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Abstract
ChIP-seq enables genome-scale identification of regulatory regions that govern gene

expression. However, the biological insights generated from ChIP-seq analysis have been

limited to predictions of binding sites and cooperative interactions. Furthermore, ChIP-seq

data often poorly correlate with in vitromeasurements or predicted motifs, highlighting that

binding affinity alone is insufficient to explain transcription factor (TF)-binding in vivo. One

possibility is that binding sites are not equally accessible across the genome. A more com-

prehensive biophysical representation of TF-binding is required to improve our ability to

understand, predict, and alter gene expression. Here, we show that genome accessibility is

a key parameter that impacts TF-binding in bacteria. We developed a thermodynamic

model that parameterizes ChIP-seq coverage in terms of genome accessibility and binding

affinity. The role of genome accessibility is validated using a large-scale ChIP-seq dataset

of theM. tuberculosis regulatory network. We find that accounting for genome accessibility

led to a model that explains 63% of the ChIP-seq profile variance, while a model based in

motif score alone explains only 35% of the variance. Moreover, our framework enables de
novoChIP-seq peak prediction and is useful for inferring TF-binding peaks in new experi-

mental conditions by reducing the need for additional experiments. We observe that the

genome is more accessible in intergenic regions, and that increased accessibility is posi-

tively correlated with gene expression and anti-correlated with distance to the origin of repli-

cation. Our biophysically motivated model provides a more comprehensive description of

TF-binding in vivo from first principles towards a better representation of gene regulation in
silico, with promising applications in systems biology.

Author Summary

A quantitative description of transcription factor (TF) binding in vivo is critical for our
understanding of gene regulation. Chromatin Immunoprecipitation followed by sequenc-
ing (ChIP-seq) provides a genome-scale map of TF-binding. However, a quantitative char-
acterization of the impact of genome accessibility on TF-binding in bacteria remains
elusive. In order to help recruit or block gene expression, TFs must have physical access to
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regulatory regions. This paper presents a thermodynamics model that describes TF-bind-
ing in terms of genome accessibility and binding site affinity. We apply this model in a
ChIP-seq dataset forMycobacterium tuberculosis and observed that genome accessibility is
critical to our understanding of TF-binding in vivo. This new model provides practical
applications, such as de novo prediction of TF-binding peaks and a framework to measure
DNA accessibility from ChIP-seq data. Our model enables us to quantify the relationship
of genome accessibility with genomic features and suggest mechanisms that influence
genome accessibility in vivo (e.g. distance to oriC). The model proposed in this study gives
new perspective for ChIP-seq analysis in bacteria towards an improved description of gene
regulation in silico.

Introduction
In order to adapt to different environmental challenges, microorganisms need to precisely con-
trol the expression of specific sets of genes at defined magnitudes at any given moment [1, 2].
This control is mediated by regulatory proteins such as transcription factors (TF) that are able
to recognize and bind specific DNA sequences to recruit or block the gene expression machin-
ery. Recent advances in next-generation sequencing have now enabled us to measure TF-bind-
ing in vivo at the genome scale [3–5].

Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) is a popular technol-
ogy for in vivomeasurements of TF binding [6–8], which uses TF-specific antibody selection
and high-throughput sequencing to identify the genomic regions that are bound by a query TF.
In parallel, technologies for high-throughput characterization of TF-binding in vitro have also
emerged [9–13]. Yet, only a fraction of the expected binding sites are bound under physiologi-
cal conditions [8] and in vivomeasurements are poorly correlated with in vitro ones [14, 15].

TF-binding in vivo is often more complex than what can be measured in vitro due to multi-
ple factors [16]. For instance, strength of TF-binding affinity [17, 18], presence of multiple
binding sites [19], cooperative interactions [18, 20], and genome accessibility [21, 22] have all
been shown to impact TF-binding in vivo. Incorporating these parameters in ChIP-seq analysis
can lead to more accurate models of gene regulation across the whole genome [14, 15].

