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ABSTRACT

Dynamics of Stop-codon Recognition by Release Factor 1

Colin Donald Kinz-Thompson

Translation of an mRNA template into its corresponding protein is necessarily a highly accurate process.

In all organisms, this translation is performed by the universally conserved macromolecular machine, the

ribosome. However, the mechanisms through which the ribosome is able to regulate translation, and there-

fore ensure its fidelity, are not well understood. Often these types of mechanisms, which ensure molecular

fidelity, utilize multiple, transient states over which cognate and non-cognate substrates are discriminated

multiple times. However, such transient and/or rarely populated states are difficult to study by conventional,

ensemble experimental techniques. In this thesis, single-molecule fluorescence resonance energy transfer

(smFRET), which alleviates many of these limitations, is used in order to interrogate the dynamics of a trans-

lation factor, release factor 1 (RF1), and how they are organized to ensure accurate and efficient recognition

of stop-codons during the termination stage of translation.

In order to observe the dynamics of the RF1 binding and codon discrimination processes with smFRET, a

relatively high concentration of fluorophore-labeled RF1 must be used in order to observe significant binding

to sense-codons; however, such high concentrations are not accessible with traditional smFRET total internal

fluorescence microscopy. Therefore, in Chapter 2 a novel approach to breaking this concentration barrier is

presented, in which robustly-passivated gold-based nanoaperture arrays are developed to limit the excitation

volume used in smFRETmeasurements of RF1. Unfortunately, as in the case of RF1 binding to sense-codon

programmed ribosomes, many of the ribosomal dynamics that are in principal observable using smFRET are

too fast to observe using current wide-field detectors. Therefore, Chapter 3 investigates the precision and

accuracy with which transient conformational dynamics can be quantified using single-molecule techniques

such as smFRET. As a case study, these approaches were used to analyze the dynamics of the GS1-GS2

equilibrium of the pretranslocation (PRE) ribosome–a situation where transient intermediate states that can

be observed using single-particle cryo-electron microscopy are not seen using smFRET.

In Chapter 4, a novel computational method is developed to address such temporally-limited single-

molecule data, and in doing so, it is used to analyze the structural contributions of tRNA to ribosomal tran-

sition state energy barriers using temperature-dependent smFRET with temporal super-resolution. The

temperature-dependence of reaction rate constants is governed by the underlying thermodynamic land-

scape of the molecular system. To investigate the energy landscape over which the PRE ribosome operates,



temperature-dependent smFRET experiments were performed on PRE complexes containing different tR-

NAs. By investigating the relative temperature-dependence of the rate constants involved in the GS1 - GS2

equilibrium as a function of tRNA identity, nascent polypeptide chain presence, and A and P site occupa-

tion, relative thermodynamic contributions of the different structural elements were quantified. Unfortunately,

this investigation was complicated by fast rate constants which approach the time resolution limitations of

smFRET TIRF experiments, especially with the increased temperatures used in these experiments. Addi-

tionally, it is complicated by the heterogeneity within the ensemble of ribosomes that is created when some

of the enzymatically-prepared ribosomal complexes fail to undergo, or undergo additional rounds of transla-

tion. To overcome these complications, a novel computational method to achieve temporal super-resolution.

This method uses Bayesian inference for the analysis of sub-temporal resolution data (BIASD). By integrat-

ing this approach with a Bayesian variational mixture model, the fast dynamics of heterogenous populations

can be accurately and precisely quantified. This then allowed the contributions of the structural differences

that the various tRNA make to the underlying PRE complex energy landscape to be determined.

The conformational dynamics that regulate the binding affinity and codon discrimination ability of RF1 are

investigated in Chapter 5. During the elongation stage of translation, class I release factors compete with

aminoacyl-tRNAs to interrogate themRNA triplet-nucleotide codon that is located in the ribosomal aminoacyl-

tRNA binding (A) site. To avoid deleterious effects, class I RFs must be able to accurately discriminate stop-

codons from sense-codons, only triggering the termination stage of translation and catalyzing the release

of the nascent polypeptide chain from the peptidyl-tRNA located in the ribosomal peptidyl-tRNA binding (P)

site upon recognition of a stop-codon. Despite its importance for ensuring the accuracy of gene expression,

the high fidelity mechanism through which class I RFs discriminate sense codons remains elusive. Using

smFRET, the kinetics with which a fluorophore-labeled, bacterial RF1 binds to the A site of bacterial ribosomal

release complexes carrying a fluorophore-labeled peptidyl-tRNA in the P site and either a stop-codon, or a

sense-codon that differs from a stop-codon by a single nucleotide (i.e., a near-stop codon) programmed in the

A-site are investigated. The results of these experiments, as well as analogous experiments performed using

RF1 mutants or antibiotic inhibitors of RF1 function, reveal that RF1 binding affinity and codon discrimination

occurs via a multistep process. Taken together with molecular dynamics simulations of wildtype and mutant

RF1, these data demonstrate how the conformation dynamics of the switch loop modulate RF1 binding

affinity and codon discrimination–enabling the elucidation of some of the molecular details through which

class I RFs ensure the integrity of translation elongation and the fidelity of translation termination.



Table of Contents

List of Figures vi

List of Tables ix

Acknowledgments x

1 Introduction 1

1.1 Overview of Protein Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Accuracy in Templating Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Bacterial Ribosomal Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Prokaryotic Translation Elongation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Aminoacyl-tRNA Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Pre-translocation Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Prokaryotic Translation Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 Structure and Function of Release Factor 1 . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5 Single-molecule Fluorescence Resonance Energy Transfer Studies of Ribosomes . . . . . . 19

1.5.1 Single-molecule versus Ensemble Studies . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.2 Förster Resonance Energy Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.3 smFRET Microscopy Experimental Platform . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5.4 Emerging experimental advances for smFRET studies of ligand-binding reactions . . 29

1.6 Dissertation Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

I Methods Developments 56

2 Defeating the Concentration Barrier 57

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

i



2.2 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.3 Nanofabrication of Sub-wavelength Gold Nanoapertures . . . . . . . . . . . . . . . . . . . . . 62

2.4 Orthogonal Functionalization and Passivation of Gold Nanoapertures . . . . . . . . . . . . . . 63

2.5 Tunable, Chemical Control Over Nanoaperture Occupation . . . . . . . . . . . . . . . . . . . 64

2.5.1 Presence of Biotin-streptavidin-biotin Bridge is Obligatory for Nanoaperture Occupation 65

2.5.2 Biotin-PEG:PEG Ratio Modulates Nanopaerture Occupation . . . . . . . . . . . . . . 66

2.6 Fluorescence Resonance Energy Transfer in Gold Nanoapertures . . . . . . . . . . . . . . . 68

2.7 Passivated Nanoapertures Maintain Signal-to-Background Ratio . . . . . . . . . . . . . . . . 69

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3 Accurately and Precisely Inferring Single-Molecule Rate Constants 73

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Calculating Rate Constants from Single-Molecule Data . . . . . . . . . . . . . . . . . . . . . . 75

3.2.1 Ensemble Relaxtion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.2.2 Dwell-Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.2.3 Transition Probability Expansion Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.4 Statistically Rigorous Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.2.5 Bayesian Dwell-Time Distribution Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.2.6 Bayesian Transition Probability Expansion Analysis . . . . . . . . . . . . . . . . . . . . 90

3.3 Correcting Rate Constants for Missed Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.1 Types of Missed Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.3.2 Correcting Rate Constants for Finite Length . . . . . . . . . . . . . . . . . . . . . . . . 94

3.3.3 Correcting Rate Constants Through Virtual States . . . . . . . . . . . . . . . . . . . . 95

3.3.4 Seemingly Non-Markovian Behavior Induced by Missed Events . . . . . . . . . . . . . 99

3.4 Quantitatively Connecting Ensemble Thermodynamics and Single-Molecule Kinetics . . . . . 106

3.4.1 Dwell-Time Distribution Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.4.2 Bacterial Pretranslocation Complexes as a Model System . . . . . . . . . . . . . . . . 110

3.4.3 Four-state Model of Pretranslocation Complex Dynamics . . . . . . . . . . . . . . . . 112

3.4.4 Three-State Model of Pretranslocation Complex Dynamics . . . . . . . . . . . . . . . 120

3.4.5 Simulated Pretranslocation Complex Dynamics . . . . . . . . . . . . . . . . . . . . . . 125

ii



3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4 Temporal Super-Resolution 134

4.1 Bayesian Inference for the Analysis of Sub-temporal Resolution Data (BIASD) . . . . . . . . . 134

4.2 Bayesian Inference-based Framework Underlying BIASD . . . . . . . . . . . . . . . . . . . . 135

4.2.1 Distributions of Fractional Occupancies . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2.2 Bayesian Inference Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.2.3 Analysis Using BIASD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.2.4 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

4.3 Analysis of Computer-Simulated Single-Molecule Signal Versus Time Trajectories Reporting

on the Kinetics of a Ligand Binding and Dissociation Process . . . . . . . . . . . . . . . . . . 157

4.4 Analysis of Experimentally Observed Single-Molecule EFRET Versus Time Trajectories Re-

porting on the Kinetics of a Large-Scale Conformational Rearrangement . . . . . . . . . . . . 165

4.5 Evaluation of BIASD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

4.6 Reconstructing Mesoscopic Ensembles from Single-molecule Dynamics . . . . . . . . . . . . 172

4.6.1 Variational Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.6.2 Accounting for Sample Uncertainty with a Variational Gaussian Mixture Model . . . . 174

4.6.3 Laplace Approximation of BIASD Posterior Probability Distribution . . . . . . . . . . . 178

4.6.4 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.7 Structural Contributions of Transfer RNA to the Pretranslocation Thermodynamic Landscape 183

4.7.1 Rate Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

4.7.2 Temperature Dependence of Pretranslocation Dynamics . . . . . . . . . . . . . . . . . 187

4.7.3 Transfer-RNA Contributions to the Pretranslocation Energy Landscape . . . . . . . . . 192

4.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

II Experimental Studies 199

5 Dynamics of Stop-Codon Discrimination by Release Factor 1 200

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

iii



5.2.1 The switch loop of ribosome-bound RF1 aligns with mutations in the D-loop stem of

pre-accommodated tRNA that control fidelity . . . . . . . . . . . . . . . . . . . . . . . 202

5.2.2 Residues G299 and G301 have the highest mutual information in the switch loop . . . 202

5.2.3 RF1 switch loop mutant G299A, G301A releases significantly less dipeptide than wild

type RF1 at near-stop codons, but not at stop codons . . . . . . . . . . . . . . . . . . 205

5.2.4 Altering the dynamics of RF1 residues 299 and 301 biases the conformation of the

switch loop, and can alter the dynamics of the entire release factor . . . . . . . . . . . 207

5.2.5 Mutations to the switch loop of RF1 alter the binding affinity of RF1 for stop and near-

stop codon programmed ribosomal release complexes . . . . . . . . . . . . . . . . . . 212

5.2.6 Paromomycin alters the affinity of RF1 for the ribosome . . . . . . . . . . . . . . . . . 218

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

5.3.1 Switch loop dynamics modulate binding affinity . . . . . . . . . . . . . . . . . . . . . . 222

5.3.2 Tight-binding of RF1 is not necessary for codon discrimination . . . . . . . . . . . . . 226

5.3.3 Switch loop dynamics modulate codon discrimination . . . . . . . . . . . . . . . . . . 227

5.3.4 RF1 binding and codon discrimination is a multiple step process . . . . . . . . . . . . 228

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

5.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

III Appendices 239

A Additional Projects 240

A.1 RF1 Solution Conformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

A.2 smFRET with Single-photon Avalanche Photodiode Arrays . . . . . . . . . . . . . . . . . . . 241

A.3 Three-color smFRET from BtuCD-F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

A.4 Single-Molecule Fluorescence Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

A.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

B Probability Distributions 252

C Release Factor 1 257

D Computer Code 259

D.1 Compounded Dwell-time Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

iv



D.2 Single Molecule Stochastic Simulation Algorithm (SSA) . . . . . . . . . . . . . . . . . . . . . 260

D.3 Multidimensional Machine Learning - Variational GMM and HMM . . . . . . . . . . . . . . . . 263

D.4 Green’s Function Kinetics with Numerical Laplace Inversion . . . . . . . . . . . . . . . . . . . 272

D.5 BIASD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

v



List of Figures

1.1 Schematic of a ligand-binding reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Prokaryotic Ribosomal Architecture and a Schematic of Translation . . . . . . . . . . . . . . . 8

1.3 Cartoon schematic of the mechanism of aa-tRNA selection during translation elongation . . . 10

1.4 Cartoon schematic mechanism of PRE complex fluctuations . . . . . . . . . . . . . . . . . . . 13

1.5 Structure of Release Factor 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.6 Efficiency of Förster Resonance Energy Transfer for Cy3-Cy5 . . . . . . . . . . . . . . . . . . 26

1.7 Schematic of smFRET Experimental Platform for Studying Ligand-binding Reactions . . . . . 28

2.1 Diagram of concentration ranges accessible by various microscopy techniques . . . . . . . . 58

2.2 Schematic diagram of the nanoaperture fabrication process . . . . . . . . . . . . . . . . . . . 63

2.3 Molecular-level schematic diagram of thiol and silane passivated surfaces . . . . . . . . . . . 64

2.4 Schematic diagram of nanoaperture-containing microfluidic device construction . . . . . . . . 65

2.5 Tunable, chemical control over nanoaperture occupation . . . . . . . . . . . . . . . . . . . . . 66

2.6 Fluorescence from Cy3- and Cy5-labeled RF1 thethered in a passivated gold nanoaperture . 69

3.1 Schematic of Transition Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Types of Missed Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.3 Correcting Rate Constants using Virtual States . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.4 Signal from a Markovian, Two-state System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.5 State-space Pathways that Lead to Seemingly Non-Markovian Behavior . . . . . . . . . . . . 101

3.6 Dwell-time Correction for Missed Dwells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.7 Rate constants for the four-state model as a function of α43 . . . . . . . . . . . . . . . . . . . 114

3.8 Example synthetic EFRET versus time trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.9 Two- and three-state models of synthetic PRE complex data . . . . . . . . . . . . . . . . . . . 129

3.10 Synthetic EFRET vs. time trajectories rendered with different time resolutions . . . . . . . . . . 130

4.1 Graphical model for two-state BIASD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

vi



4.2 BIASD Likelihood function calculated by numerical inverse of Laplace transform . . . . . . . . 147

4.3 Analysis of a computer-simulated titration of a ligand to a receptor using BIASD . . . . . . . . 159

4.4 Plots of weakly informative prior probability distributions used with BIASD to analyze the syn-

thetic titration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.5 Plot of ε1 and ε2 as analyzed by idealizing the synthetic titration data . . . . . . . . . . . . . . 161

4.6 Analysis of k1 and k2 from a synthetic titration by BIASD using alternative priors . . . . . . . . 162

4.7 Alternative, weakly informative prior probability distributions used to analyze the synthetic

titration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.8 Theoretical precision of determining rate constants for synthetic titration given the average

number of observed transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.9 Posterior probability distributions for highest concentration in synthetic titration with strict priors164

4.10 Posterior probability distributions of ε1, ε2, and σ for the synthetic titration . . . . . . . . . . . 164

4.11 Schematic of PRE Complex GS1 −⇀↽− GS2 equilibrium. . . . . . . . . . . . . . . . . . . . . . . 165

4.12 Temperature dependence of kGS1 and kGS2 for complexes using BIASD . . . . . . . . . . . . 167

4.13 Eyring Analysis of kGS1 and kGS2 for PRE-A complexes using a maximum likelihood HMM . . 168

4.14 Temperature dependence of idealized EFRET means for PRE-A complexes . . . . . . . . . . . 169

4.15 The mean EFRET signal for GS1 and GS2 from the posterior probability distributions of ε1 and ε2170

4.16 Graphical model of variational gaussian mixture model that accounts for uncertainty . . . . . 176

4.17 Dynamic model selection with a variational mixture model . . . . . . . . . . . . . . . . . . . . 181

4.18 Effect of sample uncertainty on model selection with a variational mixture model . . . . . . . 182

4.19 Hierarchical Selection of PRE Complex Sub-populations . . . . . . . . . . . . . . . . . . . . . 188

4.20 Temperature Dependence of Mesoscopic Ensembles of PRE-A
fMet complexes . . . . . . . . . 189

4.21 Temperature Dependence of Mesoscopic Ensembles of PRE-A
Phe complexes . . . . . . . . . . 190

4.22 Temperature Dependence of Mesoscopic Ensembles of PREPhe/Lys complexes . . . . . . . . 190

4.23 Temperature Dependence of PRE Rate Constants and ∆ G . . . . . . . . . . . . . . . . . . . 192

4.24 Relative values of ∆∆G‡25C for different PRE complexes. . . . . . . . . . . . . . . . . . . . . . 194

5.1 Alignment of A/T tRNA and RF1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.2 Mutual Information of Bacterial RF1 Primary Sequence . . . . . . . . . . . . . . . . . . . . . 206

5.3 Wild Type and Mutant RF1 Dipeptide Release Assay. . . . . . . . . . . . . . . . . . . . . . . . 208

5.4 Mutant and Wild Type RF1 Molecular Dynamics Trajectories . . . . . . . . . . . . . . . . . . . 209

vii



5.5 Simulation Population Differences between Mutant and Wild Type RF1 and Tripeptides . . . . 209

5.6 Tripeptide Free Energy Surfaces from Metadynamics Simulation . . . . . . . . . . . . . . . . 210

5.7 Network Analysis of Wild Type and Mutant RF1 . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5.8 Cartoon of RF1 and RC smFRET Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

5.9 smFRET from 10 nM wtRF1 and mutRF1 Binding to Stop-codon Programmed RCUAA . . . . 213

5.10 smFRET from 1 nM mutRF1-(Cy5) Binding to Stop-codon Programmed RCUAA . . . . . . . . 214

5.11 Concentration-dependence of the Kinetics of mutRF1 Interactions with RCUAA . . . . . . . . . 215

5.12 smFRET from wtRF1 and mutRF1 Binding to Near-stop Codon Programmed RCUAU . . . . . 218

5.13 smFRET from wtRF1 Binding to Stop-Codon Programmed Ribosomes in the Presence of

Paromomycin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.14 Proposed Mechanism of RF1 binding to Release Complexes . . . . . . . . . . . . . . . . . . 230

A.1 smFRET from wtRF1-(biotin,Cy3,Cy5) in Solution . . . . . . . . . . . . . . . . . . . . . . . . . 241

A.2 smFRET Imaging of PRE-A Complexes with SPC3 SPAD Array . . . . . . . . . . . . . . . . . 244

A.3 Three-color smFRET from Nanodisc-reconstituted BtuC2D2-F . . . . . . . . . . . . . . . . . . 247

A.4 Schematic Diagram of Single-Molecule Fluorescence Spectroscopy Instrumentation . . . . . 249

A.5 Time-Dependent, Single-Molecule Cy3-DNA Fluorescence Spectrum . . . . . . . . . . . . . 249

viii



List of Tables

3.1 The ribosomal PRE complexes observed by Agirrezabala and coworkers . . . . . . . . . . . 110

3.2 The rates of transition between GS1 and GS2 observed by Fei and coworkers . . . . . . . . . 112

3.3 Rate constants for PREfM/F using a linear, three-state kinetic scheme . . . . . . . . . . . . . 122

3.4 Distances and approximate FRET efficiencies of PREfM/F ribosomes from cryo-EM structures. 126

ix



Acknowledgments
There is a quite long list of people that I must thank, for without their support, belief, encouragement, and

guidance throughout years, I would never have reached this point here. Foremost, I should thank my mother,

Ms. Judy Kinz, brother, Mr. Patrick Kinz-Thompson, and grandmother, Ms. Joy Kinz, for the support only a

family provides. Similarly, I also need to thank the rest of my family, extended and adopted. I’d like to thank

Ms. Jackie Kim for being a wonderful partner through these past years.

As for early influences, I need to acknowledge a Ms. Mee and Mr. Dupra for encouraging a budding

scientist. Similarly, I need to sincerely thank Prof. Thomas Krugh for the non-compulsory mentoring of an

undergraduate chemistry student. Additionally, I would like to thank Prof. Dave McCammant, and Prof.

Lewis Rothberg for their scientific encouragement and mentoring. Words cannot express my gratitude to

Prof. Esther Conwell, whose guidance and instruction shaped me into a scientist. Finally, I somehow have

to express that same gratitude to Prof. Ruben Gonzalez for the unending guidance and encouragement that

polished, refined, and launched me into so many new directions.

There are many friends and lab mates that I must thank for making the past few years bearable; in

particular, though not limited to, Mr. Nathan Daly and Dr. Mark Hendricks for being so understanding, Dr.

Justin Ambramson and Dr. Dileep Pulukkunat for teaching me everything in lab, Dr. Kelvin Caban for taking

over when Dileep left, Dr. Lindsay Leone and Dr. Glen Hocky for being outside experts, and especially Ms.

Bridget Huang for putting up with a lot.

I have also had the benefit of many great collaborations over the years here, and must thank the many

collaborators for making them so enjoyable and fruitful. Those who have not yet been mentioned: Nanoaper-

tures – Dr. Alexander Gondarenko, Prof. Matteo Palma, Mr. Daniel Chenet, Prof. James Hone, and Prof

Shalom Wind. Dwell-times – Dr. Ajeet Sharma, Prof. Joachim Frank, Prof. Debashish Chowdhury. Rate

Constants – Ms. Nevette Bailey. PRE Complexes – Prof. Jingyi Fei. Quenchers – Dr. Andrew Anzalone.

Nanodiamonds – Prof. AbeWolcott. SPAD Arrays – Mr. Nick Bertone, Dr. Simone Tisa, Dr. Andrea Giudice.

Btu-CDF – Dr. Jinrang Kim, Mr. Kun Leng, Mr. Lingwei Zhu, Prof. John Hunt.

x



From my time spent at Columbia University during my graduate work, I have to thank the entire depart-

ment of chemistry – especially staff, coordinators, professors, historic Havemeyer Hall, other members of the

Physical Chemistry Student Seminar Series, and many department events. Also, for guiding and presiding

over the apotheosis of my time spent here, I must thank my dissertation committee, alphabetically: Profes-

sors Ruben Gonzalez, Eric Greene, John Hunt, Ann Mcdermott, andWei Min. Finally, I must thank Columbia

University’s National Institutes of Health Training Program in Molecular Biophysics (T32-GM008281), and

the Department of Energy Office of Science Graduate Fellowship Program (DE-AC05-06OR23100) for their

support.

xi



CHAPTER 1. INTRODUCTION

Chapter 1

Introduction∗

1.1 Overview of Protein Synthesis

Proteins are the ubiquitous workhorses of the cell [1, 2]. They come in diverse classes, such as enzymes,

structural components, or molecular motors, and they function in even more diverse roles, such as in trans-

lation, transcription, replication, repair, recombination, cell division, membrane biogenesis, secretion, ion

transport, signal transduction, energy production and conversion, and metabolism and transport [3]. In liv-

ing organisms, the information required to create each protein is stored as a gene in the form of DNA. In order

to put this DNA-based information to use and make new proteins, nature has converged upon a common,

two step approach to the organization of life [4]. First, the DNA, which was created by templating the replica-

tion of an exact copy from the DNA of a parental cell, is used to template the transcription of an intermediate

form of the gene called messenger RNA (mRNA) [5]. After being transcribed, the mRNA is then used to

template the translation of the final protein product of the gene [6]. Interestingly, these two reactions, mRNA

transcription and protein translation, which together achieve the chemical realization of a DNA gene product,

are both successive linear-polymerization reactions of a relatively small number of different monomers–four

ribonucleotides, or 20 common amino acids, respectively [7].

In order to create their respective high-molecular weight polymers, both of these reactions must cat-

alyze the thermodynamically unfavorable monomer-polymer bond formation reactions as each monomer

is added during the elongation stages of the polymerization reactions [7]. However, unlike many chemi-

∗ In part, adapted with permission from Kinz-Thompson, C.D., Sharma, A.K., Frank, J., Gonzalez, Jr., R.L., Chowdhury, D Quantita-
tive Connection Between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryo-EM and smFRET
Investigations of the Ribosome Journal of Physical Chemistry B, 2015, 119(34), 10888-10901. Copyright 2015 American Chemi-
cal Society.
Additionally, in part reprinted from FEBS Letters, 588(19), Kinz-Thompson, C.D., Gonzalez, Jr., R.L., smFRET studies of the
‘encounter’ complexes and subsequent intermediate states that regulate the selectivity of ligand binding, 3526-3538, 2014, with
permission from Elsevier.
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cal polymerization reactions, there is a stringent requirement that the specific monomer added is dictated

by the underlying sequence of the template, since errors at any step can compromise the structure and

function of the emergent protein [8–11]. This process of templating or ‘biological copying’ is central to both

transcription and translation, but because they occur on a nanoscopic scale where thermal fluctuations can

overwhelm the small energetic differences between the correct, template-defined monomer and the other

incorrect monomers, errors cannot be avoided [1, 12–14]. Fortunately, large macromolecular complexes

have evolved that ensure the accurate and efficient copying of the templates [1, 9, 15–17].

In particular, in all organisms, mRNAs are translated into proteins by the ribosome [18], a 2.5 to 4.3 MDa

[19, 20] molecular machine [21, 22] that is composed of a large and a small ribonucleoprotein subunit (50S

and 30S in bacteria, respectively) [23]. With the help of many translation factors, the ribosome assembles on

an mRNA, and recruits the aminoacyl-tRNA (aa-tRNA) that matches each successive codon of the mRNA

[24] in order to deliver each successive amino acid to the elongating, nascent polypeptide chain that will

become a protein [25, 26]. Thus, the tRNAs function as ‘adaptor’ molecules [6, 7, 27] that can read the

codon of the mRNA, because they are also made of ribonucleotides and can therefore exploit Watson-Crick

base-pairing to form a codon-anticodon interaction [24], and that can deliver the proper amino acid that

corresponds to that particular codon, because aminoacyl-synthetases can specifically aminoacylate their

corresponding tRNA with a high degree of accuracy [1, 28, 29]. Therefore, instead of having to discriminate

between the correct or incorrect amino acids during this templating process, the ribosome is evolved to select

the correct tRNA (reviewed in Ref. 9). However, the energetic differences between anticodons of tRNA that,

for example, might differ by a single ribonucleotide substitution of an adenine for a guanine, which are both

purines, are still small energetic differences, and therefore mistakes will still occur by selecting the incorrect

tRNA to translate the mRNA [15, 16]. Similarly, when protein synthesis is complete, class I release factors

recognize specific stop-codons and catalyze termination of the translation, but these proteins must recognize

only stop-codons, as stopping the protein synthesis early yields an abortive product with deleterious effects

in vivo [30, 31]. While these types of error are thermodynamically unavoidable, in vivo the error rate for

aa-tRNA selection at non-sense codons is 10−3 to 10−4 [9], and the error rate for translation termination at

non-stop codons is less than 10−5 [32]. In order to achieve such high fidelity in translation, the ribosome

and its associated translation factors play an active role to discriminate between cognate and non-cognate

substrates.
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1.1.1 Accuracy in Templating Processes

The ability of a biomolecule to selectively bind its cognate ligand when faced with the vast array of structurally

similar near- and non-cognate ligands present in the cellular environment is critical for maintaining the fidelity

of templating and other biological processes. Specific examples include critical processes spanning all

of biology: a transcription factor binding a DNA promoter site, a small nuclear ribonucleoprotein binding

a precursor mRNA splice site, a microRNA binding a target mRNA, or a ribosome binding an aa-tRNA

substrate. On the thermodynamic level, the maximum amount of discrimination between cognate and non-

cognate ligands in a templating process is determined by the free energy difference (thermodynamic-control),

as well as by the energy barrier difference (kinetic-control) between the incorporation of cognate and non-

cognate ligands [1, 14]. However, on the molecular level, biomolecules must be organized in such a way as

to exploit these thermodynamic differences in order to efficiently achieve the highest amount of discrimination

[12]; indeed, the maximal amount of discrimination between a cognate and non-cognate ligand occurs when

the templating process is performed adiabatically, and under thermodynamic-control, but such a process

would have to occur with zero incorporation rate [14, 33]. How can biomolecules efficiently interact with

their cognate targets? How can biomolecules attain accuracies higher than dictated by the thermodynamic

differences between targets? In this section, I will review theories that allow biomolecules to attain such

specificity and accuracy.

Molecular recognition during binding events is often thought to occur through two distinct, but comple-

mentary mechanism (reviewed in Ref. [34]). In Koshland’s ‘induced fit’ model, binding of a ligand to a

biomolecule drives conformational changes within the complex [35]. With the binding of cognate ligands,

these conformational changes correctly position the complex for further function (e.g., catalysis or tight-

binding), while, with the binding of non-cognate ligands, these conformational changes incorrectly position

the complex for further function [35]. Notably, induced fit suggest a mechanism through which biomolecular

function can be allosterically regulated by the conformational changes induced by ligand binding, even if the

ligand-binding allosteric site is distal from the function-related active site [36, 37]. However, biomolecules are

inherently dynamic and exist in many different, functionally-active conformations [38, 39]; in fact, both con-

formations involved in an allosteric transition can be accessed in the absence of the allosteric effector ligand,

and while they probably have different population distributions[34, 40], in some cases both conformations

can be substantially populated such as with enzymes like dihydrofolate reductase [41] or triosephosphate

isomerase [42], or even with large ribonucleoprotein complexes such as the ribosome [43]. This suggests a
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second mode through which molecular recognition can occur. If an ensemble of different biomolecular con-

formations dynamically interconvert in solution, then a conformation which is more competent for cognate

ligand binding than it is for non-cognate ligand binding can be selected by the binding of cognate ligand [44,

45]. Thus, molecular recognition can also occur through ‘conformational selection’ in which ligand binding

results in conformational ensemble population shifts towards the bound-conformation state. It is worth noting

that both the induced fit and conformational selection models are found to be utilized for molecular recogni-

tion [34], however both are constrained to the thermodynamically-determined cognate versus non-cognate

specificity limit.

High specificity of ligand binding is typically achieved through multistep, ligand-binding reactions in which

the first step encompasses the reversible formation of a nearly non-specific, weakly interacting, transient,

intermediate ‘encounter’ complex between the biomolecule and a potential ligand [46]. Subsequent steps

lead to the formation of a final biomolecule-ligand complex [46, 47]. Multistep ligand-binding reactions such

as these are governed by free-energy landscapes such as the one shown in Figure 1.1, which depicts a

minimal, two-step, ligand-binding reaction. Regardless of the number of steps, formation of an encounter

complex reduces the search that is required to form the final biomolecule-ligand complex from three spatial

dimensions to two [46]. This results in a lowering of the considerably large entropic barrier(s) that would oth-

erwise separate the unbound state of the biomolecule from the bound state and potentially allows the search

for the bound state to be guided along a primarily enthalpic energy funnel [46–49]. As a consequence, forma-

tion of an encounter complex significantly increases the rate with which biomolecules can conformationally

screen potential ligands. In addition, the weakly interacting, transient, and reversible nature of an encounter

complex allows it to rapidly dissociate into its component biomolecule and potential ligand. The reversibil-

ity and selectivity of ligand-binding reactions can therefore be precisely regulated by coupling the identity

of the ligand to the probability of dissociating versus the probability of proceeding along the reaction path-

way. Near- and non-cognate ligands will have a higher probability of dissociating while cognate ligands will

have a higher probability of proceeding along the reaction pathway and forming the final biomolecule-ligand

complex. Here, more complex ligand-binding reactions encompassing three or more steps allow additional

opportunities for the ligand to dissociate from the post-transition state (‡EC−B in Figure 1.1) intermediate

states [47]. If one of more of these steps can be coupled to the dissipation of some amount of energy,

for instance from small changes in configurational entropy [50] or the hydrolysis of a nucleoside triphos-

phate, then the accuracy of selecting cognate ligands can be increased beyond the limit imposed by the

thermodynamic differences between cognate and non-cognate ligands [14, 51]. These types of multistep
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mechanisms effectively ‘proofread’ the molecular interaction, and utilize the thermodynamic differences be-

tween cognate and non-cognate ligands multiple times in order to increase the overall accuracy of the ligand

binding process. For instance, in the ‘kinetic proofreading’ mechanism that operates in aa-tRNA selection

during translation elongation [52], an initial selection step favors cognate ligand over non-cognate ligand

according to the thermodynamically-determined accuracy, but then GTP hydrolysis occurs, which creates

a non-equilibrium population difference between already-bound cognate and near-cognate ligand, and thus

creates the opportunity to perform an additional selection step from the previously selected ligands [15, 16].

Because these proofreading mechanisms utilize some form of energy dissipation, they are able to attain

increased specificity of ligand binding, and also do not significantly decrease the rate of the ligand-binding

reaction.

Although they play a decisive role in ensuring that biomolecules can rapidly and selectively bind their

cognate ligands, the encounter complexes and, if present, subsequent intermediate states that form dur-

ing ligand-binding reactions have traditionally been very difficult to experimentally observe and characterize

[46]. This is because the stochastic nature of ligand-binding kinetics and the transient nature of the en-

counter complexes and subsequent intermediate states that are formed give rise to a situation in which such

complexes and states comprise exceedingly low-population states that are extremely difficult to detect using

traditional, ensemble biophysical techniques that report only on the average behavior of the entire ensem-

ble (see Section 1.5.1). Further exacerbating this situation is the fact that, due to their partially non-specific

nature, encounter complexes and, possibly, subsequent early intermediate states, can exhibit significant

heterogeneity in their structures and other physical properties. Despite these challenges, the emergence in

the early 2000s of nuclear magnetic resonance (NMR) spectroscopic techniques, particularly paramagnetic

relaxation enhancement, that enable the detection of low-population states have allowed the partial char-

acterization of several encounter complexes and/or subsequent intermediate states formed during ligand-

binding reactions [53–55]. Almost simultaneously, the advent of single-molecule biophysical techniques,

particularly single-molecule fluorescence approaches, has provided a powerful complement to NMR spec-

troscopic methods in detecting such low-population states (see Section 1.5). For my thesis work, I have

utilized just such a single-molecule approach to investigate the origins and regulation of ligand-binding at

the end of protein synthesis – translation termination.
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Figure 1.1: Schematic of a ligand-binding reaction. The minimal, three-state, energy landscape describes the energy of a ligand-
binding reaction along the reaction coordinate. The free biomolecule and ligand begin in the unbound state, and may collide and cross
an initial energy barrier (‡U−EC ) to form an encounter complex. The encounter complex may then either dissociate to reestablish
the free biomolecule and ligand or cross a second energy barrier (‡EC−B) to form the final bound state. The energy landscape is
projected onto a plane below it, where the hypothetical trajectory of a single ligand-binding reaction is depicted diffusing along the
reaction coordinate (gray curved line). Below this trajectory, a hypothetical signal versus time trajectory corresponding to the ligand-
binding reaction trajectory is shown, where the signal of the unbound state, encounter complex, and bound state are denoted (red
horizontal lines). The reaction is initiated at t = 0, crosses ‡U−EC several times to transiently sample the encounter complex, and
ultimately crosses ‡EC−B to form the bound state.

6



CHAPTER 1. INTRODUCTION

1.2 Bacterial Ribosomal Architecture

The bacterial ribosome is a 2.3 MDa ribonucleoprotein complex that sediments as a 70S particle composed

of a large subunit (50S), and a small subunit (30S) (Fig. 1.2A) [3, 23, 56, 57]. The 50S subunit is composed

of 34 ribosomal proteins (rProteins), 19 of which are conserved among all domains of life [58], as well

as a highly conserved 23S ribosomal RNA (rRNA) (∼2,900 nt) and a 5S rRNA (∼120 nt) [57]. The 30S

subunit is composed of 23 rProteins, 15 of which are conserved among all domains of life [58], and a highly

conserved 16S rRNA (∼1,540 nt) [57]. Among different bacteria, X-ray crystallography structures show

that 70S bacterial ribosomes are structurally very similar [59, 60]. Interestingly, along with the universally

conserved rProteins, over 95% of the rRNA comprises a universally conserved ‘common core’ that is present

and expanded upon in the ribosomes of all lower and higher eukaryotes. [57, 61–63].

Thus, the bacterial 70S ribosomal architecture is organized in a manner that is ubiquitous for all steps of

protein synthesis: initiation, elongation, termination, and recycling (Fig. 1.2B). These steps center upon two

reaction centers, one called the decoding center (DC), where aa-tRNA anticodons base pair tomRNA codons

to determine which amino acid should be added to the nascent polypeptide chain [9, 64], and one called the

peptidyl transferase center (PTC), where peptide bond formation occurs and an amino acid is added to the

nascent polypeptide chain [65, 66] (Fig. 1.2). Interestingly, highly conserved rRNA in the DC, such as G529,

G530, A1492, and A1493, as well as in the PTC, such as U2506, G2583, U2584, and U2585, play active

roles in these reactions [9, 64–66]. Additionally, after nucleolytic processing of rRNA operon transcripts

during ribosome biogenesis, at least 11 bases of the 16S rRNA, and 25 bases of the 50S are then post-

transcriptionally modified – mostly in the regions surrounding the DC and the PTC respectively [56]. The

mRNA binds to the 30S subunit, in part in the DC, within a cleft along the bottom of the three tRNA binding

sites: the aminoacyl binding (A) site containing the incoming aa-tRNAs that bind the ribosome, the peptidyl-

tRNA binding (P) site containing the tRNA holding the nascent polypeptide chain, and the deacylated tRNA

exit (E) site containing tRNA that are about to dissociate from the ribosome [67]. Many of the structural

dynamics required for translation occur in these sites [68].

Translation begins with initiation (Fig. 1.2), the rate-limiting step of protein synthesis in vivo (reviewed in

Ref. 69). During initiation, the ribosome must locate an open reading frame within the mRNA, which includes

making base-pairing interactions between the Shine-Dalgarno sequence of the mRNA and the anti-Shine-

Dalgarno sequence in the 3’ end of the 16S rRNA [70], and bind a formylated initiator tRNA to the 30S

subunit at an inframe start-codon [11, 71]. This process, and the subsequent binding of the 50S subunit
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to form a 70S elongation complex, is facilitated and regulated by initiation factors IF1, IF2, and IF3 [11, 69,

71]. Following initiation, successive rounds of translation elongation occur, in which the nascent polypeptide

chain is synthesized.
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Figure 1.2: Prokaryotic Ribosomal Architecture and a Schematic of Translation. (A) The structure of the prokaryotic ribosome (Thermus
Thermophilus (T. Thermophilus)) as determined by X-ray crystallography (PDB ID: 2J00 and 2J01). The 50S (lavender) and 30S (tan)
subunits bind mRNA (gray) and provide the binding sites for the aminoacyl-tRNA (A-site, purple), the peptidyl-tRNA (P-site, red),
and decacylated tRNA (E-site, orange). Codon recognition during tRNA selection and translation termination occurs in the decoding
center (DC), and peptide bond formation and hydrolysis occurs in the peptidyl-transferase center (PTC). (B) Schematic cartoon of the
translation cycle in which initiation is followed by successive rounds of elongation, then termination, and finally ribosome recycling.
Figure reproduced from Ref. 72.

1.3 Prokaryotic Translation Elongation

During the elongation stage of translation, the ribosome undergoes consecutive rounds of an elongation

cycle (Fig. 1.2B) in which it successively adds amino acids to the nascent polypeptide chain in the order

8



CHAPTER 1. INTRODUCTION

dictated by the sequence of the mRNA. In the first step of the elongation cycle, the correct mRNA-encoded

aa-tRNA is delivered to the A-site of the ribosome in the form of a ternary complex (TC) that is composed of

the ribosomal guanosine triphosphatase (GTPase) elongation factor (EF) Tu, guanosine triphosphate (GTP),

and aa-tRNA [8, 11, 21, 64, 67]. Upon delivery of the mRNA-encoded aa-tRNA into the A-site, peptide bond

formation results in transfer of the nascent polypeptide chain from the peptidyl-tRNA bound at the ribosomal

P-site to the aa-tRNA at the A-site, generating a ribosomal pretranslocation (PRE) complex carrying a newly

deacylated tRNA at the P site and a newly formed peptidyl-tRNA, extended by one amino acid, at the A-site

[65, 73, 74]. Subsequently, the ribosome must translocate along the mRNA, moving the newly deacylated

tRNA from the P-site to the ribosomal E-site, and the newly formed peptidyl-tRNA from the A-site to the P-site

[21, 64, 75–81]. While translocation can occur spontaneously, albeit slowly, in vitro [82], it is accelerated by

orders of magnitude in vivo through the action of EF-G, another ribosomal GTPase [64, 81].

1.3.1 Aminoacyl-tRNA Selection

Despite the pool of 41-55 different aa-tRNA isoacceptors that is found in cells [83], the ribosome is able

to accurately select the aa-tRNA whose anticodon correctly basepairs to the mRNA codon at the A site

(i.e., the cognate aa-tRNA), only misincorporating aa-tRNAs with one-base mismatches (i.e., near-cognate

aa-tRNAs), or with two-base or greater mismatches (i.e., non-cognate aa-tRNAs) with a frequency of 1 in

103-104 [84–87]. Notably, this level of fidelity greatly exceeds the maximum misincorporation frequency of

1 in 102 that would be expected from just the thermodynamic stability differences between the anticodon-

codon interactions formed by a cognate aa-tRNA and those formed by the corresponding near-cognate aa-

tRNAs [88–90]. Extensive studies of the mechanisms through which the ribosome achieves the observed

high fidelity of aa-tRNA selection have led to the development of a widely accepted, multistep mechanism

(Fig. 1.3) [91, 92] in which kinetic proofreading [15–17, 52, 93, 94] and induced fit [35, 94] strategies are

employed to increase the otherwise relatively low fidelity of aa-tRNA selection that would be expected [9,

11].

Over the past decade, the mechanism of aa-tRNA selection has been the subject of numerous single-

molecule fluorescence resonance energy transfer (smFRET) studies (see Section 1.5) [43, 95–99]. smFRET

studies of aa-tRNA selection are typically performed using ribosomal elongation complexes (RECs) that are

biotinylated at the 5’ end of the mRNA and that have been labeled with a donor fluorophore either within the

fMet-tRNAfMet that is bound at the ribosomal P-site [95, 100], or within ribosomal protein L11 [96, 101]. RECs

are then tethered to the surface of a microfluidic, observation flowcell via their 5’-biotinylated mRNA such
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that they can be imaged with single-molecule resolution using total internal fluorescence (TIRF) microscopy

(Sec. 1.5). Stopped-flow delivery of a TC carrying an acceptor-labeled aa-tRNA to an REC carrying a donor-

labeled P-site tRNA and a cognate A-site codon then yields acceptor- and donor intensities versus time

trajectories that are used to calculate pre-steady-state EFRET versus time trajectories. EFRET versus time

trajectories initiate at zero-EFRET and evolve through transiently sampled low- and mid-EFRET states before

arriving at a high-EFRET final state that is consistent with structures approximating the final state of the reaction

in which the aa-tRNA has been accommodated into the A site (Fig. 1.3) [43, 95–99]. The mid-EFRET state

has been assigned to a mixture of at least two intermediate states that had been previously observed in

biochemical [94] and structural studies [102, 103], and that correspond to the conformations of the TC-

bound REC that immediately precede and immediately follow ribosome-catalyzed GTP hydrolysis by EF-Tu

(Fig. 1.3) [95]. The state that precedes GTP hydrolysis can be biochemically ‘captured’ and stabilized using

a non-hydrolyzable GTP analog [104] or a GTP hydrolysis-deficient EF-Tu mutant [105]. Likewise, the state

that immediately follows GTP hydrolysis can be captured and stabilized using the EF-Tu-targeting antibiotic

kirromycin [106]. Such approaches allow the populations of these ordinarily transient and low-population

states to be increased such that they can be easily studied using ensemble biochemical and structural

methods [8, 10, 11, 21, 64].

In contrast to the mid-EFRET state, the low-EFRET state has been assigned to a structurally novel inter-

mediate state that has thus far eluded capture and stabilization using mutations, biochemical analogs, or

small-molecule inhibitors, thereby precluding its direct detection using ensemble biochemical or structural
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studies (Fig. 1.3). Nonetheless, the conformation of the TC-bound REC corresponding to the low-EFRET state

is a critical, codon-dependent intermediate state during aa-tRNA selection. Experiments in which the TC is

delivered to an REC carrying a non-cognate A-site codon, for example, do not result in any detectable sm-

FRET signals, including even the detection of highly transient sampling of the low-EFRET state. Analogous

experiments using RECs carrying a near-cognate A-site codon, on the other hand, result in the detection

of a highly transient low-EFRET state that corresponds to the formation of a weakly interacting, transient TC-

bound REC from which TC has a much higher probability of dissociating from the REC than of progressing

along the reaction pathway. In contrast, experiments using RECs carrying a cognate A-site codon result the

detection of a slightly longer-lived low-EFRET state that corresponds to the formation of a slightly more stably

interacting, less transient TC-bound REC from which the TC has a much higher probability of progressing

along the reaction pathway than of dissociating from the REC. Interestingly, the precise EFRET values of the

low-EFRET state differ for cognate and near-cognate TC-bound RECs, indicating that the TC in a cognate

TC-bound REC is positioned in a manner that differs slightly from how it is positioned in a near-cognate

TC-bound REC. This suggests that positioning of the TC within the low-EFRET TC-bound REC state is an

important, yet transient, structural response to the recognition of a cognate codon at the A-site of the REC.

Despite the success of smFRET in identifying and characterizing the highly transient low-EFRET TC-bound

REC state, it is important to note that there are one or more states preceding this state in the reaction path-

way that play important roles during aa-tRNA selection and that remain to be identified and characterized.

For example, the very first state resulting from the codon-independent, initial binding of the TC to the REC,

which is likely to have properties that are similar or identical to those of an encounter complex, has yet to

be observed (Fig. 1.3). In addition, the fact that the low-EFRET state is not detected in smFRET experiments

in which a TC is delivered to an REC carrying a non-cognate A-site codon suggests that, either: (i) the

low-EFRET state is sampled too rarely to be detected due to current experimental limitations (e.g., the low

concentrations of acceptor-labeled TC that must be used to maintain the signal-to-background required to

observe single fluorophores, the rate with which the donors on the RECs photobleach, etc.); (ii) the low-

EFRET state is sampled too transiently to be detected due to current limitations on the time resolution of the

experiments; (iii) non-cognate TCs are recognized and discriminated against within a state that precedes

and is physically distinct from the low-EFRET state, but in which the distance between the donors and accep-

tors in the currently available fluorophore labeling schemes are too far away to generate a detectable EFRET ;

or (iv) a combination of these possibilities. Recent single-molecule fluorescence co-localization microscopy

experiments that use nanofabricated, microfluidic, observation flow-cells to overcome the concentration bar-
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rier (see Sec. 1.5.4), for example, have demonstrated that fluorophore-labeled TCs do indeed transiently

colocalize with fluorophore-labeled RECs carrying non-cognate A-site codons. Although these were not

smFRET experiments in which the measured EFRET could be compared to what is observed in RECs carry-

ing near-cognate or cognate A-site codons, they represent an important step towards understanding where

in the pathway and how RECs discriminate against non-cognate TCs [107]. Thus, weakly interacting, highly

transient states that are critical for fully understanding the physical and molecular mechanisms underlying

aa-tRNA selection during translation remain to be identified and characterized – representing an ongoing

challenge for the field.

1.3.2 Pre-translocation Dynamics

Prior to translocation and in the absence of EF-G (Fig. 1.2), at least three individual structural elements of

the PRE complex undergo thermally driven conformational fluctuations: (i) the P- and A-site tRNAs fluctuate

between their classical P/P and A/A configurations and their hybrid P/E and A/P configurations (where, rela-

tive to the classical P/P and A/A configurations, the hybrid P/E and A/P configurations are characterized by

the movement of the acyl acceptor ends of the P- and A-site tRNAs from the P and A sites of the 50S subunit

into the E and P sites of the 50S subunit, respectively); (ii) the ribosome fluctuates between its non-rotated

and rotated subunit orientations (where, relative to the non-rotated subunit orientation, the rotated subunit

orientation is characterized by a counterclockwise rotation of the 30S subunit relative to the 50S subunit

when viewed from the solvent-accessible side of the 30S subunit) [108]; and (iii) the L1 stalk of the 50S

subunit fluctuates between its open and closed conformations (where, relative to the open L1 stalk confor-

mation, the closed L1 stalk conformation is characterized by movement of the L1 stalk into the intersubunit

space such that it can make a direct contact with the hybrid P/E-configured tRNA) (Fig. 1.4) [109]. Because

of the stochastic nature of thermally driven processes, the tRNAs, ribosomal subunits, and L1 stalk within

an ensemble of PRE complexes will asynchronously fluctuate between these transiently populated states

in the absence of EF-G. While this structural heterogeneity impedes ensemble studies of these dynamics,

they have been successfully characterized by single-molecule methods [43, 80, 96, 110–118].

Remarkably, smFRET studies performed by Fei and coworkers have observed PRE complexes fluctu-

ating between two discrete states: (i) global state 1 (GS1), characterized by classically configured tRNAs,

non-rotated subunits, and an open L1 stalk, and (ii) global state 2 (GS2), characterized by hybrid-configured

tRNAs, rotated subunits, and a closed L1 stalk [110, 111]. The observation that the PRE complex fluc-

tuates between just two states in the smFRET studies of Fei and coworkers is consistent with numerous

12



CHAPTER 1. INTRODUCTION

E P A

E P A

E P A

E P A

E P A

E P A

E P A

E P A
α12

α21

α23

α32

α34

α43

kGS1→GS2

kGS2→GS1

MS II
(GS2)

MS I
(GS1)

IS1 IS2

A/A tRNAP/P tRNA P/E tRNA A/P tRNA

RibosomeL1 Stalk tRNA Polypeptide ChainmRNA

Figure 1.4: Cartoon schematic mechanism of PRE complex fluctuations. After peptide-bond formation, the PRE complex fluctuates
between MS I/GS1 and MS II/GS2, passing through IS1 and IS2, until EF-G catalyzed translocation occurs.

subsequent smFRET studies from several other groups in which the tRNAs, ribosomal subunits, or L1 stalk

elements of PRE complexes are also observed to fluctuate between just two states corresponding to the

classical and hybrid tRNA configurations, the non-rotated and rotated subunit orientations, or the open and

closed L1-stalk conformations, respectively [110–114, 118, 119]. Furthermore, the initial observation by Fei

and coworkers that the PRE complex fluctuates between GS1 and GS2 is consistent with the more recent

observation that fluctuations of the tRNAs between their classical and hybrid configurations, the ribosomal

subunits between their non-rotated and rotated orientations, and the L1 stalk between its open and closed

conformations are physically coupled, and coordinated by the ribosome in order to maximize and regulate

the efficiency of translocation [118]. smFRET studies reveal that the thermodynamics and kinetics of the

equilibrium between GS1 and GS2 are sensitive to: (i) the presence, identity, and acylation status of the

P-site tRNA [43, 80, 96, 110–116]; (ii) the presence and acylation status of the A-site tRNA [43, 80, 96, 110–

116]; (iii) the binding of EF-G [96, 110–114]; (iv) Mg2+ concentration [115]; (v) temperature [117]; (vi) the

binding of ribosome-targeting antibiotic inhibitors of translocation [115, 118, 120]; and (vii) the perturbation
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of intersubunit rotation via disruption of specific ribosomal intersubunit interactions [116, 118]. Collectively,

these studies have provided deep insights into the roles that the P- and A-site tRNAs, EF-G, antibiotics,

cooperative conformational changes, and allostery play in regulating translocation.

Cryo-electron microscopy (cryo-EM) studies of PRE complexes performed by Agirrezabala and cowork-

ers have directly observed two states that are presumably the structural equivalents of GS1 and GS2, termed

macrostate 1 (MS I) and macrostate 2 (MS II), respectively [108, 121–123]. More recent molecular dynam-

ics simulations of cryo-EM-derived structural models of MS I and MS II support this presumption, and found

that, in the studies of Fei and coworkers, the EFRET observed in GS1 and GS2 are consistent with the simu-

lations of MS I and MS II, respectively [124]. However, in addition to MS I and MS II, a more recent analysis

of the cryo-EM data set of Agirrezabala et al. has revealed the presence of two additional states that are

presumably intermediate between MS I/GS1 and MS II/GS2 along the reaction coordinate [125]. Neither of

these two intermediate states, referred to here as intermediate state 1 (IS1) and intermediate state 2 (IS2),

nor any others, were detected in the smFRET studies of Fei and coworkers [110, 111, 118, 119] or several

other groups [112–114]. In contrast, smFRET studies of PRE complexes by Munro and coworkers identified

and characterized two additional states that presumably lie along the reaction coordinate between MS I/GS1

and MS II/GS2 [80, 116]. However, these studies relied heavily on the use of smFRET data collected using

ribosomes in which a substitution mutation disrupts a critical ribosome-tRNA interaction, and consequently

causes the P-site tRNA in the resulting intermediate states to adopt conformations that are very different

from those observed in either IS1 or IS2 in PRE complexes formed using wild-type ribosomes [125].

Since the smFRET experiments of Fei and coworkers and the cryo-EM experiments of Agirrezabala and

coworkers interrogate PRE complexes composed of wild-type ribosomes (i.e., without mutations that disrupt

ribosome-tRNA interactions), it is highly likely that IS1 and IS2 are also present in the smFRET data, but

that, given the spatial resolution, time resolution, and/or signal-to-background ratio (SBR) of the smFRET

experiments, IS1 and IS2 do not produce large enough changes in EFRET to be distinguished from GS1

or GS2. By connecting the results from static, equilibrium-state, ensemble experiments, such as cryo-EM,

with the results from dynamic, time-dependent, single-molecule experiments, such as smFRET, through a

theoretical framework, these hypotheses can be tested, and the energy landscape where the PRE complex

exists can be characterized more precisely (see Sec. 3.4).
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1.4 Prokaryotic Translation Termination

By noticing that mutations to certain codons in a gene resulted in truncated protein products in a site-specific

manner [126], the codons UAA, UAG, and UGAwere recognized as encoding the signal for nascent polypep-

tide chain termination (stop-codons) [127–129]. While early workers imagined that a special tRNA not car-

rying an amino acid would recognize these mRNA stop-codons through base pairing and then catalyze

chain termination, Capecchi showed that a protein ‘release factor’ was actually responsible recognizing

stop-codons and catalyzing nascent polypeptide chain termination [30]. Further work demonstrated that, in

Escherichia coli (E. coli), nascent polypeptide chain termination is performed by two different release fac-

tors, RF1 and RF2, with distinct stop-codon specificities; RF1 is responsible for termination at the UAA and

UAG stop-codons, while RF2 is responsible for termination at the UAA and UGA stop-codons[130]. These

observations raised the questions of if and how a protein can recognize an mRNA stop-codon in the absence

of base-pairing, if and how a release factor can both recognize stop-codons in the DC and catalyze chain

termination in the PTC, and how RF1 and RF2 can both recognize the UAA stop-codon, but have differential

specificities for the UAG and UGA stop-codons?

In general, translation termination occurs when, in competition with TC carrying aa-tRNA, a class I release

factor binds to the A-site of a ribosome containing a peptidyl-tRNA in the P-site, and then directly recognizes a

stop-codon in the DC [131–135] (Fig. 1.2). Upon stop-codon recognition, the class I release factor catalyzes

hydrolysis of the ester bond between the nascent polypeptide chain and the tRNA in the PTC [66, 136, 137].

Following hydrolysis, a GTPase class II release factor, RF3 in bacteria, catalyzes dissociation of the class I

release factor [138–140], priming the ribosomal post-termination complex for ribosome recycling, so that it

can begin another round of protein synthesis [141–143] (Fig. 1.2B).

In bacteria, class I release factors undergo premature termination at a non-stop codon about 1 in 105

codons [32]. Notably, this in vivo error rate of 10−5 ensures that on average over 250 proteins are com-

pletely translated in E. coli before a premature termination event occurs [144], and additionally, this error

rate is greater than the misincorporation rate during translation elongation of 10−3 to 10−4, since premature

termination is much more deleterious than random misincorporation [9]. Moreover, extensive biochemical

measurements of the accuracy of termination at all codons differing from a stop-codon by one nucleotide

(near-stop codons) using an optimized in vitro translation system corroborates that the high level of accuracy

for translation termination seen in vivo is due to the release factors [145]. For near-stop codons, large KM

increase account for the majority of the observed accuracy of the class I release factors, with some small
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contribution from decreased values of kcat [145]. Regardless, this error rate is somehow achieved in the

absence of a traditinonal kinetic proofreading scheme, since RF3, the only GTPase involved in termination,

decreases the accuracy of translation termination in vitro [145]. Moreover, it is difficult to imagine that the

thermodynamic energy differences between some stop and near-stop codons can account for the level of

discrimination observed [10, 11, 145, 146]. Additionally, it is known that aminoglycoside antibiotics, which

affect the accuracy of translation elongation [9, 147, 148], also affect the accuracy of translation termina-

tion [10, 149, 150], despite having different binding sites [150–152]. Furthermore, the A-site codon context

(i.e., the bases before (...-2, -1), and after (+4, +5...) the A-site codon) also modulates the efficiency with

class I release factors catalyze chain termination [153, 154]. Furthermore, class I release factor mutations

to residues that are distal from the DC when the release factor is bound to the ribosome at a stop-codon

can change the release factor codon specificity, creating ‘omnipotent’ release factors that recognize all three

stop-codons (UAA, UAG, and UGA) [155, 156]. Finally, chemical probing experiments of RF1 binding to

stop-codon and near-stop codon programmed ribosomes show conformational rearrangements within and

around the DC and PTC of the stop-codon programmed ribosomes, suggesting that codon recognition in-

volves distinct conformational changes. These observations all suggest that there are additional molecular

requirements for accurate translation termination other than just the direct RNA-protein interactions made

between the stop-codon and the highly conserved ‘tripeptide anticodon’ of the class I release factors that

directly contacts the stop-codons [131–135, 157–160], and that codon recognition is a multistep process,

providing opportunity for some sort of biological proofreading mechanism during translation termination [14].

Once nascent polypeptide chain termination occurs, RF3 assists in the dissociation of the class I re-

lease factor from the ribosomal A-site [138]. Using smFRET, Sternberg and coworkers showed that RF1

stably binds the A-site of the ribosome, blocking the GS1 → GS2 transition, locking the ribosome into the

non-rotated state with a classical P/P tRNA [161]. However, RF3 bound to the non-hydrolyzable GTP ana-

logue GDPNP, in order to mimic the GTP-bound RF3 (RF3(GTP)) conformation, dissociates RF1 from the

ribosome, and locks the ribosome into the rotated state with a hybrid P/E tRNA by blocking the GS2 →

GS1 transition [161, 162]. Mechanistically, RF3(GTP) binds both the pre- and post-hydrolysis ribosome, but

only after hydrolysis of the nascent polypeptide chain has been catalyzed by a class I release factor will

RF3(GTP) catalyze dissociation from the ribosome [139, 140], presumably by biasing the ribosome towards

GS2, which seems incompatible with class I release factor binding [161, 162].
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1.4.1 Structure and Function of Release Factor 1

In this thesis, I investigate how the dynamics of RF1 and the ribosome regulate RF1 binding and codon

discrimination (see Chapter 5). RF1 is a 360 amino acid protein encoded by the prfA gene (Fig. 1.5). The

prfA gene is located in the hemA-operon at 27 min in E. coli, where it is under the control of two promoters,

and has a poor translation initiation region – mutations to which cause an anti-amber supressor phenotype,

because of the resulting increase in RF1 concentration [163]. RF1 expression levels depend upon growth

rate, with about 5,000 molecules per cell for a 25 minute doubling time; notably, there are about 25,000

molecules of RF2 per cell under the same conditions [164]. In most bacteria, prfA is a non-essential gene,

presumably because only a few essential genes end with the UAG stop-codon (∼7), and therefore RF2

can compensate for the absence of RF1; though, RF1 is essential in K-12 strains, however, where a point

mutation in RF2 (A246T) has made RF2 five times less active at UAA stop codons, and presumably less

able to compensate for the absence of RF1 [165]. Interestingly, in pull-down experiments using RF1 as a

bait protein, RF1 is found to interact with both DnaK and GroL [166], which are both central players in the

bacterial chaperone network [167]; this is not the case for RF2, and suggests that RF1 has specific folding

requirements. Finally, RF1 and RF2 are both post-translationally methylated at a universally conserved

glutamine residue (Q235; E. coli numbering) by the N5-glutamine methyltransferase encoded by prmC,

which is downstream of prfA in the hemA-operon; this methylation is required for efficient catalysis during

peptide hydrolysis, and a knockout induces translation termination defects [163, 168–171].
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Figure 1.5: Structure of Release Factor 1. (Left) Primary Structure of E. coli RF1 aligned with T. thermophilus RF1 (PDB ID: 4V7P).
Domains I through IV are denoted with blue, red, green, and yellow bars, respectively. The PxT motif, GGQ motif, and switch loop are
marked, and their locations in the T. thermophilus, ribosome-bound RF1 X-ray crystallographic structure is shown (right). Additionally,
the residue 167, which is used for acceptor-fluorophore labeling in smFRET experiments [161], is also marked.

RF1 is composed of four domains (Fig. 1.5). The N-terminus of RF1 comprises domain I, which interacts
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with the rProtein L11 of the ribosomal GTPase-associated center [131, 132, 135]. In vitro, L11 is required

for accurate stop-codon recognition (kcat/KM) of both UAA and UAG by RF1, but not for UAA and UGA by

RF2 [172]. Also, in vivo, UAG read-through is increased in an L11 knockout strain [173]. Domain I of RF1

also interacts with RF3 [174], but it is not essential for peptide hydrolysis [175], does not lock RF1 into the

GS1 state [161], and it is not required for RF3-catalyzed dissociation [161, 175].

Domains II and IV form a core domain which contacts themRNA, rRNA, and rProteins in the DC [131, 132,

135]. Domain II contains the universally conserved, ‘tripeptide anticodon’ proline-any amino acid-threonine

(PxT) motif, which directly interrogates the A-site codon [157] (Fig. 1.5). Only the threonine (T190) of the PxT

motif directly contacts the mRNA, where it donates a hydrogen bond to the U1 base, and accepts a hydrogen

bond from the A2 base; another residue, T198, interrogates the Hoogsteen edge of third base of the codon

[31, 131, 132, 135, 176]. Chemical probing of the DC rRNA with a RF1 single-cysteine mutant (H156C) in

domain II using Fe-BABE chemistry yields no hits when RF1 is bound at a stop-codon, presumably because

the binding of RF1 to the ribosome in this area is too tight for the ascorbic acid to enter [177]. Notably, Wilson

and coworkers describe the creation of several single-cysteine mutants in this domain that are competent for

peptide hydrolysis [178]. Of these, Sternberg and coworkers utilized the S167C mutant as part of a smFRET

signal between RF1 and the P-site aa-tRNA, which reports on RF1 binding [161]; this is the mutant used in

Chapter 5.

Domain III directly contacts the PTC, ∼75 Å from the DC [131, 132, 135]. There, a universally conserved

glycine-glycine-glutamine (GGQ) motif is directly involved in catalyzing the chain termination reaction [175,

179–181]. While the exact mechanism is still unclear, either a water or a hydroxide ion acts as a nucleophile

[137, 181–183] which is coordinated by the N5-methylated glutamine (Q235) of this GGQ motif to position

the nucleophile and/or stabilize the transition state for the hydrolysis reaction of the nascent polypeptide

chain from the 3’ CCA end of the P-site tRNA [66, 131, 132, 134–136]. Between domains III and IV lies the

‘switch loop’ (A291 to N307), which is so disordered such that it could not be found in X-ray crystallography

structures of the RF1 alone [184], or RF1 in complex with its N5-glutamine methyltransferase [185], but

which undergoes a conformational rearrangement and is relatively stabilized when RF1 is bound to the

stop-codon programmed ribosomes [132, 135]. In the latter structures, the universally conserved 16S rRNA

residues A1492 and A1493 in helix h44 form part of the switch loop binding pocket [132, 135], however,

their conformations are similar to those in paromomycin bound-30S subunits [151], which are over-extended

and not dynamic as in the analogous NMR structures, and therefore might be cryogenic or crystal induced

artifacts [152]. Though, paromomycin was found to differentially affect RF1 catalyzed peptide hydrolysis at
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stop- and near-stop codons [150]. Mutations in the RF1 switch loop coupled with deletion of helix H69 of

the 23S rRNA, which forms part of intersubunit bridge B2A with helix h44 of the 16S rRNA, result in peptide

hydrolysis defects at the UAA stop-codon [135]. Additionally, RF1 switch loop mutants G301S and R303H

were found to decrease the efficiency of peptide hydrolysis at UAG stop-codons but not UAA stop-codons,

suggesting that the switch loop participates in the codon recognition process [186].

There is considerable debate about the conformation of RF1 in solution. When bound to stop-codon pro-

grammed ribosomes, RF1 adopts an extended ‘open’ conformation where domains II and IV are located near

the DC, while domain III has extended and is located in the PTC [131, 132, 135, 158] (Fig. 1.5). However, in

X-ray crystallography structures of RF1 alone [184], or in complex with its N5-glutamine methyltransferase

[185], RF1 adopts a compact ‘closed’ conformation where domain III is folded down upon domains II and

IV. One attractive hypothesis is that RF1 is in the closed conformation in solution, and upon binding and

recognizing a stop-codon, it undergoes a conformational change to the open conformation where the GGQ

motif is positioned in the PTC for peptide hydrolysis (reviewed in Ref. 31). However, such a conformational

change has never been observed, and small-angle X-ray scattering experiments do not agree about the

solution structure of release factors [187, 188]. Though, there is chemical probing evidence that RF1 un-

dergoes different conformational changes when binding at stop- or near-stop codons, and that part of this

change involves rearrangements of the rRNA near the switch loop and possibly orienting domain III into the

PTC [177]. Regardless, it is unclear how the structure and dynamics of RF1 and the ribosome modulate

RF1 binding affinity and codon discrimination in order to maintain the high fidelity of translation termination

observed both in vitro and in vivo (see Chapter 5).

1.5 Single-molecule Fluorescence Resonance Energy Transfer

Studies of Ribosomes

The advent of single-molecule biophysical techniques, particularly single-molecule fluorescence approaches,

has provided a powerful complement to traditional ensemble biochemical, bioinformatics, and biophysical

techniques for studying the ribosome. Single-molecule techniques allow stochastic transitions to rarely and

transiently sampled states to be directly observed, thereby allowing those states that were difficult to detect

in ensemble biophysical experiments to be sensitively detected and comprehensively characterized [189].

Moreover, the observation of individual transitions to and from a state of interest allows heterogeneities in

the physical properties of that state to be identified, sorted, and analyzed [190–192]. However, despite the
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tremendous promise that single-molecule fluorescence approaches hold for studies of the ribosome, these

approaches are often limited by (i) data collection throughput that can be too low for sufficient statistical anal-

ysis, (ii) time resolutions that can be too slow to capture exceedingly transient states, (iii) limitations in spatial

resolution that can make it difficult to determine when a ligand is co-localized to a biomolecule, and (iv) the

‘concentration barrier’ generated by the background fluorescence from the relatively high concentrations of

fluorophore-labeled ligands that are required to observe ligand binding events within the experimental obser-

vation time, which compromises the high signal-to-background ratio that is required to sensitively observe the

fluorescence from a single molecule [193–195]. Notably, single-molecule fluorescence resonance energy

transfer (smFRET) approaches are particularly powerful for studies of ligand-binding reactions [196–198],

as they ameliorate several of these limitations, and are able to directly report on both the spatial localization

as well as the conformational dynamics of biomolecules and/or ligands [199].

