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ABSTRACT 

The Stability at the Solid-Solid and Solid-Liquid Interfaces 

Junfeng Xiao 

 

In this thesis, we studied three small subjects in the realm of continuum mechanics: 

imbibition in fluid mechanics, beam and rod buckling in solid mechanics and shell buckling 

at the solid-liquid interface.  

In chapter 2, we examined the radial imbibition into a homogenous semi-infinite 

porous media from a point source with infinite liquid supply. We proved that in the absence 

of gravity (or in the regime while gravity is negligible compared to surface tension), the 

shape of the wet area is a hemisphere, and the radius of the wet area evolves as a function 

with respect to time. This new law with respect to time has been verified by Finite Element 

Method simulation in software COMSOL and a series of experiments using packed glass 

microsphere as the porous media. We also found that even though the imbibition slows 

down, the flow rate through the point source remains constant. This new result for three 

dimensional radial imbibition complements the classic Lucas-Washburn law in one 

dimension and two dimensional radial imbibition in one plane.  

In chapter 3, we studied the elastic beam/rod buckling under lateral constraints in 

two dimension as well as in three dimension. For the two dimensional case with unique 

boundary conditions at both ends, the buckled beam can be divided into segments with 



 

 

alternate curved section and straight section. The curved section can be solved by the Euler 

beam equation. The straight sections, however, are key to the transition between different 

buckling modes, and the redistributed length of straight sections sets the upper limit and 

lower limit for the transition. We compared our theoretical model of varying straight 

sections with Finite Element Method simulation in software ABAQUS, and good 

agreements are found. We then attempted to employ this model as an explanation with 

qualitative feasibility for the crawling snake in horizontal plane between parallel walls, 

which shows unique shape like square wave. For the three dimensional buckling beam/rod 

confined in cylindrical constraints, three stages are found for the buckling and post 

buckling processes: initial two dimensional shape, three dimensional spiral/helix shape and 

final foldup/alpha shape. We characterized the shape at each stage, and then we calculated 

the transition points between the three stages using geometrical arguments for energy 

arguments. The theoretical analysis for three dimensional beam/rod are also complemented 

with Finite Element Method simulations from ABAQUS. 

In chapter 4, we investigated the buckling shape of solid shell filled with liquid 

core in two dimension and three dimension. A material model for liquid is first described 

that can be readily incorporated in the framework of solid mechanics. We then applied this 

material model in two dimensional and three dimensional Finite Element Method 

simulation using software ABAQUS. For the two dimensional liquid core solid shell model, 

a linear analysis is first performed to identify that ellipse corresponds to lowest order of 



 

 

buckling with smallest elastic energy. Finite Element Method simulation is then performed 

to determine the nonlinear post-buckling process. We discovered that two dimensional 

liquid core solid shell structures converge to peanut shape eventually while the evolution 

process is determined by two dimensionless parameters Kτ/μ and ρR2/μτ. Amorphous shape 

exists before final peanut shape for certain models with specific Kτ/μ and ρR2/μτ. The two 

dimensional peanut shape is also verified with Lattice Boltzmann simulations. For the three 

dimensional liquid core solid shell model, the post buckling shape is studied from Finite 

Element Method simulations in ABAQUS. Depending on the strain loading rate, the 

deformations show distinctive patterns. Large loading rate induces herringbone pattern on 

the surface of solid shell which resembles solid core solid shell structure, while small 

loading rate induces major concave pattern which resemble empty solid shell structure. For 

both two dimensional and three dimensional liquid core system, small scale ordered 

deformation pattern can be generated by increasing the shear stress in liquid core. 

In the final chapter, we summarized the discoveries in the dissertation with 

highlights on the role that geometry plays in all of the three subjects. Recommendations 

for future studies are also discussed. 
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Chapter 1. Introduction and Motivation 

1.1 Fluid mechanics, solid mechanics and the interface  

The two branches of continuum mechanics, fluid mechanics and solid mechanics, 

are the main subjects of this thesis. Continuum mechanics is formulated on the principles 

of Newtonian mechanics, i.e. classic mechanics, and is the foundation of a lot of aspects in 

today’s engineering and science. As represented in Figure 1.1, mechanics originally stems 

from the contact at the interface of two mediae, which can be either solid or fluid. The form 

of media can be three dimensional bulk, two dimensional shell or one dimensional beam; 

the shape of interface can be planer or with curvature; interface can be an open geometry 

or a closed geometry. Caused by some physical and chemical processes which will be 

detailed in the following chapters, instabilities develop at the interface. The instability will 

introduce abrupt and morphological changes, rather than gradual and incremental changes, 

to the interface. This thesis will discuss when these instabilities develop, and if there are 

multiple unstable states, when does the system transit from one state to another.  

