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ABSTRACT 

EFFECTS OF DIAGRAMS ON STRATEGY CHOICE  
IN PROBABILITY PROBLEM SOLVING 

Chenmu Xing 

 

The role of diagrammatic representations and visual reasoning in mathematics problem 

solving has been extensively studied. Prior research on visual reasoning and problem solving has 

provided evidence that the format of a diagram can modulate solvers’ interpretations of the 

structure and concept of the represented problem information, and influence their problem 

solving outcomes. In this dissertation, two studies investigated how different types of diagrams 

influence solvers’ choice of solution strategy and their success rate in solving probability word 

problems. Participants’ solution strategies suggested that problem solvers tended to construct 

solutions that reflect the structure of a provided diagram, resulting in different representations of 

the mathematical structure of the problem. For the present set of problems, a binary tree or a 

binary table tends to steer solvers to use a sequential-sampling strategy, which defines simple or 

conditional probabilities for each selection stage and calculates the intersection of these 

probabilities as the final probability value, using the multiplication rule of probability. This 

strategy choice is structurally matched with the diagrammatic structure of a binary tree or a 

binary table, which represents unequally-likely outcomes at the event level. In contrast, an N-by-

N (outcome) table steers solvers to use of an outcome-search strategy, which involves searching 

for the total number of target outcomes and all the possible outcomes at the equally-likely 

outcome level, and calculates the part-over-the-whole value as the final probability, using the 

classical definition of probability. This strategy is strongly cued by the N-by-N (outcome) table, 

because the table structure represents all equally-likely outcomes for a probability problem, and 



	
	

organizes the information so that the target outcomes can be seen as a subset embedded in the 

whole outcome space. When an N-ary (outcome) tree was provided, choices were split between 

the two solutions, because the N-ary tree structure not only cues searching for equally-likely 

outcomes but also organizes the problem information in a sequential-sampling, stage-by-stage 

way. Furthermore, different diagrams seem to be associated with different patterns of 

characteristic errors. For example, solving a combinations problem with an N-by-N table tended 

to elicit erroneous solutions involving miscounting those self-repeated combinations represented 

by the table’s diagonal cells as valid outcomes. Typical errors associated with the use of a binary 

tree involved incorrect value definitions of the conditional probability of the outcome of a 

selection. And the N-ary tree may lead to less successful coordination of all the target outcomes 

for the studied problems, because the target outcomes were dispersed in the outcome space 

depicted by the tree, thus not salient. 

The findings support arguments (e.g., Tversky, Morrison, & Betrancourt, 2002) that in 

order to promote problem solving success, a diagrammatic representation must be carefully 

selected or designed so that its structure and content can be well-matched to the problem 

structure and content. And for computational efficiency, information should be spatially 

organized so that it can be processed readily and accurately. In addition to the implications for 

effective diagram design for problem solving activities, the findings also offer important insights 

for probability education. It is suggested that a variety of diagram types be utilized in the 

educational activities for novice learners of probability, because they tend to highlight different 

probability concepts and structures even for the same probability topic.  
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CHAPTER I: INTRODUCTION 

Background of the Problem 

Diagrams are essential tools for representation, communication, and reasoning. In 

education, diagrams have been used widely, and play an important role in STEM learning and 

problem solving (e.g., Hegarty & Kozhevnikov, 1999; Heiser & Tversky, 2006; Lowrie & Kay, 

2001; Manalo & Uesaka, 2006; Presmeg, 1986a, 1986b; Zahner & Corter, 2010; Novick & 

Catley, 2013), learning and comprehension of complex systems (Heiser & Tversky, 2006), 

judgment (Gattis & Holyoak, 1996; Simkin & Hastie, 1987), reasoning (Tversky, Corter, Gao, 

Tanaka, & Nickerson, 2013), analogical transfer (Gick & Holyoak, 1983; Novick, 1990), 

planning (Mason, Corter, Tversky & Nickerson, 2012), and data representation and interpretation 

(Braithwaite & Goldstone, 2013; Zacks & Tversky, 1999).  

But like any tool, a diagram must be well chosen for the task at hand, and its use affects 

both the process and the product of the activity.  First, as an external representation of a 

cognitive or educational problem, salient aspects of the diagram must map to relevant aspects of 

the problem (Markman, 1999; Novick and Hurley, 2001).  Second, structural, visuospatial, and 

implicit aspects of the chosen diagram can influence and alter people’s perceptions, inferences, 

and judgments of the relations and structures of the represented information (e.g., Gattis & 

Holyoak, 1996; Tversky, Corter, Gao, Tanaka, & Nickerson, 2013; Zacks & Tversky, 1999). 

How a diagram steers people to certain inferences and judgments concerning the represented 

concepts and relations is not arbitrary. Rather, it stems from cognitively natural ways of mapping 

visuospatial elements and relations to conceptual content and relations, externally or internally, 

based on shared metaphorical (or analogous) similarity of abstract relational structures (e.g., 
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Gattis, 2004; Gattis & Holyoak, 1996; Novick & Hurley, 2001; Tversky, Kugelmass, & Winter, 

1991).  

A rich body of research has explored how specific types of diagrams affect inferences in 

reasoning and judgment tasks. When asked to describe the relation of individual data points 

shown in statistical graphs, people given a bar graph tended to describe the relation as 

comparisons of discrete entities, but as trends of continuous change when given the same 

information depicted as a line graph (Zacks & Tversky, 1999; Shah, Mayer, & Hegarty, 1999). 

To describe complex mechanical systems depicted by diagrams, people reading mechanical 

diagrams with arrows described the functions of the systems, whereas those reading the same 

diagrams without arrows gave structural descriptions (Heiser & Tversky, 2006). When people 

tried to keep track of individuals’ locations over different time points, data depicted in lines that 

connected individuals’ locations over time led to use of people as the dominant information 

organizer and their movements over time as the structure of the description. On the other hand, 

when separate dots were entered in the location-by-time cells to represent individuals, people’s 

attention was directed to the table cells and they were more likely to summarize information by 

group of people by location (Tversky et al., 2013).  

People’s inferences using diagrams are systematically related to the schemas that 

different types of diagrams convey. For example, lines connect and associate entities, indicating 

paths, relations, and movement (Tversky et al., 2013; Tversky, Zacks, Lee, & Heiser, 2000; 

Zacks & Tversky, 1999); bars and boxes suggest enclosures and separate categories (Tversky et 

al., 2013; Zacks & Tversky, 1999); and arrows show asymmetric directions and sequences from 

actions to goals and causes to effects (Heiser & Tversky, 2006; Tversky et al., 2000).  
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Furthermore, the degree to which diagram structures can be analogically mapped onto 

problem structures, achieving the correct mapping, not only affects the type of inferences people 

make in reasoning and judgment tasks, but it also has a great impact on problem solving success. 

Research evidence (e.g., Braithwaite & Goldstone, 2013; Gattis & Holyoak, 1996; Novick & 

Hurley, 2001; Simkin & Hastie, 1987) suggests that a high degree of visual-conceptual 

compatibility often leads to higher accuracy and faster speed in problem solving. For example, in 

Gattis and Holyoak’s (1996) rate of change judgment tasks, people were given a line graph 

depicting the relation between two variables, and were asked to infer how the rate of one variable 

changes with the increase of the other variable. Their findings consistently suggest that for 

problem solving accuracy, it is crucial for the variable of cause (e.g., the IV) to be assigned to the 

x-axis and the queried variable (e.g., the DV) to the y-axis, because graph users regularly follow 

such a mapping convention that a steeper line on the graph indicates faster changes in the y-axis 

and the queried variable. Violation of the suggested visual-conceptual mapping conventions in 

graph use leads to significantly lower rates of correct judgment. In a statistical judgment task, 

Braithwaite and Goldstone (2013) found that people given a line graph depicting the interaction 

of data points were able more quickly to infer the interaction effect of two variables without loss 

of accuracy, compared to those using a tabular representation of the data. Hurley and Novick 

(2010) compared people’s accuracy and speed in making inferences about the information that 

was represented by convention-following and convention-violating diagrams. With a convention-

violating representation (e.g., objects assigned to the lines and relations assigned to the nodes in 

a network diagram), solvers took longer time to make inferences, which were also more 

erroneous. Zahner and Corter (2010) tested the relation of probability problem solvers’ choice of 

diagrams and their problem solving outcomes. They found that problem solving success was 
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promoted by diagrams, but only when a representation was appropriately matched to a problem 

type (e.g., Venn diagrams for joint event probability). When Simkin and Hastie (1987) compared 

the effects of various types of graphs in judgment tasks, bar graphs led to highest accuracy in 

judging comparisons, while pie charts were most facilitative for judging proportions. 

Diagram theorists interpret this kind of phenomena as demonstrating interplay between 

graph features and problem information types on facilitating or biasing perception and judgment 

(e.g., Pinker, 1990; Simkin & Hastie, 1987; Zacks & Tversky, 1999). According to Pinker (1990), 

a diagram itself does not possess universal advantage or disadvantage for information processing. 

The features of a diagram interact with the types of information to be represented so that the 

extraction of certain information or structures may be facilitated by certain diagram types but 

hindered by some other diagram types. Tversky, Morrison, and Betrancourt (2002) proposed two 

principles for effective graphic design that facilitate information extraction, comprehension, and 

inference using graphs. The Congruence Principle, based on the cognitive naturalness of visual-

conceptual mappings, emphasizes compatibility between the structure and content of a graph and 

the desired structure and content of the information to be represented. The Apprehension 

Principle emphasizes optimal organization and display of information so that it can be perceived 

readily and accurately.  

Overview of the Present Research 

The present research gathers evidence that can be used to evaluate theories of WHY 

diagrams are useful in reasoning, learning and problem solving, and WHEN diagrams are useful. 

More specifically, the goal is to investigate how structural and content compatibility between 

diagrams and problems might apply in probability problem solving. Based on the theories and 

evidence reviewed earlier, we argue that in mathematics problem solving, appropriate diagrams 
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both direct solvers’ attention to the underlying mathematical structures via cognitively natural 

correspondences, and help to organize problem information to facilitate the coordination of sub-

goals and computational stages in the process of problem solving.  

Elementary probability problems can sometimes be solved by more than one appropriate 

solution method.  For example, problems are used here that can be solved using strategies based 

on two distinct probability concepts, the classical definition of probability and the multiplication 

rule of probability. However, applied probability problems describe a wide variety of real-world 

situations. Based on evidence from related work (as yet unpublished), I believe that the semantic 

aspects of these problems evoke interpreted problem structures that may or may not map 

naturally to one or more probability concepts and solution strategies underlying these problems. 

It is predicted that providing an appropriate diagrammatic representation can highlight the 

underlying problem concept and structure as its diagrammatic structure and components will 

map to the probability concept.  

In the current investigation on diagram effects, we focus on tree diagrams and tables, 

because they are among the most commonly used diagrams in probability education and problem 

solving (e.g, Russell, 2000; Zahner & Corter, 2010). Research suggests that these two types of 

diagrams are often used by problem solvers to represent different probability situations and 

schemas (e.g., Corter & Zahner, 2007; Novick, 1990; Novick & Hmelo, 1994; Zahner & Corter, 

2010). In probability problem solving, N-by-N tables are frequently used to represent all possible 

combinations for compound-events problems (e.g., Novick, 1990), while outcome trees seem 

especially appropriate for situations involving sequential selection (e.g., Novick & Hmelo, 1994). 

Zahner and Corter (2010) found that using tree diagrams was particularly useful for solving 

conditional probability problems, a type of probability problem that involves reasoning about 
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sequential processes and dependent events. These observations and empirical findings suggest 

that the structures of trees and tables may be best for representing different problem structures 

and probability concepts, and may facilitate solution of different types of probability problems. 

However, this effect has only been demonstrated or hypothesized for a few specific problem 

instances. The current research aims to specify and summarize the types of probability problems 

where trees and tables are best suited for problem representation, and to explain these benefits in 

reference to specific aspects of the diagrams and visual reasoning processes in understanding 

probability concepts and procedures.  

In this research, the aim is to test diagram effects in the domain of probability problem 

solving. The studies described below explore how using different types of diagrams can affect 

both the process (strategy choice) and the product (solution success) in probability problem 

solving. Specifically, the studies investigate whether and how different types of diagrams can 

steer probability problem solvers to choose one solution strategy or another for solving 

probability problems that admit of multiple types of solution strategies. Specifically, four types 

of generic (i.e., unlabeled) diagrams are used as potential aids in problem solving: binary trees, 

N-ary (outcome) trees, binary tables, and N-by-N (outcome) tables. By comparing the effect of 

these different diagrams on solvers’ choice of solution strategy and solution correctness, the two 

studies of this dissertation seek to answer the following research questions:  

Do different types of diagrams for representing probability problems elicit the use of 

different solution strategies?  

Do appropriately chosen diagrams increase solution correctness rates, compared to no 

diagram given?  Does an ill-chosen diagram hurt performance?  
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If such effects are found, what aspects of the diagram seem to account for the differences 

in strategy choices and may be instrumental to obtain the facilitative effect? 

Significance of the Research 

The current research has the potential to add three distinctive contributions to research on 

the role of diagrams in thinking, reasoning, and STEM education.  

First, the current research expands the ways in which visual representations have been 

shown to influence the thinking process and outcomes in cognitive activities. Prior studies have 

predominantly focused on how diagrams can influence the outcomes of reasoning, such as 

inferences and judgment (e.g., Heiser & Tversky, 2006; Tversky et al., 2013; Zacks & Tversky, 

1999), or the accuracy or speed of problem solving and transfer (e.g., Gattis & Holyoak, 1996; 

Mason et al., 2012; Sanfey & Hastie, 1998). This research aims to produce empirical evidence 

that diagrams also affect how people formulate or select solution strategies in the process of 

problem solving.  