For over a decade, ribosomes have been the subject of numerous smFRET studies [43, 95]. Several

aspects of the experimental systems available for studying ribosomes provide important advantages for

designing, implementing, and interpreting smFRET experiments. These advantages include: (i) the involve-

ment of interactions between often only two molecular sub-complexes, the ribosome and a translation factor;

(ii) the availability of a reconstituted in vitro translation system composed of a full set of purified components

that allows individual components and steps of the reaction to be manipulated (reviewed in Ref. 200); (iii) the

existence of a large number of small-molecule inhibitors that enable inhibition of specific and well-defined

steps of translation [147, 148, 201]; and, (iv) the availability of a series of cryogenic electron microscopy

(cryo-EM) and X-ray crystallography structures of conformations, including intermediates, relevant to trans-

lation initiation, elongation, and termination (reviewed in Refs. 69, 64, and 31, respectively). In this thesis,

because of these many benefits, I utilize smFRET to study the ligand-binding dynamics of the ribosome

during translation termination. Therefore, in the following sections, I will describe the benefits of single-

molecule studies, the physical process underlying smFRET, and finally the experimental platform used to

perform smFRET studies.

1.5.1 Single-molecule versus Ensemble Studies

Biophysicists are mostly concerned with understanding the general mechanisms that underlie biological,

physico-chemical systems. In order to test whether their hypotheses are generally accurate, a large number

of measurements must be considered, as it is necessary to obtain a high degree of precision when evaluating

the predictions of these hypotheses. One approach to obtaining this precision is to use ensemble studies, in
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which multiple, different molecules are measured at the same time, and the resulting measurement provides

an average description of their behavior; this is an ensemble measurement. A fundamentally different ap-

proach is to measure each molecule separately, one at a time, and then determine the underlying behavior

from the distribution of the different molecules; this is a singe-molecule measurement. However, this latter

approach can be very time consuming, and often it is not possible to interrogate each subject separately.

For example, imagine trying to measure the flocking behavior of birds. It is fairly easy to follow the flight

path of the entire flock (the ensemble measurement). However, it is much more difficult to even identify an

individual bird in the flock, let alone follow its flight path while inside the flock and repeat this measure for

multiple other birds (the “single-molecule” measurement).

Regardless of the difficulties of performing single-moleculemeasurements, the benefits of single-molecule

studies of biomolecules are immense [189]. For instance, single-molecule studies allow the observation of

states that might otherwise be insufficiently populated, such as a rarely-populated intermediate, or interme-

diate states that are too transiently populated to be observed in an ensemble measurement, such as the

codon-recognition intermediate state present in the aa-tRNA selection pathway [43, 95]. Additionally, they

allow the observation of time-dependent fluctuations in biomolecular behavior, such as the memory effects

observed in the substrate turn-over rate of the β-galactosidase enzyme [192]. Single-molecule studies also

allow for the specific mechanistic pathways between states to be directly observed, such as the different

spliceosome assembly pathways taken due to the competition between different small nuclear ribonucleo-

protein particles assembling at a splice-site [202].

Fortunately, single-molecule fluorescence techniques are very sensitive methods for detecting individual

biomolecules [203]. This is because the Stokes shift efficiently separates the fluorescence signal from the

illumination background. Indeed, from the first hint that optical methods could observe a single-molecule

[204] to the first single-molecule imaging of biomolecular reaction in solution [205], fluorescence has been

a powerful single-molecule technique. By site-specifically labeling a biomolecule of interest with a single

fluorophore, the fluorescence photons can be detected and attributed to the presence of the fluorophore-

labeled biomolecule. Furthermore, if the fluorophore-labeled biomolecule can be spatially separated from

from other fluorophore-labeled biomolecules by a distance greater than the diffraction limit, then the position

of the individual biomolecule can be tracked through time. Finally, the fluorescence from multiple, spatially-

separated, fluorophore-labeled biomolecules can be measured in parallel with wide-field detectors. With all

of this in mind, single-molecule fluorescence techniques are powerful methods by which to perform single-

molecule studies of biomolecules.
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1.5.2 Förster Resonance Energy Transfer

The physical process underlying the ability of smFRET to report upon the conformational dynamics of a

biomolecule is resonance energy transfer [206]. Resonance energy transfer is a process in which energy

is transfered between a donor and an acceptor molecule through the electromagnetic interaction of their

transition dipole moments. First observed in 1922 as sensitized fluorescence in atomic vapor spectroscopy

[207–209], early explanations for resonance energy transfer employed classical electromagnetism to de-

scribe energy transfer between dipoles, but these yielded the wrong distance dependence of the energy

transfer rate (R−3 not R−6) [210]. The theory behind this process was correctly explained by Förster in

1948, and has since carried the name Förster Resonance Energy Transfer (FRET) [211]. Förster’s insights

were to use a quantum mechanics based approach with Fermi’s golden rule, and to quantitatively account

for the probability that the donor and acceptor transition dipole moments have the same energy through

connections to experimentally measured absorption and emission spectra (reviewed in Ref. [212]). In this

section, I will demonstrate how to briefly derive an expression for the efficiency of FRET that accounts for the

donor-acceptor dipole-dipole interaction, and then give Förster’s quantitative expression for this efficiency.

The general approach to calculating the FRET efficiency is to first calculate the rate of FRET transfer using

Fermi’s golden rule with a perturbation Hamiltonian obtained from a multipole-expansion of the Coulomb

potential. First, consider the electric potential, Φ, from a collection of net-neutral charges. In Cartesian

coordinates,

Φ =
∑
i

qie

ε

(
(x− xi))2 + (y − yi))2 + (z − zi))2

)−1/2

≡
∑
i

qie

ε

1

~ri
, (1.1)

where qie is the charge of the ith atom, and ε is the permittivity. A Taylor expansion around the origin in xi,

yi, and zi truncated after the first order term yields the dipole approximation

Φ =
1

ε

(∑
i

qie

~r
−mux ·

∂ 1
~r

∂x
−muy ·

∂ 1
~r

∂y
−muz ·

∂ 1
~r

∂z
+ ...

)

=
1

εr3
(µxx+ µyy + µzz)

=
1

εr3
~µ · ~r, (1.2)
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where µx =
∑
i

qiexi, and the sum in Φ is zero because it is assumed that there are an equal number of

opposite charges. The electric field at ~r from the dipole ~µ is then

~E = −∇Φ

= −
(

(~µ · ∇)
~r

εr3
+ (~r · ∇)

~µ

εr3
+

~µ

εr3
× (∇× ~r) +

~r

εr3
× (∇× ~µ)

)
=
−1

ε

(
~µ

r3
− 3(~r · ~µ) · ~r

r5
+ 0 + 0

)
, since ∂1/r

∂x
=
−1

r2

∂r

∂x
=
−1

r2
x̂ =

−x
r3

=
1

εr3
(3r̂ · ~µ · r̂ − ~µ) . (1.3)

In order to obtain the rate of FRET, kFRET, time-dependent perturbation theory and Fermi’s golden rule

are used. Here, our system is the defined by the ground state (S0) or excited state (S1) of the donor (D) or

accepter (A) molecules. The corresponding wavefunction is

Ψ = ψa + ψb = a · 〈D(S1), A(S0)|+ b · |D(S0), A(S1)〉 , (1.4)

where a + b = 1, which is a linear combination of the cases when only the donor is the excited state and

when only the acceptor is in the excited state. When the donor is in the excited state, the transition dipole

moment between the excited and ground states creates an electric field perturbation that can effect the

transition dipole moment of the acceptor molecule. The corresponding perturbation Hamiltonian for the

acceptor-dipole donor-dipole electric field interaction is

H = H0 +H1 = H0 − ~µA · ~ED. (1.5)

From the time-dependent Schrödinger equation, if a = 1 and b = 0 at time t = 0, Fermi’s golden rule yields

kFRET = Wψa→ψb =
∂

∂t
〈ψb|ψb〉 =

∂

∂t
|b(t)|2

∝ |〈D(S0), A(S1)|H1|D(S1), A(S0)〉|2

∝ |−~µ · ~E|2

∝ |−1

εr3
(3(~µA · r̂)(~µD · r̂)− ~µA · ~µD)|2

∝ µ2κ2

n4r6
, (1.6)
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where n =
√
ε is the index of refraction, and the substitution in the last line defines κ the orientation factor.

Now, the FRET efficiency, EFRET , is defined as

EFRET ≡
kFRET

kFRET + 1
τe

=
1

1 + n4r6

Cµ2κ2τe

, (1.7)

where C is some proportionality constant required to make Equation 1.6 an equivalency, and τe is the aver-

age, donor excited-state lifetime in the absence of acceptor. As an efficiency, EFRET is bounded between 0

and 1, corresponding to no donor, excited states relaxing through FRET (i.e.,, all relaxation occurs through

fluorescence), and all donor, excited states relaxing through FRET.

Two of the terms present in Equation 1.7 highlight very interesting aspects of FRET. First, EFRET depends

upon r6, where r is the distance between the donor and acceptor transition dipole moments. Because of

this responsive distance dependence, if EFRET can be measured, it can be used as a ‘spectroscopic-ruler’,

in which high levels of EFRET correspond to a small donor-acceptor distance, while low levels of EFRET cor-

respond to a large donor-acceptor distance [213]. Second, the κ2 term provides a dipole-dipole orientation

contribution to EFRET . If the donor and acceptor dipole moments were completely orthogonal to each other,

no FRET would be expected to occur, even if the donor and accepter molecules were relatively close to-

gether. However, if all relative orientations are sampled equally, the average value is κ2 = 2/3. Similarly, with

isotropic rotation of the donor and acceptor, in a bulk sample the ensemble averaged 〈κ2〉 = 2/3 also, since

all relative orientations are sampled within the ensemble. However, for a single-pair of donor and acceptor

molecules, each FRET event samples only one relative orientation, which will not necessarily be κ2 = 2/3.

Therefore, in order to approximate the average κ̄2 = 2/3 for a single-pair of isotropically rotating donor and

acceptor molecules, multiple FRET events must occur. In practice, however, for freely rotating molecules

only about 15 photons (i.e., FRET events) must be observed before κ̄2 ≈ 2/3 to within 10% relative error

[214].

Further than Equations 1.6 and 1.7, a quantitative expression can be written down for kFRET and EFRET .

Förster showed that EFRET can be written as

EFRET =
1

1 + r6

R6
0

, (1.8)

where R0 is known as the Förster radius, which is the distance between donor and acceptor molecules
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at which EFRET = 0.5 [211, 212]. While R0 is a function of the donor and acceptor molecules, as well as

their environment, and can therefore be calibrated by measuring EFRET for known separations, Förster also

developed a quantitive expression for calculating R0’s, which uses parameters that can be measured from

the donor and acceptor molecules separately, without any FRET. This expression is

R6
0 =

9000 ln(10)

128π5
· κ

2ΦD
n4NA

· J(ν), (1.9)

where κ is the orientation factor, ΦD is the fluorescence quantum yield of the donor molecule in the absence

of FRET, n is refractive index, NA is Avagadro’s number, and J(ν) is the spectral overlap integral where

ν is wavenumbers [211, 212]. The spectral overlap integral quantifies the probability that the donor and

acceptor transition dipole moments will have the same oscillator strength when FRET occurs. This can

be calculated from the normalized emission spectrum of the donor molecule, fD(ν), and the normalized

absorption spectrum of the acceptor molecule, εA(ν), as

J(ν) =

∫ ∞
0

fD(ν) · εA(ν)dν

ν4
. (1.10)

Förster’s theory generally provides very accurate descriptions of experimental FRET data for r values that

are approximately 0.5-10 nm; notably, below this range, where the dipole expansion is not valid, Dexter

energy transfer occurs [215]. For many pairs of donor and acceptor molecules, such as fluorophores in the

visible range of the electromagnetic spectrum, in a particular environment such as aqueous buffer,R0 values

have been tabulated, and can be used to reasonable accuracy in other experiments. In this work, I utilize the

fluorophore pair Cy3 and Cy5, where Cy3 is the donor molecule, and Cy5 is the acceptor molecule, which

have an R0 = 55 Å (Fig. 1.6).

1.5.3 smFRET Microscopy Experimental Platform

By combining single-molecule measurements, the distance dependence of EFRET , and site-specific fluo-

rophore labeling strategies for biomolecules, smFRET allows one to observe the time dependent, confor-

mational dynamics of individual biomolecules. Here, I will describe our experimental platform for making

such smFRET measurements of ligand binding events for hundreds of individual ribosomes in parallel, in

the presence of high concentrations fluorophore-labeled ligand in solution, by using wide-field microscopy

(reviewed in Ref. 200).
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Cy3

Cy5

Figure 1.6: Efficiency of Förster Resonance Energy Transfer for Cy3-Cy5. EFRET is plotted versus the distance between the donor
fluorophore (Cy3) and the acceptor fluorophore (Cy5); R0 = 55 Å . FRET is cartooned as yellow zig-zags.

Since EFRET depends monotonically on the distance between the donor and acceptor fluorophores [211,

212, 215, 216], it can interpreted as a “spectroscopic-ruler” that reports on the distance between the two

fluorophores [213]. smFRET utilizes this distance dependence by monitoring the EFRET between individual

donor- and acceptor-fluorophore labeled biomolecules, and using that EFRET as a proxy for the distance

between the location of the donor and acceptor-fluorophore labeled biomolecules [206, 217, 218]. Assuming

that the only relaxation pathways available to an excited donor fluorophore are fluorescence or FRET, and

that the only relaxation pathway available to an excited acceptor fluorophore is fluorescence, the EFRET of

a resonance energy-transfer event can be quantified by directly exciting the donor fluorophore, and then

measuring the ratio of a large number of photons emitted through donor and acceptor fluorescence. This

ratio is

EFRET =
kRET

kRET + kD
fl

= lim
nA+nD→∞

nA

nA + nD
≈ IA

IA + ID
, (1.11)

where nA and nD are the number of acceptor and donor photons, and IA and ID are fluorescence inten-

sities of the acceptor and the donor, respectively, as recorded by a detector such as an electron multiply-

ing charge coupled device (EMCCD). Perhaps the most common experimental approach for measuring IA
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and ID for ligand-binding reactions is diagrammed in Fig. 1.7. This approach involves tethering a biotin-

derivatized, donor-labeled biomolecule of interest to the surface of a microfluidic, observation flow-cell via a

biotin-streptavidin-biotin bridge formed with biotin-derivatized polyethylene glycol (PEG) that has been used

to functionalize the surface of the flow-cell [43, 219]. Introduction of an acceptor-labeled ligand into the imag-

ing buffer within the flow-cell and imaging using wide-field total internal reflection fluorescence (TIRF) mi-

croscopy [220–222] enables direct excitation of the surface-localized donors and simultaneous observation

of both the donor- and acceptor fluorescence intensities originating from hundreds of individual biomolecules

[43, 218]. In such experiments, an anti-correlated donor- and acceptor fluorescence intensities versus time

trajectory that exhibits single-step fluorophore photobleaching originating from diffraction-limited donor and

acceptor spots serves as unambiguous evidence for resonance energy transfer arising from the encounter

of a single, acceptor-labeled ligand with a single, surface-tethered, donor-labeled biomolecule. Importantly,

the acceptor fluorophore will only fluoresce when it is within tens of Å of the donor (e.g., when a ligand is

bound to the biomolecule). Thus, smFRET enables the detection of biomolecule-ligand encounters in the

presence of relatively higher, tens to one hundred nM, concentrations of fluorophore-labeled ligand in the

imaging buffer than is possible with other single-molecule fluorescence microscopy approaches – thereby

partially alleviating the limitations imposed by the concentration barrier described earlier [195]. In addition

to reporting on ligand-biomolecule encounters, smFRET can also report on conformational changes of the

biomolecule and/or ligand that result in changes in the distance between the positions of the donor and

acceptor. In summary, because it is able to simultaneously and sensitively report on hundreds of single

biomolecule-ligand encounters at fluorophore-labeled ligand concentrations that are higher than is possible

with other single-molecule fluorescence approaches, as well as because it can report on conformational

changes that take place during the ligand-binding reaction, the TIRF-based smFRET experimental platform

described here has been particularly successful for investigating the kinetic and thermodynamic properties

of ligand-binding reactions [189].
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Figure 1.7: Schematic of smFRET experimental platform for Studying Ligand-binding Reactions. A laser excitation source is totally
internally reflected (TIR) at the interface formed between the surface of the quartz, microfluidic, observation flowcell to which the
donor-labeled biomolecules are tethered and the aqueous imaging buffer in the flowcell. The evanescent field that is generated by
TIR propagates into the imaging buffer and decays exponentially as a function of increasing distance from the quartz-buffer interface,
thereby selectively exciting only those donors that are localized within ∼300 nm of the quartz-buffer interface (top left inset). Donor
and acceptor fluorescence emission is collected by an objective, separated by wavelength using dichroic mirrors, and detected using
an electron-multiplying charge-coupled device (EMCCD) camera (bottom left inset). The separated donor and acceptor fluorescence
intensities reporting on the binding of acceptor-labeled ligands to individual, spatially resolved, donor- labeled biomolecules can then
be quantified and plotted as a function of time (bottom right inset). Figure and caption adapted from Ref. 223
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1.5.4 Emerging experimental advances for smFRET studies of ligand-binding

reactions

Very low affinity ligand binding reactions often have (i) very slow association rates, which makes binding

events very rare, and therefore it is difficult to observe a significant number of binding events in a smFRET

experiment; (ii) very fast dissociation rates, which makes the bound-state lifetimes very transient, and there-

fore it is very difficult to observe the binding process in a smFRET experiment; (iii) high equilibrium dissoci-

ation constants (KD), which makes it necessary to have a high concentrations of fluorophore-bound ligand

in solution, and therefore compromises the signal-to-background ratio (SBR) in an smFRET experiment.

In order to address these limitations to studying low-affinity ligand binding reactions using smFRET there

are a number of emerging experimental advances beyond the principal experimental platform described in

Section 1.5.3, which I describe below.

Microscope-based developments

As described in Section 1.5, one of the current limitations in single-molecule fluorescence studies of ligand-

binding reactions is the concentration barrier that is created by the relatively high concentrations of fluorophore-

labeled ligands that are required to be present in the imaging buffer in order to detect ligand-binding events

within the experimental observation time [194]. Because an acceptor fluorophore will only be efficiently ex-

cited via FRET when it is within tens of Å of a donor fluorophore that is being directly excited by an excitation

light source (e.g., a laser), smFRET experiments in which a donor-labeled biomolecule of interest is teth-

ered to the surface of the microfluidic, observation flowcell and an acceptor-labeled ligand is supplied in the

imaging buffer greatly ameliorate the limitations imposed by the concentration barrier [224]. Despite this

advantage of smFRET experiments, acceptor fluorophores can still be directly, albeit inefficiently, excited by

the laser that is used to directly excite the donor fluorophore – a low probability event known as excitation

crosstalk [189]. At high enough concentrations of acceptor-labeled ligands in the imaging buffer (typically

well below the equilibrium dissociation constants of weakly interacting biomolecule-ligand complexes), exci-

tation crosstalk becomes a major source of background fluorescence noise in such experiments, a situation

that can ultimately prevent the detection of fluorescence from individual molecules [194].

By preventing the excitation source from penetrating deeper than ∼200-300 nm into the imaging buffer

in the flowcell, wide-field TIRF microscopy-based smFRET experiments minimize the total amount of noise

from excitation crosstalk of acceptor-labeled ligands in the imaging buffer. Unfortunately, the major disad-
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vantage of this approach is that the electron-multiplying charge-coupled device (EMCCD) cameras that are

used as detectors in TIRF microscopy-based smFRET experiments operate at time resolutions that are typ-

ically too slow to capture the weakest and most transient intermediate states (typically limited to ∼30 ms

per a full-resolution frame [225]). This tradeoff between lower background noise and faster time resolution

is a fundamental limitation of using wide-field smFRET to study encounter complexes. Using a confocal

fluorescence microscope with an avalanche photodiode (APD) or a single-photon avalanche diode (SPAD)

detector, rather than a TIRF microscope with an EMCCD camera detector, affords significant increases in

the sensitivity, SBR, and time resolution (typically ∼ 1 ms per data point) of smFRET experiments [189,

226]. Unfortunately, however, this increase in the time resolution comes at the cost of a significant decrease

in throughput, as the confocal fluorescence microscopy-based approach can only image one biomolecule

at a time, whereas the TIRF microscopy-based approach can simultaneously image hundreds of surface-

tethered biomolecules at a time. Such low throughput can be particularly difficult to overcome when attempt-

ing to detect weakly interacting, transient biomolecule-ligand complexes and/or conformational states that

are rarely-populated. In the ideal setup, one would be able to couple a TIRF microscope with an APD- or

SPAD-array detector [225, 227]. Such an approach would allow wide-field detection with APDs or SPADs,

thereby allowing the high throughput associated with using a conventional TIRF microscope, but with the

high time resolution that is associated with using a confocal fluorescence microscope. Towards this goal,

smFRET was recently demonstrated using linear arrays of 8 SPADs [228], and so, with further develop-

ment, commercially available products composed of tens of thousands of monolithically integrated SPADs

will likely constitute an important future development in the field of single-molecule fluorescence microscopy

[227]. Towards this goal, I have succeeded in integrating a 2,048 SPAD-array with our TIRF microscope, and

successfully utilized this setup to observe pretranslocation ribosomes with smFRET (see Appendix A.2).

An alternative approach to minimizing the excitation crosstalk of acceptor-labeled ligands and improving

the SBR of conventional TIRF microscopy-based smFRET experiments without compromising throughput

is to remove excess ligand from the excitation volume without changing the local concentration of the ligand

in the vicinity of the biomolecule. This can be achieved by locally confining ligands and the biomolecule of

interest into spatially resolved regions of the flowcell that are smaller than the excitation volume associated

with the detection of single, diffraction-limited spots in the field-of-view. Notable approaches include elec-

trostatic and physical traps [229, 230] as well as encapsulation of the biomolecules and ligands in aqueous

drops in oil [231]. Perhaps the most promising and physiologically compatible method of local confinement

for smFRET experiments is to encapsulate ligands and individual biomolecules in surface-tethered lipo-
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somes [232]. These lipid vesicles not only encapsulate ligands with individual biomolecules and confine

them to spatially resolved regions on the surface of the microfluidic flowcell, but, because the biomolecule

is free to diffuse within the surface-tethered liposome, they also serve to further reduce the interactions that

a biomolecule of interest might have with the PEG-passivated surface of the microfluidic flowcell [233]. In

addition, since their introduction in 2001 [234], liposomes have been optimized to allow for the free diffusion

of small molecules into and out of the liposome [235].

Fluorophore developments

Although much work has gone into developing robust donor and acceptor pairs with well-behaved pho-

tophysics for smFRET studies [236], photobleaching and ‘blinking’ of fluorophores continues to impose

limitations on smFRET studies of biomolecular systems [237, 238]. The irreversible photobleaching of a

fluorophore effectively brings the smFRET experiment, at least for that fluorophore, to an end, thereby lim-

iting the experimental throughput. The reversible blinking of a fluorophore similarly limits the throughput of

smFRET experiments and, in addition, can convolute the subsequent analysis of the data (e.g., it is often

difficult to distinguish whether changes in EFRET that are observed arise from bona fide changes in the dis-

tance between the donor and acceptor or from blinking of the donor or acceptor) [237, 238]. The limitations

imposed by photobleaching and blinking are particularly challenging for smFRET studies of ligand-binding

reactions. Rare events such as the formation of a long-lived complex formed by the generally weak, tran-

sient binding of an acceptor-labeled ligand to a surface-tethered, donor-labeled biomolecule of interest, for

example, are exceedingly difficult to observe within the limited observation times that are imposed by pho-

tobleaching and blinking of the donor fluorophore. The continued development of longer-lived, brighter, and

more stable fluorophores, such as Cy3B [239], is therefore an important area of research, as these enhanced

fluorophores enable longer and more stable observation times in smFRET experiments [236, 240].

Complementing the development of longer-lived, brighter, and more stable fluorophores, considerable

work has also gone into optimizing buffer conditions that minimize photobleaching and blinking [237]. Often,

photobleaching is mediated via a photochemical reaction between a fluorophore in its electronically excited

state and molecular oxygen. As a consequence, oxygen scavenging systems, including mixtures of glu-

cose, glucose oxidase, and catalase or of protocatechuic acid (PCA) and protocatechuate-3,4-dioxygenase

(PCD), are often added to experimental buffer systems to extend fluorophore survival times [241, 242].

As early as 1988, β-mercaptoethanol (BME) was being added to buffer systems for single-molecule fluo-

rescence microscopy experiments in order to suppress the blinking of tetramethyl-rhodamine, presumably
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by quenching a dark triplet-state of the fluorophore [241]. Since then, triplet-state quenchers, including

mixtures of cyclooctatetraene (COT) [43], 4-nitrobenzyl alcohol (NBA) [43], and/or Trolox (a water-soluble

analog of vitamin E) [243] have become standard additives in smFRET experiments [244]. Recently, direct,

covalent conjugation of triplet-state quenchers such as COT, NBA, or Trolox to the entire class of cyanine

dye fluorophores, including Cy3 and Cy5, was shown to significantly enhance the photostability of these

fluorophores [245, 246]. Although these new fluorophore-quencher conjugates represent a breakthrough

in fluorophore development, caution should be exercised in their use, as these conjugates are necessarily

larger than the traditional fluorophores on which they are based and are therefore more likely to sterically

perturb the biomolecules or ligands to which they are attached.

In addition to the development of fluorophores and/or buffer conditions that resist photobleaching and

blinking, the development of fluorophores that enable selective excitation is another promising area of current

research [238]. Indeed, one of the major advantages of smFRET is that the acceptor is excited selectively

(i.e., only when it is within tens of Å of a donor). Similarly, highly enzyme-specific fluorogenic substrates

that fluoresce exclusively upon being enzymatically modified can be used to conduct single-molecule fluo-

rescence microscopy studies of the mechanisms of action of enzymes for which fluorogenic substrates have

been developed [192, 240]. This strategy, however, is difficult to generalize to all, or even many, enzymes

and even more so to non-enzymatic biomolecules. In addition, to our knowledge, fluorogenic strategies

have not yet been utilized in smFRET studies. As an alternative to the use of fluorogenic substrates, se-

lective excitation can be achieved through the use of photoswitchable fluorophores [238]. For example, in

the PhADE technique, an imaging buffer containing high concentrations of a photoswitchable fluorophore-

labeled ligand is activated with a laser pulse and these are allowed to diffuse out of the imaging volume. This

effectively removes all of the photoactivated ligands other than those that are bound to the surface-tethered

biomolecules from the flowcell, thereby removing much of the background fluorescence that would other-

wise arise from photoactivated ligands in solution [247]. Unfortunately, this strategy works only for relatively

long-lived, weakly interacting biomolecule-ligand complexes, and, to our knowledge, has not yet been used

in smFRET experiments.

Perhaps the most promising recent development in smFRET studies of biomolecular systems is the use

of FRET-based quenchers as acceptors for smFRET experiments [248]. By returning from the excited state

to the ground state without emitting a photon, quenchers not only free the optical spectrum for the use of ad-

ditional fluorophores (e.g., for colocalization experiments), but, of particular importance for smFRET studies

of ligand-binding reactions, also allow smFRET experiments to be performed under conditions in which very
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high concentrations of quencher-labeled ligands can be included in the imaging buffer without significantly

increasing the fluorescence background. This is because a quencher that is excited by excitation crosstalk

will not fluoresce, thereby minimizing the contribution of excitation crosstalk to the fluorescence background.

Notably, a FRET-based quencher was used to report on the large-scale conformational dynamics of the ribo-

some during translation elongation [249, 250], although this approach was used to free the optical spectrum

and expand the number of fluorophores that could be simultaneously detected, rather than to use FRET-

based quencher-labeled ligands to overcome the concentration barrier. Notably, in our own efforts to utilize

quenchers in order to observe the binding and dissociation of RF1 from near-stop codons, the increased

hydrophobicity of the quenchers BHQ2 and QSY9 relative to more traditional fluorophores, such as Cy3,

induced RF1 aggregation. However, future development of quenchers to include hydrophilic groups such as

sulfonates could help to overcome this limitation.

Photonic developments

A general strategy for increasing the sensitivity of single-molecule fluorescence experiments is to enhance

the fluorescence signal from the molecules of interest. Perhaps the most widely used approach for ac-

complishing this is plasmon-mediated enhancement, which has traditionally been used to enhance opti-

cal spectroscopies (e.g., surface plasmon-enhanced Raman spectroscopy) and, in single-molecule fluores-

cence applications, can be used to decrease illumination volumes and increase fluorescence signals [251].

Nanofabricated plasmonic bowties [252] and plasmonic nanoantennas [253–255] have both been shown to

dramatically increase signal-to-background ratios in single-molecule fluorescence applications. Of particu-

lar importance for single-molecule fluorescence studies of ligand-binding reactions, the ‘antenna-in-a-box’

platform has used plasmon-based enhancement to permit the observation of single-molecule fluorescence

in the presence of micromolar concentrations of fluorophore in the imaging buffer [256]. Unfortunately, few of

these platforms have thus far demonstrated their applicability with smFRET [253] and, while these technolo-

gies show promise, the fact that highly specialized facilities, equipment, and technical skills are required

to nanofabricate the plasmon-producing structures (e.g., the bowties and antennas) onto the surface of

the microfluidic flow-cells that are used in single-molecule fluorescence experiments has thus far hindered

widespread adoption by the community.

Another general strategy for attaining higher signal-to-background ratios in single-molecule fluorescence

studies is to decrease the fluorescence background by reducing the excitation volume. For this purpose,

arrays of nanoapertures – nanoscopic wells that have been fabricated into a thin metallic layer that has been
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deposited onto the surface of a microfluidic flowcell (see Chapter 2) – have proven themselves very use-

ful. Popularized as “zero-mode waveguides” (ZMW), the geometric confinement of light in the nanoaperture

leads to a zeptoliter excitation volume at the very bottom of the nanoaperture. This permits the sensitive

observation of a single, fluorophore-labeled molecule that has been tethered or otherwise localized to the

bottom of the nanoaperture in a background of micromolar concentrations of fluorophore-labeled molecules

in the imaging buffer [257]. Currently, nanoaperture arrays are used in Pacific Biosciences’ next-generation,

single-molecule real-time (SMRT) DNA sequencing technology. There, a single DNA polymerase is teth-

ered to the bottom of each nanoaperture, and a nucleotide-specific, single-molecule fluorescence signal

is observed as the polymerase incorporates each nucleotide into the nascent DNA molecule that is being

synthesized [258].

Unfortunately, in the decade since nanoaperture arrays were first introduced for single-molecule fluo-

rescence applications [257], only a handful of biomolecular systems beyond DNA replication have been

investigated using this technology [107, 250, 259–261]. Notably, studies of all but one of these biomolecu-

lar systems have been investigated in collaboration with Pacific Biosciences and only one of these studies

has used nanoaperture arrays in an smFRET application. As is the case with plasmon-based enhance-

ment technologies, widespread adoption of nanoaperture-array technology has likely been hindered by the

limited availability of the resources required for nanofabrication. In addition, the non-specific adsorption of

biomolecules to the metallic and glass surfaces of the nanoapertures has likely limited their applications.

Non-specific adsorption not only alters working concentrations by sequestering molecules from solution, but

it also compromises single-molecule resolution by non-specifically localizing multiple, fluorophore-labeled

molecules to the surfaces near the bottom of the nanoapertures. In the case of SMRT sequencing via DNA

replication, a very successful polyvinyl phosphonic acid-based, nanoaperture-surface passivation scheme

was developed that minimizes the non-specific adsorption of small, negatively charged nucleotide triphos-

phates to the surface of aluminum-based nanoapertures [262]. Given the negatively charged nature of the

polyvinyl phosphonic acid passivation layer, however, it is likely that this passivation scheme will not be

generally applicable to other biomolecules (e.g., positively charged globular proteins).

As part of this thesis work, an alternative passivation scheme was developed that uses thiol-based self-

assembled monolayers (SAMs) of PEG to robustly passivate gold-based nanoapertures (see Chapter 2)

[224]. Given the widespread success of PEG-based passivation schemes in single-molecule fluorescence

studies, I anticipate that PEG-passivated nanoaperture arrays will provide a more general solution to the

problem of non-specific adsorption of biomolecules to the nanoaperture surfaces and will thereby enable

34



CHAPTER 1. INTRODUCTION

studies of a wide-range of biomolecular systems using nanoaperture arrays. Perhaps most excitingly, the

use of these gold-based nanoapertures such as the PEG-passivated, gold based nanoapertures also allows

the surface-plasmon of the gold to be used for plasmon-based enhancement of the fluorescence signals at

the bottom of the nanoapertures, an approach that has been recently demonstrated [263–265], and that

could potentially facilitate the use of nanoaperture arrays for smFRET applications.

Computational developments

In order to discuss recent improvements in the analysis of smFRET data, it is useful to begin with a brief, gen-

eral review of how kinetic information is obtained from single-molecule experiments and, more specifically,

smFRET experiments. Traditional treatments of chemical kinetics are insufficient to describe systems where

fluctuations from the average behavior are important, such as systems with small numbers of molecules,

such as is the case for single-molecules [266]. Instead, alternative approaches that treat molecules as in-

dependent, stochastic entities are used [267]. To interpret the kinetic data yielded by a single molecule

from a smFRET experiment, a framework is used which describes the distribution of times that the molecule

spends dwelling in a particular state [268]. To extract these lengths of the dwell-times from single-molecule

EFRET versus time trajectories, methods such as hidden Markov models (HMM) [269], change point analysis

or wavelet analysis [270], which detect the time points at which switching between distinct EFRET states oc-

curs. It is worth noting that a complete theoretical description has been developed that allows high-resolution

information about the conformational dynamics of a biomolecular system to be extracted from the joint dis-

tribution of EFRET values and fluorescence lifetimes determined from experimentally observed photon bursts

[271, 272]. Although the joint distribution provides more information regarding the conformational dynamics

of the biomolecular system than the distribution of EFRET values does alone, this approach is not generally

applicable in traditional, wide-field, TIRF microscopy-based smFRET experiments, as these experiments do

not monitor photon arrival times.

One of the most popular approaches to analyzing single-molecule EFRET trajectories has been the ap-

plication of HMMs, which yield the probabilities of transitioning between states as well the ‘idealized’ path

between states. HMMs were first used in biology for analyzing conductance time series in single channel

ion recordings [273], and first suggested for use with smFRET data in 2003 [269]. Since then, a number

of software packages for HMM analysis of smFRET data have been published [274–280]. Although HMM

analysis of smFRET data can provide the desired information necessary to develop mechanistic models

of biomolecular function, HMM analysis approaches and software packages that use maximum likelihood
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methods to estimate HMM parameters (e.g., HaMMy [275], QuB [274], and SMART [278]) can result in

overfitting of the smFRET data (i.e., overestimating the number of states that can be confidently ascribed

to the data), as the value of the likelihood function that is being maximized will always increase with the

number of states included in the analysis. This overfitting problem has been recently addressed by HMM

analysis approaches and software packages that use Bayesian inference methods to estimate HMMs (e.g.,

vbFRET [276, 277] and ebFRET [279, 280]). Despite the success of HMMs for the analysis of smFRET data,

however, it is important to note that HMMs are ill-suited for modeling EFRET versus time trajectories contain-

ing rapid transitions, such as those into and out of energetically unstable, transiently sampled states (e.g.,

weakly interacting biomolecule-ligand complexes with rapid rates of association and dissociation) and are

inappropriate for modeling non-Markovian data (e.g., data exhibiting ‘dynamic disorder’ where the probability

of a transition changes with time) [276, 277, 279, 280].

Perhaps the most promising computational approaches for analyzing smFRET data from weakly inter-

acting, transient biomolecule-ligand complexes employ Bayesian inference, and in doing so they are able

to ‘learn’ from the data [281]. Bayesian inference approaches have been used in the analysis of smFRET

data by removing noise from EFRET versus time trajectories [282] and by analyzing photon bursts [283, 284].

Perhaps the most powerful applications, however, are those that use Bayesian inference methods to esti-

mate the HMM parameters that are used to analyze EFRET versus time trajectories [276, 277, 279, 280].

The vbFRET software package, for example, uses Bayesian inference on an HMM to select the number of

states and rates of transitions between states (i.e., the kinetic model) that best describes each individual

EFRET trajectory. This minimizes the overfitting problem faced by approaches and software packages that

use maximum likelihood methods to estimate HMMs and subsequently rely on the user, or on an ad hoc

metric, such as the Bayesian- or Akaike information criteria, in order to select the kinetic model that best de-

scribes the data [276, 281]. Moreover, vbFRET shows promise at detecting transiently sampled intermediate

states that maximum likelihood approaches for estimating HMMs might otherwise miss, an extremely useful

ability when studying weakly interacting, transient biomolecule-ligand complexes using smFRET [276].

One of the major limitations of most HMM-based approaches for smFRET data analysis is that these

approaches provide a separate and unique kinetic model for each individual EFRET trajectory. Ultimately, it is

left up to the user to determine which single, consensus kinetic model best describes the entire population

of kinetic models provided by the HMM-based analysis of the ensemble of EFRET versus time trajectories

that are typically obtained from a single smFRET experiment. Recently, van de Meent and coworkers have

addressed this problem by expanding on the vbFRET framework and creating ebFRET. ebFRET uses a
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Bayesian inference method to estimate HMM parameters that is analogous to the one that vbFRET uses,

but does so on entire populations of EFRET versus time trajectories rather than on individual EFRET trajectories,

thereby using all of the EFRET versus time trajectories to learn the single, consensus kinetic model that best

describes all of the available data [279, 280]. Because it uses all of the EFRET versus time trajectories,

ebFRET has an enhanced and statistically robust ability to detect rarely and transiently sampled states that

might appear in some, but not all, of the EFRET versus time trajectories associated with a single smFRET

experiment. In addition, ebFRET can distinguish between states that have the same EFRET but differ in their

lifetimes. For example, ebFRET has been used to distinguish between two structurally similar conformations

of the ribosome that yield the same EFRET , but that differ in the lifetime of that state due to the presence or

absence of a EF-G [280] – a development that dramatically extends the resolution of smFRET experiments.

One of the major challenges for HMM analyses of data collected from smFRET studies of weakly interact-

ing, transient biomolecule-ligand complexes is that the encounter complexes and many of the intermediate

states that are sampled are simply too energetically unstable, and too transiently sampled to be reliably mod-

eled with a HMM. This is only likely to become more challenging as ever more sensitive, and higher time

resolution single-molecule biophysical techniques are developed that increasingly render the most weakly

interacting and transient biomolecule-ligand complexes accessible to study. To address this limitation, as

part of this thesis work, a novel non-HMM-based Bayesian inference approach was developed which allows

for temporal super-resolution beyond the acquisition rate of a detector (i.e., an EMCCD for smFRET). This

approach is called Bayesian Inference for the Analysis of Sub-temporal-resolution Data (BIASD), and it is

able to learn both the EFRET values and rates of transitions into and out of transiently sampled states (e.g.,

the rates of ligand association and dissociation from a biomolecule) even when the rates of these transitions

are faster than the experimental time resolution (see Chapter 4). This method should therefore prove ex-

tremely useful in ongoing efforts to study weakly interacting, transient biomolecule-ligand complexes using

smFRET.

1.6 Dissertation Overview and Motivation

Like other large molecular machines [13], the ribosome must harness random fluctuations induced by ther-

mal energy in order to perform work relevant to cellular survival [21]. Under these conditions, it seems that

the ribosome has evolved to exploit naturally occurring dynamics inherent to its architecture, as well as to

induce cooperative conformational changes, in order to maximize the efficiency of translation in the cellular
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environment [2, 21, 22, 118]. In this thesis, I work towards an understanding of how molecular interactions

can be utilized to exploit such conformational dynamics during translation in order to maintain accurate pro-

tein synthesis (Section 1.1.1). In order to study these molecular interactions and conformational dynamics of

the translational machinery, I primarily utilized smFRET since this approach is well-suited to studying the low

affinity ligand binding reactions and transient conformational changes that are associated with non-cognate

interactions (Section 1.5).

However, the transient nature of extremely low affinity interactions, such as RF1 interacting with a near-

stop codon in the A-site, makes them difficult to study with smFRET TIRF microscopy. Therefore, part of this

thesis work is devoted to developing smFRET methods to access the regimes where these interactions can

be probed by smFRET. In Chapter 2, the development of a novel, robustly-passivated, gold-based nanoaper-

ture array technology is discussed, which increases that allowed fluorophore-labeled ligand concentrations

in solution for smFRET experiments by at least two orders of magnitude – breaking the concentration bar-

rier. However, often such high concentrations of ligand in solution results in ligand binding reactions with

dynamics that are too fast and/or transient to accurately observe. Therefore, in Chapter 3, the precision of

quantifying such kinetics within the context of rare and/or transient events in EFRET versus time trajectories

is considered. Additionally, the accuracy of, and possible correction schemes for, calculating rate constants

given the resulting missing ligand-binding events is investigated. Finally, I also investigate what occurs when

the kinetic events are too fast to observe at all in an EFRET versus time trajectory.

In order to address these shortcomings, I have developed a technique that achieves temporal super-

resolution in smFRET experiments by learning the transition rate constants and EFRET states from anEFRET ver-

sus time trajectory using a Bayesian inference based approach called BIASD (Chapter 4). This method can

accurately, and precisely obtain rate constants, which are several orders of magnitude faster than the ac-

quisition rate of the detector. Furthermore, I show that this approach can be extended to account for the

heterogeneities present in an experimental ensemble of single-molecules, and therefore learn those rate

constants and EFRET states for the various sub-populations present, in addition to determining the number of

sub-populations in the sample, all in a united manner (Chapter 4). Finally, I computationally investigate how

perturbations to conformational dynamics, which cannot be observed using smFRET, might allosterically

contribute to regulating biomolecular interactions through the analysis of the coevolution of residues within

RF1, as well as by applying network analysis to molecular dynamics simulations (Chapter 5). The develop-

ment of these methods described above enabled several different studies of the regulation of translational

processes through biomolecular interactions.
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During the pretranslocation step of translation elongation, the ribosome uses thermal fluctuations to break

and accurately reform an extensive number of non-covalent interactions in order to transition between GS1

and GS2 in a dynamic equilibrium. In Chapter 3, I investigate the presence of unstable intermediates in the

PRE GS1 −⇀↽− GS2 dynamic equilibrium by uniting smFRET measurements of PRE-A complexes with cryo-

electron microscopy structures of analogous PRE-A complexes. In doing so, the dynamics of transient on-

pathway intermediates that might be responsible for mediating the large scale conformational changes that

the ribosome rectifies to performwork are explored. These dynamics, much like themultistep binding kinetics

of an encounter complex, could act as points of regulation for nature to tune the efficiency of translation.

Along these lines, in Chapter 4, I investigate the energetic contributions that various tRNA structural elements

make to the GS1 −⇀↽− GS2 energy landscape, which determines the energy differences and transition state

energy barriers of the PRE complex, by using temperature-dependent smFRET studies of PRE complexes.

Finally, during translation termination, class I release factors, such as RF1, must efficiently and accurately

discriminate between stop-codons, and near-stop or sense codons in the A-site of the ribosome before

catalyzing hydrolysis of the nascent polypeptide chain. In Chapter 5, I investigate the contribution that

the conformational dynamics of RF1 and the ribosome make to modulating the RF1 binding affinity, and

codon discrimination ability during translation termination. Together, these studies promote the view that

the conformational dynamics of the translational machinery are modulated in order to regulate the overall

process of protein synthesis.
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Chapter 2

Defeating the Concentration Barrier∗

2.1 Introduction

Nature often exploits weak intermolecular interactions to permit the reversible assembly of macromolecular

complexes, achieve high binding specificities, and facilitate functionally important biomolecular dynamics

[1]. Although, in principle, single-molecule fluorescence (smF) microscopies provide powerful tools for dis-

secting the mechanisms of the fundamentally important biological processes that involve weakly interacting

target and ligand biomolecules [2], in practice, these investigations remain challenging. This is because the

observation of these weak intermolecular interactions on a timescale that is experimentally accessible to con-

ventional smF microscopies requires prohibitively high background concentrations of ligand biomolecules in

solution – a condition that results in high background noise and, consequently, compromises the quality of

smF data [3].

Many strategies have been devised to reduce the noise arising from high background concentrations

of ligand biomolecules in smF microscopy experiments. Notably, strategies that specifically activate fluo-

rophores of interest (e.g., fluorescence resonance energy transfer (FRET) [4], photoactivatable fluorophores

[5, 6], and photogenic fluorophores [7]) or confine the excitation field (e.g., total internal reflection fluores-

cence (TIRF) microscopy [8], and confocal microscopy [9]) have been used to selectively excite only those

ligand biomolecules that are bound to a target biomolecule. Perhaps the most effective strategy described to

date is the use of metal-based, sub-wavelength nanoapertures, often called zero-mode waveguides (ZMWs),

to generate a confined excitation field near the silica bottom of a nanoaperture structure, thereby selectively

exciting only those ligand biomolecules that are bound to a target biomolecule that is localized within the

∗ Adapted with permission from Kinz-Thompson, C.D., Palma, M., Pulukkunat, D.K., Chenet, D., Hone, J., Wind, S.J., Gonzalez,
Jr., R.L. Robustly Passivated, Gold Nanoaperture Arrays for Single-Molecule Fluorescence Microscopy ACS Nano 2013 7(9),
8158-8166. Copyright 2013 American Chemical Society.
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confined excitation volume [3]. While nanoaperture fluorescence microscopy is currently the only optical

confinement-based microscopy that permits smF measurements to be made at physiologically-relevant,

µM background concentrations of ligand biomolecules (Fig. 2.1), the non-specific adsorption of these ligand

biomolecules to the metallic and silica nanoaperture surfaces often compromises the signal-to-background

ratio (SBR) of the smF data. In order to overcome this problem, an orthogonal surface chemistry process was

developed to selectively passivate the metallic cladding and silica bottoms of nanoapertures. Unfortunately,

this process is quite limited, as it uses negatively charged poly(vinyl) phosphonic acid (PVPA) to minimize

the non-specific adsorption of negatively charged, fluorophore-labeled deoxynucleotides for single-molecule

DNA sequencing applications [10], and it is not generally applicable to other biomolecular systems. The lack

of significant progress in the development of more generalizable surface passivation chemistries has thus far

restricted the use of nanoaperture fluorescence microscopy to only a handful of biological systems [11–13]

over the decade since nanoaperture fluorescence microscopy of biological systems was first introduced [3].
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Figure 2.1: Diagram of concentration ranges accessible by various microscopy techniques. Red lines represent the upper limit of
the background concentration of ligand biomolecules that can be employed in smF experiments using epi-fluorescence microscopy
(Epi), TIRF microscopy (TIRF), and nanoaperture fluorescence microscopy (Nano). The microscope schematics connected to each
red line provide molecular-level diagrams corresponding to each technique (upper panel). The histogram shows the distribution of
Michaelis constants (KM), a characterization of the interactions between enzymes and their corresponding substrates, of all eukaryotic
enzymes in the BRENDA enzyme database [14]. This distribution is analogous to the distribution of background concentrations of
ligand biomolecules required to observe interactions with a target biomolecule on an experimentally accessible timescale using smF
microscopies (lower panel).

Here, we report a cost-effective and widely accessible method for the fabrication and selective functional-
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ization of microfluidic devices containing gold nanoaperture arrays for smF microscopy investigations. A key

advantage of our approach is the robust passivation of the nanoaperture surfaces against the non-specific

adsorption of biomolecules. For the gold cladding, this is provided by the formation of self-assembled mono-

layers (SAMs) on the gold surface using methoxy-terminated, thiol-derivatized PEG. SAMs have traditionally

been employed to mitigate non-specific adsorption, and expansively ordered, thiolate SAMs readily form on

gold surfaces [15, 16]. Notably, SAMs with terminal PEG blocks have been shown to provide particularly

non-specific adsorption-resistant, biocompatible backgrounds [16–18], as PEG chains are extensively hy-

drated, and the non-specific adsorption of biomolecules induces enthalpically unfavorable desolvation and

entropic penalties from compression of a monolayer [19]. By combining this approach for passivating the

gold cladding with a fully orthogonal approach for functionalizing the silica bottom of the nanoapertures using

a binary mixture of methoxy- and biotin-terminated, silane-derivatized PEG, we have developed a scheme

that enables specific tethering of biotinylated target biomolecules to the silica bottom of the nanoapertures

while robustly blocking the non-specific adsorption of ligand biomolecules to both the gold cladding and

the silica bottom of the nanoapertures. As a proof-of-principle, we demonstrate that the time-resolved flu-

orescence signals from an individual biotinylated, surface-tethered, FRET donor- and acceptor-fluorophore

labeled protein, bacterial peptide chain release factor 1 (RF1)–a protein that has never been shown to be

compatible with PVPA-passivated aluminum-based nanoapertures–can be easily monitored in the presence

of more than 1 µM background concentrations of FRET acceptor-labeled RF1 [20] without detectable dete-

rioration of the SBR from excitation cross-talk.

2.2 Experimental Methods

Nanoaperture Array Fabrication. Borosilicate coverslips (No. 1.5, VWR) were degreased in piranha

solution (3:1 H2SO4:30%H2O2) for 15min, rinsed withMilli-Q ultrapure water, sonicated for 15min in ethanol,

and then sonicated for 15min in Milli-Q ultrapure water. Degreased coverslips were exposed to anO2 plasma

for 2 minutes, and, immediately thereafter, a thin layer of Ma-N 2403 (Micro Resist Technology GmbH),

was deposited with a spin-coater. Coverslip substrates were then prebaked at 90 °C for 1 minute. Next,

2.5% poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) (PEDOT:PSS) (Sigma-Aldrich) was filtered

through a 0.2 µm Acrodisc syringe filter (VWR), deposited with a spin-coater as a conductive layer, and then

prebaked at 90 °C for 5 minutes. Arrays of circles were patterned on the substrate using an FEI Sirion SEM

with a 30 kV electron beam adapted with the Nanometer Pattern Generation System (JC Nabity Lithography
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Systems). Patterns were developed by immersion in 8.74 M acetic acid for 5 minutes, followed by mild

agitation in Milli-Q ultrapure water and mild agitation in ethanol. The emergent, ∼500 nm cylindrical columns

were metalized with ∼100 nm of gold (Kurt J. Lesker, Co.) with a 50 Å thick, optically transparent, titanium

(Kurt J. Lesker, Co.) adhesion layer using electron beam deposition with an Angstrom EvoVac Deposition

System. Liftoff was performed by sonication for 2 minutes in 1M KOH, yielding nanoapertures in the relief

of the columns. Nanoapertures were characterized with an Agilent 8500 FE-SEM and a Digital Instruments

AFM, and analyzed with ImageJ [21].

Nanoaperture Functionalization. Nanofabricated substrates were cleaned with 1.5 hour-aged piranha

solution (3:1 H2SO4:30% H2O2) and an O2 plasma. Substrates were then incubated for 12 hours in 1 mM

mPEG-SH (MW = 350 g mol-1 ) (Nanocs Inc.)in anhydrous ethanol (Sigma), and then rinsed with ethanol

and dried with N2. Substrates were then silanized for 24 hours in 100 µM solutions of biotin-PEG-Si (MW =

2000 g mol-1 ) and mPEG-Si (MW = 3400 g mol-1 ) (Laysan Bio Inc.) in anhydrous toluene (Sigma) with 10

mM glacial acetic acid (Sigma), rinsed thoroughly with ethanol, Milli-Q ultrapure water, and isopropyl alcohol,

and then dried with N2.

Recombinant Gene Construction. The Escherichia coli (E. coli) prfA gene encoding wildtype polypep-

tide chain termination factor 1 (RF1) was previously cloned into the pPROEX-HTb expression vector (Life

Technologies, Inc.) downstream of an N-terminal hexa-histidine affinity purification tag and a Tev protease

cleavage site; additionally, all native cysteines were removed and a single cysteine was introduced using at

amino-acid position 167 with a serine-to-cysteine mutation (RF1S167C) using site-directed mutagenesis [20].

Starting with this RF1S167C construct, an N-terminal enzymatic biotinylation tag (GLNDIFEAQKIEWHE) was

subcloned downstream of the Tev protease cleavage site, and site-directed mutagenesis was used to intro-

duce a glutamic acid-to-cysteine mutation at amino-acid position 256 (biotag-RF1S167C,E256C).

Protein Expression. RF1 proteins were overexpressed in E. coli cells, purified using affinity chromatog-

raphy, Tev protease treated, and purified away from the cleaved hexa-histidine tags and Tev protease using

previously published protocols [20]. Briefly, electro-competent BL21(DE3) E. coli cells cotransfected with

pPROEX-HTb expression vectors carrying either RF1S167C or biotag-RF1S167C,E256C, and pET-26b(+) ex-

pression vectors carrying the gene prmC–a methyltransferase that modifies RF1–were grown under ampi-

cillin and kanamycin selection, and RF1 protein overexpression was induced by addition of 1 mM isopropyl

β-D-1-thiogalactopyranoside. Cells were lysed with a French Press, and RF1 proteins were purified using
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affinity chromatography with a Ni-NTA agarose bead column. Purified RF1 proteins were subsequently in-

cubated with hexa-histidine-tagged Tev protease overnight, and the proteolyzed RF1 proteins were purified

from the cleaved hexa-histidine tags and the hexa-histidine-tagged Tev protease using a second passage

through a Ni-NTA agarose bead column. biotag-RF1S167C,E256C was biotinylated (bio-RF1S167C,E256C) using

recombinant E. coli BirA biotin-ligase (plasmid obtained from AddGene) that was overexpressed, purified,

and used following a previously published protocol [22].

Protein Labeling. Cysteine 167 in RF1S167C was reduced by incubation with 1 mM tris (2-carboxyethyl)

phosphine hydrochloride at room temperature and labeled by reaction with 15x molar excess of maleimide-

derivatized Cy5 (G.E. Lifesciences) using a previously published protocol [20]. bio-RF1S167C,E256C was

reduced and labeled following a similar protocol, but using equivalent concentrations of both maleimide-

derivatized Cy3 and Cy5. Labeled RF1 proteins were purified from unreacted dyes using size-exclusion

column chromatography with a HiLoad 16/600 Superdex 75 pg chromatography column (GE Lifesciences),

and were subsequently purified from unlabeled RF1 proteins using hydrophobic interaction column chro-

matography with a TSKgel Phenyl-5PW column (Tosoh Biosciences) using previously published protocols

[20]. The purification yielded pure, 100% Cy5-labeled RF1S167C (RF1Cy5) and pure, 100%, 1:1 stoichiomet-

rically Cy3- and Cy5-labeled bio-RF1S167C,E256C (bio-RF1Cy3,Cy5).

Fluorescence Microscope. Nanoaperture arrays were illuminated by epi-fluorescence through a Nikon,

water-immersion 60x NA=1.2 PlanApo objective using a 50 mW, 532 nm diode-pumped solid-state laser

(CrystaLaser) through a 552 nm, single-edge dichroic beamsplitter (Semrock) and a downstream 533 nm

(FWHM=17 nm) notch filter (Thorlabs) using a Nikon Ti-U inverted microscope. To increase incident illu-

mination intensity, only a quarter of the field of view was illuminated; this area contained ∼1000 to 4500

nanoapertures depending on the spacing employed between the nanoapertures. Fluorescence emissions

were collected through the objective, and imaged through a Photometrics DV2 wavelength splitter contain-

ing a 630dcxr dichroic beamsplitter, and HQ575/40m and HQ680/50m emission filters (for Cy3 and Cy5,

respectively) onto a 512 x 512 pixel Andor iXon3 897E electron-multiplying charge-coupled-device camera.

Movies were recorded at a 10 Hz acquisition rate without binning using Metamorph software (Molecular

Devices).

Microscopy Buffers. Tris-polymix buffer (50 mM Tris-acetate (pH25 °C = 7.0), 100 mM KCl, 5 mM ammo-

nium acetate, 500 µM calcium acetate, 100 µM EDTA, 10 mM 2-mercaptoethanol, 5 mM putrescine, 1 mM
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spermidine, 15 mM magnesium acetate, and 1% (w/v) β-D-glucose). Imaging buffer (Tris-polymix buffer

supplemented with 300 mg mL−−1 glucose oxidase (Sigma-Aldrich), 40 mg mL-1 catalase (Sigma-Aldrich),

1 mM 1,3,5,7-cyclooctatetraene (Sigma-Aldrich), and 1 mM p-nitrobenzyl alcohol (Fluka))

Nanoaperture Fluorescence Microscopy. Flow cells were prepared for imaging by incubation with ultra-

pure bovine serum albumin (Ambion) and a 50-nucleotide oligomer of random-sequence duplex DNA (IDT),

and, when specified, a subsequent incubation with 1 µM streptavidin (Invitrogen) using a previously pub-

lished protocol [20]. bio-RF1Cy3,Cy5 was diluted to the specified concentration in Tris-polymix buffer, loaded

into the flow cells, incubated for 5 min at room temperature, and untethered bio-RF1Cy3,Cy5 was removed

by washing the flow cells with 200 µL of Tris-polymix buffer. Immediately prior to imaging, flow cells were

washed and filled with Imaging buffer, and, when specified, various concentrations of RF1Cy5.

Data Processing. All analysis was performed with Python using NumPy and SciPy [23], Matplotlib [24],

and the Python Imaging Library. Individual, Cy3 or Cy5 intensity versus time trajectories were constructed by

selecting those pixels on the Cy3 half of the initial frame with intensities exceeding three standard deviations

of the mean pixel intensity, clustering neighboring pixels into regions, calculating the center of mass (COM)

of each region, and mapping those COM coordinates onto the Cy5 half of the frame when applicable. The

intensity of a region in each frame of a movie was then obtained by summing the four pixels neighboring the

region COM, linearly scaled by distance to the COM, such that the total pixel area employed in the sum was

one pixel. The x- and y-coordinates for each region COM were drift-corrected in each frame of each movie

by the drift of the COM of the entire illumination profile in that movie.

2.3 Nanofabrication of Sub-wavelength Gold Nanoapertures

Gold nanoaperture arrays were fabricated on borosilicate coverslips using an electron-beam lithography

process in which nanoapertures are formed in the relief of metal-embedded pillars of cross-linked polymer

(Fig. 2.2). During the development of the electron-beam lithography steps of this process, we found that

the poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) conductive layer employed (applied to theMa-N

2403 negative-tone resist in order to prevent charging during electron beam writing) failed to be completely

removed by water washing following electron-beam writing. It is possible that this layer, which has a pH of

1.5 - 2.5 at room temperature, crosslinks to the Ma-N 2403 negative-tone resist layer, which is composed of

a phenolic resin with a bisazide photoactive compound. Therefore, instead of washing with water, treatment
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with acetic acid, which would be expected to reverse the crosslinking equilibrium, was used to produce well-

defined pillars. Typically, this process yields ∼80% of the intended nanoapertures, with poor pillar adhesion

prior to metallization or incomplete lift-off being the most common causes of defects. Despite these issues,

this process yields nanoapertures with an average diameter of 177 nm, with a relatively narrow diameter

distribution (Fig. 2.2), and a spacing of 1 - 5 µm . Within these dimensions, gold nanoapertures exhibit

both the strong electromagnetic confinement responsible for the reduction in excitation volume as well as the

gold surface plasmon-mediated fluorescence enhancement that is characteristic of smaller diameter gold

nanoapertures [25, 26].
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Figure 2.2: A schematic diagram of the nanoaperture fabrication process. Negative-tone electron-beam lithography crosslinks patterns
in the negative resist on a silica coverslip; excess electrons are removed to a ground via a conductive layer. Pillars of patterned, cross-
linked resist remain following substrate exposure to aqueous developer. The top panel shows a wide-field, optical microscope image of
a pre-metallization pillar array. An optically transparent, adhesion layer of titanium is then deposited with electron-beam evaporation.
Subsequently, a layer of gold is deposited with electron-beam evaporation, such that the cross-linked resist remains solvent exposed.
Nanoapertures are formed in the relief of the pillars following solvent-based liftoff. The middle panel shows an atomic force microscope
image cross-section of a typical nanoaperture; the red line is a boxcar function fit with a 115 nm step length. The bottom panel shows a
scanning electron microscope image of a nanoaperture array, post-fabrication; the average diameter of the nanoapertures in this array
is 177 ± 16 nm (1σ, n = 499).

2.4 Orthogonal Functionalization and Passivation of Gold

Nanoapertures

Following nanofabrication, the gold nanoaperture arrays were passivated with a SAM formed using methoxy-

terminated, thiol-derivatized PEG (mPEG-SH) and a SAM formed using a binarymixture of methoxy-terminated,
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triethoxy-functionalized, silane-derivatized PEG (mPEG-Si) and biotin-terminated, triethoxy-functionalized,

silane-derivatized PEG (biotin-PEG-Si) to create biomolecule adsorption-resistant backgrounds on the gold

cladding and the silica nanoaperture bottoms, respectively (Fig. 2.3). As silanes have a propensity to co-

valently bond to gold [27], thiolation of the gold cladding was performed prior to silanization of the silica

nanoaperture bottoms to yield more homogeneously passivated nanoapertures. Following extensive sub-

strate cleaning, the passivation process begins with a 12 hour incubation in a solution prepared by dissolving

mPEG-SH in anhydrous ethanol to a final PEG concentration of 1 mM – thereby ensuring sufficient time for

SAM formation [16]. The substrates were then silanized for 24 hours in a solution of 100 µM biotin-PEG-Si

and mPEG-Si in anhydrous toluene at the specified molar ratio of biotin-PEG-Si to mPEG-Si.
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Figure 2.3: Molecular-level schematic diagram of thiol and silane passivated surfaces. The gold surfaces of the nanoaperture arrays
were passivated with a SAM formed using mPEG-SH, and the borosilicate surfaces of the nanoaperture arrays were passivated with a
SAM formed using a binary mixture of biotin-PEG-Si and mPEG-Si.

2.5 Tunable, Chemical Control Over Nanoaperture Occupation

Microfluidic devices were then assembled bymounting substrates comprising fully passivated, gold nanoaper-

ture arrays onto quartz microscope slides that had been drilled to form sets of inlet/outlet ports, cleaned and

passivated with mPEG-Si using a previously published procedure [28], and divided into multiple, separate

reaction flow cells using adhesive spacers (Fig. 2.4) [29]. Once the substrates had been mounted onto the

adhesive spacers, epoxy was used to seal the sides of the flow cells. This multiple flow cell geometry allows
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for several independent experiments and controls to be performed in the same microfluidic device, thereby

eliminating device fabrication and processing as a source of experimental variation.

mPEG-Si passivated
quartz slide

Passivated 
nanoapertures 

on coverslip

Double-sided 
tape spacers

Epoxy

Figure 2.4: Schematic diagram of microfluidic device construction. Thin, adhesive spacers are carefully placed between the inlet/outlet
ports of an mPEG-Si passivated, quartz microscope slide. The borosilicate coverslip substrate containing the passivated nanoaperture
arrays is placed on the adhesive spacers, and aligned such that the nanoaperture arrays are positioned between the spacers, facing
the interior of the soon-to-be flow cells. This alignment is facilitated by placing the slide on an illuminated surface, and then using the
diffraction from the nanoaperture arrays as a guide. Once the coverslip is affixed to the slide, the flow cells are sealed with fast-drying
epoxy. Superfluous spacer and epoxy can be removed from the sides of the microfluidic device with a razor blade once the epoxy is
cured.

2.5.1 Presence of Biotin-streptavidin-biotin Bridge is Obligatory for

Nanoaperture Occupation

To assess the robustness of our gold nanoaperture passivation scheme, we performed several nanoaper-

ture fluorescence microscopy experiments using a biotinylated, Cy3 FRET donor- and Cy5 FRET acceptor-

labeled, double-cysteine mutant of the E. coli RF1 (bio-RF1Cy3,Cy5). The ability to specifically localize a

biotinylated target biomolecule from solution to the silica bottom of a nanoaperture is dependent upon the for-

mation of a biotin-streptavidin-biotin bridge between the biotin-PEG-Si on the silica bottom of the nanoaper-

ture, streptavidin, and the biotinylated target biomolecule – in this case, bio-RF1Cy3,Cy5. After incubation of a

flow cell with 1 µM streptavidin for 5 minutes at room temperature, washing with Tris-polymix buffer, incuba-

tion with 1 pM bio-RF1Cy3,Cy5 for 5 minutes at room temperature, and washing with Imaging buffer, wide-field

fluorescence imaging of the flow cell yielded fluorescence emission from bio-RF1Cy3,Cy5 in a well-defined

pattern corresponding to the nanoaperture array (Fig. 2.5A, top panel). When performing the same exper-

iment in a neighboring flow cell, but in the absence of streptavidin, no fluorescence emission was detected

from the nanoaperture array. Even imaging of regions of bulk silica just proximal to the nanoaperture array

revealed only minimal fluorescence emission from spatially localized bio-RF1Cy3,Cy5, which we attributed to

the non-specific adsorption of bio-RF1Cy3,Cy5 to defects in the borosilicate surface of the coverslip substrate
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(Fig. 2.5A, bottom panel). Thus, the passivating SAMs resisted the non-specific adsorption of bio-RF1Cy3,Cy5

to both the gold cladding and the silica bottoms of the gold nanoaperture arrays, while the presence of strep-

tavidin at the bottom of the nanoaperture arrays allowed the specific localization of bio-RF1Cy3,Cy5 to the

nanoaperture arrays. In addition to demonstrating the robustness of our SAM-based passivation scheme,

these results show that the presence of neither the gold cladding nor the mPEG-SH SAMs interfered with

passivation of the silica regions of the substrates with the biotin-PEG-Si and mPEG-Si SAMs.

Bulk SiO2

+ Streptavidin

- Streptavidin

Frequency (10-3 · movie-1)

Cy
3 

In
te

ns
ity

 (a
.u

.)

Biotin:PEG 1:300 1:600

0

200

400

600

800

1000

1200

0 1 2 3 4 5 6 7 8

Triple Occupation

Double Occupation

Single Occupation

Photobleached

1

2

3

A B

Figure 2.5: (A) Streptavidin-dependence of nanoaperture occupation. After incubating bio-RF1Cy3,Cy5 in a flow cell with streptavidin,
Cy3 fluorescence was observed in a pattern corresponding to that of the nanoaperture arrays, demonstrating that bio-RF1Cy3,Cy5 was
specifically localized to the silica bottoms of the nanoapertures (upper panel); the nanofabrication defects described in the text result
in the lack of fluorescence in some of the regions where nanoapertures should be located. After incubating bio-RF1Cy3,Cy5 in a second
flowcell without streptavidin, Cy3 fluorescence was not observed from the nanoaperture array under the same imaging conditions;
moreover, only minimal Cy3 fluorescence emission was observed from regions of bulk silica just proximal to the nanoaperture array
(lower panel). (B) Tunable nanoaperture occupation. Histograms show the distributions of Cy3 fluorescence intensities observed over
100 seconds from nanoapertures in flow cells that had been passivated with a 1:300 or a 1:600 ratio of biotin-PEG-Si:mPEG-Si and then
incubated with both bio-RF1Cy3,Cy5 and streptavidin. Insets show discrete photobleaching events in Cy3 fluorescence intensity versus
time trajectories that contribute to the histogram peaks and correspond to the occupancy of bio-RF1Cy3,Cy5 in individual nanoapertures.

