
Chapter 5

Symbiotes and defensive Mutualism: Moving

Target Defense

Ang Cui and Salvatore J. Stolfo

Abstract If we wish to break the continual cycle of patching and replacing our
core monoculture systems to defend against attacker evasion tactics, we must re-
design the way systems are deployed so that the attacker can no longer glean the
information about one system that allows attacking any other like system. Hence,
a new poly-culture architecture that provides complete uniqueness for each distinct
device would thwart many remote attacks (except perhaps for insider attacks). We
believe a new security paradigm based on perpetual mutation and diversity, driven
by symbiotic defensive mutualism can fundamentally change the ‘cat and mouse’
dynamic which has impeded the development of truly effective security mechanism
to date. We propose this new ‘clean slate design’ principle and conjecture that this
defensive strategy can also be applied to legacy systems widely deployed today.
Fundamentally, the technique diversifies the defensive system of the protected host
system thwarting attacks against defenses commonly executed by modern malware.

5.1 Introduction

We propose a host-based defense mechanism that we call Symbiotic Embedded
Machines (SEM). SEM, or simply the Symbiote, is a code structure inspired by a
natural phenomenon known as Symbiotic Defensive Mutualism. This phenomenon
generally refers to any short- or long-term association between populations of dif-
ferent species where the survival or ‘evolutionary fitness’ of one or more population
partners is enhanced by the association. Mutual benefits are often the result of some
emergent behavior between two or more vastly different biological systems. This
synergistic dynamic is observed across the spectrum of living things, from microbes

Ang Cui
Columbia University, e-mail: ang@cs.columbia.edu

Salvatore J. Stolfo
Columbia University e-mail: sal@cs.columbia.edu

© Springer Science+Business Media, LLC 2011

S. Jajodia et al. (eds.), Moving Target Defense: Creating Asymmetric Uncertainty for Cyber
Threats, Advances in Information Security 54, DOI 10.1007/978-1-4614-0977-9_5,

99

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Columbia University Academic Commons

https://core.ac.uk/display/161454218?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:ang@cs.columbia.edu
mailto:sal@cs.columbia.edu


100 Ang Cui and Salvatore J. Stolfo

like viruses and bacteria to fungi and to flora and fauna. When considered within
the digital realm, Symbiotic Embedded Machines can be thought of as digital ‘life
forms’ which tightly co-exist with arbitrary executables in a mutually defensive ar-
rangement, extracting computational resources (CPU cycles) from it’s host while
simultaneously protecting the host from attack and exploitation. Furthermore, the
diverse nature of symbiotes provide inherent protection against direct attack by ad-
versaries that directly target host defenses. Hence, defenses are defended by the
principle of defensive mutualism.

We envision a general-purpose computing architecture consisting of two mutual
defensive systems whereby a self-contained, distinct and unique Symbiote machine
is embedded in each instance of a host program. The Symbiote can reside within
any arbitrary body of software, regardless of its place within the system stack. The
Symbiote can be injected into an arbitrary host in many different ways, while the
code of the Symbiote can be ‘randomized’ by advanced polymorphic code engines.
Thus, a distinct defensive Symbiote can be used to protect device drivers, the kernel,
as well as userland applications. The combination of Symbiote with host program
creates a unique executable different from any other instance, and thus breaks the
mono-culture by creating a plethora of ‘moved targets’.

Once the Symbiote injection process is complete, it will execute along-side it’s
host program. Since the Symbiote is a self-contained entity, it is not installed onto
the host program in the traditional sense. Current anti-virus and host-based defenses
must be installed onto or into an operating system, which places a heavy dependence
on the features and integrity of the operating system. In general, this arrangement re-
quires a strong trust relationship with the very software (often of unknown integrity)
it tries to protect.

In contrast, the Symbiote treats it’s entire host program as an external and un-
trusted entity, and therefore eliminates this unsound trust relationship. Much like
how certain ants reside within the Bullhorn Acacia tree and acts as a natural defense
mechanism against harmful insects, Symbiotic Embedded Machines reside within
its host executable, protecting it against exploitation and unauthorized modification.
Just as the ants are unfamiliar with the inner workings of the Acacia tree, and as the
Acacia tree is unaware of the existence of the ants, SEM’s reside within the target
binary in a similar arrangement. At runtime, the host program requires the Symbiote
to successfully execute in order to operate. The Symbiote monitors the behavior of
its host to ensure it operates correctly, and if not, stops the host from doing harm.
Removal, or attempted removal, of the Symbiote renders the host inoperable.