Second, this research investigates the particular aspects of tables and tree diagrams that 

might affect problem solving, beyond their general structure type. Previous investigations have 

focused on the global structures and applications of schematic diagrams such as tables and tree 

diagrams in their general format (e.g., Novick & Hurley, 2001; Novick, Hurley, & Francis, 1999), 

or on the features and applications of some specific variants of a diagram such as cladograms and 

polygenetic trees (e.g., Novick & Catley, 2013; 2014). The second study described below 

systematically manipulates the levels of information abstraction in tables and tree diagrams, to 

test how this type of visual representation feature interacts with the general structure type of a 

diagram to affect choice of solution strategy and solution correctness.  
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Lastly, the current research expands the study of diagram effects on reasoning 

specifically in the domain of statistics and probability learning and problem solving. The studies 

explore the issue of compatibility of diagram structures and probability problem structures, and 

its effect on solvers’ choice of mathematical solution strategies and solution accuracy. The 

results should have important educational implications for statistics and probability education, 

because they address how effective visual representations can be designed to facilitate the 

conceptual understanding of probability and the procedural flexibility for solving its problems, 

and the factors that might affect novice problem solvers’ choices of formal solution strategies.  

This dissertation is divided into five chapters. Chapter One provides the background of 

the problems explored in this dissertation, the goal of the research, and the research questions 

posed. Chapter Two presents a review of the literature related to the research questions. Chapters 

Three and Four report the two studies conducted to address the research questions. These two 

chapters describe in detail the research methodologies including the design, procedure, and test 

materials. Analysis results and some discussions are also provided following the description of 

methodology. This dissertation is then concluded by Chapter Five, which provides an overall and 

general discussion that synthesizes the results of the two studies and the educational and 

cognitive implications with regard to the research problem this dissertation sets out to investigate.  
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CHAPTER II: LITERATURE REVIEW 

External visual representations, such as diagrams, have a great impact on perception, 

reasoning, and problem solving, in both mathematics and more general domains. This chapter is 

a review of the role of external visual representations, especially diagrams, in mathematics 

problem solving. The primary goal of this chapter is to answer why and when diagrams are 

useful for problem solving, with an additional focus on how appropriate and effective diagrams 

may be designed for representing probability problems, highlighting their underlying concepts 

and structures, and facilitating problem solving.  

Visual Representations in Mathematics Problem Solving 

Applications of Visual Representations in Mathematics Activities 

External visual representations play an important role in mathematics learning and 

problem solving (e.g., Arcavi, 2003; Barwise & Etchemendy, 1991; Bishop, 1989; Bruckheimer 

& Arcavi, 1995; Hadamard, 1945; Nemirovsky & Noble, 1997; Zahner & Corter, 2010). Use of 

external visual representations can be found in various types of mathematics activities. For 

example, visual representations are commonly seen in instructional materials and teaching 

activities (e.g., Banilower, Smith, Weiss, Malzahn, Campbell, & Weis, 2013; Dufour-Janiver, 

Bednarz, & Belanger, 1987; Fuson & Briars, 1990). Learners and problem solvers often 

spontaneously create many forms of visualizations such as pictures, diagrams, and graphs across 

all stages of problem solving, e.g., problem comprehension and representation, reasoning, 

solution formulation, and solution explanations (e.g., Edens & Potter, 2008; Hegarty & 

Kozhevnikov, 1999; Presmeg, 1986a, 1986b; Zahner & Corter, 2010).  

In these mathematics activities, a wide variety of types of visualizations have been used. 

Their forms of representation may vary largely, from concrete (e.g., pictures, manipulatives) to 
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abstract (e.g., symbols, graphs), and from static (e.g., diagrams) to dynamic (e.g., animations, 

gestures). These various types of visualizations serve multiple different purposes in mathematics. 

For example, external visualizations have been used to symbolize mathematical notations, 

concepts, meanings, and formal solutions (Arcavi, 2003). Schematic diagrams such as tables, 

trees, and Venn diagrams, are important external visual devices for representing problem 

information and cueing mathematics problem solutions (Novick, 1990; Polich & Schwartz, 1974; 

Schwartz, 1971; Schwartz & Fattaleh, 1972). Graphing, such as lines, bars and scatter plots, has 

been used as an important means for data representation, feature discovery, and pattern 

interpretation, especially in statistics (e.g, Arcavi, 2003; Anscombe, 1973; Gattis & Holyoak, 

1996: Pearson, 1895; Salkind, 2006; Zacks & Tversky, 1999).  

Effects of Visual Representations on Mathematics Problem Solving 

However, research on the effects of using visual images on mathematics problem solving 

has shown mixed findings (e.g., Hegarty & Kozhevnikov, 1999; Lean & Clements, 1981; van 

Garderen & Montague, 2003). For example, a correlational study (Lean & Clements, 1981) 

measured engineering students’ preference for using visual representations and their mathematics 

test performance. The results revealed that students who preferred to process mathematical 

information by verbal means tended to outperform those using visual means on the mathematics 

tests. The authors speculated that the poorer performance associated with visual reasoning was 

due to reliance on concrete pictorial representation of problem information, which distracted 

problem processing and solving with unnecessary information. Similarly, in Hegarty and 

Kozhevnikov’s study (1999) on the relationship between use of visual representation and 

students’ mathematics problem solving performance, it was found that not all visual 

representations were associated with higher problem solving success, but only those that 
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depicted the schematic structures of the problems. These findings, which revealed negative or 

mixed effects of using visual solutions on mathematics problem solving, are in conflict with the 

positive visual effects found by other studies (e.g., Lowrie & Kay, 2001; Webb, 1979).  

Taxonomy of Visual Representations in Mathematics Problem Solving 

To explain the contradictory findings of the role of visualizations in mathematics learning 

and problem solving, the research literature has suggested that different types of visual displays 

used in mathematics activities should be distinguished, and that their effects on facilitating 

problem solving may vary, depending on their visual types and schemas. Presmeg (1986a, 1986b) 

distinguished five types of visual imagery in mathematics: pictorial imagery, schematic pattern 

imagery (e.g., diagrams), kinesthetic imagery, dynamic imagery, and memory for formulas.  

Among these five different types of visual imagery that Presmeg has distinguished, it was 

suggested that the most effective visual representation format should be schematic pattern 

imagery, because it removes concrete, mathematically irrelevant information from the problem 

information, and only displays the essential relations described in the problems. Use of concrete 

pictorial imagery, on the other hand, usually leads to a lower rate of success in mathematics 

problem solving (Hegarty & Kozhevnikov, 1999; van Garderen & Montague, 2003). Pictorial 

representations generally impair problem solving success, because the depictions often include 

irrelevant details for problem solvers to process, which distracts their attention from processing 

only the essential information and the underlying structure of the problem (Hegarty & 

Kozhevnikov, 1999; Lean & Clements, 1981; Presmeg, 1986a, 1986b). That schematic diagrams 

facilitate mathematics problem solving has been supported by previous research. For example, 

Hegarty and Kozhevnikov (1999) studied how sixth grade students’ self-created visual 

representations affected mathematics problem solving. Students’ visual creations were coded as 
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either primarily schematic (or diagrammatic) or primarily pictorial, based on whether a diagram 

or abstract spatial relations were depicted in their gestures or sketches. The results show that 

while the use of schematic diagrams was associated with higher problem solving success, the use 

of pictorial representations was associated with more problem solving failures. Similarly, Zahner 

and Corter’s study (2010) examined probability problem solvers’ spontaneous use of visual 

representations, and found that problem solving was more successful when diagrams were used, 

such as trees and Venn diagrams, but not when pictorial images were drawn. Gattis and Holyoak 

(1996) manipulated the assignment of an independent variable (altitude) to the x- or the y-axis of 

a line graph and explored how that affected graph users’ accuracy in judging the rate of change 

of the dependent variable (temperature) as the independent variable (altitude) changes. In one 

condition, they assigned the variable of altitude to the y-axis so that the graph observes a 

pictorial correspondence of “up” between the concept of altitude going “up” and the graphic 

depiction of the y-axis going “up”. In another condition, they assigned altitude to the x-axis and 

temperature to the y-axis so that the graph observes an abstract, schematic correspondence 

between the concept of temperature being the effect and the diagrammatic convention of the y-

axis being the outcome variable. This reversed assignment of variables to axes did not observe 

the pictorial correspondence depicted for the other condition. Participants’ performance 

confirmed that accuracy was increased by the diagrammatic correspondence, but decreased by 

the pictorial correspondence.  

In conclusion, previous research suggests that among all types of external visual 

representations, diagrams may be the most facilitative type of external visual representation for 

mathematics learning and problem solving. Therefore, it is educationally important to examine 

closely the use of diagrams in mathematics problem solving and their effects in problem solving, 
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and to seek principles for designing or selecting effective diagrammatic representations as aids 

for problem solving.   

In the following sections, the discussion will be focused on diagrams, used in the narrow 

sense of abstract schematic pattern representations. The role of diagrams in mathematics 

reasoning and problem solving activities will be reviewed. Principles for effective diagram 

design will also be suggested.  

Diagrams in Mathematics Problem Solving 

Definition of a Diagram 

A diagram is defined as a type of graphic representation that depicts only abstract 

structures and spatial relationship without references to literal, quantitative, or context-specific 

information (Brasseur, 2003; Lowe, 1993). Examples of diagrams that are commonly used in 

mathematics (including statistics and probability) problem solving include tables, trees, Euler or 

Venn diagrams, and in a broad sense also graphs and charts such as pies, bars, lines, and 

networks such as bipartite graphs.  

Functions of Diagrams in Problem Solving 

As stated earlier in this paper, diagrams facilitate mathematics problem solving, 

compared to other types of visual representations such as pictures and icons. Then the question 

of interest becomes: how and why do diagrams facilitate mathematics problem solving?  

This can be explained by the various functions that diagrams serve in general as well as 

in mathematics problem solving. Commonly acknowledged advantages of using diagrams over 

just the text information include that diagrams can ease the process of problem understanding by 

schematizing and simplifying information from problem text; and diagrams can increase 

computational efficiency by structuring problem information so that they can be easily grasped 
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(e.g., Diezmann & English, 2001; Fagnant & Vlassis, 2013; Gagatsis & Shiakalli, 2004; Hegarty 

& Kozhevnikov, 1999; Larkin & Simon, 1987; Lowe, 1993; Presmeg, 1986b, 2006; Tversky, 

Morrison, & Betrancourt, 2002; Zahner & Corter, 2010). 

To illustrate this point, Larkin and Simon (1987) contrasted the computational efficiency 

for processing information that is of the same quantity but represented in two different formats: 

sententially or diagrammatically. Sentential representations equalize the accessibility of 

information across the text, thus making certain information implicit and less noticeable, or 

costing readers extra time and effort to extract the necessary information for use (Larkin & 

Simon, 1987). On the contrary, diagrammatic representations can make implicit text information 

explicit and easy to grasp, by organizing information by location on a plane, and by chunking 

and/or highlighting necessary information for processing and computation (Larkin & Simon, 

1987). In addition, Gattis and Holyoak (1996) argued that sometimes graphs can integrate or 

reduce the number of steps or dimensions that are otherwise involved in purely sentential or 

mathematical solution procedure. This is argued to be an advantage over sentential 

representation, because trying to coordinate information across various dimensions and stages 

often costs a heavy cognitive load (Gattis & Holyoak, 1996). Thus, information represented 

diagrammatically has often been found to be more easily recognized, coordinated, and computed 

(Gattis & Holyoak, 1996; Larkin & Simon, 1987).  

Similar to this reason (e.g., Gattis & Holyoak, 1996; Larkin & Simon, 1987) given as to 

why diagrams facilitate information processing and computational efficiency, Winn (1989) 

argued that diagrams can simplify otherwise complex information described in narratives, and 

abstract necessary concepts from unnecessary or irrelevant details. For example, a food-chain 

diagram can metaphorically depict the roles of animals and their predator-prey relations more 
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efficiently than sentential descriptions (Winn, 1989). A map, as another example of schematic 

visual representation, eliminates photographic details of roads and architectures, and highlights 

essential information such as directions, locations, architecture categories, and altitudes (Winn, 

1989). Such a diagrammatic representation is argued to increase efficient perception and access 

to essential information (Winn, 1989).  

In addition to easing information processing and computations, several other functions of 

diagrams have also been identified that may explain why they help mathematics problem 

comprehension and solving. Diagrams can be used for developing mathematical insights (e.g., 

Polya, 1957; Edens & Potter, 2008). They can provide external support to problem solvers’ 

internal representations and be used to offload intermediate computational results from working 

memory (Bauer & Johnson-Laird, 1993; Tversky, 2001). And diagrams can also serve as 

memory cues for problem solutions (e.g., Larkin & Simon, 1987; Novick & Hmelo, 1994; 

Novick, 1990; Phillips, Norris & Macnab, 2010; Stylianou & Silver, 2004).  

Furthermore, using diagrams has been found to be particularly important or useful for 

solving complex or difficult problems (e.g., Bobek & Corter, 2010; Lowrie & Kay, 2001; 

Manalo & Uesaka, 2006; Webb, 1979). For difficult or complex problem solving, diagrams can 

help to coordinate sub-goals (e.g., Zahner & Corter, 2010); to simplify complex situations in the 

problems and make computations easier (Larkin & Simon, 1987; Lynch, 1990; Winn, 1989); and 

to offload intermediate calculation results (Schreiber, 2004; Tversky, 2001).  

Diagrams and Mathematics Problem Solving Success 

Although both theories and empirical evidence suggest that diagrams are powerful 

representational formats in reasoning and problem solving activities, research has also revealed 
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that diagrams are not invariably associated with problem solving success, nor are they effective 

for solving problems across all types (Zahner & Corter, 2010).  

First, diagrams do not always improve problem solving performance, especially if their 

perceptual properties fail to conform to the problem schemas they try to represent or the 

graphing conventions (e.g., Gattis & Holyoak, 1996; Novick & Hurley, 2001). For example, 

Bauer and Johnson-Laird (1993) tested the effectiveness of different types of diagrammatic 

representations for syllogistic reasoning. The results showed that only those diagrams of which 

the spatial relations were depicted analogous to the structure and content of the problem 

information significantly increased answer accuracy compared to no diagram given. On the other 

hand, when a diagram depicted problem elements and relations in a spatially arbitrary way, it 

even decreased answer accuracy compared to verbal reasoning only. In Hurley and Novick’s 

(2010) study, the results of diagram users’ performance in judgment tasks showed that 

convention-violating diagrams not only impaired answer accuracy but also prolonged the 

reaction time. Thus, Hurley and Novick (2010) concluded that effectiveness of diagrams for 

accurate and efficient problem solving requires that a diagram is constructed so that it facilitates 

the perceptual inferences of the problem information.  