To study every specific direction of ever expanding fields in each of the mechanics 

seems impossible at this era, so only a few topics about instability at the interface will be 

covered in this thesis. To be specific, beam buckling under lateral constraints and buckling 

of solid shell liquid core structure are the focus of this thesis, which respectively represents 

the instability at solid-solid interface and solid-liquid interface. In addition to that, three 
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dimensional radial imbibition is also investigated, as an exploration in the field of fluid 

mechanics and as precursor for the following study of fluid-solid interaction. 

 

Figure 1.1 Instability at the interface between two mediae. Media 1 and 2 can be either fluid or solid. 

1.1.1 Low Reynolds flow: imbibition 

Studies in Newtonian fluid mechanics are divided by the Reynolds number of the 

fluid flow. Flow with Reynolds number smaller than 2300 is laminar flow, while flow with 

Reynolds number larger than 2300 is turbulent flow. Our studies in this thesis is focusing 

on the laminar flow regime. With the advent of miniature of mechanic devices, i.e. Micro 

Electrical Mechanical System (MEMS) and Nano Electrical Mechanical System (NEMS), 

the Reynolds number in these system comes to value around or below 1. Because of size 

effect, body forces pale compared to surface forces at the small scale, so surface tension 

becomes the dominant force in the extreme low Reynolds flow regime. Therefore flow 

related with surface tension, or more broadly microfluidics, is recently a vibrant research 

area with immediate applications in physical, chemical and biological studies [1-3].  
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Figure 1.2 Saturated imbibition in the porous media with advancing wetting front where the porous 

structure is presented by blue dots and liquid is represented by grey region, the capillary pressure Pc on the 

wetting front is illustrated together with atmospheric pressure P0 in the zoomed red square. 

Imbibition is a flow driven by pressure gradient in porous media, and in our cases 

we only studied saturated imbibition in the laminar flow regime. In the porous material 

with micro sized pores, the pressure gradient is usually originated from capillary pressure 

Pc at the wetting front. Therefore surface tension at the meniscus in Figure 1.2, which 

causes the capillary pressure, is the driving force in our studies of imbibition. We will use 

theoretic, numerical and experimental techniques widely used in microfluidics to analyze 

the imbibition process under a new geometrical constraints. 

1.1.2 Stability of solid structure: buckling 

Based on the responses of solids to applied stress, studies of solid mechanics can 

be divided into different regimes: elastic, viscoelastic and plastic. Our study in this thesis 

will focus on the elastic regime. While a lot of solid mechanics involves dynamics study, 
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we will look at the static solid structure without motion. However, as the loads (usually 

compressive stresses) are imposed on the static structure, the structure will gradually 

deform to a certain point when its shape abruptly changes. This transition when the stability 

of solid structure in static equilibrium is lost is called buckling. Mathematically speaking, 

the buckling is corresponding to a point where bifurcating solutions exit for the same 

equations, with one of the solutions greatly deviating from the initial shape. 

 

Figure 1.3 Stability of compressed elastic beam: initial straight shape are compared to the buckled tenuous 

shape. 

The buckling of solid structure is typically associated with failure since it deviates 

from original functional shape which is usually designed to be so. For example the straight 

rail ways becomes distorted in summer because of the thermal expansion at high 

temperature induced compression in the steel rail, which is illustrated in Figure 1.3. But 
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recently researchers have also attempted to guide the buckling process to generate desired 

shape [4, 5], and it is a novel technique in the category of self-assembly [6].  

In addition to the studies of specific topics in fluid mechanics and solid mechanics, 

we are trying to bridge the two distinct subjects by studying the third topic, the shell 

buckling at the fluid/solid interface. This third topic requires understanding in both fluid 

mechanics and solid mechanics, with more emphasis on the stability of solid structure. It 

is a small attempt in the large and expanding field of Fluid-Solid Interaction. 

This thesis is by no means an inclusive study in every aspects of mechanics, but 

is trying to organize the research discoveries under a coherent theme.   