As sequencing costs continue to decrease, challenges in ChIP-seq studies are transitioning
from data generation to analysis and modeling [23]. Data analysis methods have moved from
purely peak identification to physically-motivated models of ChIP-seq coverage [24]. Early
computational methods focused on identifying statistically enriched peaks that correspond to
TF-binding regions [5, 25–28]. Recent methods are incorporating mechanistic principles to
extract regulatory insights [24, 29–31]. For example, the BRACIL method integrates ChIP-seq
coverage, motif score, and thermodynamic modeling through a signal processing representa-
tion to predict binding site locations with high-resolution as well as cooperative interactions
[24]. The growing abundance of ChIP-seq data creates a greater demand for more comprehen-
sive models [15, 23, 32] and an opportunity to evaluate key parameters of TF-binding in vivo.

Within the cell, transcription factors need to have physical access to the relevant regulatory
regions in order to control gene expression. In eukaryotes, genome accessibility is mostly
caused by different chromatin states due to epigenetic factors such as histone modification and
nucleosome structures [33]. The chromatin state can lead to gene silencing throughout the
genome and have been used to estimate genome accessibility. In contrast, bacteria do not orga-
nize their genome in nucleosomes, thus genome accessibility is a subtle feature that is hard to
be measured. In general, accessibility is not uniform across the genome due to the presence of
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global factors such as nucleoid associated proteins (NAPs) that alter genomic architecture [15,
21, 22] or local factors such as presence of repressor elements that block recruitment of RNA
polymerase [21, 34]. Alteration of global genome structure can lead to changes in gene expres-
sion [35, 36]. For example, NAPs are associated with highly expressed genes that are organized
into transcription factories [21]. The challenges in measuring and estimating genome accessi-
bility have impeded the incorporation of this feature into bacterial ChIP-seq analysis.

Here, we present a novel biophysically motivated model that incorporate genome accessibil-
ity and highlights its importance in assessing TF-binding in bacteria. Extending our previous
efforts to mechanistically characterize ChIP-seq coverage information [24], our model treats
ChIP-seq binding profiles as a Boltzmann distribution with two parameters: genome accessibil-
ity and binding affinity. We applied this model on a large-scale dataset used to map the regula-
tory network ofM. tuberculosis and compared the results to a simplified model that only
considers binding affinity. Our results show that genome accessibility can explain variability in
ChIP-seq coverage and peaks, and is associated with specific groups of gene function.

Results

Biophysically motivated model of TF-binding in vivo
Using ChIP-seq data, biophysically motivated models can provide a quantitative framework
for determining key parameters of in vivo TF-binding. We represent the ChIPseq profile in
region bins of 500 bp and look for the influence of genome accessibility in TF binding. From a
thermodynamic perspective, the probability, pij, that a TF j binds to a genome region i depends
on the affinity between the TF and the specific sequence it binds, wij, as well as on the degree
that this region is accessible, ai. Formally, the probability of binding is defined by the following
equation (see Methods for detailed derivation):

logðpijÞ ¼ ai þ wij ð1Þ

TF-binding is represented in terms of binding affinity alone by constraining ai = 0 for all i.
The accessibility parameter is inferred indirectly by performing linear regression on a large-
scale dataset of ChIP-seq experiments [15, 32]. The affinity parameter is obtained from the
motif score. The parameter ai describes a global trend in the probability of binding to region i
by any TF. Here, we refer this as the genome accessibility for better biological interpretation of
the results. Fig 1A and 1B illustrates schematically how genome accessibility influences TF-
binding. Eq 1 is motivated by the poor correlation between ChIP-seq coverage and motif score
(S1 Fig). For example, genomic regions with weak motif scores are observed with strong bind-
ing signal and vice versa (Fig 1).

Genome accessibility improves ChIP-seq interpretations
We evaluated the extent to which genome accessibility can explain ChIP-seq data. We model
our data according to Eq 1 and use a linear fixed effect model to estimate parameters and pre-
dict ChIP-seq profiles. The dataset comprises ChIPseq data for a total of 64 unique TFs
obtained under same protocol and growth condition (see Methods). The ChIP-seq profile for a
specific TF is defined as the normalized abundance of sequence reads that align to each region.
The result suggests that the accessibility parameter is a global trend that provides preferential
binding on specific genomic regions. We observe that genome accessibility improves prediction
of ChIP-seq profiles when compared to a model that considers only binding site affinity. Quan-
titatively, the accessibility model explains 63% of the observed variance, while motif score
alone explains only 35% (p-value<10−16, Fig 2). We also explored a more complex
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Fig 1. The role of genome accessibility in TF-binding in vivo. The genome accessibility model
differentiates genomic regions as accessible (A) or not accessible (B). ChIP-seq data show that coverage
cannot be explained by binding affinity alone. Example data is shown for an accessible region (A) that has a
weak binding site (small purple box, p-value ~ 5x10-4) and high ChIP-seq coverage. The gray dashed line
indicates the location of the TF-binding site motif. Example data is shown for an inaccessible region (B) with a
strong binding site (big purple box, p-value ~ 5x10-6) but low coverage. Example data shown are forM.
tuberculosis DosR ChIP-seq experiments [15].