Second, a diagram may be an appropriate representation for one type of problem, but not 

another, depending on the degree to which its structure and content can correspond to those of 

the problems. For example, in a study that examined the effect of various types of user-created 

visualizations on probability problem solving (Zahner & Corter, 2010), the results showed that 

the effectiveness of a diagram for problem solving was contingent on the types of probability 

problems it was created to represent. For example, the use of tree diagrams was found facilitative 

for solving problems of conditional probability and combinations, but not significantly so for 
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compound independent events or fundamental principles of combinatorics. The tree structure 

features conditional and hierarchical leveling (Novick & Hurley, 2001) and typically cues a 

temporal ordering schema (Zahner & Corter, 2010). This may explain why a tree diagram is 

particularly helpful for solving conditional probability and combinations problems, because it is 

structurally well-matched to the problem features, which involve sequential events and finding 

probabilities that are dependent of the previous event outcomes. However, such a visual schema 

may not always be essential for highlighting the probability concepts of compound independent 

events or fundamental counting principles, because events are independent of each other, and 

sometimes the efficient search for outcomes does not follow a temporal or hierarchical order.  

Given the evidence reviewed above, the next question to be addressed is: what types of 

diagrams are effective for mathematics problem solving? Or in other words, what types of 

diagrams should mathematics educators provide to facilitate problem understanding, ease 

information processing and search, increase computational efficiency, and thus improve student 

problem solving?  

Principles for Effective Diagram Design 

Simply put, a diagram must be an appropriate representation of the problem information 

so that necessary information can be highlighted and accurately grasped for use. To be specific, 

Tversky, Morrison, and Betrancourt (2002) have suggested two cognitive principles for effective 

diagram design: the Principle of Congruence and the Principle of Apprehension. The Principle of 

Congruence requires the content and structure of a diagram to be consistent with the content and 

structure of the problem that it is used to represent; the Principle of Apprehension suggests that 

the information and schema that a diagram conveys must be organized so that it can be easily 

noticed and grasped (Tversky, Morrison, & Betrancourt, 2002).  
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Practically speaking, that means an effective diagram must be designed or selected to 

share a high structural similarity with the type of problem it is to represent in order to facilitate 

problem solving. Why is this structural compatibility between a diagram and a problem type 

particularly important? I believe this can be explained by the cognitively natural correspondences 

between perceptual properties and nonvisual concepts, and the graphing and communicative 

conventions that graph authors and viewers regularly observe (Zacks & Tversky, 1999). 

Furthermore, research evidence has suggested that these visual-conceptual correspondences and 

graphic use conventions are not only consistently followed by experienced graph authors and 

users (Novick & Hurley, 2001), but also by people without awareness or explicit knowledge of 

these conventions (Zacks & Tversky, 1999).  

To conclude, different types of diagrams are applicable to different situations, and are 

usually facilitative only for solving those problems of which they are appropriate visual 

representations. Different types of appropriate diagrammatic representations may lead problem 

solvers to extract different types of information depending on their unique perceptual structures, 

perceive and interpret the structure of a mathematics problem differently, and thus choose 

different solutions (Gattis & Holyoak, 2004; Pinker, 1990; Zacks & Tversky, 1999). The degree 

of shared structural similarity between a diagram and a problem type can also affect problem 

solving success, so that a higher structural compatibility may lead to a higher rate of solution 

success.  

Diagrams for Probability Problem Solving for the Current Study 

In this dissertation, two types of diagrams, namely trees and tables, are examined in terms 

of their effect on solving probability problems of different topics. Trees and tables have been 

commonly-used visual representations in probability education and problem solving activities 
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(Bobek & Corter, 2010; Russell, 2000; Zahner & Corter, 2010). However, they differ in their 

diagrammatic structures (Novick & Hurley, 2001), and thus may highlight different schematic 

information about a probability problem, and lead to different inferences and ways of using the 

problem information. An overview is provided that analyzes the structures of trees and tables, 

and the probability concepts and problem structures that they may cue respectively. 

Tree versus Table: Structures and Applications 

Novick and Hurley (2001) analyzed the basic structures and schematic components of 

trees and tables. The global structure of a table features the cross-classification of elements of 

two variables or sets, or elements of a single set that are selected twice. The rows and columns 

each represent a variable or set, with each row or column cell representing an element contained 

in a set. Each intersection cell represents the combination of two elements that are selected 

respectively from the two sets or the two selections. The diagonal cells of an N-by-N table are 

special intersection cells when the table represents combinations of elements of a single set, 

because a diagonal cell represents the combination of an item by itself (e.g., an outcome that the 

same element is selected for both times). The global structure of a tree diagram features 

hierarchical levels of events. The tree structure starts with a single node, which branches out into 

subsequent levels; and these subsequent levels serve as the root nodes for their following level, 

and branch again. Different levels of events are often dependent so that the identities of one level 

depend on the identities of the preceding level, although it depends on the specific situations. 

Items listed at the same level are mutually exclusive and identical in status, whereas items listed 

at different levels differ in status or sequence. 
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Probability Concepts and Problem Types 

Three probability topics that are among the most commonly taught topics in elementary 

probability are permutations, combinations, and the fundamental counting principle of 

independent events.  

All these types of problems ask for the probability that an intersection (or combination) 

of the favorable events will occur. However, two underlying concepts distinguish these three 

types of problems: whether joint events are independent of each other; and whether the order of 

the combination s is important or not. Table 1 shows the probability principles underlying these 

types of problems.  

In permutations, objects are selected or arranged with regard to the order of an object 

position. In combinations, objects are selected without regard to the order of an object position. 

And in both permutations and combinations, events of selecting or arranging an object are 

dependent of each other, which is that the probability that a selection occurs affects the 

probability of the next selection. For example, the probability of the outcome of selecting a 

second ball from an urn of five balls will be affected by the probability of the outcome of the 

first selection, because the number of balls that remain selectable is reduced. On the other hand, 

for independent events, the selections of the favorable events are independent of each other, 

which is that the probability of the outcome of the first selection does not affect the second 

selection. For example, the probability of getting a tail from flipping a coin is not affected by 

flipping another coin, because all the possible outcomes for such an event to occur remain the 

same, regardless of the number of the trials. To put it in a more practical way, the same 

population element cannot be selected at two different “places” in permutations or combinations 

problems, but can keep occurring in some types of independent events.  
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Table 1  
Key Probability Concepts (and Distinctions) Underlying the Probability Topics 

 

Probability Topics Joint Events/Outcomes 
Independent? 

 

Order Important? 
 

Permutations Dependent 
(sampling without replacement) 

  

Yes 
 

Combinations Dependent 
(sampling without replacement) 

 

No 
 

Independent Events Independent 
(sampling with replacement) 

 

Yes 

	
	

Conceptually (as well as procedurally), probability for these situations can be defined and 

computed in two ways: the classical definition of probability; and the multiplication rule of 

probability. 

Following the classical definition of probability, measuring the probability that an event 

will occur is based on outcomes that are equally likely to happen. Thus, in a classic sense, the 

probability of an event is determined by the number of all possible outcomes of the target event 

over the number of all possible outcomes that are equally likely to happen. For example, to find 

the probability two girls will be selected from a group of three girls and two boys, the classical 

definition will define the probability as 3/10, by dividing 3 (the number of all possible outcomes 

that two girls will be selected) into 10 (the number of all possible outcomes that two students 

will be selected). A strategy like this is termed the “outcome-search” strategy.  

In a different sense, probability can be defined as the chance of the intersection of events 

by the multiplication rule of probability. According to the multiplication rule of probability, the 

probability is determined as the chance that all the target events will happen. For example, to 

find the probability that both events, A and B, will occur, the multiplication rule defines the 

probability as P(A∩B) = P(A) × P(B|A), meaning the probability that both A and B will occur is 
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the probability that A will occur multiplied by the probability that B will also occur given A 

occurred. Using the same probability problem above, the multiplication rule will define the 

probability as 3/10 using a different approach – by multiplying 3/5 (the probability that the first 

selection is a girl) by 2/4 (the probability that the second selection is a girl, too, given the first 

girl has been selected). A strategy like this is termed the “sequential-sampling” strategy. 

Structural Compatibility between Diagrams and Probability Problems 

Given this conceptual and procedural understanding of probability in permutations, 

combinations, and fundamental counting principle of independent events, tables and trees may 

naturally cue students with different underlying concepts and structures for probability problems, 

according to the diagrammatic structures they each depict.  

An N-by-N table (shown in Figure 1 and Figure 2) is used to illustrate the table structure 

in relation to the kind of probability concepts and structures that it may highlight. An N-by-N 

table is the prototype of the table structure. As Novick and Hurley’s (2001) diagram analyses 

demonstrate, the cells of such a table represents all possible equally-likely outcomes of the target 

event and in the whole outcome space. Furthermore, as the example shows, it depicts the target 

outcomes as a subset of outcomes embedded in the whole outcome space. Therefore, it is 

reasonable to speculate that the structure of an N-by-N table cues problem solvers to process a 

probability problem in the sense of classical definition, and to search for all possible and all 

target outcomes that are equally likely to happen.  

Although an N-by-N table should cue the classical definition of probability and an 

outcome-search solution strategy in general, it has different levels of structural compatibility 

with problems of different topics, depending on whether events are dependent or independent. 

To represent the equally-likely outcomes for an independent events problem, every intersection 
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cell represents a valid combination of the selections from two sets, or from a single set twice 

(represented by the row and the column). However, to represent the outcomes for a permutations 

or combinations problem, only the non-diagonal intersection cells are valid representations. In 

permutations and combinations, events are dependent, which means the selection of an object 

cannot be repeated. Therefore, as all the diagonal cells represent those self-repeated 

combinations, they are invalid and should not be included in the counting of equally-likely 

outcomes. This difference in the visual-conceptual compatibilities suggests that the structure and 

components of an independent events problem can be better mapped onto the visual structure and 

components of an N-by-N table, compared to a dependent events problem (i.e., permutations, 

combinations).  

 

 

Figure 1. An annotated N-by-N table for a combinations problem. The intersection cells 
represent all possible outcomes that two students may be selected from a group of five students 
(represented by the table column and row). The stricken diagonal cells indicate invalid outcomes. 
The dashes indicate non-essential repetitive outcomes.  

 

 

Figure 2. An annotated N-by-N table for an independent events problem. The intersection cells 
represent all possible color combinations for the two spinners (each with three equal-size color 
sections, represented by the table column and row). 
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A binary tree (shown in Figure 3) is used to illustrate the tree structure and how it may 

highlight certain probability concepts and structures. A binary tree features a hierarchical 

structure where events of unequally-likely probabilities are depicted to happen sequentially from 

left to right (or top to bottom if rotated by 90 degrees clockwise). Therefore, I believe that with 

this kind of a diagram structure, a binary tree will cue problem solvers to solve probability 

problems with the multiplication rule, which defines the probability of the outcomes of each 

selection event sequentially, and then multiplies them to find the probability that all target events 

will occur. 

 

 

Figure 3. An annotated binary tree for a combinations problem. The nodes of a level represent 
the outcomes and their probabilities from a certain selection, as two students are selected from a 
group of five students (two boys and three girls).  

 

 

Figure 4. An annotated binary table for a combinations problem. Each intersection cell 
represents the joint probability of the outcomes of two selections, as two students are selected 
from a group of five students (two boys and three girls).  
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The diagram effect may become more complicated (or flexible) when variation formats 

of trees and tables (i.e., binary tables and N-ary trees) are involved in problem representation. 

For example, although a binary table (shown in Figure 4) has the global structure of a table, it 

represents the intersections of events that are unequally likely to happen, rather than equally-

likely outcomes. Therefore, although the global structure of a binary table visually depicts the 

target event (i.e., selecting two girls) as a subset of all possible event intersections, it may still 

cue the sequential-sampling strategy that defines probability by the multiplication rule. 

 

 

Figure 5. An annotated N-ary tree for a combinations problem. The nodes of a level represent all 
possible outcomes from a certain selection, as two students are selected from a group of five 
students.  

 

On the other hand, although an N-ary (outcome) tree (shown in Figure 5) has the global 

feature of hierarchy and sequence, it enumerates all equally-like outcomes. Therefore, users may 

be cued to either principle. N-ary (outcome) tree users may be cued to use an outcome-search 
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strategy if their attention is directed to the outcomes that the diagram enumerates. Or, they may 

be cued to use a sequential-sampling strategy, if their attention is directed to the selection events 

that the diagram depicts in a sequential order. However, even if the N-ary (outcome) tree 

structures may cue the same solution strategy as the N-by-N (outcome) table structures, their 

effectiveness may be different. Each has its own advantage and disadvantage in terms of 

facilitating problem solving accuracy. For solvers to search for outcomes for an independent 

events problem, information may be less efficiently organized by an N-ary (outcome) tree as the 

tree branches are likely to distance one target outcome from another, and make the search of all 

target outcomes more difficult than an N-by-N (outcome) table. On the other hand, this 

information is chunked by an N-by-N (outcome) table that integrates all the equally-likely 

outcomes within the table space for computational efficiency. However, for representing 

permutations and combinations problems, N-ary (outcome) trees may facilitate problem solving 

accuracy more, because the branches of an N-ary (outcome) tree do not include any false self-

repeated combinations, but the diagonal cells on an N-by-N (outcome) table can easily trap 

solvers to count them as valid outcomes.  

The goal here is to investigate whether and how trees and tables at different levels of 

outcome abstraction (i.e., binary tree; N-ary tree; binary table, N-by-N table) lead to different 

results in interpreting mathematical structures and selecting solutions for probability problems. 

The diagrams were selected to manipulate two factors: the type of diagram structure (tree versus 

table) and the abstraction level of the represented outcome space (either a large space of equally-

likely outcomes, or a smaller space of unequally-likely outcomes). To test the diagram effects on 

choice of solution strategy and solution correctness, problems representing two probability topics 

were used: combinations and fundamental principles of independent events. These specific types 
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of problems were chosen because they admit of multiple types of solution strategies (i.e., the 

outcome-search strategy and the sequential-sampling strategy), and each can be represented by 

both trees and tables.  