2.5.2 Biotin-PEG:PEG Ratio Modulates Nanopaerture Occupation

We expect that the biotin-PEG-Si that is responsible for localizing streptavidin, and therefore bio-RF1Cy3,Cy5,

to the silica nanoaperture bottoms via a biotin-streptavidin-biotin bridge should be Poisson-distributed through-

out the nanoapertures; thus, whereas individual nanoapertures may contain zero, one, two, three, or more

surface-tethered bio-RF1Cy3,Cy5 molecules, the exact distribution that is observed is dependent upon the

ratio of biotin-PEG-Si to mPEG-Si employed during passivation–the larger the ratio, the greater the proba-
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bility of observing multiple surface-tethered bio-RF1Cy3,Cy5 molecules per nanoaperture. To demonstrate this

tunable control over nanoaperture occupation, we characterized the Cy3 fluorescence emission from single

nanoapertures containing surface-tethered bio-RF1Cy3,Cy5 in flow cells that have been passivated using our

passivation scheme with particular ratios of biotin-PEG-Si to mPEG-Si. Normalized histograms were con-

structed of the intensity of Cy3 fluorescence emitted from individual nanoapertures in flow cells passivated

with 1:600 (n = 173, where n is the number of nanoapertures that were characterized) and 1:300 (n = 195)

biotin-PEG-Si:mPEG-Si that were both incubated with 1 µM streptavidin for 5 minutes at room temperature,

washed with Tris-polymix buffer, incubated with 100 nM bio-RF1Cy3,Cy5 for 5 minutes at room temperature,

and washed with Imaging buffer to remove all unbound bio-RF1Cy3,Cy5 (Fig. 2.5B). As expected, the distri-

butions of the average Cy3 fluorescence intensity per nanoaperture are resolved into discrete peaks that

correspond to discrete numbers of bio-RF1Cy3,Cy5 molecules per nanoaperture. By correlating the number

of individual Cy3 photobleaching events observed in the Cy3 fluorescence intensity versus time trajecto-

ries to the Cy3 fluoresence intensity observed per nanoaperture, we determined the absolute number of

bio-RF1Cy3,Cy5 molecules that corresponded to each peak in the histogram; the peaks in the histogram of

Cy3 intensities correspond to nanoapertures that contain either one, two, or three biotin-streptavidin-biotin-

tethered, fluorescing bio-RF1Cy3,Cy5 molecules (Fig. 2.5B, insets). As expected, doubling the biotin-PEG-

Si:mPEG-Si ratio from 1:600 to 1:300 increases the populations of Cy3 fluorescence intensities correspond-

ing to higher numbers of bio-RF1Cy3,Cy5 molecules per nanoaperture. In addition, control over the distribution

of bio-RF1Cy3,Cy5 molecules per nanoaperture can be achieved by altering the concentrations and incuba-

tion times of streptavidin and bio-RF1Cy3,Cy5. For the nanoaperture arrays of the dimensions used here,

we find that a 1:1000 ratio of biotin-PEG-Si:mPEG-Si with a 5 minute incubation at room temperature in 1

µM streptavidin followed by a 5 minute incubation at room temperature in 10 - 100 pM bio-RF1Cy3,Cy5 yields

a maximal population of nanoapertures that contain a single bio-RF1Cy3,Cy5 molecule. Taken together with

the streptavidin dependence shown in Figure 2.5A, our ability to predictably control the distribution of bio-

RF1Cy3,Cy5 molecules per nanoaperture by altering the ratio of biotin-PEG-Si:mPEG-Si demonstrates that

the tethering of bio-RF1Cy3,Cy5 molecules to the silica nanoaperture bottoms is specifically dependent on the

presence of a biotin-streptavidin-biotin bridge. Moreover, the chemistries employed are general enough to

produce similar results in different nanoaperture geometries (e.g., squares) and with other metallic claddings

that can form thiol SAMs (e.g., silver).
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2.6 Fluorescence Resonance Energy Transfer in Gold

Nanoapertures

High background concentrations of ligand biomolecules and/or the non-specific adsorption of ligand biomolecules

cause deterioration of the SBR in FRET-based smF experiments used to characterize weak biomolecu-

lar interactions–a limitation of FRET-based smF experiments that we expect our passivated, gold-based

nanoapertures to overcome. In order to simulate the conditions of such an experiment without the usual

complications to the FRET efficiency versus time trajectories that are introduced by the binding and disso-

ciation of FRET acceptor-labeled ligand biomolecules from solution to individual, surface-tethered, FRET

donor-labeled target biomolecules, we performed the FRET-based titration experiment diagrammed in Fig-

ure 2.6A. Briefly, we used a biotin-streptavidin-biotin bridge to specifically tether bio-RF1Cy3,Cy5 to the silica

nanoaperture bottoms of a fully passivated (1:1000 biotin-PEG-Si:mPEG-Si) nanoaperture array and imaged

a single flow cell at successively higher background solution concentrations of a Cy5 FRET acceptor-labeled

variant of RF1 (RF1Cy5). To observe FRET signals arising from individual bio-RF1Cy3,Cy5 molecules teth-

ered to the silica nanoapertures bottoms, the Cy3 and Cy5 fluorescence intensities from individual, single

bio-RF1Cy3,Cy5 occupancy nanoapertures (ICy3 and ICy5, respectively) were converted into FRET efficiency,

EFRET = ICy5/(ICy3+ICy5), which is a ratiometric measure of acceptor-fluorophore fluorescence. Although we

were able to observe FRET signals arising from nanoapertures containing single bio-RF1Cy3,Cy5 molecules,

the resulting EFRET versus time trajectories were characterized by a very low SBR (Fig. 2.6B). It is possible

that this reduction in the SBR of EFRET versus time trajectories is caused by quenching of Cy3 and/or Cy5

that arises from close proximity of these fluorophores to the gold surface, by a red-shift of the fluorescence

emission of Cy5 past our filter bandwidth, or that our bio-RF1Cy3,Cy5 construct exists mostly in a conforma-

tion where Cy3 and Cy5 are too far away from each other so as to undergo appreciable energy transfer–an

unlikely explanation, as we have observed energy transfer between Cy3 and Cy5 in TIRF-based FRET

experiments using this same bio-RF1Cy3,Cy5 construct (Pulukkunat, D.K.; Gonzalez Jr., R.L. unpublished

results).
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Figure 2.6: (A) Schematic diagram of a nanoaperture fluorescencemicroscopy experiment designed to simulate the effect of increasing
background concentrations of a FRET acceptor-labeled ligand biomolecule on a FRET-based nanoaperture fluorescence microscopy
experiment. (B) A typical FRET signal from a single bio-RF1Cy3,Cy5 in a nanoaperture. Cy3 and Cy5 fluorescence intensities versus
time trajectories are plotted on top, and the corresponding EFRET versus time trajectory is plotted below. (C) Distributions of Cy3 SBRs
(calculated as the change in Cy3 fluorescence intensity due to photobleaching divided by the standard deviation of pure background
fluorescence) imaged with 0 nM (n=136), 1 nM (n=137), 10 nM (n=155), 100 nM (n=131), and 1000 nM (n=146) background concen-
trations of RF1Cy5. Representative Cy3 fluorescence intensity versus time trajectories at specific SBRs from the 1000 nM RF1Cy5 data
set are shown below. The inset shows the average SBRs with bootstrapped, 1σ error bars (n=1000).

2.7 Passivated Nanoapertures Maintain Signal-to-Background

Ratio

In order to quantify the ability of our nanoapertures to resist the SBR deterioration caused by high lig-

and biomolecule concentrations in solution and/or non-specific adsorption of ligand biomolecules to the

nanoaperture surfaces, we calculated the SBR distributions of Cy3 fluorescence intensity observed dur-

ing this experiment. As a reference, the SBR of the analogous TIRF microscopy experiment drops pro-

hibitively low with greater than ∼50 nM of RF1Cy5 in solution. After nonlinear least squares fitting a step

function to each Cy3 fluorescence intensity versus time trajectory observed in single bio-RF1Cy3,Cy5 occu-

pancy nanoapertures, we calculated the SBR as the Cy3 fluorescence intensity difference due to photo-

bleaching divided by the standard deviation of pure background fluorescence (measured using the last 50

photobleached timepoints of each Cy3 fluorescence intensity versus time trajectory), and plotted the SBR

distribution of ∼130 - 150 single bio-RF1Cy3,Cy5 molecules per background concentration of RF1Cy5 that

was tested (Fig. 2.6C). We observed an insignificant decrease in the average SBR at the highest back-
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ground concentration of RF1Cy5 we tested (1 µM ), and presumably the fully passivated, gold nanoaperture

arrays reported here would continue to enable detection of single bio-RF1Cy3,Cy5 molecules with adequate

SBR at concentrations of RF1Cy5 much greater than 1 µM . Notably, this robust passivation would also be

particularly effective in fluorescence colocalization-type smF experiments in which fluorophore-labeled lig-

and biomolecules in solution are directly excited by a laser excitation source and are observed to interact

with either unlabeled or differentially fluorophore labeled target biomolecules tethered to the bottoms of the

nanoapertures.

2.8 Conclusion

The significant SBR deterioration caused by the non-specific adsorption of ligand biomolecules onto the

metallic and silica surfaces of nanoaperture arrays, as well as difficulties in the nanofabrication, passivation,

and microscopy of nanoaperture arrays, have been major limiting factors for the widespread adoption of

nanoaperture fluorescence microscopy for smF studies of biological systems. By combining a facile and

effective procedure for fabricating and functionalizing gold nanoaperture arrays, we have generated a mi-

crofluidic device that can enable powerful new smF experiments of weakly interacting biological systems that

were previously impracticable with microscopy techniques such as TIRF. We have demonstrated that our

passivated nanoaperture arrays can be used to probe biological interactions under physiological concen-

trations of ligand biomolecules with a protein of interest, RF1; notably, straightforward extensions of these

experiments enable the structural dynamics of RF1 to be characterized as it weakly interacts with ribosomes

programmed with non-stop messenger RNA codons–previously impracticable smF experiments that will al-

low us to investigate the mechanisms governing the fidelity with which RF1 recognizes stop codons and

terminates protein synthesis. Moreover, the well-documented, robust nature of the non-specific adsorption-

resistance of PEG SAMs [15–18] suggests that the passivation scheme presented here should be resistant

to the non-specific adsorption of many other types of biomolecules. Furthermore, the plasmon-mediated

fluorescence enhancements that are attainable with a variety of gold nanoaperture geometries [25] are fully

compatible with the surface functionalization approaches we present here–a benefit that we will attempt to

exploit in future developments of the nanoaperture array design reported here.
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Chapter 3

Accurately andPrecisely Inferring Single-

Molecule Rate Constants∗

3.1 Introduction

Dynamic single-molecule biophysical techniques provide sequential measurements of a signal originating

from an individual biomolecule that is, or can be turned into, a proxy for the underlying molecular state of

the system. For instance, the fluorescence resonance energy transfer (FRET) efficiency (EFRET ) of an indi-

vidual biomolecule that is measured in a single-molecule FRET (smFRET) experiment is a one-dimensional

measure of the distance between two fluorophore-labeled parts of the system, or the distance between

two microbeads in laser traps during a single-molecule force spectroscopy experiment can be a proxy for

the state of folding of an individual biomolecule that is attached to the microbeads [1]. Using such single-

molecule approaches to investigate biomolecular dynamics avoids the ensemble averaging that can often

obscure biologically relevant, transient, or rare kinetic events in bulk experiments. However, in order to per-

form such experiments, such dynamic single-molecule signals and experimental setups must be sensitive

enough to unambiguously yield a descriptive time-resolved trajectory through the molecular states sampled

during the experiment.

In order to obtain relevant kinetic information about a biomolecular mechanism from such dynamic single-

molecule experiments, the signal versus time trajectories must first be transformed into state versus time

∗ Adapted from Kinz-Thompson, C.D., Bailey, N.A., Gonzalez, Jr., R.L. Accurately and Precisely Inferring Single-Molecule Rate
Constants, In Preparation.
Additionally, adapted with permission from Kinz-Thompson, C.D., Sharma, A.K., Frank, J., Gonzalez, Jr., R.L., Chowdhury, D
Quantitative Connection Between Ensemble Thermodynamics and Single-Molecule Kinetics: A Case Study Using Cryo-EM and
smFRET Investigations of the Ribosome Journal of Physical Chemistry B, 2015, 119(34), 10888-10901. Copyright 2015 American
Chemical Society.
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trajectories. This transformation process is not trivial, as limitations in signal- and temporal-resolution can

easily obscure the relevant molecular states. With sufficient resolution, the molecular states can be de-

termined manually–a scientist can choose the data point where the molecule transitions to a new state.

Unfortunately, this process is subjective, time consuming, and often the data is not sufficiently resolved

for this approach to yield reasonable results. A second, more systematic method involves setting a signal

threshold that denotes a transition between states and indicates a new state once crossed, but this is only

reasonable when a few well-resolved states are present, and is still subjective because the threshold must

be set manually. A third, more rigorous and widely adopted method uses hidden Markov models (HMMs)

to transform inherently noisy signal versus time trajectories into state versus time trajectories by estimating

the underlying ‘hidden’ state responsible for producing the signal during each measurement period in the

signal versus time trajectory [2, 3]. An advantage of using HMMs for this transformation is that they can

manage many states simultaneously, and that methods have been developed to select the correct number

of states present in the trajectory [4–7]. Regardless of whichever of these three, or another, methods is used

to transform a signal versus time trajectory into the corresponding state versus time trajectory, the relevant

kinetic parameters must then be calculated in order to obtain practical kinetic information about the observed

system.

Traditional chemical kinetics approaches to modeling reactions employ phenomenological reaction rate

equations to describe their time evolution [8]. Changes in concentration per unit time are proportional to the

reaction rate constants, and the reaction rate constants can be determined bymeasuring the time-dependent

changes in concentration and fitting reaction rate equations. Unfortunately, these traditional methods do not

account for the stochastic fluctuations that are present in small systems such as in a cell or in the case of a

single-molecule [9]; so, methods like the chemical master equation and the stochastic simulation algorithm

were developed to model the time evolution of a such a reaction [10–15]. These stochastic methods model

the probability of a single molecule reacting in a time period with a probability distribution described by the

stochastic rate constant (as opposed to a reaction rate constant), and this approach allows the kinetics of

individual molecules to be analyzed. While both the reaction rate constant and the stochastic rate constant

can be used to characterize the kinetics of biomolecular systems, errors are introduced in both cases if the

discretized state versus time trajectory to be classified misrepresents the behavior of the molecule(s) in state

space. Fortunately, as we will show, these errors can be accounted for in a statistically rigorous manner.

Herein, we begin by clarifying the basis for several methods to calculate reaction rate constants and

stochastic rate constants from single-molecule state versus time trajectories. Additionally, we introduce
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Bayesian statistics-based approaches to calculating rate constants, which affords a natural method to ac-

count for the precision of the rate constants, given the finite length of the state versus time trajectories

obtained from dynamic single-molecule experiments. Then, after discussing the types of missed events

which result in misrepresentation of the state versus time behavior and therefore introduce misestimations

into these rate constant calculation methods, we introduce methods that can be used to correct for these

missed events.

3.2 Calculating Rate Constants from Single-Molecule Data

In order to calculate relevant kinetic parameters (e.g., rate constants) from state versus time trajectories, it

is helpful to quantify the trajectories in a manner which can be used by the various rate constant calculation

methods. The state versus time trajectories described above are a series of sequential, discretized data-

points, where each datapoint indicates the state occupied by the single-molecule during a measurement

period of length τ ; it is worth noting that this state was inferred from a time-averaged signal collected during

the measurement period. From these sequential datapoints, we can obtain a dwell time list, nij , which is a

list of the number of contiguous frames spent in a state, i, before transitioning to a second state, j. This has

the form: nij = [5, 13, 12, 7, ...]. Additionally, we can construct a counting matrix,M , where its elements,

Mij , represent the number of times that the state versus time trajectories began in state i at measurement

n (i.e., at time t) and ended in state j at measurement n+1 (i.e., at time t+ τ ). M is related to the nij such

that the off-diagonal elements,Mij , are the number of entries in the corresponding nij , and the on-diagonal

elements,Mii, are

Mii =
∑
j 6=i

(
(
∑

nij)−Mij

)
, (3.1)

where
∑
nij is the sum of the entries in nij . Note that

∑
j 6=i

(
∑
nij) =

∑
j

Mij . M may be row normalized,

such that each element in a row (i.e., with the same i) is divided by the sum of that row to yield the transition

matrix, P . The off-diagonal elements of the transition matrix, Pij , give the probability that a single-molecule

in state i has transitioned to state j at the next measurement period. Below, we detail several methods to

explain how the reaction rate constants and stochastic rate constants that characterize kinetic processes

may be obtained from the calculated dwell time list, nij , counting matrix,M , or transition matrix, P .
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3.2.1 Ensemble Relaxtion Analysis

In a chemical system that was initially prepared experimentally to be away from equilibrium, the relaxation of

a concentration, C, to its equilibrium value can be observed by many types of bulk experimental techniques.

With such techniques, the large number of molecules typically present in the ensemble yields well-defined,

ensemble-averaged relaxation behaviors. These time-dependent changes in C as the system relaxes to

equilibrium are then typically described with phenomenological rate equations that are derived from pos-

tulated differential equations[14]. Notably, these rate equations are (i) deterministic in that an initial set of

concentrations determines the subsequent values of the concentrations, and (ii) continuous in that individual

numbers of molecules are not seen to undergo reactions, but rather the reaction occurs in terms of changes

in concentrations. By fitting such experimentally observed relaxations to equilibrium to these phenomeno-

logical rate equations, one can determine the reaction rate constants that characterize the dynamics of the

system [8].

For example, the reaction coordinate of a biological system along which a conformational change, such

as protein folding, occurs. Due to the multiplicity of interactions present in such a complex system, the folding

and unfolding events are can be considered as separate, random, irreversible, and unimolecular reactions

[16, 17]. Thus, the dynamics of these types of biological reactions are often well described phenomenolog-

ically by the integrated first-order rate equation,

C (t) = C (t = 0) · e−k·t, (3.2)

[8]. Flexibility in the description of the underlying dynamics can be obtained by varying the particular math-

ematical model employed (e.g., using a double exponential decay), and can easily be derived from mass

action considerations [18]. Regardless of the particular functional form, it is unfortunately often difficult to

prepare biomolecular systems in a synchronized state from which one can monitor the these relaxations to

equilibrium and then fit the corresponding rate equation. This is easily avoided in single-molecule experi-

ments.

Single-molecule biophysical techniques can monitor the dynamics of an individual molecules as it pro-

gresses over time, and, from such data, particular behaviors of interest can be identified. While many behav-

iors might be occurring simultaneously (though asynchronously) in the bulk ensemble, they can be separated

by at the single-molecule level. By isolating the particular instances of a behavior and then synchronizing
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them such that they occur at the same time, a subsystem composed of only the process of interested can

be created. This process is called “post-synchronization.” The resulting post-synchronized ensemble of

single-molecule data (composed of only the sub-system of interest) can be ensemble averaged, and then

analyzed using the rate equations discussed above. The result is a description of the dynamics for the

isolated behavior chosen to compose the post-synchronized sub-system (i.e., reaction rate constants). To

be more concrete, we will provide an example of this method, which we call ensemble relaxation analysis,

below. Consider an effectively unimolecular reaction of interest in which a transitions occurs from an initial

state, i, to a second state, j. We would first isolate the events of interest from the single-molecule state versus

time trajectories by enumerating the number of consecutive measurements that the single-molecules spent

in state i before transitioning to state j into nij , as described above in Section 3.2. This entries in this list

are then converted into lifetimes, tij , by multiplying each nij by τ . At this point, we perform an ensemble

average and construct a population survival function, Sij(t), which is the fraction of the events of interest

(as measured by tij) that have not undergone the transition from state i to state j by time, t. This can be

thought of as analogous to a measurement of the normalized concentration of state i relaxing to equilibrium

through a transition to state j. Assuming that the lifetimes in state i are exponentially distributed, Sij(t) is then

fit with an integrated rate equation in Equation (3.2) to yield the reaction rate constant, kij , that describes

the rate of transition from state i to state j. It is worth noting that, since Sij(t) is constructed from discrete

measurements of lifetimes in units of measurement periods, fitting it with a continuous function of time is an

approximation. However, this is not necessarily a bad approximation, as Sij(t) is approximately continuous

when (i)nij contains a sufficiently large number of dwell times (more than 100), so that the data more closely

resemble a continuous function, and (ii) the length of the measurement period is significantly shorter than

the average lifetime tij (since lifetimes that are shorter than the measurement period τ would not be seen).

If either condition does not hold, then fitting the data to an continuous function can result in misestimation

of the reaction rate constant.

Interestingly, the population survival function, Sij(t) is closely related to the cumulative distribution func-

tion (CDF); the CDF describes the population that has already transitioned from state i to state j at time t, while

the survival function describes the population that is left to transition from state i to state j. Since, a molecule

can only have transitioned or have not transitioned by some time, conservation of probability imposes that

the CDF = 1 - Sij(t). Therefore, since ensemble relaxation to equilibrium implies a particular the survival

function, it also implies a particular CDF. Similarly, a particular CDF implies a connection to a probability

distribution function (PDF), which is the derivative of the CDF. Onsager’s regression hypothesis [15, 19],
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which connects macroscopic relaxation to equilibrium to the underlying microscopic relaxation processes

involved in the reaction, asserts that we can interpret this PDF as the distribution of times that individual

single-molecules spend on average undergoing the reaction. In other words, the bulk ensemble reaction

rate constants should be related to the average stochastic rate constants of the individual single-molecules.

However, this approach (effectively ‘moment-matching’) requires several assumptions about the ob-

served single-molecule data, including that a sufficient amount was observed to accurately represent the en-

semble average, and that the subpopulations present sample were equilibrated and would not have changed

over time. These assumptions are difficult to confirm. A slightly more reasonable method of obtaining kinetic

parameters for the ensemble is to first obtain stochastic rate constants for each single-molecule, as this yields

information about the subpopulations that are present, instead of treating all the single-molecules equiva-

lently. Unfortunately, such a calculation lacks precision due to the small amounts of information present for

state versus time trajectory from an individual single-molecule.

3.2.2 Dwell-Time Analysis

Rather than calculate the reaction rate constant of an ensemble decaying to equilibrium, a different approach

is to calculate the stochastic rate constants governing the individual molecules of the ensemble. This ap-

proach is more in-line with the motivation behind single-molecule experiments. One method to calculate

stochastic rate constants from single-molecule state versus time trajectories is by analyzing the distribution

of dwell-times (i.e., number of consecutive frames occupied by a single-molecule before it transitions to

another state).

A state versus time trajectory can be thought of as a sequence of discrete measurements that report

on whether a transition has occurred between two measurements (Figure 3.1). These ‘transition trials’ are

reminiscent of a series of repeated Bernoulli trials from probability theory [20], which are events where the

outcome is either a success with probability p, or a failure with probability 1−p. In this analogy, a successful

Bernoulli trial would be when the single-molecule transitions from state i at time t to state j at time t+1;

whereas a Bernoulli trial failure is when, instead, the single-molecule remains in state i at time t+1.

The number of repeated, failed trials before a success (transition) occurs is distributed according to the

geometric distribution (see Appendix B) [20]. Therefore, the probability mass function (PMF) of the number

of measurement periods until a transition occurs in a Markovian state versus time trajectory occurs can be

modeled using the geometric distribution. From the geometric distribution, we expect that the mean number
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Figure 3.1: Schematic of Transition Probability. The black path represent the exact signal versus time trajectory of a simulated single-
molecule. The blue scatter plot shows the discrete and noisy, observed signal versus time data. Alternating white and grey stripes
denote the periods during which the presence of one transition is determined from the datapoints at the beginning and end of the period.
The observed presence or absence of a transition is shown above.

of successive measurements periods in state i, ni, until a transition out of state i occurs is,

〈ni〉 =
1− Pi
Pi

, (3.3)

where, Pi is the probability of a successful transition out of state i to any other state, j. Before proceeding,

we note that the geometric distribution is the negative binomial distribution with r = 1 (Appendix B), and

so this derivation can be recast using the negative binomial distribution. That formulation will be used in

Section 3.3.

Given a particular state versus time trajectory that is Markovian, an estimate of the mean number of

measurement periods before a transition out of state i occurs would then allow the probability of a successful

transition out of state i by solving Equation (3.3). The maximum-likelihood estimate of ni is the total number

of measurement periods observed to be in state i divided by total number of transitions out of state i, or

rather, in terms of the quantities calculated in Section 3.2,

〈n〉 =

∑
j

(
∑
nij)∑

j 6=i
Mij

, (3.4)

where
∑
nij is the sum of all entries in nij , and the Mij are the total number of observed transitions from

79



CHAPTER 3. ACCURATELY AND PRECISELY INFERRING SINGLE-MOLECULE RATE CONSTANTS

state i to state j. Solving Equation 3.3 with Equation 3.4, yields,

Pi =

∑
j 6=i

Mij∑
j 6=i

Mij +
∑
j

(
∑
nij)

. (3.5)

For an uncorrelated, Markovian system, the time lengths that a single-molecule will spend in a particular

state before transitioning to a different state are distributed according the the exponential distribution (c.f.,

Appendix B). For such a Markovian system, the probability of a transition between state i to state j during

the observation period of one measurement in a signal versus time trajectory, Pij , is therefore the integral

of this PDF from t = 0 to τ , the period of the measurement, which is

Pij =

∫ τ

0

kij · e−kij ·t · dt =
(
1− e−kij ·τ

)
. (3.6)

Equation (3.6) implies that a rate constant can be calculated as

kij =
− ln (1− Pij)

τ
, (3.7)

if the transition probability can be quantified. Regardless of the particular state j that is transitioned into, the

distribution of dwell-times in state i is then exponentially distributed with according to a rate constant that is

the sum of all the stochastic rate constant that make up the parallel reaction pathways out of state i. This

relationship yields,

ki =
∑
j

kij =
− ln (1− Pi)

τ
=

− ln

1−

(∑
j 6=i

Mij

)
(∑
j 6=i

Mij

)
+

(∑
j

(
∑
nij)

)


τ
. (3.8)

As a consequence, expect for cases when there is only one state to transition to (e.g., two-state systems),

the stochastic rate constant obtained by considering the dwell times in a particular state will be a sum of

multiple rate constants. Notably, analyzing only those lifetimes which transition from state i to a particular

state j still yields the same sum of the rate constants, and not the associated kij . However, the benefit

of analyzing the distribution of dwell-times is that deviations from Markovian behavior can be observed as

non-exponential behavior, and then quantified.

Interestingly, Equation 3.4 reveals a difficulty in applying this dwell-time distribution analysis method. This
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difficulty is the stipulation of the geometric distribution that requires the state versus time trajectories to have

discrete dwell times that last {0,1,2,...} measurement periods before a transition occurs. Unfortunately, in a

state versus time trajectory, the dwell times of zero measurement periods are never included in the nij lists,

because a dwell time must be at least one measurement period long for it to be associated with a particular

state. The result is an undercounting ofM due to the exclusion of all zero measurement period-long dwell

times, and a subsequent miscalculation of Pi; compounding this undercounting is the fact that, from the

geometric distribution, the highest probability dwell-times are the zero measurement period-long ones. As

a result, the rate constant calculated here by dwell-time distribution analysis is a misestimate, and more

specifically, an underestimate of the true stochastic rate constant. However, this underestimate is easily

accounted for by the process of conditioning the geometric PMF such that only dwell-times that are greater

than zero frames in length are considered.

To account for these unclassified dwell times, we condition the geometric PMF so that it only considers

n > 0, and denote these dwell-time lengths with n? ∈ {1, 2, ...} to maintain clarity. From the law of conditional

probability, we note that

P (n?|p, n > 0) =
P (n|p, n = 0 ∩ n > 0)

P (n|p, n = 0)

P (n?|p) =
p(1− p)n?

1− (1− (1− p)0+1)

P (n?|p) = p(1− p)n
?−1 =

1

1− p
· P (n|p). (3.9)

Therefore, the geometric PMF conditioned upon all dwell-times being greater than zero-measurements is

equivalent to the regular geometric PMF divided by (1 − p). Because p(n?|p) is proportional to p(n|p) in a

manner that does not depend upon n, the expectation values of p(n?|p) are also proportional to those of

p(n|p) in the same manner due to linearity. Therefore,

〈n∗〉 =
1

1− p
〈n〉. (3.10)

Since Equation (3.4) in practice would only include dwell-times where n > 0, it is effectively for n?, not n.

We can then follow the same derivation of Pi above, but substitute the right hand side of Equation (3.10) in
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place of 〈n〉. This yields,

〈n?i 〉 =

∑
j

∑
nij∑

j 6=i
Mij

=
1

1− Pi
· 1− Pi

Pi
(3.11)

Pi =

∑
j 6=i

Mij∑
j

∑
nij

. (3.12)

Interestingly, this is the exact same result for the transition probability Pij as is obtained with the transition

probability expansion analysis described below in Section 3.2.3.

For more insight into this expression, consider that, from the Poisson distribution, the expected value for

the number of transitions out of state i is ki · Ti, where Ti is the total time spent in state i. Then, from the

expected value of 〈ni〉, rather than the observed value of 〈ni〉, we find that

Pi =

∑
j 6=i

Mij∑
j

∑
nij
≈
Ti
∑
j

kij

Ti/τ
=
∑
j

kijτ = kiτ. (3.13)

This expression for Pi is different from that in Equation 3.6. From the Taylor series

ex = 1 +
x1

1!
+
x2

2!
+ ..., (3.14)

we see that Equation 3.13 is the Taylor series expansion of Equation 3.6 truncated after the first-order term.

With this in mind, the method of calculating rate constants using Equation 3.12 as the transition probability

for Equation 3.7 is a first-order expansion of the transition probability. Notably, since this expression is

conditioned upon only the observation of dwell-times that are longer than one frame long, it is insensitive

to the types of missed dwells in state i that are less than one frame long. However, as we will show later in

Section 3.3, it is sensitive to other types of missed events.

Finally, it is worth noting that stochastic rate constants for a particular reaction pathway out of state i, kij ,

82



CHAPTER 3. ACCURATELY AND PRECISELY INFERRING SINGLE-MOLECULE RATE CONSTANTS

can be calculated from ki, by equating the splitting probability, psplit
ij and the observed branching ratios as

psplit
ij =

kij∑
j

kij

Mij∑
j 6=i

Mij
≈ kij

ki

∴ kij =
Mij∑

j 6=i
Mij

· ki. (3.15)

Since we will not discuss this approach in Sec. 3.2.4, we note here that the calculation of kij given above can

be recast with a Bayesian inference approach by utilizing a Dirichlet distribution as the conjugate prior and

a multinomial distribution as the likelihood function. Regardless, while this dwell-time distribution approach

to calculating individual stochastic rate constants is quite effective, and it has the benefit of allowing the

dwell-times to be checked for non-Markovian behavior that would render the calculated rate constants much

less meaningful, there are more straightforward methods to calculate the stochastic rate constants for each

parallel reaction pathway of a single-molecule.

3.2.3 Transition Probability Expansion Analysis

Another method to calculate stochastic rate constants is to consider the observed frequency with which a

single-molecule transitions from one state to another. For the discrete state versus time trajectories con-

sidered here, this is equivalent to determining whether the single-molecule in state i during a measurement

period is in state j during the subsequent measurement period (see Fig. 3.1). As discussed above, since the

data consists of multiple ‘trials’ of whether or not the transition has occurred, the transition probability can

be modeled by the binomial distribution (c.f., Appendix B). The binomial distribution is appropriate to model

the number of successful trials (i.e., transitions from state i to state j) from a certain number of performed

trials (i.e., the number of times the single-molecule was in state i in the state versus time trajectory) that can

each succeed with a fixed probability (i.e., Pij). From the expectation values of the binomial distribution, we
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will take a frequentist approach and assume that the maximum-likelihood solution is

E[m] = np (3.16)

Mij ≈

∑
j

(
∑

nij)

Pij

=

∑
j

Mij

Pij (3.17)

where m is the number of successful trials, n is the total number of trials, p = Pij is the probability of a

successful trial, and, as described in Section 3.2,Mij is the number of observed measurements associated

with state i that transition to state j. In doing this, we have equated Pij with the observed frequency of the

transitions from state i to state j. However, in an experiment, only a finite number of transitions from state i

to j are observed; as such, the equality will only be approximate. Regardless, by the central-limit theorem,

with more and more measurements,Mij should approach the expectation value; so, baring a small number

of measurements, we might reasonably estimate that

Pij =
Mij∑
j

Mij
, (3.18)

and from this expression, estimate kij using Equation (3.7).

Now, we will consider the accuracy of calculating a rate constant in this manner. Interestingly, given an

amount of time spent in state i, Ti, the Poisson distribution indicates that

〈Mij〉 = kij · Ti ≈ kij ·

∑
j

Mijτ

 , (3.19)

where 〈...〉 denotes the mean, and where the substitution for Ti is generally accurate excepting the types of

missed events which we will discuss in Section 3.3.1. With this in mind, by substituting Equation 3.19 into

Equation 3.18, we find that

Pij =

kij ·
∑
j

Mij · τ∑
j

Mij
= kij · τ. (3.20)

Therefore, this method is inherently (rather than being corrected to) a Taylor series expansion truncated at

the first order term. As a result, this method is fairly accurate when kijτ is small (i.e., much less than one)
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where the higher-order terms are negligible. However, when kijτ begins to become large (i.e., approaching

and greater than 1), the possibility of experimentally recording measurements where more than one state

is occupied during the measurement period becomes substantially probable (see Fig. 3.1). While under

these conditions, the first-order expansion of the Taylor series is not well justified, neither is the process of

idealizing a signal versus time trajectory into a state versus time trajectory; so other approaches beyond the

scope of this chapter should be developed to handle these situations (one such method to achieve such

‘temporal super-resolution’ is developed in Chapter 4). Regardless, before moving on to discuss a more

comprehensive method of analyzing state versus time trajectories to calculate stochastic rate constants from

individual molecules, we would like to note here that the transition probability expansion analysis described

in this section has the added benefit of being insensitive to certain types of missed events. These events

are described in Section 3.3.1. Finally, we note that this type of analysis is analogous to using the transition

matrix from an HMM for Pij .

3.2.4 Statistically Rigorous Precision

While several methods of calculating rate constants from a collection of single-molecule state versus time

trajectories were provided above, and even some allusions to their accuracy were made, the reliability of

calculating stochastic rate constants has not been addressed. For instance, fitting errors such as those from

the curve-fitting-based analysis in Section 3.2.1, do not provide information about the reliability of calculating

ensemble parameters from a limited amount of single-molecule data. In fact, with a finite amount of data,

this type of ‘counting’ error often dominates the calculation.

One simplistic attempt to account for this source of variability is to report statistical uncertainty in the

context of ‘bootstrapping’ of the data. Bootstrapping is an attempt to simulate the data of future experiments

from a set of observed data. From the bootstrapped, ‘future’ data, any variation in a subsequent analysis can

attributed to the uncertainty present in the original dataset. For example, when calculating rate constants

as described above in Section 3.2, the bootstrapping process involves creating a resampled data set, n′ij ,

by randomly sampling from nij with replacement. The new transition probability, P ′ij , can then be calculated

from n′ij , and this yields new rate constants, k′ij . The bootstrapping process is then repeated several times,

and the reported rate constant kij is given as the mean of the set of bootstrapped k′ij , with the error of the

reported kij given as the standard deviation of the set of bootstrapped k′ij . In this manner, bootstrapping is

used to generate the uncertainty in calculated values, but this method inherently assumes that the collected

data accurately represents the characteristics of an infinitely large ensemble. Consequentially, bootstrap-

85



CHAPTER 3. ACCURATELY AND PRECISELY INFERRING SINGLE-MOLECULE RATE CONSTANTS

ping artificially inflates the data set in a way that perpetuates any misrepresentations of the infinitely large

ensemble that are present in the actual dataset. The smaller the collected dataset is, the more likely it is to

misrepresent this infinitely large ensemble. Therefore, bootstrapping single-molecule results, where there

are often only several hundreds of individual molecules in a dataset, often perpetuates these misrepresen-

tations and leads to misrepresentation of the rates, all-the-while not providing a reasonable estimate of the

statistical error present in the calculation.

Consider the following, extreme, hypothetical calculation where only one transition with a one measure-

ment period-long dwell-time has been observed in a single-molecule experiment. Using conditioned dwell-

time distribution analysis or transition probability expansion analysis, we find that Pij is equal to 1.0, and that

all of the bootstrapped P ′ij are also equal to 1.0. Thus, in this case, there is no uncertainty in the calculation

of the transition probability, or, subsequently, in the rate constant, and that rate constant is infinitely large.

However, we know intuitively that the rate constant is not infinity, and also that there most likely is uncertainty

in this calculation that employs only one measurement. The uncertainty lies in the fact that the one transi-

tion we have observed simply cannot be representative of an entire ensemble or even a single-molecule.

Likewise, we should suspect that Pij is probably a poor estimate of the true transition probability. It is easy

to imagine that after recording a few more measurements from that hypothetical single molecule, we might

calculate a different value of Pij , and that the extra data would give us a better sense of the uncertainty in

Pij . This extreme example illustrates how the mathematical analyses described in Section 3.2 are insuffi-

cient by themselves, even when supplemented by bootstrapping. Fortunately, in contrast to these analytical

shortcomings, Bayesian inference provides a statistically rigorous manner with which to encode our intuition

that the number of observations should change our knowledge about Pij , and systematically address the

uncertainty in our rate constant calculations.

Bayesian inference is a statistical method grounded in the Bayesian approach to probability (see Ref. 21

or Section 4.2.2 for an introduction). Given a model that is supposed to describe some data, rather than

treating the parameters of that model as fixed values, they are treated as distributions with probabilities that

reflect their consistency with the data. These probability distributions can then be updated if new data is

acquired so as to be consistent with the new, and any previous, data–an approach that is very similar to

the way that a scientific hypothesis is tested and then updated with each new laboratory experiment [21].

In the context of quantifying single-molecule state versus time trajectories, Bayesian inference allows us to

formulate a hypothesis about the underlying kinetic rate constants of a system (i.e., the probability of certain

rate constants producing the observed state versus time trajectories), and then to update that hypothesis
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as each transition, or lack thereof, is observed in the state versus time trajectory. In this way, we can use

Bayesian inference to describe the probability distribution of a rate constant as each measurement period is

analyzed from a state versus time trajectory.

Generally, the basis of Bayesian inference is Bayes’ rule, which can be mathematically written as:

P (Θ|D) ∝ P (D|Θ) · P (Θ) , (3.21)

where Θ represent the parameters of the model, and D represents the data values; the first, second, and

third terms are referred to as the ‘posterior’, the ‘likelihood’, and the ‘prior’, respectively. Bayes’ rule can be

expressed verbally as: the probability of themodel’s parameter values after observing the data is proportional

to the product of (i) the probability of observing the data given those particular parameter values, and (ii) the

initial probability of those parameters. More succinctly, the posterior probability is proportional to the product

of the likelihood and the prior probability.

With expressions for the likelihood and the prior probability distribution, we can calculate the posterior

probability distribution and learn about the distribution of parameter values that are consistent with the data.

Unfortunately, these calculations are often analytically and/or numerically difficult making their practical use

relatively intractable. However, there are certain conditions that significantly simplify these calculations. For

instance, certain pairs of likelihood functions and prior distributions yield posterior distributions that are the

same algebraic form as the prior (i.e., they have the same form of probability distribution); in such a case,

the prior is called the conjugate prior for that particular likelihood function. The benefit of using a conjugate

prior, given a particular likelihood function, is that simple updating rules can be applied to the parameters

of the conjugate prior probability distribution to yield the resulting posterior probability distribution; this cir-

cumvents the need to enumerate the posterior over the entire probability space, which is computationally

expensive. The Bayesian approach to calculating rate constants using dwell-time distribution analysis and

transition probability expansion analysis that we describe below obeys these conditions–they will use likeli-

hood functions and their associated conjugate priors–and therefore they are extremely tractable.

3.2.5 Bayesian Dwell-Time Distribution Analysis

To perform Bayesian inference using sequential transition trial analysis, we must first identify the likelihood

function and its conjugate prior probability distribution. As described in Section 3.2.2, if we wish to model

the probability of a successful transition from the observed lengths of dwell-times, the likelihood function
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that describes the probability of observing sequential measurements in state i before transitioning to state

j is a geometric distribution. The conjugate prior of the geometric distribution is the beta distribution (see

Appendix B), which is often used to describe the probability of a probability (in this case, of a successful

transition, p), because it is defined on the interval [0, 1], and is a function of only two parameters, α and β,

which have intuitive interpretations. Notably, when α = β = 1, the beta distribution is flat, as all values of

p have equal probabilities–in this case, the beta distribution mathematically expresses a lack of knowledge

about p in a similar manner as the equal, a priori probability assumption of statistical mechanics. Along these

lines, larger values of α and/or β yield more defined and peaked distributions, which expresses the increased

knowledge about p. As we will discuss below, the process of performing Bayesian inference amounts to

modifying the initial values of α and β in a data dependent manner to yield the posterior distribution. In this

sense, Bayesian inference mathematically encodes a method to express the incremented knowledge that

originates from new information.

By using the geometric distribution as the likelihood function, and the beta distribution for the conjugate

prior, we can now calculate the posterior probability distribution of the transition probability Pij from state

versus time trajectories. We begin by assuming that all transition probabilities are initially equally probable.

Therefore, the prior distribution is a beta distribution with α = β = 1. The posterior probability distribution will

be another beta distribution where α and β are interpreted as 1 + the number of Bernoulli trial successes,

and 1 + the number of Bernoulli trial failures, respectively. Thus, for the transitions in a state versus time

trajectory, sequential transition trial analysis yields a posterior probability distribution where α = 1 +
∑
j 6=i

Mij ,

and β = 1 +
∑
j

(
∑
nij). Therefore, from the mean of the beta distribution (see Appendix B), the mean

transition probability out of state i after having observed the single-molecule state versus time trajectories is

〈Pi〉 =

1 +
∑
j 6=i

Mij

1 +
∑
j 6=i

Mij + 1 +
∑
j(
∑
nij)

. (3.22)

This mean value of the transition probability converges to the maximum likelihood estimate of Pij from

Section 3.2.2 when
∑
j 6=i

Mij � 1 and
∑
j

∑
nij � 1; we note that the mode of a beta distribution function

is (α− 1) / (α+ β − 2), which is equivalent to the maximum likelihood estimate of Pi. The benefit of this

approach is that the posterior probability distribution of Pi not only provides a mean value, but also speaks

to the uncertainty inherent in Pi due to limited amounts of data. This uncertainty is expressed by a credible

interval, which is similar to the frequentist idea of a confidence interval. A credible interval is the range in

which a certain percentage of the probability density of resides; typically one uses a 95% credible interval
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(e.g., ∼ ±2σ), but this choice is arbitrary. The upper- and lower boundaries of the credible interval can be

found through the inverse of the CDF of the beta distribution (see Appendix B). Many standard computational

programs come with a function to do this, which is called the inverse function of the regularized incomplete

beta function, Ix(α, β), where α and β are the posterior parameters and x is the fraction of the boundary

(e.g., 0.025 for 2.5%).

Finally, let us consider the application of this Bayesian approach to actual observed data, where the length

of a dwell-time must be greater than zero measurements. With the linearity of conditioning the geometric

distribution upon n > 0, the posterior probability distribution conditioned upon n > 0 will contain a term

of
(

1
1−p

)∑
j 6=i

Mij

, because the total likelihood function is the product of the likelihood function from each

individual datapoint. This is equivalent to setting β′ = β −Mij , where β′ is the parameter used in the beta

distribution for the posterior probability distribution, and β is the parameter calculated above. Using α and

β′, the mean and the 95% credible interval for Pi are calculated to account for the unclassified dwell times

of zero length. For instance,

〈Pi〉 =

1 +
∑
j 6=i

Mij

1 +
∑
j 6=i

Mij + 1 +
∑
j

(
∑
nij)−

∑
j 6=i

Mij
=

1 +
∑
j 6=i

Mij

2 +
∑
j

(
∑
nij)

≈

∑
j 6=i

Mij∑
j

(
∑
nij)

. (3.23)

With a sufficient number of measurements, this treatment yields the same mean transition probability as the

maximum likelihood estimate of the transition probability expansion analysis, and so it is also insensitive

to some types of missed dwells. These values can then be transformed into rate constants using Equa-

tion (3.7). Since ki is a monotonic function of Pi, this Bayesian method also provides an intuitive, explicit

expression for how the uncertainty in ki diminishes with additional observations. Finally, we note that when

no measurements have been made, the posterior distribution is equivalent to the prior distribution; all rate

constants from 0 to ∞ are therefore equally probable. Thus, this analysis method is a very objective ap-

proach to analyzing transition probabilities from discrete signal versus time trajectories, and it is one that

intrinsically encodes a statistically rigorous approach to the precision of such calculations.

To be concrete, we will use this Bayesian sequential dwell-time distribution analysis in the extreme, hy-

pothetical case of the single observed transition introduced above in Section 3.2.4. The posterior probability

distribution would be a beta distribution with α = (1 + 1) = 2, and β′ = (1 + 1 − 1) = 1. This yields 〈Pi〉 =

0.66, and a lower-bound of Pi = 0.16 and an upper-bound of Pi = 0.99 for the 95% credible interval. Notably,

the mean value of the transition probability calculated using the Bayesian dwell-time distribution analysis is
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not infinitely large as was the earlier estimate of Pi using the maximum-likelihood approach as prescribed in

Section 3.2.2, and by the credible interval, this method inherently accounts for the large uncertainty in the

transition probability that we intuitively expect.

3.2.6 Bayesian Transition Probability Expansion Analysis

Similar to the the extension of the dwell-time distribution analysis in Sec. 3.2.2 using Bayesian inference

above in Sec. 3.2.5, we can also extend transition probability distribution analysis to account for precision in

a statistically robust manner. Since we modeled the probability of undergoing a transition from state i to state

j during a measurement period with the binomial distribution, the binomial distribution will be the likelihood

function used to perform Bayesian inference. The conjugate prior to the binomial distribution is the beta

distribution, as described in Sec. 3.2.5 and Appendix B. Without any fore-knowledge of the stochastic rate

constants, we should use a flat, uninformative prior of α = β = 1. From this, the resulting posterior probability

distribution for Pij is a beta distribution with α = 1 + Mij , and β = 1 +

(∑
j

Mij

)
−Mij . For the extreme

case example of a state versus time trajectory is one transition from a one-measurement-long dwell-time,

the posterior probability distribution would then be α = (1 + 1 = 2), and β = (1 + 1− 1) = 1. The mean and

the credible interval can then be calculated as described above in Section 3.2.5, and then the stochastic rate

constants related to these transition probabilities can be calculated with Equation (3.7).

Interestingly, a more precise mathematical description for the transition probability is given by considering

all of the parallel reaction pathways out of state i at once. In this case, the multivariate generalization of the

binomial distribution, the multinomial distribution, is more appropriate for the likelihood function as it models

the probability of a Bernoulli trial where there are multiple possible successes (though only one is chosen

at a time). The conjugate prior to the multinomial distribution is the Dirichlet distribution (Appendix B). The

Dirichlet distribution is the multivariate-equivalent of the beta distribution; in fact, with only one dimension,

they are equivalent. Analogously, we will use a flat, uninformative prior of αij = 1, such that each element of

α is unity. Then, the posterior probability distribution isαij = 1+Mij , or rather it isM plus the prior probability

distribution. To analyze the transition probability of an individual reaction pathway out of state i, we can

marginalize the posterior Dirichlet distribution, which then becomes a beta distribution with α = αij = 1+Mij ,

and β = (
∑
j

αij) − αij = (
∑
j

1) + (
∑
j

Mij) −Mij − 1. This is equivalent to the binomial result when there

are only two states (i.e., i and j), however, we see slight deviations due to the prior in higher dimensions.

However, the most notable aspect of this treatment that when theMij � 1, we find that 〈α〉 is approximately

P , the transition matrix calculated in Section 3.2. This transition matrix is essentially equivalent to the
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transition matrix that is calculated using an HMM. Finally, the credible interval for the marginalized result can

be calculated as above.

Importantly, the Bayesian approach to transition probability expansion analysis enables the statistically

robust analysis of trajectories where there are not only no transitions to a particular state, but also when

there are no transitions at all during a state versus time trajectory. In these cases, the on diagonal elements

of Mii should reflect the measurements from the state versus time trajectory that were assigned to state i,

even though it was unclear what the final state j is. In doing so, the prior probability distribution takes care of

the numerical instability the would otherwise yield infinitely precise estimates of rate constants that are zero.

3.3 Correcting Rate Constants for Missed Events

Complicating Features of Single-Molecule Trajectories As discussed above, discretized, idealized state

versus time trajectories are used to analyze the dynamics of single-molecules. Many factors complicate the

quantification of these state versus time trajectories, and limit the amount of information that can be extracted

from them. For instance, if the underlying single-molecule dynamics are faster than the time resolution (i.e.,

integration time of the experimental measurement period) of the experimental technique used to record the

signal versus time trajectories from which the state versus time trajectories originate, then the underlying

single-molecule dynamics will not be well represented by an idealized, discretized time trajectory. Here we

discuss some types of events that complicate the process of analyzing single-molecule data using state

versus time trajectories, in order to later discuss correcting for the effects of these events.

3.3.1 Types of Missed Events

Finite-Length

Many factors limit the length of the signal versus time trajectories that can be collected from individual

biomolecules using single-molecule techniques. Superficially, the patience of the experimenter, and practi-

cal data storage limitations of computers restrict this length. More practically, the stability of the biomolecular

system can limit the length of an experiment–for instance, many in vitro reconstituted enzymes become inac-

tive after a certain time spent at room temperature, or the buffering capacity of a buffer might saturate. More

probably, the signal corresponding to the single-molecule can simply be lost, and this terminates a signal

versus trajectory–for instance, by photobleaching of a fluorophore, or dissociation of a tether. Regardless
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of the cause, signal versus time trajectories are finite in length and do not extend to t =∞. Considering the

ergodic hypothesis, data from a single-molecule necessarily does not contain enough information to com-

pletely characterize a system. In an extreme case, one can imagine a state versus time trajectory where

no transitions occur before signal loss. Such a situation places a clear limitation on precision with which

the dynamics of the single-molecule system can be quantified. This consideration applies to all state versus

time trajectories, because all will have a finite length.

Missed Transitions

Consider a single-molecule that dwells in a particular state, A, for some length of time. Eventually, the

single-molecule will transition to a new state, B. If the dwell-time in B is shorter than the measurement

period, there is a chance that the single-molecule might transition back to A during the measurement period

(Figure 3.2, orange boxes). This is more likely to occur with increasingly fast rate constants for the transition

from B to A. In a state-versus time trajectory, such a transition from A to B would not be registered. Instead,

the single-molecule would appear to have remained in A throughout this measurement period–not having

transitioned to the new state; this event is called a missed transition, and they affect the Mij and the nij .

The direct consequence of the missed transition is that the number of transitions from A to B,MAB , would

be under-estimated, and this leads to an under-estimation of kAB . Additionally, as a result of the missed

transition, the initial dwell-time inA would be over-estimated, because it would be the combined length of the

initial dwell-time and the following dwell-time inA. This leads to an over-estimation ofMAA, and therefore an

under-estimation of the rate constant from A to B, kAB . Similarly, in this example, the transition back from

B to A is also missed, and this results in an under-estimation ofMBA, and therefore an under-estimation of

the rate constant for that transition, kBA.

Misclassified Transitions

A related occurrence is that of misclassified transitions, rather than of missed transitions. Similarly, a single-

molecule beginning inA could transition toB, where it dwells a time that is less then themeasurement period.

Instead of transitioning back from B to A, as in the example above, the single-molecule could transition to

a different state, C. In this case, from the state versus time trajectory, the initial dwell-time in A can be

approximately correctly measured, but the transition from A to B will be misclassified as a transition from

A to C, and the transition from B to C will be entirely missed (Figure 3.2, green boxes). As a result of the

misclassification, MAB will be under-estimated, while MAC will be over-estimated. These mis-estimations
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i

j

k

Missed Transitions

Missed Dwells Misclassi�ed Transition

j j ij ► ik

jk ► Xij ► X ij ► X

Figure 3.2: Types of Missed Events. Part of a single-molecule’s path through state-space is shown in blue, which transitions between
three states (i, j, and k) shown in red. Measurement periods over which signal time averaging is performed are shown as alternating
white and grey boxes. Missed transitions are shown in orange, missed dwells are shown pink, and misclassified transitions are shown
in green.

result in an under-estimation of kAB , and an over-estimation of kAC .

Missed Dwells

In the example of the missed transition from A to B given in above in Section 3.3.1, there was a sub-

measurement period dwell-time in state B. This transient dwell induced the missed transition, because it

was so short that the time spent in theB was not not registered in the state versus time trajectory (Figure 3.2,

pink boxes). This failure to register the time spent in B in the state versus time trajectory is called a missed

dwell. While the missed dwell is closely related to the missed transitions (it is causal), it and its effects are

conceptually distinct from a missed transition. The missed dwell in B yields an under-estimation of MBB ,

and consequentially an over-estimation of kBX , where X stands for any state accessible from B. However,

it also can provide drastic overestimates of the entries in nAX , which as shown below, can seemingly distort

otherwise normal Markovian behavior.
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3.3.2 Correcting Rate Constants for Finite Length

Biomolecular systems may undergo transitions between states that are very long lived relative to the finite

length of a signal versus time trajectory; reasons for this finite length were discussed in Section 3.3.1. For

example, in an smFRET experiment, signal loss due to fluorophore photobleaching can occur before a

transition occurs. In such a case, the entire state versus time trajectory is discarded, and not included in any

subsequent analysis. This is because the arbitrary experimental end time of the signal versus time trajectory

truncated the last (and only) dwell-time, and it is therefore unclear to which nij the dwell-time belongs. As

a result, such long-lived dwell-times are systematically excluded from the analysis, and this can result in a

mis-estimated counting matrix,M , but, more often, it reduces the amount of data inM to a point where any

subsequent calculation of a rate constant will be extremely imprecise (c.f., Section 3.2.5).

Fortunately, there is a straight-forward correction that can be employed to correct for this loss of excluded

data, which relies on a control experiment. Consider a smFRET experiment on a reversible two-state sys-

tem, A −⇀↽− B. For the isolated system, the transitions between A and B, might be frequent enough that

many transitions are observed before photobleaching of the fluorophore ends the signal versus time trajec-

tory. However, in the presence of a certain ligand that significantly stabilizes A, the individual molecules

might primarily begin and remain in A until photobleaching occurs; a rare few may sample B prior to photo-

bleaching. As such, many of the measurement periods recorded in the presence of the ligand would not be

analyzed, and MAA would be significantly under-estimated. We address this under-estimation by calculat-

ing the number of signal versus time trajectories that photobleach before any transitions occur, Npb, and by

measuring the average photobleaching time of all of the signal versus time trajectories, Tpb. Assuming that

all of the single-molecules in Npb are capable of undergoing the transition, we augmentM such that,

MAA = MAA,initial +Npb · Tpb, (3.24)

where MAA,initial is the value of MAA calculated initially as in Section 3.2. This correction should then

provide a more reasonable estimate ofM , and, therefore, of the rate constants. We note that this correction

is easily modified to additionally address many considerations (e.g., inactive sub-populations), as it simply

entails augmenting the counting matrix by expected contributions as measured by control experiments.
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3.3.3 Correcting Rate Constants Through Virtual States

One well-characterized method to correct for the effects of missed dwells, missed transitions, and misclassi-

fied transitions upon the calculation of rate constants is through the augmentation of the kinetic mechanism

with ‘virtual states’ [22]. This method originated in the field of single-molecule conductance measurements

on ion-channels, where workers such as Colquhoun and Hawkes pioneered the use of HMMs to analyze

the stochastic kinetics of individual ion-channel opening and closing events [16]. The general approach

of this method to correct rate constants for the missed events is to attempt to consider the number of ex-

pected missed dwells in a particular state. These expected missed dwells are then re-classifying into ‘virtual

states.’ These virtual states then account for the missed dwells, and therefore do not contaminate the ob-

served dwells. While this method was developed in Ref. 22, and reviewed in Refs. 16 and 23, we explore it

here for completeness, as well as use it to discuss certain quantities that will be employed in Section 3.3.4.

Imagine that there is some ‘cutoff time’, τc, for which a dwell-time less than τc would become a missed

dwell in a state-versus time trajectory. However, τc is more related to the threshold between two states in

a signal-versus time trajectory, than to a particularly definitive dwell-time in a state. For instance, if one

is assigning states in a state versus time trajectory based upon the crossing of a threshold, then τc is the

amount of time in a state that yields a time-averaged signal (see Section 4) that crosses the threshold.

Additionally, τc is affected by the noise and any particulars of the recording equipment. However, how to

exactly determine τc remains an open question [22, 23]. For some insight into this difficultly, consider the

asynchronicity of the stochastic transitions between states and the start of a measurement period. We note

that for a dwell-time of length t = τ , a single-molecule will occupy the state at least one half of and at

most all of some measurement period (where the exact amount depends upon when the transition occurred

and when the measurement began). Regardless, for a linear-signal with an evenly-spaced threshold, these

dwell-times of length τ would then time average the signal past the threshold in some measurement period

(either the one where the transition occurred, or the neighboring one), because they would all be at least

half of the signal distance between states. However, even ignoring the feasibility of perfectly determining an

appropriate threshold, for a dwell-time of length τ/2 < t < τ , only some of these would be registered due to

the stochasticisity of the transition. Any static value of τc would then only exclude some of these dwell-times,

whereas others would not produce missed events. Regardless, τc should be between τc ∈ (0, τ).

To perform the rate constant correction, first, we will define notation for later use, then we will recast

the two-state ‘virtual state’ correction in these terms, and finally generalize to multiple states. Consider a
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single-molecule system where measurements are made with a time period, τ . For a particular observed

dwell in one state, the following dwell in the next state will either be a missed dwell or an observed dwell if it

is of length t < τc or t > τc, respectively. For a Markovian system, the fraction of dwells in the first state that

are less than τc, and greater than τc are

f−ij = 1− e−kijτc , and

f+
ij = e−kijτc , (3.25)

respectively, where the subscript ij denotes the transition was from state i to state j, and f− + f+ = 1.

Similarly, the fractions of dwells in the next state, regardless of whether the initial state dwell-time was an

f−ij or f+
ij are

g−jk = 1− e−kjkτc , and

g+
jk = e−kjkτc , (3.26)

where g is used instead of f to denote the fraction is for the successive dwell-time, and the subscript jk

denotes the transition was from state j to state k. Again, g− + g+ = 1. For subsequent dwells, we switch

back to f rather than use h, so that a series of dwells is described with alternating f and g. To demonstrate

this notation, consider some transition between states A and B with a dwell-time that is long enough to be

observed, followed by a transition from state B to state C with a dwell-time that is too short to be observed,

followed by another transitions from state C to an unspecified state X with a dwell-time that is long enough

to be observed. The probability of this series of events occurring can then be written f+
AB · g

−
BC · f

+
CX .

Consider the two-state system, 1 −⇀↽− 2, with forward and reverse rate constants k12 and k21 with some τc.

These rate constants can be interpreted as the number of transitions that occur per time unit, so we will use

rates constants and expected numbers of transitions interchangeably in this section; note, this is in line with

the Poisson distribution. The true number of transitions can be split into those that are observed transitions,

and those that are missed transitons. Therefore, the observed transition rate is then

kcorrected = kobserved + kvirtual

= kobserved + fmissed · kcorrected (3.27)
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where kvirtual is the contribution from the virtual state. That contribution is the fraction of missed transitions,

fmissed, times the corrected number of transitions. For the two-state system, fmissed = g−, because a missed

dwell in the successive state causes a missed transition in an initial state. Therefore,

k12,corrected =
k12,observed

1− g−21

= k12,observed · ek21τc , and

k21,corrected =
k21,observed

1− g−12

= k21,observed · ek12τc . (3.28)

As pointed out by Stigler et al., these equations are non-linear, so the corrected rate constants can be

calculated easily by numerically minimizing the sum of squares of these equations [23]. To demonstrate the

efficacy of this correction, we simulated a two-state system using the stochastic simulation algorithm [11,

12] across values of k1 and k2 that ranged between two decade less than and one decade greater than the

acquisition rate τ−1. At each pair of rate constants, 30 signal versus time trajectories were simulated, each

containing approximately 1000 transitions. The observed rate constant was then taken to be the average

of these rate constants as calculated using transition probability expansion analysis thresholded exactly

half-way between the emission means of the two states. The observed rate constants relative to the exact,

simulated values are shown in Figure 3.3A. These rate constants were then corrected using Equation (3.28)

where τc = τ/2, and those are shown relative to the exact rate constant in Figure 3.3B. Notably, the observed

rate constants begin to become inaccurate as the rate constants approach one-tenth of the acquisition rate,

τ−1. While the correction increases the region over which rate constants can be accurately calculated, many

pairs of rate constants do not have solutions, this method is still inaccurate as the rate constants approach

τ−1, and as noted in Ref. 22, there are two solutions (fast and slow), so it can be difficult to pick the proper

solution.

To generalize this virtual state approach to multiple-state systems, note that, as above, the corrected rate

constant can be decomposed into contributions from the observed rate constant and the virtual state, but

that, for systems with more than two states, the observed rate constant is overestimated by any misclassified

transitions. Therefore,

kcorrected = (kobserved − kmisclassified) + kvirtual. (3.29)

While kcorrected is to be calculated by using Equation 3.29, and kobserved is obtained from experimental data

by using the methods discussed in Section 3.2, expression must be derived for kmisclassified and kvirtual. As
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A B

Figure 3.3: Correcting Rate Constants using Virtual States. (A) Observed rate constants relative to the exact rate constant calculated
from simulated data for a two-state system. Hatched region contains undefined rate constants where no transitions could be observed
in the idealized state versus time trajectory. (B) By applying the virtual state correction for a two-state system as given in Equation (3.28)
using τc = τ/2, the corrected rate constants are closer to the exact rate constants over a larger area than was true for the observed rate
constants in panel A. The hatched region has expanded to include cases where the solution to the equations used for the correction
yield non-supported values.

described in Section 3.3.1, the most basic consideration of a misclassified transition is that in which only

one missed dwell is considered. In this case, a missed dwell in an intermediate state makes the state versus

time trajectory seem to transition between the previous and subsequent state. For example, in the case of

f±AB · g
−
BC , where the ± denotes either a lifetime either shorter or longer than τc, the transition from states A

to B is misclassified as a transition from states A to C (the transition from states B to C is a missed transition).

Note that f+
AB ·g

−
BA does not result in a misclassified transition and a missed transition, but rather two missed

transitions. With this in mind, the number of misclassified transitions from state i to state j is

Nij,misclassified =
∑
l 6=i 6=j

Nilj , where (3.30)

Nilj =
(
g−lj ·Nij,corrected

)
· P splitting

lj

=
(
g−lj ·Nij,corrected

)
·

 klj,corrected∑
j 6=l

klj,corrected

 . (3.31)

From Equation 3.31, we see that the number of transitions that are misclassified from state i to state l to

transitions from states i to j is equal to the product number of transitions from states i to j that can be mis-

classified regardless of the state they are misclassified into, and splitting probability, which is the probability

that a single-molecule already in state l transitions to state j. Then, from Equation 3.30, the total number

98



CHAPTER 3. ACCURATELY AND PRECISELY INFERRING SINGLE-MOLECULE RATE CONSTANTS

of transitions misclassified as a transition from states i to j, is calculated as the sum of all of the possible

misclassifications. As a result,

kij,misclassified =
∑
l 6=i 6=j

((1− e−kljτc) · kij,corrected

)
·

 klj,corrected∑
j 6=l

klj,corrected


 . (3.32)

Finally, for a system with more than two states, kvirtual is involves all the possible transitions that can occur

from a particular state. Since the system isMarkovian, despite the presence of parallel pathways, the number

of transitions per unit time from state i to state j is kij . Of these transitions, the number of transitions that

end up in a virtual state depend upon the length of the dwell time in the subsequent state j. As mentioned in

Section 3.2.2, the stochastic rate constant that governs the dwell-times in state j is kj =
∑
i

kji. Only those

dwell-times in state j shorter than τc will induce a transition from i to a virtual state. Therefore

kij,virtual = g−j kij,corrected = (1− e−kjτc)kij,corrected. (3.33)

Therefore, by substituting Equations 3.32 and 3.33 into equation 3.29, an expression for the corrected rate

constant from states i to j can be found as

kij,corr =

kij,obs −
∑
l 6=i 6=j

(1− e−kljτc) · kij,corr
klj,corr∑

j 6=l
klj,corr


+ (1− e−kjτc)kij,corr, (3.34)

and this can be repeated for all transitions a the kinetic scheme to yield a set of non-linear equations that

can be sovled numerically, as mentioned above, to yield the corrected rate constants.

3.3.4 Seemingly Non-Markovian Behavior Induced by Missed Events

While we have described how to partially account for missed events when calculating rate constants from

signal versus time trajectories, we note that the assumptions used to both calculate the observed rate con-

stant and to correct the observed rate constant rely on the system being Markovian. Experimentally, many

single-molecule systems seem to exhibit non-Markovian behavior [24, 25], and this is typically assessed, if at

all, by checking to see that the dwell-times observed in a particular state are exponentially distributed. Non-

single-exponential behavior is evidence for non-Markovian behavior. Again, all of the methods described

above that directly address stochastic rate constants assume Markovian behavior, and should not be ap-
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plied in the case of non-Markovian behavior. Additionally, it is worth noting that model selection for HMMs

depends upon this assumption as well [4, 7]. With these limitations in mind, here, we demonstrate that one

particularly nefarious consequence of missed events in an otherwise Markovian state versus time trajectory

is the introduction of seemingly non-Markovian behavior.

To demonstrate the introduction of seemingly non-Markovian behavior into a Markovian system, consider

a single-molecule experiment that is performed on a two-state, Markovian system. This system can be

represented as 1 −⇀↽− 2, with forward and reverse rate constants k1 and k2, respectively. If one rate constant

is relatively fast compared to the acquisition rate, there will be many missed dwells in that state. To be

concrete, one such system might be that where k1 = 0.5 s−1, k2 = 10 s−1, and τ = 0.1 s; here k2 is equal

to the acquisition rate while k1 is 20 times slower, and we expect that state 2 will have many missed dwells.

The missed events can be readily observed in the signal versus time trajectory plotted in Figure 3.4.

Figure 3.4: Signal from a Markovian, two-state system. The first 60 s of a signal versus time trajectory from a simulated two-state,
Markovian system. This system was simulated for 2.5 × 106 s, then the signal was time averaged with signal means of 0 and 1 for
states 1 and 2, respectively, and then negligible Gaussian noise was added for visibility in the histogram (right). The red line denotes
the threshold used to idealize the data into a state versus time trajectory. Many dwells in the upper state are so transient that they result
in missed dwells and missed transitions.

After idealizing this signal versus time trajectory into a state versus time trajectory, perhaps by using a

threshold, the observed length of each dwell is used to calculate the rate constants. While the observed

length of a dwell-time in the state versus time trajectory depends upon the true length of the dwell-time

in question, but also upon the true lengths of previous and subsequent dwell-times. This is evident by

considering the effect that a missed dwell has upon the state versus time trajectory. Consider a dwell-time

in state 1 that is longer than the measurement period τ . Using the notation in Equation 3.25, the probability

of this dwell-time occurring is f+ ≡ f+
12. The probability that the subsequent dwell-time in state 2 is also
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longer than the measurement period τ is g+ ≡ g+
21, in which case there will be no missed dwell in state 2 to

complicate the measurement of the observed dwell-time in state 1. Therefore, the probability of observing a

dwell-time in state 1 without the complicating aspects of a missed dwell in state 2 is f+ ·g+. An example path

through state-space of this case is shown in Figure 3.5A. However, this suggests that if there is a missed

dwell in state 2, which occurs with probability g− ≡ g−21, then the measurement of the observed dwell-time

in state 1 will be more complicated. With each missed dwell in the transiently occupied state 2, the previous

and subsequent dwell-times in state 1 are compounded together to create an overly long observed dwell-

time in the state versus time trajectory. These overly long dwell-times can be composites of two, three, four,

or higher integer-numbers of dwells in state 1; where the exact number is one more than the number of

missed events in state 2. The case of one missed dwell, f+ · g− · f+, is shown in Figure 3.5B, and two

missed dwells, f+ · g− · f+ · g− · f+, is shown in Figure 3.5C. Further compounding of dwell-times will occur

until a sufficiently long dwell-time in state 2 occurs, g+, at which point the end of the observed dwell in state

1, which is composed of the several compound dwell-times is indicated in the state versus time trajectory. In

this system, each observed dwell in state 1 is concluded by a g+ dwell (excepting so many g− and f− in one

measurement that the time-averaged signal is past the threshold). Finally, note that all of this compounding-

phenomenon also occurs for the dwell-times in state 2, however since k1 is so slow, there are rarely ever

any missed dwells in state 1 (i.e., f− is too small for those types of dwell-times to appreciably occur).