 

Figure 1.4 Three subjects of this dissertation 

1.2 Methodology  

The classic fluid mechanics and solid mechanics are described by sets of Partial 

Deferential Equations (details will be discussed in following specific chapters). Depending 

on the nature of problem, different techniques would be used towards these problems.  

The governing equation of imbibition, Darcy’s law in (2.1), is a first order PDE 

and only involves single spatial parameter in our cases. This series of PDEs can be solved 



6 

 

analytically, and relevant problems have been well documented in literature [7, 8]. So we 

could expand previous analysis into our problem in different geometries, and new physical 

laws can be discovered in this manner. This is how we tackled the imbibition problem in 

chapter 2.  

The shape of buckling elastic beam without contact can be described by Euler-

Bernoulli beam theory for small deflection problems. In contrary, the contact between beam 

and constraints divides the beam into several segments whose general shape can’t be 

characterized by a single equation. However, the single section can indeed be described by 

the beam theory. So in chapter 3 we propose to solve the problem segments by segments, 

then lump segments together to construct the shape of whole beam. This constructed 

analytical solution is then compared with the numerical solution from Finite Element 

Method software ABAQUS. Good agreement between theory and simulation is found, 

indicating the validation of lumping scheme. Nevertheless, a large part of the analysis is 

derived from the simulation results. 

In chapter 4, the system consists of two separate phases: solid shell and liquid 

domain. The solid shell itself is usually described by Foppl-Von Carman model which is a 

fourth order nonlinear PDE. Coupled with the liquid domain, this system is difficulty to 

solve analytically. We could only draw general yet valuable information from the linear 

stability analysis based on principle of energy minimization, such as wave number and 

general shape of the system at the onset of buckling. The exact shape has to be solved 
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numerically and the characterization of the buckling shape comes from Finite Element 

Method simulation, especially for large deformation post buckling shapes. 

The basics of Finite Element Method for fluid mechanic and solid mechanics have 

been documented in various textbooks, and they are well implemented in commercialized 

software packages [9, 10], so they will not be repeated here. However, two special 

techniques with regarding to FEM in our studies will be discussed in this section. 

The first technique, Arbitrary Lagrangian Eulerian (ALE) method, is used to 

account for the changing of computation domain in fluidic simulation. Fluid is usually 

described in the Euler formulation, i.e. the computation domain is fixed with time. But ALE 

method can redistribute the mesh in the liquid domain to represent the deforming boundary, 

so it is useful in the simulation of Fluid-Solid Interaction (FSI) or deformation of droplet 

or bubble. In our study, the evolution of wetted area is simulated with ALE method in FEM 

software COMSOL. 

The second technique is used in the post buckling analysis of FEM software 

ABAQUS. The conventional post buckling analysis takes the results of linear buckling 

analysis as the implanted defects, and then run the static implicit analysis to obtain the final 

deformation. In our post buckling analysis, we utilized dynamic explicit scheme to simulate 

the quasi-static process for buckling. The advantage is that the computations converge 

without tenuous iteration processes, so the simulation is robust while maintaining its 

accuracy (kinetic energy should be controlled at a very low level to avoid the unnecessary 
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dynamic effects). In addition to that, an arbitrary small force in a very short time interval 

is added to the system as a perturbation to break its initial equilibrium instead of implanting 

defects in the geometry. 

Theoretic analysis and numerical simulation can provide qualitative and 

quantitative information about the studied object, while experiments offer the much needed 

verification for the analysis. Experiments are performed whenever possible to form an 

integral part of study. In chapter 2, the experiments are meticulously designed and 

implemented to measure the wetted area [11]. The related material parameters such as 

porosity and diffusivity are also determined through experiments. In chapter 3, the 

experiments of snake locomotion are performed by Professor David Hu at Mechanical 

Engineering of Georgia Institute of Technology. In chapter 4, representative experiments 

are done jointly with Professor Ponisseril Somasundaran at Earth and Environmental 

Engineering of Columbia, but the results are not reflected in this thesis.  

The three strategies, theory, simulation and experiment, should be deployed 

together to ensure a self-contained result. In reality, at least two of the three strategies are 

used to verify each other’s conclusion in each of the chapters.  

1.3 Outline of Dissertation 

Each subjects of the thesis are handled as a self-contained topic, so each chapter 

is treated differently with its own introduction and conclusions, but some of the general 
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understandings will be discussed in final conclusion of chapter 5.  

