in the cases of the more modest length

test suites, the overhead of DTDetector is very high. We answer MQ3 and conclude that the ex-

isting, state of the art approach for detecting dependencies between tests can not scale to detect

dependencies in the wild, except when using unsound heuristics on the very smallest of test suites

that took less than a minute to execute normally.
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3.2 Detecting Test Dependencies

While previous work in the area has focused on detecting manifest dependencies between tests

[163], we focus instead on a more general definition of dependence. For our purposes, if T2 reads

some value that was last written by T1, then we say that T2 depends on T1 (i.e., there is a data

dependence). If some later test, T3 writes over that same data, then we say that there is an anti-

dependence between tests T2 and T3: T3 must never run between T1 and T2. Note that any two tests

that are manifest dependent will also be dependent by our definition, but two tests that have a data

dependence may not have a manifest dependence.

Consider the case of a simple utility function that caches the current formatted timestamp at

the resolution of seconds so that multiple invocations of the method in the same second returns

the same formatted string. If the date formatter has no side-effects we can surmise that if several

tests call this method, while there is a data dependency between them (since the cache is reused),

this dependence won’t in and of itself influence the outcome of any tests. Hence, there will be no

manifest dependence between these tests even though there is a data dependence.

While detecting manifest dependencies between tests may require executing every possible per-

mutation of all tests, detecting data dependencies (that may or may not result in manifest depen-

dencies) requires that each test is executed only once. ELECTRICTEST detects dependencies by

observing global resources read and written by each test, and reports any test Tj that reads a value

last written by test Ti as dependent. ELECTRICTEST also reports anti-dependencies, that is, other

tests Tk that write that same data after Tj , to ensure that Tk is not executed between Ti and Tj .

ELECTRICTEST consists of a static analyzer/instrumenter and a runtime library. Before tests

are run with ELECTRICTEST, all classes in the system under test (including its libraries) are in-

strumented with heap tracking code (at the bytecode level — no access to source code is required).

In principle, this instrumentation could occur on-the-fly during testing as classes are loaded into

JVM, however, we perform the instrumentation offline for increased performance, as many external

library classes may remain constant between different versions of the same project. This process

is fairly fast though: analyzing and instrumenting the 67,893 classes in the Java 1.8 JDK took ap-

proximately 4 minutes on our commodity server. ELECTRICTEST detects dynamically generated

classes that are loaded when testing (which were not statically instrumented) and instruments them

on the fly. During test execution, the ELECTRICTEST runtime monitors heap accesses to detect
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dependencies between tests.

Dependencies between tests can arise due to shared memory, shared files on a filesystem, or

shared external resources (e.g. on a network). ELECTRICTEST’s approach for file and network

dependency detection is simple: it maintains a list of files and network socket addresses that are

read and written during each test. ELECTRICTEST leverages Java’s built in IOTrace support to track

file and network access. Efficiently detecting in-memory dependencies is much more complex, and

we focus our discussion to this technique next.

3.2.1 Detecting In-Memory Dependencies

To detect dependencies in memory between test cases, ELECTRICTEST carefully examines reads

and writes to heap memory. Recall that Java is a memory managed language, where it is impossible

to directly address memory. Simply put, the heap can be accessed through pointers to it that already

exist on the stack, or via static fields (which reside in the heap and can be directly referenced).

At the start of each test, we’ll assume that the test runner (which is creating these tests) does not

pass (on the stack) references to heap objects, or at least not the same reference to multiple tests.

We easily verified this safe assumption, as there is typically only a single test runner that’s shared

between all projects using that framework (e.g. JUnit, which creates a new instance of each test

class for each test).

Therefore, our possible leakage points for dependencies between tests will arise through static

fields. static fields are heap roots: they are directly accessed, and therefore the level of granular-

ity at which we detect dependencies.

Unfortunately, to soundly detect all possible dependencies, it is insufficient to simply record

accesses to static fields, since each static field may in turn point to some object which has

other instance fields. If we simply recorded only accesses to static fields (as our previous

work, VMVM did [20]), we wouldn’t be able to detect all data dependencies, since we wouldn’t be

able to follow all pointers. With VMVM, we were forced to treat all static field reads as writes, since

a test might read a static field to get a pointer to some other part of the heap, then write that other

part (indirectly writing the area referenced by the static field).

Our key insight is that we can efficiently detect these dependencies by leveraging several pow-

erful features that already exist in the JVM: garbage collection and profiling. The high level ap-



CHAPTER 3. DETECTING DATA DEPENDENCIES BETWEEN TESTS 44

proach that ELECTRICTEST uses to efficiently detect in-memory dependencies between test cases

is twofold. At the end of each test execution, we force a garbage collection and mark any reachable

objects (that weren’t marked as written yet) as written in this test case. During the following test ex-

ecutions, we monitor all accesses to the marked objects, and if a test reads an object that was written

during a previous test, we tag it as having a dependence on the last test that wrote that object. This

method is similarly used to detect anti-dependencies (write after read).

ELECTRICTEST heavily leverages the JVM Tooling Interface (JVMTI), which provides support

for internal monitoring and is used for implementing profilers and debuggers that interact with the

JVM [108]. While it would be possible (and likely more performant) to implement ELECTRICTEST

by modifying certain aspects of the JVM directly (e.g. to piggy-back generation counters already

used for garbage collection to track which test wrote an object), we chose instead to use the stan-

dard JVMTI interface so that ELECTRICTEST will not require a specialized JVM: it functions on

commodity JVMs such as Oracle’s HotSpot or OpenJDK’s IcedTea.

Aside from bytecode instrumentation, ELECTRICTEST utilizes three key functions of the JVMTI

API: heap walking, heap tagging, and heap access notifications. The heap walking mechanism pro-

vides a fairly efficient means whereby we can visit every object on the heap, descending from root

nodes down to leaves. Heap tagging allows us to associate objects with arbitrary 64-bit tags, use-

ful for storing information about the status of each object (i.e., which test last read and wrote it)

and each static field. Finally, heap access notifications allows us to register callbacks for the JVM

to notify ELECTRICTEST when specific objects or their primitive fields are written or read (when

instance fields are accessed).

Observing New Heap Writes. For each test execution, ELECTRICTEST needs to be able to

efficiently determine what part of the heap was written by that test. We have optimized this pro-

cess for cases where the majority of data created on the heap is not shared between tests (which

we have found to be a common case). As objects are created on the heap during test execution,

ELECTRICTEST does nothing. At the end of each test, after performing a garbage collection, ELEC-

TRICTEST uses JVMTI to scan for all objects that have no tag associated with them (i.e., those not

yet tagged by ELECTRICTEST). Each untagged object is tagged with a counter indicating that it

was created in the current test case. Objects are also tagged with the list of static fields from which

they are accessible. Since the only objects that still exist after the test completes are those that can
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be shared between tests, this method avoids unnecessarily tagging and tracking objects that can’t be

part of dependencies.

Observing Heap Reads and Writes of Old Data. Aside from references on the stack, data on

the JVM’s heap is accessed through fields of objects, static fields of classes, or array elements. The

easiest type of heap access to observe is to the fields of objects, which ELECTRICTEST accomplishes

through JVMTI’s field tracking system. For each class of object created in a previous test but still

reachable in the current test, ELECTRICTEST registers a callback through JVMTI to be notified

whenever any fields of those objects are read or written.

When an object is read or written, ELECTRICTEST checks its tag to see if it was last written or

read in a previous test: if so, then it is marked as causing a dependency on the last test that wrote

that object, and we note this dependence to report at the end of the test. This technique will detect

both data dependencies (read after write) and anti-dependencies (write after read), reporting them

independently.

Detecting reads and writes of static fields and array elements is more complicated, as there is no

similar callback to use. Instead, ELECTRICTEST relies on bytecode instrumentation, modifying the

bytecode of every class that executes to directly notify ELECTRICTEST of reads and writes. In its

instrumentation phase, ELECTRICTEST employs an intraprocedural data flow analysis to reduce the

number of redundant calls that it makes to record reads and writes on the same value by inferring

which arrays and fields have already been read or written before each instruction. ELECTRICTEST

also dynamically detects reads and writes through Java’s reflection interface by intercepting all calls

to the reflection API and adding a call to the ELECTRICTEST runtime library to record the access.

Detecting Dependencies at Static Fields. At the end of each test, we perform a heap walk,

rooted at every static field, visiting all objects that are reachable from each static field. We maintain

a simple stop-list of common static fields within the Java API that are manually-verified as deter-

ministically written and hence may be ignored in this process. These fields include fields such as

System.out, which is the stream handler for standard output. While it is possible to modify these

fields to point to a different object, their default value is always deterministically created. Therefore,

a dependence on the default value of one of these fields can safely be ignored (a dependence on the

non-default value is not ignored), since we can assume that this field would have the same value

independent of which test first accessed it. This mechanism also allows developers to easily filter
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specific fields that are known to be data-dependent between executions, but benign (e.g. internals of

logging mechanisms). A simple configuration file maintains a stop-list of fields for ELECTRICTEST

to ignore. ELECTRICTEST marks all objects at the end of each test with the list of static fields that

point to it.

3.2.2 Detecting External Dependencies

ELECTRICTEST leverages the JVM’s built-in IOTrace features to track access to external resources.

When code attempts to access a file or socket, ELECTRICTEST gets a callback identifying which

file or network address is being accessed. All tests that access the same file or socket are marked as

dependent. This relatively coarse approach is based on our observation that tests infrequently share

access to the same file or network resource — or that if they do, they are dependent. While it would

be possible to have a finer grained approach to detecting these dependencies (e.g. by tracing the

exact data read and written), as our evaluation shows in the following section, the coarse grained

approach is sufficient to allow for reasonable test suite acceleration in the projects we studied.

3.2.3 Reporting and Debugging Dependencies

Once all dependencies have been detected, ELECTRICTEST can be used to help developers analyze

and inspect them. While manual inspection is not required for sound test acceleration (the follow-

ing section will describe how ELECTRICTEST does this automatically), we imagine that in some

cases developers will want to understand the dependencies between tests in their projects. For in-

stance, perhaps some dependencies may be indicative of incorrectly written tests. We expect that in

some cases developers may want to investigate dependencies to make sure that they are intentional.

Alternatively, developers may want to mark some dependencies as benign: perhaps multiple tests

intentionally share resources, but do so in a way that doesn’t create a functional dependence. For

instance, we have seen many test suites that intentionally share state between tests to reduce setup

time: each test checks if the shared state is established and if not, initializes it, and resets it to this

initial state when done.

ELECTRICTEST supports developers analyzing dependencies by providing a complete stack-

trace showing how a dependency occurred. Stack traces are trivially collected when a test reads

data previously written since ELECTRICTEST is detecting data dependencies in real-time, within the
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Table 3.3: Dependency detection times for DTDetector and ELECTRICTEST using the same subjects

evaluated in [163]. We show the baseline runtime of the test suite as well as the running time for

three configurations of DTDetector: the 2-pair algorithm, the dependence-aware 2-pair algorithm,

and the exhaustive algorithm. Execution times for DTDetector on Joda and with the Exhaustive

algorithm (marked with *) are estimations based on the same methodology used by the authors of

DTDetector [163].

Testing Time (Seconds) ELECTRICTEST

Speedup vs

Dep-Aware

# of Tests DTDetector

Project Classes Methods Baseline All 2-pair Dep-Aware Pairs Exhaustive ELECTRICTEST

Joda 122 3875 16 *6,688,250 *657,144 *1E+308 2122 310X

XMLSecurity 19 108 22 28,958 5,500 *3E+174 57 96X

Crystal 11 75 4 3,050 874 *14E+108 22 40X

Synoptic 27 118 2 6,993 2,070 *2E+194 34 61X

executing program and JVM. In this way, ELECTRICTEST provides significantly more information

than previous work in test dependency detection [163], which could only report that two tests were

dependent.

3.2.4 Sound Test Acceleration

Given the list of dependencies between tests, we can soundly apply existing test acceleration tech-

niques such as parallelization and prioritization. Naive approaches to both are straightforward, but

may be sub-optimal. For instance, a naive approach for running a given test is to ensure that all tests

that must run before it have just run (in order).

Haidry and Miller proposed several techniques for efficiently and effectively prioritizing test

suites in light of dependencies [74]. Rather than consider prioritization metrics (e.g. line coverage)

for a single test, entire dependency graphs are examined at once. Their techniques are agnostic

to the dependency detection method (relying on manual specification in their work), and would be

easily adapted to consume the dependencies output by ELECTRICTEST.

We propose a simple technique to improve parallelization of dependent tests based on historical

test timing information. Our optimistic greedy round-robin scheduler observes how long each test
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Table 3.4: Dependencies detected by DTDetector (DTD) and ELECTRICTEST (ET). For ELEC-

TRICTEST, we group dependencies, into tests that write a value which others read (W) and tests

that read a value written by a previous test (R).

Dependencies ET Shared Resource

LocationsET

Project DTD W R App Code JRE Code

Joda 2 15 121 39 12

XMLSecurity 4 3 103 3 15

Crystal 18 15 39 4 19

Syntopic 1 10 117 3 14

takes to execute and combines this data with the dependency tree to opportunistically achieve par-

allelism. Consider the simple case of ten tests, each of which take 10 minutes to run, all dependent

on a single other test that takes only 30 seconds to run (but not dependent on each other). If we have

10 CPUs to utilize, we can safely utilize all resources by first running the single test that the others

are dependent on on each CPU (causing it to be executed 10 times total), and then run one of the

remaining 10 tests on each of the 10 CPUs. The testing infrastructure can then filter the unnecessary

executions from reports.

ELECTRICTEST generates schedules for parallel execution of tests using a greedy version of

this algorithm, re-executing a single test multiple times on multiple CPUs when doing so would

decrease wall time for execution. ELECTRICTEST also can speculatively parallelize test methods

by breaking simple dependencies. When one test depends on a simple (i.e., primitive) value from

another test, ELECTRICTEST will allow the dependent test to run separately from the test it depends

on, simulating the dependent value. If ELECTRICTEST runs the test writing that value and finds

that it writes a different value than was replayed, the pair of tests are re-executed serially. In our

evaluation that follows, we show that most dependencies are on a small number of tests, allowing

this simple algorithm to greatly reduce the longest serial chain of tests to execute in parallel.
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3.3 Evaluation

We evaluated ELECTRICTEST across three dimensions: accuracy, runtime performance, and impact

on test acceleration techniques. For accuracy, we compare the dependencies detected by ELEC-

TRICTEST to the state-of-the-art tool, DTDetector [163]. In terms of performance, we measured the

overhead of running ELECTRICTEST on Java test suites compared to the normal running time of

the test suite. Given that ELECTRICTEST may report non-manifest dependencies (that is, those that

need not be respected in order to maintain the integrity of the test suite), we are particularly inter-

ested in the impact of ELECTRICTEST’s detected dependencies on test acceleration. To determine

the impact of ELECTRICTEST on test acceleration, we measured the longest chain of data depen-

dencies and number of anti-dependencies in each of these large test suites to identify how effective

test parallelization and selection could be when respecting the dependencies automatically detected

by ELECTRICTEST.

All of these experiments were performed in the same environment as our previous experiment in

§3.1.3: Amazon EC2 r3.xlarge instances with 4 2.5Ghz CPUs and 30.5 GB of RAM (more details

on this environment are in §3.1.3).

3.3.1 Accuracy

We evaluated the accuracy of ELECTRICTEST by comparing the dependencies detected between

test methods with those detected by Zhang et al.’s tool, DTDetector [163]. Table 3.4 shows the de-

pendencies detected by each tool. ELECTRICTEST detected all of the same dependencies identified

by DTDetector, plus some additional dependencies. We therefore conclude that ELECTRICTEST’s

recall is at least as good as the existing tool, DTDetector.

We can directly attribute the additional dependencies to the different definition of dependencies

employed by the two systems: ELECTRICTEST detects all data dependencies, whereas DTDetector

detects tests that have different outcomes when executed in a different order (manifest dependen-

cies). Since not all data dependencies will result in manifest dependencies, we expect that ELEC-

TRICTEST reports more dependencies than DTDetector.

For the purposes of test acceleration, given the computational ability to execute DTDetector on

the test suite under scrutiny, it may still be preferable to use it over ELECTRICTEST. However, as
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Table 3.5: Dependencies found by ELECTRICTEST on 10 large test suites. We show the number of

tests in each suite, the time necessary to run the suite in dependency detection mode, the relative

overhead of running the dependency detector (compared to running the test suite normally), the

number of dependent tests, and the number of resources involved in dependencies. For dependen-

cies, we report the number of tests that write a resource that is later read (W), the number of tests

that read a previously written resource (W), and the longest serial chain of dependencies (C). For

dependencies and resources in dependencies, we report our findings at the granularity of test classes

and test methods.

Analysis

Time

(Min)

Analysis

Relative

Slowdown

Test Dependencies # Resources in-

volved at level:Number of Tests Classes Methods

Project Classes Methods W R C W R C Classes Methods

camel 5,919 13,562 2,449 22.3X 1,977 3,465 1,356 4,790 8,399 1,695 4,944 5,490

crunch 62 243 165 9.4X 9 20 6 18 43 18 190 207

hazelcast 297 2,623 1,780 37.6X 174 200 186 1,163 1,261 1,482 941 1,020

jetty.project 554 5,603 184 9.2X 223 261 54 4,016 4,079 424 713 828

mongo-java-driver 58 576 103 1.4X 36 36 34 342 362 357 32 33

mule 2,047 10,476 9,698 82.6X 185 859 119 2,049 6,279 1,400 11,844 12,387

netty 289 4,601 338 5.4X 128 120 63 2,928 3,297 2,926 640 1,104

spring-data-mongodb 141 1,453 364 3.0X 114 130 110 1,407 1,404 1,401 1,469 1,489

tachyon 53 362 89 2.6X 9 13 9 55 93 13 125 157

titan 177 1,191 2,262 27.7X 118 126 46 429 877 40 1,433 1,562

Average 960 4,069 1,743 20.0X 297 523 198 1,720 2,609 976 2,233 2,428
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discussed in §3.1.3, it is often infeasible to use DTDetector on projects of reasonable size. Moreover,

in cases where developers want to debug a dependency, ELECTRICTEST would still be preferable

over DTDetector (which would only tell the developer that two tests had a dependency).

Interestingly, all dependencies detected by ELECTRICTEST were caused by shared accesses to

a very small number of resources (static fields in this case). Most of the data dependences were

caused by references to static fields within the JRE made by JRE code (not by application code),

and all such references were to fields of primitive types, allowing for the opportunistic parallelism

described in §3.2.4. This is also interesting in that it may make manual investigation of dependencies

by developers easier: even if many tests are dependent, the number of actual resources shared is

small.

3.3.2 Overhead

We evaluated the overhead of ELECTRICTEST on the same four subjects studied by Zhang et al.

[163], in addition to the ten large Java projects described earlier in §3.1.3.

We reproduced Zhang et al.’s experiments [163] in our environment to provide a direct perfor-

mance comparison between the two tools. Table 3.3 shows the runtime of the same four test suites

evaluated by Zhang et al., presenting the baseline test execution time, the DTDetector execution

time and the ELECTRICTEST execution time. None of the DTDetector algorithms we studied pro-

vided reasonable performance on the Joda test suite, and the exhaustive technique was infeasible in

all cases. Even in the case of the dependence-aware optimized heuristics (which is not guaranteed

to detect all dependencies), ELECTRICTEST still ran significantly faster than DTDetector.

However, these test suites were all very small, with the longest taking only 22 seconds to run.

We applied ELECTRICTEST to the ten large open source projects with unisolated tests previously

discussed in §3.1.3, recording the number of dependencies detected and the time needed to run the

tool.

Table 3.5 shows the results of this study, showing the number of test classes and test methods

in each project, along with the time needed to detect dependencies, the relative slowdown of depen-

dency detection compared to normal test execution, and the number of dependent tests detected. For

dependencies, we report dependence at both the level of test classes and test methods (in the case

of test classes, we report the dependencies between entire test classes, and not the dependencies
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between the methods in the same test class). We report the number of tests writing values (W) that

are later read by dependent tests (R), as well as the size of the longest serial chain (C). Finally, we

report the distinct number of resources involved in dependencies between tests, both at the test class

and test method level.

In general, far more tests caused dependencies (i.e., wrote a shared value) than were dependent

(i.e., read a shared value). The longest critical path was fairly short (relative to the total number of

tests) in almost all cases, indicating that test parallelization or selection may remain fairly effective.

Given infinite CPUs to parallelize test execution across, the maximum speedup possible is restricted

by this measure.

ELECTRICTEST imposed on average a 20X slowdown compared to running the test suite nor-

mally to detect all dependencies between test methods or classes. In comparison, we calculated

that on the same projects, DTDetector (using the pairwise testing heuristic) would impose on aver-

age a 2,276X slowdown when considering dependencies between test methods, or 279X between

entire test classes (Table 3.3). ELECTRICTEST’s overhead fluctuates with heap access patterns —

in test suites that share large amounts of heap data between tests, ELECTRICTEST is slower. The

overhead also fluctuated somewhat with the average test method duration: since a complete garbage

collection and heap walk had to occur after each test finishes, test suites consisting of a lot of very

fast-executing tests (like in ‘mule’) had a greater slowdown.

We believe that ELECTRICTEST’s overhead makes it feasible to use in practice, and note that it

is still much less than DTDetector’s, the previous system for detecting test dependencies [163].

3.3.3 Impact on Acceleration

Our approach may detect dependencies between tests that do not effect the outcome of tests. That

is, two tests may have a data dependency, but this dependency may be completely benign to the

control flow of the test.

Therefore, we take special care to evaluate the impact of dependencies detected by ELEC-

TRICTEST on test acceleration techniques, notably, test parallelization. In the extreme, if ELEC-

TRICTEST found data dependencies between every single test, techniques like test parallelization

or test selection yield no benefits, since it would be impossible to change the order that tests ran in

while preserving the dependencies.
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We first evaluate the impact of ELECTRICTEST on test acceleration techniques by examining

the longest dependency chain detected in each project, shown under the heading ‘C’ in Table 3.5.

In almost all projects, even if there were many dependent tests, the longest critical path was very

short compared to the total number of tests. For example, while 4,079 of the 5,603 test methods in

the jetty test suite depended on some value from a previous test, the longest dependency chain was

424 methods long. Across all of the projects, the average maximum dependency chain between test

methods was 976 of an average 4,069 test methods and 198 between an average of 960 test classes.