doi:10.1371/journal.pcbi.1004891.g001

Fig 2. Genome accessibility improves prediction of ChIP-seq profiles in comparison to a model that only considers motif score.Motif score alone
explains only 35% of the observed variance (A), while the improved biophysically motivated model that incorporates genome accessibility explains 63% of
the variance (B) (p<10−16, likelihood ratio test). The predicted coverage is estimated from parameters fitted for Eq 1. Coverage is represented in terms of log
(pij). The panels display a subset of 10000 points that was randomly selected to reduce the density of points and improve visualization.

doi:10.1371/journal.pcbi.1004891.g002
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representation for binding affinity that considers best motif match, number of binding motifs
and a combined score for all motif matches. The combined score is defined as the sum of -log
(pvalue) for all motif matches. The accessibility values estimated by the more complex model is
almost the same as the one estimated by the model that considers only best motif match (corre-
lation above 99.9%; S8 Fig).

Prediction of ChIP-seq peaks de novo
Our model can predict functional features that are useful in ChIP-seq analysis. The most com-
mon task in ChIP-seq analysis is the identification of TF-binding peaks, i.e. genomic regions
that are bound by the TF under query, which shows a peak in ChIP-seq coverage [5, 28]. We
classify regions into two groups: peaks or not peaks, according to peak-caller method described
in previous work [15]. Each region is ranked with a score that indicates how likely they are to
contain a peak. Given a threshold, false positives represent regions classified as peak by peak-
calling but labeled as not peaks by the ranking score for de novo peak prediction. Similarly,
false negatives represent regions that are classified as not peaks by peak-calling but labeled as
peaks by the ranking score for de novo peak prediction. The rank for peak classification is
defined according to motif and accessibility score and used to construct the ROC curve. Motif
score is defined as the maximum log(p-value) of motif match per region bin and accessibility
score is the estimated value for parameter ai from Eq 4. We consider three models for peak
classification:motif only,motif plus accessibility, and normalized motif plus normalized accessi-
bility. The first model predicts peaks using only motif score obtained by motif scan; the second
model uses the sum of motif score and accessibility value; the last model rescale the values of
motif score as well as accessibility in the interval from 0 to 1 and use their sum for peak predic-
tion (see Methods).

The results show that DNA accessibility improves de novo ChIP-seq peak predictions when
compared to predictions that consider motif only. As measured by the area under a receiver oper-
ating characteristic (ROC) curve, de novo ChIP-seq peak prediction occurs with values 0.69, 0.75,
and 0.82 for method that uses motif only, motif score plus accessibility, and normalized motif
score plus normalized accessibility, respectively (Fig 3A). The affinity values are sequence specific
and by definition do not dependent on experimental conditions while the accessibility parame-
ters may vary depending on experimental condition (S9 Fig). Therefore, given that TF-binding
affinity score is previously known, one would only need to measure genome accessibility to pre-
dict TF-binding under novel growth conditions or for TFs with known binding motifs. This
rationale can significantly reduce the need for additional ChIP-seq experiments.

The ability to predict ChIP-seq peaks de novo depends on the robustness of the genome acces-
sibility metric and the ease to estimate its parameters under novel experimental conditions. The
robustness of DNA accessibility values is illustrated by plotting the accuracy of accessibility values
as a function of dataset size used for their estimation, i.e. the expected Pearson correlation
between the accessibility estimated in a subset of given size versus the accessibility estimated in
the entire dataset (S2 Fig). The expected accuracy for the accessibility values is estimated from
100 distinct samples for each subset size. We observe that as low as 10 ChIP-seq experiments is
sufficient to estimate the accessibility values with ~90% accuracy (Fig 3B and S2 Fig).