{  f−  ·  g− ·  f+  ·  g+ }

{  f+  ·  g− ·  f−  ·  g+ }{  f+  ·  g+ }

{  f+  ·  g− ·  f+  ·  g+ }

{  f+  ·  g− ·  f+  ·  g− ·  f+  ·  g+ } {  f−  ·  g− ·  f+  ·  g− ·  f−  ·  g+ }
C

DA

B E

F

Figure 3.5: State-space Pathways that Lead to Seemingly Non-Markovian Behavior. (A-F) Schematic plots of Markovian pathways
through a two-state state-space. Each sequence is also written in using the notation described in Equations 3.25 and 3.26, where f
and g correspond to the first and second states, respectively, and − and + denote dwell-times that are less than or greater than τc,
respectively.

Those observed dwell-times that are actually several compounded dwell-times introduce seemingly non-

Markovian behavior into the state versus time trajectory. This is apparent when inspecting the histogram of

the lengths of the observed dwells in the state versus time trajectory (Figure 3.6). If the system is Marko-

vian, these discrete dwell-times should be distributed according to the geometric distribution as described

in Section 3.2.2. However, the geometric distribution does not adequately describe the distribution of these

observed dwell-times, especially for the dwell-times in state 1 (Figure 3.6, left). Notably, the geometric dis-
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tribution is much more adequate for the observed-dwell times is state 2, which is expected because there

many fewer compound dwell-times in this state. Furthermore, conditioning the geometric distribution such

that only dwell-times greater than one frame long are considered describes the observed dwell-times in state

2 rather well, but not those in state 1 (Figure 3.6, center). Here, rather than condition upon all dwell-times

greater than zero frames long as was done for Equation 3.12, conditioning upon all dwell-times greater than

one frame long minimizes the effects of over- and under-estimation due to thresholding and discretization.

Regardless, as is visible for state 1, the Markovian behavior used to simulate this two-state system yields

behavior that is markedly non-Markovian. However, this effect can be accounted for by augmenting the

model of the observed dwell-times to include those that are composed of several compounded dwell-times.
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Figure 3.6: Dwell-time Correction for Missed Dwells. Histograms of the probabilities for the observed dwell-times from the simulated
two-state system shown in Figure 3.4 for state 1 (top), and state 2 (bottom). The red-curves show various PMFs plotted using the
exact, simulation parameters. The ‘Geometric’ column corresponds to the geometric distribution with probability from Equation 3.6 as
is described in Section 3.2.2 for the PMF. The ‘Conditioned (n > 1)’ column corresponds to the geometric distribution conditioned upon
all the number of trials being greater than one as derived in manner similar to that used for Equation 3.12 for the PMF. The ‘Conditioned
and Corrected’ column corresponds to a PMF that is a mixture of negative binomial distributions all conditioned upon the number of
trials being greater than one, and weighted according to the probability of the different contributing pathways with τc = 0.75τ .

To augment the PMF of the observed dwell-times for the effects of compounded dwell-times, we must

have a probabilistic description of the distributions of the total lengths of the various, integer-number-compounded

dwell-times. As described previously in Section 3.2.2, for one dwell, this probabilistic description of the total

length is the geometric distribution. In the case of two compounded dwell-times, the probabilistic description

will be the convolution of the two, identical geometric distribution (one for each dwell), because we are cal-

culating the sum of the dwell-times, which are stochastic variables [20]. For three compounded dwell-times,
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the probabilistic description will be the convolution of three geometric distributions, and so on. These con-

volutions yield a compound distribution for X = X1 + ...+Xr, where Xi is the randomly distributed length of

one dwell-time, and r is the number of dwell-times (or geometric distributions) being convoluted together. As

described in Ref. 20, this convolution is easily performed through multiplication of the geometric distribution

generating function,

PXi(s) = p/(1− (1− p)s), (3.35)

which yields the compound distribution’s generating function

PX(s) =

r∏
i=1

PXi(s), (3.36)

which can be expanded as a power series and rewritten using the binomial theorem to yield the compound

distribution’s PMF of

NB(k|r, p) ≡ P [X = k] = (−1)k
(
−r
k

)
pr(1− p)k, (3.37)

where NB is the PMF of the negative binomial distribution, k is the number of frames in the observed dwell-

time, r is the number compounded dwells r ∈ {1, 2, ...}, and p is the transition probability from Equation 3.6.

Essentially, each of the observed dwell-times can be modeled using the appropriate negative binomial dis-

tribution for the total number of compounded dwell-times–even if there is only one dwell-time (i.e., the ge-

ometric distribution is the negative binomial distribution with r = 1). From these expressions, and because

a Markovian system is memoryless, we see that the PMF of all of the observed dwell-times is a mixture of

negative binomial distributions each weighted by an appropriate factor as

PMFcorr
12 (n?|k1, k2, τ, τc) =

∞∑
r=1

pr(k1, k2, τ, τc) · NB?(n?|r, 1− e−k1τ , n? ∈ {2, 3, 4, ...}), (3.38)

where pr(k1, k2, τ, τc) is the probability of observing a dwell-time that is composed of r compounded dwells,

and we have used n? and NB? to denote the conditioning of n and NB upon n > 1, which as mentioned in

Section 3.2.2, is a linear correction. However, this explicitly highlights the fact that we have been ignoring

any contributions to the total length of the observed dwell-times from any missed dwells, because they are

inherently negligible. Therefore, it is important to acknowledge that only those dwell-times that are longer
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than τc (i.e., f+) will contribute to the length of a compounded dwell-time. Consequentially, to proceed with

this augmented PMF and correct for the compound dwell-times induced by missed dwells, we must calculate

the probability that an observed dwell-time will consist of r f+’s.

To calculate the probability that an observed dwell-time will consist of r dwells, every possibly stochastic

path through state-spacemust be tabulated in order to find howmany of these paths yield the desired number

of f+ compoundings–this is impractical for anything more than a two-state system. To do so, consider the

possible sequences of dwells following an initial dwell in state 1. These can be denoted using the notation

introduced in Equations 3.25 and 3.26 as

{
f± · g± · f± · g± · ...

}
=

{ ∞∏
i=0

f± · g±
}
, (3.39)

where the length of each subsequent dwell time relative to τc is readily assessed, and additionally the prob-

ability of each sequence is simply the product of the terms in the sequence. For instance, as is the case in

Figure 3.5A, a long dwell in state 1 followed by a long dwell in state 2 can be denoted {f+ ·g+}. Interestingly,

for an initial dwell of f±, the observed dwell-time will continue to compound dwells in both states until a g+

occurs, at which point, the state versus time trajectory will indicate the end of that observed dwell. Therefore,

for this two-state case, the notation on the right-hand side of Equation 3.39 is informative in that each dwell

in state 1 is accompanied by another dwell that is in state 2; even more informatively, these sequences can

be written

{( ∞∏
i=0

f± · g±
)
· f± · g+

}
, (3.40)

where for our purposes, there must be at least one f+ in order for the sequence to correspond to a particular

negative binomial distribution. One way to think of the possible sequences is that they are composed of

f+’s with interspersed f− and g− continuing until the final g+. This approach yields two categories of

neighboring transitions that can be used as building blocks to extend each sequence until the final g+:

f− · g− (Figure 3.5D,E), and f+ · g− (Figure 3.5B,C). Multiple blocks can be combined in any order to create

and extend unique stochastic pathways (Figure 3.5). Alternatively, either f+ · g+ or f− · g+ will effectively

terminate an observed dwell. Therefore, to calculate the probability that there are r number of f+ dwell-times

in an observed dwell that begins in state 1 before the first g+, we must write out the possible sequences, use

this to calculate the probability for each sequence, and then apply the above rules to classify the number of
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compounded f+ dwells that comprise the observed dwell. Fortunately, since the values of f− and g− are

relatively small, these sequences do not need to be tabulated to infinity, as they become vanishingly small

with additional terms. Our approach is to choose an arbitrary length of sequences to calculate such that the

inclusion of further dwells does not significantly alter the probability of observing r dwells in an observed

dwell; here we used i = 6 (12 dwells). These are easily enumerated numerically using quaternary indexing

for the possible pairs of f± · g± to yield 46 = 4096 possible paths. Pathways without an f+ or a g+ are

excluded, as are those where all f+ present are located after the first g+. Then, the remaining pathways

are categorized according to the number of f+ before the first g+ occurs. The product of each sequence in

a particular category is then summed to yield the probability of observing that number of compound dwell

times as

pr(k1, k2, τ, τc) =
∑
j

δ(r −
∑
f+∈j

1) ·
∏{( ∞∏

i=0

f± · g±
)
f± · g+

}
j

 , (3.41)

where δ is a Dirac-delta function used as an indicator function so that only pathways with the proper number

of f+ are included in pr, and j is used to index the possible pathways. Python code to perform this calculation

is provided in Appendix D.

By explicitly addressing the presence of the missed-dwell-induced compound dwell-times explicitly in the

PMF of the observed dwell-times present in a state versus time trajectory by using Equations 3.38 and 3.41,

we can accurately account the seemingly non-Markovian effects found in the state versus time trajectory

of a Markovian system affected by missed events. This can be seen in the plots in Figure 3.6 on the right,

where the PMF (red) matches the histogram of the simulated dwell times. This curve was not a fit to the

data, but rather the PMF calculated using the exact simulated values. As such, the fast decay and long

tail found in the histogram of the observed dwell times in state 1 are still Markovian features, despite such

non-exponentiality typically being seemingly non-Markovian in nature. This explanation for the effects of the

missed dwells therefore not only questions the accuracy of utilizing Markovian-based assumptions to calcu-

late rate constants for a Markovian system where many events are missed, but also raises questions about

the accuracy of the model selection performed using Bayesian HMMs which also use Markovian assump-

tions to determine which model has the most evidence. Regardless, despite the difficultly in determining an

appropriate τc, and the unaccounted-for effects of the f−-type dwells in the PMF that render this method dif-

ficult to employ to calculate rate constants, it provides a simple and accurate measure for whether seemingly

non-Markovian behavior in a state-versus time trajectory is actually Markovian or not. However, in order to
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truly calculate such rate constants accurately, despite any number of missed events, another approach must

be developed. Such an approach would effectively enable temporal super-resolution of the data collected

from any single-molecule technique (c.f., Section 4).

3.4 Quantitatively Connecting Ensemble Thermodynamics and

Single-Molecule Kinetics

At equilibrium, thermodynamic and kinetic information can be extracted from biomolecular energy land-

scapes by many techniques. However, while static, ensemble techniques yield thermodynamic data, often

only dynamic, single-molecule techniques can yield the kinetic data that describes transition-state energy

barriers. Here we present a generalized framework based upon dwell-time distributions that can be used

to connect such static, ensemble techniques with dynamic, single-molecule techniques, and thus charac-

terize energy landscapes to greater resolutions. We demonstrate the utility of this framework by applying

it to cryogenic electron microscopy and single-molecule fluorescence resonance energy transfer studies of

the bacterial ribosomal pretranslocation complex. Among other benefits, application of this framework to

these data explains why two transient, intermediate conformations of the pretranslocation complex, which

are observed in a cryogenic electron microscopy study, may not be observed in several single-molecule

fluorescence resonance energy transfer studies.

Biomolecular machines operate on energy landscapes with transition-state energy barriers which range

from ∼ kBT to the energy of covalent bonds [26–28]. Characterizing the wells and barriers which comprise

these energy landscapes is important for understanding the thermodynamics and kinetics of biomolecular

machines, and how these thermodynamics and kinetics can be modulated in order to regulate the activities

of these machines [29–34]. However, due to the stochasticity inherent to these processes, as well as the

transient and/or rare nature of states separated by low transition-state energy barriers, extremely sensitive

techniques are often required to obtain the level of detail necessary to adequately describe such systems

[1, 35]. Sufficiently sensitive ensemble techniques, such as cryo-electron microscopy (cryo-EM), can mea-

sure static, equilibrium-state populations, and this provides information on the relative energy differences

between distinct states. However, because of the vanishingly small probability of observing a transition

state, techniques such as cryo-EM are not able to characterize the transition-state energy barriers respon-

sible for much of the regulation of biomolecular processes [36]. Fortunately, dynamic, time-dependent,

single-molecule techniques, such as single-molecule fluorescence resonance energy transfer (smFRET),
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can directly monitor the kinetics of these processes, and allow the characterization of the transition-state

energy barriers with theories such as transition-state theory or Kramers’ theory [15]. smFRET is a par-

ticularly powerful technique for connecting single-molecule kinetics to ensemble thermodynamics obtained

from cryo-EM in that the FRET efficiency (EFRET) obtained from the smFRET experiments can be correlated

to structures obtained from the cryo-EM experiments. Despite this significant advantage over many other

single-molecule techniques, like all techniques, smFRET approaches often suffer from limitations to spatial

and temporal resolution, and also often require structural information to develop biologically informative sig-

nals [37]. Therefore, for any particular system, static, equilibrium-state, ensemble techniques and dynamic,

time-dependent, single-molecule techniques provide complementary approaches for studying the underly-

ing biological processes. Nonetheless, given the current limitations in their application, the pictures they

provide may not always be congruous.

Here, we present such a framework based upon equilibrium-state probabilities and dwell-time distribu-

tions (see Refs. 38 and 39, and references therein). This framework is general, and can be applied to

various other ensemble and single-molecule techniques; we use a linear kinetic model, but emphasize that

the equations can also be derived for other models. As an illustrative case study, we apply this generalized

framework to analyze the data obtained from the cryo-EM and smFRET studies of Agirrezabala et al. and

Fei et al., respectively. In doing so, we connect the distribution of the MS I, MS II, IS1, and IS2 states of

the PRE complex observed by cryo-EM to the transition rates observed between the GS1 and GS2 states

observed by smFRET.

3.4.1 Dwell-Time Distribution Framework

Consider two distinct chemical states, 1 and N, of the system connected linearly by a number of on-pathway

intermediate states, 2 through N-1, with transitions from state i to state j occurring at rate αij ,

1
α12−−⇀↽−−
α21

2
α23−−⇀↽−−
α32

· · ·
αN−2,N−1−−−−−−−⇀↽−−−−−−−
αN−1,N−2

N − 1
αN−1,N−−−−−⇀↽−−−−−
αN,N−1

N. (3.42)

If Pµ(t) is the probability of finding the system in chemical state µ at time t, then the time evolution of these

probabilities are governed by a set of coupled master equations. The steady-state of this set of equations,

corresponding to the the constraints ∂Pµ/∂t = 0, yields the equilibrium-state occupation probabilities P eqµ of

populating each state. The distribution of times taken by the system to reach one terminus from the other can

be calculated by modifying the original kinetic scheme imposing an absorbing boundary at the destination
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state. If the destination state is N, then the corresponding modified kinetic scheme would be,

1
α12−−⇀↽−−
α21

2
α23−−⇀↽−−
α32

· · ·
αN−2,N−1−−−−−−−⇀↽−−−−−−−
αN−1,N−2

N − 1
αN−1,N−−−−−→ N. (3.43)

By writing master equations for this new scheme, and adopting the method of Laplace transform, we

analytically calculated the probability, fp(t)dt, that the system, initially at state 1, reaches state N in the

time interval between t and t + dt. By evaluating the first moment of this distribution, the mean time for

this transition, 〈tp〉, can be calculated. An analogous process can be performed to calculate the probability,

fr(t)dt, that the system, initially in state N, reaches state 1 in the time interval between t and t + dt, and

hence obtain the mean time for this transition, 〈tr〉.

The two expressions for the mean transition times between the termini, 〈tp〉 and 〈tr〉, form a system of

equations with all 2N-2 αij as variables. Ratios of the P eqµ define relationships between the rate constants

αij ; so, if the equilibrium-state probabilities are known, substitution of these ratios into the expressions for

〈tp〉 and 〈tr〉 reduces the number of degrees of freedom in the system of equations. With an experimental

measure of the mean transition time between the terminal states, the system of equations can be solved

for the αij rate constants. The four-state model (two intermediate states) is solved in Appendix A, as is the

derivation of the expression for the variances of tp and tr. Equivalent expressions for the three-state model

(one intermediate state) are in Appendix B.

Because of their complexity, biomolecular systems are often investigated with multiple techniques – each

with their individual strengths and weaknesses. However, different techniques occasionally yield disparate

mechanistic pictures that must ultimately be resolved. One situation in which this problem manifests it-

self is when a static, equilibrium-state technique such as cryo-EM detects on-pathway intermediates, but a

dynamic, time-dependent technique such as smFRET does not. This situation could arise if the dynamic

technique is not sensitive enough to distinguish the intermediate state from other states of the biomolecular

system. In order to reconcile such contrasting measurements, we need to estimate the lifetime of the tran-

sient intermediates if these, indeed, exist. In an effort to get these estimates we consider a linear kinetic

pathway with on-pathway intermediates, such as in equation 3.42, though the framework presented here

can easily be extended to include off-pathway intermediates. Note that for an N-state linear kinetic scheme

there are 2N-2 rate constants αij . Therefore, in principle, the numerical values of all the individual αij could

be obtained if 2N-2 independent algebraic equations satisfied by these rate constants were available. As

we argue now, except for some small values of N, the rate constants αij are usually underdetermined by the
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available experimental information.

Time-dependent smFRET experiments are typically analyzed with a hidden Markov model (HMM) [4–

7, 37]. Among other things, such an analysis yields HMM-idealized state versus time trajectories from

which a distribution of lifetimes in a particular state can be calculated. If sufficiently transient, on-pathway

intermediates between the initial and final state exist, the distribution of idealized lifetimes will not appear

significantly different from what it would be in the absence of the intermediate states (e.g., an exponential

distribution for a random transition with a time-independent probability of occurrence). In such a case,

the simplest model that the smFRET data supports is that of a transition with no intermediate states; so,

assuming Markovian transitions, the mean lifetimes obtained from the HMM-idealized trajectories would

be taken to be the inverses of the effective rate constants for the transitions between the initial and final

states. In contrast, the analytical expressions for the mean lifetimes spent traveling between the terminal

states, via intermediate states, of a N-state kinetic scheme contain the rate constants αij that describe

the direct transitions between the intermediate states (see Appendices A and B). Therefore, equating the

mean lifetimes for the forward and reverse transitions between the terminal states that were inferred from

dynamic, single-molecule experiments with the corresponding theoretically calculated mean lifetimes yields

two algebraic equations that involve 2N-2 rate constants αij .

Thus, in practice, except for the trivial case of N=2, the information available in the form of the effective

rates of forward and reverse transitions between the two terminal states would be inadequate to determine

all the 2N-2 rate constants αij that describe the full kinetic mechanism. Obviously, for larger values of N,

the number of degrees of freedom must be reduced further by acquiring additional experimental informa-

tion. This extra information comes from the equilibrium-state experiments. Including information about the

equilibrium-state probabilities for the N states provides N-1 additional independent equations (the constraint

of normalization of the probabilities, i.e., their sum must be equal to unity, reduces the number from N to

N-1). So, for N=3 one would have just enough information to write down four independent equations sat-

isfied by the four rate constants in the three-state model. However, for N=4, we have fewer equations than

the number of unknowns and, therefore, in the absence of any other information, one of the rate constants

would remain a free parameter. Any one of the six rate constants can be selected as the free parameter.

Then, as we will show later in this section, varying the selected free parameter allows one to enumerate

all the solutions which are consistent with the data, and thereby impose lower and/or upper bounds on the

magnitudes of the rates. In case of higher values of N, the analytical expressions for the variance of tp and

tr, reported in the Appendix, can be utilized for further reduction of the number of degrees of freedom if the
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corresponding experimental data becomes available in the future.

3.4.2 Bacterial Pretranslocation Complexes as a Model System

Agirrezabala and coworkers collected cryo-EM data on PRE complexes containing tRNAfMet in the P site,

and fMet-Trp-tRNATrp in the A site [40]. Using ML3D, a maximum-likelihood based classification method,

particles from this data set were more recently classified into six classes [41]. The conclusions of this

study strongly suggest that three of the classes represent MS I and MS II–MS II being comprised of two

structurally similar classes. Additionally, the authors propose that two of the other classes represent on-

pathway intermediate states (IS1 and IS2, respectively) between MS I and MS II. As the remaining class

represents PRE complexes that are missing a tRNA in the A site, it is therefore ignored. Thus, the model of

PRE dynamics proposed by this study is,

1
α12−−⇀↽−−
α21

2
α23−−⇀↽−−
α32

3
α34−−⇀↽−−
α43

4, (3.44)

where states 1, 2, 3, and 4 represent MS I, IS1, IS2, and MS II, respectively, and are distributed as shown

in table 3.1.

State Index (µ) State Class P eqµ
1 MS I 2 0.231
2 IS1 4A 0.131
3 IS2 4B 0.140
4 MS II 5/6 0.498

Table 3.1: A summary of the ribosomal PRE complexes observed by Agirrezabala and coworkers [41].

Similarly, smFRET experiments performed by Fei and coworkers monitored PRE complexes as they

transitioned, driven by thermal energy, between two global conformational states, GS1 and GS2, which

correspond structurally to MS I and MS II, respectively [42, 43]. By monitoring the relative change in the

distance between the P-site tRNA and the ribosomal protein L1 within the L1 stalk of the 50S subunit, the

smFRET signal developed by Fei and coworkers probably reports upon the tRNA motions along the path-

way proposed by Agirrezabala and coworkers. However, these smFRET measurements were performed for

several PRE complexes of variable composition. Of these complexes, perhaps the most relevant complex

to the work performed by Agirrezabala and coworkers is the PREfM/F complex carrying a tRNAfMet in the P

site and a fMet-Phe-tRNAPhe, rather than a fMet-Trp-tRNATrp, in the A site. Since the identity of the A-site
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dipeptidyl-tRNA in the two experiments differs, this could potentially lead to tRNA-dependent differences in

the populations and lifetimes of the various states and, consequently, the rates of transitions between these

states. Indeed, smFRET studies have shown that the lifetimes of GS1 and GS2 do depend on the presence

[42, 43] and acylation status (i.e., deacylated tRNAPhe versus Phe-tRNAPhe versus fMet-Phe-tRNAPhe) of

the A-site dipeptdyl-tRNA [44, 45]. It should be noted, however, that the effect of the identity of the A-site

dipeptidyl-tRNA itself (i.e., tRNAs other than tRNAPhe) has not yet been tested by smFRET. In addition to the

difference in the identity of the A-site dipeptidyl-tRNA in the cryo-EM and smFRET studies, the Mg2+ con-

centrations employed in the two studies differ. The cryo-EM studies were performed at
[
Mg2+

]
= 3.5 mM

and the smFRET studies were performed at
[
Mg2+

]
= 15 mM. Previously, smFRET studies have demon-

strated that changes to the Mg2+ concentration over this range affects the populations and lifetimes of the

GS1 and GS2 states [45]. With this in mind, it is likely that the equilibrium-state populations observed in

the cryo-EM experiments and the corresponding state occupancies in the smFRET experiments are dis-

parate. Nonetheless, despite their experimental differences, these cryo-EM and smFRET studies are the

most experimentally similar cryo-EM and smFRET studies of wild-type bacterial PRE complexes that have

been reported in the literature. Therefore, as a case study, we have chosen to quantitatively compare these

two particular studies in order to demonstrate the application of the general framework developed in Section

3.4.1.

The transition rates between GS1 and GS2 reported using the PREfM/F complex for the L1-tRNA donor-

acceptor labeling scheme were kGS1→GS2 = 2.8± 0.2 s−1 and kGS2→GS1 = 3.0± 0.4 s−1 [43]. Given that no

evidence of intermediate states was observed, this suggests that any intermediates states, if they exist, might

be very transient relative to the time resolution with which the smFRET data was acquired. Indeed, there

is a limitation to the time resolution with which smFRET data can be acquired with the electron-multiplying

charge-coupled device (EMCCD) cameras that are typically used as detectors in TIRF microscopy-based

smFRET experiments. Transitions that are faster than the EMCCD camera’s acquisition rate (20 s−1 in Fei,

et al.) [43] result in time averaging of the EFRET and the recording of a single, artifactual data point that

appears at the time-averaged value of the EFRET between the states involved in the rapid fluctuations. This

is a well-documented feature of smFRET data analysis, which we term “blurring” [4]. This effect is further

compounded by the fact that current state-of-the-art computational methods used to analyze the smFRET

data cannot distinguish between artificial, short-lived (i.e., one data point) “states” resulting from blurring

and actual, short-lived (i.e., one data point) states resulting from the sampling of true intermediate states [4].

With such an analysis, the true molecular states become hidden among the “blurred” states.
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Reanalysis of the original PREfM/F data using the software-package ebFRET–a state-of-the-art, HMM-

based analysis method for smFRET data [6, 7]–yields a better estimate of the transition rates. This is be-

cause ebFRET uniquely enables analysis of the entire ensemble of individual EFRET versus time trajectories,

instead of analyzing them in the traditional, isolated, one-by-one manner. The two-state rates inferred by

means of ebFRET are similar to, though perhaps more accurate than, those reported originally by Fei and

coworkers: kGS1→GS2 = 2.0± 0.2 s−1, and kGS2→GS1 = 2.8± 0.1 s−1 (see Table 3.2). Interestingly, applica-

tion of ebFRET reveals that the smFRET PREfM/F data are best described by a five-state model. However,

further analysis indicates that the three additional states are probably artifacts of blurring, because they are

negligibly populated, have extremely transient lifetimes, and occur at an EFRET that is in between the EFRET

of the two well-defined states.

kGS1→GS2 (s−1) kGS2→GS1 (s−1) Reference
2.8 ± 0.2 3.0 ± 0.4 43
2.0 ± 0.2 2.8 ± 0.1 This work

Table 3.2: A summary of the rates of transition between GS1 and GS2 observed by Fei and coworkers [43].

3.4.3 Four-state Model of Pretranslocation Complex Dynamics

The dynamics of PRE complexes were analyzed using the general framework presented in section 3.4.1

where the experimental data summarized in Tables 3.1 and 3.2 were used as constraints for the linear, four-

state kinetic scheme shown in Equation 3.44. For this kinetic scheme, the mean time needed for the forward

transition from the terminal state 1 to the terminal state 4, < tp >, is given by (see Appendix A for the full

derivation)

< tp >=
1

α12

[
1 +

α21

α23
+
α21α32

α23α34

]
+

1

α23

[
1 +

α32

α34

]
+

1

α34
. (3.45)

The corresponding mean time for the reverse transition from the state 4 to the state 1, < tr >, is given by

(see Appendix A for the full derivation)

< tr >=
1

α43

[
1 +

α34

α32
+
α34α23

α32α21

]
+

1

α32

[
1 +

α23

α21

]
+

1

α21
. (3.46)
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The probabilities for the occupation of the four states at equilibrium are given by (see Appendix A for the full

derivation)

P eq1 =
α43α32α21

α43α32α21 + α12α43α32 + α12α23α43 + α12α23α34
, (3.47)

P eq2 =
α12α43α32

α43α32α21 + α12α43α32 + α12α23α43 + α12α23α34
, (3.48)

P eq3 =
α12α23α43

α43α32α21 + α12α43α32 + α12α23α43 + α12α23α34
, and (3.49)

P eq4 =
α12α23α34

α43α32α21 + α12α43α32 + α12α23α43 + α12α23α34
, (3.50)

with the normalization condition
∑4
µ=1 P

eq
µ = 1. Using the equations for < tp > and < tr > (Equations 3.45

and 3.46, respectively), and the equations for P eqµ (Equations 3.47-3.50), a plot was generated of all the rate

constants αij as functions of an independent α43 (Fig. 3.9).

Notably, for some values of the independent rate constant, solutions for the dependent rate constants

are negative. While this is a consistent solution of the model, only the values where all rate constants

are positive are physically-relevant solutions. The boundaries to this region where all rate constants are

positive therefore represent the upper or lower bounds on the rate constants for the four-state model that

are consistent with both the cryo-EM and the smFRET studies.

Interestingly, Fig. 3.7 depicts the upper and lower bounds for α34 and α43, but only lower-bound cutoffs

for the other α’s. These other rate constants all asymptotically converge to positive infinity; α12 and α21

increase with increasing α43, while α23 and α32 compensate by decreasing to their lower-bound. Plotting

these results as a function of an independent α12 or α23 yields the same bounds–there is only a narrow

window where all α’s are consistent with the cryo-EM and smFRET data. With such boundaries on the

individual rate constants, one can estimate the EMCCD camera acquisition rate that would be needed to

distinctly observe the transient states of interest.

The theoretical results reported here are based on similar approaches followed in Refs. 38 and 39 for

analytical calculations of the distribution of the dwell-times of a ribosome.

We use the kinetic scheme

1
α12



α21

2
α23



α32

3
α34



α43

4, (3.51)

where integer indices 1, 2, 3 and 4 represent a discrete chemical state and αij denotes the transition proba-

bility per unit time (i.e., rate constant) for the i→ j transition. If Pµ(t) is the probability of finding the system

in chemical state µ at time t, then the time evolution of these probabilities are governed by the following
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Figure 3.7: Rate constants for the four-state model as a function of α43. The gray region contains the solutions where all rate constants
are positive. Both axes are log scaled; so, any incompatible rates (negative valued) are not shown. The points where rate constants
switch from being negative to positive valued are denoted with a black, vertical line. Horizontal, dashed lines denote upper or lower
bounds for particular rate constants

master equations:

dP1(t)

dt
= −α12P1(t) + α21P2(t), (3.52)

dP2(t)

dt
= α12P1(t)− (α23 + α21)P2(t) + α32P3(t), (3.53)

dP3(t)

dt
= α23P2(t)− (α32 + α34)P3(t) + α43P4(t), and (3.54)

dP4(t)

dt
= α34P3(t)− α43P4(t). (3.55)

Now we calculate the time-independent occupation probability, P eqµ , of each of these states by finding the
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equilibrium-state solutions of equation 3.52-3.55,

P eq1 =
α43α32α21

α43α32α21 + α12α43α32 + α12α23α43 + α12α23α34
, (3.56)

P eq2 =
α12α43α32

α43α32α21 + α12α43α32 + α12α23α43 + α12α23α34
, (3.57)

P eq3 =
α12α23α43

α43α32α21 + α12α43α32 + α12α23α43 + α12α23α34
, and (3.58)

P eq4 =
α12α23α34

α43α32α21 + α12α43α32 + α12α23α43 + α12α23α34
. (3.59)

We also calculate the distribution of the time spent transitioning from chemical states 1 to 4 for the first time

by modifying the original kinetic scheme into:

1
α12



α21

2
α23



α32

3
α34→ 4

and writing the master equations according to this new scheme:

dP1(t)

dt
= −α12P1(t) + α21P2(t), (3.60)

dP2(t)

dt
= α12P1(t)− (α21 + α23)P2(t) + α32P3(t), (3.61)

dP3(t)

dt
= α23P2(t)− (α32 + α34)P3(t), and (3.62)

dP4(t)

dt
= α34P3(t). (3.63)

These equations can be re-written in terms of the following matrix notations:

dP(t)

dt
= MP(t), (3.64)

where P (t) is a column matrix whose elements are P1(t), P2(t) and P3(t), and

M =


−α12 α21 0

α12 −(α21 + α23) α32

0 α23 −(α34 + α32)

 . (3.65)
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Now, by introducing the Laplace transform of the probability of kinetic states,

P̃µ(s) =

∫ ∞
0

Pµ(t)e−stdt, (3.66)

the solution of equation (3.64) in Laplace space is

P̃(s) = (sI−M)−1P(0). (3.67)

The determinant of matrix (sI−M) is the third-order polynomial

(sI−M)−1 = a3s
3 + a2s

2 + a1s+ a0, (3.68)

where

a3 = 1, (3.69)

a2 = α12 + α21 + α23 + α32 + α34, (3.70)

a1 = α21α34 + α21α32 + α23α34 + α12α23 + α12α34 + α12α32, and (3.71)

a0 = α12α23α34. (3.72)

We can solve equation 3.67 by using the initial condition

P1(0) = 1 and P2(0) = P3(0) = P4(0) = 0. (3.73)

Suppose that the probability of transitioning from chemical state 1 to 4 in the time interval of t and t+ ∆t is

fp(t)∆t. Then,

fp(t)∆t = ∆P4(t). (3.74)

Therefore, we find

fp(t) =
dP4(t)

dt
= ω34P3(t). (3.75)

Taking the Laplace transform of equation 3.75 gives

f̃p(s) = ω34P̃3(s). (3.76)

116



CHAPTER 3. ACCURATELY AND PRECISELY INFERRING SINGLE-MOLECULE RATE CONSTANTS

Now we can calculate an analytical expression for P̃3(s) by solving Equation 3.67. Inserting this expression

into equation 3.76 yields,

f̃p(s) =
α12α23α34

(s+ ω1)(s+ ω2)(s+ ω3)
, (3.77)

where ω1, ω2 and ω3 are the solution of the equation

ω3 − a2ω
2 + a1ω − a0 = 0. (3.78)

Taking inverse Laplace transform of Equation 3.77 gives

fp(t) =
α12α23α34

(ω1 − ω2)(ω1 − ω3)
e−ω1t +

α12α23α34

(ω2 − ω1)(ω2 − ω3)
e−ω2t +

α12α23α34

(ω3 − ω1)(ω3 − ω2)
e−ω3t. (3.79)

Now, solving for the first moment of this distribution,

< tp >=

∫ ∞
0

tfp(t)dt, (3.80)

gives

< tp >=
1

α12

[
1 +

α21

α23
+
α21α32

α23α34

]
+

1

α23

[
1 +

α32

α34

]
+

1

α34
. (3.81)

Similarly, the second moment is

< t2p >=

∫ ∞
0

t2fp(t)dt =
2(a2

1 − a0a2)

a2
0

. (3.82)

Analogously, one can also obtain the exact formula for the distribution of the time spent transitioning from

chemical states 4 to 1:

fr(t) =
α43α32α21

(Ω1 − Ω2)(Ω1 − Ω3)
e−Ω1t +

α43α32α21

(Ω2 − Ω1)(Ω2 − Ω3)
e−Ω2t +

α43α32α21

(Ω3 − Ω1)(Ω3 − Ω2)
e−Ω3t. (3.83)

Here, Ω1, Ω2 and Ω3 are the solution of the equation

Ω3 − Ω2b2 + Ωb1 − b0 = 0, (3.84)
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where

b0 = α43α32α21, (3.85)

b1 = α34α21 + α34α23 + α32α21 + α43α32 + α43α21 + α43α23, and (3.86)

b2 = α43 + α34 + α32 + α21 + α23. (3.87)

Now, solving for the first moment of this distribution gives:

< tr >=

∫ ∞
0

tfr(t)dt =
b1
b0

=
1

α43

[
1 +

α34

α32
+
α34α23

α32α21

]
+

1

α32

[
1 +

α23

α21

]
+

1

α21
. (3.88)

and solving for the second moment gives:

< t2r >=

∫ ∞
0

t2fr(t)dt =
2(b21 − b0b2)

b20
. (3.89)

Assuming that the experimentally observed, fractional population of chemical state i, χi, represents the

equilibrium-state solutions, P eqµ , ratios of χ can be used to write relationships between several α,

α21 =
χ1

χ2
α12 α32 =

χ2

χ3
α23 α34 =

χ4

χ3
α43. (3.90)

The expectation values for the time spent transitioning from chemical states 1 to 4 (〈tp〉), and transitioning

from chemical states 4 to 1 (〈tr〉) are assumed to be equivalent to the inverses of the experimentally observed

transition rates between the two states of a two-state model (k12, and k21). Using these expressions and the

experimentally observed two-state rates, making substitutions with equations (3.90) and rearranging yields

the following system of equations,

1

k12
= 1 · 1

α12
+ C1 ·

1

α23
+ C2 ·

1

α43
; C1 =

(
χ1

χ2
+ 1

)
C2 =

(
χ1 + χ2 + χ3

χ4

)
(3.91)

1

k21
= C3 ·

1

α12
+ C4 ·

1

α23
+ 1 · 1

α43
; C3 =

(
χ4 + χ3 + χ2

χ1

)
C4 =

(
χ4 + χ3

χ2

)
, (3.92)

which has fewer constraints than degrees of freedom. To proceed, we solve the system of equations keeping

one degree of freedom independent, moving that term to the left-hand side of the equation, and treating it

as part of the constraints.
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Independent α12

We solve the system of equations for an independent α12 by matrix inversion:

B = AX →


(

1
k12
− 1 · 1

α12

)
(

1
k21
− C3 · 1

α12

)
 =

C1 C2

C4 1




1

α23

1

α43

⇒ X = A−1B, (3.93)

where A−1 =
1

(C1 · 1− C2C4)
·

 1 −C2

−C4 C1

 ,
which yields the following rate constants,

α12 = Independent,

α21 =

(
χ1

χ2

)
α12,

α23 =
(C1 − C2C4)(k12k21α12)

(1 · (k21α12 − k12k21)− C2 · (k12α12 − C3k12k21))
,

α32 =

(
χ2

χ3

)
α23,

α34 =

(
χ4

χ3

)
α43, and

α43 =
(C1 − C2C4)(k12k21α12)

(−C4 · (k21α12 − k12k21) + C1 · (k12α12 − C3k12k21))
.
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Independent α23

Similarly, for an independent α23,

α12 =
(1− C2C3)(k12k21α23)

(1 · (k21α23 − C1k12k21)− C2 · (k12α23 − C4k12k21))
,

α21 =

(
χ1

χ2

)
α12,

α23 = Independent,

α32 =

(
χ2

χ3

)
α23,

α34 =

(
χ4

χ3

)
α43, and

α43 =
(1− C2C3)(k12k21α23)

(−C3 · (k21α23 − C1k12k21) + 1 · (k12α23 − C4k12k21))
.

Independent α43

Finally, for an independent α43,

α12 =
(C4 − C1C3)(k12k21α43)

(C4 · (k21α43 − C2k12k21)− C1 · (k12α43 − k12k21))
,

α21 =

(
χ1

χ2

)
α12,

α23 =
(C4 − C1C3)(k12k21α43)

(−C3 · (k21α43 − C2k12k21) + 1 · (k12α43 − k12k21))
,

α32 =

(
χ2

χ3

)
α23,

α34 =

(
χ4

χ3

)
α43, and

α43 = Independent.

3.4.4 Three-State Model of Pretranslocation Complex Dynamics

Since the number of equations available in our four-state model is five whereas the number of unknown rate

constants is six, we could only express five rate constants in terms of the sixth one. In contrast, because

we can reduce the number of states from four to three (vide infra), in this subsection we use the four cor-

responding independent equations to extract the absolute values of the four rate constants associated with

120



CHAPTER 3. ACCURATELY AND PRECISELY INFERRING SINGLE-MOLECULE RATE CONSTANTS

the three-state model,

1
α12−−⇀↽−−
α21

2
α23−−⇀↽−−
α32

3. (3.94)

As explained in Appendix C, structural analysis strongly suggests that the L1-tRNA distance in IS1 is insuf-

ficiently different from that of MS I so as to result in an EFRET that is significantly different than that of MS I.

Thus, MS I and IS1 can be combined into a single state, state 1, thereby reducing the four-state model into a

three-state kinetic scheme of Eqn. 3.94, where the states 2 and 3 correspond to IS2 and MS II, respectively.

The expressions for < tp >, < tr >, and Pµ (µ = 1, 2, 3) are given by (see Appendix B for detailed

derivations),

< tp >=
1

α12

[
1 +

α21

α23

]
+

1

α23
, (3.95)

< tr >=
1

α32

[
1 +

α23

α21

]
+

1

α21
, (3.96)

P eq1 =
α21α32

α21α32 + α12α32 + α23α12
, (3.97)

P eq2 =
α12α32

α21α32 + α12α32 + α23α12
, and (3.98)

P eq3 =
α23α12

α21α32 + α12α32 + α23α12
, (3.99)

where the normalization condition is
∑eq
µ=1 Pµ = 1. These expressions, together with the corresponding

experimental data, are utilized to write down four independent equations. The rate constants computed by

solving those four equations are shown in Table 3.3.

Interestingly, this calculation suggests that the rate limiting steps for the forward and reverse reactions

are IS2 → MS II and MS II → IS2, respectively, while interconversion between MS I/IS1 and IS2 occur

relatively rapidly. These rates for MS I/IS1 to IS2 interconversion are approximately the same or faster than

the 20 s−1 EMMCD camera acquisition rate of the original smFRET data from Fei et al., and, additionally,

the change in the L1-tRNA distance between the MS I/IS1 and IS2 states is relatively small (∼ 80 Å to 64

Å), resulting in a correspondingly small difference in EFRET (∼ 0.15 to 0.40); so, any separation of MS I/IS1

and IS2 that might have been observed in the smFRET data would likely have been obscured in the HMM

analysis process by camera blurring arising from interconversion rates that are similar to the acquisition rate.

The fast interconversion and small expected changes in EFRET suggest that MS I, IS1, and IS2 might have
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originally been interpreted as a ‘single’, averaged state in the analysis of the smFRET data.

α Max kL1-tRNA (s−1) Mean kL1-tRNA ± 1σ (s−1)
α12 18.1 23.3 ± 22.7
α21 46.8 52.5 ± 33.6
α23 5.90 5.89 ± 0.42
α32 1.66 1.66 ± 0.12

Table 3.3: Rate constants for PREfM/F using a linear, three-state kinetic scheme where MS I and IS1 have been combined into the
first state. Error from the ebFRET-estimated smFRET-determined rate constants, and the counting error from the cryo-EM study were
propagated into distributions of the α. These distributions are strictly not normal distributions, although α23 and α32 are approximately
normal.

Given the following linear, three-state model,

1
α12



α21

2
α23



α32

3,

the time evolution of the probability, Pµ(t), will be governed by

dP1(t)

dt
= −α12P1(t) + α21P2(t), (3.100)

dP2(t)

dt
= α12P1(t)− (α21 + α23)P2(t) + α32P3(t), and (3.101)

dP3(t)

dt
= α23P2(t)− α32P3(t). (3.102)

We calculate the equilibrium-state probabilities

P eq1 =
α21α32

α21α32 + α12α32 + α23α12
(3.103)

P eq2 =
α12α32

α21α32 + α12α32 + α23α12
(3.104)

P eq3 =
α23α12

α21α32 + α12α32 + α23α12
(3.105)

Then, we also calculate the distribution of the time spent by a molecule transitioning from chemical states 1

to 3. For this purpose, we modify the scheme into

1
α12



α21

2
α23→ 3,

122



CHAPTER 3. ACCURATELY AND PRECISELY INFERRING SINGLE-MOLECULE RATE CONSTANTS

and write the master equations according to this new scheme

dP1(t)

dt
= −α12P1(t) + α21P2(t), (3.106)

dP2(t)

dt
= α12P1(t)− (α21 + α23)P2(t), and (3.107)

dP3(t)

dt
= α23P2(t). (3.108)

As in the four-state result, we can solve these equations with the Laplace transform method to yield,

fp(t) =
α12α23

ω2 − ω1
e−ω1t +

α12α23

ω1 − ω2
e−ω2t, (3.109)

where ω1 and ω2 are the solution of equation

ω2 − ω(α12 + α21 + α23) + α12α23 = 0. (3.110)

Now, solving for the first moment,

< tp >=
1

α12

[
1 +

α21

α23

]
+

1

α23
, (3.111)

and the second moment,

< t2p >=
2(c21 − c0)

c20
, (3.112)

where

c0 = α12α23, and (3.113)

c1 = α12 + α21 + α23. (3.114)

Similarly, we can also calculate the distribution of the time spent transitioning from chemical states 3 to 1,

fr(t) =
α21α32

Ω2 − Ω1
e−Ω1t +

α21α32

Ω1 − Ω2
e−Ω2t, (3.115)

where Ω1 and Ω2 are the solution of the equation

Ω2 − Ω(α32 + α23 + α21) + α32α21 = 0. (3.116)
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In this case, we calculate the first moment,

< tr >=
1

α32

[
1 +

α23

α21

]
+

1

α21
, (3.117)

and the second moment,

< t2r >=
2(d2

1 − d0)

d2
0

, (3.118)

where

d0 = α32α21, and (3.119)

d1 = α32 + α23 + α21. (3.120)

Assuming that the experimentally observed, fractional population of state i, χi, represents the equilibrium-

state solutions, P eqµ , ratios of χ can be used to write relationships between several α,

α21 =
χ1

χ2
α12, and α23 =

χ3

χ2
α32. (3.121)

The expectation values for the time spent transitioning from chemical states 1 to 3 (〈tp〉), and transitioning

from chemical states 3 to 1 (〈tr〉) are assumed to be equivalent to the inverses of the experimentally observed

transition rates between the two final states of a two-state model (k12, and k21). Using these expressions and

experimentally observed rates, substituting Eqn. (3.121), and then rearranging yields the following system

of equations,

〈tp〉 =
1

k12
= 1 · 1

α12
+ C1 ·

1

α32
; C1 ≡

(
χ1

χ3
+ 1

)
(3.122)

〈tr〉 =
1

k21
= C2 ·

1

α12
+ 1 · 1

α32
; C2 ≡

(
χ3 + χ2

χ1

)
, (3.123)

which can be solved as for the four-state model,

B = AX →


1

k12

1

k21

 =

 1 C1

C2 1




1

α12

1

α32

⇒ X =


1

k12

1

k21

 =
1

(1− C1C2)
·


1 · 1

k12

− C2 · 1

k21

−C2 · 1

k12

+ 1 · 1

k21

 , (3.124)
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to yield the three-state model rate constants,

α12 =
(1− C1C2)(k12k21)

(1 · k21 − C1 · k12)
,

α21 =

(
χ1

χ2

)
α12,

α23 =

(
χ3

χ2

)
α32, and

α32 =
(1− C1C2)(k12k21)

(−C2 · k21 − 1 · k12)
.

3.4.5 Simulated Pretranslocation Complex Dynamics

We simulated 100 EFRET versus time trajectories with a linear, three-state kinetic scheme. Dwell-times prior to

transitions to other states were exponentially distributed according to the appropriate rate constants. In each

EFRET versus time trajectory, the value of EFRET corresponding to each state was randomized by choosing

r from a normal distribution, and calculating EFRET = (1 + (r/R0)
6
)−1, where R0 is the Förster radius.

For each EFRET versus time trajectory, R0 was also randomly chosen from a normal distribution. Noise

reflecting a reasonable SBR for the total-internal reflection fluorescence (TIRF) microscope used in the

smFRET experiments (i.e., σ = 0.05) was also added to each EFRET versus time trajectory. More details can

be found in Appendix C.

In order to simulate PRE complex dynamics with transient intermediates, we estimated the values of

EFRET for each PRE complex conformational state. We estimated EFRET for the L1-tRNA labeling scheme

by measuring the distances between the β-carbon of the threonine at position 202 of the L1 protein of the

50S ribosomal subunit and the sulfur of the thiouridine at position 8 of tRNAfMet from the atomic-resolution,

molecular dynamics flexible fitting of the classes of PRE complexes deposited in the Protein Data Bank

by Agirrezabala and coworkers (Table 3.4) [41]. While the absolute accuracy of these estimates is likely

imprecise, it is reasonable to interpret the relative distances as an informative measure of the relative EFRET

values. As the distances measured ignore any foreshortening due to the space occupied by the fluorophore

and its hydrocarbon linker, subsequent analysis compensated by overestimating R0 = 60 Å. Notably, all the

classes measured yielded distinct values of EFRET except for classes 2 and 4A (MS I and IS1, respectively).

Since the distances between the labeling sites on the L1 protein and the P-site tRNA are 78 Å (EFRET ≈ 0.17)

and 81 Å (EFRET ≈ 0.14) for classes 2 and 4A, respectively, MS I and IS1 are most likely indistinguishable

given the SBR of the TIRF-based smFRET measurements used by Fei and coworkers [42, 43]. As such, we
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chose to group MS I and IS1 together into state 1, while IS2 corresponded to state 2, and MS II corresponded

to state 3.

Class r(L1→ tRNA)
(
Å
)

EFRET, R0 = 60 Å
2 78 0.17
4A 81 0.14
4B 64 0.41
5 43 0.89
6 55 0.62

Table 3.4: Distances and approximate FRET efficiencies of PREfM/F ribosomes from cryo-EM structures.

From these EFRET estimates, Markovian transitions along a linear, three-state kinetic scheme were then

simulated for 100 state versus time trajectories. Each state versus time trajectory was 50 sec in length, and

they were eventually transformed into discrete, EFRET versus time trajectories, where each data point is the

mean EFRET value during a 50msec time period. For each state versus time trajectory, the distances between

the donor- and acceptor fluorophores in the ith state, ri, were randomized for each time series with a normal

distribution, N
(
µ = ri, σ = 2Å

)
. The EFRET of each state was then calculated as EFRET = (1 + (r/R0)

6
)−1,

whereR0 is the Förster radius (a parameter dependent upon the identity of donor- and acceptor fluorophores,

as well their local environments). R0 was randomized for each time series within a reasonable range for the

Cy3-Cy5 FRET donor-acceptor pair with a normal distribution,N
(
µ = 60Å, σ = 2Å

)
. The EFRET versus time

trajectory was then discretized by calculating the average value of EFRET during sequential 50 msec long

time periods. Noise was added to the EFRET versus time trajectories that was normally distributed at each

data point with a standard deviation of 0.05 – a reasonable SBR for data collected on the TIRF microscope

used in the smFRET experiments.

In order to model the histogram of the simulated EFRET versus time trajectories, we used a Gaussian

mixture model where each state is modeled to contribute as a normal distribution centered at the respec-

tive mean EFRET value for that state, and is weighted by the equilibrium-state probability for that state (see

Appendix B). To account for the simulated heterogeneity in the ensemble of synthetic EFRET versus time tra-

jectories, the mean EFRET value of each state was marginalized out by integrating over the joint-probability

distribution of the normal distribution of EFRET and a beta distribution of the mean EFRET observed in that

state (Fig. 3.9C) with parameters determined by a maximum likelihood estimate from the exact simulated

EFRET means. For the “Avg. State” distribution (c.f., Fig. 3.9B), the distribution of EFRET means that was

employed was beta distributed with a linear combination of the parameters of the mean EFRET distributions
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from states 1 and 2 (Fig. 3.9C). The standard deviation used for the normal distribution of EFRET values for

each state was taken exactly as the standard deviation used to add noise to the synthetic EFRET versus time

trajectories.

As described in Section 3.4.5, this model of the observed EFRET value histograms is for a temporally-

resolved histogram without any blurring present. Performing the same simulation described above, but

with a 0.5 msec acquisition time period yields an accurately modeled set of EFRET versus time trajectories

(Fig. 3.10). Furthermore, analyzing this data with ebFRET yields an accurately estimated number of states,

rate constants, distribution of EFRET means, and noise parameter.

Analysis of the 50 msec time resolution data with ebFRET found the most evidence for a five-state

kinetic model–all of which were significantly populated. Since the synthetic data was simulated with a three-

state kinetic model, the ebFRET analysis is not consistent with the original simulation. Additionally, the rate

constants inferred by ebFRET for a three-state model from the simulated data do not match the original

simulation parameters. The rate constants inferred by ebFRET for the two-state model were kGS1→GS2 =

1.41± 0.05s−1, and kGS2→GS1 = 1.41± 0.05s−1, but these differ from those learned from the data of Fei and

coworkers (c.f., Section 1.3.2). This suggests that the original simulation parameters are not consistent with

the experimental data from the smFRET study of Fei and coworkers [42, 43]. Most likely, the discrepancy is

due to experimental differences between the smFRET and cryo-EM studies that were compared using the

general framework presented here.

To investigate how ebFRET would treat this ‘single’, averaged smFRET state, synthetic time series sim-

ulating a three-state PREfM/F complex were constructed guided by the analysis above. Estimates for EFRET

were based upon the cryo-EM structures of Agirrezabala and coworkers (see Appendix C), and the kinetic

scheme and associated rate constants employed are those in Section 3.4.4. Since the rate constants for

the transition between states MS I/IS1 and IS2 are of the same order of magnitude as the frame rate of

this simulation, traditional smFRET data analysis of this synthetic data provides insight into whether blurring

could have obscured any transient, intermediate states in the data of Fei and coworkers. Typically, such ob-

fuscation begins to manifest when dwell-times in a state of interest approach the same order of magnitude

as the EMCCD camera acquisition time, because of errors in estimating the lengths of the dwell-times [4].

The synthetic smFRET dataset was constructed by carrying out simulations of EFRET versus time trajecto-

ries where each ‘single-ribosome’ had randomized simulation parameters as described in Appendix C. This

probabilistic approach accounts for experimental variation (e.g., uneven illumination in the field-of-view), as

well as ensemble variations (e.g. static disorder from a small sub-population of ribosomes lacking an A-
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site dipeptidyl-tRNA). An example of a synthetic EFRET vs. time trajectory is shown in Fig. 3.8, where the

ensemble mean values of EFRET were∼ 0.16, 0.40, and 0.74 for states MS I/IS1, IS2, and MS II, respectively.

MS II

IS2
Avg.
State

MS I
/IS1

Figure 3.8: Example synthetic EFRET versus time trajectory. The gray, yellow, and blue horizontal lines denote the EFRET means used
to simulate MS I/IS1, IS2, and MS II for this time series, respectively. The red horizontal line is the equilibrium-state-weighted average
of the means of the MS I/IS1 and IS2 states.

With regard to the distribution of EFRET values observed from any ensemble of EFRET versus time trajec-

tories, blurring would result in a shift of some of the density of the equilibrium-state occupancy probability

distribution to an intermediate, averaged value between the blurred states. Deviation of a histogram of the

observed, simulated EFRET in the synthetic data set from the distribution predicted by the equilibrium-state

occupancies of the linear, three-state model therefore can be used to characterize the amount of blurring

present in the synthetic data. We modeled the normalized histogram of the synthetic ensemble with normal

distributions weighted by their respective equilibrium-state probability, P eqµ (Fig. 3.9A). The mean of each

state was distributed according to the distribution of static EFRET for that state in each of the synthetic time

series (Fig. 3.9C). This approach accurately reflects a non-blurred histogram of EFRET (Fig. 3.10). Devia-

tions that occur are therefore due to blurring, or, if they had been simulated in this synthetic dataset, could

have been due to the presence of unaccounted-for states. Notably, a large portion of the MS I/IS1 density

in Fig. 3.9A is relocated into the region between MS I/IS1 and IS2. This is a direct manifestation of blur-

ring. By collapsing MS I/IS1 and IS2 into one averaged state (Fig. 3.9B and 4C), we find that the data are

much better described by only two states (Fig. 3.9D). In this case, the artifactual, blurred, averaged state

overwhelms any distinction between the MS I/IS1 and IS2 states, whereas when the simulation is performed

with an acquisition rate that is significantly faster than the transitions of interest (2000 s−1), these states are

well-resolved (Fig. 3.10).

This blurred, synthetic, three-state ensemble of EFRET versus time trajectories was then analyzed with

ebFRET. Interestingly, ebFRET overestimated the true number of kinetic states. Most likely this is due to the

fact that the dwell-times in states MS I/IS1 and IS2 are too transient relative to the simulation’s ‘acquisition
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I

II
II

II

I

Three-State, Steady-State 
Model of Synthetic Data

A Two-State, Steady-State 
Model of Synthetic Data

B Beta-Distributed EFRET 
Synthetic Means

C Residuals of ModelsD

Figure 3.9: (A) Histogram of synthetic PRE complex data (gray) modeled with three, non-blurred states. (B) Histogram of synthetic
PRE complex data (gray) modeled with two, non-blurred states. The “Avg. State” is a weighted combination of MS I/IS1 and IS2. (C)
Histograms and probability distributions of the static EFRET value means generated for the synthetic PRE complex dataset. (D) Plots
of the model probability densities minus the normalized histograms from panels A and B. The sum of the squares of these residuals
are 10.03, and 4.02 for the three-state and two-state models, respectively, suggesting that the blurred, synthetic, PRE complex data
are better represented by a two-state model.

rate’, because ebFRET is able to accurately infer the model parameters from the same data with a more ap-

propriate acquisition rate of 2000 s−1 (Fig. 3.10). As a result, the blurred, synthetic data points are modeled

by ebFRET as distinct ‘states’ – even though these states do not actually exist on the ‘energy landscape’ of

the simulated PREfM/F complex.
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Figure 3.10: Histograms of the same ensemble of synthetic EFRET vs. time trajectories rendered with different time resolutions. The
left-most peak in the grey histogram, which was used in Fig. 3.9, is well-resolved into two separate peaks when the synthetic data is
rendered with a 100x faster acquisition rate (green histogram). The three-state model distribution (black curve) is that from Fig. 3.9,
which was modeled using only the initial simulation parameters. Analysis of the faster time resolution time series (green histogram)
using ebFRET accurately estimated all four transition rates (k12 = 17.8 ± 0.6 s−1, k21 = 47.2 ± 1.6 s−1, k23 = 6.4 ± 0.6 s−1,
k32 = 1.82 ± 0.17 s−1), as well as accurately estimated the distribution of EFRET means (µ1 = 0.16, σ1 = 0.035, µ2 = 0.41,
σ2 = 0.067, µ3 = 0.74, σ3 = 0.058) and the noise parameter (σnoise = 0.050).

3.5 Conclusion

We have established a general, theoretical framework that integrates equilibrium-state cryo-EM observations

with dynamic, time-dependent smFRET observations. This framework is not limited exclusively to cryo-EM

and smFRET; any technique that provides static, equilibrium-state populations can be integrated with any

other technique that provides dynamic, time-dependent transition rates. The analysis reported here sug-

gests that states IS1 and IS2, previously identified by cryo-EM, are not detected by smFRET because their

short lifetimes result in transitions that are too fast to be characterized, given the acquisition rate of the EM-

CCD camera and the limitations of the manner in which hidden Markov models are implemented. Moreover,

structural analyses indicate that the L1-tRNA smFRET signal is unable to yield distinguishable signals for

MS I and IS1, given the typical SBR of TIRF microscope-based smFRET measurements. The quantitative

analysis of the experimental data, based on the analytical theory presented here, provides a possible expla-

nation for why the PRE complex intermediates observed by cryo-EM (i.e., IS1 and IS2) escaped detection

by the smFRET studies of Fei et al. [42, 43], and, possibly, other groups [46–48]. Conversely, application

of this framework to smFRET data in which intermediate states have been detected, but have been difficult

to assign to specific PRE complex structures [49, 50], should allow researchers to determine whether and

how such intermediates correspond to IS1 and/or IS2. Perhaps more importantly, we can now predict the
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lifetimes and corresponding rates of transitions into and out of IS1 and IS2 that are crucial for designing

future kinetic experiments. This work therefore resolves a discrepancy in the field and opens a path for per-

forming and analyzing future experiments. Furthermore, we hope to use this theoretical framework to make

predictions regarding future experiments in which the cryo-EM and smFRET data would be collected under

more comparable conditions. This theoretical framework will also be useful in guiding future experimental

explorations which include, for example, stabilization of IS1 or IS2 (or any other intermediates that may be

ultimately identified) using different tRNAs or mutant ribosomes.
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Chapter 4

Temporal Super-Resolution∗

4.1 Bayesian Inference for the Analysis of Sub-temporal Resolution

Data (BIASD)

Given their inherent ability to avoid ensemble averaging, time-resolved single-molecule techniques have

revolutionized the study of biological mechanisms by enabling distributions of molecular properties to be

observed, transiently sampled reaction intermediates to be characterized, and stochastic fluctuations from

equilibrium to be investigated [1]. Despite their impact, however, these techniques continue to be signif-

icantly limited by the maximum time resolutions that can be achieved while still maintaining acceptable

signal-to-noise ratios (SNR) and sufficient experimental throughput (i.e., observation of a statistically signif-

icant number of molecules given a feasible experimental effort) [2]. For example, single-molecule wide-field

fluorescence microscopy- [3, 4], force spectroscopy- [5], and tethered particle motion [6] approaches are typ-

ically limited to time resolutions of milliseconds to hundreds of milliseconds per data point. Consequently,

these single-molecule methods often fail to detect or properly characterize biomolecular processes, such

as early steps in ligand binding and/or dissociation, structural domain rearrangements, or local folding and

unfolding events that occur on the microsecond to millisecond timescale [7, 8]. Although the time resolution

of some techniques can be improved so that they might be able to report on these processes, such as by

performing single-molecule fluorescence microscopy experiments with a confocal, rather than a wide-field,

fluorescence microscope, this often comes at the cost of a significant decrease in the SNR and/or a several

orders of magnitude decrease in the experimental throughput, either of which can be as powerful a limitation

as the lower time resolution [2].

∗ Adapted from Kinz-Thompson, C.D., Gonzalez, Jr., R.L. Temporal Super-Resolution, in preparation.
Additionally, adapted Kinz-Thompson, C.D.?, Fei, J.?, Gonzalez, Jr., R.L. Temperature-dependent, Single-molecule FRET Studies
of Macromolecular Dynamics, in preparation.
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To push beyond the time-resolution limitations of time-resolved single-molecule techniques without alter-

ing their SNRs or experimental throughputs, we have developed a computational approach, which we call

Bayesian Inference for the Analysis of Sub-temporal-resolution Dynamics (BIASD), that can infer the rates

of transitions between multiple ligand-binding or conformational states (hereafter referred to as “states") of

a single molecule from the analysis of any time-resolved, single-molecule experimental signal–even if those

rates are faster than the time resolution of the recorded experimental signal. By using Bayesian inference,

BIASD employs a natural framework with which to describe the precision that the amount of data collected

during the single-molecule experiment will lend to the determination of the parameters governing the single-

molecule dynamics. Primarily due to recent developments in computational tractability, Bayesian inference

has become a powerful method for the analysis of biophysical data, such as determining the phases of

X-ray reflections in X-ray crystallographic studies [9], performing simultaneous phylogenetic analysis of nu-

cleotide and protein datasets [10], elucidating the number of structural classes present in cryogenic electron

microscopy images [11], and ascertaining the number of states and the rates of transitions between those

states present in single-molecule fluorescence resonance energy transfer (smFRET) efficiency (EFRET ) ver-

sus time trajectories [12–14]. For a practical introduction to Bayesian inference, see Ref. 15 and Sec. 4.2.2.

Here, we describe the Bayesian inference-based framework underlying BIASD. We then validate BIASD

by accurately recovering the known rates of transitions between states and signal values corresponding

to each state that were used to generate computer-simulated signal versus time trajectories. Finally, we

apply BIASD to experimental data by using it to infer the unknown rates of transitions between states and

signal values corresponding to each state from experimentally observed EFRET versus time trajectories–these

particular EFRET versus time trajectories have thus far remained challenging to accurately analyze due to the

presence of transitions that are fast relative to the time resolution of the EFRET versus time trajectories [16].

Remarkably, the results of our studies demonstrate that, even when the rates of transitions between states

are orders of magnitude faster than the time resolution of the signal versus time trajectories, BIASD permits

accurate inference of the rates of transitions between these states and the signal values corresponding to

these states.

4.2 Bayesian Inference-based Framework Underlying BIASD

In biomolecular systems, functional motions–such as those involved in ligand binding and dissociation pro-

cesses, or large-scale conformational rearrangements–very often involve the simultaneous formation and/or
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disruption of numerous, non-covalent interactions. The relatively low probability of simultaneously form-

ing and/or disrupting these numerous interactions can therefore result in large, entropically dominated,

transition-state energy barriers for such functional motions [17, 18]. Consequently, individual biomolecules

are generally expected to exhibit effectively discrete and instantaneous transitions between relatively long-

lived states [8], an expectation that is consistent with the step-like transitions that are generally observed

in time-resolved single-molecule experiments [19]. By definition, such time-resolved single-molecule tech-

niques record the time evolution of an experimentally observable signal originating from an individual molecule

(i.e., a signal versus time trajectory) that, ideally, conveys information about the time evolution of the under-

lying state of that molecule. Correspondingly, the analysis of a single-molecule signal versus time trajectory

frequently involves thresholding the trajectory at particular signal values or modeling the trajectory (e.g., us-

ing a hidden Markov model (HMM)) such that each data point in the signal versus time trajectory is assigned

to a single, specific state of the molecule [20, 21]. As a result, these methods ‘idealize’ the original signal

versus time trajectory into a state versus time trajectory. From the idealized state versus time trajectory, the

distribution of dwell times spent in a particular state before undergoing a transition to another state can be

used to determine the rates of the transitions between states, and the distribution of observed signal values

originating from a particular state can be used to determine the signal value corresponding to that state [1,

22].

An important consideration when idealizing signal versus time trajectories is that whenever an individual

molecule undergoes a transition from one state to another, the transition occurs stochastically during the time

period, τ , over which the detector collects and integrates the signal to record a data point in the signal versus

time trajectory. Thus, the probability that a transition will coincide exactly with the beginning or end of the τ

in which it takes place is essentially zero. As a result, when a transition takes place, the signal value that

is recorded during that τ does not solely represent either of the states involved in that transition. Instead, it

represents the average of the signal values corresponding to the states that are sampled during τ , weighted

by the time spent in each of those states. This time averaging makes it imprudent, if not incorrect, to idealize

the signal value recorded during such a τ by assigning it to any one particular state, because themolecule will

have occupied multiple states during that τ . Notably, when the rates of transitions between states become

comparable to or greater than 1/τ , there is a large probability that the τs of a signal versus time trajectory

will contain one or more transitions, and that, consequently, many of the signal values of the signal versus

time trajectory will exhibit this time averaging. Idealization of such signal versus time trajectories, therefore,

introduces significant errors into the resulting dwell-time- and signal-value distributions as well as into the
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rates of transitions between states and signal values corresponding to those states that are determined from

these distributions.

In order to overcome the potential errors associated with determining rates of transitions and signal

values from the analysis of idealized state versus time trajectories, BIASD instead determines the rates of

transitions and signal values by analyzing the fraction of time that a molecule spends in each state during

the τ corresponding to each signal value in a signal versus time trajectory. To illustrate this approach, we

consider the case of a single molecule that undergoes stochastic and uncorrelated (i.e., Markovian) and

reversible transitions between two states, denoted 1 and 2, (i.e., 1 −⇀↽− 2, with forward and reverse rate

constants of k1 and k2, respectively) that have unique signal values of ε1 and ε2. If the fraction of time that

the molecule spends in state 1 during a particular τ is f, then, because of the two-state nature of the system,

the fraction of time that the molecule spends in state 2 during that τ is 1-f. It is important to note that, although

the molecule is at equilibrium between states 1 and 2, the value of f for any particular τ will not necessarily

be the equilibrium value of f = (1 + (k1/k2))−1, because τ might not be long enough for sufficient time

averaging to occur (i.e., to invoke ergodicity). Instead, each τ will exhibit a different, time-averaged value of

f.

The exact value of f for a particular τ will depend upon the molecule’s stochastic path through state-space

during τ . As such, a probabilistic description of f, which accounts for all possible paths through state-space,

is needed to calculate the likelihood of observing a particular value of f during a τ . In particular, for the

reversible, two-state system considered here, such a description, which has roots in nuclear magnetic reso-

nance chemical exchange experiments [23] and sojourn-time distributions [24], was first given by Dobrushin

[25]; in its use here, this expression depends upon k1, k2, and τ , and is derived in Sec. 4.2.1. Experimentally,

if the exact values of f, ε1, and ε2 during each τ were known, one would be able to calculate the expected

value of the corresponding time-averaged signal, µ, for each τ because it would be the linear combination

µ = (ε1 · f) + (ε2 · (1− f)). Unfortunately, the analysis of time-resolved single-molecule experiments deals

with the opposite problem–observing a signal, D, during each τ and trying to infer f, ε1, and ε2–with additional

uncertainty that is due, in part, to noise in the measurement of D.