We find this result encouraging, as it indicates that test selection techniques can still operate with

some sensitivity while preserving detected dependencies.

To quantify the impact of ELECTRICTEST’s automatically detected dependencies on test paral-

lelization we simulated the execution of each test suite running in parallel on a 32-core machine,

distributing tests in a round-robin fashion in the same order they would typically run in. In this

environment, there are 32 processes each running tests on the same machine, with each process

persisting for the entire execution.

We simulated the parallelization of each test suite following three different configurations: with-

out respecting dependencies (“unsound”), with a naive dependency-aware scheduler (“naive”), and

the optimistic greedy scheduler described in §3.2.4 (“greedy”). The naive scheduler groups tests

into chains to represent dependencies, such that each test is in exactly one group, and each group

contains all dependencies for each test — this approach soundly respects dependencies but may not

be optimal in execution time. Table 3.6 shows the results of this simulation, parallelizing at the

granularities of test classes and test methods. We show the theoretical speedups for each schedule

provided relative to the serial execution, where speedup is calculated as Tserial/Tparallel. Over-

all, the greedy optimistic scheduler outperformed the naive scheduler in some cases, and at times

provided a speedup close to that of the unsound parallelization. In some cases, the dependency-

preserving parallelization was faster when parallelizing at the coarser level of test classes. In these

cases, there were so many dependencies at the test method level that the schedulers were generating

incredibly inefficient schedules, requiring that some tests were re-executed many times. Also, this

may have occurred in some cases because we assumed that the shortest amount of time that a single

test could take was one millisecond: in the case of a single test class that took one millisecond that

had several test methods, if we parallelized the test methods, we may assume a total time to execute
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Table 3.6: Relative speedups from parallelizing each app’s tests. Shown at the test class (C) and

test method (M) while respecting ELECTRICTEST-reported dependencies (with the naive scheduler

and the greedy scheduler) in comparison to unsound parallelization without respecting dependen-

cies.

Naive ET Greedy ET Unsound

Project C M C M C M

camel 4.6 6.5 6.9 9.8 16.1 18.0

crunch 4.8 3.0 7.8 3.1 12.4 15.5

hazelcast 1.2 2.1 1.2 2.6 12.9 20.0

jetty.project 6.1 6.9 6.1 6.9 9.5 17.0

mongo-java-driver 1.8 1.6 1.8 1.6 8.2 27.8

mule 9.6 7.9 9.6 13.8 17.0 18.0

netty 2.8 6.7 2.8 6.7 2.9 7.0

spring-data-mongodb 1.2 0.8 1.2 0.8 3.5 26.5

tachyon 3.9 4.3 3.9 15.5 5.3 26.9

titan 3.8 6.3 3.8 6.3 8.0 18.2

Average 4.0 5.0 5.0 7.0 10.0 19.0
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longer than just running a test class at once.

We investigated the cases where ELECTRICTEST didn’t do as well, ‘spring-data-mongodb’ and

‘mongo-java-driver’ — both projects had very long dependency chains. Upon inspection, we found

that most tests in each project purposely shared state between test cases for performance reasons.

For instance, the mongo driver created a single connection to a database and reused that connection

between tests to save on setup. The spring based project had a similar pattern.

These cases bring up an interesting point: sometimes tests may be intentionally data-dependent

on each other. Especially in the case of short unit tests all testing the same large functional compo-

nent, it is reasonable to expect that developers would intentionally re-use state to reduce the overall

testing time. Thanks to its integration with the JVM, ELECTRICTEST can easily be configured by

developers to ignore particular dependencies at the level of static or instance fields.

3.3.4 Discussion and Limitations

There are several limitations to our approach and implementation. Because we detect dependencies

of code running in the JVM, we may miss some dependencies that occur due to native code that is

invoked by the test. While ELECTRICTEST can detect Java field accesses from native code (through

the use of field watches), it can not detect file accesses or array accesses from native code. However,

none of the applications that we studied contained native libraries. It would be possible to expand

our implementation to detect and record these accesses by performing load-time patching for calls

to JNI functions for array accesses and system calls for file access to record the event.

When we detect external dependencies (i.e., files or network hosts), we assume that there is

no collusion between externalities. For example, we assume that if one test communicates with

network host A, and another test communicates with network host B, hosts A and B have no

backchannel that may cause a dependency between the two tests. We have not built our tool to

handle specialized hardware devices (other than those accessed via files or network sockets) that

may be involved in dependencies. However, ELECTRICTEST could easily be extended to handle

such devices in the same manner as files and network hosts. Since ELECTRICTEST is a dynamic

tool, it will only detect dependencies that occur during the specific execution that it is used for: if

tests exhibit different dependencies due to nondeterminism in the test, the dependency may not be

detected. ELECTRICTEST could be expanded to include a deterministic replay tool such as [24, 84]
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to ensure that dependencies don’t vary.

There are also several threats to the validity of our experiments. We studied the ten longest

building open source projects that we could find, in conjunction with four relatively short-building

projects used by other researchers. These projects may not necessarily have the same characteristics

as those projects found in industry. However, we believe that they are sufficiently diverse to show

a cross-section of software, and show that ELECTRICTEST works well with both long and short

building software.

We simulated the speedups afforded by various parallel schedules of test suites. Due to resource

limitations, we did not actually run the test suites in parallel. We assume that the running time of

a test is constant, regardless of the order in which it is executed. Therefore we may expect that the

speedup of the unsound parallelization is an over-estimate: if multiple tests share the same state to

save on time running setup code, then it may actually take longer to run the tests in parallel since

the setup must run multiple times. However, we are confident that the various speedups predicted

for dependency-preserving schedules are sound, as we do not believe that other external factors are

likely to impact the running time of each test.

Similarly, we did not directly study the impact of the dependencies we detected on test selection

or prioritization techniques, instead using the maximum dependency size as a proxy for selectivity.

A more thorough study may have instead downloaded many different versions of each program

and performed test selection or prioritization on each version (based on results from the previous

version) and then measured the impact of detected dependencies on these tools. Such a study also

would show the practicality of caching ELECTRICTEST results throughout the development cycle,

so it need not be executed for each build. This caching might significantly reduce the performance

burden of checking for test dependencies with each successive change to the program. Again, we

were limited in resources to perform such a study, and believe that our use of maximum dependency

size as an indicator for selectivity is sufficient.

3.4 Related Work

Test dependencies are one root cause of the general problem of flaky tests, a term used to refer to

tests whose outcome is non-deterministic with regards to the software under test [59, 95, 97]. Luo,
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et al. analyzed bug reports and fixes in 51 projects, studying the causes and fixes of 161 flaky tests,

categorizing 19 (12%) of these to be caused by test dependencies [95]. ELECTRICTEST could be

used to automatically detect and avoid these dependency problems before they result in flaky tests.

ELECTRICTEST is most similar to Zhang et al.’s DTDetector system, which detected manifest

dependencies between tests by running the tests in various orderings [163]. A manifest dependency

is indicated by a test having a different outcome when it is executed in a different order relative

to the entire test suite. This approach required O(n!) test executions for n tests, with best-case

approximation scenarios at O(n2). ELECTRICTEST instead detects data dependencies, where one

test reads data that was last written by a previous test, and does not require running each test more

than once, in a much more scalable approach.

Unlike ELECTRICTEST, which observes and reports actual data dependencies between tests,

Gyori et al.’s PolDet tool detects potential data sharing between tests by searching for data “pollu-

tion” — data left behind by a test that a later test may read (which may or may not ever occur) [73].

PolDet captures the JVM heap to an XML file using Java reflection and compares these XML files

offline, while ELECTRICTEST performs all analysis on live heaps, greatly simplifying detection of

leaked data.

ELECTRICTEST’s technique for dependency detection is more related to work in Makefile

(build) parallelization, such as EMake [110] or Metamorphisis [66]. These systems observe filesys-

tem reads and writes for each step of the build process to detect dependencies between steps and

infer which steps can be paralleled. In addition to filesystem accesses, ELECTRICTEST monitors

memory and network accesses.

While ELECTRICTEST detects hidden dependencies between tests, there has also been work

to efficiently isolate tests to ensure that dependencies do not occur. Popular Java testing platforms

(e.g., JUnit [3] or TestNG [4] running with Ant [9] or Maven [11]) support optional test isolation by

executing each test class in its own process, resulting in isolation at the expense of a high runtime

overhead. Our previous work, VMVM (Chapter 2), eliminates in-memory dependencies between

tests without requiring running each test in its own process, greatly reducing the overhead for iso-

lation. While VMVM preserves the exact same semantics for isolation and initialization that would

come by executing each test in its own process, other systems such as JCrasher [49] also isolate tests

efficiently, although without reproducing the same exact semantics. If tests are already dependent
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on each other, but the goal is to isolate them, then ELECTRICTEST could be used to identify which

tests are currently dependent (and how), allowing a programmer to manually fix the tests so that

they can run in isolation.

Other tools support test execution in the presence of test dependencies. However, all of these

tools require developers to manually specify dependencies, a tedious and difficult process which is

automated by ELECTRICTEST. For instance, both the depunit [2] and TestNG [4] framework allow

developers to specify dependencies between tests, while JUnit [3] allows developers to specify the

order to run tests.

Test Suite Minimization identifies tests cases that may be redundant in terms of coverage metrics

and removes them from the suite. Many heuristics and coverage metrics have been proposed to

minimize test suites, although most approaches are limited by the strength of the coverage criteria

used [38,39,78,79,87,88,137,152]. Test selection approaches the same problem of having too many

tests to run from a different angle by instead selecting only tests to run that have been impacted by

changes in the application code since the last time that tests were executed [15, 30, 65, 70, 80].

Since test selection can be dangerous if additional tests are impacted by changes but not selected

(i.e. due to imprecision in the coverage metrics used to determine impact), some may turn to test

prioritization, where entire test suites are still executed, but tests most likely to be impacted by recent

changes are executed first [53,55,119,134,151]. Haidry and Miller propose several test prioritization

techniques that consider dependencies between tests when performing the minimization, but require

developers to manually specify dependencies [74]. ELECTRICTEST could be combined with each

of these techniques to efficiently and automatically detect dependencies between tests, then safely

accelerate them using test selection or prioritization.

3.5 Conclusions

While testing dominates long build times, accelerating testing is tricky, since test dependencies pose

a threat to test acceleration tools. Test dependencies can be difficult to detect by hand, and prior to

ELECTRICTEST, there was no tool to practically detect them in all but the very smallest test suites

(those which took less than several minutes to run normally). We have presented ELECTRICTEST,

a tool for detecting data dependencies between Java tests with an average slowdown of only 20X,
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where previous approaches would have been completely infeasible taking up to 10308 times longer

to find all dependencies. We evaluated the accuracy of ELECTRICTEST, finding it to have perfect

recall compared to the previous approach in our study. Because not all data dependencies will

influence the control flow of the data-dependent tests, we evaluated the impact of ELECTRICTEST

on test parallelization and selection, finding its dependency chains small enough to still allow for

acceleration. The dependencies detected by ELECTRICTEST can further be used by developers to

gain insight into how their tests interact and fix unintentional dependencies.
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Chapter 4

Dynamic Data-flow Analysis in the JVM

Dynamic taint tracking is a form of information flow analysis that identifies relationships between

data during program execution. Inputs to the application being studied are labeled with a marker

(are “tainted”), and these markers propagated through data flow. Dynamic taint tracking can be used

for detecting brittle tests [85], end user privacy testing [57, 132] and debugging [60, 92].

While the exact semantics for how labels are propagated may vary with the problem being

solved, many parts of the analysis can be reused. Dytan [46] provides a generalized framework for

implementing taint tracking analyses for x86 binaries, but can’t be easily leveraged in higher level

languages, like those that run within the JVM. By operating within the JVM, taint tracking systems

can leverage language semantics that greatly simplify memory organization (such as variables).

However, in Java, associating metadata (such as tags) with arbitrary variables is very difficult: pre-

vious techniques have relied on customized JVMs or symbolic execution environments to maintain

this mapping [34, 85, 103], limiting their portability and restricting their application to large and

complex real-world software.

Without a performant, portable, and accurate tool for performing dynamic taint tracking in Java,

testing research can be restricted. For instance, Huo and Clause’s OraclePolish tool uses the Java

PathFinder (JPF) symbolic evaluation runtime to implement taint tracking to detect overly brittle

test cases, and due to limitations in JPF, could only be used on 35% of the test cases studied.

Other previous general purpose taint tracking systems for the JVM [34, 103] were implemented as

modifications to research-oriented JVMs that do not support the full Java specification and are not

practical for executing production code. While some portable taint tracking systems exist for the
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JVM, they support tracking tags through Strings only [42,76,77], and can not be used to implement

general taint tracking analyses, as they are unable to track data in any other form.

Our dynamic taint tracking system for Java, PHOSPHOR, efficiently tracks and propagates taint

tags between all types of variables in off-the-shelf production JVMs such as Oracle’s HotSpot

and OpenJDK’s IcedTea [19]. PHOSPHOR provides taint tracking within the Java Virtual Machine

(JVM) without requiring any modifications to the language interpreter, VM, or operating system,

and without requiring any access to source code. Moreover, PHOSPHOR can be applied to any com-

modity JVM, and functions with code written in any language targeting the JVM, such as Java and

Scala.

PHOSPHOR’s approach to tracking variable level taint tags (without modifying the JVM) seems

simple at first: we essentially need only instrument all code such that every variable maps to a

“shadow” variable, which stores the taint tag for that variable. However, such changes are actually

quite invasive, and become complicated as our modified Java code begins to interact with (non-

modified) native libraries. In fact, we are unaware of any previous work that makes such invasive

changes to the bytecode executed by the JVM: most previous taint tracking systems for the JVM

use slower mechanisms to maintain this shadow data [149].

We evaluated PHOSPHOR on a variety of macro and micro benchmarks on several widely-used

JVMs from Oracle and the OpenJDK project, finding its overhead to be impressively low: as low as

3.32%, on average 53.31% (and up to 220%) in macro benchmarks. We also compared PHOSPHOR

to the popular, state of the art Android-only taint tracking system, TaintDroid [57], finding that our

approach is far more portable, is more precise, and is comparable in performance.

The contributions of this chapter are:

• A general purpose approach to efficiently storing meta-data for variables in the JVM, without

requiring any modifications to the JVM.

• A general purpose approach to propagating this shadow information in the form of taint track-

ing, again, without requiring any modifications to the JVM.

• A description of our open source implementation of this technique: PHOSPHOR (released on

GitHub [16]).
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4.1 Motivation

Although several existing systems target Java applications (e.g. [42, 76, 77]) by modifying appli-

cation or library bytecode, these are not general purpose: they can only track data flow of Java

Strings (and not of any other type), and therefore are unable to continue tracking those Strings in

the event that they are converted by the application to another representation (such as a charac-

ter array). Moreover, these systems can not track inputs that are not Strings (e.g. integers, or a

language-specific version of String in another, non-Java JVM language).

Several existing systems can perform taint tracking on all data types in Java, but are highly

restricted in portability, functioning only on research JVMs. The JVMs targeted by [103] (Kaffe

[142]) and [34] (Jikes RVM [141]) support only a subset of Java version 6, severely limiting ap-

plicability. We will refer to both of these incomplete JVMs as “research JVMs,” as they do not

implement the complete Java specification, and are principally used within the research community

(rather than in production environments).

We also note that while we focus on dynamic taint tracking, static taint analysis is also a topic

of interest. However, while static taint analysis for Java [12, 133, 144] can determine a priori where

data might leak from a system, it may report false positives from code which can not execute in

practice, and as with all static analysis tools for Java, it must model reflective calls, possibly further

increasing the likelihood of false positives.

There is a need for a general purpose taint tracking system that is sufficiently decoupled from

specific data types to support a wide range of precise and sound analyses (i.e. with no false positives

or false negatives) for applications running on any production JVM. We briefly describe work in

three broad areas that could benefit from PHOSPHOR.

4.1.1 Detecting injection attacks

Taint tracking has been widely studied as a mechanism for improving application security. Taint

tracking can be used to ensure that untrusted inputs from external sources (such as an end-user) are

not used as inputs to critical functions [77,130,135]. For instance, consider an application that takes

an input string from the user, and then reads a file based on that input, returning the file to the user.

An attacker could perhaps craft an input to coerce the application to read and return an arbitrary file,
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including sensitive files such as /etc/passwd. Similar injection attacks can occur when calling

external processes, or performing SQL queries. SQL injection attacks are the fifth most prevalent

type of attack reported by CVE [50].

Taint tracking has been shown to be effective in detecting these sorts of attacks: all user input is

tagged with a taint, and any function that may be an injection point is instrumented to first check its

arguments to ensure that there are no taint tags. Trusted input sanitizers that sit between the user’s

input and the injection point can be used to allow sanitized inputs to flow to possible injection points

(with the assumption that they will correctly sanitize the input).

4.1.2 Privacy testing and fine grained-access control

Taint tracking has also been successfully applied to fine-grained information access control [14,37,

99, 122], and to end-user privacy testing [57]. In both cases, taint tracking is used to improve the

granularity of existing mechanisms for enforcing rules about information flow. For access control,

taint tracking is useful as it allows developers or system administrators to specify access rules based

on data. For instance, administrators may wish to restrict the operations that users may perform on

certain data, without a priori knowledge of where in the application’s control flow that data may

appear from. As another example, an application may include untrusted libraries during run time,

and want to restrict those libraries from accessing sensitive data.

For end-user privacy testing, users specify system-wide taint sources (e.g. on a mobile device,

GPS location, personal contacts, etc.), and destinations, where tainted data must never flow to (e.g.

system-level functions that send data over the network). In this way, users can determine if their

private information is being transferred to remote servers.

Note that both of these applications of taint tracking demand a system that is both performant

and portable. For example, an end-user may wish to observe the privacy violations of an application,

without the prior planning of the application developers to support taint-tracking, and without re-

quiring specialized hardware or a specialized operating system. Both systems would be challenging

to implement in the JVM without a taint tracking system.



CHAPTER 4. DYNAMIC DATA-FLOW ANALYSIS IN THE JVM 64

4.1.3 Testing and Debugging

Taint tracking has also been employed to improve the testing and debugging process. For instance,

taint tracking can be used to increase test coverage when using automated input generators [92]. In

this application, the taint tracking system labels each input, and at each conditional branch, records

what label (or set of labels) the jump condition had. This information is then fed back to the input

generator to focus input generation on those that are known to be restricting control flow. This

approach can also be useful for debugging program failure by using taint tracking to identify which

inputs were relevant to the crash [60].

4.2 Approach

In designing PHOSPHOR, our primary goal was to enable studies and analyses of dynamic data flow

in languages that target the JVM, such as Java, Scala and Clojure. While some of theses analyses

may be targeted towards researchers running experiments in closed environments (in which case,

run time overhead and portability are unlikely to be significant concerns), others may target actual

use by end-users (e.g. the privacy study performed in [57]). Hence, a key goal for PHOSPHOR was

to ensure that it has both relatively low run time overhead and was portable (i.e. could be used on a

variety of JVMs and platforms).

In general, common challenges to building taint tracking systems in support of such analyses

include:

1. Soundness: When working with native binaries, it can be difficult or impossible to determine

the correct level of granularity to assign distinct taint tags. Should each byte be distinctly

tagged? Each word? These questions are difficult if not impossible to answer in the general

case, and can directly impact the soundness of the tool. If a tool is not sound, then it may

incorrectly drop taint information from variables.

2. Precision: In the process of improving soundness of a taint tracking system, systems often

trade higher accuracy for lower precision, leading to over tainting, where taint tags are propa-

gated between values even when there is no actual connection between them. In some cases,

over tainting can lead to significant decreases in precision, with values marked by the wrong
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tag. If a tool is not precise, it may incorrectly add additional taint information to variables.

3. Portability: Most taint tracking systems require access to application source code [91, 156],

require modified operating systems [146, 160] or modified language interpreters [14, 34, 72,

103, 105].

4. Performance: Taint tracking often adds a very high performance overhead (commonly show-

ing slowdowns of 1x-30x depending on the tool and benchmark), limiting its use in deploy-

ment environments.

Our approach to taint tracking uses variable-level tracking, inspired by previous work that mod-

ified the interpreter to support taint-tracking in Java [34, 57, 103]. A key observation is that when

operating within the JVM (e.g. in Java, Scala and others), we can bypass the common challenges

related to accuracy and precision: variables are clear units of data, and because code can not access

arbitrary memory addresses, we can be certain that if we associate a taint tag with a variable, any

access to that variable can be mapped to the taint tag. Therefore, this design choice can eliminate

some difficulties associated with maintaining precision in taint tracking that typically affect systems

operating at a lower level (e.g. at the OS level [146, 160], or via binary instrumentation [40, 46]).

Most taint tracking systems for other memory managed languages (e.g. targeting JavaScript

[72], php [130, 157], Dalvik [57], Java [34, 103] and others), rely on modifications or extensions

to the interpreter, which allows taint tracking code access to significantly lower level memory op-

erations than taint tracking code running within a managed environment like the JVM. However,

in order to ensure portability, we designed PHOSPHOR to run entirely within the confines of an

unmodified JVM.

The decision to run within the confines of code executing in the JVM (and not inside of the

JVM’s interpreter) raises several unique challenges because our taint tracking instrumentation is

subject to the same memory management restrictions that any other code is. The prime challenge in

creating PHOSPHOR (and our key contribution), therefore, is to efficiently maintain a mapping from

values to taint tags within the confines of a memory-managed environment.
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Fig. 4.1: The high level architecture of PHOSPHOR

4.2.1 JVM Background

Before describing how PHOSPHOR works, we first provide a brief background on data organization

within the JVM (based on the JVM specification, version 7 [94]).

There are eight “primitive” types supported by the JVM, all of which are stored and passed

by value: boolean, byte, character, integer, short, long, float, and double. In addition to primi-

tive types, the JVM supports two reference types: objects and arrays. Objects are instances of

classes, which may contain fields (which are members of each instance) and static fields (which

are members of each class). Arrays can be declared to store either reference types (which would

include other arrays) or primitive types. Reference types can be cast to a super type, which affects

what operations are available on that instance of that type, and are all sub-types of the root type,

java/lang/Object.

The JVM is a stack machine, with stack memory split into two components: the operand stack

and the local variable area. The operand stack is used for passing operands to instructions and

can only be manipulated with stack operators, while the local variable area is indexed. Method

arguments are passed by placing them on the operand stack, and are accessed by the receiver as

local variables. The combination of the operand stack and local variable area make up a JVM

frame. When a method is invoked, a new frame is created for that method, and when it returns, the

frame is destroyed. It is impossible for code can to access any frame other than the current frame.

