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ABSTRACT

Topology of Reticulate Evolution

Kevin Joseph Emmett

The standard representation of evolutionary relationships is a bifurcating tree. How-

ever, many types of genetic exchange, collectively referred to as reticulate evolution, involve

processes that cannot be modeled as trees. Increasing genomic data has pointed to the

prevalence of reticulate processes, particularly in microorganisms, and underscored the need

for new approaches to capture and represent the scale and frequency of these events.

This thesis contains results from applying new techniques from applied and computa-

tional topology, under the heading topological data analysis, to the problem of characterizing

reticulate evolution in molecular sequence data. First, we develop approaches for analyz-

ing sequence data using topology. We propose new topological constructions specific to

molecular sequence data that generalize standard constructions such as Vietoris-Rips. We

draw on previous work in phylogenetic networks and use homology to provide a quantitative

measure of reticulate events. We develop methods for performing statistical inference using

topological summary statistics.

Next, we apply our approach to several types of molecular sequence data. First, we

examine the mosaic genome structure in phages. We recover inconsistencies in existing

morphology-based taxonomies, use a network approach to construct a genome-based repre-

sentation of phage relationships, and identify conserved gene families within phage popu-



lations. Second, we study influenza, a common human pathogen. We capture widespread

patterns of reassortment, including nonrandom cosegregation of segments and barriers to

subtype mixing. In contrast to traditional influenza studies, which focus on the phyloge-

netic branching patterns of only the two surface-marker proteins, we use whole-genome data

to represent influenza molecular relationships. Using this representation, we identify un-

expected relationships between divergent influenza subtypes. Finally, we examine a set of

pathogenic bacteria. We use two sources of data to measure rates of reticulation in both

the core genome and the mobile genome across a range of species. Network approaches are

used to represent the population of S. aureus and analyze the spread of antibiotic resistance

genes. The presence of antibiotic resistance genes in the human microbiome is investigated.
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Chapter 1

Introduction

Charles Darwin’s On the Origin of Species contains a single figure, depicting the ancestry of

species as a branching genealogical tree, or phylogeny [41] (see Figure 1.1). Darwin argued

that evolution was mediated by descent with modification; that is, the gradual change in

heritable traits under the pressure of natural selection. Since that time, the tree structure

has been the dominant framework to understand, visualize, and communicate discoveries

about evolution. Indeed, an important aim of evolutionary biology has been expanding

the universal tree of life, the set of evolutionary relationships among all extant and extinct

organisms on Earth [19].

Traditionally, evolutionary relationships were established on the basis of phenotype, i.e.

the observable traits of each organism. With the advent of molecular models of evolution

and rapidly increasing genomic sequence data, the genotype has supplanted phenotype as

the primary focus of evolutionary studies. Molecular phylogenetics has become established

as the standard tool for inferring phylogenetic relationships. However, a phylogenetic tree is

accurate only if the Darwinian model of descent with modification is the sole process driving

evolution. It has long been recognized that there exist alternative evolutionary processes

that can allow organisms to directly exchange genetic material [5]. Notable examples include

horizontal gene transfer in bacteria [124], species hybridization in plants [4], and meiotic
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recombination in eukaryotes [37]. Collectively, these processes are referred to as reticulate

evolution. Reticulate evolution stand in contrast to the paradigm of tree-like diversification,

an example of clonal evolution.1 Increasing genomic data, powered by new high-throughput

sequencing technologies, has shown that these reticulate processes are more prevalent than

originally expected [18] . For some, this has called into question the tree of life hypothesis as

an organizing principle and prompted the search for new ways of representing evolutionary

relationships [45, 125, 95].

This thesis presents a new approach to quantifying and representing reticulate evolu-

tionary processes using recently developed ideas from algebraic and computational topol-

ogy. The methods we employ fall under the collective heading of topological data analysis

(henceforth TDA), a new branch of applied topology concerned with inferring structure in

high-dimensional data [28]. The thesis consists of three aims: (1) introduce the methods of

TDA and their application to biological and genomic data; (2) develop approaches tailored

to the unique features of molecular sequence data; and (3) apply these approaches to a range

of biological problems in which reticulate processes are believed to play an important role.

In the following brief introduction, we survey salient aspects of molecular evolution, the

tree paradigm, and the challenges posed by reticulate processes. We then introduce the

idea of representing evolution as a topological space and give a flavor of the results to be

discussed.

1.1 Molecular Evolution and the Tree Paradigm

The combination of Darwin’s theory of natural selection with Mendelian genetics led to

the modern evolutionary synthesis, outlined in the first half of the twentieth century in

pioneering works by Ronald Fisher, Sewall Wright, JBS Haldane, and others.2 The modern

1Clonal and reticulate evolution are also known by the terms vertical and horizontal evolution, respec-
tively.

2See [84] and [73] for comprehensive historical reviews.
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(A) (B)

Figure 1.1: (A) A sketch from Darwin’s notebooks (circa 1837) showing an early conception
of the evoutionary tree. (B) The only figure in Darwin’s On the Origin of Species. In The
Origin, Darwin argued for descent with modification and natural selection as the driving
processes underscoring evolution. In this figure, Darwin illustrated his idea for how diverging
species would result in a tree structure. Reproduced from [41].

synthesis was based largely on an analysis of distributions of allele frequencies in distinct

populations, the purview of classical population genetics. The field was placed on a molecular

foundation with Watson and Crick’s discovery of the DNA double-helix in 1953 [151]. These

developments led to the establishment of molecular evolution, the analysis of how processes

such as mutation, drift, and recombination act to induce changes in populations and species.

The information underlying an organism’s form and function is encoded in its genome, the

complete sequence of DNA (or RNA) contained in each cell. The genome can be represented

as a string of nucleotides, indexed by position. Embedded within the genome are regions

defining the genes which code for functional proteins, as well as non-coding regions which

have as-yet unknown function.3 When an organism reproduces, either sexually or asexually, a

complete copy of this genomic information is passed to the offspring. Because the molecular

mechanisms that control this copying are not exact, errors in replication are introduced.

These errors can take the form of single point mutations (or single nucleotide polymorphisms,

SNPs), small insertions and deletions of a few nucleotides (indels), or larger effects including

3In humans, only 1.5% of the genome is protein-coding, the rest largely non-functional [101]. Up to 5-8%
of the human genome is believed to consist of endogenous retroviruses, dead viruses which have integrated
their genome into the human genome [14].
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copy number variations (CNVs) and chromosomal duplications.4 Under the neutral theory of

evolution, the majority of these errors will have very little impact, either positive or negative,

on the descendant organism. A small fraction of mutations will result in an appreciable

fitness difference compared to other organisms, and it is on these organisms that natural

selection will act.

While molecular biology has largely focused on the biochemical and biophysical mech-

anisms underlying these processes, molecular phylogenetics has focused on the comparative

analysis of macromolecular sequences to infer genealogical and evolutionary relationships.

Molecular phylogenetics began with Emile Zuckerkandl and Linus Pauling’s recognition in

the early 1960’s that the information encoded in a set of molecular sequences could itself

be used as a document of evolutionary history [163, 164]. It became clear that given two

sequenced organisms, counting the differences between their respective sequences could be

used as a quantitative measure of the amount of evolutionary divergence between the two

organisms. If one has a larger set of sequenced organisms, computing the complete set of

pairwise distances yields a distance matrix. From the distance matrix, one can then at-

tempt to associate a tree to the data such that pairwise distances along the tree are close

to the measured pairwise distances from the sequences. Walter Fitch and Emanuel Margo-

liash popularized this approach by constructing a weighted least squares approach to fitting

phylogenetic trees from distances [65]. Since that time, the development of numerical ap-

proaches for inferring evolutionary relationships has evolved into a mature discipline and the

use of molecular sequence data to infer phylogeny has become a standard practice across

a wide range of biology and ecology. While other approaches to tree inference have been

developed, including parsimony, maximum likelihood (ML), and Bayesian methods, we will

focus on distance matrix methods because of their close relationship to the topological ideas

we employ.

4Mutation rate vary across species: in humans, 10−8 per site per generation [117]; in bacteria and
unicellular eukaryotes, between 10−9 and 10−10 per site per generation; in DNA viruses, between 10−6 and
10−8 per site per generation [48].

4



Figure 1.2: Carl Woese’s three domain tree of life. Using 16S subunit ribosomal RNA, Carl
Woese identified archaea as a distinct phylogenetic domain. Previously, based on morpho-
logical similarity (specifically, unicellular and lacking a nucleus), archaea had been grouped
with bacteria. This result was an early success for molecular phylogenetics and the use of
conserved gene segments for molecular classification. Figure adapted from [157].

One important early result from molecular phylogenetics was Carl Woese’s organization of

bacteria, eukarya, and archaea into the three domains of life [156]. Prior to Woese, there were

two recognized domains of life: prokaryotes, single-celled organisms lacking a nucleus, and

eukaryotes, multi-celled organisms with an enveloped nucleus. Using 16S subunit ribosomal

RNA sequencing, Woese discovered that the prokaryotic domain actually split into two

evolutionarily distinct groups. One of these, which he termed archaebacteria was more

closely related to eukaryotes than were there the rest of the prokaryotes. This led to the

three-domain system of life (Figure 1.2).

This work had several important consequences. First, it established the use of molecular

data to inform about large-scale patterns of evolutionary history. Using only morphological

data had led to an inconsistent classification of archaea. Second, it positioned 16S rRNA

profiling as the primary source of data for use in comparative genomics. The use of this

genomic region was justified on the basis of being one of the few universal gene segments
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that is conserved across all species. Constructing a universal tree is predicated on there being

orthologous genes, i.e. shared genes related through speciation events, that can provide a

common foundation for comparative study. Finally, it solidified the tree paradigm as an

organizing principle for relating extant species. Even though reticulate processes had been

known since the early twentieth century5, the idea that evolutionary relationships should

be described by a bifurcating tree had been paramount since Darwin. Reticulate processes

were either ignored completely, or expected to occur at such low frequencies that they need

not be considered.

1.2 Reticulate Processes and the Universal Tree

Despite the significant impact of Woese’s observation, there remained a subtle difficulty,

which Woese himself would come to contemplate in later work [155, 72]. Woese’s phylogeny

was based on only 1,500 nucleotides in the ribosomal RNA, less than 1% of the total length

of a typical bacterial genome (see [40]). Even more striking, this accounts for less than

0.00005% of the human genome. While recent work has developed approaches for construct-

ing reference trees from larger gene sets [36], the fact remains that the vast majority of

genomic information is not incorporated into the tree.

The reason for this situation is twofold. First, not all genes are shared universally across

all species. In constructing a phylogenetic tree using sequence data, only genes that are

present across all species are informative. Second, even among universal genes, the pres-

ence of reticulate evolutionary processes will confound systematic analysis. The model of

a bifurcating tree will be consistent only if all loci share the same pattern of bifurcation.

When organisms can exchange genetic material by means other than direct reproduction,

the ancestral relationships between organisms will depend on which genomic regions are

used. If two different genomic regions were analyzed, two different tree topologies may be

5Beginning with Frederick Griffith’s experiments in 1928 showing that non-virulent strains of Strepto-
coccus pneumoniae could acquire virulence factors by being exposed to dead virulent strains.
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generated, yielding conflicting phylogenetic information. It remains an open question how

to best construct a consistent evolutionary history from conflicting phylogenetic signals6

Historically, reticulate processes were believed to occur at such a low frequency that they

could be safely ignored when considering evolutionary relationships. However, new genomic

data has shown that, particularly in microorganisms such as bacteria and archaea, reticulate

processes are much more prevalent than originally expected [124]. Incompatibilities in the

tree paradigm now appear as the rule, not the exception, which has led to calls for new

representations of evolutionary relationships [45, 46]. Many have argued that, in light of

new genomic evidence, the very notion of a universal tree of life must be discarded [95, 96].

This point has been argued most strongly by Ford Doolittle of Dalhousie University. In

Figure 1.3, we see Doolittle’s simplified representation of Tree of Life as it stands today,

including only two of the most well-known reticulate events: the acquisition of mitochondria

and chloroplasts from bacterial ancestors. We also see his representation of the Tree of Life

as it would stand if additional large-scale reticulations were reflected – no longer is it clear

that the tree is an appropriate metaphor.

Finally, reticulate evolutionary processes are of more than just historical interest for

evolutionary studies, but play a substantial role in human health and disease. In HIV,

frequent homologous recombination confounds our understanding of the epidemic’s early and

present history [25]. In influenza, segmental gene reassortments lead to antigenic novelty and

the emergence of epidemics [119]. In several pathogenic bacteria, including E. coli and S.

aureus, horizontal gene transfer has been responsible for the spread of antibiotic resistance

genes [2, 42]. For example, the 2011 German E. coli outbreak was caused by a strain of E.

coli that had acquired the ability to produce Shiga toxin [131].

6There exists a cottage industry of methods for aggregating conflicting gene trees into a consensus species
tree, see [111].
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(A) (B)

Figure 1.3: (A) W Ford Doolittle’s representation of the consensus universal tree of life.
Only the most well known reticulations are reflected: the endosymbiosis of mitochondria
and chloroplasts. (B) Doolittle’s speculative representation of the universal tree of life after
accounting for reticulate evolution. While the three domains of life are still recognizable,
patterns of divergence no longer follow a strictly treelike model. (From Science, vol. 284,
issue 5423, page 2127. Reprinted with permission from AAAS.)

1.3 Evolution as a Topological Space

We propose the use of new computational techniques, borrowed from the field of applied

topology, to capture and represent complex patterns of reticulate evolution.

Topology as a mathematical field is concerned with properties of spaces that are invariant

under continuous deformation. Such properties can include, for example, connectedness

and the presence of holes. Two objects are considered topologically equivalent if they can

be deformed into one another without introducing any cuts or tears. As a paradigmatic

example, consider the coffee mug and the donut (Figure 1.4). While seemingly different, it is

not difficult to see that both objects consist of a single connected component that is wrapped

around a single hole. Were the objects smoothly pliable they could be freely deformed into

one another. Topologically, the two objects are equivalent.7

Algebraic topology quantifies our intuitive notions of shape using algebraic structures

7The two objects are topologically equivalent to a solid torus, which is represented as D2 × S1, a solid
two-dimensional disk wrapping around a circle.
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Figure 1.4: The paradigmatic example of topological equivalence. The coffee mug can be
continuously deformed into the donut and are therefore topologically equivalent. Both ex-
hibit the topology of a solid torus (D2 × S1).

to represent different invariants of a space. For our purposes, the most relevant invariants

will be the Betti numbers. We give a more complete characterization of Betti numbers in

Chapter 2, but the intuition is as follows. The Betti numbers are a collection of integers

indexed by an integer n describing the connectivity of a space at different dimensions. First,

we can think of β0 as representing the number of connected components, or clusters, in

our space. Next, we can think of β1 as representing the number of one-dimensional loops

in our space. Equivalently, this is the number of cuts needed to transform the space into

something simply connected.8 Higher Betti numbers, βn for n > 1 will correspond to higher

dimensional holes. In our coffee mug example, because both objects have the same Betti

numbers (β0 = 1, β1 = 1, and βn = 0 for n > 1), they are considered topologically equivalent.

Our goal in this work will be to adopt a similar perspective and characterize evolutionary

spaces as topological spaces using their Betti numbers.

To give a simple example, consider Figure 1.5. The example presents two possible sce-

narios describing the evolutionary relationships of three species, labeled a, b, and c. For each

8In a simply connected space, any path between two points can be deformed into any other such path.
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scenario, moving vertically up the object corresponds to moving backwards in time. Branch

lengths correspond to evolutionary divergence. Internal vertices represent extinct ancestors

of the three species, up to the root of the tree, r, which represents the most recent common

ancestor. On the left, we have a simple tree topology relating the three species. Considering

the shape of the tree, there is a single connected component, giving β0 = 1. Further, we

see that there are no loops formed by the branches, giving β1 = 0. The object is therefore

considered trivially contractible, a property which will hold for all tree topologies. On the

right, we have a reticulate topology relating the three species. We can envision species b as

being the reticulate offspring of parents ancestral to species a and c. That is, species b carries

unique genetic material from both species a and species c. To account for this, two branches

merge into the vertex that is directly ancestral to b. Considering the shape, there is again a

single connected component, giving β0 = 1. However, because of the reticulate event mixing

material from a and c, there is now a loop formed in the topology, giving β1 = 1 The object

is no longer treelike and is characterized by a more complex topology. The Betti numbers

capture the essential difference in the two evolutionary histories. Finally, we note that this

is a conceptual example of how reticulate processes can be captured using topology – in

practice, we do not have access to the true history, but must infer it from a finite sample.

Consider again Darwin’s branching phylogeny (Figure 1.1) and Doolittle’s modified rep-

resentation after accounting for reticulate evolution (Figure 1.3). The two objects can be

imagined to be representations of two different topological spaces. Darwin’s branching phy-

logeny is a tree and hence trivially contractible (βn = 0 for n > 0). In contrast, Doolittle’s

construction has a much more complex topology, with loops being formed where reticulate

events have occurred. The object will be characterized by nonvanishing Betti numbers, the

magnitude of which will be associated with the amount of reticulation that has occurred.

The remainder of this thesis focuses on expanding this idea and applying it to real data sets

with the goal of measuring the prevalence and scale of reticulate evolutionary events. Our

aim will be to characterize reticulate exchange of genetic material by the parental sequences
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Figure 1.5: (A) A simple treelike phylogeny is contractible to a point. (B) A reticulate
phylogeny that is equivalent to a circle and not contractible without a cut. The two spaces
are not topologically equivalent and can be distinguished by their Betti numbers.

involved in the exchange, by the amount and identity of material exchanged (i.e., the genes

or loci involved), and the frequency with which similar exchanges occur. Several impor-

tant questions will be dealt with, such as how to construct topological spaces from finitely

sampled sequence data, how to make comparisons among gene sets, and how to make statis-

tical statements about reticulate events. We will address these questions by developing new

techniques to construct and extract topological and statistical information from evolution-

ary data. In doing so, we provide a fuller understanding of evolutionary relationships than

possible with current phylogenetic methods.

1.4 Thesis Organization

The remainder of this thesis is organized as follows.

In Chapter 2 we present background material on the topics discussed in this thesis.

This discussion is chiefly structured into two pieces: (1) background on phylogenetics and

population genetics, and (2) background on the methods we use from TDA.

In Part I, we develop two complementary approaches for analyzing sequence data using

TDA. In Chapter 3, we propose methods of constructing topological spaces that generalize
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standard constructions but are suited to the particular requirements of phylogenetic appli-

cations. We draw on previous work in phylogenetic networks and use homology to provide a

quantitative assessment of reticulate processes. This work was published in [58]. In Chapter

4, we develop methods for performing statistical inference using summary statistics com-

puted using methods from TDA. This is the first such use of TDA as a tool for performing

parametric inference and should generalize to a wide range of application settings. This

work was published in [59]

In Part II, we apply our approach to several problems in evolution and genomics. In

Chapter 5 we study phages, viruses of single-celled microorganisms. We show how persistent

homology recovers inconsistencies in existing morphology-based taxonomies, use a network

approach to construct an alternative genome-based representation of phage relationships,

and identify representative gene families conserved within phage populations. In Chapter 6

we study influenza, a common human pathogen. We show how persistent homology captures

widespread patterns of reassortment, including nonrandom cosegregation of segments and

barriers to subtype mixing. In contrast to traditional influenza studies, which focus on the

phylogenetic branching patterns of only the two surface-marker proteins, we use Mapper

combined with whole-genome data to represent influenza molecular relationships. We show

unexpected relationships between divergent influenza subtypes. This work draws from results

in [31] and [59]. In Chapter 7 we study pathogenic bacteria. We use two sources of data to

measure rates of reticulation in both the core genome and the mobile genome across a range

of species. Mapper is used to represent the population of S. aureus and analyze the spread

of antibiotic resistance genes. The potential for the spreading of antibiotic resistance in the

human microbiome is investigated. This work was published in [57]

Finally, in Chapter 8 we summarize these results and present future research directions.
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Chapter 2

Background

This thesis uses newly developed approaches from applied topology to study problems in

evolutionary biology and genomics. In this chapter we provide background material to

motivate our approach. In Section 2.1 we introduce models of evolution and the types of

genomic data we will consider. In Section 2.2 we provide a self-contained introduction to the

primary methods of topological data analysis, including persistent homology and Mapper.