In chapter 1, three subjects of the thesis are framed, and their relation are discussed 

to illustrate the holistic characteristic of the thesis. Three difference strategies in this thesis, 

i.e. theory, simulation and experiments, are previewed briefly and will be discussed in depth 

in the following chapters. 

In chapter 2, the three dimensional radial imbibition are analyzed theoretically 

and numerically (in COMSOL), and the results are verified by ensuing experiments. A new 

law relating wetting area to time is discovered. The radial size of wetted area in three 

dimensional radial imbibition are compared with classic Lucas-Washburn law (one 

dimensional imbibition) and radial size of wetted area in two dimensional radial imbibition.  

In chapter 3, the buckling beam under lateral constraint are studied theoretically 

and numerically in both two dimensional case and three dimensional case. The emphasis 

is put on the shape of buckled beam and the transition between different buckling modes. 

In the two dimensional case, FEM model is utilized to explain the unique shape discovered 

in the crawling snake between two parallel walls. 

In chapter 4, the buckling of solid shell/liquid core system is examined mostly in 

the numerical simulation, with complemental linear stability study from the theoretical 

analysis based on principle of energy minimization. Special efforts are allocated on 

constructing maps for deformation patterns according to key parameters. The difference 

between solid core system and liquid core system is also discussed. The analyses are first 
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performed in two dimensional geometries, and then expanded into three dimensional 

geometries.  

Finally, in chapter 5, the discoveries in this thesis are summarized, and 

recommendations on future studies are also listed in this chapter. 
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Chapter 2. Three Dimensional Imbibition from 

Point Source into Porous Material 

2.1 Introduction to imbibition 

When a liquid contacts a dry porous medium or an empty capillary tube with a 

wetting angle smaller than 90°, it is propelled by capillary forces into the medium or the 

tube. This motion is resisted by viscous forces. As reviewed in reference [12], the 

phenomenon of diffusive imbibition is of importance for fluid transport in plants and soils, 

and in industrial processes such as printing, oil recovery, cooking, wine filtering, 

fabrication of composite materials, behaviors of garments. The forensic discipline of 

bloodstain pattern analysis would also benefit from a better understanding of stain 

formation on clothes or carpets for example [13, 14]. More recently, researchers proposed 

to build low cost microfluidic devices made of paper where imbibition is utilized as the 

driving force of the flow process [15, 16], so that the pumps and channels becomes 

unnecessary and microfluidic devices become readily disposable. As devices are scaled 

down into micro or nano size, surface tension becomes a dominant force, so that imbibition 

process induced by capillary force should come into consideration in terms of design of 

Micro Electrical Mechanical System (MEMS) or Nano Electrical Mechanical System 

(NEMS). This chapter would contribute to imbibition theory in three dimensional 

geometries, and it’s a combination of theoretical analysis, numerical simulation and 
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experiment verification. 

 
Figure 2.1 Imbibition in different scenarios. a) Imbibition in capillary tubes; b) imbibition in brick; c) 

imbibition in plant stem; d) paper based microfluidic device [15]. 

2.1.1 Classic law of imbibition 

In an one-dimensional geometry such as a porous rectangular strip or a capillary 

tube as illustrate in Figure 2.1, the wetting front advances according to a power law l2 = Dt, 

with l indicates the distance from source to wetting front, D a coefficient that depends on 

the properties of porous medium and the liquid, and t the time. This law is best known as 

the ‘Lucas-Washburn law’ [3, 17] proposed in the 1920s, and is also described as ‘diffusive 

imbibition’ [18]. Recently, researchers have proved that this law is applicable to nanoscale 

porous material [19]. The Lucas-Washburn law is briefly reviewed in this section. 