A conservative, yet generally applicable, approach to analyzing the value of D recorded during each τ is to

treat it as a noisy measurement of µ. By assuming that detection noise (e.g., readout noise) dominates over

other possible sources of noise (e.g., fluctuations in laser power) and that such detection noise is effectively

uncorrelated, the observed values of D will have a probability that is distributed according to a normal (i.e.,

Gaussian) distribution with a mean, µ, and a standard deviation, σ, corresponding to the amount of noise in
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D. However, since µ depends upon f, which is not an experimental observable, we have no way of knowing

the exact value of µ during a measurement, information that would ordinarily be required to calculate the

probability of observing a particular value of D. To circumvent this experimental limitation, this dependence

upon f can be removed by marginalizing f out of the expression for the stochastic probability distribution of

D that was described above. This marginalized probability distribution of D then describes the likelihood of

experimentally observing a particular value of D during a τ as a function of the rates of transitions between

the states (k1, and k2), the signal values corresponding to those states (ε1, and ε2), and the amount of noise

in D (σ), regardless of the exact value of f (Fig. 4.1) (See Sec. 4.2.2 for a full derivation of the expression

describing the marginalized probability distribution of D for a two-state system).

With such an expression describing the marginalized probability distribution of D, we can then use

Bayesian inference to estimate the model parameters governing the kinetics of the single-molecule sys-

tem (i.e., k1, k2, ε1, ε2, and σ) from the series of D that comprise each of the signal versus time trajectories.

Unfortunately, Bayesian inference on a multi-parameter system, such as the one described here, results in

a multi-dimensional, joint-probability distribution of the model parameters, known as a posterior probability

distribution, that is difficult to evaluate [15]. In order to overcome this difficulty, we evaluate the posterior

distribution of the model parameters by numerically sampling it using a Markov chain Monte Carlo (MCMC)

sampling method [26, 27]. Although alternative methods that approximate the posterior distribution of the

model parameters, such as the Laplace approximation or variational inference, might be more computation-

ally tractable, MCMC sampling is advantageous in that, unlike such approximation methods, it can provide

an exact result [27]. Regardless of the choice of method, however, the most important aspect of the ap-

proach described here is that we can evaluate or estimate the posterior distribution of the model parameters

from the series of D that comprise each of the single-molecule signal versus time trajectories in a manner

that is completely irrespective of the time resolution of the trajectories.

4.2.1 Distributions of Fractional Occupancies

Consider a single-molecule whose dynamics are governed by the stochastic, two-state system,

1
k1−⇀↽−
k2

2. (4.1)

For a memoryless (i.e., Markovian, or lacking dynamic disorder) two-state system, the individual lifetimes

that the single-molecule dwells in states 1 and 2 are exponentially distributed with rate constants k1 and k2,
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Figure 4.1: Graphical model for two-state BIASD. In BIASD, the dependence of the observed, D, upon the fractional occupancy, f,
(Left) is marginalized to yield the graph on the right.

respectively. In this case, the equilibrium probabilities of finding states 1 and 2 occupied are,

p1 =
k2

k1 + k2
, and (4.2)

p2 = 1− p1 =
k1

k2 + k2
, (4.3)

respectively. However, during a period of observation, t = 0 to τ , a single-molecule will begin in one of the

two states, and then will processively transition between the two states a random number of times, which is

governed by k1, k2, and τ . Along these lines, during the observation period, the time spent in the ith state

(i.e., the sojourn time), Ti, is also governed k1, k2, and τ . For T1 and T2 > 0 sec, the probability distribution

of T1 is known to be [24, 25],

P † (T1|k1, k2, τ) = e−k1T1−k2(τ−T1) ·

[
(p1k1 + p2k2) · I0

(
2(k1k2T1(τ − T1))1/2

)
+ (k1k2)

1/2

(
p1

(
T1

τ − T1

)1/2

+ p2

(
τ − T1

T1

)1/2
)
· I1
(

2(k1k2T1(τ − T1))1/2
)]

,

(4.4)

where p1 and p2 are the probability of finding the single-molecule is states 1 and 2, respectively, (i.e., at

equilibrium, p1 = k2

k1+k2
and p2 = k1

k1+k2
), and I0 and I1 are modified Bessel functions of the first kind. This

distribution is not normalized because it lacks density at T1 = 0 and T1 = τ . These conditions represent the

situations when the single-molecule is exclusively in state 1 or in state state 2, respectively, for the entire

duration of the observation period. Ad hoc, at equilibrium, the contributions to the probability distribution

at these points should be the equilibrium population-weighted probability that the single-molecule does not

undergo a transition out of the ith during the observation period; this probability is the survival probability (i.e.,
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1 - the cumulative distribution function) of the exponential distribution, which is e−kiτ . Therefore, considering

these contributions, the entire probability distribution of time spent in state 1 during the observation period

is,

P (T1|k1, k2, τ) = P † (T1|k1, k2, τ) + p1e
−k1τ · δ (τ − T1) + p2e

−k2τ · δ (T1) , (4.5)

where δ is the Dirac delta function, which ensures that these terms only contribute when the single-molecule

is exclusively in one of the two states. This expression also provides the probability distribution of T2 during

an observation period by interchanging the rate constants. If the observation period, τ , is known, then the

probability distribution of the total time spent in state 1 during an observation period given in Eqn. (4.5), can

be transformed into the probability distribution of the fraction of time spent in state 1 during the observation

period, f . This transformation is,

P (f |k1, k2, τ) = P (T1 = f · τ |k1, k2, τ) · |J |−1; where f ≡ T1

τ
, so ∂f

∂T1
=

1

τ
and |J |−1 = τ, (4.6)

where J is the Jacobian. Therefore, by plugging Equation (4.5) into Equation (4.6) and making the substi-

tution T1 = fτ ,

P (f |k1, k2, τ) =
k2

k1 + k2
τe−k1τ · δ (τ − (fτ)) +

k1

k1 + k2
τe−k2τ · δ ((fτ))

+ 2
k1k2

k1 + k2
τe−k1(fτ)−k2(τ−(fτ)) ·

[
I0 (y) +

k2 (fτ) + k1 (τ − (fτ))

y
· I1 (y)

]
,

(4.7)

where y ≡ 2
√
k1k2 (fτ) (τ − (fτ)) = 2τ

√
k1k2f (1− f).

Noting the identity,

δ (ax) =
1

|a|
· δ (x) , (4.8)

we can simplify Equation (4.7) to yield,

P (f |k1, k2, τ) =
k2

k1 + k2
e−k1τ · δ (1− f) +

k1

k1 + k2
e−k2τ · δ (f)

+ 2
k1k2

k1 + k2
τe−(k1f+k2(1−f))τ ·

[
I0 (y) +

(k2f + k1(1− f)) τ

y
· I1 (y)

]
.

. (4.9)

140



CHAPTER 4. TEMPORAL SUPER-RESOLUTION

Above, we have chosen to simplify Equation (4.9) so that it is apparent that it is equivalent to the expression

of Berezhkovskii and coworkers, and that used by Gopich and coworkers [23, 28].

Though, we note several typos in those publications. In Berezhkovskii et al., in Equation (3.16), the term

exp
(
k1k2τ

2

)
should read exp

(
k1k2τ
s

)
, and in Equation (3.18), after the δ (τ − T ), there should be a plus sign

[23]. In Gopich et al., in Equation (S47) the arguments in the Dirac delta functions in the first two terms

should be interchanged [28]. We mention these typos, because below we replicate and elaborate upon the

derivation of P (f |k1, k2, τ) from Berezhkovskii et al. [23], using the variables defined earlier instead of the

definitions from that work. This derivation shall be useful for Section 4.2.1.

Following Berezhkovskii and coworkers [23], we shall derive P (f |k1, k2, τ) for the memoryless, two-state

system described above .

P (f |k1, k2, τ) = p1 · P (f |k1, k2, τ, 1) + p2 · P (f |k1, k2, τ, 2) , (4.10)

where P (f |k1, k2, τ, i) is the probability distribution of f given that the single-molecule begins in the ith state.

As before, P (f |k1, k2, τ, i) is calculated by transforming P (T1|k1, k2, τ, i) using

P (f |k1, k2, τ, i) = P (T1 = fτ |k1, k2, τ, i) · |J |−1. (4.11)

To calculate P (T1|k1, k2, τ, 1), we define an indicator function,

χ (t) =

1 if the single-molecule is in state 1 at time t

0 otherwise
, (4.12)

which means that,

T1 =

∫ τ

0

dt · χ (t) . (4.13)

Now, consider the Fourier transform of P (T1|k1, k2, τ, 1),

P̂ (ω|k1, k2, τ, 1) =

∫ ∞
−∞

dT1 · eiωT1 · P (T1|k1, k2, τ, 1) , (4.14)
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and note that this is the expectation value 〈eiωT1〉 over all trajectories starting in state 1; so, we can write

P̂ (ω|k1, k2, τ, 1) = 〈eiω
∫ τ
0
dt·χ(t)〉. (4.15)

These types of averages can be written as a sum two terms,

P̂ (ω|k1, k2, τ, 1) = c1 (ω|k1, k2, τ, 1) + c2 (ω|k1, k2, τ, 1) , (4.16)

where c =

c1
c2

 satisfies dc
dτ = R · c solved with the condition c (τ = 0) =

1

0

, and

R = K +

iω
0

 =

iω − k1 k2

k1 −k2

 .

This can be solved using the Green’s function approach in Laplace space,

c(τ) = G(τ) · c(τ = 0), (4.17)

by solving

G(τ) = L−1
(
G̃(s)

)
, (4.18)

where L−1 is the inverse Laplace transform, and

G̃(s) = (s · I−R)
−1

=

s+ k1 − iω −k2

−k1 s+ k2


−1

, (4.19)

where I is the identity matrix. Now, for a 2x2 matrix,

(A)−1 =
1

|A|
·

 A22 −A12

−A21 A11

 ; (4.20)
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so, from Equation (4.19),

G̃(s) =
1

(s+ k1 − iω) (s+ k2)− k1k2
·

s+ k2 k2

k1 s+ k1 − iω

 , (4.21)

but, because of the initial conditions of c (τ = 0) =

1

0

 and the linearity of the Laplace transform, we only

need to consider the first column of the matrix, i.e.,

č(s) =
1

(s+ k1 − iω) (s+ k2)− k1k2
·

s+ k2

k1

 , (4.22)

therefore, the solution of Equation (4.16) in Laplace space is,

P̌ (ω|k1, k2, s, 1) = č1 + č2 =

(
1 1

)
· č(s) =

(s+ k2) + k1

(s+ k1 − iω)(s+ k2)− k1k2
. (4.23)

Expanding the denominator, and then simplifying yields,

P̌ (ω|k1, k2, s, 1) =
(s+ k1 + k2)

s(s+ k1 + k2)− iω(s+ k2)

=
1

s− iω
(

s+k2

s+k1+k2

) . (4.24)

The probability distribution in Equation (4.24) is the Fourier transform and Laplace transform of our initially

desired probability distribution, P (T1|k1, k2, τ, 1). To obtain our desired distribution, we must perform an

inverse Fourier transform, F−1, and an inverse Laplace transform, L−1. Starting with the inverse Fourier

transform, we write

P̃ (T1|k1, k2, s, 1) = F−1
(
P̌ (ω|k1, k2, s, 1)

)
=

1

2π

∫ ∞
−∞

dω · e−iωT1 · P̌ (ω|k1, k2, s, 1). (4.25)

Noting the identity that

1

2π

∫ ∞
−∞

dω · e−iωT1
1

a− iωb
=

1

b
· e−

aT1
b , (4.26)
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if a = s and b = s+k2

s+k1+k2
, then

P̃ (T1|k1, k2, s, 1) =

(
s+ k1 + k2

s+ k2

)
· e−T1

(
s(s+k1+k2)

(s+k2)

)

=

(
1 +

k1

s+ k2

)
· e
−T1

(
s2+(k1+k2)s+(k1k2−k1k2)

(s+k2)

)

=

(
1 +

k1

s+ k2

)
· e−T1

(
(s+k1)(s+k2)

(s+k2)
− k1k2
s+k2

)

=

(
1 +

k1

s+ k2

)
· e−T1

(
s+k1− k1k2

s+k2

)
. (4.27)

Finally, the inverse Laplace transform will yield the desired probability distribution,

P (T1|k1, k2, τ, 1) = L−1
(
P̃ (T1|k1, k2, s, 1)

)
= L−1

((
1 +

k1

s+ k2

)
· e−T1

(
s+k1− k1k2

s+k2

))
= e−k1T1 · L−1

((
1 +

k1

s+ k2

)
· e−T1

(
s− k1k2

s+k2

))
. (4.28)

This can be simplified more by using the identity,

L−1
(
F̃ (s+ a)

)
= e−aτL−1

(
F̃ (s)

)
(4.29)

and setting a = k2 to yield,

P (T1|k1, k2, τ, 1) = e−k1T1e−k2τL−1

((
1 +

k1

s

)
· e−T1(s−k2− k1k2

s )
)

= e−k1T1−k2τ+k2T1L−1

((
1 +

k1

s

)
· e−T1(s− k1k2

s )
)
. (4.30)

Then, use the identity

L−1
(
e−sT1 · F̃ (s)

)
= F (τ − T1) ·H(τ − T1), (4.31)

where H is the Heaviside step function, in order to change the τ to τ − T1 for

P (T1|k1, k2, τ, 1) = e−(k1T1−k2(τ−T1))H(τ − T1)L−1

((
1 +

k1

s

)
· e

T1k1k2
s

)
, (4.32)
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where from now the inverse Laplace transform is over τ − T1 instead of τ ; this follows for the remainder of

the derivation. Knowing the following identities,

L
(
I0

(
2
√
at
))

=
1

s
· ea/s, and (4.33)

L
(

1√
t
· I1
(

2
√
at
))

=
1√
a
·
(
ea/s − 1

)
, (4.34)

we can rearrange the previous expression in order to find these forms present in the Laplace transformed

expression. Noting that, since the Laplace transform is an integral transform, it has linearity,

i.e., L (aF (t) + bG(t)) = aF̃ (s) + bG̃(s), we write

P (T1|k1, k2, τ, 1) = e−(k1T1−k2(τ−T1)) ·H(τ − T1) · L−1

(
ek1k2T1/s − 1 + 1 +

k1

s
ek1k2T1/s

)
= e−(k1T1−k2(τ−T1)) ·H(τ − T1) ·

[
L−1 (1) + L−1

(
ek1k2T1/s − 1

)
+ L−1

(
k1

s
ek1k2T1/s

)]
= e−(k1T1−k2(τ−T1)) ·H(τ − T1) ·

[
δ (τ − T1) +

√
k1k2T1

τ − T1
· I1
(

2
√
k1k2T1(τ − T1)

)
+

√
k1k2T1

τ − T1
k1 · I0

(
2
√
k1k2T1(τ − T1)

)]

= e−k1τ · δ (τ − T1) + e−(k1T1−k2(τ−T1)) ·H(τ − T1) ·

[√
k1k2T1

τ − T1
· I1
(

2
√
k1k2T1(τ − T1)

)
+ k1 · I0

(
2
√
k1k2T1(τ − T1)

)]
. (4.35)

This expression can then be transformed into our desired probability distribution, P (f |k1, k2, τ, 1), using

Equation (4.11) to yield,

P (f |k1, k2, τ, 1) = τ · e−k1τ · δ(τ − fτ) + τ · e−(k1fτ−k2(τ−fτ)) ·H(τ − fτ)

[√
k1k2fτ

τ − fτ
· I1(y) + k1 · I0(y)

]

= e−k1τ · δ(1− f) + τ · e−τ(k1f−k2(1−f)) ·

[√
k1k2f

1− f
· I1(y) + k1 · I0(y)

]
, (4.36)

where y ≡ 2τ
√
k1k2f(1− f), the Dirac delta function identity in Equation (4.8) was used to cancel the τ in

the first term, and the Heaviside step function was removed because it was redundant with the support of f.

In order to derive P (f |k1, k2, τ, 2), a nearly identical approach is used. Though, an ad hoc derivation can

be made by beginning with Equation (4.35), relabeling T1 to T2, interchanging k1 and k2, and performing the
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transformation to P (f |k1, k2, τ, 2) using the definition T2 = (1 − f)τ . Finally, using those results, we revisit

Equation (4.10) and plug in to get

P (f |k1, k2, τ) =
k2

k1 + k2

(
e−k1τδ(1− f) + k1τ

(
I0(y) +

√
k2f

k1(1− f)
· I1(y)

)
· e−τz

)

+
k1

k1 + k2

(
e−k2τδ(f) + k2τ

(
I0(y) +

√
k1(1− f)

k2f
· I1(y)

)
· e−τz

)
, (4.37)

where z ≡ k1f + k2(1 − f). This is what was to be demonstrated. This expression is equivalent to that

derived earlier in Equation (4.9).

N-state and Non-Markovian Systems Much like the two-state system described above, the probability

distributions for the fractional occupancies in an N-state kinetic scheme (i.e., one where a single-molecule

can exist in N different states and transition between states i and j with rate constant kij) can be also be

derived from a transformation of the probability distribution of the time spent in a state during a measure-

ment period. Such a distribution of the total sojourn time spent in a particular state has been discussed by

several authors [29, 30]. However, in order to use such a distribution for the likelihood function described in

Section 4.2.2, this distribution must be the joint-probability distribution of the total sojourn times for the N - 1

independent states; there are N-1 independent states because
∑N
i=1 Ti = τ .

Thus far, we have only described kinetic schemes where the lifetimes of a single-molecule in a particular

state are assumed to be exponentially distributed. This is not always the case, as, experimentally, single-

molecule systems have been observed that have power-law distributed lifetimes, or rather have memory

effects or exhibit dynamic disorder (i.e., the lifetimes in a state are time-dependent). Much like the N-state

system, such effects can be accounted for with BIASD by deriving the expected probability distribution of the

fractional occupancies for the desired kinetic model. For the two-state system, Berezhkovskii and coworkers

describe a method to easily incorporate non-exponential lifetimes into their derivation, which was replicated

above [23]. Briefly, the form for the desired probability distribution given the particular type of lifetimes desired

is derived in joint Laplace-Fourier space. It seems that the inverse Fourier transformmay be relatively simple

to compute analytically, while the inverse Laplace transform can bemore difficult. In such a case, the Laplace

transform can be numerically inverted [31]. For instance, the Talbot algorithm as described by Abate and
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Whitt,

F (t,M) =
2

5t

M−1∑
k=0

Re

(
γk · F̃

(
δk
t

))
, (4.38)

whereM is an integer related to the precision of the numerical inversion, and

δ0 =
2M

5
, δk =

2kπ

5
(cot(kπ/M) + i), for 0 < k < M, and (4.39)

γ0 =
1

2
eδ0 , γk =

[
1 + i(kπ/M)(1 + cot2(kπ/M))− i cot(kπ/M)

]
· eδk , for 0 < k < M. (4.40)
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Figure 4.2: BIASD Likelihood function calculated by numerical inverse of Laplace transform. A signal verse time trajectory was
simulated for 50000 sec with τ = 1 s, ε1 = 0.1, ε2 = 0.9, σ = 0.02, k1 = 1 s−1, k2 = 2 s−1. The histogram of this trajectory is shown
in blue. The BIASD likelihood function described in Section 4.2.2 was calculated using a probability of fractional occupancy of state 1
that was calculated by numerically inverting the Laplace transform, where M = 64. This result is exact to within numerical error.

Calculating the numerical inversion for the memoryless, two-state system described above, yields the

exact result of Equation (4.9). This expression for the numerically inverted probability distribution can be

used to calculate the likelihood function for BIASD as described in Section 4.2.2. This likelihood function fits

simulated two-state data exactly (Fig. 4.2).

Notably, Gopich and Szabo have shown how to approximate an N-state system using Gaussians [32].

This would allow for fast and analytical calculations of the occupation probabilities, however, it is special-

ized to photon-counting fluorescence resonance energy transfer experiments (i.e., experiments with poisson

counting statistics), and assumes that during a single measurement period, transitions only occur between

two states.

147



CHAPTER 4. TEMPORAL SUPER-RESOLUTION

4.2.2 Bayesian Inference Overview

Bayesian inference allows for the parameters describing an initial hypothesis, θ, to be modified to account

for new data, D. Mathematically, this process can be written using Bayes’ rule,

p(θ|D) =
p(D|θ) · p(θ)

p (D)
=

p(D|θ) · p(θ)∑
(p(D|θ) · p(θ))

∝ p(D|θ) · p(θ) (4.41)

which is analogous to saying that the probability of the hypothesis after having seen the data (the posterior

probability, p(θ|D)) is proportional to the product of the probability of the data given the hypothesis (the

likelihood, p(D|θ)) and the initial probability of the hypothesis itself (the prior probability, p(θ)). For a highly

recommended introduction to Bayesian inference written for scientists such as chemists and physicists, see

Ref. 15. To calculate the probability of the hypothesis given a series of single-molecule observations, one

can use Bayes’ rule, and a model for the data, which provides an expression for likelihood. Unfortunately,

direct enumeration of the posterior distribution can be computational expensive, especially with a large

number of parameters. As an alternative, methods such as Markov chain Monte Carlo (MCMC) explore the

expansive hyper-volume of the posterior distribution in a muchmore economical manner. Sufficient sampling

of the posterior probability distribution then provides random samples, which can be used to statistically

describe the posterior probability distribution (see below).

Likelihood Function A simple model for the signal emitted from a two-state single-molecule is that each

datapoint is normally distributed about a mean that is a linear combination of the mean emissions from each

of the two states. For instance, if a molecule is in state 1 for the entire ith period of observation, the observed

emission signal, Di, would be centered at ε1. Similarly, pure state 2 emission would be centered at ε2. An

observation period with a fractional occupation of these states would then have an emission signal centered

at a linear combination of these ε (i.e., ε1f + ε2 (1− f)). To account for factors such as detection noise, the

probability of observing a particular emission value given the fractional occupation during that observation

period can be taken as a normal distribution centered at µ = ε1f + ε2 (1− f) with a standard deviation, σ,

P (Di|ε1, ε2, σ, f) =
1√

2πσ2
· e
−1

2σ2 (Di−(ε1f+ε2(1−f)))2

. (4.42)

Unfortunately, the exact fractional occupation during the observation period is not a parameter that is ob-

served during an experiment; so, Equation (4.42) is useless. Instead, the probability distribution of the
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fractional occupation can be derived; the exact form for the memoryless two state model, P (f |k1, k2, τ), was

given in Section 4.2.1. Knowing this probability distribution allows the dependence upon f to be removed

from Equation (4.42); this process is known as marginalization. The resulting, marginalized probability dis-

tribution using the exact probability distribution given in Equation (4.9) is,

P (Di|ε1, ε2, σ, k1, k2, τ) =

∫ 1

0

df · P (Di|ε1, ε2, σ, f) · P (f |k1, k2, τ) (4.43)

=
1√

2πσ2
·
[

k2

k1 + k2
e−

1
2 (Di−ε2σ )

2
−k1τ +

k1

k1 + k2
e−

1
2 (Di−ε1σ )

2
−k2τ

+
2k1k2τ

k1 + k2

∫ 1

0

df · e−
1
2

(
Di−(ε1f+ε2(1−f))

σ

)2
−(k1f+k2(1−f))τ ·

(
I0(y) +

(k2f + k1(1− f))τ

y
· I1(y)

)]
(4.44)

In this form, the integral can be computed numerically, for instance, with a Gaussian quadrature method.

Having experimentally observed a signal versus time trajectory, D = [D1, · · · , DN ], we can calculate the

likelihood of observing this particular trajectory, L ≡ P (D|Θ); this expression is the product of the probability

of the observed signal during each measurement period, P (Di|ε1, ε2, σ, k1, k2, τ), which is

L = P (D|Θ) = P (D|ε1, ε2, σ, k1, k2, τ) =

N∏
i=1

P (Di|ε1, ε2, σ, k1, k2, τ, ) (4.45)

This assumes that the datapoints are independent and identically distributed. That assumption is reason-

able for the case of fast dynamics (i.e., k1τ or k2τ > 1), where subsequent signal measurements are made

during a time when the single-molecule occupies several different states. For the case of slow dynamics,

if there are a sufficient number of measurements in the signal versus time trajectory such that the single-

molecule can be considered at equilibrium (i.e., f̄ ≈ k2/(k1 + k2)), this assumption amounts to a first-order

expansion of the fractional occupation probability – thus, we believe it to be a reasonable approximation.

Moreover, as we show in the main text, under this assumption, the likelihood function performs well in this

regime.

Finally, given a large number of measurements in D, L can easily underflow on a computer; so, it is

better computed on a log scale, since this is monotonic. The resulting log-likelihood, ln(L), is

ln(L) = ln (P (D|Θ)) =

N∑
i

ln (P (Di|ε1, ε2, σ, k1, k2, τ)) . (4.46)

Unfortunately, in the case of the exact probability distribution for the memoryless, two-state system, be-
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cause of the four terms in the expression for P (Di|ε1, ε2, σ, k1, k2, τ), the summation in the log-likelihood in

Equation (4.46) does not simplify this expression.

Prior Distributions To some, the idea of a prior distribution is concerning, and even seems subjective.

However, it is not a cause for concern. Probabilities are always conditional, and setting a prior probability

is simply equivalent to encoding these initial conditions. For instance, if a particular parameter describes

the magnitude of something, it must be a greater than or equal to zero. Already, in defining this particular

parameter as a magnitude, we have begun to describe our initial knowledge of the system (i.e., to set the

prior). In this sense, since even the act of defining a parameter is ‘subjective’, setting a prior should not bother

anyone much more than does defining a model system. Objectivity is ingrained in this process since, given

the same initial conditioning, two rational individuals should produce the same prior distribution [15]. Thus,

a prior probability distribution should just be considered a manner with which to formally and mathematically

define a system.

Certain types of parameters are more conveniently represented by certain types of probability distribu-

tions. Just considering the allowed values of particular parameters and the support of particular distributions,

probabilities and ratios are conveniently represented with beta distributions, magnitudes and rates are con-

veniently represented with gamma distributions, and positions and signals are conveniently represented by

normal distributions. These distributions are given in Appendix B.

For the prior distributions used for BIASD when analyzing single-molecule fluorescence resonance en-

ergy transfer (smFRET) experiments, we typically employ beta distributions for ε1 and ε2, because they are

ratios of distances or photon counts. We use a gamma distribution for σ, because it represents the mag-

nitude of the noise. Finally, for k1 and k2, we also use gamma distributions, because these rate constants

represent a number per time and therefore cannot be negative.

Consider a model parameter and how to go about setting the corresponding prior probability distribution.

Given no additional previous knowledge of a system, it seems reasonable that the prior probability distribution

should be uniform for every possibility (e.g., the idea of equal, a priori probability from statistical mechanics).

This is sometimes known as an uninformative prior, since no possibility is favored over the others; though,

this is slightly misleading, because the support for the distribution must be chosen beforehand, and as such,

prior knowledge has already been encoding into the prior. On the other hand, if one were absolutely certain

about the value of a parameter, a Dirac delta function could be chosen as the prior probability distribution–

this choice is a very strong statement about the system. This is not recommended, because it is equivalent
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to saying that there is no possible way that the parameter value is different than specified; even the values

of physical constants change in time as measurements become more precise.

Most prior probability distributions should be somewhere between the uniform distribution and a delta

function. A weakly informative prior would be more similar to a uniform distribution, while a strongly infor-

mative prior would be more similar to a delta function; such similarities can be quantified with, for instance,

the Kullback-Leibler divergence, but, intuitively, less peaked distributions (i.e., large variance) are less infor-

mative.

To find the parameters that define the desired prior probability distribution, one can use the expressions

for the mean and variance of the distribution, set the variance to the desired magnitude, and, using the

mean as a constraint, solve for the parameter values. For beta distributions, smaller parameters (α and β)

yield less informative distributions; α = 1, and β = 1 is flat, and thus an uninformative prior. For gamma

distributions, smaller values of α yield less informative distributions; α = 1 is an exponential distribution. For

normal distributions, larger values of σ2 yield less informative distributions.

MarkovChainMonte Carlo Sampling Markov chainMonte Carlo (MCMC) allows for the efficient sampling

of high dimensional space (such as a posterior probability distribution) by taking a random walk along the

distribution (see Ref. 27 for an introduction). To do so, random steps are drawn from a proposal distribution,

and these steps are either accepted or rejected based upon an acceptance criteria. The sequence of steps

forms a Markov chain that is ideally able to traverse the relevant (i.e., higher probability) hyper-volume of

the N-dimensional space; thus eliminating the need to enumerate the entire N-dimensional space. To do so

effectively, the acceptance rate (AR) of steps must not be too large, because then the Markov chain will not

diffuse far from its initial location. Likewise, the AR must not be too small, because then the Markov chain

will not diffuse along the probability distribution at all.

One common MCMC method is the Metropolis algorithm (generalized by the Metropolis-Hastings (MH)

algorithm) [26]. Here, a proposed step is created by drawing random numbers from a distribution (e.g.,

normal), and the N variables describing the initial location in N-dimensional space, x, are incremented by

these values to generate a proposed location for the next step, x∗. The acceptance criteria for making this

step is based upon the relative probabilities of the proposed and the initial locations. If the proposed location

has a higher probability, the step will be accepted; otherwise, the step might still be accepted, but with certain
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probability. Explicitly, steps are accepted with probability

A = min
(

1,
P (x∗)

P (x)

)
, (4.47)

where A is the acceptance probability. After calculating A, a random number is then drawn from a uniform

distribution between 0 and 1, and the proposed step is accepted if the random number is greater than A,

and rejected if the random number is less than A.

Often, a proposed step is chosen from a normal distribution. As such,

x∗ ∼ x+N (µ = 0, σMH) , (4.48)

where σMH is the standard deviation. However, this is not entirely appropriate for certain parameters which

are not supported from (−∞,∞). In such a case, certain proposed moves might not exist in the parameter’s

space, and this makes the MCMC sampling less efficient. To circumvent such unsupported proposals, when

performing MCMC in this work, one can transform the parameter into a space with support from (−∞,∞),

generate a proposed step using a normal distribution, and then transformed this proposed, transformed

parameter back into the original parameter space. For parameters between 0 and 1 (i.e., εi for smFRET),

which might have beta distributed priors, the following (logit) scale can be used,

y ≡ ln(
x

1− x
), and

x =
ey

1 + ey
, (4.49)

where y is the transformed parameter, and x is the initial parameter. Similarly, for parameters which are

positive (e.g., σ, ki ), which might have gamma distributed priors, the following (logarithmic) scale can be

used,

y ≡ log10(x), and

x = 10y. (4.50)

Additionally, when performing MCMC in this work, we adaptively tuned the AR of the Markov chains. This

adaptive tuning allows the Markov chain to optimally explore the N-dimensional space. The intuition behind

this process is that if steps are rejected too often, then the distance between steps is too large and should
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be decreased; if steps are accepted too often, then the distance between steps is too small and should be

increased. For an N-dimensional space, the optimal AR is ∼0.25 [33]. To tune the Markov chain, the AR

is calculated for some number of previous steps; we chose five. Subsequently, the variance of the normal

distribution used to generate proposed moves is modified by setting

σMH,new = σMH,old ·

(√
2

.25
· AR

)
, (4.51)

where σMH is the standard deviation of the normal distribution in Equation (4.48).

Another variant of MCMC is component-wise MH. This approach is similar to the MH algorithm, but

instead of varying all N variables for each proposed step, only one variable is allowed to move at a time.

Thus, the proposed location differs from the initial location by the chosen variable. This proposal is accepted

in the same manner as in the Metropolis algorithm (see Equation (4.47)). However, once a proposed step

is accepted, the process is repeated with a different variable, until the Markov chain has moved through all

N-dimensions. The advantage of this approach is that it allows for separate adaptive tuning of the individual

dimensions.

4.2.3 Analysis Using BIASD

Here, we will summarize the process employed to analyze the data presented in the main text using BIASD.

Where necessary, all signal versus time trajectories were pre-processed to ensure two-state behavior. Ef-

fectively, this means truncating the trajectories at the first photophysical anomaly, such as photobleaching.

To begin analysis, prior probability distributions, as described in Sec. 4.2.2, were chosen for the five param-

eters in the model, ε1, ε2, σ, k1, and k2. Unless otherwise specified, the prior probability distributions for the

BIASD parameters were chosen to be:

ε1 ∼ Beta (αε1 , βε1)

ε2 ∼ Beta (αε2 , βε2)

σ ∼ Gamma (ασ, βσ)

k1 ∼ Gamma (αk1
, βk1

)

k2 ∼ Gamma (αk2 , βk2)
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ε1 and ε2 were chosen to be Beta-distributed to demonstrate the utility of BIASD for smFRET experiments.

The observable in smFRET experiments is the FRET efficiency, EFRET, which is approximated by

EFRET ≈
nacceptor

ndonor + nacceptor
≈

Iacceptor
Idonor + Iacceptor

, (4.52)

where n is the number of photons observed from the specified fluorophore, and I is the detector registered

intensity for the wavelength range of the specified fluorophore. Since the observable is supposed to the

ratio of photons, it is reasonable to model this as the probability of successful emission of a photon from the

donor fluorophore, which is ostensibly Beta-distributed if the probability is constant. The remaining three

parameters were chosen to be Gamma-distributed because of they are supported between 0 and∞.

The hyper-parameters describing these prior probability distributions were chosen so that, in the case of

the synthetic titration data, the mean of distribution corresponded to the synthetic value of the parameter.

For the pretranslocation complex data, the means were chosen from global, non-linear least-squares fits to

Equation (4.44) – individual signal versus time trajectories often show significant deviation from the global

fits. Once the desired variance in the distribution was decided upon (they varied depending upon the desired

analysis), the hyper-parameters were calculated bymoment-matching the distributions to the first and second

moments, E[X] and E[X2]. These calculations were:

Distribution α β

Beta E[X] ·
(
E[X](1−E[X])
(E[X2]−E[X]2) − 1

)
(1− E[X]) ·

(
E[X](1−E[X])
(E[X2]−E[X]2) − 1

)
Gamma E[X]2

(E[X2]−E[X]2)
E[X]

(E[X2]−E[X]2)

The posterior probability distributions for each individual signal versus time trajectory were calculated

using the log-likelihood function in Equation (4.46), using the exact form of the marginalized probability

distribution for each datapoint that is shown in Equation (4.44). The integral in the latter equation is computed

numerically using a Gaussian quadrature method. Again, this likelihood function assumes independent and

identically distributed datapoints.

To quantify the posterior probability distributions, a MCMC sampler was written in C. This sampler ini-

tialized each Markov chain at the mean of the prior probability distribution, and took component-wise steps

using the MH algorithm. Additionally, the step-sizes (σMH) for each component were adaptively tuned ev-

ery five steps. Only one Markov chain was run for each signal versus time trajectory, and it consisted of

at least 2000 steps for each component; since the chains were initialized at the prior mean, and the prior

mean was often set to the value used for the simulations, no burn-in phase was used. These choices were
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made because of the relatively long computational time required to calculate the log-likehood function for

an entire signal versus time trajectory, which is required to be performed multiple times each MH step; on

a 3.6 GHz AMD FX-8150 processor, choosing a successful sample for a single component took ∼ 0.2 sec,

and therefore each complete MCMC step took ∼ 1 sec.

Because the computational expense of obtaining samples constrained the total number of samples we

obtained, sufficient mixing of the Markov chain was ensured by checking autocorrelation functions of the

components of the Markov chains sampled by MCMC. These autocorrelation functions should indicate suf-

ficient lack of correlation to promote adequate sampling of the posterior probability distribution by MCMC.

In most cases, the autocorrelation length was much shorter than the number of MH samples in the Markov

chains performed on one of the sets of simulated signal versus time trajectories in the main text. However,

for the cases of only the very slowest and very fastest dynamics (i.e., lowest and highest concentration of

synthetic titrant, respectively), the autocorrelation lengths were slightly longer. However, they still became

uncorrelated in an adequate time, and even running a longer Markov chain (5000 steps) for these cases did

not affect the posterior probability distribution.

To quantify the MCMC sampled posterior probability distributions, we calculated the expectation values,

E[X] and E[X2], where X is one of the five BIASD parameters, from the MCMC samples. This was done

by weighting the samples by their posterior probability, which had first been normalized per Markov chain,

and then normalized so that the ensemble (e.g., all of the signal versus time series for a particular condition)

summed to one. More explicitly, we calculated

E[X] =
∑
i,j

Xi,j ·
1∑
j

1
· Pi,j (Θj |Dj)∑
i

Pi,j (Θj |Dj)
, (4.53)

where i indexes the MCMC samples, j indexes the signal versus time trajectories, and Xi,j and Pi,j are the

sample values and the posterior probabilities of the ith sample from the Markov chain of the jth signal versus

time trajectory. Calculation of E[X2] used the analogous weighting. These first and second moments were

then used to calculate the parameters of the appropriate probability distribution. The relevant parameters

for the prior distribution were determined by moment matching as described in the table above. Credible

intervals were then calculated from these ensemble, marginalized, MCMC-sampled posterior probability

distributions.
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4.2.4 Experimental Methods

Simulating Sub-temporal-resolution Trajectories An initial state was selected randomly, and then se-

quential random lifetimes were drawn from two exponential distributions with the appropriate rate constants.

A random starting point during the first lifetime was selected from a uniform distribution for the measure-

ment initiation time (t = 0 sec). The fractional occupancies of each state during each sequential τ were then

calculated from the sequence of lifetimes. These fractional occupation versus time trajectories were turned

into signal versus time trajectories by computing µ, and then adding normally distributed noise with standard

deviation, σ.

Idealizing Trajectories Idealized signal versus time trajectories were analyzed with a two-state maximum

likelihoodHMM (seeRef. 27), and used to analyze individual signal versus time trajectories; the convergence

threshold employed was 1x10−3. Rate constants from state i to j were then calculated from the off diagonals

of the transition matrix, pij , as kij = −ln(1 − pij)/τ . Signal versus time trajectories were also idealized by

thresholding any measurement period with signal less than (ε2 − ε1)/2 + ε1 into state one, and otherwise

into state two. Rate constants from state i to j were then calculated from the maximum-likelihood estimate

of the transition probability.

BIASD Calculations A Gaussian quadrature method for numerical integration and modified Bessel func-

tion evaluations, both from the GNU Scientific Library 1.16 [34], were used to numerically integrate the BI-

ASD likelihood function. The posterior probability distribution was sampled using a component-wise MCMC

method using the Metropolis-Hastings algorithm. The step sizes for the sampling method were adaptively

tuned to produce an acceptance ratio of 0.25. Additionally, based upon the choice of prior distributions,

parameters that were beta distributed were sampled by diffusion in a logit scaled space, and parameters

that were gamma distributed were sampled by diffusion in a log-10 scaled space. Ensemble-normalized,

posterior-probability-weighted first and second moments, E[X] and E[X2], of the samples were used to cal-

culate the corresponding estimates of the posterior probability distribution by moment-matching to the initial

choice of prior probability distribution.

Processing PRE-A EFRET Data Cy3 and Cy5 fluorescence intensity, ICy3 and ICy5, versus time trajectories

of the PRE-A complexes from the study by Wang and coworkers [16] were transformed into EFRET versus

time trajectories by calculating EFRET = ICy5/(ICy3 + ICy5) at each τ . Outliers where EFRET < -0.4 or EFRET >
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1.4 were then removed. The first photobleaching event in a time trajectory was detected by thresholding

I = (ICy3 + ICy5) at 1/e of the mean value of the first 20 data-points per trajectory, and this time was

manually adjusted were necessary to ensure the two-state behavior of the EFRET versus time trajectories.

The number of single-molecules retained in the 22, 25, 28, 31, 34, and 37 °C datasets were 66, 102, 77, 84,

65, and 104, respectively. Histograms of each dataset were fit to the BIASD likelihood function using non-

linear least-squares fitting, and used to set the means of the prior distributions employed for εGS1, εGS2, and

σ (beta distributed, beta distributed, and gamma distributed, respectively). The prior probability distributions

for kGS1 and kGS2 were both taken to be gamma distributions with a mean determined from the histogram

fitting and α = 1 to ensure a weakly-informative prior.

4.3 Analysis of Computer-Simulated Single-Molecule Signal Versus

Time Trajectories Reporting on the Kinetics of a Ligand Binding

and Dissociation Process

To validate BIASD, we simulated single-molecule signal versus time trajectories that report on the dynamics

of binding and dissociation of a ligand to its target biomolecule–a receptor. These dynamics were simulated

according to the two-state, reversible, Markovian kinetic scheme that was introduced in the previous section.

In this example, k1 and k2 represent the pseudo-first-order rate constant of ligand binding to the receptor

and the first-order rate constant of ligand dissociation from the receptor, respectively. Correspondingly, ε1

and ε2 represent the signal values of the receptor in the ligand-free state and the ligand-bound state, re-

spectively. As such, k1 is treated as a variable whose value at a particular ligand concentration is given by

k1 = k?1 · [L], where k?1 is the second-order rate constant for binding of the ligand to the receptor and [L] is

the ligand concentration, and k2 is treated as a constant whose value is not dependent on [L]. To begin, we

simulated a set of 10 individual receptors for 60 sec, where k1 and k2 were both set to 8 sec−1, using the

stochastic simulation algorithm [35]. The magnitudes of k1 and k2 were chosen so as to be comparable to

1 / τ (i.e., 10 sec−1), because, in this regime, the process of idealizing signal versus time trajectories into

state versus time trajectories begins to introduce errors into the analysis of the transition rate constants and

signal distributions of particular states (Sec. 3.3). Moreover, since k1 = k2 for these trajectories, arbitrarily

choosing the value of k?1 to be 3 µM −1 sec−1 (i.e., [L] = ∼2.67 µM ) yielded an equilibrium dissociation

constant, KD, in the µM range for this simulated system, which is typical of many naturally occurring, weakly
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interacting, ligand-receptor systems [2]. Notably, the finite length of the simulated signal versus time trajec-

tories (60 sec) is consistent with a typical length of time that single-molecule EFRET versus time trajectories

can be recorded before fluorophore photobleaching terminates data collection; this creates a limitation to the

amount of kinetic information contained in each simulation. Time-averaged signal versus time trajectories

were then generated from these simulations by using values of ε1 = 0.1, ε2 = 0.9, σ = 0.04, and τ = 0.1

sec. These values are typical of experimental EFRET versus time trajectories recorded using a wide-field,

total internal reflection fluorescence (TIRF) microscope. Expanding from this first set of simulated signal

versus time trajectories, we then repeated this simulation process while systematically increasing and de-

creasing the [L] by two orders of magnitude relative to the initial value of [L] = KD = ∼2.67 µM in order to

emulate a titration experiment–generating 16 additional sets of simulated signal versus time trajectories. Fi-

nally, all of these sets of simulated signal versus time trajectories were then analyzed using both threshold-

and HMM-based idealization methods as well as using BIASD as described in Sec. 4.2.3 in order to obtain

estimates of underlying simulation parameters. As shown in Figure 4.3, the values of k1 and k2 obtained

using idealization-based methods are highly inaccurate. The rate constants were systematically underesti-

mated across the entire range of [L]s that were simulated, and this worsens with increasing [L]. However, it

is notable that the values of k1 and k2 obtained using these methods are highly precise, exhibiting standard

error of the means (SEMs) that are exceedingly narrow across all [L]s–a misleading consequence of using

these methods. Somewhat surprisingly, k1 was underestimated at [L]s corresponding to a regime where k1

much less than 1 / τ . This underestimation arises from the fact that k2 is a constant that is comparable to

1 / τ across all [L]s in this simulation. As such, the transitions into the ligand-bound state of the receptor

that are missed by idealization of the signal versus time trajectories due to the rapid transitions back to the

ligand-free state, result in an over-estimation of the dwell-times in the ligand-free state and, consequently,

an underestimation of k1 (c.f., Sec. 3.3).

With regard to the values of ε1 and ε2 obtained using idealization-based methods, Fig. 4.5 demonstrates

that, while these methods can accurately determine the value of ε1 if the receptor preferentially occupies the

ligand-free state (low [L]) or ε2 if the receptor preferentially occupies the ligand-bound state (high [L]), the

time averaging caused by the large, simulated values of k1 shift the inferred value of ε1, sometimes quite

significantly, toward the simulated value of ε2, and vice versa.

In contrast to the idealization-based methods, the values of k1 and k2 obtained using BIASD are highly

accurate (Fig. 4.3). The simulated values of k1 and k2 are well encompassed by the posterior probability

distribution across the entire range of [L]s that were simulated. In addition, these results are remarkably
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Figure 4.3: Analysis of k1 and k2 using BIASD (blue) and idealization-based (red) methods for a computer-simulated titration of a
ligand to a receptor. Concentration of the titrant was varied two orders of magnitude above and below the concentration where the
equilibrium occupation probability of both states is 0.5 (KD). The regions where the rate constants are less than 1/10th of the acquisition
rate, 1 / τ , is shown in dark grey; the regions where the rate constants are less than the acquisition rate are shown in light grey. The
simulated rate constants are plotted as the black lines. The red area denotes the region containing one standard error of the mean
rate constants calculated by idealizing the signal versus time trajectory. The blue area denotes the average 95% credible interval (CI)
of the posterior probability distributions from analysis with BIASD using weakly informative priors (Fig. 4.4).

precise, as the posterior probability distributions are strikingly narrow over a range of [L] s that corresponds

to k1 being over an order of magnitude slower to over an order of magnitude faster than 1 / τ . Importantly, the

results are insensitive to the type of prior probability distributions (Fig. 4.6) that BIASD uses for the analysis

(i.e., the initial knowledge of k1, k2, ε1, ε2, and σ) (Figs. 4.6 and 4.7). At the lower [L]s, the broadening of

the posterior probability distribution, and the implied limitations to the precisions for estimating k1 and k2

arises from the finite amount of information regarding k2 and, to a lesser extent, ε2 that is contained in signal

versus time trajectories that exhibit very little occupation of the ligand-bound state of the receptor. Consistent

with this interpretation, these posterior probability distributions at the lower [L]s closely approximate the

theoretical, maximum precision for inferring k1 and k2 given the 60 sec length of each signal versus time

trajectory (Fig. 4.8). Likewise, at the higher [L]s, the broadening of the posterior probability distribution

and the implied limitations to the precision for estimating k1 and k2 that is observed arises from the finite

amount of information regarding k1and ε1 that is contained in signal versus time trajectories that exhibit

very little occupation of the ligand-free state of the receptor. As a consequence of this finite amount of
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Figure 4.4: Plots of weakly informative prior probability distributions used with BIASD to analyze the synthetic titration. Black lines
denote the simulated value of each parameter in the synthetic titration. (Top Left) The priors for the signal means were beta distributed–
ε1 (blue) with α = 1 and β = 9, and ε2 (red) with α = 9 and β = 1. These parameters were kept constant for each concentration. (Top
Right) The prior for the noise was gamma distributed, with α = 4 and β = 100. (Bottom Left and Right) Prior probability distributions for
k1 and k2 are shown as 95% CIs at each concentration point in the titration, because the simulated rate constants for k1 was different
at each concentration. For both rate constants, the prior probability distribution at each concentration point was a gamma distribution
with α = ki and β = 1.

information, many reciprocal pairs of k1 and ε1 values are, at most, congruous with the data (i.e., a faster

k1 and a smaller ε1, or a slower k1 and a larger ε1). Consistent with this interpretation, reanalysis of the

signal versus time trajectories simulated at the highest [L]s under conditions in which the prior probability

distributions of ε1 and ε2 were strengthened results in much increased precisions for k1 and k2 (Fig. 4.9).

In an experimental situation, strengthening of the prior probability distributions of ε values can be guided

by the results of experiments performed under conditions in which one or the other state is preferentially

occupied. In the current example of a ligand binding and dissociation process, this would correspond to

setting a narrow prior probability distribution for ε1 using the distribution of ε1 values that are observed in

experiments recorded in the absence of ligand or at the lowest ligand concentrations and setting a tight prior

distribution for ε2 using the distribution of ε2 values that are observed in experiments recorded at highest

ligand concentrations. In the case of large-scale conformational rearrangements, one could similarly use

a ligand concentration, temperature, or mutation that preferentially stabilizes one or the other state, or,

alternatively, one could use molecular modeling to estimate the distribution of ε values corresponding to one

state and/or the other.

With regard to the values of ε1 and ε2 obtained using BIASD, Fig. 4.10 demonstrates that these values
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Figure 4.5: Plot of ε1 and ε2 as analyzed by idealizing the synthetic titration data. A threshold was set at 0.5, which is exactly midway
ε1 = 0.1 and ε2 = 0.9 (black lines) – the values used to simulate the synthetic titration data in the main text. In a given signal versus
time trajectory, the mean and SEM of the data points below or above the threshold were calculated for the signal values of ε1 (blue) and
ε2 (green), respectively. The plotted lines are the average of the means for the signal versus time trajectories at each [L]. The colored
area represents the average of the means ± the average SEM at each [L].

were accurately inferred regardless of the value of [L], even when the idealization-based methods drastically

misestimate these values (Fig. 4.5). Moreover, ε1 and ε2 were inferred with high precision across all values

of [L] with two intuitive exceptions. Because the receptor primarily occupies the ligand-bound state under

high [L] conditions, those signal versus time trajectories contain little information about the signal value

corresponding to the ligand-free state (ε1). As expected, the most uncertainty in the value of ε1 occurs at

high [L]. Similarly, the most uncertainty in the value of ε2 occurs at low [L], because the ligand-free state of

the receptor is primarily occupied, and therefore the signal versus time trajectories contain little information

on the signal value corresponding to the ligand-bound state (ε2). This lack of precision is not an artifact of

BIASD, but rather a consequence of the amount of information contained in the finite-length signal versus

time trajectories. Thankfully, because of its underlying Bayesian inference framework, BIASD provides a

natural description of this uncertainty present in the collected data unlike the more traditional, maximum-

likelihood methods. Finally, BIASD was also able to accurately and precisely infer σ from the simulated

signal versus time trajectories (Fig. 4.10).

In summary, we were able to use BIASD to obtain accurate and precise posterior probability distributions

for k1, k2, ε1, ε2, and σ across the entire range of [L]s that were simulated. Notably, BIASD was even

successful when the rates of transitions between states in the simulated, single-molecule signal versus time
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Figure 4.6: Analysis of k1 and k2 from a synthetic titration by BIASD and idealized methods using alternative priors. The weakly
informative priors utilized for this plot are described in Figure 4.7. Concentration of the titrant was varied two decades above and below
where equilibrium occupation probability of both states is 0.5 (KD). The regions where the rate constants are less than 1/10th of the
acquisition rate is shown in dark grey; the regions where the rate constants are less than the acquisition rate are shown in light grey.
The synthetic rates from the simulation are plotted as the black lines. The red area denotes the region containing one standard error of
the mean rate constants calculated by idealizing the signal versus time trajectory. The blue area denotes the 95% CI of the posterior
distributions from analysis with BIASD using weakly informative priors. Notably, these posterior distributions are nearly identical to
those obtained using the weakly informative priors described in Fig. 4.4 (c.f. Fig. 4.3).

trajectories were much slower then 1 / τ , although we note that, in this regime, the conventional analysis of

idealizing the signal versus time trajectories is as accurate and much more computationally efficient. Most

importantly, BIASD was able to accurately and precisely infer the rates of transitions between states and the

signal values corresponding to those states for simulated, single-molecule signal versus time trajectories in

which the rates of transitions between states were nearly two orders of magnitude faster than 1 / τ and about

three orders of magnitude faster than that where conventional idealization of signal versus time trajectories

begins to yield significant errors in the rates of transitions between states.
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Figure 4.7: Alternative, weakly informative prior probability distributions used to analyze the synthetic titration. (Top Left) The priors
for the signal means were beta distributed–ε1 (blue) with α = 1×104 and β = 9×104, and ε2 (red) with α = 9×104 and β = 1×104.
The distributions appear narrow on this scale, but still have substantial density between 0 and 1. These parameters were kept constant
for each concentration. (Top Right) The prior for the noise was gamma distributed, with α = 4 × 103 and β = 1 × 105. (Bottom Left
and Right) Prior probability distributions for k1 and k2 are shown as 95% CI at each concentration point in the titration, because the
simulated rate constants for k1 was different at each concentration. For both rate constants, the prior probability distribution at each
concentration point was a gamma distribution with α = 1 and β = 1/ki; these forms are exponential distributions.
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Figure 4.8: Theoretical precision of determining rate constants for synthetic titration given the average number of observed transitions.
Given the rate constants of the two-state system (black), the finite observation length of each signal verse time trajectory might not
allow sufficient number of transitions to occur before data collection ends in order to precisely determine the rate constants. Under the
conditions of the synthetic titration, the green areas denote the 95% CI for the inferred rate constants.
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Figure 4.9: Posterior probability distributions for highest concentration in synthetic titration with strict priors. By using uniform priors
such that ε1 ∈ [0.0, 0.1], ε2 ∈ [0.9, 1.0], and σ ∈ [0.03, 0.05], which could have been deduced by first processing the lower concentration
data, both the posterior distributions for k1 and k2 were tightly clustered around their respective synthetic values of 800 s−1 and 8 s−1.
Specifically, 95% CI and mean for k1 are 550 to 1427 s−1 and 938 s−1, and for k2 are 5.1 to 11.0 s−1 and 7.8 s−1. Notably, while
these results are very accurate, they are also much more precise than those obtained by allowing ε1 and ε2 to freely vary; as such,
BIASD can accurately and precisely determine the rate constants of dynamics approximately two orders of magnitude faster than the
acquisition rate.
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Figure 4.10: Posterior probability distributions of ε1, ε2, and σ for the synthetic titration. The weakly informative priors utilized for this
plot are described in Figure 4.4. (Left) The 95% CI for ε1 (blue area) and ε2 (green area) as a function of titrant concentration. Solid
blue and green lines denote the mean of the posterior distributions of ε1 and ε2, respectively. The synthetic values use to simulate the
synthetic titration are shown in black. The red areas denote the 95% CI of the prior distributions. (Right) The blue area is the 95% CI
for σ–the measurement noise–as a function of titrant concentration. Similarly, the black line is the synthetic value of σ, and the red
area denotes the 95% CI of the prior probability distribution.
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4.4 Analysis of Experimentally Observed Single-Molecule

EFRET Versus Time Trajectories Reporting on the Kinetics of a

Large-Scale Conformational Rearrangement

To demonstrate the utility of BIASD in the analysis of experimental data, we chose to analyze experimentally

observed, single-molecule EFRET versus time trajectories reporting on a large-scale rearrangement of the

ribosome–the essential, two-subunit, biomolecular machine that is universally responsible for translating

messenger RNAs (mRNAs) into proteins in all living cells. During the elongation stage of protein synthesis

(reviewed in Ref. 36), amino acids are added to the nascent polypeptide chain by aminoacyl-transfer RNAs

(tRNAs) that deliver each subsequent amino acid to the ribosome as they bind in the ribosomal aminoacyl-

tRNA binding (A) site, and then receive the nascent polypeptide chain from the peptidyl-tRNA currently

in the peptidyl-tRNA binding (P) site. Following this transfer of the nascent polypeptide chain, the newly

elongated peptidyl-tRNA in the A site and newly deacylated-tRNA in the P site must translocate through the

ribosome to the P site and to the ribosomal tRNA exit (E) site, respectively, in order to prepare the ribosome

for subsequent rounds of elongation. Prior to this translocation event, the ribosomal pre-translocation (PRE)

complex undergoes stochastic, thermally driven fluctuations between two major, on-pathway conformational

states that we refer to as global state 1 (GS1) and global state 2 (GS2), defining a dynamic equilibrium,

GS1 −⇀↽− GS2 (Fig. 4.11) (c.f., Sec. 1.3.2). These transitions between GS1 and GS2 constitute large-scale

rearrangements of the PRE complex that involve relative rotations of the ribosomal subunits, reconfigurations

of the ribosome-bound tRNAs, and repositioning of a ribosomal structural domain known as the L1 stalk

(Fig. 4.11) [37].

Cy3
Cy5

Ribosome
L1 Stalk

P/P
tRNA

kGS1

kGS2APE

GS1 GS2

P/E
tRNA

APE

Figure 4.11: Schematic of PRE Complex GS1 −⇀↽− GS2 equilibrium. Approximate positions of the donor and acceptor fluorophores for
the L1-tRNA labeling scheme in the smFRET experiments of Wang and coworkers [16] are shown as green and red circles, respectively.
The size of the fluorophores denotes the relative fluorescence in each state due to resonance energy transfer.
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Recently, we have used a PRE complex analog lacking an A site-bound tRNA (i.e., a PRE-A complex)

that contains a FRET donor (Cy3)-labeled P site-bound tRNA, and a FRET acceptor (Cy5)-labeled L1 stalk

(Fig. 4.11) to conduct smFRET studies of the GS1−⇀↽−GS2 equilibrium. Using a wide-field, TIRF microscope,

we were able to collect EFRET versus time trajectories from individual PRE-A complexes in a temperature-

controlled, microfluidic observation flowcell at various temperatures [16]. These experiments were motivated

by the fact that determination of the temperature dependence of the rate constants for the transitions between

GS1 andGS2would enable an analysis of the thermodynamic properties of the transition state energy barrier

that controls the GS1 → GS2 and GS2 → GS1 conformational rearrangements. Unfortunately, due to the

increase in thermal energy with increasing temperature, the rate constants for the transitions between GS1

and GS2 increased such that, at the highest temperatures, the EFRET versus time trajectories contained

a significant number of time-averaged data points. Accordingly, the EFRET versus time trajectories at these

higher temperatures could not be properly idealized, precluding the determination of the rate constants for the

transitions between GS1 and GS2 at these higher temperatures and, correspondingly, the thermodynamic

analysis of the transition states that control the GS1→GS2 andGS2→GS1 conformational rearrangements

[16].

To overcome these limitations, here we have used BIASD to analyze the sets of EFRET versus time trajec-

tories of PRE-A complexes that were collected at 22, 25, 28, 31, 34, and 37 °C by Wang and coworkers [16].

In doing so, we assume that the GS1 −⇀↽− GS2 equilibrium can be represented by the Markovian, reversible,

two-state kinetic scheme discussed earlier. In this kinetic scheme, kGS1 and kGS2 represent the rate con-

stants for the GS1→ GS2 and GS2→ GS1 conformational rearrangements, respectively. Correspondingly,

εGS1 and εGS2 represent the EFRET values of GS1 and GS2, respectively. Using this approach, all six sets of

EFRET versus time trajectories were analyzed using BIASD as described in Secs. 4.2.4 and 4.2.3, providing

estimates of kGS1, kGS2, εGS1, εGS2, and σ for each EFRET versus time trajectory at each temperature.

Unfortunately, we cannot speak to the accuracy of results obtained through the analysis of experimental,

rather than simulated, data. However, in an attempt to validate the accuracy of the values of kGS1 and kGS2

obtained using BIASD (Fig. 4.12A), we also analyzed all six sets of EFRET versus time trajectories using an

HMM-based idealization approach as described in Sec. 4.2.4, providing values of kGS1, and kGS2 (Fig. 4.13).

At the lowest temperature (22 °C ), the values of kGS1 and kGS2 obtained using BIASD (0.9± 0.1 s−1 and 2.1

± 0.3 s−1, respectively) are nearly equivalent to those obtained using the HMM-based idealization method

(0.7 ± 0.1 s−1 and 1.5 ± 0.1 s−1, respectively), suggesting that the values of kGS1 and kGS2 obtained using

BIASD are at least as accurate as those obtained using conventional HMM-based idealization methods. At
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the higher temperatures, where more time averaging occurs (c.f., Fig. 4.14), the values of kGS1 and kGS2

obtained using BIASD, which increase monotonically, are systematically faster than those obtained using

the HMM-based idealization method (Figs. 4.12 and 4.13). This observation is consistent with our analysis

of the simulated data in the previous section. There, when the rate constants were greater than 1 / 10th of 1

/ τ , the idealization-based methods systematically underestimated those rate constants. This increases our

confidence that the values of kGS1 and kGS2 obtained using BIASD are accurate. Additionally, we note that

the posterior probability distributions of εGS1 and εGS2 inferred using BIASD have means of 0.14 and 0.77,

respectively, which are values of εGS1 and εGS2 that very closely match the values of the mean EFRET of GS1

and GS2 reported in previous, room-temperature studies of the analogous PRE-A complex (e.g., 0.16 and

0.76, respectively, in Ref. 38) (Fig. 4.15). This similarity suggests that the values of εGS1 and εGS2 obtained

using BIASD are also accurate, regardless of the time resolution of the smFRET TIRF experiment.
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Figure 4.12: (A) temperature dependence of kGS1 and kGS2 for PRE-A complexes using BIASD. The scatter plots show the expectation
value of the posterior probability distributions of kGS1 and kGS2 and the error bars represent ±1 SEM. The solid lines are the non-linear
least-squares fit to transition-state theory, and the shaded regions represent fitting error (±1σ). (B) Probability distribution of ∆H‡ and
∆S‡ from the fit to transition-state theory for the GS1 and GS2 transition state energy barrier.

With accurate measurements of kGS1 and kGS2 as a function of temperature, we then used transition-

state theory (Reviewed in Refs. 39, 40, 41, and 42) to quantify the apparent transition-state energy barrier
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Figure 4.13: (A) Temperature dependence of kGS1 and kGS2 for PRE−A complexes using a maximum likelihood HMM. The scatter
plots show the mean value of kGS1 and kGS2 and the error bars represent ±1 SEM. The solid lines are the non-linear least-squares
fit to transition-state theory, and the shaded regions represent fitting error (±1σ). (B) Probability distribution of ∆H‡ and ∆S‡ from the
fit to transition-state theory for GS1 and GS2 to the transition state.

along the apparent GS1 −⇀↽− GS2 reaction coordinate [43, 44]. Kramers’ barrier-crossing theory [45], which

was developed to analyze thermally activated, condensed-phase transitions of a Brownian particle [39] and

is increasingly being used to analyze the conformational dynamics and folding of small, globular proteins

[19], may ultimately provide a more exact analysis of the apparent transition-state energy barrier along

the apparent GS1 −⇀↽− GS2 reaction coordinate. However, its application requires knowledge regarding the

viscosity of the aqueous buffer in which the PRE-A complex is dissolved and the ‘internal friction’ of the

PRE-A complex that are unavailable in the current study. As such, we have opted to use transition-state

theory, and regard the results as an upper limit of the apparent transition-state energy barrier along the

apparent GS1 −⇀↽− GS2 reaction coordinate, which does not account for internal friction or transition-state

recrossings. To apply transition-state theory, we fit the mean rate constants at each temperature to the

equation

kTST =

(
κkBT

~

)
e
−1
kBT

(∆H‡−T∆S‡)
, (4.54)
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Figure 4.14: Temperature dependence of idealized EFRET means for PRE-A complexes. The EFRET values observed from the PRE-A

are histogrammed, and were thresholded at a value of 0.42 (red). The black vertical lines denote the mean values of the subsequently
idealized data. As time-averaging increases, the signal means trend towards region between εGS1 and εGS2

rather than estimate the prefactor term, where κ is taken to be unity, kB is the Boltzman constant, ~ is Planck’s

constant, ∆H‡ and ∆S‡ are the enthalpic and entropic differences between the transition and ground states,

which are associated with the temperature-dependent- and temperature-independent contributions to the

rate constants, respectively. The results of these fits provide ∆H‡ and ∆S‡ for the GS1 → GS2 transition

of ∆H‡GS1 = 81.2 ± 5.4 kJ mol−1 (± 1σ) and ∆S‡GS1 = 30 ± 18 J mol−1 K−1 (±1σ), and ∆H‡ and ∆S‡ for

the GS2 → GS1 transition of ∆H‡GS2 = 70.3 ± 6.8 kJ mol−1 and ∆S‡GS2 = -1 ± 23 J mol−1 K−1, values

that are significantly different from those that are determined using the values of kGS1 and kGS2 that are

obtained at each temperature using HMM-based idealization methods (Fig. 4.13). Unfortunately, structure-

based interpretations of the absolute values of the ∆H‡ and ∆S‡ for the GS1 → GS2 and GS2 → GS1

transitions that are observed for the particular PRE-A complex studied here are significantly complicated by

the complexity of the enthalpic and entropic changes that are associated with conformational rearrangements

of large macromolecular complexes such as PRE-A complexes [46] and the inherent limitations of transition-

state theory [8, 40]. Nonetheless, structure-based interpretations of the changes in the absolute values of
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Figure 4.15: The mean EFRET signal for GS1 and GS2 from the posterior probability distributions of ε1 and ε2. Using the posterior
probability distributions at all temperatures from the L1-tRNA PRE-A smFRET data analyzed in the main text, beta distributions with
α =

∑
temperatures αi, and β =

∑
temperatures βi were plotted for GS1 (Purple) and GS2 (Green). Means of each distribution (0.14 and

0.77, respectively) are denoted with vertical lines; these agree very well with previously published values.

the ∆H‡s and ∆S‡s (i.e., ∆∆H‡ and ∆∆S‡) for the GS1 → GS2 and GS2 → GS1 transitions that are

observed between pairs of PRE-A complex (e.g., containing different P-site tRNAs, wildtype versus mutant

P-site tRNAs, wildtype versus mutant ribosomes, etc.) are much more straightforward and can reveal the

thermodynamic contributions that particular structural features of PRE-A complexes make to the apparent

transition-state energy barrier along the apparent GS1 −⇀↽− GS2 reaction coordinate [40]. Combined with the

experimental platform that we have previously described, the analytical framework presented in this section

now enables the collection, analysis, and interpretation of such data.

4.5 Evaluation of BIASD

By analyzing the fraction of time that a single-molecule spends in each state of a particular kinetic scheme

as well as the signal value of each of those states during each τ in a signal versus time trajectory, BIASD

adopts a fundamentally different approach to the analysis of time-resolved single-molecule experiments

than has been traditionally utilized by methods that idealize the trajectories (e.g., thresholding, HMMs). Us-

ing computer-simulated and experimentally observed data, we have demonstrated that with this approach

BIASD is able to accurately and precisely infer the rates of transitions between the two states of a two-

state kinetic scheme as well as the signal values corresponding to these two states, even when the rates
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of transitions between states are orders of magnitude faster than the time resolution of the signal versus

time trajectories. When applied to the experimentally observed PRE-A complex smFRET data of Wang

and coworkers [16], this ability allowed us to infer otherwise inaccessible thermodynamic parameters of the

transition state energy barriers for GS1 and GS2. BIASD can be applied to any experimentally observed

signal versus time trajectory that exhibits stochastic transitions between distinct states, regardless of the

nature or the origin of the signal. Thus, BIASD can be used to analyze data collected using virtually any

time-resolved single-molecule experimental method, including single-molecule wide-field fluorescence mi-

croscopy, force spectroscopy, and tethered particle motion methods. Moreover, although we have developed

BIASD to analyze single-molecule signal versus time trajectories, as described here, BIASD does not con-

sider the temporal ordering of the data. Consequently, in addition to analyzing individual single-molecule

signal versus time trajectories, BIASD can also be used to analyze the distribution of fractional occupan-

cies seen across an entire ensemble of single-molecules during a given τ . This could allow non-equilibrium

phenomenon to be monitored across an ensemble of single-molecules (e.g., stopped-flow delivery of an

antibiotic to PRE-A complexes). In addition, BIASD can be expanded to include the time evolution of the

state occupation probabilities (c.f., Eq. 4.9), or to incorporate time dependence into the model parameters

ki, εi, and σ (e.g., changing εi in particle tracking).

