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ABSTRACT 

Systematic elucidation of transcriptional network necessary for initiation and  

maintenance of high-risk neuroblastoma 

Presha Rajbhandari 

 

Neuroblastoma is a heterogeneous pediatric malignancy originating from the developing sympathetic 

nervous system, with poor long-term survival for high-risk patients (~40%). About half of advanced 

neuroblastomas harbor high-level amplification of the MYCN gene, and these tumors show few, if any, 

additional driver lesions. Despite significant increase in the body of knowledge of genetics in 

neuroblastoma, all the high-risk patients follow similar therapeutic procedures and little advancement has 

been made on molecular target based therapies. The major challenge is to dissect the complexity and 

heterogeneity of these tumors to find driver genes and activated pathways that are essential for the 

survival of these cancer cells.  

 

We used an integrated systems biology approach to define the core regulatory machinery responsible for 

maintenance of an aggressive neuroblastoma phenotypic state. In the first part of the thesis, I will discuss 

our computational approach to decipher the tumor heterogeneity by subtype classification, followed by 

identification of master regulator protein modules for three distinct molecular subtypes of high-risk 

neuroblastomas, which were validated in a large independent cohort of cases. We propose that such 

modules are responsible for integrating the effect of mutations in upstream pathways and for regulating 

the genetic programs and pathways necessary for tumor state implementation and maintenance. 

 

The second part of the thesis is focused on experimental validation of putative master regulators in the 

subtype of neuroblastomas associated with MYCN amplification. By using RNAi screening followed by 

experimental and computational analyses to elucidate the interdependencies between the top master 

regulators, we identified TEAD4-MYCN positive feedback loop as a major tumor maintenance mechanism 

in this subtype. While MYCN regulates TEAD4 transcriptionally, TEAD4 regulates MYCN through 

transcriptional and post-translational mechanisms. Jointly, MYCN and TEAD4 regulate 90% of inferred 



 

 
 

MR proteins and causally orchestrate 70% of the subtype-specific gene expression signature. TEAD4 

gene expression was associated with neuroblastoma patient survival independently of age, tumor stage 

and MYCN status (P=2.1e-02). In cellular assays, MYCN promoted growth and repressed differentiation, 

while TEAD4 activated proliferation and DNA damage repair programs, the signature hallmarks of MYCN-

amplified neuroblastoma cells. Specifically, TEAD4 was shown to induce MYCN-independent proliferation 

by transactivating key genes implicated in high-risk neuroblastoma pathogenesis, including cyclin-

dependent kinases, cyclins, E2Fs, DNA replication factors, checkpoint kinases and ubiquitin ligases. The 

critical role of the core master regulator module in controlling tumor cell viability, both in vitro and in vivo, 

and its clinical relevance as a prognostic factor highlights TEAD4 as a novel and highly effective 

candidate target for therapeutic intervention.  

 

In this thesis, we demonstrate that interrogation of tumor specific regulatory networks with patient-derived 

gene expression signatures can effectively elucidate molecular subtypes as well as the core 

transcriptional machinery driving subtype specific hallmarks. This approach enables identification of 

oncogenic and non-oncogenic dependencies of high-risk neuroblastoma and is applicable to other tumor 

subtypes.
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Chapter 1 
  
Introduction 

 

Neuroblastoma (NBL) is the most common extracranial solid tumor in children. It remains a challenging 

malignancy because of its remarkably heterogeneous clinical behavior, ranging from spontaneous 

maturation and regression to aggressive clinical phenotype (Brodeur and Nakagawara, 1992). Efforts 

have been made by various international groups for patient risk stratification at diagnosis, to direct 

appropriate treatment plan (Cohn et al., 2009a). Based on a few clinical and genetic markers with 

definitive prognostic impact, NBL patients have been categorized into low, intermediate and high-risk 

groups. Among these, more than 50% of the pediatric NBLs are defined as “high-risk”. Although 

substantial improvement has been made in treating the low and intermediate risk group of NBL patients, 

the outcome of high-risk clinical phenotype has improved only modestly. Despite intensive multimodal 

therapy, the five-year survival rate for these patients is still below 50% and the surviving patients often 

suffer from chronic side effects. This highlights the importance of finding specific and more effective 

approaches to treatment of high-risk NBL. Dissection of the molecular profiles of the high-risk NBL 

patients to understand the complexity and heterogeneity underlying the disease is the crucial first step 

towards this goal. 

 

With tremendous increase in our understanding of the pathogenesis of cancers, it has become clear 

that the cancer cells possess the core hallmark capabilities including programs deregulating 

proliferation, evasion of cell death, cellular metabolism as well as inducing genome instability, 

metastasis and angiogenesis (Hanahan and Weinberg, 2011a). Decades of studies in various cancers 

have shown that the cancer cells harbor numerous genetic and epigenetic alterations including gain of 

function mutation, amplification, translocation or overexpression of oncogenes, and/or loss of function 

mutation, deletion or epigenetic silencing of tumor suppressors, allowing the cells to undergo malignant 

transformation and/or maintenance of tumor state. 
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In an effort to identify these key genes inducing the tumor specific hallmarks, novel technologies have 

fueled the generation of extensive multi-dimensional datasets characterizing genomic, transcriptomic, 

epigenetic and proteomic properties of different tissue types, in the past 15 years. Major initiative by 

several groups like The Cancer Genome Atlas (TCGA) Research Network, International network of 

cancer genome projects (ICGC) (International Cancer Genome Consortium et al., 2010) and Cancer 

Genome Characterization Initiative (CGCI) have produced massive comprehensive datasets from large 

cohort of cancer patients in different tumor types. Similar efforts in the field of NBL has been done by 

Therapeutically Applicable Research to Generate Effective Treatments (TARGET), Neuroblastoma 

Research Consortium (NRC) and other international cohorts, to identify the therapeutic targets and 

prognostic biomarkers in NBL patients — with the ultimate aim to develop more effective and 

molecularly targeted therapies. Such data not only provides the knowledge base, but also provides an 

opportunity to interrogate the profiles to understand the molecular basis of cancers. Despite the wealth 

of information, the major challenge has been to develop strategies to dissect the insurmountable 

complexity within tumors to uncover the molecular underpinnings of the disease.  

 

With increasing understanding of the complexity of biological systems and the technological capabilities 

to collect vast amount of information from normal and disease states, systems biology came as a 

necessary shift from the reductionist approach, which allowed us to view the biological system from a 

different lens, at different levels and from different perspectives. The landscape of computational 

approaches to identify driver genes of a phenotype has evolved concurrently with the availability of the 

high-throughput “omics” measurements. The main approach used in the field is to identify the somatic 

alterations of genomic information associated with the disease. Besides the already known activating 

mutations in oncogenes such as RAS, PI3K, and deactivating mutations in tumor suppressors such as 

PTEN, BRCA1 and p53, these sequencing efforts have shown that sporadic cancers have very low rate 

of recurrent mutations (Greenman et al., 2007; Lawrence et al., 2013; Tamborero et al., 2013). This 

stands true for pediatric cancers like NBL, where ALK is the only known gene with significant frequency 

of somatic and familial mutation (Chen et al., 2008; Janoueix-Lerosey et al., 2008a; Mossé et al., 2008; 

Pugh et al., 2013). On the other hand, many cancers including NBL are marked by chromosomal 

http://ocg.cancer.gov/programs/cgci
http://ocg.cancer.gov/programs/cgci
http://ocg.cancer.gov/programs/target
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instability (CIN), resulting into changes in the copy number of massive number of genes, which could 

affect the cell by changing the dosage of the genes in the altered regions (Łastowska et al., 2002), 

imbalance of components of protein complexes affecting the expression or stability of other proteins, to 

alter the balance of growth and survival signals in the cells (Torres et al., 2007). Identification of genes 

within these large regions of chromosomal alterations remains a challenge.  

 

While the DNA sequencing efforts will undoubtedly yield new information to identify novel driver 

mutations, rare mutant subpopulations, biomarkers and improved patient stratification, one of the 

limitations is that it will not lead to discovery of genes and pathways that are not altered at the genetic 

level. The cancers containing these multiple genetic and epigenetic abnormalities depend on oncogene 

(Weinstein and Joe, 2006) or non-oncogene (Luo et al., 2009a) mediated maintenance of tumor 

phenotype, comprising a vast landscape of tumor dependencies. Furthermore, it is not an easy task to 

integrate the information from all these regulatory levels to derive a single mechanistic model of the 

system. However, all these alterations manifest its effect by mediating differential expression of their 

effector genes, the confluence of which can be captured by its dynamic transcriptome landscape.  

 

Several studies have shown that the classification of patients based on gene expression pattern is a 

powerful approach to stratify the tumors into molecularly homogeneous subgroups (Alizadeh et al., 

2000; Cancer Genome Atlas Network, 2012; Cristescu et al., 2015; Golub et al., 1999; Phillips et al., 

2006; van ’t Veer et al., 2002). These subgroups are useful to understand the inherent biology of tumors 

as it provides us with a list of effector genes that can be interrogated to infer the drivers and the 

corresponding pathways driving these subgroups. The knowledge of transcriptional regulators residing 

over such transcriptional states, as read by gene expression signature (GES) would allow us to 

determine the driving mechanisms of malignant transformation. 

 

Thus, following on recent results from assembly and interrogation of regulatory networks from our 

laboratory (Califano et al., 2012), we focused on more universal tumor dependencies – that are 

relatively independent of the specific genetic alteration landscape of tumors, with similar transcriptional 



 

 
 

4 

profiles. This was accomplished using the Master Regulator Inference algorithm (MARINa) (Aytes et al., 

2014; Carro et al., 2010; Lefebvre et al., 2010) and its extension to the analysis of individual gene 

expression profiles, which we will call VIPER (Virtual Proteomics by Enriched Regulon analysis) 

(Alvarez et al., manuscript in press). MARINa and VIPER interrogate regulatory models (reverse-

engineered de novo from experimental data) to identify transcriptional regulators called master regulator 

(MR) proteins that causally implement the transcriptional signature representative of a subtype- or 

sample-specific tumor state (Aytes et al., 2014; Bisikirska et al., 2015; Carro et al., 2010; Lefebvre et al., 

2010; Rodriguez-Barrueco et al., 2015). Critically, our lab has shown that MR proteins are 

mechanistically responsible for integrating the effect of multiple genetic alterations in upstream 

pathways to implement the associated tumor phenotype (Chen et al., 2014; Compagno et al., 2009). 

Interestingly, transcriptome based analysis in NBL are focused more on risk classification (Abel et al., 

2011; Asgharzadeh et al., 2006; Oberthuer et al., 2015; Valentijn et al., 2012), and the stratification of 

high-risk NBL molecular subtypes are lacking. We propose that the MR modules are highly enriched in 

both essential and synthetic lethal genes, which represent Achilles’s heels of cancer that are more 

generalizable than the diverse repertoire of upstream genetic alterations responsible for their aberrant 

activity. 

 

Overall, this thesis aims to (1) dissect the heterogeneity of high-risk NBL GEPs to classify them into 

homogeneous group of tumors (2) predict the MR inducing the GES of each subgroup (3) functionally 

validate the putative MRs of a subtype. The analysis proceeds in seven steps- Step 1: We analyze 

large-scale gene expression profiles of high-risk NBL patients and categorized them into clinically 

and/or biologically distinct/relevant molecular subtypes. Step 2: We analyze gene expression profile 

data to reverse-engineer NBL transcriptional networks or interactomes (NBi), using the Algorithm for the 

Reconstruction of Accurate Cellular Networks (ARACNe) (Margolin et al., 2006). Step 3: To infer MR 

proteins of individual molecular subtypes, we generate subtype specific differential expression 

signatures by comparing samples representing high-risk molecular subtypes to samples in the low-risk 

set (control). To infer MR proteins of individual molecular subtypes, we generated TARGET- and NRC-

specific differential expression signatures by comparing samples representing high-risk molecular 
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subtypes to samples in the low-risk set (control). We then used the VIPER suite which incorporates an 

updated version of MARINa algorithm (msVIPER) to identify the MR proteins that causally regulate 

these signatures, based on their targets as represented in the cohort-matched interactome. Specifically, 

msVIPER prioritizes MR proteins based on the enrichment of their transcriptional targets (i.e., their 

interactome regulons) in genes differentially expressed in the gene expression signature of interest.   

Step 4: we performed an identical MR analysis, using VIPER, which works at the single sample level, for 

each of a set of 25 neuroblastoma cell lines suitable for experimental validation. Cell lines were 

matched to specific subtypes based on overlap of MR proteins. Step 5: We tested the top ranked MRs 

through a molecular screen, using complementary approaches and RNAi reagents, to mitigate false 

discovery resulting from off-target effects and technology specific biases Step 6: We experimentally 

tested the mutual regulatory activity of validated MR proteins to infer the connectivity of the hierarchical 

regulatory module they comprise. Finally, Step 7: We functionally characterized the regulatory feedback 

loop and mechanism responsible for maintaining the aberrant activity of the MR module characterized in 

Step 6 as well as its biological relevance. 

 

The knowledge of the drivers of tumor programs has been a major bottleneck in the molecularly 

targeted treatment of high-risk NBL. The potential role of the driver genes in promoting high-risk NBL 

will bring new insights into how these genes are controlling the cancerous state at the mechanistic level 

and lead to identification of therapeutic targets. Once validated, it can serve as a pipeline that can 

repeatedly be used to understand other tumor subtypes. 

 

This thesis is divided into seven chapters. Chapter 1 outlines the motivation, objective and significance 

of the thesis, brief overview of the research design and organization of this document. Chapter 2 gives 

an overview on current knowledge of neuroblastoma from developmental biology and functional 

genomics perspective. The current and prospective risk stratification strategies for NBL patients are also 

described. Chapter 3 introduces the computational approaches used for analysis of GEP data for 

pathway enrichment analysis, cluster analysis, transcriptional regulatory network inference and master 

regulator identification algorithms that are relevant for this thesis. Chapter 4 details the molecular 
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classification, biological characterization and master regulator identification of high-risk NBL subtypes. 

Chapter 5 details the experimental validation of predicted MRs of MYCNA subtype by in-vitro and in-vivo 

RNAi screening. It also shows experimental analyses performed to elucidate the modular logic 

controlling disease state and identification of TEAD4 as a novel MYCNA subtype specific master 

regulator. Chapter 7 shows the conclusion, contribution of the thesis and future directions.   
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Chapter 2  
 
Neuroblastoma 

 

Neuroblastoma (NBL) is the most common extracranial solid tumor of childhood, accounting for 8-10% 

of all childhood cancers and 15% of childhood cancer related deaths (Maris, 2010). It generally occurs 

in infancy and early childhood, with the average age of diagnosis between one and two years and 

almost 90% of the cases below five years (Castleberry et al., 1997). NBL remains a challenging 

malignancy because of its remarkably heterogeneous presentation and has intrigued investigators for 

decades. For example, children with age below 18 months would undergo spontaneous regression, 

while older children with similar symptoms would display aggressive clinical phenotype (Brodeur and 

Nakagawara, 1992).  

 

Based on various genetic and clinical factors, NBL patients have been categorized into low, 

intermediate and high-risk groups. Among these, more than 50% of the pediatric NBLs are defined as 

high-risk. Although substantial improvement has been made in treating the low and intermediate risk 

group of NBL patients, the outcome of high-risk clinical phenotype has improved only modestly, with 5-

year survival between 40-50% (cancer.org). The surviving patients often suffer from complications of the 

intensive treatments that they receive. Despite reports showing improvements in outcome in recent 

randomized trials (Yu et al., 2010), a significant number of NBL patients still succumb to the disease. 

Moreover, limited understanding of underlying biology of this disease in children has resulted into 

therapies using non-specific and toxic agents designed in the first place for adults. A better 

understanding of the disease from the developmental and cancer biology perspective may offer new 

insights for targeted therapeutics as genes that control cell growth, differentiation and death during 

normal development have parallel functions in cancer. While there are a number of excellent reviews on 

NBL (Brodeur, 2003; Brodeur and Bagatell, 2014; Cheung and Dyer, 2013; Maris, 2010; Maris and 

Matthay, 1999a; Marshall et al., 2014; Yu et al., 2010), a brief summary of our current understanding of 

NBL from developmental and cancer genomics perspective as well as current risk-stratification 

strategies are detailed below. 
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2.1   Developmental biology of Neuroblastoma 
 

Many pediatric malignancies are embryonal in nature, where the defect in normal embryonic 

development processes such as terminal differentiation program; or reversion of the cells to pluripotent 

state could aid the initiation of these tumors (Diede, 2014). The biological phenomenon constituting the 

normal development is highly orchestrated, resulting into several differentiated cell types from a single 

pluripotent stem cell. NBL is an embryonic tumor of peripheral nervous system that are believed to 

originate from immature cells of neural crest origin (Hoehner et al., 1996) – neural crest is a multipotent 

embryonic structure that are present early during embryogenesis and gives rise to diverse cell types that 

form various components of sympathetic nervous system (SNS) including sympathetic ganglia, 

chromaffin cells of the adrenal medulla and paraganglia (Huber, 2006). NBLs originates mainly from 

adrenal medulla but can also develop in the nerve tissue in the neck, chest, abdomen and pelvis (Maris, 

2010). However, the exact mechanism of neuroblastoma formation remains unknown. Gene expression 

profiling studies indicate that NBLs have expression patterns similar to the SNS cells (De Preter et al., 

2006; Hoehner et al., 1996, 1998). It has been suggested that dysregulation of temporally and spatially 

regulated genes dictating migration, specification, divergence and maturation during normal 

development could cause defects in the differentiation and cell death mechanisms, hence leading to 

uncontrolled cell proliferation and resistance to cell death pathways to induce neuroblastoma tumor 

formation (Marshall et al., 2014).   

Several genes that play an important role in SNS development have been shown to be critical for NBL 

pathogenesis. For example, V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived 

Homolog (MYCN) expression is transiently high in early post-migratory neural crest to control migration 

and proliferation of the neural crest cells, and it is gradually reduced in maturing cells (Zimmerman et 

al., 1986). It has been shown in mice and zebrafish models that sustained overexpression of MYCN 

blocks development towards chromaffin cell fate and leads to neuroblastoma initiation (Hansford et al., 

2004; Weiss et al., 1997; Zhu et al., 2012). In a normal state, the sympathoadrenal cells would 

differentiate into sympathetic neurons and adrenal chromaffin cells (Huber, 2006). Similarly, Anaplastic 

Lymphoma Receptor Tyrosine Kinase (ALK) signaling has been shown to be essential for sympathetic 

neuron proliferation (Reiff et al., 2011). Somatic and germline activating mutation of ALK are present in 
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8-10% of NBL patients and stimulate proliferation of NBL cells (Janoueix-Lerosey et al., 2008b; Mosse 

et al., 2008). Introduction of ALK mutation into neural crest cells of mice is sufficient to induce 

neuroblastoma and it synergizes with MYCN to promote tumor formation in vivo (Heukamp et al., 2012; 

Schulte et al., 2013). Similarly, differentiation of SA cells are promoted by a network of transcription 

factors like mammalian achaete–scute homolog 1 (MASH-1), paired homeodomain protein 2A 

(PHOX2A) and 2B (PHOX2B), HAND2 and GATA 2/3 (Guillemot et al., 1993; Howard et al., 2000; Lim 

et al., 2000; Pattyn et al., 1999; Stanke et al., 1999). Heterozygous germline mutation of PHOX2B has 

been shown to be involved in initiation of NBL, especially in patients with disorders of the autonomic 

nervous system (Mosse et al., 2004). 

 

Similarly, neurotrophins like nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), 

neurotrophin-3 and neurotrophin-4 have been shown to be important in SNS development (Fagan et al., 

1996; Klein et al., 1993). They signal through two types of receptors: Trk receptor tyrosine kinases and 

p75 neurotrophin receptor, to regulate neural precursor cell fate, cell growth, survival and repair of SNS 

(Chao, 2003; Kaplan and Miller, 2000). In NBL tumors, expression of TRK receptor kinases, TRKA and 

TRKB are strong prognostic indicator, where low level of TRKA expression or high expression of TRKB 

is indicative of poor prognosis (Brodeur et al., 2009). In fact, tumors with high expression of TRKA 

expression has been shown to be more prone to cell death or differentiation depending on the presence 

or absence of NGF in their microenvironment (Brodeur and Bagatell, 2014; Maris and Matthay, 1999a). 

MYCN-amplified tumors, on the other hand, have very low expression of TRKA and high expression of 

TRKB to block neural differentiation (Brodeur, 2003). Thus, dysregulated expression of a number of key 

neurodevelopmental regulators could play an important role in neuroblastoma initiation. 

2.2   Genetics and molecular biology of neuroblastoma 
 

NBLs have very heterogeneous clinical presentation and efforts have been made to understand the 

biological basis behind it. Hereditary predisposition of NBL accounts for only 1-2% of NBL patients. 80% 

of these cases are caused by germline mutations in ALK (75%) (Mosse et al., 2008), and of PHOX2B 

(5%) (Bourdeaut et al., 2005; Mosse et al., 2004), to a lesser degree. It has been shown that similar to 
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other pediatric tumors, high-risk NBLs harbor very low frequency of recurrent somatic mutations (Pugh 

et al., 2013), making it challenging to classify patients based on DNA sequencing alone. The most 

frequent mutation is in ALK gene (9.2% of cases), followed by PTPN11 (2.9%), ATRX (2.5%), MYCN 

(1.7%) and NRAS (0.83%). Further studies have identified less frequent SNPs located at LMO1 (LIM 

domain only 1) (Wang et al., 2011), BARD1 (BRCA1 Associated RING Domain 1) (Capasso et al., 

2009), HACE1 (HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1) and LIN28B 

(Lin-28 Homolog B (C. Elegans)) (Diskin et al., 2012). This indicates that NBLs are likely driven by copy 

number alterations and other epigenetic alterations.  

 

Indeed, genomic instability (GI) is a hallmark of cancers including NBLs (Hanahan and Weinberg, 

2011b; Negrini et al., 2010). While most of the hereditary cancers are caused by germline mutations in 

the genes maintaining genomic integrity such as DNA damage sensing and repair genes, and mitotic 

checkpoint genes, the molecular basis of sporadic cancers remain unclear. Sequencing efforts in 

several sporadic cancers have failed to identify genes that are frequently mutated (Cahill et al., 1999; 

Wood et al., 2007). Consistently, mutation in these genes are a rare event in NBL (Pugh et al., 2013) 

except for mutations in BARD1 (BRCA1 Ring Domain 1) gene (Capasso et al., 2009). A form of GI, 

microsatellite instability (MIN), characterized by repeats of microsatellites (short repeated sequences of 

DNA), and reported to be caused by loss of function of DNA mismatch repair proteins, are rare in most 

cancers including NBLs (Hogarty et al., 1998; Martinsson et al., 1995; White et al., 1995).  

 

Instead, GI manifests as chromosomal instability (CIN) in most sporadic cancers including NBL, which 

involve loss or gain of parts or whole chromosomal fractions. NBL tumors harbor distinct types of 

chromosomal alteration reflecting the complex selection structure involved in escaping the cellular 

mechanisms protecting the genomic integrity and hence contributing towards accumulation of 

genotypes that favor tumor progression. While conventionally, cancer development has been shown to 

be a progressive phenomenon, with continuous acquisition of genetic alteration, each providing 

selective advantage and resulting into increasingly malignant phenotype (Stratton et al., 2009); recently, 

it has been shown that the genomic instability characterized by clustered rearrangements affecting one 
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or a few chromosomes happen in a single catastrophic event called chromothripsis (Greek: chromo 

stands for chromosome and thripsis means shattering into pieces) (Stephens et al., 2011). First, multiple 

rearrangements confined to a few chromosomes or parts of chromosomes are generated because of 

the DNA double strand breaks (DSB). This is followed by imperfect repair of DSBs by joining of the DNA 

fragments by the process of nonhomologous end-joining (NHEJ). Chromothripsis has been shown to 

occur in 18% of advanced stage NBL patients (Molenaar et al., 2012; Valentijn et al., 2015). 