It is hypothesized that the choice of solution strategy is influenced by the diagrammatic 

representation of a problem. The idea is that different types of diagrams should bias people to 

formulate different mathematical solution strategies, due to the similarity correspondences 

between a diagram’s structure and the selected strategy’s mathematical structure. That is, the 

problem solver tends to choose a solution with procedural or mathematical structure that can be 

easily aligned with the structure of a diagram. Specifically, it is predicted that the N-by-N table 

will lead to more frequent use of an outcome-search strategy for the problems, because it 

represents the problem outcomes at an equally-likely outcome basis, and its N-by-N matrix 

structure integrates these combination outcomes so that the target outcomes and all possible 

outcomes may be perceived as a simultaneously sampled subset of a full set. The binary tree is 

predicted to cue the sequential-sampling strategy, because it features a hierarchical and 

sequential leveling structure with the nodes at each selection (branch) level representing 

unequally-likely outcomes of a selection. The binary table is also predicted to cue the sequential-

sampling strategy, because the four cells of the table represent selection events with unequally-

likely outcomes, and the overall structure does not offer a high compatibility with the outcome-

search solution structure (i.e., equally-likely target outcomes as a subset of all possible 

outcomes). Finally, for the N-ary (outcome) tree, it is hypothesized that both strategies may be 

cued, because it not only features a sequential and hierarchical structure that may cue the 

sequential-sampling strategy, but also cues searching for all possible equally-likely outcomes.  
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With regard to the influence that different types of diagrams have on problem solving, it 

is hypothesized that when the content and structure of a diagram is well-matched to those of a 

problem type, and when information is organized in an efficient way that minimizes extra 

information processing or coordination of sub-stages of solution procedure, problem solving 

success will be high.   
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CHAPTER III: STUDY 1 

This chapter describes the design and results of the first study (Study 1). The design of 

the study will be described in detail, followed by the data analysis results, and a discussion of the 

study findings and implications with regard to the research questions this dissertation sets out to 

explore. The effects of three types of generic diagrams for solving two probability word 

problems were tested via a self-paced problem solving task. The primary goal was to examine: 

first, whether different types of diagrams can steer probability problem solvers to choose 

different solution strategies for problems that admit of multiple strategies; and second, whether 

they affect problem solution correctness.  

Method 

Participants 

The participants were 48 students (39 or 81.3% female) recruited from a university in 

New York City. Their average age was 25.60 years (SD = 4.03 years). To be qualified for the 

experiment, a participant had to have taken at least one undergraduate- or graduate-level 

statistics course prior to participation. On average, participants reported to have taken 2.33 

statistics courses. However, their levels of training varied: 19 (or 38.6%) participants reported 

having taken one statistics course, 11 (or 22.9%) participants reported two, 10 (or 20.8%) 

reported three, and 8 (or 16.7%) participants reported four or more such courses. Their 

undergraduate major background also varied: 15 (or 31.3%) reported non-STEM majors (e.g., 

literature, music), 21 (43.8%) in social science (e.g., psychology), 5 (10.4%) in mathematics or 

statistics, and 7 (14.6%) in other STEM domains (e.g., natural science, engineering, economics).  
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Materials 

Each participant solved three elementary probability word problems, representing three 

different probability topics: combinations, independent events, and conditional probability. The 

first two problems/topics were the target materials for this study, because they admit of two 

distinct salient solution strategies: the outcome-search strategy and the sequential-sampling 

strategy (described in the literature review and below). The third problem, involving conditional 

probabilities (and referred to below as the Weather problem), did not invoke alternative solution 

strategies, and was treated merely as a filler problem for purposes of this investigation.  

The problem text for the independent events problem (also called the Spinner problem) 

was:  

Two spinners are constructed. Each spinner has 3 color sections of equal size: 

red, white, and blue. The two spinners are spun at the same time, and the result of 

each spinner is recorded. What is the probability of getting the same color on 

both spinners?  

In the diagram conditions, either a tree (Figure 6) or a table (Figure 7) was provided to 

the problem solver in addition to the problem text.  These diagrams were unlabeled, but the 

number of branches (or rows and columns) was appropriate to the problem. 

The problem text for the combinations problem (also called the Work-Group problem) 

was as follows. The generic diagrams for this problem are presented in Figure 8 and Figure 9.  

Five students are in a work group. The teacher randomly selects two of them to 

present the group work. If there are 2 boys and 3 girls in this group, what is the 

probability that the teacher selects 2 girls?  
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Although these two problems represent two different probability topics, the same two 

broad strategies can be used to solve each one. For the combinations (Work-Group) problem, the 

outcome-search strategy defines the probability as 3/10: 3 possible ways of selecting two girls 

over 10 possible ways of selecting any two students, from a group of two boys and three girls. 

The sequential-sampling strategy finds the probability as P (G1∩G2) = P (G1) × P (G2|G1) = (3/5) 

× (2/4) = 3/10. Similarly, for the independent events (Spinner) problem, the probability defined 

by the outcome-search strategy is 3/9 (or 1/3): 3 total outcomes that both spinners land on the 

same color over 9 possible color combinations between the two spinners. Using the sequential-

sampling strategy, the probability that both spinners land on a particular color (e.g., red) is P 

(R1∩R2) = P (R1) × P (R2) = (1/3) × (1/3) = 1/9. And because the spinners can land on any of the 

three color sections, the total probability is three times the probability of obtaining a particular 

color twice, equal to 3 × (1/3) × (1/3) = 3 × 1/9 = 3/9 (or 1/3).  

 

                            

Figure 6. Tree for the Spinner problem. The panel on left shows the unlabeled tree provided with 
the Spinner problem in Study 1. The panel on right shows how it was annotated by one 
participant. 
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Figure 7. Table for the Spinner problem. The panel on left shows the unlabeled table provided 
with the Spinner problem in Study 1. The panel on right shows how it was annotated by one 
participant. 

                 

                                

Figure 8. Tree for the Work-Group problem. The panel on left shows the unlabeled tree provided 
with the Work-Group problem in Study 1. The panel on right shows how it was annotated by one 
participant. 

                                   

											 	

Figure 9. Table for the Work-Group problem. The panel on left shows the unlabeled table 
provided with the Work-Group problem. The panel on right shows how it was annotated by one 
participant. 
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Design and Procedure 

Three test forms were used, each presenting the problems in a different order (Table 2). 

The first problem for each test form was given in text only, with no provided diagram. For the 

second and the third problems, one was given with a generic tree diagram, and the other one was 

given with a generic table diagram. Problems were presented in different orders, counterbalanced 

to equate possible carry-over effects. Thus, each problem was attempted by three independent 

groups of participants, with one third of them solving it with no provided diagram, one-third with 

a tree diagram, and one-third with a table diagram. As Table 2 shows, three types of provided 

diagrams were used: an N-by-N (outcome) table and a binary tree for the Work-Group 

(combinations) problem; and an N-by-N (outcome) table and an N-ary (outcome) tree for the 

Spinner (independent events) problem.  

 
Table 2  
Study Design and Test Forms for Study 1 

 Problem 1 Problem 2 Problem 3 
Form A Spinner  

(no diagram) 
Weather  

(binary tree) 
Work-Group  

(N-by-N table) 
Form B Weather  

(no diagram) 
Work-Group 
(binary tree) 

Spinner 
(N-by-N table) 

Form C Work-Group  
(no diagram) 

Weather 
(binary table) 

Spinner 
(N-ary tree) 

 

Participants (N=48) were randomly assigned to the three test forms, with 16 participants 

in each test form. Participants were tested individually in a laboratory setting, with no interaction 

with an on-site experimenter, although they may ask the experimenter questions for clarifying 

the task instructions during the experiment. In the task, each participant was given a booklet in 

which each problem was presented on a separate page. To prevent participants from seeing more 

than one diagram at a time, they were instructed not to look at any other problems when they 
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were working on a problem. Participants were also asked to show their step-by-step solution 

procedure on the worksheet. Participants were explicitly instructed to use the provided graph for 

problem solving when a problem was accompanied with a diagram. A probability formula sheet 

was also provided, although participants were told that the formula sheet was optional for them 

to use. Participants also filled out a brief survey about their basic demographic and statistics 

training experience. At the end of the experiment, most participants were each paid eight dollars, 

and the rest of the participants received course credits as an optional way to fulfill a course 

requirement.  

Results 

Coding 

Two sets of outcome variables were of focal interest: choice of a solution strategy, and 

problem solving correctness. Strategy types were coded based on whether an outcome-search 

strategy or a sequential-sampling strategy was used for problem solving. Use of each strategy 

was coded independently and dichotomously, with a value of 1 if the strategy was used 

(including a partial or informal one as long as its key feature was substantially reflected in the 

strategy, e.g., outcome counts or a stage-wise process), and 0 otherwise. This strategy 

determination was made without reference to correctness, which was coded independently. 

Examples of participants’ work using each of the two solution strategies for the two problems are 

shown in Figure 10 (the Work-Group problem) and Figure 11 (the Spinner problem).  

Solution success was assessed with two measures. Answer correctness was coded 

dichotomously, based on whether the final answer has the correct value, regardless of whether all 

the solution steps were correct. Procedural correctness was coded to measure if the solution 

steps a solver followed were appropriate, regardless of final answer correctness. For example, if 
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a solver’s solution procedure was correct, and the only error was a computational error that led to 

an incorrect final answer, his/her procedure would be coded as correct, but answer correctness 

would be coded as incorrect. On the other hand, one participant obtained a correct final answer 

by an incorrect procedure. For these reasons, procedural correctness is analyzed as our main 

measure of problem solving success (cf. Gugga & Corter, 2014). 

 

           

Figure 10. Two solution strategies for the Work-Group problem. The panel on left shows an 
example of a participant using the outcome-search strategy for the Work-Group problem. The 
panel on right shows an example of a participant using the sequential-sampling strategy for the 
Work-Group problem.  

 

          

Figure 11. Two solution strategies for the Spinner problem. The panel on left shows an example 
of a participant using the outcome-search strategy for the Spinner problem. The panel on right 
shows an example of a participant using the sequential-sampling strategy for the Spinner 
problem. 

 

To check reliability, a second coder independently coded 24 (or 25%) of the problem 

solutions in Study 1. For solution strategy coding, the inter-rater reliability was well established, 

as percent agreement between the two coders was 0.96, with r = 0.92. For solution procedural 

correctness coding, the inter-rater agreement was perfectly met (=1.0) between the two coders.  
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Statistics Training Experience by Test Form 

The numbers of statistics courses taken by participants across the three test forms were 

compared. No statistical difference was found across the forms (Form A: M=2.25, SD=1.571; 

Form B: M=2.88, SD=2.029; Form C: M=1.88, SD=0.885). However, participants taking Form C 

seemed to have had less statistics training experience than participants taking Form B, t(30) = 

1.807, p = 0.081 (without Bonferroni’s correction in order to detect any possible group 

difference in prior statistics training experience).  

Analysis of the Work-Group (Combinations) Problem: Effects of the N-by-N Table versus 

the Binary Tree  

Strategy choice. As hypothesized, solvers’ choices of the solution strategies were 

strongly biased by diagram types. Table 3 presents the frequency distributions of solvers’ 

strategy choices. Figure 12 shows the difference across diagram types. Because use of each 

strategy was coded independently, neither or both of the two strategies might be employed on a 

given problem by a participant. Therefore, a participant’s solution may be coded as using both 

the outcome-search strategy and the sequential-sampling strategy. For that reason, the choices of 

the solutions were not mutually exclusive, and the total number of strategies used by a diagram 

group (shown in Table 3) may exceed the number of its participants.    

Participants given the N-by-N table more frequently used the outcome-search strategy 

(93.8%) compared to participants given no diagram (62.5%), χ2(1, N=32) = 4.571, p = 0.083 (by 

Fisher’s Exact Test); and less frequently used the sequential-sampling strategy compared to no 

diagram (6.3% vs. 43.8%), χ2(1, N=32) = 6.000, p = 0.037 (by Fisher’s Exact Test). On the other 

hand, participants given the binary tree showed significantly more use of the sequential-sampling 

strategy than those given no diagram (81.3% vs. 43.8%), χ2(1, N=32) = 4.800, p = 0.028; but 
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significantly less use of the outcome-search strategy than those given no diagram (25% vs. 

62.5%), χ2(1, N=32) = 4.571, p = 0.033.  

 
Table 3  
Strategy Choices and Correctness for the Work-Group Problem by Diagram Type 

 
Diagram 

Condition 

Strategy: Correctness: 
Outcome 

search 
Sequential 
sampling 

Procedural 
correctness 

Answer 
correctness 

No diagram 
(N=16) 10 (62.5%) 7 (43.8%) 13 (81.3%) 12 (75.0%) 

Binary tree 
(N=16) 4 (25.0%) 13 (81.3%) 13 (81.3%) 11 (68.8%) 

N-by-N table 
(N=16) 15 (93.8 %) 1 (6.3%) 5 (31.3%) 5 (31.3%) 

 

Overall (N=48) 29 (60.4%) 21 (43.8%) 31 (64.6%) 28 (58.3%) 
 

 

Figure 12. Frequencies of strategy choices for the Work-Group problem by diagram type. Error 
bars represent standard errors. 
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Solution Success. Table 3 also shows participants’ rates of procedural correctness and 

answer correctness. Figure 13 shows the difference across diagram types. The procedural 

correctness rates for the no-diagram condition (81.3%) and the binary tree condition (81.3%) 

were high and identical. However, procedural correctness for the N-by-N table condition was 

significantly lower (31.3%) than the no-diagram condition (81.3%), χ2(1, N=32) = 8.127, p = 

0.004. 

 

 

Figure 13. Correctness rates for the Work-Group problem by diagram type. Error bars represent 
standard errors. 

 

Error Analysis. Unsuccessful solvers’ error patterns were analyzed to better understand 

why the table decreased problem solving success for this problem. When participants were given 

the N-by-N table for the Work-Group problem, 6 of the 11 erroneous solutions resulted from 

incorrectly defining the total number of equally-likely outcomes, and 5 of these cases resulted 

directly from counting repeated selection of a single student (represented by the diagonal cells) 
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as valid combinations. Thus, it was a common error to count all 25 cells as valid outcomes by 

using the 5-by-5 table (Figure 14). This corresponds to treating the selection of two (distinct) 

students as sampling with replacement. Another 3 errors involved incorrect use of the 

combinations formula, or failure to convert the count of outcomes to probability. 

 

 

Figure 14. A common misuse of the N-by-N table. Counting diagonal cells (=self-repeated 
combinations) as valid outcomes of a combinations problem was a common misuse of the table 
that led to erroneous solutions for the Work-Group problem. 