Finally, in Section 2.3 we give simple examples of how the tools from TDA can be informative

about reticulate evolution.

2.1 Evolutionary Biology and Genomics

In this section we present a basic introduction to molecular sequence data: what the data

looks like, the processes by which it is generated, and the methods by which it is analyzed.

Particular attention is paid to modes of reticulate evolution. Exposition for specific biological

applications can be found in their respective chapters.
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2.1.1 Genes and Genomes

The information required to express an organism’s biological form and function is contained

in the genome. At least one copy of the genome is packaged inside each cell of an organism.

Physically, the genome is manifest as a polymer chain of nucleic acid, built on an alphabet of

four nucleotide monomers: adenine, cytosine, guanine, and thymine. Abstractly, the genome

is represented as a linear sequence of characters defined over the alphabet {A, C, G, T/U}.1,2

Contained in this sequence are subsequences representing genes, which code for the protein

products that ultimately affect function. Further embedded in the genome is a complex

regulatory pattern of transcription factors controlling the expression of particular genes and

directing cellular differentiation and development.

Following the central dogma of biology, DNA is transcribed into RNA, RNA is translated

into amino acids, and amino acids are folded into proteins [39]. Proteins comprise the

functional unit of biology.

Beyond simply coding for function, the genome includes an imprint of the evolutionary

history that gave rise to the organism. By comparing the genomes of multiple organisms,

inferences can be drawn about the evolutionary relationships among extant organisms as

well as the processes that generated observed diversity. The field concerned with exploring

these relationships is comparative genomics.

2.1.2 Evolutionary Processes

Evolution describes the gradual change in phenotypes arising from random variation and

subject to natural selection. The processes giving rise to diversity can be classified into two

types: clonal and reticulate.

1T in the case of DNA genomes. U in the case of RNA genomes.
2The linear representation can be misleading, as many organisms, primarily viruses and bacteria, have

circular genomes.
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2.1.2.1 Clonal Evolution

Clonal evolution, or vertical evolution, is a process of self-reproduction whereby genetic

material is transferred directly from parent to offspring. Population diversity is generated

by stochastic mutation and maintained over multiple generations by random drift.

It is clonal evolution that Darwin had in mind when he described the idea of descent

with modification, whereby a parent passes genomic information to an offspring subject to

random drift. Importantly, because there is always a direct parent–offspring relationship,

clonal evolution can be modeled with a binary tree model.

2.1.2.2 Reticulate Evolution

Reticulate evolution, or horizontal evolution, refers to exchange or acquisition of genetic

material via processes that do not reflect a direct parent–offspring relationship. As we will

see, these processes can make inferences about historical evolutionary relationships difficult.

Different types of reticulate processes occur in different types of organisms (summarized in

Table 2.1).

Viruses replicate by infecting a host cell and then using the host cell machinery and

resources to produce multiple copies of viral genetic material. The genetic material is then

packaged into new virus particles which are shed off in order to infect new cells. Reticulation

can occur when two virus particles coinfect the same host cell. During the replication process,

genetic material can be exchanged in one of two ways: reassortment or recombination (the

two processes are contrasted in Figure 2.1). Reassortment occurs in viruses whose genomes

are segmented, such as influenza. Segments are similar to chromosomes, such that a single

virus particle will contain a single copy of each segment. Coinfection of a single cell with two

independent viruses results in packaging of segments taken from different virus particles. The

result viral progeny will then be a genetic mixture of segments from each parental strain.

Recombination, more common in non-segmented viruses such as HIV, involves a break-

rejoin mechanism during the replication process. Here, an error in the polymerase during
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Coinfection Reassortment

Recombination

Figure 2.1: The two modes of viral reticulation. Coinfection of the same host cell can lead
to either reassortment, in which whole viral segments are exchanged, or recombination, in
which breakpoints can occur within segments. The former process is common in influenza,
the latter in HIV. The end result, however, is a novel virus particle which shares genetic
information from both parents.

replication can result in an incomplete copy of the genome (a break). At this point, several

cellular processes involved in repair can be recruited to complete the replication process

using a homologous region. If coinfection has occurred, it is possible for these processes to

initiate repair using material from a different parental strain. The outcome will be novel

genetic material that includes a crossover from one strain to another. Break-rejoin crossover

is a type of homologous recombination.

In bacteria and other prokaryotes, reticulate evolution can occur when foreign DNA

from a donor is acquired by a target organism and integrated into its genome. Three generic

mechanisms have been identified, depending on the route by which foreign DNA is acquired

[124]:

1. Conjugation. Direct cell-to-cell contact between donor and recipient resulting in trans-

fer of plasmid.

2. Transformation. Foreign DNA acquired via uptake from freely circulating DNA in the

environment.

16



Conjugation

Transduction

Transformation

Figure 2.2: Three modes of viral reticulation. (1) Conjugation, in which direct cell-to-cell
contact results in transfer of genetic material; (2) Transformation, in which foreign DNA is
acquired via uptake from freely circulating DNA in the environment; and (3) Transduction,
in which exchange of genetic material is mediated by a virus or phage particle.

3. Transduction. Virus-mediated transfer for foreign DNA from an infected donor cell.

A visualization of these three mechanisms is shown in Figure 2.2. Because these mechanisms

can often lead to the acquisition of novel sequences coding for genes not in the recipient

organism, reticulate evolution in prokaryotes is often called horizontal gene transfer or lateral

gene transfer.

In eukaryotes, several reticulate processes have been identified. We mention two such

processes: hybrid speciation and meiotic recombination. These two processes act at very

different scales, however the outcome is the same: a unique offspring with genetic material

drawing from both parents.

First, hybrid speciation refers to the cross-breeding of animals or plants of different

species. This mixing of genetic material can lead to the development of offspring with a

phenotype distinct from both parents. Hybrid speciation was originally believed to be a rare

occurrence in nature and hybrid offspring to be infertile. However, recent genomic data has

demonstrated that hybridization occurs quite frequently in plants [4, 5].

Second, meiotic recombination refers to a specialized process for generating diversity

that occurs in sexually-reproducing polyploid organisms, such as humans, during meiosis.

Meiosis is the process by which a single cell containing n copies of each chromosome results
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Table 2.1: Reticulate processes in biology across kingdoms

Organism Process Description

Virus Reassortment Exchange of discrete genomic segments
Recombination Intragenomic homologous crossover

Bacteria
Transformation Acquisition of foreign DNA in environment
Transduction Viral-mediated exchange
Conjugation Cell-to-cell contact and exchange

Eukaryotes Meiotic Recombination Homologous crossover during meiosis
Hybrid Speciation Fertilization across species boundaries

in four distinct cells each with n/2 copies of each chromosome. These special cells are called

gametes. Sexual reproduction consists of the fusion of two gametes during fertilization to

form a zygote, which ultimately develops into a viable offspring. Meiosis is a multi-step

process consisting of an initial round of DNA replication followed by two rounds of cell

division. Meiotic recombination occurs after the initial round of DNA replication and prior

to cell division. After DNA replication, there are two copies of each homologous chromosome

that are joined at a centromere. The two sets of chromosomes then pair with each other and

exchange DNA through physical interactions known as crossovers.3 This is another example

of homologous recombination and results in new allelic patterns mixing genetic information

from both parents.4 After crossover occurs, two phases of cellular division result in gametes

with n/2 copies of each chromosome.

The presence of reticulate processes in a set of organisms can be most clearly identified

by comparing phylogenetic relationships built from different genomic segments. A general

practice is to construct the set of gene trees which reflect ancestral branching patterns

at specific loci. If a reticulate event has occurred, it implies that the branching patterns of

different genes will not agree. A subfield of comparative genomics is concerned with building

species trees from sets of gene trees [111].

3These crossovers have been shown to occur nonrandomly at recombination hotspots regulated by binding
motifs for the PRDM9 protein [10, 26].

4Patterns of shared alleles define the concept of linkage.
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However, in the case where there is substantial disagreement among gene trees, the very

notion of a species tree may be flawed. Traditionally, evolutionary biology has concerned

itself with characterizing relationships in light of vertical evolution alone. However, increas-

ing evidence has pointed to the important role played by horizontal evolution, particularly

in prokaryotic evolution [71, 70]. Between 10% to 16% of the E. coli genome is believed to

have arisen from horizontal gene transfer [124].

2.1.3 Mathematical Models of Evolution

Mathematical population genetics is concerned with properties of populations as they are

subject to evolutionary forces over long time scales. These forces include natural selection,

genetic drift, mutation, and recombination. Historically the input data for population ge-

netics models was comparative studies of allele frequencies across populations. These studies

have primarily been replaced by large-scale genomic surveys which have provided unprece-

dented insight into ancient population structure and historical migrations.

These models allow scientists to two things: (1) simulate genomic data under realistic

processes and (2) build statistical models to estimate biological parameters from data.

2.1.3.1 The Wright-Fisher Model

The Wright-Fisher model is a forward time simulation of an evolving population. In the

simplest case, the model describes neutral evolution of a constant population size with no

structure and constant genome length. The model proceeds in units of generations. At

each generation, a member of the population is an offspring of a randomly selected ancestor

from the previous generation. This offspring inherits its ancestors genomes, with mutations

introduced at some base rate µ. A member of previous generation with no offspring will be

considered extinct.
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2.1.3.2 The Coalescent Process

The coalescent process is a stochastic model that generates the genealogy of individuals

sampled from an evolving population [149]. The genealogy is then used to simulate the

genetic sequences of the sample. This model is essential to many methods commonly used

in population genetics. Starting with a present-day sample of n individuals, each individ-

ual’s lineage is traced backward in time, towards a mutual common ancestor. Two separate

lineages collapse via a coalescence event, representing the sharing of an ancestor by the two

lineages. The stochastic process ends when all lineages of all sampled individuals collapse

into a single common ancestor. In this process, if the total (diploid) population size N is suf-

ficiently large, then the expected time before a coalescence event, in units of 2N generations,

is approximately exponentially distributed:

P (Tk = t) ≈
(

k

2

)
e−(k

2)t, (2.1)

where Tk is the time that it takes for k individual lineages to collapse into k − 1 lineages.

After generating a genealogy, the genetic sequences of the sample can be simulated by

placing mutations on the individual branches of the lineage. The number of mutations on

each branch is Poisson-distributed with mean θt/2, where t is the branch length and θ is the

population-scaled mutation rate. In this model, the average genetic distance between any

two sampled individuals, defined by the number of mutations separating them, is θ.

The coalescent with recombination is an extension of this model that allows different ge-

netic loci to have different genealogies. Looking backward in time, recombination is modeled

as a splitting event, occurring at a rate determined by population-scaled recombination rate

ρ, such that an individual has a different ancestor at different loci. Evolutionary histories

are no longer represented by a tree, but rather by an ancestral recombination graph. Re-

combination is the component of the model generating nontrivial topology by introducing

deviations from a contractible tree structure, and is the component which we would like to

quantify. Coalescent simulations were performed using ms [81].
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(a) Wright-Fisher Model (b) Coalescent Model

Figure 2.3: Two models for simulating evolutionary data. On the left, the Wright-Fisher
model simulates a sample of n individuals in the forward direction. At each generation, n
offspring choose a parent from the previous generation at random. After t generations, some
initial lineages will have died off, while others will become dominant in the population. On
the right, the coalescent model simulates the sample in the reverse direction. At each reverse
generation, individuals merge, or coalesce, with some probability, until they reach a single
most recent common ancestor (MRCA). The intuition behind the approach is that lineages
that have gone extinct will not contribute to the present day observed diversity, are therefore
inaccesible, and do not need to be simulated. This approach reduces the data that needs to
be simulated and increases the computational performance of the models.

2.1.3.3 Metrics on Sequences

Evolutionary models require a notion of genetic divergence between sequences. This leads

to a discussion of the types of metrics that can be put on sets of sequences.5

The simplest model, and the one most commonly adopted in this thesis, is the Hamming

metric, which simply counts the proportion of sites that differ between two aligned sequences.

For example, for two sequence s1 = ACTTGAC and s2 = AAGTGGC, dH(s1, s2) = 3/7.

In general, the Hamming metric will underestimate divergences by not accounting for the

5Before sequences can be compared, they must first be aligned. A sequence alignment arranges the
characters in a set of sequences into columns such that individual characters sharing an evolutionary identity
are in the same column. Alignment is necessary because random insertion and deletion of nucleotides can
change the relative positions of related bases. The difficulty of performing an alignment will largely depend
on the amount of evolutionary divergence in the set of sequences under consideration. Sequence alignment
is a well studied topic but largely beyond the scope of this thesis, where we assume sufficient sequence
similarity such that alignment can be performed with high confidence.
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possibility of back mutations.6

More biologically motivated models will introduce corrections to account for assump-

tions about how sequences evolve. These assumptions include the base frequency of each

nucleotide as well as the substitution rates for each type of mutation. The simplest of these

models is the Jukes-Cantor model. This model defines an equal substitution rate µ. Invert-

ing the probability of an alteration gives the divergence. The Jukes-Cantor metric is defined

as

dJC = −3
4

ln(1 − 4
3

p), (2.2)

where p is the proportion of sites that are different.

2.1.4 Phylogenetic Methods

A phylogenetic tree is a binary tree in which leaves are associated with particular species

or taxa, and the branching pattern of the tree reflects diverging evolutionary relationships.

Branch lengths on the tree are associated with evolutionary divergence between sets of taxa.

A tree can be either rooted, in which case a particular point on the tree is identified as the

most recent common ancestor and the temporal order of branching is inferred, or unrooted, in

which case only the branching pattern is represented but no statements about their temporal

order are inferred. Typically sequence data alone is not sufficient to root a tree – an estimate

of the mutation rate under an evolutionary model is also required. See Figure 2.4 for an

example of the two types of trees. In this work we primarily deal with unrooted trees.

Molecular phylogenetics refers to a large collection of methods for inferring branching

patterns from aligned molecular sequence data.7 In general, the problem of finding an op-

timal tree associated with sequence data is NP-complete [66], however several approximate

methods have been developed. The primary types of methods include maximum parsimony,

distance-matrix methods, maximum likelihood (ML), and Bayesian inference. Maximum

6A double mutation of the form A → C → A.
7See Felsenstein’s Inferring Phylogenies for a readable and thorough introduction to the field [64].

22



C
B
A

D

F
E

A

C

B

D

E

F

(A) (B)

root

Figure 2.4: (A) A rooted tree and (B) an unrooted tree on six leaves. In a rooted tree,
a particular point on the tree is identified as the most recent ancestor. Time is measured
along the horizontal axis. In an unrooted tree, only the pattern of divergence is represented.
From sequence data, often times only an unrooted tree can be inferred.

parsimony attempts to find the phylogenetic tree that minimizes the number of evolutionary

changes required to explain the observed sequences. Distance-matrix methods first compute

a matrix of pairwise distances between taxa and then find the tree that best approximates

these distances. ML and Bayesian methods use specific models of evolution to assign prob-

ability distributions over trees. In this work we concentrate on distance-matrix methods

because of their close connection with the finite metric spaces considered in applied topol-

ogy.

2.1.4.1 Distance-Matrix Methods

Given a set of aligned molecular sequences, distance-matrix methods first compute the pair-

wise matrix of genetic distances using one of the metrics as described in Section 2.1.3.3.

Then, the binary tree that best approximates those distances is iteratively fit to this data.

This approach to phylogenetic inference were introduced by Cavalli-Sforza and Edwards

in 1967 [30] and Fitch and Margoliash in 1967 [65]. The Fitch-Margoliash method uses a

weighted least squares approach to tree-fitting, such that larger distances are weighted less,

due to higher chances for random error. Distance-matrix methods are popular for their high

speed and scalability as well as high accuracy in most cases.
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Data: n × n distance matrix D
Result: Phylogenetic tree on n leaves
while Tree not fully resolved (n > 3) do

Compute Q matrix:
Q(i, j) = (n − 2)d(i, j) −∑n

k=1 d(i, k) −∑n
k=1 d(j, k);

Identify pair of taxa i, j that minimizes Q(i, j);
Create new interior node u that joins i and j with edge length:

D(i, u) = 1
2D(i, j) + 1

2(n−2) [∑n
k=1 D(i, k) −∑n

k=1 D(j, k)];
D(j, u) = D(i, j) − D(i, u);

Create new (n − 1) × (n − 1) distance matrix where:
D(u, k) = 1

2 [d(f, k) + d(g, k) − d(f, g)];
end

Algorithm 1: The Neighbor Joining Algorithm. Adapted from [154]

Currently, the most widely implemented distance-matrix method is neighbor-joining.8

One particular reason neighbor-joining is popular is that under certain conditions, discussed

below, it has been shown to exactly recover the correct tree. The neighbor-joining algorithm

is a greedy approach to tree construction that iteratively joins the two closest nodes until a

tree is fully resolved. The neighbor-joining algorithm is described in Algorithm 1.

2.1.4.2 Additive Metrics and the Four Point Condition

Arbitrary distance matrices are unlikely to admit a tree representation. Those that do are

called additive metrics, because they can be represented as an additive tree. Additivity is

the property that the distance between any two nodes will be equal to the sum of the branch

lengths between them. A distance matrix admits a tree representation if and only if it is

additive.

There is a straight-forward condition that must be satisfied for additivity, known as the

four point condition. For a distance matrix to admit a tree representation,

dij + dkl ≤ max{dik + djl, dil + djk} (2.3)

for any four nodes {i, j, k, l}. The condition implies that there is a labeling on the four nodes

8Neighbor joining was introduced by Saitou and Nei in 1987 [134].
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Figure 2.5: A visual interpretation of the four point condition for additivity. For any four
leaves, there exists a labeling {i, j, k, l} such that dij +dkl ≤ dik +dil = dil +djk. Of the three
possible ways of arranging the sums of distances, two will involve traversing the internal
branch, while one will involve only external branches.

such that

dij + dkl ≤ dik + djl = dil + djk. (2.4)

A visual interpretation of this condition is shown in Figure 2.5.

Sequence data can fail to be additive for several reasons. First, sequencing error. Errors

can introduce noise into the measured genetic distances. Second, homoplasy. A homoplasy

occurs when the same mutation is introduced multiple times in a set of organisms. The

presence of homoplasy will underestimate genetic distance between taxa. Third, reticulate

evolution. As described previously, in cases of reticulate evolution no tree will accurately

describe the observed data. In this case, one can either attempt to find the tree that best

fits the data, or search for an alternative representation of phylogenetic relationships.
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2.1.4.3 Number of Tree Topologies

Labeled trees on a fixed set on set of leaves can be distinguished by their topology, which

refers to the arrangement of leaf labels corresponding to a particular evolutionary history.9

The number of unrooted bifurcating tree topologies with L leaves is T (L) = (2L − 5)!!.10

This can be easily shown using induction. For L = 3, we have T (3) = 1 and 3 branches. To

pass to L = 4, we can add the fourth leaf to any of the 3 branches, resulting in 3 different

topologies. For L = 4, we have T (4) = 3. Every time we add a leaf, we add two branches –

one external and one internal. For L = n, we have T (n) = (2n − 5)!! and 2n − 3 branches.

