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ABSTRACT 

The trajectory of functional status before and after vascular events 

Mandip S. Dhamoon 

Background: Previous studies that have examined functional status in relation to vascular events have 

focused on the short term after events and have measured functional status a limited number of times.  

The trajectories of functional status before and after vascular events are not well characterized, and the 

factors influencing these trajectories are not well known.   

Methods: A comprehensive, structured, narrative review was performed on the topic of trajectories of 

disability and cognition surrounding vascular events.  Then using 2 large population-based epidemiologic 

cohorts, the Northern Manhattan Study (NOMAS) and the Cardiovascular Health Study (CHS), 

trajectories of functional status were examined.  In Analysis A, in NOMAS, the effect of inflammatory 

biomarkers (interleukin-6 [IL6], tumor necrosis factor receptor-1 [TNFR1], C-reactive protein [CRP], and 

lipoprotein-associated phospholipase-A2 [LpPLA2]) on the intercept and slope of functional status was 

determined over a median of 13 years, measured with yearly assessments by the Barthel index.  In 

Analysis B, in NOMAS, a similar modeling strategy was used to examine whether subclinical ischemic 

disease on brain MRIs, measured by subclinical brain infarct (SBI) and white matter hyperintensity 

volume (WMHV), was associated with functional trajectories.  In Analysis C, in CHS, participants had 

yearly assessments of disability with a combined activities of daily living (ADL) and instrumental ADL 

scale.  The slope of change in disability was compared before and after vascular events (stroke and 

myocardial infarction [MI]).   

Results: In Analysis A, CRP (-0.41 BI points per 1 SD increase, 95% CI -0.82 to 0.002) and LpPLA2 (-

0.40, 95% CI -0.75 to -0.04) were associated with baseline BI but not change over time.  TNFR1 was 

associated with baseline BI (-0.93, 95% CI -1.59 to -0.26) and change over time (-0.36 BI points per year, 

95% CI -0.69 to -0.03).  In Analysis B, functional change was -0.85 BI points per year (95%CI -1.01 to -

0.69); among those with SBI there were -0.88 additional points annually (-1.44 to -0.32).  In WMHV 

models, annual functional change was -1.04 points (-1.2 to -0.88), with -0.74 additional points annually 

per SD WMHV increase (-0.99 to -0.49).  In Analysis C, stroke (0.88, 95% CI 0.57-1.20, p<0.0001) was 

associated with a greater acute increase in disability than MI (0.20, 0.06-0.35, p=0.006).  The annual 
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increase in disability before stroke (0.06 points per year, 0.002-0.12, p=0.04) more than tripled after 

stroke (0.15 additional points per year, 0.004-0.30, p=0.04).  The annual increase in disability before MI 

(0.04 points per year, 0.004-0.08, p=0.03) did not change significantly after MI (0.02 additional points per 

year, -0.07-0.11, p=0.7).   

Conclusions: In these large population-based studies with repeated measures of functional status and 

disability over long-term follow-up, several trajectories were found.  In Analysis A, TNFR1 predicted worse 

overall functional status as well as accelerated decline over time.  In Analysis B, both SBI and WMHV 

were associated with accelerated decline.  In Analysis C, there was a steeper decline in function after 

stroke but not MI.  These findings help to elucidate the course and potential etiologies of long-term 

functional decline related to vascular events, and they suggest directions for future research in this area.   
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Abstract 

In this review, I will summarize prior studies that have examined trajectories of patient-centered outcomes 

surrounding vascular events.  I will first introduce the concept of disability, review factors that influence 

disability, and then outline the traditional conception of stroke.  I will then introduce a new paradigm, in 

which cerebrovascular disease is conceived as a progressive condition with cumulative effects on 

functional status instead of just a condition that causes discrete events.   

I will discuss several lines of research that support this paradigm.  The first area of research has 

shown that vascular risk factors cause not only discrete stroke events but also progressive 

cerebrovascular dysfunction.  The second line of research has shown that subclinical brain infarcts (SBIs) 

and white matter hyperintensities (WMHs) are common, influenced by vascular risk factors, and are 

associated with functional status.  Newer imaging technology is also beginning to reveal other markers of 

structural cerebrovascular dysfunction that might illuminate the progressive nature of cerebrovascular 

disease and its long-term effects on functional status.  Next, I will briefly discuss traumatic brain injury 

(TBI) as a condition analogous to stroke in that it involves a sudden brain injury but manifests beyond the 

acute recovery period with accelerated decline in functional status and cognitive ability.  This similarity 

may be exploited in research to lead to the identification of pathophysiologies that overlap with those of 

stroke, and it may inform study designs that attempt to model long-term patient-centered outcomes.   

Neurodegenerative diseases are a class of progressive neurological conditions causing cognitive 

and functional decline, and aside from vascular dementia, these have traditionally been thought of as 

distinct from cerebrovascular disease.  However, recent research has shown similar risk factors and 

pathological processes for both neurodegenerative disease and cerebrovascular disease, and these 

processes may contribute to some of the long-term decline seen with stroke.  Inflammatory processes, 

both systemic and specific to the nervous system, have been implicated not only in neurodegenerative 

diseases but also cerebrovascular disease, and these processes may play a role in progressive vascular 

and cerebral dysfunction related to vascular events.   

With this as background, I will review recent research on patient-centered outcome trajectories 

surrounding vascular events.  In turn, I will discuss studies examining disability, those examining 

cognition, and those examining other outcomes.  Then, I will review the few studies comparing 



3 
 

trajectories before and after vascular events, and then summarize studies that have examined functional 

trajectories immediately before death.  I will close with the specific aims and hypotheses for the analyses 

in this dissertation.   

 

Disability and factors influencing it 

An individual’s functional status is closely tied to disease.  The World Health Organization classifies 

functioning on a continuum and identifies three levels: impairment in a body part, disability (or “activity”) 

on the level of an individual, and handicap (or “participation”) defined by the person’s position in an 

environment or social context.1 Disability is an important patient-centered outcome whose relationship 

with vascular disease requires further elucidation.  Disability is commonly measured by an individual’s 

performance in activities of daily living (ADLs), including tasks such as personal hygiene, dressing and 

undressing, feeding, transfers and ambulation, and bowel and bladder management.2, 3 Instrumental 

ADLs (IADLs) assess more complex activities required for community participation, such as handling 

personal finances, meal preparation, shopping, travelling, doing housework, using the telephone, and 

taking medications.4 There is a hierarchical relationship between some IADL items and ADL items, with 

IADL impairment becoming evident with less severe dysfunction.5 

As diverse organizations have highlighted,6 disability is essential to study, for several reasons.  

This outcome may more accurately reflect the burden of disease in a population compared to discrete 

events such as MI, which have a differential functional impact in different people.  By focusing on events 

or mortality, one may underestimate the burden of diseases.7 Understanding the population impact of 

diseases on disability is important considering the aging of the population, which will increase the number 

of disabled individuals over the next few decades.8, 9 The pattern and time course of disability in older age 

has also been changing.  Recent studies suggest that there has been a “compression of morbidity” over 

time, with disability and health conditions occurring closer to the end of life currently compared to earlier 

time periods.10, 11    

Several factors affect long-term disability, including age, cognitive function, self-rated health, and 

social supports.12-14 Several diseases also cause disability, including but not limited to cerebrovascular 

disease, arthritis, cardiac disease, depression, and cognitive disorders.  Among the disease states that 
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affect disability, stroke causes perhaps the greatest burden.15-17 Three months after a stroke, 30-50% of 

stroke survivors are functionally dependent, 15-30% are permanently disabled, and 20% require 

institutional care.18 Considering the staggering prevalence of stroke – 5.8 million among those age 20 and 

above in 200519 – post-stroke disability is of primary public health importance.  In a longitudinal analysis 

in the Health and Retirement Survey (HRS) among 24,186 individuals with a mean of 10.2 years of 

follow-up,20 physical functioning  was assessed biennially and was compared among those with different 

diseases.  Memory-related disease and stroke were associated with the most disability, and the 

combination of both was associated with 5.75 physical functioning difficulties.  Disability is costly, to an 

individual and to society, and places a burden not only on the disabled but also on family and caregivers.  

In the Survey of Health, Ageing and Retirement in Europe (SHARE), 62,127 individuals were surveyed in 

2 waves in several European countries, 1256 of whom had stroke.21 About one third had moderate ADL 

limitations and 6.6% had severe limitations.  Those with severe ADL limitations had 1.45 more hospital 

days, used 14.86 more hours of paid home nursing, and used 100 more hours in a month of informal 

help.  The burden of stroke is large, and more research is needed to lessen the impact of post-stroke 

disability.   

 

Stroke: traditional conception and new paradigm 

With a stroke, there is sudden vessel blockage (with ischemic stroke) or rupture (with hemorrhagic stroke) 

in the brain causing damage or dysfunction of the brain region fed by the vascular territory affected.  

There are several major, well-established, individual-level attributes and disease states that have been 

associated with increased risk of ischemic and hemorrhagic stroke, including age, sex, hypertension, 

smoking, diabetes, dyslipidemia, and others.22 Perhaps due to a focus on the acute vessel blockage or 

rupture event, stroke is traditionally seen as a discrete event.  The damage caused by a stroke in a 

particular brain region results in an impairment, such as unilateral weakness, dysarthria, or ataxia.  There 

is often an improvement in impairment in the weeks and months after stroke, due to unclear mechanisms 

that may include reduction in edema, regrowth of damaged neurons, increased neural activity in 

contralateral or supplementary brain regions, or change in brain network performance.23, 24 Even if there is 

no reduction in impairment through these processes, there may be improvement in disability as an 
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individual learns compensatory strategies and starts to use assistive devices such as a cane or walker.  

Hence, there is a predictable degree of recovery25 within 3-6 months of the stroke, and prior research on 

the natural history of disability after stroke has shown varying degrees of functional recovery within 6-12 

months.26-33  

Using the traditional paradigm of stroke as a discrete event, it is assumed that, following the 3-6 

month recovery period after stroke, functional status would more or less stabilize unless recurrent events 

occur34-37 (Figure i), and that the same slope of functional decline prior to stroke – which was due to the 

cumulative effects of aging -- would resume after recovery from stroke.  However, there is growing 

evidence that a paradigm may be more appropriate in which the effect of cerebrovascular disease on 

disability is viewed in a continuous, ongoing manner.  In other words, stroke may be more effectively 

considered as an ongoing, chronic condition with effects on function, instead of a discrete event.  Stroke 

may accelerate functional decline over time, over and above the slight progressive decline in function 

over time resulting from cognitive aging,38 which is a non-pathological process that is as yet not well 

understood.  There is a link between cognitive function and functional status, and it appears that cognitive 

deficits pre-date physical functional limitations and likely play a causal role in their development.39, 40 

According to this new paradigm of the effect of cerebrovascular disease on functional status, there may 

be an accelerated decline over time after recovery from stroke, even in the absence of recurrent clinical 

events (Figure i).   

There have been recent advances in epidemiological studies that have examined decline 

surrounding vascular events such as stroke.  First, there has been an expansion of the time-line in 

studies on this topic, with longer term follow-up in larger cohorts.  Second, there has been a focus more 

on patient-centered outcomes rather than just vascular events and mortality.  Third, there has been a shift 

of focus from the surveillance of discrete events such as stroke, myocardial infarction (MI), and death, to 

the repeated measurement of outcomes such as disability, quality of life, cognitive function, and mood.  

This has allowed researchers to analyze the trajectories of these important patient-centered outcomes 

over time, and in relation to vascular events.  This new ability has enabled researchers to clarify the 

pathophysiology of vascular dysfunction and its population impact.  In this review, I will outline the 

conceptual basis for this new paradigm of cerebrovascular disease as a progressive condition and then 
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discuss recent epidemiological studies that have focused on trajectories of patient-centered outcomes in 

relation to vascular events.   

 

Vascular risk factors and progressive cerebrovascular dysfunction 

There are several lines of evidence that support a paradigm of progressive cerebrovascular dysfunction.  

First, stroke is caused by conditions that may have an ongoing and cumulative effect on vessel 

dysfunction, including vascular risk factors and inflammatory states.41 Diabetes diagnosed in those in 

“mid-life” (those with an age range of 48-67 years) has been shown to be associated with a 19% greater 

cognitive decline over 20 years of follow-up in the Atherosclerosis Risk in Communities (ARIC) study.42 

The degree of decline was sensitive to the degree of control and duration of diabetes as well.  In the 

Framingham Heart Study,43 the third generation cohort had their first examination between 2002-2005, 

when baseline diabetes and covariate status was ascertained, and their second examination between 

2008-11, when cognitive screening and MRI were performed.  Diabetes was associated with poorer 

cognitive performance on multiple measures after adjustment for confounders.  The relationship between 

diabetes and attention was mediated through reduced volume in the total cerebrum, frontal lobe, and 

occipital gray matter.  The relationship between diabetes and visual memory was also mediated by these 

measures as well as by hippocampal size.  Recent studies have suggested that insulin resistance in cells 

of the central nervous system, specifically the hippocampus, may play a causal role in cognitive 

dysfunction and Alzheimer’s dementia.44 Diabetes is usually conceived as a condition involving systemic 

insulin resistance, but the cognitive effects of insulin resistance and related changes in cell signaling may 

be specific to cells of the nervous system.   

Furthermore, pulse pressure has been associated with quicker progression to dementia in those 

free of dementia at baseline.45 Elevated blood pressure has been shown to be associated with 

accelerated decline in gait speed, even in those who had controlled hypertension, and even after 

adjustment for confounders.46 Elevated blood pressure and blood pressure variability have also been 

associated with impaired white matter integrity measured by fractional anisotropy among 311 individuals 

with 10 years of follow-up.47 Finally, higher blood pressure and pulse pressure were cross-sectionally 
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associated with subclinical cerebrovascular disease among the “youngest old” in a study of 113 

individuals without stroke and dementia.48 

 

Subclinical infarcts and white matter hyperintensities 

Subclinical infarcts are discrete brain infarcts that by definition are not associated with discrete events but 

are rather detectable only by brain imaging.  Similarly, white matter disease (also called leukoaraiosis) 

has been measured according to different definitions but generally refers to areas of white matter 

structural damage in the brain due to vessel dysfunction, which are only detectable by brain imaging.  

Specifically, small vessel disease causes chronic ischemia which leads to demyelination and axonal loss.  

In a study that examined the molecular structure of axons in regions surrounding lacunar infarcts and 

microinfarcts,49 node of Ranvier segments and adjacent paranodal segments were examined.  There was 

evidence of impaired cell to cell adhesion and signaling between axons and oligodendrocytes, suggesting 

that the area of dysfunction surrounding microinfarcts extends beyond visibly injured tissue.  Future 

studies will hopefully clarify the pathophysiology of WMHs.   

In terms of the epidemiology of subclinical cerebrovascular disease, subclinical infarcts have 

been found to be at least 5 times as prevalent as clinical strokes, suggesting that a focus on discrete 

clinical stroke events reveals only the tip of the iceberg of the burden of cerebrovascular disease.50, 51 In 

the Northern Manhattan Study, SBI was present in 18% of 892 stroke-free individuals.52 WMHs were 

present in 96% of individuals older than 60 years of age in CHS and in 95% in the Rotterdam Scan 

Study.53 Silent acute infarcts have also been detected in up to 4.2% of individuals with dementia in 

previous studies.54  

Traditional vascular risk factors and inflammatory states cause subclinical infarcts and WMH in 

addition to recurrent clinically evident strokes.55 For example, elevated blood pressure and blood 

pressure variability have been shown to have a dose-dependent effect on WMHV and SBI.56 The vascular 

causes of worsening white matter grade have been shown to have a differential impact depending upon 

initial grade.57 In the Rush Memory and Aging Project, 167 dementia-free elderly individuals had 

actigraphy to measure physical activity, and had measurements of WMHV on MRI.58 In a cross-sectional 

analysis, there was a significant interaction between physical activity and WMHV.  Specifically, although 
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there was an association between greater WMHV and lower motor function among those with average 

and low physical activity, there was no association among those with high activity, suggesting a protective 

effect of high levels of physical activity.  The progression of white matter lesions over time has not been 

found to have a significant genetic component, and it is likely that behavioral and environmental factors, 

as well as the above medical conditions, have a more causative role.59 

Subclinical infarcts and WMHs have been associated with the occurrence of “hard” vascular 

outcomes and mortality in multiple studies.  White matter disease may predict future stroke independently 

of traditional risk factors.60 The extent of WMHV has been associated with recurrent stroke within 90 days 

of stroke.61 In CHS, white matter grade and ventricular volume were associated with longevity.62 In the 

ARIC study, among those who had 2 MRIs spaced about 10 years apart, there was WMH progression in 

23% of 972 participants, and smoking showed a dose-dependent association with progression.63 In 

another analysis in ARIC,64 metabolic syndrome and an insulin resistance score (created using principal 

components analysis of 11 factors) were associated with new lacunar infarcts but not progression of 

WMHV.  In the Athens Stroke Registry, among 1892 stroke patients, leukoaraiosis independently 

predicted stroke recurrence, with a hazard ratio of 1.86.65 In a longitudinal analysis in the ARIC study, 

1884 individuals aged 50-73 years had MRI in 1993-1995 and were followed for a mean of 14.5 years.66 

Subclinical brain lesions <3 mm (HR 3.47) and >=3 mm (HR 1.94) were associated with increased risk of 

stroke, as was WMHV.  The presence of both sizes of subclinical lesions was associated with a marked 

8-fold increase in risk, and these lesions also increased risk of fatal stroke.   In addition to causing direct 

injury to white matter regions, WMH may work through other mechanisms.  For example, among 575 

patients with arterial disease (including cerebrovascular, cardiac, peripheral, and aortic), 2 MRIs were 

performed around 4 years apart.67 Deep and periventricular WMHs were associated with reduced 

parenchymal cerebral blood flow between the 2 time-points.   

Subclinical infarcts and WMHs have been associated not only with vascular events but also with 

cognitive impairment68, 69 and reduced functional status over the long term.50, 70 White matter disease may 

mediate the relationship between hypertension and disability.71 Even in younger individuals free of 

cardiovascular disease but at risk due to a family history of early cardiac disease, white matter lesion 

burden was inversely associated with manual dexterity (as measured by the Grooved Pegboard test).72 
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When regional WMHV was tested separately in adjusted models, this association was also seen for 

WMHV in each brain lobe except for the temporal and occipital lobes.  Asymptomatic brain MRI 

abnormalities, including WMHs and infarcts, have been associated with functional impairment cross-

sectionally,73 at 3 months,74 and over 4 years of follow-up.70 In a case-control study performed in 

Singapore, the burden of small vessel disease and large vessel disease was summarized in a weighted 

score of “cerebrovascular disease” among 305 cases with cognitive impairment and 94 controls.75 A 

higher cerebrovascular disease score was associated with worse cognitive function.  WMHV was 

associated with global deficits, and cerebral microbleeds were associated with domain-specific deficits.  

In the Leukoaraiosis and Disability study,76 among 633 older individuals over 2.4 years of follow-up, 

29.5% of those with severe WMHV transitioned to death or disability, compared to 10% with mild WMHV.  

Also, cognitive decline was seen among those who had increase in WMHV over time.  In a prior analysis 

using the MRI cohort of the Northern Manhattan Study (NOMAS),77 in an adjusted model, WMHV was 

associated with poorer episodic memory, processing speed, and semantic memory.  Among those above 

the median age, WMHV was associated with poorer episodic and semantic memory.  Hence, several 

studies have demonstrated a consistent association between subclinical cerebrovascular disease and 

functional and cognitive impairment.   

The risk of recurrence of clinical events such as stroke and MI is high soon after an event, and 

the period of risk may remain elevated for an extended period.78 It is similarly conceivable that the risk of 

subclinical cerebrovascular disease may be elevated for a period of time after a clinical event.  However, 

future research on the trajectories of these changes is required to better characterize whether such a risk 

window exists.  In summary, prior studies show a strong relationship between imaging markers of silent 

brain infarcts and white matter disease and stroke risk factors, and emerging evidence suggests a link 

between such markers and disability and cognitive dysfunction.    

 

Newer structural markers of cerebrovascular dysfunction 

Newer imaging and analytic approaches have been able to identify brain structural changes and other 

evidence of cerebrovascular dysfunction that cause progressive cognitive and functional decline.  For 

example, among 241 initially stroke- and dementia-free participants in the Swedish National Study on 
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Aging and Care in Kungsholmen, diffusion tensor imaging was performed and WMHV was estimated.79 

Vascular risk factors and APOE-epsilon-4 status were associated with impaired white matter integrity and 

cognitive decline.  Among 232 individuals with cognitive impairment, graph theory was applied to diffusion 

tensor imaging data.  WMHV was associated with reduced nodal efficiency, decreased cortical thickness, 

and impaired executive and memory function.80  

In another example, thirty-two participants in the Determinants of Dementia After Stroke study 

had MRI at the time of stroke and 6 months later.81 Probabilistic tractography was used to identify the 

cortical regions associated with acute infarct, and “change in focal cortical thickness” was calculated as 

change exceeding change in the reference regions.  The authors summarized the results as follows: “(1) 

acute infarcts induced focal degenerative changes in cortical regions connected to the infarct; (2) this was 

paralleled by a degeneration of connecting fiber tracts; (3) the degree of cortical thinning correlated with 

the loss of microstructural integrity in connecting white matter tracts; and (4) remote effects were seen 

regardless of the fate of the acute infarct, i.e., whether the infarct turned into a cavitating or noncavitating 

lesion. These findings highlight secondary neurodegeneration as an important feature of brain infarcts 

and may have implications for the understanding of structural and functional reorganization after stroke.”  

These findings highlight the likely role of secondary neurodegeneration in tracts affected by stroke, which 

likely has a long-term effect on disability.   

In a cross-sectional analysis among 1906 non-demented participants in the ARIC study,82  

WMHV and infarcts were associated with lower cognitive performance, and these associations were 

partially mediated by regional cerebral cortical volume, thought to be a marker of structural integrity.  

Specifically, the posterior region of interest included: “hippocampus, parahippocampal gyrus, entorhinal 

cortex, inferior parietal lobule, precuneus and cuneus”; and the frontal region of interest included: 

“rostral/caudal anterior cingulate, rostral/caudal midfrontal, lateral orbital frontal, medial orbital frontal, 

paracentral, pars opercularis, pars triangularis, precentral, superior frontal, and frontal pole.”82 The 

authors suggest that the occurrence of microinfarcts may be the process that links WMHV, infarcts, 

regional cerebral cortical volume, and cognition.   

In a cross-sectional analysis among 426 individuals with cerebral small vessel disease but no 

dementia in the Nijmegen Diffusion tensor and MRI Cohort,83 relationships among WMHV, cortical 
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thickness, network measures, and cognition were examined.  WMHV was associated with thinner cortex 

in frontotemporal regions but thicker cortex in paracentral regions.  Network disruption, measured using 

graph theory, was associated with WMHV and cognition.  When tested together, cortical thickness but not 

WMHV was associated with cognitive function, and cortical thickness mediated the relationship between 

WMHV and cognitive function.   

 In summary, newer imaging and analytic techniques may be able to detect previously 

undetectable structural and functional brain dysfunction that could underlie the progressive disability and 

cognitive changes seen in epidemiological studies.   

 

Traumatic brain injury 

Traumatic brain injury (TBI) may provide a useful neurological condition, analogous to stroke, that could 

illuminate the progressive nature of cerebrovascular disease.  The course of TBI has traditionally been 

conceptualized similarly as stroke: an acute event causes a decrement in function, followed by a period of 

recovery with progressive functional improvement, after which functional ability plateaus.84  Several 

studies, however, have shown a progressive decline in cognitive function in the long term after TBI, in the 

intermediate follow-up period of 1-2 years as well as up to 30 years of follow-up.84 Even after mild TBI, 

recovery of mood, cognition, and concussion symptoms extends beyond 1 year, and a significant 

proportion of individuals (16% of 260) had impairments in complex attention at 1 year from injury.85 

Among 478 individuals in the TBI Model Systems National Database followed up 10 years after TBI, age 

was a major predictor of functional decline over time.86 In another analysis in this cohort using a sample 

size of 3870 individuals,87 trajectories of Glasgow Outcome Scale-Extended scores increased after TBI, 

reached a maximum at 10 years of follow-up, then decreased thereafter.   

These declines have been paralleled by structural changes in the brain, manifested by expansion 

of the original lesion size, regional and diffuse atrophy, and loss of integrity of white matter tracts.  Protein 

deposition and inflammation have been implicated as pathophysiological processes for this decline and 

associated structural change.  The concept of “negative plasticity” has been introduced to explain this 

process.84 Specifically, this view describes a “self-reinforcing, downward spiral of negative brain plasticity 

whereby declining brain function is attributable to a combination of disuse (called ‘reduced schedules of 
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activity’), reduced quality of sensory-perceptual processing, and weakened neuromodulatory control. In 

combination, these factors increase reliance on simplified cognitive processing at the expense of more 

complex processing capacity (called ‘negative learning’). These processing changes result in brain 

changes, which in turn result in further disuse, perceptual compromise and reduced neuromodulatory 

control.”84 With TBI, an initial injury would lead to impairments that reduce functional ability and social 

interaction, which may “foster brain adaptations to simpler and more habitual cognitive processes at the 

expense of complex processing.”84 

Cognitive decline is common after TBI.  Cognitive change after recovery from TBI was tested 

among 33 patients with moderate to severe TBI.88 Comprehensive neuropsychological testing was 

compared between 1 year post-TBI and 2-5 years after injury.  There was heterogeneity in the patterns of 

change in cognition, and there was decline on at least 2 neuropsychological measures in 27.3% of the 

cohort.  

One underlying mechanism of long-term decline after TBI is progressive atrophy.  Fifty-six 

moderate-severe traumatic brain injury patients were compared to 12 healthy controls on 2 MRIs, one 

done 5 months after injury and one 20 months after injury.89 Those with TBI had progressive atrophy 

during this period, 96% in at least one brain region, and 75% in at least 3 of 4 regions (whole brain, 

corpus callosum, and right and left hippocampi). The authors suggest that the chronic atrophy may be 

due to “tissue shrinkage—the result of lost neuropil, protein and/or fluids—or to cell death, with 

disconnection and disuse, inflammation and delayed apoptosis contributing independently or 

interactively.”89 

Microstructural disruption may also play a role in progressive dysfunction after TBI.  Among 12 

patients with TBI, repeated diffusion tensor imaging was performed at 1 week, 7 months, and 21 months 

from injury (on average), and neuropsychological testing was performed concomitantly with imaging.90 

There was continual change in structural volumes, fractional anisotropy, and mean diffusivity in the 

chronic phase, with some patients experiencing long-term decline in neuropsychological function 

corresponding to these imaging changes. 

Inflammatory processes may also be involved in the long-term decline seen after TBI.  A recent 

review article summarized the various inflammatory processes involved after TBI.91 An early inflammatory 
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response after injury involves several cell types, including astrocytes, microglia, macrophages, 

neutrophils, and T cells.  However, this response may become maladaptive if sustained and cause 

ongoing tissue damage.  Specifically, neutrophils may promote neuronal cell death and destruction of 

surrounding cell types.  Also, reactive oxygen species have been implicated in ongoing brain tissue 

damage after TBI, and early trials have suggested a protective effect of anti-oxidant therapies (e.g. N-

actyl cysteine) during the early recovery period.  Amantadine has also been proven to be effective when 

administered for 4 weeks in the subacute phase of recovery after TBI (4-16 weeks after injury), but the 

mechanism of effect is not certain.    

 There may also be chronic effects of injury that does not involve head trauma, and emerging 

research is examining the long-term effects of non-head trauma and falls.  For example, in the Health and 

Retirement Survey (HRS), disability trajectories after accident injury, not only involving head trauma, were 

examined over 10 years of follow-up in 591 individuals.92 Functional data were examined 2 years before 

injury and 8 years post-injury.  Five distinct trajectories were identified (Figure ii).  Sex, number of health 

conditions, and insurance status were associated with individual trajectories.  Among 754 individuals 

followed with monthly disability assessments over 12 years, there were 4 trajectories of change in 

disability after a fall that were highly influenced by pre-fall functional status.93 

 In summary, the pathophysiological processes involved in TBI may overlap with those involved in 

cerebrovascular dysfunction, and the epidemiological study of TBI may inform studies of the long-term 

cognitive and functional effect of stroke and vascular disease.    

 

Neurodegenerative disease 

Neurodegenerative diseases such as Alzheimer’s dementia have traditionally been conceived of as 

progressive conditions with cumulative negative effects on cognitive performance, functional status, and 

social participation.  Recent research has begun to show that neurodegenerative diseases share 

pathophysiological processes with cerebrovascular disease.  Among experts in stroke and 

neurodegenerative disease, there has been a recent recognition of the vascular components of dementia, 

and a call for further research to elucidate the relationships and mechanisms by which stroke and 

vascular dysfunction cause progressive cognitive and functional decline.94 For many years, the entity of 
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vascular dementia was conceived as a condition in which focal infarcts caused cognitive impairment and 

a step-wise dementia.  However, currently there has been a growing recognition that both 

neurodegenerative dementia and vascular dysfunction often co-exist, and that they share 

pathophysiological mechanisms and risk factors.   

 Often, neurodegenerative dementia and cerebrovascular disease coexist.  Among 393 cognitively 

unimpaired elderly individuals in the Mayo Clinic Study of Aging, those with imaging evidence of 

increased cortical amyloid as well as those with evidence of subclinical brain ischemic vascular disease 

had increased cognitive decline, and the presence of both showed additive and not synergistic effects.95 

Genetic overlap among Alzheimer’s disease, CRP, and plasma lipids was found in a study that examined 

data from multiple genome-wide association studies with a total of >200,000 individuals, suggesting 

overlapping pathophysiologies among neurodegenerative, inflammatory, and vascular conditions.96 

Subclinical cerebrovascular injury has been associated with subsequent cognitive deficits and 

decline.  WMHV are associated with cognitive decline and, along with infarcts and cerebral microbleeds, 

cause vascular dementia.  Sensitive MRI techniques can identify white matter tracts through diffusion 

tensor imaging, which may be able to detect disruption of white matter tracts even before WMHs 

manifest.  Progression of periventricular WMHV was seen in the Rotterdam Scan Study between 2 MRIs 

spaced 3 years apart and was associated with declines in information processing speed and cognition.97  

Even in the absence of clinical cognitive impairment, a stroke can cause delayed cognitive deficits.  

Fifteen months after stroke, among 115 stroke survivors without baseline dementia, 31% had a drop in 

cognitive function as measured by the MMSE, and 9% developed incident dementia.98 Over 

approximately 20 years of follow-up among 6514 participants in the Rotterdam Study who were free of 

dementia at baseline, atrial fibrillation was associated with higher risk of incident dementia, independently 

of clinical stroke and vascular risk factors.99 Subclinical cerebrovascular disease was thought to be a 

possible cause.  Among 3117 individuals with mild cognitive impairment and 6603 individuals with normal 

cognitive function, the Framingham Stroke Risk Profile score was associated with baseline cognition as 

well as decline in cognitive scores over time.100 

The direction of causation can also occur in the opposite direction, in which cognitive deficits 

predate and may cause clinical stroke events.  Subjective memory complaints have been associated with 
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risk of subsequent stroke among 9152 participants in the Rotterdam Study, with a hazard ratio of 1.20, 

and authors suggested that “subjective memory complaints may be a marker of cerebral microvascular 

injuries.”101 The cerebral cortex has reduced perfusion in Alzheimer’s disease, and this is thought to 

involve several processes: small vessel disease, amyloid angiopathy, abnormal vascular contractility, and 

secondary upregulation of vascular endothelial growth factor.102  Although there has traditionally been a 

focus on the pathological effects of Alzheimer’s disease on the arterial system, there is growing evidence 

in animal models that this dementia also affects the structure and function of the venous system, resulting 

in abnormal venules that potentiate the arterial abnormalities seen in this disease.103 Among 72 patients 

with stroke or transient ischemic attack (TIA) with cognitive impairment, a carbon-11-labeled Pittsburgh 

compound B positron emission tomography (PET) scan was performed, and cognitive assessments were 

performed at 3-6 months and annually thereafter for 3 years.104 There was a significant decline in mini-

mental state examination (MMSE) scores over follow-up among those with Alzheimer’s disease–like Aβ 

deposition but not those without, and there was a steeper decline in MMSE and Montreal Cognitive 

Assessment scores among those with this pattern of Aβ deposition.   

In addition to pathological evidence of neurodegenerative disease and cerebrovascular disease, 

processes that do not manifest during routine pathological analysis seem to effect long-term cognitive 

changes.  In an in-depth longitudinal study of 856 individuals with pathological analysis of brain tissue, the 

majority of variance in cognitive decline was not explained by traditional pathological evidence of 

Alzheimer’s disease, Lewy body dementia, and cerebrovascular disease.105 

 In summary, there are several points of connection between neurodegenerative dementia and 

cerebrovascular disease, with overlapping risk factors, shared pathophysiological processes, and 

bidirectional patterns of influence between the 2 conditions.  However, more research is needed to clarify 

these shared relationships.   

 

Inflammatory processes 

Another line of evidence suggests that serum biomarkers of inflammation may be able to detect 

subclinical risk of vascular disease, and hence may be able to link stroke pathophysiology with ongoing, 

continuous changes in function.  Prior research has identified a significant role of inflammation in 
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atherosclerosis and stroke106, 107 as well as significant associations between stroke and inflammatory 

biomarkers, such as leukocyte count108 and high-sensitivity C-reactive protein (hsCRP).109-113 Some 

studies have suggested that hsCRP also predicts prognosis after stroke.110, 114 Prior research in NOMAS 

has identified a link between inflammatory markers and MI, mortality, and carotid plaque thickness.115, 116 

In CHS, interleukin-6 (IL6) and CRP have been associated with white matter lesions,117 and other studies 

have found associations between CRP and stroke severity and mortality.118 Other markers of immune 

activity have also been implicated.  For example, it appears that B-lymphocyte activation is linked to 

delayed cognitive decline after stroke in a mouse model as well as in pathological analysis of post-

mortem specimens.119  In the Framingham Offspring study, a cross-sectional analysis was performed 

among stroke-free individuals testing associations among biomarkers (systemic and vascular 

inflammatory biomarkers and markers of oxidative stress) and MRI findings (WMHV, SBI, and cerebral 

microbleeds).120 Cerebral microbleeds were associated with higher levels of tumor necrosis factor 

receptor-2 (TNFR2) and myeloperoxidase, and WMHV and SBI were associated with higher levels of 

osteoprotegerin, intercellular adhesion molecule 1, lipoprotein-associated phospholipase A2 mass, and 

lower myeloperoxidase levels.  Neutrophil counts and neutrophil-to-lymphocyte ratios were independently 

associated with 3-month outcomes among 846 intravenous thrombolysis-treated patients, suggesting the 

importance of inflammatory states in outcome after acute stroke treatment.121 

 Interactions have also been found between vascular risk factors and inflammatory states.  Forty 

individuals, 19 with diabetes, had comprehensive neuropsychological measurements, physical 

examinations, MRI, and inflammatory marker analysis twice over 2 years.122 Cerebral autoregulation was 

associated with functional status.  Also, those with diabetes had worse cerebral vasoregulation and 

cognitive function over time, and higher cortisol and CRP levels were associated with decline in 

vasoregulation.   

A single ischemic stroke may cause changes in inflammatory profiles123 that may have an 

ongoing deleterious effect on brain structure and function124 that may persist years after stroke.125 Beyond 

the association with vascular outcomes, inflammation has been associated with quality of life (QOL) in a 

limited number of studies,126-129 but the association of inflammatory markers with disability has not been 

well-studied, particularly among minority populations.   
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 Inflammatory processes have been implicated not only in cerebrovascular disease but in other 

neurological diseases as well.  In a large pathological study of individuals who had had TBI, there was 

increased microglial activity peaking 3 months after TBI but remaining elevated for several years.130 It is 

well-known that Alzheimer’s dementia pathogenesis involves inflammatory processes.131 The 

accumulation of amyloid-β activates microglia, which cause an acute inflammatory response to attempt to 

clear the abnormal protein.  However, a persistent inflammatory response ensues, causing retraction of 

microglial processes and resulting in functional and structural changes.  Implicated in this process are the 

cytokines tumor necrosis factor-alpha, IL6, interleukin-1α, and GM-CS.  More recent research suggests 

that inflammatory processes may be the primary drivers of the structural and functional brain changes 

seen in the disease, and not just responses to abnormal buildup of proteins.132 These immunological and 

inflammatory processes may promote neurodegenerative disease independently of the buildup of amyloid 

proteins.  These inflammatory processes may originate from within the central nervous system or be tied 

to systemic inflammatory states or conditions.  A distinction that may be useful in understanding these 

processes may be between adaptive and innate neuro-inflammatory processes.132 Studies in animal 

models have also suggested that neutrophil invasion of the central nervous system plays a key role in the 

development of Alzheimer’s dementia, begins before the onset of cognitive decline and peaks at the time 

of first detection of memory loss.  Studies in mice even suggest that depleting circulating neutrophils 

restores cognitive functioning.133 Finally, in a mouse model, exogenously applied beta-2-microglobulin 

caused cognitive impairment and reduced neurogenesis.134 In summary, inflammatory processes have 

been found to play a significant role in vascular disease and progressive neurodegenerative disease, but 

more research is needed to clarify the effects of inflammatory states on long-term functional trajectories.   

 

Limitations of previous research  

The proposed research seeks to fill 2 major areas of deficiency in the existing literature.  The first area is 

a lack of quality data delineating the long-term course of disability in relation to vascular disease, 

particularly stroke.135 Several studies on predictors of functional outcomes pre-date important shifts in 

paradigms of treatment (of cholesterol and blood pressure, for example), obesity prevalence, and 

population patterns of aging.  Also, in many prior studies, vascular disease and vascular events are not 
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reliably ascertained, precluding accurate causal inference about the relationship between vascular 

disease and functional outcomes.  Several studies have examined disability in various cohorts, including 

the Asset and Health Dynamics Among the Oldest Old cohort,136 the Health and Retirement Survey,137 

the Baltimore Longitudinal Study of Aging,138 the National Health and Nutrition Examination Survey,139 the 

National Health Interview Survey,140 National Long-Term Care Survey,141 and the Panel Study of Income 

Dynamics.142 However, there are significant limitations of these studies: some of these are not 

longitudinal cohorts with repeated measures of functional status; none of these cohorts has examined 

inflammatory and imaging markers as exposures; and reliable and thorough validation and subtyping of 

vascular events are lacking.   

The second understudied area that would be addressed by the proposed research involves 

trajectory analysis of functional outcomes in relation to stroke.  Specifically, trajectory analysis requires 

multiple repeated measures over time within an individual to allow the estimation of the initial level, slope, 

and shape of the curve representing change of the outcome over time (Figure iii).  In other fields, 

including multiple sclerosis and critical care, there has been an explicit interest in modeling the course 

and trajectory of functional status before and after discrete clinical events.  For example, in multiple 

sclerosis there are clinically distinct syndromes defined by different trajectories of change in functional 

status, and diagnostic and treatment approaches are tailored to the particular syndrome (Figure iv).  In 

critical care medicine, there has been an interest in modeling different trajectories of function before and 

after admission to an intensive care unit (Figure v), with implications for trial design and understanding 

the biological effects of critical illness.143, 144 However, to our knowledge, such a conceptual approach has 

not yet been applied to stroke trials, perhaps because of a conceptualization of stroke in prior research as 

a discrete event with time-limited effects on function, as well as a focus of clinical trials on acute stroke 

treatments and interventions, which prioritize short-term outcomes and adverse events.   

Historically, most studies of disability and stroke have examined the course of functional change 

only after stroke and have not examined the course of functional status before the event.26-33 Most of 

these studies had short-term follow-up and measured disability once, reducing precision and precluding 

detailed modeling of the trajectories of outcomes over time.  Also, most studies of disability after stroke 
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have included only hospitalized patients with limited follow-up, and relatively few population-based 

studies have examined predictors of functional status with long-term follow-up.145  

 

My previous research 

In order to address this deficiency in the literature, we examined, in the stroke-free, population-based 

cohort of NOMAS (please see below for further details of the NOMAS study design),146 vascular 

predictors of functional status as measured by the Barthel Index (BI).  Using models adjusted for 

demographic, medical, and social risk factors, we found an annual decline of 1.02 BI points (p<0.0001).  

Predictors of change in BI over time included: age (-0.08 BI points per year; p<0.0001), male sex (0.32 

per year, compared to female; p<0.0001), diabetes (-0.37 per year, compared to non-diabetics; 

p=0.0003), and hypercholesterolemia (0.20 per year, compared to no hypercholesterolemia; p=0.006). 

Using validated and specialist-adjudicated data on the vascular events of stroke and myocardial infarction 

(MI), we found that results did not change when stroke and MI were censored.  The magnitude and 

significance of predictors of BI were similar for motor and non-motor domains.  Hence, diabetes but not 

hypertension was a strong predictor of long-term function, even when vascular events occurring during 

follow-up were censored.  The research proposed here was designed to clarify the role of inflammatory 

and imaging markers in predicting long-term disability.   

We also examined predictors of long-term functional status and the slope of decline over 5 years 

of annual follow-up in a cohort of stroke patients (n=525), who are distinct from the subjects in the 

prospective NOMAS cohort of initially stroke-free participants described above (please see below for 

further details of the NOMAS study design).147 In this stroke patient cohort, mean age was 68.6+12.4 

years, 45.5% were male, 54.7% Hispanic, 54.7% had Medicaid/no insurance, and 35.1% had moderate 

stroke. The proportion with BI>95 declined over time (OR 0.91, 95% CI 0.84-0.99). Predictors of 

functional status included increasing age, stroke severity, urinary incontinence, diabetes, marital status, 

and left-sided stroke.  Changes in BI by insurance status were confirmed by a significant interaction term 

(β for interaction = -0.167, p=0.034); those with Medicaid / no insurance declined (OR 0.84, p=0.003), 

whereas those with Medicare/private insurance did not (OR 0.99, p=0.92).  An important unresolved 
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question was whether the observed decline in this study was due to the stroke (or related factors) or 

simply a result of the aging process.   

Another analysis in the NOMAS prospective cohort of initially stroke-free participants addressed 

this question.148 We examined 210 participants who experienced an ischemic stroke during follow-up and 

lived more than 6 months after stroke.  There was no difference in the rate of functional decline over time 

before and after stroke (p=0.51), with a decline of 0.96 BI points per year before stroke (p<.0001) and 

1.24 after stroke (p=0.001).  However, when stratified by insurance status, among those with Medicaid or 

no insurance, in a fully adjusted model, there was a difference in slope before and after stroke (p=0.04), 

with a decline of 0.58 BI points per year before stroke (p=0.02) and 1.94 after stroke (p=0.001) (Figure vi).   

 

Research on patient-centered outcome trajectories surrounding vascular events 

I performed a systematic review on studies of trajectories of patient-centered outcomes surrounding 

vascular events.  Using MEDLINE, PubMed, and Google Scholar, I included all possible combinations of 

the following search terms: “stroke,” “trajectory,” “trajectories,” “cerebrovascular,” “myocardial infarction,” 

“disability,” “curve,” “growth,” “cognition,” “cognitive,” “functional,” and “function.” Publication time included 

all studies published from 1950 to December 1, 2015.  All studies were reviewed in full for relevance, and 

reference lists were reviewed for potentially relevant studies.  Due to the heterogeneity in the study 

designs and outcomes of studies, no strict exclusion criteria were used, and studies are summarized in 

narrative form.   

 

Studies examining disability 

Several studies examined the long-term course of disability surrounding vascular events.  Among over 

64,000 individuals who had stroke from 2008-2010 in the Swedish Stroke Register, functional 

dependence was seen in 16.2% of survivors at 3 months, but this proportion increased to 28.3% at 12 

months.149  

In another analysis in HRS among 9237 individuals >65 years of age,150 the joint trajectories of 

physical, emotional, and cognitive function were analyzed with biennial assessments over 12 years of 

follow-up.  Individuals were almost equally divided into one of 4 distinct trajectories of change over time: 
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1) minimal impairment, 2) moderate impairment with increasing cognitive deficit, 3) moderate impairment 

with increasing physical and emotional deficit, and 4) significant and increasing impairment.  Also, worse 

trajectories were predicted by lower education, income, and net worth.   

In a prospective study in the Collaborative Evaluation of Rehabilitation in Stroke Across Europe 

project, 4 rehabilitation centers in Europe assessed 532 stroke patients at 5 years from stroke who had at 

least a minimal initial impairment.151 As shown in Figure vii, there was a decline between 6 months and 5 

years in BI and motor performance (measured by the Rivermead Motor Assessment), but no differences 

when the 2-month and 5-year time points were compared.   

Among 3186 older individuals in Taiwan followed over 4 waves over 11 years,152 latent class 

growth curve modeling identified 3 trajectories of function: 1) maintained function (85% of the cohort), 2) 

progressive disability (11%), and 3) consistent disability (4%).  Male sex, higher education, less 

comorbidity burden, and fewer depressive symptoms were associated with the maintained function 

trajectory.   

In another study among 810 Taiwanese individuals followed biennially over 10 years,153 

hypertension and depression predicted increased disability among the cohort as a whole whereas 

diabetes was predictive only among those who died during follow-up.    

Finally, in the Whitehall II study, among 5376 participants, comprehensive motor function was 

assessed and vascular risk was summarized at several time-points over 16 years with the Framingham 

general cardiovascular disease risk score.154 The development of mobility limitations was associated with 

worse cardiovascular risk profiles, independently of cognitive status and SES. 

 

Studies examining cognition 

Several studies examined cognitive function related to vascular events.  The authors of a study examining 

repeated measures of MMSE after 167 cases of intracerebral hemorrhage claimed that “prognostic 

factors for cognitive decline after ICH are already present when ICH occurs, suggesting a process of 

ongoing cognitive impairment instead of new-onset decline induced by the ICH itself.”155 However, the 

basis for this claim is tenuous, since pre-ICH cognitive status was estimated by a different measure than 



22 
 

the outcome and was assessed retrospectively, raising questions about bias in the estimation of pre-ICH 

cognition.  Prospective follow-up began only after ICH.   

 Among 538 individuals free of overt stroke, neurological disease, and cardiac disease,156 there 

were on average 2.3 assessments of cognitive function spaced 2.1 years apart.  Baseline carotid intima 

thickness was associated with accelerated cognitive decline on multiple tests of verbal, nonverbal, and 

executive function.   

Among 6476 elderly individuals, cognitive function was assessed 5 times over 9 years.157 

Baseline depressive symptoms, functional status, and stroke were associated with lower cognitive 

function but not accelerated decline over time, perhaps due to the advanced age of the cohort.   

 

Other outcomes 

Predominantly male (98%) veterans with ischemic stroke in 2007 (n=3811) were followed for 1-year 

trajectories of 3 outcomes: nursing home care, home care, and mortality.158 Latent class growth analysis 

was used to identify 5 different trajectories, as summarized by the authors as follows: “Members of the 

cohort had one of the following 5 trajectories: 49% had a Rapid Recovery trajectory with little or no use of 

care during the 12 months, 15% had a Steady Recovery trajectory with initially high nursing or home care 

that tapered off during a 1- to 3-month period; 9% had a Long-Term Home Care trajectory with 

consistently high home care use during the 12 months, 13% had a Long-Term Nursing Home trajectory 

with consistently high nursing home use during the 12 months, and 14% had an Unstable trajectory with 

multiple transitions between nursing home, home care, and acute care.”158 

 

Studies comparing trajectories before and after vascular events 

Several recent studies have compared trajectories of outcomes before and after vascular events.  In an 

analysis in the Health and Retirement Survey (HRS), cognitive function as measured by the modified 

telephone interview for cognitive status (TICS-m) scale was assessed every 2 years over a mean of 4.1 

years of follow-up.159 Compared to Whites, Blacks had greater cognitive decline in adjusted models.  

Incident stroke caused reduced cognitive function that did not differ by race, and there were no significant 

differences in slope of change over time post-stroke.  In another analysis in HRS, the course of functional 
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and cognitive impairment was compared before and after stroke (with 432 hospitalizations) and MI (with 

450 hospitalizations).160 Using a combined measure of ADLs and IADLs, there was a greater increase in 

disability at the time of stroke compared to MI.  Difference in pre- and post-stroke slopes of change 

depended on initial impairment levels.  Stroke but not MI was associated with higher odds of cognitive 

impairment.  

In the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, the course of 

cognitive function was compared before and after stroke among 515 individuals who had stroke, and 

23057 who remained stroke-free, during a mean follow-up of 6.1 years.161 There was a significantly 

steeper decline in cognitive function after stroke in the areas of global cognition and executive function.  

The risk of cognitive impairment was higher after stroke compared to before stroke, with an odds ratio of 

1.23 per year (95% CI 1.10-1.38).   

In HRS, trajectories of biennially measured memory performance were analyzed before and after 

nonfatal stroke (n=1189), before fatal stroke (n=385), and among 15,766 individuals who did not 

experience stroke over 10 years of follow-up.162 Among stroke survivors, the pre-stroke decline in 

memory performance was greater than among those who remained stroke-free, and those who died of 

stroke had even greater declines.  There was no significant difference in slope of change in memory 

performance before and after stroke.  Limitations of this analysis were the long intervals between memory 

assessments, the self-report of stroke, and the large amount of missing data regarding stroke timing.   

Among 17341 participants in HRS,163 there were biennial assessments of a composite memory 

score over 10 years of follow-up.  There were 3 types of individuals: stroke survivors (n=1169), stroke 

decedents (n=405), and those who did not experience stroke during follow-up (n=15767).  Stroke was 

defined by self-report or report of a proxy but not confirmed by specialist review, and there was a 

significant amount of missing data on month (8.3%) and year (10.5%) of stroke.  Also, there was a 

significant amount of loss to follow-up (37%).  Overall, pre-stroke decline in memory performance was 

greater in older individuals compared to younger individuals.  Females had slightly steeper declines in 

memory performance pre-stroke compared to males, but there were no significant differences among the 

stroke-free cohort.  For those in the older age stratum, there was a steeper decline in memory 

performance after stroke compared to before (-0.15 vs. -0.07 points/year, p = 0.003).   
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In the ARIC study,164 a change score in 3 cognitive measures was calculated over approximately 

14 years, and 2 MRIs were performed over a similar time interval (10 years) and scored for presence of 

infarcts, WMHV, and ventricular size.  There was ongoing surveillance for hospitalizations, and type of 

hospitalization was categorized using ICD-9 codes.  For those who were hospitalized during follow-up, 

there was a decline in performance on the Digit Symbol Substitution Test.  When trajectories of change in 

cognitive performance were compared pre- and post-hospitalization, there was accelerated decline in the 

Digit Symbol Substitution test after hospitalization, with an additional 0.20 digit-symbol pairs/year (95% CI 

0.12–0.27), and accelerated decline in the Word Fluency Test after hospitalization, with an additional 0.09 

words/year (95% CI 0.02–0.17).  Hospitalized patients had greater development of atrophy.  Overall, 

critical illness and major surgical hospitalizations were associated with greater cognitive decline and MRI 

changes.   

In ARIC, trajectories of self-rated health were examined over a median of 17.6 years in 11,188 

individuals who remained disease-free, 1071 individuals who developed MI, and 809 who developed 

stroke.165 Higher neighborhood income was strongly associated with better self-rated health and less 

prevalent comorbidities.  There was no difference in the slope of change in self-rated health over time 

before and after stroke in this analysis.   

Among 687 community-dwelling elderly individuals assessed for life space mobility, those with 

surgical hospitalizations had greater drop in mobility at the time of hospitalization compared to those with 

non-surgical admissions, who had no significant recovery over time.166 

 

Functional trajectories immediately before death 

Among 213 individuals >70 years of age who entered hospice care over a 13-year period, 5 functional 

trajectories in the last year of life were identified with monthly telephone assessments, and the 21% with 

neurodegenerative disease had the worst trajectory.167 In the last year of life, 6 distinct trajectories of 

disability were identified among 552 decedents, and hospital admissions were common, with 71% with at 

least one admission and 45% with more than one.168 Hospital admissions were associated with worse 

disability. 
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Summary 

The recent epidemiological studies reviewed here suggest areas of further research to clarify the 

relationships between vascular disease, particularly stroke and MI, and the long-term course of functional 

status.  Most studies that have compared the course of outcomes before and after vascular events have 

focused on cognition and not functional status.  Furthermore, the precision and identification of events 

during follow-up have not always been reliable.  Also, the mechanisms and pathophysiological processes 

underlying the patterns of decline seen in previous literature are not known and need to be examined.  

Due to these gaps in the literature, several important questions remain unanswered.  First, what is the 

impact of vascular disease on disability in the absence of recurrent clinical events?  It is unclear whether 

intensive preventive efforts, similar to those used to prevent clinical vascular events, would have an 

impact on subclinical events, progression of white matter disease, and disability.169  

There is an underlying assumption behind the current choice of outcome and timing in clinical 

trials: that the functional outcomes (for example, modified Rankin scale [MRS]) are stable and well-

represented at 3, 6, or 12 months after stroke.  But these are untested assumptions that, according to the 

research presented here, may not be plausible.  Rather, post-stroke patients with different recovery 

trajectories may represent different disease or recovery states, and may respond differently to 

interventions, just as the different subtypes of ischemic stroke may be considered different disease 

entities, since the mechanisms of vessel blockage are distinct in each.   

An explicit focus on the trajectories of disability as an outcome in observational studies and 

treatment trials would be required to address these unresolved questions.  Also, the optimal means to 

detect the severity or risk of subclinical events is not certain.   The associations among strokes 

discovered on imaging, white matter microvascular disease, and long-term functional status are not well 

delineated.  Social support and socioeconomic status affect access to care, control of risk factors, and 

vascular outcomes after stroke,170, 171 but the effect of these factors on functional status after stroke is not 

known.  Finally, the mechanisms influencing long-term disability trajectories, including subclinical vascular 

disease and inflammatory states, need to be clarified.   

 



26 
 

Specific Aims 

Stroke is the leading cause of disability17 and a significant cause of cognitive impairment and depression 

in the immediate post-stroke period.172-174 Stroke is traditionally seen as a discrete event, and it is 

assumed that, following the 3-6 month recovery period after stroke, functional status would more or less 

stabilize unless recurrent events occur.  Indeed, the short-term effects of stroke on disability are well-

described, but the long-term course of functional status before and after stroke is less clear.175, 176 In 

contrast to this traditional view of stroke, there is growing evidence that a paradigm may be more 

appropriate in which the effect of cerebrovascular disease on disability is viewed in a continuous, ongoing 

manner.  In other words, stroke may be more effectively considered as an ongoing, chronic condition with 

effects on function, instead of just a discrete event.  For example, stroke is caused by conditions that may 

have an ongoing and cumulative effect on vessel dysfunction, including vascular risk factors and 

inflammatory states.  In addition to causing recurrent strokes, such processes cause subclinical infarcts 

and white matter disease that may reduce functional status over the long term.50, 70 It is also possible that 

individual strokes cause injury to the brain that lead to a chronic and degenerative process with 

progressive damage, dysfunction, and functional decline. 