 

Thus, more than 80% of the procedural errors made with the N-by-N table involved the 

solver attempting to use the outcome-search strategy but being led astray by the structure of the 

N-by-N table. Specifically, in order to use the table correctly, problem solvers must recognize 

that the diagonal cells should not be used, because the self-repeated combinations that these cells 

represent are impossible outcomes when sampling without replacement. Put another way, the 

structure of the table does not map in a one-to-one way with the structure of the combinations 

problem. 

The sequential-sampling strategy evoked by the binary tree led to distinctively different 

error types, so that three out of five incorrect answers involved incorrectly defining stage-wise 

probabilities. For example, the correct probabilities for the two sequential selections should be 

P(G1) = 3/5 and P(G2|G1) = 2/4. However, the erroneous solutions involved incorrect probability 

values for these two events. 
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Discussion. For the Work-Group problem, the tree and the table diagrams altered the 

frequency of using particular strategies, with the N-by-N table leading solvers to select an 

outcome-based strategy (the “outcome-search” strategy), and the binary tree leading them to 

select a sequential strategy based on an event-level representation (the “sequential-sampling” 

strategy). These differences in turn led to differential error rates for the diagram conditions, and 

also to characteristic error patterns that are highly distinctive. In particular, the N-by-N table led 

to more use of an outcome-based strategy, and more errors in identifying the correct equally-

likely outcome space; and the binary tree led to more use of a sequential strategy, and typically 

errors in identifying the correct stage-wise probabilities for unequally-likely outcomes of the 

selections. 

These effects are explained in terms of the compatibility between the diagram and the 

relevant problem characteristics. Combinations problems (e.g., “How many ways can N objects 

be selected k at a time?”) are typically interpreted as involving the simultaneous sampling of k 

entities from a larger set of N entities (e.g., by application of the formula for the number of 

combinations of N objects selected k at a time), but can also be formulated and solved as 

involving sequential sampling (k draws, a single object at a time, without replacement).  

However, in the latter case, order of selection is implied to be relevant, so answers may require 

appropriate adjustment.   

The N-by-N table displays the outcomes simultaneously in an outcome space, by 

integrating all outcome cells into a single matrix structure. Therefore, it cues solvers to search for 

all possible outcomes in the whole outcome space and for the target event as a subset embedded 

in the whole outcome space on the table.  Note specifically that an unlabeled N-by-N table 

implicitly cues solvers to consider all outcome cells as relevant to the problem, including those 
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diagonal cells that represent self-repeated selections, although these are impossible outcomes for 

the combinations problem.   

Thus, the table led to more erroneous identifications of the correct outcome space, 

because its representational format violates the Principle of Congruence articulated by Tversky, 

Morrison and Betrancourt (2002), in that there is poor fit between the structure of the diagram 

and the structure of the problem. Tversky, Morrison and Betrancourt (2002) suggest that in order 

to facilitate information processing, the structure and content of a diagram must be compatible 

with the structure and content of the represented information. 

In contrast, the binary tree steers problem solvers towards use of an outcome space with 

only four unequally-likely outcomes: S = {BB, BG, GB, GG}. In addition, the tree diagram’s 

left-to-right hierarchical structure may implicitly cue viewing the problem as involving 

sequential sampling without replacement. Therefore, the binary tree steers problem solvers 

towards a sequential-sampling strategy. Correct execution of this strategy requires correctly 

specifying conditional probabilities for the second student selected, as in Figure 10. Here, errors 

made by the binary tree condition tended to involve incorrect specification of these probabilities.  

Analysis of the Spinner (Independent Events) Problem: Effects of the N-by-N Table versus 

the N-ary Tree  

The two diagrams contrasted for the Work-Group problem actually vary by two aspects 

of the diagram at once: the general structure type (tree versus table), and the abstraction level of 

outcome space (an equally-likely outcome space based on the specific students selected versus 

an unequally-likely outcome space based only on sex of the two selected students).  For the 

Spinner problem, exemplifying the use of the fundamental principle of combinatorics, the study 

chose to control for the abstraction level of outcome space and vary only the diagram type: tree 
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versus table. This problem is referred to as the “independent events” problem, because the 

outcome of the first spinner is independent of the outcome of the second spinner. 

Strategy Choice. As for the Work-Group problem, use of each strategy was coded 

independently for the Spinner problem. Therefore, neither or both of the strategies might be used 

in a participant’s solution, so the choices of the strategies by a diagram group were not mutually 

exclusive (shown in Table 4). As shown in Table 4 and Figure 15, the N-by-N table diagram led 

to more frequent use of the outcome-search strategy (to 68.8%),  compared to 31.3% when no 

diagram was provided, χ2(1, N=32) = 4.500, p = 0.034. However, the N-ary tree, which cues both 

use of the equally-likely outcome space and a sequential order of defining stage-wise 

probabilities, led to mixed choices of strategies: 50% of participants in the N-ary tree condition 

used the outcome-search strategy, whereas 50% of them used the sequential-sampling approach.  

 
Table 4  
Strategy Choices and Correctness for the Spinner Problem by Diagram Type 

 
Diagram 

Condition 

Strategy: Correctness: 
Outcome 

search 
Sequential 
sampling 

Procedural 
correctness 

Answer 
correctness 

No diagram 
(N=16) 5 (31.3%) 9 (56.3%) 8 (50%) 8 (50%) 

N-ary tree 
(N=16) 8 (50%) 8 (50%) 10 (62.5%) 11 (68.8%) 

N-by-N table 
(N=16) 11 (68.8%) 5 (31.3%) 14 (87.5%) 14 (87.5%) 

 

Overall (N=48) 24 (50%) 22 (45.8%) 32 (66.7%) 33 (68.8%) 
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Figure 15. Frequencies of strategy choices for the Spinner problem by diagram type. Error bars 
represent standard errors. 

 

Solution Success. Table 4 also shows the frequency and percentage of participants in 

each condition who successfully solved the Spinner problem. The difference is also shown in 

Figure 16. Compared to the no-diagram condition (50% procedural correctness rate), both 

diagrams increased the percentage of procedurally correct solutions. The increase of the 

procedural correctness rate, to 62.5%, was not significant for the N-ary tree, χ2(1, N=32) = 0.508, 

p = 0.476.  However, the increase to 87.5% was significant for the N-by-N table, χ2(1, N=32) = 

5.236, p = 0.022. 

Error Analysis. For the Spinner problem, the most common error was to calculate the 

probability of obtaining one particular color twice, instead of any of the three colors. Specifically, 

this error involved finding the probability for the two spinners to land on the same color to be 

(1/3) × (1/3) = 1/9 for only one color, and stopping there. However, the correct solution should 
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be three times this probability (=1/3), because there are three colors on each spinner, and hence 

three same-color outcomes. In other words, solvers making this error failed to solve the problem 

completely due to failure to integrate intermediate results and all possible outcomes. This type of 

error and other types of errors were most likely to occur with no diagram, or with the tree. On the 

other hand, the N-by-N table, by displaying all possible outcomes for the independent events 

problem in a visually efficient way, facilitated the search for complete outcome information, and 

the coordination of the sub-stages of the problem solving, and thus improved the success rate. 

 

 

Figure 16. Correctness rates for the Spinner problem by diagram type. Error bars represent 
standard errors. 

 

Discussion. For the Spinner problem, the N-by-N table was the most effective 

representation, improving procedural correctness over the no-diagram condition.  This is not 

surprising, since the table represents the N×N = 3×3 = 9 equally likely outcomes in a simple and 

direct way, even allowing space for labeling the 9 outcomes.  Furthermore, the table 
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representation naturally suggests the semantic aspects of the problem: that there are two different 

spinners that are of equal status or priority (corresponding to the row and column of the table) (cf. 

Novick & Hurley, 2001). These findings confirm that the more compatible the structure and 

content of a diagram is to that of the represented problem, the more facilitative it is for solving 

the problem.  

The N-ary tree would also seem to offer advantages for this Spinner problem: it too 

displays the nine equally-likely outcomes with roughly equal salience, allowing space for 

convenient labeling.  However, the tree’s hierarchical structure suggests a sequential process, 

and here it is not explicitly stated whether the spinners are spun simultaneously or sequentially.  

Also, the tree does not distinguish the target same-color outcomes for this problem to the same 

degree as the table; the table places these same-color outcomes on the main diagonal, where they 

are particularly prominent and grouped, after a fashion. In this way, the N-by-N table was able to 

provide extra external visual support for solvers to manage all the possible outcomes by 

chunking the essential information for computational efficiency (Gattis & Holyoak, 1996; Larkin 

& Simon, 1987).  
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CHAPTER IV: STUDY 2 

Study 1 tested the effect of three different types of tree and table diagrams on solvers’ 

choice of solution strategy and solution correctness for solving two problems involving different 

probability topics. The study found evidence to support the hypothesis that different types of 

diagrams direct solvers to notice different aspects of a problem structure, in some cases invoking 

different formal probability concepts and thus steering them to construct different solutions. The 

solution accuracy and error analyses for each task problem in Study 1 confirmed the hypothesis 

that the degree of the structural and content compatibility between a diagrammatic representation 

and its represented problem affects success in problem solving. When the entities and relations 

described in a probability word problem can be accurately matched to the visuospatial 

components of a diagram, and when an appropriate diagram organizes the problem information 

in an efficient way, the use of a diagram improves problem solving accuracy or maintains it if it 

is already high. On the other hand, a lower degree of visual-conceptual mapping correspondence 

may lead to misinterpretation of the underlying concepts and structure of a probability problem, 

and thus fails to improve or even impairs problem solving correctness.  

However, there are two limitations in the design of Study 1. First, the two diagrammatic 

features, basic diagram structure types (tree versus table) and levels of information abstraction 

(outcome- versus event-based) were not systematically manipulated in Study 1. A 2-by-2 

factorial design is needed to pinpoint which feature(s) of these diagrams accounts for the 

observed differences in solvers’ strategy choices and solution correctness rates. And additional 

investigation is needed to understand how exactly the four types of diagrams that can be 

generated by crossing these two factors differ in their impact on probability problem solving.  
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Second, it remains unclear whether the impact of these different diagram types on 

strategy choice and solution correctness can be generalized across probability topics. For 

example, the effect of an N-ary (outcome) tree was only tested on an independent events problem 

(the Spinner problem). With no diagram, the Spinner problem was solved with the outcome-

search strategy by 31.3% of the solvers and with the sequential-sampling strategy by 56.3% of 

the solvers.  This may raise alternative explanations to such a diagram led to evenly split choices 

of the two strategies. For example, it might be argued that the sequential-sampling strategy was 

chosen by 50% of the participants with an N-ary tree just due to a random effect. If it is indeed 

the diagram effects that account for solvers’ strategy choices, the kinds of strategy choice 

patterns that were found on the Work-Group and the Spinner problems should be found similar 

on other probability problems, too. To confirm the diagram effects found in Study 1, a 

replication with a wider variety of problems is needed.  

Study 2 was designed to resolve these two issues. This study aimed to address two main 

research questions:  

First, how do different features of the table and tree diagrams affect solvers’ choice of 

solution strategy and their solution correctness for probability problem solving? Specifically, is a 

certain type of strategy more likely to be cued because of a diagram’s general structure (tree or 

table), or its level of information abstraction (outcome- or event-based), or the combination of 

both features?  

Second, do the diagram effects found on these individual problems in Study 1 hold up in 

the face of varying probability topics and problem types? In other words, is a certain type of 

solution strategy for a probability problem more likely to be chosen because of its diagrammatic 
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representation, regardless of the probability topic or the semantic schema that a problem may 

evoke?  

In Study 2, a set of four problems that represent two probability topics, combinations and 

independent events, were given to each participant. Five independent conditions were created so 

that each participant solved all the task problems with only one type of diagram, or no diagram, 

exclusively. This design of Study 2 disentangled confounding diagram features, and also made 

possible testing the generalizability of the effect of different diagrams across a wider variety of 

problems.  

The design and results of Study 2 are presented in this chapter, along with a discussion of 

the findings and implications.  

Method 

Participants 

One hundred and ten college or graduate school students (91 or 82.7% female) were 

recruited from a university in New York City. Their average age was 22.90 years (SD = 3.76 

years). To be qualified for this study, a participant had to have taken one or more statistics or 

mathematics courses covering probability materials at the high school level or above prior to 

participation (including AP courses). Participants were randomly assigned to one of the five 

conditions: no diagram (N=22), binary tree (N=24), N-ary (outcome) tree (N=20), binary table 

(N=21), and N-by-N (outcome) table (N=23).  

Materials 

Two test forms (A and B) were used; each one presented four problems that represent 

two different probability topics and four semantic schemas (two for each probability topic): 

combinations (semantic schemas: simultaneous sampling; sequential sampling without 
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replacement); and independent events (semantic schemas: simultaneous sampling (or matching); 

sequential sampling with replacement).  

The semantic schema of a problem is not a formal problem schema. A semantic schema 

is the interpreted structure that solvers induce based on the inferred relation of the specific 

entities described in the problem content (Bassok, Wu, & Olseth, 1995). Different semantic 

schemas can influence probability problem solvers to interpret probability problem structures 

differently and choose different solutions for problems that share the same underlying probability 

topic and solution (Bassok, Wu, & Olseth, 1995). Therefore, two different semantic schemas 

were included for each probability topic in the test materials, because they allowed testing 

whether the diagram effects on probability problem solving hold up in the face of content 

variations that may also potentially influence problem solution strategy choices.  

For combinations, a problem with a simultaneous sampling schema describes 

combinatorics as selecting a subset of k entities from N objects at a time. A problem with a 

sequential sampling without replacement schema describes combinatorics as selecting one entity 

at a time from N objects, for k times without replacement.  

For the fundamental principles of independent events, a problem with a simultaneous 

sampling (or matching) schema describes combinatorics as matching up entities from two or N 

independent sets. A problem with a sequential sampling with replacement schema describes 

combinatorics as selecting one entity at a time from N objects, for k times with replacement. 

The problems differed by cover content between the test forms (A and B), but were 

parallel by formal principles and solutions (shown in Appendix B). For example, the 

combinations problem with a simultaneous sampling schema in Form A asks for the probability 
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of selecting two nickels out of five coins; and its counterpart in Form B asks for the probability 

of selecting two girls out of five students.  