 

Decades of work on these searches have identified several large-scale chromosomal imbalances and 

gene amplifications, which are associated with NBL pathogenesis. These genomic alterations could aid 

tumorigenesis through combinatorial effect of multiple genes lying in these regions. The copy number 

changes of genes mapped to the region of imbalance could alter its gene dosage, such as deletion of 

tumor suppressor genes or amplification of oncogenes. Furthermore, genes that are involved in 

activation or repression of genes mapped to other chromosomes, or whose alteration contributes to the 

imbalance of components of several protein complexes involved in different process could affect NBL 

pathogenesis. To ascertain the effect of copy number changes in these regions, global gene expression 

profiling studies have been conducted in parallel. Different groups have retrieved > 15% of the genes 

that map to these altered regions showing corresponding changes in gene expression (Janoueix-

Lerosey et al., 2004; Wang et al., 2006). Even when the altered regions in NBL are known, the 

challenge, also common to other tumor types is to separate the “driver” genes from the “passenger” 

genes. A few genes that have been identified in these regions will be discussed below. 

 

The common methods used to detect the chromosomal alterations that have been adapted to the 

microarray-based technology are Single nucleotide polymorphism (SNP) array and comparative 

genomic hybridization (CGH) arrays. SNPs are a variation at a single site of DNA, which can provide 

information on copy number changes as well as loss of heterozygosity (LOH). SNP arrays implement 25 

to 50-mer oligonucleotide probes to capture fragments of sample DNA. Hybridization intensities are 

assessed to infer copy number alterations, as the signal intensity is directly proportional to the amount 

of DNA in the sample. CGH is a cytogenetic technique based on the principle of competitive DNA 
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hybridization, where DNA from tumor and normal samples are labeled, hybridized to metaphase 

spreads and visualized under the microscope. It provides 5-10 megabase resolution. The 

implementation of CGH array is based on the same principle, but on an array based platform, where the 

sample and reference DNA are co-hybridized to long oligonucleotide sequence, hence providing higher 

resolution at the level of 5-10 kilobases of DNA to assess copy number alteration compared to 

reference (Pinkel et al., 1998). 

2.2.1   Genomic alterations in NBL 
 

The full spectrum of genomic alterations that have been observed in NBL has been thoroughly 

discussed in literature (Brodeur, 2003; Maris and Matthay, 1999a), and the most common aberrations 

are discussed below. 

2.2.1.1   DNA ploidy 

 
Aneuploidy or presence of abnormal number of chromosomes in a cell is a common feature of cancers. 

It is caused by abnormal mitosis, resulting into duplication or loss of chromosomes in the daughter cells 

(Griffiths et al., 2000). DNA ploidy is a means of measuring modal chromosomal content of a cell in 

terms of DNA index or content, with respect to normal diploid cells. In case of NBLs, the tumors have 

been classified into diploid (DNA index of 1), hyperdiploid (DNA index > 1), hypodiploid (DNA index <1). 

It has been shown that ploidy has prognostic significance only in younger patients, with it being highly 

predictive for patients below 1 year, some degree of significance for children between 1 and 2 years of 

age and not predictive for patients above 2 years old (Kaneko and Knudson, 2000). The patients with 

hyperdiploid and near triploid tumors have better prognosis and respond better to treatment than 

patients with diploid or tetraploid tumors (Look et al., 1984, 1991). This is most likely because 

hyperdiploid and near triploid tumors have whole chromosomal gains, whereas diploid and tetraploid 

tumors have segmental chromosomal alterations. Studies performed by Children’s Oncology Group 

(COG) showed that hyperdiploid and near triploid tumors were commonly found in infants, while diploid 

and tetraploid tumors are associated with high-risk disease markers like older age, metastatic disease, 
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MYCN-amplification, 1q deletion or 17q amplification, indicating that ploidy behaves as a surrogate 

marker for high-risk associated genetic alterations.  

2.2.1.2   Amplification of MYCN and 2p24 locus 
 

MYCN belongs to the MYC family of transcription factors and maps to the distal short arm of 

chromosome 2 (2p24). It was originally cloned in 1983 (Schwab et al., 1983) and since then several 

studies have confirmed the oncogenic role in NBL. DNA amplification of this region occurs in ~25% of 

NBL tumors, and was identified by cytogenetic analysis, indicated by double minute chromatin bodies 

(DMs) or homogenously staining regions (HSRs), resulting into 50 to 400 copies of genes per cell 

(Brodeur et al., 1984; Kohl et al., 1983; Schwab et al., 1984). While other genes from the locus could be 

co-amplified, with the amplicon size of 500-100kb, MYCN is the only gene that has shown to be 

consistently amplified and is believed to be the primary target of the amplification (Reiter and Brodeur, 

1996). MYCN amplification, indicated by more than 10 copies of MYCN, has been shown to be 

associated with aggressive and advanced disease state with poor prognosis, even in patients younger 

than one year old and in lower stage, low-risk patients (Brodeur et al., 1984; Seeger et al., 1985a). 

Hence, it is routinely used as a robust prognostic marker for patient evaluation.  

2.2.1.3   Gain of 17q arm 
 

Gain of 17q chromosomal arm is the most common genomic alteration in primary NBL tumors. 

Comparative genomic hybridization (CGH) assays showed that it occurs in about 50-75% of NBL cases 

(Bown et al., 1999; Plantaz et al., 1997). Gain of whole chromosome 17 also occurs but 17q gain with a 

minimal common region of 25 megabases (17q21-qter) is the most frequent event. Even though 17q 

gain can occur independently, unbalanced 1;17 translocation occurs frequently, resulting into loss of 1p 

arm and gain of 17q arm (Van Roy et al., 1994). While there could be many potential oncogenes in this 

region, survivin, an anti-apoptotic gene, has been proposed to be a candidate oncogene that could 

mediating the pathologic effect of 17q gain (Islam et al., 2000). Even though most of the advanced 

stage patients have 17q gain and this event is associated with 1p deletion and MYCN amplification, this 
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factor hasn’t been added to risk-classification yet. It has been reported that the patients with MYCNA or 

11q deletion with 17q gain have worse prognosis than patients without the 17q gain (Carén et al., 2010). 

2.2.1.4   Allelic loss of 1p arm 
 

Deletion of short arm of chromosome 1 (1p) in NBL was first reported by Brodeur et al. (Brodeur et al., 

1981), and occurs in about 35% of NBL patients ( Maris et al., 2001; White et al., 2001). This event has 

been shown to be associated with advanced stages of disease and MYCN-amplification. While not all 

MYCNA tumors have 1p deletion, all patients with 1p deletion have MYCNA indicating that 1p deletion 

precedes MYCNA (Brodeur, 2003). While the presence of both 1p deletion and MYCN amplification has 

been shown to be indicative of poor prognosis, its significance as an independent prognostic marker 

has been controversial (Attiyeh et al., 2005; Caron et al., 1996; Gehring et al., 1995; Maris et al., 2000). 

Several putative tumor suppressor genes maps to this region including, CHD5, CAMTA1, KIF1B, TP73, 

microRNA-34a. CHD5 (chromodomain helicase DNA binding domain 5) maps to 1p36.3 and is 

expressed in low level or absent in NBL cells with 1p deletion (Thompson et al., 2003). It is involved in 

chromatin remodeling and has been shown to have tumor suppressive effects by controlling 

proliferation, apoptosis and senescence via p19/p53 pathway (Bagchi et al., 2007) and also by 

controlling neuronal differentiation (Egan et al., 2013). CAMTA1 (calmodulin binding transcription 

activator 1) has been mapped to 1p36.3 and has been shown to mediate tumor suppressive effects by 

controlling cell growth and inducing cellular differentiation (Henrich et al., 2011). TP73 (tumor protein 73) 

also maps to this region and is considered to have a tumor suppressive role, where overexpression of 

p73 promotes cell cycle arrest and apoptosis (Kaghad et al., 1997). microRNA-34a is another tumor 

suppressor, the overexpression of which leads to dramatic inhibition of cell growth, partly because it 

represses the expression of BCL2 and MYCN (Cole et al., 2008). 

2.2.1.5   Allelic loss of 11q arm 

 

Many studies performing CGH analysis in NBL confirmed allelic loss of 11q in NBLs (Brodeur, 2003). It 

is found in 43% of NBL patients, is one of the most common deletions in NBL, where it starts between 

11q13.3-14.1 and extends to the telomere (Guo et al., 1999). This event has been shown to be 
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inversely correlated with MYCN amplification, and associated with event-free survival in patients lacking 

MYCN amplification. Because of its prognostic value, 11q-LOH has now been added to the current risk-

stratification strategy for NBL. Tumor suppressor genes in this region haven’t been identified yet. 

The pervasive genomic alterations in NBL as discussed above indicate a clear evidence for loss of 

control of genomic integrity. The recurrence of non-random alterations in specific chromosomal regions 

indicates that these aberrations provide selective advantage to the cells by overexpressing or 

repressing the genes that support malignant transformation. Whether these alterations are the 

consequence of tumor progression or drive tumor formation is still not fully understood. 

2.3   Neuroblastoma Staging and risk-classification 
 

NBL remains a challenging malignancy because of its remarkably heterogeneous clinical behavior, 

ranging from spontaneous maturation and regression to aggressive clinical phenotype (Yamamoto et 

al., 1998). There is a consensus in the field that the clinical behavior of NBL can be predicted based on 

different prognostic variables. Hence, major efforts have been made to classify the patients based on 

multiple clinical variables with prognostic significance to determine best treatment options. This has 

resulted into remarkably accurate system to perform risk classification, where stage of disease, age of 

the patient and MYCN-amplification status has been shown to be the most important clinical variable 

predicting outcome. 

 

In 1998, Children’s Oncology Group (COG) established risk-stratification system based on International 

Neuroblastoma Staging system (INSS) staging system, age at diagnosis (<365 days vs ≥365 days) 

(Breslow and McCann, 1971), histopathology (Joshi et al., 1992; Shimada et al., 1984), MYCN-

amplification status (more than 10 copies) (Brodeur et al., 1984; Seeger et al., 1985a) and DNA index 

(ploidy for patients below 18months) (Look et al., 1984) to classify patients into low-risk, intermediate-

risk and high-risk groups (Table 1). This classification system is still in use. While the molecular 

variables were discussed in the previous section, stratification of patients by stage and histopathology 

will be discussed below. 
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Stage of patients, an important variable defining prognosis, was developed by INSS in 1986 and revised 

in 1988 to classify patients at time of diagnosis based on the origin of tumor, its size and whether or not 

it has metastasized to other parts of the body, assessment of lymph node involvement and extent of 

surgical excision (Brodeur et al., 1988, 1993a). Stage I patients have completely resected tumors; Stage 

2A and 2B have localized tumors with partial resection and are subcategorized based on the amount of 

resection and whether it has spread to the nearby lymph nodes and local tissues; Stage 3 patients have 

partially resected tumors that have infiltrated across the midline; Stage 4 patients have metastatic 

disease where the tumor has spread to distant organs and lymph nodes; Stage 4S are unique in that 

even though these patients have metastatic disease, these tumors spontaneously regresses and the 

patients are below one year of age (Park et al., 2008). It has been postulated that the regression is a 

result of delayed cell death during the normal process of neural crest development (Brodeur and 

Bagatell, 2014; Pritchard and Hickman, 1994). 

 

To classify patients based on histology, the International Neuroblastoma Pathology Committee 

established a prognostically significant classification system, also called Shimada system, based on 

morphologic features of the neuroblastic tumors (NTs) (Shimada et al., 1999). NTs comprise of 

neuroblastoma, ganglioneuroblastoma and ganglioneuroma. The tumors are classified as favorable or 

unfavorable based on the degree of differentiation, mitosis-karyorrhexis index (MKI) and presence or 

absence of stroma. They are categorized into undifferentiated, poorly differentiated or differentiated 

tumors based on the degree of differentiated cells. Similarly, tumors are categorized as low, 

intermediate or high MKI. MKI is a count of mitotic and karyorrhectic cells based on a total count of 5000 

cells, where low MKI indicates <2%; intermediate indicates 2-4%; and high indicates >4% of mitotic and 

karyorrhectic cells. Similarly, based on the Schwannian stromal component of the tumor, they are 

categorized into neuroblastoma (Schwannian stroma-poor) ganglioneuroblastoma, intermixed 

(Schwannian stroma-rich), ganglioneuroma (Schwannian stroma-dominant), and ganglioneuroblastoma, 

nodular (composite, Schwannian stroma-rich/stroma dominant and stroma poor). While 

ganglioneuroblastoma, intermixed and ganglioneuroma have favorable histology, with 100% 5-year 
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overall survival; ganglioneuroblastoma, nodular have unfavorable histology with 59% 5-year overall 

survival (Shimada et al., 2001).  

 

 

Table 1- 1. Neuroblastoma risk stratification and risk based therapeutic approaches (Cheung and 

Dyer, 2013) 

 
The analyses of all the mentioned variables are used for risk-classification and appropriate treatment 

options. For low-risk patients above 12 months of age, surgical resection suffices; infants below 12 

months are under observation only; as these tumors almost always regresses. Intermediate-risk patients 

are treated with surgery and moderate intensity chemotherapy. Although substantial improvement has 

been made in treating the low and intermediate risk group of NBL patients (overall survival >90%), the 

outcome of high-risk clinical phenotype, which comprises >50% of NBLs, has improved only modestly, 

with 5-year survival between 40-50%. Survival rates for different risk groups are derived from the 

Surveillance, Epidemiology, and End Results databases (seer.cancer.gov). Treatment of high-risk group 

remains one of the greatest challenges and involves an intensive multimodal therapy. The modest 

increase in short-term survival is due to intensification of chemotherapy, which results into long-term 

residual disease and severe complications.  

 

In an effort to define a consensus pre-treatment risk-classification that could be applied internationally, 

International Neuroblastoma Risk Group (INRG) risk-classification system (Cohn et al., 2009b) was 

developed after analyzing data available from 8,800 patients in various cohorts worldwide. These 
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included data collected by COG (North America and Australia), the German Pediatric Oncology and 

Hematology Group (GPOH), the Japanese Advanced Neuroblastoma Study Group (JANB), the 

Japanese Infantile Neuroblastoma Co-operative Study Group (JINCS) and International Society of 

Pediatric Oncology Europe Neuroblastoma Group (SIOPEN) clinical trials. This classification is based 

on INRG Staging System (INRGSS) (Monclair et al., 2009), which considers radiographic characteristic 

of tumor unlike the surgical criteria used by INSS to stratify the stage based on clinical and image-

defined risk factors (IDRFs). The prognostic value of the IDRFs have been validated by independent 

studies (Cecchetto et al., 2005; Simon et al., 2008). The patients could be categorized as Stage L1, L2, 

M or MS where L1 are localized tumors without affecting vital organs; L2 are locoregional tumors with 

one or more IDRFs; M are metastatic; MS are metastatic in patients younger than 18 months. The COG 

stages can be translated into INRGSS staging system as follows: INSS 1  INRGSS L1; INSS 2 and 3 

 INRGSS L2; INSS 4  INRGSS M; and INSS 4S  INRGSS MS (Cohn et al., 2009b). Variables 

including INRGSS stage, age cutoff (18 months or 547 days) (London et al., 2005), histopathology, 

grade of tumor differentiation are used for INRG risk classification. Furthermore, the most significant 

prognostic NBL biomarkers including MYCN-amplification status (regardless of age and stage), 11q23 

allelic status (Attiyeh et al., 2005; Carén et al., 2010) and DNA index are also incorporated (Ambros et 

al., 2009). The patients could be categorized by 5-year event-free survival cutoffs into very low-risk 

(>85%), low-risk (>75 to ≤85%), intermediate-risk (≥50 to ≤75%) and high-risk (<50%) groups. This 

classification system may replace the COG system in near future as it becomes validated in cooperative 

clinical trials within United States and Europe (Cohn et al., 2009b). 

 

Even though the INRG risk-classification system is comprehensive by incorporating all the relevant 

clinical and molecular information available till date, it is widely acknowledged that the categories result 

from inherent differences in tumor biology and that the classification needs to be further refined as more 

information becomes available. With the advent of technologies to read the genomic and gene 

expression patterns, understanding of the underlying tumor biology of NBL is increasing. Several 

studies have confirmed that information on genome and transcriptome are predictive of patient outcome 

and could assist risk-stratification (Abel et al., 2011; Asgharzadeh et al., 2006; De Preter et al., 2010; 
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Garcia et al., 2012; Oberthuer et al., 2006; Ohira et al., 2005; Spitz et al., 2006; Stricker et al., 2014). 

However, the challenge is to validate these findings in clinical trials before it can be incorporated into the 

current risk prediction strategies. When verified, it has a potential for more effective molecular 

diagnostics to guide optimal therapeutic plan. With the increasing knowledge of molecular basis of NBL 

pathogenesis, these information are slowly being added to the current risk stratification strategies and 

will keep being updated as new information becomes available, to guide proper therapeutic plan.  
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Chapter 3 
 
Inference of gene networks from gene expression data 
 

3.1  Introduction 
 

The global pattern of gene expression reflects the biological state of the system, where genes with 

similar functions and within similar regulatory pathways are highly likely to be co-regulated and hence 

co-expressed. The availability of microarray and RNA-Sequencing technologies has made it possible to 

monitor the expression of tens of thousands of genes in parallel. With computational advances in the 

field of systems biology, understanding of the complexity underlying the biological processes became 

possible, at different levels of granularity. In this chapter, I will discuss the computational methods used 

in the field, that are relevant for this thesis. It will mainly focus on analysis of gene expression profiling 

data in the context of classification of heterogeneous tumor samples into homogeneous groups, 

pathway analysis approaches to understand the biology of the phenotype, reverse engineering 

approach to decipher the transcriptional network structure within the data and finally inference of causal 

transcription factors driving the phenotype. 

3.2  Clustering analyses 

 

Analysis of such gene expression data to identify the group of genes that have similar expression 

patterns is the first step towards classification of heterogeneous tumor samples. Dissection of such 

transcriptional profiles have proven useful for classification and prognosis of various tumors (Alizadeh et 

al., 2000; Cancer Genome Atlas Network, 2012; Golub et al., 1999; van ’t Veer et al., 2002). The 

molecular subclasses sharing intrinsic biological properties are discovered based on global gene 

expression pattern of each tumor by using various clustering methodologies with the objective of 

grouping the data based on the similarity of the samples over the whole set of variables (GEP) into a set 

of disjoint classes or clusters. It is an unsupervised learning approach, which attempts to identify the 

intrinsic structure within data and does not rely on training sets to classify the data and remains an 

important tool for class discovery. 
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A wide variety of clustering algorithms have been proposed to subgroup the GEPs. The GEPs consist of 

log transformed and normalized expression values that are measured across the full gene set 

represented in the microarray or RNA-sequencing data. Normalization account for variation between 

samples that could result from differing RNA amounts, handling and hybridization intensities etc. so that 

the clustering is performed on corrected values (Cheadle et al., 2003). In order to cluster the samples 

with similar GEP, these algorithms compute similarity or dissimilarity in gene expression patterns 

between each pair of samples to partition each sample into subsets (clusters). 

 

The most commonly used statistical analyses for defining measure of similarity between GEPs are 

correlation coefficient, euclidean distance or mutual information. Correlation is the similarity metric, 

where higher correlation denotes higher similarity on a set of two-dimensional (bivariate) data. 

Correlation coefficient (r) is used to measure the strength and direction of relationship between the 

paired data, where, -1 ≥ r ≤ 1. For example, Pearson’s correlation coefficient is a measure of the 

strength of linear relationship between the paired data. It assumes that the data is normally distributed 

and has a linear relationship. Spearman’s rank correlation is used when the above assumptions are not 

met and when the data hold monotonic relationship (dependent variable either never decreases or 

never increases when the independent variable is increasing). It is a measure of the strength of 

monotonic relationship between the paired data. Mutual information provides statistical dependencies 

between two variables and is capable of measuring non-linear and non-monotonic relationship. 

Euclidean distance, on the other hand, is dissimilarity metric, where longer distance denotes less 

similarity between samples.  

   

Once the proximity measurement is defined, either hierarchical or non-hierarchical clustering methods 

are applied. Hierarchical clustering attempts to merge smaller clusters into larger ones or split larger 

clusters into smaller ones in a successive manner. Hierarchical agglomerative clustering (Eisen et al., 

1998) is one of the most widely used methods in functional genomics where the merging of similar 

clusters can be visualized as dendograms (tree) with similar samples in the same subtrees. 

Agglomerative clustering is a bottom-up approach, where initially each sample is assigned to an 
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individual cluster and in each successive steps, similar clusters are merged together to form a 

dendogram, until all the elements belong to the same cluster. Even though it is a powerful method for 

class discovery, no criteria are defined to establish the number of clusters and cluster boundaries. Other 

clustering methods like self-organizing map (SOM) (Tamayo et al., 1999), K-means clustering (Kanungo 

et al., 2000) are partition-based in that the data is separated into a set of disjoint clusters. It provides 

some advantages by grouping data into a predefined number of non-overlapping clusters, where the 

samples are assigned to a cluster based on its similarity score. However, the number of clusters needs 

to be defined a priori.  

 

The limitation of clustering analyses is that there is no means of determining the confidence in the 

clusters number and cluster assignment obtained. The noise inherent to the gene expression profiling 

technologies, high dimensionality of the datasets and the biological nature of tumor type results into 

challenges in cluster analysis. A variety of measures have been suggested for validation of clustering 

results (Halkidi et al., 2001). Consensus clustering is one of the widely used algorithms, which 

calculates the frequency with which a pair of samples are clustered together in repeated rounds of 

clustering with a certain degree of permutation by gene or sample subsampling. It can be based on 

hierarchical or non-hierarchical clustering methods. The sample-to-sample similarity matrix derived for 

2-to-N number of clusters can be visualized to confirm the number of optimal clusters and the stability of 

the clusters. This algorithm provides an advantage in that a consensus is achieved by repeated rounds 

of subsampling and clustering rather than performing of single clustering run on the dataset 

(Bhattacharjee et al., 2001; Monti et al., 2003). The idea is that subsets of samples when repeatedly 

clustered into a certain number of clusters (2 to N) by sample subsampling or the subset of genes that 

repeatedly cluster together by gene subsampling provides higher degree of confidence in the results.  

 

One of the major problems in the field has been the lack of reproducibility of these clusters in samples 

that are independently obtained and analyzed. Thus, whenever possible, the clusters obtained from 

GEPs from one dataset should be assessed on similar samples in separate datasets to ensure validity 

of the data obtained. 
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3.3  Pathway enrichment analysis approaches  
 

As described above, genome-wide clustering of GEPs provides a list of genes that exhibit similar 

expression pattern and are highly likely to be involved in similar cellular processes. By finding groups of 

smaller sets of genes from the list that are involved in similar function based on our previous knowledge 

of biology are more informative to understand the biological system than probing individual genes. Gene 

set or pathway enrichment analysis allows us to study the statistical significance of gene sets from 

differential gene expression (DGE) signature to infer the biological processes or pathways inducing a 

phenotype. 

 

Pathway enrichment analyses help us understand the mechanism of a disease, effect of perturbation 

with drugs or gene manipulation, to name a few. The availability of a large number of knowledge bases 

aids this process. There are databases like Gene Ontology (GO) (Ashburner et al., 2000), which 

provides controlled vocabularies of gene products in terms of biological processes, cellular component 

and molecular functions. Here, the pathway refers to a list of genes associated with a GO term with no 

knowledge of the relationship between the genes. Other pathway analysis algorithms incorporate 

topology-based information to provide a graphical summary of interactions to identify categories 

including gene regulatory networks, metabolic networks and protein-protein interaction networks. Some 

of these databases include KEGG (Kanehisa and Goto, 2000), Reactome (Croft et al., 2014) and 

BioCarta (http://cgap.nci.nih.gov/Pathways/BioCarta_Pathways). All these knowledgebase provide a list 

of gene sets that could be tested on a dataset of interest to find enrichment for these processes by 

Overrepresentation analysis (ORA) or Quantitative Enrichment analysis (QEA), described below. 

Statistical significance of the findings is assessed using various methods, which are also briefly 

described. 