 The proposed etiologic model for the current analyses is presented in Figure viii (note that this is not 

intended to be a directed acyclic graph).  Vascular risk factors have a direct impact on vessel dysfunction 

(including subclinical infarcts and clinical strokes) as well as an indirect effect, mediated through systemic 

inflammation.  Systemic inflammatory states cause elevations in serum biomarkers, which are measured 

in order to quantify the degree of inflammation present.  Other factors, indicated by ‘U1’ and not 

measured in this analysis, also influence systemic inflammation.  A different set of unmeasured factors, 

U2, influence vascular dysfunction and stroke.  Vessel dysfunction is detected, in part, by structural brain 

changes measured on brain MRI as subclinical brain infarcts and white matter disease.  Vascular 

dysfunction causes impairment in blood flow and structural damage to the brain, which causes cognitive 

and physical impairments.  These impairments cause impaired functional status by affecting an 

individual’s performance in ADLs and IADLs.   

 In analysis ‘A,’ several groups of variables are considered confounders of the relationship between 

inflammatory markers and functional status, and were adjusted for sequentially in groups: demographic 
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variables. vascular risk factors. social variables, and mood and cognitive variables.  Also, in final models 

there was adjustment for stroke and MI occurring during follow-up in order to determine whether the 

associations between inflammatory biomarkers and functional status were independent of these events.  

The adjustment plan was similar for analysis ‘B.’  In addition, as described below, a basic mediation 

analysis was performed in analysis B, using all functional data before and after the time of MRI.  The 

unique timing of the MRI during follow-up allows a test of whether MRI findings mediate the relationship 

between certain factors (described below) and functional status.   

 The objective of this research is to identify individuals at risk of steep decline in functional status, and 

to describe the long-term trajectory of these outcomes before and after major vascular events.  Our 

central hypotheses are that stroke can cause a decline in function over the long term even in the absence 

of recurrent clinical vascular events, and that vascular risk factors and inflammatory and imaging markers 

predict an accelerated decline. We further hypothesize that this effect will be specific to stroke and brain 

injury, rather than to vascular events, such as myocardial infarction (MI), more generally, and we will test 

this by comparing effects of stroke to those of MI. We will study two large observational cohorts, the 

Northern Manhattan Study (NOMAS) and the Cardiovascular Health Study (CHS) to enhance the validity 

of these hypotheses.  The hypotheses and aims for this proposal are:   

 

Hypothesis #1: Serum inflammatory biomarkers and cerebral white matter disease independently predict 

worse functional status in NOMAS in those free of stroke at baseline. 

Specific Aim #1:   a) [Analysis A] To determine whether levels of serum inflammatory biomarkers 

measured at the time of enrollment (interleukin-6, tumor necrosis factor alpha receptor-1, C-reactive 

protein, lipoprotein-associated phospholipase-A2) are associated with lower Barthel index (BI) scores and 

a steeper slope of decline in a multiethnic cohort, using multivariable regression and adjusting for 

baseline demographic characteristics (age, sex), vascular risk factors (diabetes, hypertension, 

hypercholesterolemia), behavioral factors (smoking and alcohol use), social variables (marital status, 

insurance status, number of friends), and cognitive factors (depressed mood, performance on mini-mental 

state examination).   
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b)  [Analysis B] In a subset of the cohort in which study brain MRI was performed, to determine whether 

volumes of cerebral white matter disease and subclinical brain infarcts are associated with BI, using the 

same approach as (a). 

Analyses A and B will use repeated measures of functional status with the BI to estimate the trajectories 

of BI over time, and will describe how the primary predictors affect the intercept and slope of the 

estimated trajectories (Figure iii).  Figure ix graphically displays the effect on the estimated trajectory of a 

change in intercept, and Figure x displays the effect of a change in slope.   

 

Hypothesis #2: In order to delineate the unique effect of stroke on functional change that results 

particularly from vascular disease, we will use myocardial infarction (MI) as a comparison or control 

group.  We hypothesize that the slope of decline in functional status over the long term is steeper after 

stroke than before stroke.  The slopes of decline before and after MI are similar.   

Specific Aim #2:  [Analysis C] To determine, in CHS, using multivariable regression, censoring for 

recurrent stroke and adjusting for demographic, vascular, behavioral, social, and cognitive factors, 

whether the slope of functional status (measured by the National Center for Health Statistic Supplement 

on Aging IADL score) is different before and after stroke.  A similar model will be applied to functional 

status before and after MI. 

Figure xi graphically depicts the parameters that will be estimated in the models used in Analysis C.   
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Figure i. Conceptual depiction of the trajectory of functional status in relation to stroke 
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Figure ii.  Trajectories of functional limitations after injury in the Health and Retirement 
Survey.  Reproduced from Bell et al.92   
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Figure iii. Estimation of functional trajectory over time from repeated measures  
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Figure iv. Patterns of functional trajectories in multiple sclerosis 
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Figure v. Trajectories of function in relation to admission to intensive care units. Figure 
reproduced from Iwashyna. Am J Resp Crit Care Med 2012143 
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Figure vi. Conceptual depiction of the course of functional status before and after stroke among 
those with Medicaid or no insurance. Reproduced from Dhamoon Stroke 2012;43:2180-2184.148   
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Figure vii. Reproduced from Meyer et al.151 

 
“Recovery patterns of (A) the Barthel Index (BI), (B) Rivermead Motor Assessment of Gross 
Function (RMA-GF), (C) RMA of Leg and Trunk function (RMA-LT), and (D) RMA of Arm 
function (RMA-A) from admission to the rehabilitation center up to 5 years after stroke. ICH 
indicates intracerebral hemorrhage.”151 
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Figure viii. Etiologic model for the proposed analyses 
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 Figure ix.  Conceptual depiction of change in intercept of functional trajectory 
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Figure x. Conceptual depiction of change in slope of functional trajectory 
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Figure xi. Conceptual depiction of estimated parameters in Analysis C. 
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Analysis A: 
 

Inflammatory biomarkers predict disability independently of vascular events: the Northern 
Manhattan Study 
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Abstract 

Background: Inflammatory biomarkers have been previously associated with stroke and mortality, but 

inflammation may also have detrimental effects beyond acute events.  The association of these 

biomarkers with functional status is not well defined.  We hypothesized that serum levels of high-

sensitivity C-reactive protein (CRP), interleukin-6 (IL6), lipoprotein-associated phospholipase A2 

(LpPLA2), and tumor necrosis factor receptor-1 (TNFR1) predict long-term functional status 

independently of vascular risk factors and stroke and myocardial infarction (MI) occurring during follow-

up. 

Methods:  In the prospective, multiethnic Northern Manhattan Study, stroke-free individuals in northern 

Manhattan aged >40 years had annual assessments of disability with the Barthel index (BI), for a median 

of 13 years.  BI was analyzed as a continuous variable (range 0-100).  Baseline demographics, risk 

factors, and laboratory studies were collected, including CRP (n=2240), IL6 (n=1679), LpPLA2 mass and 

activity (n=1912), and TNFR1 (n=1863).  Separate generalized estimating equation models estimated 

standardized associations between each biomarker and 1) baseline functional status and 2) change in 

function over time, adjusting for demographics, vascular risk factors, social variables, cognition, and 

depression measured at baseline, and stroke and MI occurring during follow-up.   

Results: Mean age was 69 (SD 10) years, 36% were male, 54% Hispanic, 74% had hypertension, 22% 

diabetes; 337 MIs and 369 first strokes occurred during follow-up.  CRP (-0.41, 95% CI -0.82 to 0.002) 

and LpPLA2 (-0.40, 95% CI -0.75 to -0.04) were associated with baseline BI but not change over time.  

TNFR1 was associated with baseline BI (-0.93, 95% CI -1.59 to -0.26) and change over time (-0.36 BI 

points per year, 95% CI -0.69 to -0.03).   

Conclusions: In this large population-based study, higher serum inflammatory biomarker levels were 

associated with disability, even when adjusting for baseline covariates and stroke and MI occurring during 

follow-up.  Elevated TNFR1 predicted greater disability over time, suggesting that systemic inflammation 

may contribute to long-term functional decline and disability.   
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Introduction 

Serum biomarkers of inflammation may be able to detect subclinical risk of vascular disease, and hence 

may be able to link stroke pathophysiology with ongoing, continuous changes in function.  Prior research 

has identified a significant role of inflammation in atherosclerosis and stroke106, 107 as well as significant 

associations between stroke and inflammatory biomarkers, such as leukocyte count108 and high-

sensitivity C-reactive protein (hsCRP).109-113 Some studies have suggested that hsCRP also predicts 

prognosis after stroke.110, 114  

Prior research in the Northern Manhattan Study (NOMAS) has identified associations between 

inflammatory markers and MI, mortality, and carotid plaque thickness.115, 116 In the Cardiovascular Health 

Study (CHS), interleukin-6 (IL6) and CRP have been associated with white matter lesions,117 and other 

studies have found associations between CRP and stroke severity and mortality.118 It appears that B-

lymphocyte activation is linked to delayed cognitive decline after stroke in a mouse model as well as in 

pathological analysis of post-mortem specimens.119   

 Interactions have also been found between vascular risk factors and inflammatory states.  Forty 

individuals, 19 with diabetes, had comprehensive neuropsychological measurements, physical 

examinations, MRI, and inflammatory marker analysis twice over 2 years.122 Cerebral autoregulation was 

associated with functional status.  Also, those with diabetes had worse cerebral vasoregulation and 

cognitive function over time, and higher cortisol and CRP levels were associated with decline in 

vasoregulation.   

A single ischemic stroke may cause changes in inflammatory profiles123 that may have an 

ongoing deleterious effect on brain structure and function124 that may persist years after stroke.125 Beyond 

the association with vascular outcomes, inflammation has been associated with quality of life (QOL) in a 

limited number of studies,126-129 but the association of inflammatory markers with disability has not been 

well-studied, particularly among minority populations.   

  We hypothesized that elevated levels of serum inflammatory biomarkers independently predict 

worse functional status in those free of stroke at baseline.  We studied this hypothesis in NOMAS in those 

who have data on serum biomarkers.  Four biomarkers were studied: CRP, IL6, tumor necrosis factor 

receptor-1 (TNFR1), and lipoprotein-associated phospholipase-A2 (LpPLA2).  CRP is an acute phase 
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reactant that reflects acute inflammatory states and tissue injury.177 In addition, it may be directly 

implicated in pro-atherogenic processes, and several large epidemiologic studies have shown 

associations between higher CRP levels and vascular events and mortality.  IL6 is an inflammatory 

cytokine that is also elevated with brain injury, predominantly expressed in brain white matter, and may 

be involved with recovery in traumatic brain injury and neuropathy.178 Elevated IL6 has been associated 

with various types of dementia and stroke.  TNFR1 is one of the 2 major receptors to which TNF binds, 

and binding to TNFR1 causes enhancement of inflammation and engages pathways meant to clear 

pathogens, including cytotoxic effects.179 Elevated serum TNFR1 levels have been associated with 

autoimmune diseases and vascular conditions including stroke.  LpPLA2 is an inflammatory biomarker 

secreted by immune cells in the walls of arteries and is involved in the inflammatory processes occurring 

in atherosclerotic plaque.180 Elevated LpPLA2 has been associated with coronary heart disease and 

vascular events in previous studies.  No known studies have tested the associations of the above 

biomarkers with trajectories of functional status.   

 

Methods 

Historically, NOMAS developed over time as a series of distinct studies with disparate designs.  Initially, 

patients who experienced a first ischemic stroke were enrolled in a stroke incidence study and were 

followed over time as part of a stroke case follow-up study.  A case-control study was then developed 

with individuals free of stroke who were identified by random-digit dialing serving as the controls.  Finally, 

a prospective cohort study enrolled individuals free of stroke at baseline and is currently following up 

living subjects.    

The cohort that was the focus of this analysis is the NOMAS population-based prospective cohort 

of those free of stroke at baseline, which was originally designed to evaluate the effects of medical, socio-

economic, serum, and imaging risk factors for incident vascular disease and other outcomes in a multi-

ethnic community. A total of 3298 participants were recruited by random digit dialing of both published 

and unpublished telephone numbers between 1993 and 2001. Subjects were enrolled if they: 1) were at 

least 40 years of age; 2) lived in a pre-defined geographic area of northern Manhattan for at least 3 

months in a household with a telephone; and 3) did not have a history of stroke. The study was approved 
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by the institutional review boards of Columbia University and the University of Miami, and informed 

consent was obtained from all participants.  Further characteristics of the cohort have been outlined in 

prior publications.181-183  

 

Baseline Evaluation   

Trained bilingual research assistants interviewed participants and collected data using standardized 

questions regarding the following conditions: hypertension, diabetes, hypercholesterolemia, cigarette 

smoking, alcohol use, and cardiac conditions.184 All participants underwent a thorough baseline 

examination including comprehensive medical history, physical examination, review of medical records, 

functional status assessed by the BI, quality of life (QOL) assessed by the Spitzer QOL index (QLI), and 

fasting blood samples.   

 

Follow-up  

All participants are followed annually via phone screening to detect change in vital status, new 

neurological or cardiac symptoms and events, interval hospitalizations, cognitive function, and functional 

status via the Barthel index (BI). Only two subjects have been completely lost to follow-up after their 

baseline examination, and the average annual contact rate is 99%. 

A positive screen for any potential cardiac or neurological event is followed by an in-person 

assessment to determine whether a vascular outcome has occurred. In addition, all admissions and 

discharges are screened for hospitalizations and outcomes that may not have been captured by 

telephone interview. Nearly 70% of vascular events lead to hospitalizations at Columbia-Presbyterian 

Hospital.  Hospital records are reviewed to classify outcomes as previously reported.183 Stroke includes 

ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage, but not transient ischemic 

attack or venous sinus thrombosis.  At least 2 stroke neurologists verify and classify all stroke cases.  MI 

is defined by criteria adapted from the Cardiac Arrhythmia Suppression trial185 and the Lipid Research 

Clinics Coronary Primary Prevention trial186 requiring at least 2 of the 3 following criteria: (a) ischemic 

cardiac pain determined to be typical angina; (b) cardiac marker abnormalities defined as abnormal CK-
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MB fraction or troponin I values; and (c) ischemic EKG abnormalities.  Diagnosis of MI is adjudicated by 

cardiologists independently after review of all clinical data.   

There were 435 MIs occurring during follow-up, 225 (51.72%) definite, 112 (25.75%) probable, 

and 98 (22.53%) possible.  For this analysis, only definite and probable MI were included (n=337).  Out of 

first MIs occurring during follow-up (n=333), 184 (55.3%) were definite, 81 (24.3%) were probable, and 68 

(20.4%) were possible.  There were 369 first strokes occurring during follow-up, 322 (87.26%) infarcts, 35 

(9.49%) intracerebral hemorrhages (ICH), 8 (2.17%) subarachnoid hemorrhages (SAH), and 4 (1.08%) 

unknown.  All were included in this analysis. 

 

Study outcome   

The BI, developed in 1965187 and later modified,188 measures an individual’s performance in 10 ADLs and 

has been extensively used in stroke observational studies and clinical trials as a measure of post-stroke 

disability.189 The scale ranges from 0 to 100 in 5-point increments, with 100 indicating normal physical 

functioning.  Previous research has demonstrated the reliability of phone assessments of function using 

the BI.190 Although it is an ordinal scale, recent research has advocated analyzing the scale as a 

continuous variable due to increased power to detect associations, ability to describe the course of 

change over time in linear form, and avoidance of potential misclassification due to crude 

categorization.191-193  

 One limit of the BI is that it is subject to ceiling effects, because the difficulty of ADL performance 

is relatively low compared to more complex tasks such as IADLs, or more complicated cognitive tasks.  

Hence, in a population that is not expected to have significant disability, such as the stroke-free, 

population-based NOMAS cohort, the BI may not capture subtle or early deficits in functional status.  

Estimation of a ceiling effect of a measure should ideally be performed in the cohort under analysis, and 

the estimate in one population does not necessarily translate to the cohort under analysis.194 There are 

several ways to estimate ceiling effects, the most effective of which involve comparisons of the properties 

of the scale to other scales measuring related constructs.195 The following metrics can be calculated for 

each scale and compared among the scales: effect size196, standardized response mean,197 paired t-

statistic,198 or relative efficiency.199 Also, the distribution of maximum scores on each scale can be 
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compared to estimate the ceiling effect.  There is a plan to perform these analyses using functional and 

quality of life measures that began to be assessed on follow-up visits in NOMAS approximately 2 years 

ago.   These analyses would estimate not only ceiling effects but also responsiveness and statistical 

estimates of meaningful clinical change.  However, at the time of this analysis there was not sufficient 

data to complete these analyses.   

 

Explanatory variables: Inflammatory biomarkers 

In 2240 participants, blood samples were collected at baseline and the following were measured using 

immunoassays: hsCRP (using enzyme-linked immunosorbence), IL6, TNFR1, and LpPLA2 mass and 

activity (PLAC assay; diaDexus Inc, South San Francisco, CA).  Laboratory personnel were blinded to 

patient clinical data and markers were run in the same participants. Serum samples for IL6 and CRP were 

drawn into EDTA tubes at baseline, spun immediately at 3,000 g at 4°C for 20 min, and frozen at –70°C 

for later analysis. Inflammatory marker levels were then measured in batched samples by enzyme-linked 

immunosorbent assay using monoclonal antibodies to IL6 with a lower limit of detection of 0.1 pg/ml 

(Biosource International, Camarillo, Calif., USA) and hsCRP with a lower limit of detection of 0.1 mg/l 

(BioCheck Inc., Foster City, Calif., USA).  Each participant had a maximum of only one measurement of 

each inflammatory biomarker.   

The distributions of all 4 biomarkers (IL6, TNFR1, CRP, and LpPLA2—mass assay and activity 

assay) were determined (Table A2).  The pattern of missing inflammatory labs was examined, and the 

most common missing pattern was missing values for LpPLA2 mass and activity, reflecting the fact that 

these labs were added to the inflammatory laboratory panel later in time.  For non-normally distributed 

biomarkers, log transformations were performed (Table A2 and Figure A2).  Although not required to 

satisfy model assumptions, log transformations were performed in order to approximate a normal 

distribution of the variable to be consistent with prior analyses.  There were 67 “0” values for IL6.  The 

next highest value, above 0, was 0.005.  These “0” values were assigned a value of 0.0025 for the log 

transformed analyses.  There were 2 “0” values for TNFR1.  The next highest value, above 0, was 0.09.  

These “0” values were assigned a value of 0.045 for the log transformed analyses.  In secondary 

analysis, a value of 0.000001 was assigned to the “0” values for each of IL6 and TNFR1.  For IL6, there 
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were 36 values that were >2000, including 35 values of 5000, which were determined to be due to coding 

error of high values; these were excluded for the non-quartile analyses of IL6.  Inflammatory biomarker 

values were centered to the mean of all values.  Quartiles of each biomarker were also used as 

categorical variables using the lowest quartile as the referent group.  Additionally, CRP was categorized 

according to the three CDC/AHA risk stratification levels:  <1 mg/L; 1-3 mg/L; and >3 mg/L (Appendix 

A2).200  In secondary analysis, we explored CRP-dominant versus IL-6-dominant profiles, as outlined in 

Appendix A2, as primary predictors, as previously described.201   

 

Covariates  

All analytic models were adjusted for the following variables: age, sex, race-ethnicity, body mass index 

(weight in kilograms divided by the square of height in meters), self-reported hypercholesterolemia, 

diabetes mellitus (defined by self-report, fasting blood glucose level >126 mg/dL, or insulin/oral 

hypoglycemic use), hypertension (defined as a systolic blood pressure recording >140 mmHg or a 

diastolic blood pressure recording >90 mm Hg based on the average of two blood pressure 

measurements or the patient's self-report of a history of hypertension or antihypertensive use), smoking 

(defined as either nonsmoker or smoker within the last year), alcohol use (with moderate alcohol use 

classified as 1 drink/month to 2 drinks/day), social variables (marital status, insurance status [classified as 

uninsured, Medicaid, Medicare, or private insurance], number of friends [individuals whom the participant 

knows well enough to visit in their homes], years living in the community), and cognitive factors 

(depressed mood, and performance on mini-mental state examination [analyzed as a continuous 

variable]).  Of note, there was no evidence of over-reporting of hypertension by self-report.  Specifically, 

1729 individuals (52.4%) self-reported hypertension, and 2067 (62.7%) had a systolic blood pressure 

recording >140 mmHg or a diastolic blood pressure recording >90 mm Hg based on the average of two 

blood pressure measurements.  There were 700 (21.2%) who did not self-report hypertension and had 

elevated blood pressure readings as defined above,  There were 1357 (41.2%) who did self-report 

hypertension and had elevated blood pressure readings at the time of evaluation.  The definitive way to 

identify over- or under-diagnosis of hypertension by self-report would be to perform ambulatory blood 
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pressure monitoring in all participants.  However, the composite definition of hypertension seems to be an 

accurate method of identifying cases of hypertension in this population.   

 

Statistical analysis  

The goal of this analysis was to determine whether levels of serum inflammatory biomarkers (IL6, TNFR1, 

CRP, and LpPLA2) were associated with baseline BI and a steeper slope of decline over time (Figure iii).  

We first calculated the distribution of main explanatory variables, baseline covariates, and BI, and we 

compared the distributions of variables based on availability of inflammatory lab data to detect differences 

in the inflammatory lab cohort compared to the prospective cohort.  Then, each biomarker exposure was 

analyzed separately.  Due to correlations among repeated measures of outcomes in the same individual, 

regression models based upon generalized estimating equations (GEE) with an identity link function were 

used to assess the association between main explanatory variables and repeated measurements of BI, 

adjusting for baseline demographic variables (age, sex, race-ethnicity), medical risk factors (BMI, 

diabetes, hypertension, hypercholesterolemia), smoking and alcohol use, social variables (marital status, 

insurance status, number of friends, number of years in the community), and cognitive factors (depressed 

mood, performance on mini-mental state examination).  In model building, we sequentially added groups 

of variables in a pre-specified manner based upon the standards of the field.  Specifically, the first model 

included no covariates, and successive models included demographic variables, vascular risk factors, 

social variables, and cognitive and mood factors.   

In order to assess whether the main explanatory variables were associated with the slope of 

change in outcomes over time, we included interaction terms between time of follow-up assessment and 

the variable.  All significant interactions with time were included in the final model.  We used QIC for GEE 

models and AIC for mixed models as the model selection criteria after considering candidate final models. 

Various model diagnostics including tests of linearity, residual plots, and goodness of fit measures were 

used to evaluate the final model.  There was no evidence to suggest lack of linearity in the final models.  

As a working correlation structure for the GEE models we chose the exchangeable (intraclass) structure 

and compared the QIC obtained with this model with one using the unstructured working correlation 

structure.  We chose the exchangeable model, with the lower QIC, as the final model.  In order to assess 
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whether interval vascular events such as clinical stroke and MI were implicated in the trajectory of 

functional status, we ran a second set of models in which stroke and MI were included as time-varying 

covariates.  MI was defined as definite and probable MI (not including possible MI).  A sensitivity analysis 

was performed in which possible MI was added to the definition of MI, and models did not significantly 

differ and are not presented here.  We also performed a sensitivity analysis in which those with baseline 

coronary artery disease were excluded, and models did not significantly differ and are not presented here.  

In a separate analysis, we assessed whether interval non-stroke and non-MI hospitalizations were related 

to changes in functional status, using a similar strategy as above. 

We also pursued an alternative modeling strategy using mixed models.  For the mixed models 

approach, we first calculated intraclass correlation coefficients using an ‘empty’ or ‘random intercept only’ 

model to determine the proportion of variance that is due to between-person variation.  This model was 

used as a baseline for comparison for subsequent models.  We then determined whether there was an 

effect of time on average on the outcome of functional status by determining whether there was a fixed 

effect of time.  We also determined whether the average effect of time varies across individuals by 

determining the random effect of time.  We added covariates in a similar manner as for the analyses 

described above.   

There are several differences in the way that mixed models and GEE models analyze correlated 

data, and in the results that are generated from each.  GEE is a population-average model that estimates 

an overall population effect, whereas mixed models estimate an overall population effect (fixed effect) but 

also allow for individual variation around this average (random effects).202, 203 GEE models use a working 

correlation structure, which can be specified among several possibilities, and the fit of each structure can 

be compared using the QIC, as outlined above.  Although the standard errors that are estimated from this 

method are robust, the population correlation structure is assumed and not directly specified, as it must 

be with mixed models.  Hence, mixed models may be more prone to erroneous results as a result of 

misspecification.  However, the advantage of using mixed models to analyze time trends in outcomes is 

that repeated measures over time have an inherent order or sequence, and mixed models can explicitly 

specify this structure, as opposed to GEE models.  Also, different findings when using mixed models 

compared to GEE models may be related to different handling of missing data and the greater 
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preservation of data in the mixed models (because there is no need to delete case-wise if selected 

outcome data for an individual are missing).  Hence, although results from both analyses will be 

presented here, the mixed model results should be considered the “primary” model results.   

A basic analysis of the mediation effect of each biomarker was performed, in which adjusted 

models incorporating each biomarker were compared to an adjusted model without any biomarker, and 

the magnitude and direction of the time trend was compared between models.  Also, the QIC was 

compared between models. 

 We examined the effect of hospitalization on functional status in several ways, and determined 

whether loss to follow-up was related to hospitalization, which may have introduced bias in the estimation 

of functional trajectories.  We also examined the impact of loss to follow-up in several ways.  We first 

calculated the time between last functional assessment and death.  For those with the longest amount of 

time between last assessment and death, records were examined individually to assess for the reason for 

loss to follow-up.  Secondly, the distribution was determined of the last ADL score measured among 

those who died.  We also calculated the distribution of maximum follow-up times among survivors and 

examined records for individuals who had maximum follow-up time <10 years to identify possible reasons 

for loss to follow-up.   

 

Results 

Table A1 shows distributions of variables in the cohort, stratified by availability of inflammatory labs.  The 

inflammatory lab cohort consisted of 2551 participants.  There were significant differences in the 

distributions of several variables based on availability of inflammatory lab data, including: age, sex, race-

ethnicity, health insurance, physical activity, hypercholesterolemia, and social support.  Those who had 

inflammatory lab data were slightly younger, less often Hispanic, more often married, and more often 

covered by Medicaid or had no insurance. However, there were no differences in major vascular risk 

factors.   

Appendix A1 and Figure A1 show the distributions of the Barthel index score in the entire 

prospective cohort.  There were a total of 38110 assessments among the 3298 participants in the 

prospective cohort.  Table A2 and Figure A2 show the distributions of biomarkers in the inflammatory lab 
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cohort, including raw variables and log-transformed variables.  Appendix A2 (A) shows the distributions of 

CRP according to AHA/CDC categories; the majority of individuals had levels >3 mg/L.  Appendix A2 (B) 

shows the conceptual framework of IL6- and CRP-dominant profiles, and (C) shows frequencies of the 

reference level as well as IL6- and CRP-dominant profiles.   

Table A3 shows associations between standardized CRP levels and trajectories of functional 

status, in unadjusted and adjusted models.   In all models, there was a significant annual decline in 

functional status of around one BI point per year in most models, and of 0.39 points per year in a model 

adjusted for stroke and MI occurring during follow-up.  In addition, in most models, including the fully 

adjusted model, higher CRP levels were associated with a lower overall mean functional score.  Finally, 

CRP levels were not significantly associated with change in functional status over time.  Patterns of 

association were similar when log of CRP levels was tested as the main predictor – namely, a significant 

overall annual decline in function, a lower mean overall functional level with higher log of CRP levels, and 

no significant association between log of CRP levels and change in functional status over time (Table 

A4).  When the AHA/CDC categorization of CRP levels was used (Table A5), similar trends were seen but 

with reduced significance, possibly due to reduced power from the use of categorical instead of 

continuous variables.   

 As shown in Table A6, higher standardized TNFR1 levels were associated with lower overall 

functional status as well as accelerated decline over time.  In the fully adjusted model including 

adjustment for stroke and MI occurring during follow-up, each SD increase in TNFR1 level was 

associated with a mean of -0.93 (95% CI -1.59, -0.26) lower BI points overall as well as an additional -

0.36 points per year of decline over time (95% CI -0.69, -0.03), over and above the -0.52 points per year 

of BI decline (95% CI -0.73, -0.31) in the entire cohort.  There was a similar pattern when log of TNFR1 

levels were examined as primary predictor, though in most models except for the final model, the estimate 

for the association between log of TNFR1 levels and functional status was not significant (Table A7) 

(results for unstandardized log of TNFR1 levels are shown in Appendix A3).  In a sensitivity analysis in 

which TNFR1 levels of 0 were set to missing (Appendix A4), in the fully adjusted model, increasing levels 

of log of TNFR1 were associated with -1.12 BI points overall (95% CI -1.97, -0.27) and -0.34 additional BI 

points per year (95% CI -0.67, -0.01).   
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When quartiles of TNFR1 were examined (Appendix A5), higher quartiles of TNFR1 were 

associated with lower overall BI values as well as additional decline in function over time.  In the fully 

adjusted model, the highest quartile of TNFR1 was associated with an additional -0.72 BI points of 

decline per year (95% CI -1.34, -0.10) compared to the lowest TNFR1 quartile.  Using a dichotomous 

variable of the highest quartile of TNFR1 versus all other quartiles (Appendix A6), the highest quartile was 

associated with reduced overall function as well accelerated decline over time in an unadjusted model, 

but in a fully adjusted model, the highest quartile was only associated with an additional -0.64 BI points of 

decline per year (95% CI, -1.25, -0.04).   

  In adjusted models, log of IL6 levels was not associated with either overall mean BI or change in 

BI over time (Table A8).  Results were not meaningfully different in a sensitivity analysis with 0 values set 

to missing (Appendix A7).  When IL6 was dichotomized at the median (Appendix A8), IL6 scores above 

the median were associated with reduced function overall (-1.10, 95% CI -2.18, -0.02) and decline in 

function over time (-0.20 BI points per year, 95% CI -0.38, -0.01) in an unadjusted model but not after 

adjustment.   

In adjusted models (Table A9), higher LpPLA2 mass levels were associated with lower mean BI 

score (-0.40, 95% CI -0.75, -0.04) but not associated with change of BI over time.  LpPLA2 activity levels 

were not associated with either overall mean BI or change in BI over time (Table A10).  Neither CRP- nor 

IL6-dominant profiles were associated with overall mean BI or change in BI over time (Table A11), in 

unadjusted or adjusted models. 

Table A12 shows results using mixed models without covariate adjustment.  Model 1 (Table A12 

[A]) shows that the between-person variance was 134.91 and within-person variance was 172.18.  

Hence, the intraclass correlation coefficient was 134.91 / (134.91 + 172.18) = 0.43932.  According to this 

calculation, 43.9% of the variance in BI scores was due to between-person differences and 56.1% was 

due to within-person variation.  The mean BI score was 91.2782.  According to the p-value (<0.0001) of 

the standard error of this intercept (under “solution for fixed effects”), the sample varies significantly in the 

intercept.  Examining model 2 (Table A12 [B]), the AIC was lower (better) when time was added to the 

model, signifying a better fit with time in the model (Tables A12 [C] and [D]).   



53 
 

Two adjusted linear mixed models were fit in order to evaluate the change of functional status 

over time in the cohort: one with a linear time trend (Table A13), and one that evaluated change in BI per 

year of age (Table A14).  Both showed a significant decline in functional status over time.  Other 

significant predictors of functional status included: race-ethnicity, diabetes, physical activity, marital 

status, insurance coverage, depression, cognition measured by the MMSE, and QOL.  Unexpectedly, 

depression was associated with better overall functional status.   

Table A15 shows adjusted mixed models individually testing the association between a single 

biomarker and trajectories of functional status. Similarly to the GEE models, increasing log of CRP and 

LpPLA2 mass levels were associated with lower overall functional status but not change in function over 

time; also, LpPLA2 activity levels were not associated with function.  Also similar to the GEE models, 

increasing log of TNFR1 levels were associated with lower overall BI score (-1.05, 95% CI -1.40, -0.70) as 

well as accelerated decline in function over time (-0.43 additional points per year per unit increase in log 

of TNFR1 levels, 95% CI -0.62, -0.23).  In contrast to the GEE models, increasing log of IL6 levels were 

significantly associated with accelerated decline in function over time (-0.13 point per year, 95% CI -0.24, 

-0.02), and there was a trend for lower overall functional status (-0.20, 95% CI -0.41, 0.004).   

Table A16 shows an analysis of the mediating effect of each biomarker, comparing adjusted 

models incorporating each biomarker to an adjusted model without any biomarker.  In each case, addition 

of a biomarker reduced the QIC, indicating better explanatory power with the biomarker included.  

However, there was no consistent pattern of effect on the annual change in BI score overall.   

 The effect of hospitalization on functional status was assessed in Appendix A9.  In 20.2% of study 

visits, there was a hospitalization since the last contact (A).  Only 24.5% of individuals had no 

hospitalization during follow-up, and the majority of those who were hospitalized (21.6%) had 1 

hospitalization, with a range up to 17 hospitalizations (B).  Comparing the number of hospitalizations to 

the number of study visits (C), the mean of the ratio of number of hospitalizations to number of follow-up 

visits was 0.20 (D), suggesting on average that there was one hospitalization for every 5 follow-up visits.  

For a non-stroke/MI hospitalization, the amount of time between pre-hospitalization assessment and post-

hospitalization assessment was on average 1.09 years, with an upper quartile of only 1.11 years (E).  For 

all hospitalizations, the corresponding interval was on average 1.05 years, with an upper quartile of 1.11 



54 
 

years (F). These results suggest that hospitalization did not cause selective loss to follow-up or introduce 

bias into the timing of BI assessments.   

 The impact of loss to follow-up and death was assessed in Appendix A10.  The average time 

between last functional assessment and death was 0.74 years, with an upper quartile of 0.93 years (A). 

The distribution of the last BI score assessed before death is summarized in (B) and (C); although there 

are low scores, the majority of scores (37.2%) are 95 or 100, signifying normal functional status.  Those 

with last BI score before death of <60 more often had a shorter interval between last functional 

assessment and death (61.2% with interval <0.5 years) compared to those with BI of 60-90 (37.0%) or 

95-100 (33.8%).  Among survivors, there was a greater proportion with higher BI scores (E) compared to 

those who died.  The average follow-up time among survivors was 15.2 years, with a median of 15.1 

years (F).   

 

Conclusions for Analysis A 

NOMAS is a large, population-based study with frequent, regular measurements of functional status, 

numbering over 38,000 overall.  Hence, it is well-suited to estimate trajectories of functional status over 

time and identify factors that influence these trajectories.  In the sub-study of NOMAS analyzed here, 

accurate measurement of inflammatory biomarkers allowed us to elucidate the influence of these 

biomarkers, and by extension systemic inflammatory states, on trajectories of function over time.  Also, 

adjustment for potentially confounding factors allowed us to estimate the independent effect of these 

variables on function.  Among those with inflammatory biomarker data at baseline, the prevalence of 

increased biomarker levels was high.  When trajectories of functional status were examined, there was an 

overall decline in functional status over time in the entire cohort.  Increasing CRP levels, examined using 

different cutoffs and variable definitions, were associated with lower overall mean functional score but not 

with change in slope of function over time.  Results were similar for LpPLA2 mass levels.  However, for 

TNFR1, increasing levels were associated not only with overall reduced functional status, but also 

additional annual decline in function over time.  This association was consistent using different cutoffs 

and transformations of TNFR1.   
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 In addition to GEE models, we also used mixed models to estimate associations, which in most 

cases confirmed the significance and magnitude of effects seen with GEE models.  Although IL6 was not 

a significant predictor in GEE models, increasing IL6 levels were associated with accelerated decline in 

function over time using the mixed model approach.  Due to improved handling of missing data, with 

greater preservation of data in the mixed models, as well as a more accurate specification of the time 

trend with mixed models compared to GEE models, the mixed model results should be considered the 

primary model results.  We also tested whether the annual change in functional status was altered by 

adding each biomarker in models, but there was no consistent pattern of effect.    

 For models testing CRP, TNFR1, IL6, LpPLA2, we observed that the estimate for annual change 

in BI score was significantly reduced after adjusting for depression, cognitive status, and QOL.  This is not 

surprising considering the well-known association between inflammatory processes and depression.204 

However, the effect of inflammatory markers discussed above remained even after adjusting for these 

factors, suggesting that inflammatory processes have an effect on functional status that is independent of 

depression.     

The data quality in this study was high, and there was no evidence of bias on the timing of follow-

up assessments or loss to follow-up.  Specifically, we tested the potential effect of hospitalization on data 

ascertainment and found no evidence of any effect of hospitalization on timing or regularity of follow-up 

assessments.  Also, there was no evidence that there was loss to follow-up in the last functional 

assessments before death, and overall the average length of follow-up among survivors was an 

impressive 15.2 years.   

Strengths of this analysis include a large, population-based cohort with repeated, regular 

measurements of functional status with a validated scale.  There was also regular surveillance for 

vascular events and hospitalization and expert adjudication of events.  Biomarkers were measured 

according to standard procedures, and confounders were adjusted for in models.  One limitation of the 

proposed study involves deficiencies in the primary measure.  The BI is subject to ceiling effects and is 

insensitive to small changes in disability.205 However, the ceiling effects seen with the BI would likely lead 

to an underestimation of the effect and would be unlikely to result in false positive associations.  Hence, if 

the BI did not have a ceiling effect, the estimated associations would likely be even larger than those 
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seen in this analysis.  Analyzing the BI as a continuous variable is advantageous since this approach can 

capture and quantify the variance and course of change over time, which would likely not be captured by 

using a categorical or dichotomous variable.192, 193  One advantage of the BI is that it is widely used in 

stroke research, which allows comparison with prior studies, and it is also not a stroke-specific scale, 

which allows its use in a stroke-free population.   

Further discussion of the findings of this analysis will be found in the concluding chapter. 
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Table A1. Baseline characteristics of the cohort, by availability of labs: 
Variable Cohort with 

inflammatory labs 
Cohort without 
inflammatory 

labs 

p-value 

Number of participants, No. (%) 2551 (77.4) 747 (22.7) -- 
Biological characteristics:    
Age, mean (SD), y 69.3 (10.2) 71.3 (10.7) <0.0001 
Body mass index, mean (SD), kg/m2 27.9 (5.5) 27.5 (5.7) 0.09 
    
Demographics:    
Male, No. (%) 923 (36.2) 304 (40.7) 0.02 
Race-ethnicity: 
  Non-Hispanic white, No. (%) 
  Non-Hispanic black, No. (%) 
  Hispanic, No. (%) 
  Other, No. (%) 

 
509 (20.0) 
594 (23.3) 
1385 (54.3) 

63 (2.5) 

 
181 (24.2) 
209 (28.0) 
343 (45.9) 

14 (1.9) 

0.0003 

Received at least high school education, No. (%) 1154 (45.3) 357 (47.8) 0.2 
Highest education achieved, No. (%)  
  Eighth grade or less  
  Some high school  
  Completed high school 
  Some college  
  College graduate or more 

 
1044 (40.9) 
352 (13.8) 
469 (18.4) 
296 (11.6) 
389 (15.3) 

 
269 (36.0) 
121 (16.2) 
138 (18.5) 
101 (13.5) 
118 (15.8) 

0.1 

Marital status, No. (%) married 826 (32.4) 216 (28.9) 0.07 
Health insurance, No. (%)  
   Medicaid or no insurance 
   Medicare or private insurance 

 
1151 (45.5) 
1381 (54.5) 

 
284 (38.2) 
460 (61.8) 

0.0004 

Medicaid health insurance, No. (%)  886 (34.7) 230 (30.8) 0.045 
Medicare health insurance, No. (%)  1573 (61.7) 525 (70.3) <0.0001 
Private insurance, No. (%) 1052 (41.3) 334 (44.7) 0.09 
    
Vascular risk factors, No. (%)    
Hypertension  1886 (73.9) 543 (72.7) 0.5 
History of hypertension 1345 (52.7) 384 (51.4) 0.5 
Systolic BP, mean (SD) 143.6 (21.0) 144.0 (21.1) 0.6 
Diastolic BP, mean (SD) 83.4 (11.1) 82.0 (11.8) 0.003 
Alcohol consumption: 
   Never Drank  
   Past Drinker  
   Light Drinker  
   Moderate Drinker  
   Intermediate Drinker  
   Heavy Drinker 

 
618 (24.2) 
616 (24.2) 
331 (13.0) 
854 (33.5) 

93 (3.7) 
39 (1.5) 

 
203 (27.2) 
183 (24.5) 
90 (12.1) 

232 (31.1) 
27 (3.6) 
12 (1.6) 

0.6 

Physical activity: 
   None 
   Light 
   Moderate or heavy 

 
1130 (44.3) 
1211 (47.5) 
283 (11.1) 

 
259 (34.7) 
415 (55.6) 

73 (9.8) 

0.0008 

Diabetes mellitus  557 (21.9) 159 (21.3) 0.7 
Smoking: 
   Never 
   Former 
   Current 

 
1214 (47.6) 
947 (37.2) 
388 (15.2) 

 
331 (44.3) 
302 (40.4) 
114 (15.3) 

0.2 

Hypercholesterolemia 1628 (63.8) 422 (56.5) 0.0003 
Total cholesterol, mean (SD), mg/dL  202.9 (39.7) 202.4 (42.1) 0.7 
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High-density lipoprotein, mean (SD), mg/dL  46.6 (14.3) 47.5 (15.8) 0.2 
Low-density lipoprotein, mean (SD), mg/dL  129.9 (35.9) 126.3 (34.9) 0.02 
History of atrial fibrillation 111 (4.4) 32 (4.3) 0.9 
History of coronary heart disease  540 (21.2) 164 (22.0) 0.6 
    
Other medical conditions, No. (%)    
Hamilton depression scale score, mean (SD) 3.26 (3.89) 2.85 (3.68) 0.01 
Hamilton depression score >12 108 (4.3) 31 (4.3) 0.9 
Chronic bronchitis, asthma, or emphysema 310 (12.2) 96 (12.9) 0.6 
Mini mental state score, mean (SD) 26.0 (3.74) 26.0 (3.82) 0.9 
History of migraine headaches  447 (17.6) 100 (13.4) 0.008 
Spitzer quality of life index score  9.15 (1.26) 9.08 (1.42) 0.2 
Quality of well-being scale score:  
   Overall 
   Physical activities 
   Social activities 
   Mobility 
   Symptom/problem complexes 

 
0.72 

0.0079 
0.0063 
0.0061 

0.26 

 
0.71 
0.016 
0.013 
0.01 
0.26 

 
0.4 

<0.0001 
<0.0001 

0.005 
0.4 

    
Social variables, No. (%)    
Number of people known well enough to visit with in 
their homes:  
   None 
   1 or 2 
   3 or 4 
   5 or more 

 
 

94 (3.7) 
276 (10.8) 
498 (19.5) 
1681 (66.0) 

 
 

36 (4.8) 
91 (12.2) 

155 (20.8) 
464 (62.2) 

0.2 

Number of times talked to someone on telephone in 
past week:  
   Not at all  
   Once  
   Two to six times  
   Once a day or more 

 
 

54 (2.1) 
151 (5.9) 
700 (27.5) 
1643 (64.5) 

 
 

28 (3.8) 
38 (5.1) 

232 (31.1) 
448 (60.1) 

0.01 

Number of times in past week spent with someone 
who does not live with you:  
   Not at all  
   Once  
   Two to six times  
   Once a day or more 

 
 

527 (20.7) 
487 (19.1) 
1071 (42.0) 
465 (18.2) 

 
 

171 (22.9) 
151 (20.2) 
255 (34.2) 
169 (22.7) 

0.0009 

Have someone you can trust and confide in  2358 (92.6) 681 (91.3) 0.2 
Feeling lonely:  
   Quite often  
   Sometimes  
   Almost never  

 
364 (14.3) 
824 (32.4) 
1359 (53.4) 

 
114 (15.3) 
210 (28.2) 
421 (56.5) 

0.1 

See relatives and friends:  
   As often as want 

1557 (61.1) 430 (57.7) 0.09 

Is there someone who would give you help if sick:  2093 (82.2) 606 (81.8) 0.8 
Years lived in community  28.8 (16.4) 31.7 (17.5) <0.0001 
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Table A2. Distributions of biomarkers 
Variable Mean Median Lower 

quartile 
Upper 

quartile 
Std Dev Min Max N 

missing 
N 

C-reactive protein, mg/L 5.24 2.55 1.10 5.92 8.86 0.04 120.00 311 2240 
Interleukin-6, pg/mL 109.72 1.56 0.80 2.88 723.80 0 5000.00 872 1679 
Tumor necrosis factor receptor-1, mg/L 2.57 2.28 1.75 2.97 1.72 0 33.22 688 1863 
Lipoprotein-associated phospholipase A2 mass 117.00 115.50 96.52 135.89 29.57 12.12 220.94 639 1912 
Lipoprotein-associated phospholipase A2 activity 308.65 306.71 245.34 365.54 88.29 28.12 972.59 614 1937 
Log transformed variables:          
Log of C-reactive protein levels 0.92 0.93 0.10 1.78 1.23 -3.08 4.79 311 2240 
Log of interleukin-6 levels 0.32 0.44 -0.22 1.06 2.00 -5.99 8.52 872 1679 
Log of tumor necrosis factor receptor-1 levels 0.81 0.82 0.56 1.09 0.53 -3.10 3.50 688 1863 
    Without substitutions for 0 values:          
Log of interleukin-6 levels 0.58 0.50 -0.11 1.09 1.57 -5.30 8.52 939 1612 
Log of tumor necrosis factor receptor-1 levels 0.81 0.82 0.56 1.09 0.51 -2.41 3.50 690 1861 
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Table A3. Associations between standardized C-reactive protein levels and trajectories of 
functional status  
Variable Change in 

BI score 
95% CI p-value

Unadjusted model:    
Annual change in BI score -1.02 -1.10, -0.93 <.0001 
Change in BI score per SD increase in CRP levels -0.83 -1.54, -0.12 0.02 
Additional annual change in BI score per SD increase in CRP 
levels 

-0.08 -0.21, 0.06 0.3 

Adjusted for demographics:*    
Annual change in BI score -1.03 -1.11, -0.94 <.0001 
Change in BI score per SD increase in CRP levels -0.76 -1.53, 0.01 0.054 
Additional annual change in BI score per SD increase in CRP 
levels 

-0.10 -0.24, 0.04 0.17 

Adjusted for vascular risk factors:**    
Annual change in BI score -1.03 -1.11, -0.95 <.0001 
Change in BI score per SD increase in CRP levels -0.44 -1.16, 0.27 0.2 
Additional annual change in BI score per SD increase in CRP 
levels 

-0.11 -0.25, 0.04 0.15 

Adjusted for social variables:†    
Annual change in BI score -1.02 -1.10, -0.94 <.0001 
Change in BI score per SD increase in CRP levels -0.38 -1.07, 0.32 0.3 
Additional annual change in BI score per SD increase in CRP 
levels 

-0.11 -0.25, 0.03 0.14 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.57 -0.71, -0.43 <.0001 
Change in BI score per SD increase in CRP levels -0.36 -0.76, 0.04 0.07 
Additional annual change in BI score per SD increase in CRP 
levels 

0.07 -0.04, 0.17 0.2 

Adjusted for stroke and MI:π    
Annual change in BI score -0.39 -0.52, -0.25 <.0001 
Change in BI score per SD increase in CRP levels -0.41 -0.83, -0.002 0.049 
Additional annual change in BI score per SD increase in CRP 
levels 

0.04 -0.06, 0.15 0.4 

CRP=C-reactive protein; BI=Barthel index; MI=myocardial infarction 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Table A4. Associations between log of C-reactive protein levels and trajectories of functional 
status  
Variable Change in 

BI score 
95% CI p-

value 
Unadjusted model:    
Annual change in BI score -1.01 -1.09, -0.93 <.0001
Change in BI score per unit increase in log of CRP levels -0.72 -1.13, -0.31 0.0006
Additional annual change in BI score per unit increase in log of 
CRP levels 

-0.03 -0.10, 0.05 0.5 

Adjusted for demographics:*    
Annual change in BI score -1.02 -1.10, -0.94 <.0001
Change in BI score per unit increase in log of CRP levels -0.79 -1.22, -0.36 0.0003
Additional annual change in BI score per unit increase in log of 
CRP levels 

-0.03 -0.10, 0.04 0.4 

Adjusted for vascular risk factors:**    
Annual change in BI score -1.03 -1.11, -0.94 <.0001
Change in BI score per unit increase in log of CRP levels -0.40 -0.85, 0.05 0.08 
Additional annual change in BI score per unit increase in log of 
CRP levels 

-0.03 -0.11, 0.04 0.4 

Adjusted for social variables:†    
Annual change in BI score -1.01 -1.09, -0.93 <.0001
Change in BI score per unit increase in log of CRP levels -0.33 -0.78, 0.11 0.14 
Additional annual change in BI score per unit increase in log of 
CRP levels 

-0.03 -0.11, 0.04 0.4 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.57 -0.72, -0.43 <.0001
Change in BI score per unit increase in log of CRP levels -0.30 -0.58, -0.02 0.04 
Additional annual change in BI score per unit increase in log of 
CRP levels 

0.00 -0.12, 0.13 0.96 

Adjusted for stroke and MI:π    
Annual change in BI score -0.39 -0.53, -0.26 <.0001
Change in BI score per unit increase in log of CRP levels -0.34 -0.62, -0.06 0.02 
Additional annual change in BI score per unit increase in log of 
CRP levels 

0.02 -0.11, 0.14 0.8 

CRP=C-reactive protein; BI=Barthel index; MI=myocardial infarction 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Table A5. Associations between C-reactive protein levels, according to AHA/CDC categorization, 
and trajectories of functional status  
Variable Change in 

BI score 
95% CI p-

value 
Unadjusted model:    
Annual change in BI score -1.01 -1.17, -0.84 <.0001
Change in BI score with 1-3 mg/L CRP, compared to <1 mg/L 0.28 -0.79, 1.35 0.6 
Change in BI score with >3 mg/L CRP, compared to <1 mg/L -1.89 -3.00, -0.77 0.0009
Additional annual change in BI score with 1-3 mg/L CRP, compared 
to <1 mg/L 

0.04 -0.17, 0.26 0.7 

Additional annual change in BI score with >3 mg/L CRP, compared 
to <1 mg/L 

-0.05 -0.26, 0.16 0.6 

Adjusted for demographics:*    
Annual change in BI score -1.01 -1.17, -0.85 <.0001
Change in BI score with 1-3 mg/L CRP, compared to <1 mg/L 0.61 -0.62, 1.83 0.3 
Change in BI score with >3 mg/L CRP, compared to <1 mg/L -1.83 -3.06, -0.61 0.0034
Additional annual change in BI score with 1-3 mg/L CRP, compared 
to <1 mg/L 

0.03 -0.18, 0.25 0.8 

Additional annual change in BI score with >3 mg/L CRP, compared 
to <1 mg/L 

-0.05 -0.26, 0.15 0.6 

Adjusted for vascular risk factors:**    
Annual change in BI score -1.01 -1.18, -0.85 <.0001
Change in BI score with 1-3 mg/L CRP, compared to <1 mg/L 0.95 -0.31, 2.22 0.1 
Change in BI score with >3 mg/L CRP, compared to <1 mg/L -0.76 -2.08, 0.56 0.3 
Additional annual change in BI score with 1-3 mg/L CRP, compared 
to <1 mg/L 

0.04 -0.17, 0.25 0.7 

Additional annual change in BI score with >3 mg/L CRP, compared 
to <1 mg/L 

-0.05 -0.26, 0.15 0.6 

Adjusted for social variables:†    
Annual change in BI score -1.00 -1.16, -0.84 <.0001
Change in BI score with 1-3 mg/L CRP, compared to <1 mg/L 0.86 -0.41, 2.12 0.2 
Change in BI score with >3 mg/L CRP, compared to <1 mg/L -0.62 -1.94, 0.70 0.4 
Additional annual change in BI score with 1-3 mg/L CRP, compared 
to <1 mg/L 

0.04 -0.16, 0.25 0.7 

Additional annual change in BI score with >3 mg/L CRP, compared 
to <1 mg/L 

-0.06 -0.26, 0.15 0.6 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.34 -0.64, -0.05 0.02 
Change in BI score with 1-3 mg/L CRP, compared to <1 mg/L 0.77 0.04, 1.50 0.04 
Change in BI score with >3 mg/L CRP, compared to <1 mg/L -0.36 -1.11, 0.39 0.3 
Additional annual change in BI score with 1-3 mg/L CRP, compared 
to <1 mg/L 

-0.41 -0.88, 0.06 0.086 

Additional annual change in BI score with >3 mg/L CRP, compared 
to <1 mg/L 

-0.21 -0.59, 0.16 0.3 

Adjusted for stroke and MI:π    
Annual change in BI score -0.23 -0.52, 0.06 0.1 
Change in BI score with 1-3 mg/L CRP, compared to <1 mg/L 0.61 -0.08, 1.31 0.08 
Change in BI score with >3 mg/L CRP, compared to <1 mg/L -0.49 -1.22, 0.24 0.2 
Additional annual change in BI score with 1-3 mg/L CRP, compared 
to <1 mg/L 

-0.28 -0.73, 0.16 0.2 

Additional annual change in BI score with >3 mg/L CRP, compared 
to <1 mg/L 

-0.14 -0.50, 0.23 0.5 

CRP=C-reactive protein; BI=Barthel index; MI=myocardial infarction 
*adjusted for: baseline age, sex, and race-ethnicity 
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**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Table A6. Associations between standardized tumor necrosis factor receptor-1 protein levels and 
trajectories of functional status  
Variable Change in 

BI score 
95% CI p-value

Unadjusted model:    
Annual change in BI score -1.07 -1.17, -0.97 <.0001 
Change in BI score per SD increase in TNFR1 levels -2.78 -3.65, -1.91 <.0001 
Additional annual change in BI score per SD increase in TNFR1 
levels 

-0.26 -0.46, -0.06 0.01 

Adjusted for demographics:*    
Annual change in BI score -1.06 -1.16, -0.96 <.0001 
Change in BI score per SD increase in TNFR1 levels -1.78 -2.58, -0.98 <.0001 
Additional annual change in BI score per SD increase in TNFR1 
levels 

-0.21 -0.41, -0.02 0.03 

Adjusted for vascular risk factors:**    
Annual change in BI score -1.08 -1.18, -0.98 <.0001 
Change in BI score per SD increase in TNFR1 levels -1.46 -2.45, -0.47 0.004 
Additional annual change in BI score per SD increase in TNFR1 
levels 

-0.29 -0.47, -0.11 0.002 

Adjusted for social variables:†    
Annual change in BI score -1.08 -1.17, -0.98 <.0001 
Change in BI score per SD increase in TNFR1 levels -1.47 -2.49, -0.45 0.005 
Additional annual change in BI score per SD increase in TNFR1 
levels 

-0.30 -0.48, -0.12 0.001 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.66 -0.86, -0.45 <.0001 
Change in BI score per SD increase in TNFR1 levels -0.78 -1.44, -0.12 0.02 
Additional annual change in BI score per SD increase in TNFR1 
levels 