Design and Procedure 

Five conditions were created: the binary-tree condition, the N-ary (outcome) tree 

condition, the binary-table condition, the N-by-N (outcome) table condition, and the no-diagram 

control condition. In the no-diagram condition, problems were given in text only. For each of the 

four diagram conditions, a particular type of diagram was provided exclusively for every task 

problem. For example, every problem in the binary-tree condition was accompanied with a 

generic binary tree diagram. Participants were randomly assigned to a condition and a test form, 

and asked to solve all four probability word problems that were presented in a booklet.  

To minimize any memory or carry-over effects of one task problem on another, three 

filler problems were included in the test booklet to be interspersed with the task problems. The 

fillers represent other probability topics and irrelevant solutions such as joint probability. In 

between every two task problems, a filler problem was placed to distance them, so that 

participants did not solve any task problems back to back.  

The task problems were randomly permuted into positional slots 1, 3, 5, and 7, with the 

constraint that each problem occurred approximately equally often in the first position. The filler 

problems were randomly permuted into positional slots 2, 4, and 6. Participants were randomly 

assigned to the five conditions and tested individually in a laboratory setting. The same task 

procedure and instructions were followed as in Study 1. Following the problem solving task, a 

brief demographic survey was administered to collect basic background information of the 

participants, such as undergraduate majors, and post-secondary statistics and mathematics 

training experience. As compensation for their participation in this approximately 30-minute 
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long experiment, participants were paid $8 or given course credit (for those registered in eligible 

courses) at their choice.   

Results 

Coding and Scoring 

For each problem, the solution strategy type a participant chose, the solution procedural 

correctness, and the final answer correctness were coded following the same coding scheme used 

in Study 1. Because inter-rater reliability for coding solution strategies and procedural 

correctness had already been established as adequate in Study 1, the problem solutions in Study 2 

were coded by a single coder. For each participant, a total score was computed for the use of a 

strategy type as the measure of how frequently a certain type of solution strategy was used for 

overall problem solving. Following the coding scheme in Study 1, use of the two strategies was 

coded independently, so that a participant might use both strategies. Thus, for a group the 

proportional frequencies of use of the two strategies do not necessarily add up to 100%. A total 

score across problems was also computed for a participant’s overall solution procedural 

correctness and overall final answer correctness. Because each participant solved four problems, 

the total score for each measure (i.e., use of a certain strategy; procedural correctness; answer 

correctness) can possibly range from 0 to 4.  

Mathematics Training Experience by Condition 

Participants’ prior mathematics and statistics training experience and relevant academic 

training experience was measured.  

To check whether participants in the five conditions had roughly equivalent amounts of 

post-secondary mathematics training experience, the total numbers of statistics and other 

mathematics courses taken at the college level or above were reported by the participants and 
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compared across conditions (shown in Table 5). An ANOVA test suggests that there was no 

significant overall difference in the number of statistics or mathematics courses taken across the 

five conditions, F(4, 105) = 1.830, p = 0.129, for statistics courses; F(4, 105) = 0.743, p = 0.565, 

for other mathematics courses; and F(4, 105) = 0.944, p = 0.442, for all mathematics courses 

(including statistics). However, pair-wise comparison tests (conducted at the .05 level) showed 

that the average number of statistics courses taken by participants in the N-by-N (outcome) table 

condition (M = 1.61, SD = 1.34) was significantly lower than the no-diagram condition (M = 

3.091, SD = 2.81), t(43) = 2.27, p = 0.030, and also lower than the binary-tree condition (M = 

3.00, SD = 2.78), t(45) = 2.17, p = 0.037, suggesting some prior knowledge difference among the 

conditions. Please note that although multiple t tests were conducted, the pair-wise comparison p 

values were unadjusted for these tests for the purpose of detecting any possible group difference 

in prior mathematics training experience.  

In addition to the total number of post-secondary mathematics courses taken, participants’ 

academic background in terms of its relevance to mathematics training was measured by asking 

them to report their undergraduate majors. Overall, 22.7% of the participants reported to have 

non-STEM majors (e.g., philosophy, creative writing) or undeclared majors; 20% in social 

science (e.g., psychology); 18.2% in mathematics and/or statistics; and 39.1% in other STEM 

domains (e.g., natural science, engineering, economics). Table 5 also presents the distribution of 

undergraduate majors by condition. A chi-squared test of homogeneity showed no significant 

group differences in the distribution of undergraduate major background.   

Another chi-squared test of homogeneity tested whether participants in Study 2 had 

equivalent relevant academic experience as in Study 1. Natural science, engineering, and 

mathematics majors may be exposed to more graphic and/or formal science and mathematics 
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materials in their regular academic curriculum (e.g., Novick & Hurley, 2001). Participants in 

Study 2 showed a significantly different undergraduate major distribution (57.3% mathematics 

and other STEM majors, 22.7% non-STEM majors and 20% social science majors) from 

participants in Study 1 (25% mathematics and other STEM majors, 31.25% non-STEM majors 

and 43.75% social science majors), χ2(2, 158) = 15.217, p < 0.001. The results suggest that 

participants in Study 2 have a relatively high level of mathematics expertise for the probability 

problem solving task.  

 
Table 5  
Undergraduate Majors and Post-Secondary Mathematics Courses Taken by Participants in 
Study 2 

 Undergraduate Major Math courses taken 
 Non-

STEM 
Social 

Science 
Math or 
Statistics 

Other 
STEM 

Statistics Statistics & 
other math 

No Hint 
(N=22) 

7 
(35%) 

1 
(5%) 

5 
(25%) 

7 
(35%) 

 

3.091 
 

6.227 

Binary Tree 
(N=24) 

2 
(9.5%) 

3 
(14.3%) 

7 
(33.3%) 

9 
(42.9%) 

 

3.000 
 

7.292 

N-ary Tree 
(N=20) 

3 
(15%) 

6 
(30%) 

1 
(5%) 

10 
(50%) 

 

1.975 
 

5.825 

Binary Table 
(N=21) 

5 
(23.8%) 

4 
(19%) 

4 
(19%) 

8 
(38.1%) 

 

2.357 
 

6.667 

N-by-N Table 
(N=23) 

4 
(17.4%) 

7 
(30.4%) 

3 
(13%) 

9 
(39.1%) 

 

1.609 
 

4.174 

Overall 
(N=110) 

25 
(22.7%) 

22 
(20%) 

20 
(18.2%) 

43 
(39.1%) 

 

2.418 
 

6.041 

 

Strategy Choices by Diagram 

One of the main research questions was how different diagram types affect overall 

probability problem solving. To answer this question, the average frequencies of using a certain 

solution strategy (outcome-search or sequential-sampling) were compared across the conditions. 
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Table 6 presents the average frequencies of using a certain solution strategy across the conditions, 

and Figure 17 shows the group difference. 

 
Table 6  
Frequencies of Strategy Choices and Correctness for the Four Problems by Diagram Condition 
(Standard Deviations in Parentheses) 

	
Strategy: Correctness: 

Diagram Condition Outcome 
search 

Sequential 
sampling 

Procedural 
correctness 

Answer 
correctness 

No Diagram (N=22) 0.68 (0.84) 3.41 (0.73) 3.05 (1.05) 3.00 (1.07) 

Binary Tree (N=24) 0.88 (1.23) 3.42 (1.14) 3.29 (0.96) 3.21 (1.02) 
N-ary (outcome) Tree (N=20) 2.20 (1.67) 2.70 (1.59) 2.90 (1.41) 2.80 (1.51) 

Binary Table (N=21) 0.86 (1.01) 3.38 (0.92) 3.29 (0.78) 3.19 (0.87) 
N-by-N (outcome) Table 

(N=23) 2.83 (1.53) 1.52 (1.56) 3.00 (1.04) 2.83 (1.11) 

Overall (N=110) 1.48 (1.54) 2.88 (1.43) 3.11 (1.05) 3.01 (1.12) 
 

 

Figure 17. Frequencies of strategy choices for the four problems by condition in Study 2. Error 
bars represent standard errors.  
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Because the analyses of the participants’ mathematics training background suggested that 

there might be some possible group differences in prior knowledge, which might affect the 

observed rates of solution success, the total number of the statistics and other mathematics 

courses that participants had taken was controlled as a covariate in the following analyses.  

 An ANCOVA test with participants’ total number of mathematics courses taken as the 

covariate was used to test whether diagram conditions differed in their frequencies of using the 

outcome-search strategy for solving the task problems. The results showed significant 

differences in the frequencies of the outcome-search strategy use across the five conditions, F(4, 

104) = 13.432, p < 0.001 (presented in Table 7).  

Post-hoc tests with Bonferroni’s correction were used to examine how exactly different 

types of diagrams led to this difference, compared to the no-diagram condition. Participants 

given an outcome-level representation (i.e., N-ary tree; N-by-N table) both used the outcome-

search strategy more frequently than solvers who spontaneously solved the problems with no 

diagram, both p’s < 0.002 (shown in Table 8). The two event-level representation conditions (i.e., 

binary tree; binary table) did not differ statistically in their frequencies of using this strategy than 

the no-diagram condition (shown in Table 8). 

 
Table 7  
Omnibus Test of Diagram Effects on the Use of the Outcome-Search Strategy 

Source SS MS df F p ηp
2 

Total statistics & mathematics 
courses taken (covariate) 

 

5.048 
 

5.048 

 

1 
 

3.099 
 

0.081 
 

0.029 
 

Diagram conditions 
 

87.528 
 

21.882 

 

4 
 

13.432 
 

< 0.001 
 

0.341 
 

Error 
 

169.425 
 

1.629 

 

104 
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Table 8  
Specific Comparisons between the No-Diagram Condition and Each Diagram Condition on Use 
of the Outcome-Search Strategy 

Condition Adjusted M (SD) t df p 
No Diagram (N=22) 0.675 (1.276) - - - 
Binary Tree (N=24) 0.828 (1.283) 0.405 44 = 1.00 

N-ary (outcome) Tree (N=20) 2.208 (1.277) 3.888 40 < 0.002 
Binary Table (N=21) 0.834 (1.278) 0.407 41 = 1.00 

N-by-N (outcome) Table (N=23) 2.896 (1.291) 5.803 43 < 0.001 
Note. Multiple t-tests (with Bonferroni’s correction) were used to compare the frequencies of 
using the outcome-search strategy between the no-diagram condition and each of the four 
diagram conditions. The frequencies for comparisons were the adjusted group means, adjusted 
for the covariate “total number of post-secondary statistics and mathematics courses taken”.  

 

Similarly, an ANCOVA test with participant’s total number of mathematics courses taken 

as the covariate was conducted to test whether diagram conditions differed in their frequencies of 

using the sequential-sampling strategy for solving these task problems. Figure 17 shows the 

group differences in the average frequencies of using this solution strategy. The results 

(presented in Table 9) showed that the five diagram conditions differed significantly in their 

frequencies of using the sequential-sampling strategy, F(4, 104) = 10.693, p < 0.001. 

Post-hoc tests with Bonferroni’s correction suggested that although the two outcome-

level representation conditions (N-ary tree; N-by-N table) both reduced the frequencies of using 

the sequential-sampling strategy compared to the no-diagram condition, only the N-by-N table 

condition led to a significant reduction of the use of this strategy compared to the no-diagram 

condition, t(43) = 5.292, p < 0.001 (shown in Table 10). The N-ary tree condition did not differ 

significantly from the no-diagram condition in the use of the sequential-sampling strategy, t(40) 

= 1.901, p = 0.32 (shown in Table 10). Furthermore, there was a significant difference in the 

frequencies of using the sequential-sampling strategy between the two outcome-level 

representation conditions (N-ary tree vs. N-by-N table). The N-ary tree condition (adjusted M = 



57 
	

2.693, SD = 1.228) demonstrated significantly more frequent use of the sequential-sampling 

strategy than the N-by-N table (adjusted M = 1.465, SD = 1.242), t(41) = 3.251, p = 0.01. The 

two event-level representation conditions (binary tree; binary table) had very high frequencies of 

using the sequential-sampling strategy, but these levels did not differ from the control condition 

(no diagram), perhaps due to a ceiling effect. 

 
Table 9  
Omnibus Test of Diagram Effects on the Use of the Sequential-Sampling Strategy 

Source SS MS df F p ηp
2 

Total statistics & mathematics 
courses taken (covariate) 

 

3.222 
  

3.222 

 

1 
 

2.136 
 

0.147 
 

0.020 
 

Diagram conditions 
 

64.499 
 

16.125 

 

4 
 

10.693 
 

< 0.001 
 

0.291 
 

Error 
 

156.822 
 

1.508 

 

104    

 

Table 10  
Specific Comparisons between the No-Diagram Condition and Each Diagram Condition on Use 
of the Sequential-Sampling Strategy 

Condition Adjusted M (SD) t df p 
No Diagram (N=22) 3.415 (1.228) - - - 
Binary Tree (N=24) 3.454 (1.234) 0.109 44 = 1.00 

N-ary (outcome) Tree (N=20) 2.693 (1.228) 1.901 40 = 0.32 
Binary Table (N=21) 3.400 (1.229) 0.040 41 = 1.00 

N-by-N (outcome) Table (N=23) 1.465 (1.242) 5.292 43 < 0.001 
Note. Multiple t-tests (with Bonferroni’s correction) were used to compare the frequencies of 
using the sequential-sampling strategy between the no-diagram condition and each of the four 
diagram conditions. The frequencies for comparisons were the adjusted group means, adjusted 
for the covariate “total number of post-secondary statistics and mathematics courses taken”.  
 

Solution correctness by diagram 

Table 6 presents the average frequencies of the solution procedural correctness and the 

final answer correctness for solving the problems by each condition (possible scores ranging 

from 0 to 4), and Figure 18 shows the group differences in these measures.  
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Figure 18. Correctness rates for the four problems by condition in Study 2. Error bars represent 
standard errors. 
 

Solution procedural correctness was compared across the conditions, using an ANCOVA 

test with participant’s total number of mathematics courses taken as the covariate. The results 

(presented in Table 11) showed little overall difference in solution procedural correctness 

frequency by condition, F(4, 104) = 0.434, p = 0.784, confirmed by the post-hoc test results 

(presented in Table 12) that found no difference in procedural correctness between any of the 

diagram conditions and the no-diagram condition. However, participants’ prior statistics and 

mathematics training experience was significantly predictive of their solution procedural 

correctness, F(1, 104) = 4.191, p = 0.043. Thus, although some diagram conditions showed 

slightly higher solution correctness rates than some others (shown in Table 6), the difference 

may be due to differences in participants’ prior mathematics knowledge (shown in Table 5). For 
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example, the binary tree condition had a higher correctness frequency for problem solving (M = 

3.29, SD = 0.96) than the N-ary tree condition (M = 2.90, SD = 1.41). However, participants in 

the binary tree condition also had taken more post-secondary statistics and mathematics courses 

(M = 7.292, SD = 6.779) than the N-ary tree condition (M = 5.825, SD = 6.003).  