Regarding the performance of BIASD on experimental data, we note that the rate constants and signal

values of a system can be more precisely inferred from experiments that collect higher SNR data, because

then there is less uncertainty in the time-averaged fractional occupancies of the signal versus time trajec-

tories. Therefore, somewhat counterintuitively, sub-temporal-resolution dynamics can, to some degree, be

more precisely inferred from signal versus time trajectories collected with a higher SNR but a longer τ (e.g.,

due to better photon conversion efficiencies on an electron-multiplying charge-coupled device), than those

collected with a lower SNR but a shorter τ . Additionally, although we have focused the current work on

the most widely applicable case of a Markovian, two-state system in which the noise of the signal can be

modeled using a Gaussian distribution, the Bayesian inference-based framework underlying BIASD can be

readily extended to non-Markovian dynamics [23, 31], N-state kinetic schemes [29, 30], or systems in which

the noise of the signal can be modeled using distributions other than a Gaussian distribution [28, 32]. To

facilitate the analysis of single-molecule data using BIASD, as well as to enable the future extension of BI-

ASD along the lines described here, we have made a graphical user interface and the BIASD source code,

both implemented in Python, available at http://www.columbia.edu/cu/chemistry/groups/gonzalez/.
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4.6 Reconstructing Mesoscopic Ensembles from Single-molecule

Dynamics

A single-molecule experiment probes only one molecule from an ensemble of molecules. However, ergod-

icity suggests that, given an infinite amount of observation, that single-molecule should be representative

of the equilibrium ensemble. Interestingly, phenomenon such as inhomogeneous broadening within an ex-

perimentally observed bulk spectrum suggests that there can be a range of behaviors within an ensemble,

and that certain molecules may not have the same experience as others. For a single-molecule experiment,

this is better highlighted by the presence of static heterogeneity within the ensemble (c.f., Ref. [47]). For

instance, post-transcriptional modifications of tRNAs can influence elongation efficiency and codon-context

effects [48], because the modifications might produce different dynamics during translation as the tRNAs in-

teract with ribosome. Similarly, varied stoichiometric composition of multimeric protein complexes (e.g., the

sub-stoichiometric occupation of the S1 protein in ribosomes [49]), different isoforms of the same gene (e.g.,

the seven different rRNA operons in Escherichia Coli [50]), and post-translational modifications (e.g., methy-

lation of class I release factors [51]) are all possible causes of static heterogeneity within a single-molecule

ensemble of biomolecules. Also confounding the connection between the behavior of a single-molecule to

that of the ensemble is the presence of non-equilibrium dynamic heterogeneity or disorder, in which the dy-

namics of a single-molecule will change over time [52, 53]. If these dynamics change slowly enough relative

to the length of the experiment, the dynamic disorder can even be confused with static heterogeneity. For

instance, the ligand-binding ability of a protein, such as oxygen binding to myoglobin [54], can change in

time depending upon conformation of the protein [8, 55]. Because of ensembles of biomolecules often con-

tain these sources of static and dynamic heterogeneity, single-molecule experiments are often designed to

observe multiple single-molecules simultaneously (c.f., Sec. 3.3.1). A ‘mesoscopic ensemble’ must then be

constructed from these single-molecule observations in order to describe the entire ensemble of molecules.

One approach to constructing a mesoscopic ensemble is to take the average behavior (e.g., stochastic

rate constants) of the observed single-molecules as the expected behavior of the ensemble. The distribution

of behaviors contained within the ensemble might then be described by the standard deviation of individual

single-molecules’ behaviors. Unfortunately, this approach ignores the contribution of any dynamic disorder

from a single-molecule to the ensemble. Additionally, it is unclear how to account for the precision with

which a single-molecule’s behavior might be determined (one previously discussed method is to treat all of
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the dwell-times within the mesoscopic ensemble of state versus time trajectories as contributing equally to

the ensemble transition matrix (c.f., Sec. 3.3.2)). Notably, over 40 years ago, Frauenfelder’s group observed

distributions of activation energies for ligand binding (i.e., rates of ligand binding) that are attributable to an

equilibrium occupation of a distribution of conformations within an ensemble of myoglobin [54]. In a corre-

sponding single-molecule experiment, constructing a mesoscopic ensemble in which all single-molecules

observed contribute to the same ‘average’, ensemble-representative behavior is clearly an improper ap-

proach. In order to accurately construct a mesoscopic ensemble from single-molecule signal versus time

trajectories, one must somehow be able to identify and classify different types of single-molecule behaviors,

and then, accounting for the precision of such a classification, quantify the different behaviors within the

mesoscopic ensemble in order to approximate the macroscopic ensemble.

4.6.1 Variational Mixture Models

Consider an attempt to classify pieces of data (e.g., single-molecule signal versus time trajectories) which

belong distinctly to J classes of data. A non-probabilistic approach, such as K-means clustering, assigns

each piece of data to the closest estimate of one ofK classes–whereK is a haphazardly chosen number of

classes that does not necessarily correspond to J . Unfortunately, when some of the J , authentic classes are

ill-resolved or overlapping, estimates of the K classes, and classification of the data into those K classes,

are not robust. Fortunately, classification problems such as the one mentioned above can be approached in

a statistically robust manner by using a mixture model [27]. In a mixture model, each piece of data instead

has a probability of belonging to each of K classes in the model–much like a wavefunction which can be

delocalized over many sites of a lattice such as a DNA oligomer [56–58]. This approach not only yields better

estimates of each class, but also provides a description of the precision with which each piece of data can be

classified, which is especially important when classes overlap. Because of this consideration of precision,

mixture models are naturally integrated into the Bayesian inference framework (c.f., Sec. 4.2.2 and Ref. 15).

Unfortunately, as with most Bayesian inference approaches, it can be difficult to calculate the exact posterior

probability distribution in order to learn the parameters of the mixture model after having observed the data.

Recently, to analyze smFRET signal versus time trajectories using Bayesian inference, the Gonzalez

group has employed variational approximations to the posterior probability distributions of an HMM (vbFRET

[12, 59]) and of an ensemble of HMMs controlled by consensus HMM parameters (ebFRET [13, 14]). Such

‘variational Bayes’ approaches find the optimal, analytically tractable approximation to the posterior prob-

ability distribution by assuming only that the distribution factorizes into separate, more simple parts. Fac-
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toring the distribution in this manner is equivalent to the mean-field approximation in physics–it considers

the average behavior of each factor to override any fluctuations that lead to coupling between terms. Addi-

tionally, as described below in Sec. 4.6.4, these variational approximations also provide a natural method

with which to perform model selection and decide the most parsimonious number ofK states present in the

data; this method is notably robust against the type of overfitting which plagues maximum-likelihood and

non-probabilistic methods.

In the following sub-sections, we demonstrate the use of a variational mixture model to construct meso-

scopic ensembles of single-molecules behavior determined by BIASD. This mixtures model accounts for

the precision with which each single-molecule is determined (i.e., the entire posterior probability distribution

of each signal versus time trajectory). Additionally, it automatically incorporates model selection in order

to determine the different types of single-molecule behaviors present in the mesoscopic ensemble. These

different behaviors are technically only for static heterogeneity present within the ensemble, however, with

a sufficient number of single-molecules observed for a particular class displaying defined dynamic disorder,

it should sample this behavior and represent the time-independent spread of the disorder.

4.6.2 Accounting for Sample Uncertainty with a Variational Gaussian Mixture

Model

One established, and tractable variational mixture model is the variational gaussian mixture model. In this

model, each class is considered a multivariate normal distribution withD number of variables in the data. For

instance, with the results of a BIASD calculation, the posterior probability distribution is in a five-dimensional

space (i.e., ε1, ε2, σ, k1, and k2), so D = 5. Unfortunately, as typically derived, this model does not account

for uncertainty within each sample (single-molecule) that is being classified [27]. Here, following the work

of Bishop [27, 60], but making modifications in a fashion similar to work done to include ‘noisy’ data [61],

we give the update equations for the posterior probability distribution of the variational gaussian mixture

model using a hypothetical group of single-molecule signal versus time trajectories that were processed

using BIASD to be more concrete.

Consider the nth ofN single-molecule signal versus time trajectories processed by BIASD. The posterior

probability distribution for this molecule, has a meanXn = E[Θn], and a covariance of Σn = E[Θ2
n]−E[Θn]2.

The entire group of posterior probability distributions is then X = {X1...XN} and Σ = {Σ1...ΣN}. These

values are shown in the graphical model shown in Figure 4.16; this graph demonstrates how these observed
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parameters depend upon the parameters of the model. The dependences shown in the graphical model can

be written mathematically as

p(X,Z, π, µ,Λ|Σ) = p(X|µ,Λ,Σ) · p(Z|π) · p(π) · p(µ|Λ) · p(Λ), (4.55)

where Z = {z1...zN} and each zn is a vector of length K that is 1 only when the nth single-molecule is of

state i, where π is the probability of state i being found in the ensemble, where µ is the mean of state i, and

where Λ is the precision (i.e., inverse of covariance) of state i. For our model, these factors are

p(X|Z, µ,Λ,Σ) =
N∏
n=1

K∏
i=1

N (Xn|(Σ−1
n + Λi)

−1 · (Σ−1
n ·Xn + Λi ·mi), (Σ

−1
n + Λi)

−1), (4.56)

p(Z|π) =

N∏
n=1

K∏
i=1

πznki , (4.57)

p(π) = Dir(π|α), (4.58)

p(µ,Λ) = p(µ|Λ)p(Λ) =

K∏
i=1

N (µi|mi, (βiλi)
−1) · W(Λi|Wi, νi), (4.59)

whereN is the multivariate Normal distribution,W is the Wishart distribution, and Dir is the Dirichlet distribu-

tion, which are all parameterized with the hyperparameters specified above for the ith class (c.f., Appendix

B). With this model, the X are assumed to be normally distributed because of the joint Normal-Wishart

distribution above, where the variance of theX is controlled by the Wishart distribution over Λ.

For the variational approximation of this model, we will assume only that the the Z components factor

from the posterior probability distribution and write

q(Z, π, µ,Λ) = q(Z) · q(π, µ,Λ). (4.60)

From this variational approximation, we derive update equations for the posterior probability distribution
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Figure 4.16: Graphical model of variational gaussian mixture model that accounts for uncertainty. The parameters in the blue circles
are observed experimentally. Parameters in the grey circles are unobserved, but still stochastic parameters of the model. Parameters
without a circle are learned by optimizing the factors of the variational model.

which optimize the variational model. These update equations are

νi = ν0 +Ni, (4.61)

βi = β0 +Ni (4.62)

mi =
1

βk
(β0m0 +Nix̄i), (4.63)

Wi = (W−1
0 +Ni · Si +

β0Ni
β0 +Ni

(x̄i −m0) · (x̄i −m0)T ), (4.64)

αi = α0 +Ni. (4.65)

where, from the statistics of the data,

Ni =

N∑
n=1

rni, (4.66)

x̄i =
1

Ni

N∑
n=1

rni · (Σ−1
n + Λi)

−1 · (Σ−1
n ·Xn + Λi ·mi), (4.67)

Si =
1

Ni

N∑
n=1

rni · ((Σ−1
n + Λi)

−1 · (Σ−1
n ·Xn + Λi ·mi)− x̄i)

· ((Σ−1
n + Λi)

−1 · (Σ−1
n ·Xn + Λi ·mi)− x̄i)T , (4.68)
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where Λi = νiWi. Except for the expressions for x̄i and Si, these expressions correspond to those in Ref.

27. The subscript-naught variables correspond to the prior probability distributions for the hyperparameters.

Typically, one can use very uninformative parameters for each respective distribution, such as

ν0 = D + 1, (4.69)

β0 = 0, (4.70)

m0 = 0, (4.71)

W0 = I, (4.72)

α0 = 1, (4.73)

and rni is from a K-means classification or chosen as random-variates from a Dirichlet distribution over α0.

Following this optimization step, certain expectation values of the data given the optimized model pa-

rameters can be calculated which can then, in turn, be used to re-optimize the model parameters. These

expectation values are

E[ln |Λi|] =

D∑
j=1

ψ

(
νi + 1− j

2

)
+Dln(2) + ln |Wi| , (4.74)

E[lnπi] = ψ(αi)− ψ(
∑
i

αi), (4.75)

Eµi,Λi [(Xn − µi)TΛi(Xn − µi)] = D/βi + ((Σ−1
n + Λi)

−1 · (Σ−1
n ·Xn + Λi ·mi)−mi)

T

· Λi · ((Σ−1
n + Λi) · (Σ−1

n ·Xn + Λi ·mi)−mi), (4.76)

from which

rni =
ρni∑K
i=1 ρni

, where (4.77)

ln(ρni) = E[lnπi] +
1

2
E[ln |Λi|]−

d

2
ln(2π)− 1

2
Eµi,Λi [(Xn − µi)T (Σ−1

n + Λi)
−1(Xn − µi)]. (4.78)

These optimization, and expectation steps are then iterated until convergence upon the ideal solution of

the variational model for the posterior probability distribution.
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4.6.3 Laplace Approximation of BIASD Posterior Probability Distribution

While the variational gaussian mixture model described above accounts for the uncertainty of each single-

molecule, it only considers the first and second moments of the posterior probability distributions–effectively

casting them into a symmetrical gaussian form. This choice ignores any asymmetry in the individual BIASD

posterior probability distributions. While this assumption about the individual BISAD posterior probability

distributions must be made to use the variational mixture model in order to build a mesoscopic ensemble of

single-molecules, we can take advantage of it to simplify the calculation of each individual BIASD posterior

probability distribution by using the Laplace approximation. As described below, the Laplace approximation

makes BIASD much more computationally tractable than does MCMC, and the resulting multivariate normal

posterior probability distributions fits naturally with the variational clustering algorithm.

The Laplace approximation approximates a probability distribution by expanding the logarithm of the dis-

tribution in a Taylor series at the maximum of the distribution and equating this to the logarithm of the normal

distribution. Upon finding the maximum, x0 of the logarithm of a probability distribution using numerical

maximization, the second partial derivatives of the function (the Hessian matrix,H) can be calculated at the

maximum using finite difference formulas (c.f., Eqn. 25.3.23 and 25.3.26 of Ref. 62). With x0 andH calcu-

lated, these are compared to a Taylor series expansion the logarithm of the multivariate normal distribution

(c.f., Appendix B). The multivariate Taylor series of f(x at x = a is

f(x) = f(a) +
1

1
((x− a) · ∇f(a)) +

1

2
((x− a) ·H(a) · (x− a)) + .... (4.79)

While the logarithm of the the multivariate normal distribution is

ln(N (x|µ,Σ)) =

(
−k
2

ln(2π)− 1

2
ln(|σ|)

)
− 1

2
(x− µ)TΣ−1(x− µ). (4.80)

By inspection, Eqns. 4.79 and 4.80 are equivalent if the gradient of f evaluated at α is zero, and the Taylor

series is truncated after the second-order term. At its maximum, the probability distribution that we wish to

approximated has a gradient of zero. Therefore, a multivariate probability distribution, such as the posterior

probability distribution from BIASD, can be approximated by a multivariate normal distribution by finding

the maximum, calculating the H of the logarithm of the distribution at this point, and then calculating the
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parameters by matching the equations above as

µ = x0, (4.81)

Σ = (−Hln)−1, (4.82)

where the subscript ln is a reminder that it is the Hessian of the logarithm of the distribution. Since it is much

easier to find the maximum and calculate the Hessian of a distribution, than to sample all of state-space,

the Laplace approximation very computationally efficient. Moreover, when used with BIASD, the resulting

mean and covariance of the posterior probability distribution can easily be used in the variational gaussian

mixture model to account for the uncertainty in each single-molecule.

4.6.4 Model Selection

The use of the variational approximation to the Bayesian treatment of the gaussian mixture model allows

a quantity termed the lowerbound to be calculated [27]. During the course of the optimization of the varia-

tional, approximating distribution, the lowerbound is maximized. The optimal distribution is found when the

lowerbound is at its maximum, because the lowerbound is one part of a decomposition of the evidence of the

model, p(X) (i.e., the denominator in Bayes’ Rule (Eqn. 4.41)). By maximizing the lowerbound, it becomes

closer and closer to the model evidence, and as a consequence, the approximating distribution becomes

closer and closer to the actual distribution. With this in mind, the lowerbound can be used to perform ‘model

selection’. By varying the number of classes of gaussians included in the gaussian mixture model, the best

model will be that with the largest lowerbound. Interestingly, including more classes does not necessarily

increase the lowerbound such as occurs with maximum likelihood methods (i.e., by fitting 10 points with

a 10-degree polynomial). Given sufficient statistical evidence (i.e., enough data points), the lowerbound

will peak at the correct number of states present in the data, all while avoiding overfitting. Additionally, the

variational method is also robust against overfitting in the sense that additional superfluous classes added

to the mixture will be minimally populated. In fact, this approach can be utilized for active model section,

in which a mixture model is initialized with many states, and these states are allowed to depopulate and

then removed, until the lowerbound is maximal. This process is demonstrated in Fig. 4.17 for synthetic 2D

multivariate gaussian data. Note that the best model as judged by the lower bound is the correct, three-state

model, and that the mixture model converges to the correct solution by reestimating the optimal parameters

as described in Sec. 4.6.2. The lowerbound equations for the variational gaussian mixture model can be
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found in [27].

The selection of the correct number of classes in a variational mixture model is more complicated when

including the uncertainty in each sample, as we will do with the the BIASD posterior probability distributions,

because the magnitude of the uncertainty can overcome otherwise clear separation between the classes.

We demonstrate this effect as a function of increasing magnitude of the covariances of the data samples in

Fig. 4.18. As uncertainty in the samples increases, the spread of the sample centers becomes overwhelmed

by uncertainty. Eventually, the classes begin to appear to overlap, even though, the samples belong to a dis-

tinct underlying class. With low uncertainty, the variational approach is able to discriminate between classes,

and estimate the spread of each class. This estimate of the spread of each class even remains mostly the

same size with increasing uncertainty, showing that the method is robust to uncertainty. Unfortunately, at

high uncertainty, the seemingly overlapped classes forces the most parsimonious model choice to be that

where the ill-resolved states are combined into one averaged class. Even so, the mixture model is able to

account for the precision of classifying data that remains in the overlapped area of the other classes. Finally,

we note that the lowerbound peaks at the simulated value of three classes for most of the cases tried. This

suggests that the method can correctly discriminate the correct number of states given a sufficient number of

samples. However, as shown, uncertainty easily overwhelms these distinctions. At higher uncertainty, the

highest lowerbound is from the two-class model. This model can be described as being more parsimonious

with the entirety of the data, than the three state model. Collecting more samples of data might better resolve

the states, however, without a distinction between two classes (due to large uncertainty), there is effectively

little difference between the classes, and the variational mixture model creates an averaged state governed

by the collective uncertainty in each separate state. While these examples have been for two-dimensional

data, extending the algorithm to higher dimensions is trivial but for the additional computational power, which

is minimal because the method employs conjugate priors.

180



CHAPTER 4. TEMPORAL SUPER-RESOLUTION

A B

DC

E

Figure 4.17: Dynamic model selection with a variational mixture model. (A - D) Scatter plots of classes of 2D synthetic data (blue,
green, red) with the gaussian mixture model classes overlaid. The center of the mixture classes is represented by a black circle, and
the variance in each class is shown as the ellipse at a 3σ threshold. (E) The lowerbound for this variational mixture model as a function
of iterations of the variational algorithm. Note the ever increasing lowerbound, and the large increases provided by eliminating classes
below an occupancy threshold of αi < 0.001 · α0.
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Figure 4.18: Effect of sample uncertainty on model selection with a variational mixture model. The first column shows a scatter point
for each data point of the classes (delineated by different colors), with solid elipses at the 3σ cutoff of the spread of each class, and
transparent elipses at the 3σ cutoff for the uncertainty for each data point to show the spread of the uncertainty. At low uncertainty, the
clusters are easily resolved, while at high uncertainty, the significantly overlap. The second column shows the uncolored data, plotted
as in the previous column, which is analyzed using the variational gaussian mixture model. The colored, transparent elipses show
the 3σ thresholded covariance of each class. These number of states was chosen from the highest lowerbound. The third column
represent the reconstructed ensemble of data in the simulated (first) column from the parameters that were learned by the variational
gaussian mixture model. The fourth column shows the lowerbound calculated for 1–5 classes in the mixture. The results for the first
three columns are shown for the mixture with the highest lowerbound. The simulated number of classes was three.
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4.7 Structural Contributions of Transfer RNA to the

Pretranslocation Thermodynamic Landscape

As described in Sec. 1.1, the ribosome is the universally conserved RNA-protein complex that is respon-

sible for translating the mRNA into their encoded proteins. During the elongation stage of translation (c.f.,

Sec. 1.3), ternary complexes deliver the different aa-tRNA to the ribosome, which then transfers the amino

acid from the tRNA into the nascent polypeptide chain. Consequentially, during elongation, the A, P, and

E sites of the ribosome are occupied by many permutations of the different types of tRNAs. These tRNAs

differ in more than their anti-codon stemloops, and these differences play important roles in the process of

elongation. For instance, the Hirsh supressor tRNA is a tRNATrp with a G24A mutation that is distal from

the anti-codon stemloop [63, 64]. This tRNA is most likely more easily distortable than the wildtype tRNATrp,

and this results in an increased rate of EF-Tu GTPase activation during tRNA selection (c.f., Sec. 1.3.1),

which allows it to recognize the UGA non-sense codon [65]. Because the conformational dynamics of the

ribosome and its associated factors are generally rate-limiting relative to chemical reactions like GTP hydrol-

ysis, the effects of varied tRNA occupation of the ribosome is expected to be a significant determinant of the

dynamics of translation elongation.

Generally, these ribosomal dynamics during elongation can be considered as a Brownian motor, where

motion along the reaction coordinate between thermally-accessible, meta-stable, conformational states is

rectified through events such as factor binding or chemical reactions [66–69]. The energy landscape over

which elongation occurs is composed of contributions from many factors, of which the contribution from the

tRNA occupying the ribosome during any particular step can be large. For instance, the dynamic fluctuations

of a PRE-A complex between GS1 and GS2 depend drastically upon the identity of the tRNA in the P site [70].

Notably, the structure of initiator tRNAfMet differs from the of elongator tRNAs in the aminoacyl acceptor stem,

the D stem, and the anticodon stem. The differences stabilize GS1 by increasing kGS2 relative to elongator

tRNAs. By introducing those structural differences into elongator tRNAs the effect that tRNAfMet has upon the

GS1 −⇀↽− GS2 dynamic equilibrium can be recapitulated [70]. Most likely the structural differences between

different tRNAs have been selected for under evolutionary pressure in order to fine-tune the overall process

of translation. However, how these structural elements contribute to the thermodynamics of the energy

landscape the regulates the kinetics of ribosomal dynamics is unclear.

To investigate the thermodynamic contributions of tRNA structure to the energy landscape over which the
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translating ribosome functions, we have performed temperature-dependent smFRET experiments, similar to

those in described Ref. [16] and in Sec. 4.4, on PRE complexes containing different tRNAs. By investigating

the temperature-dependence of the rate constants involved in the GS1 −⇀↽− GS2 equilibrium as a function of

tRNA identity, nascent polypeptide chain presence, and A and P site occupation, relative thermodynamic

contributions of the different structural elements can be quantified. Unfortunately, this investigation is com-

plicated by rate constants which approach the time resolution limitations of smFRET TIRF experiments,

especially with the increased temperatures used in these experiments. Additionally, it is complicated by the

heterogeneity within the ensemble of ribosomes that is created when some of the enzymatically-prepared

ribosomal complexes fail to undergo, or undergo additional rounds of translation. To overcome these com-

plications, the experiments are analyzed using BIASD and the variational mixture model described above,

which enables the fast dynamics of the heterogenous populations to be accurately and precisely quantified.

This then allows the contributions of the structural difference between the various tRNA to the underlying

energy landscape to be determined. However, in order to connect these tRNA-structure-dependent rate

constants to the energy landscape, we must utilize a rate theory.

4.7.1 Rate Theories

Inspired by Van’t Hoff, Arrhenius’ analysis of the rates of chemical reactions as a function of temperature

[71] lead to the well-known Arrhenius equation,

k = Ae−E/RT , (4.83)

where k is a rate constant, R is the gas constant, E is an activation energy, and A is a the preexponential

‘frequency’ factor. However, at that point in time, it was unclear how E would affect an individual molecule

participating in the reaction; though, as early as 1867 Pfaundler had suggested that a reacting molecule had

to have at least some critical energy in order to react [72]. Additionally, it was even more unclear exactly

what the preexponential frequency factor represented, and how it could be exactly calculated [73].

After Arrhenius, the next major development in rate theory came with the 1935 with the development

of transitions state theory (TST) by Eyring [74], and Evans and Polanyi [75], among the developments of

many others, especially Wigner [76]. Previous work on rate theories with thermodynamics, kinetic theory

of gasses, and statistical mechanics (for a historical account see Ref. 73) had culminated in a method to

calculate an absolute value of the preexponential factor, and how to interpret it (for a scientific account of
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TST see Refs. 39, 77, 41, 44, and 42).

TST makes two assumptions about a system. The first assumption in TST is that, along a single gener-

alized coordinate (i.e., the reaction coordinate), there exists a saddle point in the potential energy surface

in phase space. Orthogonal to this saddle point lies a surface (i.e., in the non-reaction-coordinate coordi-

nates) that defines the ‘activated complex’ which is the species that are capable of undergoing the reaction.

As such, the reaction rate depends on the concentration of this activated complex, and not of the reactant

molecules. The second assumption in TST is that the system is at equilibrium, and therefore the concen-

tration of the activated complex does not change as product is formed from reactant. This is sometimes

known as a ‘quasi-equilibrium’ between the reactants and the activated complex, though it does not mean

that the reactants and activated complex are in a actual equilibrium, but that the reactants and products are

in full equilibrium and the activated complex is part of this equilibrium [41, 77]. From these assumptions,

the absolute reaction rate can be calculated by using statistical mechanics to calculate the concentration of

molecules present as activated complexes, multiplying this by their velocity in state-space along the reaction

coordinate, and then integrating across all particles moving towards the products [74]. This process yields

the famous TST equations

k = κ
kbT

h

Q‡
QA

e
−E
RT ,and (4.84)

k = κ
kbT

h
e

∆S‡
R e

−∆H‡
RT , (4.85)

where Q is a partition function, A and ‡ denote reactants and the activated complex, respectively, κ is the

transmission coefficient, h is Planck’s constant, kb is the Boltzmann constant, and ∆S‡ and ∆H‡ are the

change is entropy and enthalpy, respectively, between the activated complex and the reactants. It should

be noted that κ was added ad hoc by Eyring, though he suggests that one can estimate it as “the average

number of crossings required for each complex that reacts. It will generally be about unity” [74]. Since

then, Chandler has shown how to calculate this factor using correlation functions, though noting that in

condensed phase when the molecule couples strongly to the bath, the contributions to the rate constant

made by this transmission coefficient would not simply be multiplicative [44]. Regardless, a rate constant

calculated using TST represents an upperlimit to the true rate constant [41, 44, 74], with it being equivalent

when there are no recrossing of the transition state barrier within the time-scale of the amount of time it takes

an average reactant molecule to reach the transition state along the reaction coordinate (i.e., recrossings

are uncorrelated) [39]. This idea is Wigner’s “fundamental assumption” for TST and is the true assumption
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underlying transition state theory [44]. It can be restated as each region representing a local state reaches

thermodynamic equilibrium quickly before a barrier crossing occurs [41]. Violating this condition, as is likely

to happen in condensed phase environments, results in an overestimation of rate constants.

After TST, the next major development in rate theory occurred when Kramers treated a molecule un-

dergoing a chemical reaction as a Brownian particle undergoing motion on a potential surface [45]. This

particle diffuses along the potential surface, driven by microscopic thermal forces, which, through fluctuation-

dissipation theory [78], are connected to the macroscopic temperature and friction of the ‘bath’ [39]. This

bath can include molecular degrees of freedom not strongly coupled to the reaction coordinate along which

the particle diffuses – so called ‘internal friction’. As a result, Kramers’ theory provides expressions for the

rate constant in several limiting cases of weak, moderate-strong, and strong-overdamped friction. All of

these expressions have the same shape as the Arrhenius equation, though with different prefactor values.

The difficulty in knowing the friction along the reaction coordinate, and solving for the rate constant with

intermediate values renders Kramers’ theory difficult to implement in some cases. However, it does pro-

vide intuitive predictions for the effects of solvent viscosity, and local side-chain induced drag upon the rate

constant. Additionally, the Kramers’ theory expressions contains the curvatures of the potential surface at

the local reactant, and transition states, as well as for the friction of the reaction. Interestingly, both TST

and Kramers’ theory are subsets of multidimensional transition-state theory in which the full phase-space

containing all degrees of freedom in the system is considered [39]. Though, because of the difficulty in

measuring and interpreting the friction and types of noise for a biomolecule, and the additional degrees of

freedom produced by the increased number of variables in the Kramers’ theory expressions relative to the

TST expression, we opt to use TST to analyze biomolecular systems.

Despite being conceptually more straightforward, applying TST to biomolecular systems is still difficult

[40]. Non-equilibrium effects like frictional dissipation of energy along the potential surface (the case treated

by Kramers) make the absolute accuracy of the thermodynamic parameters extracted from kinetic mea-

surements suspect. Moreover, because the enthalpy of the transition state energy barrier might have dis-

tinct temperature dependence, care should be taken when interpreting ∆H‡s, and ∆S‡s obtained from

temperature-dependent kinetic studies in terms of the local microscopic dynamics of the biomolecule [8].

However, it is much easier and more sound to interpet local contributions of the biomolecular structure to

relative changes in these parameters (i.e., ∆∆H‡s, and ∆∆S‡s), because the prefactor terms will cancel and

the results will be independent of terms like κ (inasmuch as these terms are constant) [79]. This approach

is the basis of Phi value analysis, where local contributions to the transition state are interrogated by intro-
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ducing a mutation a specific point in the biomolecule to alter an important interaction, and the contribution of

the resulting change relative to the wild-type biomolecule attributed to ∆G‡ or to ∆G [80]. Regardless, even

if the transition state energy barrier thermodynamics are accurately measured, the possibility of coupling

between local and collective motions of a biomolecule makes it difficult to interpret any localized structural

contributions these parameters [8].

4.7.2 Temperature Dependence of Pretranslocation Dynamics

We investigated the temperature dependence of PRE dynamics by monitoring a smFRET signal that reports

on the GS1 −⇀↽− GS2 equilibrium (Fig. 4.11). As described in Sec. 4.4, PRE complexes were tethered to the

surface of temperature-controlled microfluidic flow-cells [16]. These PRE complexes were labeled with a

donor fluorophore (Cy3) on the P-site tRNA and with an acceptor fluorophore (Cy5) on the L1 stalk (23S

rRNA helices H76-78 and ribosomal protein L1), so that the L1 stalk, P/E-state tRNA interaction that occurs

in GS2 results in an EFRET state of about 0.78 that is much higher than that in GS1 of about 0.15 [3]. By

utilizing a labeling scheme that depends upon the presence of a specifically labeled tRNA in the P-site, we

avoid introducing some heterogeneity by including unreactive PRE complexes with the incorrect tRNA in the

P-site, as could occur by using the previously developed L1 stalk-L9 EFRET signal which does not depend

upon the presence of the correct tRNA [4]. The PRE complexes with the L1-tRNA signal were then moni-

tored over a range of strictly controlled temperatures, and the resulting EFRET versus time trajectories were

individually processed using BIASD (Sec. 4.2) with the Laplace approximation to the posterior probability

distribution to make the calculations tractable (Sec. 4.6.3). With posterior distributions for each PRE com-

plex, mesoscopic ensembles were constructed using the variational mixture model described in Sec. 4.6.1

to learn the distribution of EFRET and rate constants for GS1 and GS2 for each of the sub-populations within

the mesoscopic ensembles at each temperature; this process is demonstrated for an L1-L9 PRE complex

at one temperature in Fig. 4.19. In all cases, the mesoscopic ensemble was augmented by including an

additional 100 random variates of the BIASD parameters from each posterior probability distribution in order

to increase the statistics of each dataset in a process similar to bootstrapping. With the temperature depen-

dence of the rate constants of the mesoscopic ensemble, transition state theory can invoked to quantify the

relative thermodynamic contributions of the structural differences between the complexes to the PRE energy

landscape.

We examined two PRE complex analogs, PRE-A
fMet and PRE-A

Phe , which contain deacylated, donor-

fluorophore labeled tRNAfMet and tRNAPhe in the P site, respectively, and have vacant A sites. The PRE-A
fMet com-
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Figure 4.19: Hierarchical Selection of PRE Complex Sub-populations. smFRET measurements of deacylated PRE complexes con-
taining a tRNAPhe in the P site using the L1-L9 FRET signal at 25 °C were analyzed using BIASD, and these results were clustered
using a variational gaussian mixture model where each posterior was sampled 100 times to increase the statistics. Each plot shows a
histogram of the data in the entire ensemble (black), and histograms of the data after it has been clustered into different classes (colors).
Smooth curves represent the marginalized, predictive posterior distribution of the two-state BIASD model for each class. Significant
deviation between the predictive posterior distribution and the histogram suggest the presence of additional classes. Above each plot
is the lowerbound of the evidence; this suggests that the data is most parsimoniously represented by two classes, even though the
residuals are lower when more classes are included.

plex is an analog to an initiation complex, while the PRE-A
Phe complex is an analog to an elongation complex.

Since the P site tRNA were site-specifically labeled with donor-fluorophores, any complexes where tRNAPhe

failed to be delivered or undergo peptide-bond formation would not contribute any observable FRET. sm-

FRET signal versus time trajectories were recorded from these complexes at 25, 28, 31, 34, and 37 °C . Ad-

ditionally, we also examined an authentic PRE complex, PREPhe/Lys , where a deacylated donor-fluorophore

labeled tRNAPhe occupies the P site, and a tripeptidyl fMet-Phe-Lys-tRNALys occupies the A site. The dy-

namics of the PREPhe/Lys complexes are expected to be the most heterogeneous of the PRE complexes

investigated here, because the acylation statuses of the tRNA involved in the complex formation are not

uniform due to spontaneous hydrolysis of the peptide bond, and additional because the experiment can not

distinguish between the presence or absence of tRNALys in the A site. Regardless, the dynamics of the

PREPhe/Lys complex were measured using the L1-tRNA signal at 22 (room-temperature), 25, 28, 31, and

37 °C . The data acquired at 31 and 37 °C were obtained using a shorter exposure time of τ = 33 ms in

order to better resolve GS1 and GS2, though this does result in a lower average SNR of the EFRET versus

time trajectories. As in previous publications, at all temperatures measured, all three of these PRE com-

plexes exhibited dynamic fluctuations between two EFRET states that correspond to the open and closed L1

stalk-tRNA interaction that occurs in GS1 and GS2, respectively.

Across the range of temperatures investigated, the PRE-A
fMet complexes favored GS1 (Fig. 4.20), which

is consistent with previously published results [70], and the idea that tRNAfMet is less easily distorted than

elongator tRNAs which must distort in order to promote the GTPase activation of EF-Tu during elongation.

Interestingly, there are most likely two sub-populations within this mesoscopic ensemble of PRE-A
fMet , and
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the relative populations seem be temperature-invariant (∼3:1). While the PRE-A
Phe results (Fig. 4.21) favor

GS1 less than PRE-A
fMet complexes due mostly to a slower kGS2, this mesoscopic ensemble also seems most

likely to contain two sub-populations with approximately the same, temperature-invariant ratio of ∼3:1. The

origin of this heterogeneity is unclear. It is probably not due to incomplete deacylation by puromycin, as both

subpopulations undergo fluctuations between GS1 and GS2, and the presence of an aa-tRNA in the P site

blocks this transition. One possibility is that the two classes represent ribosomes with different ribosomal-

protein compositions; for instance, S1 is a particularly weakly-bound protein with sub-stoichiometric occupa-

tion of the ribosome [49]. Overall, the less-populated state has both faster rate constants and slightly higher

EFRET values, so it is possible that either the different compositional or conformational types of the ribosome

present expose the fluorophores to slightly different environments and have a different energy landscape

along the GS1 −⇀↽− GS2 reaction coordinate, or that this is an artifact of the the mixture model – possibly

because the posterior distribution is not symmetric like a normal distribution, and the only way for a mixture

of normal distributions to compensate is by adding additional classes to fit the asymmetry.

25 28 31 34 37 

Figure 4.20: Temperature Dependence of Mesoscopic Ensembles of PRE-A
fMet complexes. Each plot shows the histogram of exper-

imentally observed EFRET values (black) at a particular temperature. The variational lowerbounds are shown above each histogram.
The data was classified according to the number of states with the largest value of the lowerbound. Histograms of the data classified
to these states are shown in color.

The authentic PREPhe/Lys complexes showed the fastest dynamics (Fig. 4.22). Consequentially, for the

highest temperatures tested, we increased the acquisition time period to τ = 33 ms, and there was still a

significant amount of blurring as evidenced by the density in between the EFRET peaks corresponding to GS1

and GS2. Interestingly, for all but the room temperature T = 22 °C data, the lowerbound of the variational

gaussian mixture model suggests that there are three sub-populations in the mesoscopic ensemble. The

two major classes correspond to one class of PREPhe/Lys complexes (∼30%) that favors GS1, and another

class (∼55%) that favors GS2. The remaining class (∼15%) only slightly favors GS2. While it is unknown if

these classes are static or whether they interconvert, the divergent dynamics of the major classes suggests
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25 28 31 34 37 

Figure 4.21: Temperature Dependence of Mesoscopic Ensembles of PRE-A
Phe complexes. Each plot shows the histogram of exper-

imentally observed EFRET values (black) at a particular temperature. The variational lowerbounds are shown above each histogram.
The data was classified according to the number of states with the largest value of the lowerbound. Histograms of the data classified
to these states are shown in color.

that the variational mixture model has found two distinct types of PREPhe/Lys complexes rather than creating

a pathological overfitting class. However, the structural basis of these classes remains unclear.

22 25 28 31 37 
 = 33 ms = 50 ms

Figure 4.22: Temperature Dependence of Mesoscopic Ensembles of PREPhe/Lys complexes. Each plot shows the histogram of exper-
imentally observed EFRET values (black) at a particular temperature. The variational lowerbounds are shown above each histogram.
The data was classified according to the number of states with the largest value of the lowerbound. Histograms of the data classified
to these states are shown in color.

Due to the lack of certainty in associating the various classes of PRE complexes across different tem-

peratures, the ensemble averaged behavior of each PRE complex was utilized to quantify the temperature

dependence of the rate constants and ∆G. The inferred rate constants and ∆G from a mesoscopic en-

semble constructed using a single Gaussian in the mixture model were analyzed using maximum likelihood

solutions to the equations for Gibbs free energy and transition state theory (Figure 4.23). The maximum
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likelihood solution to ∆G = ∆H − T∆S is

L = P (D|Θ) =

N∏
i

N (∆Gi|∆H − Ti∆S,Σ)

lnP ∼
N∑
i=1

(∆Gi − (∆H − Ti∆S))
2 (4.86)

∂ lnP

∂∆S
= 0 =

N∑
i=1

(∆Gi − (∆H − Ti∆S) · Ti) =⇒ ∆S =

N∑
i=1

Ti(∆H −∆G)

N∑
i=1

T 2
i

, (4.87)

∂ lnP

∂∆H
= 0 =

N∑
i=1

(∆Gi − (∆H − Ti∆S)) =⇒ ∆H =

(
N∑
i=1

∆Gi) + ∆S
N∑
i=1

Ti

N
. (4.88)

The dependence upon ∆S from Equation 4.88 can then be removed to yield the maximum-likelihood solution

∆H =

(
N∑
i=1

∆Gi

)(
N∑
i=1

T 2
i

)
−
(
N∑
i=1

∆GiTi

)(
N∑
i=1

Ti

)
(
N

N∑
i=1

T 2
i

)
−
(
N∑
i=1

Ti

)2 , (4.89)

and then themaximum-likelihood solution for ∆S by solving Equation 4.87. Themaximum-likelihood solution

to the linearized form of transition state theory has a tractable solution that can be found as above for the

Gibbs free energy case. For

yi ≡ ln

(
kih

κkBTi

)
= ∆S‡/R− βi∆H‡, (4.90)

where βi = (RTi)
−1, then

lnP ∼
N∑
i=1

(yi + βi∆H
‡ −∆S‡/R)2 (4.91)

∂ lnP

∂∆S‡
= 0 =

N∑
i=1

(
yi + βi∆H

‡ −∆S‡/R
)
· (−1/R) =⇒ ∆S‡ =

R

N

(
∆H‡

(
N∑
i=1

βi

)
+

(
N∑
i=1

yi

))
(4.92)

∂ lnP

∂∆H‡
= 0 =

N∑
i=1

(
yi + βi∆H

‡ −∆S‡/R
)
· βi =⇒ ∆H‡ =

∆S‡/R ·
(
N∑
i=1

βi

)
−

N∑
i=1

βiyi

N∑
i=1

β2
i

. (4.93)

Again, the dependence upon ∆S‡ can be removed from Equation 4.93 to yield the maximum-likelihood
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solution

∆H‡ =

(
N∑
i=1

yi

)(
N∑
i=1

βi

)
−N

N∑
i=1

βiyi

N

(
N∑
i=1

β2
i

)
−
(
N∑
i=1

βi

)2 , (4.94)

and then the maximum-likelihood solution for ∆S‡ can be found with Equation 4.92. The resulting solutions

are shown in Figure 4.23.
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Figure 4.23: (A,B) Temperature dependence of PRE rate constants. Inferred mean rate constant (±1σ) of entire ensemble of
PREPhe/Lys , PRE-A

fMet , and PRE-A
Phe complexes. Maximum likelihood solutions to a linearized transition state theory with ±1σ er-

rorbars from bootstrapping resampled rate constants given the normal distribution about the inferred rate constants are shown as
colored regions. (C) Temperature dependence of PRE ∆ GGS2−GS1. The mean ∆ GGS2−GS1 at each temperature is shown with
±1σ, and the maximum likelihood solution to ∆G = ∆H−T∆S, is shown with±1σ errorbars from bootstrapping as described above.

4.7.3 Transfer-RNA Contributions to the Pretranslocation Energy Landscape

By comparing the relative energetics of the PRE complexes reaction coordinates as analyzed using TST,

the structural contributions that the various tRNA provide to the general PRE energy landscape can be inter-
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preted. In order to facilitate these comparisons, both the PRE-A
fMet and PREPhe/Lys complexes are presented

relative to the PRE-A
Phe complex, such that the first comparison provides insight into the contribution of P-site

tRNA structure, and the latter comparison provides insight into the contribution that A-site peptidyl-tRNA

make to authentic PRE complexes. These relative thermodynamic contributions of the tRNA to the PRE

energy landscape are presented as ∆∆G‡ at 25 °C (Figure 4.24), though their interpretations do not change

at 37 °C , or if ∆∆H‡ or ∆∆S‡ is considered instead.

The forward transition from GS1 to the transition state effectively requires an authentic PRE complex

(i.e., PREPhe/Lys ), as ∆∆G‡ is greater than kBT relative to the PRE-A complexes. The presence of the A-site

peptidyl-tRNA accelerates the forward reaction, however this might also be an effect of having excess EF-Tu

present in solution during the experiment. Interestingly, the A-site peptidyl-tRNA seems to have a negligible

effect upon the reverse reaction, GS2→ GS1. Together, these suggest that the authentic PRE complexes

predisposes the ribosome towards GS2, possibly to enhance the speed of translation elongation.

The P-site tRNA identity has a significant effect upon the reverse reaction as the ∆∆G‡GS2 for the PRE-A
fMet

complex is over one kBT less that that of PRE-A
Phe . This most likely reflects the decreased flexibility of

tRNAfMet relative to that of tRNAPhe, which renders it energetically unfavorable for tRNAfMet to maintain the

distorted P/E conformation. Most likely, the GS2 state is destabilized by the structural differences between

tRNAfMet and to elongator-tRNAs. These structural differences, such as the mismatched aminoacyl-acceptor

stem basepair (C1-A72) or the purine-pyrimidine flipped basepair in the D-stem (A11-U24) in tRNAfMet, have

been well documented to affect PRE dynamics, and mutating these differences in tRNAfMet to their elongator-

tRNA counterparts creates a more flexible tRNAfMet that restores elongator-tRNA-induced PRE complex

dynamics [70]. As a complement to the destabilization of GS2 by tRNAfMet, the forward transition from GS1

to the transition state is slowed by the presence of tRNAfMet relative to tRNAPhe. This slowed rate of transition

out of GS1 increases the likelihood that the PRE-A
fMet complex will remain in the GS1 state, and is probably

driven by the less-flexible tRNAfMet being energetically more unfavorable to distort than the more flexible

tRNAPhe in order to reach the transition state from the stable P/P state.

Finally, we note that these observed PRE dynamics are essentially two-state, and do not exhibit extreme

non-Arrhenius-like curvature over the range of temperatures observed here. As such, the above interpreta-

tions about the tRNA structure-dependent influences on PRE complex dynamics are established across a

range of temperatures that a living organism might encounter in the world. Here, many of the distinctions

between the dynamics of the various PRE complexes that were observed were induced by the structural

differences of elongator and initiator tRNA. This might reflect the biological need for tRNAfMet to modulate
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PRE dynamics during other steps of translation aside from elongation, such as initiation. As such, different

sets of evolutionary pressures encouraged initiator and elongator tRNA to evolve to promote different modes

of PRE complex dynamics. However, in both cases, distinct exploitation of PRE complex dynamics seems

to be a general strategy used to modulate various steps of translation.

‡

‡‡

Figure 4.24: Relative values of ∆∆G‡25C for different PRE complexes. The values of ∆∆G‡25C relative to those of PRE-A
Phe are shown

for (left) GS1 to the transition state, and (right) GS2 to the transition state. Errorbars are ±1σ, and were derived by resampling and
then calculating ∆∆G‡25C from the maximum likelihood solutions to the linearized transition state theory expression.
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CHAPTER 5. DYNAMICS OF STOP-CODON DISCRIMINATION BY RELEASE FACTOR 1

Chapter 5

Dynamics of Stop-CodonDiscrimination

by Release Factor 1

5.1 Introduction

The affinity and fidelity of biomolecular interactions are often described in solely in terms of enthalpic interac-

tions such as hydrogen bonding [1, 2], or the monitoring of precise geometries such as Watson-Crick base

pairing [3]. The importance of these types of enthalpic interactions to the affinity and fidelity of biomolec-

ular interactions is readily over-promoted by techniques, such as X-ray crystallography, that present static

pictures, often obtained using non-physiological conditions which can trap non-physiologically relevant inter-

actions and damp out important conformational dynamics [4, 5]. Many biomolecules, such as proteins, RNA,

and ribonucleoprotein complexes are inherently dynamic, and the accurate functioning of these biomolecules

often depends upon these conformational dynamics [6–11]. For instance, conformational dynamics have

been shown to be important for ensuring the fidelity of substrate selection; in fact, paromomycin, an amino-

glycoside that promotes the misincorporation of aminoacyl-tRNAs at near-cognate codons does so by alter-

ing the conformational dynamics of 16S rRNA bases A1492 and A1493, which are, in part, responsible for

enabling ‘recognition’ of the incorrect mRNA codon - tRNA anticodon pairing in the decoding center (DC) of

the ribosome [5]. Similarly, tRNA mutations that alter the conformational dynamics of the tRNA, such as the

Hirsh mutation found in the Hirsh supressor tRNA [12, 13] or disruption of the Schultz-Yarus base pair [14,

15], also promote misincorporation of aminoacyl-tRNAs at near-cognate codons [16]. It is quite possible that

such modulation of conformational dynamics represents a general way for nature to regulate biomolecular

function.

While bacterial class I peptidyl release factors, such as release factor 1 (RF1) (see Chapter 1), interact
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with the ribosome in a manner similar to that of tRNA-EF-Tu(GTP) ternary complex during tRNA selection,

the mechanism by which RF1 regulates its high-affinity binding and accurate recognition of stop codons is ill-

understood (recently reviewed in Refs. 17, and 18). For instance, RF1 recognizes mRNA stop codons UAA

and UAG in the DC, while discriminating against codons with a single base difference (near-stop codons) by

a factor of 103 to 105 – a level seemingly unattainable from just hydrogen bonding differences [19] and in the

absence of a traditional kinetic proofreading mechanism [20, 21] (see Section 1.1.1). Interestingly, mutations

in RF1 that are distal to both the DC and the peptidyl transferase center (PTC) can alter the codon specificity

of RF1 to additionally recognize the UGA stop codon (charge-swap mutations) [22], or to prevent recognition

of the UAG stop codon while leaving UAA recognition intact (switch loop mutations) [23]. Because of their

distance from the DC, presumably these mutations function by a mechanism other than disrupting or forming

direct interactions with the mRNA codon. Similarly, the aminoglycoside antibiotic paromomycin has been

observed to differentially affect stop-codon and near-stop codon recognition by RF1, despite it not interacting

directly with the release factor [24–28].

Here, in an effort to speak to the contributions that conformational dynamics make to ligand binding and

ligand discrimination, we investigated the binding affinity and codon recognition abilities of RF1. Binding

affinity and codon recognition were monitored with single-molecule fluorescence resonance energy transfer

(smFRET) total internal fluorescence reflection (TIRF) microscopy using a previously developed smFRET

signal between RF1 and the peptidyl site peptidyl-tRNA that reports upon RF1 binding [29], and a biochem-

ical peptide release assay [24, 30, 31]. Using these techniques, we investigated the effect of RF1 and

DC dynamics by comparing wild type RF1 behavior to that of RF1 with a novel mutation, which is distal

from the DC and the PTC, at stop and near-stop codons. These interpretations are additionally informed by

complementary molecular dynamics simulations of RF1, as well as bioinformatics approaches. Finally, we

investigated the effect of paromomycin on the binding kinetics of RF1. These studies show that the mod-

ulation of RF1 and/or ribosome dynamics within the context of the DC in the ribosomal aminoacyl (A) site

is crucial for maintaining the binding affinity and codon discrimination ability of RF1, and therefore for the

fidelity of translation termination.
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5.2 Results

5.2.1 The switch loop of ribosome-bound RF1 aligns with mutations in the D-loop

stem of pre-accommodated tRNA that control fidelity

The switch loop of RF1, located from residues 291 to 307 (in Escherichia coli (E. coli) numbering), spans the

region between RF1 domains three and four. From X-ray crystallography structures, when RF1 is bound to

the A-site of the ribosome at a stop-codon, the switch loop contacts residues which form the DC of ribosome

[27, 28]. Specifically, this includes h44 of the 16S rRNA, and H69 of the 23S rRNA – in particular, A1492

and A1493 of the 16S rRNA [18]. These residues have been implicated in maintaining fidelity during the

tRNA selection step of translation elongation [5, 32].

We aligned the phosphates of the 16S rRNA from X-ray crystallography structures of Thermus ther-

mophilus (T. thermophilus) ribosomes containing kiromycin-stalled EF-Tu(GTP)-tRNA where the tRNA is in

the pre-accommodated A/T state [33], and also RF1 bound at a stop-codon [28] using the program VMD

[34] (Figure 5.1). This pre-accommodated tRNA, which is on-pathway during tRNA selection, overlaps sig-

nificantly with the stop-codon bound RF1 as both are located in the A-site of the ribosome. In particular,

the switch loop region of RF1 overlaps with the D-loop stem (D-arm) of the A/T tRNA. This overlap includes

nucleotides in positions 24 and 27, for which mutations to reduce the fidelity of tRNA selection. The mutation

of G24A is found in the Hirsh supressor tRNA, which enables tRNATrp to misincorporate Trp at UGA stop-

codons [12, 13], presumably by increasing the flexibility of the tRNA and allowing it to more readily undergo

distortions necessary for tRNA accommodation [32]. Similarly, the same phenotype of in vivo, non-canonical

recognition of the stop-codon UGA can be induced by mutations which disrupt the base pair (Schultz and

Yarus Pair) formed by nucleotide 27 [14, 15], and is thought to be caused by the increased flexibility of the

tRNA.

5.2.2 Residues G299 and G301 have the highest mutual information in the switch

loop

Evolutionary pressures fight against mutations to genomic sequences in order to conserve molecular func-

tion. In this fight, compensatory mutations can be be made to rescue function (or develop new function)

from a deleterious mutation; these compensatory mutations need not be strictly structural (i.e., maintaining

a hydrogren-bond), but can also be made to maintain dynamic, functional changes within a biomolecule.
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RF1

tRNA

A1493

A1492

Schultz & Yarus Pair

Hirsch Suppressor

Switch Loop

Figure 5.1: Alignment of A/T tRNA and RF1. Pre-accommodated A/T tRNA (PDB:4V5G) is shown aligned to stop codon bound RF1
(PDB:4V7P) by the 16S rRNA. The switch loop of RF1 is shown in green. Bases whose dynamics are associated with the fidelity of
tRNA selection, such as the site of the Hirsh suppressor mutation (G24A) or part of the Schultz and Yarus pair (G27) are shown in
blue. 16S rRNA residues A1492 and A1493, which comprise part of the decoding center, are shown in tan.
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With these compensatory mutations in mind, the pairwise evolution of biomolecular sequences provides a

living record of biomolecular functionality in the sequence conservation across species. In particular, this

coevolution of residues (nucleotide or protein) can be used to infer functional relationships between distal

inter- and intra-molecular regions of a biomolecule(s), and, in particular, it is capable of identifying functional-

and specificity-determining residues [35]. Therefore, we sought to investigate RF1 switch loop function by

analyzing its coevolution within the context of parts of the 16S and 23S rRNA, and also the rest of RF1.

However, since regions of the rRNA near the switch loop are mostly immutable (i.e., h44 and H69), here,

we present only the intramolecular relationships within RF1.

To investigate the coevolution of RF1, we used mutual information as a proxy for coevolution [36]. Mutual

information (MI) is a mathematical definition of the dependence of two variables, and can be thought of as

an entropic measure of how well one variable can be used to describe the other. MI ranges between 0 and

1, representing no dependence and maximal dependence, respectively, and is calculated as,

MI(x, y) =
∑
x

∑
y

p(x, y) · ln
(

p(x, y)

p(x) · p(y)

)
, (5.1)

where p is the probability of an event. For the purposes of coevolution, x and y would be the different residues

at two different positions within the primary sequence of RF1. Therefore the joint-probability p(x, y) would be

a 20 by 20 matrix representing the frequency of finding each pair of amino-acids at the two positions under

consideration. The MI is then calculated from the pair-wise frequencies obtain from sequence alignments of

a representative primary sequences. Here, we obtained the protein sequences of 9097 bacterial RF1 from

NCBI ref-seq [37], specifically excluding plastidial and mitochrondrial RF1, and including only one strain

per species, so as not to over-represent certain species (we did not control for over-represented genuses).

These sequences were then aligned pairwise using Clustal Omega [38], and finally the MI was calculated

using Equation 5.1.

The MI between all residues in bacterial RF1 are plotted in Figure 5.2, using the E. coli numbering and

domain labels. MI is a symmetric quantity (i.e., the same for residues A and B, as for residues B and A), so

the MIs below the diagonal are the same as above. Notably, in the ‘tripeptide anticodon’ PXT motif found

in domain two that is partially responsible for codon recognition in the decoding center [39], the proline and

threonine are highly conserved, while the variable X position coevolves with domains three and four more

than one or two. Similarly, the highly conserved GGQ motif that is important for catalyzing the hydrolysis

of nascent polypeptide chains [40], is extremely invariant, suggesting that the sequences used here are
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appropriately aligned. Interestingly, the domain structure can be seen in off-diagonal triangles (c.f. domain

three) as the local residues within a domains probably coevolve with each other more than the average

residue.

Many residues in the switch loop have a significant amount of MI between all other domains of RF1. This

significant amount of MI is also true for the majority of residues in RF1, and makes it difficult to locate regions

of interest. This complicating feature is probably, in part, due to the many interactions that RF1 must make

in vivo, such as with the N5-glutamine methyltransferase encoded by prmC that methylates the GGQ motif

[41–43], or with RF3 when both are bound to the ribosome [44], in addition to its the ribosomal interactions

(c.f., Section 5.2.1 and Refs. 45, and 18) necessary for its role in the termination hydrolysis reaction [46].

Within the switch loop, there is also a significant amount of MI (Figure 5.2, inset). Of these positions within

the switch loop, the pair of residues with the most MI is G299 and G301. Previously, a G301S mutation to

RF1 was shown to suppress termination by RF1 at the UAG stop-codon by increasing read-through in vivo,

and also rendered the E. coli cells more susceptible to mRNA cleavage by the toxin RelE, which cleaves

A-site mRNA at UAG in a ribosome-dependent manner [23, 47]. From Figure 5.1, G299 and G301 do not

directly interact with any rRNA, however, in this X-ray crystallography structure of the T. thermophilus RF1,

the threonine residue in the middle at position T300 (serine in E. coli) does contact A1493; so it is possible

that the dynamics of G299 and G301 affect this interaction.

5.2.3 RF1 switch loop mutant G299A, G301A releases significantly less dipeptide

than wild type RF1 at near-stop codons, but not at stop codons

Previously, we had cloned the E. coli RF1 gene, prfA, and co-expressed this wildtype RF1 (wtRF1) with

the release factor methyltransferase encoded by prmC in order to produce wtRF1 that is active in in vitro

translation termination assays [29, 48]. Here, from this original wtRF1 construct, we generated the switch

loop mutant G299A, G301A RF1 (mutRF1) using site-directed mutagenesis to mutate G896C and G902C

in the wildtype prfA gene. These constructs (wtRF1 and mutRF1) were then purified using a nickle-affinity

chromatography, and size exclusion chromatography.

We then investigated the ability of wtRF1 and and this newly constructed mutRF1 to release nascent

polypeptide chains from the ribosome using a standard radioactive release assay [24, 30, 31]. Briefly, an in

vitro transcribed mRNA message, fM-K-X where X is either the UAA stop-codon or UAU near-stop codon, is

translated using formyl-
[
35S
]
-Met-tRNAfMet and Phe-tRNAPhe to create ribosomal release complexes (RCUAA
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Figure 5.2: Mutual Information of Bacterial RF1 Primary Sequence. Mutual information is shown for n = 9097 bacterial RF1 sequences
aligned with Clustal Omega, and was plotted using E. coli RF1 numbering, and ignoring any gaps. RF1 domains are annotated above
and to the right. Inset shows the mutual information in the switch loop region of RF1.
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and RCUAU, respectively), which contain radiolabeled-dipeptide that is ready to be released by RF1. The

radiolabeled dipeptide is then released from the RC by incubation with RF1, and then released and unre-

leased dipeptide are separated using electrophoretic thin-layer chromatography (eTLC). The eTLC plate is

then exposed on a phosphorimaging screen, which is then scanned and quantified.

As shown in Figure 5.3, RCUAA was incubated for 5 sec at room temperature with 25 µM (125-fold

excess) of either wtRF1 or mutRF1. In both cases, 81% of the f-
[
35S
]
-Met was released – presumably the

experimental upper limit – while, in the absence of RF1, a negligible amount was released – presumably due

to spontaneous, water-catalyzed hydrolysis. As measured by Freistroffer et al., the KM for wtRF1 release

at both UAA and UAG is ∼8 nM [49]. Therefore, for wtRF1, Michaelis-Menten kinetics suggests that the

reaction rate should >99.9% of the maximum rate. Most likely, the KM is similar for mutRF1 catalyzed

release on RCUAA, as the amount of dipeptide released is the same.

When RCUAU was incubated for 10 min at room temperature with 25 µM wtRF1, 80% of the dipeptide

was released. The KM for peptide release by wtRF1 at the near-stop codon UAU is ∼3.3 µM [19], so the

saturating amount of wtRF1 that was used suggests that the reaction rate should be 88% of the maximum

reaction rate, and most likely given the additional incubation time, the reaction proceeded to completion.

However, when the release assay is performed by incubating RCUAU for 10 min at room temperature with 25

µM mutRF1, there was no detectable release of dipeptide, and repeating this experiment at 37 °C yielded

only a negligible amount of release (8%), which might be due to the increased basal level of hydrolysis by

water. Regardless, while mutRF1 can catalyze release of dipeptide from the stop-codon containing RCUAA,

it does not seem to be able to catalyze release at a near-stop codon, which is unlike wtRF1.

5.2.4 Altering the dynamics of RF1 residues 299 and 301 biases the conformation

of the switch loop, and can alter the dynamics of the entire release factor

Since the G299A, G301A mutations of mutRF1 differentially affect dipeptide release at stop and near-stop

codons without directly forming or breaking new molecular interactions (c.f., Section 5.2.3), we performed

molecular dynamics simulations of wtRF1 and mutRF1 to provide insight into any effects the mutations have

on the dynamics of RF1. As a starting point, we isolated the T. Thermophilus, wild type RF1 that was bound

to the ribosome at a stop codon in the X-ray crystallography structure from Noller and coworkers from its

surroundings [28]; this structure of wild type RF1 is in the ‘open’ conformation as it spanned the DC to the

PTC. This wild type RF1 was then embedded in a rectangular ∼1003 Å3 box of TIP3P water, such that, in
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Figure 5.3: Wild Type and Mutant RF1 Dipeptide Release Assay. E-TLC separated products from a fMet-Phe dipeptide release assay
after a 5 sec incubation of 25 µM wild type or mutant RF1 at room temperature with 200 nM termination complexes with the stop codon
UAA in the A-site, or after a 10 min incubation of wild type or mutant RF1 with 200 nM termination complexes with the near-stop codon
UAU in the A-site. Data from Dr. D. Pulukkunat.

each direction, the wild type RF1 was buffered by at least 10 Å of water molecules. The system was then

neutralized, and brought to 150 mM salt concentration using Na+ and Cl– counterions. This system was

then minimized and allowed to relax using Desmond [50] and the OPLS-AA force field [51], then a 1 ns

long molecular dynamics simulation was run using an NPT ensemble at 300 K and atmospheric pressure.

This short simulation was performed to remove any crystal-packing or ribosome-induced artifacts from the

wild type RF1 structure, and the final structure was used as the starting point for the following molecular

dynamics simulations.

From this common starting structure, the side chains of G294 and G296 were mutated to methyl groups

for the T. Thermophilus-equivalent mutation of G299A, G301A. This mutant RF1 and the original wild type

RF1 were then simulated for 11 ns, and the first was discarded as an equilibration time. The effect on the

local dynamics of the switch loop can be monitored with the Φ and Ψ angles for T295, which is between the

sites of the mutations. The time series of ΦT295 and ΨT295 is shown for both the wild type and mutant RF1

in Figure 5.4. As more clearly seen in the Viterbi path from a 2D-variational Bayes HMM (Appendix D) of

the Φ and Ψ trajectories, the switch loop of wild type RF1 is much more dynamic than that of mutant RF1.

Additionally, the switch loop of wild type and mutant RF1 differentially sample areas of conformational space

(Figure 5.5, left).

To investigate how the glycine to alanine mutations at positions 299 and 301 alter the dynamics of the
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Figure 5.4: Mutant and Wild Type RF1 Molecular Dynamics Trajectories. Scatter plot of Φ and Ψ for residue T295 (i.e., S300 in E.
coli) in the context of the wild type RF1 (left) and mutant G294A, G296A RF1 (G299A, G301A in E. coli) (right). Overlapped is a the
trajectory with the most likely states as determined by a 2-D variational HMM.
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Figure 5.5: Simulation Population Differences between Mutant and Wild Type RF1 and Tripeptides. (Left) The difference in probability
for ΦT295 and ΨT295 (S300 in E. coli) as seen in the molecular dynamics simulation of wild type and mutant release factor. Positive
values correspond to more occupancy in the simulation of the mutant RF1, while negative correspond to more occupancy of the wild
type RF1. (Right) The difference in probability for ΦThr and ΨThr as seen in the metadynamics simulation of GTG and ATA tripeptides.
Probability was calculated as P ∼ e−∆G/RT . Positive values correspond to more expected occupancy of the ATA tripeptide, while
negative correspond to more occupancy of the GTG tripeptide.
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entire switch loop, rather than just the local dynamics of the intervening residue 300, we performed a meta-

dynamics simulation [52] to calculate the free energy surface of the Φ and Ψ for the tripeptides GTG and ATA,

corresponding to the wild type and mutant RF1 switch loop, respectively. This free energy surface should

reflect the local, nearest neighbor contributions to the dynamics observed in Figure 5.4, and any differences

should be due to the contribution of the rest of RF1. The free energy surfaces calculated with Desmond

[50] are shown in Figure 5.6. From these free energies of ΦThr and ΨThr, we can calculate the expected

populations of the conformations at 300 K, the temperature of the molecular dynamics simulations of wild

type and mutant RF1. The differences between the regions expected to be sampled by ΦThr and ΨThr in

the GTG and ATA tripeptides should reflect the local contributions of residues 294 and 296 to the dynamics

of ΦT295 and ΨT295, and deviations from those distributions should reflect the contribution of wild type or

mutant RF1 (Figure 5.5). The differences do not match those from the molecular dynamics simulation. This

is primarily due to ΦT295 and ΨT295 in the mutant RF1 over-occupying the (150°,-50°) region rather than

(150°,-150°) or (0°,-150°) as is expected from the metadynamics free energy surface. This suggests that

altering the dynamics of residues 299 and 300 by introducing the glycine to alanine mutations dynamically

alters the conformation of the switch loop.

Ψ
Th

r

ΦThr ΦThr

ΔGGTG (kcal/mol) ΔGATA (kcal/mol)

Figure 5.6: Tripeptide Free Energy Surfaces from Metadynamics Calculation. The Gibbs free energy as calculated from a metady-
namics simulation for the tripeptide that is analogous to the wild type RF1 switch loop sequence, GTG (left), and for the tripeptide that
is analogous to the mutant RF1 switch loop sequence, ATA (right).

With regard to the effect of these mutations on the dynamics of the rest RF1, we performed dynamical

network analysis [53] on the wild type and mutant RF1 molecular dynamics simulation trajectories in order to

investigate how the mutations affect the dynamics of RF1. In this approach, communities of residues within
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the wild type and mutant RF1 are detected from the correlated motions of the residues in the molecular

dynamics trajectories [53, 54]. These communities partition the molecule into clusters of highly connected

and communicating residues, and information such as allosteric communications must flow from community

to community through a limited set of residues [55]. Disruption of these communities can then result in a

disruption of the communication between distal regions of the molecule in question.

Several of the communities found in wild type and mutant RF1 are shown in Figure 5.7. The importance

of these particular communities is seen when looking at the sub-optimal paths through these communities

between the PVT motif, which recognizes the stop-codon in the DC, and the GGQ motif, which catalyzes

polypeptide hydrolysis in the PTC. For wild type RF1, these paths only pass through one intermediary com-

munity (green) between the PVT motif and the domain three alpha helix that supports the GGQ motif. How-

ever, for the mutant RF1, these paths must pass through an additional intermediary community (not shown).

This disconnection between the originating (purple) and intermediary community (green) is a disruption of

communication those communities, and is possibly represents a ‘short-circuiting’ of the flow of information

from codon-recognition in the DC to the hydrolysis that subsequently occurs in the PTC. However, from this

study, it is unclear how this communication and the communities would be affected in the presence of mRNA

and the ribosome.

Wild Type RF1 Mutant RF1

90˚

G301 to Q230 (GGQ)

T186 (PVT)

G299

Figure 5.7: Network Analysis of Wild Type and Mutant RF1. The backbone trace of wild type (left) and mutant (right) RF1 is shown in
gray. Several network-partitioning communities are shown (purple, green, orange, and red). Representative sub-optimal paths between
Thr186 of the PVT motif, and Gln230 of the GGQ motif are shown in yellow.
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5.2.5 Mutations to the switch loop of RF1 alter the binding affinity of RF1 for stop

and near-stop codon programmed ribosomal release complexes

In order to further investigate how the G299A, G301A mutation in the switch loop of RF1 can differentially

affect stop and near-stop codon recognition, we used smFRET to monitor the binding kinetics of wtRF1

and mutRF1 to various ribosomal release complexes (Figure 5.8). Briefly, we utilized a wtRF1 variant from

Figure 5.8: Cartoon of RF1 and RC smFRET Experiment. Ribosomes containing mRNA with either a stop-codon (RCUAA) or a near-
stop codon (RCUAU) in the A-site are immobilized to the surface of a slide using a biotin-streptavidin-biotin bridge. These ribosomes
contain a donor-fluorophore labeled tRNAPhe in the P-site, that will undergo FRET to an acceptor-fluorophore labeled RF1 when it is
bound in the A-site. TIRF of a laser beam in a prism creates an evanescent field that illuminates the samples near the slide surface.

which we had previously [29] removed all wild type cysteines (C51S, C201S, C257S) and introduced a sin-

gle cysteine at position 167 (S167C) – all mutations have been shown to retain wild-type activity [29, 56]).