-0.32 -0.67, 0.02 0.07 

Adjusted for stroke and MI:π    
Annual change in BI score -0.52 -0.73, -0.31 <.0001 
Change in BI score per SD increase in TNFR1 levels -0.93 -1.59, -0.26 0.006 
Additional annual change in BI score per SD increase in TNFR1 
levels 

-0.36 -0.69, -0.03 0.03 

TNFR1=tumor necrosis factor receptor-1; BI=Barthel index; MI=myocardial infarction 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Table A7. Associations between standardized log of tumor necrosis factor receptor-1 protein 
levels and trajectories of functional status 
Variable Change in BI 

score 
95% CI p-value

Unadjusted model:    
Annual change in BI score -1.03 -1.12, -0.94 <.0001 
Change in BI score per SD increase in log of TNFR1 levels -2.36 -3.25, -1.48 <.0001 
Additional annual change in BI score per SD increase in log of 
TNFR1 levels 

-0.08 -0.21, 0.04 0.2 

Adjusted for demographics:*    
Annual change in BI score -1.02 -1.11, -0.93 <.0001 
Change in BI score per SD increase in log of TNFR1 levels -1.36 -2.20, -0.53 0.001 
Additional annual change in BI score per SD increase in log of 
TNFR1 levels 

-0.06 -0.18, 0.07 0.4 

Adjusted for vascular risk factors:**    
Annual change in BI score -1.03 -1.12, -0.94 <.0001 
Change in BI score per SD increase in log of TNFR1 levels -0.93 -1.76, -0.09 0.03 
Additional annual change in BI score per SD increase in log of 
TNFR1 levels 

-0.06 -0.19, 0.07 0.3 

Adjusted for social variables:†    
Annual change in BI score -1.02 -1.11, -0.93 <.0001 
Change in BI score per SD increase in log of TNFR1 levels -0.79 -1.64, 0.05 0.066 
Additional annual change in BI score per SD increase in log of 
TNFR1 levels 

-0.07 -0.19, 0.06 0.3 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.51 -0.73, -0.28 <.0001 
Change in BI score per SD increase in log of TNFR1 levels -0.56 -0.98, -0.13 0.01 
Additional annual change in BI score per SD increase in log of 
TNFR1 levels 

0.03 -0.26, 0.32 0.8 

Adjusted for stroke and MI:π    
Annual change in BI score -0.47 -0.67, -0.27 <.0001 
Change in BI score per SD increase in log of TNFR1 levels -0.63 -1.07, -0.18 0.006 
Additional annual change in BI score per SD increase in log of 
TNFR1 levels 

-0.18 -0.35, -0.002 0.047 

TNFR1=tumor necrosis factor receptor-1; BI=Barthel index; MI=myocardial infarction; SD=standard 
deviation 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Table A8. Associations between log of interleukin-6 levels and trajectories of functional status 
Variable Change in 

BI score 
95% CI p-value 

Unadjusted model:    
Annual change in BI score -0.98 -1.08, -0.89 <.0001 
Change in BI score per unit increase in log of IL6 levels -0.30 -0.61, 0.01 0.057 
Additional annual change in BI score per unit increase in log of 
IL6 levels 

-0.04 -0.11, 0.02 0.2 

Adjusted for demographics:*    
Annual change in BI score -0.99 -1.08, -0.90 <.0001 
Change in BI score per unit increase in log of IL6 levels -0.20 -0.51, 0.11 0.2 
Additional annual change in BI score per unit increase in log of 
IL6 levels 

-0.04 -0.11, 0.02 0.2 

Adjusted for vascular risk factors:**    
Annual change in BI score -0.99 -1.09, -0.90 <.0001 
Change in BI score per unit increase in log of IL6 levels -0.13 -0.44, 0.19 0.4 
Additional annual change in BI score per unit increase in log of 
IL6 levels 

-0.05 -0.11, 0.02 0.2 

Adjusted for social variables:†    
Annual change in BI score -0.98 -1.07, -0.89 <.0001 
Change in BI score per unit increase in log of IL6 levels -0.12 -0.44, 0.20 0.5 
Additional annual change in BI score per unit increase in log of 
IL6 levels 

-0.04 -0.11, 0.03 0.2 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.46 -0.61, -0.31 <.0001 
Change in BI score per unit increase in log of IL6 levels -0.09 -0.28, 0.10 0.3 
Additional annual change in BI score per unit increase in log of 
IL6 levels 

0.00 -0.09, 0.08 0.9 

Adjusted for stroke and MI:π    
Annual change in BI score -0.26 -0.42, -0.11 0.0009 
Change in BI score per unit increase in log of IL6 levels -0.16 -0.42, 0.11 0.2 
Additional annual change in BI score per unit increase in log of 
IL6 levels 

-0.09 -0.21, 0.02 0.11 

IL6=interleukin-6; BI=Barthel index; MI=myocardial infarction 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Table A9. Associations between standardized lipoprotein phospholipase-A2 mass levels and 
trajectories of functional status 
Variable Change in 

BI score 
95% CI p-value 

Unadjusted model:    
Annual change in BI score -0.98 -1.07, -0.89 <.0001 
Change in BI score per SD increase in LpPLA2 levels 0.18 -0.33, 0.69 0.5 
Additional annual change in BI score per SD increase in 
LpPLA2 levels 

-0.01 -0.10, 0.09 0.9 

Adjusted for demographics:*    
Annual change in BI score -0.98 -1.07, -0.89 <.0001 
Change in BI score per SD increase in LpPLA2 levels 0.10 -0.46, 0.66 0.7 
Additional annual change in BI score per SD increase in 
LpPLA2 levels 

-0.02 -0.11, 0.07 0.7 

Adjusted for vascular risk factors:**    
Annual change in BI score -0.98 -1.07, -0.90 <.0001 
Change in BI score per SD increase in LpPLA2 levels 0.01 -0.56, 0.59 0.96 
Additional annual change in BI score per SD increase in 
LpPLA2 levels 

-0.01 -0.11, 0.08 0.8 

Adjusted for social variables:†    
Annual change in BI score -0.97 -1.05, -0.88 <.0001 
Change in BI score per SD increase in LpPLA2 levels -0.07 -0.65, 0.50 0.8 
Additional annual change in BI score per SD increase in 
LpPLA2 levels 

0.00 -0.10, 0.09 0.9 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.54 -0.71, -0.38 <.0001 
Change in BI score per SD increase in LpPLA2 levels -0.35 -0.71, 0.00 0.052 
Additional annual change in BI score per SD increase in 
LpPLA2 levels 

0.07 -0.12, 0.27 0.4 

Adjusted for stroke and MI:π    
Annual change in BI score -0.43 -0.59, -0.27 <.0001 
Change in BI score per SD increase in LpPLA2 levels -0.40 -0.75, -0.04 0.03 
Additional annual change in BI score per SD increase in 
LpPLA2 levels 

0.08 -0.12, 0.28 0.4 

LpPLA2=lipoprotein phospholipase-A2; BI=Barthel index; MI=myocardial infarction; SD=standard 
deviation 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Table A10. Associations between lipoprotein phospholipase-A2 activity levels and trajectories of 
functional status 
Variable Change in 

BI score 
95% CI p-value 

Unadjusted model:    
Annual change in BI score -0.99 -1.07, -0.90 <.0001 
Change in BI score per unit increase in LpPLA2 levels 0.003 -0.003, 0.008 0.4 
Additional annual change in BI score per unit increase in 
LpPLA2 levels 

0.0002 -0.001, 0.0008 0.7 

Adjusted for demographics:*    
Annual change in BI score -0.99 -1.07, -0.90 <.0001 
Change in BI score per unit increase in LpPLA2 levels 0.004 -0.002, 0.01 0.2 
Additional annual change in BI score per unit increase in 
LpPLA2 levels 

-0.0003 -0.001, 0.0008 0.6 

Adjusted for vascular risk factors:**    
Annual change in BI score -0.99 -1.08, -0.90 <.0001 
Change in BI score per unit increase in LpPLA2 levels 0.002 -0.004, 0.01 0.5 
Additional annual change in BI score per unit increase in 
LpPLA2 levels 

-0.0002 -0.001, 0.0008 0.7 

Adjusted for social variables:†    
Annual change in BI score -0.98 -1.07, -0.90 <.0001 
Change in BI score per unit increase in LpPLA2 levels 0.002 -0.004, 0.01 0.5 
Additional annual change in BI score per unit increase in 
LpPLA2 levels 

-0.0003 -0.001, 0.0007 0.6 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.52 -0.68, -0.37 <.0001 
Change in BI score per unit increase in LpPLA2 levels 0.001 -0.003, 0.005 0.6 
Additional annual change in BI score per unit increase in 
LpPLA2 levels 

-0.0004 -0.002, 0.001 0.7 

Adjusted for stroke and MI:π    
Annual change in BI score -0.41 -0.56, -0.26 <.0001 
Change in BI score per unit increase in LpPLA2 levels 0.0006 -0.003, 0.004 0.7 
Additional annual change in BI score per unit increase in 
LpPLA2 levels 

-0.0003 -0.002, 0.001 0.7 

LpPLA2=lipoprotein phospholipase-A2; BI=Barthel index; MI=myocardial infarction 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Table A11. Associations between C-reactive protein and interleukin-6 dominant profiles and 
trajectories of functional status 
Variable Change in 

BI score 
95% CI p-value 

Unadjusted model:    
Annual change in BI score -1.03 -1.19, -0.86 <.0001 
Change in BI score with IL6-dominant profile€ -0.31 -1.63, 1.02 0.6 
Change in BI score with CRP-dominant profile€ -0.71 -2.02, 0.60 0.3 
Additional annual change in BI score with IL6-dominant 
profile€ 

0.00 -0.23, 0.23 0.98 

Additional annual change in BI score with CRP-dominant 
profile€ 

0.16 -0.06, 0.38 0.16 

Adjusted for demographics:*    
Annual change in BI score -1.04 -1.20, -0.87 <.0001 
Change in BI score with IL6-dominant profile€ 0.64 -0.75, 2.03 0.4 
Change in BI score with CRP-dominant profile€ -0.93 -2.32, 0.45 0.2 
Additional annual change in BI score with IL6-dominant 
profile€ 

0.02 -0.21, 0.24 0.9 

Additional annual change in BI score with CRP-dominant 
profile€ 

0.16 -0.07, 0.38 0.2 

Adjusted for vascular risk factors:**    
Annual change in BI score -1.04 -1.21, -0.88 <.0001 
Change in BI score with IL6-dominant profile€ 0.07 -1.33, 1.47 0.9 
Change in BI score with CRP-dominant profile€ -0.79 -2.16, 0.57 0.3 
Additional annual change in BI score with IL6-dominant 
profile€ 

0.03 -0.20, 0.25 0.8 

Additional annual change in BI score with CRP-dominant 
profile€ 

0.15 -0.07, 0.38 0.2 

Adjusted for social variables:†    
Annual change in BI score -1.04 -1.21, -0.88 <.0001 
Change in BI score with IL6-dominant profile€ 0.02 -1.35, 1.40 0.97 
Change in BI score with CRP-dominant profile€ -0.77 -2.13, 0.59 0.3 
Additional annual change in BI score with IL6-dominant 
profile€ 

0.06 -0.16, 0.28 0.6 

Additional annual change in BI score with CRP-dominant 
profile€ 

0.15 -0.08, 0.38 0.2 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.48 -0.72, -0.23 0.0001 
Change in BI score with IL6-dominant profile€ -0.35 -1.23, 0.52 0.4 
Change in BI score with CRP-dominant profile€ -0.01 -0.82, 0.80 0.98 
Additional annual change in BI score with IL6-dominant 
profile€ 

0.13 -0.27, 0.53 0.5 

Additional annual change in BI score with CRP-dominant 
profile€ 

-0.21 -0.69, 0.26 0.4 

Adjusted for stroke and MI:π    
Annual change in BI score -0.35 -0.60, -0.10 0.006 
Change in BI score with IL6-dominant profile€ -0.32 -1.20, 0.56 0.5 
Change in BI score with CRP-dominant profile€ 0.00 -0.80, 0.81 0.99 
Additional annual change in BI score with IL6-dominant 
profile€ 

0.04 -0.36, 0.44 0.8 

Additional annual change in BI score with CRP-dominant 
profile€ 

0.02 -0.40, 0.43 0.9 

CRP=C-reactive protein; IL6=interleukin-6; BI=Barthel index; MI=myocardial infarction 
€compared to reference profiles 
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*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Table A12. Mixed models results 
A) Model 1: ‘empty’ or ‘random intercept only’ model 

Covariance Parameter Estimates 

Cov Parm Subject Estimate Standard Error Z Value Pr > Z Alpha Lower Upper 

Intercept ID 134.91 3.9066 34.53 <.0001 0.05 127.57 142.90 

Residual   172.18 1.3071 131.73 <.0001 0.05 169.65 174.77 

 

Solution for Fixed Effects 

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 91.2782 0.2175 3297 419.65 <.0001

 

Fit Statistics 

-2 Res Log Likelihood 311566.7 

AIC (Smaller is Better) 311570.7 

AICC (Smaller is Better) 311570.7 

BIC (Smaller is Better) 311582.9 

 
B) Model 2: assessing fixed effect of time 

Solution for Fixed Effects 

Effect Estimate Standard Error DF t Value Pr > |t|

Intercept 99.3657 0.1650 3297 602.36 <.0001

FUF -1.6889 0.04769 3187 -35.41 <.0001

 

Fit Statistics 

-2 Res Log Likelihood 290708.1 

AIC (Smaller is Better) 290716.1 

AICC (Smaller is Better) 290716.1 

BIC (Smaller is Better) 290740.5 

 
C) Model 3: with time 

Fit Statistics 

-2 Res Log Likelihood 84898.5 

AIC (Smaller is Better) 84906.5 

AICC (Smaller is Better) 84906.5 

BIC (Smaller is Better) 84930.7 

 
D) Model 3a: without time  
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Fit Statistics 

-2 Res Log Likelihood 85013.2 

AIC (Smaller is Better) 85021.2 

AICC (Smaller is Better) 85021.2 

BIC (Smaller is Better) 85045.4 
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Table A13. Linear adjusted mixed model with fixed linear time, random intercept, and covariates 
Variable Change in 

BI score 
95% CI p-value 

Intercept 64.38 60.95, 67.81 <.0001 
Annual change in BI score -0.62 -0.74, -0.51 <.0001 
Age at baseline, years -0.14 -0.17, -0.12 <.0001 
Male sex 0.32 -0.17, 0.80 0.2 
Black, compared to non-Hispanic White -0.80 -1.44, -0.17 0.014 
Hispanic, compared to non-Hispanic White 0.55 -0.09, 1.19 0.09 
Diabetes -0.68 -1.20, -0.16 0.01 
Hypertension 0.29 -0.21, 0.78 0.3 
Coronary artery disease 0.35 -0.18, 0.87 0.2 
Hypercholesterolemia 0.28 -0.16, 0.73 0.2 
Any physical activity 0.80 0.36, 1.24 0.0003 
Moderate alcohol use  -0.08 -0.55, 0.39 0.7 
Former smoker, compared to never -0.13 -0.60, 0.34 0.6 
Current smoker, compared to never 0.11 -0.53, 0.75 0.7 
Body mass index -0.03 -0.07, 0.01 0.17 
Married -0.50 -0.98, -0.02 0.04 
Medicaid or no insurance, compared to Medicare or private 
insurance 

-0.65 -1.15, -0.15 0.01 

Number of friends 0.15 -0.45, 0.74 0.6 
Depression 2.15 1.11, 3.19 <.0001 
Mini-mental state score 0.17 0.11, 0.24 <.0001 
Spitzer quality of life index score 4.20 4.09, 4.30 <.0001 
BI=Barthel index, CI=confidence interval 
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Table A14. Linear adjusted mixed model with fixed linear time, random intercept, and covariates, 
with aging variable as time trend 
Variable Change in 

BI score 
95% CI p-value 

Intercept 66.04 62.63, 69.44 <.0001 
Annual change in BI score, per year of age -0.16 -0.19, -0.14 <.0001 
Male sex 0.29 -0.20, 0.78 0.2 
Black, compared to non-Hispanic White -0.87 -1.51, -0.23 0.007 
Hispanic, compared to non-Hispanic White 0.40 -0.23, 1.04 0.2 
Diabetes -0.68 -1.20, -0.16 0.01 
Hypertension 0.36 -0.14, 0.85 0.16 
Coronary artery disease 0.41 -0.11, 0.93 0.12 
Hypercholesterolemia 0.27 -0.17, 0.71 0.2 
Any physical activity 0.74 0.31, 1.18 0.0008 
Moderate alcohol use  -0.11 -0.57, 0.36 0.7 
Former smoker, compared to never -0.13 -0.61, 0.34 0.6 
Current smoker, compared to never 0.02 -0.62, 0.66 0.9 
Body mass index -0.04 -0.08, 0.005 0.08 
Married -0.54 -1.03, -0.06 0.03 
Medicaid or no insurance, compared to Medicare or private 
insurance 

-0.69 -1.19, -0.19 0.007 

Number of friends 0.08 -0.51, 0.68 0.8 
Depression 2.11 1.07, 3.15 <.0001 
Mini-mental state score 0.15 0.09, 0.22 <.0001 
Spitzer quality of life index score 4.23 4.13, 4.34 <.0001 
BI=Barthel index, CI=confidence interval 
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Table A15. Adjusted linear mixed models testing associations between levels of inflammatory 
biomarkers and trajectories of functional status* 
Variable Change in BI 

score 
95% CI p-value 

CRP model:    
Annual change in BI score -0.47 -0.62, -0.31 <.0001 
Change in BI score per unit increase in log of CRP levels -0.42 -0.71, -0.14 0.004 
Additional annual change in BI score per unit increase in 
log of CRP levels 

-0.01 -0.15, 0.14 0.9 

TNFR1 model:    
Annual change in BI score -0.54 -0.70, -0.37 <.0001 
Change in BI score per unit increase in log of TNFR1 levels -1.05 -1.40, -0.70 <.0001 
Additional annual change in BI score per unit increase in 
log of TNFR1 levels 

-0.43 -0.62, -0.23 <.0001 

IL6 model:    
Annual change in BI score -0.35 -0.54, -0.16 0.0004 
Change in BI score per unit increase in log of IL6 levels -0.20 -0.41, 0.004 0.055 
Additional annual change in BI score per unit increase in 
log of IL6 levels 

-0.13 -0.24, -0.02 0.02 

LpPLA2 mass model:    
Annual change in BI score -0.48 -0.64, -0.32 <.0001 
Change in BI score per unit increase in LpPLA2 mass 
levels 

-0.36 -0.68, -0.04 0.03 

Additional annual change in BI score per unit increase in 
LpPLA2 mass levels 

0.10 -0.05, 0.26 0.2 

LpPLA2 activity model:    
Annual change in BI score -0.43 -0.99, 0.13 0.13 
Change in BI score per unit increase in LpPLA2 activity 
levels 

0.0007 -0.003, 0.004 0.7 

Additional annual change in BI score per unit increase in 
LpPLA2 activity levels 

-0.0001 -0.002, 0.002 0.9 

CRP=C-reactive protein; TNFR1=tumor necrosis factor receptor-1; IL6=interleukin-6; LpPLA2=lipoprotein 
phospholipase-A2; BI=Barthel index; MI=myocardial infarction 
*All models are adjusted for: baseline age, sex, race-ethnicity, diabetes, hypertension, coronary artery 
disease, hypercholesterolemia, physical activity, alcohol use, smoking, body mass index, marital status, 
insurance, number of friends, depression, mini-mental state score, Spitzer quality of life index, and stroke 
or myocardial infarction occurring during follow-up 
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Table A16. Analysis of inflammatory biomarkers as mediating factors* 
Variable Change in 

BI score 
95% CI p-value 

Model without any biomarker:    
Annual change in BI score -0.42 -0.51, -0.32 <.0001 
QIC value 12433 
CRP model:    
Annual change in BI score -0.39 -0.53, -0.26 <.0001 
Change in BI score per unit increase in log of CRP 
levels 

-0.41 -0.82, 0.002 0.051 

Additional annual change in BI score per unit increase 
in log of CRP levels 

0.05 -0.06, 0.16 0.4 

QIC value 7625.7 
TNFR1 model:    
Annual change in BI score -0.52 -0.73, -0.31 <.0001 
Change in BI score per unit increase in TNFR1 levels -0.93 -1.60, -0.26 0.007 
Additional annual change in BI score per unit increase 
in TNFR1 levels 

-0.36 -0.69, -0.03 0.03 

QIC value 6351.9 
IL6 model:    
Annual change in BI score -0.26 -0.42, -0.11 0.0009 
Change in BI score per unit increase in log of IL6 levels -0.16 -0.42, 0.11 0.2 
Additional annual change in BI score per unit increase 
in log of IL6 levels 

-0.09 -0.21, 0.02 0.11 

QIC value 5498.2 
LpPLA2 mass model:    
Annual change in BI score -0.43 -0.59, -0.27 <.0001 
Change in BI score per unit increase in LpPLA2 mass 
levels 

-0.40 -0.76, -0.04 0.03 

Additional annual change in BI score per unit increase 
in LpPLA2 mass levels 

0.08 -0.12, 0.28 0.4 

QIC value 6410 
LpPLA2 activity model:    
Annual change in BI score -0.32 -0.93, 0.29 0.3 
Change in BI score per unit increase in LpPLA2 activity 
levels 

0.006 -0.003, 0.004 0.7 

Additional annual change in BI score per unit increase 
in LpPLA2 activity levels 

-0.0003 -0.002, 0.001 0.7 

QIC value 6507.6 
CRP=C-reactive protein; TNFR1=tumor necrosis factor receptor-1; IL6=interleukin-6; LpPLA2=lipoprotein 
phospholipase-A2; BI=Barthel index; MI=myocardial infarction 
*All models are adjusted for: baseline age, sex, race-ethnicity, diabetes, hypertension, coronary artery 
disease, hypercholesterolemia, physical activity, alcohol use, smoking, body mass index, marital status, 
insurance, number of friends, depression, mini-mental state score, Spitzer quality of life index, and stroke 
or myocardial infarction occurring during follow-up 
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Figure A1. Distribution of Barthel index scores in the entire prospective cohort 
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Figure A2. Distributions of raw and transformed inflammatory biomarkers 
A) C-reactive protein 

 
 
B) log of C-reactive protein 

 
 
C) Interleukin-6 
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D) Interleukin-6: the graph is truncated, with only IL-6 levels <50 shown 

 
 
E) log of interleukin-6  
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F) Tumor necrosis factor receptor-1 

 
 
G) log of tumor necrosis factor receptor 

 
 
H) Lipoprotein phospholipase A2 mass 
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I) Lipoprotein phospholipase-A2 activity 
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Analysis B: 
 

Subclinical ischemic brain injury is independently associated with long-term functional decline  
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Abstract 

Background: Stroke is associated with chronic functional decline, but it is unclear whether subclinical 

brain infarcts (SBI) and white matter hyperintensities (WMH) predict functional decline independently of 

vascular events.   

Methods:  In the Northern Manhattan Study, 1290 stroke-free individuals underwent brain MRI and a 

median of 11 years annual functional assessments with Barthel index (BI; range 0-100) and vascular 

event surveillance.  WMH volume (% total cranial volume) was treated continuously.  Generalized 

estimating equation models tested associations between WMH and SBI, and BI, adjusting for 

demographic, vascular, cognitive, and social risk factors, and stroke and myocardial infarction during 

follow-up. 

Results: Mean age was 70.6 (SD 9.0) years, 40% of participants were male, 66% Hispanic; 193 (16%) 

had SBI; and mean WMH was 0.68 (SD 0.84).  Functional change was -0.85 BI points per year (95%CI -

1.01 to -0.69); among those with SBI there were -0.88 additional points annually (-1.44 to -0.32).  In WMH 

models, annual functional change was -1.04 points (-1.2 to -0.88), with -0.74 additional points annually 

per SD WMH increase (-0.99 to -0.49).   

Conclusions: Subclinical ischemic brain injury predicts doubling of decline in function over time, 

independently of risk factors and vascular events. 
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Introduction 

Subclinical infarcts are discrete brain infarcts that by definition are not associated with discrete events but 

are rather detectable only by brain imaging.  Similarly, white matter disease generally refers to areas of 

white matter structural damage in the brain due to vessel dysfunction, which are only detectable by brain 

imaging.  Strikingly, subclinical infarcts have been found to be at least 5 times as prevalent as clinical 

strokes, suggesting that a focus on discrete clinical stroke events reveals only the tip of the iceberg of the 

burden of cerebrovascular disease.50 White matter hyperintensities (WMHs) were present in 96% of 

individuals older than 60 years of age in CHS and in 95% in the Rotterdam Scan Study.53 Silent acute 

infarcts have also been detected in up to 4.2% of individuals with dementia in previous studies.54  

Traditional vascular risk factors and inflammatory states cause subclinical infarcts and WMH in 

addition to recurrent clinically evident strokes.  The vascular causes of worsening white matter grade 

have been shown to have a differential impact depending upon initial grade.57 In the Rush Memory and 

Aging Project, there was an association between greater WMH volume (WMHV) and lower motor function 

among those with average and low physical activity.58 The progression of white matter lesions over time 

has not been found to have a significant genetic component, and it is likely that behavioral and 

environmental factors, as well as medical conditions, have a more causative role.59 

Subclinical infarcts and WMHs have been associated with the occurrence of “hard” vascular 

outcomes and mortality in multiple studies, including stroke.60, 61, 65, 66 and longevity.62 Subclinical infarcts 

and WMHs have also been associated with cognitive impairment68, 69 and reduced functional status over 

the long term.50, 70 White matter disease may mediate the relationship between hypertension and 

disability.71 Even in younger individuals free of cardiovascular disease but at risk due to a family history of 

early cardiac disease, white matter lesion burden was inversely associated with manual dexterity (as 

measured by the Grooved Pegboard test).72 When regional WMHV was tested separately in adjusted 

models, this association was also seen for WMHV in each brain lobe except for the temporal and occipital 

lobes.  Asymptomatic brain MRI abnormalities, including WMHs and infarcts, have been associated with 

functional impairment cross-sectionally,73 at 3 months,74 and over 4 years of follow-up.70 In a case-control 

study performed in Singapore, the burden of small vessel disease and large vessel disease was 

summarized in a weighted score of “cerebrovascular disease” among 305 cases with cognitive 
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impairment and 94 controls.75 A higher cerebrovascular disease score was associated with worse 

cognitive function.  WMHV was associated with global deficits and cerebral microbleeds were associated 

with domain-specific deficits.  In the Leukoaraiosis and Disability study,76 among 633 older individuals 

over 2.4 years of follow-up, 29.5% of those with severe WMHV transitioned to death or disability, 

compared to 10% with mild WMHV.  Also, cognitive decline was seen among those who had increase in 

WMHV over time.  In a prior analysis using the MRI cohort of NOMAS,77 in an adjusted model, WMHV 

was associated with poorer episodic memory, processing speed, and semantic memory.  Among those 

above the median age, WMHV was associated with poorer episodic and semantic memory. 

  Despite these prior studies, the influence of SBI and WMHV on longitudinal trajectories of 

functional status is not well delineated.  We hypothesized that SBI and increasing volumes of cerebral 

white matter disease independently predicted worse baseline functional status and slope of change over 

time in those free of stroke at baseline.  We studied these hypotheses in the Northern Manhattan Study 

(NOMAS) in an MRI substudy.   

 

Methods 

The NOMAS MRI study is a substudy of the prospective cohort that began in 2003 and included 

individuals: 1) older than age 50 years, 2) without contraindications to MRI, 3) without clinical stroke and 

4) able to provide signed informed consent. Baseline characteristics of the MRI cohort (n=1290) are 

similar to the overall NOMAS prospective study.  Each participant received a comprehensive battery of 

standardized neuropsychological tests at entry. Imaging was performed on a 1.5T MRI system (Philips 

Medical Systems, Best, Netherlands), including the following sequences: axial T1, axial T2, axial proton 

density, dual-spin echo, diffusion weighted imaging, and FLAIR. After image acquisition, data were 

transferred to the University of California at Davis for morphometric analysis of TCV and WMHV using T1 

and fluid-attenuated inversion recovery sequences.77 The images are now stored at Columbia and at the 

University of Miami and have been further processed by Dr. Clinton Wright for more advanced 

categorization of WMH and silent brain infarcts (SBI). An operator traced dura mater, and non-brain 

structures were manually removed from images. Total cranial volume (TCV) constituted the sum of whole 

brain volume voxels from the T1 segmentation process.  WMHV was calculated as “the sum of voxels 
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≥3.5 standard deviations above the mean image intensity multiplied by pixel dimensions and section 

thickness.”77  

The FreeSurfer image analysis software (version 5.1) was used to perform volumetric 

segmentation of lobar gray matter (GM) volumes and hippocampal volumes.  As previously described, “all 

T1-weighted MRIs underwent motion correction, skull stripping, and transformations into Talaraich space 

before segmentation, identification of gray/white matter boundaries, automated topology correction, and 

surface deformation. Through 3-dimensional segmentation methods, neuroanatomic labels for regional 

white matter and cortical GM parcellations were assigned to each voxel using a probabilistic atlas and 

Bayesian classification rule. FreeSurfer provides an estimate of hippocampal volume, and 68 cortical GM 

parcellations were summed to estimate frontal, temporal, occipital, and parietal lobe GM volumes using 

recommended methods.”77 

 

Explanatory variables 

Two datasets were used in this analysis, the “original” dataset and “new” dataset.  In the original dataset, 

total WMH volumes were calculated after correcting for TCV and were treated as a continuous (log 

transformed) and categorical variable (quartiles) consistent with previous analyses in NOMAS.206-208 SBIs 

were defined as lesions greater than 3 mm in size, distinct from the circle of Willis in the basal ganglia, 

and of similar intensity as cerebrospinal fluid. The location and size of SBIs were recorded.209 In the new 

dataset, according to personal communication from Jose Gutierrez, MD, who read the images: “All T1 

axial sequences were analyzed systematically. First, we rated small voids (i.e. parenchymal 

hypodensities) of < 5 mm in axial diameter without associated FLAIR hyperintensities as small 

perivascular spaces (SPVS). Due to the high number of SPVS observed and the inability to accurately 

count each of them, a semi-quantitative score was created. The extent of SPVS by anatomical brain 

region was rated as 0=No SPVS voids, 1=1-3 voids, 2=4 or more voids in each of 12 anatomical brain 

regions. The total SPVS score was created by adding the subscores for each of the 12 anatomical 

regions. This method has good to excellent reliability.  Parenchymal voids observed in 3D T1 and FLAIR 

sequences with a diameter of > 5 mm were individually characterized for the purpose of classifying them 

as large perivascular spaces (LPVS) or lacunar infarcts (LI) in the following brain regions: inferior third of 
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putamen and anterior perforating substance, upper two thirds of putamen, anterior limb of internal 

capsule, thalamus, head of the caudate, globus pallidus, subinsular cortex, the frontal, parietal, temporal 

(including the hippocampus) and occipital white matter. Brainstem areas included the midbrain, pons, 

medulla, middle cerebellar peduncle and the cerebellum. Each hypodensity was measured in its longest 

axial diameter and perpendicularly to it. The number of axial images in which the same void was 

observed was used to calculate the vertical diameter (# slices x slice thickness). The void volume was 

calculated with the abc/2 formula used to obtain the volume of ellipsoid bodies.  Using a cutoff of 5 mm in 

axial images yielded a minimum effective diameter of 3 mm typically used to differentiate small from large 

perivascular spaces or infarcts.  We also noted the appearance of large hypointensities on the FLAIR 

sequence, such as cavitation (defined by a corresponding FLAIR hypointensity as compared to the brain 

parenchyma intensity), lack of cavitation (defined by isointensity), and white matter hyperintensity (WMH, 

defined by a hyperintense lesion) as well as the presence and extent of a hyperintense rim around each 

cavitated void (thick, equivocal or absent). Finally, we rated the intensity of each void on proton density 

images as hypointense, isointense or hyperintense in respect to the lateral ventricle CSF. The collection 

of these data was performed blindly to demographic or clinical information, and the rater did not define 

whether the hypointensities were compatible with a LPVS or a LI at the time of the readings.”  

 Location of SBI was recorded according to specific brain region, and then recoded according to 

cortical or subcortical location.  Lacunar infarct location was categorized into cortical, subcortical, and 

brainstem.   

 

Covariates  

All analytic models were adjusted for the following variables: age, sex, body mass index (body weight in 

kilograms divided by the square of height in meters), self-reported hypercholesterolemia, diabetes 

mellitus (defined by self-report, fasting blood glucose level >126 mg/dL, or insulin/oral hypoglycemic use), 

hypertension (defined as a systolic blood pressure recording >140 mmHg or a diastolic blood pressure 

recording >90 mm Hg based on the average of two blood pressure measurements or the patient's self-

report of a history of hypertension or antihypertensive use), smoking (defined as either nonsmoker or 

smoker within the last year), alcohol use (with moderate alcohol use classified as 1 drink/month to 2 
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drinks/day), social variables (marital status, insurance status [classified as uninsured, Medicaid, 

Medicare, or private insurance], number of friends [individuals whom the participant knows well enough to 

visit in their homes], years living in the community), and cognitive factors (depressed mood, and 

performance on mini-mental state examination [analyzed as a continuous variable]).   

 

Statistical analysis 

The goal of this analysis was to determine whether increasing volumes of cerebral white matter disease 

and SBI are associated with BI and a steeper slope of decline.  Each outcome was analyzed in separate 

models, using an approach similar to that outlined under Statistical Analysis in Analysis A above.   

A sensitivity analysis was performed among those with BI 95 or 100 at ‘baseline’: for 1087 

individuals, this is the ADL measurement closest to and prior to the MRI date.  For 193 others (largely 

Household Members, those enrolled at a later date and identified as members of the household of 

subjects already enrolled), this was the ADL measurement at the time of MRI.  The number of those with 

BI 95 or 100 at ‘baseline’ was 267 + 869 = 1136 (see Appendix B7 for distribution of baseline BI scores). 

A basic mediation analysis was performed, testing whether imaging findings mediated the effect 

of diabetes and insurance status.  For this analysis, all functional measures, before and after MRI, were 

included.  There were 9210 (53.2%) BI assessments performed before MRI and 8089 (46.8%) performed 

after MRI.  Changes in the magnitude of the effect estimates for diabetes and insurance were calculated 

when each MRI variable was included in fully adjusted models.  A change in magnitude of 10% was 

deemed to represent meaningful mediation.   

The association between location of SBI (cortical, subcortical, and both) and trajectories of 

functional status was examined in separate models as well as with a multi-level categorical location 

variable in a single model.   

Among those with inflammatory biomarker data in the MRI cohort, a basic mediation analysis was 

performed testing whether MRI evidence of ischemic injury mediated the association between 

inflammatory biomarkers and functional status.  First, the distributions of inflammatory biomarkers in the 

MRI cohort were examined.  Then, the magnitude of the effect estimates for each biomarker was 

compared between models with each MRI variable and those without the MRI variable.   
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The influence of cognition, measured by the MMSE, on functional status was examined in several 

ways.  The association between MMSE and overall functional status was examined, as well as the 

association with change in functional status over time.  Next, interaction with education was examined by 

including interaction terms between MMSE and education in the model.  Two-way interactions between 

MRI variables and MMSE were examined as well as 3-way interactions among these variables and time.   

Due to potential mismeasurement in the hypercholesterolemia variable related to inclusion of 

statin treatment in the variable definition, the levels of cholesterol subtypes were used in place of the 

hypercholesterolemia variable in secondary analyses.  Apolipoprotein E (APOE) status was adjusted for, 

and APOE status was not associated with change in BI or slope of change in BI over time (results not 

shown).   

 

Results 

Table B1 compares the distributions of baseline variables among those in the MRI cohort to those in the 

prospective cohort who were not in the MRI cohort.  Those in the MRI cohort were younger, more often 

male, Hispanic, married, and covered by Medicare, and had more social support.  Those in the MRI 

cohort also had a more favorable vascular risk profile, with lower prevalence of hypertension, diabetes, 

and coronary artery disease, and had overall lower levels of inflammatory biomarkers.  There was a mean 

of 6.1 (SD 3.4) years between baseline enrollment into NOMAS and time of MRI (Appendix B4).  

Appendix B7 shows the distribution of baseline BI score (soonest BI measurement at or after MRI) in the 

MRI cohort; there were 1136 (88.8%) with a score of 95 or 100 at baseline.  In the original dataset, 

among 1238 individuals with data on SBI, there were 193 (15.6%) with SBI and 1045 (84.4%) without.  

Table B2 shows the distribution of number of SBI per individual, showing a skewed distribution with most 

individuals having no SBI.  According to the new dataset (Appendix B2), 244 (20.2%) had SBI (A), 508 

(42.1%) had at least one large perivascular space (B and C), 215 (17.8%) had at least one lacunar infarct 

(D and E), and most individuals had a total perivascular space score of 4 (193, 16.0%), with a range of 0-

22 (F).   

Appendix B1 shows the distributions of brain locations for SBIs in the original dataset, first by 

brain location (A), then summarized by cortical versus subcortical locations (B-D).  Out of 1238 
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individuals, 83 (6.7%) had cortical/superficial SBI location, 88 (7.1%) had subcortical SBI, and 22 (1.8%) 

had both.   Appendix B3 summarizes the location of lacunar infarcts in the new dataset.  There were 109 

subcortical, 255 cortical, and 13 brainstem lacunar infarcts (C).  Out of the entire MRI cohort, there were 

117 (9.1%) with cortical SBI, 53 (4.1%) with subcortical SBI, and 44 (3.4%) with both (D).   

Table B3 and Figure B1 show the distributions of white matter hyperintensity volume, shown as 

raw volumes as well as adjusted for total cranial volume.  The adjusted volume (WMHV as % of total 

cranial volume) was used in all analyses presented here.  The mean of the maximum follow-up time per 

person, from time of MRI to last follow-up assessment, was 7.30 years (SD 2.06, median 7.42 years).   

 As shown in Table B4, the presence of SBI was strongly and consistently associated with 

accelerated decline in function over time, with the magnitude of the association varying little between the 

unadjusted model (-1.10 BI points per year, 95% CI -1.64, -0.56) and the full adjusted model (-0.88, 95% 

CI -1.43, -0.32).  SBI was not associated with change in overall functional status.  SBI had a similar effect 

on mobility and non-mobility domains of the BI (Appendix B9), proportional to the portion of the BI 

comprising each domain.   

Similarly, adjusted WMHV was associated with accelerated functional decline, with -0.82 

additional BI points per year (95% CI -1.06, -0.57) per unit increase in WMHV in an unadjusted model and 

-0.74 additional points per year (95% CI -0.99, -0.49) in a fully adjusted model (Table B5).  Adjusted 

WMHV had a similar effect on mobility and non-mobility domains of the BI (Appendix B10), proportional to 

the portion of the BI comprising each domain.   

Using the recent re-definition of SBI (‘new’ dataset), results were similar (Table B6), with -1.00 

additional BI points per year (95% CI -1.49, -0.51) with SBI in an unadjusted model, and -0.89 additional 

points per year (95% CI -1.42, -0.36) in a fully adjusted model.  SBI had a similar effect on mobility and 

non-mobility domains of the BI (Appendix B11), proportional to the portion of the BI comprising each 

domain.   

In contrast, there were no significant associations between overall BI, change in BI over time, and 

large perivascular spaces (LPVS) in unadjusted or adjusted models, either with a dichotomous definition 

of LPVS (Table B7) or one that incorporated the number of LPVS per individual (Table B8).  Similarly, 

when the perivascular space score was tested (Table B9), there were no significant associations with 
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overall BI score or change in BI over time, in unadjusted or adjusted models, and when mobility and non-

mobility domains of the BI were tested separately (Appendix B14).     

There was a significant and consistent association between presence of lacunar infarcts and 

accelerated decline in functional status over time (Table B10), with a change of -1.20 BI additional points 

per year (95% CI -1.74, -0.66) with lacunar infarcts in an unadjusted model, and -1.11 points per year 

(95% CI -1.69, -0.53) in a fully adjusted model.  Results were similar when the number of lacunar infarcts 

was tested (Table B11 and Appendix B8), with an additional decline of -0.40 points per year (95% CI -

0.72, -0.08) with each additional lacunar infarct.  Presence of lacunar infarct had a similar effect on 

mobility and non-mobility domains of the BI (Appendix B12), and the number of lacunar infarcts had a 

similar effect (Appendix B13), proportional to the portion of the BI comprising each domain.   

 Sensitivity analysis was performed among those with BI score of 95 or 100 at baseline (n=1136, 

Appendix B15).  Although the magnitude of overall decline and the magnitude of additional decline with 

MRI variables were both slightly reduced in most models, there were still highly significant associations 

paralleling the findings in models among the entire cohort.  For example, SBI as defined in the original 

dataset was associated with additional decline of -0.88 points per year (95% CI -1.44, -0.32) in the entire 

cohort and -0.79 points per year (95% CI -1.34, -0.24) among those with BI of 95 or 100 at baseline.   

Table B12 shows results from an analysis testing whether MRI findings mediate the effect of 2 

variables on functional status: diabetes and insurance status.  For SBI (original and new definitions), 

WMHV, and lacunar infarct, addition of the MRI variable reduced the effect estimate for diabetes by about 

4%.  SPVS did not reduce the effect for diabetes.  For all variables except WMHV, adding the MRI 

variable reduced the effect estimate for Medicaid or insurance (versus Medicare or private insurance) by 

around 15%, and adding WMHV reduced the effect estimate by 25%.   

Table B13 shows models testing the association between location of SBI and functional status.  

The original dataset was examined first.  When tested in separate models, superficial (or cortical) SBI 

location (-0.79 points per year, 95% CI -1.63, 0.06) and subcortical location (-1.11, 95% CI -1.81, -0.41) 

were both associated with accelerated decline in functional status over time, but not with overall BI score.  

When tested in the same model, subcortical location was associated with accelerated decline over time (-

0.90 additional BI points per year, 95% CI -1.60, -0.20) but not cortical location (-0.49, 95% CI -1.36, 
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0.38), and neither was associated with overall BI score.  Individuals with both cortical and subcortical SBI 

had more than double the additional decline in functional status than those with subcortical SBI alone (-

2.68 points per year, 95% CI -5.03, -0.32).  When the new dataset was examined, cortical (-0.95 points 

per year, 95% CI -1.72, -0.17) and subcortical (-1.35, 95% CI -2.37, -0.33) SBI were individually 

associated with accelerated decline in functional status over time, and there was a trend for an 

association of similar magnitude with both cortical and subcortical SBI (-1.23, 95% CI -2.63, 0.17).   

A series of models tested whether MRI evidence of ischemic injury mediated the association 

between inflammatory biomarkers and functional status.  Appendix B5 summarizes the distributions of 

inflammatory biomarkers (CRP, TNFR1, IL6, and LpPLA2 mass and activity) among those with biomarker 

data in the MRI cohort (ranging from 610 individuals with IL6 values to 792 with CRP values).  Appendix 

B6 compares the distributions of baseline characteristics between those in the MRI cohort with at least 

one inflammatory biomarker result (911 [70.6%]) to those without any biomarker result (368 [29.4%]).  

The only substantive difference in vascular risk factor profile was a higher prevalence of 

hypercholesterolemia among those with biomarker data compared to those without (64.5% vs. 55.2%).  

As shown in Table B14, CRP was not associated with overall function or change in functional status over 

time, but log of CRP levels was associated with accelerated decline in functional status over time.  

However, adding either SBI or WMHV to the model did not appreciably change this estimate, suggesting 

no significant mediation effect.  There was a similar pattern when the new definition of SBI was examined 

(Table B18).  IL6 and log of IL6 levels were not significantly associated with overall function or change in 

functional status over time in unadjusted or adjusted models, limiting the evaluation of mediation by MRI 

variables (Tables B15 and B19).  TNFR1 levels were associated with additional decline in BI over time in 

unadjusted and adjusted models (Table B16), but the addition of SBI or WMHV did not appreciably 

change the effect estimate for this association.  There was a similar pattern when the new definition of 

SBI was used (Table B20).  LpPLA2 mass and activity levels were not associated with overall function or 

change in function over time in unadjusted or adjusted models, limiting the evaluation of mediation by 

MRI variables (Table B17).  When the association between inflammatory biomarkers and MRI variables 

was examined (Table B21), no significant associations were found for any of the examined biomarkers as 

untransformed variables.   
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Next, the influence of cognition -- as measured by the mini-mental state examination score 

(MMSE) -- on functional status was examined (Table B22).  Higher MMSE was associated with better 

functional status (0.22 BI points per point of MMSE in the MRI cohort, 95% CI 0.08, 0.35), and when 

effect of MMSE on slope of functional change was examined, MMSE was associated with a more 

favorable slope of decline over time (0.04 BI points per year, 95% CI 0.02, 0.06) but not overall function.  

In the entire cohort but not the MRI cohort, MMSE was associated with more favorable slope of functional 

decline in those with high school education, compared to those without (0.06 BI points per year, 95% CI 

0.01, 0.11).   

Sensitivity analysis was also done without BMI in models, due to possible correlation between 

BMI and hypercholesterolemia, which found no substantive differences in results (results not shown).  

Also, in secondary analysis, the levels of cholesterol subtypes were examined in place of the 

hypercholesterolemia variable, and there were no substantive changes in the estimates for the main 

predictors (results not shown).   

The interactions among SBI, cognition, and functional status were further examined in the original 

dataset in fully adjusted models (Table B23).  In a model without interaction terms with time, SBI was 

associated with lower function (-2.63 BI points, 95% CI -4.87, -0.39) and higher MMSE scores were 

associated with higher functional status (0.28, 95% CI 0.06, 0.51).  When interaction with time was 

examined, SBI was associated with an additional -0.88 points of decline (95% CI -1.44, -0.32) over time, 

and MMSE was associated with 0.05 BI points per year (95% CI -0.01, 0.10) per point of MMSE.  There 

was no significant interaction between SBI and MMSE.  However, when 3-way interactions with time were 

examined, there was an annual decline in function overall (-0.89 BI points per year, 95% CI -1.06, -0.71), 

an additional -0.77 points of decline (95% CI -1.31, -0.24) per year in those with SBI, a reduced slope of 

decline with highest MMSE scores (0.07 BI points per year, 95% CI 0.02, 0.13), and a steeper decline in 

functional status per point of MMSE in those with SBI (-0.18 BI points per year, 95% CI -0.32, -0.04).  

When interactions among WMHV, cognition, and functional status were examined (Table B24), 2-way 

and 3-way interactions among time, MMSE, and WMHV were not significant in final models.   

Interactions among cognition, SBI, and functional status were also examined in the new dataset 

(Table B25).  SBI was associated with -2.60 BI points (95% CI -4.51, -0.69) and MMSE was associated 
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with 0.24 BI points (95% CI 0.04, 0.45) on average.  When interactions with time were examined, SBI was 

associated with an additional -0.90 BI points per year (95% CI -1.43, -0.36) and MMSE was associated 

with 0.05 additional BI points per year (95% CI -0.004, 0.11).  In the final model testing 3-way 

interactions, SBI was associated with accelerated functional decline (-0.80 BI points per year, 95% CI -

1.32, -0.29), MMSE was associated with reduced decline (0.07 BI points per year, 95% CI 0.01, 0.13), 

and there was a steeper decline in functional status per point of MMSE in those with SBI (-0.15 BI points 

per year, 95% CI -0.28, -0.02).   

A similar pattern of associations was seen when lacunar infarcts (LI) were tested (Table B26).  In 

the final model testing 3-way interactions, presence of lacunar infarct was associated with accelerated 

functional decline of -1.03 BI points per year (95% CI -1.60, -0.46), MMSE was associated with reduced 

decline (0.07 BI points per year, 95% CI 0.01, 0.13), and there was a steeper decline in functional status 

per point of MMSE in those with LI (-0.15 BI points per year, 95% CI -0.29, -0.01).   

 

Conclusions for Analysis B 

The MRI sub-study of NOMAS is a large sub-cohort with unique MRI imaging data on participants.  Since 

individuals from the prospective cohort of NOMAS were enrolled into the MRI sub-study on average 6.1 

years from enrollment into NOMAS, the MRI sub-study participants were comparatively younger and 

healthier, and 88.8% were functionally normal (BI score of 95 or 100) at the time of MRI.  Despite healthy 

risk factor profiles and good functional status, 15.6-20.2% had SBI on imaging, depending on the 

classification system used.  According to the original classification system, SBI location was evenly 

divided between subcortical (7.1%) and cortical (6.7%) location, whereas with the new classification 

system there were more cortical (9.1%) than subcortical (4.1%) SBI, and more with both (3.4%) compared 

to the original system (1.8%).  Due to these discrepancies, we present data using both classification 

systems.  For WMHV, the mean value was 0.7% of TCV, with a range up to 6.2%.  Although less than the 

entire prospective cohort, the mean follow-up time in the MRI sub-study was 7.3 years, which allowed 

robust estimation of long-term trajectories of functional status after MRI.   

 Using different measures of SBI, we found a strong, consistent, independent, and significant 

effect on accelerated decline in function over time of around -0.90 BI points per year, over and above the 
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annual decline in function due to aging.  This was seen with both the original and new classification 

system, with WMHV (per unit increase), and when mobility and non-mobility domains of the BI were 

examined as separate outcomes.  This pattern of association was seen with MRI imaging markers 

believed to be caused by vascular impairment (SBI, lacunar infarcts, and WMHV) but not with other MRI 

structural findings, such as LPVS, which are not believed to be caused directly by a primary vascular 

pathology.  There was a greater decline in functional status with increasing number of SBIs and lacunar 

infarcts, reflecting a dose-response relationship that supports biological plausibility of the association.  

Also, these associations were seen even among those with no disability at baseline (BI of 95 or 100), 

which emphasizes the “silent” or “subclinical” nature of these predictors, and yet their strong predictive 

power on trajectories of functional status.   

 The causal relationship between MRI findings of subclinical ischemic brain injury and functional 

decline must be further elucidated.  We began to test this relationship by assessing the mediating effect 

of MRI findings (measured on average 6.1 years after baseline assessment) with baseline diabetes and 

insurance status, two factors that have been demonstrated to be strong predictors of functional decline in 

this cohort.  Indeed, the addition of MRI markers of subclinical ischemic damage (SBI, lacunar infarct, and 

WMHV) reduced the effect size for diabetes by about 4%, and reduced the effect size for insurance status 

by 15-25%.  Hence, part of the effects of diabetes and insurance status on functional status may be to 

cause subclinical ischemic brain injury, which would only be apparent if an MRI were done to image this 

injury.   

 We found evidence for a relationship between location of SBI and accelerated functional decline 

over time, but patterns were not consistent with different measurements of SBI.  Using the original 

classification of SBI, subcortical but not cortical location was associated with accelerated decline over 

time, and presence of SBI in both locations was associated with the most decline.  With the new 

classification system, the magnitude of additional decline over time with cortical and subcortical SBI was 

similar, and presence of SBI in both locations was not associated with any incremental decline over time.  

 We examined the interrelationships among inflammatory biomarkers, MRI imaging findings, and 

trajectories of functional status.  Inflammatory biomarkers were measured at study enrollment, and MRI 

was done on average 6.1 years later, so the potential mediating effect was tested of MRI evidence of 
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subclinical brain ischemic injury on the association between inflammatory states and functional status.  

However, no significant mediating effect was seen for any of the inflammatory biomarkers or MRI 

measures.   

 There are well-known associations among cognitive status, education level, and functional status, 

and we examined these relationships in this analysis as well.  We found a significant association between 

higher cognitive level and improved function, even when adjusting for SBI.  Higher cognitive performance 

was also associated with reduced slope of decline over time in functional status, but when 3-way 

interactions with time were tested, among those with SBI, there was an inverse relationship between 

cognition and decline in functional status.  This was true in the original dataset as well as the new 

dataset, and with lacunar infarcts as well as SBI.     

 Strengths of this study include the large population-based cohort, the accurate assessment of 

events during follow-up, minimal loss to follow-up, the use of state-of-the-art imaging and measurement of 

subclinical brain vascular disease, and the repeated measures of functional outcomes that allow 

trajectory analysis.  A limitation of this analysis is that, in the MRI substudy, participants were recruited 

from the prospective cohort and most often obtained MRI imaging during follow-up instead of at baseline.  

The MRI cohort selects individuals who will be able to return for follow up and imaging and may reflect a 

healthy survivor bias, which may reduce power to detect declines in functional status.  