4.2.2 High Level Design

Figure 4.1 shows a high level overview of our approach to portable taint tracking with PHOSPHOR:

we modify all bytecode running within the JVM, and then run that code in a completely unmodified

JVM, running on an unmodified operating system, with commodity hardware.



CHAPTER 4. DYNAMIC DATA-FLOW ANALYSIS IN THE JVM 67

1 / / O r i g i n a l Code

2 i n t foo ( i n t i n ) {

3 i n t r e t = i n + v a l ;

4

5 r e t u r n r e t ;

6 }

(a) The original class

1 / / With I n t Tag T a i n t i n g

2 T a i n t e d I n t W i t h I n t T a g doMath$$PHOSPHOR(

i n t i n t a g , i n t i n ) {

3 i n t r e t = i n + v a l ;

4 i n t r e t t a g = i n t a g | v a l t a g ;

5 r e t u r n T a i n t e d I n t W i t h I n t T a g .

6 va lueOf ( r e t t a g , r e t ) ;

7 }

(b) The modified class, ready to track taint tags

Fig. 4.2: A basic example of the sort of transformations that PHOSPHOR applies at the bytecode

level to support taint tracking. Underlined lines call out to changes made by PHOSPHOR. Example

shown at the source level, for easier reading.

PHOSPHOR’s taint tracking is based on variable-level tracking, storing a tag for every variable.

When operations are performed on these variables, PHOSPHOR combines their taint tags to create

the new tag for the resulting combination.

PHOSPHOR modifies bytecode to include storage for taint tags and to include instructions to

propagate these tags. We use the ASM [31] bytecode manipulation library to insert our instrumen-

tation and support all recent versions of the Java bytecode specification (up to version 8). This

instrumentation normally occurs offline (before execution) but in the event that a class is defined at

run time (and hence, wasn’t instrumented), PHOSPHOR intercepts all classes as they are loaded, en-

suring that every single class is instrumented. The instrumentation process is performed only once

per class and is relatively quick, requiring only 1.4 minutes to instrument the entire Java 7 JRE (ap-

proximately 19,000 classes). Figure 4.2 shows an example of the sorts of transformations that are

applied to bytecode. Note that our example is shown as Java source code for ease of understanding,

but in reality, all transformations occur at the level of Java bytecode.

At the high level, PHOSPHOR adds a field to every Class to track the tag of instances of that

Class, and adds a shadow variable for every variable (be they local variables, method arguments,

or fields) that is not an instance of a Class to track that variable’s tag. When it’s impossible to add

such a shadow variable (e.g. to pass the tag of a primitive return value from a method), PHOSPHOR

combines the taint tag with the value into a container class, which encapsulates both the tag and
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the value into one reference (which is then the return value). Formally, PHOSPHOR consults the

following five properties to determine how to store or retrieve the taint tag for a variable:

Property 4.2.1. Let R be a reference to an instance of an Object. Then the taint tag of R is stored

as a component of the object to which R points.

Property 4.2.2. Let A be a reference to an array of references. Then the taint tag of array element

A[i] is stored as a component of the object to which A[i] points.

Property 4.2.3. Let V be a primitive value. Then the taint tag of V is stored as a shadow value next

to V .

Property 4.2.4. Let A be a primitive array reference. Then a shadow array As is stored next to A,

and the taint tag of primitive value A[i] is As[i].

Property 4.2.5. Let A be a primitive array reference and As be the reference to its shadow array. If

A is stored as the type Object, then A and As are first boxed into a container, as C(A,As).

Note that by these properties, every single variable has its own distinct taint tag: each element in

an array is tracked distinctly (unlike in other taint tracking systems, such as [34,57], which sacrifice

this precision for added performance by storing only a single taint tag for all of the elements in

an array). The implementation and rationale behind each of these properties is described in much

greater detail in §4.3.1.

These properties are also enforced when programs dynamically access fields and invoke meth-

ods via Java’s reflection interface, which we patch to propagate taint tags.

PHOSPHOR can automatically apply a taint tag to variables that are returned from pre-defined

taint “source” methods (for instance, methods that take user input). When applying taint-tracking

transformations to bytecode, PHOSPHOR consults a configuration file for a list of methods that

should result in their return value (or arguments) being tainted. PHOSPHOR also consults the same

configuration file for a list of methods that should check their arguments to determine if any of

them are tainted (a “taint sink,” for instance, a method that executes a SQL command), logging the

occurrence or raising an exception in the case that they are tainted.

For more complicated semantics to mark variables with taint tags and respond to variables that

are marked, PHOSPHOR provides a simple API, exposing the simple functions setTaint and
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getTaint, which respectively set the taint tag of a variable and retrieve the taint tag of a variable.

These functions are useful for implementers of analyses that build upon PHOSPHOR, and are not

intended to need to be inserted into any target application code directly.

PHOSPHOR represents the taint of a variable as a 32-bit long bit vector, allowing for a total of 32

distinct taints (similar to other systems, such as TaintDroid [57]. When taint tags are combined, they

are bit-wise OR’ed. Alternatively, a developer could specify more complex logic for generating and

combining taint tags, allowing for 232 possible taint tags, although with perhaps greater overhead

(an evaluation which we leave for future work and consider out of scope). We also have anecdotal

evidence showing that PHOSPHOR can use any arbitrary type (e.g., objects) to represent the taint tag

of a variable — not just a primitive number.

4.2.3 Approach Limitations

There are several limitations to our approach. As PHOSPHOR functions within the confines of the

JVM, it is unable to track data flow through native code executing outside of but interacting with

the JVM. We have implemented the current best-practices for handling such flows (i.e., assuming

that all native code propagates taints from all inputs to all outputs), discussed further in §4.3.3.

Next, since our approach requires modifying the bytecode of applications, this could modify the

behavior of applications that somehow use that bytecode as an input, since the bytecode will have

been modified by PHOSPHOR to include taint propagation instructions. Typically in Java, such

inspection is done using the Reflection interface, which our implementation patches to hide all

traces of PHOSPHOR. PHOSPHOR works with applications that use Java’s Reflection to read their

bytecode, but does not work with applications that use other, non-standard approaches to read their

code.

4.3 Implementation

PHOSPHOR consists of an instrumenter that modifies each Java class (either offline, or dynamically

at load-time by intercepting classes as they are loaded) to add additional variables and instructions

to perform taint tracking, and a small runtime library. The runtime library is very small, and consists

only of several helper methods used for ensuring that taint tags are tracked through calls to Java’s
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reflection interface. There are no central data structures that store taint tags: as shown in Figure

4.2(b), taint tags are stored in variables adjacent to the variables that they are tracking. This lack of

centralized structure allows PHOSPHOR to be both performant and thread-safe.

4.3.1 Taint Tag Storage

Based on the discussion above of memory organization within the JVM, we consider shadow vari-

able storage (for taint tags) in four different areas: as fields, as local variables, on the operand stack,

and as method return values. Moreover, based on the discussion of types in the JVM, we consider

five broad categories of variables for which we may need different taint tag representations: prim-

itives, primitive arrays, multi-dimensional primitive arrays, arrays of other references, and general

references. For each of these types, we will enumerate rules for their taint tag storage.

4.3.1.1 Reference Types

PHOSPHOR stores one taint tag per-variable, so there is no tag stored for each reference to a variable:

the taint tag of a reference is simply the tag of the value that it points to. Storing the taint tag for

references that point to instances of classes (i.e. objects) is straightforward: PHOSPHOR adds a new

field to that type, such that each instance of the class has an extra field in which we can store the taint

tag. This model extends to support arrays of reference types, since the taint tag of each reference

type in the array is stored directly as part of the reference type. From these two observations, we

can derive Properties 4.2.1 and 4.2.2.

However, there are reference types for which PHOSPHOR can not add an extra field to track the

taint tag of that type: notably, primitive multi-dimensional arrays. Recall that primitive arrays are

reference types, so a multi-dimensional primitive array must be an array of reference types. Since

arrays are not objects, we can not simply add a field to that type: instead, we create a new class

to box the primitive array and its taint tag into a single type. For example, an N -dimension array

char[][][], will be mapped to an (N − 1)-dimension array of MultiDimensionCharArray[][],

where MultiDimensionCharArray is a class that has two fields: a char[] field to store the value

of the final dimension of the array, and an int[] field to store its taint tags. All references to multi-

dimension primitive arrays are remapped to access the array through the container, ensuring that

Property 4.2.2 continues to hold.
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4.3.1.2 Primitives and Primitive Arrays

For variables that are primitives (or primitive arrays), we cannot simply add an extra field to the

type to store the tag, since there is no structure exposed within the JVM that represents these types

that we could modify. Instead, PHOSPHOR stores the taint tag (or a reference to the taint tag) in

a shadow, alongside the actual value (Properties 4.2.3 and 4.2.4). This subsection will describe

exactly where that shadow is stored.

For variables that are stored as fields in a class, PHOSPHOR creates a shadow field to store

the taint tag for that element. For instance, if a class has a member private int val, then

PHOSPHOR adds another field: private int val tag.

To support primitive values and primitive arrays as local variables, PHOSPHOR creates an ad-

ditional local variable to store the taint tag, for each local variable that represents a primitive or

primitive array. Primitive and primitive array method arguments are supported similarly to local

variables: we create shadow arguments to track the taint tag for each primitive and primitive array

argument.

Primitive and primitive array return types are supported by boxing the value and its taint tag

into a container just before return. PHOSPHOR changes the return type of all such methods to be the

appropriate container, and modifies the return instruction to first construct the container, and then

return it (instead of just returning the primitive value or primitive array reference). Just after the call

site to a method that returns a container type, the container is unboxed, leaving the primitive return

value on the stack, with the taint tag just below it. To reduce overhead, each method pre-allocates

containers at its entry point for the methods that it will call, passing these containers to each method

called. In this way, if a method makes several calls to another method which returns a primitive

value, only one container is allocated, and is re-used for each call.

To support primitive values and primitive arrays on the operand stack, PHOSPHOR instruments

every stack operator to ensure that before any primitive value or primitive array reference is pushed

onto the stack its taint tag is pushed as well, and just after a primitive value or primitive array

reference is popped, its taint tag is as well.

PHOSPHOR creates these extra fields and variables as necessary based on the type information

for the field or variable. However, note that because primitive arrays are reference types, they are

assignable to fields and variables with the generic type Object (for which PHOSPHOR would not
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1 p u b l i c S t r i n g l e a k S t r i n g ( S t r i n g i n ) {

2 S t r i n g r = ” ” ;

3 f o r ( i n t i = 0 ; i < i n . l e n g t h ; i ++)

4 {

5 s w i t c h ( i n . c h a r A t ( i ) ) {

6 c a s e ' a ' :

7 r +=” a ” ;

8 b r e a k ;

9 . . .

10 c a s e ' z ' :

11 r +=” z ” ;

12 b r e a k ;

13 }

14 }

15 r e t u r n r ;

16 }

Fig. 4.3: Simple code showing the inadequacy of data flow tag propagation: the output will have no

taint tag, even if the input did. Control flow propagation, however, will propagate these tags.

have a priori created a shadow variable). PHOSPHOR accounts for this situation by automatically

boxing primitive arrays with their taint tags before assigning them to the generic type Object, and

by automatically unboxing them when casting from the generic type Object back to a primitive

array.

4.3.2 Propagating Taint Tags

The remainder of this section will describe the specific changes made to application and library

bytecode to propagate taint tags. A complete listing of all bytecodes available and the modifications

that PHOSPHOR makes is available in the appendix to this thesis, in Table 1.

PHOSPHOR can combine taint tags in one of two different ways. In traditional tainting mode,

taint tags are 32-bit integers which are combined through bit-wise OR’ing, allowing for a maximum

of 32 distinct tags, with fast propagation. In multi-taint mode, taint tags are objects which contain

a list of all other tags from which that tag was derived, allowing for an arbitrary number of objects

and relationships.

Like most taint tracking systems, PHOSPHOR propagates taint tags through data flow operations
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(e.g. assignment, arithmetic operators, etc.). However, depending on the goals of the analysis, data

flow tracking may be insufficient to capture all relationships between variables. Figure 4.3 shows an

example of a short code snippet will return a string identical to the input, but without a taint tag (if

tags are tracked only through data flow operations), since there is no data flow relationship between

the input and output.

PHOSPHOR optionally propagates taint tags through control flow dependencies as well (“im-

plicit flow”), which would be necessary in the case of the code in Figure 4.3 to propagate tags

through the method. Our implementation of control flow dependency tracking mirrors that of prior

work from Clause et al [46], and leverages a static post-dominator analysis (performed as part of

PHOSPHOR’s instrumentation) to identify which regions of each method are effected by each branch.

Each method is modified to pass and accept an additional parameter that represents the control flow

dependencies of the program to the point of that method. Within the method execution, PHOSPHOR

tracks a stack of dependencies, with one entry for each branch condition that is currently influencing

execution. When a given branch no longer controls execution (e.g. at the point where both sides

of the branch merge), that taint tag is popped from the control flow stack. Before any assignment,

PHOSPHOR inserts code to generate a new tag for that variable by merging the current control flow

tags with any existing tags on the variable.

Method and Field Declarations: PHOSPHOR rewrites all method declarations to include taint

tags for each primitive or primitive array, and to change all primitive and primitive array return types

to be container types, which include the taint tag on the primitive value in addition to the actual

value. All references to multi-dimension primitive arrays (in both fields and method descriptors)

are replaced with container types. PHOSPHOR adds a new instance field to every class, used to track

the taint tag of that instance. Finally, for every field that is a primitive or primitive array, PHOSPHOR

adds an additional field that stores the taint of that primitive or primitive array.

Array Instructions: For all array load or store instructions, PHOSPHOR must remove the taint

tag of the array index from the operand stack before the instruction is executed. For stores to

primitive arrays, PHOSPHOR inserts instructions to also store the taint tag of the value being stored

into the taint array. For loads from primitive arrays, PHOSPHOR similarly inserts instructions to

load the taint tag from the taint array. For stores to reference type arrays, if the item being stored is

a primitive array, PHOSPHOR inserts code to box the array and tag into a container before storing it.
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PHOSPHOR instruments instructions that create new one-dimension primitive arrays with addi-

tional instructions to also create a taint tag array with the same length. For instructions that create

multi-dimension primitive arrays, PHOSPHOR modifies them to instead create arrays of our contain-

ers (as discussed in §4.3.1.1).

The last array instruction that PHOSPHOR instruments is ARRAYLENGTH, which pops an array

off of the operand stack and pushes onto the stack the length of that array. For this instruction,

PHOSPHOR adds instructions to pop the taint array from the stack (if the array is a primitive array),

and to add an empty taint (i.e. 0) to the returned value (we consider array length to be a control flow

operation, and do not propagate any array taints into the taint of the length of each array).

Local Variable Instructions: PHOSPHOR adds an instruction to store a variable’s taint tag

immediately after each instruction that stores a primitive or primitive array variable. Similarly, for

instructions that store object references to local variables, if the variable type is a primitive array,

PHOSPHOR also stores the taint tag array for that variable. If the variable type is not a primitive array

(i.e. Object), but the item being stored is a primitive array, then PHOSPHOR inserts instructions to

first box the array into a container, before storing the array. For instructions that load local variables

onto the operand stack, if the variable is a primitive or primitive array, then just before the variable is

loaded, PHOSPHOR loads the pre-existing shadow variable (containing the taint tag) onto the stack.

Method Calls: PHOSPHOR instruments every method call, first modifying the method descrip-

tor (i.e. the arguments and return type) to pass taint tags. Next, PHOSPHOR ensures that for every

parameter of the generic type Object, if the parameter being passed is a primitive array, its taint

array is boxed with it into a container. If the method is an instance method (i.e. has a receiver in-

stance), PHOSPHOR ensures that if the receiver is a primitive array, its taint tag is dropped from the

operand stack before the call. Immediately after the method call, if its return type had been changed

to a container type, instructions are inserted to unbox the container, placing on the top of the stack

the return value followed by the taint tag.

Method Returns: PHOSPHOR ensures that all return instructions that would otherwise return

a primitive value or reference to a primitive array first box the primitive or primitive array with its

taint tag(s) before returning.

Arithmetic Instructions: For arithmetic operators that take two operands (e.g. addition, sub-

traction, multiplication, etc), each operator expects that the top two values on the stack are the
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operands, yet with PHOSPHOR, the top value will be the first operand, while the second will be the

taint tag of the first operand, and the third the second operand, with the fourth its taint tag (as shown

in Figure 4.4). PHOSPHOR prepends each arithmetic operator with instructions to combine the two

taint tags (by bitwise ORing them), placing the new taint tag under the two (intended) operands,

allowing the arithmetic to complete successfully.

Type Instructions: The JVM provides the instanceof instruction, which pops an object

reference off of the stack and returns an integer indicating if that reference is an instance of a

specified type. For this instruction, PHOSPHOR inserts a null taint tag (i.e. “0”) under the return

value of the instruction (similar to array length, we consider this to be a control flow operation).

Additionally, if the reference type on the operand stack is a primitive array, then its taint tag array

is dropped from the stack. If the type argument to instanceof is a multidimensional primitive

array, then PHOSPHOR changes the argument to instead refer to the appropriate container type (since

again, we have eliminated multidimensional primitive arrays).

The other type instruction that PHOSPHOR instruments is the checkcast instruction, which

ensures that the object reference at the top of the stack is an instance of a specified type, throwing

an exception if not. PHOSPHOR rewrites this instruction to be aware of our boxed container types:

if the cast is to a one-dimension primitive array type and the operand is a container, PHOSPHOR

first unboxes the array and its taint tag array. If the cast is to a multi-dimension primitive array,

then PHOSPHOR changes the type cast to be to the appropriate container type (since PHOSPHOR

eliminates multi-dimensional primitive arrays), leaving it boxed.

Stack Manipulators: There are several instructions that directly manipulate the order of ele-

ments on the operand stack, for instance, swapping the top two values. In all cases, PHOSPHOR

modifies each instruction based on the contents of the operand stack just before execution. For

O1
T1
O2
T2

O1 (op) O2
T1 OR T2

Pre-invoke arithmetic
instruction “op”

Post 
invocation

Fig. 4.4: Operand stack before and after performing two-operand arithmetic. The actual operands

are shown as O, and their taint tags as T .
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instance, if an instruction will swap the top two elements on the stack, and the top element is a

primitive value (with a taint tag stored beneath it), but the element below that is an object refer-

ence (hence, with no taint tag beneath it on the stack), PHOSPHOR removes the swap instruction,

replacing it with instructions to place the top two elements beneath the third.

Locking Instructions: There are two instructions in Java bytecode related to locking, one to

procure a lock on an object reference, and one to release a lock already held on an object reference.

In both cases, PHOSPHOR checks the top stack value, and if it is a one dimensional primitive array

(which implies that there is a taint tag array on the stack beneath it), PHOSPHOR pops the taint tag

array after the lock is acquired or released.

Jump Instructions: The JVM provides several jump instructions, jumping on either one or two

object references or primitive values. For those that jump based on primitive values, in all cases

PHOSPHOR first removes the taint tag from the value(s) being checked before the jump. For those

that jump based on object references, PHOSPHOR removes the taint array tag, if the value(s) being

checked before the jump are references to one dimensional primitive arrays.

4.3.3 Native Code and Reflection

As PHOSPHOR is implemented within the JVM, it is restricted from propagating taint tags in code

that executes outside of the JVM. The JVM allows for “native” methods, which are implemented in

native machine code, and can be called by normal code running inside of the JVM. We follow the

same approach used by TaintDroid [57] for patching taint flow through these methods: we surround

each with a wrapper that can propagate taint tags from the arguments of the method into the return

value. As with TaintDroid, our implementation currently assigns the taint tag of the return type to

be the union of the taint tags of all primitive, primitive array and String parameters. The wrapper

is also necessary to wrap and unwrap values from their container types. For example, if a native

method returns a primitive integer, the calling code will expect that the return value will actually be

a BoxedTaintedInteger (rather than the primitive integer that it would normally return).

Java supports reflection, a feature that allows code to dynamically access and invoke classes and

methods. PHOSPHOR patches all reflective calls to propagate taint tags as necessary, following the

exact same semantics used for regular method calls and field accesses. PHOSPHOR also patches

calls that inspect the fields and methods that exist in classes to hide any artifacts of the taint tracking
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1 p u b l i c s t a t i c I n t e g e r va lueOf ( i n t i ) {

2 a s s e r t I n t e g e r C a c h e . h igh >= 127 ;

3 i f ( i >= I n t e g e r C a c h e . low && i <= I n t e g e r C a c h e . h igh )

4 r e t u r n I n t e g e r C a c h e . cache [ i + (− I n t e g e r C a c h e . low ) ] ;

5 r e t u r n new I n t e g e r ( i ) ;

6 }

Fig. 4.5: Java’s Integer.valueOf method, a very commonly used method with an indirect data flow

caused by caching. If the input is between IntegerCache.low and IntegerCache.high, the output will

have no taint tag, even if the input did. PHOSPHOR uses a special case to patch it.

process, removing additional fields and arguments as applicable.

4.3.4 Java-Specific Features

While our taint tracking process is generic to any language running in the JVM, we found that its

support of Java could be significantly enhanced with several optimizations and modifications. For

instance, both JVMs that we evaluated (OpenJDK and Oracle’s HotSpot JVM) make implicit as-

sumptions about the internal structure of several classes (notably the super-type: java.lang.Object,

and several of the classes internally used as containers for primitive types: java.lang.Character,

java.lang.Byte, java.lang.Boolean, and java.lang.Short), which would prevent

PHOSPHOR from adding taint storage fields to these classes. PHOSPHOR does not track taint tags

on raw instances of the class java.lang.Object, which has no fields itself, and therefore, we

do not believe is relevant in data flow analyses. For the four restricted primitive container types,

PHOSPHOR instead stores the taint tag for instances of these types in a HashMap (similar to the

technique used by [149]), hence avoiding the need to modify the internal structure of the class.

Storing taint tags in a HashMap is much slower than as individual variables (when using it to store

all taint tags, [149] showed a slowdown of up to 526x).

We also make a small modification to support a very commonly used indirect data flow in Java.

Primitive container types can be very frequently used in Java, and are used within the JVM when

necessary to represent a primitive value as an instance of a reference type. For efficiency, for each

primitive type there is a cache of instances of the container class for all low values of that type.