For L = n + 1, we can add the new external branch to any of the current 2n − 3 branches. A

rooted tree with L leaves can be considered as an unrooted tree with L+1 leaves. Therefore,

the number of rooted bifurcating tree topologies with L leaves is (2L − 3)!! As can be seen,

the number of tree topologies explodes with the number of leaves.11 See Figure 2.6.

2.1.4.4 The Space of Phylogenetic Trees

An unrooted phylogenetic tree with L leaves is characterized by its topology and the lengths

of each branch. As shown in the previous section, there are (2L − 5)!! possible unrooted

topologies. There are 2L − 3 total branches, of which L are external branches and L − 3

are internal branches. Tree spaces refers to an abstract construction for representing each

possible tree as a point in a geometric space. These studies were initiated by Andreas Dress

and colleagues, who introduced a formalism known as T-theory (see [52, 51, 49]). We give

here a brief flavor of these ideas; additional exposition can be found in [126, §7].

Consider a set of L leaves. A dissimilarity map is defined on L as δ : L × L → R,

where δ(l, l) = 0 and δ(l, m) = δ(m, l). There are
(

L
2

)
distances; the set of dissimilarity

9The use of the term topology here is standard in phylogenetics, but distinct from that in mathematical
topology.

10The double factorial is defined as n!! = n(n − 2)(n − 4) · · · .
11As was observed by Walter Fitch, for 22 species there are on the order of Avogadro’s number of

topologies. (N22 = 3.20e23, NA = 6.02 × 1023)
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Figure 2.6: Enumerating tree topologies on labeled sets of leaves. (A) There are three unique
tree topologies on four leaves. (B) There are fifteen distinct tree topologies on five leaves.
Inductively, the fifth leaf can be added as a branch to each branch. In general, there are
T (L) = (2L − 5)!! topologies on L leaves.

maps forms a vector space of dimension
(

L
2

)
. Furthermore, the set of all metrics will be the

subspace of R(L
2) that satisfies the triangle inequality. The space of trees is defined as the

set TL of dissimilarity maps that satisfy the four-point condition. The space can be logically

decomposed into subspaces corresponding to a particular choice of topology. This will be

taken as the union of (2L − 5)!! subspaces, each of dimension 2L − 3. Each subspace will

have the structure of a metric cone in the space R(L
2).

The geometric structure of this space was carefully studied by Billera, Holmes, and

Vogtmann (BHV) in [15]. In that paper, the authors specifically considered rooted trees with

zero-length external branches, a space denoted as BHVL, but the basic intuition generalizes

to other types of trees. They defined a geodesic distance between trees of different topology

and used it to define various metric properties on tree space. This analysis was extended

by Zairis et al. in [162], in which unrooted trees with non-zero external branches were

considered. The external branches are constrained to sit in the positive open orthant (R≥0)L.
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An evolutionary moduli space is then defined as the product

ΣL = BHVL−1 × (R≥0)L. (2.5)

The tree space construction allows one to define statistics, such as means and variances, on

collections of trees in a meaningful way.

We show an example of the tree space construction on L = 4 and L = 5 leaves in Fig-

ure 2.7. The case of L = 4 is particularly simple to analyze. The metric cone is a subspace of

R(4
2)=6. There are (2∗4−5)!! = 3 tree topologies, corresponding to the patterns ((a, b), (c, d)),

((a, c), (b, d)), and ((a, d), (b, c)). There are (2 ∗ 4 − 3) = 5 branches: each topology will be a

subspace in R5. The intersection of the subspace of each topology is a space in R4. The case

of L = 5 also has a relatively simple structure. There are fifteen possible topologies, each

with two internal branches. Each topology forms a hyperplane of dimension R7 Combinato-

rially, the topologies can be arranged as a Petersen graph. Intersections of three hyperplanes

will correspond to degenerate cases with one internal branch is not resolved, as shown in

Figure 2.7B. These facets sit in R6. It is important to think of the entire Petersen structure

as being a cone, the origin of which is the 5-dimensional subspace consisting of only external

leaves (see [15, Figure 14]).

Naturally, most data will not sit in T . Whether or not this is simply due to noise or

reflects reticulate processes will depend on the particular dataset. We can view the goal of

phylogenetics as finding the best tree projection δT ∈ T for arbitrary metric data X.

2.1.4.5 Phylogenetic Networks

There are several existing methods for representing reticulate evolution. Most of these meth-

ods generalize phylogenetic trees into phylogenetic networks, which attempt to reconcile the

presence of horizontal evolution in sequence data. However, most simply present corrections

to phylogenetic trees, which can fail in cases where horizontal evolution is pervasive, as in

many prokaryote datasets. Additionally, the resulting networks can be complex and difficult

to interpret quantitatively. This can make it difficult to distinguish between phylogenetic
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Figure 2.7: Examples of geometric representations of the space of trees on L = 4 and
L = 5 leaves. (A) On four leaves the metric cone is a subspace of R6. There are three tree
topologies, each of which corresponds to a 5-dimensional cone inside. The three topologies
share a R1 facet corresponding to the degenerate topology.(B) On five leaves the metric
cone is a subspace of R. There are fifteen tree topologies, each of which corresponds to a
7-dimensional cone. The geometric structure of the space will map to a Petersen graph,
as shown. There are 10 degenerate cases in which one internal branch is not resolved;
these correspond to 6-dimensional facets, each joining three distinct topologies. The n = 5
subfigure is an adaptation of Figure 3.5 in [126, Ch 3].

incompatibilities due to noisy sampling and due to true reticulations. An example of a

phylogenetic network using the split network approach is shown in Figure 2.8. Other meth-

ods include neighbor-net and median networks. Techniques such as phylogenetic networks

and ancestral recombination graphs have been developed to describe reticulate evolution,

but they have had only limited success due to difficulties of biological interpretation and

computational infeasibility in all but the smallest datasets.

2.2 Topological Data Analysis

Topology is the branch of mathematics that formalizes our intuitive notions of shape. More

concretely, topology provides the methods to characterize the properties of objects and

29



Figure 2.8: Example of a split network of genus Branchiopoda and outgroups. Computed
using the Neighbor-Net algorithm. Phylogenetic incompatibilities are represented by con-
flicting splits. reprinted from BMC Evolutionary Biology 7:147 (2007).
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spaces that remain invariant under continuous deformation. For example, transforming a

circle into an ellipse by compressing along one axis does not change the fact that the object

encloses a single loop. Or, as we saw in the introduction, the coffee mug can be continuously

deformed into the donut. Likewise, if we take a tree and change the lengths of its branches,

the tree remains a tree.12 In each of these examples, while the deformation has substantially

altered local properties of the space, on a global level certain essential characteristics have

remained unchanged. From the perspective of topology, the spaces are considered identical.

The question topology addresses is how to formalize the idea of global shape in order for it

to be reasoned about systematically.

Algebraic topology solves this problem by associating to objects certain algebraic objects

(an integer, for instance) that do not change under continuous deformation. These objects

capture properties like the number of connected components, the number of loops, or the

number of holes in an object, and represent topological invariants of a space. Two spaces

can only be deformed into one other if they share the same invariants. For example, the

circle and ellipse are identified as equivalent by the presence of a single loop. Neither can be

deformed into a tree without introducing a cut, which would be a discontinuous deformation.

Using these invariants, powerful ideas from abstract algebra can be used to manipulate and

reason about shape.

While topology has traditionally developed through the study of abstract spaces, leading

to very rich and beautiful constructions13, data does not come in the form of perfect continu-

ous spaces. Recent effort over the past 15 years has focused on developing methods to apply

topology to real world problems in science and engineering. This work, collectively falling

under the heading of topological data analysis (TDA), has focused on efficient algorithms

for computing topological invariants from finite, noisy data. TDA now encompasses a wide

12As was mentioned in Section 2.1.4.3, it is important to draw a distinction between the notion of tree
topology, in which the branch patterns determines the topology, and global topology, in which all trees are
equivalent. While the former is more common in the phylogenetics community, here we consider the latter.

13For example, see the work of Thurston on low-dimensional topology
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range of efforts and can now be considered a branch of applied mathematics in its own right.

It has emerged from substantial interdisciplinary effort between mathematicians, computer

scientists, and domain experts.

In practice, a typical workflow for applying TDA to data is as follows. Data comes in

the form of a set of n observations with p attributes, where p is often very large. The data is

assumed to be a finite sample from a more complex space, from which we wish to infer either

global structure or an underlying model. The data is represented as a finite point cloud: a

set of n points in p dimensions with a notion of distance. The point cloud is transformed into

a discrete topological space by associating different sets of points with each other, forming

essentially a higher-dimensional analog of a graph. The associations can be constructed in

different ways – for instance, one of the simplest constructions associates points within a

certain distance d from one another. Computational approaches are then used to measure

informative topological properties from the space.

In this thesis, we use methods from TDA to study problems in evolutionary biology and

genomics. Our data is typically aligned genomic sequences from sets of related organisms,

where features are the residues at each site. If our sequences are each of length L, then

we can imagine our data as points in an L-dimensional sequence space. A genetic sequence

metric, such as the Hamming metric, measures distance.

The two main methods from TDA that we employ are persistent homology and Mapper.

Persistent homology provides a way to efficiently compute the topological invariants of a

space across multiple scales, while Mapper provides an approach for condensed representation

and visualization of high-dimensional data. In this section, we provide an overview and

discussion of these two methods from the perspective of an end-user, treating each method

as a pipeline for transforming from raw data to a concise topological summary. While the

mathematical literature on these methods is extremely deep, our goal is to explain things

in sufficient detail for a wide audience to grasp the main ideas. We therefore include a brief

introduction of the basic mathematical concepts we employ. The primary concept we require
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is homology, a particular way in which topological invariants can be assigned to spaces.

The following sections draw on several excellent reviews of TDA, including [27], [56], and

[69]. A more thorough introduction to algebraic topology can be found in [75].

2.2.1 Preliminaries

As stated above, our data is a set of n points, S = {s1, . . . , sn}. Each point is a vector

with p features, si = (si1, . . . , sip). We refer to the collection of points, embedded in a space

with an appropriate metric structure, as a point cloud. We wish to associate a collection

of algebraic objects to the point cloud in order to quantify its shape. To do so, our first

step is to construct a topological structure on top of the point cloud, called a simplicial

complex. The structure will consist of a set of simplices pieced together in such a way that

they approximate the shape of the point cloud. Shape is then quantified using homology.

This section provides the definitions necessary to understand homology.

2.2.1.1 Simplices and Simplicial Complexes

The building blocks of our topological structures are simplices. A simplex is something like

a point, a line, a triangle, or any higher-dimensional generalization of such. Formally, a

k-simplex is a k-dimensional polytope which is the convex hull of k + 1 vertices, as shown

in Figure 2.9. A simplex can be represented by its list of vertices, i.e. σ = (s1, s2, s3). An

m-face of a simplex is the space spanned by the set of m + 1 vertices, and is itself a simplex.

For example, the 0-faces and 1-faces of a simplex are its vertices and edges, respectively. The

(k−1)-faces (faces of co-dimension 1) of a k-simplex are called facets. Facets are represented

as σ(−i), which implies the facet generated by elimination of the i-th vertex.

A finite simplicial complex K is built on the vertex set S from simplices glued together

in such a way that (1) any face of a simplex in K is also in K, and (2) the non-empty

intersection of any two simplices in K is a face of both simplices. An example of a simplicial

complex is shown in Figure 2.10.
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{a}
0-simplex

{a,b,c,d,e}
4-simplex

{a,b,c}
2-simplex

{a,b}
1-simplex

{a,b,c,d}
3-simplex

Figure 2.9: Simplices are the fundamental building blocks of our topological structures. They
can be thought of as triangles generalized to arbitrary dimension. Here we show k-simplices
for k = 0 to k = 4.

Figure 2.10: A finite simplicial complex K is an object built from a finite number of simplices,
glued together in such a way that (1) any face of a simplex in K is also in K, and (2) the
non-empty intersection of any two simplices is face of both simplices.

In order to compute homology and formally define the notion of holes, we need to define

certain combinatorial operations that can be performed on a simplicial complex K. In

general, these operations will act on subsets of simplices of fixed dimension k. These subsets

are called k-chains, and can be represented as formal sums Ck = ∑
j αjσj. The coefficients

αj will be taken over Z2 (i.e. 0 and 1). Two consequences of this choice are (1) σ + σ = 0,

and (2) we consider simplices without regard to orientation.14

An important operator is the boundary operator, ∂ : Ck → Ck−1. The boundary of a

14In general, an algebraic topology can be defined with coefficients in arbitrary fields. We use Z2 for
simplicity, efficiency, and because properties, such as torsion, that arise over more complex fields are not
expected to be present in the biological data we consider. It is important to keep this in mind, as it was in
fact shown that torsion can arise in real data in [29]. In that paper, an association was shown between the
space of natural images and the Klein bottle.
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simplex σ, ∂kσ, is the sum of its facets.

∂kσ =
∑

i

σ(−i) (2.6)

The boundary of a chain is ∂C = ∑
j ∂σj. As a simple example, consider the 2-simplex △

defined by vertices △ = (a, b, c). We have ∂△ = (a, b) + (b, c) + (a, c). Further, we have

∂∂△ = 2(a) + 2(b) + 2(c) = 0. In fact, the property ∂∂C = 0 will hold for any chain C.

We can additionally define more refined chains. A cycle is a chain with empty boundary,

∂C = 0. A boundary cycle is a k-cycle that is the boundary of a chain in dimension k + 1.

We use these definitions to construct various groups on a simplicial complex K. The set

of all chains of dimension k forms the chain group Ck. The set of all cycles of dimension k

forms the cycle group Zk. The set of all boundary cycles of dimension k forms the a group

Bk. The latter two groups can be understood in terms of the boundary operator ∂ acting on

K. The group Zk is the kernel of the boundary operator, Zk = ker ∂k. That is, it is the set of

all k-chains that are sent to 0 by the boundary operator. The group Bk is the image of the

boundary operator, Bk = im ∂k+1. That is, it is the set of all k-chains which are themselves

the boundary of (k + 1)-chains in K. These groups have a particularly simple relationship

to one another which is shown in Figure 2.11.

2.2.1.2 Homology

We are now ready to define homology, which will allow us to discuss and compare shape in

a quantitative way. The j-th homology of a simplicial complex K is defined as the quotient

group

Hj(K) = Zj/Bj = ker ∂j/ im ∂j+1. (2.7)

In words, homology is the group generated by equivalence classes of the cycle group Zj, where

equivalence is defined up to Bj. Elements of the homology group are classes of homologous

cycles. Two j-cycles are homologous if they differ by the boundary of a (j + 1)-chain. We

work through a simple example in Figure 2.12.
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Ck+1

Zk+1

Bk+1

∂k+1

Ck−1

Zk−1

Bk−1

Ck

Zk

Bk

∂k
{Ø} {Ø}{Ø}

Figure 2.11: Relationship between the chain group (Ck), cycle group (Zk), and boundary
group (Bk). Specifically, Bk ⊂ Zk ⊂ Ck. We show the action of the boundary map ∂k on
each group at each dimension. Of particular note are the relations ∂k : Ck → Bk−1 and
∂k : Zk → ∅. Figure adapted from [62].
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Figure 2.12: (A) A simplicial complex defined on a set of 7 vertices, S = {a, . . . , g}. The
object has one connected component (β0 = 1) and two holes (β1 = 2). (B) Four cycles
that can be defined on the complex. Cycles z1 = {(a, b) + (b, f) + (f, d) + (d, a)} and
z2 = {(a, b) + (b, g) + (g, f) + (d, f) + (d, a)} are homologous, differing only by the cycle
c1 = {(b, g) + (g, f) + (f, b)} which is the itself the boundary of the closed triangle (b, f, g).
Likewise with cycles z3 and z4. The two sets of cycles are not homologous with each other,
and there are therefore constitute two independent elements of the homology group H1(S).

The rank of the homology group ∥Hj(K)∥ is the Betti number βj. Intuitively, the Betti

number represents the number of j-dimensional holes in the simplicial complex.
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2.2.1.3 Constructing Complexes From Data

Finally, we must consider how to construct a simplicial complex from a given point cloud S.15

There are two common constructions we will describe: the Čech complex and the Vietoris-

Rips complex. Both constructions involve a scale parameter ϵ, and balls of radius ϵ placed

at the center of each vertex in S. Edges are drawn between vertices when balls overlap, that

is, when d(va, vb) < 2ϵ. Where the two constructions differ is in how higher-dimensional

simplices are filled in.

The Čech complex consists of the set of simplices σ with vertices s1, . . . , sk ∈ S such that

Čech(S, ϵ) = {σ ∈ S | ∩i B(si, ϵ) ̸= 0} . (2.8)

That is, the simplex σ(sx,...,sz) is present if the intersection of balls of radius ϵ centered on

vertices (sx, . . . , sz) is nonempty. The Vietoris-Rips complex, V R(S, ϵ), is defined as

VR(S, ϵ) = {σ ∈ S | diam(σ) ≤ 2ϵ} (2.9)

where diam(σ) = {sup d(i, j) | i, j ∈ σ}. In the Vietoris-Rips complex, a higher-dimensional

simplex is filled in if every pairwise distance is less than 2ϵ. The difference between the two

constructions is shown in Figure 2.13. In general, Čech(S, ϵ) ∈ V R(S, ϵ).

The Čech complex is theoretically preferable because it comes with a nerve theorem,

which states that the topology of the resulting complex will be equivalent to the topology of

the union of balls used to create it. However, the Čech complex has drawbacks that prevent it

from being widely applied to arbitrary data. First, computing the intersection of arbitrary

balls is an expensive operation. While efficient algorithms exist in Euclidean space (the

miniball algorithm [68]), it is much more difficult in arbitrary metric spaces. Furthermore,

the Čech construction explicitly requires an ambient space in which the data is embedded.

For data which comes in the form of a finite metric space, it may not be clear what is the

15In the author’s view, this is the most important step in applying a TDA pipeline.
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(a) Three Points (b) Vietoris-Rips Complex (c) Čech Complex

Figure 2.13: An example of the difference between Vietoris-Rips and Čech complex on an
equilateral triangle. Consider each point to be 1 unit apart. In the Vietoris-Rips complex,
the triangle is filled in when every pairwise edge is connected (ϵ = 0.5). In the Čech complex,
the triangle is only filled in when all three balls intersect (ϵ = 0.577).

ambient space.16 In practice, the Vietoris-Rips complex is more widely applied, because it

requires only the set of pairwise distances between each vertex and a scale parameter ϵ. The

complex can be directly read off from the set of edges (known as the 1-skeleton), making it

extremely fast to compute.

2.2.2 Persistent Homology

Persistent homology is a tool developed under the umbrella of TDA that allows the shape of

a point cloud to be computed across multiple scales simultaneously. Shape is quantified in

terms of topological invariants representing homology, as discussed in the previous section.

To understand why multiscale information might be of interest, consider the example in Fig-

ure 2.14. The data is sparse and noisy, but, to the eye, immediately appears to consist of two

circles joined at a point along their edges. The two circles, however, are of a different radius.