We start from Darcy’s Law described in equation (2.1), which depicts the flow 
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velocity in porous material is proportional to pressure gradient: 

𝐯 = −
𝑘

𝜇
∇𝑝 (2.1) 

where k, µ and v respectively represent the permeability (m2) of the porous medium, 

dynamic viscosity (Pa·s) of the liquid and the average velocity at the advancing dry/wet 

interface. Here the porous material is assumed to be homogeneous and isotropic, so that 

the permeability k is a scalar without directional dependence. If liquid loss due to 

evaporation from the porous media can be neglected, mass conservation for an 

incompressible flow yields 

∇ ∙ 𝐯 = 0, so that ∇2𝑝 = 0 (2.2) 

In equation (2.1), velocity v at the wetting front is actually dl/dt and pressure 

difference between source and wetting front is capillary pressure as illustrated in Figure 

1.2 and Figure 2.1. So gradient of pressure in the flow field is pc/l. pc represents the capillary 

pressure at the wetting front which usually depends on the size of pores and surface tension 

of liquid and is a constant throughout the process, the calculation of capillary pressure will 

be discussed in the following sections. Substituting velocity and pressure gradient in 

equation (2.1) yields 

𝑙
𝑑𝑙

𝑑𝑡
=
𝑘

𝜇
𝑝𝑐 

(2.3) 

Integration of both sides of above equation gives the evolution of wetting front 

with respect to time: 
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𝑙 = (
2𝑘𝑝𝑐
𝜇
)
1/2

𝑡1/2 
(2.4) 

Equation (2.4) is the classic result for one dimensional imbibition process 

proposed by Washburn. Underwent appropriate scaling process, equation (2.4) can be 

written in nondimensionalized form: 

𝐿 = 𝑇1/2 (2.5) 

This Washburn-Lucas law in (2.5), however, only applies to imbibition in one 

dimensional porous material or imbibition in capillary tubes. The imbibition in other 

geometries are deviating from the classic law, so we sort to examine the geometry’s effect 

on the imbibition. And we shall exemplify the geometry’s role by comparing the radial 

imbibition in two dimensional space and radial imbibition in three dimensional space.   

2.1.2 Deviation from classic imbibition law 

Recently imbibition has been studied for geometries with more than one 

dimension. For example, Clarke et al. [20], Anderson [21] and Hilpert and Ben-David [22] 

modeled the imbibition of a finite-size droplet into a porous medium, accounting for the 

deformation of the drop while assuming that the pores fill in the normal direction to the 

surface of the porous medium. Oko et al. [23] used high-speed imaging to measure the 

imbibition and evaporation of picoliter water droplets on paper media commonly used for 

inkjet printing. Reyssat et al. [18] studied the imbibition in a cone geometry with small 

opening angle α, and showed that at later times the imbibition varied as L ~ T1/4. Mason et 
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al. [24] studied analytically imbibition towards the center of porous cores with cylindrical, 

spherical and toroidal geometries. Also, Mendez et al. [8] described the two-dimensional 

imbibition process in a thin porous membrane with a fan shape, specifically a rectangular 

sector attached to a circular sector, and expressed the deviation from the Lucas-Washburn 

law in the circular sector. In summary, Lucas-Washburn law fails when geometries change 

from one dimension to higher dimension.  

In this chapter, we describe the imbibition process from a point source into a three 

dimensional homogeneous semi-infinite porous material and two dimensional 

homogeneous semi-infinite porous material, and it shows prominent deviation from one 

dimensional Lucas-Washburn Law. 

 

Figure 2.2 Imbibition in different geometries. From left to right, four analytical solutions for imbibition in 

porous media: one dimensional imbibition process that obeys the Lucas-Washburn law [17]; imbibition in a 

capillary tube with small opening angle [18], in a thin, fan-shape membrane [8], and in the radial geometry 
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considered in this work. For each case the evolution of the wetted length l and flow rate q (at long times) 

are expressed as a power law of the time t. 

2.2 Analytical solution for three dimensional imbibition from 

point source into semi-infinite porous material 

The derivation also starts from Darcy’s law as stated in equation (2.1) and 

conservation equation (2.2). The pressure difference, i.e. capillary pressure at wetting front 

is determined by the Laplace pressure: 

 𝑝𝑐 =
2𝛾 cos𝜃𝑐

𝑟𝑝
 (2.6) 

where γ, rp and θc are, respectively, the surface tension between the liquid and the 

atmosphere, a representative radius of the pores, and the contact angle of liquid on the 

porous material. 

To better define the problem we are solving, we’ve made several standard 

assumptions before the derivation: 

1. The source of liquid is small enough to be considered as a point source, which 

can provide an infinite liquid supply for the imbibition process.  

2. The shape of the advancing liquid front is a hemisphere, so that liquid flows 

radially from the source to the advancing front and the radial velocity is uniform along the 

advancing front. The advancing wetting front of liquid is then defined in spherical 

coordinates as r = rf(t), with the pressure gradient only in radial direction. 