Further discussion of the findings of this analysis will be found in the concluding chapter. 
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Table B1. Baseline characteristics of the cohort, comparing MRI to non-MRI subjects: 
Variable MRI cohort Non-MRI 

cohort 
p-value 

Number of participants, No. (%) 1290 (36.9) 2208 (63.1) - 
Biological characteristics:    
Age, mean (SD), y 64.5 (8.4) 72.2 (10.3) <0.0001 
Body mass index, mean (SD), kg/m2 28.0 (4.8) 27.8 (5.9) 0.4 
    
Demographics:    
Male, No. (%) 510 (39.5) 790 (35.8) 0.03 
Race-ethnicity: 
  Non-Hispanic white, No. (%) 
  Non-Hispanic black, No. (%) 
  Hispanic, No. (%) 
  Other, No. (%) 

 
191 (14.8) 
223 (17.3) 
847 (65.7) 

29 (2.3) 

 
526 (23.8) 
601 (27.2) 
1029 (46.6) 

51 (2.3) 

<0.0001 

Received at least high school education, No. (%) 592 (45.9) 1012 (45.9) 0.9 
Highest education achieved, No. (%)  
  Eighth grade or less  
  Some high school  
  Completed high school 
  Some college  
  College graduate or more 

 
523 (40.5) 
175 (13.6) 
200 (15.5) 
182 (14.1) 
210 (16.3) 

 
864 (39.2) 
330 (15.0) 
431 (19.5) 
250 (11.3) 
331 (15.0) 

0.005 

Marital status, No. (%) married  543 (42.1) 634 (28.8) <0.0001 
Health insurance, No. (%)  
   Medicaid or no insurance 
   Medicare or private insurance 

 
613 (47.5) 
677 (52.5) 

 
918 (42.0) 
1267 (58.0) 

0.002 

Medicaid health insurance, No. (%)  418 (32.4) 769 (34.8) 0.1 
Medicare health insurance, No. (%)  597 (46.3) 1595 (72.3) <0.0001 
Private insurance, No. (%) 541 (41.9) 929 (42.1) 0.9 
    
Vascular risk factors, No. (%)    
Hypertension  861 (66.7) 1685 (76.4) <0.0001 
History of hypertension 618 (47.9) 1228 (55.6) <0.0001 
Systolic BP, mean (SD) 140.6 (19.8) 145.2 (21.5) <0.0001 
Diastolic BP, mean (SD) 83.6 (10.6) 82.8 (11.6) 0.04 
Alcohol consumption: 
   Never Drank  
   Past Drinker  
   Light Drinker  
   Moderate Drinker  
   Intermediate Drinker  
   Heavy Drinker 

 
264 (20.5) 
256 (19.8) 
163 (12.6) 
530 (41.1) 

49 (3.8) 
28 (2.2) 

 
570 (25.8) 
585 (26.5) 
286 (13.0) 
659 (29.9) 

78 (3.5) 
29 (1.3) 

<0.0001 

Physical activity: 
   None 
   Any  

 
564 (44.3) 
710 (55.7) 

 
921 (41.7) 
1286 (58.3) 

0.1 

Diabetes mellitus  245 (19.0) 513 (23.3) 0.003 
Smoking: 
   Never 
   Former 
   Current 

 
612 (47.4) 
496 (38.5) 
182 (14.1) 

 
1032 (46.8) 
826 (37.5) 
347 (15.7) 

0.4 

Hypercholesterolemia 797 (61.8) 1356 (61.4) 0.8 
Total cholesterol, mean (SD), mg/dL  202.4 (38.3) 2097 (41.1) 0.7 
High-density lipoprotein, mean (SD), mg/dL     
Low-density lipoprotein, mean (SD), mg/dL  130.0 (34.8) 128.8 (36.3) 0.4 
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History of atrial fibrillation 31 (2.4) 116 (5.3) <0.0001 
History of coronary heart disease  177 (13.7) 547 (24.8) <0.0001 
    
Other medical conditions, No. (%)    
Hamilton depression scale score, mean (SD)  3.1 (3.8) 3.2 (3.9) 0.7 
Chronic bronchitis, asthma, or emphysema 120 (9.3) 302 (13.7) 0.0001 
Mini mental state score, mean (SD)  26.7 (3.3) 25.6 (3.9) <0.0001 
History of migraine headaches  231 (17.9) 346 (15.7) 0.09 
Spitzer quality of life index score  9.3 (1.0) 9.0 (1.4) <0.0001 
    
Social variables, No. (%)    
Number of years living in community 25.3 (14.9) 31.6 (17.0) <0.0001 
Number of people known well enough to visit with in 
their homes:  
   None 
   1 or 2 
   3 or 4 
   5 or more 

 
 

36 (2.8) 
124 (9.6) 
263 (20.4) 
867 (67.2) 

 
 

104  (4.7) 
272 (12.3) 
441 (20.0) 
1387 (62.9) 

0.002 

Number of times talked to someone on telephone in 
past week:  
   Not at all  
   Once  
   Two to six times  
   Once a day or more 

 
 

24 (1.9) 
76 (5.9) 

373 (28.9) 
817 (63.3) 

 
 

63 (2.9) 
129 (5.9) 

639 (29.0) 
1372 (62.3) 

0.3 

Number of times in past week spent with someone who 
does not live with you:  
   Not at all  
   Once  
   Two to six times  
   Once a day or more 

 
 

239 (18.5) 
294 (22.8) 
529 (41.0) 
228 (17.7) 

 
 

502 (22.8) 
404 (18.3) 
858 (38.9) 
441 (20.0) 

0.0004 

Have someone you can trust and confide in  1211 (93.9) 2013 (91.4) 0.008 
Feeling lonely:  
   Quite often  
   Sometimes  
   Almost never  

 
172 (13.3) 
397 (30.8) 
721 (55.9) 

 
321 (14.6) 
691 (31.4) 
1189 (54.0) 

0.5 

See relatives and friends:  
   Not as often as want 
   As often as want 

 
512 (39.7) 
778 (60.3) 

 
877 (39.9) 
1324 (60.2) 

0.9 

Is there someone who would give you help if sick 1108 (86.0) 1779 (80.9) 0.0001 
    
Inflammatory markers, mean (SD):    
   CRP (n=792 / 1448) 
   logCRP (n=792 / 1448) 
   IL-6 (n=605 / 1037) 
   logIL-6 (n=581 / 994) 
   TNFR1 (n=651 / 1212) 
   mCAM (n=685 / 1227) 
   mPLAC (n=695 / 1242) 

4.46 (7.26) 
0.82 (1.19) 
1.97 (3.00) 
0.29 (0.98) 
2.23 (0.03) 

116.6 (29.0) 
301.8 (90.1) 

5.67 (9.60) 
0.98 (1.24) 
2.40 (0.12) 
0.46 (1.02) 
2.76 (2.02) 
117.2 (29.9) 
312.5 (87.1) 

0.0008 
0.002 
0.01 
0.001 

<0.0001 
0.6 
0.01 
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Table B2. Number of silent brain infarcts per subject, original dataset 
Number Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
0 1045 84.41 1045 84.41 
1 146 11.79 1191 96.20 
2 32 2.58 1223 98.79 
3 9 0.73 1232 99.52 
4 5 0.40 1237 99.92 
5 1 0.08 1238 100.00 
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Table B3. Distribution of white matter hyperintensity volume variables, original dataset 
Variable Mean Median Lower 

Quartil
e 

Upper 
Quartil

e 

Std 
Dev 

Minimu
m 

Maximu
m 

N 
Miss 

N 

White matter 
hyperintensity 
volume 

7.84 4.16 2.39 8.64 9.92 0.00 87.89 2 1288 

Total cranial 
volume 

1152.2
7 

1142.6
1 

1064.83 1233.11 
122.6

5 
819.61 1547.78 2 1288 

Adjusted 
white matter 
hyperintensity 
volume 

0.007 0.004 0.002 0.008 0.008 0 0.062 2 1288 
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Table B4. Unadjusted and adjusted models of the association between silent brain infarcts and 
functional status, using the original dataset 
Variable Change in BI 

score 
95% CI p-value 

Unadjusted model:    
Annual change in BI -0.89 -1.04, -0.74 <.0001 
Change in BI with SBI -0.82 -3.00, 1.36 0.5 
Additional annual change with SBI -1.10 -1.64, -0.56 <.0001 
Adjusted for demographics:†    
Annual change in BI -0.91 -1.06, -0.75 <.0001 
Change in BI with SBI 0.97 -1.36, 3.31 0.4 
Additional annual change with SBI -1.11 -1.67, -0.55 <.0001 
Adjusted for vascular risk factors:*    
Annual change in BI -0.91 -1.06, -0.75 <.0001 
Change in BI with SBI 1.08 -1.26, 3.41 0.4 
Additional annual change with SBI -1.11 -1.67, -0.55 <.0001 
Adjusted for social variables:**    
Annual change in BI -0.91 -1.06, -0.75 <.0001 
Change in BI with SBI 1.21 -1.13, 3.54 0.3 
Additional annual change with SBI -1.10 -1.66, -0.55 0.0001 
Adjusted for cognition:π    
Annual change in BI -0.91 -1.06, -0.75 <.0001 
Change in BI with SBI 1.25 -1.09, 3.58 0.3 
Additional annual change with SBI -1.09 -1.64, -0.53 0.0001 
Adjusted for quality of life and depression: ††    
Annual change in BI -0.96 -1.13, -0.80 <.0001 
Change in BI with SBI 0.91 -1.62, 3.44 0.5 
Additional annual change with SBI -1.03 -1.61, -0.45 0.0005 
Adjusted for stroke and MI: ‡    
Annual change in BI -0.85 -1.01, -0.69 <.0001 
Change in BI with SBI 1.11 -1.27, 3.49 0.4 
Additional annual change with SBI -0.88 -1.43, -0.32 0.002 
BI=Barthel index; CI=confidence interval; SBI=silent brain infarct; MI=myocardial infarction 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Table B5. Unadjusted and adjusted models of the association between standardized white matter 
hyperintensity volume (WMH/TCV) and functional status, using the original dataset 
Variable Change in 

BI score 
95% CI p-value 

Unadjusted model:    
Annual change in BI -1.12 -1.28, -0.97 <.0001 
Change in BI with 1 unit increase in WMH -1.08 -2.08, -0.09 0.03 
Additional annual change with 1 unit increase in WMH -0.82 -1.06, -0.57 <.0001 
Adjusted for demographics:†    
Annual change in BI -1.14 -1.30, -0.98 <.0001 
Change in BI with 1 unit increase in WMH 0.13 -0.92, 1.18 0.8 
Additional annual change with 1 unit increase in WMH -0.82 -1.07, -0.57 <.0001 
Adjusted for vascular risk factors:*    
Annual change in BI -1.17 -1.34, -1.00 <.0001 
Change in BI with 1 unit increase in WMH 0.30 -0.89, 1.48 0.6 
Additional annual change with 1 unit increase in WMH -0.78 -1.04, -0.52 <.0001 
Adjusted for social variables:**    
Annual change in BI -1.17 -1.34, -1.00 <.0001 
Change in BI with 1 unit increase in WMH 0.34 -0.86, 1.53 0.6 
Additional annual change with 1 unit increase in WMH -0.78 -1.04, -0.52 <.0001 
Adjusted for cognition:π    
Annual change in BI -1.17 -1.34, -1.00 <.0001 
Change in BI with 1 unit increase in WMH 0.31 -0.89, 1.51 0.6 
Additional annual change with 1 unit increase in WMH -0.78 -1.04, -0.52 <.0001 
Adjusted for quality of life and depression: ††    
Annual change in BI -1.18 -1.34, -1.01 <.0001 
Change in BI with 1 unit increase in WMH 0.35 -0.83, 1.52 0.6 
Additional annual change with 1 unit increase in WMH -0.78 -1.04, -0.52 <.0001 
Adjusted for stroke and MI: ‡    
Annual change in BI -1.04 -1.20, -0.88 <.0001 
Change in BI with 1 unit increase in WMH 0.59 -0.50, 1.68 0.3 
Additional annual change with 1 unit increase in WMH -0.74 -0.99, -0.49 <.0001 
BI=Barthel index; CI=confidence interval; WMH=white matter hyperintensity; TCV=total cranial volume; 
MI=myocardial infarction 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Table B6. Unadjusted and adjusted models of the association between silent brain infarcts and 
functional status, using the new dataset 
Variable Change in BI 

score 
95% CI p-value 

Unadjusted model:    
Annual change in BI -0.86 -1.02, -0.71 <.0001 
Change in BI with SBI -1.20 -2.97, 0.57 0.2 
Additional annual change with SBI -1.00 -1.49, -0.51 <.0001 
Adjusted for demographics:†    
Annual change in BI -0.88 -1.03, -0.72 <.0001 
Change in BI with SBI 0.37 -1.55, 2.28 0.7 
Additional annual change with SBI -1.00 -1.50, -0.50 <.0001 
Adjusted for vascular risk factors:*    
Annual change in BI -0.92 -1.09, -0.75 <.0001 
Change in BI with SBI 0.47 -1.72, 2.66 0.7 
Additional annual change with SBI -1.00 -1.54, -0.46 0.0003 
Adjusted for social variables:**    
Annual change in BI -0.92 -1.09, -0.75 <.0001 
Change in BI with SBI 0.67 -1.55, 2.88 0.6 
Additional annual change with SBI -1.00 -1.53, -0.46 0.0003 
Adjusted for cognition:π    
Annual change in BI -0.92 -1.09, -0.75 <.0001 
Change in BI with SBI 0.67 -1.55, 2.89 0.6 
Additional annual change with SBI -0.99 -1.53, -0.46 0.0003 
Adjusted for quality of life and depression: ††    
Annual change in BI -0.93 -1.10, -0.76 <.0001 
Change in BI with SBI 0.58 -1.65, 2.81 0.6 
Additional annual change with SBI -0.99 -1.52, -0.45 0.0003 
Adjusted for stroke and MI: ‡    
Annual change in BI -0.82 -0.98, -0.66 <.0001 
Change in BI with SBI 1.07 -1.06, 3.20 0.3 
Additional annual change with SBI -0.89 -1.42, -0.36 0.001 
BI=Barthel index; CI=confidence interval; SBI=silent brain infarct; MI=myocardial infarction 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Table B7. Unadjusted and adjusted models of the association between large perivascular spaces 
and functional status, using the new dataset 
Variable Change in BI 

score 
95% CI p-value 

Unadjusted model:    
Annual change in BI -1.01 -1.21, -0.81 <.0001 
Change in BI with LPVS 0.14 -0.96, 1.24 0.8 
Additional annual change with LPVS -0.07 -0.37, 0.24 0.7 
Adjusted for demographics:†    
Annual change in BI -1.03 -1.23, -0.83 <.0001 
Change in BI with LPVS -0.17 -1.37, 1.03 0.8 
Additional annual change with LPVS -0.03 -0.34, 0.28 0.8 
Adjusted for vascular risk factors:*    
Annual change in BI -1.04 -1.25, -0.83 <.0001 
Change in BI with LPVS 0.13 -1.28, 1.54 0.9 
Additional annual change with LPVS -0.13 -0.46, 0.21 0.4 
Adjusted for social variables:**    
Annual change in BI -1.04 -1.25, -0.83 <.0001 
Change in BI with LPVS 0.11 -1.31, 1.53 0.9 
Additional annual change with LPVS -0.13 -0.46, 0.21 0.5 
Adjusted for cognition:π    
Annual change in BI -1.04 -1.25, -0.83 <.0001 
Change in BI with LPVS 0.14 -1.27, 1.55 0.8 
Additional annual change with LPVS -0.13 -0.46, 0.21 0.4 
Adjusted for quality of life and depression: ††    
Annual change in BI -1.04 -1.25, -0.84 <.0001 
Change in BI with LPVS 0.38 -1.02, 1.78 0.6 
Additional annual change with LPVS -0.15 -0.48, 0.19 0.4 
Adjusted for stroke and MI: ‡    
Annual change in BI -0.92 -1.12, -0.72 <.0001 
Change in BI with LPVS 0.74 -0.64, 2.13 0.3 
Additional annual change with LPVS -0.13 -0.46, 0.20 0.4 
BI=Barthel index; CI=confidence interval; LPVS=large perivascular space; MI=myocardial infarction 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Table B8. Unadjusted and adjusted models of the association between number of large 
perivascular spaces and functional status, using the new dataset 
Variable Change in 

BI score 
95% CI p-value 

Unadjusted model:    
Annual change in BI -1.05 -1.23, -0.87 <.0001 
Change in BI with 1 additional LPVS -0.03 -0.52, 0.47 0.9 
Additional annual change with 1 additional LPVS 0.03 -0.09, 0.15 0.7 
Adjusted for demographics:†    
Annual change in BI -1.08 -1.26, -0.89 <.0001 
Change in BI with 1 additional LPVS -0.10 -0.63, 0.43 0.7 
Additional annual change with 1 additional LPVS 0.05 -0.07, 0.17 0.4 
Adjusted for vascular risk factors:*    
Annual change in BI -1.11 -1.30, -0.91 <.0001 
Change in BI with 1 additional LPVS 0.0003 -0.61, 0.61 0.99 
Additional annual change with 1 additional LPVS 0.04 -0.08, 0.16 0.5 
Adjusted for social variables:**    
Annual change in BI -1.10 -1.30, -0.91 <.0001 
Change in BI with 1 additional LPVS -0.01 -0.62, 0.59 0.96 
Additional annual change with 1 additional LPVS 0.04 -0.08, 0.16 0.5 
Adjusted for cognition:π    
Annual change in BI -1.11 -1.30, -0.91 <.0001 
Change in BI with 1 additional LPVS -0.02 -0.62, 0.58 0.9 
Additional annual change with 1 additional LPVS 0.04 -0.08, 0.16 0.5 
Adjusted for quality of life and depression: ††    
Annual change in BI -1.11 -1.30, -0.92 <.0001 
Change in BI with 1 additional LPVS 0.08 -0.51, 0.68 0.8 
Additional annual change with 1 additional LPVS 0.03 -0.09, 0.15 0.6 
Adjusted for stroke and MI: ‡    
Annual change in BI -0.99 -1.17, -0.80 <.0001 
Change in BI with 1 additional LPVS 0.20 -0.39, 0.79 0.5 
Additional annual change with 1 additional LPVS 0.04 -0.08, 0.17 0.5 
BI=Barthel index; CI=confidence interval; LPVS=large perivascular space; MI=myocardial infarction 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Table B9. Unadjusted and adjusted models of the association between perivascular space score 
and functional status, using the new dataset 
Variable Change in BI 

score 
95% CI p-value 

Unadjusted model:    
Annual change in BI -0.83 -1.10, -0.56 <.0001 
Change in BI with 1 point increase in SPVS -0.09 -0.25, 0.08 0.3 
Additional annual change with 1 point increase in SPVS -0.04 -0.08, 0.005 0.08 
Adjusted for demographics:†    
Annual change in BI -0.84 -1.11, -0.56 <.0001 
Change in BI with 1 point increase in SPVS 0.06 -0.11, 0.24 0.5 
Additional annual change with 1 point increase in SPVS -0.04 -0.08, 0.01 0.08 
Adjusted for vascular risk factors:*    
Annual change in BI -0.90 -1.19, -0.62 <.0001 
Change in BI with 1 point increase in SPVS 0.08 -0.12, 0.27 0.4 
Additional annual change with 1 point increase in SPVS -0.03 -0.08, 0.01 0.14 
Adjusted for social variables:**    
Annual change in BI -0.90 -1.19, -0.62 <.0001 
Change in BI with 1 point increase in SPVS 0.08 -0.12, 0.27 0.4 
Additional annual change with 1 point increase in SPVS -0.03 -0.08, 0.01 0.14 
Adjusted for cognition:π    
Annual change in BI -0.90 -1.19, -0.62 <.0001 
Change in BI with 1 point increase in SPVS 0.08 -0.12, 0.27 0.4 
Additional annual change with 1 point increase in SPVS -0.03 -0.08, 0.01 0.13 
Adjusted for quality of life and depression: ††    
Annual change in BI -0.90 -1.18, -0.61 <.0001 
Change in BI with 1 point increase in SPVS 0.14 -0.06, 0.33 0.17 
Additional annual change with 1 point increase in SPVS -0.04 -0.08, 0.01 0.11 
Adjusted for stroke and MI: ‡    
Annual change in BI -0.82 -1.09, -0.54 <.0001 
Change in BI with 1 point increase in SPVS 0.15 -0.04, 0.34 0.12 
Additional annual change with 1 point increase in SPVS -0.03 -0.07, 0.02 0.2 
BI=Barthel index; CI=confidence interval; SPVS=score of perivascular spaces; MI=myocardial infarction 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Table B10. Unadjusted and adjusted models of the association between lacunar infarcts and 
functional status, using the new dataset 
Variable Change in BI 

score 
95% CI p-value 

Unadjusted model:    
Annual change in BI -0.85 -1.01, -0.70 <.0001 
Change in BI with lacunar infarct -0.74 -2.62, 1.14 0.4 
Additional annual change with lacunar infarct -1.20 -1.74, -0.66 <.0001 
Adjusted for demographics:†    
Annual change in BI -0.87 -1.02, -0.72 <.0001 
Change in BI with lacunar infarct 1.05 -0.99, 3.08 0.3 
Additional annual change with lacunar infarct -1.22 -1.77, -0.66 <.0001 
Adjusted for vascular risk factors:*    
Annual change in BI -0.91 -1.08, -0.75 <.0001 
Change in BI with lacunar infarct 1.15 -1.18, 3.48 0.3 
Additional annual change with lacunar infarct -1.20 -1.80, -0.61 <.0001 
Adjusted for social variables:**    
Annual change in BI -0.91 -1.08, -0.75 <.0001 
Change in BI with lacunar infarct 1.31 -1.05, 3.67 0.3 
Additional annual change with lacunar infarct -1.20 -1.80, -0.61 <.0001 
Adjusted for cognition:π    
Annual change in BI -0.91 -1.08, -0.75 <.0001 
Change in BI with lacunar infarct 1.34 -1.01, 3.70 0.3 
Additional annual change with lacunar infarct -1.21 -1.80, -0.61 <.0001 
Adjusted for quality of life and depression: ††    
Annual change in BI -0.92 -1.09, -0.76 <.0001 
Change in BI with lacunar infarct 1.26 -1.12, 3.64 0.3 
Additional annual change with lacunar infarct -1.19 -1.79, -0.60 <.0001 
Adjusted for stroke and MI: ‡    
Annual change in BI -0.81 -0.97, -0.65 <.0001 
Change in BI with lacunar infarct 1.61 -0.65, 3.86 0.16 
Additional annual change with lacunar infarct -1.11 -1.69, -0.53 0.0002 
BI=Barthel index; CI=confidence interval; MI=myocardial infarction 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Table B11. Unadjusted and adjusted models of the association between number of lacunar 
infarcts and functional status, using the new dataset 
Variable Change in 

BI score 
95% CI p-value 

Unadjusted model:    
Annual change in BI -0.90 -1.06, -0.75 <.0001 
Change in BI with 1 additional lacunar infarct -1.05 -2.42, 0.32 0.13 
Additional annual change with 1 additional lacunar infarct -0.51 -0.84, -0.19 0.002 
Adjusted for demographics:†    
Annual change in BI -0.92 -1.07, -0.76 <.0001 
Change in BI with 1 additional lacunar infarct -0.24 -1.71, 1.22 0.7 
Additional annual change with 1 additional lacunar infarct -0.52 -0.85, -0.18 0.003 
Adjusted for vascular risk factors:*    
Annual change in BI -0.97 -1.14, -0.81 <.0001 
Change in BI with 1 additional lacunar infarct -0.32 -1.91, 1.26 0.7 
Additional annual change with 1 additional lacunar infarct -0.45 -0.79, -0.11 0.009 
Adjusted for social variables:**    
Annual change in BI -0.97 -1.14, -0.81 <.0001 
Change in BI with 1 additional lacunar infarct -0.29 -1.90, 1.32 0.7 
Additional annual change with 1 additional lacunar infarct -0.45 -0.79, -0.11 0.009 
Adjusted for cognition:π    
Annual change in BI -0.97 -1.14, -0.81 <.0001 
Change in BI with 1 additional lacunar infarct -0.26 -1.87, 1.35 0.7 
Additional annual change with 1 additional lacunar infarct -0.45 -0.79, -0.11 0.009 
Adjusted for quality of life and depression: ††    
Annual change in BI -0.98 -1.15, -0.82 <.0001 
Change in BI with 1 additional lacunar infarct -0.29 -1.91, 1.32 0.7 
Additional annual change with 1 additional lacunar infarct -0.44 -0.78, -0.11 0.01 
Adjusted for stroke and MI: ‡    
Annual change in BI -0.87 -1.03, -0.71 <.0001 
Change in BI with 1 additional lacunar infarct -0.12 -1.56, 1.31 0.9 
Additional annual change with 1 additional lacunar infarct -0.40 -0.72, -0.08 0.014 
BI=Barthel index; CI=confidence interval; MI=myocardial infarction 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Table B12. Models testing mediation by MRI variables 
 Model without mediator Model with mediator 
Variable Change 

in BI 
score 

95% CI p-
value 

Change 
in BI 
score 

95% CI p-
value 

Testing SBI, original dataset:*       
Diabetes -1.57 -2.59, -0.55 0.003 -1.51 -2.55, -0.47 0.004 
Medicaid or no insurance -1.11 -1.81, -0.42 0.002 -0.95 -1.64, -0.27 0.007 
SBI, versus no SBI -- -- -- -1.48 -2.68, -0.27 0.016 
Testing adjusted WMHV, 
original dataset:* 

      

Diabetes -1.57 -2.59, -0.55 0.003 -1.53 -2.57, -0.49 0.004 
Medicaid or no insurance -1.11 -1.81, -0.42 0.002 -0.83 -1.51, -0.14 0.018 
WMHV, per SD  -- -- -- -1.00 -1.53, -0.48 0.0002 
Testing SBI, new dataset:*       
Diabetes -1.57 -2.59, -0.55 0.003 -1.51 -2.55, -0.47 0.004 
Medicaid or no insurance -1.11 -1.81, -0.42 0.002 -0.91 -1.59, -0.23 0.008 
SBI, versus no SBI -- -- -- -1.13 -2.14, -0.11 0.03 
Testing LI, new dataset:*       
Diabetes -1.57 -2.59, -0.55 0.003 -1.51 -2.55, -0.46 0.005 
Medicaid or no insurance -1.11 -1.81, -0.42 0.002 -0.91 -1.59, -0.23 0.009 
LI, versus no LI -- -- -- -1.24 -2.32, -0.16 0.025 
Testing number of LI, new 
dataset:* 

      

Diabetes -1.57 -2.59, -0.55 0.003 -1.46 -2.51, -0.42 0.006 
Medicaid or no insurance -1.11 -1.81, -0.42 0.002 -0.93 -1.60, -0.26 0.007 
LI, per additional LI -- -- -- -0.71 -1.25, -0.16 0.011 
Testing SPVS, new dataset:*       
Diabetes -1.57 -2.59, -0.55 0.003 -1.55 -2.59, -0.51 0.0034 
Medicaid or no insurance -1.11 -1.81, -0.42 0.002 -0.95 -1.63, -0.28 0.006 
SPVS, per additional point -- -- -- 0.01 -0.10, 0.11 0.9 
BI=Barthel index; CI=confidence interval; SBI=silent brain infarct; WMHV=white matter hyperintensity 
volume; SD=standard deviation; LI=lacunar infarct; SPVS=score of perivascular spaces; MI=myocardial 
infarction 
*model additionally adjusted for: time of follow-up, age at time of MRI, sex, race-ethnicity, physical 
activity, alcohol use, body mass index, depression, mini-mental state score, follow-up after MRI, and 
stroke and myocardial infarction occurring during follow-up. 
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Table B13. Adjusted models of the association between location of silent brain infarct and 
functional status* 
Variable Change 

in BI 
score 

95% CI p-
value 

Original dataset, superficial/cortical location:    
Annual change in BI -0.92 -1.08, -0.76 <.0001 
Change in BI with superficial SBI location 0.27 -3.29, 3.83 0.9 
Additional annual change with superficial SBI location -0.79 -1.63, 0.06 0.068 
Original dataset, subcortical location:    
Annual change in BI -0.88 -1.04, -0.72 <.0001 
Change in BI with subcortical SBI location 1.21 -1.87, 4.29 0.4 
Additional annual change with subcortical SBI location -1.11 -1.81, -0.41 0.002 
Original dataset, testing location:    
Annual change in BI -0.85 -1.01, -0.69 <.0001 
Change in BI with cortical SBI location† 0.70 -2.93, 4.34 0.7 
Change in BI with subcortical SBI location† 1.81 -1.14, 4.76 0.2 
Change in BI with both cortical and subcortical SBI location† 0.73 -9.15, 

10.62 
0.9 

Additional annual change with cortical SBI location† -0.49 -1.36, 0.38 0.3 
Additional annual change with subcortical SBI location† -0.90 -1.60, -0.20 0.01 
Additional annual change with both cortical and subcortical SBI 
location† 

-2.68 -5.03, -0.32 0.03 

New dataset, testing location:    
Annual change in BI -0.82 -0.98, -0.66 <.0001 
Change in BI with cortical SBI location† 2.33 -0.31, 4.98 0.084 
Change in BI with subcortical SBI location† 3.54 -0.45, 7.53 0.082 
Change in BI with both cortical and subcortical SBI location† -0.74 -6.84, 5.36 0.8 
Additional annual change with cortical SBI location† -0.95 -1.72, -0.17 0.017 
Additional annual change with subcortical SBI location† -1.35 -2.37, -0.33 0.009 
Additional annual change with both cortical and subcortical SBI 
location† 

-1.23 -2.63, 0.17 0.086 

BI=Barthel index; CI=confidence interval; MI=myocardial infarction 
*models are additionally adjusted for: age at the time of MRI, sex, race-ethnicity, diabetes, hypertension, 
coronary artery disease, hypercholesterolemia, physical activity, alcohol use, smoking, body mass index, 
marital status, insurance status, number of friends, mini-mental state score, and stroke and myocardial 
infarction occurring during follow-up 
†versus no SBI 
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Table B14. Models testing mediation of the MRI markers-functional status association by C-reactive protein, original dataset* 
 Model without mediator Model testing WMH mediation† Model testing SBI mediation 
Variable Change 

in BI 
score 

95% CI p-value Change 
in BI 
score 

95% CI p-value Change 
in BI 
score 

95% CI p-
value 

Unadjusted CRP models:          
Annual change in BI -0.56 -0.66, -0.47 <.0001 -0.56 -0.65, -0.47 <.0001 -0.49 -0.58, -0.39 <.0001 
Change in BI with 1 unit 
increase in CRP 

0.00 -0.05, 0.04 0.9 0.00 -0.04, 0.04 0.99 -0.005 -0.05, 0.04 0.8 

Additional annual BI change 
with 1 unit increase in CRP 

-0.01 -0.02, 0.005 0.2 -0.01 -0.02, 
0.003 

0.12 -0.01 -0.02, 0.005 0.2 

Change in BI score per unit of 
mediator 

-- -- -- 0.75 0.29, 1.21 0.0013 1.15 0.01, 2.30 0.049 

Additional annual BI change per 
unit of mediator 

-- -- -- -0.34 -0.46, -0.22 <.0001 -0.45 -0.72, -0.17 0.0014 

Adjusted CRP models:‡          
Annual change in BI -0.47 -0.57, -0.37 <.0001 -0.48 -0.57, -0.38 <.0001 -0.42 -0.52, -0.32 <.0001 
Change in BI with 1 unit 
increase in CRP 

0.01 -0.05, 0.08 0.6 0.02 -0.04, 0.08 0.5 0.01 -0.05, 0.07 0.7 

Additional annual BI change 
with 1 unit increase in CRP 

-0.01 -0.03, 0.004 0.12 -0.01 -0.03, 
0.002 

0.082 -0.01 -0.03, 0.004 0.13 

Change in BI score per unit of 
mediator 

-- -- -- 1.22 0.71, 1.74 <.0001 1.37 0.09, 2.64 0.035 

Additional annual BI change per 
unit of mediator 

-- -- -- -0.30 -0.42, -0.18 <.0001 -0.34 -0.60, -0.08 0.011 

Unadjusted log of CRP 
models: 

         

Annual change in BI -0.53 -0.63, -0.44 <.0001 -0.54 -0.63, -0.45 <.0001 -0.46 -0.56, -0.36 <.0001 
Change in BI with 1 unit 
increase in log of CRP 

-0.04 -0.33, 0.25 0.8 -0.05 -0.33, 0.24 0.7 -0.05 -0.34, 0.24 0.7 

Additional annual BI change 
with 1 unit increase in log of 
CRP 

-0.09 -0.17, -0.01 0.03 -0.09 -0.16, -0.02 0.02 -0.09 -0.16, -0.01 0.03 

Change in BI score per unit of 
mediator 

-- -- -- 0.74 0.29, 1.20 0.001 1.14 0.0009, 2.28 0.0498 

Additional annual BI change per 
unit of mediator 

-- -- -- -0.34 -0.46, -0.22 <.0001 -0.44 -0.72, -0.17 0.0014 

Adjusted log of CRP 
models:‡ 
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Annual change in BI -0.46 -0.55, -0.36 <.0001 -0.46 -0.55, -0.37 <.0001 -0.40 -0.50, -0.30 <.0001 
Change in BI with 1 unit 
increase in log of CRP 

0.29 -0.11, 0.69 0.15 0.31 -0.07, 0.69 0.11 0.29 -0.11, 0.68 0.15 

Additional annual BI change 
with 1 unit increase in log of 
CRP 

-0.09 -0.17, -0.01 0.02 -0.10 -0.17, -0.02 0.011 -0.09 -0.17, -0.01 0.02 

Change in BI score per unit of 
mediator 

-- -- -- 1.21 0.70, 1.73 <.0001 1.37 0.11, 2.63 0.03 

Additional annual BI change per 
unit of mediator 

-- -- -- -0.30 -0.42, -0.18 <.0001 -0.34 -0.60, -0.08 0.01 

* BI=Barthel index score; WMH=white matter hyperintensity volume; SBI=silent brain infarct; CRP=C-reactive protein;  
†per standard deviation change 
‡models are additionally adjusted for: age at the time of MRI, sex, race-ethnicity, diabetes, physical activity, alcohol use, body mass index, 
insurance status, mini-mental state score, depression, and stroke and myocardial infarction occurring during follow-up 
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Table B15. Models testing mediation of the MRI markers-functional status association by interleukin-6, original dataset* 
 Model without mediator Model testing WMH mediation† Model testing SBI mediation 
Variable Change 

in BI 
score 

95% CI p-value Change 
in BI 
score 

95% CI p-value Change 
in BI 
score 

95% CI p-
value 

Unadjusted IL6 models:          
Annual change in BI -0.53 -0.66, -0.41 <.0001 -0.54 -0.66, -0.42 <.0001 -0.45 -0.58, -0.33 <.0001 
Change in BI with 1 unit 
increase in IL6 

-0.02 -0.10, 0.06 0.7 -0.02 -0.10, 0.06 0.6 -0.01 -0.09, 0.07 0.8 

Additional annual BI change 
with 1 unit increase in IL6 

-0.02 -0.07, 0.02 0.3 -0.02 -0.06, 0.02 0.3 -0.03 -0.07, 0.02 0.2 

Change in BI score per unit of 
mediator 

-- -- -- 0.72 0.20, 1.24 0.007 1.16 -0.11, 2.43 0.074 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.34 -0.48, -0.20 <.0001 -0.45 -0.78, -0.12 0.008 

Adjusted IL6 models:‡          
Annual change in BI -0.45 -0.57, -0.33 <.0001 -0.46 -0.58, -0.34 <.0001 -0.40 -0.52, -0.28 <.0001 
Change in BI with 1 unit 
increase in IL6 

0.07 -0.06, 0.20 0.3 0.07 -0.05, 0.19 0.3 0.07 -0.06, 0.21 0.3 

Additional annual BI change 
with 1 unit increase in IL6 

-0.02 -0.06, 0.02 0.3 -0.02 -0.06, 0.02 0.3 -0.02 -0.07, 0.02 0.3 

Change in BI score per unit of 
mediator 

-- -- -- 1.13 0.54, 1.71 0.0002 0.98 -0.38, 2.35 0.16 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.30 -0.44, -0.16 <.0001 -0.31 -0.61, -0.01 0.046 

Unadjusted log of IL6 
models: 

         

Annual change in BI -0.54 -0.64, -0.44 <.0001 -0.57 -0.67, -0.46 <.0001 -0.45 -0.55, -0.35 <.0001 
Change in BI with 1 unit 
increase in log of IL6 

0.11 -0.30, 0.52 0.6 0.08 -0.34, 0.49 0.7 0.13 -0.29, 0.55 0.5 

Additional annual BI change 
with 1 unit increase in log of 
IL6 

-0.10 -0.20, 0.01 0.07 -0.08 -0.18, 0.03 0.16 -0.10 -0.21, 0.004 0.058 

Change in BI score per unit of 
mediator 

-- -- -- 0.68 0.13, 1.24 0.016 1.32 -0.02, 2.67 0.053 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.35 -0.50, -0.20 <.0001 -0.52 -0.87, -0.17 0.004 

Adjusted log of IL6 
models:‡ 
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Annual change in BI -0.45 -0.55, -0.35 <.0001 -0.48 -0.59, -0.38 <.0001 -0.39 -0.50, -0.29 <.0001 
Change in BI with 1 unit 
increase in log of IL6 

0.37 -0.14, 0.89 0.15 0.29 -0.21, 0.80 0.3 0.38 -0.13, 0.90 0.1455 

Additional annual BI change 
with 1 unit increase in log of 
IL6 

-0.10 -0.21, 0.02 0.09 -0.08 -0.19, 0.03 0.2 -0.10 -0.22, 0.01 0.0786 

Change in BI score per unit of 
mediator 

-- -- -- 1.09 0.49, 1.69 0.0004 1.20 -0.24, 2.63 0.10 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.30 -0.43, -0.16 <.0001 -0.38 -0.70, -0.05 0.02 

* BI=Barthel index score; WMH=white matter hyperintensity volume; SBI=silent brain infarct; IL6=interleukin-6;  
†per standard deviation change 
‡models are additionally adjusted for: age at the time of MRI, sex, race-ethnicity, diabetes, physical activity, alcohol use, body mass index, 
insurance status, mini-mental state score, depression, and stroke and myocardial infarction occurring during follow-up 
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Table B16. Models testing mediation of the MRI markers-functional status association by tumor necrosis factor receptor-1, original 
dataset* 
 Model without mediator Model testing WMH mediation† Model testing SBI mediation 
Variable Change 

in BI 
score 

95% CI p-value Change 
in BI 
score 

95% CI p-value Change 
in BI 
score 

95% CI p-
value 

Unadjusted TNFR1 models:          
Annual change in BI -0.20 -0.56, 0.15 0.3 -0.22 -0.58, 0.13 0.2 -0.14 -0.48, 0.21 0.4 
Change in BI with 1 unit 
increase in TNFR1 

-0.50 -1.11, 0.11 0.11 -0.47 -1.07, 0.13 0.12 -0.50 -1.10, 0.11 0.11 

Additional annual BI change 
with 1 unit increase in TNFR1 

-0.20 -0.37, -0.03 0.02 -0.19 -0.37, -0.02 0.03 -0.20 -0.37, -0.03 0.02 

Change in BI score per unit of 
mediator 

-- -- -- 0.80 0.28, 1.33 0.003 1.01 -0.40, 2.42 0.16 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.35 -0.49, -0.21 <.0001 -0.46 -0.81, -0.12 0.008 

Adjusted TNFR1 models:‡          
Annual change in BI -0.16 -0.52, 0.21 0.4 -0.18 -0.55, 0.19 0.4 -0.11 -0.47, 0.25 0.6 
Change in BI with 1 unit 
increase in TNFR1 

0.21 -0.57, 1.00 0.6 0.17 -0.59, 0.93 0.7 0.19 -0.59, 0.97 0.6 

Additional annual BI change 
with 1 unit increase in TNFR1 

-0.18 -0.36, -0.01 0.04 -0.18 -0.36, -0.005 0.04 -0.18 -0.36, -0.01 0.04 

Change in BI score per unit of 
mediator 

-- -- -- 1.28 0.71, 1.84 <.0001 1.03 -0.51, 2.58 0.2 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.31 -0.44, -0.17 <.0001 -0.35 -0.67, -0.03 0.03 

* BI=Barthel index score; WMH=white matter hyperintensity volume; SBI=silent brain infarct; TNFR1=tumor necrosis factor receptor-1;  
†per standard deviation change 
‡models are additionally adjusted for: age at the time of MRI, sex, race-ethnicity, diabetes, physical activity, alcohol use, body mass index, 
insurance status, mini-mental state score, depression, and stroke and myocardial infarction occurring during follow-up 
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Table B17. Models testing mediation of the MRI markers-functional status association by lipoprotein phospholipase A2, original dataset* 
 Model without mediator Model testing WMH mediation† Model testing SBI mediation 
Variable Change 

in BI 
score 

95% CI p-value Change 
in BI 
score 

95% CI p-value Change 
in BI 
score 

95% CI p-value 

Unadjusted LpPLA2 mass 
models: 

         

Annual change in BI -0.74 -1.12, -0.35 0.0002 -0.79 -1.13, -0.44 <.0001 -0.70 -1.08, -0.32 0.0003 
Change in BI with 1 unit 
increase in LpPLA2 mass 

-0.0007 -0.02, 0.02 0.9 -0.003 -0.02, 0.01 0.8 -0.001 -0.02, 0.01 0.9 

Additional annual BI change 
with 1 unit increase in 
LpPLA2 mass 

0.001 -0.002, 
0.004 

0.4 0.002 -0.001, 0.005 0.2 0.002 -0.002, 
0.005 

0.3 

Change in BI score per unit of 
mediator 

-- -- -- 1.00 0.48, 1.51 0.0002 1.32 -0.23, 2.87 0.096 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.39 -0.52, -0.26 <.0001 -0.51 -0.87, -0.14 0.007 

Adjusted LpPLA2 mass 
models:‡ 

         

Annual change in BI -0.58 -0.96, -0.21 0.0022 -0.64 -0.99, -0.29 0.0003 -0.57 -0.94, -0.19 0.003 
Change in BI with 1 unit 
increase in LpPLA2 mass 

-0.01 -0.03, 0.01 0.2 -0.01 -0.03, 0.01 0.15 -0.01 -0.03, 0.01 0.2 

Additional annual BI change 
with 1 unit increase in 
LpPLA2 mass 

0.0007 -0.002, 
0.004 

0.7 0.001 -0.002, 0.004 0.4 0.001 -0.002, 
0.004 

0.5 

Change in BI score per unit of 
mediator 

-- -- -- 1.44 0.87, 2.01 <.0001 1.53 -0.16, 3.22 0.076 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.34 -0.48, -0.21 <.0001 -0.36 -0.71, -0.02 0.039 

Unadjusted LpPLA2 activity 
models: 

         

Annual change in BI -0.56 -0.87, -0.26 0.0003 -0.55 -0.84, -0.26 0.0002 -0.50 -0.80, -0.20 0.0011 
Change in BI with 1 unit 
increase in LpPLA2 activity 

0.001 -0.003, 
0.006 

0.5 0.001 -0.003, 0.006 0.5 0.001 -0.003, 
0.005 

0.6 

Additional annual BI change 
with 1 unit increase in 
LpPLA2 activity 

0.000 -0.001, 
0.001 

0.9 -0.0001 -0.001, 0.001 0.8 0.000 -0.001, 
0.001 

0.98 

Change in BI score per unit of -- -- -- 0.96 0.44, 1.48 0.0003 1.37 -0.18, 2.92 0.083 
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mediator 
Additional annual BI change 
per unit of mediator 

-- -- -- -0.38 -0.51, -0.25 <.0001 -0.51 -0.87, -0.15 0.006 

Adjusted LpPLA2 activity 
models:‡ 

         

Annual change in BI -0.51 -0.83, -0.19 0.002 -0.50 -0.80, -0.19 0.0013 -0.46 -0.77, -0.15 0.004 
Change in BI with 1 unit 
increase in LpPLA2 activity 

-0.0004 -0.006, 
0.005 

0.9 -0.0002 -0.005, 0.005 0.9 -0.001 -0.006, 
0.005 

0.9 

Additional annual BI change 
with 1 unit increase in 
LpPLA2 activity 

0.000 -0.001, 
0.001 

0.9 0.000 -0.001, 0.001 0.9 0.000 -0.001, 
0.001 

0.9 

Change in BI score per unit of 
mediator 

-- -- -- 1.38 0.81, 1.95 <.0001 1.46 -0.23, 3.15 0.091 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.33 -0.47, -0.20 <.0001 -0.37 -0.71, -0.03 0.03 

* BI=Barthel index score; WMH=white matter hyperintensity volume; SBI=silent brain infarct; LpPLA2=lipoprotein phospholipase-A2;  
†per standard deviation change 
‡models are additionally adjusted for: age at the time of MRI, sex, race-ethnicity, diabetes, physical activity, alcohol use, body mass index, 
insurance status, mini-mental state score, depression, and stroke and myocardial infarction occurring during follow-up 
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Table B18. Models testing mediation of the MRI markers-functional status association by C-reactive protein, new dataset* 
 Model without mediator Model testing mediation with 

number of lacunar infarcts
Model testing SBI mediation 

Variable Change in 
BI score 

95% CI p-value Change 
in BI 
score 

95% CI p-value Change 
in BI 
score 

95% CI p-value 

Unadjusted CRP models:          
Annual change in BI -0.56 -0.65, -0.46 <.0001 -0.49 -0.58, -0.40 <.0001 -0.48 -0.58, -0.39 <.0001 
Change in BI with 1 unit 
increase in CRP 

-0.003 -0.05, 0.04 0.9 -0.003 -0.04, 0.04 0.9 -0.005 -0.05, 0.04 0.8 

Additional annual BI change 
with 1 unit increase in CRP 

-0.01 -0.02, 0.01 0.2 -0.01 -0.02, 0.005 0.2 -0.01 -0.02, 0.01 0.2 

Change in BI score per unit 
of mediator 

-- -- -- 0.52 -0.10, 1.14 0.10 1.13 0.12, 2.14 0.03 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.23 -0.40, -0.06 0.008 -0.42 -0.68, -0.15 0.002 

Adjusted CRP models:‡          
Annual change in BI -0.47 -0.57, -0.37 <.0001 -0.42 -0.51, -0.32 <.0001 -0.42 -0.51, -0.32 <.0001 
Change in BI with 1 unit 
increase in CRP 

0.02 -0.05, 0.08 0.6 0.02 -0.05, 0.08 0.6 0.01 -0.05, 0.07 0.7 

Additional annual BI change 
with 1 unit increase in CRP 

-0.01 -0.03, 
0.004 

0.13 -0.01 -0.03, 0.004 0.13 -0.01 -0.03, 
0.004 

0.15 

Change in BI score per unit 
of mediator 

-- -- -- 0.82 0.13, 1.50 0.02 1.60 0.39, 2.82 0.0098 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.19 -0.35, -0.03 0.02 -0.31 -0.57, -0.05 0.019 

Unadjusted log of CRP 
models: 

         

Annual change in BI -0.53 -0.62, -0.43 <.0001 -0.46 -0.55, -0.37 <.0001 -0.46 -0.55, -0.36 <.0001 
Change in BI with 1 unit 
increase in log of CRP 

-0.02 -0.31, 0.27 0.9 -0.02 -0.31, 0.27 0.9 -0.04 -0.33, 0.25 0.8 

Additional annual BI change 
with 1 unit increase in log of 
CRP 

-0.09 -0.17, -0.01 0.02 -0.09 -0.17, -0.02 0.02 -0.08 -0.16, -0.01 0.03 

Change in BI score per unit 
of mediator 

-- -- -- 0.51 -0.10, 1.12 0.10 1.12 0.11, 2.12 0.03 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.23 -0.40, -0.06 0.008 -0.41 -0.67, -0.14 0.002 

Adjusted log of CRP          
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models:‡ 
Annual change in BI -0.45 -0.54, -0.36 <.0001 -0.39 -0.48, -0.30 <.0001 -0.40 -0.49, -0.31 <.0001 
Change in BI with 1 unit 
increase in log of CRP 

0.31 -0.09, 0.71 0.13 0.31 -0.08, 0.71 0.12 0.29 -0.11, 0.69 0.16 

Additional annual BI change 
with 1 unit increase in log of 
CRP 

-0.09 -0.17, -0.02 0.015 -0.10 -0.17, -0.02 0.01 -0.09 -0.17, -0.01 0.02 

Change in BI score per unit 
of mediator 

-- -- -- 0.82 0.13, 1.50 0.02 1.56 0.36, 2.77 0.01 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.19 -0.35, -0.04 0.02 -0.31 -0.57, -0.05 0.02 

* BI=Barthel index score; WMH=white matter hyperintensity volume; SBI=silent brain infarct; CRP=C-reactive protein;  
‡models are additionally adjusted for: age at the time of MRI, sex, race-ethnicity, diabetes, physical activity, alcohol use, body mass index, 
insurance status, mini-mental state score, depression, and stroke and myocardial infarction occurring during follow-up 
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Table B19. Models testing mediation of the MRI markers-functional status association by interleukin-6, new dataset* 
 Model without mediator Model testing mediation with 

number of lacunar infarcts
Model testing SBI mediation 

Variable Change 
in BI 
score 

95% CI p-
value 

Change 
in BI 
score 

95% CI p-value Change 
in BI 
score 

95% CI p-value 

Unadjusted IL6 models:          
Annual change in BI -0.52 -0.65, -0.39 <.0001 -0.45 -0.58, -0.33 <.0001 -0.43 -0.55, -0.30 <.0001 
Change in BI with 1 unit 
increase in IL6 

-0.01 -0.10, 0.07 0.7 -0.02 -0.10, 0.07 0.7 -0.01 -0.09, 0.07 0.8 

Additional annual BI change 
with 1 unit increase in IL6 

-0.03 -0.07, 0.02 0.3 -0.02 -0.07, 0.02 0.3 -0.03 -0.07, 0.02 0.2 

Change in BI score per unit 
of mediator 

-- -- -- 0.45 -0.25, 1.15 0.2 1.10 -0.07, 2.27 0.065 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.22 -0.42, -0.02 0.03 -0.47 -0.78, -0.16 0.003 

Unadjusted log of IL6 
models: 

         

Annual change in BI -0.53 -0.63, -0.43 <.0001 -0.49 -0.59, -0.38 <.0001 -0.46 -0.56, -0.35 <.0001 
Change in BI with 1 unit 
increase in log of IL6 

0.11 -0.31, 0.53 0.6 0.10 -0.33, 0.52 0.6 0.11 -0.31, 0.53 0.6 

Additional annual BI change 
with 1 unit increase in log of 
IL6 

-0.09 -0.20, 0.01 0.09 -0.09 -0.20, 0.02 0.12 -0.10 -0.20, 0.01 0.078 

Change in BI score per unit 
of mediator 

-- -- -- 0.28 -0.40, 0.95 0.4 0.85 -0.40, 2.10 02 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.18 -0.37, 0.02 0.074 -0.44 -0.77, -0.11 0.0097 

Adjusted log of IL6 
models:‡ 

         

Annual change in BI -0.45 -0.55, -0.35 <.0001 -0.42 -0.52, -0.31 <.0001 -0.39 -0.50, -0.29 <.0001 
Change in BI with 1 unit 
increase in log of IL6 

0.37 -0.15, 0.90 0.16 0.35 -0.17, 0.88 0.2 0.37 -0.15, 0.89 0.16 

Additional annual BI change 
with 1 unit increase in log of 
IL6 

-0.09 -0.21, 0.02 0.11 -0.09 -0.21, 0.03 0.13 -0.10 -0.21, 0.02 0.099 

Change in BI score per unit 
of mediator 

-- -- -- 0.42 -0.25, 1.10 0.2 1.25 -0.12, 2.62 0.07 

Additional annual BI change -- -- -- -0.13 -0.30, 0.04 0.14 -0.34 -0.66, -0.02 0.037 
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per unit of mediator 
* BI=Barthel index score; WMH=white matter hyperintensity volume; SBI=silent brain infarct; IL6=interleukin-6;  
‡models are additionally adjusted for: age at the time of MRI, sex, race-ethnicity, diabetes, physical activity, alcohol use, body mass index, 
insurance status, mini-mental state score, depression, and stroke and myocardial infarction occurring during follow-up 
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Table B20. Models testing mediation of the MRI markers-functional status association by tumor necrosis factor receptor-1, new dataset* 
 Model without mediator Model testing mediation with 

number of lacunar infarcts
Model testing SBI mediation 

Variable Change 
in BI 
score 

95% CI p-
value 

Change 
in BI 
score 

95% CI p-value Change 
in BI 
score 

95% CI p-value 

Unadjusted TNFR1 
models: 

         

Annual change in BI -0.20 -0.56, 0.16 0.3 -0.11 -0.46, 0.24 0.5 -0.09 -0.44, 0.26 0.6 
Change in BI with 1 unit 
increase in TNFR1 

-0.50 -1.12, 0.12 0.12 -0.51 -1.12, 0.10 0.099 -0.47 -1.09, 0.14 0.13 

Additional annual BI change 
with 1 unit increase in 
TNFR1 

-0.20 -0.37, -0.03 0.02 -0.20 -0.37, -0.03 0.023 -0.21 -0.38, -0.04 0.018 

Change in BI score per unit 
of mediator 

-- -- -- 0.96 0.26, 1.67 0.007 1.41 0.26, 2.57 0.017 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.35 -0.56, -0.15 0.0007 -0.52 -0.82, -0.21 0.0008 

Adjusted TNFR1 models:‡          
Annual change in BI -0.15 -0.52, 0.22 0.4 -0.08 -0.45, 0.28 0.7 -0.08 -0.44, 0.29 0.7 
Change in BI with 1 unit 
increase in TNFR1 

0.19 -0.60, 0.99 0.6 0.15 -0.62, 0.92 0.7 0.20 -0.58, 0.97 0.6 

Additional annual BI change 
with 1 unit increase in 
TNFR1 

-0.18 -0.36, -
0.004 

0.046 -0.18 -0.36, -0.01 0.042 -0.19 -0.37, -0.01 0.036 

Change in BI score per unit 
of mediator 

-- -- -- 1.16 0.37, 1.95 0.004 1.75 0.35, 3.15 0.01 

Additional annual BI change 
per unit of mediator 

-- -- -- -0.30 -0.49, -0.10 0.003 -0.39 -0.69, -0.09 0.01 

*BI=Barthel index score; WMH=white matter hyperintensity volume; SBI=silent brain infarct; TNFR1=tumor necrosis factor receptor-1;  
‡models are additionally adjusted for: age at the time of MRI, sex, race-ethnicity, diabetes, physical activity, alcohol use, body mass index, 
insurance status, mini-mental state score, depression, and stroke and myocardial infarction occurring during follow-up 
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Table B21. Unadjusted and adjusted models of the association between inflammatory biomarkers and MRI findings, original dataset* 
 Outcome: SBI Outcome: WMH 
Inflammatory biomarker Odds 

ratio 
95% CI p-

value 
Estimate 95% CI p-value 

CRP, unadjusted model 1.00 0.98, 1.03 0.9 -0.00004 -0.0001, 0.00004 0.3 
CRP, adjusted model† 1.01 0.98, 1.04 0.6 -0.00002 -0.0001, 0.00007 0.6 
TNFR1, unadjusted model 1.14 0.91, 1.44 0.3 0.0006 -0.0001, 0.0014 0.11 
TNFR1, adjusted model† 1.05 0.81, 1.36 0.7 0.00005 -0.0007, 0.0008 0.9 
IL6, unadjusted model 1 1, 1.001 0.5 -0.0000003 -0.000002, 0.000001 0.7 
IL6, adjusted model† 1 1, 1.001 0.6 -0.0000004 -0.000002, 0.000001 0.6 
LpPLA2 mass, unadjusted model 1.01 1.00, 1.01 0.1 0.000008 -0.00001, 0.00003 0.5 
LpPLA2 mass, adjusted model† 1.01 0.999,1.02 0.10 0.00002 -0.000005, 0.00004 0.12 
LpPLA2 activity, unadjusted model 1 0.998, 

1.002 
0.9 0.000002 -0.000005, 0.000009 0.6 

LpPLA2 activity, adjusted model† 1.001 0.998, 
1.003 

0.7 0.000005 -0.000002, 0.00001 0.15 

*SBI=silent brain infarct; WMH=white matter hyperintensity volume; CRP=C-reactive protein; TNFR1=tumor necrosis factor receptor-1; 
LpPLA2=lipoprotein phospholipase-A2 
†models are adjusted for: age, sex, race-ethnicity, diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical activity, 
smoking, body mass index, marital status, insurance status, mini-mental state score 
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Table B22. Models assessing the influence of cognition on functional status* 
 Entire cohort MRI cohort 
Variable Change 

in BI 
score 

95% CI p-value Change 
in BI 
score 

95% CI p-value 

Model without interaction terms:†       
Annual change in BI -0.90 -0.97, -0.84 <.0001 -0.55 -0.61, -0.48 <.0001 
Change in BI per point of MMSE 0.57 0.42, 0.71 <.0001 0.22 0.08, 0.35 0.0015 
Model with time interaction:†       
Annual change in BI -2.64 -3.24, -2.04 <.0001 -1.65 -2.27, -1.03 <.0001 
Change in BI per point of MMSE 0.20 0.05, 0.35 0.0102 -0.09 -0.21, 0.03 0.16 
Additional annual change in BI per point of MMSE 0.07 0.04, 0.09 <.0001 0.04 0.02, 0.06 0.0004 
Model with time interaction, with MMSE centered:†       
Annual change in BI -0.94 -1.00, -0.87 <.0001 -0.57 -0.63, -0.50 <.0001 
Change in BI per point of MMSE 0.20 0.05, 0.35 0.0102 -0.09 -0.21, 0.03 0.16 
Additional annual change in BI per point of MMSE 0.07 0.04, 0.09 <.0001 0.04 0.02, 0.06 0.0004 
Model with education term:†       
Annual change in BI -0.90 -0.97, -0.84 <.0001 -0.55 -0.61, -0.48 <.0001 
Change in BI per point of MMSE 0.59 0.44, 0.74 <.0001 0.23 0.09, 0.37 0.001 
High school education, versus less than high school education -0.65 -1.62, 0.33 0.2 -0.47 -1.30, 0.37 0.3 
Model with interaction with education:†       
Annual change in BI -0.90 -0.97, -0.84 <.0001 -0.55 -0.61, -0.48 <.0001 
Change in BI per point of MMSE 0.50 0.33, 0.67 <.0001 0.21 0.07, 0.36 0.004 
High school education, versus less than high school education -11.81 -22.05, -1.57 0.02 -3.15 -14.23, 7.94 0.6 
Change in BI per point of MMSE in those with high school 
education 