3.3.1  Overrepresentation Analysis 

 

Once a list of genes of interest is generated, the usual next step is to assess whether these genes have 

significant overlap with the genes mapped to known pathways such as GO biological terms, KEGG and 

Reactome pathway database. In other words, overrepresentation analysis (ORA) is a means of 
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analyzing a set of genes to assess whether they are over-represented in genes annotated to a known 

pathway/biological process compared to what would be expected by random chance (i.e, in a set of 

randomly collected equal-sized gene list annotated to the same pathway). Computation of P-value is 

used to assess the statistical significance of the finding, correcting for multiple testing. For ORA, it is a 

probability of finding x number of genes out of n number of genes annotated to a particular GO term 

compared to the proportion of the genes annotated to that GO term. It is usually done by Fisher’s exact 

test (FET), which is the most commonly used hypergeometric test. It is used when the data can be 

divided into 2X2 contingency table to divide the genes that are associated or not associated to a 

particular GO term, among the gene list of interest (i.e. differentially expressed genes) from all the 

genes in the reference list, and calculates the probability for non-random association. The closer the 

value is to zero, the greater the likelihood of the association being non-random. By convention, P-values 

less than 0.05 is an indication of statistical significance. The uncorrected p-value is often used when we 

are testing if a particular function is enriched in a set of genes. The corrected p-value, on the other 

hand, is used when we are trying to find all the significant pathways from a large set of pathways 

available from the databases.  

 

When performing a large number of tests, it needs to be corrected for multiple testing, because of the 

increase in Type I error (false positive). The multiple testing corrections adjust the statistical confidence 

based on the number of tests performed. A simple method is Bonferroni correction also called 

controlling for Family-wise Error rate (FWER), where, the corrected p-value = α / m, where α = original 

p-value and m = number of tests performed 

 

However, this is very stringent. Another commonly used method for multiple-testing correction which is 

less stringent than Bonferroni correction is Benjamini-Hochberg method to control for false discovery 

rate (FDR) (Benjamini and Hochberg, 1995). This method controls for the false discovery by calculating 

the threshold p-value that indicates the amount of false positives that can be maximally expected 

among the significant findings. The threshold p-value corresponds to the false discovery rate (FDR). For 

e.g., the corrected p-value of 0.05 indicates that while the function is still statistically significant, we are 
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accepting a maximum FDR of 5%. For m number of tests, the original p-values (α) are ranked from 

largest to the smallest and desired FDR is defined (e.g, 0.05). The corrected p-value (FDR) = α x (m-

rank+1) / m. The original p-value is considered significant if it is less than FDR, and the first p-value to 

pass this test would be the new p-value cutoff.  

 

A limitation of ORA approach is that it gives equal weight to all the genes and does not consider the 

magnitude of information contributed by each gene (e.g., the level of differential expression) and 

assumes that each gene contributes equally to the process. 

3.3.2  Quantitative enrichment analysis 
 

The shortcomings of the ORA are overcome by quantitative enrichment analysis (QEA). Gene set 

enrichment analysis (GSEA) (Subramanian et al., 2005) is one of the most commonly used QEA 

analysis, which determines whether a pre-specified set of genes (for example, KEGG pathway, GO 

terms) shows statistically significant enrichment among the top or the bottom (or both) of the ranked list 

of genes, or is randomly distributed. In most instances, the ranked list of genes contains the differential 

expression of the genes across two conditions and the gene set contains a specific signature of interest. 

It uses Kolmogorov-Smirnoff running sum statistic test to determine whether the gene set is 

overrepresented among the top and/or bottom of the ranked list. In brief, the test begins with the top-

ranking gene and if a gene in the gene set is encountered, the running sum increases. If it encounters a 

gene that is not in the gene set, then the running sum decreases. The final enrichment score (ES) 

represents the maximum running ES or the degree to which the gene set is overrepresented among the 

most differentially expressed genes. It is the maximum deviation from zero encountered in the K-S run, 

where the leading edge subset are the genes that are on the left (positive target enrichment) and right 

(negative target enrichment) of the gene with the maximum ES. 
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Figure 3- 1 

 

 

 

 

 

 

 

The statistical significance (p-value) of the ES is determined by permuting sample labels or genes when 

enough samples are not available and re-computing the ES for the gene set to generate a null 

distribution and comparing the actual ES score to the distribution of ES scores from the permuted data. 

Normalized enrichment score (NES) is used to normalize the ES to account for the gene set size. A 

positive NES means that the gene set is overrepresented at the top of the list (upregulated GES) and 

negative NES means that the gene set is overrepresented at the bottom of the list (downregulated 

GES). In both cases, an empirical p-value is calculated. The GSEA enrichment plot provides a highly 

visual representation of the gene set differential expression by showing whether or not the individual 

genes within the gene set appear among the most differentially expressed genes. Analogous to ORA 

approaches, GSEA can be run on collections of gene sets, in which case, FDR is calculated to control 

Figure 3- 2. An overview of GSEA.  

(A) Heatmap showing the gene list ranked by certain criteria such as the amount of differential 

expression between two phenotypes (B) Enrichment for the gene set of interest, S, is calculated by 

its running sum among the ranked gene list; ES denotes the maximum enrichment score and the 

genes to the left of these are the leading edge gene set (Subramanian et al., 2005). 
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for false positives to adjust for multiple hypothesis testing (Benjamini and Hochberg, 1995). Both ORA 

and QEA assumes that each gene is independent of each other.   

 

Single sample GSEA (Barbie et al., 2009a) is an extended form of GSEA, where the absolute 

enrichment of a gene set is evaluated on a single sample basis. The list of genes is ranked by absolute 

expression in the sample and is subsequently rank transformed. Then, GSEA is performed on any gene 

set of interest. It provides a way to assess the activity of a certain biological process within a sample. 

3.4  Transcriptional regulatory network discovery  
 

Transcriptional regulation plays a vital role in biological processes by specifically controlling the gene 

expression in response to particular biological signal. A transcriptional regulatory network refers to the 

regulatory interaction between the regulator or transcription factor (TF) and their target genes. These 

networks constitute a graph where nodes correspond to genes and the edges correspond to the 

interaction between the two. Understanding such regulatory architecture is crucial to elucidate cellular 

phenotypes of interest. These transcriptional networks are highly context dependent and hence these 

regulatory network need to be built for the specific cell type of interest (Basso et al., 2005). 

3.4.1  Reverse engineering algorithm- ARACNe  

 

Various network reconstruction methods have been proposed to retrieve the transcriptional interactions 

(Emmert-Streib et al., 2012). Direct experimental evidences confirming the targets of the TFs, for 

example, by chIP-Seq experiments enable genome-wide identification of protein-DNA interaction, which 

could then be used to build the network. However, to generate a comprehensive set of these 

experimentally validated protein-DNA interactions is expensive, labor intensive and is further limited by 

the availability of good antibodies to perform chromatin-immunoprecipitation. On the other hand, 

reconstruction of regulatory network based on GEP data is called reverse engineering or back 

engineering, where the information is extracted based on the observation of the behavior of its individual 

components. Since the abundance of TF protein is often not available, it is approximated by the 

statistical associations between their mRNA abundance levels. There are several algorithms to infer 
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these transcriptional interactions based on the statistical dependencies between random variables, 

which are discussed in detail in literature (Emmert-Streib et al., 2012; Gardner and Faith, 2005), and the 

ones used for our study are discussed below.  

 

ARACNe (Algorithm for the Reconstruction of Accurate Cellular Networks) is an information theoretic 

approach that allows reverse engineering of transcriptional network or direct physical transcriptional 

interaction between the transcription factors and their targets based on GEP datasets (Margolin et al., 

2006). It computes mutual information (MI), which is a probabilistic approach to measure the statistical 

dependency between two variables, in this case, between the TF and each gene available in the GEP. 

In order to establish statistical significance of the dependency between the two variables, a null 

distribution is built through gene/sample shuffling and an empirical p-value is calculated. Since ARACNe 

runs a combinatorial search (TFs by genes), multiple testing correction is needed, and a MI threshold is 

established according to corrected p-value (p-value <0.05; Bonferroni corrected for the number of tested 

pairs). The interactions below a MI threshold are excluded. Even though MI does not provide the 

directionality of the relationship, the non-TF is assumed to be the target of the TF. Additionally, MI does 

not establish whether an interaction is direct or mediated by intermediate nodes. In order to eliminate 

indirect interactions, ARACNe implements another information theoretic approach, Data Processing 

Inequality (DPI), which provides relation between MI values. This is performed on every possible gene-

triplets (three genes with mutual information >0), where the edge corresponding to the lowest mutual 

information is removed, hence resulting into final network representation. Also, in order to adjust for the 

noise coming from the microarray technology as well as error in MI estimation, it uses bootstrap 

sampling for network reconstruction. The bootstrap datasets are generated by randomly selecting the 

samples/GEPs with replacement from the original set. ARACNe is then applied on these datasets to 

generate separate bootstrap networks and the interactions that exist across significant number of these 

bootstrap networks are used to build a consensus network. This gives us the “regulon” or the set of 

genes that are under the control of each TF. These regulatory networks have been validated in several 

contexts (Basso et al., 2005; Carro et al., 2010). These networks are highly context specific as it 

depends on the expression and association of the TF and the target genes in the tissues tested.  
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3.4.2  Master Regulator analysis 
 

Cellular phenotypes are regulated by concerted effect of differentially expressed genes. Even though 

this list gives us a starting point to understand the biological system, the transcriptome landscape is very 

unstable as they are downstream of the complex network of regulatory cascades, hence carrying over 

the noise at each level of regulation. Moreover, the noise from the microarray technology also 

contributes towards the differential expression. The important question is to identify the TFs that control 

the GES of the phenotype of interest. While the TF activity sometimes correlates with its differential 

expression, it does not recapitulate the post-transcriptional, post-translational and cellular compartment 

localization information that affects its protein activity. Hence, instead of searching for TFs that are 

differentially expressed, identification of TFs that are causally responsible for inducing the GES are of 

more value. These functional TFs are called the master regulators (MRs), as they are necessary and 

sufficient to initiate or maintain a tumor state. MRs represent the regulatory bottlenecks by integrating 

the upstream signaling from the genetic/epigenetic code and signaling molecules. The pre-requisite for 

identification of these MRs is the need for reliable context specific genome-wide transcriptional 

regulatory map, as provided by ARACNe algorithm, described above. 

 

The algorithm developed in the lab, Master Regulator Inference algorithm (MARINA), identifies the 

transcription factors whose targets (based on ARACNe prediction) are enriched in the GES defined by 

the differentially expressed genes between two phenotypes of interest (Lefebvre et al., 2010). Firstly, 

statistical methods such as limma (Smyth, 2005) or student’s t-test are used to derive the differential 

gene expression (DGE) signature. Student’s t-test is a simple parametric statistical test used to derive 

the statistical significance of the differential expression between two groups by comparing the means of 

the two distributions. It assumes that the population is normally distributed and the variance between 

the two groups is equal, and the distribution assumption is often true for GEP datasets. Similarly, limma 

implements a number of statistical principles to first log2 transform the normalized counts, determine the 

weight of each gene by estimating the mean-variance relationship to fit the expression values of each 

gene into a linear model. Benjamini-Hochberg method is used for FDR estimation. Secondly, ARACNe 

is used to derive genome-wide TF-target interaction map. MARINa tests whether the change in the 
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activity of the TF leads to enrichment of its regulon in the DGE signature. The enrichment is evaluated 

by GSEA, for which, the GES is first ranked from the most downregulated to the most upregulated 

genes. Then GSEA is performed to simultaneously assess whether the positive and negative regulon 

are respectively enriched in the genes that are overexpressed or underexpressed in the GES, and the 

MRs are ranked by their p-value. 

 

Similarly, another algorithm developed recently, Virtual Proteomics by Enriched Regulon analysis 

(VIPER) (Alvarez et al., manuscript in review), exploits the same principle as MARINa and infers protein 

activity by systematically constructing and analyzing the activity of a TF based on the expression of the 

target genes (regulon) that are directly regulated by the TF. The algorithm uses a probabilistic 

framework to account for mode of regulation (i.e, if the target is activated or repressed by the 

TF), statistical confidence in regulator-target interactions, and target overlap between different TF 

regulators. It provides an enrichment analysis framework, supporting weighted contribution of each 

gene in the regulon. To ensure robustness and computational efficiency, mean of ranks of the regulon is 

used as test statistic and hence this method is called analytic Rank-based Enrichment Analysis (aREA). 

Therefore, the information from activated, repressed, and undetermined targets are integrated 

probabilistic weighting of individual genes and provides computationally efficient means of determining 

the activity of a TF. Differential protein activity is thus quantitated by VIPER as the normalized 

enrichment score (NES) computed by the aREA algorithm. It can perform TF activity analysis both for 

multiple samples (msVIPER), and on a sample by sample basis (VIPER), thus allowing analysis of 

relative activity of each protein in each sample compared to the rest of the samples. 
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Chapter 4 
 
Molecular classification and master regulator identification of high-risk 
neuroblastoma 
 

4.1  Background 
 

While significant improvements in outcome have been reported for low and intermediate-risk NBL 

patients, high-risk group of patients have proven refractory to the current treatment modalities. 

Understanding the disease at the molecular level will allow us to find targeted therapeutics, thus 

minimizing the side effects of current therapies for high-risk NBL. The major challenge is to dissect the 

complexity and heterogeneity of these tumor cells to find the driver genes and activated pathways that 

are essential for survival of these cells. Unlike other adult tumors, pediatric tumors generally have very 

low mutational burden, hence challenging the current therapeutic strategies to target tumors with 

specific oncogenic or tumor suppressive mutations (Maris, 2010; Pugh et al., 2013). 

 

NBLs commonly harbor structural variations affecting large portions of specific chromosomes and 

accumulation of copies of V-Myc Avian Myelocytomatosis Viral Oncogene Neuroblastoma Derived 

Homolog (MYCN) oncogene. These are highly recurrent events used in risk stratification strategies 

(Brodeur, 2003; Brodeur and Bagatell, 2014; Mosse et al., 2007; Schleiermacher et al., 2012). Structural 

variants are the basis of classification of NBLs into three subtypes- subtypes 1, 2 and 3. Subtype 1 

lacks segmental chromosomal alterations (SCA), expresses high level of TRKA and is associated with 

low-risk clinical phenotype. Subtypes 2 and 3 have unbalanced gain of 17q and overexpression of 

TRKB, and are associated with high-risk and poor prognosis. They harbor mutually exclusive segmental 

alterations; subtype 2 with segmental loss of chromosome 11q, 3p and 4p; and the more aggressive 

subtype 3, with deletion of chromosome 1p and MYCN amplification (Brodeur and Bagatell, 2014; Maris 

and Matthay, 1999a; Michels et al., 2007).  
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Despite significant increase in the body of knowledge of NBL genetics, all high-risk patients follow 

similar therapeutic procedures and little advancement has been made on molecular information based 

adaptive therapies. The clinical heterogeneity and the resulting subtypes in NBL is most likely the result 

of the genomic alterations and the associated regulatory bottlenecks that keeps the high-risk NBL cells 

in highly proliferative and undifferentiated state; the confluence of which can be captured by its dynamic 

transcriptome landscape. While most of the efforts in transcriptome based analyses are driven towards 

better risk classification of NBL (Abel et al., 2011; Asgharzadeh et al., 2006; Oberthuer et al., 2015; 

Figure 4- 1. Neuroblastoma subtypes by genomics 

The low risk patients (Type I) expressing TRKA gene are more likely to have whole chromosomal 

gains and can undergo differentiation or apoptosis depending on the presence or absence of NGF 

in their microenvironment. High-risk patients express TRKB and exhibit chromosomal instability. 

Most of these tumors have unbalanced gain of 17q chromosome and they can be further stratified 

into Type 2 tumors with 11q deletion and Type 3 tumors with MYCN amplification and 1p deletion 

(Maris JM and Matthay KK., 1999). 
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Valentijn et al., 2012), systematic investigation of gene expression patterns of high-risk NBL to identify 

the subtypes and transcriptional regulators inducing the signatures are lacking. Therefore, systems-level 

dissection of these MRs in high-risk NBL is essential for (a) understanding the mechanisms of tumor 

malignancy and (b) developing therapeutic agents that are specific for the patient subgroups. 

 

In recent years, several studies have shown that heterogeneous cancers can be clustered into distinct 

and homogeneous molecular subtypes based on genetic and gene expression profiling (Cancer 

Genome Atlas Network, 2012; Monti et al., 2005; Lapointe et al., 2004). This can be explained by the 

existence of transcriptional and post-transcriptional regulatory modules that integrate the aberrant 

signals from the upstream signaling molecules to drive gene expression of a particular subtype. We 

hypothesize that the signals transmitted by heterogeneous set of genetic and epigenetic alterations 

within the cancer cells convene on a few TFs or master regulators (MRs), which drive the gene 

expression of a particular subtype. Recent advances in systems biology approaches for assembly, 

interrogation and perturbation of these regulatory pathways has been shown to successfully identify the 

transcriptional modules driving normal and pathological phenotypes (Aytes et al., 2014; Carro et al., 

2010; Lefebvre et al., 2010). In this chapter, I will discuss how we analyzed the gene expression profiles 

(GEP) of high-risk NBL – to identify the molecular subtypes and the associated master regulator (MR) 

modules, constituting the natural Achilles’ heels for the high-risk subtypes.  

 

The computational analyses described in this chapter were performed by Dr. Gonzalo Lopez. 

4.2  Results 
 

In order to recapitulate the heterogeneity of high-risk NBL, we performed systematic dissection of high-

risk NBL gene expression profiles (GEPs) to identify the molecular subtypes and master regulators 

driving each subtype. Furthermore, we performed comprehensive analysis of the co-segregating clinical 

features as well as pathway enrichment analysis within each subtype.  
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Datasets  

Motivated by the need to understand the basics of high-risk NBL and facilitate discovery of molecular 

targets of therapeutic value, the NCI Therapeutically Applicable Research to Generate Effective 

Treatments (TARGET) initiative (http://target.cancer.gov), gathered a patient cohort enriched in high-risk 

advanced tumors as defined by COG. These are patients who have clinical stage 4 disease, with late 

onset (> 18 months) and/or harboring MYCN amplification. Relevant for this work, the TARGET dataset 

comprises 646 samples for which comprehensive clinical information is available, representing 577 

high-risk tumors and 65 low-risk tumors (Stage I). It comprises both gene expression profiles using 

Human Exon 1.0 ST array (n=249 of which n=219 are high risk tumor samples) paired with Illumina 

SNPs profiles (n=276, of which n=224 are high risk tumor samples). Tumor samples from low-risk, 

clinical stage 1 patients function as a control group. 

 

In another significant effort, the European group, Neuroblastoma Research Consortium (NRC) collected 

a large NBL patient cohort from all tumor stages, which were profiled to obtain gene expression profiles 

using Human Exon 1.0ST array (n= 279) and paired CGH arrays (n=219), also reported with clinical 

information. In order to maintain consistency for our computational analyses, we filtered the samples to 

include a total of 97 high-risk patients following TARGET high-risk criteria as determined by COG, with 

an additional 30 samples matched to TARGET low-risk samples, used as a control. The remaining 

samples, which couldn’t be classified into either high-risk or low-risk groups based on TARGET 

classification, were still used to create neuroblastoma interactome (NBi) and survival analyses but not 

for subtype and MR identification.  

 

The addition of stage 1 tumors to the analysis is fundamental, provided that normal tissue is not 

available. Nonetheless, we reason that this group of tumors conform an ideal reference subtype, 

presenting a differentiated phenotype, lack of segmental chromosomal alterations and overall good 

prognosis. This ultimately allowed us to obtain differential gene expression (DGE) profiles for each high-

risk subtype, representing individual prognostic/progression signatures. 
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4.2.1  Molecular classification of high-risk NBL 

We used the GEPs of high-risk NBLs from TARGET and NRC dataset for subtype identification. The 

relative expression for a gene in a sample is derived by z-score transformation. We performed 

unsupervised clustering by selecting ~2,500 genes with coefficient of variation >0.1, which represent 

genes with high variability in expression across samples, relative to the average expression for that 

gene. These genes were used to perform consensus clustering (Monti et al., 2003), separately on the 

two datasets (Figure 4-2).  
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Figure 4- 2. Clustering of high-risk NBL primary tumor GEPs from two patient cohort 

 

Unsupervised consensus clustering was applied on high-risk NBL affymetrix HuEx 1.0 ST 

microarray sample profiles. Optimal division with reproducibility across cohorts was assessed in 

three group clustering; Stage 1 samples were not included in the clustering analysis, also shown 

in the heatmaps. (A)(B) Gene level hierarchical clustering of expression Z scores for highly 

variable genes filtered by inter-quantile ratio (IQR 4th quantile) comprising 4331 genes from (A) 

TARGET and (B) NRC high risk cohort respectively. (C)(D) Spearman correlation matrices of (C) 

TARGET and (D) NRC cohorts respectively. 

  MES        11q-LOH  MYCNA ST1      MES    11q-LOH  MYCNA    ST1    

  MES        11q-LOH  MYCNA ST1      MES    11q-LOH  MYCNA    ST1    
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Consensus matrices were derived for 2-6 clusters and assessed for optimal cluster number and cluster 

stability. Our results showed that both datasets optimally clustered into three distinct subgroups (Figure 

4-2). In order to assess cluster reproducibility, we studied across-dataset similarities of their GES by 

performing 1:1 correspondence analysis between TARGET and NRC GEPs. There was a striking 

overlap in the subtypes in both datasets (Figure 4-3).  

Figure 4- 3. Implementation of unsupervised consensus clustering of high-risk NBL GEPs 

to establish molecular subtypes. 

Three subgroups were identified according to robustness of clustering and consistency between 

two cohorts (TARGET and NRC). Cluster validity was measured by correlation between the GEPs 

from TARGET (x-axis) and NRC (y-axis) cohort on a sample-by-sample basis. 
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Figure 4- 4. Segmental chromosomal alterations in high-risk NBL subtypes. 

 

Copy number frequency per genomic location (integrated from both TARGET and NRC data) of 

individual molecular subtypes showing segregated pattern of 11q, 3p and 1p loss. The data 

represents the log ratio of the quantity of DNA in the sample versus the normal control. The 

normal copy number where the sample has copy number equal to that of normal control equals 0. 

The measurements of copy number greater than 0 represent gain of copy number and less than 

0 represents loss of copy number with equal number. Copy number gains are considered when 

the log2 ratio between tumor and blood > 1.1 while losses are considered for log2 ratios < 0.9. In 

order to compute copy number frequencies for large segments (Figure S1G, S1H), we obtained 

the average log2 ratio for genes mapping to each segment and 0.9 (loss) and 1.1 (gain) cutoffs 

apply. 
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As segmental chromosomal alterations are characteristic of NBL tumors, we assessed if the clusters co-

classify with the overall frequencies of copy number alterations in these patients. For this, we analyzed 

the overlap of copy number profiles derived from SNP arrays (TARGET) and CGH arrays (NRC) with 

their respective GEPs. Copy number gain and losses are first assessed in the individual samples and 

the frequency of copy number alteration of each gene across the samples within each subtype (Figure 

4-3), is averaged to derive the relative frequency of the alterations across the genome (Figure 4-4). We 

observed unbalanced loss of 1p, 3p and 11q and unbalanced gains of 1p, 2p and 17q chromosomal 

arms, as previously reported (Brodeur and Bagatell, 2014; Maris and Matthay, 1999b). The copy 

number variations differed significantly between the subtypes and clustered into specific regions, hence 

resulting into recurrent chromosomal imbalances. As previously described, all high-risk NBLs displayed 

unbalanced gain of 17q arm, with 11q-LOH subtype showing higher dosage compared to the other 

subtypes.  

 

One cluster co-segregated with MYCN amplification status and hence will be referred as MYCN-

amplified (MYCNA) subtype (Figure 4-3, 4-4). It comprised 78% and 83% of the subtype specific tumors 

in TARGET and NRC, respectively. As previously reported, these samples exhibit partial amplification of 

2p arm (where MYCN gene resides) and 1p deletion (Brodeur, 2003). This subtype comprises mostly of 

MYCN-amplified tumors. However, MYCN and MYC overexpression have been reported to 

transcriptionally regulate similar set of target genes by binding to E-box sequence (CACGTG) in the 

target gene promoter (Valentijn et al., 2012). It has been reported that in NBLs, expression of MYCN 

and MYC expression are mutually exclusive by binding to the promoter of each other and repressing it 

(Breit and Schwab, 1989). A few samples with overexpression of MYC co-classifies into MYCNA 

subtype. Similarly, the activity of MYC/N is highest in MYCNA subtype tumors (Figure 4-5).  
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Similarly, the second cluster with 90% prevalence of loss of Chr. 11 long arm (10% LOH cutoff), could 

be segregated by Chr11q loss of heterozygosity (LOH) and hence is referred as Chr11q-LOH (11q-

LOH) subtype (Figure 4-3, 4-4).  As reported previously, this alteration co-exist with 3p deletion (Brodeur 

and Bagatell, 2014).  