The global trend in genome accessibility is robust to overexpression of a single TF. The
ChIP-seq experiments used in this analysis were obtained under the same experimental set,
with the exception that the TF under query was overexpressed [15]. We observe that removing
any single TF from our dataset does not affect the estimated accessibility value (correlation
between estimates are>99%). This indicates that the estimation of genome accessibility is
robust to single TF overexpression. Moreover, we observe that just a few ChIP-seq experiments
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are sufficient to estimate genome accessibility with high correlation to its reference value. Only
two ChIP-seq experiments are sufficient to estimate accessibility values with expected 0.7 cor-
relation to the reference (Fig 3B and S2 Fig). We also observed that binding profile of some TFs
are better correlated with the estimated accessibility values (S4 Fig). This result may indicate
TFs that play a key role on genome structure or good candidates to infer genome accessibility.

Genomic features related to genome accessibility
Our model can be used to measure the accessibility state of each region in the genome. We
sought to determine if genome accessibility is associated with various genomic features. Consis-
tent with previous studies [37], intergenic regions are more accessible than protein coding
regions (Fig 4A). Genome accessibility also appears to vary between genes or their regulatory
regions based on their Clusters of Orthologous Groups (COG) assignments. In particular,
genes or their regulatory regions in COGs for metabolism and transport of amino acids (COG
category E) as well as carbohydrates (COG category G) are less accessible, while COGs for
translation (COG category J) and transcription (COG category K) are more accessible (p<0.05
after Bonferroni correction; see Fig 4B). The observation of higher genome accessibility in tran-
scription and translation genes is consistent with previous observations that DNA structure
plays a critical role in expressing rRNA operons [21, 38, 39]. Finally, we observe that expression
levels are positively correlated with genome accessibility (R2 = 0.23, Pearson correlation, Fig
4C). Interestingly, our results show that the expected expression level is the highest at interme-
diate values of genome accessibility (Fig 4D), which suggest that there may be a non-linear rela-
tionship between accessibility and gene expression.

Furthermore, our analysis shows that genome accessibility is biased by genomic position
and GC content (Fig 5). Accessibility has a strong negative correlation with GC content (Fig
5A). In addition, accessibility is negatively correlated with distance to the origin of replication,
oriC (Fig 5C), while no apparent correlation is observed in comparison to genome position
alone (Fig 5B). This suggests two possible mechanisms that may influence genome accessibility:

Fig 3. Genome accessibility improves binding peak prediction in ChIP-seq profiles. Reference ChIP-seq peaks are defined according to method
previously described [15]. A receiver and operator characteristic curve is shown in panel (A). Three models are presented for de novo peak prediction (see
main text for details). The accessibility parameter (blue and orange lines) increases peak prediction from 0.69 to 0.82 in comparison to a model that only
accounts for motif score (violet-red line). (B) Accuracy of genome accessibility estimation as a function of number of ChIP-seq experiments. The accuracy of
accessibility values is defined as the Pearson correlation between the estimated values for a subset of ChIP-seq experiments and the one estimated for
entire dataset (S2 Fig). The expected accuracy of accessibility values is defined as the mean value of 100 samples. Error bars represent one standard error.

doi:10.1371/journal.pcbi.1004891.g003
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(i) DNA replication makes genomic regions more accessible for TF-binding, or (ii) there is a
higher copy number of genomic regions near the oriC, leading to an apparent increase in
genome accessibility (Fig 5D). These two mechanisms are not necessarily mutually exclusive
and would be interesting to explore in future studies.