0.41 0.04, 0.78 0.028 0.10 -0.30, 0.49 0.6 

Model with interaction with education, with MMSE 
centered:† 

      

Annual change in BI -0.90 -0.97, -0.84 <.0001 -0.55 -0.61, -0.48 <.0001 
Change in BI per point of MMSE 0.50 0.33, 0.67 <.0001 0.21 0.07, 0.36 0.004 
High school education, versus less than high school education -1.02 -2.11, 0.07 0.067 -0.58 -1.60, 0.43 0.3 
Change in BI per point of MMSE in those with high school 
education 

0.41 0.04, 0.78 0.028 0.10 -0.30, 0.49 0.6 

Model with interaction with education and time, with 
MMSE centered:† 

      

Annual change in BI -0.94 -1.00, -0.87 <.0001 -0.57 -0.63, -0.50 <.0001 
Change in BI per point of MMSE 0.13 -0.06, 0.31 0.17 -0.09 -0.23, 0.04 0.2 
Additional annual change in BI per point of MMSE 0.07 0.04, 0.09 <.0001 0.04 0.02, 0.06 0.0004 
High school education, versus less than high school education -1.11 -2.21, -0.02 0.047 -0.63 -1.66, 0.39 0.2 
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Change in BI per point of MMSE in those with high school 
education 

0.44 0.06, 0.82 0.025 0.11 -0.29, 0.51 0.6 

Model with interaction with education and time and 3-way 
interaction, with MMSE centered:† 

      

Annual change in BI -0.98 -1.06, -0.90 <.0001 -0.56 -0.64, -0.48 <.0001 
Change in BI per point of MMSE 0.22 0.04, 0.41 0.016 -0.11 -0.24, 0.02 0.10 
Additional annual change in BI per point of MMSE 0.05 0.02, 0.08 0.0002 0.04 0.02, 0.07 0.0013 
High school education, versus less than high school education -1.26 -2.38, -0.14 0.027 -0.62 -1.65, 0.41 0.2 
Change in BI per point of MMSE in those with high school 
education 

0.14 -0.25, 0.52 0.5 0.17 -0.18, 0.53 0.3 

Additional annual change in BI per point of MMSE in those 
with high school education 

0.06 0.01, 0.11 0.029 -0.01 -0.06, 0.04 0.8 

*BI=Barthel index score; MMSE=mini-mental state examination score 
†Model additionally adjusted for: age, sex, race-ethnicity, diabetes, hypertension, hypercholesterolemia, physical activity, alcohol use, body mass 
index, insurance status, and stroke and myocardial infarction occurring during follow-up 
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Table B23. Models assessing the influence of cognition and silent brain infarct on functional 
status, original dataset* 
Variable Change in 

BI score 
95% CI p-value 

Model without interaction terms:†    
Annual change in BI -0.97 -1.13, -0.82 <.0001 
Change in BI with SBI -2.63 -4.87, -0.39 0.021 
Change in BI per point of MMSE 0.28 0.06, 0.51 0.015 
Model with time interaction, with MMSE centered:†    
Annual change in BI -1.00 -1.16, -0.83 <.0001 
Change in BI with SBI -2.63 -4.88, -0.39 0.021 
Change in BI per point of MMSE 0.08 -0.17, 0.33 0.5 
Additional annual change in BI per point of MMSE 0.05 -0.01, 0.10 0.087 
Model with time interactions, with MMSE centered:†    
Annual change in BI -0.87 -1.04, -0.70 <.0001 
Change in BI with SBI 1.07 -1.32, 3.45 0.4 
Additional annual change in BI with SBI -0.88 -1.44, -0.32 0.002 
Change in BI per point of MMSE 0.08 -0.17, 0.33 0.5 
Additional annual change in BI per point of MMSE 0.05 -0.01, 0.10 0.083 
Model with 2-way SBI interactions, with MMSE centered:†    
Annual change in BI -0.85 -1.01, -0.69 <.0001 
Change in BI with SBI 1.20 -1.24, 3.64 0.3 
Additional annual change in BI with SBI -0.88 -1.43, -0.32 0.002 
Change in BI per point of MMSE 0.35 0.12, 0.59 0.003 
Additional change in BI per point of MMSE in those with SBI -0.48 -1.22, 0.27 0.2 
Model with 3-way interactions with time, with MMSE 
centered:† 

   

Annual change in BI -0.89 -1.06, -0.71 <.0001 
Change in BI with SBI 0.93 -1.44, 3.29 0.4 
Additional annual change in BI with SBI -0.77 -1.31, -0.24 0.0045 
Change in BI per point of MMSE 0.08 -0.17, 0.33 0.5 
Additional annual change in BI per point of MMSE 0.07 0.02, 0.13 0.012 
Additional annual change in BI per point of MMSE in those with 
SBI 

-0.18 -0.32, -0.04 0.011 

*BI=Barthel index score; SBI=silent brain infarct; MMSE=mini-mental state examination score 
†Model additionally adjusted for: age at time of MRI, sex, race-ethnicity, diabetes, hypertension, physical 
activity, alcohol use, body mass index, insurance status, depression, and stroke and myocardial infarction 
occurring during follow-up 
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Table B24. Models assessing the influence of cognition and white matter hyperintensity volume 
on functional status, original dataset* 
Variable Change in 

BI score 
95% CI p-value 

Model without interaction terms:†    
Annual change in BI -0.98 -1.14, -0.82 <.0001 
Change in BI per SD increase in WMH -2.33 -3.38, -1.27 <.0001 
Change in BI per point of MMSE 0.29 0.06, 0.51 0.013 
Model with time interaction, with MMSE centered:†    
Annual change in BI -1.00 -1.17, -0.84 <.0001 
Change in BI per SD increase in WMH -2.32 -3.38, -1.26 <.0001 
Change in BI per point of MMSE 0.09 -0.16, 0.34 0.5 
Additional annual change in BI per point of MMSE 0.05 -0.01, 0.10 0.09 
Model with time interactions, with MMSE centered:†    
Annual change in BI -1.06 -1.22, -0.89 <.0001 
Change in BI per SD increase in WMH 0.53 -0.58, 1.64 0.3 
Additional annual change in BI per SD increase in WMH -0.73 -0.99, -0.48 <.0001 
Change in BI per point of MMSE 0.11 -0.14, 0.36 0.4 
Additional annual change in BI per point of MMSE 0.04 -0.02, 0.09 0.16 
Model with 2-way SBI interactions, with MMSE centered:†    
Annual change in BI -1.04 -1.20, -0.88 <.0001 
Change in BI per SD increase in WMH 0.55 -0.56, 1.66 0.3 
Additional annual change in BI per SD increase in WMH -0.74 -0.99, -0.49 <.0001 
Change in BI per point of MMSE 0.27 0.05, 0.50 0.018 
Additional change in BI per point of MMSE per SD increase in 
WMH 

0.01 -0.33, 0.35 0.9 

Model with 3-way interactions with time, with MMSE 
centered:† 

   

Annual change in BI -1.06 -1.23, -0.89 <.0001 
Change in BI per SD increase in WMH 0.50 -0.61, 1.61 0.4 
Additional annual change in BI per SD increase in WMH -0.73 -0.98, -0.48 <.0001 
Change in BI per point of MMSE 0.12 -0.13, 0.37 0.3 
Additional annual change in BI per point of MMSE 0.03 -0.02, 0.09 0.2 
Additional annual change in BI per point of MMSE per SD 
increase in WMH 

-0.04 -0.11, 0.03 0.3 

*BI=Barthel index score; SD=standard deviation; WMH=white matter hyperintensity volume; MMSE=mini-
mental state examination score 
†Model additionally adjusted for: age at time of MRI, sex, race-ethnicity, diabetes, hypertension, physical 
activity, alcohol use, body mass index, insurance status, depression, and stroke and myocardial infarction 
occurring during follow-up 
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Table B25. Models assessing the influence of cognition and silent brain infarct on functional 
status, new dataset* 
Variable Change in 

BI score 
95% CI p-value 

Model without interaction terms:†    
Annual change in BI -0.96 -1.12, -0.81 <.0001 
Change in BI with SBI -2.60 -4.51, -0.69 0.0076 
Change in BI per point of MMSE 0.24 0.04, 0.45 0.022 
Model with time interaction, with MMSE centered:†    
Annual change in BI -0.99 -1.16, -0.83 <.0001 
Change in BI with SBI -2.61 -4.51, -0.70 0.0075 
Change in BI per point of MMSE 0.03 -0.22, 0.27 0.8 
Additional annual change in BI per point of MMSE 0.05 -0.004, 0.11 0.07 
Model with time interactions, with MMSE centered:†    
Annual change in BI -0.84 -1.01, -0.67 <.0001 
Change in BI with SBI 1.11 -0.98, 3.20 0.3 
Additional annual change in BI with SBI -0.90 -1.43, -0.36 0.001 
Change in BI per point of MMSE 0.02 -0.22, 0.27 0.8 
Additional annual change in BI per point of MMSE 0.05 -0.004, 0.11 0.068 
Model with 2-way SBI interactions, with MMSE centered:†    
Annual change in BI -0.82 -0.98, -0.66 <.0001 
Change in BI with SBI 1.28 -0.83, 3.39 0.2 
Additional annual change in BI with SBI -0.89 -1.42, -0.36 0.001 
Change in BI per point of MMSE 0.35 0.13, 0.57 0.0019 
Additional change in BI per point of MMSE in those with SBI -0.58 -1.19, 0.02 0.059 
Model with 3-way interactions with time, with MMSE 
centered:† 

   

Annual change in BI -0.86 -1.03, -0.68 <.0001 
Change in BI with SBI 0.99 -1.09, 3.06 0.4 
Additional annual change in BI with SBI -0.80 -1.32, -0.29 0.0023 
Change in BI per point of MMSE 0.04 -0.20, 0.29 0.7 
Additional annual change in BI per point of MMSE 0.07 0.01, 0.13 0.015 
Additional annual change in BI per point of MMSE in those with 
SBI 

-0.15 -0.28, -0.02 0.027 

*BI=Barthel index score; SD=standard deviation; SBI=silent brain infarct; MMSE=mini-mental state 
examination score 
†Model additionally adjusted for: age at time of MRI, sex, race-ethnicity, diabetes, hypertension, physical 
activity, alcohol use, body mass index, insurance status, depression, and stroke and myocardial infarction 
occurring during follow-up 
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Table B26. Models assessing the influence of cognition and lacunar infarcts on functional status, 
new dataset* 
Variable Change 

in BI 
score 

95% CI p-
value 

Model without interaction terms:†    
Annual change in BI -0.96 -1.12, -0.80 <.0001 
Change in BI with LI -2.95 -5.03, -0.87 0.0054 
Change in BI per point of MMSE 0.24 0.03, 0.45 0.025 
Model with time interaction, with MMSE centered:†    
Annual change in BI -0.99 -1.16, -0.83 <.0001 
Change in BI with LI -2.96 -5.04, -0.89 0.0052 
Change in BI per point of MMSE 0.02 -0.22, 0.26 0.9 
Additional annual change in BI per point of MMSE 0.05 -0.004, 0.11 0.069 
Model with time interactions, with MMSE centered:†    
Annual change in BI -0.83 -1.00, -0.67 <.0001 
Change in BI with LI 1.64 -0.59, 3.86 0.15 
Additional annual change in BI with LI -1.11 -1.70, -0.53 0.0002 
Change in BI per point of MMSE 0.03 -0.22, 0.27 0.8 
Additional annual change in BI per point of MMSE 0.05 -0.005, 0.11 0.073 
Model with 2-way SBI interactions, with MMSE centered:†    
Annual change in BI -0.81 -0.96, -0.65 <.0001 
Change in BI with LI 1.73 -0.49, 3.96 0.13 
Additional annual change in BI with LI -1.11 -1.69, -0.53 0.0002 
Change in BI per point of MMSE 0.31 0.09, 0.53 0.0056 
Additional change in BI per point of MMSE in those with LI -0.41 -1.03, 0.22 0.2 
Model with 3-way interactions with time, with MMSE 
centered:† 

   

Annual change in BI -0.84 -1.01, -0.68 <.0001 
Change in BI with LI 1.49 -0.72, 3.70 0.2 
Additional annual change in BI with LI -1.03 -1.60, -0.46 0.0004 
Change in BI per point of MMSE 0.04 -0.20, 0.29 0.7 
Additional annual change in BI per point of MMSE 0.07 0.01, 0.13 0.018 
Additional annual change in BI per point of MMSE in those with LI -0.15 -0.29, -0.01 0.037 
*BI=Barthel index score; SD=standard deviation; LI=lacunar infarct; MMSE=mini-mental state 
examination score 
†Model additionally adjusted for: age at time of MRI, sex, race-ethnicity, diabetes, hypertension, physical 
activity, alcohol use, body mass index, insurance status, depression, and stroke and myocardial infarction 
occurring during follow-up 
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Figure B1. Distributions of white matter hyperintensity volume variables 
A) white matter hyperintensity volume 

 
 
B) total cranial volume 
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Analysis C:  
 

Disability trajectories before and after vascular events: the Cardiovascular Health Study 
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Abstract 

Background: Stroke may contribute to long-term functional decline apart from its acute effects on 

neurological function. Few studies have compared long-term disability trajectories before and after 

vascular events or considered the natural history of aging-related decline.  We hypothesized that the 

increase in long-term disability would be steeper post-event than pre-event for stroke but not myocardial 

infarction (MI).   

Methods:  In the Cardiovascular Health Study, 5888 Medicare-eligible participants were followed for a 

mean of 13 years for vascular events and had annual disability assessments with an activities of daily 

living (ADL) and instrumental ADL scale, modified from the National Center for Health Statistics 

Supplement on Aging (range 0-12, scored by number of ADLs and IADLs which the participant could not 

perform, analyzed continuously).  During follow-up, 382 participants had ischemic stroke and 395 had MI 

with >1 post-event disability assessment.  Generalized estimating equations models adjusted for baseline 

demographics, vascular risk factors, arthritis, cognition, and social support and included a test for different 

slopes of disability before and after event.   

Results:  Participants had a mean of 4 disability assessments each pre- and post-stroke and MI.  Stroke 

(0.88, 95% CI 0.57-1.20, p<0.0001) was associated with a greater acute increase in disability than MI 

(0.20, 0.06-0.35, p=0.006).  The annual increase in disability before stroke (0.06 points per year, 0.002-

0.12, p=0.04) more than tripled after stroke (0.15 additional points per year, 0.004-0.30, p=0.04).  The 

annual increase in disability before MI (0.04 points per year, 0.004-0.08, p=0.03) did not change 

significantly after MI (0.02 additional points per year, -0.07-0.11, p=0.7).   

Conclusions:  In this large population-based study, a trajectory of increasing disability became 

significantly steeper after stroke but not after MI.  This worsening trajectory could be due to delayed cell 

dysfunction in the brain surrounding stroke, long-term inflammatory profile changes, progressive 

cardiovascular impairment, or silent recurrent infarcts.  Stroke may be considered an ongoing, chronic 

condition with effects on function instead of a single discrete event.   
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Introduction 

The commonly held view is that stroke is a discrete event and that, following the 3-6 month recovery 

period after stroke, functional status would remain constant over time if no recurrent events occurred.34 

However, stroke is caused by vascular risk factors such as diabetes and hypertension that have an 

ongoing and cumulative effect on vessel dysfunction.  Also, there are several other biological 

mechanisms through which ischemic stroke may cause delayed functional decline.  One is delayed 

neuronal death in the ischemic penumbra through apoptosis and necrosis,210 which may cause delayed 

functional decline by gradual extension of tissue that is infarcted and not merely at risk of infarction.  

Furthermore, a single ischemic stroke may cause changes in inflammatory profiles123 that may have an 

ongoing deleterious effect on brain structure and function124 that may persist years after stroke.125 

Another possible mechanism involves progressive cardiovascular impairment and reduced fitness due to 

static functional impairment after stroke.  This cardiovascular, non-neurological impairment adversely 

effects performance in ADLs.211 Clinically silent infarcts may also account for long-term decline in function 

after stroke.   

Considering this evidence, stroke may be more effectively considered as an ongoing, chronic 

condition with effects on function, instead of just a discrete event.  We hypothesized that the slope of 

decline in functional status over the long term is steeper after stroke than before stroke, and that the 

slope of decline before and after myocardial infarction (MI) is unchanged.  There are several reasons for 

this comparison with MI.  MI is a vascular event whose risk factors overlap with those of stroke.  It can be 

considered a type of occlusive, sudden-onset vascular event involving a different area of the body’s 

vasculature than stroke.  However, an infarction of cardiac tissue does not result in the kind of impairment 

that results from an infarction of brain tissue.  Also, there is evidence that stroke is not just a “heart attack” 

of the brain; rather, there are distinct biological properties of the vascular bed of the brain compared to 

the heart that may have implications for ongoing functional decline.212 In order to delineate the unique 

effect of stroke on functional change that results particularly from vascular disease, we used MI as a 

comparison or control group.  We pursued these analyses in the Cardiovascular Health Study (CHS). 
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Methods 

The CHS cohort was recruited from a sex- and age-stratified random sample of Medicare-eligible 

individuals in North Carolina, California, Maryland, and Pennsylvania.213 Potential participants were 

sampled from Medicare eligibility lists in each area. Eligibility criteria included age >65 years, not 

institutionalized, expected to reside in the area for 3 years, and able to provide informed consent. 

Participants needing a wheelchair or receiving hospice care, radiation treatment, or chemotherapy were 

excluded. The initial sample of 5,201 participants, recruited from 1989 to 1990, was enriched with the 

addition of 687 African-American men and women meeting the same eligibility criteria who were recruited 

from 1992 to 1993, for a combined cohort of 5,888 participants.   

 

Baseline Evaluation  

Sociodemographic, functional, and health data were obtained from interviews, clinical examinations, 

medical record abstraction, and publicly released Medicare claims data, as outlined in previous 

publications.213, 214 

 

Follow-up  

CHS has collected data on functional status, extent of social network, cognitive status, and depression 

annually over 11 years of follow-up through in-person interviews and examinations. Potential events are 

identified through contact with participants or proxies. Data on incident vascular events such as stroke are 

collected at local sites, and this abstracted data is reviewed and adjudicated by a centralized 

cerebrovascular disease endpoint committee.  Events are classified as ischemic (lacunar, cardioembolic, 

atherosclerotic, or indeterminate), hemorrhagic (subarachnoid, intraparenchymal, or indeterminate), or 

unknown.  Since there is no data about stroke severity, we used stroke subtype as a proxy for severity in 

secondary analysis.  Potential MIs occurring during follow-up were reviewed by a specialist outcome 

committee and included review of clinical history of cardiac symptoms, elevated cardiac enzyme levels, 

and serial electrocardiographic changes. 
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Study outcomes   

Functional status was measured by the ADL/IADL scale, modified from the National Center for Health 

Statistics Supplement on Aging215 and the New Haven Established Populations for Epidemiologic Studies 

of the Elderly Study.216 The form assesses general level of physical functioning and mobility, and ability to 

carry out ADLs and instrumental ADLs (Appendix C1).  The scale was scored from 0 to 12 based on the 

number of ADLs and IADLs with which the participant reported having difficulty or could not perform.  The 

scores were analyzed as a continuous variable as in previous research in this cohort.214, 217 In secondary 

analysis, the scale was dichotomized as non-disabled (score of 0) and disabled (score >1). 

 

Explanatory variables   

The course of repeated measures of functional status were modeled, and the primary explanatory 

variable of interest was time of follow-up assessment in years, ranging from 0 (baseline) to the maximum 

time of follow-up.    

Other covariates were as follows.  Demographic variables included age, sex, race-ethnicity, and 

level of education, defined by self-assessment.  Vascular risk factors included hypertension, diabetes 

mellitus, cardiac disease, hyperlipidemia (defined as lipid lowering therapy use or fasting total cholesterol 

level >240 mg/dL), smoking, alcohol consumption, and physical activity, defined by self-report. The 

strength of participants’ social networks was assessed with the Lubben Social Network Scale,218 a 

validated 10-item measure that includes assessments of five aspects of social networks: family networks, 

friend networks, helping others, confidant relationships, and living arrangements.  The total score is a sum 

of the questions, with scores ranging from 0 to 50. Higher scores indicate larger social networks.  The 

mean total score ranged from 32.34 (SD 7.42) at baseline to 30.73 (SD 7.89) at 11 years of follow-up.  

Depression was measured by the Centers for Epidemiologic Studies Depression (CES-D) scale,219 using 

a cutoff score of >9 for diagnosis of depression.  The Mini-Mental State Examination score220 was 

assessed at 1 year of follow-up.  Personal income was defined as total family income before taxes from 

all sources in the past 12 months and was selected from a response card as one of the following: under 

$5000; $5000–$7999; $8000–$11,999; $12000–$15999; $16,000–$24,999; $25,000–$34,999; $35,000–

$49,999; over $50,000. For the analyses, income was modeled as an ordinal categorical variable based 
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on three income groups (<$12,000, $12,000–$34,999, ⩾$35,000), based upon prior analyses in this 

cohort.221 

 

Statistical analysis  

The distributions of baseline characteristics were examined.  The distribution of follow-up time and the 

frequencies of occurrence of stroke and cardiac events during follow-up were examined.  The frequencies 

of functional assessments before and after stroke and MI were calculated.  The unadjusted distributions 

of functional scores were summarized among those who had stroke and those who had MI during follow-

up.   

Stroke cohort  The goal of the analysis was to determine whether the slope of functional status 

was different before and after stroke.  For this analysis, only those who experienced ischemic stroke 

during follow-up and had >1 follow-up disability assessment after stroke were included.  Due to 

correlations among repeated measures of outcomes in the same individual, regression models based 

upon GEE will be used, with an identity link function for continuous variables, and a logit link function for 

dichotomous variables.   

 Any assessments of functional status occurring within the 6 months after stroke were ignored, since 

the course of recovery during this period is well-documented, and our interest is the long-term course of 

functional status after this initial period of recovery.  There were 163 functional assessments within 6 

months of stroke.  Follow-up was censored at the time of recurrent stroke.  The primary covariate of 

interest was the time of follow-up, and the parameter term associated with this signified the slope of 

decline in functional status and QOL.  The model included a product term (between a dummy variable of 

post-stroke status, and time of follow-up) that allowed for a different slope before and after stroke, and 

allowed for a direct test for a significant difference in slope, as follows: 

 Y = intercept + β1*FU + β2*FU*poststroke + β3*poststroke + ∑ β *covariates, 

where FU=follow-up time, poststroke=0 if the time of follow-up was before the stroke, and 1 if after the 

stroke. 

In model building, we sequentially added groups of variables defined by epidemiological 

relevance.  The first model included no covariates, and successive models included demographic 
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variables, vascular risk factors, social variables, and cognitive and mood factors.  These models 

assessed the relationship between explanatory variables and repeated measurements of functional 

status.  To assess whether the main explanatory variables were associated with the slope of change in 

outcomes over time, we included interaction terms between time of follow-up assessment and the 

variable.  All significant interactions with time were included in the final model.  We used QIC as the 

model selection criterion after considering candidate final models. Various model diagnostics including 

residual plots and goodness of fit measures were used to evaluate the final model, including linearity of 

the time trends.  There was no evidence for non-linearity of the time trend.  As a working correlation 

structure we chose the exchangeable (intraclass) structure and compared the QIC obtained with this 

model with one using the unstructured working correlation structure.  We chose the exchangeable model 

as the final model.   

 We performed several sensitivity analyses.  In one, we did not censor recurrent strokes and 

included these in the analysis, in order to model the course of function over time while also incorporating 

the effect of recurrent stroke events.  We also performed a sensitivity analyses in which we included 

measures of stroke severity, using stroke subtype as a proxy for severity.    

MI cohort We also conducted an analysis identical to that outlined above, except that the event of 

interest was MI instead of stroke.  Hence, the models assessed functional decline before and after MI in 

those who had MI during follow-up.  We first determined whether a drop in function post-MI occurs as with 

stroke.  The six-month period after MI was not ignored, since the 3-6 month course of recovery 

documented with stroke does not exist with the same biological implications as with stroke.222, 223 Follow-

up was censored at the time of recurrent MI.   

Stroke and MI cohort We also performed another analysis in which we included MI and stroke in the 

same model, with interaction terms with MI as with stroke above.  This allowed a direct comparison 

between MI and stroke in terms of trajectories of functional status.  We used another model in which 

hospitalization instead of MI was included, in order to directly compare the effect of hospitalization with 

that of stroke.  We used GEE models as above, and limited the cohort to those who had stroke or MI 

during follow-up.  For the determination of events, we considered the 1st stroke or 1st MI only.  We 

included a 3-way interaction term (FUTIME * post-event * type of event [0 if MI/1 if stroke]) to model the 
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time trend before and after vascular events.  We tested 3-way interactions between follow-up time and all 

covariates and retained variables in the final model that were significant at a p 0.15 threshold (due to 

decreased power with 3-way interactions).   

 In secondary analysis, different cutoffs of the functional scale were tested systematically in 

unadjusted and adjusted models to determine whether there was a cutoff at which a threshold effect 

could be seen.  Also, a dichotomous definition of disability (0 versus any score above 0) was tested 

according to a similar modeling strategy as above.   

 In other secondary analyses, models were stratified by presence and absence of depression, as 

well as by income status (above and below the median income).  Also, the pre-stroke trajectory of 

disability was compared to the trajectory in the whole cohort excluding those who experienced stroke, MI, 

and both stroke and MI.  The slope of change in disability was compared in these 4 groups, in unadjusted 

and fully adjusted models.   

 The impact of ischemic stroke subtype on disability trajectories was examined in several ways.  

First, the fully adjusted model was additionally adjusted for stroke subtype (lacunar, cardioembolic, and 

“other” subtype as referent).  Then, models were stratified by stroke subtype and trajectories of disability 

were examined before and after stroke.  In sensitivity analyses, different cholesterol subtypes (total 

cholesterol, HDL, LDL, and log of lipoprotein-A) were tested as covariates in separate models.   

 In order to assess for bias due to differential mortality between MI and stroke, we performed 

survival analysis of mortality after MI and stroke. With a non-significant log-rank test, it appeared as if the 

timing of mortality was similar in both groups, hence no significant bias would exist due to differential 

mortality (Appendix C2).  A sensitivity analysis was performed in which the worst possible functional score 

was assigned at the time of death.   

  

Results 

Among the total CHS cohort of 5888 participants, 249 (4.23%) had a history of stroke at study entry and 

166 (2.82%) had history of TIA.  A history of cardiac and vascular disease was common: 562 (9.54% of 

5888) had MI, 964 (16.37% out of 4924) had angina, 275 had CHF (4.67% out of 5888), 1154 (19.6% out 

of 5888) had coronary heart disease, and 151 (2.56% of 5888) had claudication.  The mean of total 
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follow-up time was 12.87 years (SD 6.20, minimum 0.01, maximum 21.6 years, median 13.17 years).  

During follow-up, there were 1086 incident first strokes, 885 of which were ischemic (see Appendix C3 [A] 

for information on stroke subtypes).  Among those free of cardiac disease at baseline (n=4734), 850 had 

an incident MI during follow-up, 758 of which (89.2%) were nonfatal (see Appendix C3 [B] for further 

information on cardiac events during follow-up).   

At the time of analysis, 4637 (78.8%) of the total cohort had died (see Appendix C3 [C] for causes 

of death).  However, despite the large proportion of the cohort who had died at the time of analysis, there 

was a significant amount of data on functional status before and after vascular events due to the long 

follow-up in CHS.  Out of 415 incident strokes with at least 1 follow-up assessment, 382 were ischemic, 

all of whom had no history of previous stroke.  Among these 382 participants, the average maximum 

follow-up time was 11.1 (SD 5.0) years (minimum 1.20, maximum 21.5 years).  There were an average of 

3.7 (SD 2.4) visits before stroke (median 3) and 3.7 (SD 2.3) visits after stroke (median 3).  In terms of 

follow-up time, the minimum was -8.15 years and maximum was 8.91 years (with time centered at the 

time of stroke; see Appendix C4 for distributions of number of visits before and after stroke).  There were 

395 incident MIs with at least 1 follow-up assessment.  Among these 395 participants, the average 

maximum follow-up time was 12.4 (SD 5.4) years (minimum 1.4, maximum 21.5 years).  There were an 

average of 3.8 (SD 2.5) visits before MI (median 4) and 3.8 (SD 2.4) visits after MI (median 4).  In terms 

of follow-up time, the minimum was -8.00 years and the maximum was 9.52 years, with time centered at 

the time of MI.   

In the stroke cohort of 382 individuals, 86/319 (63 missing) had incident MI.  In the MI cohort of 

395 individuals, 89/375 (20 missing) had incident stroke.  In the combined dataset of those who had 

incident ischemic stroke and incident MI, the sample size was 727.  During follow-up, 125 individuals had 

both incident stroke and incident MI: 56 had incident stroke before incident MI; 54 had incident MI before 

incident stroke; and 15 had incident stroke and incident MI on the same day.   

 In terms of variable distributions (Table C1), the mean age was similar among the overall cohort, 

the stroke cohort, and MI cohort.  There was a higher proportion of males in the MI cohort.  The 

prevalence of vascular risk factors was higher in the stroke and MI cohorts than in the overall cohort.   
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 The overall functional score increased over follow-up, from a mean of 0.59 (SD 1.13) at year 1, to 

1.29 (SD 2.38) at year 5, to 3.51 (SD 3.95) at year 10 (Appendix C5 [A]).  The mean of functional scores 

was <1.0 or close to 1.0 in the years before stroke but increased from 2.00 (SD 2.90) to 4.17 (SD 4.12) 

from the time of stroke to 9 years after stroke (Appendix C5 [H]).  For MI, the mean was <1.00 in the 

years before MI but increased from 1.32 (SD 2.19) at the time of MI to 2.40 (SD 3.69) at 9 years after MI 

(Appendix C5 [K]).   

 When the trajectory of functional status before and after stroke was examined among those who 

had stroke during follow-up (Table C2), in a fully adjusted model, there was an annual change in disability 

score before stroke of 0.06 points per year (95% CI 0.002, 0.12) and an additional 0.15 points per year 

(95% CI 0.004, 0.30) after stroke.  There was an average of 0.45 points of change (95% CI -0.05, 0.95) at 

the time of stroke.  In these models, assessments of disability were censored after recurrent stroke.   

When both recurrent stroke and incident MI were censored (Table C3), the magnitude and direction of 

associations was unchanged but the significance levels dropped slightly.  There was a similar pattern of 

associations when a dichotomous definition of disability was used (Appendix C6).  Different cutoffs of the 

functional scale were tested systematically (Appendix C10) in adjusted and adjusted models, and no 

definite threshold effect was found for a particular cutoff of the functional score.   

When a continuous measure of depressive symptoms was used instead of a categorical definition 

of depression, the relationships between stroke event and trajectories of disability did not change, and 

disability increased by 0.05 points per point increase in depression score (95% CI 0.01-0.08, p-value 

0.007).  Models were stratified by presence (n=55) and absence (n=325) of depression (Table C4).  

Though these models have limited power, several findings emerged.  First, in an unadjusted model, the 

magnitude of pre-stroke increase in disability was higher among those with baseline depression (0.25 

points per year, 95% CI 0.07, 0.44) than those without (0.15, 95% CI 0.09, 0.20).  A significant additional 

annual increase in disability was seen in those without depression (0.16 points per year, 95% CI 0.0003, 

0.31).   

 Models were also stratified by income (Table C5).  In unadjusted models, among those with 

income below the median, there was a greater annual increase in disability before stroke (0.21 points per 

year, 95% CI 0.13, 0.28) compared to those with income above the median (0.08 points per year, 95% CI 
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0.03, 0.14).  Among those with income above the median, there was a trend for an additional annual 

increase in disability after stroke (0.17 points per year, 95% CI -0.02, 0.36) that was not seen among 

those with income below the median.  There was a greater average increase in disability at the time of 

stroke among those with income below the median (1.37, 95% CI 0.70, 2.03) compared to those with 

income above the median (1.05, 95% CI 0.50, 1.60).  In a fully adjusted model, there was a significant 

additional increase in the slope of disability after stroke among those with income above the median of 

0.23 points per year (95% CI 0.03, 0.43).   

 The pre-stroke trajectory of disability was compared, in unadjusted and fully adjusted models, to 

the trajectory in the whole cohort excluding stroke, MI, and both stroke and MI (Table C6).  In unadjusted 

models, there seemed to be a slightly higher slope of increase in disability pre-stroke in the stroke cohort 

(0.16 points per year, 95% CI 0.11, 0.21) compared to the whole cohort excluding stroke (0.12, 95% CI 

0.11, 0.13), MI (0.14, 95% CI 0.13, 0.15), and stroke and MI (0.12, 95% CI 0.11, 0.13).  However, the 

magnitude of annual change in disability was similar among all cohorts in fully adjusted models.     

 When trajectories of disability before and after MI were examined (Table C7), there was no 

difference in slope of change before and after MI in unadjusted or adjusted models with recurrent MI 

censored; there was, on average, an increase in disability score at the time of MI of 0.34 points (95% CI 

0.07 0.61) in a fully adjusted model.  With both stroke and recurrent MI censored (Table C8), there was 

no difference in the slope of change of functional score before and after MI, and there was a trend for 

increased disability at the time of MI of on average 0.23 points (95% CI -0.04, 0.49).   

 The trajectories of change in functional score before and after both stroke and MI were further 

examined in the same model in the entire CHS cohort (Table C9).  In unadjusted models, the overall 

slope of increase in disability was similar both without (0.13 points per year, 95% CI 0.13, 0.14) and with 

adjustment for stroke and MI (0.12 points per year, 95% CI 0.11, 0.13; and 0.11 points per year, 95% CI 

0.10, 0.12).  There was a higher magnitude of change at the time of stroke (0.88, 95% CI 0.57, 1.20) than 

at the time of MI (0.20, 95% CI 0.09, 0.20). Also, there was a greater slope of increase in disability after 

stroke compared to before stroke (0.14 additional points per year, 95% CI 0.09, 0.20), but no significant 

difference in pre- and post-MI disability slope (0.01, 95% CI -0.02, 0.04).   
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 The changes in functional score related to stroke and MI were examined in the entire cohort using 

a single model with terms for both stroke and MI (Table C10).  In a fully adjusted model, there was a 

significant increase in disability at the time of stroke (0.68 points, 95% CI 0.41, 0.96) but not MI (0.03, 

95% CI -0.14, 0.19).  Also, there was a greater slope of change in disability after stroke compared to 

before stroke (0.05 additional points per year, 95% CI -0.001, 0.10) but not change pre- and post-MI 

(0.02, 95% CI -0.02, 0.06).  

 Table C11 shows a model in which all covariates were included that had significant interactions 

with time.  As with prior models, there was a significant average increase in disability at the time of stroke 

(0.68 points, 95% CI 0.41, 0.96) but not MI (0.07, 95% CI -0.08, 0.22), and an increased slope of disability 

after stroke (0.05 additional points per year, 95% CI -0.001, 0.10) but not MI (0.01, 95% CI -0.02, 0.04).  

In addition, several factors were associated with a higher slope of increase in disability over time: age, 

education, and diabetes.  Higher values of the mini-mental state score and social network score were 

associated with reduced slope of increase in disability over time.   

A sensitivity analysis was performed in which the worst possible functional score was assigned at 

the time of death (Appendix C7).  Results were similar to the primary analysis.  Specifically, in a fully 

adjusted model, there was an average increase in functional score of 0.68 points (95% CI 0.41, 0.96) at 

the time of stroke but no significant change at the time of MI.  There was also an additional increase per 

year in slope of disability of 0.05 points per year (95% CI -0.001, 0.10) but no additional change after MI.   

 A model using three-way interaction terms was also used to compare trajectories of disability 

before and after stroke and MI (Table C12).  In a fully adjusted model, stroke was associated with a 0.27 

point overall increase in disability compared to MI (95% CI 0.02, 0.52), and there was a 0.19-point-per-

year additional increase in disability score after stroke (95% CI 0.10, 0.27) but no change after MI.  

In a fully adjusted model with additional adjustment for stroke subtype (using a dummy variable 

with “other” subtype as referent), the subtype term was not significant.  However, the influence of stroke 

subtype on functional trajectories was explored further.  In sensitivity analysis, the trajectories of disability 

before and after stroke were examined in ischemic stroke subtypes (Appendix C8).  Among those with 

lacunar stroke (n=75), there was no significant change in functional score at the time of stroke (and the 

magnitude was small), but there was a trend for an additional increase in functional score after stroke 
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(0.33 additional points per year, 95% CI -0.06, 0.72).  For cardioembolic stroke (n=107), there was a large 

and significant average increase in functional score at the time of stroke (1.52 points, 95% CI 0.67, 2.37), 

and a trend for an additional increase in disability after stroke (0.25 additional points per year, 95% CI -

0.02, 0.53).  For “other” ischemic strokes (n=211), there was no significant change in slope of functional 

change after stroke, but there was an average increase of 1.37 points at the time of stroke (95% CI 0.85, 

1.90).   

 In sensitivity analysis, different cholesterol subtypes were tested in separate models (Appendix 

C9), but the direction and significance of primary predictors did not change substantively when different 

subtypes were added (total cholesterol, HDL, LDL, and log of lipoprotein-A levels).      

 

Conclusions for Analysis C 

CHS is a large, nationally representative cohort of elderly community-dwelling individuals with long-term 

follow-up approaching an average of 13 years.  There is regular measurement of a sensitive measure of 

disability including both ADL and IADL items, as well as surveillance and accurate measurement of 

vascular events such as stroke and MI.  Although almost 80% of the cohort had died by the time of 

analysis, there was a significant amount of data surrounding vascular events to estimate trajectories, with 

almost 4 annual measurements of disability before and after both stroke and MI.  Hence, it is an ideal 

cohort to estimate disability trajectories before and after stroke and MI.   

 There were 4 overall groups of analysis in this study: a cohort of those who had stroke during 

follow-up, a cohort of those who had MI during follow-up, the cohort of those who had either event, and 

the entire CHS cohort.  Among all of these analytic cohorts, a consistent pattern emerged, in which the 

slope of increase in disability after recovery from stroke was higher compared to before stroke but not 

different before and after MI.  There was a significant increase in disability at the time of stroke and a 

smaller but also significant increase at the time of MI.  Among the cohort of those who had stroke during 

follow-up, the slope of increase in disability after stroke was more than 2 times the slope before stroke.  In 

all of these models, disability measurements after recurrent stroke were censored, so the estimated 

disability trajectories were independent of clinical recurrent stroke.   
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 Several factors modified trajectories of disability.  Among those with depression, the magnitude of 

pre-stroke increase in disability was higher compared to those without depression.  Among those with 

lower income, there was a greater annual increase in disability before stroke compared to those with 

higher income.  Among those with higher income, there was an additional increase in the slope of post-

stroke stroke, suggesting that there may be more room for disability to occur among those with higher 

income.  Several factors were associated with a higher slope of increase in disability over time: age, 

education, and diabetes.  Better cognitive status and a larger social network were associated with 

reduced slope of increase in disability over time.    

 It can be hypothesized that those individuals who eventually have a stroke may have a higher 

slope of increase in disability before stroke than those who do not eventually have a stroke. However, 

when we compared pre-stroke trajectories to disability trajectories among those who did not develop 

stroke, MI, or either event, we found no differences.   

 Although there was limited power to test subtypes of ischemic stroke, there were no evident 

differences in slopes of disability among different stroke subtypes.  Cardioembolic and “other” subtype 

strokes were associated with greater average increase in disability at the time of stroke compared to 

lacunar strokes, reflecting the relatively milder phenotype seen with lacunar strokes.   

Further discussion of the findings of this analysis will be found in the concluding chapter. 
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Table C1. Baseline characteristics of study population 
Variable Entire cohort First ischemic 

stroke with >1 
follow-up 

assessment 

First MI with >1 
follow-up 

assessment 

Number of participants, No. (%) 5888 (100) 382 (100) 395 (100) 
Biological characteristics:    
Age, mean (SD), y 72.8 (5.6) 74.1 (5.7) 73.2 (5.3) 
Age at event, mean (SD), y -- 78.3 (5.8) 77.5 (5.7) 
Body mass index, mean (SD), kg/m2 26.7 (4.7) 26.6 (4.4) 26.9 (4.5) 
    
Demographics:    
Male, No. (%) 2495 (42.4) 162 (42.4) 221 (56.0) 
Non-Hispanic white, No. (%) 4925 (83.6) 332 (86.9) 351 (88.9) 
   Non-Hispanic black, No. (%) 924 (15.7) 49 (12.8) 42 (10.6) 
   American Indian/Alaskan Native, No. (%) 15 (0.3) 1 (0.3) 2 (0.5) 
   Other race, No. (%) 20 (0.3) 0 0 
Non-White, No. (%) 963 (16.4) 50 (13.1) 44 (11.1) 
Received at least high school education, No. (%)  3352 (57.1) 234 (61.6) 275 (69.6) 
Marital status, No. (%) married  3893 (66.2) 255 (66.9) 249 (63.2) 
Yearly income, No. (%) 
   <$12,000 
   $12,000–$34,999 
   >$35,000 

 
1470 (26.7) 
2779 (50.5) 
1259 (22.9) 

 
118 (32.5) 
175 (48.2) 
70 (19.3) 

 
95 (25.4) 
194 (51.9) 
85 (22.7) 

Yearly income, No. (%) 
   <$16,000 
   >$16,000 

 
2324 (42.2) 
3184 (57.8) 

 
182 (50.1) 
181 (49.9) 

 
160 (42.8) 
214 (57.2) 

Additional health insurance, No. (%)  
   None 
   Private 
   Medicaid 
   Other 

 
439 (9.0) 

3507 (71.9) 
258 (5.3) 

675 (13.8) 

 
34 (10.3) 
218 (65.9) 

23 (7.0) 
56(16.9) 

 
31 (8.9) 

251 (72.3) 
15 (4.3) 

50 (14.4) 
    
Vascular risk factors, No. (%)    
Hypertension  3457 (58.8) 281 (73.6) 265 (67.1) 
On hypertension medications  2789 (47.4) 244 (58.6) 196 (49.6) 
Systolic BP, mean (SD) 136.6 (21.8) 143.2 (24.6) 140.6 (20.3) 
Diastolic BP, mean (SD) 70.7 (11.4) 72.1 (12.3) 71.6 (11.7) 
Number of alcoholic beverages consumed per 
week, mean (SD) 

2.6 (6.3) 2.3 (5.5) 2.00 (5.5) 

Physical activity, mean (SD), kcal 1708.4 
(2027.6) 

1697.2 
(2106.0) 

1611.9 
(1700.0) 

Diabetes mellitus, No. (%)  1739 (29.9) 143 (37.9) 140 (35.6) 
Current smoking, No. (%)  601 (11.6) 38 (10.9) 48 (13.2) 
Hypercholesterolemia, No. (%) 1241 (21.1) 86 (22.5) 89 (22.5) 
Total cholesterol, mean (SD), mg/dL 211.2 (39.3) 215.8 (40.4) 212.6 (38.4) 
High-density lipoprotein, mean (SD), mg/dL 54.2 (15.7) 52.7 (17.2) 50.6 (14.2) 
Low-density lipoprotein, mean (SD), mg/dL 129.8 (35.7) 133.0 (36.2) 132.9 (34.8) 
Atrial fibrillation, No. (%)  236 (5.3) 31 (11.4) 15 (5.1) 
History of coronary heart disease, No. (%)  1154 (19.6) 106 (27.8) 76 (19.2) 
History of myocardial infarction, No. (%) 562 (9.5) 63 (16.5) 0 
C-reactive protein level, mean (SD)  4.8 (8.3) 5.4 (9.0) 5.2 (7.5) 
C-reactive protein quartiles: 
1st quartile 

  
1.58 
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Median 
3rd quartile 

2.77 
5.74 

Lp(a) level, mean (SD)  54.0 (55.8) 54.0 (51.5) 50.0 (48.7) 
Log-C-reactive protein level, mean (SD)  1.09 (1.02)  
Log-lipoprotein-A level, mean (SD)  3.48 (1.19)  
    
Other medical conditions, No. (%)    
Depression  292 (5.4) 31(8.9) 23 (6.2) 
CES-D depression scale score, mean (SD)  4.7 (4.60) 5.0 (4.6) 4.7 (4.6) 
Depressed (CES-D score >9)  809 (13.8) 55 (14.5) 58 (14.8) 
Arthritis  3025 (52.0) 219 (57.9) 231 (58.8) 
Mini mental state score, mean (SD) 90.6 (5.7) 89.6 (6.1) 90.2 (5.7) 
    
Ischemic stroke subtype, No. (%)    
Lacunar 
Cardioembolic 
Atherosclerotic 
Hemorrhagic transformation 
Indeterminate 

N/A 75 (19.6) 
107 (28.0) 

28 (7.3) 
4 (1.1) 

179 (48.0) 

N/A 
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Table C2. Trajectories of a continuous measure of disability before and after stroke  

Variable Change in 
functional score

95% confidence 
limits 

p-value 

Unadjusted model:    
Annual change before stroke 0.16 0.11, 0.21 <.0001 
Additional annual change after stroke 0.09 0.22, 1.24 0.2 
Change in functional score at time of stroke 1.21 1.62, 5.75 <.0001 
Adjusted for demographics:†    
Annual change before stroke 0.15 0.10, 0.20 <.0001 
Additional annual change after stroke 0.12 -0.02, 0.26 0.09 
Change in functional score at time of stroke 1.21 0.78, 1.63 <.0001 
Adjusted for vascular risk factors:*    
Annual change before stroke 0.15 0.10, 0.20 <.0001 
Additional annual change after stroke 0.12 -0.02, 0.26 0.09 
Change in functional score at time of stroke 1.21 0.78, 1.63 <.0001 
Adjusted for other medical conditions:**    
Annual change before stroke 0.15 0.10, 0.20 <.0001 
Additional annual change after stroke 0.12 -0.01, 0.26 0.078 
Change in functional score at time of stroke 1.20 0.77, 1.62 <.0001 
Adjusted for lipid biomarkers:‡    
Annual change before stroke 0.14 0.09, 0.19 <.0001 
Additional annual change after stroke 0.12 -0.02, 0.26 0.09 
Change in functional score at time of stroke 1.19 0.75, 1.63 <.0001 
Adjusted for cognition:π    
Annual change before stroke 0.09 0.05, 0.13 <.0001 
Additional annual change after stroke 0.10 -0.01, 0.21 0.06 
Change in functional score at time of stroke 0.64 0.29, 1.00 0.0004 
Adjusted for social support: ††    
Annual change before stroke 0.06 0.002, 0.12 0.04 
Additional annual change after stroke 0.15 0.004, 0.30 0.04 
Change in functional score at time of stroke 0.45 -0.05, 0.95 0.08 
†adjusted for age at time of stroke, sex, race, marital status, and income 
*no additional adjustment 
**additionally adjusted for: arthritis and depression 
‡additionally adjusted for log of lipoprotein A levels 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for social network score 
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Table C3. Trajectories of a continuous measure of disability before and after stroke, with recurrent 
stroke and incident myocardial infarction censored  

Variable Change in 
functional score

95% confidence 
limits 

p-value 

Unadjusted model:    
Annual change before stroke 0.16 0.11, 0.21 <.0001 
Additional annual change after stroke 0.09 -0.06, 0.24 0.3 
Change in functional score at time of stroke 1.19 0.76, 1.62 <.0001 
Adjusted for demographics:†    
Annual change before stroke 0.15 0.11, 0.20 <.0001 
Additional annual change after stroke 0.12 -0.03, 0.27 0.1 
Change in functional score at time of stroke 1.17 0.73, 1.62 <.0001 
Adjusted for vascular risk factors:*    
Annual change before stroke 0.15 0.11, 0.20 <.0001 
Additional annual change after stroke 0.12 -0.03, 0.27 0.1 
Change in functional score at time of stroke 1.17 0.73, 1.62 <.0001 
Adjusted for other medical conditions:**    
Annual change before stroke 0.15 0.10, 0.20 <.0001 
Additional annual change after stroke 0.13 -0.02, 0.28 0.1 
Change in functional score at time of stroke 1.14 0.70, 1.59 <.0001 
Adjusted for lipid biomarkers:‡    
Annual change before stroke 0.14 0.09, 0.19 <.0001 
Additional annual change after stroke 0.12 -0.03, 0.27 0.1 
Change in functional score at time of stroke 1.13 0.67, 1.59 <.0001 
Adjusted for cognition:π    
Annual change before stroke 0.09 0.05, 0.13 <.0001 
Additional annual change after stroke 0.09 -0.02, 0.21 0.1 
Change in functional score at time of stroke 0.59 0.23, 0.94 0.0012 
Adjusted for social support: ††    
Annual change before stroke 0.07 0.01, 0.13 0.02 
Additional annual change after stroke 0.13 -0.03, 0.29 0.10 
Change in functional score at time of stroke 0.46 -0.07, 0.99 0.09 
†adjusted for age at time of stroke, sex, race, marital status, and income 
*no additional adjustment 
**additionally adjusted for: arthritis and depression 
‡additionally adjusted for log of lipoprotein A levels 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for social network score
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Table C4. Trajectories before and after stroke using a continuous definition of disability, stratified 
by depression 

 With depression (n=55) Without depression (n=325) 
Variable Change 

in 
functional 

score 

95% CI p-
value 

Change 
in 

functional 
score 

95% CI p-value 

Unadjusted model:       
Annual change before stroke 0.25 0.07, 0.44 0.008 0.15 0.09, 0.20 <.0001 
Additional annual change after 
stroke 

0.18 -0.25, 0.61 0.4 0.07 -0.08, 0.21 0.4 

Change in functional score at 
time of stroke 

1.30 0.20, 2.40 0.02 1.19 0.74, 1.63 <.0001 

Fully adjusted model:*       
Annual change before stroke 0.14 -0.06, 0.35 0.2 0.05 -0.01, 0.11 0.096 
Additional annual change after 
stroke 

0.04 -0.47, 0.54 0.9 0.16 0.003, 0.31 0.047 

Change in functional score at 
time of stroke 

1.01 -0.73, 2.75 0.3 0.39 -0.13, 0.91 0.14 

*adjusted for: age at time of stroke, sex, race, marital status, income, arthritis, log of lipoprotein A levels, 
mini-mental state score, and social network score 
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Table C5. Trajectories before and after stroke using a continuous definition of disability, stratified 
by income 

 With income below median (n=182) With income above median 
(n=181) 

Variable Change 
in 

functional 
score 

95% CI p-value Change in 
functional 

score 

95% CI p-value 

Unadjusted model:       
Annual change before stroke 0.21 0.13, 0.28 <.0001 0.08 0.03, 0.14 0.005 
Additional annual change after 
stroke 

0.03 -0.17, 0.23 0.7 0.17 -0.02, 0.36 0.076 

Change in functional score at 
time of stroke 

1.37 0.70, 2.03 <.0001 1.05 0.50, 1.60 0.0002 

Fully adjusted model:*       
Annual change before stroke 0.07 -0.04, 0.17 0.21 0.05 -0.02, 0.12 0.1 
Additional annual change after 
stroke 

0.06 -0.16, 0.28 0.6 0.23 0.03, 0.43 0.03 

Change in functional score at 
time of stroke 

0.56 -0.18, 1.29 0.14 0.38 -0.29, 1.05 0.3 

*adjusted for: age at time of stroke, sex, race, marital status, depression, arthritis, log of lipoprotein A 
levels, mini-mental state score, and social network score 
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Table C6. Comparing pre-stroke trajectory in stroke cohort to whole cohort trajectories 

 Unadjusted models Fully adjusted models* 
 Annual 

change in 
functional 

score 

95% CI p-value Annual 
change 

in 
functional 

score 

95% CI p-value 

Pre-stroke trajectory in stroke 
cohort 

0.16 0.11, 0.21 <.0001 0.06 0.002, 0.12 0.04 

Trajectory in whole cohort 
excluding: 

      

Stroke 0.12 0.11, 0.13 <.0001 0.07 0.07, 0.08 <.0001 
Myocardial infarction 0.14 0.13, 0.15 <.0001 0.08 0.07, 0.08 <.0001 
Stroke and myocardial 
infarction 

0.12 0.11, 0.13 <.0001 0.07 0.06, 0.08 <.0001 

*adjusted for: age at time of stroke, sex, race, marital status, income, arthritis, depression, log of 
lipoprotein A levels, mini-mental state score, and social network score 
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Table C7. Trajectories of a continuous measure of disability before and after myocardial infarction 
(MI), with recurrent MI censored  

Variable Change in 
functional score 

95% confidence 
limits 

p-value 

Unadjusted model:    
Annual change before MI 0.13 0.09, 0.18 <.0001 
Additional annual change after MI -0.04 -0.13, 0.04 0.3 
Change in functional score at time of MI 0.36 0.11, 0.60 0.004 
Adjusted for demographics:†    
Annual change before MI 0.15 0.10, 0.20 <.0001 
Additional annual change after MI -0.03 -0.12, 0.05 0.4 
Change in functional score at time of MI 0.35 0.11, 0.60 0.004 
Adjusted for vascular risk factors:*    
Annual change before MI 0.15 0.10, 0.20 <.0001 
Additional annual change after MI -0.03 -0.12, 0.05 0.5 
Change in functional score at time of MI 0.34 0.10, 0.58 0.006 
Adjusted for other medical conditions:**    
Annual change before MI 0.14 0.09, 0.19 <.0001 
Additional annual change after MI -0.03 -0.11, 0.06 0.5 
Change in functional score at time of MI 0.35 0.11, 0.59 0.005 
Adjusted for inflammatory biomarkers:‡    
Annual change before MI 0.14 0.09, 0.19 <.0001 
Additional annual change after MI -0.03 -0.11, 0.06 0.5 
Change in functional score at time of MI 0.35 0.11, 0.60 0.005 
Adjusted for cognition:π    
Annual change before MI 0.10 0.05, 0.14 <.0001 
Additional annual change after MI -0.05 -0.12, 0.02 0.16 
Change in functional score at time of MI 0.29 0.07, 0.51 0.01 
Adjusted for social support: ††    
Annual change before MI 0.04 0.00, 0.08 0.03 
Additional annual change after MI 0.02 -0.07, 0.11 0.7 
Change in functional score at time of MI 0.34 0.07, 0.61 0.014 
MI=myocardial infarction 
†adjusted for age at time of MI, sex, race, marital status, and body mass index 
*additionally adjusted for diabetes 
**additionally adjusted for: arthritis and depression 
‡additionally adjusted for log of C-reactive protein levels 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for social network score 
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Table C8. Trajectories of a continuous measure of disability before and after myocardial infarction 
(MI), with stroke and recurrent MI censored  