 

Interestingly, we also recovered a third subtype that is not defined by any marked genomic alteration. 

We refer this subgroup as Mesenchymal (MES) subtype, the details of which will be presented below. 

Figure 4- 5. MYCN and MYC expression and MYC/MYCN activity in NBL subtypes.  

(A) TARGET and (B) NRC samples show negative Pearson’s correlation (showed in text in the 

upper left plot area) of MYCN versus MYC expression.  MYC/N activity is expressed in blue to red 

colors; activity was measured as the single sample normalized enrichment score (NES) of a MYCN 

functional signature (Valentijn et al., PNAS, 2012) using GSEA after rank transformation of the gene 

expression signatures. 

B 

Pearson’s correlation 
cor = -0.41; P = 1.1e-12 

A 

Pearson’s correlation 
cor = -0.44; P = 2.9e-13 
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4.2.1.1  Activated and deactivated pathways in distinct molecular subtypes 

 
The differential expression of genes in the subtypes and the genomic alterations associated with it 

suggests differential activity of biological processes in these subtypes. The availability of a large number 

of knowledge base driven pathway analysis methods facilitate this process. We evaluated the DGE 

signature between each subtype compared to Stage I subgroup by two methods: Gene Ontology (GO) 

biological processes terms and REACTOME biological pathway enrichment analysis. This was 

performed by GSEA analysis on the gene sets for all the GO and REACTOME categories within the 

subtype specific GES, and corrected for multiple testing via FDR estimation (Figure 4-6).  

 

MYCN-amplified subtype: Both REACTOME and GO analyses revealed that this subtype was 

characterized by activation of cell cycle programs and DNA replication program indicating that these 

cells must have high proliferation rate to increase cell numbers. Similarly, RNA and protein metabolism 

programs were also activated to support the high cell growth rate of these cells (Figure 4-6). These two 

processes have been shown to be complementary and independent of each other (Dowling et al., 2010; 

Su and O’Farrell, 1998). This subtype also showed activation of DNA repair program and the interplay 

between DNA replication and repair programs has a significant impact on maintenance of genomic 

integrity (Lowndes and Murguia, 2000).  
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Figure 4- 6. Activated and repressed biological programs in the high-risk NBL subtypes.  

Gene set enrichment analysis was performed on REACTOME pathway and GO biological 

processes gene sets to find enriched pathways for the DGE signature of MYCNA, 11q-LOH and 

MES subtype. Differentially activated or repressed pathways are compared between subtypes. 

Axis represents –log10 of the p-value while retaining the directionality of the normalized 

enrichment score. The dashed line represent FDR cutoff of <0.05. 
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Similarly, this subtype was marked by repression of differentiation pathways, cell to cell communication 

and synapses, lipid metabolism and immune system pathways (Figure 4-6). The association of 

formation of synapses and neuronal differentiation is well known where the differentiating cells have 

neurite outgrowth to reach out to the neighboring cells. Also, lipids like cholesterol has been shown to 

be less abundant in undifferentiated compared to differentiated neuroblastoma cells (Gulaya et al., 

1989). And cholesterol has been shown to enhance the differentiation process in neuroblastoma cells 

(Sarkanen et al., 2007). Hence, all these repressed processes in MYCNA subtype seemed to be 

intertwined and cross-regulatory. 

 

Chr11q-LOH subtype: Similar to MYCNA subtype, this subtype showed activation of cell proliferation 

and cell growth programs and repression of differentiation programs. Overall, the pathway analysis 

pattern is very similar to that of MYCNA subtype (Spearman correlation = 0.79) (Figure 4-6), only 

differing in a stronger activation of immune related pathways possibly due to a more infiltrated histology, 

as discussed below. In order to assess whether the immune signal is represented by the entire samples 

within the subtype or is contributed by a subset of samples, we assessed the expression of the gene 

sets previously reported for markers of immune cells (Yoshihara et al., 2013). These gene sets were 

derived by identifying the genes that were upregulated in various types of immune cells when compared 

to their expression in normal tissues. This gene set was then crossed with the leukocyte methylation 

signature previously reported to correlate with leukocyte infiltration in ovarian cancer to find the 

overlapping genes to finally derive the immune signature (Carter et al., 2012). Indeed, we observed that 

subsets of the samples in this subtype were highly infiltrated by immune cells. In addition, these 

samples were also assessed for stromal infiltration. The stromal gene set were derived by comparing 

the paired tumor samples with its stromal component in breast, ovarian and colorectal cancer (Tothill et 

al., 2008). The tumor samples with immune infiltration also displayed stromal infiltration.  
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Figure 4- 7. Measure of immune and stromal infiltration in NBL subtypes.  

Estimation of tumor purity in terms of immune and stromal cell infiltration by using the algorithm 

ESTIMATE, where score of 1 corresponds to highest purity in (A) TARGET) and (B) NRC 

patient samples divided by subtypes. (C, D) Determination of immune score, stromal score and 

corresponding purity of the patient samples from (C) TARGET) and (D) NRC cohort. 
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The sample purity was further assessed by using ESTIMATE algorithm, which estimates the tumor 

purity based on enrichment of the immune and stromal signature in the individual samples (Figure 4-7-

A, B) (Yoshihara et al., 2013). We observed that 11q-LOH and MES subtype sample were highly 

infiltrated while, MYCNA subtype displayed high degree of purity (Figure 4-7-C, D). MYCN has also 

been shown to repress expression of CCL2, a chemokine required for natural killer cell chemoattraction 

(Song et al., 2007).   

 

Mesenchymal subtype: Unlike the other two subtypes, this subtype didn’t display hyper activation of 

proliferative and cell growth programs. However, this subtype also showed repression of differentiation 

programs indicating that all high-risk NBL tumors have undifferentiated programs. This subtype 

displayed activation of immune pathways more strongly than 11q-LOH subtype. Evaluation of tumor 

purity by immune and stromal signature as well as ESTIMATE score indicated that all the samples in 

this subtype were highly infiltrated (Figure 4-7). Recent studies showed that the MES subtype of gliomas 

have more infiltrating lymphocytes compared to the other subtypes and were more responsive to 

dendritic cell immunotherapy (Prins et al., 2011). Hence, we further evaluated whether this subtype 

exhibit mesenchymal GES. Indeed, this subtype presented a strong MES GES reported previously for 

glioma (Phillips et al., 2006) (Figure 4-8 A). In order to disentangle tumor specific signatures from those 

of tumor infiltrating components to confirm that the signal is intrinsic to neuroblastoma cells, we 

performed similar analysis in a panel of NBL cell lines. We studied whether the relevant signatures can 

be recapitulated in the NBL cell lines using co-expression analysis. Remarkably, while the expression of 

immune and stromal related signatures disappears in cell lines, the mesenchymal component remains 

intact, confirming that the MES signature is tumor cell autonomous (Figure 4-8 B). 
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Figure 4- 8. Mesenchymal gene expression signature in patient samples and cell lines.  

(A) Co-expression analysis of  molecular subtype segregating signatures in tumor patient samples 

show independent patterns of expression for cell cycle, mesenchymal and infiltrating signatures 

(immune and stroma) (B) Co-expression analysis in NB cell lines show orthogonal expression of 

cell cycle and mesenchymal genes and lack of co-expression of infiltrating signatures (C) single 

cell line GSEA analysis representing NES of mesenchymal and KEGG cell cycle signatures in the 

CHOP panel of 25 NB cell lines indicate negative correlation between mesenchymal and 

proliferative activities in cell lines (D) GSEA plot showing enrichment of MES-GES in a cell line 

representing MES subtype, SK-N-AS. 
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Similarly, single sample GSEA analysis performed on the cell lines indicated that the MES and 

proliferative signature were negatively correlated (Figure 4-8 C). The analysis identified SK-N-AS as the 

cell line with strongest enrichment for MES signature (NES = 4.54, p-value = 5.5e-6), compared to 

patient derived samples (Figure 4-8 D).  With all these evidences, we refer this subgroup as 

mesenchymal (MES) subtype (Figure 4-3, 4-7, 4-8).  

 

 

 

 

In summary, MYCNA and 11q-LOH subtype exhibited strong enrichment for proliferative programs 

based on GSEA analysis of cell cycle gene set from KEGG database, meta-PCNA signature, 

comprising a gene list set that is most positively correlated with the proliferation marker, PCNA (Venet et 

al., 2011). 11q-LOH and MES subtype displayed strong enrichment for stromal and immune signature 

(Yoshihara et al., 2013); and MES subtype displayed strong enrichment for mesenchymal signature 

defined for high-grade gliomas (Phillips et al., 2006) (Figure 4-9). 

4.2.1.2  Clinical features co-segregating with the subtypes 

 

The distinct molecular subtypes of high-risk NBL complemented with differential pathway activation 

indicate that this classification discriminates the underlying biology and has functional significance. In 

order to evaluate whether the pathways relevant for each subtype results into changes in phenotype, we 

evaluated the clinical profile of the patient samples in each of the subtypes we discovered. 

SUBTYPE

MYCN-amp status NA NA NA NA

MYCN-activity

C.CYCLE (KEGG)

meta-PCNA

Mesenchymal 

Stroma (ESTIMATE)

Immune (ESTIMATE)

Mesenchymal Chr11q loss MYCN amp Stage1

Figure 4- 9. Summary of activated biological programs in the high-risk NBL subtypes. 

GSEA enrichment analysis for gene sets defining proliferative, mesenchymal, immune and stromal 

infiltration programs were performed in the GES of MYCNA, 11q-LOH, MES and Stage I patient 

samples. Red color denotes activation and blue denotes repression of the respective programs. 
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We observed that the patients in all the three subtypes had poor outcome in both TARGET and NRC 

dataset based on Kaplan Meier curve analysis (Figure 4-10 A, F). This is consistent with poor prognosis 

reported for all high-risk group of NBL. All the subtypes had unfavorable histology based on Shimada 

index, which is a histopathological system used to classify neuroblastic tumors based on degree of 

differentiation of the tumor cells, presence of stromal cells and Mitosis karyorrhexis Index (MKI) index 

(Figure 4-10 B). All the subtypes showed undifferentiated phenotype (Figure 4-10 C), consistent with the 

pathway analysis showing that all the subtypes had downregulation of differentiation programs (Figure 

4-7). MYCNA, 11q-LOH and MES subtype, displayed highest frequency for high, intermediate and low 

MKI respectively (Figure 4-10 D). While the frequency of mitotic vs. karyorrhectic cells are not known, 

the MKI index has been shown to be highly correlated with mitotic index and hence is used to estimate 

the mitotic index that is used by Shimada classification (Joshi et al., 1996). Again, this profile correlates 

with the activation of proliferative pathways in these subtypes, with MYCNA and 11q-LOH subtype 

being more proliferative than MES subtype.  
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Figure 4- 10. Clinical significance of high risk molecular subtypes 

(A) Kaplan-Meier and survival analysis across high-risk subtypes shows borderline separation in 

TARGET dataset (logrank test, P~0.05). Co-segregation of histological variables assessed by 

frequency of (B) favorable and unfavorable histology (C) differentiation (D) and mitosis-

karyorrhexis index (MKI) (E) ganglioneuroblastoma samples (F) Kaplan-Meier and survival 

analysis across high-risk subtypes shows no separation in NRC dataset (G) Kmeans clusters of 

intermediate risk samples derived from high risk average signature centroids show separation in a 

Kaplan-Meier survival analysis (logrank test, P=0.013) 
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Lastly, neuroblastic tumors can be discriminated as neuroblastoma or ganglioneuroblastoma based on 

their histology (degree of neuroblastic maturation and presence of schwannian stromal component), 

which are derived from identical neoplastic cells that develop along different lineages. Evaluation of this 

parameter showed that MYCNA subtype comprised of only neuroblastoma tumors compared to higher 

frequency of ganglioneuroblastoma in Chr11q-LOH and MES subtype (Figure S2B). This partly explains 

the high rate of stromal infiltration in these two subtypes as ganglioneuroblastoma has been shown to 

be stroma-rich tumors comprising more than 50% schwannian stroma (Ambros et al., 2002).  

4.2.2  Master Regulator identification of high-risk NBL subtypes 
 

The gene expression profile and the associated biological pathways are driven by transcriptional 

regulatory module directly and indirectly controlling the expression of the genes driving the specific 

subtypes. Our approach follows a well-established pipeline for inference of regulatory modules involved 

in tumorigenesis and tumor progression from specific tumor types (Aytes et al., 2014; Carro et al., 2010; 

Lefebvre et al., 2010), using GEPs from tumor samples as an input. We run ARACNe and VIPER 

analysis independently on the TARGET and NRC cohorts, using cohort-specific subtype signatures and 

interactomes, followed by reproducibility assessment and result integration.  

 

To assemble NBL specific transcriptional interactome (NBi), we first ran ARACNe on primary NBL tumor 

GEPs independently on TARGET and NRC cohort samples. ARACNe is an information theoretic 

approach for identifying transcriptional interactions among genes based on their mutual information. We 

built NBi from TARGET and NRC dataset and retrieved 205,271 and 359,846 interactions respectively, 

with 81,035 common interactions (p-value=0, odds ratio = 65.02) (Figure 4-11 A). We then applied the 

novel algorithm msVIPER (Alvarez et al, in press) in order to retrieve candidate MRs for each high-risk 

subtypes using a group of stage 1 tumors as control; as a result, we produced two independent MR 

protein lists for each subtype. 
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This algorithm identifies the MRs based on the overlap of ARACNe predicted targets of a TF and DGE 

signature of each subtype using Stage I samples as a reference group. msVIPER inferred subtype 

specific MRs and computed enrichment scores for downstream targets of each transcriptional regulator 

in the NBi. Hence, each MR can be ranked by their p-value. msVIPER analysis of the two interactomes 

produced two independent MR lists for each subtype, showing striking cross-cohort reproducibility 

(Figure 4-11 B).  

Figure 4- 11. NBi ARACNe network and master regulator analysis reproducibility 

(A) Venn diagram representing overlap and the number of interactions inferred by ARACNe 

transcriptional networks produced from TARGET and NRC GEPs. The total number of putative 

interactions is estimated using the number of genes annotated as transcription factor and/or DNA 

binding from Gene ontology database (REF) multiplied by the total number of human genes 

(filtered by availability in the HumanExon mycroarray plattform). Fisher’s exact test to assess 

overlap between TARGET and NRC NBi transcriptional interactions represented as text. (B) 

Fisher’s exact test for the overlap of the top 50 predicted positive (red) and negative (blue) MRs 

across subtypes from TARGET and NRC datasets.  
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Since the cohorts produced highly congruent 

results in this analysis, we generated a final 

MR list by integrating the p-values from each 

independent analysis using FET (Fisher, 

1922) to obtain the final rankings (Figure 4-

12). Consistent with the subtype specific 

programs, we retrieved several MRs that 

were known to be positively associated with 

the phenotype. For MYCNA subtype, the 

MRs included MYCN, which is a well-known 

driver of this subtype, and also recovered 

many cell cycle related TFs like E2Fs, 

MYBL2 and HMGB2. Similarly, 11q-LOH 

subtype also shared some cell cycle related 

MRs with MYCNA subtype. Even though 

both subtypes have proliferative phenotype, 

they have common as well as distinct MRs 

driving the specific subtypes. As expected, 

the MES MRs were entirely different from 

the other two subtypes and we recovered the 

previously validated MRs of MES subtype of 

glioma including CEBPD, CEBPB, RUNX2, 

FOSL2 (Carro et al., 2010). 

 

 

 

Figure 4- 12. Master regulators representing the 

three subtypes of high-risk NBL.  

Heatmap of top activated MRs (red) of each subtype 

are represented using VIPER inference of TF activity 

using stage 1 samples as a control group. 
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4.4  Materials and Methods 

 
Patient Samples 

All samples profiles used in this analysis belong to primary tumors of NBL patients collected and 

organized by the TARGET. Data were generated using clinically annotated, matched tumor and normal 

samples obtained from patients enrolled in various Children's Oncology Group (COG) biology and 

clinical trials. The TARGET NBL cohort is composed mostly by high risk patients as defined by the 

Children's Oncology Group (COG). High risk tumors are those which present stage 4 based on the 

INSS (International NBL Staging System) in patients diagnosed after 18 months age. Also tumors 

harboring MYCN amplification diagnosed after 12 months are considered high risk. The TARGET cohort 

also integrates a group of low risk, INSS stage 1 tumors from patients diagnosed before 12 months age. 

 

NBL gene expression profiles 

The NBL primary tumor gene expression profile datasets used to define the subtypes and to assemble 

the transcriptional interactomes are organized by the TARGET (Therapeutically Applicable Research to 

Generate Effective Treatments) consortium and the NRC (Neuroblastoma Research Council) 

consortium. Profiles were obtained in both datasets using Affymetrix arrays Human Exon 1.0ST 

platform. Gene expression intensities were normalized using Robust Multi-array. Average implemented 

in the Affymetrix Power Tools suit using the “rma-sketch” option over the core probeset 

annotation.TARGET dataset comprises 249 GEPs from which 214 high risk and 24 are low risk. NRC 

dataset comprises 278 GEPs from 96 high risk tumors and 30 low risk tumors. 

 

Clustering analysis of high risk primary tumor samples 

We used ConsensusClusterPlus (Monti et al., 2003) R bioconductor package implementation of 

Consensus Clustering. This method provides quantitative evidences for determining the number and 

membership of possible clusters within a dataset, such as microarray gene expression. The algorithm 

implements several clustering algorithms and generates consensus for multiple resampling. First we 

collected genes with higher coefficient of variation (CV > 0.1), which represent genes with greater 

sample variability in each dataset (#TARGET = 3401; #NRC=2853) we selected those genes which 
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present in both lists (#common=2435). Consensus clustering was based on hierarchical clustering 

algorithm implemented in R “hclust” function where "ward.D" method was selected to segregate 

samples based on “Pearson” distance measures. Consensus clustering requires a predefined number 

of final clusters k; we ran the algorithm using k values 2 to 6.  

 

Analysis of segmental DNA copy number frequencies.  

SNP arrays where initially analyzed as described previously (Attiyeh et al., 2009) in order to obtain 

segmentation profiles corrected by aneuploidy and gene level copy number.  

 

Differential expression analysis and null distributions for tumor subtypes 

In order to calculate differential expressed genes in high risk tumor subtypes we calculated two sided 

Student's t-test comparisons for each high risk subtype versus a pool of stage 1 tumor GEPs. 

Additionally, we generated null models for each signature by sample permutation (i=1000) and t-test. 

These null models are required for the Master Regulator analysis msViper algorithm described below. 

 

Assembly of the NBL specific transcriptional interactome (NBLi) 

NBLi was assembled from NBL GEPs using ARACNe (Algorithm for the Reconstruction of Accurate 

Cellular Networks) an information theoretic algorithm (Margolin et al., 2006). ARACNe allows reverse 

engineering of transcriptional networks (i.e. TF-target interactions) from large GEP datasets. Inference 

of TF-target interactions is inferred using the significance of Mutual Information between TF genes 

(1800 transcriptional regulators defined by Gene Ontology annotation) and candidate target genes 

where the p-value cutoff is established empirically. In order to remove indirect interactions, ARACNe 

implements a Data Process Inequality (dpi) tolerance pruning system. ARACNe software is freely 

available for academic purposes at http://wiki.c2b2.columbia.edu/califanolab/index.php/Software. We 

ran 100 bootstrapped networks by resampling 80% samples every time and integrated the resulting 

networks into a consensus network. The probability of every edge in the network was corrected using 

Bonferroni multiple testing correction method and only the edges with p<0.5 after correction are 

http://wiki.c2b2.columbia.edu/califanolab/index.php/Software
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included in the final network. This process was used independently to obtain TARGET and NRC 

interactomes. 

 

Identification of Master regulators of high risk NBL subtypes 

msVIPER was used to interrogate the TARGET and NRC interactomes to obtain Master Regulators 

from each high risk subtype differential expression signature in both TARGET and NRC datasets 

independently. The results from both dataset were driven independently and return empirical p-values; 

therefore we can integrate the results using the Fisher’s method for the integration of probabilities which 

states that 𝑋2 ~  − 2 ∑ 𝑙𝑛 (𝑃𝑖)
𝑘

𝑖=0
. This approach returns an X2 statistic from which an analytical p-value 

can be obtained. Master Regulator Rank for both TARGET and NRC datasets as well as the integrated 

ranking from which the top 25 master regulators were selected for further experimental validation (Table 

S4). 

 

Gene set and pathway enrichment analysis  

We used gene set enrichment analysis (GSEA) in order to calculate differentially active pathways and 

gene sets across the relevant GES. We derived the gene sets for the biological processes from 

REACTOME and GO database. P-values were corrected by multiple testing using Benjamini and 

Hochberg method (Benjamini and Hochberg, 1995). 

4.3  Discussion 

 

Recent advances in high-throughput technologies have resulted into emergence of multi-dimensional 

dataset characterizing the genetic, epigenetic and functional properties of tumor phenotypes. Dissection 

of these molecular profiles to decipher the heterogeneous tumor samples and identify the causal drivers 

represents a considerable challenge. Current classification of cancer subtypes suffer from lack of 

reproducibility and hence cannot be relied upon for clinical practice (Lavasani and Moinfar, 2012). The 

results presented in this chapter show that we could reproduce the subtypes and master regulatory 

modules when applied on high-risk NBL samples obtained from two independent datasets; TARGET 

and NRC, hence increasing the confidence in the subtype classification and master regulator prediction.  
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Furthermore, our transcriptome based classification largely overlapped with the reported classification 

based on genomic alterations (Michels et al., 2007) showing that these alterations could be 

recapitulated by the transcriptome landscape of the tumor. Our analysis classified the subtypes with 

mutually exclusive structural variants (a) 1 p deletion and MYCNA, and (b) 11q deletion as Moreover, 

there are several genomic alterations like 3p and 4p deletion, chr.7 gain co-exist with 11q-LOH subtype, 

suggesting a complex interaction between these alterations to create a subtype specific signature. 

Similarly, we observed higher dosage for 17q gain in this subtype compared to MYCNA or MES subtype 

suggesting that dosage of 17q might also play a role in inducing 11q-LOH subtype GES. While some 

genes mapping to the altered regions have been reported to play a role in NBL pathogenesis  such as 

tumor suppressor, CHD5, in 1p deletion region (Fujita et al., 2008); oncogenes such as BIRC5 (Lamers 

et al., 2011) and PPMD1 (Saito-Ohara et al., 2003) in 17q amplification region, exhaustive search for 

identification of oncogenic drivers and tumor suppressor genes within these regions is a daunting task. 

This is demonstrated by one such study showing that more than 1000 genes have been identified within 

the eight recurrent genomic alterations in NBL (loss of 1p, 3p, 4p, 11q and 10q; gain of 2p, 17q and 

MYCN amplicon), which shows correlation with its corresponding mRNA expression level, indicating that 

they are likely to have a functional role in NBL (Łastowska et al., 2007).  

 

Rather than searching for driver genes in the genomically altered regions, our approach provided an 

efficient way to identify the MRs that are causal to driving the subtype specific programs. This is 

because the confluence of the spectrum of genetic and epigenetic factors, integrated by the master 

regulatory genes within the regulatory networks and driving the phenotype can be better captured by 

gene expression of their target genes. Our results show that the core regulatory machinery responsible 

for implementation and stability, including canalization and integration of mutational events are 

recapitulated by their distinct transcriptional states. For example, even though MYCN is amplified only in 

a subset of MYCNA subtype, the MRs that account for the dependencies of the entire subtype with high 

MYC/N activity would be missed by solely genetic based analyses. Following the same principle, other 

TFs within the genomically altered regions or the TFs acting as a key mediator of the genes in these 



 

 
 

57 

altered regions can also be captured by their transcriptional activity. While both MYCNA and 11q-LOH 

subtype are highly proliferative, these programs are likely driven by different genomic alterations 

converging on a subset of common as well as distinct MRs to drive the phenotype as shown by our MR 

predictions (Figure 4-12). Besides MYCN-amplification and chr.11q-deletion specific for the subtypes, 

higher dosage of 17q gain might also contribute towards higher activation of some of the proliferative 

MRs. 