5.2 Related Work

Symbiotic Embedded Machines can be thought of as a generic way of injecting
host-based defenses into arbitrary host programs. Traditional host-based defenses
are typically installed into well-known operating systems to fortify the entire OS
from various types of exploitation. For example, numerous rootkit and malware de-



5 Symbiotes and Defensive Mutualism 101

tection and mitigation mechanisms have been proposed in the past but largely target
general purpose computers. Commercial products from vendors like Symantec, Nor-
ton, Kapersky and Microsoft [1] all advertise some form of protection against kernel
level rootkits. Kernel integrity validation and security posture assessment capability
has been integrated into several Network Admission Control (NAC) systems. These
commercial products largely depend on signature-based detection methods and can
be subverted by well known methods [11, 12, 13]. Sophisticated detection and pre-
vention strategies have been proposed by the research community. Virtualization-
based strategies using hypervisors, VMM’s and memory shadowing [10] have been
applied to kernel-level rootkit detection. Others have proposed detection strategies
using binary analysis [5], function hook monitoring [15] and hardware-assisted so-
lutions to kernel integrity validation [14].

The above strategies may perform well within general purpose computers and
well known operating systems but have not been adapted to operate within the
unique characteristics and constraints of embedded device firmware. Effective pre-
vention of binary exploitation of embedded devices requires a rethinking of detec-
tion strategies and deployment vehicles.

The Symbiotic Embedded Machine provide a means of enforcing the integrity
of system code and control flow within embedded devices. SEM’s platform agnos-
tic code injection methodology can be used to extend the use of run-time program
monitors [4] for embedded devices. The vast majority of these devices are built on
standard CPU architectures (MIPS, PPC, ARM etc). Therefore, compilation of ex-
ecutable code for these devices using languages like C is trivial. The SEM structure
exploits this homogeneity and represents a general method of installing compiled
code into firmware of existing network embedded devices, regardless of the under-
lying operating system, by finding “unused” portions of the firmware that allows
stealthy embedded code.

SEM can also be thought of as a novel type of embedded device rootkit. Un-
like prior works [9, 6, 8], which are adaptations of existing methods onto embedded
operating systems, SEM contains a payload delivery mechanism designed specifi-
cally to operate within unfamiliar and heterogeneous proprietary operating systems.
SEM can automatically inject the same types of rootkit payloads to execute across
many different firmware versions and physical device types without requiring deep
knowledge of each firmware instance.

5.2.1 Related Work: Software Guards

Guards, originally proposed by Chang and Atallah [2], is a promising technology
which uses mechanisms of action similar to Symbiotes. Originally proposed as an
anti-tampering mechanism for x86 software, the guard mechanism have been used
in both security research [3] as well as commercial products1. A Guard is a simple

1 www.arxan.com

http://www.arxan.com


102 Ang Cui and Salvatore J. Stolfo

piece of security code which is injected into the protected software using binary
rewriting techniques similar to our Symbiote system. Once injected, a guard will
perform tamper-resistance functionality like self-checksumming and software re-
pair. To further improve the resilience of the protection scheme, a large number
of Guards can be deployed in intricate networks as a graph of mutually defensive
security units.

While promising, the Guard approach does have several draw backs and limita-
tions which Symbiotes overcome. For example, since the Guard has no mechanism
to pause and resume its computation, the entire guard routine must complete execu-
tion each time it is invoked. This limits the amount of computation each Guard can
realistically perform without affecting functionality, specially when Guards are used
in time sensitive software and real-time embedded devices. In contrast, the Symbiote
Manager allows its payload to be arbitrarily complex. Instead of executing the entire
payload each time a randomly intercepted function invokes the Symbiote, the Sym-
biote Manager executes a small portion of the payload before pausing it, saving its
execution context and returning control back to the intercepted function. This way,
Symbiote payloads can implement arbitrarily complex defensive mechanisms, even
in time sensitive software.