Discussion
In this study, we developed a biophysically motivated formulation for bacterial ChIP-seq
analysis that contributes to new biological insights of the role that genome accessibility plays
in bacterial gene regulation. The model highlights the importance of binding affinity and
genome accessibility for in vivo TF-binding. The model formulates the TF-binding process in

Fig 4. Genome accessibility correlates with genomic features. (A) Intergenic regions are more accessible than protein coding genic regions (p<10−16).
(B) Regions associated with amino acid and carbohydrate metabolism and transport (COGs E and G) show statistically reduced accessibility. Genes
associated with transcription and translation (COGs K and J) show statistically higher accessibility (p<0.05, Bonferroni correction). (C)Gene expression is
positively correlated with accessibility. The correlation of DNA accessibility with gene expression after controlling for values of motif affinity is 0.278 (p<3.98
10−56-; function pcor and pcor.test, R package ggm). (D) Expected gene expression is highest at an intermediate level of accessibility. Accessibility bins with
less than 10 data points are clustered with the neighboring bin with fewer data points. Error bars represent one standard error from the mean.

doi:10.1371/journal.pcbi.1004891.g004
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thermodynamic terms and derives a linear relationship between accessibility, binding affinity,
and probability of binding. This relationship enables us to estimate the model parameters from
ChIP-seq data. We optimized our statistical framework with a fixed-effects representation to
make parameter estimation more computationally efficient.

Numerous studies have investigated the role of genome accessibility on TF-biding in
eukaryotic organisms [30, 40–44]. However, to the best of our knowledge, the work described
here is the first attempt for a genome-scale quantitative measurement of DNA accessibility in
bacteria. In eukaryotes, reads from DNAse I assays are well-correlated with binding regions
[40, 41]. Pique-Regi et al. reported that DNAse I assays can inform genome accessibility for
predicting ChIP-seq peaks from ENCODE data using a Bayesian probabilistic model that inte-
grates accessibility with motif information from position weight matrix (PWM), TSS location
and evolutionary conservation [29]. Other studies [43, 44] used a threshold on the coverage of

Fig 5. Genome accessibility is affected by GC content and distance to oriC. (A) Accessibility is negatively correlated with local genomic GC content.
The correlation between accessibility values and region GC content after controlling for values of motif affinity is -0.30 (p < 10−179; function pcor and pcor.test,
R package ggm). (B) Accessibility does not appear to correlate with genome position. (C) Accessibility is negatively correlated with distance to oriC. (D) A
schematic of genome replication that could explain the correlation between accessibility and distance to origin of replication.

doi:10.1371/journal.pcbi.1004891.g005
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DNAse I signal was used to distinguish accessible from silent genome regions and infer TF-TF
interaction as well as set of TFs that drive tissue, cell type, and developmentally specific gene
expression patterns in Drosophila. Foat et al. developed a thermodynamics model of binding
based on equilibrium dissociation constant between bound and unbound states and used a
least square regression model to infer binding affinity from ChIP-chip data of Saccharomyces
cerevisiae [42]. However, genome accessibility was not considered in the model. Peng et al.
developed another thermodynamic model that includes accessibility and binding energy to
predict expression dynamics in Drosophila [30]. Accessibility was inferred from DNAse I
assays and model parameters were trained based on an objective function that rewards good fit
on highly expressed bins.

The method proposed in this paper has several novel features in comparison to those out-
lined above for eukaryotes. In contrast to eukaryotic genome accessibility models, which are
inferred directly from DNAse I assays, our method infer accessibility from binding profiles of
multiple ChIP-seq characterized TFs. Our thermodynamics model of TF-binding is derived in
terms of binding affinity and genome accessibility by using Lagrange multipliers and free
energy of Helmholtz (see Methods). A mixed effects linear regression model is used to make fit
efficient and computationally feasible. In addition, the quantitative assessment of DNA accessi-
bility in bacteria provides the possibility of testing hypothesis, novel biological insights, and
applications.

The framework described here could be used to assess TF-binding using a reduced set of
necessary ChIP-seq measurements. Instead of collecting ChIP-seq data for each TF in every
new experimental condition, one would only need to perform a small set of experiments to esti-
mate the state of genome accessibility. Then, in combination with established TF affinity data,
one can accurately predict TF-binding genome-wide as demonstrated here. This approach
could link both in vitro and in vivo experimental datasets under a unifying framework. Our
model provides a step forward in our ability to infer TF-binding at different growth states in sil-
ico to capture the dynamic nature of gene regulation in bacteria.