Listing 4.5 reproduces the code used to fetch an instance of class Integer. Due to the implicit
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flow in lines 3-4, if an integer is found in the cache, then its taint tag is dropped. If the integer

does not exist in the cache, then the taint tag will be propagated into the new instance of Integer

in line 5. PHOSPHOR modifies the code that calls the valueOf method for each of the primitive

container types to ensure that if the primitive argument has a non-zero taint tag, a new instance of

the container is created with the tag, hence continuing to propagate taints.

4.3.5 Optimizations

The entire instrumentation process is implemented in a stream-processing manner: for each byte-

code instruction, PHOSPHOR outputs new instructions, without context of instructions that previ-

ously were output, or those that will be output next. After the instrumentation process, we add

several short optimization passes to provide a small amount of context to PHOSPHOR, greatly re-

ducing the size of outputted methods.

First, PHOSPHOR detects instances where taint tags may be loaded to the stack, then immedi-

ately popped: for instance, variables loaded to the operand stack and used as operands for jump

conditions. PHOSPHOR simply ignores loading the taint tags in these places.

Next, PHOSPHOR detects large methods that perform no instructions other than to load con-

stants into arrays. Rather than initialize the taint tag for each constant as each constant is loaded,

PHOSPHOR instead reasons that all tags will be 0, and can instead rapidly initialize them all at once,

rather than initializing them one-by-one. This optimization was necessary in several cases in order

to ensure that the generated methods remained within the maximum method size (64 kilobytes; this

limitation is based on the size of the JVM’s internal program counter).

Finally, after all instrumentation has been completed, PHOSPHOR scans each generated method

for simplifications. For example, given our rules outlined in the previous section, for any method

that returns a primitive value, instructions are inserted after its call site to unbox the taint tag and

return value from the return container. However, if both of those values will be immediately dis-

carded from the stack (i.e. pop’ed), then we can simplify the instructions that load and then discard

the return value and return taint tag to simply not load the value or tag.

To some extent, these optimizations can also be achieved by the JIT compiler as it compiles the

bytecode, but we have found that performing them in advance still improves run time (and in some

cases, is necessary to ensure that the generated code fits within the maximum method size).
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4.3.6 Application to Android and Dalvik

Although we designed PHOSPHOR for the JVM, we recognized that it could also be applicable

to the language virtual machine used by Android, the Dalvik Virtual Machine (DVM). Nearly all

applications for Android devices are written in Java, which is then compiled to Java bytecode and

translated into the DVM’s form of bytecode, called dex.

Because it executes a translated form of Java bytecode, and PHOSPHOR operates at the bytecode

level, we can apply PHOSPHOR to Android and the DVM by inserting taint propagation logic in the

intermediate Java bytecode before it is translated to dex. PHOSPHOR could even be applied without

needing this intermediate Java bytecode, by using a tool such as [51], which translates dex bytecode

back into Java bytecode. Note that although it runs a translated form of Java bytecode, the DVM

should not be confused with a JVM; our primary target remains the JVM, and any modifications to

the DVM or access to intermediate compiled code described in this subsection are unnecessary for

JVM taint tracking.

There are many optimizations that the DVM performs beyond those of the JVM, perhaps due to

the tight vertical integration of Android devices (from operating system to interpreter to language

to APIs and applications). Several of these optimizations pose significant challenges for PHOS-

PHOR, as they significantly increase coupling between the interpreter and other classes, beyond

those discussed in §4.3.4. Notably, the DVM provides very efficient native implementations of the

java.lang.String methods charAt, compareTo, equals, fastIndexOf, isEmpty

and length. These implementations rely on compile-time knowledge of the run-time organization

of the class java.lang.String (i.e. the byte-level offsets of each field). Further, the DVM

assumes in several cases that all internal primitive container types (not just the several assumed by

the JVMs evaluated) contain only a single field containing the primitive value, and no other fields.

While we could in principle support taint tracking instances of these classes by storing their taint

tag in a HashMap (as for the several classes similarly restricted in the JVMs evaluated), doing so

for all of the tightly coupled classes would have posed a prohibitive overhead.

Instead, we made several very small modifications to the Dalvik VM to decouple the VM from

the implementation of these classes. Note that although we chose to modify the DVM in this case,

the number of changes is significantly smaller than those necessary for TaintDroid, as we are not

modifying the interpreter to perform taint tracking, but only to decouple it. These changes required
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modifying seven constants defined in header files, and modifying six lines of native code that handle

reflection. In comparison, the most recent version of TaintDroid (4.3.1) contains a total of over

32,000 lines of new code in the Dalivk VM (as reported by executing a diff of the repository), of

which over 18,000 are in assembly code files, and 10,661 in C source code files.

4.3.7 General Usage

PHOSPHOR is available for download (both source code and pre-compiled binaries) on GitHub,

at https://github.com/Programming-Systems-Lab/phosphor. The GitHub page

contains further links to the artifact that passed the OOPSLA 2014 artifact evaluation process, which

consists of a VirtualBox VM image that contains all of the java experiments performed in the origi-

nal OOPSLA 2014 paper on PHOSPHOR.

We describe here a brief getting started guide (which is also available on the PHOSPHOR web-

site), as well as a listing of the options available when using PHOSPHOR and the key API methods

exposed by PHOSPHOR.

4.3.7.1 Getting Started

PHOSPHOR works by modifying your application’s bytecode to perform data and control flow track-

ing. To be complete, PHOSPHOR also modifies the bytecode of JRE-provided classes, too. The

first step to using PHOSPHOR is generating an instrumented version of your runtime environment.

We have tested PHOSPHOR with versions 7 and 8 of both Oracle’s HotSpot JVM and OpenJDK’s

IcedTea JVM.

We’ll assume that in all of the code examples below, we’re in the same directory (which has

a copy of phosphor.jar), and that the JRE is located here: UNINST JAVA (modify this path in the

commands below to match your environment).

Then, to instrument the JRE we’ll run: java -jar phosphor.jar UNINST JAVA jre-inst.

The instrumenter takes two primary arguments: first a path containing the classes to instrument,

and then a destination for the instrumented classes. Full use including all options is detailed in

Figure 4.6.

After instrumenting the JRE, make sure to chmod +x the binaries in the new folder, e.g. chmod

+x jre-inst/bin/*.

https://github.com/Programming-Systems-Lab/phosphor
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The next step is to instrument the code which you would like to track. We’ll start off by in-

strumenting the demo suite provided under the PhosphorTests project. This suite includes a slightly

modified version of DroidBench, a test suite that simulates application data leaks (modified to re-

move Android-specific tests that are not applicable to a desktop JVM). We’ll instrument the phos-

phortests.jar file: java -jar phosphor.jar phosphortests.jar inst.

This will create the folder inst, and place in it the instrumented version of the demo suite jar.

We can now run the instrumented demo suite using our instrumented JRE using the command:

jre-inst/bin/java -Xbootclasspath/a:phosphor.jar

-cp inst/phosphortests.jar -ea phosphor.test.Droid

BenchTest. The result should be a list of test cases, with assertion errors for each “testImplicit-

Flow” test case (assuming you did not enable control flow tracking).

4.3.7.2 Interacting with Phosphor

PHOSPHOR exposes a simple API to allow marking data with tags, and to retrieve those tags, shown

in Figure 4.7. Key functionality is implemented in two different classes, one for interacting with

integer taint tags, and one for interacting with object tags (used for the multi-taint mode). To get or

set the taint tag of a primitive type, developers call the taintedX or getTaint(X) method (replacing

X with each of the primitive types). To get or set the taint tag of an object, developers first cast that

object to the interface TaintedWithIntTag or TaintedWithObjTag (PHOSPHOR changes

all classes to implement this interface), and use the get and set methods.

In the case of integer tags, developers can determine if a variable is derived from a particular

tainted source by checking the bit mask of that variable’s tag (since tags are combined by bitwise

OR’ing them). In the case of multi-tainting, developers can determine if a variable is derived from

a particular tainted source by examining the dependencies of that variable’s tag.

4.3.7.3 Extending Phosphor

We have released PHOSPHOR under an MIT license, and encourage its use and extensions of it. We

would very much welcome any feedback regarding PHOSPHOR.
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[frame=single]

Usage: java -jar phosphor.jar [OPTIONS] [in] [out]

-controlTrack Enable taint tracking

through control flow

-help print this message

-multiTaint Support 2ˆ32 tags

instead of just 32

-taintSinks <taintsinks> File with listing of

taint sinks to use to

check for auto-taints

-taintSources <taintSources>File with listing of

sources to auto-taint

-withoutDataTrack Disable taint

tracking through data

flow (on by default)

Fig. 4.6: Arguments accepted by PHOSPHOR
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/ / I n t e g e r − t a i n t r e l a t e d API

/ / C l a s s : edu . co lumbia . c s . p s l . phosphor . r u n t i m e . T a i n t e r

i n t g e t T a i n t (< p r i m i t i v e type >) ;

<p r i m i t i v e type> t a i n t e d P r i m i t i v e T y p e (< p r i m i t i v e type> v a l , i n t t a g ) ;

/ / I n t e r f a c e : edu . co lumbia . c s . p s l . phosphor . s t r u c t . T a i n t e d W i t h I n t T a g

i n t getPHOSPHOR TAG ( ) ;

vo id setPHOSPHOR TAG ( i n t t a g ) ;

/ / Mul t i− t a i n t r e l a t e d API

/ / C l a s s : edu . co lumbia . c s . p s l . phosphor . r u n t i m e . M u l t i T a i n t e r

T a i n t g e t T a i n t (< p r i m i t i v e type >) ;

<p r i m i t i v e type> t a i n t e d P r i m i t i v e T y p e (< p r i m i t i v e type> v a l , O b j e c t t a g ) ;

/ / I n t e r f a c e : edu . co lumbia . c s . p s l . phosphor . s t r u c t . Ta in tedWi thObjTag

T a i n t getPHOSPHOR TAG ( ) ;

vo id setPHOSPHOR TAG ( T a i n t t a g ) ;

/ / C l a s s : edu . co lumbia . c s . p s l . phosphor . r u n t i m e . T a i n t

T a i n t ( O b j e c t l a b e l ) ;

L i n k e d L i s t<T a i n t> g e t D e p e n d e n c i e s ( ) ;

O b j e c t g e t L a b e l ( ) ;

Fig. 4.7: Key API methods, classes and interfaces exposed by PHOSPHOR
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4.4 Evaluation

We evaluated PHOSPHOR in the dimensions of performance (as measured by runtime overhead and

memory overhead) and in soundness and precision. We have also compared the performance of

PHOSPHOR with that of TaintDroid, when running within the Dalivk VM on an Android device.

We were restricted from comparing against other taint tracking systems, as many were unavailable

for download and did not utilize standardized benchmarks in their evaluations. All of our JVM

experiments were performed on an Apple Macbook Pro (2013) running Mac OS 10.9.1 with a

2.6Ghz Intel Core i7 processor and 16 GB of RAM. We used four JVMs: Oracle’s “HotSpot”

JVM, version 1.7.0 45 and 1.8.0 and the OpenJDK “IcedTea” JVM, of the same two versions. All

instrumentation was performed ahead of time and the dynamic instrumenter therefore only needed

to instrument classes that were dynamically generated (for example, by the Tomcat benchmark,

which compiles JSP code into Java and runs it).

For all experiments, no other applications were running and the system was otherwise at rest.

All of our Android experiments were performed on a Nexus 10, running Android version 4.3.1,

built from the Android Open Source Project repository. No other applications were running on the

Android device during our experiments.

4.4.1 Performance: Macro benchmarks

Our first performance evaluation focused on macro benchmarks, from the DaCapo [27] benchmark

suite (9.12 “bach”), and the Scalabench [129] benchmark suite (0.1.0-20120216). The DaCapo

benchmark suite contains 14 benchmarks that exercise popular open source applications with work-

loads designed to be representative of real-world usage. Several of these workloads are highly

relevant to taint tracking applications, as they benchmark web servers: the “tomcat,” “tradebeans”

and “tradesoap” workloads. The Scalabench suite contains 12 benchmarks written in Scala that are

also broad in scope. In all cases, we used the “default” size workload.

First, we ran the benchmarks using both the Oracle “HotSpot” JVM and the OpenJDK “IcedTea”

JVM in our test environment to measure baseline execution time. Then, we instrumented both JVMs

and all of the benchmarks to perform taint tracking, and measured the resulting execution time and

the maximum heap usage reported by the JVM. To control for JIT and other factors, we executed
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Oracle Hotspot 7 Other JVMs

Runtime (ms) Heap Size (MB) Runtime Overhead

Benchmark Tb Tp Overhead Mb Mp Overhead HotSpot 8 IcedTea 7 IcedTea 8

D
aC

ap
o

9.
12

-b
ac

h
[2

7]

avrora 2333± 53 2410± 27 3.3% 75 223 198.8% .7% 3.8% 3.6%

batik 903± 15 1024± 15 13.5% 105 211 100.2% 12.1% N/A* N/A*

eclipse 15305± 702 48907± 1885 219.6% 1026 2901 182.7% 138.8% 209.8% 124.0%

fop 203± 6 320± 7 57.7% 100 261 162.0% 63.3% 57.4% 49.8%

h2 3718± 136 5137± 138 38.2% 739 2738 270.5% 34.0% 34.7% 35.2%

jython 1343± 19 2107± 47 56.9% 412 805 95.1% 25.7% 59.4% 26.8%

luindex 454± 50 642± 44 41.6% 39 157 303.6% 52.9% 44.4% 53.2%

lusearch 584± 65 1126± 73 92.8% 619 2750 344.2% 86.6% 102.0% 92.6%

pmd 1336± 20 1705± 56 27.6% 172 583 239.5% 26.8% 29.8% 23.5%

sunflow 1616± 76 2182± 231 35.0% 532 1086 104.3% 28.8% 28.2% 29.1%

tomcat 1364± 35 1885± 41 38.2% 173 881 410.7% 33.4% 30.0% 36.8%

tradebeans 3175± 94 4189± 136 31.9% 1093 2225 103.6% 33.3% 41.4% 34.3%

tradesoap 12159± 2416 14657± 2470 20.6% 1910 3058 60.1% 17.5% 14.1% 3.6%

xalan 498± 40 748± 102 50.2% 91 790 771.9% 49.2% 38.5% 75.7%

Average 3214 6217 51.9% 506 1334 239.1% 43.1% 53.4% 45.2%
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actors 2523± 103 2663± 130 5.5% 90 716 692.0% 4.0% .6% 3.5%

apparat 7874± 640 13516± 1102 71.7% 509 2430 377.0% 102.6% 66.7% 92.8%

factorie 19262± 1812 25063± 781 30.1% 2769 2791 .8% 38.7% 32.1% 35.5%

kiama 238± 5 381± 11 60.3% 151 529 250.7% 51.1% 52.9% 59.7%

scaladoc 1092± 25 2206± 85 102.1% 174 1225 602.7% 98.0% 94.0% 94.0%

scalap 136± 6 227± 7 67.3% 86 298 248.8% 82.1% 61.6% 82.3%

scalariform 419± 15 523± 8 24.6% 88 304 246.1% 28.9% 21.8% 23.5%

scalatest 840± 55 1133± 73 34.9% 153 599 292.1% 45.4% 32.8% 41.9%

scalaxb 288± 6 540± 38 87.8% 87 413 373.6% 218.8% 79.9% 219.2%

specs 1268± 44 1770± 21 39.6% 162 714 340.8% 24.6% 36.5% 40.6%

tmt 3755± 65 6834± 33 82.0% 2733 2777 1.6% 95.0% 81.5% 93.5%

Average 3427 4987 55.1% 637 1163 311.5% 71.7% 50.9% 71.5%

All Average 3307 5676 53.3% 563 1259 270.9% 55.7% 52.2% 57.3%

Table 4.1: Runtime duration for macro benchmarks, showing baseline time (Tb), PHOSPHOR time

(Tp) and relative overhead for Oracle’s HotSpot JVM version 1.7.0 45, indicating standard deviation

of measurements with ±. We also show heap size measurements for the baseline execution (Mb)

and PHOSPHOR execution (Mp), as well as the percent overhead for heap size. For HotSpot 8,

IcedTea 7 and IcedTea 8, we show only runtime overhead. *The “batik” benchmark depends on

Oracle-proprietary classes, and therefore does not execute on the OpenJDK IcedTea JVM.
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Benchmark Oracle - HotSpot 7 Rel. Overhead (Other JVMs) Rel. Overhead (DVM)

Tb (ns) Tp (ns) Rel. Overhead Hotspot 8 IcedTea 7 IcedTea 8 PHOSPHOR TaintDroid

Float 5620± 25 7765± 47 38.2% 108% 37.7% 114.2% 131.2% 63.9%

Logic 1338± 4 1341± 5 0.2% -0.3% -0.6% 0.2% 1.5% 11.2%

Loop 3283± 59 4060± 38 23.7% 23.4% 22.2% 23.3% 43.9% 64%

Method 266± 5 642± 4 141.3% 140.1% 132.4% 137.6% 9.8% 25.3%

Sieve 6128± 42 7062± 87 15.2% 12.8% 14.3% 13.6% 27.7% 3.2%

String Buffer 1081± 7 3396± 43 214.2% 212.9% 215.9% 208.4% 183.3% 30.8%

Average 2953 4044 72.1% 82.8% 70.3% 82.9% 66.2% 33.1%

Table 4.2: Runtime duration (in nanoseconds) and overhead for micro benchmarks, showing base-

line time (Tb), PHOSPHOR time (Tp) with standard deviation as ±, and relative overhead for Oracle’s

HotSpot JVM version 1.7.0 45 and 1.8.0, OpenJDK’s IcedTea JVM version 1.7.0 45 and 1.8.0, and

Android’s DVM version 4.3.1. For the DVM, we also show TaintDroid’s overhead (relative to the

same baseline Android configuration).

each benchmark multiple times in the same JVM until the coefficient of variation (a normalized

measure of deviation: the ratio of the standard deviation of a sample to its mean) dropped to at most

3 over a window of the 3 last runs (a technique recommended in [63]). Our measurements were

then taken in the next execution of the benchmark in that JVM. This process was repeated 10 times,

starting a new JVM to run each experiment, and we then averaged these results.

We include results for all benchmarks except for the “scalac” benchmark from the scalabench

workloads, a benchmark that exercises the Scala compiler. The Scala compiler has certain expecta-

tions about the structure and contents of class files that it compiles, so injecting taint tracking code

into the compiler itself (plus the intermediate code that is being compiled) causes runtime errors.

A general limitation of our approach is that applications that inspect their own bytecode directly

(rather than that code being read and interpreted by the JVM, and rather than using Java’s reflection

interface to inspect it) may not function correctly, as we have changed that bytecode (a limitation

discussed in §4.2.3).

Table 4.1 presents the results of this study, showing detailed results for Oracle’s HotSpot JVM

(version 7), and summary results for HotSpot 8, and OpenJDK’s IcedTea JVMs (versions 7 and 8).

We focus on the results for HotSpot 7, as it is far more widely adopted than version 8 (at time of
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submission, Java 7 was approximately three years old, and Java 8 was approximately one week old).

Using Oracle’s HotSpot JVM 7, for the DaCapo suite, the average runtime overhead was 51.9%, and

across the Scalabench suite, the average runtime overhead was 55.1% (runtime overhead for other

JVMs is shown in Table 4.1). The average heap overhead was 239.1% for DaCapo, and 311.5%

for Scalabench (heap usage in the other JVMs was similar). This heap overhead is unsurprising: in

addition to requiring additional memory to store the taint tags, PHOSPHOR also increases memory

usage by its need to allocate containers to box and unbox primitives and primitive arrays for re-

turn values, and primitive arrays when casting them to the generic type java.lang.Object (as

discussed in §4.3.1.2).

There are several interesting factors that can contribute to the heap overhead growing to be

more then twice as large. First, note that a Java integer is four bytes, while a byte is 1 byte,

and chars and shorts are both two bytes. Therefore, the space overhead to store the taint tag for

a variable can be as high as 4x.

The second factor that can adversely impact heap overhead comes from our container types.

For every method that returns a primitive type, we replace its primitive return type with an object

that wraps the primitive value with its taint tag. Although we pre-allocate these return types and

attempt to reuse them, our implementation will only allow for reuse when (1) a method calls mul-

tiple other methods that return the same primitive type, or (2) a method calls other methods that

return the same primitive type as the caller. These allocations are relatively cheap in terms of execu-

tion time (and are represented in our overall execution overhead measures), but can put significant

pressure on the garbage collector that wouldn’t exist without PHOSPHOR, as primitive values are not

reference-tracked. We saw a particularly heavy allocation pattern in the xalan benchmark, where ap-

proximately 36 million instances of TaintedInt and 35 million instances of TaintedBoolean

were allocated to encapsulate return types.

In terms of runtime overhead, we saw the best performance from PHOSPHOR in the “avrora”

benchmark, and worst performance in the “eclipse” benchmark. The “avrora” benchmark runs a

simulator of an AVR micro controller, and from our inspection, contains many primitive-value op-

erations. We believe that it was a prime target for optimization by the JIT compiler; indeed, when

disabling the JIT compiler and running the benchmark in a purely interpreted mode, we saw an 87%

overhead, much more in line with the average performance of PHOSPHOR. “Eclipse” represents a
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greater mix of operations that are more complicated and computationally expensive for PHOSPHOR

to implement. For instance, many parts of the Eclipse JDT Java compiler (a component of the bench-

mark) store primitive arrays into fields declared with the generic type, java.lang.Object. For

every access to these fields, PHOSPHOR must insert several instructions to box or unbox the ar-

ray, which requires allocating a new container each time, and hence, adding significantly to the

overhead.

To compare broadly to other binary-instrumentation based taint tracking systems, DyTan [46]

shows a performance overhead of 30x in a macro benchmark, with a memory overhead of 240x.

LibDFT [90] shows a performance overhead of 1.14-6x on macro benchmarks. PHOSPHOR showed

an average overhead of 1.5x, ranging overall from 1.03x to 3.19x. Again, it is impossible to compare

directly to these systems, as they target different platforms (i.e., not the JVM) and there was no

standard benchmark that we could use for the purpose.