In the Figure, we show Vietoris-Rips complexes constructed at different scale parameters on

the data. We observe that while some scale parameters are sufficient to resolve either one or

16This is indeed the case for the genomic data we consider: it is not immediately obvious what the
intersection of three sequences defined over a finite alphabet should be. We discuss this further in Chapter 3.
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the other of the two circles, no single scale parameter is sufficient to simultaneously capture

the two shapes. Persistent homology solves this by providing an efficient way to track the

shape information across all scale parameters.

Our object of study is the nested set of simplicial complexes, called a filtration, that is

produced by tuning the scale parameter up to some threshold. At the smallest scale, ϵ = 0,

the complex consists only of disconnected points. As the scale parameter is increased, the

topology of the complex changes – clusters merge, holes and loops form, other holes and

loops are filled – until the complex is fully connected. Each aspect of shape represents a

topological invariant, and as the scale is changed, the birth and death of different invariants

is encoded as an interval (bi, di).

The shape information can be concisely summarized in a barcode diagram. The barcode

diagram represents topological features as horizontal line segments, annotated with a birth-

death interval, and indexed by dimension. The birth time is when a particular invariant

first appears in the complex, and the death time is when the invariant collapses in the

complex. H0 represents the number of connected components and is roughly equivalent to

a hierarchical clustering of the data. Higher dimensions represent loops (H1), voids (H2),

and their generalizations in the data. The number of bars at a particular scale will be the

Betti number βn(ϵ) for the complex K(ϵ). Taken together, the barcode diagram represents

a complete and quantitative picture of the shape of the data.

The information can be equivalently represented as a persistence diagram, which is a

scatter plot of invariants with birth time on the x-axis and death time on the y-axis. The

barcode diagram and persistence diagram for the two circles data is shown in Figure 2.15.

First, looking at H0, we see that the data begins disconnected and becomes connected at

around ϵ = 24. Next, looking at H1, we count eight loops across a range from ∼ 5 to ∼ 80.

Two of these loops persist for what appears to be an appreciable length of time. We associate

these two loops with the two circles that we identified qualitatively from the raw point cloud

data.
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The intuition behind persistent homology is exactly that: good or interesting topological

features will be robust and persist over long scales. In the barcode diagram, this corresponds

to longer bars; in the persistence diagram, this corresponds to points sitting far from the

diagonal. Invariants that we observe persisting for only short scales are likely to be noise or

other artifacts.17 And because a single scale is not capable of representing all features of the

data, we examine all scales simultaneously.

In fact, the persistence algorithm is more powerful than that, and can return not only

the intervals associated with the invariants, but representative cycles of each invariant. The

representative cycles correspond to a set of simplices that surround an invariant, and can be

used to determine which data points are involved in a particular invariant.

To summarize, a complete description of the persistent homology pipeline is shown in

Figure 2.16. The pipeline is as follows: A dataset, S = (s1, . . . , sN), is represented as a

point cloud in a high-dimensional space (not necessarily Euclidean). From the point cloud,

a nested series of simplicial complexes, or a filtration, is constructed, parameterized by a

filtration value ϵ. The filtration is represented as a list of simplices defined on the vertices

of S, annotated with the ϵ at which the simplex appears. Given a filtration, the persistence

algorithm is used to compute homology groups. The 0-dimensional homology (H0) represents

a hierarchical clustering of the data. Higher dimensional homology groups represent loops,

holes, and higher dimensional voids in the data. Each feature is annotated with an interval

(bi, di), representing the ϵ at which the feature appears and the ϵ at which the feature

collapses in the filtration. These filtration values are the birth and death times, respectively.

The set of intervals are represented as either a barcode diagram or a persistence diagram.

A second way of applying persistent homology is through sublevel sets. The sublevel set

of a function f : X → R is defined as

L−
ϵ (f) = {x | f(x) ≤ ϵ}. (2.10)

17The obvious question of how to rigorously determine what makes a good interval is an open question
that is currently being addressed by a number of different groups. We discuss this further in Section 2.2.2.2.
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scale=2 scale=16

scale=6 scale=24

scale=12 scale=48

Figure 2.14: An example of constructing a filtration. The nested series of complexes form a
filtration. Persistent homology will compute and track the homology at each scale.
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H0

0 10 20 30 40 50 60 70 80 90

Scale

H1

Figure 2.15: Barcode Diagram for the example in Figure 2.14. H0 and H1 represent connec-
tivity and holes, respectively. The two holes visually apparent in the data are reflected in the
two long bars in the diagram, persisting across different scales. Shorter bars are interpreted
as topological noise.

Barcode
DiagramData

Persistence
Algorithm

Filtered
Simplicial Complex

Vietoris-Rips
Filtration

H1

H0
ε

ε

Figure 2.16: The Persistence Pipeline. Data is represented as a high-dimensional point
cloud. A Vietoris-Rips filtration, a nested series of simplicial complexes parameterized by
a scale ϵ is constructed. Given a filtration, the persistence algorithm is used to compute
homology groups. Topological features are represented by an interval (bi, di), representing
the birth and death times of the feature. The set of intervals are represented as either a
barcode diagram or a persistence diagram.

One can compute persistent homology of sublevel sets by varying the parameter ϵ. In this

case, the beginning and end of each bar will correspond to critical points of the function. A

simple example is shown in Figure 2.17.

As primarily end-users of persistent homology, the details of the persistence algorithm

are largely beyond the scope of this thesis. Effectively, it involves manipulating the boundary
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x
y

ε

H0

Figure 2.17: In a sublevel-set filtration, the homology of sublevel-sets of a function f :→ R
are computed. Here we illustrate this for a simple function, showing the sublevel set at a
particular ϵ and it’s position in the barcode diagram indicating two connected components.
In general, the beginning and end of bars will correspond to critical values of f .

matrix into a particular reduced form, from which each bar and representative cycle can be

read off. Several packages for computing persistent homology have been developed, including

Javaplex [143], Dionysus [115], Perseus [118], Gudhi [112], and PHAT [13]. Additionally, the

R TDA package wraps functions from Dionysus and Gudhi in a user-friendly frontend [63].18

2.2.2.1 Stability of the Persistence Algorithm

The stability statement gives a foundation for comparing the persistence diagrams from

different data. Of particular interest, it gives conditions on the effect of noise on data

sampled from a particular object. The stability result guarantees that small perturbations

in the input data will produce only small changes in the output diagrams. The result is due

originally to Chazal et al. [32]. The statement requires two things: (1) a notion of distance

between the input data D and the perturbed data D′, and (2) a notion of distance between

the resulting diagrams B and B′.

First, we need a notion of distance between persistence diagrams. Recall the persistence

diagram consists of a set of intervals (bi, di) along with the diagonal. We introduce the

concept of a matching. For two persistence diagrams B and B′, a matching is simply a

18In our work we have relied on a variety of these packages. For straight-forward construction of the
barcode diagram, we find the R package TDA easiest to use. If one needs to directly build and manipulate
filtered simplicial complexes, Dionysus has convenient Python bindings. For large datasets, PHAT and it’s
parallel implementation DIPHA are recommended [11, 12].
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mapping of intervals in B to intervals in B′, where we allow points to match to the diagonal

(to account for cases with an unequal number of points). For a matched pair of intervals

(a, b), we define the L∞ distance as

d∞(a, b) = max{|ax − bx|, |ay − by|}. (2.11)

The bottleneck cost of a matching between two diagrams is defined as the maximum L∞

distance among all matched pairs. The bottleneck distance is defined to be the minimal

bottleneck cost across all matchings,

dB(B, B′) = inf
γ∈Γ

sup
p∈B

∥p − γ(p)∥∞ (2.12)

The matching with minimal bottleneck cost is the bottleneck matching.

Second, we need a notion of distance between finite metric spaces. Here we will use

the Gromov-Hausdorff distance, which measures how far apart two spaces are from being

isometric. It measures the longest distance from a point in one set to the closest point in

another set within a metric space.

dGH(X, Y ) = inf
f,s

dH(X, Y ) (2.13)

The result of [32] states that the bottleneck distance between B and B′ is bounded by

the Gromov-Hausdorff distance between the finite metric spaces embedded in A and B.

dB(HK(X), HK(Y )) ≤ dGH(X, Y ) (2.14)

The idea is easiest to visualize using a level-set persistence example, which we show in

Figure 2.18. Here we see a simple function, f(x), and a noisy sample of the same function.

The persistence diagrams of each are shown in Figure 2.18B, along with a bottleneck match-

ing, shown in yellow. As can be seen, most of the noise introduced is reflected in intervals

close to the diagonal. While this example was for a simple level-set filtration, the result has

an extension to the arbitrary finite metric spaces (X, dX) which we primarily consider in this

thesis.
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Figure 2.18: An example of the stability of the persistence diagram with respect to noise.
(A) A function (red), and a noisy sampling of the same function (blue). (B) The level-set
persistence diagrams for the two samples. A bottleneck matching is indicated with yellow
lines. The stability result gives an upper bound on how much the diagrams can diverge as
the sample diverges from the true function. This figure is adapted from [56].

2.2.2.2 Statistical Persistent Homology

Persistent homology has been developed largely as an exploratory tool for data analysis.

However, one would like to integrate it in analysis pipelines more broadly, which requires

notions of statistics to be developed. One of the difficulties is that the persistence diagram,

consisting of a multiset of points in the plane, can be somewhat unwieldy to work with.

Substantial recent work in the TDA community has focused on these questions in order to

develop statistical foundations for persistent homology. We give here a brief flavor of some

of these ideas and their relation to our own work. There are three main threads in statistical

persistent homology:

1. Confidence intervals defined on the persistence diagrams

2. Functional summaries of the persistence diagram

3. Probability measures on the space of persistence diagrams

Confidence intervals on the persistence diagram address the question of when a bar is

a significant topological feature and when it should be considered topological noise. Fasy

et al. have developed ways of generating confidence intervals for persistence diagrams [62].

They use a filtration on a kernel density estimate of the data, and bootstrap resampling,

45



Figure 2.19: An example of how statistical persistent homology can be used both to handle
noise in data and to put confidence sets on the persistence diagram. Figure is taken from
[62].

to place an off-diagonal line on the diagram, below which points are to be considered noise.

This approach can be used to handle outliers and noise in the data by providing a way to

identify the most robust topological features. An example of estimating the topology of a

circle, with outliers, is shown in Figure 2.19. Using the density estimate with a bootstrap

estimator one can recover the circle as a significant feature. Subsampling estimates were

studied further in [33], and related approaches were developed by Blumberg et al. in [16].

Functional summaries of the persistence diagram convert the multiset of intervals into .

From functional summaries, machine learning approaches can be used downstream. Bubenik

has developed the language of persistence landscapes [24, 23]. Essentially, the landscape is

generated by rotating the persistence diagram 45 degrees and dropping a tent at each point.
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Figure 2.20: Persistence Landscapes. (A) A simple filtration on a set of points. (B) The
persistence diagram from this data. (C) Transformed into a persistence landscape. This
figure is adapted from [23, Fig. 2].

The silhouette is taken by weighting the contribution of each point based on its height.

Λp(t) =



t − x + y t ∈ [x − y, x]

x + y − t t ∈ (x, x + y]

0 otherwise

=



t − b t ∈ [b, b+d
2 ]

d − t t ∈ ( b+d
2 , d]

0 otherwise.

(2.15)

An example of the persistence landscape and silhouette is shown in Figure 2.20.

A second approach has been taken by Schweinhart and MacPherson in [110], in which a

transformation of the intervals is used to characterize random polymers in terms of a fractal

dimension. A related approach has recently been proposed by Kwitt et al. that represents

the persistence diagram in a kernel space for use in machine learning [99, 130]. We explore

the use of functional summaries of the barcode diagram in a statistical inference setting in

Chapter 4.

Finally, probability measures on the space of persistence diagrams. Several authors have

examined the space of persistence diagrams as a Polish space, with well-defined notions of

mean and variance. See the work of Turner [147] and Mileyko [114]. This work crucially relies

on distances between diagrams that are based on matchings, as discussed in Section 2.2.2.1.

Further work has focused on statistical properties of the persistence diagrams themselves,

such as [34] Establishing these foundations would lead to direct use of the persistence diagram
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Figure 2.21: Dimensionality Reduction Approaches for Exploratory Data Analysis.

as a statistical object, but as of yet no efficient tools have been developed.

2.2.3 Mapper

Mapper is an approach for the representation and visualization of patterns in high-dimensional

data. As such, it sits within the larger class of dimensionality reduction algorithms for ex-

ploratory data analysis (EDA), such as multidimensional scaling (MDS) [98], Isomap [144],

and t-SNE [148]. A perspective on how these various approaches to EDA are related is

shown in Figure 2.21. The primary distinction between Mapper and the existing class of

nonlinear dimensionality reduction algorithms is that Mapper seeks to preserve the topology

of the input data, rather than geometry. Compared to existing approaches, Mapper has the

following advantages: (1) it is coordinate free, depending only on the metric properties of

the data; (2) an invariance to deformation, which provides a robustness against noise; and

(3) results in a compressed representation, which gives the ability to handle extremely large

data. Mapper was initially developed by Singh and Carlsson in [135]; further exposition and

examples can be found in [108]. Mapper has been applied to problems in RNA folding [20],

breast cancer subtype classification [123], and genetic associations in type 2 diabetes [104].

A simple example of the Mapper algorithm is shown in Figure 2.22, which is adapted

from [108]. As input is a point cloud X with an associated metric, Euclidean or not (Fig-

ure 2.22)A. First, a filter function is applied to the data (Figure 2.22B). The filter function

maps the original points onto the real line, X → R. Standard filters include things like the

48



(B)(A) (C) (D)

Figure 2.22: The Mapper Algorithm. Mapper starts with a set of data points and a filter
function f , and produces as output a graph that captures the shape of the data. (A) The
original data represented as a point cloud. (B) The filter function f projected onto the data.
(C) In the projected space, the data is divided into overlapping bins. (D) Individual bins are
represented as nodes. The size of each node represents the number of data point contained
in the bin. Nodes can be colored by various attributes by the data, in this example the
average value of the filter function is used. Pairs of bins that have points in common are
connected by an edge.

mean, density, L1-centrality, and the first and second components of a PCA decomposition.

Second, the projected space is split into overlapping bins based on a resolution (bin size)

and overlap parameter.19 Third, the bins are then clustered in the original high-dimensional

space (Figure 2.22). Each cluster will form a node in the graph representation.20 Finally,

nodes that share points in the original space are connected by an edge.

Our use of Mapper will be primarily as a means of visualizing relationships in sequence

data. While the resulting graphs cannot be strictly interpreted in a phylogenetic sense, they

will provide valuable information about evolutionary relationships. We use the commercial

implementation of Mapper developed by Ayasdi [6]. Open-source implementations of Mapper

are available in the Python Mapper package [116] and sakmapper package [161].

19Multiple filter functions can be used and binned on a grid.
20Nodes in a Mapper graph consist of multiple points in the original data; this is essence of the compressed

representation.
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2.3 Applying TDA to Molecular Sequence Data

Aligned molecular sequence data can be naturally viewed as a point cloud in a high-

dimensional space, which we loosely call sequence space. The particular structure of sequence

space will be determined by the length, L, of the aligned sequences, and the alphabet, Q, over

which the sequences are defined. The typical sequence alphabet will be either nucleotides or

amino acids. The dimension of the space is determined by L. Sequence space will therefore

consist of the ||Q||L possible sequences. Together with any of the standard genetic distance

measures, this forms a metric space.

The processes of evolution can be seen as an exploration of sequence space. Clonal

evolution, in which mutations accrue at each generation, will be Clonal evolution is the

process of smoothly moving through sequence space, while reticulate evolution is the process

of making discontinuous jumps through the space. Our data consists of a subset of points

sampled from sequence space. These points reflect a particular evolutionary history. As

more data is acquired, regions of sequence space will become more densely sampled and our

ability to reconst evolutionary relationships will be improved.

Given sequence data, our program is to (1) encode the data as a finite metric space, (2)

use tools from TDA to characterize the topology of the data, and (3) interpret the topology in

an evolutionary context. In particular, we apply persistent homology, and read phylogenetic

information contained in the dataset off the resulting barcode diagram. This idea was first

proposed in [31]. In that paper, the authors developed two metrics for measuring reticulate

evolution using homological features: (1) topological obstruction to phylogeny (TOP), which

uses the L∞-norm of the barcode as a coarse measure of reticulation; and (2) irreducible

cycle rate (ICR), which uses temporal annotations to measure the average number of H1

features per unit time. They applied this approach to a variety of viral datasets, including

influenza and HIV. The work presented in this thesis extends this work in several substantial

ways. We make two preliminary remarks before considering a more complex example.
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2.3.1 Topology of Tree-like Metrics

An important foundational point was demonstrated by Carlsson in [31]. Recall that tree-like

data will have an additive metric, as described in Section 2.1.4.2. In [31], it was proven that

for additive metric spaces, the Vietoris-Rips filtration of the data will consist of a nested

set of acyclic complexes. Consequently, the persistent homology of additive data will have

nontrivial topology only in dimension zero. Furthermore, while noise in the data will intro-

duce small deviations from additivity, the theorem puts bounds on the size of the topological

features that can arise in this manner. These bounds rely on the Gromov-Hausdorff stability

conditions described in Section 2.2.2.1. On the other hand, if the evolutionary history in-

cludes reticulate events that cannot be represented as a tree, these events will be captured as

non-trivial higher dimensional homology in the barcode diagram, an idea which we develop

below. This theorem provides an important negative control in using TDA to characterize

reticulate evolution.

2.3.2 The Fundamental Unit of Reticulation

In population genetics, there is a simple test for the presence of reticulate evolution in

sequence data called the four-gamete test [82]. The test assumes only an infinite-sites model,

which states that for a sufficiently long genome, a particular residue can only ever undergo

a single mutation. Put another way, there is no multiple-mutation or back mutation. The

infinite-sites model has three consequences: first, one need only consider segregating sites,

or nucleotide positions that have undergone a mutation. Second, because a given position

can mutate only once, it is sufficient to represent sequences as binary strings, where a 0

indicates the unmutated state and 1 the mutated state. Third, for a given position we can

arbitrarily assign the unmutated and mutated states. The infinite-sites model is considered

a reasonably good model for long genomes.

The four-gamete test identifies reticulate evolution by looking at pairs of segregating

sites. Given biallelic data, there are four possible haplotype patterns, or states, for a pair
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of segregating sites: 00, 10, 01, or 11.21 The statement of the four gamete test is this:

in any given dataset, the simultaneous presence of all four haplotype states in any pair

of segregating sites is incompatible with strictly clonal evolution, and indicates reticulate

evolution. To see this, assume state 00 as the ancestor to states 10 and 01, which arise

from two independent mutations. Because of the no multiple-mutation assumption, it is not

possible for either of these two states to then independently mutate into state 11. The only

way for state 11 to arise is via a reticulate event that brings together the left site from state

10 and the right site from 01.22 This process is illustrated in Figure 2.23A.