Variable Change in 
functional score

95% 
confidence 

limits 

p-value 

Unadjusted model:    
Annual change before MI 0.14 0.09, 0.19 <.0001 
Additional annual change after MI -0.05 -0.13, 0.04 0.3 
Change in functional score at time of MI 0.16 -0.07, 0.39 0.17 
Adjusted for demographics:†    
Annual change before MI 0.15 0.10, 0.20 <.0001 
Additional annual change after MI -0.04 -0.13, 0.04 0.3 
Change in functional score at time of MI 0.15 -0.08, 0.38 0.2 
Adjusted for vascular risk factors:*    
Annual change before MI 0.15 0.10, 0.20 <.0001 
Additional annual change after MI -0.04 -0.12, 0.05 0.4 
Change in functional score at time of MI 0.13 -0.09, 0.36 0.2 
Adjusted for other medical conditions:**    
Annual change before MI 0.15 0.10, 0.20 <.0001 
Additional annual change after MI -0.04 -0.12, 0.05 0.4 
Change in functional score at time of MI 0.14 -0.09, 0.37 0.2 
Adjusted for inflammatory biomarkers:‡    
Annual change before MI 0.15 0.10, 0.20 <.0001 
Additional annual change after MI -0.03 -0.12, 0.05 0.4 
Change in functional score at time of MI 0.14 -0.09, 0.37 0.2 
Adjusted for cognition:π    
Annual change before MI 0.11 0.06, 0.15 <.0001 
Additional annual change after MI -0.05 -0.12, 0.03 0.2 
Change in functional score at time of MI 0.12 -0.09, 0.32 0.3 
Adjusted for social support: ††    
Annual change before MI 0.05 0.02, 0.09 0.004 
Additional annual change after MI 0.02 -0.07, 0.11 0.7 
Change in functional score at time of MI 0.23 -0.04, 0.49 0.09 
MI=myocardial infarction 
†adjusted for age at time of MI, sex, race, marital status, and body mass index 
*additionally adjusted for diabetes and coronary heart disease 
**additionally adjusted for: arthritis and depression 
‡additionally adjusted for log of C-reactive protein levels 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for social network score 
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Table C9. Trajectories of a continuous measure of disability before and after stroke and myocardial infarction in the entire cohort 
(n=5888), in unadjusted models  
Model Overall change model Overall change plus average change 

due to stroke and MI 
Pre- and post-stroke and –MI 

trajectories 
Variable Change in 

functional 
score 

95% CI p-value Change in 
functional 

score 

95% CI p-value Change in 
functional 

score 

95% CI p-value 

Annual change 0.13 0.13, 0.14 <.0001 0.12 0.11, 0.13 <.0001 0.11 0.10, 0.12 <.0001 
Change in functional 
score at time of 
stroke 

-- 1.65 1.41, 1.89 <.0001 0.88 0.57, 1.20 <.0001 

Change in functional 
score at time of MI 

0.27 0.15, 0.39 <.0001 0.20 0.06, 0.35 0.006 

Additional annual 
change after stroke 

-- 0.14 0.09, 0.20 <.0001 

Additional annual 
change after MI 

0.01 -0.02, 0.04 0.4 

CI=confidence intervals; MI=myocardial infarction 
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Table C10. Trajectories of a continuous measure of disability before and after stroke and 
myocardial infarction in the entire cohort (n=5888), in adjusted models  

Variable Change in 
functional 

score 

95% confidence 
limits 

p-value 

Adjusted for demographics:†    
Annual change -0.83 -0.98, -0.67 <.0001 
Change in functional score at time of stroke 0.86 0.55, 1.17 <.0001 
Change in functional score at time of MI 0.22 0.07, 0.36 0.004 
Additional annual change after stroke 0.12 0.06, 0.17 <.0001 
Additional annual change after MI 0.01 -0.02, 0.04 0.5 
Adjusted for vascular risk factors:*    
Annual change -0.85 -1.01, -0.70 <.0001 
Change in functional score at time of stroke 0.85 0.54, 1.17 <.0001 
Change in functional score at time of MI 0.11 -0.08, 0.30 0.3 
Additional annual change after stroke 0.11 0.06, 0.17 <.0001 
Additional annual change after MI 0.01 -0.03, 0.04 0.7 
Adjusted for other medical conditions:**    
Annual change -0.86 -1.02, -0.70 <.0001 
Change in functional score at time of stroke 0.84 0.53, 1.16 <.0001 
Change in functional score at time of MI 0.14 -0.05, 0.32 0.15 
Additional annual change after stroke 0.11 0.06, 0.17 <.0001 
Additional annual change after MI 0.01 -0.03, 0.04 0.8 
Adjusted for inflammatory biomarkers:‡    
Annual change -0.87 -1.03, -0.71 <.0001 
Change in functional score at time of stroke 0.84 0.52, 1.16 <.0001 
Change in functional score at time of MI 0.13 -0.06, 0.32 0.17 
Additional annual change after stroke 0.11 0.06, 0.16 <.0001 
Additional annual change after MI 0.00 -0.03, 0.04 0.8 
Adjusted for cognition:π    
Annual change 0.10 -0.10, 0.31 0.3 
Change in functional score at time of stroke 0.76 0.50, 1.03 <.0001 
Change in functional score at time of MI 0.16 -0.01, 0.32 0.06 
Additional annual change after stroke 0.04 -0.002, 0.09 0.06 
Additional annual change after MI -0.02 -0.05, 0.02 0.3 
Adjusted for social support: ††    
Annual change 0.16 -0.08, 0.39 0.19 
Change in functional score at time of stroke 0.68 0.41, 0.96 <.0001 
Change in functional score at time of MI 0.03 -0.14, 0.19 0.7 
Additional annual change after stroke 0.05 -0.001, 0.10 0.056 
Additional annual change after MI 0.02 -0.02, 0.06 0.3 
†adjusted for age at time of stroke, sex, race, education, income, and interaction terms between time of 
follow-up and these variables 
*additionally adjusted for: diabetes, hypertension, coronary heart disease, and interaction terms between 
time of follow-up and these variables 
**additionally adjusted for: arthritis and depression, and interaction terms between time of follow-up and 
these variables 
‡additionally adjusted for log of C-reactive protein, and interaction terms between time of follow-up and 
these variables 
πadditionally adjusted for mini-mental state score, and interaction terms between time of follow-up and 
these variables 
†† additionally adjusted for social network score, and interaction terms between time of follow-up and 
these variables 
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Table C11. Trajectories of a continuous measure of disability before and after stroke and 
myocardial infarction in the entire cohort (n=5888), in final adjusted model with non-significant 
interaction terms excluded 

 Baseline functional score Change over time in functional score 
 Difference 

in 
baseline 
functional 

score 

95% CI p-value Annual 
change in 
functional 

score 

95% CI p-value 

Annual change 0.18 -0.05, 0.42 0.12   --   --   -- 
Change in functional 
score at time of stroke 

0.68 0.41, 0.96 <.0001   --   --   -- 

Change in functional 
score at time of MI 

0.07 -0.08, 0.22 0.4   --   --   -- 

Additional annual change 
after stroke 

  --   --   -- 0.05 -0.001, 
0.10 

0.055 

Additional annual change 
after MI 

  --   --   -- 0.01 -0.02, 0.04 0.4 

Age at baseline, per yr 0.02 0.02, 0.03 <.0001 0.004 0.002, 0.01 0.0009 
Male sex 0.22 0.16, 0.29 <.0001   --   --   -- 
Non-White race -0.04 -0.15, 0.06 0.4 -0.02 -0.05, 0.01 0.17 
At least high school 
education level 

0.00 -0.09, 0.09 0.99 0.02 0.00, 0.04 0.03 

Yearly income of $12000 
to $34999 

-0.05 -0.13, 0.04 0.3   --   --   -- 

Yearly income of 
>=$35000 

-0.03 -0.13, 0.06 0.5   --   --   -- 

Diabetes 0.05 -0.03, 0.13 0.2 0.03 0.01, 0.05 0.005 
Hypertension 0.06 -0.0002, 

0.11 
0.051   --   --   -- 

Coronary heart disease 0.17 0.06, 0.28 0.002   --   --   -- 
Arthritis 0.37 0.31, 0.42 <.0001   --   --   -- 
Depression 0.56 0.44, 0.68 <.0001   --   --   -- 
Log of C-reactive protein 
levels 

0.09 0.06, 0.13 <.0001   --   --   -- 

Mini-mental state score -0.02 -0.02, -
0.01 

<.0001 -0.004 -0.005, -
0.002 

<.0001 

Social network score -0.01 -0.01, -
0.002 

0.003 -0.002 -0.003, -
0.0008 

0.001 

CI=confidence interval 
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Table C12. Trajectories before and after stroke and myocardial infarction (MI) in the cohort of 
those with stroke or MI, with 3-way interactions 

Variable Change in 
functional 

score 

95% confidence 
limits 

p-value 

Unadjusted model:    
Annual change before stroke or MI 0.17 0.13, 0.22 <.0001 
Overall increase due to stroke, compared to 
MI 

0.28 0.02, 0.55 0.04 

Change in functional score at time of stroke 
or MI 

0.74 0.33, 1.14 0.0003 

Additional annual change in those with stroke -0.03 -0.10, 0.04 0.4 
Additional annual change after MI -0.07 -0.14, 0.0009 0.053 
Additional annual change after stroke 0.24 0.16, 0.31 <.0001 
    
Adjusted model:*    
Annual change before stroke or MI 0.13 0.07, 0.20 <.0001 
Overall increase due to stroke, compared to 
MI 

0.27 0.02, 0.52 0.04 

Change in functional score at time of stroke 
or MI 

0.37 -0.01, 0.75 0.059 

Additional annual change in those with stroke -0.11 -0.19, -0.03 0.006 
Additional annual change after MI -0.04 -0.12, 0.04 0.3 
Additional annual change after stroke 0.19 0.10, 0.27 <.0001 
MI=myocardial infarction 
*Adjusted for: baseline age, sex, race, education, income, diabetes, hypertension, coronary heart 
disease, arthritis, depression, log of C-reactive protein levels, mini-mental state score, and social network 
score 
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In the previous chapters, several hypotheses were tested related to the conception of cerebrovascular 

disease as a progressive condition, with chronic effects on disability and functional status.  Several main 

points emerged.  In Analysis A, increasing CRP levels were associated with lower overall mean functional 

score but not with change in slope of function over time.  Results were similar for LpPLA2 mass levels.  

However, for TNFR1, increasing levels were associated not only with overall reduced functional status, 

but also additional annual decline in function over time.  In Analysis B, using different measures of SBI, 

there was a strong, consistent, independent, and significant effect on accelerated decline in function over 

time, over and above the annual decline in function due to aging.  This pattern was seen with WMHV as 

well. This pattern of association was seen with MRI imaging markers believed to be caused by vascular 

impairment (SBI, lacunar infarcts, and WMHV) but not with other MRI structural findings, such as LPVS, 

which are not believed to be caused directly by a primary vascular pathology.  In Analysis C, trajectories 

of disability were examined not only in relation to baseline predictors but also in relation to vascular 

events occurring during follow-up.  The slope of increase in disability after recovery from stroke was 

higher compared to before stroke but not different before and after MI.  There was a significant increase 

in disability at the time of stroke and a smaller but also significant increase at the time of MI.  Among the 

cohort of those who had stroke during follow-up, the slope of increase in disability after stroke was more 

than 2 times the slope before stroke.  In all of these analyses, disability measurements after recurrent 

stroke were censored, so the estimated disability trajectories were independent of clinical recurrent 

stroke.  From these inter-related analyses, a pattern emerges of cerebrovascular disease having a 

progressive negative influence on functional status in the absence of clinical stroke events, with a strong 

and reproducible impact of subclinical ischemic brain injury and serum inflammatory biomarkers, 

especially TNFR1.  The following sections will compare these findings to those in previous studies and 

discuss implications for the design of future studies and treatment paradigms.   

 

Analysis A 

C-reactive protein 

Many prior studies have examined the association between CRP and vascular outcomes and mortality.  

Several studies have examined population-based cohorts among those without baseline vascular 
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disease.  In a longitudinal analysis in the prospective cohort of NOMAS, elevated CRP was independently 

associated with MI and death, but not ischemic stroke.116 In a meta-analysis of 160,309 individuals 

without vascular disease from 54 prospective studies,224 each SD increase in log of CRP levels was 

independently associated with: coronary heart disease (RR 1.37, 95% CI 1.27–1.48), ischemic stroke (RR 

1.27, 95% CI 1.15–1.40), vascular death (RR 1.55, 95% CI 1.37–1.76), and non-vascular death (RR 1.54, 

95% CI 1.40–1.68).  In addition to those without vascular disease, stroke patients have also been 

examined.   Among 198 young ischemic stroke patients with a mean age of 48 years, higher CRP levels 

were associated with increased risk of mortality over a mean of 12 years of follow-up.225 Among 1244 

lacunar stroke patients followed for a median of 3 years in the Levels of Inflammatory Markers in the 

Treatment of Stroke study, higher CRP levels were associated with recurrent stroke, with an adjusted HR 

of 2.32 for the 4th quartile of CRP levels (95% CI 1.15–4.68), and major vascular events (HR 2.04, 95% CI 

1.14–3.67).226   

 In addition to vascular events, disability and functional status have been examined as outcomes 

in studies of the predictive ability of CRP.  For example, among 807 consecutively admitted ICH patients 

in Finland,227 elevated CRP levels at admission were associated with worse MRS scores at 3 months.  

We examined functional status over a longer time period related to ischemic stroke.  In the Survey of 

Midlife Development in the United States (MIDUS) study, a population-based sample of 1255 individuals 

with data on biomarkers, functional status, and comorbidity were studied.228 Inflammation, indicated by a 

latent factor contributed to be CRP, IL6, and fibrinogen, partially mediated the relationship between risk 

factors and disability.  In a cross-sectional analysis using 10 years of data from the National Health and 

Nutrition Examination Survey (NHANES) among 1729 adults with diabetes,229 elevated CRP was 

independently associated with disability in terms of ADL functioning as well as lower extremity mobility.  

Results were similar when 1403 individuals with cardiovascular disease were examined in NHANES.139 

Among 542 individuals with chronic obstructive pulmonary disease, congestive heart failure, 

cardiovascular risk, or physical disability, higher CRP and IL6 were associated with less grip strength and 

poor physical performance independent of demographics.230  

These associations between CRP and disability have also been found among specific race-ethnic 

groups.  Among 368 African-American individuals, higher levels of CRP and TNFR1 were associated with 
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multiple measures of increased impairment and disability, including ADLs and IADLs, upper and lower 

extremity functional impairments, and physical performance.231 Among 417 Korean acute ischemic stroke 

patients with CRP measured at admission and 7 days, CRP levels at both time points, but especially at 7 

days, was associated with 12-month MRS scores.232 

 In the only known study that has examined change of function over time, among 624 individuals 

>70 years of age in the Einstein Aging Study,233 elevated CRP was associated with mobility disability in 

the entire cohort, as well as incident disability and gait speed decline among those without vascular 

disease, over a median of 2 years of follow-up.  In our analysis, we had longer term follow-up and 

examined a larger cohort with and without vascular disease.  

Finally, one study examined the association of CRP with cognitive function.  In a cross-sectional 

analysis of a population-based cohort from Northern Manhattan, 1331 individuals without dementia were 

studied.234 Elevated CRP levels were independently associated with impaired memory and visuospatial 

function.   

 

Interleukin-6 

Several previous studies have examined outcomes related to IL6 levels among population-based cohorts.  

In a prior analysis in NOMAS among 1224 participants,235 IL6 levels above the median were associated 

with greater decline in cognitive ability measured by the TICS over a median of 3 years of follow-up.   In a 

cross-sectional meta-analysis of 6 cohorts, levels of circulating biomarkers were tested for associations 

with measures of physical performance.236 Higher levels of five inflammatory markers were associated 

with worse physical performance: IL6, TNFR2, TNFR1, TNFα, and GCSF.  Among 2979 individuals aged 

70-79 years in the Health, Aging and Body Composition Study,237 there was a greater risk of incident 

mobility limitation with higher IL6 (RR 1.19, 95% CI 1.10-2.8), CRP (RR 1.40, 95% CI 1.18–1.68), and 

soluble TNFR1 levels (RR 1.28, 95% CI 1.04–1.57) over 30 months of follow-up.  In the Health Aging and 

Body Composition study, 238 2234 elderly individuals were followed for a median of 11.4 years, and higher 

IL6 levels were associated with the onset of disability and mortality.  Higher IL6 levels have also been 

independently associated with periventricular and deep WMHV among 137 elderly women, suggesting a 

possible mediating effect between inflammatory states and disability.239 Also, higher IL6 levels have been 
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associated cross-sectionally with greater WMHV among 1841 individuals aged 65-80 years but not with 

WMH progression after 4 years, further complicating the relationship between IL6 and subclinical 

ischemic brain injury.240   

 The associations between IL6 and outcomes have also been examined in particular subgroups of 

people.  For example, in a meta-analysis of 4112 stroke patients from 20 studies,241 IL6 was associated 

with poor outcome, defined as MRS score of >2 or BI score of <85, as well as post-stroke infection.  

Among 80 individuals with vascular dementia, increasing IL6 levels were independently associated with 

lower BI scores in a cross-sectional analysis.242 Among 1727 individuals >70 years of age in the Duke 

Established Populations for Epidemiologic Studies of the Elderly study,243 higher IL6 levels were 

associated with disability and self-rated health, and IL6 levels were associated with cancer, heart attack, 

and hypertension.   Among 3925 men aged 60-79 years, higher IL6 levels were associated with incident 

mobility limitation over an average of 11.5 years of follow-up.244   

 

Tumor necrosis factor receptor-1 

In an early cross-sectional analysis in NOMAS among 279 individuals,245 elevated TNFR1 levels were 

associated with carotid atherosclerosis among those <70 years of age.  In a more recent longitudinal 

analysis in the NOMAS prospective cohort,246 1862 participants were followed for a mean of 8.4 years for 

mortality and cause of death.  Increasing TNFR1 levels were associated with increased risk of all-cause 

and non-vascular mortality, and the magnitude of association was higher among those with lower 

socioeconomic status.  In the population-based Oxford Vascular Study,247 15 biomarkers were tested in 

929 patients with minor stroke and TIA.  Among the biomarkers tested, 4 were associated with all-cause 

death: tumor necrosis factor-alpha receptor-1, von Willebrand factor, heart-type fatty-acid-binding protein, 

and N-terminal pro-B-type natriuretic peptide.   

 

Lipoprotein-associated phospholipase A2 

LpPLA2 has been associated with vascular outcomes in previous studies.  In a prior NOMAS analysis 

among 467 individuals with first ischemic stroke, LpPLA2 was independently associated with recurrent 
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stroke (HR 2.08, 95% CI 1.04-4.18) and the composite outcome of recurrent stroke, MI, or vascular 

death.248 CRP was associated with mortality alone.  In another NOMAS analysis of 1946 participants in 

the prospective cohort,249 LpPLA2 mass levels were associated with the occurrence of large-artery 

subtype of ischemic stroke among non-Hispanic Whites.   In a NOMAS analysis examining WMHV as an 

outcome,207 CRP levels were associated with WMHV, as were LpPLA2 levels when 3 biomarkers were 

examined in the same model (CRP, LpPLA2, and myeloperoxidase).   

In a large collaborative study using data from 32 prospective studies and involving 79036 

patients,250 LpPLA2 mass and activity were independently associated with increased risk of vascular 

events, including MI and stroke, and vascular mortality.  In the Clopidogrel in High-Risk Patients with 

Acute Non-disabling Cerebrovascular Events (CHANCE) trial, a subset of participants (n=3201) enrolled 

with stroke or TIA had LpPLA2 activity measured at baseline.251 Higher LpPLA2 activity levels were 

independently associated with higher risk of 90-day stroke as well as a composite of ischemic stroke, 

myocardial infarction, or death, and there was no interaction with treatment assignment.  Expert panels 

have recommended measuring LpPLA2 to improve risk prediction of cardiovascular disease,252 and the 

current analyses suggest that it may also be effective to predict functional status.   

LpPLA2 activity has also been associated with SBI cross-sectionally in a cohort of 921 stroke-free 

individuals, but only among women, with OR of 2.14 per 1 SD increase in levels (95% CI 1.31-3.50).253 

 

Summary 

Multiple prior studies have demonstrated associations between inflammatory biomarkers and vascular 

outcomes, mortality, and disability measured at single time points.  However, the current analysis is the 

only known analysis, among studies of inflammatory biomarkers, in which both baseline functional status 

as well as the trajectory of change over time was analyzed, not only disability measured at a single time 

point.  One difficulty in finding biomarkers that can predict outcomes surrounding vascular events is the 

heterogeneity of events such as stroke and the variety of pathophysiological processes involved in 

cerebrovascular events.  For example, biomarkers originally conceived as representing cardiac 

pathophysiology have also been associated with subclinical brain injury.254 One approach to improve the 

predictive ability of biomarkers is to use a panel of several markers that reflect several of the 
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pathophysiologic processes that can lead to stroke: coagulative, inflammatory, cardiac, and 

atherosclerotic.255, 256 Also, there has been a recognition that biomarkers for Alzheimer’s disease change 

in composition and levels over time, as the disease progresses (Figure D1).257 Future research will 

hopefully clarify the mechanisms underlying the progressive decline seen after stroke, which would allow 

researchers and clinicians to track the progression of biomarkers over time that reflect these processes. 

Future research would measure biomarkers repeatedly over time through the pre-event and post-event 

states and enable the identification of those susceptible to accelerated decline over time.   

 

Analysis B 

Several previous studies have examined the associations between patient-centered outcomes and brain 

imaging markers of ischemic and degenerative changes.  In a prior analysis in the NOMAS MRI cohort,258 

greater WMHV and smaller TCV were associated with poorer performance in learning a list of words.  The 

current analysis expands upon this previous research by analyzing longitudinal trends of repeated 

measures of functional status and confirming a long-term effect of SBI and WMHV on functional decline.  

Prior research on the associations between imaging findings and outcomes has focused on white matter 

disease, subclinical brain infarcts, and other novel imaging markers.   

 

White matter disease 

There have been multiple publications from the Leukoaraiosis and Disability Study (LADIS) on the 

association between WMHs and outcomes.  Overall, individuals aged 65-84 years with any degree of 

subcortical WMH on MRI and no or mild disability were eligible for the study.  In one cross-sectional 

analysis, increasing leukoaraiosis was associated with increasing disability.259 Among 619 participants 

with IADL measured at 1 year,260 the risk of transition at 1 year to >2 ADL impairments was higher with a 

greater degree of WMHV, with an OR of 3.02 (95% CI 1.34-6.78) among those with severe WMHV 

compared to mild WMHV who were non-disabled at baseline.  After a mean of 2.42 years of follow-up, 

these trends were maintained,261 with a HR for transition to disability or death of 2.36 (95% CI 1.65-3.81).  

When gait and balance were examined yearly over 3 years of follow-up, more WMHV predicted decline 

over time, especially among older ages.262 In a longitudinal study of cognitive outcomes,263 those with 
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subcortical ischemic vascular disease had greater declines in performance on multiple cognitive tests, as 

well as a threefold increase in risk of developing dementia during follow-up.  Results were similar when 

age-related white matter change was the primary predictor.264 

Several other studies have examined outcomes among stroke-free individuals with WMH 

measurements.  Among 287 community-dwelling individuals aged 70-90 years,265 greater WMHV was 

associated with physical decline over 1 year (defined as being in the top quartile of change in 

Physiological Profile Assessment scores, with OR 3.02, 95% CI 1.02-8.95), and possibly WMHs in the 

deep frontoparietal and periventricular parietooccipital regions had the greatest impact on decline.  In the 

population-based Rotterdam Study,266 2025 individuals were assessed for change in disability over a 

mean of 5.7 years.  Lower brain volume was associated with greater disability, in terms of overall brain 

volume as well as gray matter and white matter volumes individually.  Greater diffusivity, a marker of brain 

microstructure, was associated with higher risk of incident impairment.  Among 99 individuals 75-89 years 

of age, global WMHV was associated with urinary incontinence, mobility deficits, and executive 

dysfunction.267  

In a prior analysis in CHS,268 among 3230 individuals without stroke who had MRI and were 

followed for up to 16 years, 5 clusters of MRI patterns of ischemic injury were identified through a data-

driven approach: Normal, Atrophy, Simple Infarct, Leukoaraiosis, and Complex Infarct. Mean years of life, 

years of healthy life, and years of able life were calculated, and these outcomes were worst among those 

with Complex Infarct, which had the greatest degree of sickness and disability among the clusters.  

Among 267 Japanese-American men aged 74-95 years in the Honolulu-Asia Aging Study,269 cognitive 

function was measured at baseline and at 5 years, and those with white matter lesions at baseline had 

twofold higher adjusted odds of having a 1 SD drop in cognitive performance at 5 years.    

 Besides disability, other patient-centered outcomes have been examined among stroke-free 

cohorts.  In a cross-sectional analysis among 1538 individuals aged 55-72 years in the ARIC study,270 

ventricular size, high-grade WMH, and SBI were associated with worse performance on memory, 

executive, and language tasks.  Among 390 male twins aged 69-80 years in the NHLBI Twin Study, 

WMHV above the median was associated with a greater drop in Digit Symbol Substitution test scores at 

10 years compared to baseline.271 
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 The associations between WMHV and outcomes have also been examined in stroke patients.  

For example, among 408 stroke patients followed at 2 weeks and 1 year from stroke,272 severe 

periventricular WMHs were associated with disability at both time points and were associated with poorer 

recovery at 1 year, but WMHs in deep locations were not associated with these outcomes.  Among 101 

first ischemic stroke patients followed at 1 year with the MRS,273 WMHV was associated with greater 

disability.  Three-month outcomes were examined among 185 minor stroke (NIHSS <5) patients,274 and 

WMHV was associated with 90-day change in NIHSS score and MRS.    

 

Subclinical brain infarcts 

Several studies have focused on SBIs as primary predictors of outcomes.  In the LADIS study, among 

387 individuals with yearly neuropsychological testing and repeat MRI at 3 years,275 incident lacunes were 

associated with decline in executive function and speed and motor control.  Increase in WMHV was 

independently associated with executive dysfunction.  In CHS, 2450 individuals were followed for a mean 

of 4 years, and WMHV and brain infarcts were associated with higher incidence of disability and 

accelerated decline in gait speed.70 Adjustment for incident stroke and dementia and mini-mental status 

score did not attenuate associations.  Among 350 elderly Japanese individuals without dementia, 

subclinical white matter lesions were cross-sectionally associated with global cognitive impairment and 

frontal lobe dysfunction.276 Finally, among 787 consecutively admitted stroke patients, prior subclinical 

stroke was associated with higher odds of having a 3-month BI score of <60.277   

 

Other predictors 

In this analysis, there was an association among education, cognitive ability, and functional status.  In a 

previous study, healthy adults ranging in age from 23-84 years, including 28 APOE-E4 carriers, had FDG-

PET and MRI.278  There was an interaction with education, such that APOE-E4 carriers showed an 

association between higher education and metabolism in the fronto-temporal lobes, which correlated with 

episodic memory performance.  The evidence of higher fronto-temporal metabolism may reflect the 

strength or density of neural networks and may be one of the biological effects of education.  Prior studies 

have also shown overlap between cerebrovascular disease and neurodegenerative processes.  One 
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hundred eighty-one cognitively normal individuals were followed with yearly MRI and cognitive 

assessments up to 20 years in the Oregon Brain Aging Study.279 WMHV increased around 10 years 

before onset of mild cognitive impairment (MCI), and ventricular size increased approximately 4 years 

before onset.  In 24% of individuals who had MCI and autopsy, there was concomitant Alzheimer’s 

dementia pathology as well as significant cerebrovascular disease.  Among 61 patients with subcortical 

vascular dementia followed annually for 3 years,280 11C–Pittsburgh compound B (PiB) PET-positivity at 

baseline was associated with accelerated decline in attention, visuospatial ability, visual memory, and 

global cognition.  WMHV was associated with similar patterns of decline, but lacunar infarcts and 

microbleeds were not.   

In this analysis, no significant associations were found between measures of perivascular spaces 

and functional status.  In a Japanese population-based study of 1575 neurologically healthy adults who 

had MRI,281 basal ganglia perivascular spaces were associated with basal ganglia microbleeds, and 

centrum semiovale perivascular spaces were associated with lobar microbleeds.  There was a common 

coexistence of perivascular spaces, hypertension, lacunes, and WMHV.  However, no functional 

outcomes were examined in this study and it is difficult to deduct the impact of these findings on 

functional status.  In another study among 31 individuals without dementia who had brain MRI and 

Pittsburgh compound B-PET imaging,282 amyloid burden was associated with perivascular spaces in the 

centrum semiovale.  In a study among 201 ICH patients,283 enlarged perivascular spaces in the centrum 

semiovale region were associated with small acute DWI-positive lesions, suggesting a possible role of 

perivascular spaces in vascular risk.  The underlying mechanism(s) of which perivascular spaces may be 

a marker are not well delineated at this time, but these mechanisms may involve neurodegenerative 

processes.284 

 

Summary 

Multiple prior studies have shown relationships between subclinical ischemic injury, measured by WMHV 

and SBI, and patient-centered outcomes.  However, a minority of prior studies has examined trajectories 

of these outcomes over time, delineating not only change between 2 time-points but also slopes of 
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change over time.  More research is needed examining trajectories of cognition and disability over time, 

possibly in relation to progressive imaging changes on repeated MRIs as well.   

The field of neuroimaging is undergoing rapid technological advances, and paralleling these 

advances has been a reconceptualization of the ways in which subclinical ischemic disease causes 

pathological effects on function.  Recent research suggests that WMHs have different degrees of 

surrounding tissue that is susceptible to further injury – what has been called the “WMH penumbra” – but 

that interventions have yet to be found that modify the progression of such regions.285 Also, WMHV may 

be caused by ischemic processes but may also be caused by the processes that lead to 

neurodegenerative diseases such as Alzheimer’s dementia.  A measure of gray matter integrity, such as 

cortical thickness, may be a more accurate reflection of the effect of each process.286 Diffusion tensor 

imaging can identify impaired fractional anisotropy, and this measure of impaired white matter 

microstructure has been associated with subsequent risk of Alzheimer’s disease in those with mild 

cognitive impairment.287 Other studies have found associations between microstructural integrity 

measured by MRI DWI sequences and subsequent cognitive and functional changes.288 Future studies 

may find a similar association between early white matter structural damage and accelerated functional 

decline after stroke.  One issue caused by the advances in imaging technology is heterogeneity in 

imaging protocols used and definitions used for SBI and WMHs, requiring the development of standard 

definitions to allow comparison among studies.289 

 

Analysis C 

Several studies have examined the course of functional outcomes before and after vascular events.  In a 

much earlier publication in CHS of self-rated health with up to 8 years of follow-up,290 a drop in self-rated 

health similar to the increase in disability seen in the current analysis was seen at the time of MI.  There 

were significant declines after stroke but not MI, but this analysis was centered on self-rated health and 

had short follow-up in comparison to the current analysis.   

In an analysis in HRS, cognitive function as measured by the modified TICS-m scale was 

assessed every 2 years over a mean of 4.1 years of follow-up.159 Compared to Whites, Blacks had 

greater cognitive decline in adjusted models.  Incident stroke caused reduced cognitive function that did 
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not differ by race, and there were no significant differences in slope of change over time post-stroke.  In 

another analysis in HRS, the course of functional and cognitive impairment was compared before and 

after stroke (with 432 hospitalizations) and MI (with 450 hospitalizations).160 Using a combined measure 

of ADLs and IADLs, there was a greater increase in disability at the time of stroke compared to MI, similar 

to our findings in CHS.  Difference in pre- and post-stroke slopes of change depended on initial 

impairment levels.  Stroke but not MI was associated with higher odds of cognitive impairment.  

In the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, the course of 

cognitive function was compared before and after stroke among 515 individuals who had stroke, and 

23057 who remained stroke-free, during a mean follow-up of 6.1 years.161 There was a significantly 

steeper decline in cognitive function after stroke in the areas of global cognition and executive function.  

The risk of cognitive impairment was higher after stroke compared to before stroke, with an odds ratio of 

1.23 per year (95% CI 1.10-1.38).  These findings paralleled our results for the course of disability after 

stroke.   

In HRS, trajectories of  biennially measured memory performance were analyzed before and after 

nonfatal stroke (n=1189), before fatal stroke (n=385), and among 15,766 individuals who did not 

experience stroke over 10 years of follow-up.162 Among stroke survivors, the pre-stroke decline in 

memory performance was greater than among those who remained stroke-free, and those who died of 

stroke had even greater declines.  There was no significant difference in slope of change in memory 

performance before and after stroke.  Limitations of this analysis were the long intervals between memory 

assessments, the self-report of stroke, and the large amount of missing data regarding stroke timing.   

In another analysis among 17341 participants in HRS,163 there were biennial assessments of a 

composite memory score over 10 years of follow-up.  There were 3 types of individuals: stroke survivors 

(n=1169), stroke decedents (n=405), and those who did not experience stroke during follow-up 

(n=15767).  As with the prior analysis, stroke was defined by self-report or report of a proxy but not 

confirmed by specialist review, and there was a significant amount of missing data on month (8.3%) and 

year (10.5%) of stroke.  Also, there was a significant amount of loss to follow-up (37%).  Overall, pre-

stroke decline in memory performance was greater in older individuals compared to younger individuals.  

Females had slightly steeper declines in memory performance pre-stroke compared to males, but there 
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were no significant differences among the stroke-free cohort.  For those in the older age stratum, there 

was a steeper decline in memory performance after stroke compared to before (-0.15 vs. -0.07 

points/year, p = 0.003), similar to our findings in CHS.     

In the ARIC study,164 a change score in 3 cognitive measures was calculated over approximately 

14 years, and 2 MRIs were performed over a similar time interval (10 years) and scored for presence of 

infarcts, WMHV, and ventricular size.  There was ongoing surveillance for hospitalizations, and type of 

hospitalization was categorized using ICD-9 codes.  For those who were hospitalized during follow-up, 

there was a decline in performance on the Digit Symbol Substitution Test.  When trajectories of change in 

cognitive performance were compared pre- and post-hospitalization, there was accelerated decline in the 

Digit Symbol Substitution test after hospitalization, with an additional 0.20 digit-symbol pairs/year (95% CI 

0.12–0.27), and accelerated decline in the Word Fluency Test after hospitalization, with an additional 0.09 

words/year (95% CI 0.02–0.17).  Hospitalized patients had greater development of atrophy.  Overall, 

critical illness and major surgical hospitalizations were associated with greater cognitive decline and MRI 

changes.   

In another ARIC study, trajectories of self-rated health were examined over a median of 17.6 

years in 11,188 individuals who remained disease-free, 1071 individuals who developed MI, and 809 who 

developed stroke.165 Higher neighborhood income was strongly associated with better self-rated health 

and less prevalent comorbidities.  There was no difference in the slope of change in self-rated health over 

time before and after stroke in this analysis.   

Among 687 community-dwelling elderly individuals assessed for life space mobility, those with 

surgical hospitalizations had greater drop in mobility at the time of hospitalization compared to those with 

non-surgical admissions, who had no significant recovery over time.166 

The concept of frailty may capture some of the observed variation in disability, and previous 

studies have examined the association between frailty and event-based outcomes.  Among 1521 

individuals <65 years of age with first acute MI in 8 Israeli hospitals, the Rockwood frailty index was 

assessed at baseline and 10-13 years later.291 The frailest individuals had twice the risk of mortality 

compared to the least frail group, greater cardiac death, and more hospital admissions.   
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In the current analysis, male sex was associated with overall worse disability but no difference in 

slope of change over time.  This was true also among 3501 young MI patients (age 18-55 years) with 

patient-centered outcomes gathered at baseline, 1 month, and 1 year,222 in whom the trajectory of 

improvement in QOL and health status was similar among males and females, although females had 

lower scores in all domains at all time points of follow-up. 

We did not find an effect of race-ethnicity on disability trajectories in this analysis.  However, in an 

analysis from the Cooperative Cardiovascular Project,292 141095 Medicare beneficiaries, 6.3% of whom 

were Black, were hospitalized with MI and followed for 17 years.  A quarter of the Black patients lived in 

low-SES areas, compared to 5.7% of White patients, and life expectancy was lower for Black patients.  

Furthermore, the greatest discrepancy in life expectancy was seen in high- and medium-SES areas.  It is 

possible that this mortality disparity was not paralleled by a disparity in disability.  However, further 

dedicated research in race-ethnic disparities in trajectories of functional status is needed. 

 Depression was associated with worse overall disability in this analysis.  In an early analysis of 

CHS data with 4 years of follow-up, persistent depression (as compared to temporary depression or no 

depression) was associated with significantly higher odds of disability, with an adjusted OR of 5.27 (95% 

CI 3.03-9.16).217 These findings were confirmed in an analysis of 2102 individuals in the Health, Aging, 

and Body Composition Study over 9 years of follow-up.293 Also, among 425 individuals with an acute 

coronary syndrome, depression symptoms and physical health status were assessed after the event and 

12 months later.294 Persistent depressive symptoms were associated with poorer physical health status.  

Not only depression but also PTSD is common after sudden health events such as stroke and MI, and 

PTSD may play a role in social participation in the long term after recovery from events.  For example, 

among 40 MI survivors diagnosed with PTSD 5 months after MI, 2/3 had persistent PTSD more than 2 

years after MI.295 Psychological distress is also common over the long term after stroke, but its effect on 

trajectories of function is unclear.296 

 

Possible mechanisms 

Greater knowledge about population trends in disability, as discussed in the above analyses, would 

inform basic science paradigms about brain injury due to stroke, and specifically would suggest models 
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that incorporate long-term neurodegeneration or progressive damage into the range of stroke injury.  

Based on previous studies, there are several mechanisms that could cause the accelerated decline in 

functional status after stroke seen in the above analyses.  Some mechanisms have been discussed 

above in the opening chapter, and additional mechanisms will be discussed here. 

There are several brain structural changes that have been associated with cerebrovascular 

disease that may have impacts on cognition and functional status.  For example, brain infarcts have been 

associated with smaller hippocampal volumes, which are associated with poorer memory and cognitive 

function.297 Silent cerebral infarction has also been associated with reduced grey matter volume and 

concomitant cognitive deficits.298 WMHV, SBI, microbleeds, and atrophy have been associated with 

declines in gait speed, cadence of gait, and length of steps,299-301 which would affect the mobility aspects 

of ADL functioning.  WMHV and progression of WMHV have been associated with neurological 

examination findings such as gait and stance abnormalities, upper motor signs, and slowing of 

fingertaps,302 and presence and number of neurological deficits have an independent impact on 

performance of ADLs.303 Silent deep infarcts and WMHV have been associated with gait variability, which 

has been associated with falls and disability.304 

There has been some debate about the pathophysiology of white matter disease, but ischemia 

and vascular dysfunction have been confirmed to play a major role in the genesis of WMHs.  In a study 

among 5 individuals with moderate to severe WMHV who had weekly MRIs over 16 weeks of follow-up,305 

tiny asymptomatic acute infarcts were identified on repeat scans that eventually resembled WMHs 

radiographically over follow-up.  Vascular risk factors also cause WMHs, which then cause disability and 

cognitive impairment.  For example, in a prior analysis in CHS,71 hypertension was associated with 

baseline and incident disability, and WMHV mediated the association between hypertension and 

disability.  Among 976 hypertensive individuals, age, sex, and Framingham cardiovascular risk scores 

were associated with SBI in a cross-sectional analysis.306 Not only overt diabetes but also fasting glucose 

has been independently associated with WMHs and SBI among 172 healthy, non-institutionalized 

individuals.307 

Inflammation has also been implicated in the pathophysiology of WMHs, in genetic, epigenetic, 

and epidemiological studies.308 Elevated plasma total homocysteine levels have been associated with 
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reduced brain volume and SBI (but not WMHV) among 1965 healthy individuals in the Framingham 

Offspring Study, especially among older ages.309 Endothelial dysfunction has been implicated in the 

development of WMHV and SBIs, as shown in 2013 stroke-free individuals in the Framingham Offspring 

Study, in whom asymmetrical dimethylarginine, an inhibitor of endothelial nitric oxide synthase, was 

associated with subsequent SBIs and WMHV.310 Hemostatic factors have also been shown to be related 

to cerebrovascular disease; von Willebrand factor and D-dimer levels were associated with subclinical 

lacunar infarcts in a case-control analysis of 410 individuals in the ARIC study.311 

Possible mediators of the relationship between vascular risk factors and trajectories of disability 

and cognition would need to be clarified in future research.  Previous studies have identified possible 

mediators that could be potential targets for intervention.  For example, post-stroke apathy is a less well 

understood phenomenon that is common, follows variable trajectories, and has an impact on disability 

and social participation.312 When 118 individuals with lacunar stroke and WMHs were compared to 398 

healthy controls,313 both apathy and depression were associated with lower QOL.  However, impaired 

white matter structure, as measured by fractional anisotropy, was associated with apathy alone, 

especially when impaired anisotropy was present in limbic association areas.  Further research is needed 

on conditions such as apathy that are intermediate between brain ischemic damage and disability. 

 Several studies have suggested a role for socioeconomic status in long-term outcomes, including 

functional outcomes.  For example, all stroke admissions in Denmark from 2003-2012 in those >40 years 

of age were examined (n=56581, median follow-up 3.1 years), and linkage was performed with national 

registries with data on income and vital statistics.314 There was a strong and dose-dependent effect of 

income on post-stroke mortality, and the relative risk of death in those with the highest income quintile 

compared to the lowest was 0.70 (95% CI 0.65-0.74).  This finding is particularly striking considering that 

Denmark has free, universal health coverage.  In an another analysis of a nationwide registry with 

2,397,446 participants over 12 years in the Netherlands,315 lower socioeconomic status was associated 

with higher risk of stroke among all ethnic groups, and ethnic groups had higher stroke incidence within 

strata of income level compared to ethnic Dutch.  In an innovative environment-wide association study 

performed in the National Health and Nutrition Examination Survey, income was significantly associated 
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with 66 out of 330 tested factors, including infectious, biochemical, physiological, and environmental 

factors.316 It is likely that socioeconomic status has multifactorial influences on disability after stroke.   

Education has also been shown to have a strong association with outcomes.  In an analysis of 

851 individuals followed from age 85 to 90 years with 98.7% complete data on disability during follow-

up,317 four trajectories of disability were evident, and education protected against being in the most 

disabled group.  Among 3955 individuals over 10 years of follow-up, those with the most education had a 

23-45% reduced chance of disability compared to those with mean levels of education.318 There was a 

significant effect of income but with less of a magnitude of effect. 

Environmental and social factors may also play a role.  Leisure-time physical inactivity is common 

after MI (up to 37% up to 13 years after MI among 1410 individuals with first MI), and low neighborhood 

SES predicted low physical activity.319 Social isolation and changes in caregiver and friend networks 

during stroke recovery may also play a role in trajectories of performance in ADLs.320 Even the type of 

caregiving style may play a role, as suggested by research among TBI patients.321 Strain on caregiving 

networks and change in the constitution and effectiveness of these networks over time may play a role in 

late functional decline.322 

In the above analyses, baseline depression was associated with subsequent disability, 

suggesting causal directionality from depression to disability.  Several studies have shown an association 

of depression with disability, but at least one, among 442 Taiwanese elderly individuals with repeated 

measures of depression and disability over 10 years,323 has suggested that disability may lead to 

depression more often than depression leads to disability.  Repeated measures of both depression and 

functional status over time would allow the clarification of this directionality.   

It is also unclear whether measures of impairment, such as weakness, or sociodemographic 

factors are better predictors of functional trajectories.  In an analysis of 9471 individuals with 12 years of 

data from HRS,324 there were three trajectories of disability, and impairment indicators predicted these 

trajectories better than sociodemographic characteristics, suggesting that mediators of the relationship 

between sociodemographics and disability trajectories should be targeted in observational and 

interventional research.  However, further research is needed to clarify these relationships.   
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Implications for clinical trial design 

If there is a progressive decline in functional status in the long-term after stroke that is independent of 

clinical events such as stroke and MI, the conventional 90-day functional outcome measure after an 

intervention is likely not adequate to evaluate the effectiveness of a treatment.325 Figure D2 shows 

several trajectories of change in functional status that all have the same 90-day functional outcome, each 

representing a drastically different course of change over time.  More data is needed about the expected 

course of recovery after specific stroke subtypes, or perhaps related to specific locations of infarct.  An 

enhanced ability to predict such trajectories would allow the design of trials of interventions that could 

modify expected trajectories, not only outcomes at discrete time points such as 90 days.326 In clinical 

trials, patient-centered outcomes should be assessed, but the use of standard scales may be limiting.  A 

qualitative study with several interviews over the first year after stroke found that fatigue was common 

and disabling, although standard scales of physical recovery showed little deficit.327 Also, a combination 

of qualitative and quantitative research may be required to develop scales to use in large datasets that 

are sensitive to the patterns of change in patient-centered outcomes over time.328, 329 

 Biomarkers that represent intermediate processes that occur prior to imaging-confirmed infarct 

and cerebrovascular disease could be used to identify those at risk as well as a surrogate marker for 

clinical trials.  For example, retinal microvascular abnormalities have been shown to be a powerful 

predictor of cerebral infarct and WMHV in the ARIC study over a median of 10.5 years of follow-up.330 The 

retinal vasculature is an effective marker of cerebrovascular dysfunction because it can be viewed and 

assessed non-invasively with relatively inexpensive equipment.   

 

Heterogeneous trajectories 

Several previous studies have identified distinct trajectories of change in patient-centered outcomes over 

time, primarily using statistical techniques such as latent class analysis that are tailored to the discovery 

of groups each with a distinct trajectory.  For example, several studies have shown heterogeneous 

trajectories of disability331 and cognitive function332 at older ages that may vary by sex.333 Almost 1000 

African American community-dwelling individuals aged 50-64 years had self-rated health assessed over 9 

years of follow-up.334 Semi-parametric group-based mixture models discovered 4 trajectories of self-rated 
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health: “persistently good health, good but declining health, persistently fair health, and fair but declining 

health.”334 In a study examining psychological symptoms, 444 stroke patients had repeated measures of 

psychological symptoms over 4 years of follow-up and the Barthel index assessed at the end of follow-

up.335 At first assessment, 21% met criteria for a psychological disorder, but symptoms improved over 

time and 12% met criteria for a psychological disorder at final follow-up.  Four trajectories of change in 

psychological symptoms were identified over time, and psychological symptoms were associated with 

subsequent disability.  In a Dutch prospective study among 2867 elderly individuals, disability was 

measured several times over 6 years, and 9 distinct trajectories of disability were identified.336 

There is heterogeneity in the degenerative processes that accompany chronological aging, and 

these processes may involve inflammation, impaired coagulation, and endothelial dysfunction.  

Chronological age is related to these changes but there is not a 1:1 correspondence, and greater 

knowledge of the factors causing variations among individuals would allow the identification of those more 

prone to decline.  Considering the heterogeneous trajectories that may be seen in functional and 

cognitive recovery after stroke, different predictive risk factors may exist for each phase of recovery: pre-

stroke, acute post-stroke, and chronic post-stroke; further research, with an attention to diverse 

trajectories of function, is needed to clarify these factors.337   

 

Potential interventions to reduce long-term functional decline 

Further research is needed that assigns trajectories of functional status as the outcome and tests 

potential interventions to mitigate this decline.  The first step is to identify those at risk of deterioration.  

Then, several potential approaches may be effective: targeted rehabilitation; continual monitoring of 

functional status; optimal pharmaceutical secondary prevention strategies; and interventions to reduce 

social isolation and depression after stroke.325 For example, an ongoing trial will test whether low-dose 

aspirin is effective in reducing the progression of SBI and WMH over time.338 Another ongoing trial will 

compare whether angiotensin-converting enzyme inhibitors or angiotensin receptor blockers are more 

effective to reduce progression of subclinical infarcts over 2 years of follow-up.339 

Other areas of potential intervention are suggested by recent research.  Statins and other 

cholesterol-modifying agents reduce levels of LpPLA2252 and may play a role in reducing inflammation-
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mediated declines in function.  Medications specifically targeted to the mechanism of biomarkers, such as 

darapladib to inhibit the activity of LpPLA2, may also be effective252. In addition to medications, diet may 

have an important impact on cognitive decline.  A specific dietary intervention may modify cognitive 

decline in those susceptible to this.340  In a large observational analysis of 2 international clinical trials with 

27860 patients followed over 56 months,341 higher diet quality (assessed with the modified Alternative 

Healthy Eating Index) was associated with lower risk of cognitive decline (HR 0.76, 95% CI 0.66-0.86), 

independently of baseline cognitive status.  Adherence to the Mediterranean diet among 674 elderly 

individuals with a mean age of 80 years was cross-sectionally associated with less brain atrophy.342  A 

recent randomized trial assigned elderly (age 60-77 years) individuals to a multidomain intervention 

(including diet, exercise, cognitive training, and monitoring of vascular risk factors) or a control group of 

general health advice, who were followed for change in performance on neuropsychological testing.343  

There was a significantly greater improvement in the intervention arm, ranging from 25-150% 

improvement on primary and secondary cognitive outcomes.  In terms of specific dietary or supplement 

intake, lower vitamin D levels have been associated with cognitive decline, and further research would 

clarify whether supplementation modifies trajectories of cognitive change over time.344   

Traditionally there has been an emphasis on the acute treatment of stroke and rehabilitation 

targeted to the early period after the event.  Indeed, insurance coverage for inpatient and outpatient 

rehabilitation is limited to the few weeks or months after stroke; stroke specialists have minimal dedicated 

training in stroke rehabilitation; and a minority of research funding in stroke is targeted to rehabilitation 

and helping patients deal with the disability effects of stroke.345 It may be more beneficial to conceive of 

stroke as a chronic disease that can benefit from ongoing physical rehabilitation over a long time period, 

since rehabilitative interventions have been shown to be effective even in the chronic phase after stroke. 

Rehabilitation may also be effective if it targets cardiorespiratory fitness.  Among 565 middle-

aged healthy individuals in the Coronary Artery Risk Development in Young Adults Study,346 

cardiorespiratory fitness was measured by a maximal treadmill test duration, and individuals had brain 

MRI after 5 years.  In fully adjusted models, better cardiorespiratory fitness predicted greater brain volume 

and higher white matter integrity.   In the Lifestyle Interventions and Independence for Elders trial,347 1635 

elderly sedentary individuals were randomized to a physical activity intervention or a health education 
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intervention and followed for 2.6 years.  There was a benefit of the physical activity intervention on 

prevention of major disability, with a HR of 0.82 (95% CI 0.69-0.98).   Alternatively, better control of 

vascular risk factors may lead to better outcomes.  Among 2566 stroke patients in the Fukuoka Stroke 

Registry, day-to-day blood pressure variability 4-10 days after stroke predicted worse functional outcome 

at 3 months.348 

Neurorehabilitation techniques may be beneficial to arrest or reduce functional decline over time, 

considering the importance of cognitive ability on functional status.  Techniques targeting specific 

cognitive domains or abilities may be useful, but further research is needed.349 Indeed, cognitive ability 

and education have been associated with brain health and cognitive reserve that protects against decline.  

For example, among 1959 subjects who had cortical thickness measurements by MRI, higher education 

levels were independently associated with mean cortical thickness throughout the brain, as well as in 

particular brain regions.350 However, this effect was only seen in older individuals, suggesting that the 

effect of education may be to reduce atrophy due to effects of aging, which may be a structural 

manifestation of cognitive reserve.  The Austrian Polyintervention Study to Prevent Cognitive Decline 

after Ischemic Stroke (ASPIS) tested whether a 24-month intervention to enhance compliance reduced 

post-stroke cognitive decline among 202 individuals.351 There was no significant effect of the intervention 

but power was limited.  In TBI, environmental enrichment may improve post-injury recovery.352 

Finally, further elucidation of the early and late inflammatory responses with stroke may identify 

targeted immune modulatory treatments that were developed for other conditions (such as multiple 

sclerosis) but may have efficacy to prevent long-term cognitive and functional decline after stroke.353    

 

The next step: future studies on trajectories and vascular events 

The above analyses suggest several next steps, in terms of hypotheses and study designs, which would 

elucidate and expand upon the findings discussed above.  Some of these steps can leverage data 

available in existing datasets, but in most cases new data collection would be necessary due to the 

requirements for accurate repeated measurement of variables over time.  For example, in order to clarify 

the impact of inflammatory and imaging markers on functional trajectories, more formal and thorough 

mediation analysis would need to be performed.  Also, testing for heterogeneous trajectories of functional 
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change over time is necessary, for example with latent class analysis, in order to better understand the 

influences on the time course of disability in relation to vascular events.  Newer analytic techniques can 

also statistically estimate the stability of trajectories of disability over time and may useful in future 

studies.354 

Repeated measures of not only outcomes but also longitudinal measures of covariates may be 

necessary, with recent research showing various trajectories of variables such as depression after 

vascular events such as MI.355, 356 In the analyses conducted here, most covariates were measured once 

at baseline, but the status and severity of comorbid conditions is more likely to change over time rather 

than remain constant as one ages.  Many existing longitudinal epidemiological studies do not routinely re-

measure comorbidities over follow-up, and most do not measure severity or control of such conditions as 

hypertension and diabetes, which may have an impact on functional status.   

The inflammatory processes surrounding cerebrovascular disease are complex, and likely distinct 

inflammatory biomarkers vary simultaneously.  The variation of a single biomarker is unlikely to effectively 

capture the predictive potential of a panel of biomarkers varying together.  Hence, a future analysis will 

involve mixtures analysis of multiple biomarkers at once, or other data reduction techniques with even 

larger numbers of markers.  An early attempt at this was made in NOMAS in which the relative levels of 

CRP and IL6 were analyzed.201  A 3-level variable was created of CRP-dominant, IL6-dominant, or 

codominant levels, and there was increased risk of ischemic stroke in the CRP-dominant group and 

decreased risk in the IL-6–dominant group.  A similar approach was used among 718 women followed for 

5 years in the Women’s Health and Aging Study,357 in which the combination of low IGF-I levels and high 

IL6 levels were associated with cross-sectional disability subsequent death and disability.  Newer analytic 

techniques involving clustering and data reduction through machine learning algorithms may have better 

performance and would be able to incorporate larger numbers of biomarkers simultaneously.  Also, even 

when significant associations between biomarkers and outcomes are found, adding a biomarker to 

traditional risk factors may not always improve predictive ability of the models,358 and risk prediction is 

one important goal of biomarker development.    