The most applicable systems to compare PHOSPHOR to are TaintDroid [57], Trishul [103] and

Chandra et al’s approach [34]. Of these, we were able to obtain TaintDroid and Trishul (the authors

of [34] were unable to find their implementation [35]), but were unable to use our macro benchmarks

to compare to these systems as the benchmarks are not supported by Dalvik and Kaffe respectively

(the VMs used by Trishul and TaintDroid). The authors of TaintDroid used the CaffeineMark [114]

benchmark in their evaluation, and the authors of Trishul used the jMocha benchmark [67] in their

evaluation. We compare PHOSPHOR’s performance directly to TaintDroid and Trishul in the fol-

lowing section.

4.4.2 Performance: Micro Benchmarks

We performed a series of micro benchmarks to further analyze PHOSPHOR’s runtime performance

overhead. Our micro benchmarks are based on the CaffeineMark [114] suite of micro benchmarks,

commonly used by Android developers – including by the authors of TaintDroid [57]. We modified

these benchmarks to run under Google’s Caliper micro benchmark tool, so that they could benefit

from the framework’s warmup, timing, and validation features (the original CaffeineMark bench-

marks do not contain any warmup phase and therefore the results can be skewed by JIT compilation).

The “embedded” suite (used in the TaintDroid study) consists of six benchmarks: “Float” (simu-

lates 3D rotation of objects around a point; uses arrays), “Logic” (contains many simple branch



CHAPTER 4. DYNAMIC DATA-FLOW ANALYSIS IN THE JVM 89

conditions), “Loop” (contains sorting and sequence generation; uses arrays), “Sieve” (uses the sieve

of eratosthenes to find primes; uses arrays), “Method” (features many recursive method calls) and

“String” (performs string concatenation; uses arrays). Each benchmark was executed several times

in the same JVM over the course of 3 seconds to warm up, and then executed for a period of 1

second. For that last second, we measure the amount of time in nanoseconds that each benchmark

took (by running it many times and averaging). We did this entire process 10 times, and averaged

the results of each trial.

Table 4.2 shows the results of this study, showing the runtime for PHOSPHOR for Oracle’s

HotSpot 7 JVM (being the most popular JVM at time of publication), and the runtime overhead for

all of the subject JVMs, plus the Android DVM. We also show our measured overhead of TaintDroid,

relative to the same baseline Android DVM. PHOSPHOR’s fine-grained array taint tag tracking (i.e.

that it stores a taint tag per-element, rather than a single tag per-array) caused it to perform somewhat

poorer than TaintDroid in the benchmarks that relied heavily on arrays. Recall that this optimization

will result in a loss in precision for TaintDroid, which does not affect PHOSPHOR.

However, in the benchmarks that did not involve significant array usage (e.g. “Logic,” “Loop,”

and “Method”), PHOSPHOR outperformed TaintDroid. It would be interesting to perform a followup

study by modifying TaintDroid to also track taint tags per-element, to see which approach is faster

in that case. Another interesting observation from the micro benchmarks is that the average over-

head across these micro benchmarks for PHOSPHOR (72.13%), is somewhat higher than its average

overhead across the macro benchmarks (52.06%). Perhaps these less than optimal cases occur less

in practice than those cases wherein PHOSPHOR is faster. Unfortunately we are severely restricted

in availability of macro benchmarks for Android (DaCapo is not easily ported to Android as many

of its benchmarks rely on Java APIs that are not included in the Android Dalvik VM), and therefore

could not perform a macro benchmark study comparing TaintDroid with PHOSPHOR.

To compare to Trishul [103], we hoped to use the same suite of micro-benchmarks (the suite

used by the authors of Trishul, jMocha, is no longer available) used above. However, we found that

the benchmark framework that we used to collect timing information (Google Caliper version 0.5)

was incompatible with Kaffe, the JVM that Trishul is built upon. Therefore, we selected another

suite of micro benchmarks to run for this purpose: JavaGrande [32], a micro benchmark suite from

2000, which was popular at the time (and worked with Kaffe). We performed these experiments in
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Relative Overhead to HotSpot 7

Benchmark Group Kaffe Trishul PHOSPHOR

Arithmetic 64.4% 74.5% 10.7%

Assign 56.5% 86.6% 50.2%

Cast 87.1% 86.7% 13%

Create 98.5% 98.8% 24.4%

Exception 90.0% 69.9% 1.7%

Loop 2.3% 89.0% 7.6%

Math 89.1% 96.5% 96.0%

Method 42.2% 76.0% 6.3%

Serial 90.04% N/A* 21.14%

Average 68.9% 84.7% 25.7%

Table 4.3: Runtime overhead of PHOSPHOR, Kaffe 1.1.7 [142] and Trishul [103] compared to

Oracle HotSpot 1.7.0 55 on the JavaGrande benchmark [32]. *Threw exception

an Ubuntu 6.10 VirtualBox VM with 3.5GB of RAM (running on the same MacBook Pro 2.6Ghz

Intel Core i7, 16 GB of RAM) that was provided by the Trishul authors. We measured the per-

formance of Oracle’s HotSpot 7 running within this VM as a baseline, and then also measured the

performance of Kaffe 1.1.7 (which Trishul is based on), Trishul, and a PHOSPHOR-instrumented

HotSpot 7. Again, we executed each benchmark 10 times (each time in a separate JVM), but here,

with no warmup phase, as JavaGrande’s benchmark runner does not support a warmup phase (and

we were unable to use Google Caliper to control for warmup as it was not supported by Kaffe VM).

Table 4.3 presents the results of this evaluation (overheads presented are relative to HotSpot

7). Note that in most cases, Kaffe itself (the VM that Trishul is built on) is significantly slower

relative to HotSpot, and hence, perhaps some large amount of the overhead imposed by Trishul can

be attributed to the underlying VM. In all cases, PHOSPHOR had significantly lower overhead than

Trishul (in the case of the “Serial” benchmark, Trishul threw an exception and was unable to execute

the benchmark). Trishul’s performance on the loop and method benchmarks was particularly poor

(even relative to an unmodified Kaffe VM), likely due to the fact that it performs control flow

tainting, and not just data flow tainting. Adding control flow tainting to PHOSPHOR would likely

also increase its overhead in these two benchmarks.
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4.4.3 Soundness and Precision

We evaluated the soundness and precision of PHOSPHOR using two benchmark suites. First, we

wrote our own suite of unit tests, testing that each of our taint tracking properties (as described in

§4.3.1) are not violated, for each primitive and primitive array type, as well as for reference types.

PHOSPHOR passed all of these tests. These unit tests are included in our GitHub repository [16].

To add additional validity to our claim that PHOSPHOR is sound and precise, we also imple-

mented the DroidBench [12] taint tracking benchmark, removing the components that were An-

droid specific so that it would run on a desktop JVM. DroidBench consists of 64 test cases for taint

tracking systems, of which, we found 35 to be Android-specific (testing taint propagation through

Android-specific callbacks and life-cycle events), leaving 29 tests. These tests are designed to test

both soundness (that variables that should be tainted are indeed tainted with the correct taint) and

precision (that variables that should not be tainted are not tainted) of taint tracking. Four of the tests

are designed to test taint tracking through implicit flows. PHOSPHOR passed all data flow tests and

failed on the four implicit flow tests as expected.

4.4.4 Portability

We further studied the portability of PHOSPHOR by attempting to apply it to three completely dif-

ferent JVMs (in addition to the two versions of Oracle’s HotSpot and OpenJDK’s IcedTea, plus

the Dalvik DVM). We downloaded the most recent versions of the Apache Harmony JVM (ver-

sion 6.0M3) [10], Kaffe VM (version 1.1.9) [142] and Jikes RVM (version 3.1.3) [141]. For each

VM, we attempted to execute our soundness and precision tests as a basic indicator of whether

PHOSPHOR would work.

While PHOSPHOR did not work immediately with Harmony or Kaffe, after approximately 30

minutes of debugging, we identified several additional classes that were tightly coupled between

the class library and the interpreter. For instance, no JVM that we tested allowed for unrestricted

modifications of the class java.lang.Object; Harmony and Kaffe similarly would not allow

for modifications of the class java.lang.VMObject (which does not exist in Oracle or Open-

JDK’s class library). We patched around these classes, and can confirm that PHOSPHOR works with

Harmony and Kaffe.

However, we were unable to successfully apply PHOSPHOR to the Jikes RVM, which is a JVM
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implemented in Java. We believe that this is due to our inherent design limitation (discussed fur-

ther in the following section), that should an application try to read its own bytecode, it will see

unexpected entires (namely, everything added by PHOSPHOR). Jikes uses its own internal imple-

mentation of Java’s reflection library for configuring its bootstrap class image, and PHOSPHOR does

not currently patch this to hide its modifications, causing it to fail. We believe that it would be

possible to modify PHOSPHOR to be compatible with Jikes, but have not investigated this further.

4.4.5 Threats to Validity

The main threats to validity to our experiments are related to our claims of portability. We claim

that PHOSPHOR is portable to any JVM that fulfills the official JVM specifications versions 7 and

8, as it only requires modifications to application bytecode and library bytecode. We evaluated this

claim on four JVMs, including two versions of two very widely used JVMs (Oracle HotSpot and

OpenJDK IcedTea), and two much less frequently used JVMs (Kaffe and Harmony). Just as these

JVMs had tight coupling for several classes, preventing PHOSPHOR from adding fields to them to

track taint tags, it is certainly possible that other JVMs have even more constraints on more classes

(such coupling between class libraries and interpreter are not discussed in the JVM specification).

However, we are confident that if such cases arose, PHOSPHOR would still be applicable, falling

back to storing taint tags for instances of such classes with a HashMap, an approach that would

still work, though perhaps with somewhat higher overhead (such changes would need to be man-

ually implemented). We believe that PHOSPHOR’s incompatibility with the Jikes Research Virtual

Machine is an exceptional case in that (1) it is intended specifically for research purposes and not

production purposes, (2) it is written in Java itself and is self-hosted (i.e. its Java code runs on itself).

Moreover, although we were unable to find any usage statistics, we believe that Oracle HotSpot and

OpenJDK IcedTea dominate the JVM market by far.

Although we selected popular, well-accepted macro benchmarks for evaluating PHOSPHOR,

it is possible that the selected benchmarks are not representative of the sorts of workloads that

would normally are targets for taint tracking. However, because three of these benchmarks involve

workloads on web servers, and taint tracking has been shown to be highly applicable to detecting

and preventing code injection attacks in web servers, we believe that the benchmarks are sufficient.

There are several key limitations to our approach, as discussed previously in §4.2.3, most no-
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tably that PHOSPHOR only tracks data flows, and not control flows (“implicit flows”), much like

other well known taint tracking systems [37, 57, 90]. Note that implicit flow tracking primarily

requires static analysis, and its implementation should be unaffected by PHOSPHOR’s approach to

data flow tracking. Support for implicit flows would be interesting to add as an optional feature

to PHOSPHOR (e.g. DyTan [46] supports both sorts of tracking), but we consider this to be future

work, outside of the scope of this thesis.

Java provides a simple reflection API (also used by many Scala applications) to access informa-

tion about class files, such as the list of methods available in a class. PHOSPHOR patches this API to

hide all of its changes from applications, however, if an application directly reads in the byte stream

of a Class file (without using this API) and parses its structure, that application will find potentially

unexpected artifacts of PHOSPHOR in the Class. This scenario arose in our macro benchmark study

exactly once: in the case of the Scala compiler (“scalac”), which does not use the reflection API.

We do not believe that this is a common occurrence outside of the scope of compilers, as Java’s

reflection API is widely used for this purpose.

4.5 Related Work

Dynamic taint analysis is a problem widely studied, with many different systems tailored to specific

purposes and languages. For instance, there are several system-wide tainting approaches based on

modifications to the operating system ( [135] and others). However, PHOSPHOR tracks taint tags

by instrumenting application byte code. This general approach is most similar to other approaches

that track taint tags by instrumenting application binaries. When available, we compared the Java-

based systems directly to PHOSPHOR (an evaluation presented in Section 4.4), but please note that

the performance overheads reported in this section are to provide ballpark information only — the

selection of benchmarks used varies greatly from system-to-system (the slowdowns reported here

are provided by the original authors).

DyTan is a general purpose taint tracking system targeting x86 binaries that supports implicit

(control) flow tainting, in addition to data flow tainting, with runtime slowdown ranging from

30x-50x [46] (where a slowdown of 1x means that the system now takes twice as much time to

run). TaintTrace only performs data flow tainting, and achieves an average slowdown of 5.53x [40].
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Libdft, another binary taint tracking tool, shows overheads between 1.14x-6x, thanks to optimiza-

tions largely based on assumptions that data (overall) will be infrequently tainted [90]. In contrast,

PHOSPHOR does not assume that variables are mostly not tainted (and hence does not make such

optimizations, although they mostly are still applicable to the JVM), and therefore its performance

will remain constant regardless of the frequency of tainting.

Another general class of taint tracking systems target interpreted languages and make modi-

fications to the language interpreter, targeting, for example, JavaScript [150], Python [157], PHP

[105, 130, 157], Dalvik [57] and the JVM [34, 103]. In general, interpreter level approaches can

benefit from additional information available in the context of the language that defines the exact

boundary of each object in memory (so soundness and precision can be improved over binary-level

approaches). The portability of these systems is often restricted, as they require modifications to the

language interpreter and/or modifications to application source code.

Of these interpreter-based taint tracking systems, the most relevant to PHOSPHOR are Trishul

[103], an approach by Chandra et al. [34], and TaintDroid [57]. Trishul performs data and control

flow taint tracking by modifying the Kaffe interpreted JVM, an open source JVM implementation

(in a purely interpreted mode, with no JIT compilation — adding an inherent slowdown of sev-

eral orders of magnitude). Chandra et al. modifies the Jikes Research Virtual Machine to perform

data and control flow taint tracking, showing slowdowns of up to 2x on micro-benchmarks, but its

implementation depends on the usage of the research VM, rather than a more popularly deployed

JVM [34]. Neither the Jikes nor the Kaffe JVM support the complete Java language specification.

TaintDroid is a popular taint tracking system for Android’s Dalvik Virtual Machine (DVM), imple-

mented by modifying the Dalvik interpreter [57]. TaintDroid only maintains a single taint tag for

every element in an array (unlike PHOSPHOR, which maintains a tag for each element), allowing

TaintDroid to perform more favorably on array-based benchmarks, but at the cost of precision.

While all of these approaches employ variable-level tracking, like PHOSPHOR, the key differ-

ence that sets PHOSPHOR apart is its portability: each of the above systems requires modifications to

the language interpreter. For example, TaintDroid’s most recent version (version 4.3 at time of pub-

lication) adds over 32,000 lines of code to the VM (as measured by lines of code in the TaintDroid

patch to Android 4.3.1). For any new release of the VM, the changes must be ported into the new

version and if a researcher or user wished to use a different VM (or perhaps a different architecture),
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they would need to port the tracking code to that VM. PHOSPHOR, on the other hand, is designed

with portability in mind: PHOSPHOR runs within the JVM without requiring any modifications to

the interpreter (and we show its applicability to the popular Oracle HotSpot and OpenJDK IcedTea

JVMs). This design choice also allows us to support Android’s Dalvik Virtual Machine with only

minor modifications, as discussed in §4.3.6.

There have been several recent works in dynamic taint tracking for Java that operate by modify-

ing core Java libraries to track taint tags. Without requiring interpreter modification, WASP detects

and prevents SQL injection attacks in Java by using taint tracking with low overhead (1-19%), but

is restricted to only track taint tags on Strings [77], much like the earlier Java tainting system by

Haldar et al. [76], and Chin et al’s optimized version of the same technique [42]. These systems

simply provide a replacement for the class, java.lang.String that is manually modified to

perform taint tracking for those objects, and the approach is therefore unsuited to general purpose

taint tracking (aside from Strings). PHOSPHOR differs from all of these approaches in that it tracks

taints on all forms of data within the JVM: not just Strings.

Vitasek et al. propose a solution to a problem related to taint tracking: in addition to assigning

labels to each object in the JVM, their ShadowData system can also enumerate all such labels [149].

Vitasek et al. evaluated several approaches to this, finding the most efficient to be storing the

mapping from object to label in a HashMap, showing slowdown ranging from 4.8x-185.5x, largely

due to contention in accessing that HashMap, a drawback that PHOSPHOR’s decentralized taint tag

storage avoids (but note that PHOSPHOR does not provide the ability to enumerate all data that is

tagged).

4.6 Conclusions

Due to difficulties simultaneously achieving precision, soundness, and performance, all previous im-

plementations of dynamic taint analysis for JVM based languages have been restricted, functioning

only within specialized research-oriented JVMs, making their deployment difficult. We presented

PHOSPHOR, our approach to providing accurate, precise, and performant taint tracking within the

JVM without requiring any modifications to it, demonstrating its applicability to two very popular

JVMs: Oracle’s HotSpot and OpenJDK’s IcedTea, each for the two most recent versions: 1.7 and
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1.8. Moreover, PHOSPHOR does not require any specialized operating system or specialized hard-

ware or access to application source code. PHOSPHOR appeared originally at OOPSLA 2014 [19],

and additional information on its control flow tracking appeared at ISSTA 2015 [21]. PHOSPHOR is

available on GitHub [16], and passed the OOPSLA 2014 artifact evaluation process.
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Chapter 5

Detecting Hidden Object Structure

One particularly application of taint tracking and dynamic data flow analysis to software reliability

is data protection analysis and testing. Despite recent high-profile failures in applications’ man-

agement of our data [7], in the absence of system-level support for fine-grained data organization,

we are forced to entrust them with our data. When users perform day-to-day data management

activities – deleting individual emails, identifying specific data that was viewed, or sharing pictures

– they are forced to rely on applications to behave properly. Yet, a 2010 study of 30 popular An-

droid applications showed that 20 leaked sensitive data, such as contacts or locations [58]. Our own

study of deletion practices within mobile apps, described later in this chapter, revealed that 18 of 50

popular Android applications left information behind instead of deleting it. Notably, we found that

until 2011, Android’s default email application left behind the attachments of deleted emails while

deleting the messages themselves.

Although a plethora of system-level data management tools exist – including encrypted file sys-

tems [69,75], deniable file systems [145], auditing file systems [61], or assured delete systems [115]

– these tools operate at a single level of abstraction: files. Without a one-to-one mapping between

user-relevant objects (for example, individual email messages in a mail client or documents in a

word processor) and files, such systems provide poor granularity, preventing end-users from pro-

tecting individual objects that matter to them.

Consider Android’s default email application: it stores each email’s contents and to/from/subject

fields as several rows in a SQLite database (all emails are stored in the same DB, which is itself

stored as a single file), attachments as files, and cached renderings of messages in different files.
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Such complex object-to-file mappings are typical in Android, as our large-scale measurement study

of Android storage patterns shows (§5.2). Moreover, others have observed complex storage layouts

in other OSes, such as OSX, where researchers have concluded that “a file is not a file” but a complex

structure with complex access patterns [81].

Given the complexity of these object-to-file mappings, we ask: is it possible for system-level

tools to support management and protection at the granularity of user-relevant objects? Intuitively,

this would require developers to specify the structure of their applications’ persisted data to the op-

erating system. Nevertheless, we observe that the high level storage abstractions included and pre-

dominant in today’s operating systems – the SQLite relational database in Android and the CoreData

object-relational mapper in iOS – bear sufficient structural information to recover these user-relevant

data objects from unmodified applications.

We call these objects logical data objects (LDO), examples of which include an email (including

its to, from, subject, body, attachments and any other related information); a mailbox including all

emails in it; a bank account in a personal finance application; etc. We present Pebbles, a system that

exposes LDOs to protection tools, without introducing any new programming models or interfaces,

which can be prone to programmer error, slow adoption, or incompatibility with legacy applications.

We implemented Pebbles and several new protection tools based on it on the Android platform.

Each of these tools provides protection at the LDO level, leveraging Pebbles to greatly simplify

their development. Using Pebbles tools, users can mark objects from their existing applications to

verify their proper deletion, protect their access from other applications, and back them up to the

clouds they trust.

In a study of 50 popular Android applications, we found Pebbles to be highly effective in au-

tomatically identifying LDOs. Across these apps, object recognition recall was 91% and precision

was 97%. In other words, in 91% of the cases, there was no leakage of data from user-visible objects

to LDOs, and in 97% of the cases, there was no over-inclusion of extra data beyond user expectation

in LDOs. Pebbles relies on several key assumptions based on common practices. Many of the cases

in which Pebbles had poor accuracy, it could have been addressed had the developers followed these

common practices.

Overall, this work makes the following contributions:

1. A study of over 470,000 Android apps, analyzing, for the first time at scale, the storage
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abstractions in common use today (§5.2). Our results suggest major differences compared

to traditional storage abstractions, which render file-level data management ineffective while

creating untapped opportunities for object-level data management.

2. The fist design and implementation of a persistent data object recognition system that requires

no app changes (§5.3 and §5.5). Our design taps into the opportunities observed from our

large-scale Android app study. We make our code available from https://systems.

cs.columbia.edu/projects/pebbles.

3. Four protection tools implemented atop Pebbles, demonstrating the power and value of application-

level objects to protection tools (§5.4).

4. An evaluation of LDO construction accuracy with Pebbles over 50 popular applications from

Google Play, showing it to be effective in practice (§5.6) and underscoring its well-defined

failure modes (§5.7).

5.1 Motivation and Goals

We begin by presenting a set of example scenarios that highlight the need for fine-grained data

management support within modern OSes.

5.1.1 Example Scenarios

Scenario 1: Object Deletion: Ann, an investigative journalist, has received an extremely sensitive

email on her phone with an attachment that identifies her sources. To protect her sources, Ann does

her due diligence by deleting the email immediately after reading its contents and restarting her

phone to clean up any traces left in memory. Her phone is already configured with an assured-delete

file system [115] that deletes data promptly upon request. Worried that the application might have

created a copy of her data without her knowledge or control, she wonders: Is there any remnant of

that email left anywhere on the phone? She is disappointed to realize that she has zero visibility into

the data stored on her device. Weeks later, she learns that her fears were well-founded: the email

app she is using contains a bug that leaves attachments intact when an email is deleted.

https://systems.cs.columbia.edu/projects/pebbles
https://systems.cs.columbia.edu/projects/pebbles
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Scenario 2: Object Access Auditing: Bob, a financial auditor, uses his phone for all interactions

with client data while on field engagements. Recently, Bob’s device was stolen. Fearing that his

fingerprint unlock might not withstand motivated attackers [140], Bob asked his IT admin a natural

question: Has any of my clients’ data been exposed? The admin’s answer was mixed. Although

activity on Bob’s phone was tracked by a remote auditing file system [61], the logs show that a

file, /data/data/com.android.email/cache/7dcee8, was accessed immediately before the

phone’s wipe-out. The file stores the HTML rendering of an email, but no one knows which email.