Removing the limitation on the complexity of Symbiote payloads allows us to
further address several draw backs of the Guard framework. Because each guard
can only compute for a very short amount of time, they generally performed simple
checksums on small patches of software. In order for guards to checksum over the
entire protected binary, an intricate network of guards must be injected. Further-
more, guards must be individually instantiated and hooked into the control flow of
its protected binary in a specific way in order for the entire guard network to be mu-
tually defensive. This heavy dependence on the execution flow information of the
protected program makes the guard injection process complex and error prone. For
example, static analysis of the target binary can not always reveal its runtime control
flow behavior, specially when computed control-flow transfers are used. In contrast,
a single Symbiote payload can compute the checksum of the entire protected host
program, and does not require detailed knowledge of control-flow transfers within
the host program. Therefore, the Symbiote injection process is greatly simplified
and less error prone.

5.3 The Symbiote / Host Relationship

The Defensive Mutualistic relationship between the Symbiote and host program can
be broadly described as follows:

1. Each entity in the symbiotic relationship must have their own innate defenses.
In the case of our proposed system, adaptation, randomization and polymorphic
mutation will be applied to both the protected software system as well as the
injected SEM’s.



5 Symbiotes and Defensive Mutualism 103

2. Both the Symbiote and the protected software host will be genetically diverse
and functionally autonomous. Specifically, the Symbiote will not be a standard
piece of software that depends on and operates within the software system it
is protecting. Instead, the Symbiote can be thought of as a fortified and self-
contained execution environment that is infused into the host software.

3. The Symbiote will reside within the host software, extracting computational re-
sources (CPU cycles) to execute it’s own SEM payloads. In return, the SEM
payloads will constantly monitor the execution and integrity of the host soft-
ware, fortifying the entire system against exploitation.

4. SEM’s are injected into the host software rather then ‘installed’ in the tradi-
tional sense. Once injected, the code of the SEM is pseudorandomly dispersed
across the body of the host. Special mechanisms provided by the SEM injection
process will assure that the SEM is executed along-side the host software.

5. The Symbiote and host program must operate correctly in tandem. The Sym-
biote monitors the behavior of the protected host program, and can alert on and
react to exploitation and incorrect behavior. The Symbiote is also self-fortified
with anti-tampering mechanisms. If an unauthorized party attempts to disable,
interfere with or modify the Symbiote, the protected host program will become
inoperable if the attempt is successful.

6. Symbiotes are moving targets. No two instantiations of the same Symbiote is
ever the same. Each time a Symbiote is created and prepared for injection into
a host program, its code is randomized and mutated, resulting in a vastly genet-
ically dissimilar variant of itself. When observed at the macro level, the collec-
tive Symbiote population is highly diverse.

5.3.1 Software Symbiotes and Possible Hardware Extensions

Figure 5.1 illustrates the process of fortifying an arbitrary executable with a Sym-
biote. In our prior work we have demonstrated the feasibility of the software-only
Symbiote, a Symbiote which is completely implemented in software and can ex-
ecute on existing commodity systems without any need for specialized hardware.
While the software-only Symbiote is capable of delivering the three fundamental
security properties described in this section, additional hardware can greatly im-
prove the efficiency and monitoring/mitigative capabilities of the Symbiote, as well
as provide even tighter security guarantees in certain situations. Section 2.1 dis-
cusses several of such hardware extensions.

Symbiote Creation: The Symbiote is prepared for injection into the host program.
A set of policies and defensive payloads are combined with a generic stub Symbiote
binary. This process produces a completely self-contained executable loaded with
a Symbiote execution manager, Symbiote monitoring engine, as well as the chosen
set of defensive payloads and policies.

Mutation and Randomization: Both the host program and Symbiote binaries are
analyzed, randomized and mutated into an unique instantiation of their original pro-



104 Ang Cui and Salvatore J. Stolfo

Fig. 5.1 Symbiotic Embedded Machine

gram. These new binaries are functionally equivalent to the original code. However,
techniques like ISR, ASR and polymorphic mutation are used to greatly increase the
randomness and diversity of both the host program as well as its defense Symbiote.