This wtRF1 variant was then labeled using a maleimide-derivatized acceptor fluorophore, Cy5, at position

S167C using Michael-addition of the sulfhydryl group of the cysteine to the maleimide, and the labeled

wtRF1 (wtRF1-(Cy5), herein) was then purified to 100% labeling efficiency using hydrophobic-interaction

chromatography. Similarly, the G299A, G301A mutations were introduced into the S167C single-cysteine

construct; this was labeled with Cy5, and also purified 100% labeling efficiency (mutRF1-(Cy5), herein). To

create donor-fluorophore labeled, stop and near-stop codon programmed ribosomes, we constructed ribo-

somal release complexes that were labeled with NHS-ester derivatized Cy3 at position 47 of tRNAPhe, which

is a primary amine-containing 3-(3-amino-3-carboxypropyl)-uridine, through amide formation with the NHS-

ester and primary amine, which were also purified to 100% labeling efficiency using hydrophoic-interaction

chromatography (see Ref. 48 for a review). These Cy3-labeled release complexes programmed with stop
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and near-stop codons in the A-site are herein referred to as RCUAA-(Cy3) and RCUAU-(Cy3), respectively.

We then proceeded to image donor and acceptor fluorophore fluorescence from RCUAA-(Cy3) or RCUAU-

(Cy3) with wtRF1-(Cy5) or mutRF1-(Cy5) in solution using TIRF microscopy in order to monitor RF1 binding

kinetics via smFRET.

As previously demonstrated [29], wtRF1-(Cy5) binds stably to the stop-codon programmed RCUAA-(Cy3)

(Figure 5.9, top). In the example fluorescence intensity versus time trajectory of this reaction, loss of Cy5
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Figure 5.9: smFRET from 10 nM wtRF1 and mutRF1 Binding to Stop-codon Programmed RCUAA. (Top) Surface-immobilized RCUAA-
(Cy3) was imaged with 10 nM wtRF1-(Cy5) in solution. Stable binding of one wtRF1-Cy5 occurs from the beginning of the trajectory,
and continues past Cy5 photobleaching, until, at least, Cy3 photobleaching occurs. On the right, a log10-scaled histogram of EFRET from
n = 147 of these trajectories truncated at Cy5-photobleaching. (Bottom) Similarly, a surface-immobilized RCUAA-(Cy3) is imaged with
10 nM mutRF1-(Cy5) in solution. The trajectory shows multiple binding and dissociation events before Cy3-photobleaching occurs.
The log10-scaled histogram is composed of EFRET trajectories from n = 364 of these complexes. However, unlike the wtRF1-(Cy5)
case, the peak centered at ∼ 0 primarily represents RCUAA in the absence of mutRF1-(Cy5).

fluorescence intensity occurs after a few seconds of imaging. This loss of fluorescence intensity is due

to photobleaching of the Cy5 fluorophore, rather than dissociation of wtRF1-(Cy5), as no other putative

binding events occur after this point, despite there being 10 nM wtRF1-(Cy5) in solution. In the associated

histogram of multiple EFRET versus time trajectories, the peak at ∼0 is therefore due to photobleaching.

Previously, we have demonstrated that this loss of fluorescence in laser-power dependent, and therefore

due to photobleaching, rather than dissociation [29].

Unlike wtRF1-(Cy5), mutRF1-(Cy5) binds and dissociates very rapidly from RCUAA-(Cy3) (Figure 5.9,

213



CHAPTER 5. DYNAMICS OF STOP-CODON DISCRIMINATION BY RELEASE FACTOR 1

bottom). With 10 nM mutRF1-(Cy5) in solution, many binding events to a single RCUAA-(Cy3) occur within

a single EFRET versus time trajectory before Cy3 photobleaching occurs. Some of these binding events are

so transient that they do not even last a single time period. The log-scaled histogram of the EFRET versus

time trajectories, which presumably contains little to no photobleaching, shows peaks at EFRET ≈ 0.05 and

EFRET ≈ 0.93. The former corresponds to the RF1 unbound state with no FRET occurring; the non-zero

value being attributable to Cy3 fluorescence bleed-through into the Cy5 fluorescence intensity and also Cy5

autofluorescence from excitation-cross talk of mutRF1-(Cy5) in solution at relatively high concentrations. The

latter corresponds to the RF1 bound-state, and the EFRET matches that observed for wtRF1-(Cy5) binding

to RCUAA-(Cy3). Additionally, in the region of the histogram between the peaks corresponding to bound

and unbound mutRF1-Cy5, there is a moderate amount of time-averaged EFRET signal, though, for reasons

discussed below, we do not apply BIASD (c.f., Chapter 4).

As expected, the binding kinetics of mutRF1-(Cy5) to RCUAA-(Cy3) are dependent upon the concentra-

tion of mutRF1-(Cy5) in solution. Lowering the concentration of mutRF1-(Cy5) in solution during imaging

from 10 to 1 nM yields noticeably fewer binding events (Figure 5.10). Anecdotally, in the representative
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Figure 5.10: smFRET from 1 nM mutRF1-(Cy5) Binding to Stop-codon Programmed RCUAA. As in Figure 5.9, an example smFRET
trajectory and a histogram of n = 768 EFRET versus time trajectories is shown for RCUAA-(Cy3) imaged with 1 nM mutRF1-(Cy5) in
solution.

EFRET versus time trajectory shown here it seems that there might be multiple different timescales for dis-

sociation of mutRF1-(Cy5) from RCUAA-(Cy3) when comparing the multiple ∼1 frame-long dwell times at

the beginning of the trajectory to the ∼30 frame-long dwell time in the middle of the trajectory. However,

since this is a stochastic system, it could be a statistical coincidence. Looking back at the representative

EFRET versus time trajectory for 10 nM mutRF1-(Cy5) binding to RCUAA-(Cy3) (Figure 5.9, bottom), there are

similar situations with many transient dwell-times and several long-lived dwell-times. Regardless, compar-

ing the histogram of all of the observed EFRET versus time trajectories observed with 1 nM to that with 10
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nM mutRF1-(Cy5) in solution, we find that the two maxima are located at approximately the same EFRET ,

but that the peak associated with the mutRF1-(Cy5)-bound RCUAA-(Cy3) complex (EFRET ≈ 0.9) is larger

at the higher concentration, while the peak associated with the unbound complex is smaller at the higher

concentration. Additionally, the widths of both peaks in the 1 nM mutRF1-(Cy5) histogram are narrower,

because there is less excitation-crosstalk from the indirection excitation of the unbound mutRF1-(Cy5) in

solution. Finally, there are fewer of the blurred, time-averaged EFRET measurements between the two main

peaks at 1 nM than at 10 nM mutRF1-(Cy5), which suggests that there is a slower rate constant at the lower

concentration.

To investigate the kinetics of mutRF1-(Cy5) binding to RCUAA-(Cy3), we thresholded the EFRET versus

time trajectories mid-way between the peaks in histograms in Figures 5.9 and 5.9 (EFRET = 0.45), and used

the resulting state versus time trajectories to calculate the survival function of dwell-times. The resulting

curves are plotted in black in Figure 5.11. Fitting the survival curves to exponential decays conditioned upon
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Figure 5.11: Concentration-dependence of the Kinetics of mutRF1 Interactions with RCUAA. The number of dwell-times observed to
be greater than a number of frames is plotted (black) for mutRF1 dissociated from (top) and bound to (bottom) surface-immobilized
RCUAA for 1 nM mutRF1-(Cy5) (left) and 10 nM mutRF1-(Cy5). Non-linear fits to single exponential decays are shown for kon (blue)
and koff (green) with the colored region representing ±3σ for the number of expected dwells given the stochastic decay [57]. The
dwells on RCUAA are non-single exponential.

all observed dwell-times being greater than one-measurement period long as described in Section 3.2.2

provides a rate constant that was can be used to determine that the decays are non-Markovian. While this

rate constant predicts the average decay of the survival curve, since the binding and dissociation reactions

are stochastic, the experimentally observed curves will only follow the average, and will deviate a certain

amount that depends upon the total number of molecules considered. The time-dependent variance around
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the mean for a stochastic unimolecular elementary reaction was derived by McQuarrie [57] and is

σ2 = N0e
−k·t · (1− e−k·t), (5.2)

where σ2 is the variance, k is the rate constant, t is time, and N0 is the number of molecules at t = 0.

Notably, the RCUAA-(Cy3)-bound dwell-times (‘on’ dwells) seem ill-described by such a Markovian reaction

mechanism, because of the substantial deviation from the ±3σ region shown for the fitted-mean decay. In

particular, there are hundreds of short-dwell times that are one, two, or three measurement periods long,

which are unaccounted for by the Markovian model. This deviation is not accounted for by changing the

threshold used to generate the state versus time trajectories. Additionally, this non-Markovian behavior does

not seem to be induced by the compounding of dwell-times due to missed-events described in Section 3.3.4,

because the mean decay rate constants are too slow to see such an effect. It is because of this apparent

non-Markovian behavior that we have opted to utilize the thresholding approach rather than using an HMM or

BIASD. Regardless, this fitted-rate constant is about the inverse of the average dwell-time, and as such is still

useful to quantify the relative dwell-times for the various conditions. Notably, the apparent rate constant for

mutRF1-(Cy5) association to RCUAA-(Cy3) increase with increased concentration of mutRF1-(Cy5); though

the increase is not the expected 10-fold even though the experiments were performed as serial dilutions

from a common stock solution of mutRF1-(Cy5), though this could be partially due to the deficient method

used to calculate these values. Additionally, the rate constants for the dissociation of the mutRF1-(Cy5) from

RCUAA-(Cy3) are relatively independent of mutRF11-(Cy5) concentration, as is expected for a unimolecular

reaction.

As would be expected for a bimolecular reaction, Hetrick and coworkers showed that the second order

association rate constant for RF1 binding to stop-codon programmed ribosomes differs little relative to near-

stop or sense-codon programmed ribosomes by using bulk, stopped-flow fluorescence experiments [58].

Because their results seem to be a convolution of a biphasic approach to equilibrium [59], we estimated

the upper-limited for a diffusion controlled association rate constant of a spherical RF1 to the A-site of a

spherical ribosome. From the density of globular proteins, the minimal radius of a sphere of protein which

could contain a certain mass of protein is

Rmin = 0.066M1/3, (5.3)
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where Rmin is the radius of the sphere in nm, and M is the mass of the protein in Da [60]. For wtRF1-(Cy5),

which is approximately 41.2 kDa, Rmin ≈ 2.3 nm. From X-ray crystallography structures, the diameter of

the prokaryotic 70S ribosome is 210 Å [61], so the Rribosome = 10.5 nm. We approximated the A-site as a

circle with radius RA−site = 4.8 nm, from an average of measurements of the A-site diameter from an X-ray

crystallography structure of RF1 bound to the T. thermophilus ribosome [28]. The diffusion current of these

RF1 spheres to a tethered ribosome sphere that is accessible from all directions, I0, is then

I0 = 4πDRF1 ·Rribosome · [RF1] , (5.4)

where DRF1 is the diffusion constant of RF1 in buffer, and [RF1] is the concentration of RF1 in solution [62].

The diffusion constant can be calculated with the Stokes-Einstein equation

DRF1 =
RT

6πηRmin
, (5.5)

where R is the gas constant, T is the temperature, and η = .0091 Pa·s is the viscosity of water. For the RF1

sphere binding to ribosome spheres, we find that I0 = 8.3 x 108 M−1 s−1, however we are only interested in

the diffusion current of RF1 to the A-site of the ribosome. We approximate the A-site as a single, disk-like

absorber on the surface of the ribosome sphere. The diffusion current to the A-site, I, is then reduced from

I0 by

I = I0
1

1 + πRribosome

n·RA−site

, (5.6)

where n = 1 is the number of disk-like absorbers [62]. In this case, we find that the second-order association

rate constant is kassociation = I ≈ 100 µM−1 s−1. This value is an estimate of the upper-limit of the diffusion-

limited association rate constant, since RF1 was treated as a sphere of the minimum radius possible for a

protein even though it is known that domains one and three of RF1 are relatively oblong for both the ‘closed’

[63, 64] and ‘open’ conformations [26–28]. Regardless, it is only about 2 to 3 times larger than that measured

for wtRF1 binding to stop-codon programmed ribosomes [58, 59], as well as the rate constants measured

using smFRET for mutRF1-(Cy5) binding to RCUAA-(Cy3) (Figure 5.11).

We then investigated the binding kinetics of wtRF1-(Cy5) and mutRF1-(Cy5) to the near-stop codon pro-

grammed RCUAU-(Cy3) using smFRET (Figure 5.12). The wtRF1-(Cy5) EFRET versus time trajectories exhibit

only rare, transient binding events. Presumably, there is at least the same rate of encounters between the

217



CHAPTER 5. DYNAMICS OF STOP-CODON DISCRIMINATION BY RELEASE FACTOR 1
m
ut
RF

1
w
tR
F1

Figure 5.12: smFRET from wtRF1 and mutRF1 Binding to Near-stop Codon Programmed RCUAU. As in Figure 5.9, an example
smFRET trajectory and a histogram of n = 807 and n = 850 EFRET versus time trajectories is shown for RCUAU-(Cy3) imaged with both
10 nM wtRF1-(Cy5) and mutRF1-(Cy5) in solution, respectively.

RF1 and the ribosomal release complex as in the mutRF1-(Cy5) RCUAA-(Cy3) experiment (Figure 5.9), be-

cause there is the same concentration of RF1 in solution. This suggests an encounter-complex type reaction.

The histogram of the EFRET versus time trajectories for wtRF1-(Cy5) binding to RCUAU-(Cy3) has a distinctive

high-EFRET state peak at EFRET = 0.95, which is the same as that of wtRF1-(Cy5) and mutRF1-(Cy5) binding

to RCUAA-(Cy3), however it is much smaller, because there are many fewer binding events, and these are

generally much shorter. mutRF1-(Cy5) exhibits no detectable binding to RCUAU-(Cy3) (Figure 5.12). In the

histogram of the EFRET versus time trajectories, there is no discernable mass outside of the peak centered

at EFRET ≈ 0, despite there being 10 nM mutRF1-(Cy5) in solution. Again, we expect the same rate of RF1

encounters with the ribosome as were seen with mutRF1-(Cy5) binding to RCUAA-Cy3 as the only difference

is the third nucleotide of the A-site codon.

5.2.6 Paromomycin alters the affinity of RF1 for the ribosome

Paromomycin is an aminoglycoside antibotic that deceases translation elongation accuracy by inducing mis-

reading of codons [65, 66]. This misreading occurs when paromomycin binds to h44 of the 16S rRNA and
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increases the rate of GTPase activation of EF-TU and the rate of tRNA accommodation, as well as stabilizing

the near-cognate codon-recognition complex [67]. In the context of RF1, Youngman and coworkers suggest

that paromomycin acts as a competitive inhibitor of RF1 binding to stop-codon programmed ribosomes,

while paromomycin and RF1 can bind simultaneously at a near-stop codon – instead resulting in a kcat de-

fect for nascent polypeptide hydrolysis [24]. However, the binding pocket of paromomycin and the location

of a stop-codon bound RF1 on the ribosome do not overlap [5, 27, 28, 68]. These seemingly dissimilar

behaviors could be explained either through conformational changes of the ribosome which occur or do not

occur upon binding, or perhaps more generally, through ordinary or modulated ribosomal dynamics. Here,

we investigated the binding of wtRF1-(Cy5) to both stop-codon programmed RCUAA-(Cy3) and near-stop

codon programmed RCUAU-(Cy3) in the presence of 5 µM paromomycin.

As seen in the EFRET versus time trajectory shown in Figure 5.13, wtRF1-(Cy5) binds and dissociates

very rapidly from RCUAA-(Cy3). We note here that having paromomycin in solution while imaging seemed
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Figure 5.13: smFRET from wtRF1 Binding to Stop-Codon Programmed Ribosomes in the Presence of Paromomycin. (Top) As in
Figure 5.9, an example smFRET trajectory and a histogram of n = 83 EFRET versus time trajectories is shown for 10 nM wtRF1-(Cy5)
binding to RCUAA-(Cy3) in the presence of 5 µM paromomycin. (Bottom) Similarly, an example smFRET trajectory and a histogram of
n = 127 EFRET versus time trajectories is shown for 10 nM wtRF1-(Cy5) binding to RCUAU-(Cy3) in the presence of 5 µM paromomycin.

to induce a substantial number of photophysical events similar to Cy3 blinking. However, this is just a

complicating feature, and we do not believe that it influences the observed binding kinetics. Regardless, as

seen before, the log-scaled histogram of EFRET versus time trajectories of wtRF1-(Cy5) binding to RCUAA-
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(Cy3) in the presence of paromomycin shows a distinct high-EFRET value peak centered at EFRET ≈ 0.95,

which is similar to the previous cases in Section 5.2.5. Again, there is a moderate amount time-averaged

data in the middle of the histogram.

These binding kinetics are in contrast to those of wtRF1-(Cy5) with the near-stop codon programmed

RCUAU-(Cy3) in the presence of paromomycin. We can use BIASD to quantify apparent, forcibly-Markovian

association and dissociation rate constants (kon, and koff , respectively). For RCUAA-(Cy3), this yields kon =

0.10 ± 0.01 s−1, and koff = 3.2 ± 0.5 s−1, while for RCUAU-(Cy3) this yields kon = 0.07 ± 0.02 s−1, and

koff = 12.7 ± 2.5 s−1 The apparent association rate is slightly lower for RCUAU-(Cy3) than for RCUAA-(Cy3),

as there are many fewer transitions to the high-EFRET state. This high-EFRET state can barely be seen in

the histogram of wtRF1-(Cy5) binding to RCUAU-(Cy3) in the presence of paromomycin, because the of the

much faster dissociation rate constant, which is also faster than the acquisition rate of the data (10 s−1).

Since these experiments have the same concentrations of wtRF1-(Cy5) and paromomycin in solution while

imaging took place, the differences originate from the codon in the ribosomal A-site.
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5.3 Discussion

While the importance of dynamics to biomolecular function becomes increasingly apparent, the extent to

which dynamics contribute to ligand binding and ligand discrimination remains a challenging problem in

the biophysics of macromolecular biomolecules. Theoretically, several kJ/mol of energy can be obtained

by small perturbations to dynamics ranging in scale from low-frequency collective modes to individual an-

harmonic atomic motions, and the energy from these changes in fluctuations could then be leveraged for

biomolecular function [69]. For instance, it has been demonstrated that the conformational entropy of sub-ns

side-chain motions is employed to tune the high-affinity ligand binding interactions that calmodulin makes

with its target domains, of which there are over 300 distinct targets, rather than exclusively using enthalpic in-

teractions [70]. Indeed, it seems implausible to achieve this breadth of highly-affinity ligand binding through

specific, structural interactions within a single protein. Similarly, during translation the ribosome must in-

teract with release factors and 41 unique isoforms of tRNA that are present in the E. coli [71], and these

interactions must be high-affinity due to the requirement for rapid translation in the midst of this competition,

as well as be specific, so as to avoid the deleterious effects of miscoding and premature termination. It

is well known that the ribosome is a dynamic macromolecular machine, which operates by biasing large

thermally-driven fluctuations in a cooperative and organized manner [10, 72]. Moreover, in some cases,

these processes are regulated by the contributions of conformational dynamics, such as tRNA flexibility in-

fluencing codon-anticodon discrimination such as with the Hirsh suppressor tRNA [12, 13, 16], or influencing

the GS1 −⇀↽− GS2 fluctuations during pretranslocation, which are utilized for efficient translocation [73] (see

Chapter 4); similarly, paromomycin alters the dynamics of 16S rRNA residue A1492, which in turn affects the

affinity of amino-acyl tRNA-EF-Tu(GTP) ternary complex to the A-site, as well as affects codon-anticodon

discrimination by increasing tRNA accommodation at non-cognate codons [5, 16].

The ability of RF1 to function during translation termination similarly depends upon its ability to con-

trol ligand binding and ligand discrimination at stop, near-stop, and sense codons. Moreover, calculations

of the free energy of the direct structural interactions of RF1 at stop- (UAA) and near-stop (UAU) codons

from molecular dynamics simulations [74] do not provide enough free energy to account for the fidelity [75]

observed in in vitro translation termination experiments [19], and under-estimate this fidelity by a factor of

∼200. We hypothesized that this difference might, in part, be the contribution of conformational dynamics

that are inherent to the release factor and the ribosome, and so below we discuss the extent to which the

afore-mentioned experimental results address this question.
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5.3.1 Switch loop dynamics modulate binding affinity

In an effort determine the mechanism through which RF1 dynamics participate in its binding affinity and

codon discrimination ability, we investigated the switch loop. Nucleotides 24 and 27 of pre-accomodated

tRNA located in the A-site of the ribosome overlap with the residues on the termini of the switch loop (Fig. 5.1).

These nucleotides in the D-arm region of tRNAmodulate the flexibility of the pre-accommodated tRNA which

must transition from the A/T to A/A state by undergoing a distortion that places the aminoacylated 3’-CCA

end of the tRNA into the PTC [16]. This suggests that one possible role of the switch loop might be to

modulate or impart similar flexibility to RF1 in order to communicate between the DC and PTC. Moreover,

we note that previous work has shown that mutations to the switch loop, and to the switch loop and H69

of the 23S rRNA which interacts with ribosome-bound RF1 in X-ray crystallography structures have shown

reduced rates of hydrolysis at stop codons [28], and loss of recognition of the UAG stop codon for RF1 [23].

In X-ray crystallography structures of the ‘closed’ conformation of RF1, the solvent exposed switch loop

cannot be located, because it is so dynamic [63, 64]. Similarly, when RF1 is bound to the ribosome (i.e., in

the ‘open’ conformation), several residues within the switch loop have high B-factors as does A1492 of the

16S rRNA – suggesting that these residues are dynamic without exhibiting static enthalpic-based interactions

[27, 28]. Additionally, the base stacking of universally conserved residues A1493 and A1913 (23S rRNA)

occurs on different faces when the A-site stop codon is UAA or UAG, suggesting that interactions between

the switch loop and A1493 of A1913 might not be strict requirements, so much as frozen-out conformations

in the end-state presented by the X-ray crystallography structure [27, 28]. Perhaps, rather than it being

important for the switch loop to make specific interactions with the ribosome for translation termination, it

might be sufficient that the switch loop dock into this binding pocket, and in doing so, utilize the switch loop

as a type of entropy sink in which the change in conformational entropy from the disordered solvent-exposed

state to the bound state in order to regulate binding affinity and codon discrimination. This idea drove us to

attempt to modulate these conformational dynamics to see if that would affect the binding affinity or codon

discrimination abilities of RF1.

Rather than attempt to perturb a putative enthalpic interaction made by the switch loop, we chose to alter

the dynamics of the switch loop by introducing a mutation that would have minimal direct enthalpic effects

upon the switch loop, but that would perhaps disrupt some collective activity present in the switch loop.

From the analysis of the mutual information of the primary structure of RF1 from different bacterial genuses,

residues G299 and G301 were identified as having a high propensity to coevolve together, and therefore
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perhaps conserve some function that does not require direct enthalpic interactions to the side chain since

they are glycines (Figure 5.2). In choosing to mutate these glycine residues to alanines, we have introduced

the minimal steric perturbation, and no difference in charge state or hydrogen bonding status. With minimal

enthalpic changes, the biggest difference is that the region of Ramachandran space readily accessible by

the residues is diminished. To investigate if these mutations would consequently alter the dynamics of the

switch loop, we utilized molecular dynamics simulations.

From the metadynamics simulation of the GTG and ATA tripeptides corresponding to the wild type and

mutant RF1 switch loops, respectively, we determined that the nearest-neighbor contributions of the muta-

tions should produce a difference in the φ angles conformations sampled by the intermediate residue 300

(Figures 5.6, and 5.5). However, in the molecular dynamics simulations of the entire wtRF1 and mutRF1 in

solution, we found that these residues sampled altered regions of Ramachandran space (Fig.5.5). Since it

appears that in the context of the rest of RF1, these residues do not sample the free energy surface of the

tripeptides, we interpret these results as a coupling of the dynamics of the mutations to that of the rest of the

switch loop. This coupling in turn results in different conformational dynamics of the switch loop for wtRF1

and mutRF1, despite starting the simulation in the same conformation, suggesting that the mutations induce

effects on the larger-scale collective behavior of RF1. Finally, the different community structures observed

in the network analysis of the wtRF1 and mutRF1 molecular dynamics trajectories (Fig. 5.7), suggests that

the mutation perturbs not only the more local dynamics of just the switch loop, but also the dynamics of the

entire release factor. Since the different community structures include the core domain of RF1 which contact

the mRNA and the 16S rRNA in the decoding center directly, it is possible that the mutations might perturb

dynamics that are important for the binding affinity and/or codon discrimination ability of RF1.

From our steady-state smFRET experiments, we see that the switch loop mutation affects the binding

affinity of RF1 to stop-codon programmed ribosomal release complexes (Figure 5.9). With 10 nM mutRF1-

(Cy5) in solution, there are multiple, transient binding and dissociation events with RCUAA-(Cy3) for a given

EFRET versus time trajectory. As expected for an association process, the frequency of these events depends

upon the concentration of mutRF1-(Cy5) in solution, but because of the extremely transient nature of some of

these dwell-times of mutRF1-(Cy5) on the ribosome as well as the possible non-Markovian behavior, we did

not quantify the the binding affinity of mutRF1-(Cy5) to the stop-codon programmed RCUAA-(Cy3). Regard-

less, the mutRF1-(Cy5) binding affinity is qualitatively very different than that of wtRF1-(Cy5) to RCUAA-(Cy3),

which has such a high affinity that it remains statically bound during the course of these and previous sm-

FRET experiments [29]. Additionally, we note that pre-steady state bulk kinetic measurements of wtRF1 to
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UAA-programmed ribosomal release complexes had such a high affinity that only an upper-limit for the KD

could be estimated [58, 59]. The markedly different binding affinity of mutRF1-(Cy5) at a stop codon sug-

gests that the dynamics of the switch loop modulate release factor binding. This could occur if the ribosome

and/or RF1 are unable to access or stabilize a particular conformation(s) in the absence of wild type switch

loop dynamics. From hydroxyl radical probing experiments, it is known that more extensive conformational

rearrangements of the rRNA comprising the switch loop binding pocket occur with RF1 binding stop-codon

versus near-stop codon programmed ribosomal release complexes [76].

The binding affinity of both mutRF1-(Cy5) and wtRF1-(Cy5) is further reduced at the near-stop codon

programmed RCUAU-(Cy3) (Fig. 5.12). Occasional binding events could be observed for wtRF1-(Cy5) bind-

ing, however they were even more transient then those observed for mutRF1-(Cy5) binding to RCUAA-(Cy3).

Therefore the altered dynamics of the switch loop destabilize the binding affinity of mutRF1 to RCUAA-(Cy3) to

a lesser amount than a near-stop codon does for wtRF1-(Cy5) binding to RCUAU-(Cy3). Moreover, no binding

events were observed for mutRF1-(Cy5) to RCUAU-(Cy3). It is clear that the mutation increased the KD for

mutRF1-(Cy5) binding to RCUAU-(Cy3) far beyond what is accessible with smFRET on our TIRF microscope.

However, for wtRF1-(Cy5) binding to RCUAU-(Cy3), we observed KD ≈ 2 µM, and so we would estimate the

lower-bound for mutRF1-(Cy5) binding to RCUAU-(Cy3) as at least 10 times greater. Regardless, the dy-

namics of the switch loop can also modulate the binding affinity of RF1 to near-stop codon programmed

ribosomal release complexes. Unfortunately, from these smFRET experiments, because we can’t quantify

the essentially static wtRF1-(Cy5) binding to RCUAA-(Cy3), it is unclear whether the magnitude of the ef-

fects depend upon the codon in the A-site, and whether the contributions of the codon and the switch loop

dynamics are independent or coupled.

Similar to result that the dynamics of the switch loop affect binding at both RCUAA-(Cy3) and RCUAU-(Cy3),

we observed that the aminoglycoside antibiotic paromomycin affects the binding affinity of RF1 to both stop

and near-stop codon programmed ribosomal release complexes (Fig. 5.13). With RCUAA-(Cy3), repeated,

transient wtRF1-(Cy5) binding and dissociation events could be observed, and even at RCUAU-(Cy3), the

binding and dissociation of wtRF1-(Cy5) was still readily observable – however, it was slightly less frequent.

Using the association and dissociation rate constants we calculated assuming Markovian behavior, the KD

= 0.32 µM for RCUAA-(Cy3), and KD = 1.8 µM for RCUAU-(Cy3), which is only about a 6-fold difference.

This relative small difference is markedly different than the those seen for mutRF1-(Cy5) binding to RCUAA-

(Cy3) and RCUAU-(Cy5) in the absence of paromomycin where the KD changes by, at least, three orders of

magnitude. Since we were still able to see binding and dissociation of wtRF1-(Cy5) at both RCUAA-(Cy3) and
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RCUAU-(Cy3) in presence of paromomycin, unlike the case of mutRF1-(Cy5) in the absence of paromomycin,

this suggests that perturbations induced in the DC by paromomycin and altered switch loops dynamics affect

the binding affinity of RF1 through different mechanisms.

Paromomycin binds h44 of the 16S rRNA, where it changes the conformation and dynamics of A1492 and

A1493 in DC, and pushes them toward the location of the minor groove of the mRNA/tRNA codon-anticodon

[16]. Interestingly, in an X-ray crystallography structure of paromomycin bound to the 30S ribosomal sub-

unit, A1493 can be found completely extended out of the aminoglycoside binding pocket in h44 [25] into a

conformation believed sterically incompatible with the switch loop of RF1 bound at a stop-codon [27], and

this was provided as structural evidence for the competitive inhibition by paromomycin of termination by

RF1 at stop-codons [24]. However, the solution NMR structure of paromomycin bound to h44, which lacks

crystal packing and cryo-induced artifacts, shows A1493 in a well-defined location that is still within the

aminoglycoside binding pocket where it base pairs with A1408, and would not sterically occlude the switch

loop [5]. Thus, when paromomycin is bound, A1493 probably does not sterically occlude RF1 binding, and

it is possible that both RF1 and paromomcyin can both bind the ribosome, as is the case with RF1 bound

at near-stop codons [24]. More likely, the altered location of A1493 and new dynamics of A1492 in the

paromomycin-bound state [5] inhibit some conformational rearrangement of the ribosome and/or RF1 that is

important for the high-affinity binding of RF1. This is consistent with our observation that paromomycin does

not completely preclude wtRF1 binding at near-stop codons as can occur with only the altered switch loop

dynamics of mutRF1. Such distinct behavior suggests that paromomycin and the conformational dynamics

of the switch loop might function upon two independent molecular requirements of translation termination.

This is similar to the observation that rearrangements of the decoding center and also of the tRNA ternary

complex present two separate molecular requirements for tRNA selection to occur [77]. For tRNA selection,

while paromomycin can overcome both requirements to induce tRNA selection in presence of DC mutations

(A1492G or A1493G) or even to select non-cognate tRNA, the Hirsh supressor tRNA can only compensate

for the non-cognate codon-anticodon interactions and cannot compensate for DC mutations [77]. Thus the

dynamics of the DC and the tRNA contribute to differently to two conformational changes that are both im-

portant for tRNA selection. Analogously, rather than both inhibiting one common conformational change that

governs RF1 binding affinity, the paromomycin-induced DC dynamics and the mutRF1 switch loop dynamics

could contribute to different step, both of which are both required for the regulating the binding affinity of RF1

to the ribosome.
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5.3.2 Tight-binding of RF1 is not necessary for codon discrimination

In our smFRET experiments, wtRF1-(Cy5) remained stably bound to RCUAA-(Cy3) (Fig. 5.9) [29]. The lowKD

of wtRF1 binding to stop codon programmed ribosomal release complexes originates in part from the slow

dissociation rate of RF1 [58, 59, 78]. These RF1-ribosome complexes demonstrate such a tight binding that

a GTPase, the class II release factor, RF3, is responsible for catalyzing the dissociation of RF1 [29, 49]. This

is surprising, in part, because our results concerning the dynamics of the switch loop (Section 5.3.1) suggest

small mutations in the switch loop can accelerate the dissociation rate by about two orders of magnitude,

which is almost the same amount as RF3 achieves. Additionally, the tight-binding of RF1 to the ribosome is

not required for accurate codon discrimination as discussed above, because mutRF1 catalyzes hydrolysis at

stop-codons, but not near-stop codons (Fig. 5.3). Therefore, we find the tight-binding of RF1 at stop-codons

is not expected.

Interestingly, in an in vivo screen, Diago-Navarro and coworkers identified several RF1 mutations in the

switch loop that diminished recognition of the UAG stop codon; cells containing these prfA, which encodes

RF1, mutants were more susceptible to the mRNA interferase, RelE [23]. RelE is the toxin of the relBE

toxin-antitoxin system, and is known to cleave mRNA in the A-site with a sequence preference for UAA and

UAG – the RF1 stop codons [47]. This mRNA cleavage generates a truncated message, which can serve as

a substrate for tmRNA [79], and relBE has been implicated in the dormant persister phenotype [80]. Since

those prfA mutations also render the cells susceptible to other toxin-antitoxin systems [23], perhaps, the role

of the tight-binding of RF1 is to protect the mRNA in the A-site until ribosome recycling can occur, in order

to avoid mRNA degradation at what might appear to be a stalled ribosome [81]. Additionally, tight-biding of

RF1 after hydrolysis blocks the A-site from beginning translation again in a translation initiation-independent

manner by misreading of the stop codon by a near-cognate tRNA. Such a mechanism would allow for novel

regulation of translation in which proteins could begin at ‘stop’ codons. For instance, a downstream antitoxin

gene could be used to relieve selective pressure from an over-expressed toxin in an in vivo screen for

release factor mutations that do not exhibit this tight-binding property. Additionally, inducing transcription

of miscoding tRNA could be used to out-compete weak-binding release factors, and induce translation of a

gene of interest.
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5.3.3 Switch loop dynamics modulate codon discrimination

Regarding the codon discrimination ability of RF1, the ability to discriminate stop versus near-stop codons

can be characterized using the Michaelis-Menten formulation of enzyme kinetics as

A =

(
kcat

KM

)
s

/

(
kcat

KM

)
ns

; where KM =
k−1 + kcat

k1
= KD +

kcat

k1
, (5.7)

A is the accuracy of recognizing a stop (s) codon versus a near-stop (ns) codon, k1 and k−1 are association

and dissociation rate constants, kcat is the catalysis rate constant, KM is theMichaelis constant, andKD is the

dissociation constant [82]. The changes in accuracy dependent upon codon identity have been extensively

measured by Freistroffer and coworkers using this formalism [19]. In our smFRET assay, we did observe

the effect that the switch loop dynamics had upon the affinity of RF1 for stop and near-stop codons, and

Equation 5.7 demonstrates how these binding affinities affect the accuracy of codon discrimination. However,

since we could not observe release of the nascent polypeptide chain in our smFRET assay, the net effect

upon the accuracy of codon discrimination could not be quantified, because we did not have ameasurements

of kcat. Fortunately, in our eTLC dipeptide release assay, we observed the release of the nascent polypeptide

chain by wtRF1 and mutRF1 at stop and near-stop codon programmed ribosomal release complexes. Like

wtRF1, a saturating amount of mutRF1 was able to catalyze release at a stop codon to completion within 5

sec; so to within the minimal time resolution of our manual-mixing, there did not seem to be much, if any,

of a defect in kcat at a stop codon. However, the altered switch loop dynamics of mutRF1 seem to have

resulted in a hyper-accurate release factor, which releases a negligible amount of dipeptide from a near-

stop codon ribosomal release factor when compared to the wtRF1. While the pronounced defect in binding

affinity of mutRF1-(Cy5) to RCUAU-(Cy3) contributes significantly to this increase in accuracy, we did not

measure kcat for these reactions, so the absolute change in accuracy is unclear. Regardless, since mutRF1

is capable of catalyzing release at a stop codon, yet it releases much less than wtRF1 at a near-stop codon,

it is clear that the dynamics of the switch loop modulate RF1 codon discrimination. This is consistent with in

vivo translation experiments, which show that mutation of the switch loop can eliminate RF1 recognition of

the UAG stop codon recognition [23], and with the network analysis of the molecular dynamics simulations

of wtRF1 and mutRF1, which suggested that the altered switch loop dynamics of mutRF1 would influence

codon recognition (Fig. 5.7).

In vivo, the ability of RF1 to discriminate between stop and near-stop or sense codons is complicated by
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a tradeoff between accuracy and speed, because in order to achieving the maximal amount of discrimina-

tion between stop and near-stop codons, the rate of the termination reaction must approach zero [82, 83].

Practically, RF1 must interrogate the A-site codon at a certain rate in order to compete with all the ternary

complexes in the cell, and presumably, the balance struck is just right so that this process occurs rapidly

enough without diminishing the accuracy of termination to a deleterious level. Therefore, being able to opti-

mize this ratio is important for regulating mistakes while maintaining competitiveness. Since, in our in vitro

reconstituted dipeptide release assay, mutRF1 is more accurate than wtRF1, despite E. coli having opted

for the wild type switch loop in vivo, our data here suggests that the dynamics of the switch loop play a large

part in striking this balance.

5.3.4 RF1 binding and codon discrimination is a multiple step process

Considering the bimolecular association reaction of RF1 and the ribosome, the second-order rate constant

for this event is determined primarily by diffusion of RF1 to the ribosomal A-site. Assuming that the G299A,

G301A mutations negligibly change the diffusion constant of RF1, the association rate constants for RF1 to

both RCUAA and RCUAU should be the same. Assuming that the ribosome does not intrinsically signal the

presence of a stop-codon in the A-site, this is because if RF1 is to determine whether the codon in the A-site

is a stop codon or not, it must first have at least partially bound the A-site. However, in the EFRET versus time

trajectories of wtRF1-(Cy5) andmutRF1-(Cy5) binding to RCUAA-(Cy3) andRCUAU-(Cy3) (Figs. 5.9, and 5.12,

respectively) the apparent association rate constants are extremely varied. Notably, mutRF1-(Cy5) should

encounter the ribosomal A-site of RCUAA-(Cy3) at the same rate as for RCUAU-(Cy3), however in the former

case, binding occurs with an observed rate constant that is only about a factor of 3 less than the estimated

diffusion-limited rate constant, while in the latter case, no binding events could be observed at all. Since

mutRF1-(Cy5) must still be sampling the A-site, this is evidence of an encounter complex in the binding

reaction (see Ref. 84 or Chapter 1 for a review). This encounter complex is too short lived and/or positioned

such that the EFRET is lower to register in the EFRET versus time trajectories. Given the 100 ms acquisition

period of this smFRET data, we estimate that the upper-bound of the lifetime of the encounter complex

is on the order of ∼ 1 ms. Additional evidence for the encounter complex comes from the observation that

wtRF1-(Cy5) associates with RCUAU-(Cy3) less frequently than mutRF1-(Cy5) associates with RCUAA-(Cy3),

even when accounting for possible missed events. Ultimately, the encounter complex state seems to be an

on-pathway intermediate between the unbound state and a state in which RF1 interrogates the codon.

After the encounter complex, there is considerable evidence for a conformational rearrangement of the
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ribosome and/or RF1 upon stop codon recognition. From our smFRET experiments discussed above, we

note that the differential effects of altered switch loop dynamics and paromomycin suggest that they function

to affect RF1 binding affinity and codon recognition through different molecular requirements of termina-

tion. Additionally, the dwell-times of mutRF1-(Cy5) bound to RCUAA-(Cy3) are not distributed according to

a single-exponential distribution (Fig. 5.11), and this seemingly non-Markovian behavior is easily explained

with the Markovian behavior of two ‘bound’ states, which can interconvert. The analytical solution of this

probability distribution function of these ‘bound’ dwell-times can be determined using the Laplace transform

method described in Section 3.4. However, the non-Markovian behavior could also be dynamic disorder

within the dissociation rate constant, or static disorder in that the RF1 in solution might be heterogenous.

Though similarly, Trappl and coworkers observed biphasic pre-steady state kinetics of RF1 binding to stop-

codon programmed ribosomal release complexes [59], which could also be explained by an on-pathway

intermediate. These behaviors are most likely related the discrete conformational changes observed by

hydroxyl radical probing of the rRNA, which occur upon stop-codon recognition, but not near-stop codon

recognition [76]. Moreover, small-angle X-ray scatting studies of release factors in solution are consistent

with an equilibrium between compact and extended conformations [85, 86], and so there is significant spec-

ulation about the role that a conformational change between the open [26–28] and closed forms [63, 64]

of RF1 might play in signaling proper codon recognition in the DC to the PTC, whereupon hydrolysis of the

nascent polypeptide chain would occur [87]. Furthermore, recent bulk, transition metal FRET experiments

have demonstrated that RF1 is in a more compact conformation in solution, and that it opens upon codon

recognition at the ribosome [88]. Additional support for this equilibrium comes from smFRET experiments

of dual-labeled RF1 in solution that primarily yield an EFRET state that is consistent with a compact confor-

mation, but do demonstrate transient fluctuations to a low-EFRET state that might represent the ‘open’ state

(Appendix A).

Through consideration of the evidence for an encounter complex in RF1 binding, as well as conforma-

tional change of RF1 and/or the ribosome that occurs after codon recognition, we conclude that RF1 binding

and codon discrimination is amultistep process. Themost parsimoniousmechanism consistent with our data

is that where initial binding occurs through an encounter complex; the encounter complex then transitions to

a state from which codon recognition occurs; after codon recognition, a conformational change results in a

fully accommodated RF1 from which hydrolysis can be catalyzed (Fig. 5.14). This proposed mechanism is

analogous to the first half of that of tRNA selection during translation elongation; there initial binding, which

is not seen by smFRET, is followed by codon recognition, and then GTPase activation, from which GTP hy-
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drolysis occurs [16, 84]. Such ligand binding mechanism with multiple intermediate states allow for efficient

ligand binding, and also, by extension, opportunities to regulate ligand discrimination [84]. Additionally, they

provide opportunities for error correction mechanisms such kinetic proofreading [20, 21].

Encounter
Complex

Codon
Recognition Accommodation Hydrolysis

Figure 5.14: Proposed Mechanism of RF1 binding to Release Complexes. Initially weak binding of RF1 (green) to the ribosome
(purple, tan) forms an encounter complex which registers negligible EFRET in our smFRET experiments. Once codon recognition by
RF1 occurs, this can be followed by a more strongly bound accommodated state.

Many other biological systems aside from the ribosome utilize such multistep mechanisms to for ligand

binding and discrimination. For instance, DNA polymerase selects the correct dNTP to incorporate in a two-

step reaction in which initial selection utilizes the ∆G difference from the different dNTPs hydrogen bonding

to the template strand, and the second step consists of a conformational change that depends of correct

Watson-Crick base-pairing geometry [89]. Complicated sequence searches, such as those performed by

RNAP polymerase searching for a promoter sequence [90], or the CRISPR-Cas system searching for DNA

complement to the guide RNA [91], also utilize multiple step binding mechanisms in order to facilitate the

search process. Protein-protein interactions, such as those between enzyme I and HPr of the bacterial

phosphotransferase system, often occur through on-pathway encounter complexes as these reduce the

dimensionality of the search process, and speed up stereospecific complex formation [92]. Similarly, ligand

binding by the aptamer domain of the guanine-sensing riboswitch occurs through a multiple step mechanism

involving an encounter complex [93]. Even enzymes utilize multiple conformational changes for binding and

catalysis of their substrates [8]. Given the ubiquity of such multistep approaches in nature, it is not surprising

to find evidence for the involvement of multiple steps during RF1 binding and codon discrimination during

translation termination.

5.4 Methods

RF1 Mutation, Expression, Labeling, and Purification The G299A, G301A mutations in mutRF1 and

167C-mutRF1 were introduced through site-directed mutagenesis (G896C, and G902C) of the previous con-

structs wtRF1 and 167C-wtRF1, respectively [29]. wtRF1, mutRF1, 167C-wtRF1, and 167C-mutRF1 were
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all co-overexpressed with the methyltransferase encoded by prmC in BL21(DE3) E. coli cells, and purified

using affinity chromatography with Ni-NTA derivatized agarose beads and tobacco etch virus protease, as

previously described [29, 94]. 167C-wtRF1 and 167C-mutRF1 were then labeled with maleimide derivatized

Cy5 (G.E. Lifesciences), and purified to 100% labeling using gel filtration and hydrophobic interaction chro-

matography as previously described [29, 94]. Concentrations were quantified using the Bradford protein

assay reagent and absorption spectroscopy at λ = 650 nm.

Ribosomal ReleaseComplex Formation RCUAA andRCUAA-(Cy3) were previously described [29]. Briefly,

complexes were enzymatically prepared in tris polymix buffer containing 50 mM tris-acetate (pH=7.5), 100

mM KCl, 5 mM ammonium acetate, 0.5 mM calcium acetate, 0.1 mM EDTA, 10 mM 2-mercaptoethanol, 5

mM putrescine, 1 mM spermidine, and 5 mM magnesium acetate using formylated
[
35S
]
-Met-tRNAfMet and

Phe-tRNAPhe, or formylated Met-tRNAfMet and Phe-tRNAPhe labeled with an NHS ester derivatized Cy5 at

the acp3U47 position, respectively. The mRNA message was in vitro transcribed from a pUC119 vector

containing a gene derived from the gene encoding gene product 32 from the T4 bacteriophage, such that

the gene to be translated was AUG-UUU-UAA. Complexes were then purified from the excess translation

factors with sucrose density gradient ultracentrifugation. The process for RCUAU and RCUAU-(Cy3) forma-

tion was equivalent, but used an mRNA message transcribed from a vector-derived template that had been

mutagenized so the the gene to be translated was AUG-UUU-UAU. For RCUAA-(Cy3) and RCUAU-(Cy3), the

mRNA was hybridized to complementary a biotinylated DNA oligo [29].

Mutual Information Calculation Bacterial RF1 sequences were obtained from the NCBI ref-seq database

[37]. Over-represented sequences were culled using custom Python scripts. Sequences were pairwise

aligned using Clustal Omega [38]. The mutual information of these sequences was calculated using Equa-

tion 5.1 with custom Python scripts.

Molecular Dynamics Simulations Molecular dynamics simulations were performed as described in Sec-

tion 5.2.4 using Desmond [50] and the OPLS-AA force field [51] with TIP3P waters. The Ewald sum cutoff

was 9 Å , and the RESPA integrator was 2 fs. The metadynamics simulations were 10 ns long with a height of

0.03 kcal mol−1 for the height of the repulsive Gaussians, which were added every 0.09 ps. Two-dimensional

variational hidden Markov modeling was performed using custom Python scripts (Appendix D).
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In Vitro Translation Assay Details concerning the radioactivity-based translation assay were previously

described [24, 31]. Briefly, 200 nM release complexes containing formyl-
[
35S
]
-Met-Phe dipeptide incubated

with 25 µM RF1 at room temperature in the tris polymix buffer described above, and then quenched with 1:1

v/v 25% formic acid. Released dipeptide was then separated by eTLC as previously described [30]. eTLC

plates were then exposed with PhosphorImager screen (GE Lifesciences) overnight, and then the screen

was scanned with a Typhoon FLA 7000 PhosphorImager (GE Lifesciences), and quantified using ImageJ

[95].

TIRF Microscopy Release complexes labeled with Cy3 were immobilized within microfluidic flow cells,

and imaged with a TIRF microscope as previously described [29]. Briefly, samples were illuminated with

a 532 nm diod-pumped solid-state laser (gem532, Laser Quantum) with prism-based TIRF on a Nikon

Ti-U inverted microscope. Fluorescence was collected through a Nikon 60x PlanApo objective, and im-

aged through a Photometrics DV2 wavelength splitter onto a Andor iXon3 897E electron-multiplying charge-

coupled-device camera at 10 Hz. Prior to imaging, flow-cells containing tethered release complexes were

incubated with 10 nM Cy5-labeled RF1 in tris-polymix buffer containing 15 mM magnesium acetate, 1%

(w/v) β-D-glucose, 300 mg mL−1 glucose oxidase (Sigma-Aldrich), 40 mg mL−1 catalase (Sigma-Aldrich),

1mM 1,3,5,7-cyclooctatetraene (Sigma- Aldrich), and 1 mM p-nitrobenzyl alcohol (Fluka).
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Appendix A

Additional Projects

A.1 RF1 Solution Conformation

As a complement to the measurements of RF1 on the ribosome (Chapter 5), we additionally investigated

the dynamics of surface-tethered wtRF1. By adding an N-terminal enzymatic biotinylation tag (GLNDIFE

AQKIEWHE; AviTag) that is in vitro biotinylated using recombinant E. coli BirA biotin-ligase [1], and one

cysteine mutation near the section of RF1 which contacts the DC (S192C) and one cysteine mutation near

the section of RF1 which contacts the PTC (E256C) to the cysteine-less wtRF1 (C51S, C201S, C257S), we

were able to create a stoichiometrically 1:1 Cy3/Cy5 labeled, biotinylated wtRF1 (wtRF1-(Biotin,Cy3,Cy5))

[2]. When surface-immobilized, and imaged with a TIRF microscope under our standard imaging conditions,

wtRF1-(Biotin,Cy3,Cy5) is found to be in a high-EFRET state centered at EFRET ≈ 0.8 (Figure A.1). This is

consistent with reports that RF1 can enter into a ‘closed’, compact conformation [3, 4] as opposed to the

‘open’ conformation adopted on the ribosome [5–7], though inconsistent with a small-angle X-ray scattering

solution study which found that their data is modeled well by assuming that RF1 is nearly entirely in the

‘open’ conformation in solution [8]. Repeating the smFRET experiment with an increased acquisition rate (10

msec time period), yields a few EFRET versus time trajectories with transient transitions to a low EFRET state

centered perhaps at EFRET ≈ 0.1. The distance between residues 192 and 256 is r ≈ 66 Å in the ‘open’

conformation [7], and r ≈ 38 Å in the ‘closed’ conformation [3, 4]. For Cy3 and Cy5 FRET donor and

acceptor fluorophores, with an estimated R0 = 55 Å , this yields predicted EFRET of EFRET open ≈ 0.25, and

EFRET closed ≈ 0.90. While the absolute EFRET do not make the predicted, these observations are consistent

with wtRF1 being primarily in the closed conformation when in solution, and transiently fluctuating to the open

conformation that is stabilized in the X-ray crystallography structures [5–7]. There are a number reason for

which the predicted and the measured EFRET do not match, such as perturbations to the quantum yield of a

fluorophore induced by the local biomolecular environment, though perhaps the most reasonable is that here
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Figure A.1: smFRET from wtRF1-(biotin,Cy3,Cy5) in Solution. Fluorescence Intensity (green, Cy3; red, Cy5) and EFRET (blue) versus
time trajectories from individual, surface-immobilized wtRF1-(biotin,Cy3,Cy5) imaged in the absence of ribosomes are shown (left).
The wtRF1-(biotin,Cy3,Cy5) mostly occupy a high-FRET state, suggesting a closed, compact form of RF1. Occasionally, at high frame
rates of τ = 10 ms, fluctuations to a low-FRET state can be observed (top, n = 38), as shown in the Viterbi path from a two state HMM
plotted in black, while at lower frame rates of τ = 100 ms these fluctuations are not observed (bottom, n = 54). Log-scaled histograms
from multiple smFRET trajectories also show these effects (right).

we observe wtRF1-(Biotin,Cy3,Cy5) mostly in an ensemble of conformations that are compact and therefore

represent a ‘closed-like’ conformation. Similarly, the low EFRET state probably represents an ensemble of

‘open-like’ conformations, as the conformation observed bound to the ribosome in the X-ray crystallography

structures, while accessable, is difficult to stabilize in the absence of the ribosome. Entropically, we would

predict wtRF1 to favor a more compact conformation.

A.2 smFRET with Single-photon Avalanche Photodiode Arrays

In order to monitor Förster resonance energy transfer (FRET) with an extremely fast time resolution, but also

with a high-throughput, wide-field approach, we integrated a 64x32 array of single-photon avalanche diodes

(SPADs) into a total internal reflection fluorescence (TIRF) microscope. Single-photon Avalanche Diodes

(SPAD) are semiconductor p-n junctions that are operated at a bias voltage beyond the breakdown voltage

such that a single incident photon will initiate an avalanche of electrons-hole pair generation, which creates
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a large, macroscopic electric current [9]. This avalanche current is detected by an active-quenching circuit

(ACQ), which lowers the bias voltage, quenching the avalanche, and thus registering the detection of an

event [10]. Because of this digital detection scheme, there is no added electronic noise in the measurement

from analogue to digital converters or amplifiers, such as in an electron-multiplying charge-coupled device

(EMCCD). Recently, CMOS-compatible SPAD fabrication approaches have enabled monolithic integration

of multiple SPADs, each with separate AQCs and electronics, into a single device [11]. As a result, single-

photon counting cameras composed of arrays of SPADs have been developed with 2,048 (64x32) SPADs,

which can detect single photons at frame rates of up to 100,000 frames per second [12]. We have collabo-

rated with Micro Photon Devices S.R.l. - Italy, a spin-off of Politecnico di Milano, to utilize this technology for

wide-field detection of smFRET. Previously, Ingargiola and coworkers have utilized two 1x8 arrays of SPADs

to simultaneous monitor smFRET from eight confocal spots [13]. Here, we utilize the SPC3 SPAD array

camera to monitor smFRET from Cy3-, and Cy5-labeled pretranslocation (PRE) complexes (see Chapter 4

for more details) with more than two orders of magnitude improvement in throughput.

After wavelength-separating the detected fluorescence using a commercial wavelength-splitter (Dv2,

Photometrics) on our custom TIRF microscope (details discussed in Chapter 5), incident-photons recorded

using the SPC3 corresponding to Cy3 andCy5were aligned (Fig. A.2A). Then, surface-immobilized PRE-A com-

plexes in microfluidic flow-cells were illuminated via TIRF with a 532 nm laser and photon arrivals were

counted with an SPAD integration time of 10.24 µs. The rate of incident photons from Cy3 or Cy5 was

quantified using change-point analysis [14, 15] (Fig. A.2B). Anti-correlated photons-arrival rates could be

observed from individual SPAD-pairs. Binning the photon record to 100 ms bins, an equivalent EMCCD

integration time, reveals EFRET versus time trajectories that are clearly characteristic of our smFRET mea-

surements of PRE-A complexes using an EMCCD (Fig. A.2C).

In this implementation, we were limited by our ability to aligned the two different wavelength images. In

order to avoid cross-talk between neighboring SPADs in the array, the pitch between the 30 µm in diameter

SPADs is 150 µm, a fill-factor of about 3% [12]. As a result, it is difficult to ensure that the active areas of

a pair of wavelength-separated SPADs are exactly aligned. Integration of a microlens array into the camera

will help with this limitation in the future. Additionally, the quantum efficiency of SPADs is ∼30%, and ∼20%

at the wavelengths which Cy3 and Cy5 fluoresce [12]. Therefore, while we are able to detect and count

individual photons at a very fast rate, the absolute number of detected photons is low, and this can make

identifying fluorescence originating from a single-molecule more difficult to discern from hot pixels or spurious

background autofluorescence. This can partially be alleviated by utilizing higher laser powers in order to
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maximum photon flux from the fluorophores, however this results in faster photobleaching. Regardless,

further application of this technology seems extremely promising for smFRET studies of biological systems.
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Figure A.2: smFRET Imaging of PRE-A Complexes with SPC3 SPAD Array. (A) Post-processing alignment of metallic-grid imaged
with ambient light. (B) smFRET from PRE-A complexes using TIRF microscopy. Cy3 and Cy5 wavelength-separated photons (green,
and red, respectively) are counted from individual PRE-A complexes with a hardware integration time period of 10.24 µs (binned here
to τ = 1 ms). The Change-point analysis trajectories are shown for Cy3 (dark red), and Cy5 (dark green). (C) Binned photons from the
photons versus time trajectory in panel B such that τ = 100 ms. Fluctuations between two EFRET -levels consistent with GS1 and GS2
EFRET can be seen in the EFRET versus time trajectory.
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A.3 Three-color smFRET from BtuCD-F

BtuCD is an ATP-binding cassette transporter that is responsible for importing vitamin B12, which is delivered

by the periplasmic binding protein BtuF, into Escherichia coli [16, 17]. Recently, Kim and coworkers devel-

oped a method to observe the conformational dynamics of nanodisk-reconstituted reconstituted BtuC2D2 in

the presence and/or absence of B12, ATP, the non-hydrolyzable ATP analogue AMPPNP, and BtuF using

smFRET [18]. Here, in an effort to extend this smFRET method in order to simultaneously monitor both

BtuCD conformational dynamics as well as with vitamin B12 transport, we have performed preliminary ex-

periments demonstrating the feasibility of observing the conformational dynamics of BtuC2D2 as well as

the status of BtuF binding by using multi-color smFRET. Here, we have surface-immobilized a nanodisk-

reconstituted BtuC2D2 in which is a single-cysteine BtuC mutant (Q111C) has been labeled with Cy3 and

Cy5 in equimolar quantities, such that BtuC2D2 can contain two Cy3, two Cy5, or one Cy3 and one Cy5;

because this is a single-molecule approach, BtuC2D2s not exhibiting fluorescence from both Cy3 and Cy5

can be ignored. These complexes are then incubated with BtuF, which has been labeled with Alexa Fluor-

488 (AF488) at residue 267C in the absence of both vitamin B12 and ATP. In the absence of vitamin B12

and ATP, we expect that these complexes will be BtuF bound (BtuC2D2-F) (Fig. A.3A,B), and will be in a

static, non-fluctuating state [18]. Finally, these complexes are illuminated with a 488 nm laser on a TIRF

microscope, and fluorescence is collected, wavelength-separated using a Quad-View (Photometrics) with

Q510/20m, Q575/40m, and Q680/50m emission filters and 540 nm, 630 nm, and 720 nm bandpass filters

(Chroma), and then imaged using an Andor iXon3 897 EMCCD.

We were able observe colocalized, anti-correlated fluorescence intensity from AF488, Cy3, and Cy5,

corresponding to static, BtuF bound BtuC2D2-F (Fig. A.3C). In these trajectories, we always observed Cy5

photobleaching occur before AF488 and Cy3 photobleaching. In order to quantify the resonance energy

transfer process, we created a histogram of relative fluorescence intensity from n = 38 of these fluorescence

intensity versus time trajectories by dividing the observed AF488, Cy3, or Cy5 fluorescence intensity at

each timepoint by the sum of the AF488, Cy3, and Cy5 fluorescence intensities at that time point, and

histogramming these values (Fig. A.3D). Notably, the relative fluorescence histograms all have two maxima

(Cy3’s are overlapped), which correspond to the means pre- and post-Cy5 photobleaching. In order to

interpret BtuC2D2-F structural information from these values, we modeled the kinetics of the FRET process.

Since these mean relative fluorescence intensity values correspond to the fluorophore absorption, emission,

and resonance energy transfer mechanism shown in Fig. A.3B, we modeled the kinetics of this process
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with literature values for the fluorescence lifetimes, and relative absorption of 488 nm photons of the three

fluorophores to estimate the RET lifetimes observed in from BtuC2D2-F complexes. For relative 488 nm

photon absorption, we utilized arbitrarily fast 1 fs lifetimes weighted by the relative absorption probabilities

of 0.71, 0.29,and 0.00 for AF488, Cy3, and Cy5 respectively, since electronic excitation is a very rapid

process. Additionally, for the fluorescence lifetimes for the fluorophores we used 4.1 ns, 0.3 ns and 1.0 ns

from measurements in water of AF488, Cy3, and Cy5, respectively. In order to obtain enough constraints

to solve for the RET lifetimes, we utilized the full model and the mean relative fluorescence values pre-Cy5

photobleaching, and a modified model in which RET between AF488 and Cy5, and Cy3 and Cy5 were

not allowed. Non-linear least-squares fitting these constraints to the steady-state values obtained by using

numerical Laplace inversion of the corresponding Green’s function, which is

P (t) = G(t) · P (t = 0), (A.1)

where

G(t) = (L)−1
(
G̃(s)

)
, and (A.2)

G̃(s) = (s · I −K)
−1
, (A.3)

where P is probability of a state, t is time, s is the Laplace space variable, I is the identity matrix, and K

is the rate matrix, which obeys mass conservation. The resulting best-estimate RET lifetimes were 41.5 ns,

1.9 ns, and 0.4 ns for AF488 to Cy3, AF488 to Cy5, and Cy3 to Cy5, respectively (Fig. A.3B). While it is

difficult to interpret the exact structural meaning these values in relation to BtuC2D2-F conformation, they

are a function of the distance between the fluorophores, r, the R0 value for the fluorophore pairs, which

quantifies contributions such as spectral overlap and dipole moment orientation. If for some reason, the

fluorophore dipole moment orientations were not isotropically averaged out (e.g., steric occlusion), then

these RET lifetimes could also depend upon the average dipole-dipole orientation 〈µdonor · µacceptor〉.
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Figure A.3: Three-color smFRET from Nanodisc Embedded BtuC2D2-F. (A) Cartoon schematic of fluorophore labeled BtuC2D2-F.
The cartoon and the distances between Alexa Fluor-488 (AF), Cy3 (3), and Cy5 (5) are based upon the BtuC2D2-F crystal structure
(PDB:2Q19). (B) Schematic showing response of AF, Cy3, and Cy5 to illumination by 488 nm light. Solid and dashed curved lines
represent absorbed and emitted photons, respectively. Grey arrows represent resonance energy transfer (RET). τRET is the average
time to undergo RET as determined by kinetic modeling of the experimental smFRET results. (C) Representative three-color smFRET
fluorescence intensity versus time trajectory from BtuC2D2 illuminated with via TIRF with a 488 nm laser. (D) Histogram of relative
AF488, Cy3, and Cy5 fluorescence intensities at all time points prior to Cy3 photobleaching for n = 38 fluorescence intensity versus
time trajectories.
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A.4 Single-Molecule Fluorescence Spectroscopy

In this section, we detail an approach to learn about the motion of the dipole moment of a single fluorophore

by analyzing the spectral lineshape function, I(ω). From Gordon [19, 20], in an isotropic fluid, this lineshape

function is

I(ω) =
1

2π

∞∫
−∞

dte−iωt〈M(0) ·M(t)〉, (A.4)

whereM(t) is total electric dipole moment of the entire system. However, if the molecules are dilute or at

the single-molecule level, then

〈M(0) ·M(t)〉 = N〈µ(0) · µ(t)〉, (A.5)

where µ is the transition dipole moment of a single-molecule. Therefore, Fourier inversion of the the spectral

lineshape function equation yields the correlation function of the dipole moment, and speaks to its movement

in solution. Here, we began to develop an attempt to measure fluorescence emission lineshape functions

with wide-field optics so as to be able to observe the lineshapes of many single-molecules simultaneously. To

do so, a pair of chromatically dispersing prisms was placed into the emission path of a TIRF microscope, so

that the emitted fluorescence of the single-molecules would be chromatically dispersed and then collimated

(Fig. A.4). Intensity along a strip of pixels on the EMCCD is then taken to be the fluorescence spectrum. An

example of Cy3-labeled dsDNA that has been tethered to a coverslip using a biotin-streptavidin-biotin bridge

is shown in Fig. A.5. In order to transform pixels to wavelengths, we used the dispersion formula for NSF11

glass

n(λ) =

(
1 +

C1λ
2

(λ2 − C2)
+

C3λ
2

(λ2 − C4)
+

C5λ
2

(λ2 − C6)

)(1/2)

, (A.6)

where the ci are tabulated constants. In order to calibrate the wavelengths, we placed an emission-filter

into the fluorescence emission pathway, and utilized the known wavelength cutoffs to correspond to the

disappearance of Cy3 fluorescence. An example is shown in Fig. A.5. Moreover, spectra can be collected

from individual molecules in a time-dependent manner to observe if any large-scale conformational changes,

which occur on a time-scale much slower than the movement of the dipole moment, are occurring.
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Figure A.4: Schematic Diagram of Single-Molecule Fluorescence Spectroscopy Instrumentation. Widefield fluorescence from multiple
single molecules of DNA conjugated to Cy3 fluorophores is collected through and objective. A pair of chromatically dispersing prisms
separates and collimates the incident fluorescence, which is then imaged with an EMCCD.
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Figure A.5: Time-Dependent, Single-Molecule Cy3-DNA Fluorescence Spectrum. (Top) A timepoint from a series fluorescence inten-
sity versus calibrated wavelength collected at 100 ms from Cy3-DNA illuminated with a 532 nm laser with a TIRF microscope. (Bottom)
The fluorescence intensity versus pixel spectrum which is calibrated to yield the spectrum above. The first zero fluorescence intensity
crossings from the global maximum are chosen to correspond to the emission filter (Q575/40m, Chroma) upper- and lower-wavelength
bounds.
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Appendix B

Probability Distributions

Beta

Variable: x

Parameters: α, β

Support: x ∈ (0, 1)

PDF: p(x|α, β) = xα−1(1− x)β−1/B(α, β)

CDF: P (x|α, β) = B(x;α, β)/B(α, β)

Mean: E[x] = α/(α+ β)

Variance: E[x2]− E[x]2 = αβ/((α+ β)2(α+ β + 1))

Binomial

Variable: k

Parameters: n, p

Support: k ∈ 0, 1, ..., n

PMF: p(k|n, p) =
(
n
k

)
pk(1− p)n−k

CMF: P (k|n, p) = B (1− p, n− k, 1 + k) /B (n− k, 1 + k)

Mean: E[k] = np

Variance: E[k2]− E[k]2 = np(1− p)
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Dirichlet

Variable: x

Parameters: α

Support: xi ∈ (0, 1)

PDF: p(x|α) = 1
B(α)

∏K
i=1 x

αi−1
i

Mean: E[x] = αi/
∑
i αi

Variance: E[x2]− E[x]2 =
αi((

∑
i αi)−αi)

(
∑
i αi)

2(1+
∑
i αi)

Exponential

Variable: x

Parameters: k

Support: x ∈ [0,∞)

PDF: p(x|k) = k · e−kx

CDF: P (x|k) = 1− e−kx

Mean: E[x] = 1/k

Variance: E[x2]− E[x]2 = 1/k2

Gamma

Variable: x

Parameters: α, β

Support: x ∈ (0,∞)

PDF: p(x|α, β) = βαxα−1e−βx/Γ(α)

CDF: P (x|α, β) = γ(α, βx)/Γ(α

Mean: E[x] = α/β

Variance: E[x2]− E[x]2 = α/β2
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Geometric

Variable: k

Parameters: p

Support: k ∈ 0, 1, ...

PMF: p(k|p) = p(1− p)k

CMF: P (k|p) = 1− (1− p)k−1

Mean: E[k] = (1− p)/p

Variance: E[k2]− E[k]2 = (1− p)/p2

Multinomial

Variable: x

Parameters: n,p

Support: xi ∈ 0, ..., n

PMF: p(x|n,p) =
(

n
x1,...,xk

) k∏
i=1

pxii

Mean: E[ni] = n · pi

Negative Binomial

Variable: k

Parameters: r, p

Support: k ∈ 0, 1, ...