 
Table 11  
Omnibus Test of Diagram Effects on the Procedural Correctness Rates 

Source SS MS df F p ηp
2 

Total statistics & mathematics 
courses taken (covariate) 

 

4.571 
  

4.571 

 

1 
 

4.191 
 

0.043 
 

0.039 
 

Diagram conditions 
 

1.895 
 

0.474 

 

4 
 

0.434 
 

0.784 
 

0.016 
 

Error 
 

113.427 
 

1.091 

 

104    

 

Table 12  
Specific Comparisons between the No-Diagram Condition and Each Diagram Condition on the 
Procedural Correctness Rates 

Condition Adjusted M (SD) t df p 
No Diagram (N=22) 3.039 (1.044) - - - 

Binary Tree (N=24) 3.247 (1.050) 0.673 44 = 1.00 
N-ary (outcome) Tree (N=20) 2.908 (1.044) 0.406 40 = 1.00 

Binary Table (N=21) 3.263 (1.046) 0.704 41 = 1.00 
N-by-N (outcome) Table (N=23) 3.067 (1.056) 0.090 43 = 1.00 

Note. Multiple t-tests (with Bonferroni’s correction) were used to compare the procedural 
correctness rates between the no-diagram condition and each of the four diagram conditions. The 
procedural correctness rates for comparisons were the adjusted group means, adjusted for the 
covariate “total number of post-secondary statistics and mathematics courses taken”.  
 

Discussion 

The results of Study 2 addressed two unresolved issues in Study 1, by pinpointing the 

effect of different diagrammatic features on probability problem solving, and confirming the 

effect on a wide variety of probability problems.   
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Study 2 examined systematically how diagram features (general structure types and 

levels of information abstraction) of the table and tree diagrams steered solvers’ interpretations 

of probability problem structures and choice of solution strategy. The analyses of participants’ 

strategy choices by condition suggested that both the basic structure type of a diagram (tree or 

table) and its level of information abstraction (outcome- or event-based) can bias solvers’ choice 

of solution strategy for probability problems.  

First, levels of information abstraction have an effect on the problem solution strategy 

choices, across different diagram structure types. As the results showed, when a diagram 

represents the problem outcomes at the more concrete equally-likely outcome level, it tends to 

cue the use of the outcome-search strategy. Compared to the no-diagram condition, an outcome-

level representation, either an N-ary tree or an N-by-N table, significantly increased the use of 

the outcome-search strategy. These two diagrams also led to lower frequencies of using the 

sequential-sampling strategy, slightly by the N-ary tree and significantly by the N-by-N table. In 

contrast, when the problem information is represented at the more abstract unequally-likely event 

level (i.e., binary tree or binary table), solvers were almost always cued to use a sequential-

sampling strategy and rarely an outcome-search strategy, regardless of a diagram’s general 

structure type. No statistical difference was found in the use of the sequential-sampling solution 

strategy between these two diagram conditions and the no-diagram condition, perhaps due to a 

ceiling effect: The no-diagram condition already demonstrated a very high frequency of using 

the sequential-sampling strategy and little use of the outcome-search strategy. However, the 

drastic difference in solvers’ strategy choices between the outcome-level representations and the 

event-level representations offered strong evidence that levels of information abstraction have a 
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great impact on how a probability problem structure is interpreted and how the strategy choice is 

made accordingly.  

Second, with an outcome-level representation, the tree structure influences problem 

structure interpretation and solution strategy choices in a remarkably different way from the table 

structure. With an N-by-N (outcome) table, an outcome-search strategy was most likely to be 

cued (M = 2.83 out of 4 in maximum, SD = 1.53). The N-ary (outcome) tree can also 

significantly increase the use of an outcome-search strategy compared to problem solving with 

no diagram (M = 2.20 out of 4 in maximum, SD = 1.67). However, its strength as a cue to the 

outcome-search strategy was not as strong as the N-by-N table. Even more interestingly, while 

an N-by-N table significantly reduced the use of the sequential-sampling strategy (M = 1.52 out 

of 4 in maximum, SD = 1.56), the N-ary tree still remains a relatively strong cue for the 

sequential-sampling strategy (M = 2.70 out of 4 in maximum, SD = 1.59). This difference 

between the N-ary tree and the N-by-N table was statistically significant, t(41) = 3.251 for the 

adjusted group mean difference, p = 0.01. The findings suggested that while both outcome-level 

diagrams can cue the search for equally-likely outcomes, a tree structure can additionally evoke 

sequential thinking, thus cueing an alternative interpretation of the probability problem structure, 

resulting in an almost equally-likely preference for choosing either solution strategy.  

 This difference can be explained by an in-depth structural comparison between the two 

diagrams. With an N-by-N (outcome) table, the diagrammatic structure not only represents all 

possible equally-likely outcomes of a problem, it also represents these outcomes in a spatially 

integrated fashion. Therefore, such a visual representation depicts the target outcomes as a 

grouped subset embedded in the whole outcome space, and can naturally cue solvers to perceive 

the target probability as part of the whole and thus to choose an outcome-search strategy for 
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finding the probability. Therefore, an N-by-N table representation should cue an outcome-search 

strategy most naturally and strongly, compared to other diagram formats. On the other hand, an 

N-ary (outcome) tree structure leads to mixed strategy choices. It not only cues solvers to list all 

the equally-likely outcomes for a problem, it can also cue solvers to perceive the problem 

probability as the result of a sequential sampling procedure because of how it spatially organizes 

the outcomes. Specifically, its hierarchical structure naturally serves as a cue for solvers to define 

simple and conditional probabilities stage by stage, and to process the calculations towards the 

final probability in a sequential order.  

Why does an N-ary (outcome) tree cue the outcome-search strategy less strongly than an 

N-by-N table, and the sequential-sampling strategy less strongly than the event-level 

representations, if its diagrammatic features are appropriate for cueing both types of probability 

problem structures and solution strategies? 

Perhaps this can be explained by two reasons. The first and perhaps foremost reason is 

that most problem solvers chose to provide only one solution as long as it can solve the problem 

successfully. Therefore, if both strategies are cued, solvers might have randomly chosen one 

strategy or the other, leading to fewer demonstrations of either solution strategy compared to 

other representations that typically cue only one strategy.  

An additional speculation is that although the N-ary tree is an appropriate visualization 

for both solution strategy types, the way it spatially organizes the problem information does not 

provide the information as efficiently for either strategy’s computational procedure as the other 

diagram types. As reviewed, a tree diagram features hierarchical leveling in a sequential order, 

and the subsequent branches of each node represent all the possible outcomes conditional on the 

particular outcome from a previous selection. Therefore, although the target outcomes of these 
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particular probability problems can be shown as a part embedded in the whole outcome space at 

the end level of the tree diagram, these outcomes are dispersed over the whole outcome space, 

not grouped. In other words, it is less efficient for solvers to complete the search of all the target 

outcomes represented at the end level of a tree than on an N-by-N (outcome) table. This may 

explain why an N-ary tree is less likely to cue the outcome-search strategy than an N-by-N table, 

although they both represent all equally-likely outcomes of the whole outcome space. Next, 

compared to the event-level representations, the N-ary tree is also less efficient for organizing 

the information so that it is ready for computations for a sequential-sampling strategy. A binary 

tree cues solvers to define binomial probabilities at each selection event, thus making the 

information immediately ready for computation. The N-ary tree cues solvers to first list out all 

equally-likely outcomes at each selection event. In order to use a sequential-sampling strategy, 

solvers need to transform this information into a probability value for each selection. In other 

words, the event-level representations represent stage-wise probabilities immediately at a 

symbolic level, while the N-ary tree involves an extra step of the iconic-to-symbolic 

mathematical transformation. Thus, this might explain why the sequential-sampling strategy is 

also less often chosen when an N-ary tree is provided, compared to the binary tree and the binary 

table.  
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CHAPTER V: GENERAL DISCUSSION 

Summary 

This dissertation explored the effect of diagrams on probability problem solving. Two 

studies were conducted to investigate how different types of diagrammatic representations of the 

problem information affect the process (choice of solution) and the product (solution correctness) 

in probability problem solving. Four different types of diagrams that varied by two diagrammatic 

features, the general diagrammatic types (tree versus table) and the levels of information 

abstraction (outcome-based versus event-based) were provided to different groups of problem 

solvers as the visual aids for solving a set of probability word problems. It was of particular 

interest  to understand how different types of diagrams and their diagrammatic features influence 

solvers’ interpretations of the problem structures and their choice of solution strategy for 

probability problems that admit of multiple types of solution strategies, and how that may affect 

solution correctness.  

The results of Study 1 showed that different diagrams steer people to choose different 

solution strategies for probability word problems. Specifically, a binary tree steers people to 

choose a sequential-sampling strategy, an N-by-N (outcome) table is more likely to cue an 

outcome-search strategy, and with an N-ary (outcome) tree, the strategy choices tend to be mixed, 

with the two strategy types being chosen approximately equally often.  

In addition, these diagrams affected problem solving success differently. For the 

combinations (Work-Group) problem, solvers had a higher rate of solution correctness when a 

binary tree diagram was provided, compared to when the N-by-N (outcome) table was provided. 

An error analysis revealed that different diagram types accounted for different patterns of 

characteristic errors. Given the N-by-N table, more than 80% of the solution errors involved 
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incorrect implementation of the outcome-search strategy, such as an unsuccessful attempt at 

instantiating the combinations formula. Many such errors occurred because the solvers included 

all the self-repeated combinations (represented by the diagonal cells on the table) as the valid 

outcomes for the combinations problem. The N-by-N table led to a higher error rate and this type 

of solution error in particular because its diagrammatic components failed to map one-to-one 

with the problem it represented. For a combinations problem, it is impossible for an entity to be 

selected more than once, because sampling is inherently without replacement. Therefore, 

although an N-by-N table uses its row and column to represent all possible entities to be selected 

for the two times of sampling, all the diagonal cells represent those self-repeated combination 

outcomes that are impossible for a combinations problem.  

Problem solving errors with the binary tree diagram showed a different characteristic 

error pattern. Here, 60% of the incorrect answers were due to incorrectly defining the stage-wise 

probabilities, which was a typical type of procedural error involved in the use of the sequential-

sampling strategy. Solvers’ solution success rate remained high with the binary tree, perhaps 

because of the high structural compatibility between the tree structure and the problem structure. 

The tree structure was appropriate for representing the procedure of sequential sampling for a 

combinations problem. Furthermore, its hierarchical structure may appropriately suggest that the 

probability of a selection outcome is dependent and conditional upon its previous selection.  

For the independent events (Spinner) problem, a common type of solution error made by 

solvers with no diagram provided was to only calculate the probability of a particular outcome 

and stop there (e.g., when both spinners land on the red color). Both the N-by-N table and the N-

ary tree were able to increase the correctness rates of problem solving. But only the N-by-N table 

significantly increased the correctness rate compared to no diagram provided. Again, the 
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structural compatibility between a diagram and the problem can explain this difference. For the 

independent events problem, sampling is with replacement. Therefore, every intersection cell of 

the table represents a possible combination outcome for the problem. Furthermore, the table is 

able to spatially organize the problem information in a more efficient way, in that all the 

diagonal cells represent the preferred outcomes and all the other outcomes are represented off the 

diagonal on the table. Therefore, the N-by-N table was found to be more facilitative for solving 

the independent events problems.  

However, Study 1 did not manipulate the two diagrammatic features (general diagram 

structure types and levels of information abstraction) systematically. In addition, different sets of 

diagrams were compared on different types of probability problems. Thus, a second study was 

conducted to resolve these issues: to systematically compare the diagram types in order to 

pinpoint what diagrammatic features account for solvers’ choice of strategy and solution 

correctness; and to test whether the diagram effects hold up across a variety of probability 

problem types.  

The results of Study 2 suggested that when a diagram represents probability at the 

unequally-likely event level, it steers people to choose the sequential-sampling strategy. This 

effect has been found with both a binary tree and a binary table. However, when a diagram 

represents probability at the equally-likely outcome level, the basic structure type of a diagram 

leads to different choices of solution strategies. Given an N-by-N (outcome) table, solvers 

showed a strong tendency of using the outcome-search strategy, and a significantly decreased 

frequency of using the sequential-sampling strategy. But given an N-ary (outcome) table, solvers 

showed relatively frequent use of both strategies.  
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Study 2 did not find large differences in the problem solving correctness rates across 

conditions. A ceiling effect might explain this. With an average of four to seven post-secondary 

mathematics courses taken by each condition, all conditions’ procedural correctness scores were 

similarly high, from 2.90 to 3.29 out of 4 points as the maximum.  

Implications 

The study findings offer three important implications with regard to visual reasoning and 

diagram design in STEM education and problem solving.   

First, the findings of both studies consistently suggest that diagrammatic representations 

influence people’s perception and interpretation of probability problem structures, and their 

choices of solutions. Specifically, the results confirmed prior research findings (e.g., Gattis & 

Holyoak, 1996; Zacks & Tversky, 1999) that use of diagrams follows a cognitively natural way 

of mapping corresponding visuospatial relations and components to conceptual relations and 

problem content. Therefore, when a probability problem admits of two distinctive solution 

strategies, different types of diagrams highlight and direct attention to different underlying 

structures of the problem, and thus steer solvers to choose solutions accordingly.  