 As imaging technology advances, studies will have to be designed to capture and translate 

meaningful structural and brain functional data and relate these to trajectories of patient-centered 
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outcomes.  For example, longitudinal functional MRI studies conducted in a small number of patients up 

to 3 months after stroke have shown change in functional networks in brain regions affected by stroke,359 

but longer term follow-up with repeated scans are necessary to elucidate mechanisms of long-term 

decline.  An ongoing study (“CANVAS”) will examine whether reduction in brain volume – measured with 

repeated MRIs over 3 years -- is associated with cognitive decline after stroke.360 

 

Conclusions 

There are several implications of the research discussed here.  One is that if there was an exclusive 

focus on events as outcomes, which has traditionally been the approach of many observational studies 

and clinical trials, the long-term declines seen in these analyses would be missed and the burden of 

disease would be underestimated.  These points highlight the importance of measuring patient-centered 

outcomes, analyzing not only single time-points but trajectories over time, and the use of epidemiologic 

and not only administrative (claims-based and event-based) data, due to the need to reliably measure 

outcomes.  This research also highlights the likely central role that “subclinical” disease plays in functional 

ability and health.  By identifying subclinical markers (such as SBI and WMHV) and inflammatory 

biomarkers (such as TNFR1) that have an impact on functional trajectories, these previously ignored or 

unmeasured elements should move to the forefront of disease prediction, out of the realm of the 

“subclinical” and into the realm of active and regular use in disease management and prevention.   

 There are several possible future directions.  One is that trial outcomes may move from the 

surveillance of events to the regular measurement of trajectories.  In order to increase precision and 

reduce costs, trials and observational studies may begin to employ novel technologies to repeatedly 

measure functional outcomes, such as smartphone apps or passive activity trackers.361  As 

measurements of subclinical disease become more refined, there should be a greater focus on the 

detection of previously unseen outcomes.  This would hopefully lead to the development of targeted 

therapeutics and more effective prevention not only of vascular events but also unfavorable functional 

and cognitive trajectories, which have a large and previously unseen impact on population health.   
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Figure D1. Model integrating Alzheimer's disease immunohistology and biomarkers (Reproduced 
from Jack et al.257) 
 
 

 
“The threshold for biomarker detection of pathophysiological changes is denoted by the black horizontal 
line. The grey area denotes the zone in which abnormal pathophysiological changes lie below the 
biomarker detection threshold. In this figure, tau pathology precedes Aβ deposition in time, but only early 
on at a subthreshold biomarker detection level. Aβ deposition then occurs independently and rises above 
the biomarker detection threshold (purple and red arrows). This induces acceleration of tauopathy and 
CSF tau then rises above the detection threshold (light blue arrow). Later still, FDG PET and MRI (dark 
blue arrow) rise above the detection threshold. Finally, cognitive impairment becomes evident (green 
arrow), with a range of cognitive responses that depend on the individual's risk profile (light green-filled 
area). Aβ=amyloid β. FDG=fluorodeoxyglucose. MCI=mild cognitive impairment.”257 
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Figure D2. Three disparate functional trajectories with the same 90-day outcome 
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Appendix A1. Distribution of Barthel index scores in the entire prospective cohort 

Barthel index score Frequency Percent Cumulative
Frequency 

Cumulative
Percent 

0 182 0.48 182 0.48 

5 148 0.39 330 0.87 

10 145 0.38 475 1.25 

15 125 0.33 600 1.57 

20 108 0.28 708 1.86 

25 117 0.31 825 2.16 

30 137 0.36 962 2.52 

35 135 0.35 1097 2.88 

40 145 0.38 1242 3.26 

45 207 0.54 1449 3.80 

50 267 0.70 1716 4.50 

55 283 0.74 1999 5.25 

60 373 0.98 2372 6.22 

65 434 1.14 2806 7.36 

70 506 1.33 3312 8.69 

75 713 1.87 4025 10.56 

80 1032 2.71 5057 13.27 

85 1445 3.79 6502 17.06 

90 2622 6.88 9124 23.94 

95 5923 15.54 15047 39.48 

100 23063 60.52 38110 100.00 
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Appendix A2. Distributions of C-reactive protein and other biomarkers 
A) C-reactive protein distributions according to CDC/AHA risk stratification levels 

C-reactive protein level Frequency Percent Cumulative 
Frequency 

Cumulative 
Percent 

<1mg/L 524 23.39 524 23.39 

1-3 mg/L 710 31.70 1234 55.09 

>3 mg/L 1006 44.91 2240 100.00 

Frequency Missing = 873 
 
B) CRP-dominant versus IL-6-dominant profiles: conceptual description 

 
Jorge Luna et al. Stroke. 2014; 45: 979-987201 
 
C) Frequencies of CRP-dominant versus IL-6-dominant profiles 
Dominance 
profile 

Frequency Percent Cumulative 
frequency 

Cumulative 
percent 

Reference 593 35.81 593 35.81 
IL-6-dominant 561 33.88 1154 69.69 
CRP-dominant 502 30.31 1656 100.00 
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Appendix A3. Associations between log of tumor necrosis factor receptor-1 protein levels and 
trajectories of functional status 

Variable Change 
in BI 
score 

95% CI p-value 

Unadjusted model:    
Annual change in BI score -1.03 -1.12, -0.94 <.0001 
Change in BI score per unit increase in log of TNFR1 
levels 

-4.50 -6.18, -2.82 <.0001 

Additional annual change in BI score per unit 
increase in log of TNFR1 levels 

-0.16 -0.40, 0.09 0.2 

Adjusted for demographics:*    
Annual change in BI score -1.02 -1.11, -0.93 <.0001 
Change in BI score per unit increase in log of TNFR1 
levels 

-2.60 -4.19, -1.01 0.0014 

Additional annual change in BI score per unit 
increase in log of TNFR1 levels 

-0.11 -0.34, 0.13 0.4 

Adjusted for vascular risk factors:**    
Annual change in BI score -1.03 -1.12, -0.94 <.0001 
Change in BI score per unit increase in log of TNFR1 
levels 

-1.76 -3.35, -0.17 0.03 

Additional annual change in BI score per unit 
increase in log of TNFR1 levels 

-0.11 -0.35, 0.12 0.3 

Adjusted for social variables:†    
Annual change in BI score -1.02 -1.11, -0.93 <.0001 
Change in BI score per unit increase in log of TNFR1 
levels 

-1.51 -3.11, 0.10 0.066 

Additional annual change in BI score per unit 
increase in log of TNFR1 levels 

-0.13 -0.37, 0.11 0.3 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.51 -0.73, -0.28 <.0001 
Change in BI score per unit increase in log of TNFR1 
levels 

-1.06 -1.86, -0.25 0.01 

Additional annual change in BI score per unit 
increase in log of TNFR1 levels 

0.06 -0.49, 0.61 0.8 

Adjusted for stroke and MI:π    
Annual change in BI score -0.39 -0.61, -0.17 0.0005 
Change in BI score per unit increase in log of TNFR1 
levels 

-1.22 -2.02, -0.42 0.003 

Additional annual change in BI score per unit 
increase in log of TNFR1 levels 

-0.04 -0.51, 0.42 0.9 

TNFR1=tumor necrosis factor receptor-1; BI=Barthel index; MI=myocardial infarction 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Appendix A4. Associations between log of tumor necrosis factor receptor-1 protein levels and 
trajectories of functional status; sensitivity analysis with 0 values set to missing 

Variable Change 
in BI 
score 

95% CI p-value 

Unadjusted model:    
Annual change in BI score -1.03 -1.12, -0.94 <.0001 
Change in BI score per unit increase in log of TNFR1 
levels 

-5.30 -6.64, -3.97 <.0001 

Additional annual change in BI score per unit 
increase in log of TNFR1 levels 

-0.18 -0.43, 0.06 0.15 

Adjusted for demographics:*    
Annual change in BI score -1.03 -1.12, -0.94 <.0001 
Change in BI score per unit increase in log of TNFR1 
levels 

-3.19 -4.58, -1.79 <.0001 

Additional annual change in BI score per unit 
increase in log of TNFR1 levels 

-0.13 -0.37, 0.11 0.3 

Adjusted for vascular risk factors:**    
Annual change in BI score -1.03 -1.12, -0.94 <.0001 
Change in BI score per unit increase in log of TNFR1 
levels 

-2.36 -3.74, -0.98 0.0008 

Additional annual change in BI score per unit 
increase in log of TNFR1 levels 

-0.14 -0.38, 0.10 0.3 

Adjusted for social variables:†    
Annual change in BI score -1.02 -1.11, -0.93 <.0001 
Change in BI score per unit increase in log of TNFR1 
levels 

-2.11 -3.50, -0.73 0.003 

Additional annual change in BI score per unit 
increase in log of TNFR1 levels 

-0.15 -0.39, 0.09 0.2 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.60 -0.80, -0.40 <.0001 
Change in BI score per unit increase in log of TNFR1 
levels 

-0.89 -1.74, -0.05 0.04 

Additional annual change in BI score per unit 
increase in log of TNFR1 levels 

-0.32 -0.67, 0.03 0.072 

Adjusted for stroke and MI:π    
Annual change in BI score -0.47 -0.67, -0.27 <.0001 
Change in BI score per unit increase in log of TNFR1 
levels 

-1.12 -1.97, -0.27 0.0096 

Additional annual change in BI score per unit 
increase in log of TNFR1 levels 

-0.34 -0.67, -0.01 0.046 

TNFR1=tumor necrosis factor receptor-1; BI=Barthel index; MI=myocardial infarction 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Appendix A5. Associations between quartiles of tumor necrosis factor receptor-1 protein levels 
and trajectories of functional status 

Variable Change 
in BI 
score 

95% CI p-value 

Unadjusted model:    
Annual change in BI score -0.90 -1.07, -0.73 <.0001 
Change in BI score with 2nd quartile of TNFR1 levels€ -1.03 -2.19, 0.14 0.08 
Change in BI score with 3rd quartile of TNFR1 levels€ -1.13 -2.35, 0.09 0.07 
Change in BI score with 4th quartile of TNFR1 levels€ -5.52 -7.09, -3.94 <.0001 
Additional annual change in BI score with 2nd quartile of 
TNFR1 levels€ 

0.09 -0.13, 0.31 0.4 

Additional annual change in BI score with 3rd quartile of 
TNFR1 levels€ 

-0.17 -0.41, 0.07 0.17 

Additional annual change in BI score with 4th quartile of 
TNFR1 levels€ 

-0.62 -0.92, -0.32 <.0001 

Adjusted for demographics:*    
Annual change in BI score -0.93 -1.10, -0.76 <.0001 
Change in BI score with 2nd quartile of TNFR1 levels€ -0.90 -2.22, 0.42 0.18 
Change in BI score with 3rd quartile of TNFR1 levels€ -0.04 -1.37, 1.28 0.9 
Change in BI score with 4th quartile of TNFR1 levels€ -2.35 -4.03, -0.67 0.006 
Additional annual change in BI score with 2nd quartile of 
TNFR1 levels€ 

0.11 -0.11, 0.34 0.3 

Additional annual change in BI score with 3rd quartile of 
TNFR1 levels€ 

-0.12 -0.36, 0.12 0.3 

Additional annual change in BI score with 4th quartile of 
TNFR1 levels€ 

-0.53 -0.82, -0.23 0.0004 

Adjusted for vascular risk factors:**    
Annual change in BI score -0.94 -1.11, -0.76 <.0001 
Change in BI score with 2nd quartile of TNFR1 levels€ -0.67 -2.01, 0.67 0.3 
Change in BI score with 3rd quartile of TNFR1 levels€ 0.29 -1.04, 1.62 0.7 
Change in BI score with 4th quartile of TNFR1 levels€ -0.96 -2.63, 0.71 0.3 
Additional annual change in BI score with 2nd quartile of 
TNFR1 levels€ 

0.11 -0.11, 0.33 0.3 

Additional annual change in BI score with 3rd quartile of 
TNFR1 levels€ 

-0.10 -0.34, 0.14 0.4 

Additional annual change in BI score with 4th quartile of 
TNFR1 levels€ 

-0.54 -0.83, -0.24 0.0004 

Adjusted for social variables:†    
Annual change in BI score -0.92 -1.09, -0.75 <.0001 
Change in BI score with 2nd quartile of TNFR1 levels€ -0.44 -1.77, 0.89 0.5 
Change in BI score with 3rd quartile of TNFR1 levels€ 0.52 -0.81, 1.85 0.4 
Change in BI score with 4th quartile of TNFR1 levels€ -0.62 -2.28, 1.04 0.5 
Additional annual change in BI score with 2nd quartile of 
TNFR1 levels€ 

0.10 -0.12, 0.32 0.4 

Additional annual change in BI score with 3rd quartile of 
TNFR1 levels€ 

-0.11 -0.35, 0.13 0.4 

Additional annual change in BI score with 4th quartile of 
TNFR1 levels€ 

-0.56 -0.85, -0.26 0.0002 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.39 -0.61, -0.16 0.0007 
Change in BI score with 2nd quartile of TNFR1 levels€ -0.23 -0.90, 0.45 0.5 
Change in BI score with 3rd quartile of TNFR1 levels€ 0.38 -0.49, 1.25 0.4 
Change in BI score with 4th quartile of TNFR1 levels€ -0.21 -1.26, 0.83 0.7 
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Additional annual change in BI score with 2nd quartile of 
TNFR1 levels€ 

0.23 -0.11, 0.58 0.18 

Additional annual change in BI score with 3rd quartile of 
TNFR1 levels€ 

-0.56 -1.25, 0.12 0.11 

Additional annual change in BI score with 4th quartile of 
TNFR1 levels€ 

-0.73 -1.38, -0.09 0.03 

Adjusted for stroke and MI:π    
Annual change in BI score -0.21 -0.42, 0.003 0.054 
Change in BI score with 2nd quartile of TNFR1 levels€ -0.18 -0.83, 0.47 0.6 
Change in BI score with 3rd quartile of TNFR1 levels€ 0.28 -0.58, 1.15 0.5 
Change in BI score with 4th quartile of TNFR1 levels€ -0.56 -1.60, 0.47 0.3 
Additional annual change in BI score with 2nd quartile of 
TNFR1 levels€ 

0.13 -0.19, 0.46 0.4 

Additional annual change in BI score with 3rd quartile of 
TNFR1 levels€ 

-0.65 -1.34, 0.04 0.06 

Additional annual change in BI score with 4th quartile of 
TNFR1 levels€ 

-0.72 -1.34, -0.10 0.02 

TNFR1=tumor necrosis factor receptor-1; BI=Barthel index; MI=myocardial infarction; SD=standard 
deviation 
€compared to the 1st quartile of TNFR1 levels 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Appendix A6. Associations between the highest quartile of tumor necrosis factor receptor-1 
protein levels and trajectories of functional status 

Variable Change in 
BI score 

95% CI p-value 

Unadjusted model:    
Annual change in BI score -0.92 -1.01, -0.82 <.0001 
Change in BI score with highest quartile of TNFR1 
levels€ 

-4.78 -6.22, -3.33 <.0001 

Additional annual change in BI score with highest 
quartile of TNFR1 levels€ 

-0.60 -0.87, -0.34 <.0001 

Adjusted for demographics:*    
Annual change in BI score -0.93 -1.02, -0.83 <.0001 
Change in BI score with highest quartile of TNFR1 
levels€ 

-2.01 -3.51, -0.50 0.009 

Additional annual change in BI score with highest 
quartile of TNFR1 levels€ 

-0.53 -0.79, -0.27 <.0001 

Adjusted for vascular risk factors:**    
Annual change in BI score -0.93 -1.02, -0.83 <.0001 
Change in BI score with highest quartile of TNFR1 
levels€ 

-0.81 -2.28, 0.66 0.3 

Additional annual change in BI score with highest 
quartile of TNFR1 levels€ 

-0.55 -0.80, -0.29 <.0001 

Adjusted for social variables:†    
Annual change in BI score -0.92 -1.01, -0.82 <.0001 
Change in BI score with highest quartile of TNFR1 
levels€ 

-0.62 -2.09, 0.84 0.4 

Additional annual change in BI score with highest 
quartile of TNFR1 levels€ 

-0.56 -0.82, -0.30 <.0001 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.43 -0.60, -0.26 <.0001 
Change in BI score with highest quartile of TNFR1 
levels€ 

-0.19 -1.20, 0.82 0.7 

Additional annual change in BI score with highest 
quartile of TNFR1 levels€ 

-0.69 -1.32, -0.06 0.03 

Adjusted for stroke and MI:π    
Annual change in BI score -0.29 -0.46, -0.12 0.0009 
Change in BI score with highest quartile of TNFR1 
levels€ 

-0.49 -1.48, 0.51 0.3 

Additional annual change in BI score with highest 
quartile of TNFR1 levels€ 

-0.64 -1.25, -0.04 0.04 

TNFR1=tumor necrosis factor receptor-1; BI=Barthel index; MI=myocardial infarction; SD=standard 
deviation 
€versus all other quartiles 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
 



 
 
 

212 
 

Appendix A7. Associations between log of interleukin-6 levels and trajectories of functional 
status; sensitivity analysis with 0 values set to missing 

Variable Change in 
BI score 

95% CI p-value 

Unadjusted model:    
Annual change in BI score -0.97 -1.07, -0.88 <.0001 
Change in BI score per unit increase in log of IL6 levels -0.45 -0.88, -0.03 0.04 
Additional annual change in BI score per unit increase in 
log of IL6 levels 

-0.13 -0.23, -0.03 0.01 

Adjusted for demographics:*    
Annual change in BI score -0.98 -1.07, -0.88 <.0001 
Change in BI score per unit increase in log of IL6 levels -0.05 -0.47, 0.38 0.8 
Additional annual change in BI score per unit increase in 
log of IL6 levels 

-0.13 -0.23, -0.03 0.009 

Adjusted for vascular risk factors:**    
Annual change in BI score -0.98 -1.08, -0.89 <.0001 
Change in BI score per unit increase in log of IL6 levels 0.06 -0.37, 0.48 0.8 
Additional annual change in BI score per unit increase in 
log of IL6 levels 

-0.13 -0.23, -0.03 0.008 

Adjusted for social variables:†    
Annual change in BI score -0.97 -1.06, -0.88 <.0001 
Change in BI score per unit increase in log of IL6 levels 0.07 -0.36, 0.50 0.8 
Additional annual change in BI score per unit increase in 
log of IL6 levels 

-0.13 -0.23, -0.03 0.01 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.44 -0.59, -0.29 <.0001 
Change in BI score per unit increase in log of IL6 levels -0.11 -0.37, 0.15 0.4 
Additional annual change in BI score per unit increase in 
log of IL6 levels 

-0.06 -0.17, 0.06 0.3 

Adjusted for stroke and MI:π    
Annual change in BI score -0.32 -0.47, -0.16 <.0001 
Change in BI score per unit increase in log of IL6 levels -0.16 -0.42, 0.11 0.2 
Additional annual change in BI score per unit increase in 
log of IL6 levels 

-0.09 -0.21, 0.02 0.11 

IL6=interleukin-6; BI=Barthel index; MI=myocardial infarction 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Appendix A8. Associations between dichotomized interleukin-6 levels and trajectories of 
functional status 

Variable Change in 
BI score 

95% CI p-value 

Unadjusted model:    
Annual change in BI score -0.89 -1.01, -0.77 <.0001 
Change in BI score with IL-6 levels above median -1.10 -2.18, -0.02 0.046 
Additional annual change in BI score with IL-6 levels 
above median 

-0.20 -0.38, -0.01 0.04 

Adjusted for demographics:*    
Annual change in BI score -0.90 -1.02, -0.78 <.0001 
Change in BI score with IL-6 levels above median -0.12 -1.25, 1.02 0.8 
Additional annual change in BI score with IL-6 levels 
above median 

-0.18 -0.36, 0.002 0.052 

Adjusted for vascular risk factors:**    
Annual change in BI score -0.91 -1.03, -0.79 <.0001 
Change in BI score with IL-6 levels above median 0.27 -0.86, 1.41 0.6 
Additional annual change in BI score with IL-6 levels 
above median 

-0.17 -0.36, 0.01 0.06 

Adjusted for social variables:†    
Annual change in BI score -0.90 -1.02, -0.78 <.0001 
Change in BI score with IL-6 levels above median 0.31 -0.81, 1.43 0.6 
Additional annual change in BI score with IL-6 levels 
above median 

-0.16 -0.34, 0.02 0.076 

Adjusted for mood and cognitive variables:‡    
Annual change in BI score -0.43 -0.64, -0.22 <.0001 
Change in BI score with IL-6 levels above median -0.31 -0.99, 0.36 0.4 
Additional annual change in BI score with IL-6 levels 
above median 

-0.05 -0.40, 0.31 0.8 

Adjusted for stroke and MI:π    
Annual change in BI score -0.19 -0.36, -0.03 0.02 
Change in BI score with IL-6 levels above median -0.41 -1.08, 0.26 0.2 
Additional annual change in BI score with IL-6 levels 
above median 

-0.22 -0.55, 0.10 0.2 

IL-6=interleukin-6; BI=Barthel index; MI=myocardial infarction 
*adjusted for: baseline age, sex, and race-ethnicity 
**additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, 
physical activity, alcohol use, smoking, and body mass index 
†additionally adjusted for: marital status, insurance, number of friends, and years lived in the 
neighborhood 
‡additionally adjusted for: depression, mini-mental state score, and Spitzer quality of life index 
πadditionally adjusted for stroke or myocardial infarction occurring during follow-up 
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Appendix A9. Data on hospitalizations 
A) Number of hospitalizations in entire follow-up dataset: 
Event: hospitalized since our last contact 
Variable Frequency Percent Cumulative 

frequency 
Cumulative 

percent 
Not hospitalized 30119 79.80 30119 79.80 
Hospitalized 7625 20.20 37744 100.00 
Frequency Missing = 4184 
 
B) Distribution of number of hospitalizations per person: 

Number Frequency Percent Cumulative
Frequency 

Cumulative
Percent 

0 807 24.47 807 24.47 

1 711 21.56 1518 46.03 

2 591 17.92 2109 63.95 

3 406 12.31 2515 76.26 

4 289 8.76 2804 85.02 

5 179 5.43 2983 90.45 

6 124 3.76 3107 94.21 

7 77 2.33 3184 96.54 

8 45 1.36 3229 97.91 

9 31 0.94 3260 98.85 

10 19 0.58 3279 99.42 

11 12 0.36 3291 99.79 

12 2 0.06 3293 99.85 

13 2 0.06 3295 99.91 

14 2 0.06 3297 99.97 

17 1 0.03 3298 100.00 

 
C) Distribution of number of follow-ups per person: 

Number Frequency Percent Cumulative
Frequency 

Cumulative
Percent 

1 127 3.85 127 3.85 

2 81 2.46 208 6.31 

3 99 3.00 307 9.31 

4 104 3.15 411 12.46 

5 110 3.34 521 15.80 
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Number Frequency Percent Cumulative
Frequency 

Cumulative
Percent 

6 122 3.70 643 19.50 

7 102 3.09 745 22.59 

8 92 2.79 837 25.38 

9 95 2.88 932 28.26 

10 130 3.94 1062 32.20 

11 107 3.24 1169 35.45 

12 110 3.34 1279 38.78 

13 181 5.49 1460 44.27 

14 319 9.67 1779 53.94 

15 393 11.92 2172 65.86 

16 377 11.43 2549 77.29 

17 240 7.28 2789 84.57 

18 335 10.16 3124 94.72 

19 117 3.55 3241 98.27 

20 45 1.36 3286 99.64 

21 8 0.24 3294 99.88 

22 3 0.09 3297 99.97 

24 1 0.03 3298 100.00 

 
D) Summary statistics for the ratio of (number of hospitalizations):(number of follow-ups): 

Mean Median Lower 
Quartile 

Upper 
Quartile 

Std Dev Minimum Maximum N 
Miss 

N 

0.1952870 0.1428571 0.0526316 0.3076923 0.1873152 0 0.9285714 0 3298

 
E) Amount of time (in years) between post-non-stroke/MI hospitalization assessment and previous 
assessment (in dataset that excludes stroke and MI hospitalizations) 

Mean Median Lower 
Quartile 

Upper 
Quartile 

Std Dev Minimum Maximum N 
Miss 

N 

1.0923451 1.0184805 0.9363450 1.1143053 0.5232751 0 11.4934976 32611 5965

 
F) Amount of time (in years) between post-hospitalization assessment and previous assessment 
(including stroke and MI hospitalizations and non-“vascular” hospitalizations) 

Mean Median Lower 
Quartile 

Upper 
Quartile 

Std Dev Minimum Maximum N 
Miss 

N 

1.0508652 1.0130048 0.9144422 1.1088296 0.5442740 0 11.4934976 32611 6304
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Appendix A10. Examination of the impact of loss to follow-up and death 
A) Time between last functional assessment and death: 
N=  1604 
N missing= 11 
Mean=   0.74 years 
Std dev=  0.76 years 
Median=  0.60 years 
Max=   7.62 years 
Q3 =   0.93 years 
Q1 =   0.29 years 
 
B) Distribution of last ADL scores among those who died 

ADLSCORE Frequency Percent Cumulative
Frequency 

Cumulative
Percent 

0 90 5.57 90 5.57 

5 51 3.16 141 8.73 

10 41 2.54 182 11.27 

15 25 1.55 207 12.82 

20 19 1.18 226 13.99 

25 29 1.80 255 15.79 

30 31 1.92 286 17.71 

35 34 2.11 320 19.81 

40 34 2.11 354 21.92 

45 38 2.35 392 24.27 

50 50 3.10 442 27.37 

55 40 2.48 482 29.85 

60 55 3.41 537 33.25 

65 55 3.41 592 36.66 

70 43 2.66 635 39.32 

75 75 4.64 710 43.96 

80 76 4.71 786 48.67 

85 82 5.08 868 53.75 

90 147 9.10 1015 62.85 

95 179 11.08 1194 73.93 

100 421 26.07 1615 100.00 

 
C) Distribution of last ADL scores among those who died 
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D) Categorization of the interval between last ADL and death, by Barthel index score 
 

Frequency 

Percent 

Row Pct 

Col Pct 
 

 

BI score Interval between last ADL and death (yr) 

<0.5  0.5 - 1 1 - 1.5 >1.5 Total 

<60 295 

18.27

61.20

42.45

134 

8.30 

27.80

22.95

38 

2.35 

7.88 

19.29

15 

0.93 

3.11 

10.79

482 

29.85 

 

60-90 197 

12.20

36.96

28.35

221 

13.68

41.46

37.84

72 

4.46 

13.51

36.55

43 

2.66 

8.07 

30.94

533 

33.00 

 

95-100 203 

12.57

33.83

29.21

229 

14.18

38.17

39.21

87 

5.39 

14.50

44.16

81 

5.02 

13.50

58.27

600 

37.15 

 



 
 
 

219 
 

Total 695 

43.03

584 

36.16

197 

12.20

139 

8.61 

1615 

100.00 
 

 

 
E) Distribution of last ADL score among survivors: 

 
 
F) Distribution of maximum follow-up times among survivors: 

Mean Median Lower 
Quartile 

Upper 
Quartile 

Std Dev Minimum Maximum N 
Miss

N 

15.1775060 15.0773443 13.5167693 16.3613963 2.5662882 0 20.6160164 1 1683
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Appendix B1. Location of silent brain infarcts, based on original dataset 
A) Brain location of infarcts 
Infarct location Frequency Percent 
Basal ganglia 49 18.4 
Brain stem 4 1.5 
Caudate 20 7.5 
Cerebellum 28 10.5 
External capsule 15 5.6 
Extreme capsule 8 3.0 
Frontal cortex 23 8.6 
Frontal white matter 42 15.8 
Hippocampus 1 0.4 
Internal capsule 12 4.5 
Occipital cortex 1 0.4 
Occipital white matter 4 1.5 
Parietal cortex 11 4.1 
Parietal white matter 23 8.6 
Posterior cerebral artery territory 2 0.8 
Temporal cortex 3 1.1 
Temporal white matter 2 0.8 
Thalamus 18 6.8 
 
B) Number of superficial/cortical silent brain infarcts (52 missing) 
Number Frequency Percent Cumulative 

Frequency 
Cumulative

Percent 
0 1133 91.52 1133 91.52 
1 89 7.19 1222 98.71 
2 11 0.89 1233 99.60 
3 4 0.32 1237 99.92 
4 1 0.08 1238 100.00 
 
C) Number of non-superficial/subcortical silent brain infarcts (52 missing) 
Number Frequency Percent Cumulative 

Frequency 
Cumulative

Percent 
0 1128 91.11 1128 91.11 
1 88 7.11 1216 98.22 
2 19 1.53 1235 99.76 
3 3 0.24 1238 100.00 
 
D) Superficial versus non-superficial silent brain infarct location (52 missing) 
Location Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
None 1045 84.41 1045 84.41 
Superficial 83 6.70 1128 91.11 
Other 88 7.11 1216 98.22 
Both 22 1.78 1238 100.00 
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Appendix B2. Silent brain infarcts, perivascular spaces, and lacunar infarcts based on new 
dataset 

A) Frequency of silent brain infarcts (lacunar + cortical + cerebellar, 82 missing) 
 Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
No silent brain infarct 964 79.80 964 79.80 
Silent brain infarct 244 20.20 1208 100.00 
 
B) Frequency of large perivascular spaces (82 missing) 
 Frequency Percent Cumulative 

Frequency 
Cumulative

Percent 
No large perivascular spaces 700 57.95 700 57.95 
At least one perivascular space 508 42.05 1208 100.00 
  
C) Number of large perivascular spaces per individual (82 missing) 
Number Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
0 700 57.95 700 57.95 
1 255 21.11 955 79.06 
2 169 13.99 1124 93.05 
3 52 4.30 1176 97.35 
4 18 1.49 1194 98.84 
5 9 0.75 1203 99.59 
6 3 0.25 1206 99.83 
8 2 0.17 1208 100.00 
 
D) Frequency of lacunar infarct (82 missing) 
 Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
No lacunar infarct 993 82.20 993 82.20 
Lacunar infarct 215 17.80 1208 100.00 
 
E) Distribution of the number of lacunar infarcts (82 missing) 
Number Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
0 993 82.20 993 82.20 
1 116 9.60 1109 91.80 
2 55 4.55 1164 96.36 
3 27 2.24 1191 98.59 
4 10 0.83 1201 99.42 
5 3 0.25 1204 99.67 
6 3 0.25 1207 99.92 
7 1 0.08 1208 100.00 
 
F) Total perivascular space score (82 missing) 
Score Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
0 110 9.11 110 9.11 
1 34 2.81 144 11.92 
2 107 8.86 251 20.78 
3 113 9.35 364 30.13 
4 193 15.98 557 46.11 
5 141 11.67 698 57.78 
6 126 10.43 824 68.21 
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7 84 6.95 908 75.17 
8 74 6.13 982 81.29 
9 58 4.80 1040 86.09 
10 36 2.98 1076 89.07 
11 47 3.89 1123 92.96 
12 28 2.32 1151 95.28 
13 12 0.99 1163 96.27 
14 14 1.16 1177 97.43 
15 9 0.75 1186 98.18 
16 9 0.75 1195 98.92 
17 6 0.50 1201 99.42 
18 2 0.17 1203 99.59 
19 2 0.17 1205 99.75 
20 2 0.17 1207 99.92 
22 1 0.08 1208 100.00 
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Appendix B3. Location of lacunar infarct, in new dataset 
A) Three-level location variable (83 missing) 
Location Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
None 2154 85.10 2154 85.10 
Subcortical 122 4.82 2276 89.92 
Cortical 255 10.08 2531 100.00 
 
B) Four-level location variable (83 missing) 
Location Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
None 2154 85.10 2154 85.10 
Subcortical 109 4.31 2263 89.41 
Cortical 255 10.08 2518 99.49 
Brainstem and 
cerebellum 

13 0.51 2531 100.00 

 
C) Separate location variables, with number of infarcts in each location 
 1) Subcortical location (total infarcts=109) 
Number of subcortical infarcts Frequency Percent Cumulative 

Frequency 
Cumulative

Percent 
0 1203 93.26 1203 93.26 
1 70 5.43 1273 98.68 
2 13 1.01 1286 99.69 
3 3 0.23 1289 99.92 
4 1 0.08 1290 100.00 
 
 2) Cortical location (total infarcts=255) 
Number of cortical infarcts Frequency Percent Cumulative 

Frequency 
Cumulative

Percent 
0 1129 87.52 1129 87.52 
1 102 7.91 1231 95.43 
2 40 3.10 1271 98.53 
3 10 0.78 1281 99.30 
4 6 0.47 1287 99.77 
6 2 0.16 1289 99.92 
7 1 0.08 1290 100.00 
 
 3) Brainstem location (total infarcts=13) 
Number of cortical infarcts Frequency Percent Cumulative 

Frequency 
Cumulative

Percent 
0 1277 98.99 1277 98.99 
1 13 1.01 1290 100.00 
 
D) Location of silent brain infarcts 
Location Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
None 1076 83.41 1076 83.41 
Cortical 117 9.07 1193 92.48 
Subcortical 53 4.11 1246 96.59 
Both cortical and 
subcortical 

44 3.41 1290 100.00 
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Appendix B4. Distribution of time (in years) from baseline enrollment to time of MRI 

Mean Median Lower 
Quartile 

Upper 
Quartile 

Std Dev Minimum Maximum N 
Miss 

N 

6.0800216 6.2381930 4.2874743 8.2327173 3.4327731 0 14.0177960 0 1290
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Appendix B5. Distributions of inflammatory biomarkers in those with MRI data 
A) Distributions 
Variable Mean Median Lower 

Quartile 
Upper 

Quartile 
Std 
Dev 

Minimum Maximum N 
Miss

N 

C-reactive 
protein 

4.46 2.29 0.98 5.48 7.26 0.05 93.40 498 792 

Tumor 
necrosis 
factor 
receptor-1 

2.23 2.16 1.71 2.65 0.85 0.09 6.40 639 651 

Interleukin-6 42.93 1.35 0.81 2.39 451.02 0.00 5000.00 680 610 

LpPLA2 
activity 

301.78 297.64 237.25 361.07 90.06 28.12 888.54 595 695 

LpPLA2 
mass 

116.58 113.38 96.10 136.23 29.03 37.67 216.58 605 685 

LpPLA2=lipoprotein phospholipase A2 
 
B) Distribution plots of each inflammatory biomarker 
 1) C-reactive protein: 

 
 
 2) log of C-reactive protein values 

 



 
 
 

227 
 

 3) Interleukin-6, with 5 values of 5000 set to missing: 

 
 
 4) log of interleukin-6 levels: 

 
 
 5) Tumor necrosis factor receptor-1: 

 
 
 6) Lipoprotein phospholipase A2 mass: 
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 7) Lipoprotein phospholipase A2 activity: 
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Appendix B6. Baseline characteristics of the MRI cohort, by availability of inflammatory labs 
Variable Cohort with 

inflammator
y labs 

Cohort 
without 

inflammatory 
labs 

p-value 

Number of participants, No. (%) 911 (70.6) 379 (29.4)  
Biological characteristics:    
Age, mean (SD), y 64.7 (8.1) 64.1 (9.1) 0.3 
Body mass index, mean (SD), kg/m2 28.0 (4.7) 27.6 (5.1) 0.3 
    
Demographics:    
Male, No. (%) 366 (40.2) 144 (38.0) 0.5 
Race-ethnicity: 
  Non-Hispanic white, No. (%) 
  Non-Hispanic black, No. (%) 
  Hispanic, No. (%) 
  Other, No. (%) 

 
134 (14.7) 
159 (17.5) 
596 (65.4) 

22 (2.4) 

 
57 (15.0) 
64 (16.9) 

251 (66.2) 
7 (1.9) 

0.9 

Received at least high school education, No. (%) 410 (45.0) 182 (48.0) 0.3 
Marital status, No. (%) married  345 (37.9) 198 (52.2) <0.0001 
Health insurance, No. (%)  
   Medicaid or no insurance 
   Medicare or private insurance 

 
441 (48.4) 
470 (51.6)  

 
172 (45.4) 
207 (54.6) 

0.3 

Medicaid health insurance, No. (%)  299 (32.8) 119 (31.4) 0.6 
Medicare health insurance, No. (%)  416 (45.7) 181 (47.8) 0.5 
Private insurance, No. (%) 373 (40.9) 168 (44.3) 0.3 
    
Vascular risk factors, No. (%)    
Hypertension  626 (68.7) 235 (62.0) 0.02 
Systolic BP, mean (SD) 140.6 (19.8) 140.7 (1.5) 0.9 
Diastolic BP, mean (SD) 83.8 (10.6) 82.8 (10.6) 0.3 
Alcohol consumption [NR] [NR] 0.2 
Physical activity [NR] [NR] 0.8 
Diabetes mellitus  168 (18.4) 77 (20.3) 0.4 
Smoking: 
   Never 
   Former 
   Current 

 
437 (48.0) 
346 (38.0) 
128 (14.1) 

 
175 (46.2) 
150 (39.6) 
54 (14.3) 

0.8 

Hypercholesterolemia 588 (64.5) 209 (55.2) 0.002 
Total cholesterol, mean (SD), mg/dL  202.7 (38.7) 201.0 (36.7) 0.6 
High-density lipoprotein, mean (SD), mg/dL  45.7 (14.0) 47.2 (13.4) 0.2 
Low-density lipoprotein, mean (SD), mg/dL  130.5 (35.2) 127.0 (32.0) 0.2 
History of atrial fibrillation 25 (2.7) 6 (1.6) 0.2 
History of coronary heart disease  134 (14.7) 43 (11.4) 0.1 
    
Other medical conditions, No. (%)    
Hamilton depression scale score, mean (SD) 3.2 (3.8) 2.8 (3.8) 0.2 
Hamilton depression score >12    
Chronic bronchitis, asthma, or emphysema 85 (9.4) 35 (9.3) 0.97 
Mini mental state score, mean (SD)  26.6 (3.4) 27.0 (3.2) 0.1 
History of migraine headaches  171 (18.8) 60 (15.9) 0.2 
Spitzer quality of life index score  9.36 (0.99) 9.24 (1.16) 0.2 
    
Social variables, No. (%)    
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Number of people known well enough to visit with 
in their homes:  
   None 
   1 or 2 
   3 or 4 
   5 or more 

 
 

21 (2.3) 
74 (8.1) 

178 (19.5) 
638 (70.0) 

 
 

15 (4.0) 
50 (13.2) 
85 (22.4) 

229 (60.4) 

0.002 

Number of times talked to someone on telephone 
in past week:  
   Not at all  
   Once  
   Two to six times  
   Once a day or more 

 
 

12 (1.3) 
54 (5.9) 

238 (26.1) 
607 (66.6) 

 
 

12 (3.2) 
22 (5.8) 

135 (35.6) 
210 (55.4) 

0.0003 

Number of times in past week spent with 
someone who does not live with you:  
   Not at all  
   Once  
   Two to six times  
   Once a day or more 

 
 

158 (17.3) 
194 (21.3) 
402 (44.1) 
157 (17.2) 

 
 

81 (21.4) 
100 (26.4) 
127 (33.5) 
71 (18.7) 

0.005 

Have someone you can trust and confide in  [NR] [NR] 0.2 
Feeling lonely:  
   Quite often  
   Sometimes  
   Almost never  

 
130 (14.3) 
296 (32.5) 
485 (53.2) 

 
42 (11.1) 

101 (26.7) 
236 (62.3) 

0.01 

See relatives and friends [NR] [NR] 0.2 
Is there someone who would give you help if sick [NR] [NR] 0.2 
Years lived in community  25.0 (14.9) 26.1 (14.8) 0.2 
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Appendix B7. Distribution of baseline Barthel index scores 
Baseline Barthel index score Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
45 3 0.23 3 0.23 
55 2 0.16 5 0.39 
60 3 0.23 8 0.63 
65 5 0.39 13 1.02 
70 5 0.39 18 1.41 
75 9 0.70 27 2.11 
80 20 1.56 47 3.67 
85 41 3.20 88 6.88 
90 56 4.38 144 11.25 
95 267 20.86 411 32.11 
100 869 67.89 1280 100.00 
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Appendix B8. Unadjusted and adjusted models of the association between number of lacunar 
infarcts (categorical variable) and functional status, using the new dataset 

Variable Change in 
BI score 

95% CI p-value 

Unadjusted model:    
Annual change in BI -0.86 -1.01, -0.70 <.0001 
Change in BI with 1 lacunar infarct, vs. none 1.78 -0.03, 3.58 0.054 
Change in BI with 2 lacunar infarcts, vs. none -2.15 -4.48, 0.18 0.07 
Change in BI with 3 lacunar infarcts, vs. none -4.80 -12.24, 2.63 0.2 
Change in BI with >=4 lacunar infarcts, vs. none -6.64 -20.47, 7.19 0.3 
Additional annual change with 1 lacunar infarct, vs. none -1.12 -1.81, -0.44 0.001 
Additional annual change with 2 lacunar infarcts, vs. 
none 

-0.84 -1.58, -0.10 0.03 

Additional annual change with 3 lacunar infarcts, vs. 
none 

-2.68 -4.84, -0.51 0.02 

Additional annual change with >=4 lacunar infarcts, vs. 
none 

-0.87 -3.70, 1.96 0.5 

Adjusted for demographics:†    
Annual change in BI -0.87 -1.02, -0.72 <.0001 
Change in BI with 1 lacunar infarct, vs. none 2.94 0.88, 5.01 0.005 
Change in BI with 2 lacunar infarcts, vs. none -0.35 -2.83, 2.12 0.8 
Change in BI with 3 lacunar infarcts, vs. none -0.91 -9.70, 7.89 0.8 
Change in BI with >=4 lacunar infarcts, vs. none -4.80 -18.43, 8.83 0.5 
Additional annual change with 1 lacunar infarct, vs. none -1.14 -1.84, -0.43 0.003 
Additional annual change with 2 lacunar infarcts, vs. 
none 

-0.84 -1.58, -0.10 0.04 

Additional annual change with 3 lacunar infarcts, vs. 
none 

-2.97 -5.32, -0.62 0.01 

Additional annual change with >=4 lacunar infarcts, vs. 
none 

-0.83 -3.67, 2.02 0.6 

Adjusted for vascular risk factors:*    
Annual change in BI -0.91 -1.08, -0.75 <.0001 
Change in BI with 1 lacunar infarct, vs. none 3.20 0.76, 5.64 0.01 
Change in BI with 2 lacunar infarcts, vs. none 0.09 -2.48, 2.66 0.9 
Change in BI with 3 lacunar infarcts, vs. none -1.42 -11.15, 8.32 0.8 
Change in BI with >=4 lacunar infarcts, vs. none -5.03 -19.68, 9.62 0.5 
Additional annual change with 1 lacunar infarct, vs. none -1.33 -2.14, -0.52 0.001 
Additional annual change with 2 lacunar infarcts, vs. 
none 

-0.70 -1.44, 0.04 0.06 

Additional annual change with 3 lacunar infarcts, vs. 
none 

-2.52 -4.79, -0.26 0.03 

Additional annual change with >=4 lacunar infarcts, vs. 
none 

-0.41 -3.30, 2.48 0.8 

Adjusted for social variables:**    
Annual change in BI -0.91 -1.08, -0.75 <.0001 
Change in BI with 1 lacunar infarct, vs. none 3.28 0.85, 5.71 0.008 
Change in BI with 2 lacunar infarcts, vs. none 0.61 -1.99, 3.21 0.6 
Change in BI with 3 lacunar infarcts, vs. none -1.34 -11.21, 8.53 0.8 
Change in BI with >=4 lacunar infarcts, vs. none -5.44 -20.22, 9.34 0.5 
Additional annual change with 1 lacunar infarct, vs. none -1.33 -2.15, -0.52 0.001 
Additional annual change with 2 lacunar infarcts, vs. 
none 

-0.70 -1.44, 0.04 0.06 

Additional annual change with 3 lacunar infarcts, vs. 
none 

-2.51 -4.76, -0.25 0.03 
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Additional annual change with >=4 lacunar infarcts, vs. 
none 

-0.41 -3.31, 2.48 0.8 

Adjusted for cognition:π    
Annual change in BI -0.91 -1.08, -0.75 <.0001 
Change in BI with 1 lacunar infarct, vs. none 3.31 0.91, 5.72 0.007 
Change in BI with 2 lacunar infarcts, vs. none 0.59 -2.05, 3.22 0.7 
Change in BI with 3 lacunar infarcts, vs. none -1.39 -11.27, 8.49 0.8 
Change in BI with >=4 lacunar infarcts, vs. none -5.08 -19.84, 9.68 0.5 
Additional annual change with 1 lacunar infarct, vs. none -1.34 -2.15, -0.52 0.001 
Additional annual change with 2 lacunar infarcts, vs. 
none 

-0.70 -1.44, 0.04 0.06 

Additional annual change with 3 lacunar infarcts, vs. 
none 

-2.51 -4.76, -0.25 0.03 

Additional annual change with >=4 lacunar infarcts, vs. 
none 

-0.43 -3.32, 2.47 0.8 

Adjusted for quality of life and depression: ††    
Annual change in BI -0.92 -1.09, -0.76 <.0001 
Change in BI with 1 lacunar infarct, vs. none 3.16 0.71, 5.62 0.01 
Change in BI with 2 lacunar infarcts, vs. none 0.58 -2.11, 3.27 0.7 
Change in BI with 3 lacunar infarcts, vs. none -1.41 -11.33, 8.52 0.8 
Change in BI with >=4 lacunar infarcts, vs. none -5.20 -19.90, 9.49 0.5 
Additional annual change with 1 lacunar infarct, vs. none -1.32 -2.13, -0.51 0.001 
Additional annual change with 2 lacunar infarcts, vs. 
none 

-0.68 -1.42, 0.05 0.07 

Additional annual change with 3 lacunar infarcts, vs. 
none 

-2.48 -4.73, -0.24 0.03 

Additional annual change with >=4 lacunar infarcts, vs. 
none 

-0.43 -3.32, 2.47 0.8 

Adjusted for stroke and MI: ‡    
Annual change in BI -0.81 -0.97, -0.65 <.0001 
Change in BI with 1 lacunar infarct, vs. none 3.38 0.91, 5.85 0.007 
Change in BI with 2 lacunar infarcts, vs. none 1.14 -1.77, 4.05 0.4 
Change in BI with 3 lacunar infarcts, vs. none -1.18 -10.17, 7.81 0.8 
Change in BI with >=4 lacunar infarcts, vs. none -4.61 -17.45, 8.24 0.5 
Additional annual change with 1 lacunar infarct, vs. none -1.27 -2.08, -0.45 0.002 
Additional annual change with 2 lacunar infarcts, vs. 
none 

-0.67 -1.33, -0.02 0.04 

Additional annual change with 3 lacunar infarcts, vs. 
none 

-2.00 -4.19, 0.19 0.07 

Additional annual change with >=4 lacunar infarcts, vs. 
none 

-0.49 -3.34, 2.36 0.7 

BI=Barthel index; CI=confidence interval; MI=myocardial infarction 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Appendix B9. Unadjusted and adjusted models of the association between silent brain infarcts 
and functional status, stratified by mobility vs. non-mobility domains, using the original dataset 

 Mobility domain Non-mobility domain 
Variable Change 

in BI 
score 

95% CI p-
value 

Change 
in BI 
score 

95% CI p-
value 

Unadjusted model:       
Annual change in BI -0.39 -0.46, -0.32 <.0001 -0.49 -0.59, -0.40 <.0001 
Change in BI with SBI -0.43 -1.38, 0.53 0.4 -0.40 -1.76, 0.95 0.6 
Additional annual change with 
SBI 

-0.45 -0.67, -0.23 <.0001 -0.64 -0.99, -0.29 0.0003 

Adjusted for demographics:†       
Annual change in BI -0.40 -0.47, -0.33 <.0001 -0.50 -0.60, -0.41 <.0001 
Change in BI with SBI 0.39 -0.61, 1.40 0.4 0.58 -0.87, 2.02 0.4 
Additional annual change with 
SBI 

-0.46 -0.68, -0.23 <.0001 -0.64 -1.00, -0.28 0.0005 

Adjusted for vascular risk 
factors:* 

      

Annual change in BI -0.40 -0.47, -0.33 <.0001 -0.51 -0.60, -0.41 <.0001 
Change in BI with SBI 0.44 -0.56, 1.45 0.4 0.63 -0.82, 2.08 0.4 
Additional annual change with 
SBI 

-0.46 -0.68, -0.23 <.0001 -0.64 -1.00, -0.28 0.0005 

Adjusted for social variables:**       
Annual change in BI -0.40 -0.47, -0.33 <.0001 -0.51 -0.60, -0.41 <.0001 
Change in BI with SBI 0.50 -0.50, 1.51 0.3 0.70 -0.75, 2.15 0.3 
Additional annual change with 
SBI 

-0.46 -0.68, -0.23 <.0001 -0.64 -1.00, -0.28 0.0005 

Adjusted for cognition:π       
Annual change in BI -0.40 -0.47, -0.33 <.0001 -0.51 -0.60, -0.41 <.0001 
Change in BI with SBI 0.52 -0.48, 1.53 0.3 0.72 -0.73, 2.17 0.3 
Additional annual change with 
SBI 

-0.45 -0.67, -0.22 <.0001 -0.63 -0.99, -0.27 0.0006 

Adjusted for quality of life and 
depression: †† 

      

Annual change in BI -0.42 -0.50, -0.35 <.0001 -0.54 -0.64, -0.44 <.0001 
Change in BI with SBI 0.34 -0.73, 1.42 0.5 0.56 -1.01, 2.14 0.5 
Additional annual change with 
SBI 

-0.43 -0.66, -0.20 0.0003 -0.59 -0.96, -0.22 0.002 

Adjusted for stroke and MI: ‡       
Annual change in BI -0.38 -0.45, -0.30 <.0001 -0.47 -0.57, -0.37 <.0001 
Change in BI with SBI 0.43 -0.59, 1.45 0.4 0.68 -0.81, 2.17 0.4 
Additional annual change with 
SBI 

-0.37 -0.59, -0.14 0.0016 -0.51 -0.86, -0.15 0.006 

BI=Barthel index; CI=confidence interval; SBI=silent brain infarct; MI=myocardial infarction 
NOTE: The mobility domain includes transfers, mobility, and stair use; the non-mobility domain includes 
feeding, bathing, grooming, dressing, bowels, bladder, and toilet use 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Appendix B10. Unadjusted and adjusted models of the association between standardized white 
matter hyperintensity volume (WMH/TCV), stratified by mobility vs. non-mobility domains, using 

the original dataset 
 Mobility domain Non-mobility domain 
Variable Change 

in BI 
score 

95% CI p-
value 

Change 
in BI 
score 

95% CI p-
value 

Unadjusted model:       
Annual change in BI -0.49 -0.55, -0.42 <.0001 -0.63 -0.73, -0.54 <.0001 
Change in BI with 1 unit increase 
in WMH 

-0.55 -0.98, -0.12 0.013 -0.55 -1.16, 0.06 0.08 

Additional annual change with 1 
unit increase in WMH 

-0.31 -0.41, -0.21 <.0001 -0.49 -0.65, -0.34 <.0001 

Adjusted for demographics:†       
Annual change in BI -0.49 -0.56, -0.43 <.0001 -0.64 -0.74, -0.54 <.0001 
Change in BI with 1 unit increase 
in WMH 

0.05 -0.39, 0.49 0.8 0.07 -0.57, 0.71 0.8 

Additional annual change with 1 
unit increase in WMH 

-0.32 -0.42, -0.22 <.0001 -0.50 -0.65, -0.34 <.0001 

Adjusted for vascular risk 
factors:* 

      

Annual change in BI -0.51 -0.58, -0.44 <.0001 -0.66 -0.76, -0.55 <.0001 
Change in BI with 1 unit increase 
in WMH 

0.16 -0.34, 0.66 0.5 0.13 -0.60, 0.86 0.7 

Additional annual change with 1 
unit increase in WMH 

-0.30 -0.40, -0.19 <.0001 -0.47 -0.64, -0.31 <.0001 

Adjusted for social variables:**       
Annual change in BI -0.51 -0.58, -0.44 <.0001 -0.66 -0.76, -0.55 <.0001 
Change in BI with 1 unit increase 
in WMH 

0.18 -0.33, 0.68 0.5 0.16 -0.58, 0.89 0.7 

Additional annual change with 1 
unit increase in WMH 

-0.30 -0.40, -0.19 <.0001 -0.48 -0.64, -0.31 <.0001 

Adjusted for cognition:π       
Annual change in BI -0.51 -0.58, -0.44 <.0001 -0.66 -0.76, -0.55 <.0001 
Change in BI with 1 unit increase 
in WMH 

0.17 -0.34, 0.67 0.5 0.14 -0.60, 0.87 0.7 

Additional annual change with 1 
unit increase in WMH 

-0.30 -0.40, -0.19 <.0001 -0.47 -0.64, -0.31 <.0001 

Adjusted for quality of life and 
depression: †† 

      

Annual change in BI -0.51 -0.58, -0.44 <.0001 -0.66 -0.77, -0.56 <.0001 
Change in BI with 1 unit increase 
in WMH 

0.19 -0.30, 0.68 0.5 0.15 -0.57, 0.88 0.7 

Additional annual change with 1 
unit increase in WMH 

-0.30 -0.40, -0.19 <.0001 -0.47 -0.64, -0.31 <.0001 

Adjusted for stroke and MI: ‡       
Annual change in BI -0.45 -0.52, -0.38 <.0001 -0.58 -0.69, -0.48 <.0001 
Change in BI with 1 unit increase 
in WMH 

0.29 -0.18, 0.76 0.2 0.29 -0.38, 0.96 0.4 

Additional annual change with 1 
unit increase in WMH 

-0.28 -0.38, -0.18 <.0001 -0.45 -0.61, -0.30 <.0001 

BI=Barthel index; CI=confidence interval; WMH=white matter hyperintensity; TCV=total cranial volume; 
MI=myocardial infarction 
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NOTE: The mobility domain includes transfers, mobility, and stair use; the non-mobility domain includes 
feeding, bathing, grooming, dressing, bowels, bladder, and toilet use 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Appendix B11. Unadjusted and adjusted models of the association between silent brain infarcts 
and functional status, stratified by mobility vs. non-mobility domains, using the new dataset 

 Mobility domain Non-mobility domain 
Variable Change 

in BI 
score 

95% CI p-
value 

Change 
in BI 
score 

95% CI p-
value 

Unadjusted model:       
Annual change in BI -0.39 -0.46, -0.32 <.0001 -0.47 -0.56, -0.38 <.0001 
Change in BI with SBI -0.72 -1.51, 0.06 0.07 -0.48 -1.61, 0.65 0.4 
Additional annual change with 
SBI 

-0.38 -0.58, -0.18 0.0002 -0.61 -0.92, -0.29 0.0002 

Adjusted for demographics:†       
Annual change in BI -0.40 -0.46, -0.33 <.0001 -0.48 -0.58, -0.39 <.0001 
Change in BI with SBI 0.0002 -0.84, 0.84 0.99 0.37 -0.85, 1.58 0.6 
Additional annual change with 
SBI 