Under a Hamming metric, the distance matrix for the set of four sequences s1 = 00,

s2 = 10, s3 = 01, and s4 = 11 is

d =



0 1 1 2

1 0 2 1

1 2 0 1

2 1 1 2


(2.16)

The Vietoris-Rips filtration of this space is shown in Figure 2.23B. At ϵ = 0 the four sequences

are disconnected. At ϵ = 1, four edges are drawn, forming a loop. At ϵ = 2, the space is

completely connected and the loop is killed. Persistent homology captures the presence of

this loop as an H1 feature in the interval [1, 2) (Figure 2.23C). In this way, the reticulate

event is associated with the presence of a nonzero H1 bar. A possible reticulate evolutionary

genealogy representing this data, including two mutations (m1 and m2) and one reticulation

(r1) is shown in Figure 2.23D.

We consider this example to be the minimal, or fundamental, unit of reticulation. More

complicated patterns of reticulation can be seen as extensions of this example.

21These sites need not be adjacent.
22It is entirely possible for the reticulate event to have had a reversed pattern of ancestry, in which case

the reticulation would result in a state 00 and would not be detectable from the sequence data.
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Figure 2.23: The Fundamental Unit of Reticulation. (A) A set of four sequences. (B)
Vietoris-Rips filtration of the sequences. (C) Barcode diagram of the filtration. (D) An
evolutionary genealogy including two mutations (m1 and m2) and a single reticulation (r1).

2.3.3 A Complete Example

We illustrate a complete example of how TDA can capture reticulate evolution from complex

population data in Figure 2.24. Consider the reticulate phylogeny (Figure 2.24A): five

genetic sequences sampled today (yellow circles) originate from a single common ancestor

due to clonal evolution (solid blue lines tracing parent to offspring) and reticulate evolution

(dotted red lines). In Figure 2.24B, these five samples are placed in the context of a larger

dataset, where the data has been projected onto the plane using PCA. Persistent homology

is then applied to this larger sample. In Figure 2.24C we demonstrate the construction of a

filtered simplicial complex, showing how the connectivity changes as the scale parameter ϵ is

increased. Finally, in Figure 2.24D we see the resulting barcode diagram. Using H0 we can

track the number of strains or subclades that persist, roughly corresponding to the tree-like

component of the data. The H1 bar spanning roughly ϵ = 0.13 to ϵ = 0.16 identifies the

presence of a reticulate event involving the five highlighted sequences. The scale over which

this bar persists represents the amount of evolutionary time separating the parents and the
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Table 2.2: Dictionary connecting algebraic topology and evolutionary biology

Algebraic Topology Evolutionary Biology
Filtration value ϵ Genetic distance (evolutionary scale)
0-dimensional Betti number at filtration value
ϵ

Number of clusters at scale ϵ

Generators of 0-D homology A representative element of the cluster
Hierarchical relationship among generators of
0-D homology

Hierarchical clustering

1-D Betti number Lower bound on number of reticulate events
Generators of 1-D Homology Reticulate events
Generators of 2-D Homology Complex horizontal genomic exchange
Non-zero high-dimensional homology (topolog-
ical obstruction to phylogeny)

No treelike phylogenetic representation exists

Number of higher-dimensional generators over
a time interval (irreducible cycle rate)

Lower bound on recombination/reassortment
rate

reticulate offspring. Additionally, the persistence algorithm will return a generating basis

for a particular homology group, which we can use to identify the particular mixtures of

sequences involved a reticulation. In this way, we can analyze both the scale and frequency

of reticulation in genomic data sets.

We summarize the connection between genomic data and TDA in Table 2.2.

2.3.4 The Space of Trees, Revisited

In Section 2.1.4.4, tree space was introduced as an abstract construction to systematically

represent the set of all possible binary trees as a geometric space. Tree space on n leaves,

Tn, was shown to be the subspace of the complete space of finite metrics on R(n
2)

≥0 consisting

of those metrics that satisfy the four-point condition (or additivity). Because real sequence

data will very rarely satisfy this condition, one possible interpretation of phylogenetics is of

finding the best projection onto tree space for arbitrary data.

The program we propose can be understood as an extension of the tree space framework.

We would like to use topological invariants, specifically homology, to measure the frequency

and scale of reticulate evolution in sequence data. First, from the theorem due to Carlsson,
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Figure 2.24: Applying persistent homology to genomic data. (A) An evolutionary genealogy
including reticulation. (B) Data projected into 2-dimensions. (C) Construction of a filtered
simplicial complex. (D) The resulting multiscale barcode diagram.

we know that higher homology will vanish on tree space. Second, from the simple example in

Section 2.3.2, we know that non-additive reticulate processes will have nonvanishing higher

homology. Rather than attempt to characterize arbitrary data by projecting onto tree space,

we will use persistent homology to compute homological invariants that will characterize

our space. Our hypothesis is that as the data moves further from tree space, it becomes

increasingly nonadditive, which can be captured quantitatively with increasing signal from

higher homology. Our updated picture is shown in Figure 2.25, where we depict tree space

embedded in the larger space of finite metrics. We anticipate for appreciable datasets, our

sensitivity will be such that those close to the tree space will have little to no homological

signal, while those further away will have an increasing homological signal. A second point

is that the metric structure will now allow us to pass through regions of space that are

nonadditive. Hence, one could conceivably compare two trees by drawing the direct path

between them in metric space, and evaluating the persistent homology at each point. While

some interesting work has explored the combinatorial structure of the space of metrics on

low numbers of points (see [139]), it does not appear feasible in general to provide a complete
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X

TOP ≠ 0

TOP = 0

Figure 2.25: Tree space on n leaves, Tn, is a subspace of the larger space of the metric cone
on R(n

2)
≥0 . In the presence of reticulate evolution, data may not sit near an additive tree, as

for example data X (pink circle). The invariant TOP (topological obstruction to phylogeny)
is one way to characterize these spaces and can be computed using persistent homology. As
one moves further from tree space TOP increases. The orange lines indicate regions close to
tree space in which TOP is insensitive to non-additivity. In this example we also indicate
two trees t1 and t2 which sit on subspaces of different topology in tree space. The direct
path between the two topologies will pass through a TOP̸=0 region.

decomposition.
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Chapter 3

Quantifying Reticulation Using

Topological Complex Constructions

Beyond Vietoris-Rips

3.1 Introduction

In Chapter 2, the Vietoris-Rips complex was introduced as a construction on molecular

sequence data. The persistent homology of a filtered sequence of complexes was shown to

provide a quantitative measure of reticulate processes. As we will show, in certain cases

the Vietoris-Rips complex can have a reduced sensitivity to reticulation. In this chapter we

introduce two ideas to increase the usefulness of the signal generated by persistent homology.

The first is an approach for imputing latent ancestors into the data that increases the

quantitative signal detected by persistent homology. Our approach is built on the median

graph construction. Median graphs form the basis for a large number of phylogenetic network

algorithms and are closely related to split decompositions of finite metrics [8, 7]. A common

desire is an approach to quantify the complexity of the resulting construction. We show

that the persistent homology of the median closure is a fast and efficient way to identify the
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phylogenetic incompatibility in a dataset. The second is an approach for computing Čech

complexes from genomic data. The Čech complex, introduced in Section 2.2.1.3, has certain

advantages over the Vietoris-Rips complex. However, it requires a notion of embedding space

for data, which for genomic data is not entirely obvious.

The structure of this chapter is as follows. In Section 3.2 we show simple examples of

the reduced sensitivity of the Vietoris-Rips for detecting reticulations. In Section 3.3 we

introduce the median closure of the original vertex set. We show how this operation recovers

invariant signals of phylogenetic incompatibility in a quantitative way. In Section 3.4 we

present a Čech complex construction on sequence data. Throughout, we assume biallelic

data under an infinite sites model with no back mutation.

3.2 Sensitivity of the Vietoris-Rips Construction

The fundamental loop (00,10,01,11) was introduced in Section 2.3.2 as the simplest exam-

ple in which binary sequence data would manifest reticulation, as measured by persistent

homology. The fundamental loop is based on the four-gamete test of haplotype incompati-

bility in an infinite sites model. In considering further small examples of sequence data we

often encountered situations in which the four gamete test indicated reticulate evolution,

but persistent homology failed to detect a loop. This was often due to degeneracies that

would arise because of either (a) incomplete sampling in which case recombinations failed to

be detected because parental and ancestral strains would collapse prior to connecting with

the recombinant offspring, or (b) cases in which the recombination event led to an offspring

that sat spatially intermediate to the ancestral and parental strains. We demonstrate with

two examples.

Example One It is generally the case that we do not have a complete sampling of the

sequences corresponding to the evolutionary history of a set of sequences. For example, we

may not have sampled the true recombinant child, only a descendant which has accumulated
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additional mutations. Consider the sequences s1 = 000, s2 = 100, s3 = 010, and s4 = 111.

The four-gamete test identifies incompatibility between sites 1 and 2. However, persistent

homology of the four sequences does not capture this reticulation. To understand why,

consider s1 to be the common ancestor, s2 and s3 to be parents, and s4 to be a descendant

of a reticulate event. In this scenario, we can infer that there was an ancestral recombinant

sequence, sr = 110, which was not sampled. The failure to find a loop is due to the ancestral

and parent sequences collapsing before connecting with the recombinant offspring, as shown

in Figure 3.1A. In general, for a loop to be detected, the two internal distances must be

greater than any of the four external distances. In this case, the internal distance from

parent 1 (s2) to parent 2 (s3), d23 is equal to the distances from each parent to the sampled

descendant of the recombinant (d24 and d34). This is an example of incomplete sampling

lowering the detection sensitivity, even in cases where incompatible sites are present.

Example Two This example is taken from [138]. Consider the sequences: s1 = 0000,

s2 = 1100, s3 = 0011, s4 = 1010, and s5 = 1111. The four-gamete test identifies incompati-

bilities between sites 1 and 3, 1 and 4, 2 and 3, and 2 and 4. Performing the Hudson-Kaplan

test yields a partition between sites 2 and 3, however [138] show a minimum of two retic-

ulate events are required to explain the data. Using the standard filtration, the complex

contracts completely at ϵ = 2, and no higher homology will be detected. In this case, the

two reticulations interact in such a way that s3 now sits equidistant from the other four

sequences. Had s3 not been in the data, we would have had an example very similar to

Example 1, with the interpretation of one recombination event. In this example we observe

that multiple reticulate events can interact in complicated ways, obscuring the signal from

persistent homology.
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Figure 3.1: Two examples in which the standard filtration fails to identify reticulate evolu-
tion. (A) In this example, the ancestral sequences collapse before forming a loop with the
recombinant offspring. (B) In this example, multiple recombinations interact to create a
degeneracy, and the entire complex collapses immediately. (From Song and Hein [138])

3.3 The Median Complex Construction

The median complex is an alternative construction on sequence data aimed at recovering

signal of phylogenetic incompatibility using homology. First, we define the median of a set

of aligned sequences.

Definition 1. For any three aligned sequences a, b, and c, the median sequence m(a, b, c)

is defined such that each position of the median is the majority consensus of the three

sequences.

For example, consider the three sequences a = 110, b = 011, and c = 101. At each site

we have the set {1, 1, 0}. The majority consensus for each site is 1, therefore the median

sequence is m = 111. In any further analysis, we augment the original data to include the

computed median sequence. Note that as defined here, the median operation is defined only

for binary sequences.

Having defined the median operation, we now define the median closure. Given an
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Figure 3.2: The median is defined as the majority allele at each position. The median closure
imputes the median into the original vertex set.

alignment S, the median closure, S̄, is defined as the vertex set generated from the original

set S that is closed under the median operation,

S̄ = {v : v = m(a, b, c) ∈ S̄∀a, b, c ∈ S̄} (3.1)

We can obtain the median closure S̄ by repeatedly applying the median operation to sets

of three sequences until no new sequences are added. Effectively, computing the median

closure imputes interior nodes into the dataset. We call complexes formed from the original

sequences the leaf complexes, and call complexes formed from the median closure the median

complexes. We can then proceed by computing the persistent homology of this median

closure. The downside of the median closure operation is that we can no longer identify the

loops we measure as reticulate events. The median closure operation can generate multiple

loops from a single incompatibility. We now revisit our two examples.

Example 1. One median vertex, m(s2, s3, s4) = 110, as shown in Figure 3.3. This vertex,

labeled sr, acts as the recombinant offspring of s2 and s3. Persistent homology now detects

an H1 loop in the range ϵ = [1, 2) formed between s1, s2, s3, and sr. s4 is interpreted the

descendant of sr.
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Figure 3.3: One median node (white node), which acts as the recombinant offspring of s2
and s3. One H1 loop detected in the interval [1, 2).

Example 2. Four median vertices, as shown in Figure 3.4. Persistent homology now

detects four H1 intervals in the range ϵ = [1, 2). In this case, the median closure now

overestimates the minimum number of recombinations required. This example shows a

potentially complicating aspect of the median closure in that specific H1 features are no

longer identifiable with specific reticulate events.

Filtrations on Buneman graphs have been defined previously [50], but not using an

explicit sequence representation. They have been defined in terms of the split decomposition,

which is a deconstruction of the data into sets of possibly-conflicting bipartitions.1 The

filtration defined in Dress, Huber, and Moulton [50] is based on a complicated polytope

construction scheme defined directly from the split decomposition. Given that all median

graphs are split networks [83], the constructions are identical but the extracted information

is not. To the best of our knowledge, quantification of the complexity of these objects has

not been measured using homological tools.

1In a tree, each edge defines a bipartition, or split. A reticulate history will be characterized by incom-
patible splits.
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Figure 3.4: Four median vertices (white nodes). Four H1 loops now detected in the interval
[1, 2).

3.3.1 Inclusion

We have examined the persistent homology of two topological constructions on sequence

data: the leaf complex and the median complex. Counting β1 intervals in the leaf complex

underestimates reticulate evolution because of incomplete sampling, while counting β1 in-

tervals in the median complex overestimates reticulate evolution. The median complex is

in some sense an upper bound on probable recombination histories, and contains within it

all possible recombination graphs within it (not strictly true, as there are infinitely many

complicated ARGs - but it does contain within it all maximum parsimony trees). We can

hypothesize that there exists a true complex, called the evolutionary complex, which will

accurately reflect the evolutionary relationships in the sequences. Information about the

evolutionary complex is not available to us, however we can say that there exists an inclu-

sion between the homotopy types of the three complexes

Cl(LC) ↪→ Cl(EC) ↪→ Cl(MC) (3.2)

Recovery of an optimal EC is the task of many ARG-based methods and is known to be
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an NP-hard problem and is not considered here. For example, given an EC as computed from

some other tool, we might be able to say something useful about the topological complexity.

3.3.2 Phylogenetic Examples

Here we consider two standard datasets from the phylogenetics literature. In both exam-

ples, the standard filtration yielded no higher homology. We generated the median closure

and computed homology on that. Datasets are represented using a triangle-free network

construction, which approximates the computed homology.

3.3.2.1 D. melanogaster Data

A benchmark dataset in studying recombination is the Kreitman data [97]. The dataset

consists of eleven sequences (nine unique) of the Adh locus from Drosophilia melanogaster

collected from various geographic locations, with 43 segregating sites. The Hudson-Kreitman

test yields 6 reticulate events. Computing the median closure expands the dataset to 46

vertices. Here we have non-trivial homology: 32 H1 loops and 3 H3 loops. In the visualized

network, the complex reticulations (H3) are localized to the bottom-most samples. The H1

reticulations, on the other hand, are not very localized and persist across geographic regions.

The barcode plot is shown in Figure 3.5.

3.3.2.2 Ranunculus Data

Natural hybridization occurs frequently in plants. Here we examine reticulation in the

maturase K (matK) protein in nine species from genus Ranunculus. This data is originally

from [79]. From nine initial species, the median closure has 32 vertices. Persistent homology

is computed and the barcode diagram shown in Figure 3.6. Looking at H0, we identify two

clusters of species. Further, we identify 17 H1 loops and 3 H3 loops. Comparing with the D.

melanogaster data, reticulation at this locus is both smaller in scale (shorter bars at small
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Figure 3.5: Recombination in D. melanogaster. Persistent homology identifies several com-
plex reticulations in the population.

filtration values) and less frequent (fewer total bars). Additionally, the complex reticulations

are localized within each H0 cluster.

3.4 Čech Complex Construction as an Optimization

Problem

The Čech complex is defined on a set of points S as

Čech(r) =
{

σ ⊆ S|
∩

x∈σ

Bx(r) ̸= ∅
}

, (3.3)

where Bx(r) is the ball of radius r centered at vertex x. By the nerve lemma, the homotopy

type of the Čech covering is guaranteed to be identical to that of the original topological
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Figure 3.6: Species hybridization in genus Ranunculus. Persistent homology identifies two
populations separated by complex reticulations.

space [17].

Computing the Čech complex is often an expensive operation, such that in practice the

Vietoris-Rips complex is used. Unlike the Vietoris-Rips complex, which is entirely defined by

the 1-skeleton, the Čech complex requires one to check each simplex σ up to some maximum

dimension D. The Čech complex therefore requires one to know the ambient space the

data is embedded in, unlike a Rips complex which can be built directly from distance data.

Binary sequence data of length d explicitly sits on the discrete lattice of {0, 1}d with an L1

norm. In this case, it is not immediately obvious how to define when three sequences should

form a simplex. One Therefore, we expand the ambient space to Rd with an L1 metric. This

choice of metric is motivated by two reasons. First, the L1 norm maintains the Hamming

distance between sampled points. Second, the L1 norm keeps the primary theorem intact,
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that is tree like data generates trivial homology. 2

The problem of deciding if a particular simplex σ belongs in the Čech complex at radius

r is the same as checking if a ball of radius r can be placed such that each point x in σ is

contained within the ball. In Rd with an L2 metric there exists an efficient randomized algo-

rithm for computing this radius known as the miniball algorithm.[68] However, the efficiency

of the miniball algorithm relies on the strict convexity of the L2 metric and therefore is not

applicable to a space with an L1 metric. Instead, we pose the miniball problem in L1 as a

generic convex optimization problem, and use standard library solver. That is, we define a

d + 1 dimensional optimization problem where x is the miniball center and R is the miniball

radius.

The problem is stated as

minimize R

subject to ∀p ∈ P : ||x − p||1 ≤ R

x ∈ Rd

We implement the optimization problem in cvxpy.

3.4.1 Molecular Hypothesis

Gromov proved that a median graph is the 1-skeleton of a CAT(0) cubical complex [74]. The

homology of a cubical complex can be efficiently computed using the methods of Kaczynski,

Mischaikow, and Mrozek [90] through a slightly different construction. We define a cubical

flag complex and build a filtration dimension by dimension (to expand on this point...)

The barcode diagram will then have the natural interpretation of being composed of sets

of hypercubes of varying dimension. If we consider each bar of dimension n in the barcode

diagram in turn, we can determine the incompatible sites that it represents. Dimension 1

bars (2-cubes) will have one pair of incompatible sites with four haplotypes. Dimension 2

2This notion has a natural extension to multiallelic sites which is not detailed here.
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Table 3.1: Čech Homology of Hypercube

d = 1 2 3 4 5 6

H0 2 4 8 16 32 64
H1 0 1 5 17 49 129
H2 0 0 1 7 31 111
H3 0 0 0 1 9 49
H4 0 0 0 0 1 11
H5 0 0 0 0 0 1
H6 0 0 0 0 0 0

bars (3-cubes) will have three pairs of incompatible sites with eight haplotypes. In general,

n bars will represent n + 1-cubes in which all 2(n+1) haplotypes are present in the vertices of

the generating cycle.