Symbiote Injection: The Symbiote Injection Engine analyzes both executables
and injects the Symbiote into the randomized host program, producing a single
fortified program. One or more Symbiotic Monitoring Engines (SEM) can be in-
jected into a piece of arbitrary executable code to augment the target code with
sophisticated defensive capabilities. Unlike existing host-based defense and anti-
virus mechanisms, SEM’s do not operate on top of or as a part of the protected
application or operating system. Instead, Symbiotes are essentially infused into the
protected executable, providing the following four fundamental properties:

1. The Symbiote executes alongside the host software. In order for the host to
function as before, it’s injected SEM’s must execute, and vice versa.

2. The Symbiote’s code cannot be modified or disabled by unauthorized parties
through either online or offline attacks.

3. The Symbiote has full visibility into the code and execution state of its host pro-
gram, and can either passively monitor or actively react to the observed events



5 Symbiotes and Defensive Mutualism 105

Fig. 5.2 Symbiotic Embedded Machine

at runtime. Hence, malware that attempts to hijack the host’s execution environ-
ment cannot see the Symbiote, but the Symbiote can see the malware.

4. No two instantiations of the same Symbiote is the same. Each time a Sym-
biote is created, its code is randomized and mutated, rendering signature based
detection methods and attacks requiring predictable memory and code struc-
tures within the Symbiote ineffective. Each instantiation of a Symbiote is poly-
morphically mutated and randomized during the injection process. Therefore,
studying and reverse engineering one instance of a particular Symbiote provides
the attacker with little to no useful information about the specifics of any other
instantiation of the same Symbiote.

The Symbiote code structure, displayed in Figure 5.2, is modular and config-
urable through a standard interface. At instantiation time, a Symbiote is created by
simply mixing and matching code that delivers the desired functionality from each
of the following five principal components:

Symbiote Stub: The stub is the base platform of the Symbiote. It dictates how the
Symbiote’s code will be embedded into the host program, and how tandem execu-
tion with the host is accomplished.

Symbiote Payload: The payload is the actual defensive mechanism that is ex-
ecuted in tandem with the host program. Payloads are arbitrarily complex stand-
alone executables. For example, code integrity checkers, proof carrying codes and
anomaly detectors can all be implemented as a Symbiote Payload.

Symbiote Monitoring Engine: The Monitoring Engine acquires and organizes
static and runtime information about the host program. It enables the Symbiote pay-
load to fully inspect the host program, and provides an event-driven interface, al-
lowing the payload to alert and react to runtime events within the host program.

Symbiote Execution Manager: The Execution Manager is the resource manager
for the Symbiote. It controls the tandem execution behavior of the host program
/ Symbiote pairing. Specifically, the execution manager controls how and when



106 Ang Cui and Salvatore J. Stolfo

the Symbiote and the host program is executed on the CPU. Execution managers
can implement different static or dynamic CPU allocation algorithms, leverage
single/multi-core hardware architectures, as well as utilize specialized hardware.

Policy: The Policy is a collection of rules which the Symbiote will enforce.
The manner in which Symbiotes are injected into (legacy) host programs in a

novel fashion using inline hooking. Inline hooking is a well known technique for
function interception. However, the Symbiote injection process uses function in-
terception in a very different way. Instead of targeting specific functions for inter-
ception which requires precise a priori knowledge of the code layout of the target
device, the Symbiote injection randomly intercepts a large number of automatically
detected function entry points. The inline hooks inserted provide as a means to re-
divert periodically and consistently a small portion of the device’s CPU cycles to
execute the SEM payload. This approach allows SEMs to remain agnostic to op-
erating system specifics while executing its payload alongside the original OS. The
SEM payload has full access to the internals of the original OS but is not constrained
by it. This allows the SEM payload to carry out powerful functionality which are
not possible under the original OS.

Figure 5.3.1 provides an overview of this injection process whereby Symbiote
control code (the SEM Manager) and its executed SEM payload are dispersed
throughout a binary using gaps of unused memory created by block allocation as-
signment.



5 Symbiotes and Defensive Mutualism 107

5.3.2 Applications of Symbiotes and Further Research

The Symbiote is a self-contained code entity that does not depend on features within
its host program to function. Instead, the Symbiote treats the host program as an ex-
ternal untrusted entity, and uses its own internal monitoring and analysis facilities
to protect the host program. Since no assumptions are made about the functionality
of the host program, a Symbiote can reside within any level of the software stack.
Further, multiple Symbiotes can reside within the same software system as well as
within the same piece of individual executable. This software defense strategy fun-
damentally rearranges the trust relationship and dependencies between the defense
mechanism and the protected program.