Bob is left wondering what he should disclose to clients about the potential exposure of their data,

and to which clients, since neither he nor the IT staff can map that file to a specific client or email.

Scenario 3: Object Access Restriction: Carla, a local politician, uses her phone to take photos

for professional purposes, but she has several personal photos on it as well. She uses a cloud-based

photo editor to enhance her promotional photos before posting them. Due to the coarse-grained

permissions model of her Android device, she must provide this photo editor with access to all of

her photos in order to use it. Carla is concerned that the photo editor may be secretly collecting all

the photos from her device, including several potentially sensitive photos that could be politically

compromising.

5.1.2 Goals and Assumptions

The above hypothetical users, along with millions of real-life users of mobile technology, have a

mental model of application-level objects that is not matched by current protection tools. Ann wants

to ensure that a particularly sensitive email is deleted in full, including attachments, to, from, any

related caches, and other fields; Bob wants to know the sender or contents of a compromised email

instead of a meaningless file name; Carla wants to protect a few of her most sensitive photos from

prying applications. Traditional protection tools, such as file-based encryption, auditing, or secure

deletion cannot fulfill these needs because the mapping between objects and files is application-

specific and complex. The alternative, whole-disk encryption [6,136], does not provide the flexibil-

ity that these users need.

To support such object-level data management needs, we developed Pebbles, a system that auto-

matically reconstructs application-level logical data objects (LDOs) from unmodified applications.

Pebbles exposes these LDOs to any system-wide protection tool that could benefit from under-
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standing application-level objects. An encryption system could use LDOs to support meaningful

fine-grained protection as an extra layer on top of whole-disk encryption. An auditing system could

use LDOs to provide meaningful information about an accessed component. An object manager

could reveal to users which parts of an object are left after deletion. And a backup system could let

users choose their most sensitive objects for backup onto a trusted, self-managed server, letting the

rest be backed up into the cloud.

Goals. The Pebbles design was guided by three goals:

G1: Accurate and Precise Object Recognition: Pebbles objects (LDOs) must closely match application-

level persisted objects. This includes: (a) avoiding data leaks (if an item belongs to an LDO

it must be included), and (b) avoiding data over-inclusions (if an item does not belong to an

LDO it should not be included).

G2: Meaningful Granularity: Pebbles must recognize LDOs that are meaningful to users, such as

individual emails.

G3: No New Application APIs: Pebbles must not require app developers to use new APIs; it can

recommend developers to follow existing common practices but must work well even if they

do not precisely follow.

Our first goal is accurate and precise object recognition (G1). We aim to achieve (1) good

object recognition recall by avoiding leaks and (2) good object recognition precision by avoiding

over-inclusions. We acknowledge that perfect recall or precision cannot be guaranteed in either an

unsupervised approach or in a supervised API approach with imperfect developers, since a poorly

written app could convolute data structure in a way that Pebbles cannot recover. However, we wish

to formulate clearly all potential sources of leakage, to design mechanisms to address the leakages

for most applications (§5.3.2), and to remind developers how they could avoid such leakages by

following existing common practices (§5.7).

Related to G1, our second goal (G2) is to recognize relevant and meaningful LDOs. For exam-

ple, in an email app, Pebbles should be able to recognize individual emails, not just coarse accounts

with many emails. We note here that Pebbles identifies application-level objects that are persisted in

stable storage, and we assume that those have a direct mapping onto the objects that users interact

with and wish to protect.
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G3 stems from our skepticism that developers will convert applications to use new security-

related APIs or correctly use such APIs. However, we do expect that most developers will follow

certain common practices (as evaluated in §5.2). Pebbles addresses this by leveraging application-

level semantics already available within storage abstractions such as database schemas, XML struc-

tures, and the file system hierarchy. Pebbles also provides recommendations for developers which

are rooted in already popular development practices (§5.7).

Threat Models and Assumptions. Pebbles is designed to support fine-grained data management

– such as encryption, auditing, and deletion of individual emails, photos, or documents – within

modern OSes. The specific threat model for a given protection tool depends on that tool’s goal;

however, Pebbles’s mechanisms should bolster the guarantees applications can provide. In general,

we assume that protection tools are trusted system-wide services. This is similar to assumptions

made by encrypted file systems, assured-delete file systems, and other current fine-grained data

management tools.

We also assume that mobile applications that create or have access to a particular object, or part

thereof, will not obfuscate their data’s structure or act maliciously against Pebbles. For example,

they will not create their own data formats and will not willfully interfere with analysis mechanisms

involved in object discovery. An application that has not yet been given access to data of a particular

object, however, need not be trusted.

The scope of Pebbles is confined to those application-level objects that are persisted into a de-

vice’s stable storage. We explicitly ignore attackers with access to either RAM or the underlying OS

or hardware. If volatile memory protection is important, we recommend combining Pebbles with se-

cure memory deallocation [44,45,71], OS buffer cleaning [54], and idle in-RAM data eviction [138]

mechanisms. We also assume that secure disk scrubbing [117, 139] is deployed. In addition, while

many modern applications include a cloud component, which stores or backs up data, Pebbles cur-

rently ignores that component. In the future, we plan to extend Pebbles LDOs to transcend the local

and cloud environments.

While some may believe that users are incapable of dealing with fine-grained controls, we be-

lieve that there are many circumstances in which users want and are capable of handling some level

of control, particularly for their most sensitive data. Evidence that users are capable of handling,

and require, some level of control when they feel it is important for them to do so is available in prior
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Fig. 5.1: OS Storage Abstraction Evolution. Modern OSes provide higher-level abstractions for data

management, yet protection is often at the traditional file level. Pebbles, our aligns data protection

with modern abstractions.

studies [41,96]. Such evidence can also be gauged from the immense popularity of data hiding apps,

such as Vault-Hide [107] and KeepSafe Vault [89], which have garnered over 10 million downloads

each and let users hide data, such as photos, contacts, and SMSes.

5.2 Study: Android Storage Abstractions

The Pebbles design is motivated and informed by our high-level observation that storage abstrac-

tions within modern OSes are evolving in major yet unquantified ways. Fig.5.1 shows this evolution.

Specifically, we hypothesize that the inclusion of high-level storage abstractions, such as the SQLite

database in Android or the CoreData abstraction in iOS, has created a new “narrow waist” for stor-

age abstractions that largely hides the traditional hierarchical file system abstraction. These new

storage abstractions should bear sufficient structure to let us reverse engineer application-level data

objects from the OS’s vantage point.

In this section, we perform a simple measurement study to gauge the use of these abstractions

and extract useful insights to inform our design of Pebbles. We specifically ask the following ques-

tions:
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Storage 
Abstraction	



# Apps	


(of 98)	

 Example Apps	



No storage	

 5	

 Cardio Trainer	



DB only	

 43	


CWMoney, Amazon, BestBuy, 
Browser, Calendar, Contacts, 
ColorNotes, EverNote	



FS only	

 3	

 Exchange Rates	


KV only	

 5	

 Google Talk, Biorythms	



DB+FS	

 24	

 OINote, Angry Birds, DropBox, 
Gallery	



DB+KV	

 1	

 Twitter	


FS+KV	

 2	

 Adobe Reader, Temple Run	



DB+FS+KV	

 15	

 Email, Antivirus, Amazon Kindle, 
Astro File Manager, Box, EBay	



App	

 Object	

 DB/FS Use	



Email	


(DB+FS+KV)	



Email	

 to/from/date in one DB table; contents 
in another table; attachments in FS	



Mailbox	

 name/server/account in one DB table; 
includes emails; backup in kv	



Account	

 address/meta data in one DB table; 
includes mailboxes, emails	



OINote	


(DB+FS)	

 Note	

 title/note/tags/ in one DB table; notes 

exported as files in /sdcard FS	



CWMoney	


(DB only)	



Expense	

 name/amount in one DB table	



Category	

 category name in one DB table; 
includes expenses	



Account	

 name/balance in one DB table; 
includes categories, expenses	



Storage���
Library	



# of Apps	


(of 476,375)	



ORMLite	

 6,846	


(1.4%)	



SQLCipher	

 168	


(0.3%)	



DB4o	

 116	


(0.2%)	



H2	

 16	


(0.0%)	



Other 4 libs 
combined	



38	


(0.0%)	



(a) Use of SQLite (DB), FS, and key/value (KV) store	

 (b) Third-party 
library use	



(c) Example object structures	



Fig. 5.2: Storage API Usage in 98 Android Applications. (a) Number of apps that use the various

storage abstractions in Android. Most apps use DB, but many also use FS and KV together with

DB. (b) Use of eight other storage libraries among 476K free apps from Google Play. Third-party

storage libraries are largely irrelevant. (c) Structure of sample objects in a few popular apps. Object

structure is complex and spans multiple abstractions.

Q1 What storage abstractions do Android apps use?

Q2 How do individual apps organize their data?

Q3 How are these abstractions used?

Background. Android provides three storage abstractions [68] relevant to this thesis:

1. SQLite Database: Stores structured data.

2. XML-based Key/Value Store: Stores primitive data in key/value pairs (also known as the

SharedPreferences API).

3. Files: Stores unstructured data on the device’s flash memory.

Methodology. We ran both static and dynamic experiments. Static experiments can be run at large

scale but lack precision, while dynamic experiments provide precise answers but can only be run at

small scale. For static experiments, we decompiled Android applications and searched their source

code for imports of the storage abstractions’ packages (e.g., android.database.sqlite). We

ran large-scale, static experiments on 476,375 apps downloaded through a February 2013 crawl of

Google Play [148], the main Android app market. For the dynamic experiments (over 98 apps),
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we installed Android apps on a Nexus S phone, manually interacted with them, and logged their

accesses to the various APIs. These were some of the most popular apps, cutting across categories

such as email clients, editors, banking, shopping, social, and gaming.

Results. Q1 Answer: Apps primarily use SQLite, but use other abstractions as well. Fig. 5.2(a)

classifies apps according to the Android-embedded storage abstractions they use during execution.

It shows that the usage of Android-provided abstractions – SQLite (denoted DB) and the key/value

store (denoted KV) – eclipses the traditional file abstractions (denoted FS). Very few apps rely on

the FS as their only storage abstraction (4/98). Almost half of the apps rely solely on SQLite for

all of their storage needs (43/98), while almost all apps that have some local storage use SQLite

(81/92). Even apps that one would consider to be primarily file-oriented (e.g., Astro File Manager,

DropBox) use SQLite. A significant fraction of the apps (41/98) rely on more than one abstraction,

and a notable fraction (15/98) rely on all three abstractions. This last result suggests a complex disk

layout, a topic discussed further below. Overall, the most popular formations are: DB-only (43/98),

DB+FS (23/98), and DB+FS+KV (15/98).

A related question is whether mobile apps use storage abstractions other than those provided by

Android. Angry Birds, for example, stores game data and high scores in opaque binary files. We

also searched the Internet for recommended Android storage options beyond those included in the

OS, finding eight third-party libraries. We searched our 476K-app corpus for use of those libraries,

and present the results in Fig. 5.2(b). None of these libraries are popular: only 2% of the apps use

even one of them. Our dynamic experiments found that none of these libraries are used and provided

no indication of additional libraries that we might have overlooked.

Q2 Answer: Data objects span multiple storage abstractions. Fig. 5.2(c) shows the struc-

tures of several logical data objects, representative of what users think and care about in various

applications. It shows that objects often have complex structures that involve multiple storage ab-

stractions. For example, Android’s default email client, an example of the DB+FS+KV formation,

stores various fields of the email object in two DB tables, attachments in the FS, and account re-

covery information in the KV. Object structure is fairly complex even for DB-only apps, such as

CWMoney, a personal finance app, where a category includes metadata in one table and all ex-

penses in another table. It thus spans multiple tables that are not linked together through explicit

foreign keys. This suggests that protecting each storage abstraction separately will not work: any
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data protection abstraction at the end-user object level must span multiple storage abstractions.

Q3 Answer: SQLite is the hub for data management. Given this complexity, a natural question

concerns how one can even begin to build some meaningful protection abstraction. Using a modified

TaintDroid (a popular data flow taint tracking system for Android [58]) version, we tracked the flow

of data between storage abstractions, confirming that at least 70/81 apps that use the DB use it as

a central hub for managing their data. By central hub, we mean that data flows mostly from the

DB into the FS/KV (when they are used) or is accessed using pointers from the DB; an observation

that was true for 27 of the 38 apps that use FS or KV in addition to the DB. For example, many

apps, including Email, use files to store caches of rendered versions of data stored in SQLite (such

as the body of an email) or blobs of data that are indexed and managed through SQLite (such as the

contents of pictures, videos, or email attachments).

Thus, SQLite is not just frequently used; it is the central abstraction in Android that originates

or indexes much of the data stored in the other abstractions. This result is encouraging because,

intuitively, relational databases bear more explicit structure.

Implications for the Pebbles Design. Overall, our results suggest that while the storage abstraction

landscape is fairly complex in Android, there is sufficient uniformity to warrant constructing of a

broadly applicable object system. Such a system must detect relationships between objects stored

in different abstractions. The results suggest that SQLite, a relational database that bears significant

inherent structure, is the predominant storage abstraction in Android. Raw files, which lack such

structure, are just used for overflow storage of bulk data, such as images, videos, and attachments.

Based on these insights, we construct Pebbles, the first system to recognize application-level objects

within modern operating systems without application modifications.

5.3 The Pebbles Architecture

Pebbles aims to reconstruct application-level LDOs – emails and mailboxes in an email app, saved

high scores in a game, etc. – from the bits and pieces stored across the various data storage abstrac-

tions without requiring application modifications.
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Fig. 5.3: The Pebbles Architecture. Consists of a modified Android framework and a device-wide

Pebbles Object Manager. The modified framework identifies relationships between persisted data

items, such as rows, XML elements, or files. The Pebbles Object Manager uses those relationships

to construct an object graph; nodes map to persisted data items and edges map to relationships.

5.3.1 Overview

Fig. 5.3 shows the Pebbles architecture, which consists of two core components: (1) Pebbles An-

droid, a modified Android framework that interposes on the various storage APIs, and (2) the Peb-

bles Object Manager, a separate device-wide entity for building object graphs and interacting with

protection tools.

At the most basic level, the Pebbles Android framework understands units of storage (e.g., rows

in DB, elements in XML, and files in FS) which become nodes in our object graph. The Pebbles

Android framework then retrieves explicit relationships between these nodes and derives implicit

relationships by tracking data flows between these units. The Pebbles Android framework registers

these relationships with the Pebbles Object Manager using an internal registration API. The Pebbles

Object Manager then stores these relationships, compiles a device-wide object graph, derives LDOs

from the graph, and exports the LDOs to protection tools via the Pebbles API. LDOs are defined

as follows: given a node in the graph (e.g., corresponding to a row in the Email table) an LDO is

the transitive closure of the nodes connected to it. §5.6 evaluates Pebbles performance in terms of

precision and recall. In the context of the graph, a failing of recall is missing nodes which should be

included in a transitive closure (“leakage”); a failing of precision is including nodes which should

not be included in a transitive closure (“over inclusion”).

To provide a concrete example of the challenges faced by Pebbles, consider Fig. 5.4, a simplified
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Fig. 5.4: Android Email App Object Structure. A simplified object graph for one account with one

mailbox, message, and attachment. Each node represents an individual file, row, or XML element,

and each edge represents a relationship. While objects can be spread across the DB, FS, and Shared

Preferences, the DB remains the hub for all data.

view of how data is stored by the default Android Email application. As described previously in

§5.2, this app stores its data across all three storage abstractions: SQLite database, SharedPreference

and individual files. Although a SharedPreference is used for account recovery, and several files are

used to store an attachment and a cached rendering of it, the majority of the data is stored in SQLite.

5.3.2 Building the Object Graph

The object graph is the center of innovation in Pebbles: it directly represents Pebbles’s understand-

ing of the structure of an app’s data and lets it construct LDOs. Each file, row, and XML element

is assigned a 32 bit device-wide globally-unique ID (GUID) that is stored with the data item, which

are hidden from and unmodifiable by applications. For database rows, the GUID is stored as an

extra column in the row’s table; for XML, it is stored as an attribute of each element; and for files,

it is stored in an extended attribute. When a row, element, or file is read, the data coming from it

is “tainted” with its GUID and tracked in memory using a modified version of the TaintDroid taint

tracking system [58].

Pebbles builds the object graph incrementally by adding new files/rows/XML elements as nodes

into the graph as they are created. It also adds directed edges (called relationships) between nodes

in the graph as they are discovered. For example, when data tainted with one GUID is written
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into a file/row/XML element with another GUID, a relationship is registered. All nodes and edges

of the graph are registered by the modified Android framework with the Pebbles Object Manager,

where they are persisted in a database. We next describe the mechanisms used to build this graph,

formalized in Fig. 5.5.

Data flow propagation relationships: It is easy to see a strawman approach to detecting relation-

ships between objects: when Pebbles detects that data tainted with node A’s GUID is written into

node B, it adds A ↔ B to the object graph. This approach can capture all data flow relationships that

occur within an application, regardless of the storage abstraction used. However, without precise

information about the relationship between the two nodes, Pebbles is forced to assume the “worst

case” scenario: that both nodes are part of the same LDO. Left unchecked, this so called taint explo-

sion could eventually lead to all of an app’s objects being included in the same LDO. Such behavior

contradicts our primary goal of accurate and precise object recognition (G1). As we will see in

§5.6.1, this naı̈ve approach leads to unacceptably low precision (70%).

Utilizing explicit relationship information: Our next relationship detection mechanism relies on

explicit relationships that directly communicate the programmer’s view of his data structure to im-

prove the precision. In a relational database, explicit relationships are defined in the form of foreign

keys (FKs), which encode the precise relationship between two tables, based on primary keys (PKs).

Interestingly, we can also extract a notion of foreign keys when relating DB rows to files: in some

apps, the name of the file corresponds to the PK of the row to which it refers. Foreign keys en-

code the directionality of relationships, specifying for instance the difference between a “has-a”

relationship and an “is-part-of” relationship. If node A has an FK to node B, then Pebbles adds the

edge A → B (overriding any pre-existing bi-directional edge detected from data flow propagation).

In this way, foreign keys are precise but limited in coverage because they require programmers to

specify them explicitly.

Increasing recall: Pebbles relies on one final relationship detection mechanism, access relation-

ships. Access relationships can be seen as similar to data relationships, but while data relationships

identify relationships as they are written to storage, access relationships identify relationships as

they are read. Consider the case where an application has some data in memory that has not been

synced to stable storage (and therefore is not yet tainted with any node’s GUID). The app uses the

data to generate the index for key-value object A and also writes that data into database row B. In
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Property 5.3.1. Apps define explicit relationships through FKs in DBs, XML hi-

erarchies, or FS hierarchies

Property 5.3.2. The SQLite database is the hub of all persisted data storage and

access

Object Graph Construction Algorithm:

1. Data propagation: If data from A is written to B, then A ↔ B

2. If possible, refine A ↔ B to A → B using Prop 5.3.1

3. Access propagation: If data from A is used to read B, then A ↔ B

4. If possible, refine A ↔ B to A → B, again using Prop 5.3.1

5. Utilize Prop 5.3.2, eliminating access based data propagation relationships

that do not include any DB nodes.

Fig. 5.5: Object Graph Construction Rules.

the absence of explicit relationship information, we would hope that data propagation would detect

the relation; however, it cannot because there is no data flow relationship when the data is written.

We call this situation a parallel write, and resolve it by detecting data flow relationships when data

is read in from storage: if data tainted with node A’s GUID is used to access (read) node B, Pebbles

adds A ↔ B to the object graph. Again, this process is agnostic to the storage abstraction that the

data is stored in, and relies only on data flow within the app. Access relationships can become an

even greater source of imprecision than data relationships. For example, one could use data from

one row, such as a timestamp, to select all the rows with that timestamp. Does that imply that all

those rows should be considered as one object? Probably not.

Graph Generation Algorithm: Fig. 5.5 defines the algorithm used to construct the object graph,

based on the observation that the DB is the hub of all persisted data. Step (1) leverages data flow

propagation to construct a base graph, while (2) refines that graph by applying explicit relationship

information. Step (3) applies access based data flow propagation to increase recall, and (4) again re-

fines that graph with explicit relationship information. §5.6.1 evaluates LDO construction accuracy
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Interface Returned Objects

getLDOContent(GUID,

relevantOnly)

LDO rooted at GUID

getParentLDOs(GUID,

relevantOnly)

LDOs that contain GUID

Table 5.1: The Pebbles API for Accessing LDOs.

and precision in detail.

5.3.3 LDO Construction and Semantics

After constructing the object graph using the above semantics, Pebbles extracts the LDOs. Within

the graph, an LDO is defined as the set of reachable nodes starting with a given node (the root of

the object). Consider the email graph (Fig. 5.4), one can define a number of LDOs: an Account

LDO, rooted in one Account-table row and containing multiple instances of five other row types,

two files, and one XML entry; an Email LDO, rooted in one Message-table row and containing

another row and one file, and so on. Although one LDO of each type is defined in the figure, in

reality, there would be as many LDOs as there are instances of that type.

It is possible and correct for a single node to be part of multiple otherwise separate LDOs, in

which case we say that the LDOs overlap. Consider, for instance, stateful accumulators (e.g. counts

or sums over objects, stored in other objects), common resources (e.g. cache files that contain

information about multiple objects), or log files.

Pebbles exposes LDOs to protection tools via the Pebbles API, which consists of two functions

(Table 5.1). getLDOContent returns the LDO rooted at the given GUID and getParentLDOs

returns the LDOs containing the given GUID. Protection tools may specify with each call if only

LDOs that may be relevant to the end-user should be returned.

5.3.4 From User-Level Objects to LDOs

Both of these API methods require an “object of interest” as a parameter. Pebbles provides a frame-

work for protection tools to allow users to directly select an object of interest (from the user in-

terface), and then use that object for future API calls. In this approach, a user enables a “marking
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mode” from a device-wide menu item, and then touches the item that they are interested in. Through

taint tracking, we can determine the internal GUID for the object that was selected, and return that

GUID back to the protection tool. This feature makes designing user-centric protection tools very

easy: the tool need not concern itself with determining which objects to protect.