From the barcode diagram it will not in general be possible to decompose our construction

into the primitive building blocks of hypercubes. This is because the hypercubes of dimension

(n > 2) will in general not be independent, but can interact by sharing lower dimensional

faces. Nonetheless, to aid in decomposing the barcode diagram, we constructed the following

table, which contains the homology ranks (betti numbers) for powers of the hypercube

graph, computed using the Čech complex. Incidentally, it was understanding the structure

of numbers in a table very much like Table 3.1 which led us to find a method of computing

Čech homology instead of Rips homology.

3.5 Conclusions

Persistent homology can capture and quantify complex patterns of reticulation in genomic

data. The standard Vietoris-Rips filtration is susceptible to reduced sensitivity due to in-

complete sampling or interactions between reticulations. Constructing the median closure

of the original sequence set increases the topological signal of reticulation. Future work will

focus on efficient implementations of constructing this closure. We also introduced a Čech

complex construction on genomic data. The construction treats filling higher-dimensional
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simplices as an optimization problem, which is solved using the miniball algorithm. An in-

teresting additional observation is that the number of recombinations required to explain the

fully saturated hypercube is exactly equal to the alternating sum of the homology ranks.
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Chapter 4

Parametric Inference using

Persistence Diagrams

“I predict a new subject of statistical topology. Rather than count the number of

holes, Betti numbers, etc., one will be more interested in the distribution of such

objects on noncompact manifolds as one goes out to infinity”
Isadore Singer

4.1 Introduction

Recent work in topological data analysis has concentrated on developing the statistical foun-

dations for data analysis using the persistent homology framework (see the discussion in

Section 2.2.2.2 and references [62, 16, 34]). The focus of this work has primarily been esti-

mating the topology of an object from a finite, noisy sample. Doing so requires statistical

methods to distinguish topological signal from noise.

Here we consider a different scenario. Many simple stochastic models generate complex

data that cannot be readily visualized as a manifold or summarized by a small number of

topological features. The persistence diagrams generated from such models will be unique in

two ways: (1) the complexity of the diagram (i.e. number of topological features) will grow
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with the number of sampled points, and (2) each instantiation of the model will generate

a unique set of topological features. Nevertheless, the collection of measured topological

features may exhibit additional structure, providing useful information about the underlying

data generating process. While the persistence diagram is itself a summary of the topological

information contained in a sampled point cloud, to perform inference further summarization

may be appropriate, e.g. by considering distributions of properties defined on the diagram.

In other words, we are less interested in learning the topology of a particular sample, but

rather in understanding the expected topological signal of different model parameters. We

show an example in Figure 4.1. Here we have three identical simulations of a stochastic

coalescent model, commonly used in population genetics. Each simulation is generated with

the same number of points and the same parameters. Because the model is random, the

resulting topology will also be random, making it impossible to match individual topological

features between diagrams. We would like a way to characterize these models using topology.

In this chapter, we show that summary statistics computed on the persistence diagram

can be used for likelihood-based parametric inference. We use genomic sequence data as a

case study, examining the topological behavior of the coalescent process with recombination,

a widely used stochastic model of biological evolution. We find that the process generates

nontrivial topology in a way that depends sensitively on parameters in the model. The idea

is presented as a proof of concept, in order to motivate the identification additional models

with regular topological structure that may amenable to this type of inference.

There has been related work on the topology of random models, mostly in the non-

persistent case. The statistical properties of random simplicial complexes, including distri-

butions over their Betti numbers, was studied by Kahle and co-authors in [91, 92]. The

persistent homology of Gaussian random fields and other probabilistic structures has been

studied in [1]. Functions defined on the persistence diagram were used to compute a fractal

dimension for various polymer physics models in [110].
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Figure 4.1: Barcode diagrams for three simulations of a stochastic coalescent model. Each
simulation is generated using the same parameters, however as random models the persistent
homology will differ for each run. Simulations were performed in ms using the command ms
200 1 -t 500 -r 144 10000.

4.2 The Coalescent Process

The coalescent process is a stochastic model that generates the genealogy of individuals

sampled from an evolving population [149]. The genealogy is then used to simulate the

genetic sequences of the sample. This model is essential to many methods commonly used

in population genetics. Starting with a present-day sample of n individuals, each individ-

ual’s lineage is traced backward in time, towards a mutual common ancestor. Two separate

lineages collapse via a coalescence event, representing the sharing of an ancestor by the two

lineages. The stochastic process ends when all lineages of all sampled individuals collapse

into a single common ancestor. In this process, if the total (diploid) population size N is suf-

ficiently large, then the expected time before a coalescence event, in units of 2N generations,

is approximately exponentially distributed:

P (Tk = t) ≈
(

k

2

)
e−(k

2)t, (4.1)

where Tk is the time that it takes for k individual lineages to collapse into k − 1 lineages.
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After generating a genealogy, the genetic sequences of the sample can be simulated by

placing mutations on the individual branches of the lineage. The number of mutations on

each branch is Poisson-distributed with mean θt/2, where t is the branch length and θ is the

population-scaled mutation rate. In this model, the average genetic distance between any

two sampled individuals, defined by the number of mutations separating them, is θ.

The coalescent with recombination is an extension of this model that allows different ge-

netic loci to have different genealogies. Looking backward in time, recombination is modeled

as a splitting event, occurring at a rate determined by population-scaled recombination rate

ρ, such that an individual has a different ancestor at different loci. Evolutionary histories

are no longer represented by a tree, but rather by an ancestral recombination graph. Re-

combination is the component of the model generating nontrivial topology by introducing

deviations from a contractibile tree structure, and is the component which we would like to

quantify. Coalescent simulations were performed using ms [81].

4.3 Statistical Model for Coalescent Inference

The persistence diagram from a typical coalescent simulation is shown in Figure 4.1. Ex-

amining the diagram, it would be difficult to classify the observed features into signal or

noise. Instead, we will use the information in the persistence diagram to construct a statis-

tical model in order to infer the parameters which generated the data.1 As discussed in the

previous section, the coalescent with recombination is a two parameter model: a mutation

rate θ and a recombination rate ρ. In our initial model we will concentrate on inference of

the recombination rate ρ and set the mutation rate θ to ∞. Setting θ = ∞ corresponds

to perfect knowledge of the genealogy at each loci, and while not plausible for real data is

possible within the simulation framework.2 Practically, this means our input is not sequence

1We consider inference using only H1 invariants, but the ideas easily generalize to higher dimensions.
2The effect of finite θ is to reduce the available information about the genealogy at each loci, and will

correspond to a commensurate reduction in the ability to infer ρ. A simple TDA-based method to infer ρ in
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Figure 4.2: Distributions of statistics defined on the H1 persistence diagram for different
model parameters. Top left: Number of invariants. Top right: Birth time distribution.
Bottom left: Death time distribution. Bottom right: Invariant length distribution. Data
generated from 1000 coalescent simulations with n = 250, θ = ∞, and variable ρ.

data, but rather tree-distance data. To construct the pairwise distance matrix for data on

n leaves, we take a weighted average of the tree-distance across each loci.

We consider the following summary statistics which can be defined on the persistence

diagram: the total number of invariants K; the set of birth times, (b1, . . ., bK ; the set of death

times, (d1, . . ., dK); and the set of persistence lengths, (l1, . . ., lK). In Figure 4.2, we show the

distributions of these summary statistics for five values of ρ, keeping fixed n = 250. Several

observations are immediately apparent. First, the topological signal is remarkably stable,

in the sense that the summary statistics form well-behaved distributions. Second, higher ρ

increases the number of features, consistent with the intuition that recombination generates

nontrivial topology in the model. Finally, persistence lengths are only weakly dependent on

ρ.

the case of finite θ is proposed by P. Camara in forthcoming work.
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Further examining Figure 4.2, we can empirically postulate the following: K ∼ Pois(ζ),

bk ∼ Gamma(α, ξ), and lk ∼ Exp(η). Death time is given by dk = bk + lk, which will be

incomplete Gamma distributed. The parameters of each distribution are assumed to be an

a priori unknown function of the model parameter, ρ, and the sample size, n. We performed

simulations over a range of parameter values (ρ = {0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024

and n = {50, 100, 150, 200, 250}) to map the expected surface These simulations suggest

functional forms for the parameters of each distribution, which were fit using the Eureqa

symbolic regression package [86]. In fitting parameters, we use an R2 loss function weighted

by the number of samples in each setting.

The number of features is Poisson distributed with expected value

ζ(ρ, n) = n log (1 + a0ρ) , (4.2)

(coefficient a0 = 0.004; weighted R2 = 0.997). Birth times are Gamma distributed with

shape parameter

α(ρ, n) = b0ρ − b1ρ log(n) (4.3)

(coefficients b0 = 0.5, b1 = 0.66; weighted R2 = 0.998) and scale parameter

ξ(ρ) = c0

c1 + ρ
(4.4)

(coefficients c0 = 3.21, c1 = 8.20; weighted R2 = 0.995). The length distribution parameter,

only weakly dependent on ρ, goes as

η(ρ) = d0 + d1√
d2 + d3ρ

(4.5)

(coefficients d0 = 0.0274, d1 = 0.0736, d2 = 0.6, d3 = 0.01; weighted R2 = 0.992).3

Keeping n fixed, and assuming each interval in the diagram is independent, we can define

the full likelihood as

p(D | θ, ρ) = p(K | θ, ρ)
K∏

k=1
p(bk | θ, ρ)p(lk | θ, ρ). (4.6)

3In further simulations (not shown), the length distribution is strongly dependent on mutation rate θ,
which functions to set a natural scale for the finite metric space.
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Figure 4.3: The expected number of topological invariants in a coalescent simulation with n
samples, θ = ∞, and recombination rate ρ. The expected number of H1 bars, K̄, is fit to a
Poisson distribution with parameter ζ(ρ, n) = n log (1 + a0ρ), with fit coefficient a0 = 0.004.
Mean values over 1000 simulations are shown for each set of parameters, along with the fit
(dashed lines). The fit was weighted toward higher values of n and has an R2 = 0.997.

This model has a simple structure and standard maximum likelihood approaches can be

used to find the optimal value of ρ. Results are shown in Figure 4.6, where we plot esti-

mates and 95% confidence interval from 500 simulations. We also observe tighter confidence

intervals at higher recombination rates, consistent with the behavior seen in Figure 4.2.

As a final point of discussion, we make a comparison with existing methods of estimating

the recombination rate in coalescent models. One of the earliest methods was developed by

Hudson in [80] and relies on a modeling the distribution of pairwise distances in sequence

data. Our estimator, by contrast, is built on modeling the distribution of topological features

measured in the data. In Figure 4.7 we show what these distributions look like for a few values

of ρ. The distribution of pairwise distances follows an interesting pattern as we increase the

ρ. At ρ = 0, the distances follow an exponential distribution, and as ρ is increased the

distances begin to follow a normal distribution with an increasingly tight variance. That
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Figure 4.4: The distribution of H1 invariant birth times in a coalescent simulation with
n samples, θ = ∞, and recombination rate ρ is fit to a Gamma distribution with shape
parameter α(ρ, n) = b0ρ − b1ρ log(n) (coefficients b0 = 0.5, b1 = 0.66; weighted R2 = 0.998)
and scale parameter ξ(ρ, n) = c0

c1+ρ
(coefficients c0 = 3.21, c1 = 8.20; weighted R2 = 0.995).

is to say, as ρ is increased, all pairs of sequences begin to be normally distributed around

some mean value (that is determined by the mutation rate). Estimating ρ from this data

requires teasing out the contribution of recombination from the contribution of coalescence.

In contrast, our topological estimator is in some sense a more pure signal of recombination.

By the fundamental theorem, there will be no H1 homology when ρ = 0. Any signal that

is generated at H1 and higher is due strictly to reticulate processes. While this is a clear

benefit, it does come with the downside of requiring either high recombination rates or large

sample sizes for effective inference, as it is dependent on the number of intervals in the

persistence diagram for reliable inference.
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Figure 4.5: The distribution of H1 invariant length times in a coalescent simulation with
n samples, θ = ∞, and recombination rate ρ is fit to an exponential distribution with
parameter η(ρ) = d0 + d1√

d2+d3ρ
(coefficients d0 = 0.0274, d1 = 0.0736, d2 = 0.6, d3 = 0.01;

weighted R2 = 0.992).

4.4 Conclusions

In machine learning, the task is often to infer parameters of a model from observations. In

this chapter we have presented a proof of concept for statistical inference based on topological

information computed using persistent homology. Unlike previous work, which considered

estimating homology of a partially observed object, we were interested in a model which

generates a complex, but stable, topological signal. Three conditions were required for the

success of this approach: First, a well-defined statistical model. Second, an intuition that the

observed topological structure is directly correlated with the parameters of interest in the

model. Third, sufficient topological signal to reliably estimate statistics on the persistence

diagram. It is an open question to identify classes of models for which these conditions will

hold.
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Figure 4.6: Inference of recombination rate ρ using topological information. The recombi-
nation rate is estimated across values ρ = 0 to ρ = 1000 for n = 100 (left) and n = 250
(right). Shown are the mean estimate over 500 simulations and the 95% confidence interval.
Consistent with expectations, the estimator is more accurate for larger values of ρ and has
a tighter confidence bounds for larger n, correlating with more information available in the
diagram for inference.
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Figure 4.7: Traditional estimators of ρ are based on modeling the distribution of pairwise
distances in a dataset, as shown on left. This distribution is a mixture of both coalescent
and recombination processes. In contrast, the distribution of birth times is driven solely by
recombination.
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Chapter 5

Phage Mosaicism

5.1 Introduction

Phages are microbial viruses which can infect bacteria, archaea, or single-celled eukaryotes.

By some measures, they are the most abundant and diverse class of organism on the planet.

It is estimated that there are 1031 extant bacteriophages [133].1 The phage population

completely turns over every few days – an estimated infection rate of 1023 per second [141].

Phages play an essential role in natural ecosystems by regulating bacterial populations.

Steps have been taken towards harnessing this ability for productive use – the FDA has

approved several bacteriophage products designed to kill harmful bacteria in dairy and meat

products [21]. Also promising are potential phage therapies for treating pathogenic bacterial

infections, although research in this direction is controversial [94].

Phages are classified based on lifestyle: virulent phages have a lytic life cycle and will

infect a host, multiply, and exit the cell via lysis, killing the host organism; temperate phages

have a lysogenic life cycle and can remain within the host in a latent state, without disrupting

host cellular function. Phages can have a nucleic acid composition that is either double-

1The estimate can be arrived at two independent ways: by assuming a total bacterial population size of
1030, and approximately ten phages per bacteria; or by the observation of a phage density of 106 to 107 per
mL of seawater.
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Table 5.1: Phage families defined by the ICTV

Order Family Morphology Nucleic acid

Caudovirales
Myoviridae Nonenveloped, contractile tail linear dsDNA
Siphoviridae Nonenveloped, noncontractile tail (long) linear dsDNA
Podoviridae Nonenveloped, noncontractile tail (short) linear dsDNA

Ligamenvirales Lipothrixviridae Enveloped, rod-shaped linear dsDNA
Rudiviridae Nonenveloped, rod-shaped linear dsDNA

Unassigned

Ampullaviridae Enveloped, bottle-shaped linear dsDNA
Bicaudaviridae Nonenveloped, lemon-shaped circular dsDNA
Clavaviridae Nonenveloped, rod-shaped circular dsDNA
Corticoviridae Nonenveloped, isometric circular dsDNA
Cystoviridae Enveloped, spherical segmented dsRNA
Fuselloviridae Nonenveloped, lemon-shaped circular dsDNA
Globuloviridae Enveloped, isometric linear dsDNA
Guttaviridae Nonenveloped, ovoid circular dsDNA
Inoviridae Nonenveloped, filamentous circular ssDNA
Leviviridae Nonenveloped, isometric linear ssRNA
Microviridae Nonenveloped, isometric circular ssDNA
Plasmaviridae Enveloped, pleomorph circular dsDNA
Tectiviridae Nonenveloped, isometric linear dsDNA

stranded DNA (dsDNA), single-stranded DNA (ssDNA), double-stranded RNA (dsRNA),

or single-stranded RNA (ssRNA). Of these, dsDNA is by far the most common. The typical

phage genome length is on the order of 105 bases, but can range from 103 to 106 bases.

Because there is no conserved gene across all phage populations, there is no accepted

way of constructing a molecular phage taxonomy. The current bacteriophage taxonomy is

compiled by the International Committee on Taxonomy of Viruses (ICTV) and is based on

virus morphology, host range, lifestyle, and nucleic acid composition [87]. Table 5.1 presents

an overview of phage families as defined by the ICTV. There are two assigned orders and

eighteen recognized families. Fourteen families have dsDNA, two families have ssDNA, and

two families have an RNA genome.

Phages have been shown to be subject to high rates of reticulate genomic exchange [153].

The phage genome was believed to be mosaic, composed of distinct modules that can be freely

exchanged within a population. Increased genomic data has confirmed this mosaic structure

and raised questions about the applicability and interpretation of the ICTV taxonomy. Based

solely on morphology and host, the ICTV taxonomy has been shown to be inconsistent with

the genomic data, as the following example from Lawrence et al. shows [102]. In Figure 5.1
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Figure 5.1: Inconsistency of morphological classifications in bacteriophage. HK97 and L5
are classified in the Siphoviridae family of long tail non-contractile phages, despite sharing
no gene content. P22, a short-tail phage in the Podoviridae family, while morphologically
dissimilar, shares 20% gene content with HK97. Figure adapted from [102].

we show three different bacteriophage species: Enterobacteria phage HK97, Mycobacterium

phage L5, and Enterobacteria phage P22. HK97 is a Siphoviridae infecting E. coli. L5 is

a Siphoviridae infecting M. smegmatis. P22 is a Podoviridae infecting S. enterica. HK97

and L5 belong to the Siphoviridae family comprised of long tail noncontractile phages. P22

belongs to the Podoviridae family comprised of short tail phages. Visually, it appears that

HK97 and L5 should indeed be classified as distinct from P22. However, genomic analysis

reveals that HK97 and L5 share no gene content, and, despite appearances to the contrary,

HK97 and P22 share 20% gene content. This example demonstrates that morphology and

host range alone are not sufficient in representing phage relationships.

Alternative representations of phage relationships have been proposed based on whole

genome analysis. For example, Rohwer and Edwards constructed a phage phylogenetic tree

using differences in phage proteomes [132]. Proux et al. proposed a phylogenetic repre-

sentation based on comparative analysis of head and tail sequences [128]. However, these

models still make the assumption of tree-like relationships, which will not be appropriate for

representing highly mosaic molecular relationships.
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In this chapter, we use approaches from topological data analysis to identify, measure,

and represent reticulate evolution in a population of phage sequences. This work is primarily

based on data collected by Lima-Mendez et al. [105]. First, we use persistent homology to

characterize reticulation in phage genomes. We find H0 is largely inconsistent with existing

phage taxonomies, and interpret H1 as evidence for reticulate genetic exchange due to shared

ecology and host range. Second, we visualize phage molecular relationships using Mapper,

identifying clusters of phages with common gene content and host range. Representative

protein families for each phage cluster are identified. The Mapper network suggests an

alternate way of representing phage molecular relationships.

5.2 Data

We use data initially collected and analyzed in [105]. The initial data set consists of a col-

lection of 306 sequenced bacteriophage genomes. We show summary information about the

data in Figure 5.2. Of the 306 genomes, 246 consist of dsDNA, 36 ssDNA, 12 dsRNA, and

8 ssRNA. Four have unclassified nucleic acid material. With respect to lifestyle, 146 are

temperate and 72 are virulent. Actinoplanes phage phiAsp2 is the single pseudotemperate

phage, which means it largely maintains a temperate lifestyle but can occasionally enter a

virulent state. For 87 phages the lifestyle is unknown. Taxonomically, the vast majority be-

long to order Caudovirales (221), which comprises Siphoviridae (117), Myoviridae (47), and

Podoviridae (54). Order Ligamenviralies (4) comprises Lipothrixviriae (2) and Rudiviridae

(2). Unassigned families include Inoviridae (22), Cystoviridae (12), Gokushoviridae (8), and

Microviridae (6).