PMF: p(k|r, p) = (−1)k
(−r
k

)
pr(1− p)k

CMF: P (k|r, p) = 1−B(1− p, k + 1, r)/B(k + 1, r)

Mean: E[k] = r 1−p
p

Variance: E[k2]− E[k]2 = r(1−p)
p2
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Normal

Variable: x

Parameters: µ, σ2

Support: x ∈ (−∞,∞)

PDF: p(x|µ, σ2) = 1√
2πσ2

e
−1

2σ2 (x−µ)2

CDF: P (x|µ, σ2 = 1
2

(
1 + erf

(
x−µ
σ
√

2

))
Mean: E[x] = µ

Variance: E[x2]− E[x]2 = σ2

Multivariate Normal

Variable: x

Parameters: µ,Σ

Support: xi ∈ (−∞,∞)

PDF: p(x|µ,Σ) = (2π)−k/2 |σ|−1/2
e
−1
2 (x−µ)TΣ−1(x−µ)

Mean: E[x] = µ

Variance: E[x2]− E[x]2 = Σ

Uniform

Variable: x

Parameters: a, b

Support: x ∈ [a, b]

PDF: p(x|a, b) = 1/(b− a)

CDF: P (x|a, b) = (x− a)/(b− a)

Mean: E[x] = (a+ b)/2

Variance: E[x2]− E[x]2 = (b− a)2/12
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Wishart

Variable: X

Parameters: W , ν

Support: X is positive definite

PDF: p(X|W , ν) = |W |(ν−d−1)/2e−tr(W−1·X)/2

2νd/2Γd(ν/2)|W |ν/2

Mean: E[X] = νW

Variance: E[X2]− E[X]2 = ν(W 2
ij +WiiWjj)

Functions

B(x,y) is the beta function of x and y, B(z;x,y) is the incomplete beta function of x and y evaluated at z,B(x) is

the multinomial beta function of x, Γ(x) is the gamma function of x, γ(x,y) is the incomplete gamma function

of x and y, and Γd(x) is the multivariate gamma function of x. erf is the error function.
(
x
y

)
is the binomial

coefficient of x and y, and
(

x
y1,...,yk

)
is the multinomial coefficient of x and yi.
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Appendix C

Release Factor 1

(His)6 - TEV - 167C wtRF1

Primary Sequence: MSYYHHHHHHDYDIPTTENLYFQGAMKPSIVAKLEALHERHEEVQALLGDAQTI

ADQERFRALSREYAQLSDVSRSFTDWQQVQEDIETAQMMLDDPEMREMAQDE

LREAKEKSEQLEQQLQVLLLPKDPDDERNAFLEVRAGTGGDEAALFAGDLFRM

YSRYAEARRWRVEIMSASEGEHGGYKEIIAKISGDGVYGRLKFESGGHRVQRV

PATECQGRIHTSASTVAVMPELPDAELPDINPADLRIDTFRSSGAGGQHVNTTD

SAIRITHLPTGISVESQDERSQHKNKAKALSVLGARIHAAEMAKRQQAEASTRRN

LLGSGDRSDRNRTYNFPQGRVTDHRINLTLYRLDEVMEGKLDMLIEPIIQEHQA

DQLAALSEQE

MW: 43,569 Da

pI: 5.26

Number of Residues: 385

ε(280 nm, H2O): 27,390 M−1 cm−1

167C wtRF1

Primary Sequence: GAMKPSIVAKLEALHERHEEVQALLGDAQTIADQERFRALSREYAQLSDVSRSF

TDWQQVQEDIETAQMMLDDPEMREMAQDELREAKEKSEQLEQQLQVLLLPKD

PDDERNAFLEVRAGTGGDEAALFAGDLFRMYSRYAEARRWRVEIMSASEGEH

GGYKEIIAKISGDGVYGRLKFESGGHRVQRVPATECQGRIHTSASTVAVMPELP

DAELPDINPADLRIDTFRSSGAGGQHVNTTDSAIRITHLPTGISVESQDERSQHK
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NKAKALSVLGARIHAAEMAKRQQAEASTRRNLLGSGDRSDRNRTYNFPQGRVT

DHRINLTLYRLDEVMEGKLDMLIEPIIQEHQADQLAALSEQE

MW: 40,601 Da

pI: 5.13

Number of Residues: 362

ε(280 nm, H2O): 21,430 M−1 cm−1
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Appendix D

Computer Code

D.1 Compounded Dwell-time Probabilities

import numpy as np
from scipy import special

# Negative Binomial Distribution
def nb(k,r,p):

return special.binom(k+r-1,k) * (1.-p)**r * p**k

# Compound Dwell-time Probabilities
def nbmix_probs(k1,k2,tau,tc):

### Inputs: k1, k2, τ, τc
### Returns: probability of the number of compounded dwells (1 to 6)

# Probabilities of types of dwells
fp = np.exp(-k1*tc)
gp = np.exp(-k2*tc)
fm = 1.-fp
gm = 1.-gp

# Pairwise probabilities
ps = np.array((fp*gm,fm*gm,fp*gp,fm*gp))

# Pathway probabilities for 12 dwells
quad_index = np.mgrid[:4,:4,:4,:4,:4,:4].reshape((6,4**6)).T
pathways = np.product(ps[quad_index],axis=1)

# Calculate number of f+ for each pathway
n_dwells = np.zeros_like(pathways)
n_fp_raw = (((quad_index == 0) + (quad_index == 2)) > 0).cumsum(1)
first_gp = (((quad_index==2) + (quad_index == 3)) > 0).argmax(1)
for i in range(first_gp.size):

n_dwells[i] = n_fp_raw[i,first_gp[i]]

### Figure out which pathways to ignore, then remove them
# If no g+, remove
cut1 = ((quad_index == 2) + (quad_index == 3)).sum(1) == 0
# If no f+, remove
cut2 = ((quad_index == 0) + (quad_index == 2)).sum(1) == 0
# if end with f−g+

, without an f+

cut3 = quad_index[:,0] == 3
pathways[(cut1 + cut2 + cut3) > 0] = 0.
# If no f+ before f−g+

in ith position
for i in range(1,6):

cut = (quad_index[:,i] == 3)*np.all(quad_index[:,:i] != 2,axis=1)
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cut *= np.all(quad_index[:,:i]!=0,axis=1) > 0
pathways[cut] = 0.

# Sum compounded probabilities, and normalize
ppp = np.array(())
for i in range(6):

ppp = np.append(ppp,pathways[np.nonzero(n_dwells == i+1)[0]].sum())
return ppp / ppp.sum()

D.2 Single Molecule Stochastic Simulation Algorithm (SSA)

Generate Trajectories (.C)

#include <time.h>
#include <stdlib.h>
#include <math.h>
#include <stdio.h>

void sm_ssa(int steps, double tmax, int nstates, int initialstate, double *flat_rates, int *states, double
*dwells, int *last);↪→

void render_trace(int steps, int timesteps, int nstates, double *x, double *y, int *states, double *times,
double *dwells, double *emissions);↪→

void sm_ssa(int steps, double tmax, int nstates, int initialstate, double *flat_rates, int *states, double
*dwells, int *last){↪→

int i,j;
double r1,r2;
double rates[nstates][nstates], cumulatives[nstates][nstates];
double outrates[nstates];
int currentstate = initialstate;
double timetotal = 0.;

// setup cutoffs and rates
for(i=0;i<nstates;i++){

outrates[i] = 0.;
cumulatives[i][0] = 0.;
for(j=0;j<nstates;j++){

rates[i][j] = flat_rates[nstates*i + j];
cumulatives[i][j] = flat_rates[nstates*i + j];
if (j > 0){

cumulatives[i][j] += cumulatives[i][j-1];
}

}
outrates[i] = cumulatives[i][nstates-1];

}

// seed random num generator
srand(time(NULL));

for(i=0;i<steps;i++){
states[i] = currentstate;

r1 = ((double)rand()) / ((double)RAND_MAX);
r2 = ((double)rand()) / ((double)RAND_MAX);
dwells[i] = 1./outrates[states[i]]* log(1./r1);

if (i == 0){ // Start trace at random time.
dwells[i]*=(((double)rand()) / ((double)RAND_MAX));

}
timetotal += dwells[i];
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for(j=0;j<nstates;j++){
currentstate = j;
if (cumulatives[states[i]][j] > r2*outrates[states[i]]) {

break;
}

}
if (timetotal > tmax) {

last[0] = i+1;
break;

}
}

}

void render_trace(int steps, int timesteps, int nstates, double *x, double *y, int *states, double *times,
double *dwells, double *emissions) {↪→

int i,j;
double t0,t1;
double tau = x[1] - x[0];
int a=0, b=0,aflag = 1,bflag=1;

for (i=0;i<steps;i++) {
t1 = x[i];
t0 = t1 - tau;
aflag = 1;
bflag=1;
for (j=a;j<timesteps+1;j++){

if (times[j] > t0 && aflag) {
a = j-1;
aflag = 0;

}
if (times[j] > t1 && bflag) {

b = j;
bflag = 0;

}
if (!aflag && !bflag){

y[i] = 0.;
if (b-a == 1){

y[i] += (t1-t0)/tau * emissions[states[a]];
}
else if (b-a > 1) {

y[i] += (times[a+1]-t0)/tau * emissions[states[a]];
for (j=a+1;j<b-1;j++) {

y[i] += dwells[j]/tau * emissions[states[j]];
}
y[i]+= (t1 - times[b-1])/tau * emissions[states[b-1]];

}
break;

}
}

}
}

// To Compile
// gcc -shared -o ./sm_ssa-linux.so -fPIC -O3 ./sm_ssa.c
// gcc -shared -o ./sm_ssa-mac.so -fPIC -O3 ./sm_ssa.c

Python Wrapper

import numpy as np
import ctypes
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from sys import platform
import os

path = os.path.dirname(__file__)

if platform == ’darwin’:
_sopath = path+’/sm_ssa-mac’

elif platform == ’linux’ or platform == ’linux2’:
_sopath = path + ’/sm_ssa-linux’

_lib = np.ctypeslib.load_library(_sopath, ’.’)

_lib.sm_ssa.argtypes = [ctypes.c_int, ctypes.c_double, ctypes.c_int, ctypes.c_int,
np.ctypeslib.ndpointer(dtype = np.double), np.ctypeslib.ndpointer(dtype = np.int32),
np.ctypeslib.ndpointer(dtype = np.double), np.ctypeslib.ndpointer(dtype=np.int32)]

↪→

↪→

_lib.sm_ssa.restype = ctypes.c_void_p

_lib.render_trace.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_int, np.ctypeslib.ndpointer(dtype =
np.double), np.ctypeslib.ndpointer(dtype = np.double), np.ctypeslib.ndpointer(dtype = np.int32),
np.ctypeslib.ndpointer(dtype = np.double), np.ctypeslib.ndpointer(dtype=np.double),
np.ctypeslib.ndpointer(dtype=np.double)]

↪→

↪→

↪→

_lib.render_trace.restype = ctypes.c_void_p

class simtrace:
@staticmethod
def generate_states(rates,tlength):

nstates = rates.shape[0]
rates = rates.flatten()
n = np.max((int(np.floor(tlength*rates.max())),1))*2
initialstate = np.random.randint(nstates)
states = np.zeros(n, dtype=np.int32)
dwells = np.zeros(n, dtype=np.double)
cut = np.array(0,dtype=np.int32)
_lib.sm_ssa(n, (tlength), nstates, initialstate, rates, states, dwells,cut)
states = states[:cut]
dwells = dwells[:cut]
return np.array((states,dwells))

@staticmethod
def render_trace(trace,steps,dt,emission):

states = trace[0].astype(np.int32)
dwells = trace[1]
times = dwells.cumsum().astype(np.double)
times = np.append(0,times)
timesteps = states.shape[0]
steps = int(steps)

nstates = emission.size
emissions = emission.astype(np.double)
x = np.arange(steps,dtype=np.double)*dt + dt
y = np.zeros_like(x)
_lib.render_trace(steps, timesteps, nstates, x, y, states, times, dwells, emissions)
return x,y

def __init__(self,rates,emissions,noise,frames,tau):
self.k = rates
self.emission = emissions
self.a = self.generate_states(self.k,frames*tau)
self.dt = tau
self.sigma = noise
self.x,self.y = self.render_trace(self.a,frames,self.dt,self.emission)
self.y += np.random.normal(scale=self.sigma,size=self.y.size)
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D.3 Multidimensional Machine Learning - Variational GMM and
HMM

Forward-Backward Algorithm (.C)

// Adapted straight from JW van de Meent’s forwardback.cpp for MatLab Mex-file from ebFRET.
// Turned it into C code instead of C++ for use with ctypes in python
// Also, redid the indexing

#include <math.h>
#include <stdlib.h>

void forward_backward(int T, int K, double *p_x_z, double *A, double *pi, double *g, double *xi, double
*ln_z);↪→

void forward_backward(int T, int K, double *p_x_z, double *A, double *pi, double *g, double *xi, double *ln_z)
{↪→

double *a, *b, *c;
a = malloc(T*K*sizeof(double));
b = malloc(T*K*sizeof(double));
c = malloc(T*sizeof(double));

// initialize to zero
int i;
for (i=0; i<T*K; i++) {

a[i] = 0;
b[i] = 0;

}
for (i=0; i<T; i++) {

c[i] = 0;
}

// Forward Sweep - Calculate
//
// a(t, k) = sum_l p_x_z(t,k) A(l, k) alpha(t-1, l)
// c(t) = sum_k a(t, k)
//
// and normalize
//
// a(t, k) /= c(t)

// a(0, k) = p_x_z(0, k) pi(k)
int k;
for (k = 0; k < K; k++) {

a[0*K + k] = pi[k] * p_x_z[0*K + k];
c[0] += a[0*K + k];

}

// normalize a(0,k) by c(k)
for (k = 0; k < K; k++) {

a[0*K + k] /= c[0];
}

int t = 0;
int l;
for (t = 1; t < T; t++) {

// a(t, k) = sum_l p_x_z(t,k) A(l, k) alpha(t-1, l)
for (k = 0; k < K; k++) {

for (l = 0; l < K; l++) {
// a(t,k) += p_x_z(t,k) A(l, k) alpha(t-1, l)
a[t*K + k] += p_x_z[t*K + k] * A[l*K + k] * a[(t-1)*K + l];

}
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// c(t) += a(t,k)
c[t] += a[t*K + k];

}
// normalize a(t,k) by c(t)
for (k = 0; k < K; k++) {

a[t*K + k] /= c[t];
}

}

// Back sweep - calculate
//
// b(t,k) = 1/c(t+1) sum_l p_x_z(t+1, l) A(k, l) beta(t+1, l)

// b(T-1,k) = 1
for (k = 0; k < K; k++) {

b[(T-1)*K + k] = 1;
}

// t = T-2:0
for (t = T-2; t >= 0; t--) {

// b(t, k) = sum_l p_x_z(t+1,l) A(k, l) beta(t+1, l)
for (k = 0; k < K; k++) {

for (l = 0; l < K; l++) {
// b(t ,k) += p_x_z(t+1, l) A(k, l) betal(t+1, l)
b[t*K + k] += p_x_z[(t+1)*K + l] * A[k*K + l] * b[(t+1)*K + l];

}
// normalize b(t,k) by c(t+1)
b[t*K + k] /= c[t+1];

}
}

// g(t,k) = a(t,k) * b(t,k)
for (i=0; i<T*K; i++){

g[i] = a[i] * b[i];
}

// xi(t, k, l) = alpha(t, k) A(k,l) p_x_z(t+1, l) beta(t+1, l) / c(t+1)
for (t = 0; t < T-1; t++) {

for (k = 0; k < K; k++) {
for (l = 0; l < K; l++) {

xi[t*K*K + k*K +l] = (a[t*K + k] \
* A[k*K + l] \
* p_x_z[(t+1)*K + l] \
* b[(t+1)*K + l]) / c[t+1];

}
}

}

// ln_Z = sum_t log(c[t])
ln_z[0] = 0;
for (t=0; t<T; t++) {

ln_z[0] += log(c[t]);
}

// delete memory allocated for a, b and c
free(a);
free(b);
free(c);

return;
}

// To compile:
// gcc -shared -o ./forward_backward-linux.so -fPIC -O3 ./forward_backward.c
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// gcc -shared -o ./forward_backward-mac.so -fPIC -O3 ./forward_backward.c

Laplace Approximation, K-Means, Variational GMM, Variational HMM

import numpy as np
np.seterr(all=’ignore’)
eps = np.finfo(float).eps
from scipy import special
from ckt_utils import stats
import ctypes
from sys import platform
import os

path = os.path.dirname(__file__)

#Try to load forward backward
try:

if platform == ’darwin’:
_sopath = path+’/forward_backward-mac’

elif platform == ’linux’ or platform == ’linux2’:
_sopath = path + ’/forward_backward-linux’

libflag = True
_lib = np.ctypeslib.load_library(_sopath, ’.’)

except:
libflag = False

def pdot(a,b):
"""
Takes dot product along last two dimensions:
i.e., dot((N,K,D,D),(N,K,D,D)) --> (N,K,1,1)
"""
return np.einsum(’...ij,...jk->...ik’,a,b)

def calc_hessian(fxn,x,eps = np.sqrt(np.finfo(np.float64).eps)):
"""
Finite difference approximation of the Hessian
#Using Abramowitz & Stegun Eqn. 25.3.23 (on-diagonal), and 25.3.26 (off-diagonal)
For Laplace Approximation
"""
# xij is the position to evaluate the function at
# if i or j = 0, it’s the starting postion, 1 or m1 are x + 1.*eps and x - 1.*eps, respetively
# yij is the function evaluated at xij

h = np.zeros((x.size,x.size))
y00 = fxn(x)

for i in range(x.size):
for j in range(x.size):

#Off-diagonals below the diagonal are the same as those above.
if j < i:

h[i,j] = h[j,i]
else:

#On-diagonals
if i == j:

x10 = x.copy()
xm10 = x.copy()

x10[i] += eps
xm10[i] -= eps
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y10 = fxn(x10)
ym10 = fxn(xm10)

h[i,j] = eps**(-2.) * (y10 - 2.*y00 + ym10)

#Off-diagonals above the diagonal
elif j > i:

x11 = x.copy()
x1m1 = x.copy()
xm1m1 = x.copy()
xm11 = x.copy()

x11[i] += eps
x11[j] += eps
x1m1[i] += eps
x1m1[j] -= eps
xm1m1[i] -= eps
xm1m1[j] -= eps
xm11[i] -= eps
xm11[j] += eps

y11 = fxn(x11)
y1m1 = fxn(x1m1)
ym1m1 = fxn(xm1m1)
ym11 = fxn(xm11)

h[i,j] = 1./(4.*eps**2.) * (y11 - y1m1 - ym11 + ym1m1)
return h

def kmeans(x,nstates,nrestarts=1):
"""
K-means Clustering
x is Nxd
----
Returns pi_k, r_nk, mu_k, sig_k
"""

if x.ndim == 1:
x = x[:,None]

jbest = np.inf
mbest = None
rbest = None
for nr in range(nrestarts):

mu_k = x[np.random.randint(0,x.shape[0],size=nstates)]
j_last = np.inf
for i in range(500):

dist = np.sqrt(np.sum(np.square(x[:,None,:] - mu_k[None,...]),axis=2))
r_nk = (dist == dist.min(1)[:,None]).astype(’i’)
j = (r_nk.astype(’f’) * dist).sum()
mu_k = (r_nk[:,:,None].astype(’f’) * x[:,None,:]).sum(0) /

(r_nk.astype(’f’).sum(0)[:,None] + 1e-16)↪→

if np.abs(j - j_last)/j <= 1e-100:
if j < jbest:

jbest = j
mbest = mu_k
rbest = r_nk

break
else:

j_last = j
mu_k = mbest
r_nk = rbest
sig_k = np.empty((nstates,x.shape[1],x.shape[1]))
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for k in range(nstates):
sig_k[k] = np.cov(x[r_nk[:,k]==1.].T)

pi_k = (r_nk.sum(0)).astype(’f’)
pi_k /= pi_k.sum()

xsort = pi_k.argsort()[::-1]
#pi_k is fraction, r_nk is responsibilities, mu_k is means, sig_k is variances
return [pi_k[xsort],r_nk[:,xsort],mu_k[xsort],sig_k[xsort]]

def variational_gmm(x,nstates,maxiter=5000,lowerbound_threshold=1e-20,init_kmeans=0):
"""
Based on variational Gaussian mixture model from C. Bishop - Chapter 10, Section 2,
but accounts for covariances of x. x is an n by d array, where n is the number of
points, and d is the dimensionality of the points. maxiter is the maximum number of
rounds before stopping if the lowerbound_thershold is not met. This version is
fully vectorized.
"""
def calc_lowerbound(nstates, ndim, ntraces, alpha_0, beta_0, nu_0, W_0, Winv_0, m_0, r_nk, N_k,

xbar_k, S_k, m_k, W_k, alpha_k, beta_k, nu_k, E_lam, E_pi, E_mulam):↪→

# Error somewhere?
eq71 = 0.5 * np.sum( N_k * (E_lam - ndim/beta_k - nu_k *

np.trace(pdot(S_k,W_k),axis1=-2,axis2=-1)
-nu_k*pdot((xbar_k-m_k)[:,None,:],pdot(W_k,(xbar_k-m_k)[:,:,None]))[:,0,0] -
ndim*np.log(2.*np.pi) ))

↪→

↪→

↪→

eq72 = np.sum(np.sum(r_nk*E_pi[None,:],axis=1),axis=0)
eq73 = special.gammaln(alpha_0*nstates) - nstates*special.gammaln(alpha_0) +

(alpha_0-1.)*np.sum(E_pi)↪→

eq74 = 0.5 * np.sum( ndim*np.log(beta_0/(2.*np.pi)) + E_lam - ndim*beta_0/beta_k - beta_0 *
nu_k * pdot((m_k-m_0)[:,None,:],pdot(W_k,(m_k-m_0)[:,:,None])))↪→

eq74 += nstates * stats.wishart_ln_B(W_0,np.array((nu_0))) + (nu_0 - ndim -1.)/2. *
np.sum(E_lam) - 0.5 * np.sum(nu_k *
np.trace(pdot(Winv_0[None,...],W_k),axis1=-2,axis2=-1))

↪→

↪→

eq75 = np.sum(np.sum(r_nk*np.log(r_nk+1e-300),axis=1),axis=0)
eq76 = np.sum((alpha_k-1.)*E_pi) + special.gammaln(alpha_k.sum()) -

np.sum(special.gammaln(alpha_k))↪→

eq77 = 0.5 *np.sum(E_lam + ndim*np.log(beta_k/(2.*np.pi)) - ndim -
2.*stats.wishart_entropy(W_k,nu_k))↪→

lowerbound = eq71+eq72+eq73+eq74-eq75-eq76-eq77
return lowerbound#,[eq71,eq72,eq73,eq74,eq75,eq76,eq77]

#### Initialize
ntraces = x.shape[0]
ndim = x.shape[1]

alpha_0 = .1
beta_0 = 1e-20
nu_0 = ndim + 1.
W_0 = np.identity(ndim,dtype=’f’)
Winv_0 = np.linalg.inv(W_0)
m_0 = np.zeros((ndim),dtype=’f’)

if init_kmeans:
km = kmeans(x,nstates)
r_nk = km[1] + .1
r_nk /= r_nk.sum(1)[:,None]

else:
np.random.seed()
r_nk = np.array([np.random.dirichlet(np.repeat(alpha_0,nstates)) for _ in range(ntraces)])

N_k = np.zeros((nstates))
m_k = np.repeat(m_0[None,:],nstates,axis=0)
W_k = np.repeat(W_0[None,:,:],nstates,axis=0)
alpha_k = np.repeat(alpha_0,nstates)
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lb = None
state_log = None
finished_counter = 0

E_lam = np.zeros((nstates))
E_pi = np.zeros((nstates))
E_mulam = np.zeros((ntraces,nstates))

##################
### Iterations ###
##################

it = 0
while it < maxiter:

##############
### M-step ###
##############

N_k = np.sum(r_nk,axis=0)
xbar_k = np.sum(r_nk[:,:,None]*x[:,None,:],axis=0)/(N_k)[:,None]
S_k = (np.sum(r_nk[:,:,None,None]*(pdot((x[:,None,:] -

xbar_k[None,:,:])[:,:,:,None],(x[:,None,:] -
xbar_k[None,:,:])[:,:,None,:])),axis=0)/(N_k)[:,None,None])

↪→

↪→

nu_k = nu_0+ N_k
beta_k = beta_0 + N_k
alpha_k = alpha_0 + N_k
m_k = (beta_0*m_0 + N_k[:,None]*xbar_k)/beta_k[:,None]
Winv_k = Winv_0 + N_k[:,None,None]*S_k + (beta_0*N_k/(beta_0 + N_k))[:,None,None] *

pdot((xbar_k - m_0)[:,:,None],(xbar_k - m_0)[:,None,:])↪→

W_k = np.linalg.inv(Winv_k)

##############
### E-Step ###
##############
E_lam = np.sum(special.psi((nu_k[:,None] + 1. - np.linspace(1,ndim,ndim)[None,:])/2.),axis=1)

+ ndim*np.log(2.) + (np.log(np.linalg.det(W_k)))↪→

E_pi = special.psi(alpha_k) - special.psi(alpha_k.sum())
E_mulam = ndim/beta_k[None,:] + nu_k[None,:] * pdot((x[:,None,None,:] -

m_k[None,:,None,:]),pdot(W_k[None,:,:,:],(x[:,None,:,None] -
m_k[None,:,:,None])))[:,:,0,0]

↪→

↪→

rho_nk = E_pi[None,:] + .5 * E_lam[None,:] - ndim/2.*np.log(2.*np.pi) - .5*E_mulam
rho_nk -= rho_nk.max(1)[:,None]
rho_nk = np.exp(rho_nk)
r_nk = rho_nk/np.sum(rho_nk,axis=1)[:,None]

#################
### Calc ELBO ###
#################
elbo = calc_lowerbound(nstates, ndim, ntraces, alpha_0, beta_0, nu_0, W_0, Winv_0, m_0, r_nk,

N_k, xbar_k, S_k, m_k, W_k, alpha_k, beta_k, nu_k, E_lam, E_pi, E_mulam)↪→

if not np.ndim(lb):
lb = np.array((it,elbo))[None,:]

else:
lb = np.append(lb,np.array((it,elbo))[None,:],axis=0)

it += 1
##A few threshold options: equivalent, rel. change, abs. change
# print it, lb[-1,1]
# if it > 1 and lb[-2,1] == lb[-1,1]:
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if it > 1 and (np.abs((lb[-1,1]-lb[-2,1])/lb[-1,1]) < lowerbound_threshold):
# if it > 1 and (np.abs((lb[-1,1]-lb[-2,1])) < lowerbound_threshold):

break

xsort = alpha_k.argsort()[::-1]
return [alpha_k[xsort], r_nk[:,xsort], m_k[xsort], beta_k[xsort], nu_k[xsort], W_k[xsort], lb]

def normalwishart_estep(y,beta,m,nu,W):
ndim = m.shape[1]
E_xLx = ndim/beta[None,:] + nu[None,:] * pdot((y[:,None,None,:] -

m[None,:,None,:]),pdot(W[None,:,:,:],(y[:,None,:,None] - m[None,:,:,None])))[:,:,0,0]↪→

E_ln_det_lam = np.sum(special.psi((nu[:,None] + 1. - np.linspace(1,ndim,ndim)[None,:])/2.),axis=1) +
ndim*np.log(2.) + (np.log(np.linalg.det(W)))↪→

E_ln_p_x_z = -ndim/2.*np.log(2.*np.pi) + .5*E_ln_det_lam - E_xLx
return E_ln_p_x_z

def dirichlet_estep(alpha):
E_ln_theta = special.psi(alpha) - special.psi(np.sum(alpha,axis=-1))
return E_ln_theta

def normalwishart_mstep(y,gamma_tk,beta_0,m_0,nu_0,Winv_0):

N_k = np.sum(gamma_tk,axis=0) + 1e-16
Y_k = np.sum(gamma_tk[:,:,None]*y[:,None,:],axis=0)/(N_k)[:,None]
Y2_k = (np.sum(gamma_tk[:,:,None,None]*(pdot((y[:,None,:] -

Y_k[None,:,:])[:,:,:,None],(y[:,None,:] -
Y_k[None,:,:])[:,:,None,:])),axis=0)/(N_k)[:,None,None])

↪→

↪→

nu_k = nu_0+ N_k
beta_k = beta_0 + N_k
m_k = (beta_0*m_0 + N_k[:,None]*Y_k)/beta_k[:,None]
Winv_k = Winv_0 + N_k[:,None,None]*Y2_k + (beta_0*N_k/(beta_0 + N_k))[:,None,None] * pdot((Y_k

- m_0)[:,:,None],(Y_k - m_0)[:,None,:])↪→

W_k = np.linalg.inv(Winv_k)

return nu_k,W_k,m_k,beta_k

def forward_backward(p_x_z,A,ppi):
### p_x_z is TK
### A is KK
### pi is K

nstates = A.shape[0]
npoints = p_x_z.shape[0]

a = np.zeros((npoints,nstates))
b = np.zeros((npoints,nstates))
c = np.zeros((npoints))

#Forward Pass
#t = 0
a[0] = ppi[None,:] * p_x_z[0]
c[0] = np.sum(a[0])
a[0] /= c[0]

# print ppi,p_x_z[0],p_x_z[1]
# print a[0],c[0]

#t > 0
for t in range(1,npoints):

a[t] = np.dot(a[t-1], A) * p_x_z[t,:]
c[t] = np.sum(a[t])
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a[t] /= c[t]

#Backward pass
b[-1] = 1.
for t in range(npoints-1)[::-1]:

b[t] = np.dot((b[t+1] * p_x_z[t+1]), A.T) / c[t+1]

#Posteriors
#Prob for states
gamma = a*b
#Joint Prob for transition (for t > 0)
xi = a[:-1,:,None] * p_x_z[1:,None,:] * A[None,:,:] * b[1:,None,:] / c[1:,None,None]

#Evidence
ln_Z = np.sum(np.log(c))

return gamma,xi,ln_Z

# int T, int K, double *p_x_z, double *A, double *pi, double *g, double *xi, double *ln_z
_lib.forward_backward.argtypes = [ctypes.c_int, ctypes.c_int, np.ctypeslib.ndpointer(dtype =

np.double),np.ctypeslib.ndpointer(dtype = np.double),np.ctypeslib.ndpointer(dtype =
np.double),np.ctypeslib.ndpointer(dtype = np.double),np.ctypeslib.ndpointer(dtype =
np.double),np.ctypeslib.ndpointer(dtype = np.double)]

↪→

↪→

↪→

_lib.forward_backward.restype = ctypes.c_void_p

def forward_backward_c(p_x_z,A,ppi,fbmin=1e-300):
T = p_x_z.shape[0]
K = A.shape[0]

fpxz = p_x_z.flatten(order=’C’) + fbmin
fA = A.flatten(order=’C’) + fbmin
fppi = ppi.flatten(order=’C’) + fbmin

gamma = np.empty(T*K,dtype=’double’)
xi = np.empty((T-1)*K*K,dtype=’double’)
ln_z = np.array((0.))

_lib.forward_backward(T,K,fpxz,fA,fppi,gamma,xi,ln_z)
gamma = gamma.reshape((T,K))
xi = xi.reshape((T-1,K,K))
ln_z = np.sum(ln_z)
return gamma,xi,ln_z

def vb_hmm(y,nstates,init_kmeans=0,threshold = 1e-16):
’’’
Data should be Points x Dimensionality
---------
y = np.loadtxt(...)
gam_tk,beta_k,m_k,nu_k,W_k,alpha_kl,rho_k,lb = mls.vb_hmm(y,2)

from ckt_utils.fma import colors
for j in range(y.shape[1]):

plt.plot(m_k[gam_tk.argmax(1)][:,j],color = np.array(colors[j])/1.2,lw=1.5,alpha=1.)
plt.plot(y[:,j],color = colors[j],alpha=.8)

for xx in np.nonzero(np.roll(gam_tk.argmax(1),-1) - gam_tk.argmax(1))[0]:
plt.axvline(x = xx,color=’k’,lw=1.2)

plt.show()
’’’

global libflag
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if libflag:
fb = forward_backward_c

else:
fb = forward_backward

if y.ndim == 1:
y = y[:,None]

npoints = y.shape[0]
ndim = y.shape[1]

#TKD
if init_kmeans:

km = kmeans(y,nstates)
gam_tk = km[1] + .1
gam_tk /= gam_tk.sum(1)[:,None]
rho_0 = km[0]
rho_k = np.zeros((nstates)) + rho_0
m_0 = km[2]

else:
np.random.seed()

m_0 = np.zeros((ndim),dtype=’f’) + y.mean(0)
m_0 = np.repeat(m_0[None,:],nstates,axis=0)
m_0 += np.random.rand(*m_0.shape)*1e-6

rho_0 = np.ones(nstates)/nstates
gam_tk = np.array([np.random.dirichlet(rho_0) for _ in range(npoints)])
rho_k = rho_0.copy()

#vbFRET Priors
alpha_0 = np.ones((nstates,nstates))
nu_0 = ndim + 1.
nu_0 = np.repeat(nu_0,nstates)
W_0 = np.identity(ndim,dtype=’f’)
W_0 = np.repeat(W_0[None,:,:],nstates,axis=0)
Winv_0 = np.linalg.inv(W_0)
beta_0 = .25

m_k = m_0.copy()
W_k = W_0.copy()
nu_k = nu_0.copy()
beta_k = np.repeat(beta_0,nstates)
alpha_kl = np.zeros((nstates,nstates)) + alpha_0

lbs = [-np.inf]

#iteration loop
for i in range(1000):

#Expectation
E_ln_p_x_z = normalwishart_estep(y,beta_k,m_k,nu_k,W_k)
E_ln_A_kl = dirichlet_estep(alpha_kl)
E_ln_pi_k = dirichlet_estep(rho_k)

# Forward-Backward
# gam_tk, xi_tkl, ln_z = forward_backward(np.exp(E_ln_p_x_z), np.exp(E_ln_A_kl),

np.exp(E_ln_pi_k))↪→

gam_tk, xi_tkl, ln_z = fb(np.exp(E_ln_p_x_z), np.exp(E_ln_A_kl), np.exp(E_ln_pi_k))

#Maximization
nu_k,W_k,m_k,beta_k = normalwishart_mstep(y,gam_tk,beta_0,m_0,nu_0,Winv_0)

#xi_tkl is t-1 in t dim
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alpha_kl = alpha_0 + np.sum(xi_tkl,axis=0)
rho_k = rho_0 + gam_tk[0]

lowerbound = ln_z - stats.dirichlet_kl(alpha_kl,alpha_0) - stats.dirichlet_kl(rho_k,rho_0) -
stats.normalwishart_kl(beta_k,m_k,nu_k,W_k,beta_0,m_0,nu_0,W_0)↪→

lbs.append(lowerbound)
# print i,lowerbound,np.abs((lowerbound - lbs[i])/lbs[i])
if i > 1 and np.abs((lowerbound - lbs[i])) < threshold:

break

return gam_tk,beta_k,m_k,nu_k,W_k,alpha_kl,rho_k,lbs

D.4 Green’s Function Kinetics with Numerical Laplace Inversion

import numpy as np
np.seterr(all=’ignore’)

def gsquiggle(s,r):
return np.linalg.inv(s[:,:,None,None]*np.identity(r.shape[0]) - r[None,None,:,:])

def talbot_inversion_vectorized(fxn,t,m):
if np.ndim(t) != 1:

raise Exception("T is the WRONG shape")

i = np.arange(m).astype(’Complex64’)
delta = np.empty(m,dtype=’Complex64’)
gamma = np.empty(m,dtype=’Complex64’)

delta[1:] = 2.*i[1:]*np.pi/5.*(1./np.tan(i[1:]*np.pi/m)+1.j)
gamma[1:] = (1.+1.j * (i[1:]*np.pi/m) * (1.+(1./np.tan(i[1:] * np.pi/m))**2.) -

1.j/np.tan(i[1:]*np.pi/m)) * np.exp(delta[1:])↪→

delta[0] = 2.*m/5.
gamma[0] = .5*np.exp(delta[0])

f_t = 2./(5.*t[:,None,None]) *
np.sum(np.real(gamma[None,:,None,None]*fxn(delta[None,:]/t[:,None])),axis=1)↪→

return f_t

def greensfxn_kinetics(t,rate_matrix,m=64.):
’’’
t is an array of times to calculate G_t
rate_matrix must be square and dtype=’float64’

Returns G(t) for P(t) = G(t)*P(t=0)
’’’
return talbot_inversion_vectorized(lambda s: gsquiggle(s,rate_matrix.T),t,m)

D.5 BIASD

BIASD Integrand .C

#include <math.h>

// Chebyshev Polynomial Evaluation and Modified Bessel Function Evaluations from GNU Science Library --
http://www.gnu.org/software/gsl/↪→

// Those have the GNU General Public License (GPL)
// From GSL’s cheb_eval_e.c, bessel_I0.c, and bessel_I1.c with some hard-coded values
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/* ----------------------------------------- */
/* ----------Chebyshev Polynomials---------- */
/* ----------------------------------------- */

typedef struct
{

double * c; /* coefficients c[0] .. c[order] */
int order; /* order of expansion */
double a; /* lower interval point */
double b; /* upper interval point */

} cheb_series;

static double bi0_data[12] = {
-.07660547252839144951,
1.92733795399380827000,
.22826445869203013390,
.01304891466707290428,
.00043442709008164874,
.00000942265768600193,
.00000014340062895106,
.00000000161384906966,
.00000000001396650044,
.00000000000009579451,
.00000000000000053339,
.00000000000000000245

};
static cheb_series bi0_cs = {bi0_data, 11, -1, 1};

static double ai0_data[21] = {
.07575994494023796,
.00759138081082334,
.00041531313389237,
.00001070076463439,

-.00000790117997921,
-.00000078261435014,
.00000027838499429,
.00000000825247260,

-.00000001204463945,
.00000000155964859,
.00000000022925563,

-.00000000011916228,
.00000000001757854,
.00000000000112822,

-.00000000000114684,
.00000000000027155,

-.00000000000002415,
-.00000000000000608,
.00000000000000314,

-.00000000000000071,
.00000000000000007

};
static cheb_series ai0_cs = {ai0_data, 20, -1, 1};

static double ai02_data[22] = {
.05449041101410882,
.00336911647825569,
.00006889758346918,
.00000289137052082,
.00000020489185893,
.00000002266668991,
.00000000339623203,
.00000000049406022,
.00000000001188914,
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-.00000000003149915,
-.00000000001321580,
-.00000000000179419,
.00000000000071801,
.00000000000038529,
.00000000000001539,

-.00000000000004151,
-.00000000000000954,
.00000000000000382,
.00000000000000176,

-.00000000000000034,
-.00000000000000027,
.00000000000000003

};
static cheb_series ai02_cs = {ai02_data, 21, -1, 1};

static double bi1_data[11] = {
-0.001971713261099859,
0.407348876675464810,
0.034838994299959456,
0.001545394556300123,
0.000041888521098377,
0.000000764902676483,
0.000000010042493924,
0.000000000099322077,
0.000000000000766380,
0.000000000000004741,
0.000000000000000024

};
static cheb_series bi1_cs = {bi1_data, 10, -1, 1};

static double ai1_data[21] = {
-0.02846744181881479,
-0.01922953231443221,
-0.00061151858579437,
-0.00002069971253350,
0.00000858561914581,
0.00000104949824671,

-0.00000029183389184,
-0.00000001559378146,
0.00000001318012367,

-0.00000000144842341,
-0.00000000029085122,
0.00000000012663889,

-0.00000000001664947,
-0.00000000000166665,
0.00000000000124260,

-0.00000000000027315,
0.00000000000002023,
0.00000000000000730,

-0.00000000000000333,
0.00000000000000071,

-0.00000000000000006
};
static cheb_series ai1_cs = { ai1_data, 20, -1, 1};

static double ai12_data[22] = {
0.02857623501828014,

-0.00976109749136147,
-0.00011058893876263,
-0.00000388256480887,
-0.00000025122362377,
-0.00000002631468847,
-0.00000000383538039,
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-0.00000000055897433,
-0.00000000001897495,
0.00000000003252602,
0.00000000001412580,
0.00000000000203564,

-0.00000000000071985,
-0.00000000000040836,
-0.00000000000002101,
0.00000000000004273,
0.00000000000001041,

-0.00000000000000382,
-0.00000000000000186,
0.00000000000000033,
0.00000000000000028,

-0.00000000000000003
};
static cheb_series ai12_cs = {ai12_data, 21, -1, 1};

/* ----------------------------------------- */
/* ------------ Bessel Functions------------ */
/* ----------------------------------------- */

double cheb_eval(cheb_series * cs, double x) {
int j;
double d = 0.0;
double dd = 0.0;

double y = (2.0*x - cs->a - cs->b) / (cs->b - cs->a);
double y2 = 2.0 * y;

double e = 0.0;

for(j = cs->order; j>=1; j--) {
double temp = d;
d = y2*d - dd + cs->c[j];
e += fabs(y2*temp) + fabs(dd) + fabs(cs->c[j]);
dd = temp;

}

double temp = d;
d = y*d - dd + 0.5 * cs->c[0];
e += fabs(y*temp) + fabs(dd) + 0.5 * fabs(cs->c[0]);
return d;

}

double i0_scaled(double x) {
double y = fabs(x);

if(y < 2.0 * 1.490116e-08) {
return 1.0 - y;

}
else if(y <= 3.0) {

return exp(-y) * (2.75 + cheb_eval(&bi0_cs, y*y/4.5-1.0));
}
else if(y <= 8.0) {

return (0.375 + cheb_eval(&ai0_cs, (48.0/y-11.0)/5.0))/ sqrt(y);
}
else {

return (0.375 + cheb_eval(&ai02_cs, 16.0/y-1.0))/ sqrt(y);
}

}

double i0(double x) {
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double y = fabs(x);

if(y < 2.0 * 1.490116e-08) {
return 1.0;

}
else if(y <= 3.0) {

return 2.75 + cheb_eval(&bi0_cs, y*y/4.5-1.0);
}
else if(y < 7.097827e+02 - 1.0) {

return exp(y) * i0_scaled(x);
}
else {

return NAN;
}

}

double i1_scaled(double x) {
const double xmin = 4.450148e-308;
const double x_small = 4.214685e-08;
double y = fabs(x);

if(y == 0.0) {
return 0.0;

}
else if(y < x_small) {

return 0.5*x;
}
else if(y <= 3.0) {

return x * exp(-y) * (0.875 + cheb_eval(&bi1_cs, y*y/4.5-1.0));
}
else if(y <= 8.0) {

double b;
double s;
b = (0.375 + cheb_eval(&ai1_cs, (48.0/y-11.0)/5.0)) / sqrt(y);
s = (x > 0.0 ? 1.0 : -1.0);
return s * b;

}
else {

double b;
double s;
b = (0.375 + cheb_eval(&ai12_cs, 16.0/y-1.0)) / sqrt(y);
s = (x > 0.0 ? 1.0 : -1.0);
return s * b;

}
}

double i1(double x) {
const double xmin = 4.450148e-308;
const double x_small = 4.214685e-08;
double y = fabs(x);

if(y == 0.0) {
return 0.0;

}
else if(y < xmin) {

return NAN;
}
else if(y < x_small) {

return 0.5*x;
}
else if(y <= 3.0) {

return x * (0.875 + cheb_eval(&bi1_cs, y*y/4.5-1.0));
}
else if(y < 7.097827e+02) {
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return exp(y) * i1_scaled(x);
}
else {

return NAN;
}

}

/*
#########################################################

Integrand for BIASD
#########################################################
*/

double integrand(int n, double args[n]) {
double f = args[0];
double d = args[1];
double ep1 = args[2];
double ep2 = args[3];
double sigma = args[4];
double k1 = args[5];
double k2 = args[6];
double tau = args[7];

double out;

//Pre-calulate some parameters
double k = k1 + k2;
double p1 = k2/k;
double p2 = k1/k;
double y = 2.*k*tau * pow(p1*p2*f*(1.-f),.5);
double z = p2*f + p1*(1.-f);

//Enforce parameter support
if (f < 0. || f > 1. || k1 <= 0. || k2 <= 0. || sigma <= 0. || tau <= 0. || ep1 >= ep2) {

out = 0.;
}
else {

//Time averaging part
out = 2.*k*tau*p1*p2*(i0(y)+k*tau*(1.-z)*i1(y)/y)*exp(-z*k*tau);
//Observation noise part
out *= 1./sigma * M_2_SQRTPI/2. * M_SQRT1_2 *

exp(-.5/sigma/sigma*pow(d-(ep1*f+ep2*(1.-f)),2.));↪→

}
return out;

}

// To Compile in Linux for CTYPES in Python:
// Note: This doesn’t need GSL b/c it is the same fxns
// gcc -L/usr/local/lib -shared -o biasd_integrand-linux.so -fPIC -O3 biasd_integrand_gsl.c -lm

BIASD Likelihood and Python Wrappers for .C Integrand

################# Versions#########
# Anaconda - 2.3.0
## Python - 2.7.10
### Numpy - 1.9.2
### Scipy - 0.16.0
##################################
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### Imports
import numpy as np
from scipy import special as _special
from scipy.integrate import quad as _quad

from os import path as _path
from sys import platform as _platform
import ctypes as _ctypes

### Python Integrand
def _python_integrand(x,d,e1,e2,sigma,k1,k2,tau):

"""
Integrand for BIASD likelihood function
"""
#Ensures proper support
if x < 0. or x > 1. or k1 <= 0. or k2 <= 0. or sigma <= 0. or tau <= 0. or e1 >= e2:

return 0.
else:

k = k1 + k2
p1 = k2/k
p2 = k1 /k
y = 2.*k*tau * np.sqrt(p1*p2*x*(1.-x))
z = p2*x + p1*(1.-x)
pf = 2.*k*tau*p1*p2*(_special.i0(y)+k*tau*(1.-z)*_special.i1(y)/y)*np.exp(-z*k*tau)
py = 1./np.sqrt(2.*np.pi*sigma**2.)*np.exp(-.5/sigma/sigma*(d-(e1*x+e2*(1.-x)))**2.) * pf
return py

### Attempt to Load the .C Integrand
try:

_libpath = _path.dirname(_path.abspath(__file__))
if _platform == ’darwin’:

_sopath = _libpath+’/biasd_integrand-mac’
elif _platform == ’linux’ or _platform == ’linux2’:

_sopath = _libpath + ’/biasd_integrand-linux’
_lib = np.ctypeslib.load_library(_sopath, ’.’)

#Setup the integrand function calls/returns
_c_integrand = _lib.integrand
_c_integrand.restype = _ctypes.c_double
_c_integrand.argtypes = (_ctypes.c_int, _ctypes.c_double)

integrand = _c_integrand

_clibflag = True
print "Loaded integrand written in C"
print _sopath

### Failure: Load the Python Integrand
except:

integrand = _python_integrand
_clibflag = False
print "Couldn’t find the compiled library"
print "Using integrand written in Python \n This will be much slower!"

### Define important integral in likelihood function
def integral(d,e1,e2,sigma,k1,k2,tau,):

"""
Use Gaussian quadrature to integrate the BIASD integrand across df between f = [0 ... 1]
"""

return _quad(integrand,0.,1.,args=(d,e1,e2,sigma,k1,k2,tau),limit=1000)[0]
integral = np.vectorize(integral)

def pdf_gaussian(x,mu,std):
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return (1./(std*np.sqrt(2.*np.pi))*np.exp(-.5/std/std*(x-mu)**2.))

def log_likelihood(theta,d,tau):
"""
Calculate the log of the BIASD likelihood function at theta
using the data d
given the time period of the d as tau
"""
e1,e2,sigma,k1,k2 = theta
p1 = k2/(k1+k2)
p2 = 1.-p1
out = integral(d,e1,e2,sigma,k1,k2,tau)
peak1 = pdf_gaussian(d,e1,sigma)
peak2 = pdf_gaussian(d,e2,sigma)
out += p1*peak1*np.exp(-k1*tau)
out += p2*peak2*np.exp(-k2*tau)

# Avoid use of -infinity
return np.log(out+1e-300)

def log_posterior(d,priors,tau,theta):
""""
Calculate the ln of the posterior probability distribution for data d,
with priors as priors, time period of d as tau, at the point theta
"""

return log_likelihood(theta,d,tau).sum()+priors.sum_log_pdf(theta)

def test_speed(n):
"""
Test how fast the BIASD integral (python-based or C-based) runs.
C-based should be ~30 us. Python-based is ~30x that.
"""

from time import time
d = np.linspace(-2,1.2,5000)
t0 = time()
for i in range(n):

# _quad(integrand,0.,1.,args=(.1,0.,1.,.05,3.,8.,.1))[0]
y = log_likelihood([0.,1.,.05,3.,8.],d,.1).sum()

t1 = time()
print "Total time for "+str(n)+" runs: ",np.around(t1-t0,4)," (s)"
print ’Average speed: ’, np.around((t1-t0)/n/d.size*1.e6,4),’ (usec/datapoint)’

BIASD Classes

import numpy as np
np.set_printoptions(precision=4,linewidth=180)
np.seterr(all=’ignore’)
eps = np.finfo(float).eps
from scipy import special
from scipy.optimize import minimize
import cPickle as pickle

from ckt_utils import stats,mls,parallel
from biasd_likelihood import *

class dist:
"""
Represents a probability distribution
distribution is a string for the name of the distribution
p1, and p2 are the parameters for that distribution

279



APPENDIX D. COMPUTER CODE

"""

def __init__(self,distribution,p1,p2):
self.type = distribution.lower()
self.p1 = p1
self.p2 = p2

#Make distribution name types uniformily stored
if self.type in [’uniform’,’u’,0]:

self.type = ’uniform’
elif self.type in [’normal’,’norm’,’n’,’gaussian’,’gauss’,1]:

self.type = ’normal’
elif self.type in [’beta’,’b’,2]:

self.type = ’beta’
elif self.type in [’gamma’,’g’,3]:

self.type = ’gamma’

#Check to see if this makes a valid distribution
self.good = self.good_check()

def good_check(self):
"""
Check if parameters are withing support range and return 1 if so
"""
if self.type == ’uniform’:

if np.isfinite(self.p1) and np.isfinite(self.p2) and self.p1 < self.p2:
return 1

elif self.type == ’normal’:
if np.isfinite(self.p1) and self.p2 > 0.:

return 1
elif self.type == ’beta’ or self.type == ’gamma’:

if self.p1 > 0. and self.p2 > 0.:
return 1

return 0

def pdf(self,x):
"""
Return the probability distribution function
x can be a vector
"""
if self.good:

if self.type == "uniform":
pdffxn = stats.p_uniform(x,self.p1,self.p2)

elif self.type == "normal":
pdffxn = stats.p_gauss(x,self.p1,self.p2)

elif self.type == "beta":
pdffxn = stats.p_beta(x,self.p1,self.p2)

elif self.type == "gamma":
pdffxn = stats.p_gamma(x,self.p1,self.p2)

return pdffxn
return 0

def logpdf(self,x):
"""
Return the log of the probability distribution function
"""
return np.log(self.pdf(x))

def mean(self):
"""
Calculate E[x]
"""
if self.type == "uniform":

mean = stats.mean_uniform(self.p1,self.p2)
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elif self.type == "normal":
mean = stats.mean_gauss(self.p1,self.p2)

elif self.type == "beta":
mean = stats.mean_beta(self.p1,self.p2)

elif self.type == "gamma":
mean = stats.mean_gamma(self.p1,self.p2)

return mean

def var(self):
"""
Calculate E[x^2] - E[x]^2
"""
if self.type == "uniform":

var = stats.var_uniform(self.p1,self.p2)
elif self.type == "normal":

var = stats.var_gauss(self.p1,self.p2)
elif self.type == "beta":

var = stats.var_beta(self.p1,self.p2)
elif self.type == "gamma":

var = stats.var_gamma(self.p1,self.p2)
return var

def random(self,size_rvs):
"""
Generate random numbers in shape of size_rvs
"""
#At least correct for numpy 1.9.2
np.random.seed()
if self.type == "uniform":

rvs = np.random.uniform(self.p1,self.p2,size_rvs)
elif self.type == "normal":

rvs = np.random.normal(self.p1,self.p2,size_rvs)
elif self.type == "beta":

rvs = np.random.beta(self.p1,self.p2,size_rvs)
elif self.type == "gamma":

rvs = np.random.gamma(shape=self.p1,scale=1./self.p2,size=size_rvs)
return rvs

class biasddistribution:
"""
Stores the five parameter probability distribution functions used for the BIASD \Theta.
\Theta = [\epsilon_1, \epsilon_2, \sigma, \k_1, \k_2]
This is used for both the prior and the posterior probability distributions
"""
def __init__(self,e1,e2,sigma,k1,k2):

self.names = [’e1’,’e2’,’sigma’,’k1’,’k2’]
self.e1 = e1
self.e2 = e2
self.sigma = sigma
self.k1 = k1
self.k2 = k2
self.list = [self.e1,self.e2,self.sigma,self.k1,self.k2]

#Ensure each distribution in \Theta is sound
self.complete = self.test_distributions()
if self.complete != 1:

print "Distributions are incomplete"

def test_distributions(self):
"""
If all distributions in \Theta are correct and return 1
"""
good = 1
for dists in self.list:
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try:
if dists.good != 1:

good = 0

except:
good = 0

return good

def get_dist_means(self):
"""
Calculate means of \Theta
"""
if self.complete == 1:

return np.array((self.e1.mean(), self.e2.mean(), self.sigma.mean(), self.k1.mean(),
self.k2.mean()))↪→

else:
print "Distributons are incomplete"
return np.repeat(np.nan,5)

def get_dist_vars(self):
"""
Calculate the variances of \Theta
"""
if self.complete == 1:

return np.array((self.e1.var(), self.e2.var(), self.sigma.var(), self.k1.var(),
self.k2.var()))↪→

else:
print "Distributons are incomplete"
return np.repeat(np.nan,5)

def sum_log_pdf(self,theta):
"""
Returns \Sum_i \ln p\left( \theta_i \right) evaluated at theta (list of numpy array)
"""
if self.complete == 1:

ll = 0
for theta_i,distribution in zip(theta,self.list):

ll += np.log(distribution.pdf(theta_i))
return ll

else:
print "Distributions are incomplete"
return np.nan

def which_bad(self):
"""
Figure out which of the distributions is bad
"""
if self.complete != 1:

print "Bad Distributions:"
baddists=[]
for i,j in zip([dists.good for dists in self.list],self.names):

if i != 1:
print j
baddists.append(j)

return baddists
else:

print "All distributions seem complete"
return None

def random_theta(self):
"""
Generate a random [\epsilon_1, \epsion_2, \sigma, k_1, k_2] from the BIASD distributions
"""
theta = np.repeat(np.nan,5)
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if self.complete == 1:
#Try a max of 100 times
for i in range(100):

for j,distribution in zip(range(5),self.list):
theta[j] = distribution.random(1)

#Enforce conditions \epsilon_1 < \epsilon_2, and others are > 0
if theta[0] < theta[1] and theta[2] > 0. and theta[3] > 0. and theta[4] > 0.:

break
theta = np.repeat(np.nan,5)

return theta

class laplace_posterior:
"""
Holds the results of a laplace approximation of the posterior probability distribution from BIASD
"""
def __init__(self,means,covars):

self.mu = means
self.covar = covars

class trace:
"""
A trace is a signal versus time trajectory loaded in from a dataset.
It can be processed using the Laplace approximation.
"""

def __init__(self, data, tau=None, prior=None,identity=0):
#Signal versus time data as a numpy array
self.data = data.flatten()
#time period
self.tau = float(tau)
#Prior as a biasddistributions object
self.prior = prior
#Posterior will be a biasddistributions objet
self.posterior = None
#Identifying number
self.identity = identity

def log_likelihood(self,theta):
’’’
Calculate the log of the BIASD likelihood function at theta
for this trace
’’’
return log_likelihood(theta,self.data,self.tau)

def log_posterior(self,theta):
’’’
Calculate the log of the BIASD posterior at theta for this trace
’’’
return log_posterior(self.data,self.prior,self.tau,theta)

def find_map(self,meth=’nelder-mead’,xx=None,nrestarts=2):
’’’
Use numerical minimization to find the maximum a posteriori estimate of the posterior
Provide xx to force first theta initialization at that theta
meth is the method used by the minimizer - default to simplex
nrestarts is the number of restarts for the MAP
’’’

ylist = []

#If no xx, start at the mean of the priors
if type(xx).__name__ != ’ndarray’:

xx = self.prior.get_dist_means()
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#Rounds to minimze the -log posterior
ylist.append(minimize(lambda theta: -1.*self.log_posterior(theta),x0=xx,method=meth))
for i in range(nrestarts):

#Try a random location consistent with the prior.
xx = self.prior.random_theta()
ylist.append(minimize(lambda theta: -1.*self.log_posterior(theta),x0=xx,method=meth))

#Select the best MAP estimate
ymin = np.inf
for i in ylist:

if i[’success’]:
if i[’fun’] < ymin:

ymin = i[’fun’]
y = i

#If no MAP estimates, return None
if ymin == np.inf:

y = None
return y

def laplace_approximation(self):
’’’
Perform the Laplace approximation on the posterior probability distribution of this trace
’’’

def sanitize_uniform(x,p):
’’’
Make sure you can calculate the Hessian if \theta_i is at
the edge of a uniform distribution
’’’
for i in range(5):

if p.list[i].type == ’uniform’:
if np.abs(p.list[i].p1 - x[i]) < 1e-5:

x[i] += 1e-5
elif np.abs(p.list[i].p2 - x[i]) < 1e-5:

x[i] -= 1e-5
return x

#Calculate the best MAP estimate
mind = self.find_map()
if not mind is None:

#Calculate the Hessian at MAP estimate
if mind[’success’]:

mu = sanitize_uniform(mind[’x’],self.prior)
feps = np.sqrt(np.finfo(np.float).eps)
hessian = mls.calc_hessian(self.log_posterior,mu,eps=feps)

#Ensure that the hessian is positive semi-definite by checking that all
eigenvalues are positive↪→

#If not, expand the value of machine error in the hessian calculation and try
again↪→

try:
#Check eigenvalues
while np.any(np.linalg.eig(-hessian)[0] <= 0.):

feps *= 2.
#Calculate hessian
hessian = mls.calc_hessian(self.log_posterior,mu,eps=feps)

#Invert hessian to get the covariance matrix
var = np.linalg.inv(-hessian)
#Ensure symmetry of covariance matrix if witin machine error
if np.allclose(var,var.T):

var = np.tri(5,5,-1)*var+(np.tri(5,5)*var).T
return (self.identity,laplace_posterior(mu,var))

#If this didn’t work, return None
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except np.linalg.LinAlgError:
return (self.identity,None)

return (self.identity,None)

class dataset:
’’’
A dataset is a collection of traces(i.e., all of the signal
vs. time trajectories from a particular experiment).
’’’
def __init__(self,data_fname=None,fmt=’2D-NxT’,tau=None,temperature = 25., title = None, prior =

None,analysis_fname=None):↪→

#Location of the file containing the signal vs. time trajectories
self.data_fname = data_fname
#Data format of the signal vs. time trajectories (’2D-NxT’,’2D-TxN’,’1D’)
self.fmt = fmt
#Time period
self.tau =tau
#Temperature
self.temperature = temperature
#Random Notes from GUI are stored here
self.title = title
#prior for all traces
self.prior = prior
#List of traces to make accessing them easier
self.traces = []
#File name where this dataset will be/already is saved so that it can be loaded/saved later
self.analysis_fname = analysis_fname
#Best ensemble parameters for the ensemble of signal vs. time trajectories.
#Calculated from the variational GMM of the Laplace approximated BIASD posteriors
self.ensemble_result = None

@staticmethod
def _convert_2D_to_1D(trace_matrix):

’’’
Convert NxT (with NaN\’s or inf\’s for no data) to 2x(N*T) with labels format
’’’
if trace_matrix.ndim == 1:

trace_matrix = trace_matrix[None,:]
identities = np.array([])
traces = np.array([])
for i in range(trace_matrix.shape[0]):

l = np.isfinite(trace_matrix[i]).sum()
identities = np.append(identities,np.repeat(i,l))
traces = np.append(traces,trace_matrix[i,:l])

return np.array((identities,traces))

@staticmethod
def _convert_1D_to_2D(trace_matrix):

’’’
Convert 2x(N*T) with labels format to NxT format (with NaN\’s for no data)
’’’

ns = np.unique(trace_matrix[0])
sizes = (trace_matrix[0][None,:] == ns[:,None]).sum(1)
traces_out = np.ones((ns.size,sizes.max()))
traces_out[:,:] = np.nan

for i in range(ns.size):
d = trace_matrix[1][trace_matrix[0] == ns[i]]
traces_out[i,:sizes[i]] = d

return traces_out

def load_data(self):
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’’’
Creates traces from the signal vs. time trajectories in the file specified by data_fname.
Stores the signal vs. time data in the ’1D’ format.
’’’

if type(self.data_fname) == str:
if path.isfile(self.data_fname):

try:
self.data = np.loadtxt(self.data_fname)
if self.fmt == ’2D-TxN’:

self.data = self.data.T
if self.fmt != ’1D’:

self.data = self._convert_2D_to_1D(self.data)
if self.fmt == ’1D’:

self.data =
self._convert_1D_to_2D(self._convert_2D_to_1D(self.data))↪→

except:
self.data = None
print "Couldn’t load "+self.data_fname
return

else:
print self.data_fname + " isn’t a file"
return

#Construct traces
ns = np.unique(self.data[0])
for i in range(ns.size):

self.traces.append(trace(self.data[1][self.data[0]==ns[i]], tau=self.tau,
prior=self.prior, identity=i))↪→

self.n_traces = len(self.traces)

def save_analysis(self):
’’’
Allows the entire dataset to be saved using pickle to the
filename specified in analysis_fname.
Everything including traces, laplace posteriors, and ensembles
will be saved.
’’’
if self.analysis_fname:

f = open(self.analysis_fname,’wb’)
pickle.dump(self.__dict__,f,2)
f.close()

def load_analysis(self):
’’’
Loads the entire dataset that was save to the file specified by the
filename in analysis_fname.
Everything including traces, laplace posteriors, and ensembles
will be loaded.
’’’
if path.isfile(self.analysis_fname):

f = open(self.analysis_fname,’rb’)
tmp_dict = pickle.load(f)
f.close()
self.__dict__.update(tmp_dict)

else:
print "No file called ",self.analysis_fname

def update(self):
’’’
Changes to the priors or time period specified in the dataset will
be updated to the traces in the dataset.
’’’
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for tracei in self.traces:
tracei.prior = self.prior
tracei.tau = self.tau

def run_laplace(self,nproc=1):
’’’
Calculates the Laplace approximation of the posterior probability
distributions for the traces loaded into this dataset.
If nproc is > 1, then this function will use multiple processors to
perform this calculation on traces simultaneously.
’’’
# if nproc > mp.cpu_count():
# print "Using max number of CPUs: "+str(mp.cpu_count())
# nproc = mp.cpu_count()

j = 1
print "-----------------\nLaplace Approximations"
# t0 = time.time()

def laplace_wrapper(tracei):
item = tracei.laplace_approximation()
tracei.posterior = item[1]
return tracei

laplace_result = parallel.embarrassingly(laplace_wrapper,self.traces,nproc =
nproc,batchsize=100)↪→

self.traces = laplace_result

#Example biasddistributions
prior_personal_distribution = biasddistribution(
dist(’normal’,0.15,.1),
dist(’normal’,.75,.1),
dist(’gamma’,70.,1000.),
dist(’Gamma’,2.,2./10.),
dist(’Gamma’,2.,2./10.))

Embarassingly Parallel Function Wrapper

import multiprocessing as _mp
# import numpy as np
import statusbar as _sb
from time import time as _time

def check_cpu(nproc):
cpucount = _mp.cpu_count()
if nproc > cpucount:

print "Using max number of CPUs: "+str(cpucount)
nproc = cpucount

return nproc

class _worker(_mp.Process):
"""
To parallel process a generic queue containing inputs given the provided function
"""
def __init__(self,queue_in,queue_out,function):

self.__queue_in = queue_in
self.__queue_out = queue_out
self.function = function
_mp.Process.__init__(self)

def run(self):
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while 1:
#Check the queue
item = self.__queue_in.get()

#If the queue is done
if item is None:

#add a None to watcher queue so it knows this is done.
self.__queue_out.put(item)
break

#Calculate the function of the item from the input queue and pass it to the watcher
queue↪→

self.__queue_out.put([item[0],self.function(item[1])])

class _watcher(_mp.Process):
"""
This allows the queue used to parallel process to be observed in real-time
"""
def __init__(self,queue_in,queue_out,numworkers,numjobs,batchnum = None):

self.__queue_out = queue_out
self.__queue_in = queue_in
self.numworkers = numworkers
self.numjobs = numjobs
self.batchnum = batchnum
_mp.Process.__init__(self)

def run(self):
pillcount = 0
self.resultcount = 0

#Initialze the progress bar
if self.batchnum is None:

message = "Processing"
else:

message = "Batch "+str(self.batchnum+1)
bar = _sb.percent(self.numjobs,message=message)

while pillcount < self.numworkers:
item = self.__queue_in.get()
#If a worker is completely done
if item is None:

pillcount += 1
#If the worker provided a result
else:

#Return the result to be processed by something else
self.__queue_out.put(item)
self.resultcount += 1
#Update the progress bar
bar.next()

def embarrassingly(function, item_list,nproc=_mp.cpu_count(), batchsize=None,timer=True):
’’’
Embarrassingly parallel function wrapper using python’s multiprocessing.
Inputs:

* function - A function that acts on the elements in item_list and
returns either a value or a class or something.
* item_list - A list containing the argument/sets of arguments to be
embarrassingly parallelly calculated by function e.g. [[.17, ’b’], [.42, ’a’], ...]
* nproc - Number of processors to use. It is capped to cpu count.
* batchsize - Approximate number of items from the list to calculate
before reinitializing everything. Multiprocessing can sometimes eat too
much memory if using classes for the calculation and it might freeze.
If None, no batches will be used.
* timer - If True, the total time the calculation took will be printed
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at the end.
Output:

* results - A list where each element corresponds to the output of the
corresponding item in item_list when acted on by function.

’’’

nproc = check_cpu(nproc)
t0 = _time()

listsize = len(item_list)
results = [None]*listsize

if not batchsize is None:
while batchsize % nproc != 0:

batchsize -= 1
batch_num = int((listsize-1)/batchsize) + 1
batches = range(batch_num)

else:
batch_num = 1
batches = [None]

for batch_index in batches:
proc_list = item_list[batch_index::batch_num]
#Setup the queues for the multiprocessing workers
queue_work = _mp.Queue(nproc)
queue_out = _mp.Queue()
queue_results = _mp.Queue()

#Start the multiprocessing workers and the watcher
workers = []
for _ in range(nproc):

worker = _worker(queue_work,queue_out,function)
worker.start()
workers.append(worker)

watcher = _watcher(queue_out,queue_results,nproc,len(proc_list),batch_index)
watcher.start()

#Begin by sending the traces to the queue
idcounter = 0
for item in proc_list:

queue_work.put([idcounter,item])
idcounter += 1

#Add Poison Pills to the queue so that the workers know when they’re done.
for _ in workers:

queue_work.put(None)

#Wait for the calculations to finish
for worker in workers:

worker.join()

#Collect the results from this batch
batch_results = [None]*len(proc_list)
for _ in range(len(proc_list)):

y = queue_results.get()
batch_results[y[0]] = y[1]

results[batch_index::batch_num] = batch_results
watcher.join()

t1 = _time()
if timer:

print "Time: ",t1 - t0,"\n"
return results
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class _testclass:
def __init__(self,x):

self.x = x
def flip(self):

self.x = -self.x

def test(nproc):
def function_regular(c):

return -c
def function_class(c):

c.flip()
return c

regular_list = range(1000)
class_list = []
for n in range(len(regular_list)):

class_list.append(_testclass(n))

print "Function Approach Test"
results_regular = embarrassingly(function_regular,regular_list,nproc = nproc,batchsize=None)
print "Class Approach Test"
results_class = embarrassingly(function_class,class_list,nproc = nproc,batchsize=200)

correct_regular = 0
correct_class = 0
for i in range(len(results_class)):

if results_class[i].x == - class_list[i].x:
correct_class += 1

if results_regular[i] == - regular_list[i]:
correct_regular += 1

print "Regular: ",correct_regular,"/",len(regular_list)
print "Classes: ",correct_class,"/",len(class_list)
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