 

Furthermore, our approach allowed identification of MES subtype without genomic alterations, which 

were missed by genomic alteration based classification, suggesting that this subtype maybe sustained 

by the MRs (CEBPβ and CEBPδ), that drive mesenchymal phenotype, thus recapitulating the 

mechanism responsible for mesenchymal transformation of high-grade glioma (Figure 4-8) (Carro et al., 

2010). The high rate of stromal and immune cell infiltration in this subtype and a subset of Chr11q-LOH 

samples indicate that the interplay with tumor microenvironment might be important for pathogenesis of 

these tumors. While there has been several reports depicting infiltration of MYCN-non-amplified tumors 

(Asgharzadeh et al., 2012; Metelitsa et al., 2004), the interaction between immune system and this 

subtype hasn’t been studied. Further studies are needed to fully understand the biology behind it. We 

do realize that the infiltration affects the gene expression as well as copy number variation data (Carter 

et al., 2012; de Ridder et al., 2005) hence obscuring the interpretation of some of our analyses. Single 

cell analysis of these patient samples would be crucial to provide insight into tumor cell-autonomous as 

well as non-cell-autonomous processes driving these tumors (Alizadeh et al., 2015). This is critical as 

the heterogeneity among tumor samples as well as within an individual tumor is starting to be realized 

and will be central to personalized medicine. It is becoming clearer that sequencing on single tumor-

biopsy samples from the patient’s primary tumor is not the representative of the genomic properties of 

the tumor (Gerlinger et al., 2012) as it doesn’t capture the evolution of tumor. Unlike other tumors where 

immune infiltration has been predictive of patient outcome (Fridman et al., 2012; Pagès et al., 2009), all 

the high-risk NBL subtypes have equally bad prognosis. Whether the interaction of these NBL cells with 

its microenvironment plays a role in response to therapy remains to be determined. It is an attractive 
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hypothesis, particularly because it has already been shown in other cancer types (Gajewski et al., 2013; 

Pagès et al., 2009). 

 

In this chapter, we showed that high-risk neuroblastoma tumors can be classified based on gene 

expression signature, each recapitulating its unique genomic and genetic driven transcriptional 

programs. We further defined the predominant mechanistic pathways in each subtype resulting into 

subtype specific clinical phenotype, where all the high-risk NBL tumors were undifferentiated with 

MYCNA and 11q-LOH subtype showing strong activation of proliferative program and MES subtype 

showing strong activation of mesenchymal program. Finally, we showed that the retrieved subtype 

specific MRs recapitulated the subtype specific programs, where proliferative programs seem to be 

driving MYCNA and Chr11q-LOH subtype, and MES-GEP and highly infiltrated microenvironment 

seems to be driving the MES subtype (Figure 4-9). Our data suggests that a more personalized 

approach to identify the target genes that are required for sustaining each subtype could facilitate 

development of targeted therapeutics and better patient outcome.  
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Chapter 5  
 
Identification of TEAD4 as a master regulator of MYCN-amplified subtype 
of high-risk neuroblastoma 
 

5.1 Background 

 

Amplification of MYCN occurs in about 20% of all NBL and 45% of high-risk cases (Brodeur et al., 

1984). MYCN amplification as well as overexpression has been shown to be associated with aggressive 

disease and poor prognosis (Bordow et al., 1998; Chan et al., 1997). This event is strongly associated 

with advanced stage of disease and poor outcome, regardless of the clinical factors that are the most 

predictive of outcome such as age and stage of the disease. Moreover, among the high-risk group, 

patients with MYCN amplification have been shown to have more aggressive phenotype (Brodeur and 

Bagatell, 2014). Because of its clinical significance, integration of MYCN copy number status into NBL 

risk stratification and treatment planning has been applied. 

 

Considering the importance of MYCN oncogene in pathogenesis of MYCNA subtype of high-risk NBL, 

significant efforts have been expended into finding therapeutic targets for MYCN-amplified NBL tumors. 

Knockdown of MYCN in MYCN-amplified neuroblastoma has been shown to induce differentiation and 

apoptosis in human and mice models (Kang et al., 2006). However, direct targeting of MYCN is 

challenging because of the lack of binding pockets for the small molecules. A common strategy devoted 

to that end is the identification of synthetic lethal target genes through genome-wide RNA interference 

(RNAi) screens. The synthetic lethal relationship offers an attractive hypothesis for development of 

specific therapeutic agents to identify genes that are essential only in the context of specific genetic 

background, usually performed on a cell line with inducible MYC/N ON/OFF system. RNAi reagents like 

small interfering RNA (siRNA) and short hairpin RNA (shRNA) are consistently used in large-scale 

screens and combined with phenotypic assays to evaluate the consequences of eliminating specific 

genes. Promising results have been obtained in MYCN amplified specific tumor synthetic lethal screens 

leading to identification of AURKA (Otto et al., 2009), CDK1 (Goga et al., 2007; Sjostrom et al., 2005), 

CDK2 (Molenaar et al., 2009), and CHK1 kinases (Cole et al., 2011). Instead of focusing on genome-
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wide or kinase specific screens, our RNAi screen is focused on top ranked putative MRs, thus allowing 

us to (a) identify universal tumor dependencies that canalize the effects of the upstream genomic 

variants and signaling molecules, and (a) reduce the noise inherent to the genome-wide screens.  

 

As shown in the previous chapter, MYCNA subtype is characterized by high activation of cell 

proliferation, cell growth and DNA repair programs. A brief overview of DNA replication and repair as 

well as a brief description of MYCN and TEAD4 transcription factors are described below. 

5.1.1  DNA replication and damage repair control 
 

Cell cycle regulation is an intricate process strictly controlled by activities of cyclins and the associated 

CDKs, coupled with DNA replication to ensure high fidelity in genome duplication. The critical steps 

during replication are origin licensing and origin firing; where licensing refers to commitment to S-phase 

and origin firing marks the beginning of the S-phase. Replication is initiated at several hundred sites on 

the chromosome to ensure proper duplication of the entire genome and that it occurs only once during a 

cell cycle. The cell prepares for DNA replication in G1 phase, by assembling the multiprotein complexes 

at the origins of DNA replication. Firstly, origin recognition complex (ORC) is recruited, followed by Cdc6 

and Cdt1 dependent loading of MCM2-7 complex possessing DNA helicase function (Remus and 

Diffley, 2009). Once the pre-replicative complexes are assembled on DNA origins, initiation of DNA 

synthesis is triggered by S-phase specific CDKs and Cyclin A and E and CDC7, which promotes binding 

and activation of MCM complex by Cdc45 and GINS. This marks commitment to S-phase. DNA is 

consequently unwound at each replication fork, and DNA polymerase α is loaded to initiate DNA 

synthesis (Kelly and Brown, 2000). This entire process is tightly regulated to ensure that the DNA 

replication happens only once in a cell cycle to ensure genomic integrity. This is performed by 

degradation of Cdt1 by Cyclin A/CDK2 complex, which requires the degradation complex to tether to 

PCNA on the replicative fork and inactivation of Cdt1 and Cdc6 by Geminin. Consistently, deregulated 

expression of Cdt1 and Cdc6 or depletion of geminin has been shown to drive re-replication (Blow and 

Gillespie, 2008).  
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Another layer of regulation to recognize and repair DNA damage is necessary to maintain genomic 

integrity. During cell cycle, S phase is the most prone to DNA damage events, as DNA replication has to 

occur with high fidelity. Various mechanisms can induce replication stress in the cells, which leads to 

halting the cell cycle progression to allow the cell to repair the damage. One of the main mechanisms 

leading to replication stress in precancerous and cancerous lesions is induced by oncogenes through 

aberrant DNA replication (Gaillard et al., 2015) and deregulation of cell cycle progression by activating 

cyclin-dependent kinases (CDKs) that functions in G1 and S phase (Hartwell and Kastan, 1994). 

Oncogenes such as MYC/N, Cyclin E, Cyclin D, Ras and E2Fs have been shown to induce replication 

stress and genomic instability (Halazonetis et al., 2008a; Hills and Diffley, 2014). In general, these 

oncogenes induce replication stress in the cells, leading to fork stalling, i.e, the DNA replication initiation 

complex are uncoupled leading to long stretches of ssDNA. If the stalled forks are unable to restart, they 

collapse, thereby leading to DNA double strand breaks (DSB), which occurs at specific chromosomal 

loci called common fragile sites (Arlt et al., 2006). This leads to activation of ATM and ATR mediated 

DNA damage response (DDR) pathway to induce both DNA repair and checkpoint signaling (Bartkova 

et al., 2005; Gorgoulis et al., 2005). While ATM responds to DSBs, ATR primarily responds to ssDNA 

coated with Replication protein A (RPA), present at processed DSB ends and stalled replication forks. 

Both ATR and ATM mediates its effect through CHK1 and CHK2 kinases respectively to induce G2/M 

arrest by sequestration and degradation of Cdc25A and Cdc25C, which are primarily involved in 

activating the CDK1 to allow G2/M transition. In addition, Chk1 has also been shown to respond to 

stalled replication forks by inducing intra-S phase checkpoint to block the activation of late replication 

origins when DNA synthesis from early origins are inhibited (Feijoo et al., 2001). Activation of the 

CHK1/2 kinases act as a double-edged sword, as tumors exhibiting genomic instability have activated 

DDR pathways in an effort to restrain the replicative stress to inhibit cancer development in early stages. 

This is because cells undergoing high load of replicative stress and hence activated DDR pathways, 

when aided with cell cycle checkpoint defect such as p53 inactivation induces DSBs which leads to 

cytotoxicity by mitotic catastrophe and apoptosis (Malumbres and Barbacid, 2009; Toledo et al., 2011; 

Vitale et al., 2011). Hence, hyperactivation of DDR pathways in cells with CIN serve to restrain the 

oncogene mediated replication stress inherent to the cells, thereby allowing proliferation of the cells in 
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the presence of damaged DNA. Consistently, NBLs and other tumors with activated MYC/N, indicative 

of replicative stress, has been shown to be sensitive to CHK1 and WEE1 inhibition (Cole et al., 2011; 

Murga et al., 2011; Russell et al., 2013). 

5.1.1  MYCN transcription factor 
 

MYCN belongs to the MYC proto-oncogene family of transcription factors, comprised of MYC, MYCN 

and MYCL. It was first discovered in neuroblastoma cell lines as a distinct homolog of avian 

myelocytomatosis viral oncogene (v-myc) that is different from c-MYC (Kohl et al., 1983; Schwab et al., 

1983). In addition to neuroblastoma, MYCN has been implicated in other cancers of embryonic or 

neuroectodermal origin such as retinoblastoma, medulloblastoma, Wilm’s tumor, glioblastoma, 

rhabdomyosarcoma and small cell lung cancer (Schwab, 2004). Early studies showed that both MYC 

and MYCN are capable of cellular transformation in the presence of other oncogenes such as RAS 

(Land et al., 1983; Schwab et al., 1985; Yancopoulos et al., 1985). Similarly, transgenic expression of 

MYCN in peripheral neural crest of mice has been shown to induce neuroblastoma formation, where 

these tumors showed prolonged latency and recurrent chromosomal aberrations (Weiss et al., 1997). 

 

MYC proteins are activated by different mechanisms like amplification of MYCN in neuroblastoma 

(Seeger et al., 1985b), translocation of C-MYC in Burkitt’s lymphoma (Dalla-Favera et al., 1982), or their 

increased protein stability by acting downstream of the signaling pathways (Nilsson and Cleveland, 

2003). It has been accepted that the genetic alteration is not a required event and that overexpression 

or increased activity of MYC/N proteins by various mechanisms above a certain threshold level is 

enough to induce cellular transformation. Turnover of MYC/N are regulated by sequential 

phosphorylation at S62 via MAPK and CDK1, followed by phosphorylation at T58 via GSK-3B (Sears et 

al., 2000; Sjostrom et al., 2005). When S62 is dephosphorylated by PP2A, it binds FBW7 or other E3 

ligases leading to ubiquitination and degradation (Welcker et al., 2004; Yada et al., 2004a). Even though 

the biochemical properties of MYC and MYCN are similar, the expression pattern of MYC and MYCN 

differ significantly. While MYC is expressed ubiquitously and has high expression in rapidly proliferating 

cells during development as well as in adult tissue, MYCN expression is restricted during 
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embryogenesis and is downregulated in differentiated adult tissues (Meyer and Penn, 2008). The 

expression of MYCN and MYC has been shown to be inversely correlated as they repress each other 

(Breit and Schwab, 1989). In NBLs, MYC amplification is not common and MYC mRNA is higher in 

MYCN-non amplified tumors (Westermann et al., 2008). 

 

Both MYCN and MYC, to a greater extent, are very well studied in the context of their role in normal 

development as well as tumorigenesis. Decades of studies have shown that it plays an important 

physiological and pathophysiological role and have been coined as bona fide oncogenes, capable of 

inducing cellular transformation. MYCN and MYC are highly homologous both structurally and 

functionally. They are members of basic helix-loop-helix-leurine zipper (bHLH-LZ) transcription factor 

family and share similar DNA binding, protein-protein interaction and transactivating domains. The 

carboxy-terminal domain of MYC/N is necessary for dimerization with other bHLH domain containing 

transcription factors such as MYC Associated Factor X (MAX) MAX and sequence specific DNA binding. 

While the leucine zipper (LZ) domain is required for protein-protein interaction, bHLH domain binds the 

consensus E-box sequences (CANNTG) in the target gene promoter to transactivate them. This 

accounts for their functional redundancy by sharing common targets (Blackwell et al., 1993; Blackwood 

and Eisenman, 1991). MYC/N has also been shown to heterodimerize with MIZ1 and SP1 to repress its 

targets (Iraci et al., 2011; Wanzel et al., 2003). Not surprisingly, there is a large overlap in the targets of 

MYC and MYCN (Valentijn et al., 2012; Westermann et al., 2008; Zeller et al., 2003), and replacement 

of c-myc by mycn in mouse model can rescue the embryonic lethal phenotype, otherwise induced upon 

c-myc or mycn knockout (Charron et al., 1992; Davis et al., 1993; Malynn et al., 2000). MYC/N has been 

shown to regulate several key cellular processes (Meyer and Penn, 2008) including cell proliferation by 

transactivating several cell cycle and DNA replication genes as well as non-transcriptional control of 

DNA replication (Bell et al., 2006; Dominguez-Sola et al., 2007), repressing differentiation by regulating 

genes like p27Kip1, SKP2, p21, GADD45 (Evans et al., 2015; Kang et al., 2006), ribosome biogenesis 

and cell growth (van Riggelen et al., 2010a), cellular metabolism (Dang, 2013), and chromosomal 

instability induced by DNA-replication stress through transcriptional control of cell cycle genes as well as 

by directly increasing replication origin activity (Dominguez-Sola et al., 2007; Felsher and Bishop, 1999; 
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Vafa et al., 2002). The mechanism of regulation of apoptosis is not fully elucidated and has been 

thought to be partly mediated by blocking p53 mediated response (Van Maerken et al., 2009). 

5.1.2  TEAD4 transcription factor 
 
 
TEA Domain Family Member 4 (TEAD4) belongs to highly conserved transcriptional enhancer factor 

(TEF) family of transcription factor (Drosophila: Scalloped), characterized by a highly conserved TEA 

DNA binding domain that binds a consensus sequence (CATTCCA/T) in the enhancers and promoters 

of the target genes to activate transcription (Kaneko and DePamphilis, 1998). Furthermore, all the four 

TEAD proteins have more than 80% amino acid sequence conservation in the protein-protein interaction 

domain at the c-terminus of the protein (Mahoney et al., 2005; Vassilev et al., 2001a). Most of the late 

embryonic and adult tissues express at least one kind of TEAD proteins, suggesting that it mediates 

common cellular functions such as cell proliferation in different tissue types (Kaneko and DePamphilis, 

1998). Among them, TEAD2 and TEAD4 are among the earliest transcription factor that are expressed 

during mammalian development and may serve to activate the genes critical for development. While 

inactivation of TEAD2 led to neural tube defects, inactivation of TEAD4 resulted into preimplantation 

lethal phenotype (Yagi et al., 2007). Similarly, it has been shown to contribute to pathogenesis of 

several cancers (Lim et al., 2013; Liu et al., 2015; Wang et al., 2015). 

 

The TEAD proteins, and TEAD4 to a greater degree, has been studied mainly in the context of hippo 

signaling pathway, as it has been shown to be required for of transcriptional activity of the oncogenes 

Yes-Associated Protein 1 (YAP) and WW domain containing transcriptional regulator 1 (TAZ). In brief, 

hippo signaling pathway is a tumor suppressive pathway, the activation of which phosphorylates YAP 

and TAZ to retain it in the cytoplasm. Upon translocation to the nucleus, it binds with TEAD factors to 

coactivate target gene expression to promote cell proliferation and pro survival signals (Harvey et al., 

2013). Specifically, TEAD proteins have been shown to be required for YAP-induced cell growth, 

cellular transformation and epithelial to mesenchymal transition (EMT); and TAZ-induced EMT (Zhang 

et al., 2009; Zhao et al., 2008a). Recently, it has been shown that YAP/TAZ/TEAD complexes bind to 
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the distal enhancer elements to regulate the expression of the target genes to induce oncogenic growth 

(Zanconato et al., 2015). 

 

Computational analyses in this chapter were performed by Dr. Gonzalo Lopez. 

5.2  Results 
 

While we performed MR analysis on each subtype, we focused our efforts on experimental validation of 

MYCNA subtype MRs. We concentrated on systematic validation of MRs of the MYCNA subtype for 

several reasons: (a) it is strongly associated with the most recurrent NBL genetic alteration, affecting 

~30% of primary NBL (Seeger et al., 1985a); (b) MYCN overexpression is associated with aggressive 

disease and poor prognosis (Bordow et al., 1998; Chan et al., 1997); (c)  Analysis of high-risk NBL 

samples indicated that the MYCNA subtype has highest purity in terms of immune and stromal 

infiltration (Figure 4-7), thus contributing to high reliability on GEP based MR predictions; finally (d) it 

represents the subtype with the largest number of established, MR- and genetic-matched cell lines for 

validation purposes, thus making the analysis robust and non-controversial. 

5.2.1  Master Regulators of MYCN-amplified subtype 
 

For experimental validation, we chose the top 25 putative MRs of MYCNA subtype, that were integrated 

from the two cohorts: TARGET and NRC (Figure 5-1 A). The MRs were first predicted separately based 

on TARGET or NRC NBi, followed by integration of these two predictions, both of which showed 

significant overlap. This was assessed by performing GSEA enrichment analysis for the top 50 positive 

and negative MRs derived from each dataset on the ranked list of TFs on the other (NESTARGET activated 

MRs on NRC = 4.13, p-value = 3.7 e -05;  NESTARGET deactivated MRs on NRC = -4.14, p-value = 3.53 e -05; NESNRC 

activated MRs on TARGET = 4.4, p-value = 1.08 e -05; NESNRC deactivated MRs on TARGET = -4.58, p-value = 4.7 e -06)  

(Figure 5-1 B and C).  

 



 

 
 

66 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5- 1. Master regulators of MYCNA subtype.  

(A) The top 25 combined MRs of MYCNA subtype 

chosen for validation. The map shows distribution of 

positively (red) and negatively (blue) regulated targets 

of each MR ranked by differential expression between 

MYCNA subtype vs. stage I patient samples. (B, C) 

Reproducibility of MYCNA positive MRs derived from 

TARGET and NRC dataset assessed by GSEA 

enrichment analysis for the top 50 positive and 

negative (B) TARGET derived MRs in the NRC TF 

activity ranking and (C) vice versa.   
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5.2.2  Identification of cell lines representing MYCNA subtype 
 

For experimental validation, it is necessary to establish the cell lines representing the subtype as well as 

appropriate control. In order to select multiple case/control systems for experimental validation, we 

analyzed GEPs of a panel of 28 NBL cell lines available from Children’s hospital of Philadelphia 

(CHOP). These cell lines have gene expression as well as copy number variation data available. Due to 

unavailability of Stage 1 patient sample derived cell lines, we used a few measures to find appropriate 

controls from Stage 4 derived cell lines. We used VIPER algorithm, which allows single sample level 

evaluation of a TF activity by measuring the enrichment of its ARACNe inferred targets in genes 

differentially expressed between the cell line vs. stage I samples. In order to consider a cell line 

representative of MYCNA subtype, cells must harbor MYCN amplification, high expression/activity of 

MYCN and overall high activity of the 25 MRs chosen for validation. Suitable controls, on the contrary, 

would have low expression and activity of MYCN and also low VIPER-inferred activity of the top 25 

MRs.  

 

Most of the MYCNA cell lines showed higher activity of the top 25 MRs, with SK-N-Be2 being the best 

model for the subtype (p-value = 3.7e-24) (Figure 5-2). We selected several cell lines and chose a few 

that represent MYCNA subtype or the control group based on the efficiency of lentiviral transduction. 

The cell lines chosen showed near 100% lentiviral transduction efficiency tested by expression of GFP 

upon transduction of cells with the lentiviral particles expressing GFP. This allowed us to perform 

experiments without the need for antibiotic selection, hence reducing the noise level for the 

experimental results. We chose several cell lines representing MYCNA subtype including SK-N-Be2, 

IMR-5, IMR-32, LAN1, SK-N-DZ and NB-1. Similarly, we used SK-N-AS, SY-5Y and SK-N-FI as 

controls. As an exception, we included NLF as a control cell line, which despite harboring amplification 

of MYCN, showed low level of MYCN protein expression and activity as well as low MYCNA activity of 

the MRs (Figure 5-2, 5-20 A). 
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5.2.2  RNAi screening: pooled shRNA, individual shRNA and siRNA 
 

While RNAi technology offers a way to measure the functional consequences of depletion of a gene in 

the system of interest, there are certain limitations inherent to the technology. We used multiple 

approaches and RNAi reagents to mitigate false discovery resulting from off-target effects and 

technology specific biases: (a) in-vitro and in-vivo pooled shRNA screen (b) individual shRNA screen (c) 

siRNA screen. To avoid cell line specific bias, we used multiple cell lines in our study. The strategy we 

used for experimental validation is to use the appropriate phenotypic assay defining the subtype. We 

assessed cellular viability by resazurin assay as our primary readout since MYCNA subtype is marked 

by highly proliferative signature and clinical phenotype with high mitotic index (Figure 4-6, 4-10). 

 

 

 

Figure 5- 2. Cell lines with high MR 

activity show segregation between MYCN 

amplified and non-amplified subtypes.  

VIPER activity (Alvarez, M., 2013, 

bioconductor package) of the top 25 MRs of 

MYCNA subtype included in validation 

screens are computed in the CHOP panel for 

28 NB cell lines. Overall activity is 

represented as the enrichment P value (left 

column), ranked positions of the top 25 MRs 

in each cell line (center). MYCN activity from 

average signature and MYCN amplification 

status occupy the columns on the right.  
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(a) Pooled shRNA screening 

 

To identify the MRs essential for both in-vitro and in-vivo tumorigenesis of MYCNA cells, we performed 

loss-of-function screen in MYCNA and control cell lines using TRC shRNA library comprising 4-5 

hairpins per MR, bought from Sigma. Performing the assay on a pooled format allowed us to collect 

data with many hairpins per gene at a time. The goal of this screening was to identify the genes that are 

essential selectively for MYCNA cells compared to the control cells, evaluated by the depletion of 

shRNAs from the population in the respective cells. The cell lines were transduced with MR specific 

hairpins in separate wells in a 96-well plate such that each cell contains only a single type of integrated 

virus. The idea is that if a gene is essential for the cell, the cells expressing the specific hairpin against 

that gene will be depleted from the population over time. The shRNA sequence can act as a barcode for 

fate of the cell.  

 

In vitro study was done on MYCNA cell lines (SK-N-Be2 and IMR-5) and control cell lines (NLF and SK-

N-AS). The cells were transduced with MR specific and control hairpins; and depletion of hairpin 

representation was quantitated by deep sequencing, by comparing time 0 with time-28 days. Similarly, 

we also performed in-vivo study to ensure more physiologic environment for MR validation. In-vivo study 

was done on SK-N-Be2 and SK-N-AS as these cells presented more tumorigenic potential in-vivo. We 

assessed the shRNA representation in the resulting tumor, 4 weeks after implantation of the pool of 

shRNA transduced cells into nude mice. Hairpin level data was  first integrated  into  a  gene-level  

representation  and  then  used to  compute  a  MYCNA  and control group level score using the 

ScreenBeam algorithm (Yu et al., 2015) (Table 5-1). Overall, a gene is identified as a candidate if (a) the 

shRNA is depleted more than 2-fold with a p-value of <0.05 (Z score -1.96) in the MYCNA cells, (b) 

there is more than 2-fold hairpin depletion in MYCNA group compared to the control group, and (c) the 

candidates are common to both in-vitro and in-vivo screen. Using this criterion, we identified 7 MRs that 

were common in both in-vitro and in-vivo screens: MYCN, TEAD4, HNRNPAB, HMGB2, PRDM8, E2F3, 

ECSIT (Figure 5-3). Furthermore, several of the predicted MRs induced loss of cell viability in both 

MYCNA and control cells (Table 5-1), suggesting a potential role across high-risk NBL. It is not 
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surprising as the MRs predicted for each subtype used Stage I samples as control and hence 

recapitulated subtype specific as well as high-risk NBL specific MRs. 