Each of the 306 bacteriophage genomes has been sequenced and annotated.2 This step

resulted in 19,537 unique bacteriophage phage genes. In the original study [105], these

2The annotation step assigns genes to subsequences of the genome. For well-characterized species this
is facilitated by a reference genome. For less well-characterized species this can require the use of heuristic
gene-finding algorithms.
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Figure 5.2: Summary annotations of phage data used in this analysis. 306 bacteriophage
genomes were included, as originally collected in [105]. Here we show various annotations
for the phage, including nucleic acid type, lifestyle, and taxonomic family (as defined by the
ICTV). For some phage strains this data is unknown.

genes were then clustered into 8,576 protein families using BlastP, which analyzes pairwise

similarity of proteins [3]. Protein families share homology, which implies some degree of

shared evolutionary ancestry. Phages can then be represented as phyletic profiles in a protein

family-space, indicating the presence or absence of a particular protein family. In this case,

the phyletic matrix P is a 306 × 8576 binary matrix.

5.3 Measuring Phage Mosaicism with Persistent

Homology

We apply persistent homology to the phyletic profiles in order to quantify reticulation in

the bacteriphage data. Because we have transformed from sequence space into phyletic

profiles, we do not invoke a specific evolutionary model. However, the fundamental theorem

that non-trivial homology implies reticulation still holds. First, we construct an appropriate

metric space. Following [105], we use a hypergeometric model as follows. For two phages

A and B, let a be the number of protein families in phage A, b be the number of protein
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families in phage B, and c be the number of protein families in common. Let n be the total

number of protein families. Then we can compute the p-value that the number of shared

protein families c is significant as

PAB =
min(a,b)∑

i=c

(
a
i

)(
n−a
b−i

)
(

n
b

) . (5.1)

To convert the p-values into a distance we take the log transform with small added noise,

dAB = log10(PAB + 10−10) + 10. (5.2)

This yields a distance matrix D with distances scaled between 0 and 10. While this space

does not explicitly reflect evolutionary divergence at a molecular level, it may be realistic at

the protein level at which more complex types of genome evolution will have occurred.

We now compute the persistent homology of D. The barcode diagram is shown in

Figure 5.3. The H0 information represents hierarchical clustering and can be identically

represented as a dendrogram. We show the dendrogram, restricting only to strains of order

Caudovirales, in Figure 5.4. The strains are labeled by their taxonomic family: red for

Myoviridae, blue for Siphoviridae, and green for Podoviridae. We can immediately see that

the assigned taxonomic families are not consistent with the clustering based on protein

information. However, there does appear to be some structure in which the taxonomic label

is consistent within clusters of strains. Returning to the barcode diagram, we see substantial

nontrivial homology in H1 across all scales. This confirms the presence of mosaic exchange

expected in phage genomes.

Focusing on order Caudovirales, for which the most data was present. We separately

computed persistent homology for each of the three families. The barcode diagrams are

shown in Figure 5.5. Computing the TOP score for each family, we have Myoviridae = 0.58,

Siphoviridae = 1.14, and Podoviridae = 0.56.
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Figure 5.3: Bacteriophage Barcode Diagram using the S306 dataset

5.4 Representing Phage Relationships with Mapper

We used Ayasdi Mapper to construct a network representation of the phage phyletic profiles.

The network was constructed using a Hamming metric on the phyletic matrix and a 2D filter

function. The first filter was Metric PCA coordinate 1 with a resolution of 20 and a gain

of 3.3 The second filter was Metric PCA coordinate 2 with a resolution of 20 and a gain of

3. The equalize setting was used for both filter functions, which ensures that in the filtered

space each bin has approximately the same number of points. This resulted in a network

consisting of 201 nodes from the original 306 rows. The basic structure of the network is

shown in Figure 5.6, where node color corresponds to the number of phages contained in

the node. The network consists of one large connected component, two smaller connected

components, and 21 singly connected nodes. The large connected component has local

3The parameter settings are in arbitrary units and tuned by hand to produce the most visually useful
graph.
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Figure 5.4: The dendrogram constructed from the H0, restricted to bacteriophages of order
Caudovirales. Myoviridae in red, Siphoviridae in blue, and Podoviridae in green. The family
classifications are inconsistent with the hierarchical clustering.
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Figure 5.5: Barcode Diagrams for Families of Order Caudovirales, including Siphoviridae,
Myoviridae, and Podoviridae.

regions of clustering, which will be considered further later.

We first examined how well the existing taxonomic classifications localized in the Mapper

representation. If the taxonomy accurately reflects the molecular characteristics that were

used to construct the network, we would expect to see strains belonging to the same level

of hierarchy as localized together in the network, with minimal mixing between strains of

different classification. We show the representation of the three families of order Caudovirales

in Figure 5.7. Each node is colored by the proportion of rows from that family contained in

the node.4 We immediately see that each family is widely dispersed across the network. On

closer examination, we see that the patterns of spread resemble those of the dendrogram in

Figure 5.4, in that there are multiple clusters core clusters for each family. For example, the

Myoviridae family has clusters in the bottom left and bottom right of the large component,

and two singleton clusters. This roughly corresponds to the four clusters of Myoviridae in

the H0 dendrogram.

How strongly a particular classification is reflected by a network can be quantitatively

measured using a modularity score [122]. Modularity was originally devised for identifying

4Recall that the nodes in a Mapper network can be composed of multiple nodes, depending on the
parameters of the filter function used.
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Figure 5.6: Phage Mapper Network. Network constructed using Mapper as implemented in
Ayasdi Iris [6]. The network was constructed using a Hamming metric with a 2D Metric PCA
filter function (resolution=20, gain=3, equalize). Nodes in the network represent clusters of
phages and edges connect nodes that contain samples in common. Nodes are colored by the
number of phages in each node.

community structure in networks. Intuitively, more tightly localized network divisions will

have a higher modularity, while dispersed divisions will have a lower modularity. We use a

modified form of modularity

Q = 1
m

∑
ij

Aijsisj (5.3)

where m is the total number of edges in the network, A is the adjacency matrix of the

network, and si = ±1 is the class membership of node i.5 The modularity ranges between 0

and 1. We use a strict class membership, in which si = 1 for node i if any row in the now

contains the annotation of interest. The modularity score for each family of Caudiovirales

is shown in Figure 5.8.

5The standard definition of modularity includes a term measuring how tightly connected each module
is.We are only interested in the localization of each modular and neglect this term.
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Family:Siphoviridae Family:Podoviridae Family:Myoviridae

Figure 5.7: Taxonomic localization in the bacteriophage network. Network nodes are colored
by presence of phages for each family in order Caudovirales.
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Figure 5.8: Modularity Scores for Different Divisions of the Phage Network. We show the
modularities for divisions defined by taxonomic family and host range, as well as the clusters
we identify using MCL.
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Second, we examined how well host correlated with network structure. We show this for

the top six hosts represented in our dataset in Figure 5.9. While Enterobacteria has several

pockets of representation within the network, phages are on average more strongly clustered

by host than by taxonomy. This is consist with existing evidence that phages of similar host

range have a common environment for reticulate exchange [102]. Modularity scores for the

most dominant four hosts are shown in Figure 5.8. Staphylococcus has the highest defined

modularity, which is consistent with the earlier reports about strong coupling and high levels

of exchange between the Staphylococcus host and its viruses [44].

Finally, we clustered the network using the MCL graph clustering algorithm [60], as

implemented in the Python MCLMarkovCluster package [100]. The MCL algorithm takes

two input parameters which control the coarseness of the clustering: an expansion factor e

and an inflation factor i. We set e = 5 and i = 5. Ignoring the singleton nodes, this resulted

in eleven clusters, as shown in Figure 5.10. For each cluster, we used a hypergeometric test to

identify particular protein families that were over- or under-represented in each cluster. After

correcting for multiple testing, the protein families that were most significantly associated

with particular clusters are shown in Table 5.2.

5.5 Conclusions

In this chapter, we analyzed reticulate evolution in bacteriophages, using data from fully

sequenced phage genomes represented as phyletic profiles measuring gene content. First, we

used persistent homology to show that there are high levels of reticulate exchange across

multiple taxonomic scales. Information in the H0 barcode confirmed the inconsistency of the

ICTV classification. Information in the H1 barcode was used to compare levels of reticulate

exchange among different phages. Second, we used Mapper to construct a network repre-

sentation of phage molecular relationships. We examined how well different annotations,

including taxonomic classification and host range, localized on this network. We used a
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Figure 5.9: Host localization in the bacteriophage network. Compared to taxonomic family,
phages are more tightly localized, reflecting the degree to which shared host range provides
an environment for reticulate exchange.
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Figure 5.10: Phage Network with MCL Clustering. 11 nontrivial clusters are identified. In
Table 5.2 we associate clusters with representative protein families.

network clustering algorithm to identify communities of phages related by shared protein

content, and identified protein families representative of each cluster. These clusters, while

not explicitly reflecting potential phylogenetic trajectories, are more reflective of molecular

similarity than existing morphological taxonomies, and can be used as a starting point for

developing a comprehensive picture of bacteriophage evolutionary dynamics. Further se-

quencing data will allow us to refine these clusters and provide a higher resolution picture

of phage molecular relationships.
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Chapter 6

Reassortment in Influenza Evolution

6.1 Introduction

In this chapter, we study influenza virus, a common human pathogen with a substantial

burden on human health. Seasonal influenza epidemics have an annual mortality of between

250,000 and 500,000 [159]. Influenza pandemics, which have historically occurred roughly

once every thirty years, can infect between 20-40% of the global population. For example,

the Spanish influenza pandemic of 1918-1919 is estimated to have infected approximately 500

million people and lead to the death of between 50-100 million people [142]. This amounts

to an infection of approximately 33% of the population and a case fatality ratio of 5-6% of

global population.

The natural host reservoir of influenza is waterfowl. Within this reservoir, several distinct

subtypes circulate. Subtypes are labeled by the antigenic type of two surface proteins,

hemagglutinin (HA) and neuraminidase (NA).1 There are presently eighteen types of HA

(H1 to H18) and eleven types of NA (N1 to N11). Zoonotic adaptations have led to multiple

introductions to human populations, which have resulted in both isolated outbreaks and

1An antigen is any molecule that elicits a host immune response. The adaptive immune system learns
to recognize and protect against particular antigens. In order to evade the host immune response, the virus
will mutate, giving rise to antigenic variation.
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sustained transmission [119].2

The evolution of influenza is punctuated by frequent reassortment. Reassortment occurs

when two virus particles coinfect the same host cell, and is a consequence of influenza having

a segmented genome. The result is viral progeny that carries genomic information from two

independent parental strains. This mode of evolution is known as antigenic shift, because

it can rapidly lead to antigenically distinct viral strains.3 Antigenic shifts have historically

led to major pandemics, which can occur when novel surface proteins reassort with internal

segments already adapted to the human host. Reassortments of this type led to Asian

H2N2 flu pandemic of 1957 and the Hong Kong H3N2 flu pandemic of 1968 [106]. The 2009

H1N1 pandemic strain emerged from a triple reassortment between avian, swine, and human

circulating strains [77, 136]. The pandemic had a global infection rate of between 11%-21%

but a lower mortality rate than initially expected.4 The 2013 H7N9 flu outbreak was caused

by a triple reassortment of three distinct avian strains [35]. Traditionally, reassortments

have been identified by hand, by comparing phylogenetic trees constructed from different

genomic segments [120].

Recent years have seen increased concerns about the pandemic potential for zoonotic

adaptation of highly pathogenic strains of influenza. Of particular concern is H5N1, which

has an estimated case fatality rate of 50% (449 deaths from 846 confirmed human cases) [160],

but has so far not exhibited sustained person-to-person transmission [159]. Studies in ferret

models demonstrated sustained transmission in a reassortent H5N1 with as few as four mu-

tations in the HA protein [85]. These concerns underscore the need to efficiently characterize

and represent reticulate evolution in influenza. Since the 2009 H1N1 pandemic, substantial

effort has been put into collecting and organizing fully sequenced influenza genomes. The

2Understanding the genetic basis for host adaptation is an important and controversial research area.
Our work in this area in collaboration with Yoshihiro Kawaoka is forthcoming [150].

3As opposed to antigenic drift, due to random mutation and genetic drift.
4The 2009 H1N1 pandemic is an excellent example of the delicate balance between virulence and trans-

missibility.
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NCBI Influenza Virus Resource now contains over 400,000 unique viral isolates [9]. The

large quantity of genomic data that has been collected provides an ideal environment for

studying reticulate evolution with high resolution.

6.2 Influenza Virology

Influenza is an enveloped single-stranded negative-sense RNA virus of family Orthomyx-

oviridae. The virus has a segmented genome with eight segments coding for eleven proteins.

The genome length is approximately 13.5 kb. The viral structure is shown in Figure 6.1.

The segments are typically ordered from longest to shortest and are detailed in Table 6.1.

Of these segments, hemagglutinin (HA) and neuraminidase (NA) are the two most impor-

tant. HA and NA form the two surface protein markers and are responsible for viral entry

and release. HA regulates host cell binding and entry into host epithelial cells. HA is the

strongest determinant of host specificity: different hosts express different sialic acid types.

Avian influenza binds to type 2-3 sialic acid receptors, while human influenza binds to type

2-6 sialic acid receptors. NA is the surface protein that cleaves the newly replicated virus

particles from the cell surface. Together, HA and NA determine the strain subtype and

are a primary marker of host specificity and transmissibility. PA, PB1, and PB2 form a

polymerase complex and are involved in viral replication. Mutations in these proteins can

be among the most important in determining host adaptation and virulence, particularly

mutation PB2–E627K, [140, 76]. The remaining proteins, including NP, M1, M2, and NS1

are largely structural proteins involved in capsid formation and viral packaging.

6.3 Influenza Reassortment

We characterized reassortment in avian influenza using persistent homology. We first com-

piled an aligned dataset of 3,105 complete avian influenza genomes from the NIH Influenza

Sequence Database. These sequences span in time from 1956 to 2012. We collected samples
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Table 6.1: Influenza Protein Segments

Segment Number Segment Name Protein Length (aa)
1 Polymerase basic 2 PB2 759
2 Polymerase basic 1 PB1 757
3 Polymerase acidic PA 716
4 Hemagglutinin HA 563
5 Nucleoprotein NP 498
6 Neuraminidase NA 470

7 Matrix M1 252
M2 97
NS1 2308 Nonstructural
NS2 121

Figure 6.1: Structure of an influenza virus particle. Surface antigens HA and NA coat this
surface and are involved in viral entry and exit into the host cell. The surface capsid is
formed from matrix proteins M1 and M2. PB1, PB2, and PA form a polymerase complex
assisting in viral replication in the infected cell.
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Figure 6.2: The avian influenza dataset analyzed in this chapter. Sequences spanned from
1950 to 2011, with the vast majority being collected after 2000. Most sequences were of HA
type H5, with H6 and H3 following. Dataset was collected from the NCBI Influenza Virus
Resource [9]

from all influenza subtypes. The majority of our sequences are of the H5 and H6 type, with

a smaller proportion of H3, H7, and H9. The distribution of collected HA types and years

is shown in Figure 6.2.

We first applied persistent homology to each genomic segment individually, as shown

in Figure 6.3. Here we see very little higher homology, consistent with no intra-segmental

recombination. The presence of higher homology is likely due to back mutation, which is

expected to be more common in viruses with high mutation rates and shorter genomes (i.e.

the infinite sites model does not hold). However, an analysis of the concatenated full genome

reveals a complex topology, with a large number of homological invariants in one and two

dimensions (Figure 6.4).

These results show that persistent homology can detect pervasive reassortment in in-

fluenza. One-dimensional ICR provides a lower-bound estimate of reassortment rate. We

calculate ICR < 1 event per year for classic H1N1 swine and H3N2 human influenza, sup-

ported by previous phylogenetic estimates [109, 78]. In contrast, we calculate a much higher
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rate of 22.16 reassortments per year for avian influenza A. This difference could be explained

by the high diversity and frequent coinfection of avian viruses [107] and correlates with the

high proportion of avian reassortants reported in previous studies [54].

We used mapper to visualize the relationships in our influenza dataset. A series of mapper

networks is shown in Figure 6.5. The networks were generated using a Hamming metric and

the first and second MDS components as a 2D lens. In each subfigure we color the network

by influenza subtype, for the top ten subtypes represented in the dataset. We can see that

the current classification of flu sequences by HA and NA type is a reasonable approach, as

flu isolates of the same subtype tend to cluster together tightly within the network. H6N2 is

the sole subtype to be represented by two clusters in the network. When we examined the

members of each H6N2 cluster, we found that both consisted of isolates spanning long time

frames, suggesting that multiple stable lineages of H6N2, each carrying different internal

segments, have persisted.

6.4 Nonrandom Association of Genome Segments

We observed nonrandom association of flu segments. Statistical inference on the loops cor-

responding to reassortments identified segments that tend to co-segregate with each other

during reassortment.In particular, polymerases co-segregate, while genes coding for envelope

and capsid proteins show independent reassortment patterns. Cosegregation of polymerases

suggests that effective proteinprotein interaction between the polymerase complex and the

NP protein constrain reassortment.

Although previous phylogenetic studies confirmed a high reassortment rate in avian in-

fluenza, none has identified a clear pattern of gene segment association [54]. To determine

whether any segments cosegregate more than expected by chance, we considered all pairs of

concatenated segments and estimated the number of reassortments using b1. We then ascer-

tained the significance of observing a number of reassortments between each pair of segments
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Figure 6.3: Influenza Genome Segment Barcodes. Persistent homology computed on a per-
segment basis reveals very little H1 homology, indicating limited intrasegment reticulation.
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Figure 6.4: Influenza Concatenated Genome Barcode. Persistent homology computed on
the full concatenated genome reveals substantial H1 and H2 homology, indicating high levels
of reticulate exchange.
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Figure 6.5: Influenza Networks By HA Subtype. The networks were generated using Ayasdi
using a Hamming metric and a 2D MDS coordinate lens. Lens parameters were (gain=5,
resolution=40, equalize=False).
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Figure 6.6: Influenza Nonrandom Reassortment

given the total estimate of reassortments in the concatenated genome. These patterns of

cosegregation are represented in Figure 6.6, in which thicker edges indicate cosegregation,

as measured by a lower level of homology between segment pairs. Analysis of avian in-

fluenza reveals a statistically significant configuration of four cosegregating segments: poly-

merase basic 2 (PB2), polymerase basic 1 (PB1), polymerase acidic (PA), and nucleoprotein

(NP). Interestingly, this pattern mimics previous in vitro results that suggest that effective

protein-protein interaction between the polymerase complex and the NP protein constrain

reassortment [107].

6.5 Multiscale Flu Reassortment

We computed persistent homology on the avian influenza sequences across the seven major

HA subtypes. The persistence diagram is shown in Figure 6.7, along with density estimates

for the birth and death distributions. Both birth and death times appear strongly bimodal,

unlike in the coalescent simulations, which were strictly unimodal. This suggests two distinct

scales of topological structure. Using the representative cycles output by Dionysus on a

subset of this data, we classified features as intrasubtype (involving one HA subtype) and

intersubtype (involving multiple HA subtypes). The H1 barcode diagram for this data is
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shown in the Figure 6.7 inset. Intrasubtype features, in blue, occur at an earlier filtration

scale than intersubtype features, in green. The multiscale topological approach of persistent

homology can distinguish biological events occuring at different genetic scales.