Second, these findings also point out the importance of the shared compatibility between 

a diagram and its represented problem type if a diagrammatic representation is to facilitate 

problem solving. Analyses of problem solving performance in Study 1 found that a diagram can 

increase or maintain high problem solving success only when the structure and content of the 

diagram is well-matched with those of the problem that it represents. In contrast, incompatibility 

between a diagram and a problem type can impair problem solving because the components 

represented by the diagram may lead to misinterpretation of the problem structure. The findings 

of Study 1 also suggest that to optimize the facilitative effect of diagrams on problem solving, 
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information should be spatially organized in an efficient, ready-to-grasp way. The N-by-N table 

and its applicability in solving the combinations problem and the independent events problem in 

Study 1 offered supporting evidence to this argument. The generic N-by-N table significantly 

improved the correctness rate of solving an independent events problem, because the table 

structure is not only appropriate for representing independent factorial combinations of this 

problem, but also organizes the problem information in a highly efficient way that eases the 

search of outcomes and computation. On the other hand, it shares a lower structural compatibility 

with the combinations problem and impaired its problem solving, because all the diagonal cells 

on an N-by-N table represent self-repeated combination outcomes that are invalid in the topic of 

combinations. Thus, to design or select effective and efficient visual representations for STEM 

education and problem solving, it is useful to follow what Tversky , Morrison and Betrancourt 

(2002) have suggested as principles for effective diagram design: the Congruence Principle, 

which emphasizes the structural and content compatibility of a diagram with the problem it 

represents, and the Apprehension Principle, which emphasizes efficient information organization 

in the perceptual space to ease information search and computation.   

Lastly, the study findings offer important and specific suggestions for how to design 

useful visual representations for novice probability learners. The results indicate that both the 

general structure type of a diagram and the level of information abstraction to represent the 

problem probability play a crucial role in influencing learners’ and solvers’ perception of a 

probability problem structure and solution. The findings suggest important insights for 

probability education. As observed, instructional materials of probability (e.g., online tutorials; 

lecture notes) often rely on the use of only one or two types of diagrams for demonstrating the 

reasoning and solving of a certain probability problem type. With the current findings, different 
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diagrams may all be chosen for the same probability topic, based on the objectives of the lesson. 

For example, if the multiplication rule of probability and definition of stage-wise probabilities 

for unequally-likely selection outcomes are the focus of the lesson, it is suggested that an event-

level representation, binary tree or binary table, be used as a visual aid. If the classical principle 

of probability and search for equally-like outcomes for the whole outcome space are the 

emphasis, it is suggested that an N-by-N table be used. For more flexible reasoning about the 

probability concepts and solution procedure, an N-ary tree may be most appropriate.   

Limitations and Future Directions 

One limitation of this dissertation is the high statistics and mathematics expertise of the 

participants in Study 2, which added confounds to investigation of the diagram effects on 

probability problem solving. Study 2 did not find facilitative effects of diagrams on problem 

solving correctness, perhaps because all the conditions, including the control condition, showed 

high solution correctness rates. Because the majority of the Study 2 participants came from a 

strong science, engineering, mathematics, or statistics background, they may have been over-

qualified for elementary-level probability problem solving, or may have their own preferred 

ways of using the diagrams (or of moving directly to the relevant formula). Perhaps for this 

reason, some participants skipped using the provided diagrams when they solved the problems, 

making it less clear whether a solver’s strategy choice was due to the diagram effects, or his/her 

own prior knowledge or problem solving preference. In the future, additional evidence is needed 

of the effect of these diagram types on more novice learners of probability, so that the results will 

offer more clear suggestions as how diagrams affect probability concept learning and problem 

solving.  
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Another limitation is that the problems and diagrammatic representations used in this 

investigation represent only a special case of the relevant probability principles: the selection or 

combination of two entities, not any arbitrary value “N”. There is also a limitation in the diagram 

design itself. While a tree structure allows more than two layers, it will be technically difficult to 

design a table that represents a combination of more than two or three entities. Therefore, it is 

unclear to what extent the use of these diagrams and problem examples in an educational setting 

can lead to the abstraction of the general formulas and solutions for probability problems of any 

variable size. However, because diagrams may serve a “scaffolding” function, facilitating 

solution only for probability problems of appropriate difficulty (cf. Bobek & Corter, 2010), this 

limitation may not be of large practical significance in educational contexts. A future 

investigation may use near- and far-transfer tasks to further understand the effectiveness of these 

diagram types on learners’ probability conceptual understanding and general solution strategy 

selection and application.  
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APPENDIX A: STUDY 1 TASK MATERIALS 
	

Form A: Problems, Instructions, and Diagrams 
	
Q1. The Independent Events (Spinner) Problem with no diagram 
Two spinners are constructed. Each spinner has 3 color sections of equal size: red, white, and 
blue. The two spinners are spun at the same time, and the result of each spinner is recorded. 
What is the probability of getting the same color on both spinners?  
 
Please show all your work and box your final answer.  
 
Q2. The Filler (Weather) Problem with a binary tree 
The weather forecast says the probability that it will snow is 0.60 tomorrow. If it snows, the 
probability that Eva will be late for school is 0.70. If it doesn’t snow, the probability that she will 
be late for school is 0.25. What is the probability that Eva will be late for school tomorrow?  
 
Please use the graph to help you solve the problems.  
Please show all your work and box your final answer.  
 

 
 
Q3. The Combinations (Work-Group) Problem with an N-by-N table 
Five students are in a work group. The teacher randomly selects two of them to present the group 
work. If there are 2 boys and 3 girls in this group, what is the probability that the teacher selects 
2 girls? 
 
Please use the graph to help you solve the problems.  
Please show all your work and box your final answer.  
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Form B: Problems, Instructions, and Diagrams 
	
Q1. The Filler (Weather) Problem with no diagram 
The weather forecast says the probability that it will snow is 0.60 tomorrow. If it snows, the 
probability that Eva will be late for school is 0.70. If it doesn’t snow, the probability that she will 
be late for school is 0.25. What is the probability that Eva will be late for school tomorrow?  
 
Please show all your work and box your final answer.  
 
Q2. The Combinations (Work-Group) Problem with a binary tree 
Five students are in a work group. The teacher randomly selects two of them to present the group 
work. If there are 2 boys and 3 girls in this group, what is the probability that the teacher selects 
2 girls? 
 
Please use the graph to help you solve the problems.  
Please show all your work and box your final answer.  
 

 
 
Q3. The Independent Events (Spinner) Problem with an N-by-N table 
Two spinners are constructed. Each spinner has 3 color sections of equal size: red, white, and 
blue. The two spinners are spun at the same time, and the result of each spinner is recorded. 
What is the probability of getting the same color on both spinners?  
 
Please use the graph to help you solve the problems.  
Please show all your work and box your final answer.  
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Form C: Problems, Instructions, and Diagrams 
	
Q1. The Combinations (Work-Group) Problem with no diagram 
Five students are in a work group. The teacher randomly selects two of them to present the group 
work. If there are 2 boys and 3 girls in this group, what is the probability that the teacher selects 
2 girls? 
 
Please show all your work and box your final answer.  
 
Q2. The Filler (Weather) Problem with a binary table 
The weather forecast says the probability that it will snow is 0.60 tomorrow. If it snows, the 
probability that Eva will be late for school is 0.70. If it doesn’t snow, the probability that she will 
be late for school is 0.25. What is the probability that Eva will be late for school tomorrow?  
 
Please use the graph to help you solve the problems.  
Please show all your work and box your final answer.  
 

 
 
Q3. The Independent Events (Spinner) Problem with an N-ary tree 
Two spinners are constructed. Each spinner has 3 color sections of equal size: red, white, and 
blue. The two spinners are spun at the same time, and the result of each spinner is recorded. 
What is the probability of getting the same color on both spinners?  
 
Please use the graph to help you solve the problems.  
Please show all your work and box your final answer.  
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Demographics Survey 
 

 

Q1. What is your gender?  
□ Male  
□ Female 
 
 
Q2. How old are you? 
Age: _____________ 
 
 
Q3. What is the highest educational level you have completed? 
□ Some college or below 
□ Bachelor’s degree 
□ Some graduate school 
□ Master’s degree 
□ Doctoral degree 
 
 
Q4. What is your undergraduate major?  
Major: ______________________ 

 
 
Q5. How many statistics courses have you taken, including any current ones?  
Number of statistics courses taken: ___________________________  

 
 
Q6. Are you currently registered in one of these two courses at TC?  
□ HUDM4120: Basic Concepts in Statistics 
□ HUDM4122: Probability and Statistical Inference 
□ Other. Please specify which course: ___________________________________ 
□ None of the above 
  



80 
	

APPENDIX B: STUDY 2 TASK MATERIALS 

Form A: Problems and Diagrams 
	
Probability topic: Combinations. Semantic schema: Simultaneous sampling. 
Problem text:  
Mary reaches into her wallet (which contains two dimes and three nickels) and randomly grabs 
two coins at once. What is the probability that the coins she selects are both nickels?  

 
 
 

Binary tree: 
 

 
 
 
 
 
 
 
 

N-ary (outcome) tree: 
 

 
 
 

Binary table: 

 
 
 
 

N-by-N (outcome) table: 
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Probability topic: Combinations. Semantic schema: Sequential sampling w/o replacement. 
Problem text:  
Sam and his brother Andy are drawing a picture together. They are sharing a box of markers. 
The box contains seven markers, three of them plain colors and four with sparkles. Sam 
randomly selects a marker from the box. Then he passes the box to Andy and Andy randomly 
picks a marker from those remaining. What is the probability that Sam and Andy both select a 
sparkly marker? 

 
 
 
 

Binary tree: 
 

 
 
 
 
 
 
 
 
 
 

N-ary (outcome) tree: 
 

 
 
 

Binary table: 

 
 
 
 

N-by-N (outcome) table: 
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Probability topic: Independent events. Semantic schema: Simultaneous sampling 
(Matching). 
Problem text:  
One day, Adam is getting dressed for playing basketball. He decides to randomly choose a 
basketball jersey and a pair of shorts from his closet.  He has four basketball jerseys (two are 
orange, and two blue) and four styles of basketball shorts (three blue, and one white). What is the 
probability that the jersey and the shorts he chooses are both blue?  

 
 
 

Binary tree: 
 
 
 

 
 
 
 
 
 
 
 
 

N-ary (outcome) tree: 
 

 
 
 

Binary table: 

 
 
 

N-by-N (outcome) table: 
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Probability topic: Independent events. Semantic schema: Sequential sampling with 
replacement. 
Problem text:  
In a dice game, Billy rolls a six-sided die and records his result. Then he hands the die to another 
player, Carol. Carol rolls the die and records her result. What is the probability that both of them 
obtain a value of 5 or greater? 

 
 
 
 

Binary tree: 
 

 
 
 
 
 
 
 
 
 
 

N-ary (outcome) tree: 
 

 
 
 

Binary table: 

 
 
 
 

N-by-N (outcome) table: 
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Form B: Problems and Diagrams 
	
Probability topic: Combinations. Semantic schema: Simultaneous sampling. 
Problem text:  
Five students are in a work group working on a joint project. The teacher randomly selects two 
of them to present the group’s work to the rest of the class. If there are two boys and three girls 
in the work group, what is the probability that the teacher selects two girls?  

 
 
 
 

Binary tree: 
 

 
 
 
 
 
 
 
 
 
 

N-ary (outcome) tree: 
 
 
 

 
 
 

Binary table: 

 
 
 
 

N-by-N (outcome) table: 
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Probability topic: Combinations. Semantic schema: Sequential sampling w/o replacement. 
Problem text:  
Bob is cleaning his kitchen drawer. There are seven loose batteries in the drawer, so he pulls 
them out and tests them, one by one, using a single-battery tester he has. If there are three dead 
batteries and four working ones in the drawer, what is the probability that the first two batteries 
he tests are working? 

 
 
 
 

Binary tree: 

 
 
 
 
 
 
 
 
 
 
 

N-ary (outcome) tree: 
 
 
 

 
 
 

Binary table: 

 
 
 
 

N-by-N (outcome) table: 
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Probability topic: Independent events. Semantic schema: Simultaneous sampling 
(Matching). 
Problem text:  
At a health clinic, there are two female doctors and two male doctors. When the clinic opens on a 
Wednesday, there are three female patients and one male patient waiting to see doctors. If one of 
the four patients is randomly called, and a doctor is randomly assigned to see that patient, what is 
the probability that in this first appointment a female patient sees a female doctor? 

 
 
 
 

Binary tree: 

 
 
 
 
 
 
 
 
 

N-ary (outcome) tree: 
 
 
 

 
 
 

Binary table: 

 
 
 
 

N-by-N (outcome) table: 
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Probability topic: Independent events. Semantic schema: Sequential sampling with 
replacement. 
Problem text:  
Nate places six cards of different numbers (two in red and four in black) face down on the table. 
He randomly draws a card and records its number. Then he puts the card back, shuffles them 
until they are completely randomized, places them face down on the table again, and blindly 
draws a card. What is the probability that for both times, he draws a card in black? 

 
 
 
 

Binary tree: 
 

 
 
 
 
 
 
 
 
 
 

N-ary (outcome) tree: 
 
 
 

 
 
 

Binary table: 

 
 
 
 

N-by-N (outcome) table: 
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Filler Problems for Both Forms 
	
Filler 1.  
 
Problem text:  
 
A college course has 50 students, including 
8 History majors, 16 Physics majors, 12 
Chemistry majors, and 14 Philosophy 
majors. If one student is randomly selected 
from the class, what is the probability that 
the student is not a Chemistry major? 
 
 

Diagram provided to the four diagram conditions:  
 
 
 
 

 

Filler 2.  
 
Problem text: 
 
There are 12 passengers on a bus.  Eight of 
them are female and the rest male.  Exactly 
3 of the females and 1 male are 
elderly.  Are the events (male) and (elderly) 
mutually exclusive? 
 

Diagram provided to the four diagram conditions:  
 

 
 

Filler 3.  
 
Problem text: 
 
Twenty slips of paper are numbered 1-20, 
then mixed up in a hat.  Jane draws one slip 
of paper out of the hat.  What is the 
probability that she draws a number greater 
than 15 OR an odd number? 
 

Diagram provided to the four diagram conditions:  
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Demographics Survey 
 

 

Q1. What is your gender?  
□ Male  
□ Female 
 
 
Q2. How old are you? 
Age: _____________ 
 
 
Q3. What is the highest educational level you have completed? 
□ High school or below 
□ Some college 
□ Bachelor’s degree 
□ Some graduate school 
□ Master’s degree 
□ Doctoral degree 
 
 
Q4. What is your undergraduate major?  
Major: ______________________ 

 
 
Q5. How many college- or graduate-level statistics courses have you taken, including any 
current ones?  

Number of statistics courses taken: ___________________________  
 
 
Q6. How many college- or graduate-level mathematics (not including statistics) courses have 
you taken, including any current ones?  
Number of mathematics courses taken: ___________________________ 