 

 

 

Table 5- 1. In-vitro and in-vivo pooled shRNA screening to identify MYCNA subtype specific 
MRs 

Pooled in-vivo and in-vitro shRNA screening was performed on MYCN-amplified and non-amplified 

cell lines. Integrated z-score and fold change of shRNA dropout for each gene was derived for each 

cell line from individual shRNAs and the values for MYCN-amplified cell lines vs non-amplified cell 

lines were further integrated. Log2Fold change of MYCN amp cell lines vs MYCN non-amp cell lines 

is derived for both in-vivo and in-vitro shRNA screening.  

Gene Symbol
z-score 

MYCN-

amplif ied 

(in-vitro)

log2FC-

MYCN non-

amplif ied 

(in-vitro)

log2FC-

MYCN 

amplif ied 

(in-vitro)

log2FC.MY

CNAmp vs 

non-

amplif ied 

(in-vitro)

z-score 

MYCN-

amplif ied 

(in-vivo)

log2FC-

MYCN non-

amplif ied 

(in-vivo)

log2FC-

MYCN 

amplif ied 

(in-vivo)

log2FC.MY

CNAmp vs 

non-

amplif ied 

(in-vivo)

E2F1 -2.13 -0.99 -2.33 -1.35 -1.06 -2.03 -1.38 0.65
E2F3 -1.99 -0.41 -2.20 -1.79 -2.41 0.01 -2.87 -2.88

ECSIT -4.11 -1.56 -4.47 -2.90 -3.21 -3.61 -5.17 -1.55
ELK1 -1.65 -0.60 -2.04 -1.44 -3.24 -1.31 -4.36 -3.05

HMGB2 -2.10 -0.56 -3.11 -2.56 -2.98 -1.09 -3.85 -2.76
HNRNPAB -3.35 -1.16 -2.55 -1.40 -4.10 -1.31 -5.32 -4.00

MYB -2.49 -1.18 -2.20 -1.02 -1.07 -2.29 -2.54 -0.25
MYBL2 -2.71 -1.74 -2.17 -0.42 -2.10 -4.12 -2.44 1.68
MYCN -3.85 -2.32 -4.22 -1.90 -2.99 -3.06 -4.60 -1.54
NME2 -3.60 -1.21 -1.58 -0.37 -1.37 -2.10 -2.13 -0.03

PRDM8 -2.71 -1.91 -5.10 -3.20 -2.85 -3.67 -6.15 -2.47
PTTG1 -3.28 -3.30 -2.57 0.74 -2.51 -5.25 -3.91 1.34
RCOR2 -3.22 -1.00 -2.51 -1.51 -2.18 -2.01 -2.68 -0.67
TAF1D -2.83 -1.24 -3.64 -2.40 -1.83 -1.95 -2.24 -0.29

TCF3 -1.48 -0.71 -1.54 -0.83 -0.70 -0.91 -1.26 -0.35
TEAD4 -2.89 -1.55 -3.95 -2.40 -2.53 -1.45 -3.75 -2.30
TFAP4 -4.30 -1.67 -4.51 -2.84 -4.23 -4.27 -5.09 -0.82

TP53 -2.90 -1.64 -2.50 -0.85 -3.57 -2.48 -5.96 -3.48
TRIM28 -1.05 -1.68 -1.22 0.47 -1.35 -2.14 -2.04 0.10
UHRF1 -3.03 -0.77 -2.40 -1.63 -0.80 -1.65 -1.32 0.33

ZNF219 -1.59 -2.10 -1.58 0.52 -2.45 -3.05 -3.83 -0.78
ZNF239 -2.01 -1.23 -1.72 -0.49 -1.35 -1.53 -2.65 -1.13
ZNF581 -1.50 -0.18 -2.32 -2.14 -2.68 -0.68 -2.66 -1.98
ZNF695 -2.86 -1.01 -1.59 -0.59 -1.74 -2.41 -3.01 -0.60

ZNF8 -2.16 -1.70 -2.45 -0.75 -3.75 -2.72 -5.10 -2.38
NegControl 0.55 0.71 0.50 -0.21 -1.57 -1.87 -1.87 0.00
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expressing it, and hence the effect of the depletion of a gene can be quantitated by measuring shRNA 

representation compared to a final time point compared to the initial time point. Each shRNA cassette 

has two unique identifiers: one is the sequence of the shRNA and the other is the barcode for the 

particular sample. Sequencing libraries were prepared such that the amplified DNA contains both the 

shRNA and the barcodes, multiplexed and sequenced to get the count for each shRNA in different 

cells/time points. 

(b) Individual shRNA screening 

Figure 5- 3. In-vivo and in-vitro pooled shRNA screening of top 25 MRs of MYCNA subtype 

(A) In-vivo pooled shRNA screening in MYCNA cells (SK-N-Be2) vs. control cells (SK-N-AS) and (B) 

In-vitro pooled shRNA screening in MYCNA cells (SK-N-Be2, IMR-5) vs. control cells (NLF, SK-N-

AS), depicting changes in hairpin representation in MYCNA cells divided by control cells. For both 

(A, B), tumor-enriched shRNAs were amplified, sequenced and counted to identify enrichment and 

dropouts. shRNA abundance for a gene was integrated into a score and calculated as a ratio of T 

(final day) to T(0 day). The MRs were first screened to include only the ones with p <0.05 in MYCNA 

group (red). MRs specific for MYCNA subtype were identified by the average fold change between 

MYCNA cells vs control cells. The grey dashed line shows the cutoff for -2.0 fold change. 

In-vitro pooled shRNA experiments were performed by Ruth Rodriguez-Barrueco in the lab of Dr. 

Jose Silva, and in-vivo pooled shRNA experiments were performed by Dr. Antonio Iavarone and Dr. 

Anna Lasorella. Computational analyses of pooled shRNA screening results were performed by Dr. 

Jiyang Yu. 

 

A 
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(b) Individual shRNA screening 

Furthermore, we performed extensive individual 

shRNA validation in multiple NBL cell lines, where we 

selected two out of four to five shRNAs per MR that 

exhibited highest silencing efficiency at mRNA or 

protein level. This allowed us to perform further 

detailed and focused screen in multiple cell lines to 

ensure that the candidate MRs don’t emerge because 

of cell-line specific dependencies. We used 

concentrated lenti-virus to transduce the selected 

shRNAs in five MYCNA cell lines (SK-N-Be2, IMR-5, 

IMR-32, NB-1 and LAN-1) and three MYCN-non-

amplified (MYCN-NA) cell lines (SY-5Y, SK-N-AS and 

SK-N-FI). We measured relative cell viability 

normalized to control shRNA for each MR specific 

hairpin in each cell line, 96 hrs post transduction. In 

order to identify MRs representing MYCNA specific 

dependencies, we compared MR depletion effect 

(average over the two hairpins) in the MYCNA group 

compared to the control group (Table 5-2).  

 

 

 

 

 

 

 

 

Table 5- 2. Individual shRNA screening to identify MRs of MYCNA subtype 

A panel of MYCN-amplified and non-amplified cell lines were transduced and cell viability was 

measured 72 to 96hrs post-transduction. The experiment was done in triplicate and relative viability 

was measured relative to control shRNA. Representative experiments are shown.   

Cell lines

shRNA

S
K

N
B

E
2
 T

9
6

IM
R

5
 T

7
2

IM
R

3
2
 T

9
6

N
B

1
 T

9
6

L
A

N
1
 T

9
6

S
Y

5
Y

 T
7
2

S
K

N
A

S
 T

9
6

S
K

N
F

1
 T

9
6

TAF1D sh1 0.7 0.3 0.2 1.3 0.8 0.9 0.9 0.9

TAF1D sh2 0.6 0.3 0.3 0.6 1.0 1.0 0.8 1.0

HNRNPAB sh1 0.7 0.4 0.9 0.9 0.8 0.8 0.9 0.9

HNRNPAB sh2 0.9 0.4 0.6 1.0 1.0 1.9 0.9 0.8

ECSIT sh1 0.9 0.3 0.4 1.0 1.1 1.4 0.9 0.8

ECSIT sh2 0.6 0.4 0.2 0.2 0.7 0.6 0.6 0.7

TEAD4 sh1 0.9 0.5 0.5 0.6 0.9 0.9 0.9 0.8

TEAD4 sh2 0.4 0.3 0.1 0.1 0.5 0.4 0.5 0.6

PRDM8 sh1 0.4 0.3 0.2 0.5 0.8 0.2 0.7 0.8

PRDM8 sh2 0.5 0.2 0.1 0.1 0.8 0.2 0.6 0.8

PTTG1 sh1 0.3 0.1 0.2 0.3 0.5 0.7 0.2 0.5

PTTG1 sh2 0.5 0.2 0.1 0.5 0.5 0.5 0.4 0.6

RCOR2 sh1 0.8 0.5 0.2 0.5 0.8 0.8 0.8 1.0

RCOR2 sh2 0.5 0.2 0.6 0.7 0.7 0.4 0.6 0.7

TCF3 sh1 0.7 0.5 0.3 0.1 0.9 0.4 0.6 0.7

TCF3 sh2 0.9 0.7 0.6 0.8 1.0 1.0 0.7 0.9

E2F1 sh1 0.9 0.6 0.6 0.7 0.9 0.4 0.6 0.8

E2F1 sh2 0.7 0.8 0.2 0.5 0.8 0.9 0.5 0.7

E2F3 sh1 0.9 0.8 0.4 1.2 1.0 0.9 0.8 0.9

E2F3 sh2 0.8 0.2 0.2 0.4 0.9 0.4 0.9 0.7

TRIM28 sh1 0.7 0.6 1.0 0.8 0.9 0.7 0.5 0.8

TRIM28 sh2 0.8 0.2 0.2 0.8 0.9 0.5 0.8 0.8

ZNF219 sh1 0.9 0.2 1.1 1.2 1.1 0.7 0.8 1.0

ZNF219 sh2 0.6 0.3 0.3 0.7 0.6 0.5 0.6 0.7

HMGB2 sh1 0.9 0.6 0.3 0.4 0.6 0.7 0.8 0.7

HMGB2 sh2 0.9 0.7 0.7 1.1 1.0 0.6 0.7 1.0

ZNF8 sh1 0.7 0.4 0.3 0.4 1.0 0.6 0.7 0.8

ZNF8 sh2 1.0 0.9 0.7 1.0 1.1 1.0 1.0 0.6

ZNF239 sh1 0.9 0.6 0.8 0.4 1.0 0.6 0.9 0.9

ZNF239 sh2 0.8 0.9 0.3 1.0 0.7 1.0 0.9 0.8

NME1 sh1 1.2 0.7 1.0 1.2 1.0 1.1 1.1 1.0

NME1 sh2 0.6 0.2 0.3 0.7 0.9 0.5 0.8 0.7

UHRF1 sh1 1.1 0.3 0.6 0.8 1.0 0.6 0.8 1.0

UHRF1 sh2 0.8 0.9 0.5 1.0 1.0 0.9 1.0 1.0

TFAP4 sh1 0.7 0.7 1.0 0.8 0.9 0.8 0.7 0.8

TFAP4 sh2 0.7 1.2 1.2 0.9 0.7 1.1 1.0 0.9

MYCN sh1 0.9 1.0 0.6 1.2 1.0 0.7 0.8 1.0

MYCN sh2 0.8 0.8 0.6 1.2 1.0 1.5 0.6 1.1

ELK1 sh1 1.1 0.4 0.9 1.3 1.2 1.1 1.1 0.8

ELK1 sh2 1.0 1.2 0.7 1.0 1.1 1.0 1.0 0.7

ZNF581 sh1 1.2 0.7 1.4 1.4 1.3 0.9 1.0 1.1

ZNF581 sh2 0.8 1.1 0.7 0.9 0.7 1.1 1.1 0.8

ZNF695 sh1 1.1 0.9 1.3 0.9 1.0 1.2 0.8 1.0

ZNF695 sh2 0.6 0.4 0.2 0.2 0.7 0.3 0.6 0.6

TP53 sh1 0.5 0.9 1.6 1.4 1.1 1.7 0.8 0.9

TP53 sh2 0.6 1.2 1.5 1.1 1.0 1.5 0.7 0.9

MYB sh1 1.1 0.9 1.2 1.5 1.0 1.4 1.1 0.9

MYB sh2 1.2 1.1 1.3 1.4 1.1 1.2 1.1 0.9

MYBL2 sh1 0.8 0.3 0.3 1.3 0.8 0.8 0.6 0.9

MYBL2 sh2 0.9 0.5 0.4 0.5 0.9 0.6 0.7 0.7

PLK1 0.5 0.3 0.2 0.3 0.7 0.6 0.6 0.7

MYCN amplif ied Control
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These shorter-term assays show that MYCNA cells were significantly more sensitive to TEAD4, TAF1D, 

HNRNPAB and ECSIT silencing, compared to MYCN-NA cell lines (Figure 5-4). We did not detect 

MYCN as a hit in this screen at the time points we chose, as the viral load was not adjusted for the 

higher copy number of MYCN in MYCNA cells. However, we confirmed that depletion of MYCN in 

MYCNA cells, SK-N-Be2, induce differentiation and decrease cell viability seven days post transduction 

(Figure 5-5). Clearly, short-time assays are better suited to detecting MRs producing direct effect on 

proliferation, while longer-term assays are optimally suited at elucidating multifunctional dependencies. 

Consistently, additional MYCNA specific MR dependencies were detected in the long-term assays.  

Figure 5- 4. Comparison of MR depletion in MYCNA vs control cells by individual shRNA 

Scatter plot of average relative cell viability of MYCNA cells (SK-N-Be2, IMR-5, IMR-32, NB-1, and 

LAN-1) vs. control cells (SY-5Y, SK-N-AS, SK-N-FI) upon transduction with 2 shRNAs per MR, 

normalized to control shRNA, measured 72 to 96hrs post transduction. Relative cell viability for 

MYCN-amplified vs non-amplified groups were derived by taking average effect of 2 hairpins across 

the cell lines for each group. The red dashed lines shows the cutoff of a<0.8 and (b-a)>0.2.  

Relative viability on MYCNA cell lines (a)  

R
e
la

ti
v
e

 v
ia

b
ili

ty
 o

n
 c

o
n

tr
o
l 
c
e
ll 

lin
e

s
 

(b
) 

 



 

 
 

74 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5- 5. Effect on cell viability and cell morphology upon MYCN knockdown. 

(A) Relative cell viability and (B) Microscopy images showing morphological changes of SK-N-

Be2 cells transduced with MYCN shRNA compared to Control shRNA, measured 7 days post-

transduction. 
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(c) siRNA screening 

 

For siRNA screen, we used ON-TARGETplus siRNA pool against 

the 25 MRs. By using a pool of four siRNAs, we dramatically dilute 

the off-target effect known to be caused by partial complementary 

anti-sense sequence acting as a micro-RNA to repress the 

expression of non-specific genes. First, we confirmed that the MRs 

were efficiently knocked down by their respective siRNA pool by 

qRT-PCR. We then transfected MYCNA cell lines (SK-N-Be2, IMR-5 

and SK-N-DZ) and MYCN-NA cell lines (SY-5Y and SK-N-AS) with 

MR specific siRNAs. Similar to shRNA screen, we derived relative 

cell viability of MR-siRNA vs control-siRNA treated cells and derived 

the average effect of gene depletion in MYCNA group vs MYCN-NA 

group (Table 5-3). Our results confirmed TFAP4, HNRNPAB, 

MYBL2, TEAD4 and ZNF219 as MYCNA specific dependencies 

(Figure 5-6).  

 

 

 

 

 

 

Table 5- 3. siRNA screening to identify MRs of MYCNA subtype 

A panel of MYCN-amplified and non-amplified cell lines were transduced with ON-Target smartpool 

siRNA and cell viability was measured 96hrs post-transfection by Presto Blue reagent. The 

experiment was done in triplicate and relative viability was measured relative to control siRNA. 

Representative experiments are shown. 

Cell lines

siRNA

IM
R

5
 T

9
6

SK
N

B
E2

 T
9

6

SK
N

D
Z 

T9
6

SY
5

Y 
T9

6

SK
N

A
S 

T9
6

si ZNF219 0.7 0.6 0.8 0.9 1.3

si TFAP4 0.6 0.5 0.6 0.9 1

si TEAD4 0.7 0.7 0.9 1.1 1.2

si HMGB2 0.9 0.9 0.9 1.2 1.3

si PRDM8 0.8 0.7 0.9 1.1 1.2

si HNRNPAB0.7 0.5 0.9 1 0.8

si TRIM28 0.9 0.8 0.9 1 1.1

si MYB 1 0.8 0.9 1.2 1.1

si MYBL2 0.5 0.7 1 0.9 1

si ZNF581 0.9 0.7 1 1.1 1.1

si UHRF1 1 0.9 0.9 1.1 1.1

si TAF1D 1.2 0.8 1 1.2 1.1

si ZNF239 1 0.9 0.9 1 1.2

si E2F3 1 1.1 0.8 1.1 1.1

si ECSIT 1 0.7 0.9 1.1 0.8

si ZNF695 0.8 0.9 0.9 1.1 0.8

si E2F1 0.9 0.8 0.9 1.1 0.8

si CBX2 0.6 0.8 0.9 0.9 0.8

si NME2 1.3 0.7 0.8 1 1

si MYCN 1.3 0.7 1 1.1 1

si ELK1 0.8 0.8 0.8 1 0.7

si PTTG1 1.2 0.7 1 1.1 0.9

si TCF3 1.1 0.7 0.9 1.1 0.8

si ZNF8 0.9 0.9 1 1 0.8

si RCOR2 1.4 0.7 1 1.1 0.9

si TP53 1.3 0.8 0.9 1.1 0.6

si PLK1 0.1 0.3 0.5 0.6 0.1

si AURKA 0.4 0.5 0.9 0.9 0.7

si siDeath Pool0.2 0.2 0.4 0.6 0.1

MYCN amp Control
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Comparative analysis of the three screens identified   eleven   potential   MYCNA-specific   MR   

dependencies, while TEAD4 and HNRNPAB confirmed across all three screens (Figure 5-7).  We thus 

further assessed the ability of these genes to regulate each other and the MYCNA signature.   

Figure 5- 7. Compilation of RNAi 

screening results  

Venn diagram depicting potential 

MYCNA subtype specific MRs from 

(Figure 5-3) MRs common to both in-

vitro and in-vivo negative selection 

pooled shRNA screening (Figure 5-4) 

individual shRNA screening (Figure 

5-6) and siRNA screenings. 
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Figure 5- 6. Comparison of MR depletion in 

MYCNA vs control cells by pooled siRNA 

Scatter plot of average cell viability of MYCNA 

cells (SK-N-Be2, IMR-5, SK-N-DZ) vs control 

cells (SY-5Y, SK-N-AS) upon transfection with 

ON-Target smartpool siRNA against each MR 

normalized to control siRNA, measured 96hrs 

post transfection. Relative cell viability for 

MYCN-amplified vs non-amplified groups were 

derived by taking average effect of siRNAs 

across the cell lines for each group. The red 

dashed lines shows the cutoff of a<0.8 and (b-

a)>0.2.  
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5.2.4  MR subnetwork are controlled by MYCN and TEAD4 

 

Cellular phenotype is often controlled by a complement of several MRs acting cooperatively. We have 

shown that the transcriptional state of physiologic (Kushwaha et al., 2015; Lefebvre et al., 2010), tumor-

related (Aytes et al., 2014; Carro et al., 2010; Chudnovsky et al., 2014; Piovan et al., 2013; Rodriguez-

Barrueco et al., 2015) and other disease-related (Brichta et al., 2015; Chen et al., 2014; Ikiz et al., 2015; 

Repunte-Canonigo et al., 2015) phenotypes is controlled by a small number of proteins acting 

cooperatively within regulatory modules (checkpoints). Within this context, a “master regulator” is a 

protein whose activity is required (either individually or synergistically), to mechanistically induce 

normal/aberrant activity of the module, thus maintaining the phenotype “state”.  

 

Thus, elucidating MR proteins in a specific phenotype context requires understanding their ability to 

regulate each other and the phenotype. To elucidate the transcriptional circuitry connecting the 

candidate MYCNA-specific MRs identified in the previous section (Figure 5-7), we performed extensive 

qRT-PCR, at 48h following their lentiviral-mediated silencing to assess their mutual regulatory potential 

(Figure 5-8 A). This early time point was chosen to minimize confounding effects due to indirect 

interactions. These data revealed a highly modular structure with hierarchical organization (Figure 5-8 

B). Indeed, ten out of eleven MRs were interconnected by 20 intra-module regulatory interactions, 13 of 

which were also predicted by ARACNe. In addition, based on previous reports, MYCN (Breit and 

Schwab, 1989) and TEAD4 (Home et al., 2012; Lim et al., 2013) may control their expression through a 

positive auto-regulatory loop. Such feedback loops represent the hallmark of regulatory structure 

controlling phenotype stability, for instance by implementing bistable switches (Xiong and Ferrell, 2003). 

Such control structures are required to buffer against fluctuations in the abundance/activity of individual 

proteins (Albert et al., 2000; Hartwell et al., 1999). In the MR network, TEAD4 is directly downstream of 

MYCN and represents a critical regulatory bottleneck that controls the majority of other MYCNA specific 

MRs identified by our analysis. Indeed, positive TEAD4 regulation by MYCN was further verified at the 

protein level (Figure 5-9). Based on our qRT-PCR data, MYCN and TEAD4 jointly regulate (10/11) 90% 

of the MYCNA-specific MR dependencies. Hence, our analysis identifies the TEAD4/MYCN regulatory 
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loop and the large number of feed-forward loops they implement in regulating other MYCNA MRs as the 

critical mechanism controlling the stability of this subtype.  

 

 

 

  

 

TEAD4 and MYCN controls complementary programs in MYCNA cells 

 

To further validate the role of MYCN and TEAD4 as MRs of MYCNA subtype, we examined  

 

 

 

Figure 5- 8. MR inter-regulatory transcriptional network.  

(A) Heatmap representing gene expression changes of MYCNA subtype specific potential MRs 

(Figure 3G), upon transduction of SK-N-Be2 cells with control or respective shRNAs against the MRs. 

The regulations were evaluated by qRT-PCR 48hrs post-transduction. Samples were run in triplicate 

and representative experiments are shown.  (B) The inter-regulatory network derived from the results 

in (A) where genes showing >1.5 fold downregulation of transcript upon treatment with the shMR was 

considered to be a target.  

A B 
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5.2.4  MYCNA signature and biological programs are controlled by TEAD4 and MYCN  

 

To further validate the role of MYCN and TEAD4 as MRs of MYCNA subtype, we examined their global 

effect on MYCNA-GES. We performed lentivirus mediated silencing of MYCN and TEAD4 in SK-N-Be2 

cells, followed by gene expression profiling using RNA-Seq. Again, we analyzed the results 48hrs post 

transduction to enrich the analysis for direct targets of the respective MR (Figure 5-10 A). Depletion of 

both MYCN and TEAD4 significantly reversed the MYCNA-GES toward a Stage I signature (p < 10-16) 

(Figure 5-10 B). GSEA analysis of the MYCNA-GES in up-regulated and down-regulated genes 

following MYCN and TEAD4 silencing showed highly significant enrichment, with MYCN silencing 

enriching more for downregulated genes (Figure 5-10 C) than TEAD4 (Figure 5-10 D). Indeed, MYCN 

and TEAD4 implement the MYCNA subtype signature by regulating both shared and complementary 

targets, accounting for 29% and 21% of MYCNA overexpressed genes; and 25% and 11% of MYCNA 

underexpressed genes, respectively (Figure 5-10 E). Taken together, MYCN and TEAD4 regulate ~70% 

of the genes differentially expressed in the MYCNA-GES, based on differential gene expression 

signature (FDR <0.01) (Figure 5-10 E).  