The Symbiote treats all external code as untrusted software, thereby drastically
reducing the amount of trust and dependence it places on the system in which it re-
sides. The Symbiote and the Defensive mutualistic protection strategy can subsume
the functionality of current security mechanisms under a new paradigm where the
security software co-exist with, but completely distrusts the host program which it
is protecting.

Proof Carrying Code: Proof-Carrying Code is a technique which can validate the
integrity of untrusted code. Since the Symbiote is directly injected into the host pro-
gram, a Symbiote payload implementing PCC can be trivially injected into arbitrary
untrusted code.

Host-based IDS: The Symbiote Monitoring Engine collects and organizes the
runtime information about the system in which it resides. By injecting an IDS pay-
load into the host operating system or individual host programs, complex IDS and
Anomaly Detection mechanisms can be directly injected into the host system with
extremely fine granularity. Note that deploying a host-based IDS in this manner is
extremely attractive because the monitoring system does not depend on the func-
tionality provided by the operating system. Should the OS be compromised, the
Symbiote’s visibility into host system will remain unaffected.

Rootkit Detection: Rootkit detection using software-only Symbiotes have already
been demonstrated to be feasible and effective on proprietary embedded systems like
Cisco IOS and Android devices.

References

1. Microsoft Corporation, Kernel Patch Protection: Frequently Asked Questions.
http://tinyurl.com/y7pss5y, 2006.

2. Hoi Chang and Mikhail J. Atallah. Protecting software code by guards. In Tomas Sander,
editor, Digital Rights Management Workshop, volume 2320 of Lecture Notes in Computer
Science, pages 160–175. Springer, 2001.

3. Úlfar Erlingsson, Martı́n Abadi, Michael Vrable, Mihai Budiu, and George C. Necula. Xfi:
Software guards for system address spaces. In OSDI, pages 75–88. USENIX Association,
2006.

http://tinyurl.com/y7pss5y


108 Ang Cui and Salvatore J. Stolfo

4. Ligati et al. Enforcing security policies with run-time program monitors. Princeton University,
2005.

5. Christopher Krügel, William K. Robertson, and Giovanni Vigna. Detecting kernel-level rootk-
its through binary analysis. In ACSAC, pages 91–100. IEEE Computer Society, 2004.

6. Felix ”FX” Linder. Cisco IOS Router Exploitation. In In BlackHat USA, 2009.
7. Richard Lippmann, Engin Kirda, and Ari Trachtenberg, editors. Recent Advances in Intrusion

Detection, 11th International Symposium, RAID 2008, Cambridge, MA, USA, September 15-
17, 2008. Proceedings, volume 5230 of Lecture Notes in Computer Science. Springer, 2008.

8. Michael Lynn. Cisco IOS Shellcode, 2005. In BlackHat USA.
9. Sebastian Muniz. Killing the myth of Cisco IOS rootkits: DIK, 2008. In EUSecWest.

10. Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention of kernel rootkits
with vmm-based memory shadowing. In Lippmann et al. [7], pages 1–20.

11. Dror-John Roecher and Michael Thumann. NAC Attack. In In BlackHat USA, 2007.
12. Skywing. Subverting PatchGuard Version 2, 2008. Uninformed,Volume 6.
13. Yingbo Song, Pratap V. Prahbu, and Salvatore J. Stolfo. Smashing the stack with hydra: The

many heads of advanced shellcode polymorphism. In Defcon 17, 2009.
14. Vikas R. Vasisht and Hsien-Hsin S. Lee. Shark: Architectural support for autonomic protection

against stealth by rootkit exploits. In MICRO, pages 106–116. IEEE Computer Society, 2008.
15. Zhi Wang, Xuxian Jiang, Weidong Cui, and Xinyuan Wang. Countering persistent kernel

rootkits through systematic hook discovery. In Lippmann et al. [7], pages 21–38.


	Chapter 5 Symbiotes and defensive Mutualism: Moving Target Defense
	5.1 Introduction
	5.2 Related Work
	5.2.1 Related Work: Software Guards

	5.3 The Symbiote / Host Relationship
	5.3.1 Software Symbiotes and Possible Hardware Extensions
	5.3.2 Applications of Symbiotes and Further Research

	References