-0.38 -0.58, -0.18 0.0002 -0.61 -0.93, -0.29 0.0002 

Adjusted for vascular risk 
factors:* 

      

Annual change in BI -0.41 -0.49, -0.34 <.0001 -0.50 -0.61, -0.40 <.0001 
Change in BI with SBI -0.04 -1.00, 0.91 0.9 0.53 -0.86, 1.91 0.5 
Additional annual change with 
SBI 

-0.38 -0.60, -0.17 0.0005 -0.61 -0.95, -0.26 0.0007 

Adjusted for social variables:**       
Annual change in BI -0.41 -0.49, -0.34 <.0001 -0.50 -0.60, -0.40 <.0001 
Change in BI with SBI 0.05 -0.91, 1.01 0.9 0.63 -0.77, 2.03 0.4 
Additional annual change with 
SBI 

-0.38 -0.60, -0.16 0.0005 -0.60 -0.95, -0.26 0.0007 

Adjusted for cognition:π       
Annual change in BI -0.41 -0.49, -0.34 <.0001 -0.50 -0.61, -0.40 <.0001 
Change in BI with SBI 0.05 -0.91, 1.01 0.9 0.63 -0.77, 2.03 0.4 
Additional annual change with 
SBI 

-0.38 -0.60, -0.16 0.0005 -0.60 -0.95, -0.26 0.0007 

Adjusted for quality of life and 
depression: †† 

      

Annual change in BI -0.42 -0.49, -0.34 <.0001 -0.51 -0.61, -0.41 <.0001 
Change in BI with SBI 0.02 -0.94, 0.97 0.97 0.58 -0.83, 1.99 0.4 
Additional annual change with 
SBI 

-0.38 -0.59, -0.16 0.0006 -0.60 -0.95, -0.25 0.0007 

Adjusted for stroke and MI: ‡       
Annual change in BI -0.37 -0.44, -0.30 <.0001 -0.45 -0.55, -0.35 <.0001 
Change in BI with SBI 0.22 -0.70, 1.14 0.6 0.86 -0.49, 2.20 0.2 
Additional annual change with 
SBI 

-0.34 -0.55, -0.12 0.002 -0.55 -0.89, -0.20 0.0018 

BI=Barthel index; CI=confidence interval; SBI=silent brain infarct; MI=myocardial infarction 
NOTE: The mobility domain includes transfers, mobility, and stair use; the non-mobility domain includes 
feeding, bathing, grooming, dressing, bowels, bladder, and toilet use 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Appendix B12. Unadjusted and adjusted models of the association between lacunar infarcts and 
functional status, stratified by mobility vs. non-mobility domains, using the new dataset 

 Mobility domain Non-mobility domain 
Variable Change 

in BI 
score 

95% CI p-
value 

Change 
in BI 
score 

95% CI p-
value 

Unadjusted model:       
Annual change in BI -0.39 -0.45, -0.32 <.0001 -0.47 -0.56, -0.37 <.0001 
Change in BI with LI -0.50 -1.31, 0.31 0.2 -0.24 -1.46, 0.98 0.7 
Additional annual change with LI -0.45 -0.67, -0.24 <.0001 -0.73 -1.08, -0.38 <.0001 
Adjusted for demographics:†       
Annual change in BI -0.39 -0.46, -0.32 <.0001 -0.47 -0.57, -0.38 <.0001 
Change in BI with LI 0.33 -0.55, 1.21 0.5 0.72 -0.59, 2.03 0.3 
Additional annual change with LI -0.46 -0.68, -0.24 <.0001 -0.74 -1.10, -0.38 <.0001 
Adjusted for vascular risk 
factors:* 

      

Annual change in BI -0.41 -0.49, -0.34 <.0001 -0.50 -0.60, -0.40 <.0001 
Change in BI with LI 0.31 -0.69, 1.31 0.5 0.85 -0.65, 2.35 0.3 
Additional annual change with LI -0.46 -0.70, -0.22 0.0001 -0.74 -1.13, -0.34 0.0002 
Adjusted for social variables:**       
Annual change in BI -0.41 -0.48, -0.34 <.0001 -0.50 -0.60, -0.40 <.0001 
Change in BI with LI 0.38 -0.63, 1.39 0.5 0.94 -0.58, 2.45 0.2 
Additional annual change with LI -0.46 -0.70, -0.22 0.0001 -0.73 -1.12, -0.34 0.0002 
Adjusted for cognition:π       
Annual change in BI -0.41 -0.49, -0.34 <.0001 -0.50 -0.60, -0.40 <.0001 
Change in BI with LI 0.39 -0.61, 1.40 0.4 0.96 -0.55, 2.47 0.2 
Additional annual change with LI -0.46 -0.70, -0.22 0.0001 -0.74 -1.13, -0.35 0.0002 
Adjusted for quality of life and 
depression: †† 

      

Annual change in BI -0.41 -0.49, -0.34 <.0001 -0.51 -0.61, -0.41 <.0001 
Change in BI with LI 0.36 -0.65, 1.37 0.5 0.91 -0.62, 2.44 0.2 
Additional annual change with LI -0.45 -0.69, -0.22 0.0002 -0.73 -1.12, -0.34 0.0003 
Adjusted for stroke and MI: ‡       
Annual change in BI -0.37 -0.44, -0.30 <.0001 -0.44 -0.54, -0.35 <.0001 
Change in BI with LI 0.51 -0.47, 1.48 0.3 1.11 -0.34, 2.56 0.13 
Additional annual change with LI -0.42 -0.65, -0.19 0.0004 -0.68 -1.06, -0.30 0.0005 
BI=Barthel index; CI=confidence interval; LI=lacunar infarct; MI=myocardial infarction 
NOTE: The mobility domain includes transfers, mobility, and stair use; the non-mobility domain includes 
feeding, bathing, grooming, dressing, bowels, bladder, and toilet use 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Appendix B13. Unadjusted and adjusted models of the association between number of lacunar 
infarcts and functional status, stratified by mobility vs. non-mobility domains, using the new 

dataset 
 Mobility domain Non-mobility domain 
Variable Change 

in BI 
score 

95% CI p-
value 

Change 
in BI 
score 

95% CI p-
value 

Unadjusted model:       
Annual change in BI -0.41 -0.48, -0.34 <.0001 -0.49 -0.59, -0.40 <.0001 
Change in BI with 1 additional LI -0.50 -1.06, 0.06 0.08 -0.55 -1.41, 0.30 0.2 
Additional annual change with 1 
additional LI 

-0.18 -0.30, -0.06 0.004 -0.33 -0.54, -0.12 0.002 

Adjusted for demographics:†       
Annual change in BI -0.41 -0.48, -0.35 <.0001 -0.50 -0.60, -0.41 <.0001 
Change in BI with 1 additional LI -0.13 -0.73, 0.47 0.7 -0.12 -1.03, 0.79 0.8 
Additional annual change with 1 
additional LI 

-0.18 -0.31, -0.06 0.004 -0.33 -0.54, -0.11 0.003 

Adjusted for vascular risk 
factors:* 

      

Annual change in BI -0.44 -0.51, -0.37 <.0001 -0.53 -0.63, -0.43 <.0001 
Change in BI with 1 additional LI -0.18 -0.82, 0.46 0.6 -0.13 -1.13, 0.86 0.8 
Additional annual change with 1 
additional LI 

-0.15 -0.28, -0.03 0.015 -0.29 -0.51, -0.07 0.011 

Adjusted for social variables:**       
Annual change in BI -0.44 -0.51, -0.37 <.0001 -0.53 -0.63, -0.43 <.0001 
Change in BI with 1 additional LI -0.17 -0.82, 0.48 0.6 -0.12 -1.12, 0.89 0.8 
Additional annual change with 1 
additional LI 

-0.15 -0.28, -0.03 0.016 -0.29 -0.51, -0.07 0.011 

Adjusted for cognition:π       
Annual change in BI -0.44 -0.51, -0.37 <.0001 -0.53 -0.63, -0.43 <.0001 
Change in BI with 1 additional LI -0.16 -0.81, 0.49 0.6 -0.10 -1.11, 0.90 0.8 
Additional annual change with 1 
additional LI 

-0.15 -0.28, -0.03 0.015 -0.29 -0.51, -0.07 0.01 

Adjusted for quality of life and 
depression: †† 

      

Annual change in BI -0.44 -0.52, -0.37 <.0001 -0.54 -0.64. -0.44 <.0001 
Change in BI with 1 additional LI -0.17 -0.82, 0.48 0.6 -0.12 -1.13, 0.89 0.8 
Additional annual change with 1 
additional LI 

-0.15 -0.28, -0.03 0.016 -0.29 -0.51, -0.07 0.01 

Adjusted for stroke and MI: ‡       
Annual change in BI -0.39 -0.46, -0.32 <.0001 -0.47 -0.57, -0.38 <.0001 
Change in BI with 1 additional LI -0.10 -0.67, 0.48 0.7 -0.02 -0.93, 0.89 0.96 
Additional annual change with 1 
additional LI 

-0.13 -0.25, -0.02 0.03 -0.26 -0.48, -0.05 0.014 

BI=Barthel index; CI=confidence interval; LI=lacunar infarct; MI=myocardial infarction 
NOTE: The mobility domain includes transfers, mobility, and stair use; the non-mobility domain includes 
feeding, bathing, grooming, dressing, bowels, bladder, and toilet use 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Appendix B14. Unadjusted and adjusted models of the association between perivascular space 
score and functional status, stratified by mobility vs. non-mobility domains, using the new dataset 
 Mobility domain Non-mobility domain 
Variable Change 

in BI 
score 

95% CI p-
value 

Change 
in BI 
score 

95% CI p-
value 

Unadjusted model:       
Annual change in BI -0.39 -0.51, -

0.27 
<.0001 -0.43 -0.60, -0.27 <.0001 

Change in BI with 1 point 
increase in SPVS 

-0.06 -0.14, 0.01 0.11 -0.03 -0.13, 0.08 0.6 

Additional annual change with 1 
point increase in SPVS 

-0.01 -0.03, 0.01 0.19 -0.03 -0.05, 0.002 0.066 

Adjusted for demographics:†       
Annual change in BI -0.39 -0.51, -

0.27 
<.0001 -0.44 -0.61, -0.27 <.0001 

Change in BI with 1 point 
increase in SPVS 

0.01 -0.07, 0.09 0.8 0.05 -0.06, 0.16 0.4 

Additional annual change with 1 
point increase in SPVS 

-0.01 -0.03, 0.01 0.18 -0.03 -0.05, 0.002 0.07 

Adjusted for vascular risk 
factors:* 

      

Annual change in BI -0.43 -0.55, -
0.30 

<.0001 -0.48 -0.65, -0.30 <.0001 

Change in BI with 1 point 
increase in SPVS 

0.01 -0.08, 0.11 0.8 0.06 -0.06, 0.18 0.3 

Additional annual change with 1 
point increase in SPVS 

-0.01 -0.03, 0.01 0.3 -0.02 -0.05, 0.01 0.11 

Adjusted for social variables:**       
Annual change in BI -0.43 -0.55, -

0.30 
<.0001 -0.48 -0.65, -0.30 <.0001 

Change in BI with 1 point 
increase in SPVS 

0.01 -0.08, 0.11 0.8 0.06 -0.06, 0.19 0.3 

Additional annual change with 1 
point increase in SPVS 

-0.01 -0.03, 0.01 0.3 -0.02 -0.05, 0.01 0.11 

Adjusted for cognition:π       
Annual change in BI -0.43 -0.55, -

0.30 
<.0001 -0.47 -0.65, -0.30 <.0001 

Change in BI with 1 point 
increase in SPVS 

0.01 -0.08, 0.11 0.8 0.06 -0.06, 0.19 0.3 

Additional annual change with 1 
point increase in SPVS 

-0.01 -0.03, 0.01 0.3 -0.02 -0.05, 0.01 0.10 

Adjusted for quality of life and 
depression: †† 

      

Annual change in BI -0.43 -0.55, -
0.30 

<.0001 -0.47 -0.65, -0.29 <.0001 

Change in BI with 1 point 
increase in SPVS 

0.04 -0.05, 0.13 0.3 0.09 -0.03, 0.21 0.14 

Additional annual change with 1 
point increase in SPVS 

-0.01 -0.03, 0.01 0.3 -0.03 -0.06, 0.003 0.078 

Adjusted for stroke and MI: ‡       
Annual change in BI -0.39 -0.51, -

0.27 
<.0001 -0.42 -0.59, -0.25 <.0001 

Change in BI with 1 point 0.05 -0.04, 0.14 0.3 0.10 -0.02, 0.22 0.10 
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increase in SPVS 
Additional annual change with 1 
point increase in SPVS 

-0.01 -0.02, 0.01 0.5 -0.02 -0.05, 0.01 0.15 

BI=Barthel index; CI=confidence interval; SPVS=score of perivascular spaces; MI=myocardial infarction 
NOTE: The mobility domain includes transfers, mobility, and stair use; the non-mobility domain includes 
feeding, bathing, grooming, dressing, bowels, bladder, and toilet use 
†adjusted for age at time of MRI, sex, race 
*additionally adjusted for: diabetes, hypertension, coronary artery disease, hypercholesterolemia, physical 
activity, alcohol use, smoking, and body mass index at the time of MRI 
**additionally adjusted for: marital status, insurance, number of friends, and years lived in the community 
πadditionally adjusted for mini-mental state score 
†† additionally adjusted for Spitzer quality of life index and depression 
‡ additionally adjusted for stroke and MI occurring during follow-up, as time-varying covariates 
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Appendix B15. Sensitivity analysis of the association between MRI findings and functional status among those with baseline Barthel 
index score of 95 to 100, in adjusted models* 

 Entire cohort (n=1290) Among those with BI >95 at 
baseline (n=1136) 

 Change 
in BI 
score 

95% CI p-
value 

Change 
in BI 
score 

95% CI p-value

Models testing SBI, original dataset       
Annual change in BI -0.85 -1.01, -0.69 <.0001 -0.76 -0.92, -0.60 <.0001 
Change in BI with SBI 1.02 -1.38, 3.43 0.4 1.07 -0.95, 3.09 0.3 
Additional annual change with SBI -0.88 -1.44, -0.32 0.0019 -0.79 -1.34, -0.24 0.005 
Models testing WMH, original dataset       
Annual change in BI -1.03 -1.19, -0.87 <.0001 -0.94 -1.10, -0.78 <.0001 
Change in BI with 1 SD increase in WMH 0.43 -0.69, 1.55 0.5 1.17 0.14, 2.20 0.026 
Additional annual change with 1 SD 
increase in WMH 

-0.73 -0.98, -0.48 <.0001 -0.68 -0.94, -0.41 <.0001 

Models testing SBI, new dataset       
Annual change in BI -0.82 -0.98, -0.66 <.0001 -0.76 -0.92, -0.61 <.0001 
Change in BI with SBI 1.01 -1.09, 3.12 0.3 0.77 -1.12, 2.66 0.4 
Additional annual change with SBI -0.90 -1.43, -0.37 0.0009 -0.61 -1.13, -0.10 0.0203 
Models testing LI, new dataset       
Annual change in BI -0.80 -0.96, -0.65 <.0001 -0.76 -0.91, -0.60 <.0001 
Change in BI with LI 1.57 -0.66, 3.80 0.2 1.11 -0.90, 3.12 0.3 
Additional annual change with LI -1.12 -1.70, -0.54 0.0002 -0.78 -1.36, -0.21 0.0077 
Models testing LPVS, new dataset       
Annual change in BI -0.92 -1.11, -0.72 <.0001 -0.81 -1.00, -0.62 <.0001 
Change in BI with 1 point increase in LPVS 0.65 -0.73, 2.04 0.4 1.03 -0.16, 2.21 0.089 
Additional annual change with 1 point 
increase in LPVS 

-0.13 -0.46, 0.19 0.4 -0.16 -0.49, 0.16 0.3 

*BI=Barthel index; SBI=silent brain infarct; CI=confidence interval; WMH=white matter hyperintensity volume; SD=standard deviation; LI=lacunar 
infarct; LPVS=large perivascular space score 
Models are adjusted for: age at the time of MRI, sex, race-ethnicity, diabetes, hypertension, hypercholesterolemia, physical activity, alcohol use, 
body mass index, insurance status, stroke and myocardial infarction occurring during follow-up, and mini-mental state examination score 
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Appendix C1. Functional scales in the Cardiovascular Health Study 
Activities of daily living: Number of tasks the participant has difficulty with:  
-walking around your home 
-getting out of bed or chair 
-eating including feeding yourself 
-dressing yourself 
-bathing or showering 
-using the toilet 
  
Instrumental activities of daily living: Number of tasks the participant has difficulty with:  
-doing heavy housework 
-doing light housework 
-doing shopping for personal items 
-preparing your own meals 
-paying bills / managing money 
-using the telephone 
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Appendix C2. Kaplan-Meier survival estimates for MI (event=0) and stroke (event=1) 

 

Log-rank test NS 
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Appendix C3. Incident events during follow-up 

A) INCIDENT STROKE SUBTYPES: 
1086 incident first strokes: 

885 ischemic: 
139 lacunar 
304 cardioembolic  
69 atherosclerotic 
26 hemorrhagic transformation 
27 unknown 
362 indeterminate 
18 other 

(Note: There were 820 with only one subtype, 58 with 2 subtypes, and 3 with 3 subtypes) 
121 hemorrhagic:  

16 subarachnoid 
97 intraparenchymal 
6 indeterminate 

(Note: There were 117 with only one subtype, 2 with 2 subtypes) 
 
B) CARDIAC EVENTS DURING FOLLOW-UP – whole cohort: 
Incident, among whole cohort: 
Incident CHD:   1754/4734 (37.1%) 
Incident angina:  1395/4924 (28.3%) 
Incident angioplasty: 300/5793 (5.2%) 
Incident bypass surg: 367/5641 (6.5%) 
Incident CHF:  1868/5613 (33.3%) 
Incident MI:  1007/5326 (18.9%) 
 Fatal MI:  119 (11.8% of MI) 
 Nonfatal MI:  888 (88.2% of MI) 
 Definite MI:  848 (84% of MI) 
 Probable MI:  135 (13.4% of MI) 
 Other MI:  24 (2.4% of MI) 
 
Incident, among those free of CHD at baseline: 
Incident CHD:   1754/4734 (37.1%) 
Incident angina:  1319/4734 (27.9%) 
Incident angioplasty: 216/4734 (4.6%) 
Incident bypass surg: 270/4734 (5.7%) 
Incident CHF:  1428/4634 (30.8%) 
Incident MI:  850/4734 (18.0%) 
 Fatal MI:  92 (10.8% of MI) 
 Nonfatal MI:  758 (89.2% of MI) 
 Definite MI:  718 (84.5% of MI) 
 Probable MI:  111 (13.1% of MI) 
 Other MI:  21 (2.5% of MI) 
 
C) DEATHS DURING FOLLOW-UP:  4637/5888 (78.8%) 
 Atherosclerotic CHD:   1165/4628 (25.2%) 
 Cerebrovascular disease:  379/4628 (8.2%) 
 Other atherosclerotic disease: 105/4628 (2.3%) 
 Other cardiovascular:    141/4628 (3.1%) 
 Non-cardiovascular:    2837/4628 (61.3%) 
 Other:     1/4628 (0.02%) 
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Appendix C4. Number of assessments before and after stroke 

Among cohort with first ischemic stroke and at least one follow-up assessment: 
# of visits bfr stroke  Frequency  Percent  Cumulative Freq Cumulative %  
0    46   12.04   46    12.04  
1    38   9.95   84    21.99  
2    62   16.23   146    38.22  
3    48   12.57   194    50.79  
4    38   9.95   232    60.73  
5    46   12.04   278    72.77  
6    42   10.99   320    83.77  
7    40   10.47   360    94.24  
8    22   5.76   382    100.00  
 
# of visits after stroke  Frequency  Percent  Cumulative Freq  Cumulative %  
1    77   20.16   77    20.16  
2    69   18.06   146    38.22  
3    59   15.45   205    53.66  
4    53   13.87   258    67.54  
5    39   10.21   297    77.75  
6    25   6.54   322    84.29  
7    25   6.54   347    90.84  
8    20   5.24   367    96.07  
9    15   3.93   382    100.00  
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Appendix C5: distributions of functional outcome scores 

A) Distributions of overall functional score: 

Variable Mean Median Std Dev Minimum Maximum N Miss

FUNCTN2 

FUNCTN3 

FUNCTN4 

FUNCTN5 

FUNCTN6 

FUNCTN7 

FUNCTN8 

FUNCTN9 

FUNCTN10 

FUNCTN11 
 

0.59 

0.81 

1.06 

1.17 

1.29 

1.77 

2.41 

2.78 

3.08 

3.51 
 

0 

0 

0 

0 

0 

1 

1 

1 

1 

2 
 

1.13 

1.67 

2.01 

2.07 

2.38 

2.67 

3.15 

3.49 

3.72 

3.95 
 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

8 

12 

12 

12 

12 

12 

12 

12 

12 

12 

35 

55 

78 

51 

88 

96 

92 

152 

157 

200 

 
B) Summary statistics of function variable in stroke dataset: 

Mean Lower Quartile Median Upper Quartile Std Dev Minimum Maximum N Miss N 

1.83 0 1 2 2.90 0 12 346 2469

 
C) Summary statistics of function variable in MI dataset: 

Mean Lower Quartile Median Upper Quartile Std Dev Minimum Maximum N Miss N 

1.09 0 0 1 2.00 0 12 253 2754

 
D) Distributions of continuous functional scores by year of follow-up after enrollment: 
Year  Score (%) Missing 
 0 1 2 3 4 5 6 7 8 9 10 11 12  
2 231 

(66.6) 
71 
(20.5) 

25 
(7.2) 

9 
(2.6) 

4 
(1.2) 

4 
(1.2) 

1 
(0.3) 

1 
(0.3) 

1 
(0.3) 

0 0 0 0 35 

3 206 
(63.0) 

67 
(20.5) 

20 
(6.1) 

18 
(5.5) 

7 
(2.1) 

1 
(0.3) 

2 
(0.6) 

2 
(0.6) 

0 0 1 
(0.3) 

1 
(0.3) 

2 
(0.6) 

55 

4 180 
(59.2) 

61 
(20.1) 

23 
(7.6) 

11 
(3.6) 

7 
(2.3) 

7 
(2.3) 

7 
(2.3) 

2 
(0.7) 

0 3 
(1.0) 

0 0 3 
(1.0) 

78 

5 186 
(56.2) 

67 
(20.2) 

30 
(9.1) 

14 
(4.2) 

7 
(2.1) 

10 
(3.0) 

3 
(0.9) 

3 
(0.9) 

5 
(1.5) 

3 
(0.9) 

1 
(0.3) 

1 
(0.3) 

1 
(0.3) 

51 

6 158 
(53.7) 

70 
(23.8) 

22 
(7.5) 

12 
(4.1) 

6 
(2.0) 

8 
(2.7) 

1 
(0.3) 

5 
(1.7) 

4 
(1.4) 

1 
(0.3) 

1 
(0.3) 

0 6 
(2.0) 

88 

7 126 
(44.1) 

70 
(24.5) 

18 
(6.3) 

23 
(8.0) 

13 
(4.6) 

6 
(2.1) 

11 
(3.9) 

3 
(1.1) 

1 
(0.4) 

5 
(1.8) 

3 
(1.1) 

4 
(1.4) 

3 
(1.1) 

96 

8 100 
(34.5) 

66 
(22.8) 

35 
(12.1) 

19 
(6.6) 

17 
(5.9) 

9 
(3.1) 

6 
(2.1) 

7 
(2.4) 

7 
(2.4) 

3 
(1.0) 

12 
(4.1) 

3 
(1.0) 

6 
(2.1) 

92 

9 77 
(33.5) 

50 
(21.7) 

24 
(10.4) 

13 
(5.7) 

9 
(3.9) 

12 
(5.2) 

3 
(1.3) 

10 
(4.4) 

8 
(3.5) 

8 
(3.5) 

4 
(1.7) 

1 
(0.4) 

11 
(4.8) 

152 

10 71 
(31.6) 

42 
(18.7) 

30 
(13.3) 

12 
(5.3) 

14 
(6.2) 

4 
(1.8) 

4 
(1.8) 

10 
(4.4) 

10 
(4.4) 

4 
(1.8) 

7 
(3.1) 

4 
(1.8) 

13 
(5.8) 

157 

11 55 
(30.2) 

32 
(17.6) 

13 
(7.1) 

13 
(7.1) 

11 
(6.0) 

11 
(6.0) 

7 
(3.9) 

7 
(3.9) 

1 
(0.6) 

9 
(5.0) 

4 
(2.2) 

5 
(2.8) 

14 
(7.7) 

200 
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E) Distributions of categorical functional outcome by year of follow-up after enrollment (Number 
[%]): 
Year Not disabled (Score=0) Disabled (Score>1) Missing 
2 231 (66.6) 116 (33.4) 35 
3 206 (63.0) 121 (37.0) 55 
4 180 (59.2) 124 (40.8) 78 
5 186 (56.2) 145 (43.8) 51 
6 158 (53.7) 136 (46.3) 88 
7 126 (44.1) 160 (55.9) 96 
8 100 (34.5) 190 (65.5) 92 
9 77 (33.5) 153 (66.5) 152 
10 71 (31.6) 154 (68.4) 157 
11 55 (30.2) 127 (69.8) 200 
 
F) Distributions of continuous functional scores by year of follow-up centered on stroke: 
Yr Score (%) Missing N 
 0 1 2 3 4 5 6 7 8 9 10 11 12   
-8 7 

(77.8) 
1 

(11.1) 
0 0 0 0 1 

(11.1) 
0 0 0 0 0 0 1 9 

-7 30 
(66.7) 

11 
(24.4) 

2 
(4.4) 

0 2 
(4.4) 

0 0 0 0 0 0 0 0 2 45 

-6 62 
(77.5) 

13 
(16.3) 

3 
(3.8) 

2 
(2.5) 

0 0 0 0 0 0 0 0 0 1 80 

-5 93 
(69.4) 

21 
(15.7) 

7 
(5.2) 

4 
(3.0) 

3 
(2.2) 

3 
(2.2) 

1  
(0.8) 

1 
(0.8) 

1 
(0.8) 

0 0 0 0 2 134 

-4 102 
(63.0) 

36 
(22.2) 

11 
(6.8) 

9 
(5.6) 

4 
(2.5) 

0 0 0 0 0 0 0 0 10 162 

-3 127 
(62.3) 

45 
(22.1) 

12 
(5.9) 

10 
(4.9) 

3 
(1.5) 

3 
(1.5) 

2 
(1.0) 

1 
(0.5) 

0 0 0 0 1 
(0.5) 

12 204 

-2 138 
(55.9) 

52 
(21.1) 

21 
(8.5) 

17 
(6.9) 

7 
(2.8) 

3 
(1.2) 

0 2 
(0.8) 

4 
(1.6) 

2 
(0.8) 

1 
(0.4) 

0 0 20 247 

-1 150 
(54.2) 

62 
(22.4) 

27 
(9.8) 

15 
(5.4) 

5 
(1.8) 

5 
(1.8) 

7 
(2.5) 

2 
(0.7) 

0 1 
(0.4) 

2 
(0.7) 

1 
(0.4) 

0 22 277 

0 127 
(41.5) 

68 
(22.2) 

35 
(11.4) 

15 
(4.9) 

11 
(3.6) 

12 
(3.9) 

7 
(2.3) 

11 
(3.6) 

3 
(1.0) 

4 
(1.3) 

3 
(1.0) 

3 
(1.0) 

7 
(2.3) 

47 306 

1 93 
(34.6) 

64 
(23.8) 

24 
(8.9) 

15 
(5.6) 

12 
(4.5) 

10 
(3.7) 

9 
(3.4) 

6 
(2.2) 

6 
(2.2) 

9 
(3.4) 

7 
(2.6) 

2 
(0.7) 

12 
(4.5) 

48  269 

2 78 
(35.1) 

46 
(20.7) 

20 
(9.0) 

10 
(4.5) 

13 
(5.9) 

8 
(3.6) 

7 
(3.2) 

9 
(4.1) 

7 
(3.2) 

8 
(3.6) 

4 
(1.8) 

4 
(1.8) 

8 
(3.6) 

50 222 

3 52 
(31.1) 

35 
(21.0) 

17 
(10.2) 

11 
(6.6) 

10 
(6.0) 

9 
(5.4) 

6 
(3.6) 

4 
(2.4) 

5 
(3.0) 

3 
(1.8) 

3 
(1.8) 

4 
(2.4) 

8 
(4.8) 

39 167 

4 32 
(26.0) 

31 
(25.2) 

14 
(11.4) 

9 
(7.3) 

4 
(3.3) 

6 
(4.9) 

1 
(0.8) 

5 
(4.1) 

2 
(1.6) 

4 
(3.3) 

4 
(3.3) 

3 
(2.4) 

8 
(6.5) 

30 123 

5 28 
(29.5) 

19 
(20.0) 

8 
(8.4) 

9 
(9.5) 

9 
(9.5) 

2 
(2.1) 

2 
(2.1) 

0 4 
(4.2) 

3 
(3.2) 

5 
(5.3) 

1 
(1.1) 

5 
(5.3) 

21 95 

6 19 
(30.0) 

11 
(17.2) 

5 
(7.8) 

7 
(10.9) 

3 
(4.7) 

3 
(4.7) 

0 2 
(3.1) 

4 
(6.3) 

1 
(1.6) 

1 
(1.6) 

0 8 
(12.5) 

21 64 

7 14 
(37.8) 

8 
(21.6) 

2 
(5.4) 

0 1 
(2.7) 

3 
(8.1) 

1 
(2.7) 

4 
(10.8) 

0 1 
(2.7) 

2 
(5.4) 

0 1 
(2.7) 

12 37 

8 6 
(27.3) 

2 
(9.1) 

6 
(27.3) 

1 
(4.6) 

2 
(9.1) 

1 
(4.6) 

0 2 
(9.1) 

0 0 1 
(4.6) 

1 
(4.6) 

0 7 22 

9 1 
(16.7) 

0 1 
(16.7) 

1 
(16.7) 

2 
(33.3) 

0 0 0 0 0 0 0 1 
(16.7) 

1 6 

Note: The year includes 6 months before and 6 months after the stated year: for example, year 8 includes 
values >-8.5 and <-7.5 
 
G) Distributions of categorical functional outcome by year of follow-up centered on stroke 
(Number [%]): 
Year Not disabled (Score=0) Disabled (Score>1) Missing N 
-8 7 (77.8) 2 (22.2) 1 9 
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-7 30 (66.7) 15 (33.3) 2 45 
-6 62 (77.5) 18 (22.5) 1 80 
-5 93 (69.4) 41 (30.6) 2 134 
-4 102 (63.0) 60 (37.0) 10 162 
-3 127 (62.3) 77 (37.8) 12  204 
-2 138 (55.9) 109 (44.1) 20 247 
-1 150 (54.2) 127 (45.9) 22 277 
0 127 (41.5) 179 (58.5) 47 306 
1 93 (34.6) 176 (65.4) 48 269 
2 78 (35.1) 144 (64.9) 50 222 
3 52 (31.1) 115 (68.9) 39 167 
4 32 (26.0) 91 (74.0) 30 123 
5 28 (29.5) 67 (70.5) 21 95 
6 19 (30.0) 45 (70.3) 21 64 
7 14 (37.8) 23 (62.2) 12  37 
8 6 (27.3) 16 (72.7) 7 22 
9 1 (16.7) 5 (83.3) 1 6 
Note: The year includes 6 months before and 6 months after the stated year: for example, year 8 includes 
values >-8.5 and <-7.5 
 
H) Summary statistics of continuous functional scores by year of follow-up centered on stroke: 
Year Mean Lower 

Quartile 
Median Upper 

Quartile 
Std 
Dev 

Minimum Maximum N Miss 

-8 0.78 0 0 0 1.99 0 6 1 
-7 0.51 0 0 1 0.94 0 4 2 
-6 0.31 0 0 0 0.67 0 3 1 
-5 0.71 0 0 1 1.48 0 8 2 
-4 0.62 0 0 1 1.00 0 4 10 
-3 0.77 0 0 1 1.49 0 12 12 
-2 1.06 0 0 1 1.82 0 10 20 
-1 1.09 0 0 1 1.84 0 11 22 
0 2.00 0 1 2 2.90 0 12 47 
1 2.66 0 1 4 3.47 0 12 48 
2 2.80 0 1 4 3.50 0 12 50 
3 2.92 0 1 5 3.53 0 12 39 
4 3.20 0 1 5 3.81 0 12 30 
5 3.16 0 2 4 3.71 0 12 21 
6 3.59 0 2 6 4.14 0 12 21 
7 2.86 0 1 5 3.58 0 12 12 
8 2.95 0 2 4 3.23 0 11 7 
9 4.17 2 3.5 4 4.12 0 12 1 
 
I) Distributions of continuous functional scores by year of follow-up centered on MI: 
Yr Score (%) Missing N 
 0 1 2 3 4 5 6 7 8 9 10 11 12   
-8 14 

(82.4) 
1 

(5.9) 
1 

(5.9) 
1 

(5.9) 
0 0 0 0 0 0 0 0 0 0 17 

-7 34 
(58.6) 

15 
(25.9) 

4 
(6.9) 

2 
(3.5) 

1 
(1.7) 

0 2 (3.5) 0 0 0 0 0 0 1 58 

-6 60 
(69.8) 

16 
(18.6) 

4 
(4.7) 

6 
(7.0) 

0 0 0 0 0 0 0 0 0 3 86 

-5 96 
(70.6) 

20 
(14.7) 

8 
(5.9) 

6 
(4.4) 

2 
(1.5) 

2 
(1.5) 

1 (0.7) 1 
(0.7) 

0 0 0 0 0 2 136 

-4 127 
(67.9) 

28 
(15.0) 

14 
(7.5) 

9 
(4.8) 

7 
(3.7) 

0 1 (0.5) 0 1 
(0.5) 

0 0 0 0 8 187 

-3 137 47 23 4 6 3 0 1 0 0 0 0 0 13 221 
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(62.0) (21.3) (10.4) (1.8) (2.7) (1.4) (0.5) 
-2 171 

(62.0) 
59 

(21.4) 
13 

(4.7) 
15 

(5.4) 
9 

(3.3) 
2 

(0.7) 
2 (0.7) 2 

(0.7) 
0 1 

(0.4) 
1 

(0.4) 
1 

(0.4) 
0 10 276 

-1 173 
(57.3) 

68 
(22.5) 

28 
(9.3) 

14 
(4.6) 

4 
(1.3) 

4 
(1.3) 

4 (1.3) 4 
(1.3) 

1 
(0.3) 

1 
(0.3) 

0 1 
(0.3) 

0 16 302 

0 147 
(46.4) 

87 
(27.4) 

34 
(10.7) 

22 
(6.9) 

7 
(2.2) 

2 
(0.6) 

1 (0.3) 5 
(1.6) 

4 
(1.3) 

1 
(0.3) 

1 
(0.3) 

4 
(1.3) 

2 
(0.6) 

35 317 

1 149 
(48.5) 

90 
(29.3) 

15 
(4.9) 

14 
(4.6) 

15 
(4.9) 

7 
(2.3) 

4 (1.3) 1 
(0.3) 

1 
(0.3) 

1 
(0.3) 

4 
(1.3) 

4 
(1.3) 

2 
(0.7) 

46 307 

2 121 
(52.6) 

50 
(21.7) 

15 
(6.5) 

9 
(3.9) 

7 
(3.0) 

10 
(4.4) 

4 (1.7) 2 
(0.9) 

6 
(2.6) 

2 
(0.9) 

3 
(1.3) 

0 1 
(0.4) 

35 230 

3 98 
(51.0) 

47 
(24.5) 

16 
(8.3) 

5 
(2.6) 

7 
(3.7) 

3 
(1.6) 

1 (0.5) 2 
(1.0) 

4 
(2.1) 

2 
(1.0) 

4 
(2.1) 

3 
(1.6) 

0 28 192 

4 72 
(47.7) 

39 
(25.8) 

12 
(8.0) 

8 
(5.3) 

7 
(4.6) 

2 
(1.3) 

2 (1.3) 1 
(0.7) 

0 3 
(2.0) 

3 
(2.0) 

2 
(1.3) 

0 24 151 

5 55 
(48.7) 

29 
(25.7) 

11 
(9.7) 

8 
(7.1) 

3 
(2.7) 

1 
(0.9) 

0 2 
(1.8) 

1 
(0.9) 

1 
(0.9) 

1 
(0.9) 

1 
(0.9) 

0 10 113 

6 36 
(51.4) 

20 
(28.6) 

5 
(7.1) 

3 
(4.3) 

1 
(1.4) 

2 
(2.9) 

0 1 
(1.4) 

1 
(1.4) 

0 0 1 
(1.4) 

0 8 70 

7 29 
(54.7) 

11 
(20.8) 

4 
(7.6) 

4 
(7.6) 

1 
(1.9) 

0 0 2 
(3.8) 

0 1 
(1.9) 

0 0 1 
(1.9) 

0 53 

8 15 
(55.6) 

3 
(11.1) 

1 
(3.7) 

2 
(7.4) 

0 1 
(3.7) 

2 (7.4) 0 0 1 
(3.7) 

2 
(7.4) 

0 0 3  27 

9 5 
(50.0) 

2 
(20.0) 

0 0 1 
(10.0) 

0 0 0 0 2 
(20.0) 

0 0 0 1  10 

10 0 0 0 0 0 0 1 
(100.0) 

0 0 0 0 0 0 0 1 

Note: The year includes 6 months before and 6 months after the stated year: for example, year 8 includes 
values >-8.5 and <-7.5 
 
J) Distributions of categorical functional outcome by year of follow-up centered on MI (Number 
[%]): 
Year Not disabled (Score=0) Disabled (Score>1) Missing N 
-8 14 (82.4) 3 (17.7) 0 17 
-7 34 (58.6) 24 (41.4) 1 58 
-6 60 (69.8) 26 (30.2) 3 86 
-5 96 (70.6) 40 (29.4) 2 136 
-4 127 (67.9) 60 (32.1) 8 187 
-3 137 (62.0) 84 (38.0) 13 221 
-2 171 (62.0) 105 (38.0) 10 276 
-1 173 (57.3) 129 (42.7) 16 302 
0 147 (46.4) 170 (53.6) 35 317 
1 149 (48.5) 158 (51.5) 46 307 
2 121 (52.6) 109 (47.4) 35 230 
3 98 (51.0) 94 (49.0) 28 192 
4 72 (47.7) 79 (52.3) 24 151 
5 55 (48.7) 58 (51.3) 10 113 
6 36 (51.4) 34 (48.6) 8 70 
7 29 (54.7) 24 (45.3) 10 53 
8 15 (55.6) 12 (44.4) 3 27 
9 5 (50.0) 5 (50.0) 1 10 
10 0 1 (100.0) 0 1 
Note: The year includes 6 months before and 6 months after the stated year: for example, year 8 includes 
values >-8.5 and <-7.5 
 
K) Summary statistics of continuous functional scores by year of follow-up centered on MI: 
Year Mean Lower 

Quartile 
Median Upper 

Quartile 
Std 
Dev 

Minimum Maximum N Miss 

-8 0.35 0 0 0 0.86 0 3 0 
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-7 0.78 0 0 1 1.34 0 6 1 
-6 0.49 0 0 1 0.88 0 3 3 
-5 0.63 0 0 1 1.28 0 7 2 
-4 0.67 0 0 1 1.26 0 8 8 
-3 0.68 0 0 1 1.15 0 7 13 
-2 0.84 0 0 1 1.61 0 11 10 
-1 0.93 0 0 1 1.64 0 11 16 
0 1.32 0 1 2 2.19 0 12 35 
1 1.35 0 1 1 2.32 0 12 46 
2 1.44 0 0 2 2.39 0 12 35 
3 1.46 0 0 1 2.56 0 11 28 
4 1.48 0 1 2 2.45 0 11 24 
5 1.27 0 1 2 2.11 0 11 10 
6 1.13 0 0 1 2.01 0 11 8 
7 1.32 0 0 1 2.44 0 12 10 
8 2.11 0 0 3 3.30 0 10 3 
9 2.40 0 0.5 4 3.69 0 9 1 
10 6.00 6 6 6 . 6 6 0 
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Appendix C6. Trajectories before and after stroke using a dichotomous definition of disability 

Variable Odds ratio for 
change in 

functional score 

95% confidence 
limits 

p-value 

Unadjusted model:    
Annual change before stroke 1.22 1.14, 1.30 <.0001 
Additional annual change after stroke 0.90 0.82, 0.99 0.04 
Change in functional score at time of stroke 1.84 1.42, 2.38 <.0001 
Adjusted for demographics:†    
Annual change before stroke 1.24 1.16, 1.32 <.0001 
Additional annual change after stroke 0.90 0.82, 0.99 0.03 
Change in functional score at time of stroke 1.93 1.47, 2.53 <.0001 
Adjusted for vascular risk factors:*    
Annual change before stroke 1.24 1.16, 1.32 <.0001 
Additional annual change after stroke 0.91 0.82, 1.00 0.05 
Change in functional score at time of stroke 1.88 1.41, 2.51 <.0001 
Adjusted for other medical conditions:**    
Annual change before stroke 1.24 1.16, 1.33 <.0001 
Additional annual change after stroke 0.91 0.82, 1.00 0.057 
Change in functional score at time of stroke 1.91 1.42, 2.57 <.0001 
Adjusted for inflammatory biomarkers:‡    
Annual change before stroke 1.24 1.16, 1.33 <.0001 
Additional annual change after stroke 0.91 0.82, 1.01 0.06 
Change in functional score at time of stroke 1.91 1.42, 2.57 <.0001 
Adjusted for cognition:π    
Annual change before stroke 1.23 1.15, 1.32 <.0001 
Additional annual change after stroke 0.90 0.81, 1.00 0.056 
Change in functional score at time of stroke 1.77 1.30, 2.42 0.0003 
Adjusted for social support: ††    
Annual change before stroke 1.23 1.15, 1.32 <.0001 
Additional annual change after stroke 0.90 0.81, 1.00 0.056 
Change in functional score at time of stroke 1.77 1.30, 2.42 0.0003 
†adjusted for age at time of stroke, sex, race, marital status, and body mass index 
*additionally adjusted for: coronary heart disease 
**additionally adjusted for: arthritis and depression 
‡additionally adjusted for log of C-reactive protein levels 
πadditionally adjusted for mini-mental state score 
†† no additional adjustment 
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Appendix C7. Trajectories of a continuous measure of disability before and after stroke and 
myocardial infarction in the entire cohort (n=5888), in unadjusted and adjusted models, with 

functional score set to worst possible value at death 

Variable Change in 
functional score 

95% confidence 
limits 

p-value 

    
Unadjusted overall change model    
Annual change 0.62 0.61, 0.63 <.0001 
Unadjusted overall change plus average 
change due to stroke and MI model 

   

Annual change 0.58 0.57, 0.59 <.0001 
Change in functional score at time of stroke 2.37 2.14, 2.59 <.0001 
Change in functional score at time of MI 1.19 1.02, 1.35 <.0001 
Unadjusted pre- and post-stroke and –MI 
trajectories model 

   

Annual change 0.55 0.54, 0.56 <.0001 
Change in functional score at time of stroke 1.55 1.20, 1.90 <.0001 
Change in functional score at time of MI 0.33 0.11, 0.56 0.003 
Additional annual change after stroke 0.11 0.08, 0.14 <.0001 
Additional annual change after MI 0.13 0.11, 0.15 <.0001 
Fully adjusted model:†    
Annual change 0.16 -0.08, 0.39 0.2 
Change in functional score at time of stroke 0.68 0.41, 0.96 <.0001 
Change in functional score at time of MI 0.03 -0.14, 0.19 0.7 
Additional annual change after stroke 0.05 0.00, 0.10 0.056 
Additional annual change after MI 0.02 -0.02, 0.06 0.3 
Fully adjusted model, with non-significant 
interaction terms removed:* 

   

Annual change 0.18 -0.05, 0.42 0.12 
Change in functional score at time of stroke 0.68 0.41, 0.96 <.0001 
Change in functional score at time of MI 0.07 -0.08, 0.22 0.4 
Additional annual change after stroke 0.05 -0.001, 0.10 0.055 
Additional annual change after MI 0.01 -0.02, 0.04 0.4 
MI=myocardial infarction 
†adjusted for: baseline age, sex, race, marital status, education, income, diabetes, hypertension, 
coronary heart disease, arthritis, depression, log of C-reactive protein levels, mini-mental state score, 
social network score, and interaction terms between time of follow-up and these variables 
*adjusted for: age, sex, race, marital status, education, income, diabetes, hypertension, coronary heart 
disease, arthritis, depression, log of C-reactive protein levels, mini-mental state score, social network 
score, and interaction terms between time of follow-up and baseline age, race, education, diabetes, mini-
mental state score, and social network score 
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Appendix C8. Trajectories before and after stroke using a continuous definition of disability, by stroke subtype 
Stroke subtype  Lacunar (n=75) Cardioembolic (n=107) Other ischemic stroke (n=211) 
Variable Change 

in 
function
al score 

95% CI p-value Change in 
functional 

score 

95% CI p-value Change in 
functional 

score 

95% CI p-value 

Annual change before 
stroke 

0.19 0.07, 0.31 0.003 0.08 0.01, 0.14 0.03 0.18 0.12, 0.25 <.0001 

Additional annual change 
after stroke 

0.33 -0.06, 0.72 0.09 0.25 -0.02, 0.53 0.067 -0.03 -0.18, 0.12 0.7 

Change in functional score 
at time of stroke 

0.36 -0.58, 1.30 0.5 1.52 0.67, 2.37 0.0004 1.37 0.85, 1.90 <.0001 
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Appendix C9. Trajectories before and after stroke using a continuous definition of disability, testing different cholesterol subtypes* 
 Model 1: adjusting for TC Model 2: adjusting for HDL and 

LDL 
Model 3: adjusting for HDL, 

LDL, and logLPA 
Model 4: adjusting for TC, 

HDL, LDL, and logLPA 
Variable Change in 

functional 
score 

95% CI p-value Change in 
functional 

score 

95% CI p-value Change in 
functional 

score 

95% CI p-value Change in 
functional 

score 

95% CI p-value 

Annual 
change 
before 
stroke 

0.07 0.01, 
0.13 

0.02 0.09 0.03, 
0.14 

0.003 0.07 0.02, 
0.13 

0.0097 0.07 0.02, 
0.13 

0.01 

Additional 
annual 
change 
after 
stroke 

0.16 0.01, 
0.31 

0.04 0.14 -0.01, 
0.29 

0.065 0.13 -0.01, 
0.28 

0.077 0.13 -0.01, 
0.28 

0.07 

Change in 
functional 
score at 
time of 
stroke 

0.45 -0.05, 
0.94 

0.079 0.45 -0.05, 
0.95 

0.076 0.46 -0.05, 
0.96 

0.076 0.46 -0.04, 
0.96 

0.07 

TC 0.00 0.00, 
0.01 

0.4 -- -- -- -- -- -- 0.01 0.00, 
0.02 

0.09 

HDL -- -- -- 0.01 0.00, 
0.02 

0.1 0.01 0.00, 
0.02 

0.16 0.00 -0.01, 
0.01 

0.6 

LDL -- -- -- 0.00 -0.01, 
0.00 

0.98 0.00 0.00, 
0.01 

0.7 -0.01 -0.02, 
0.00 

0.18 

logLPA  -- -- -- -- -- -- 0.13 0.02, 
0.24 

0.03 0.14 0.03, 
0.25 

0.01 

*TC=total cholesterol levels, mg/dL; HDL=high-density lipoprotein levels, mg/dL; LDL=low-density lipoprotein levels, mg/dL; logLPA=log of 
lipoprotein A levels; models are additionally adjusted for: age at time of stroke, sex, race, marital status, income, arthritis, depression, mini-mental 
state score, and social network score 
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Appendix C10. Exploring different cutoffs of the functional scale 

  Unadjusted model Model A* Model B** 
Cutoff (n) Variable Odds 

ratio for 
change in 
functional 

score 

95% CI p-value Odds ratio 
for change 

in 
functional 

score 

95% 
CI 

p-value Odds 
ratio for 
change 

in 
function
al score 

95% 
CI 

p-value 

>0 (n=1310) 
versus 
0 (n=1159) 

Annual change before 
stroke 

1.22 1.14, 1.30 <.0001 1.23 1.15, 
1.32 

<.0001 1.18 1.08, 
1.28 

0.0002 

Additional annual change 
after stroke 

0.90 0.82, 
0.995 

0.038 0.90 0.81, 
1.002 

0.056 0.96 0.85, 
1.09 

0.5 

Change in functional 
score at time of stroke 

1.84 1.42, 2.38 <.0001 1.77 1.30, 
2.42 

0.0003 1.93 1.26, 
2.96 

0.003 

>1 (n=785) 
versus 
<=1 (n=1684) 

Annual change before 
stroke 

1.26 1.16, 1.37 <.0001 1.26 1.16, 
1.38 

<.0001 1.19 1.06, 
1.34 

0.003 

Additional annual change 
after stroke 

0.90 0.82, 
1.001 

0.053 0.9 0.80, 
1.005 

0.06 0.97 0.83, 
1.14 

0.7 

Change in functional 
score at time of stroke 

1.98 1.53, 2.55 <.0001 1.93 1.40, 
2.66 

<.0001 2.15 1.31, 
3.55 

0.003 

>2 (n=570) 
versus 
<=2 (n=1899) 

Annual change before 
stroke 

1.25 1.13, 1.39 <.0001 1.22 1.10, 
1.37 

0.0003 1.23 1.04, 
1.45 

0.01 

Additional annual change 
after stroke 

0.90 0.80, 1.02 0.09 0.93 0.81, 
1.07 

0.3 0.91 0.73, 
1.13 

0.4 

Change in functional 
score at time of stroke 

2.37 1.71, 3.28 <.0001 2.5 1.65, 
3.80 

<.0001 2.31 1.10, 
4.84 

0.03 

>3 (n=435) 
versus 
<=3 (n=2034) 

Annual change before 
stroke 

1.36 1.16, 1.59 0.0002 1.30 1.11, 
1.52 

0.001 1.18 0.92, 
1.51 

0.2 

Additional annual change 
after stroke 

0.82 0.69, 0.97 0.02 0.87 0.73, 
1.03 

0.1 0.93 0.71, 
1.23 

0.6 

Change in functional 
score at time of stroke 

2.97 2.00, 4.41 <.0001 3.36 2.04, 
5.52 

<.0001 4.80 1.79, 
12.88 

0.002 

>4 (n=344) 
versus 
<=4 (n=2125) 

Annual change before 
stroke 

1.49 1.21, 1.83 0.0001 1.43 1.17, 
1.75 

0.0006 1.42 1.00, 
2.00 

0.048 

Additional annual change 
after stroke 

0.73 0.59, 0.90 0.003 0.76 0.60, 
0.94 

0.01 0.79 0.54, 
1.14 

0.2 

Change in functional 
score at time of stroke 

3.26 2.09, 5.08 <.0001 3.34 2.02, 
5.54 

<.0001 3.33 1.03, 
10.74 

0.045 
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>5 (n=276) 
versus 
<=5 (n=2193) 

Annual change before 
stroke 

1.56 1.18, 2.06 0.002 1.46 1.10, 
1.93 

0.009 1.38 0.90, 
2.13 

0.14 

Additional annual change 
after stroke 

0.69 0.52, 0.92 0.01 0.74 0.55, 
0.99 

0.04 0.81 0.51, 
1.27 

0.4 

Change in functional 
score at time of stroke 

3.73 2.16, 6.46 <.0001 3.79 1.90, 
7.55 

0.0002 3.11 0.75, 
12.88 

0.12 

>6 (n=232) 
versus 
<=6 (n=2237) 

Annual change before 
stroke 

1.68 1.22, 2.32 0.001 1.44 1.06, 
1.95 

0.02 1.48 0.92, 
2.40 

0.11 

Additional annual change 
after stroke 

0.66 0.48, 0.92 0.01 0.77 0.56, 
1.06 

0.1 0.76 0.46, 
1.25 

0.3 

Change in functional 
score at time of stroke 

3.71 1.98, 6.94 <.0001 4.42 1.96, 
9.97 

0.0003 3.23 0.71, 
14.7 

0.13 

>7 (n=183) 
versus 
<=7 (n=2286) 

Annual change before 
stroke 

1.62 1.04, 2.50 0.03 1.51 0.89, 
2.59 

0.13 1.64 0.72, 
3.73 

0.2 

Additional annual change 
after stroke 

0.68 0.44, 1.06 0.09 0.71 0.41, 
1.21 

0.21 0.59 0.26, 
1.36 

0.2 

Change in functional 
score at time of stroke 

4.88 2.24, 
10.61 

<.0001 5.21 1.98, 
13.73 

0.0008 4.41 0.77, 
25.35 

0.097 

>8 (n=183) 
versus 
<=8 (n=2286) 

Annual change before 
stroke 

1.98 1.20, 3.26 0.007 2.37 1.22, 
4.61 

0.01 3.74 1.11, 
12.66 

0.03 

Additional annual change 
after stroke 

0.55 0.33, 0.92 0.02 0.44 0.22, 
0.86 

0.02 0.24 0.07, 
0.84 

0.03 

Change in functional 
score at time of stroke 

4.66 1.85, 
11.72 

0.001 3.27 1.09, 
9.78 

0.03 2.46 0.52, 
11.63 

0.3 

>9 (n=111) 
versus 
<=9 (n=2358) 

Annual change before 
stroke 

1.75 1.02, 3.02 0.043 1.77 0.98, 
3.17 

0.055 3.22 0.59, 
17.42 

0.18 

Additional annual change 
after stroke 

0.64 0.37, 1.11 0.11 0.64 0.35, 
1.17 

0.14 0.28 0.05, 
1.62 

0.15 

Change in functional 
score at time of stroke 

6.02 2.27, 
15.96 

0.0003 3.14 0.77, 
12.80 

0.11 2.83 0.42, 
19.32 

0.3 

>10 (n=78) 
versus 
<=10 (n=2391) 

Annual change before 
stroke 

1.17 0.78, 1.77 0.4 1.57 1.23, 
1.996 

0.0003 1.52 1.02, 
2.27 

0.04 

Additional annual change 
after stroke 

0.93 0.60, 1.43 0.7 0.69 0.50, 
0.947 

0.02 0.61 0.35, 
1.05 

0.07 

Change in functional 
score at time of stroke 

26.05 4.57, 
148.7 

0.0002 9.98 0.91, 
109.3 

0.0597 5.90 1.31, 
26.6 

0.02 

*Model A is adjusted for: age at time of stroke, sex, race, marital status, body mass index, coronary heart disease, arthritis, depression, log of C-
reactive protein levels, and mini-mental state score 
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**Model B is adjusted for: age at time of stroke, sex, race, marital status, income, arthritis, depression, log of lipoprotein A levels, mini-mental state 
score, and social network score 
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