Biophysical processes in vivo as well as experimental protocols should be considered for
proper interpretation of accessibility values. Variance in DNA structure, binding competition,
or in vitro artifacts in immuno-precipitation affects the measured genome accessibility. NAPs
can shape genome structure at a global scale, while specific genome modification factors can
affect accessibility within a particular regulon. Multiple transcription factors that bind to the
same genomic region may lead to binding competition, causing a decrease in the observed
accessibility. Variations in immuno-precipitation protocols and inherent noise in the technique
may lead to variation in the estimation of binding specificity and sensitivity. These and other
factors may cause genome accessibility to contain bias from ChIPseq experiments and could be
helpful in providing better background estimation.

Ultimately, the importance of accessibility in bacteria genome remains to be further
explored. In eukaryotic cells, genomic accessibility is critical in fine-tuned gene regulation [45]
through controlled activation [46], minimizing biological noise [47], and providing epigenetic
regulation [33]. These processes may be similarly important in bacteria physiology. For
instance, genomic accessibility could cause stochastic gene expression and influence cell fate
[48]. Engineering or altering genome accessibility may lead to new approaches in synthetic
gene regulation and advance research in systems and synthetic biology [33].

Our work highlights that new biological insights can be obtained through biophysically-
motivated mechanistic models of gene regulation. This approach should inspire more refined
models of cellular physiology and adaptation. Here, we showed that thermodynamic principles
can improve our understanding of TF-binding and genomic structural states. More refined
models that integrate accessibility and binding affinity with other factors such as cooperative
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interaction and multiplicity will enhance our understanding of gene regulation, which will lead
to a more comprehensive representation of whole cell physiology [49].

Methods

Thermodynamics model of gene regulation
The probability of TF-binding to a specific region is represented as a Boltzmann distribution
that depends on two parameters: accessibility and affinity. The accessibility parameter, ai, is
specific to the DNA region and represents how likely a region i is to be bound by any transcrip-
tion factor. The affinity parameter, wij, represents the specific affinity between a transcription
factor j and a region i. Formally, the probability that a TF j binds at region i, pij, is defined as:

pij ¼ eaiþwij ð2Þ

This representation omits negative signs and the temperature parameter because they are
not relevant to the approach in this study. In thermodynamic terms, Eq 2 represents a grand-
canonical ensemble in which each region bin can exchange particles (i.e. TFs) and energy. The
parameter ai represents the chemical potential in region i and the parameter wij represents the
energy associated with TF binding (see S1 Text for detailed mathematical derivation).

The probability pij can be measured directly from the ChIP-seq data. In order to make this
parameter robust and independent on the sequencing depth, we define pij as

pij ¼
Ci;jP
iCi;j

ð3Þ

where the coverage parameter, Ci,j, represents the number of reads from experiment j that lies
in region i. A formal definition for region bins is presented in the next section.

Linear regression representation
Eq (2) can be transformed to a linear representation. This representation is shown in Eq 1 in
the main text and repeated here for clarity:

logðpijÞ ¼ ai þ wij ð4Þ

Eq 4 permits that we use simple linear regression to estimate the parameters that determine
ChIP-seq profiles.

This study is restricted to TFs whose binding sites can be summarized by a position weight
matrix (PWM). Motif PWM was obtaining as the output of BRACIL [24]. The PWM provides
a first order approximation of the affinity between the TF and the region it binds [10, 50]. We
call si,j the affinity score of TF j to region i estimated according to the PWM. This approxima-
tion can be placed in Eq 4, and simplify linear regression as following:

logðpijÞ ¼ ai þ tj � sij ð5Þ

The parameter tj is a constant that represents underlying variables specific to each ChIP-seq
experiment, such as TF concentration, ChIP-seq coverage as well as quality of immuno-precip-
itation. The affinity score, si,j, is defined as the -log10(p-value) of motif match with highest
score in region i. Motif scan is performed using FIMO [51]. A affinity score of 2 was given to
regions without any motif match.

We assume binding affinity to the sequence decreases monotonically with motif p-value. The p-
value indicates the probability a score as good as the one observed in motif match occurs by chance
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according to the reference motif PWM. Thus, the binding affinity is monotonically correlated with–
log10(p-value) of a motif match. By expanding it in Taylor series, the term–log10(p-value) becomes
a first order approximation for binding affinity that suffices for the purpose of this research.