The mechanisms described thus far are useful for building a graph of all of an application’s

objects, but does not yet include a way to identify those objects that are relevant to users. For

instance, in our email application there is another table, “sync state,” that stores how recently an

account was synchronized with the server. Sync state should clearly not be considered its own LDO,

as its existence is essentially hidden from the end-user – the user will likely consider whatever data

is stored here as, logically, part of the account. Pebbles leverages its system-wide taint tracking to

identify which nodes in the object graph are directly displayed on the screen, Pebbles marks those

objects (and other LDOs of the same type) as relevant. If an object is not relevant, then Pebbles will

not allow it to be the root node of an LDO, instead including it as a member of the nearest parent

node displayed on the screen.

5.4 Pebbles-based Tools

To showcase the value of Pebbles, we built four different applications that leverage its object graph.

5.4.1 Breadcrumbs: Auditing Object Deletion

Motivated by Scenario 1 in §5.1.1, Breadcrumbs lets users audit the deletion of their objects – such

as emails or documents – by their applications. It uses Pebbles’s primitives to track objects as they

are being deleted and identify any breadcrumbs left behind by the application.

Users mark objects to audit for deletion (using Pebbles’s object marking functionality), and

then delete the object through their unmodified applications. They then open the Breadcrumbs ap-

plication, which shows any persisted data related to recently tracked objects. In this way, users are

not inundated with notifications about deletions and instead are only being presented with audit-

ing information upon request. Fig. 5.6 shows a screenshot of Breadcrumbs’s output when the user

deletes an email in the Android email application. It shows the attachment file left behind and pro-

vides meaningful information about the leakage. A brief predefined interval after the user deletes a
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Fig. 5.6: Breadcrumbs.

tracked object, Breadcrumbs destroys all relevant auditing information to protect the confidentiality

of the partially deleted object.

Algorithm 1 shows how Breadcrumbs uses Pebbles’s APIs to obtain all information necessary

to identify and provide meaningful information about data left behind. Given a selected UI object,

Pebbles identifies the GUID of the LDO represented by that LDO (as described in the previous

section), and then Breadcrumbs calls getLDOContent to get all of its parts. For any part that still

exists in persistent storage – the attachment file in this case – it displays meaningful metadata about

that node. For example, instead of just showing the file’s path, which can be nondescript, Bread-

crumbs uses Pebbles’s getParentLDOs function to retrieve the parent node, presumably a row.

It displays the row’s table name (“Attachment” in Fig.5.6), providing more context for information

left behind. While the specific user interface we chose for Breadcrumbs can be improved, this ex-

ample underscores the great value protection tools like Breadcrumbs can draw from understanding

application-level object structures.

Our evaluation of Breadcrumbs on 50 apps (§5.6.3), reveals that incomplete deletions are sur-

prisingly common: 18/50 apps leave breadcrumbs or refuse to delete objects from the local device.
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Algorithm 1 Breadcrumbs Pseudocode
function WASFULLYDELETED(LDO l) B →

for all getLDOContent(l) as x do

if x exists still then Add x → B

end if

end for

for all B as x do

Display x and getParentLDOs(x) to the user

end for

end function

Breadcrumbs could also be a useful tool for developers. A developer could proactively use

Breadcrumbs to ensure that they are responsibly handling their user’s data.

5.4.2 PebbleNotify: Tracking Object Exfiltration

Inspired by TaintDroid’s data exfiltration tool [58], we built PebbleNotify, a tool that tracks exfiltra-

tion at a more meaningful object level. TaintDroid reveals data exfiltration at a coarse granularity:

it can only tell a user that some data from some provider was exfiltrated from the device, but not the

specific data that was leaked. For instance, consider a cloud-based photo editing application. A user

might expect this application to upload the photo being edited to a server for processing; however,

he may be interested in checking that no other photos are exfiltrated. Shown in the left hand side

of Fig.5.7, TaintDroid would warn the user that data related to some photo was uploaded, but not

which photo or how many photos. PebbleNotify is a 500 line of code application built atop Pebbles

that interposes on the same taint sinks as TaintDroid, but provides object-level warnings. §5.5 de-

scribes in somewhat greater detail the modifications that we made to TaintDroid to track individual

objects with high precision. Shown in the right hand side of Fig.5.7, it leverages application-level

data structures exposed by Pebbles to give users meaningful, fine-grained information about their

leaked objects.
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Fig. 5.7: Alert Screenshots. (L): TaintDroid, (R): PebbleNotify.

5.4.3 PebbleDIFC: Object Level Access Control

As a logical extension to PebbleNotify, consider the case where rather than monitor the exfiltration

of sensitive data, users want to prevent specific apps from having access to it. For example, in our

previous example of a user using a cloud-based photo editing application, perhaps the user would

rather simply prevent that photo editing app from having any access whatsoever to sensitive photos.

PebbleDIFC supports this use-case by interposing on Android content providers, the mechanism

used to share data between apps.

PebbleDIFC allows users to select individual objects that are sensitive, and then prevent them

from being shared with other applications (in this case, photos). As with the rest of our protection

tools, PebbleDIFC’s implementation is straightforward. Before returning an object from a content

provider, PebbleDIFC checks a table that maps apps to hidden objects, and prevents access to hidden

objects.
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5.4.4 HideIt: Object Level Hiding

Whereas PebbleDIFC allows objects to be permanently hidden from specific apps, HideIt supports a

slightly different use case: allowing objects to be selectively hidden from all apps on the device, and

then redisplayed at some later point, and perhaps hidden again later on. When objects are hidden

(again, using Pebbles’s marking mode), they are encrypted, and any record of their existence is

filtered, by interposing on storage APIs. When objects are un-hidden, they are decrypted, and no

longer filtered from API results. HideIt is intended for use-cases where small amounts of data need

to be infrequently hidden from prying eyes, for instance, a parent lending their phone to their child.

5.4.5 Other Pebbles-based Tools

Although we designed and implemented Pebbles for Android, we believe that its object recognition

mechanisms are applicable to other environments where a database is used as the hub of storage.

In particular, we can imagine applying Pebbles as a software engineering tool to help developers

understand either current or legacy applications where the database is the storage hub. A developer

could use Pebbles to explore undocumented systems that do not make use of modern abstractions

such as object relational mappers that would make the system easy to understand or to determine

whether an application conforms to best practices and alert the developer if not. Understanding data

structure from below the application could also enable testing tools and policy compliance auditing

tools for cloud services [128]. We leave investigation of such applications for future work.

5.5 Implementation

We implemented Pebbles and each of the four above protection tools on Android 2.3.4 and Taint-

Droid 2.3.4. For Pebbles, we modify the SQLite, XML key/value store (a.k.a. SharedPreferences),

and Java file system API to extract explicit structure, to intercept read/write/delete operations, and

to register relationships. We also make several key changes to the TaintDroid tracking system, which

we release as open source (https://systems.cs.columbia.edu/projects/pebbles).

We next review our TaintDroid changes, after which we describe some implementation-level details

of object graph creation.

https://systems.cs.columbia.edu/projects/pebbles
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TaintDroid Changes. To support Pebbles, we made three modifications to TaintDroid: (1) we

increase the number of supported taints from 32 to several million, (2) we implement multi-tainting

to allow objects to have an arbitrary number of taints simultaneously, and (3) we implement fine-

grained tainting. The first two TaintDroid changes are necessary to track every row, file, and XML

element with a separate taint and are implemented with a technique recently proposed in the context

of another taint tracking system [111]. We omit the details here for space reasons.

The third TaintDroid change is motivated by massive taint explosion that we observed due to

TaintDroid’s coarse-grained tracking. Specifically, TaintDroid stores a single taint tag per String and

Array [58]. Deemed a performance benefit in the paper, this coarse-grained tracking is unusable in

Pebbles: we observed extremely imprecise object recognition and application-wide LDOs due to

this poor granularity. As one example, CWMoney, a personal finance application, has an internal

array that holds selection arguments used in database queries. This causes all nodes selected by that

query to be related, defeating any hopes of object precision.

To address this problem, we modify TaintDroid to add fine-grained tainting of individual Array

and String elements. To implement fine-grained tainting we add a shadow buffer to the Dalvik

ArrayObject that contains the taint of each element in the array. If implemented naively, the shadow

arrays would likely double the memory required for each array. To minimize the memory overhead

from the shadow arrays we allocate the shadow array only when a tainted element is inserted into

the array. This same optimization is implemented in [47]. Intuitively, only a small fraction of arrays

in an device’s memory should contain tainted elements (3-5% according to our evaluation). §5.6.2

shows that this lazy shadow array allocation significantly reduces the memory overhead of precise

fine-grained tainting. We release our changes open source as a patch for TaintDroid.

Object Graph Implementation. The Pebbles graph is populated incrementally during application

execution and persisted in a central database on the data partition so the graph does not need to

be regenerated on each reboot. Applications interact with the Pebbles API through the Pebbles

Object Manager that runs as part of the central system server process. Graph edges are generated

on read and write operations to SQLite, shared preferences, and the file system. On read and write

operations that generate new edges, requests for edge registration are placed on a queue within

the application’s memory space. This lets Pebbles perform bulk asynchronous registrations off of

the main application thread improving application interactivity even during periods of heavy edge
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creation. In its current implementation the registration queue is not persisted to stable storage so

it will be lost on application crashes or restarts. This is a potential attack vector that does not fall

under the threat model for non-malicious applications.

5.6 Evaluation

We evaluate Pebbles over 50 popular applications downloaded from Google’s Android market on a

Nexus S running our modified version of Android 2.3.4. We seek answers three key questions:

Q1 How accurate and precise is object identification in Pebbles?

Q2 What performance overhead does it introduce?

Q3 How useful are Pebbles and the tools running atop?

Application Workloads. We chose 50 test applications from the top free apps within 10 differ-

ent Google Play Store categories, including Books and Reference, Finance, and Productivity. We

looked at the top 30 most popular applications within each category (by number of installs) and se-

lected those that used stable storage. We also added a few open-source applications (e.g., OINote).

The resulting list included: Email (Android’s default email app), OINote (open-source note app),

Browser (Android’s default), CWMoney (personal finance app), Bloomberg (stocks app), and Pod-

castAddict (podcast app). For each application, our workload involved exercising it in natural ways

according to manual scripts. For example, in Wunderlist, a todo list app, we created multiple lists,

added items to each list, and browsed through its functions.

5.6.1 Pebbles Precision and Recall (Q1)

We measure the precision and recall of our object recognition by identifying how closely LDOs

match real, application-level objects as users perceive them. We manually identified 68 poten-

tially interesting LDO types across 50 popular applications (e.g., individual emails, folders, and

accounts in the default email app; individual expenses, expense categories, and accounts in the CW-

Money financial app). We evaluated whether Pebbles correctly identifies those objects (no leakage

or over-inclusions). Recall measures the percentage of LDOs recognized without leakage; precision

measures the percentage of LDOs recognized without over-inclusion.
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Pebbles File Tainting Only

Application LDO Detected Precise Detected Precise

Email

Account Y Y Y N

Mailbox Y Y Y N

Email Y Y Y N

OINote Note Y Y Y N

Browser
History Item Y Y Y N

Bookmark Y Y Y N

CWMoney

Account Y Y Y N

Category Y Y Y N

Expense Y Y Y N

Bloomberg
Stock N Y Y N

Chart Y Y Y N

Podcast
Podcast Y Y Y N

Episode N Y Y N

50 Total 68 Total
62/68

(91%)

66/68

(97%)

68/68

(100%)

0/68

(0%)

Table 5.2: LDO Precision and Recall. Sample applications and objects tested for object recognition

precision and recall. “Y” indicates that an LDO was identified without leakage (column “Detected”)

or without over inclusion (column “Precise”). If an LDO has “Y” in both columns, its recognition

is deemed correct. As expected, Pebbles performs far better than a straw man approach of treating

entire files as a single LDO.

To establish ground truth about LDO structure, we first populated the application with data and

took a snapshot of the phone’s disk, S1, prior to creating the target object. Then, we created the

object and took a second snapshot of the disk, S2. The ground truth is the diff between S2 and

S1 after manually excluding differences that are unrelated to the objects (e.g., timestamps in log

files that differ between the two executions). We then exercised the application as thoroughly as

possible so as to capture any edges that Pebbles might detect. To measure accuracy, we compare

Pebbles-recognized LDOs to the ground truth; if identical, we declare accurate recognition for that

application and object.

Table 5.2 shows whether Pebbles correctly and precisely detects these LDOs. For comparison,

we also evaluated the precision and recall of a basic approach, which represents perhaps the cur-
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rent state of the art: detecting relationships between files using just taint tracking and not using

additional file structure to refine the granularity of objects. Pebbles correctly identifies 60 of the 68

objects across these 50 apps, without requiring any program modifications. Of the eight incorrectly

identified objects, six were not correctly detected and two were not precise.

In each case that Pebbles failed to properly detect all components of the object (i.e., where it

failed in recall), the leakage was due to a non-standard database specification. For instance, in

the case of the app “ColorfulBudget”, users can group expenses into categories, but Pebbles did

not always properly detect the relationship between an expense and its category. Best practices

would dictate that in such a case, all categories would be listed in a single table with a primary key

(PK), and then each expense would contain a foreign key (FK) to reference the category’s PK [29].

Traditionally this PK is an integer, to significantly increase lookup speed and decrease the amount

of space needed to store any references to it [29]. However, in its current implementation, this

app uses the actual name of the category as a key into the category table, without declaring such

a dependency. Therefore, if a new category is created simultaneously with the creation of a new

expense, we will experience a parallel write: there will be no data dependence when the category is

inserted and when the expense is inserted, since the category did not yet exist in storage. Moreover,

since the relationship is not declared in the app schema as an FK, explicit relationship mechanism

will not detect it.

While our access-based technique will largely eliminate this problem, there is still a gap when

data is written but never read back. In these scenarios, such relationships could never be detected.

Had these apps explicitly declared their DB relationships (e.g., in the above case by referencing

each category by its PK), Pebbles would accurately recognized the objects.

As an example of Pebbles failing in precision (i.e., including additional objects as part of an

LDO), consider the “Evernote” note taking app. Each time a notebook is updated, text in a Shared-

Preferences node is updated to reflect the newest notebook, creating a data dependency between the

SharedPreference and the notebook. In this way, each notebook can become related to each other

because Pebbles currently does not break data dependencies when text is updated. The only way

that relations are broken in Pebbles is if an explicit relationship exists and is removed.

Without requiring any modifications to applications, Pebbles is able to achieve up to 91% recall

or 97% precision. The straw man approach of utilizing only taint tracking (without knowledge of
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Fig. 5.8: Java Microbenchmarks. Overheads of the modified TaintDroid on the Java runtime with

CaffeineMark, a standard Java benchmark. Higher values are better. Overheads on top of TaintDroid

are 28-35%.

file structure) showed perfect recall (100%), and a complete failure in precision (0%). In other

words, there were no cases of a single logical object stored in a single file. Overall, our results

confirm that an unsupervised approach to application-level object recognition from within the OS

works well, especially if schemas are relatively well-defined.

5.6.2 Performance Evaluation (Q2)

To evaluate Pebbles performance overheads, we ran two types of benchmarks: (1) microbench-

marks, which let us stress various components of our system, such as the computation and SQLite

plugins; and (2) macrobenchmarks, which let us quantify our system’s performance impact on user-

visible application latency. Pebbles is built atop the taint tracking system TaintDroid [58], with

several modifications made to increase taint precision (as discussed in §5.5). Therefore, we evalu-

ate the performance overhead of Pebbles in comparison to both TaintDroid and to a stock Android

device.

Microbenchmarks. Our first experiments evaluate the overhead of Pebbles with the Java bench-

mark CaffeineMark 3.0 [113] and are shown in Fig. 5.8. We ran the six computational benchmarks

and find that Pebbles decreases the score by 32% compared to TaintDroid, which itself decreases
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the score by 16% compared to Android. The majority of this overhead comes from modifications to

support more than 32 taints in Pebbles: TaintDroid combines tags by bitwise OR’ing, but Pebbles

supports 232 distinct taint markings, which are maintained in a lookup table. Pebbles also stores taint

tags per individual array element, whereas TaintDroid stores only one taint tag per array, creating

an additional overhead for Pebbles array-heavy benchmarks.

Pebbles also incorporates modifications to SQLite to detect and register relationships between

rows with the Pebbles service. To evaluate the overhead, we compared the latency of simple,

constant-size SELECT, INSERT, and UPDATE queries on an Pebbles-enabled Android versus An-

droid. Fig. 5.9 shows query overheads when the query involves a relationship registration (59-168%)

and when it does not (158-553%). No-registration queries – the cheapest to Pebbles – will likely be

the common case for read-mostly workloads. For example, a document may be read many times,

but relationship registration occurs only once. Moreover, batching and asynchronous-registration

optimizations will likely help alleviate the overheads. The XML-based key/value store exhibits

similar behavior, although we suppress concrete results.

Application-Level Performance. The above workloads are micro-benchmarks that stress the var-

ious components but do not necessarily relate to user-perceived performance impacts. To measure

the impact of Pebbles on user-perceived interactivity, we evaluated the runtimes for various oper-

ations with three popular applications: Email, Browser and OINote. For Email, we look at app

launch times and email reads; for Browser, we load the simple IANA homepage and the rich CNN

and Google News pages over a local network; and for OINote we read a note. All network access
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App Activity Base TDroid Pebbles Overhead

Email
Launch 196.8 202.1 260.0 63.2 ±1.11

Load Email 211.6 253.6 463.6 252.0 ±1.64

OINote
Launch 182.6 229.4 219.7 37.2 ±1.58

Load Note 59.5 70.2 84.9 25.4 ±0.14

Browser

Launch 96.5 124.0 148.1 51.6 ±1.63

Load (iana) 154.0 209.3 395.3 241.4 ±2.26

Load (CNN) 778.9 862.7 1443.1 664.2 ±17.56

Load (GNews) 951.3 1023.5 1311.2 359.9 ±10.75

Table 5.3: Application Performance. Operation runtimes and overheads in milliseconds. 95%

confidence interval shown for overhead. Base is the Android baseline, TDroid is TaintDroid.

occurred over USB tethering to a host running a caching proxy; timing information excludes cache

warmup. Table 5.3 shows the results in milliseconds. In almost all of the cases, overhead was less

than 250ms. We saw more overhead and variation when rendering multimedia heavy web pages.

Memory Overheads. The modifications to TaintDroid to add fine grained tainting adds a mem-

ory overhead to the running system. We measure system wide memory usage while exercising

three applications (Email, OINote, and Browser) with a similar workload as above. Without lazy

memory allocation of array taint vectors (see §5.5), Pebbles’s system-wide memory overheads are

high: 188MB, 70MB, and 119MB, respectively, compared to TaintDroid. With lazy memory alloca-

tion, Pebbles exhibits much lower system-wide overheads: 34MB, 16MB, and 29MB, respectively.

Although still higher than TaintDroid’s own overhead of around 7MB for these applications, we

believe Pebbles overheads are acceptable given devices’ increased memory trends.

5.6.3 Case Study Evaluation (Q3)

Breadcrumbs. Using our Breadcrumbs prototype we evaluated deletion practices of 68 types of

LDOs across 50 applications. Of the 50 applications, 18 of them exhibited some type of deletion

malpractice.

Table 5.4 shows sample deletion malpractice. There were several cases where data from one

LDO was written into another another and not cleaned up later. There were also several applications
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Application Object Deletion Leakage

Email Attachments remain after email/account deletion

ExpenseManager Expenses remain after associated category deleted

Evernote Notes/notebooks remain in database after deletion

On Track Measurements remain after deleting category

14 other apps 21 LDO types unsafely deleted

Table 5.4: Breadcrumbs Findings. Shows samples of unsafe deletion in various applications.

that did not delete items at the users’ request, instead simply removing them from the user interface.

We observed this in applications that heavily rely on cloud storage such as Wunderlist, a popular

cloud-backed todo list application.

PebbleNotify. To evaluate PebbleNotify, we compared its output to that of TaintDroid Notify.

When TaintDroid Notify detects that data tainted with a value from one of the selected sources is

exfiltrated, it notifies the user with the application that is responsible for the network connection,

the destination, the data source, the timestamp, and the first 100 bytes of the packet. This is useful

metadata but it won’t help a user learn specific information about the data being exfiltrated such as

which picture or specific contact is leaving the device. We found that PebbleNotify was more infor-

mative because it shows a summary of the data being exfiltrated, and not just the metadata presented

by TaintDroid Notify. PebbleNotify was particularly useful in the case of image exfiltration because

it displays a thumbnail of the image being sent.

PebbleDIFC. We integrated PebbleDIFC with the Android Media Provider and evaluated it by

using it to mark several photographs on our device as sensitive (i.e., to prevent them from being

shared). We then verified that those photos were not visible to applications other than the default

Gallery application. We found that for this use case, PebbleDIFC has perfect accuracy: every photo

that was marked was hidden, and no additional photos were hidden.

HideIt. We evaluated HideIt against many applications and largely found it to be effective. In our

evaluation, we interacted with the application, populated it with data, and then marked a subset of

the data as private so the application no longer had access. Interestingly, in most cases apps behaved

as hoped when individual data objects were hidden and then again returned. There were however

several cases where apps crashed when they expected some data to still exist, but was removed. We
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are interested in performing further investigations of the applicability of HideIt.

5.6.4 Anecdotal User Experience

To gain experience with Pebbles, the primary author carried it on his Nexus S phone for about a

week. He primarily used the Email, Browser, Gallery, Camera, and PodcastAddict apps. We report

two anecdotal observations from this experience. First, applications exhibit noticeable overhead

during periods of intense I/O, such as on initial launch or when applications populate or refresh

local stores. During regular operation we observed overheads that are anecdotally similar to ones

exhibited by running Android 4.1 (a 2012 OS) on our Nexus S (a 2010 device). Second, to check

if object recognition remains accurate over time, we examined at the end of the week the structures

of a sample of the objects in our applications (e.g., emails, folders, photos, browser histories, and

podcasts). We saw no evidence that object recognition degraded over time due to taint explosions

or other potential sources of imprecision for Pebbles. Objects grew naturally; email folders grew in

size to include relevant new email objects and they remained accurate.

5.6.5 Summary

Overall, our results show that: Pebbles is quite accurate in constructing LDOs in an unsupervised

manner (Q1), performance remains reasonable when doing so (Q2), and data management tools

can benefit from Pebbles to provide useful, consumer-grade functions to the users (Q3). In our

experience, Pebbles either consistently identifies objects of a particular type (e.g., all emails, all

documents, etc.), or it does not. Whether it works depends largely upon the application’s own ad-

herence to some common practices (described in the next section). When Pebbles works for all

object types of an application, Pebbles can provide the desired guarantees under our threat model.