Figure 5- 9. MYCN regulates TEAD4 

expression 

Immunoblot showing downregulation of 

TEAD4 protein upon knockdown of MYCN 

24, 48, 72 and 96hr post-transduction.  
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Figure 5- 10. Regulation of MYCNA subtype signature by TEAD4 and MYCN. 

Differential GES of TEAD4 (x-axis) and MYCN (y-axis) knock-down compared with MYCNA vs 

stage1 signature (red-blue heat colors). GSEA analysis of differentially expressed genes after 

TEAD4 knock-down (D) and MYCN knock-down (E) in the signature of MYCNA versus Stg1 tumors. 

(F) Venn-diagram showing proportion of MYCNA-upGES (red) and MYCNA-downGES (blue) 

regulated by MYCN, TEAD4 or both. 
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ARACNe inferred targets not only supported this conclusion but were also highly enriched in genes 

differentially expressed following MYCN and TEAD4 silencing (Figure 5-11), thus confirming the overall 

validity of the regulatory model.  

 

 

 

 

 

 

 

 

 

 

Figure 5- 11. ARACNe inferred regulon overlap and size for TEAD4 and MYCN.  

ARACNe inferred interactions by Mutual Information are not directional therefore we present them 

divided in positive and negative according to the sign of Spearman’s correlation between each TF 

and target. Venn diagram shows the overlap across cohorts of positive and negative targets of (A) 

MYCN and (B) TEAD4. (C) GSEA analysis of NBi overlapping predicted positive and negative targets 

of MYCN in the shMYCN RNA-seq signature. (F) GSEA analysis of ARACNe overlapping predicted 

positive targets of TEAD4 in the shTEAD4 RNA-seq signature. 
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To gain insight into the MYCNA subtype specific biological programs controlled by MYCN and TEAD4, 

we performed REACTOME pathway and Gene ontology (GO) biological processes enrichment analysis 

on their differentially regulated genes overlapping with MYCNA-GES. For this, we took all the gene sets 

in the REACTOME and GO database and performed GSEA on the ranked list of differentially regulated 

genes overlapping with MYCNA-GES, to specifically understand its role in the context of MYCNA 

subtype specific programs. Indeed, we found that depletion of MYCN significantly reversed multiple 

cellular processes that are activated and repressed in MYCNA cells (Figure 5-12 A and B). In contrast, 

depletion of TEAD4 significantly reversed the activated programs in MYCNA subtype (Figure 5-12 A and 

B). Consistent with previous findings, our data indicates that MYCN acts as both activator and repressor 

(Gartel et al., 2001; Kretzner et al., 1992), while TEAD4 acts mainly as a transcriptional activator 

(Vassilev et al., 2001b).  

 

 

 

 

 

 

 

 

Consistent with its known role, MYCN-specific activated genes were highly enriched in cell-

growth/metabolism programs, including protein biosynthesis, ribosomal biogenesis, rRNA processing, 

Figure 5- 12. Biological processes controlled by TEAD4 and MYCN 

REACTOME pathway enrichment analysis performed on shTEAD4 (x-axis) and shMYCN (y-axis) 

signatures that overlap with MYCNA GES. Axis represents –log10 of the p-value while retaining the 

directionality of the normalized enrichment score. The dashed line represent FDR cutoff of <0.05. 
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RNA processing and splicing (Coller et al., 2000; van Riggelen et al., 2010b). In contrast, the programs 

that were repressed by MYCN included neuronal differentiation, actin cytoskeleton organization, axon 

guidance and cell adhesion molecules, suggesting active prevention of cell differentiation. Indeed, actin 

dependent mechanisms play an established role in neuritogenesis and neuronal differentiation (da Silva 

and Dotti, 2002) as well as axon guidance (Dent and Gertler, 2003) Repression of Cdc42 and RAC1 

(Govek et al., 2005; Yuan et al., 2003) by MYCN is likely a key factors in controlling actin based 

structure and thus neuronal development. Consistent with these findings, we observe activation of 

neurite outgrowth and neuronal differentiation programs upon MYCN silencing in these cells (Figure 5-

5). On the other hand, TEAD4 induced dramatic activation of proliferative programs in cells where 

MYCN was also active, suggesting cooperative control not mediated by either MYCN or TEAD4 alone. 

Both TFs showed enrichment for cell cycle and DNA damage response programs. Finally, the residual 

MYCNA-GES program not regulated by either MYCN or TEAD4 showed enrichment for RNA and 

mRNA processing programs. 

 

Sensitivity and subtype specificity of MYCN and TEAD4 silencing depends on the expression level of 

downstream targets of these MRs. Indeed, we observed that MYCN and TEAD4 induced targets are 

more expressed in the MYCNA subtype compared to other high-risk subtypes, confirming 

MYCN/TEAD4 addiction of the MYCNA subtype (Figure 5-13). Overall, our data suggests that MYCN 

and TEAD4 represent the key regulatory bottlenecks responsible for implementation and maintenance 

of the MYCNA subtype transcriptional signature. 
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5.2.5  TEAD4 drives proliferative program in MYCNA neuroblastoma cells 
 

MYCNA tumors are characterized by high-proliferative capacity and TEAD4 depletion mediated 

transcriptional changes in MYCNA cells, SK-N-Be2, demonstrated that it controls various cell-cycle 

dependent programs (Figure 5-14). GSEA analysis of RNA-Seq data upon TEAD4 depletion indicated 

significant enrichment for cell cycle specific GES of TEAD4 activated genes (p-value: 6.7E-05) (Figure 

5-14 A). The genes that are most downregulated in response to TEAD4 depletion contained 49 out of 

128 genes in the cell cycle gene set. We observed dramatic transcriptional activation of several critical 

cell cycle components involved in DNA replication including origin licensing, origin firing and G1/S and 

G2/M cell cycle checkpoint genes. Several of these genes have been implicated in high-risk NBL and 

some with positive association with MYCNA cells (underlined), by TEAD4. These include cyclin-

Figure 5- 13.Expression level of MYCN and TEAD4 functional signatures. 

The heatmap shows the expression represented as Z-score of genes down-regulated (FDR < 

0.01) after knockdown of TEAD4 and MYCN. 
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dependent kinases (CDK2, CDK1, CDC25B) (Chen et al., 2013; Sato et al., 2001; Sjostrom et al., 

2005), Cyclins (Cyclin D1) (Molenaar et al., 2008), E2Fs (E2F1, E2F2, E2F3) (Strieder and Lutz, 2003), 

DNA replication (PCNA, MCM7, CDC6) (Feng et al., 2008; Keim et al., 1993; Shohet et al., 2002; Tsai 

et al., 2004), checkpoint kinases (CHEK1, CHEK2, WEE1) (Cole et al., 2011; Pugh et al., 2013; Russell 

et al., 2013) and ubiquitin-proteasome system (SKP2) (Evans et al., 2015; Muth et al., 2010). 

 

 

 

 

 

 

 

 

We further investigated the phenotypic influence of TEAD4 on cell cycle and proliferation of MYCNA 

cells. Fluorescence-activated cell sorting (FACS) analysis upon knockdown of TEAD4 in SK-N-Be2 

showed that TEAD4 depletion induced significant accumulation of cells in G0/G1 with concomitant 

decrease of cells in S phase (Figure 5-14 B). Consistent with this, we observed decrease in proliferating 

Figure 5- 14. TEAD4 is required for proliferation of MYCN-amplified cells 

(A) GSEA plot evaluating enrichment for cell cycle gene set in KEGG database among the genes in 

shTEAD4 signature. (B) Cell cycle profile and (C) cellular proliferation, assessed upon treatment of 

SK-N-Be2 cells with control or TEAD4 shRNA, 48hrs post transduction. Representative experiments 

are shown. 
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cells by EdU staining (Figure 5-14 C). Our data showed strong concordance between gene expression 

changes and the phenotypes observed upon TEAD4 knockdown. Collectively, these findings suggest 

TEAD4 as a critical component driving cellular proliferation of MYCNA cells. 

5.2.5  TEAD4 drives DNA damage response program in MYCNA neuroblastoma cells 
 

Furthermore, MYCNA tumors are characterized by activated DNA damage response (DDR) (Figure 4-

6), which has also been reported in the literature (Dominguez-Sola et al., 2007; Murga et al., 2011). 

GSEA analysis of RNA-Seq data upon TEAD4 depletion indicated significant enrichment of several 

DDR pathways that appeared to be activated by TEAD4 (Figure 5-15 A). A closer look into the genes 

showed activation of several critical genes such as Fanconi anemia gene family (FANCA, FANCI, 

FANCB, FANCD2), CHEK1, Rad51, BLM. Of particular interest was CHK1, the inhibition of which has 

been shown to be sensitive in MYC/N activated NBLs. We observed that upon silencing of TEAD4, 

CHK1 protein was depleted in a time dependent manner, with a concomitant increase in DNA damage 

marker, γ-H2Ax in MYCNA cell lines, SK-N-Be2 and LAN-1 (Figure 5-15 B, C). 
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5.2.6  TEAD4 positively regulates MYCN expression in MYCNA cells  

To further elucidate the association between TEAD4 and MYCN, we performed a time course 

experiment upon knockdown of TEAD4 in SK-N-Be2 cells and assessed its effect on MYCN. We 

observed potent downregulation of MYCN protein upon depletion of TEAD4 by two independent 

hairpins, in a time dependent manner (Figure 5-16 A). Meanwhile, regulation of MYCN mRNA was not 

as robust (Figure 5-16 B), indicating indirect post-transcriptional and post-translation regulation of 

MYCN by TEAD4. There was no evidence of direct protein-protein interaction between TEAD4 and 

Figure 5- 15. TEAD4 activates DNA damage response programs 

(A) Enrichment for REACTOME pathways involved in DNA damage response programs in TEAD4 

knockdown signature. (B, C) Immunoblot showing protein levels of TEAD4, CHEK1 and ᵧ-H2AX in 

(B) SK-N-Be2 and (C) LAN-1 cells transduced with control or two different TEAD4 shRNAs in a time 

course experiment.  
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MYCN by co-immunoprecipitation assay (data not shown). In order to search for genes that could be 

mediating MYCN regulation, we assessed the transcript level changes of the known modulators of 

MYCN protein turnover such as AURKA, FBXW7, HUWE1, TRPC4AP and CDK1 complex (Choi et al., 

2010; Otto et al., 2009; Sjostrom et al., 2005; Welcker et al., 2004; Zhao et al., 2008c), upon depletion 

of TEAD4 in our RNA-Seq data. We found that only AURKA and CDK1 were significantly downregulated 

(AURKA: 2 fold; p-value 2.48E-07; CDK1: 2 fold; p-value 1.38E-07) upon TEAD4 depletion.  

We further confirmed that TEAD4 regulates AURKA and CDK1 at protein and mRNA level (Figure 5-16 

A and 5-14 B). In addition, MYCN regulation by TEAD4 was validated in another MYCNA cell line, LAN-

1, albeit to a lesser degree (Figure 5-16 C and D). 
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Figure 5- 16. TEAD4 positively regulates MYCN expression  

(A, C) Immunoblot analysis of TEAD4, MYCN, CDK1 and AURKA proteins in (A) SK-N-Be2 and 

(B) LAN-1 cells transduced with control or two different TEAD4 shRNAs in a time course 

experiment (B, D) qPCR analysis showing TEAD4, MYCN, CDK1 and AURKA transcript level in 

the corresponding samples in (B) SK-N-Be2 and (D) LAN-1 cells, 2 days post-transduction. Error 

bars represent standard error calculated from samples run in triplicate. Similar results were 

obtained at 1, 3, 4 and 5 days’ time points (data not shown). 
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Accordingly, cycloheximide experiments revealed that MYCN turnover was increased by 2-fold upon 

knockdown of TEAD4, compared to control cells (Figure 5-17 A and B). As cycloheximide inhibits 

protein synthesis, the decay of the protein of interest can be determined by measuring the protein level 

over a course of time, by immunoblotting. Consistent with these findings, the degradation of MYCN 

could be efficiently blocked upon addition of proteasome inhibitor, MG-132 (Figure 5-17 C and D). MG-

132 reduces the degradation of ubiquitin-conjugated proteins and hence allows us to assess whether 

the regulation of MYCN by TEAD4 is post-translational. The degradation of MYCN requires 

phosphorylation of Serine 62 site by CDK1-Cyclin B complex, followed by phosphorylation of Threonine 

58 by GSK3 (Sjostrom et al., 2005). Similarly, AURKA stabilizes MYCN protein by competing with 

FBXW7 ubiquiin ligase, which degrades MYCN when S62 and T58 are phosphorylated.  
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Figure 5- 17. TEAD4 mediates protein stability of MYCN 

(A) Immunoblot of TEAD4 and MYCN proteins in SK-N-Be2 cells transduced with control and 

TEAD4 shRNA 72hrs post transduction, and treated with CHX for indicated times (B) Quantification 

of MYCN protein stability from results shown in (A) where MYCN level is normalized to GAPDH (C) 

Immunoblot of TEAD4 and MYCN proteins 72hrs post-induction. To inhibit proteosomal 

degradation, cells were treated with DMSO or MG-132 4hrs before harvesting. (D) Densitometry 

analysis of MYCN proteins from results shown in (C), where MYCN level is normalized to GAPDH. 

Representative experiments are shown. 
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5.2.7  TEAD4 positively regulates MYC protein  
 

 

 

Stabilization and degradation of MYCN and MYC proteins requires sequential phosphorylation at Serine 

62 and Threonine 58 and the sequence around this region is conserved in both (Sjostrom et al., 2005; 

Yada et al., 2004b). While there are conflicting data in the literature regarding regulation of MYC by 

AURKA (Otto et al., 2009; Yang et al., 2004), CDK1 has been shown to regulate both MYCN and MYC 

(Seth et al., 1991; Sjostrom et al., 2005). We examined the regulation of MYC by TEAD4 in MYCN-NA 

cells, SY-5Y and SK-N-AS. Indeed, we observed that TEAD4 regulates MYC as well (Figure 5-18). 

Similar to MYCNA cell lines, we observed potent downregulation of MYC, CDK1 and AURKA upon 

TEAD4 silencing in SY-5Y cell line. On the other hand, while MYC is potently downregulated upon 

TEAD4 silencing in SK-N-AS cell line, AURKA and CDK1 were not, indicating an alternative mechanism 

Figure 5- 18. TEAD4 mediates regulation of MYC in MYCN-non amplified NBL cell lines 

(A, C) Immunoblot analysis of TEAD4, MYC, CDK1 and AURKA proteins in SY-5Y cells transduced 

with control or two different TEAD4 shRNAs in a time course experiment (B) qPCR analysis showing 

TEAD4, MYCN, CDK1 and AURKA transcript level in the corresponding samples 2 days post-

transduction. Error bars represent standard error calculated from samples run in triplicate. 
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of MYC regulation by TEAD4 in these cells.  Regulation of both MYCN and MYC by TEAD4 suggests 

that it could play an important role in NBL cells overexpressing MYC/N. 

5.2.8  TEAD4 expression/activity is positively correlated with MYCN and MYC 

 

 

 

 

 

 

Figure 5- 19. TEAD4 expression and activity is increased in both MYCN and MYC  
over-expression tumors 

Scatter plot represent MYCN and MYC expression in x and y axis respectively. Samples are 

separated in MYCN amplified and non-amplified. Color code indicates the expression level (A)(B) 

and the single sample activity represented as normalized enrichment score (NES) (C)(D) of TEAD4. 

The analysis is shown replicated in TARGET (A)(C) and NRC (B)(D) cohorts. 
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To gain further insight into the interplay between TEAD4 and MYCN/MYC, we assessed their correlation 

in expression in NBL patient samples. It has been reported that the expression of MYCN and MYC 

occurs in a mutually exclusive fashion by repressing each other at specific promoter regions in NBL 

cells (Breit and Schwab, 1989). We sought to determine whether TEAD4 expression and activity 

correlate with MYCN amplification/expression and MYC expression. Indeed, both TEAD4 expression 

and activity, to a greater degree, are positively correlated with MYCN-amplification, MYCN expression 

as well as MYC expression (Figure 5-19).  

Taken together, our data indicates that TEAD4 could play an important role in driving MYCN mediated 

oncogenesis through positive feedback loop, thus providing means to inhibit their activity in high-risk 

NBL. 

5.2.9  TEAD4 is required for growth of NBL cells 
 

The observation that TEAD4 regulates MYCN/MYC and cell cycle related programs implicates a context 

specific role of TEAD4 in high-risk NBL. To evaluate the phenotypic consequences of TEAD4 depletion 

in MYCNA and MYCN-NA cell lines, we chose cell lines with varying degree of expression of MYCN and 

MYC. These cell lines express similar levels of TEAD4 protein expression (Figure 5-20 A). We 

performed soft agar colony forming assay to determine the effect of TEAD4 depletion in tumorigenecity 

of these cells. Knockdown of TEAD4 led to dramatic reduction in colony formation in MYCNA cell lines, 

SK-N-Be2 and LAN-1. In contrast, there was no change in colony formation in SK-N-FI and 40% 

decrease in SK-N-AS cell lines (Figure 5-20 B). The decrease in colony formation of SK-N-AS 

compared to SK-N-FI cells might also be attributed to higher expression of MYC in SK-N-AS. 

Knockdown of TEAD4 in these cell lines were confirmed at a protein level (Figure 5-20 C). 
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Figure 5- 20. TEAD4 is required for cell growth of cells of NBL cells with high MYC/N 

expression 

A) Immunoblot analysis of TEAD4, MYCN and MYC proteins in a panel of MYCN-amplified and 

non-amplified cell lines. (A) The effect of TEAD4 on anchorage-independent growth in MYCNA 

and control cell lines was evaluated by soft agar colony assays, 21 days post transduction (B) 

Immunoblot analysis confirming silencing of TEAD4 in the corresponding cell lines. 
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5.2.10  TEAD4 protein is differentially expressed in NBL patient subgroups 
 

Analysis of TEAD4 mRNA expression level and protein activity in NBL patient samples revealed 

significantly higher level of TEAD4 expression and activity in MYCNA subtype compared to other high 

risk NBL subtypes, with Stage I samples exhibiting lowest level of TEAD4 (Kruskal-Wallis test, p-value = 

3.05e-11). (Figure 5-21 A and B). We further performed tissue microarrays to confirm differential level of 

protein expression of TEAD4 in various NBL tissue samples. We analyzed TMA containing primary 

tumors from Children’s hospital of Philadelphia, comprising 116 neuroblastoma samples at different 

stages, risk-levels and MYCN-amplification status. Our results showed that high-risk group expressed 

higher level of TEAD4 protein compared to intermediate and low-risk group, with it being least 

expressed in normal tissues (adrenal, brain, tonsil) (Figure 5-21 C). We derived a final score (intensity of 

staining (0-3) X percentage of cells stained (0-100)) to and observed that high risk group has the 

highest score/TEAD4 expression (high-risk: 89.82; intermediate risk: 62.81; low-risk: 62.57; normal 

tissue: 53.33). Among the high-risk group, MYCN amplified cells had higher expression of TEAD4 

compared to MYCN-NA cells by intensity and final score (MYCNA: 139.44; MYCN-NA: 66.31) (Figure 5-

21 D). Representative images of TEAD4 protein expression analyzed in primary NBL samples by 

immunohistochemistry on a tissue microarray chip, segregated by stage of patients are shown (Figure 

5-21 E). 
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Figure 5- 21. TEAD4 expression and activity in NBL patient samples 

(A) TEAD4 mRNA expression and (B) VIPER activity derived from NBL patient GEPs across NBL 

subtypes (C) Histogram of primary NBL samples stained for TEAD4 by immunohistochemistry on a 

TMA, segregated by risk level and (D) MYCNA status in high-risk NBL, showing differential pattern 

of TEAD4 protein staining intensity (where 0=no staining; 1=low staining;  2=moderate staining; 

3=high staining)  (E) Representative immunohistochemistry staining of NBL tissue microarrays, 

separated by Stage of patients and MYCN amplification status, with TEAD4 antibody. 

Immunohistochemistry staining and analysis were performed by Daniel Martinez and Mark 

Yarmarkovich in the lab of Dr. John Maris at Children’s hospital of Philadelphia, PA. 
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5.2.11  TEAD4 expression is an independent predictor of prognosis in high-risk NBL 
 

To understand the clinical relevance of TEAD4 expression in NBL patient samples, we assessed the 

association of TEAD4 expression with NBL subtypes as well as various clinical and pathological 

features. We performed multivariate analysis to study the prognostic value of TEAD4 expression in NBL 

tumors using cox regression (Cox, 1972). We focused our analysis on NRC cohort since TARGET 

cohort is mainly composed of high-risk tumor patients, therefore is not valid for an unbiased survival 

analysis. Interestingly, TEAD4 expression is an exceptional predictor of patient survival (p-value: 5.75e-

8, HR=7.8) (Figure 5-22).  

 

A remarkable feature of NBLs is that there exist fairly good systems to predict outcome at diagnosis 

using clinical variables and genetic markers (Brodeur and Bagatell, 2014; Maris, 2010). The most 

important clinical variables predicting patient outcome are stage of disease and age of the patient 

Figure 5- 22. High TEAD4 expression is associated with NBL patient outcome.  

TEAD4 expression is Kaplan-Meier curve depicting corresponding increase in poor outcome with 

increasing expression of TEAD4. P-value was calculated using a cox proportional hazards model 

after removing stage I patient samples. 
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(Brodeur et al., 1993b). Moreover, MYCN-amplification has been shown to be associated with poor 

prognosis regardless of age of patient and stage of disease (Brodeur et al., 1984; Maris and Matthay, 

1999b; Seeger et al., 1985a). To determine whether TEAD4 provides predictive power over these most 

relevant clinical covariates, we performed multivariate cox regression analysis of TEAD4 expression 

with these clinical groups. TEAD4 expression predicts survival independently of the key prognostic 

variable including stage, age group stratified at 18 months, MYCN amplification status and a 

combination of the three variables (Table 5-4). 

 

 

 

 

 

 

 

 

As TEAD4 and MYCN regulate each other by positive feedback loop, their expressions are highly 

correlated with MYCN amplified cells expressing significantly higher level of TEAD4, we assessed 

whether TEAD4 has prognostic information independent of MYCN. We observed that TEAD4 predicts 

survival independent of MYCN expression (Table 5-5). However, in order to account for the effect of 

MYCN protein stabilization and MYC functional redundancy, we measured the total MYC/N 

transcriptional activity (Valentijn et al., 2012) by single sample GSEA (Barbie et al., 2009b) and 

observed that TEAD4 predicts survival independent of MYC/N protein activity (Table 5-5).  

Table 5- 4. Tead4 Multivariate Cox proportional hazards regression analysis with clinical 
covariates 
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Table 5- 5. Tead4 Multivariate Cox proportional hazards regression analysis with other 
biomarkers and relevant signatures 

 

Similarly, NTRK1 expression is one of the most reliable biomarker of good prognosis of NBL ((Brodeur 

and Bagatell, 2014). TEAD4 again predicted survival independent of NTRK1 expression (Table 5-5). 

Additionally, we measured whether TEAD4 association with survival can be explained only by its impact 

in cell cycle and the proliferative level of the tumor. Most biomarkers associated with cancer survival 

have been deemed to be correlated with proliferation (Venet et al., 2011), we measured the activity of a 

meta-PCNA signature and again observed TEAD4 independency as a survival predictor (Table 5-5). 

Hence, the survival data implies that TEAD4 expression could be used as an important biomarker of 

patient outcome in NBL patients. 

5.2.12  TEAD4 expression is not correlated with YAP/TAZ expression and activity in NBL cells 

As YAP/TAZ/TEAD protein complex has been shown to be an effector of hippo signaling pathway to 

control the transcriptional activation of their target genes, we assessed whether there was differential 

activity of YAP/TAZ in NBL cells. As activity of YAP/TAZ is defined by their nuclear/cytoplasmic 

localization, we tried several measures to study their differential activity in high-risk NBL subtypes. 

Surprisingly, YAP and TAZ activity, as defined by the expression of their target genes retrieved from 

msigDB, were not correlated with the expression of TEAD4 (Figure 5-23 A, B).  