The genome is binned in regions of 500 bp to create a standardize profile and enable com-
parison of multiple TF experiments simultaneously. Cases with very low coverage are removed
from analysis. In numbers, we classified theM. tuberculosis genome in 8824 region bins and
only considered data points in which log(pij)> -10. Our rationale is to set up a threshold that
considers data points that are informative for analysis and remove noisy ones that decrease the
quality of genome accessibility estimation. 82.5% of the data points are used for analysis after
applying the threshold of log(pi)>-10. This choice is supported by a sensitivity analysis that
considers a wide range of minimum coverage threshold (S5–S7 Figs). The results are also
robust for varying size of region bins (S10 Fig).

Linear regression optimization
We optimized the statistical representation of Eq 5 to make the analysis practical and more effi-
cient. The naïve approach would be to solve Eq 5 by a simple least square minimization. How-
ever, the number of data points and parameters needed would exceed 106 and 104, respectively.
The least square minimization by QR decomposition (function lm in R) is impractical and we
used a linear mixed-effects model (function lmer, R package lfe) instead.

The linear mixed-effects model optimizes regression because the parameter related to
regional accessibility can be described as a random effect that shift the intercept of the proba-
bility of binding. As most parameters of Eq 5 correspond to the accessibility value of a region
bin, the linear mixed-effects representation makes computation much more efficient.

In lmer annotation, our model uses the following formula: `log(p) ~ s�t + (1|region_bin)`,
where p, s, and t are general representation of the corresponding parameters in Eq 5 and `(1|
region_bin)`represents the random effect caused by accessibility to each region bin. The model
that considers binding affinity only is represented as: `log(p) ~ s�t`.

De novo peak prediction
We use three methods for de novo peak prediction: motif only, motif + accessibility and normalized
motif + normalized accessibility.Motif only rank regions according to best motif match.Motif
+ accessibility sums the score of motif match (in terms of -log10(pvalue)) with the accessibility val-
ues estimated from fitting Eq 1 in the data. Finally, we define the minimum score to be 0 and maxi-
mum score to be 1 and re-scale motif as well as affinity score accordingly. This sum of the re-scaled
score is used to rank regions for the method normalized motif + normalized accessibility.

ChIP-seq data
The ChIP-seq data used for this analysis was obtained from a large-scale study that mapped
the regulatory network ofM. tuberculosis [15, 32]. The TF under query was FLAG-tagged and
over-expressed under control of a mycobacterial tetracycline-inducible promoter. The enriched
regions were computed according to the log-normal background model described in [15]. The
binding motif was obtained as the output of the algorithm BRACIL [24], which uses MEME
[51] to perform motif identification. FIMO [51] was then used to scan for binding sites at each
region. Only TFs that recognize a binding motif with E-value< 10−5 were selected for this anal-
ysis. This resulted in a total of 99 ChIP-seq experiments that comprises 64 TFs.

Gene expression was defined as the median expression from the set of TF overexpression
data, as described previously [15, 52].
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COG categories were obtained from ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data and
mapped to H37rv loci according to GENBANK annotation.

Code availability
The code and corresponding documentation are available at https://sourceforge.net/projects/brasolia.

Supporting Information
S1 Fig. ChIP-seq profile is poorly correlated with binding affinity. (A)Motif for the transcrip-
tion factor DosR (experiment label: Rv3133c_B121) is shown. This motif was predicted by BRACIL
and used to estimate binding site affinity (see Methods). Correlation between binding site affinity
and ChIP-seq coverage is shown in linear scale (B) and log scale (C). The Pearson correlation is
0.19 and 0.34, respectively. Coverage and motif is computed per region bin. Coverage represents
normalized sum of reads at each region bin and motif represents match with best score.
(EPS)

S2 Fig. Correlation between reference accessibility with accessibility estimated in subsets of
ChIPseq data of different sizes. The reference accessibility values are estimated by using the
entire dataset. We show instances of accessibility values estimated from a subset of size 2 (A), 5
(B), 10 (C), 20 (D), 30(E), and 50 (F) TFs.
(EPS)

S3 Fig. Variance of accessibility values per genome location. Each point shows the variance
of accessibility for groups of 100 region bins.
(EPS)