We isolated the two peaks and estimated two recombination rates: an intrasubtype

ρ1 = 9.68, and an intersubtype ρ2 = 21.43. We conclude that intersubtype recombination

occurs at a rate over twice that of intrasubtype recombination, however a genetic barrier

exists that maintains distinct subtype populations. The nature of this barrier warrants

further study. This illustrates a real-world example in which multiscale topological structure

can be captured by persistent homology and given biological interpretation.

6.6 Conclusions

In this chapter we analyzed reassortment patterns in influenza. The segmented nature of

the influenza genome, and the large amount of collected genome information, make influenza

ideal for the application of topological methods. Reassortment occurs when a single cell is

coinfected by multiple strains of the virus, and can lead to the emergence of novel pandemics.

Current methods of classifying influenza, based solely on HA and NA subtype, fail to account

for information in the internal segments and there is at present no consistent methodology

for dealing with reassortments. We have applied methods from TDA to characterize both

the scale and frequency of reassortment in influenza, estimating both reassortment rates and

cosegregation patterns. Using Mapper, we determined classifications of viruses based on

whole genome information that provide a higher resolution picture into extant circulating

strains. Further, from the persistence diagram we identified a bimodal structure of H1

invariants, which suggests a genetic barrier maintaining subtype diversity.
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Figure 6.7: The H1 persistence diagram computed from an avian influenza dataset. On the
top and left are plotted the marginal distributions of birth and death times, along with a
density estimate for each distribution. The bimodality indicates two scales of topological
structure. Inset: The barcode diagram for a subset of this data. Blue bars have representa-
tive cycles involving only one subtype, green bars have cycles involving multiple subtypes.
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Chapter 7

Reticulate Evolution in Pathogenic

Bacteria

7.1 Introduction

Pathogenic bacteria can lead to severe infection and mortality and present an enormous

burden on human populations and public health systems. One of the achievements of twen-

tieth century medicine was the development of a wide range of antibiotic drugs to control

and contain the spread of pathogenic bacteria, leading to vastly increased life expectancies

and global economic development. However, rapidly rising levels of multidrug antibiotic

resistance in several common pathogens, including Escherichia coli, Klebsiella pneumoniae,

Staphylococcus aureus, and Neisseria gonorrhoeae, is recognized as a pressing global issue

with near-term consequences [121, 146, 158]. The threat of a post-antibiotic 21st century is

serious, and new methods to characterize and monitor the spread of resistance are urgently

needed.

Antibiotic resistance can be acquired through point mutation or through horizontal trans-

fer of resistance genes. Horizontal exchange occurs when a donor bacteria transmits foreign

DNA into a genetically distinct bacteria strain. As discussed in Chapter 2, three mechanisms
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of horizontal transfer have been identified, depending on the route by which foreign DNA

is acquired [124]. Foreign DNA can be acquired via uptake from an external environment

(transformation), via viral-mediated processes (transduction), or via direct cell-to-cell con-

tact between bacterial strains (conjugation). Resistance genes can be transferred between

strains of the same species, or can be acquired from different species in the same environment.

While the former is generally more common, an example of the latter is the phage-mediated

acquisition of Shiga toxin in E. coli in Germany in 2011 [131]. Elements of the bacterial

genome that show evidence of foreign origin are called genomic islands, and are of particular

concern when associated with phenotypic effects such as virulence or antibiotic resistance.

In this chapter we explore topics relating to horizontal gene transfer in bacteria and the

emergence of antibiotic resistance in pathogenic strains. We show that TDA can not only

quantify gene transfer events, but also characterize the scale of gene transfer. The scale of

recombination can be measured from the distribution of birth times of the H1 invariants in

the barcode diagram. It has been shown that recombination rates decrease with increasing

sequence divergence [67]. We characterize the rate and scale of intraspecies recombination in

several pathogenic bacteria of public health concern. We select a set of pathogenic bacteria

that are of public health interest based on a recently released World Health Organization

(WHO) report on antimicrobial resistance [158]. Using persistent homology, we characterize

the rate and scale of recombination in the core genome using multilocus sequence data. To

extend our characterization to the whole genome, we use protein family annotations as a

proxy for sequence composition. This allows us to compute a similarity matrix between

strains. Comparing persistence diagrams gives us information about the relative scales of

gene transfer at arbitrary loci. The species selected for study and the sample sizes in each

analysis are specified in Table 7.1. Next, we explore the spread of antibiotic resistance

genes in S. aureus using Mapper, an algorithm for partial clustering and visualization of

high dimensional data [135]. We identify two major populations of S. aureus, and observe

one cluster with strong enrichment for the antibiotic resistance gene mecA. Importantly,
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Table 7.1: Pathogenic bacteria selected for study and sample sizes in each analysis.

Species MLST profiles PATRIC profiles

Campylobacter jejuni 7216 91
Escherichia coli 616 1621
Enterococcus faecalis 532 301
Haemphilus influenzae 1354 22
Helicobacter pylori 2759 366
Klebsiella pneumoniae 1579 161
Neisseria spp. 10802 234
Pseudomonas aeruginosa 1757 181
Staphylococcus aureus 2650 461
Salmonella enterica 1716 638
Streptococcus pneumoniae 9626 293
Streptococcus pyogenes 627 48

resistance appears to be increasingly spreading in the second population. Finally, we consider

the risk of lateral transfer of resistance genes from the human microbiome into an antibiotic

sensitive strain, using β-Lactam resistance as an example. In this environment, benign

bacterial strains can harbor known resistance genes. We use a network analysis to visualize

the spread of antibiotic resistance gene mecA into nonnative phyla. Each individual has

a unique microbiome, and we speculate that microbiome typing of this sort may useful

in developing personalized antibiotic therapies. These results suggest an important role

for topological data mining of -omics scale data in clinical applications and personalized

medicine.

7.2 Evolutionary Scales of Recombination in the Core

Genome

Multilocus sequence typing (MLST) data was used to examine scales of recombination in

the core bacterial genome. MLST is a method of rapidly assigning a sequence profile to

a sample bacterial strain. For each species, a predetermined set of loci in a small number

of housekeeping genes are selected as representative of the core genome of the species. At
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each loci, a set of sequence types are defined by using a similarity-based clustering. As

new strains are sequenced, they are annotated with a profile corresponding to the type

at each locus. If a sample has a previously unseen type at a given locus, it is appended

to the list of types at that locus. Large online databases have curated MLST data from

labs around the world; significant pathogens can have several thousand typed strains (over

10,000 in the case of Neisseria spp.). Because different species will be typed at different loci,

examining direct interspecies genetic exchange with this data is unfeasible, however MLST

provides a large quantity of data with which to examine intraspecies exchange in the core

genome. Finally, because the selected loci are primarily housekeeping genes, this type of

recombination analysis will tell you only about genetic exchange in the core genome. Mobile

genetic elements may have a separate rates of exchange.

We investigate genetic exchange in the twelve pathogens using MLST data from PubMLST

[89]. For each strain, a pseudogenome can be constructed by concatenating the typed se-

quence at each locus. Using a Hamming metric, we construct a pairwise distance matrix

between strains and compute persistent homology on the resulting metric space. Because of

the large number of sample strains, we employ a Lazy Witness complex with 250 landmark

points and ν = 0 [43]. The computation is performed using javaplex [143]. An example of

our output is shown in Figure 7.1, where we plot the H1 barcode diagrams for K. pneumoniae

and S. enterica. The two species have distinct recombination profiles, characterized by the

range of recombinations: K. pneumoniae recombines at only an early short-lived scale, while

S. enterica recombines both at the short-lived scale and a longer-lived scale. These multiple

scales are reflective of population structure at the subspecies level: in S. enterica, there are

seven defined subspecies, and experimental studies have shown high levels of reticulation

both within and between subspecies groups [22]. We repeat this analysis for each species,

and plot the results as a persistence diagram in Figure 7.2. Among the bulk of pathogens

there appears to be three major scales of recombination, a short-lived scale at intermediate

distances, a longer-lived scale at intermediate distances, and a short-lived scale at longer
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Figure 7.1: Barcode diagrams reflect different scales of core genomic exchange in K. pneu-
moniae and S. enterica. Differing scales can be attributed to different degrees of population
substructure in the two species.

distances. We recover a pronounced pattern of reticulation at very short distances unique to

H. Pylori, which is consistent with earlier measurements of an unusually small size of DNA

imports, reported in [61].

We define a relative rate of recombination by counting the total number of H1 loops

across the filtration and dividing by the number of samples for that species. The results

are shown in Figure 7.3, where we observe that different species can have vastly different

reticulation profiles. For example, S. enterica and E. coli have the highest reticulation

rates, consistent with earlier results which have shown a high proportion of defects in the

mutS mismatch-repair gene leading to relaxed genetic barriers to recombination [129, 103].

The low measured reticulation rate in H. pylori is a surprising outlier, as previous studies

have shown that it lacks the mismatch repair pathways common in other bacteria, leading to

higher than expected recombination rates [47]. H. pylori has been reported to have very little

clonal structure relative to other strains, which is reflected in the star-like phylogeny that has

been proposed for the species [93] However, restriction-modification systems limiting uptake

of foreign DNA have also been reported [55], suggesting that the H. pylori core genome is

relatively resistant to reticulation at wider genomic scales. It is therefore plausible that the
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Figure 7.2: The H1 persistence diagram for the twelve pathogenic strains selected for this
study using MLST profile data. There are three broad scales of recombination. To the right
is the birth time distribution for each strain. H. pylori has an earlier scale of recombination
not present in the other species, corresponding to the atypically small size of DNA imports
in the species [61].

lower signal from persistent homology is due to systematic reduced sampling of particular

lineages, suggesting that accounting for larger-scale population structure is important when

making estimates of reticulation rates.

7.3 Protein Families as a Proxy for Genome Wide

Reticulation

Protein family annotations cluster proteins into sets of isofunctional homologs, i.e., clusters

of proteins with both similar sequence composition and similar function. A particular strain
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Figure 7.3: Relative recombination rates computed by persistent homology from MLST
profile data.

is represented as a binary vector indicating the presence or absence of a given protein family.

Correlations between strains can reveal genome-wide patterns of genetic exchange, unlike

the MLST data which can only provide evidence of exchange in the core genome. We use

the FigFam protein annotations in the Pathosystems Resource Institute Center (PATRIC)

database because of the breadth of pathogenic strain coverage and depth of genomic annota-

tions [152]. The FigFam annotation scheme consists of over 100,000 protein families curated

from over 950,000 unique proteins [113].

For each strain we compute a transformation into FigFam space. We transform into this

space because the frequency of genome rearrangements and differences in mobile genetic el-

ements makes whole genome alignments unreliable, even for strains within the same species.

As justification for performing this step, it has been shown experimentally that recombina-
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Figure 7.4: Persistence diagram for a subset of pathogenic bacteria, computed using the
FigFam annotations compiled from PATRIC. Compared to the MLST persistence diagrams,
the Figfam diagrams have a more diverse scale of topological structure.

tion rates decrease with increasing genetic distance [67]. After transforming, we construct

a strain-strain correlation matrix and compute the persistent homology in this space. In

Figure 7.4 we show the persistence diagram relating the structure and scale between differ-

ent species. We find that different species have a much more diverse topological structure

in this space than in MLST space, and a wide variety of recombination scales. The large

scales of exchange in H. influenzae suggest it can regularly acquire novel genetic material

from distantly related strains. This is consistent with studies that have found H. influenzae

to be perpetually competent for uptake and integration of foreign DNA via transformation

[53].
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7.4 Antibiotic Resistance in Staphylococcus aureus

S. aureus is a gram positive bacteria commonly found in the nostrils and upper respiratory

tract. Certain strains can cause severe infection in high-risk populations, particularly in the

hospital setting. The emergence of antibiotic resistant S. aureus is therefore of significant

clinical concern. Methicillin resistant S. aureus (MRSA) strains are resistant to β-lactam

antibiotics including penicillin and cephalosporin. Resistance is conferred by the gene mecA,

an element of the Staphylococcal cassette chromosome mec (SCCmec). mecA codes for a

dysfunctional penicillin-binding protein 2a (PBP2a), which inhibits β-lactam antibiotic bind-

ing, the primary mechanism of action [88]. Of substantial clinical importance are methods

for characterizing the spread of MRSA within the S. aureus population.

To address this question, we use the FigFam annotations in PATRIC, as described in

the previous section. PATRIC contains genomic annotations for 461 strains of S. aureus,

collectively spanning 3,578 protein families. We perform a clustering analysis using the

Mapper algorithm as implemented in Ayasdi Iris [6]. Principal and second metric singular

value decomposition are used as filter functions, with a 4x gain and an equalized resolution of

30. This results in a graph structure with two large clusters, with a smaller bridge connecting

the two, as shown in Figure 7.5. The two clusters are consistent with previous phylogenetic

studies using multilocus sequence data to identify two major population groups [38].

Of the 461 S. aureus strains in PATRIC, 142 carry the mecA gene. When we color

nodes in the network based on an enrichment for the presence of mecA, we observe a much

stronger enrichment in one of the two clusters. This suggests that β-lactam resistance has

already begun to dominate in that clade, likely due to selective pressures. More strikingly,

we observe that while mecA enrichment is not as strong in the second cluster, there is a

distinct path of enrichment emanating along the connecting bridge between the two clusters

and into the less enriched cluster. This suggests the hypothesis that antibiotic resistance

has spread from the first cluster into the second cluster via strains intermediate to the two,

and will likely continue to be selected for in the second cluster.
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Figure 7.5: The FigFam similarity network of S. aureus constructed using Mapper as im-
plemented in Ayasdi Iris [6]. We use a Hamming metric and Primary and Secondary Metric
SVD filters (res: 30, gain 4x, equalize). Node color is based on strain enrichment for mecA,
the gene conferring β-Lactam resistance. Two distinct clades of S. aureus are visible, one of
which has already been compromised for resistance. Of important clinical significance is the
growing enrichment for mecA in the second clade.

7.5 Microbiome as a Reservoir of Antibiotic

Resistance Genes

While antibiotic resistance can be acquired through gene exchange between strains of the

same species, it is also possible for gene exchange to occur between distantly related species.

It has been recognized that an individual’s microbiome, the set of microorganisms that exist

symbiotically within a human host, can act as a reservoir of antimicrobial resistance genes

[137, 127]. It is of substantial clinical interest to characterize to what extent an individual’s
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microbiome may pose a risk for a pathogenic bacteria acquiring a resistance gene through

lateral transfer.

To address this question, we use data from the Human Microbiome Project (HMP), a

major research initiative performing metagenomic characterization of hundreds of healthy

human microbiome samples [145]. The HMP has defined a set of reference strains that have

been observed in the human microbiome. We collect FigFam annotations from PATRIC

for the reference strain list in the gastrointestinal tract. We focus on the gastrointestinal

tract because it is an isolated environment and likely to undergo higher rates of exchange

than other anatomic regions. Of the 717 reference strains, 321 had FigFam annotations.

We computed a similarity matrix as in previous sections, using correlation as distance. The

resulting network is shown in Figure 7.6, where strains are colored by phyla-level classifica-

tions. While largely recapitulating phylogeny, the network depicts interesting correlations

between phyla, such as the loop between Firmicutes, Bacteroides, and Proteobacteria.

Next, we searched for genomic annotations relating to β-lactam resistance. 10 strains in

the reference set had matching annotations, and we highlight those strains in the network

with green diamonds. We observe resistance mostly concentrated in the Firmicutes, of

which S. aureus is a member, however there is a strain of Proteobacteria that has acquired

the resistance gene. Transfer of beta-lactam resistance into the Proteobacteria is clinically

worrisome. Pathogenic Proteobacteria include S. enterica, V. cholerae, and H. pylori, and

emergence of β-lactam resistance will severely impact antibiotic drug therapies.

The species composition of each individual’s microbiome can differ substantially due to

a wide variety of poorly understood factors [145]. In this case, an individuals personal mi-

crobiome network will differ from the network we show in Figure 7.6, which was constructed

from the set of all strains that have been reported across studies of multiple individuals.

The relative risk for acquiring self-induced resistance will therefore vary from person to per-

son and by the infectious strain acquired. However, a network analysis of this type will give

clues as to possible routes by which antibiotic resistance may be acquired. In the clinical set-
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Figure 7.6: The FigFam similarity network of gastrointestinal tract reference strains identi-
fied in the Human Microbiome Project. The green diamond identifies the strains carrying
resistance to β-Lactam antibiotics.

ting, this could assist in developing personalized antibiotic treatment regimens. We propose

a more thorough expansion of this work, examining the full range of antibiotic resistance

genes in order to quantify microbiome risk factors for treatment failure. We foresee an era

of genomically informed infectious disease management in the clinical setting, based on an

understanding of a patient’s personal microbiome profile.

7.6 Conclusions

In this chapter we have used some ideas from topological data analysis to bear on problems in

pathogenic microbial genetics. First, we used persistent homology to evaluate recombination

rates in the core genome using MLST profile data. We showed that different pathogens

have different recombination rates. We expanded this to gene transfer across the whole

genome by using protein family annotations in the PATRIC database. We found different

scales of recombination in different pathogens. Second, we explored the spread of MRSA

in S. aureus populations using topological methods. We noted increasing resistance in a
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previously isolated population. Finally, we studied the emergence of β-lactam resistance

in the microbiome, and proposed methods by which personal risk could be assessed by

microbiome typing. These results point to a role for graph mining and topological data

mining in health and personalized medicine.
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Chapter 8

Conclusions

This thesis has considered the problem of characterizing reticulate modes of evolution in

large-scale genomics data. We have drawn on methods from topological data analysis,

specifically persistent homology to quantify the scale and frequency of reticulate events,

and Mapper to provide condensed representations of molecular relationships. In Part I, we

developed several theoretical approaches for analyzing data using TDA. In Chapter 3 we

developed alternative topological complex constructions in order to increase the sensitivity

of persistent homology. In Chapter 4 we developed a framework for statistical inference

using the peristence diagram. We used this to develop an estimator for the recombination

rate in the coalescent model, a common stochastic model in population genetics.

In Part II, we applied our general approach to several problems in evolution and genomics.

In Chapter 5 we studied phages, viruses of single-celled microorganisms. We showed how

persistent homology can recover inconsistencies in existing morphology-based taxonomies,

used a network approach to construct an alternative genome-based representation of phage

relationships, and identified representative gene families conserved within phage populations.

In Chapter 6 we studied influenza, a common human pathogen. We showed how persistent

homology can capture widespread patterns of reassortment, including nonrandom coseg-

regation of segments and barriers to subtype mixing. In contrast to traditional influenza
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studies, which have focused on the phylogenetic branching patterns of only the two surface-

marker proteins, we used Mapper combined with whole-genome data to represent influenza

molecular relationships. We identified unexpected relationships between divergent influenza

subtypes. In Chapter 7 we studied pathogenic bacteria. We used two sources of data to

measure rates of reticulation in both the core genome and the mobile genome across a range

of species. Mapper was used to represent the population of S. aureus and analyze the spread

of antibiotic resistance genes. Finally, the prevalence of antibiotic resistance genes in the

human microbiome was investigated.
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