And even when Pebbles is incomplete, it can still support transparency applications, improving vis-

ibility into data (mis)management of applications. Our accuracy results show that Pebbles discovers

all object types in 42 out of 50 applications correctly (no over-inclusions/leakages). We leave de-

velopment of tools to identify whether an application matches the Pebbles assumptions for future

work.
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5.7 Discussion

Pebbles leverages the structure inherently present in the storage abstractions commonly used on An-

droid to identify LDOs. More formally, Pebbles assumes the usage of the following best practices:

R1: Declare database schemas in full: Given that the database is becoming the central point of

all storage in modern OSes, having a well-defined database schema is important and natural.

42/50 apps we have evaluated in §5.6.1 meet such requirements sufficiently for Pebbles to

work perfectly for them.

R2: Use the database to index data within other storage systems: A common programming pattern

is to create a parent object (e.g., a message) in the database, obtain an auto-generated primary

key, and then write any children objects (such as message body, attachment files) using the

PK as a link. 47/50 apps use this pattern. We strongly recommend it to any programmers who

need to store data outside the DB.

R3: Use standard storage libraries or implement Pebbles storage API: To avoid precision lapses,

we recommend that apps use standard storage abstractions. As §5.2 shows, most apps already

adhere to this practice: most apps use exclusively OS-embedded abstractions.

Relative to our evaluation of 50 apps, 39/50 adhere with all three recommendations, and 50/50

adhere with at least one of them. Pebbles’ performance could suffer for apps that do not follow any

of these recommendations. However, we believe that each recommendation is sufficiently intuitive

and rooted in best practices to not impose undue burden.

5.8 Related Work

Taint Tracking for Protection and Auditing. Taint tracking systems (such as [13,44,76,104,123,

158, 165]) implement a dynamic data flow analysis that has been applied to many different context

such as privacy auditing [44, 58, 164], malware analysis [104], and more [13, 165]. TaintDroid [58]

provides taint tracking of unmodified Android applications through a modified Dalvik VM, a sys-

tem that Pebbles builds upon for its object graph construction. To our knowledge, Pebbles is the
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first system to use taint tracking to discover data semantics of objects and provide a higher level

abstraction with which to reason about and enforce such security properties.

Several systems utilize taint tracking to provide fine grained data protection and auditing. In

each of these cases, however, a burden lies on the application developers to add hooks to identify

relevant data structures to protection tool developers – a burden that could be lifted by Pebbles. For

instance, CleanOS aims to minimize data exposure on a mobile device by automatically encrypting

its “sensitive data objects” (SDOs) when not under active use [138]. The LDO abstraction is perhaps

to some extent inspired by the SDO; however, SDOs must be manually specified by application

developers, whereas LDOs are automatically identified and registered by Pebbles. Pebbles could be

used to automatically identify SDOs, without requiring developer interaction.

Distributed information flow control (DIFC) systems such as Laminar [123], Asbestos [147],

and Resin [158] let developers associate data with labels, and then allow either developers or end-

users to specify security policies that apply to different labels. Taint tracking is performed during

application execution to ensure that labels are propagated to derived data. Pebbles could be used

to eliminate the need to statically annotate data with labels in code, instead automatically applying

labels to LDOs as users request them. PebbleDIFC demonstrates the feasibility and power of such

a system.

Related to taint tracking, data provenance [101,102,127] is close in spirit to logical data objects.

It tracks the lineage of data (e.g., the user or process that created it). It has been proposed to identify

the original authors of online information, to facilitate reproduction of scientific experiments [127],

detect and avoid faulty data propagation in clouds [102], and others. It has to our knowledge never

been used as an OS protection abstraction.

Fine-Grained Protection in Operating Systems. Many systems have been proposed in the past to

support fine-grained, flexible protection in operating systems. Some of the earliest OSes, such as

Hydra [154] and Multics [124], provided immense protection flexibility to applications and users.

Over time, OSes removed more and more flexibility, being considered too difficult for programmers.

Our goal is to eliminate the programmer from the loop by having the OS identifying objects.

More recently, OS security extension systems, such as SELinux [126] and its Android version,

SEAndroid [125], extend Linux’s access control with flexible policies that determine which users

and processes can access which resources, such as files, network interfaces, etc. Our work is com-
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plementary to these, being concerned with external attacks, such as thieves, shoulder surfing, or

spying by a user with whom the device has been willfully shared. Our abstractions, might, however,

apply to SEAndroid to replace its antiquated file abstraction.

Securing and Hiding Data. Many encryption systems exist, operating largely at one of two levels

of abstraction: block level [6,98,145] and file level [69,75]. A drawback to such encrypted file sys-

tems is that it forces users to consider data as individual files, while logically there may be multiple

objects that the user is interested in in a single file. Pebbles allows protection tool developers to

provide a far finer level of control (at the object level) than these existing systems (at the file level).

Some protection tools are already operating at a higher level of data abstraction. These appli-

cations, such as Vault-Hide [107] and KeepSafe Vault [89], allow users to hide specific types of

data, including photos, contacts, and SMSes. However, they only plug into a handful of supported

apps and cannot provide generic protection for all apps. Pebbles aims to effect a similar level of

control, but without requiring specialized work by protection tool developers to support specific

applications.

Inferring Structure in Semistructured Data. Discovering data relationships is a key aspect of

our work. Other have worked on inferring data relationships in various context: foreign key rela-

tionships in databases to improve querying [118, 162] and file relationships in OSes to enhance file

search [131]. However, Pebbles can also infer relations among files, as well as other higher-level

storage abstractions within modern operating systems. To perform such broad relationship detec-

tion, Pebbles differs significantly from other relationship detection systems in that it also leverages

taint tracking.

Cozzie et al. developed the Laika system [48] which uses Bayesian analysis to infer data struc-

tures from memory images. Pebbles differs from Laika in that it does not attempt to recover pro-

grammer defined data structures but to discover application-level data relationships from stable

storage that would be recognizable and useful to an end user or developer.

5.9 Conclusions

We have described logical data objects (LDOs), a new fine-grained protection abstraction for per-

sistent data designed specifically to enable the development of protection tools at a new granularity.
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We described our implementation of LDOs for Android with Pebbles, a system that automatically

reverse engineers LDOs from application-level persisted data resources – such as emails, docu-

ments, or bank accounts. Pebbles leverages the structural semantics available in modern persistent

storage systems, together with a number of mechanisms rooted in taint tracking, to construct and

maintain an object graph that tracks these LDOs without introducing any new programming models

or APIs.

We have evaluated Pebbles and four novel protection tools that use it, showing it to be accurate,

and sufficiently efficient to be used in practice to identify and manage LDOs. We can envision

many other useful applications of Pebbles, such as data scrubbing or malware analysis, and hope

that LDOs will enable the development of these and other granular data protection systems.
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Chapter 6

Future Work

6.1 Stable tests and stable builds

My thesis work in accelerating and stabilizing testing and builds led to my interest in the general

problem of flaky tests. Recent studies have shown that tests may behave erratically (i.e., become

flaky) for many reasons, not just due to the violated test order dependencies that I have looked

at [95]. For instance, tests may have poorly managed synchronization (e.g., a test that starts a sever,

and uses a timed wait to wait for the server to come back), external dependencies (e.g., on outside

services that do not have mocks), or general non-determinism. I believe that our software testing

and building infrastructure should rise to the task to automatically determine when a test is flaky

for one of these reasons, and - if possible, automatically patch around the solution. For instance,

using my existing work, I can augment a testing infrastructure to detect the ordering dependencies

between tests, and then ensure that they are always enforced. I am interested in exploring techniques

for automatically repairing tests that are flaky. One approach would be to build on my prior work

in lightweight record-and-replay systems (Chronicler [24]), which could be used to isolate external

factors that cause tests to become flaky. By helping developers run their tests faster and more

reliably, we can decrease the cost of test execution, making it easier to run tests more often and find

bugs faster.
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6.2 Supporting debugging and program understanding

I believe that software debugging tools can be greatly improved to support developers, making it

easier to pinpoint faults and understand how code works. While much prior literature on debug-

ging focus on purely automated techniques for debugging, I am excited to examine the potential

for building supportive approaches: those that serve to help (but not completely automate) human

debugging tasks.

For example, while taint tracking is typically applied in the context of security and privacy

tools, it can be an incredibly powerful tool when used in the context of debugging and program

understanding. I plan to integrate my existing taint tracking system for Java, PHOSPHOR [19, 21]

with existing debugging tools (e.g., the Eclipse debugger) to allow developers to determine precisely

what code statements effect any specific value. Previous work towards solving this problem is

typically based on dynamic program slicing: where complete program dynamic dependency graphs

are captured, and then analyzed to detect the relevant slice of the program that affects a given

variable. This approach can be unwieldy on large and long running programs — the “slice” typically

includes all instructions that effect a variable plus all of those that are depended on (e.g., through

control dependencies) by those instructions. In contrast, I propose a significantly more lightweight

analysis, which will answer only the question of “where was this variable set,” but will answer this

question efficiently. Such a system will show only statements that the variable depends on through

data flow dependencies, which will allow it to be more scalable to deploy than a traditional slicing

system that includes control dependencies as well. I believe that by building on Phosphor, I can

create a new approach to debugging, and prove its usefulness in actual deployment environments, a

first step towards my broader agenda of creating better debugging and program understanding tools.

6.3 Runtime monitoring of deployed software

Another key challenge for software developers is monitoring software once it’s deployed: collecting

performance and usage metrics, crashes, etc. My current interest in this area is specifically related to

helping developers effectively reproduce production crashes in the lab — an area that I have touched

on in my early work on record and replay for Java (Chronicler, [24]). Two main limitations for

systems that record program executions in the field for replay in the lab are privacy and performance:
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these systems often record sensitive data, and recording sufficient data to reproduce the failure

successfully tends to be heavyweight. My first steps in this direction build in a new direction off of

PHOSPHOR, using it to track path constraints on variables through a program execution.

Path constraints represent the symbolic constraints that are applied to programs during a con-

crete execution, for instance x+ 2 > 5, y ̸= null, or str = "foo". While recording constraints

can be relatively heavyweight, it tends to be very easy to determine if a given input satisfies a set

of constraints. I have extended PHOSPHOR to track path constraints on variables, creating KNARR,

which is significantly more performant and portable than previous approaches (e.g., KLEE requires

sourcecode, JPF is designed for modeling small Java programs and does not support many real-

world Java programs), enabling new research directions.

One potential project will use KNARR to record constraints on application inputs during a pro-

filing phase, and then check inputs against this constraint cache at runtime to determine if the inputs

will exercise new program behavior. If so, additional monitoring can be performed (e.g., security

checks, logging, input recording, etc.), and, if not, execution can proceed knowing that the program

is unlikely to crash or behave differently than it did previously with similar inputs. A logical exten-

sion would be to consider program optimizations that can be performed if we know that an input

matches a given profile. Such an approach can work towards the overall goal of increasing confi-

dence of deployed software, as developers can monitor when applications see similar (or dissimilar)

inputs, and use this information as feedback for testing cycles.

6.4 Build Acceleration

In our previous work, we determined that build times of Java projects are often dominated by the

execution of tests, and presented two approaches to significantly reduce the time necessary to run

entire test suites by cutting time spent isolating tests, and safely parallelizing them.

We have discovered a new way to accelerate the testing phase of builds (specifically, Java builds

performed with Maven) even further by introducing a new level of parallelism, allowing tests to

begin executing before projects are fully built without introducing a risk of build failure or nonde-

terminism. While there have been attempts to support fully parallel Java builds (e.g., Maven’s −T

feature), realizing high degrees of parallelism remains challenging due to difficult-to-break depen-
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Project Build Time (mins) Testing Time Modules

w/ Tests

titan 380.77 94.99% 13/15

camel 359.57 84.68% 195/271

mule 198.87 92.81% 57/72

spring-data-mongodb 123.17 99.32% 3/3

cdap 110.62 97.15% 19/33

hadoop 108.03 97.78% 27/36

opennms 120.73 76.89% 122/220

ks-final-milestone 124.23 71.08% 17/46

mongo-java-driver 74.92 99.35% 1/1

netty 67.63 92.24% 16/19

Table 6.1: Testing statistics for large maven projects. Shows the build time, percent of build time

running tests, and the number of maven modules of each project that have tests.

dencies. Maven is a modular build system, allowing projects to consist of multiple sub-modules,

each of which may depend on other modules. When a multi-module Maven project is built, each

module goes through the entire Maven build lifecycle (compile, test, package, etc.)

We measured the amount of time spent running tests in 10 large open source java projects

(building on Amazon’s EC2 with m3.medium instances), finding that tests are often distributed

among many modules. Table 6.1 shows the results of this preliminary study: most projects have

many modules, and many of those projects have tests.

We have observed that while one module may depend on the code or other artifacts generated

by a previous module, they do not rely on the execution of the tests of a prior module. However,

due to Maven’s modular nature, it is impossible to specify that a single component of a module (for

instance, its tests) should run in parallel with other modules. Therefore, we have built a plugin for

test execution in Maven that delays the dependency between each module’s test phase, allowing tests

to execute in parallel to the build of other modules. This way, Maven considers individual modules

as fully built (for the purpose of dependency resolution) even if that module’s tests haven’t finished

running yet. Since the dependence is delayed (rather than dropped), Maven still executes the tests

for each module, and won’t consider the build overall complete until the tests finish executing. This



CHAPTER 6. FUTURE WORK 134

approach requires making no modifications to Maven, instead functioning solely as an additional

plugin, ensuring that it remains portable across new versions of Maven.

We applied this technique to build a proprietary, internal system that had previously taken 20

minutes to build, even when utilizing Maven’s provided parallelism features. After applying our

delayed dependency technique, the system took only 8 minutes to build, using the same number

of processor cores as Maven’s automatic parallelism provided. We are continuing to refine this

prototype system and search for other sorts of limitations that build systems might have that limit

their performance.
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Chapter 7

Conclusions

Advancement in software testing, debugging and tools that support programmer understanding of

code are often limited by an invisible wall between the software engineering, software systems, and

programming language communities. To make a major contribution in this area requires an ability

to both empirically analyze the current challenges that developers face, and the ability to construct

new and novel tools and analyses to support these challenges. I believe that the strongest advances

in software engineering come from new approaches that leverage both semi-automated tooling and

developer insights and feedback, rather than purely automated tools.

In this thesis, I have presented four techniques and their concrete system implementations that

all contribute to making it easier for developers to produce reliable software. Ive described how

program dependency analysis can be an interesting and sometimes overlooked way of approaching

software reliability. For instance, I described how testing dominates the overall time needed to build

software, which can make it hard to run tests as often as developers might need, making it harder to

build reliable software.

I described my first insight towards accelerating testing, removing the need to execute individual

test cases in their own process (VMVM, Chapter 2, with my lightweight isolation mechanism. I also

considered situations where test cases are not isolated, where it is not safe to use off-the-shelf test

acceleration techniques, describing ELECTRICTEST, which efficiently detects these dependencies

between tests (Chapter 3). Finally, I described my dynamic taint tracking system, PHOSPHOR

(Chapter 4), a system that leverages taint tracking to make it easier for developers to specify their

tests, PEBBLES (Chapter 5).
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While I am interested in the broad research directions described in Chapter 6, I also look forward

to new collaborations and continuing to broaden my research horizons.
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JVM Bytecode Opcode Reference

PHOSPHOR modifies the operation of many bytecode instructions by inserting additional instruc-

tions around them. This table lists all bytecode instructions supported by the Java Virtual machine,

and for each one, a brief description of the change(s) that PHOSPHOR makes.

Table 1: All JVM bytecodes, annotated with descriptive transformation information

Opcode(s) Brief Description PHOSPHOR Modifications

aastore Stores reference to array Removes the taint tag for the in-

dex before storing; if the ref. is

to a primitive array, boxes before

storing

aaload Loads reference to array Removes the taint tag for the in-

dex to load

anewarray Allocates new array for references If the array type is a mutli-d

primitive array, change to a con-

tainer type

arraylength Returns length of array as integer Place the tag ”0” just below re-

turn val on the operand stack af-

ter execution

areturn Exit a method, returning the ob-

ject reference at the top of the

stack

If the top of the stack is a primi-

tive array, boxes the array and its

taint tags before return
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Table 1: All JVM bytecodes, annotated with descriptive transformation information

Opcode(s) Brief Description PHOSPHOR Modifications

astore Store an object to a local variable If the variable type is a primitive

array, store the taint tags also

to their variable. If the variable

type is ”Object” and the item be-

ing stored is a primitive array,

box it.

baload, caload,

daload, iaload,

faload, laload,

saload

Loads a value from a primitive ar-

ray

Removes the taint tag for the in-

dex to load; loads the taint tag

for the corresponding element

too

bastore, castore, das-

tore, iastore, fastore,

lastore, sastore

Stores a value to a primitive array Removes the taint tag for the in-

dex to store to; stores the taint

tag for the corresponding ele-

ment too

bipush, sipush,

iconst, lconst,

dconst, fconst

Loads a constant to the stack Loads the taint tag ”0” before

loading the constant requested

checkcast Casts the top Object ref If casting to a primitive array,

unbox the boxed primitive array

Xadd, Xmul, Xdiv,

Xrem, Xsub, Xand,

Xor, Xshl, Xshr,

Xushr, Xxor, lcmp,

dcmpl, dcmpg

Performs binary-operand math on

top two stack elements

Moves taint tags of operands out

of way and ORs them, placing

new tag just below the result

dload, fload, iload,

lload

Load a primitive local variable Load the taint tag, just before

loading the requested variable
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Table 1: All JVM bytecodes, annotated with descriptive transformation information

Opcode(s) Brief Description PHOSPHOR Modifications

dstore, fstore, istore,

lstore

Store a primitive local variable After storing the requested vari-

able, store the taint tag

dup, dup2, dup2 x1,

dup2 x2, dup x1,

dup x2

Duplicates the top N words on

operand stack, possibly placing

under the third or fourth word

Also duplicates the taint tag (if

there is one) and if placing un-

der other elements, places under

their taint tag (if present)

dreturn, ireturn, fre-

turn, lreturn

Exit a method, returning the prim-

itive value at the top of the stack

Boxes the primitive into a con-

tainer, then executes ARETURN

instead

getfield, getstatic Retrieves the value of an instance

field of an object

If applicable, also retrieves the

taint tag just before performing

the getfield/getstatic

if acmpeq,

if acmpne

Jump if the top two object refer-

ences on stack are/aren’t equal

If either operand is a primitive

array, pops the taint tag before

executing if not performing im-

plicit flow tracking, else adds the

jump condition’s tag to the PC

taint

if icmplt, if icmpge,

if icmple, if icmple,

if icmpeq, if icmpne

Compare top 2 ints and jumps Pops the taint tag for both inte-

gers before executing if not per-

forming implicit flow tracking,

else adds the jump condition’s

tag to the PC taint
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Table 1: All JVM bytecodes, annotated with descriptive transformation information

Opcode(s) Brief Description PHOSPHOR Modifications

ifeq, ifne, ifgt, ifge,

ifle, iflt

Compares top 1 int and jumps Pops the taint tag before exe-

cuting if not performing implicit

flow tracking, else adds the jump

condition’s tag to the PC taint

ifnonnull, ifnull Jump if top reference is/isn’t null If operand is a primitive array,

pops taint tag before executing

if not performing implicit flow

tracking, else adds the jump con-

dition’s tag to the PC taint

instanceof Return 0/1 if the top reference

is (or isn’t) the instance of a re-

quested type

If the operand is a primitive ar-

ray, pops the taint tag before ex-

ecuting. Inserts the taint tag ”0”

just under the result.

invokespecial,

invokevirtual, in-

vokeinterface,

invokestatic

Invoke a method, popping the ar-

guments from the stack and plac-

ing on top the return value

If the callee is a primitive ar-

ray, pops the taint tag (all cases

but invokestatic); Remaps the

method descriptor to include

taint tags as necessary; If any pa-

rameter is of type ”Object” but

the type being passed is a primi-

tive array, box it into a container.

After return, if return was a con-

tainer, then unbox it

ldc, ldcw, ldc2 w Loads a constant onto the stack If loading a primitive type, load

taint tag ”0” on stack first
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Table 1: All JVM bytecodes, annotated with descriptive transformation information

Opcode(s) Brief Description PHOSPHOR Modifications

lookup/table switch Computed jump Pops the taint tag of the operand

before executing

monitorenter Obtain lock on the ref. on stack If the ref. is a primitive array,

pops the taint tag before execut-

ing

monitorexit Release lock on the ref. on stack If the ref. is a primitive array,

pops the taint tag before execut-

ing

newarray Create a new 1D primitive array

of a given length

Remove the taint for the length

of the array; Create a 1D int ar-

ray of same length to store taint

tags before executing.

pop, pop2 Removes the top 1 or 2 words

from the stack

If a word being popped is a prim-

itive or primitive array, also re-

move its taint tag

putfield, putstatic Stores a value to a field If the value being stored is a

primitive or primitive array, also

store taint tag. If storing primi-

tive array to a field of type ”Ob-

ject” then box it first

swap Swaps the top two words on the

stack

If either operand has a taint tag,

then ensure that the tags are

swapped with the values
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Table 1: All JVM bytecodes, annotated with descriptive transformation information

Opcode(s) Brief Description PHOSPHOR Modifications

multianewarray Create (and possibly initializes) a

multidimensional array

Removes the taint tag of all

operands. If element type is

primitive, then changes to a con-

tainer type, and initializes the

last dimension if it would have

been otherwise

aconst null Loads the constant “null” onto the

stack

No modification necessary

athrow Pops an exception off of the top of

the stack and throws it

No modification necessary

d2f, d2i, d2l, f2d,

f2i, f2l, i2b, i2c, i2d,

i2f, i2l, i2s, l2d, l2f,

l2i

Casts primitive types No modification necessary

dneg, fneg, ineg,

lneg

Negates a primitive type No modification necessary

goto, jsr, ret Unconditional jump No modification necessary

new Creates a new uninitialized object No modification necessary

return Returns “void” from a method No modification necessary

iinc Increments a local variable No modification necessary

wide Indicates that the next instruction

accesses a local variable with an

index greater than 255

No modification necessary
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