S4 Fig. Correlation between accessibility values and ChIP-seq coverage.We show the corre-
lation between accessibility values and the ChIP-seq coverage per experiment.
(EPS)

S5 Fig. The estimated accessibility values are robust to varying threshold of minimum cov-
erage per region.We assessed the accessibility values by defining a minimum coverage per
region threshold of 1000 (A), 5000, (B), 10000 (C), 20000 (D), and 35000 (E). The fraction of
data points included per threshold is 99.1%, 97.2%, 92.9%, 80.0% and 46.6%, respectively. Ide-
ally, threshold should be strong enough to filter noisy data points, but not too stringent to filter
informative points. The correlation with reference accessibility values (obtained from threshold
log(pij)> -10) is greater than 95% for cases with a moderate threshold (B-D). Regions with
very low coverage reduce the quality of the estimated accessibility. This is observed when using
a minimum threshold of 1000 (i.e. 2 units per bp) (A).
(EPS)

S6 Fig. De novo peak prediction is robust to different values of minimum coverage per
region threshold. The ROC plot for de novo peak prediction is shown for estimations obtained
by using a minimum coverage threshold of 1000 (A), 5000 (B), 10000 (C), 20000 (D), and
35000 (E). A very low minimum coverage per region threshold, e.g. 1000, reduces the predic-
tive power for de novo peak prediction (A). The plot represents ROC curve from a subsample
of 10000 data points. The box shows area under the curve (AUC) for each case. The standard
error for all AUC values is less than 0.002.
(EPS)

S7 Fig. Correlation of genome accessibility and distance to OriC is preserved for different
values of minimum coverage per region threshold. The panels show results for estimations

Genome Accessibility and TF-Binding in Bacteria

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004891 April 22, 2016 12 / 16

ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data
https://sourceforge.net/projects/brasolia
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004891.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004891.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004891.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004891.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004891.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004891.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004891.s007


obtained by using a minimum coverage threshold of 1000 (A), 5000 (B), 10000 (C), 20000 (D),
and 35000 (E). The relationship between genome accessibility and distance to OriC is sharply
reduced but still significant when using very inclusive threshold for minimum coverage per
region equal to 1000 (A).
(EPS)

S8 Fig. Model that includes multiple motif hits per region does not affect estimated values for
DNA accessibility.Amore complex model that includes combined motif score as well as number
of motif hits per regions to predict region coverage is tested here. The maximummotif hit score
presented in our main model is also part of the more complex model. The correlation between
accessibility values predicted in the main model versus the one estimated from the more complex
model is above 99.9% (A). The more complex model slightly increases correlation between pre-
dicted and observed coverage from 0.629 to 0.652. The results are shown by using threshold of min-
imum coverage per region equal to 10000, which includes 93% of all data points (see S5–S7 Figs).
(EPS)

S9 Fig. Our model hypothesizes that de novo peak prediction can be estimated in novel
experimental conditions without the cost of ChIP-seq experiments for whole TF repertoire.
Panels A and B illustrate hypothetically the effect of distinct growth conditions on the affinity
and accessibility parameters. The TF binding affinity map is sequence specific and does not
vary under different experimental conditions (A). The accessibility parameter varies among
different experimental conditions (B). The ChIPseq data used in the main text was collected
under the same growth condition. Thus, we assume a unique value for DNA accessibility per
region. This may not be the case under other growth conditions. A potential practical applica-
tion of our model is to use a few set of ChIP-seq experiments to estimate region accessibility
and use them in combination with motif score to perform de novo ChIP-seq peak prediction.
(EPS)

S10 Fig. The qualitative results from our method is robust to varying value of region bin
size. De novo peak prediction (top) and correlation of accessibility with distance to oriC (bot-
tom) is shown for region bin size of 250bp (A) and 1000bp (B). The correlation between
observed and predicted coverage raises from 0.34 (motif only) to 0.60 (motif + accessibility)
and from 0.41 to 0.66 for region bin size of 250 and 1000bp, respectively.
(EPS)

S1 Text. Mathematical derivation of gene regulation as a Boltzmann distribution. This sup-
porting text shows a mathematical derivation to describe probability of binding to a genome
region as a Boltzmann distribution that depends on two terms: binding accessibility and bind-
ing affinity.
(DOCX)
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