 

Similarly, we observed that there was no clear discrimination in nuclear localization of YAP/TAZ in 

MYCNA vs. MYCN-NA cell lines (Figure 5-23 C). Furthermore, expression and activity of YAP/TAZ did 

not show any prognostic value (Figure 5- 24).  
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Figure 5- 23. TEAD4 expression does not correlate with YAP/TAZ or activity 

(A) Scatterplot showing correlation between YAP/TAZ activities based on gene sets retrieved from 

REACTOME and msigDB databases (C) Immunoblot analysis of nuclear and cytoplasmic 

localization of TEAD4, YAP and TAZ in MYCN amplified and non-amplified cell lines.  
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5.3  Materials and methods 

 
 
Cell lines and cell culture 

All neuroblastoma cell lines were maintained in DMEM or RPMI-1640 supplemented with 10% FBS, 20 

mM L-glutamine and antibiotics. 293FT cells were maintained in DMEM supplemented with 10% FBS 

and antibiotics. Treatment of SK-N-Be2 cells with cycloheximide (100μg/ml) and MG-132 (20μM) were 

carried out as indicated. 

 

Figure 5- 24. YAP/TAZ expression and activity has no prognostic value in NBL 

Kaplan-Meier curve depicting outcome corresponding to increasing expression of (A) YAP and (B) 

TAZ as well as activity of (C) YAP and TAZ and (D) YAP derived from msigDB based gene set 

expression. P-value was calculated using a cox proportional hazards model after removing stage I 

patient samples.  
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Pooled shRNA screening 

Lentiviral particles encoding Control shRNA (SHC002) or 4-5 hairpins against each MR were purchased 

from Sigma. 5ul of the lentivirus were infected into SK-N-BE2, IMR-5, SK-N-AS and NLF in the 

presence of 2-8ug/ml polybrene. The cells are transduced with unique shRNAs in a 96 well plate, 

followed by pooling of the cells and puromycin selection with 0.5μg/ml puromycin. For in-vitro screening, 

he cells were collected after puromycin selection (T0= day 4) and (Tf= day 28). For in-vivo screening, 

input cells were collected (T0= 10 days) and 3 X 106 cells were implanted into nude mice and tumors 

were collected (Tf= 4 weeks) after implantation. Genomic DNA was isolated by shRNA representation 

measured at each time points; shRNA cassettes were amplified from the genomic DNA using primers 

with Illumina adapters and barcode sequences. The samples were pooled together and the amplicons 

were sequenced using Illumina MiSeq® instrument. The raw sequencing data of shRNA screens was 

deconvoluted and normalized to count per million in each sample (Yu et al., 2013). Then we analyzed 

the normalized shRNA abundance data by ScreenBEAM method (Yu et al., 2015) to identify essential 

genes, whose hairpins were depleted over time, in each cell line, with in vitro and in vivo being 

separated. To integrate gene-level dropout scores of multiple cell lines in one group, for example, MYC-

amplified, we performed the meta-analysis using Stouffer’s z score method (Stouffer et al., 1949). 

 

Lentiviral transduction 

Lentiviral particles encoding control shRNA (SHC002, SHC202) and 2 hairpins against each MR were 

produced as described previously (Lefebvre et al., 2010). We used pLKO.1-puro lentiviral constructs 

(Sigma) (Table S1). The lentiviruses were concentrated using Amicon Ultra Centrifugal filter unit-100K 

(Millipore) for 40 min or ultracentrifugation at 25,000rpm in SW28 rotor for 1.5 hrs (Beckman). 

Neuroblastoma cell lines were transduced with the viral particles in the presence of 2-8μg/ml polybrene. 

The transductions were performed with a mix of 2 hairpins per gene to control for off-target effects, 

unless otherwise stated. 
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siRNA transfection  

ON-TARGET plus siRNA smartpool against the MRs and non-targeting control (Dharmacon) (Table S2) 

were used to transfect the neuroblastoma cell lines at a concentration of 20nM, using Dharmafect 

reagent (Dharmacon). 

 

Immunoblot analysis  

For immunoblotting, whole-cell lysates were prepared by using RIPA buffer (Teknova) with protease 

inhibitor cocktail (Roche). Proteins extracts were resolved by SDS–PAGE and analyzed by standard 

procedures using the following antibodies: TEAD4 (ab58310; abcam), MYCN (9405; Cell Signaling), 

MYC (5605; Cell Signaling) GAPDH (sc-32233; Santa Cruz), α-tubulin (sc-8035; Santa Cruz), AURKA 

(14475; Cell Signaling), CDK1 (9116; Cell Signaling), CHEK1 (2360; Cell Signaling), YAP/TAZ (14475; 

Cell Signaling). Densitometry analyses were performed using ImageJ software. 

 

RNA isolation, RNA-Seq and RT-PCR analyses 

Total RNA were extracted using Direct-zol RNA Miniprep kit (Zymo Research). For RT-PCR, cDNA was 

prepared using qScript Flex cDNA Synthesis kit (Quanta Biosciences), and the amount of transcripts 

were quantified using Power SYBR Green master mix (Thermo Fisher Scientific), with the respective 

oligonucleotides (Table S3) in Applied Biosystems 7300 RT-PCR system. The number of copies of each 

gene was normalized to the housekeeping gene, GAPDH and HPRT1. For RNA-Seq, the integrity of 

RNA was analyzed using Bioanalyzer (Agilent Technologies). RNA-Seq libraries were made with 

Illumina TruSeq RNA Sample Prep protocol by Columbia Genome Center and sequenced on Illumina 

NextSeq 500. All libraries have >30 milllion reads sequenced. The libraries were aligned to hg19 human 

genome using TopHat. Raw counts of each gene were generated using GenomicFeatures R-system 

package (Bioconductor). The data was then normalized using voom (Law et al., 2014) and significantly 

differentially expressed genes were retrieved using limma R-system package (Bioconductor).  
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Tissue microarray analyses 

TEAD4 (ab58308; abcam) antibody was used to stain formalin fixed paraffin embedded tissue slides.  

Staining was performed on a Bond Max automated staining system (Leica Microsystems).  The Bond 

Refine polymer staining kit (Leica Microsystems) was used.  The standard protocol was followed with 

the exception of the primary antibody incubation which was extended to 1 hour at room temperature. 

TEAD4 antibody was used at 1:1K dilution and antigen retrieval was performed with E1 (Leica 

Microsystems) retrieval solution for 20min.  Slides were rinsed, dehydrated through a series of 

ascending concentrations of ethanol and xylene, then coverslipped.  Stained slides were then digitally 

scanned at 20x magnification on an Aperio CS-O slide scanner (Aperio, Vista CA). 

 

Cell viability assays 

Cell viability was measured by resazurin based assay using Presto blue cell viability reagent (Thermo 

Fisher Scientific) by following manufacturer’s protocol. 

 

Cell cycle, proliferation and apoptotic assay by Flow Cytometry 

For cell cycle analysis, SK-N-Be2 cells were fixed in 70% ice-cold ethanol, stained with propidium iodide 

(Sigma). Proliferation assay was performed by evaluation of EdU incorporation by using Click-It EdU 

Alexa Fluor 488 kit (Thermo Fisher Scientific) using manufacturer’s protocol. Similarly, apoptotic assay 

was performed using Annexin V staining kit (BD Pharmingen), according to manufacturer’s protocol). All 

analyses were performed on BD LSRII Cell Analyzer and FlowJo software (Tree Star). 

 

Colony forming assays 

Soft agar colony forming assays were performed as described previously (Franken et al., 2006). In brief, 

5000-10000 cells were seeded in Sea Plaque Low Melt Agarose (Lonza) in growth media for 3 weeks. 

Cells are then fixed, stained with crystal violet and imaged under dissecting microscope. The colonies 

were quantitated using ImageJ software. 
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Bioinformatic analyses 

Refer to Chapter 4 materials and methods. 

5.4  Discussion 
 

With the emergence of high-throughput data characterizing genetic, epigenetic and functional properties 

of normal and tumor related samples, the list of putative causal drivers of malignant phenotypes are 

continuously expanding. The validity of these putative drivers is often lost in the heterogeneity of tumor 

samples and awaits functional validation. In the previous chapter, we have shown that classification of 

tumors into distinct molecular subtypes followed by interrogation of context-specific regulatory network 

can be used to identify the transcription factors driving subtype specific signature crucial for deciphering 

the heterogeneity of high-risk NBL. In this chapter, we have shown that such computational approaches 

when integrated with experimental evidence aids elucidation of key mechanisms underlying subtype 

specificity and decipher the control points in tumors. In the case of NBL tumors with high activity of 

MYC/N, our results demonstrated that TEAD4 is the critical MR of this subtype. TEAD4 is neither 

mutated nor is the most differentially expressed gene in MYCNA cells and hence has escaped the 

detection process that relies on identification of classical oncogenes by these measures. 

 

Even though genome-wide RNAi screenings have resulted in important discoveries in different fields 

and contexts, reproducibility and specificity has been an issue (Jackson and Linsley, 2010; Mohr et al., 

2010). The noise and false discovery inherent  to the high-throughput approaches are exacerbated by 

the off-target effects (Mohr et al., 2010, 2014). These shortcomings of the RNAi screening strategies 

were offset by our evidence-based focused screening by multiple RNAi platforms. Moreover, it allowed 

maximal representation of individual shRNAs for in-vivo pooled screening and hence reduced the clonal 

dominance inducing hairpin representation bias, which is a recurrent problem in such screens (Nolan-

Stevaux et al., 2013). Hence, we could identify TEAD4 as a master regulator of MYCNA subtype with 

high degree of confidence.  
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Indeed, further experimentation demonstrated that TEAD4 is necessary for sustaining the proliferative 

state of MYCNA cells by robustly activating several inter-regulatory components of cell cycle machinery 

involved in intricate control of the system. Most likely, the ability of TEAD4 to promote proliferation 

probably stems from its ability to regulate several genes implicated in S-phase entry and progression, by 

activating several components of origin licensing and assembly of pre-replicative complexes, to ensure 

robustness of DNA replication. In addition, our results also indicated that TEAD4 is critical in stabilizing 

MYCN as well as MYC proteins. This is significant in the light of recent findings suggesting that 

malignant neuroblastoma progression is driven by protein overexpression of MYCN or MYC (Huang et 

al., 2011; Wang et al., 2013; Westermann et al., 2008), and that these MYC-driven NBLs comprises the 

highest-risk NBL cases (Wang et al., 2015b). Furthermore, our results indicate that TEAD4 could 

potentially act upstream of the kinases that has been shown to be synthetic lethal to MYC/N addicted 

cells like AURKA (Otto et al., 2009), CDK1 (Goga et al., 2007; Sjostrom et al., 2005), CDK2 (Molenaar 

et al., 2009), and CHK1 kinases (Cole et al., 2011), some of which were validated at the protein level 

(Figure 5-16, 5-17). 

 

As observed with MYC/N and other oncogenes, it is plausible that activation of TEAD4 in concert with 

MYC/N allows the cells to undergo rapid proliferation and replication stress, and simultaneously 

activates the DDR pathways including ATR-Chk1 signaling molecules to support the replication 

machinery and restrain the replicative stress – to allow continued proliferation and survival of the cells. 

Recent studies have shown that the enhanced oncogene induced replication stress and DNA damage 

leads to dependency on stress support mechanisms that could be the Achilles’s heel of tumor cells with 

high replication stress (Bartek et al., 2012). It has been postulated that the oncogene mediated DNA 

DSBs in precancerous lesions contribute to genomic instability and when combined with p53 

inactivation allows the cells to be dependent on DDR response pathways for tumor formation and 

maintenance (Halazonetis et al., 2008b). Consistently, inhibition of Chk1 and Wee1 has been shown to 

exhibit strong synthetic lethality in MYC driven tumors including NBLs with high MYC/N activity by 

inducing potent genotoxic response (Cole et al., 2011; Murga et al., 2011; Russell et al., 2013). As 

MYC/N are capable of inducing oncogene-induced replication stress and genomic instability 
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(Dominguez-Sola et al., 2007; Felsher and Bishop, 1999; Vafa et al., 2002), the positive feedback loop 

between TEAD4 and MYC/N could potentially support this mechanism for tumor initiation and 

maintenance. The landscape of oncogene and non-oncogene addiction is vast and potentially provide 

crucial cancer drug targets (Luo et al., 2009a). TEAD4 could potentially contribute towards this 

phenomenon, where the MYC/N activated tumor cells depend on these genes to maintain balance 

between cellular proliferation and stress pathways to continue survival and expansion of the cells. 

Together, TEAD4 and MYCN controls the hallmarks of MYCNA subtype such as high proliferation and 

cell growth, activated DNA damage response pathways, and undifferentiated phenotype. 

 

TEAD4 has been shown to be critical effector of hippo signaling pathway by mediating YAP and TAZ 

dependent cellular growth, oncogenesis and mesenchymal transformation (Harvey et al., 2013; Zhao et 

al., 2008b). However, we observed that TEAD4 expression is not correlated with active form of YAP or 

TAZ and that YAP and TAZ do not exhibit prognostic value like TEAD4. Recent studies showed that 

TEAD4 could function independently of Hippo pathway (Liu et al., 2015), and that it does indeed have a 

transcriptional activation domain which allows it to induce transcriptional activation independent of the 

YAP/TAZ binding domain (Qiao et al., 2015) — in contrast to the long believed view that TEAD4 is 

unable to induce transcriptional activation by itself (Xiao et al., 1991). Additional experiments are 

required to assess whether TEAD4 acts in concert with YAP/TAZ or independent of the binding 

partners, in the context of NBL. TEAD4 has been shown to be required for early stages of embryonal 

development (Yagi et al., 2007) and pathogenesis of several cancers (Lim et al., 2013; Liu et al., 2015; 

Wang et al., 2015). Whether TEAD4 has a role in neural crest development or only during tumorigenesis 

remains to be established.  

 

Further studies are required for in-depth understanding of the implication of TEAD4 activity in NBL 

biology particularly in relevance to clinical significance. Unlike the NBL cell lines, which expressed 

TEAD4 at a similar level, disregard of MYC or MYCN expression level or MYCN-amplification status, we 

observed that TEAD4 was overexpressed in MYCNA tumors among the high-risk group of patients, 

hence providing an opportunity for more specificity in inhibiting the growth of MYCNA cells by inhibiting 
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TEAD4 activity in these cells. Given that TEAD4 expression predicts patient outcome better than 

MYCNA status, it could potentially be used as a biomarker to facilitate better clinical evaluation.  
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Chapter 6 
 
Conclusions and Future directions 
 

The emergence of multidimensional datasets characterizing genome-wide transcriptional, genetic, 

epigenetic, and functional properties of large normal and tumor-related samples are aimed at 

understanding the biological basis of cancer – to provide more effective targeted therapeutic 

approaches. The computational approaches to extract biological insights from these datasets, and 

experimental approaches to ensure validity of the computational predictions are essential to identify 

bona fide targets of therapeutic value. This thesis is a contribution towards this objective — providing 

systematic dissection of the transcriptional, genetic and clinical profile of the neuroblastoma patients, 

followed by interrogation of context-specific transcriptional regulatory pathways using computational and 

experimental approaches.   

 

The contribution comes both in terms of developing a pipeline that could be applied to dissect the 

heterogeneity and identify the molecular drivers of other tumor types; and also by providing a molecular 

target for MYCNA subtype of high-risk NBL. Firstly, the pipeline yields subtype specific targets or master 

regulator modules by assembly and interrogation of the transcriptional networks in tumor specific 

context. In general, cancers including NBL have a complex and heterogeneous genomic landscape, 

which channels through the functional bottlenecks or master regulators that are responsible for 

maintaining the tumor state. With increasing amount of studies revealing diverse mutations and low 

paucity of high-frequency mutations in most tumors (Cancer Genome Atlas Network, 2012; Jones et al., 

2008; Parsons et al., 2008; Wood et al., 2007), it is becoming increasingly evident that the we should 

shift our focus to identify the critical nodes within the complex regulatory network that the tumorigenic 

cells rely on. Rather than focusing on the initiating genetic events, we focused on core regulatory 

machinery responsible for implementation and maintenance of tumor state. Our results demonstrate the 

validity of our hypothesis; which led to elucidation of three distinct subtypes of high-risk NBLs as well as 

core regulatory machinery responsible for their implementation and stability, including canalization and 

integration of mutational events and the structural variants that represent the hallmark of this disease. 
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Hence, the strategy shown here for computational prediction and systematic experimental validation 

could effectively be used to process other tumor phenotypes to yield validated targets that constitute 

either oncogene or non-oncogene dependencies of the tumor (Luo et al., 2009b). 

 

The major challenge in NBL remains discovery and implementation of targeted therapeutics — as the 

children with high-risk NBL continue to be treated with conventional chemotherapy. While the patients 

respond to therapy in the beginning, eventually, they relapse and succumb to the disease. Even though 

synthetic lethal screens have identified some potential drug targets for MYCN-amplified tumors (Cole et 

al., 2011; Molenaar et al., 2009; Otto et al., 2009; Russell et al., 2013; Sjostrom et al., 2005); similar to 

other tumors, the complexity and heterogeneity of NBL’s genomic landscape suggests that such an 

approach for single target may lead to relapse following expansion of drug resistant subclones 

harboring either bypass mechanisms or alternative genetic variants. Our approach provides an 

advantage by finding the MRs that incorporate signaling from the genetic information as well as 

signaling cascade, and hence provide more universal dependency, as evidenced by our results. Thus, 

following on recent results from assembly and interrogation of regulatory networks, we focused on more 

universal and core tumor dependencies – that are relatively independent of the specific genetic 

alteration landscape of tumors with similar transcriptional profiles. 

 

By performing exhaustive experimental analyses of MYCNA subtype MRs, we have identified TEAD4 as 

the key transcriptional node, which in concert with MYCN drives the hallmarks of MYCNA subtype of 

NBL including hyper proliferation, activation of DDR pathways, activated cellular growth programs and 

repression of differentiation programs. We have demonstrated that TEAD4 is necessary for proliferation 

of MYCNA cells by transcriptional regulation of several genes implicated in cell cycle progression and 

DNA replication. Furthermore, it also activates DDR pathways including ATR-Chk1 signaling molecules, 

which has recently been shown to be a necessary mechanism taken by the tumor cells with high 

replication stress and genomic instability to cope with the stress for sustained cell proliferation (Bartek et 

al., 2012). In addition, our results also indicated that TEAD4 is critical in stabilizing MYCN as well as 

MYC proteins, which is significant in the light of recent findings that NBLs with high MYC/N comprises 
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the highest risk cases (Wang et al., 2015b). Furthermore, our results indicate that TEAD4 indeed 

represents the universal dependency of MYC/N activated tumors as demonstrated by its ability to 

regulate several kinases that has been shown to be synthetic lethal to MYC/N addicted cells like 

AURKA (Otto et al., 2009), CDK1 (Goga et al., 2007; Sjostrom et al., 2005), CDK2 (Molenaar et al., 

2009), and CHK1 kinases (Cole et al., 2011). Given that MYCNA tumors express higher level of TEAD4 

mRNA and protein, and the biological relevance of the TEAD4 regulated programs, it is plausible that 

TEAD4 acts in concert with MYCN to induce rapid proliferation and replication stress in NBL cells, and 

by activating the DDR programs allows the cells to survive the inherent stress. Hence, inhibition of 

TEAD4 activity in these cells offers an attractive therapeutic strategy. In addition, our results indicate 

that TEAD4 expression predicts patient outcome better than MYCNA status, and hence could potentially 

be used as a biomarker to facilitate better clinical evaluation.  

 

Even though our results indicate that TEAD4 could potentially play an important role in NBL biology, 

particularly in cells with high MYC/N activity, further investigation is required to ensure the validity of 

TEAD4 as a potential target in patient tumors as well as to understand the mechanism in-depth, by 

which TEAD4 drives the subset of high-risk NBL. The first step towards ensuring its validity in patient 

tumors would be to test whether TEAD4 is required for initiating and/ or maintaining NBL tumors in-vivo. 

This could be tested on xenograft mice models where NBL cells stably infected with inducible TEAD4 

shRNA would be tested for tumor growth compared to control shRNA. Another important question that 

could be looked into is whether knockdown of TEAD4 in tumors that are already formed would lead to 

regression of tumors. This can be performed by injecting the mice with NBL cells stably infected with 

inducible TEAD4 shRNA or control shRNA and let the tumor develop for a certain time period before 

inducing TEAD4 shRNA expression.  

 

Upon validation of the role of TEAD4 in-vivo, the following step would be to assess the chemical 

tractability of TEAD4 activity. As with other TFs, TEAD4 being a TF, lacks the small molecule binding 

pockets for inhibition of its activity. Therefore, we could screen for small molecule compounds that could 

potentially inhibit the activity of TEAD4 protein. This could be performed by treating a panel of MYCNA 
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and MYCN-NA cell lines with the available drug libraries to measure the sensitivity of the drugs in 

MYCNA cells compared to the control cells. The compounds that are selective for MYCNA cells could 

further be analyzed by gene expression profiling upon drug perturbation to observe whether the 

compound inhibits the activity of TEAD4. This would be done by assessing the overlap of the target 

genes induced upon drug treatment to the ARACNe predicted targets of TEAD4 and/or the functional 

targets of TEAD4 retrieved by performing RNA-Seq of MYCNA cells upon knockdown of TEAD4. In 

order to further evaluate the effect of drug in-vivo, we could test the drugs in the patient derived 

xenograft (PDX) tumors, which are NBL patient primary tumor that are implanted directly into 

immunodeficient mice. By performing drug sensitivity test on a panel of PDX models, we could evaluate 

the anti-tumor activity and specificity of the compound to prioritize the appropriate compounds for 

clinical development. We have already initiated an effort to identify the drugs specific for the individual 

subtypes in collaboration with the lab of Dr. Brent Stockwell (Columbia University, NY) and Dr. John 

Maris (Children’s hospital of Philadelphia, PA).  

 

With regard to further probing into mechanism of action of TEAD4 in the context of NBL, many thought 

provoking questions have arisen, with our data serving as a preliminary starting point. Firstly, as TEAD4 

seemingly controls the programs that are very similar to the ones invoked upon replication stress, it 

would be very interesting to follow up on this idea to find out if TEAD4 indeed plays a part in inducing 

replication stress in MYC/N activated cells. A simplified version of the experiment would be to induce 

retroviral mediated overexpression of TEAD4 in wild-type and p53 or p21 null mouse embryonic 

fibroblasts (MEFs) and observe karyotypic analysis on metaphase spreads to detect if any chromosomal 

alterations are induced. The rationale behind using p53 or p21 null cells is that NBL tumors are 

assumed to have defective G1/S arrest system because of inactivation of p53 by various mechanisms 

(Tweddle et al., 2003). We could also evaluate if overexpression of TEAD4 induces transformation of 

MEFs by colony forming assays to confirm its oncogenic potential. As TEAD4 seemed to regulate 

several genes involved in origin licensing and origin firing, we could test to evaluate if overexpression of 

TEAD4 could induce aberrant origin firing and show signs of aberrant proliferation. 
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Another question as to whether or not TEAD4 acts independently or with other coactivators such as 

YAP and TAZ, in the context of NBL is also of interest. Increasing number of studies in several tumor 

contexts have started to show the importance of Hippo signaling pathway in tumor cell proliferation, cell 

growth and metastasis, with TEAD family of proteins acting as an essential TF for YAP/TAZ mediated 

oncogenic action (Harvey et al., 2013). The experiments presented in this thesis, particularly the ones 

where TEAD4 was depleted were performed in cells with intact YAP/TAZ. Therefore, it would be 

interesting to assess whether TEAD4 mediated function is dependent or independent of YAP/TAZ. This 

could be done by studying whether the phenotype induced by TEAD4 is also present when YAP/TAZ 

are also depleted in the cells and if YAP/TAZ depletion phenocopies TEAD4.  

 

In summary, we have elucidated the master regulators and tumor checkpoints of high-risk NBL and 

identified TEAD4 as a critical transcriptional node driving a subset of these tumors. The ultimate and 

ideal goal for NBL patients would be to find targeted therapeutics and provide personalized therapy for 

improved efficacy — this thesis is a small contribution towards this overarching goal — by providing 

understanding of the molecular circuitry of high-risk NBL, where our findings have indicated that TEAD4 

could provide an oncogenic vulnerability, inhibition of the activity of which could be beneficial for a 

subset of NBL patients. Our findings also provide a preliminary ground to understand further – the role 

of TEAD4 in NBL biology. 
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