3. The effect of gravity on the liquid flow is neglected, which means hydrostatic 
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pressure is much smaller than capillary pressure. 

The volumetric flow rate of liquid q(t) at the wetting front is advancing velocity 

times surface area: 

𝑞(𝑡) = 2𝜋𝑟𝑓
2𝑢𝑟 (2.7) 

where 𝑢𝑟 = 𝑑𝑟𝑓 𝑑𝑡⁄  denotes the radial velocity of liquid at the advancing front. So the 

radial velocity can be expressed as a function of the pressure gradient using Darcy’s Law 

(2.1): 

−
𝑑𝑝

𝑑𝑟
=
𝜇𝑞(𝑡)

2𝜋𝑟2𝑘
 

(2.8) 

The pressure at the source is patm, while the pressure at the wetting front r = rf is 

patm – pc. Equation (2.8) can be integrated spatially from source r = rs to the front r = rf(t) 

in order to obtain the pressure: 

𝑝𝑐 =
𝜇𝑞(𝑡)

2𝜋𝑘
(
1

𝑟𝑠
−
1

𝑟𝑓
) (2.9) 

Substituting volumetric flow rate (2.7) into (2.9): 

𝑟𝑓
2
𝑑𝑟𝑓

𝑑𝑡
(
1

𝑟𝑠
−
1

𝑟𝑓
) =

𝑘𝑝𝑐
𝜇

 (2.10) 

This first order nonlinear ordinary differential equation for the position of the 

wetting front rf can be integrated directly with rf = rs as the initial condition: 

1

3𝑟𝑠
(𝑟𝑓

3 − 𝑟𝑠
3) −

1

2
(𝑟𝑓

2 − 𝑟𝑠
2) =

𝑘𝑝𝑐𝑡

𝜇
 (2.11) 

At long times, the rf
3 term dominates, so (2.11) simplifies to:  
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𝑟𝑓 = (
3𝑘𝑝𝑐𝑟𝑠
𝜇

)
1/3

𝑡1/3 
(2.12) 

According to equation (2.7), in this long time limit, the flow rate q(t) is 

independent of time, expressed as: 

𝑞 =
2𝜋𝑘𝑝𝑐𝑟𝑠

𝜇
 (2.13) 

Results (2.12) can be recast in a non-dimensional manner: 

𝑅(𝑇) = 𝑇1/3 (2.14) 

by choosing dimensionless parameters as 𝑅 = 𝑟𝑓 𝑟𝑠⁄  and 𝑇 = 3𝑘𝑝𝑐𝑡 𝜇𝑟𝑠
2⁄ . 

2.3 Numerical solution for three dimensional radial imbibition 

from point source into semi-infinite porous material 

Equation (2.1) and (2.2) are also solved in three dimensional axis-symmetrical 

coordinates using Finite Element Method package COMSOL. Since the wetting front is 

moving with time, Arbitrary Lagrangian-Eulerian (ALE) method is employed to account 

for the evolution of computational domain [9, 25]. An artificial initially wet area, which is 

depicted as dark grey area in Figure 2.3, is needed as start point of the simulation. This 

artificial initial wet area is the wet area after a short time interval Δt theoretically, Which 

means the simulation actually starts at t(0)= Δt. Since the advancing velocity of wetting 

front is large due to the large gradient when t is barely larger than 0, Δt tends to be 0 for 

small initial wet area. Different shapes for the initial wet area such as elliptic and 

rectangular are tested, while the wet areas all become spherical eventually and the size of 
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wetting area converges which conforms the assumption 1 and 2. The shape indicated by zs 

and rs at different time is plotted in Figure 2.8.  

 

Figure 2.3 2D axis symmetrical model in COMSOL. Liquid source with diameter d is colored by dark blue, 

the artificial initial wet area is colored by dark grey and wet area after t is colored by light blue. 

Boundary conditions for the pressure in simulation are explained in Figure 2.4. 

The boundary condition for mesh movement at wetting front is that normal component of 

mesh velocity equals normal component of liquid velocity, while the tangential velocity of 

mesh at wetting front is not constrained to improve the mesh quality. COMSOL disturbs 

the position of inner mesh nodes according to movement of boundaries to obtain a smooth 

mesh deformation everywhere. One thing to be noted is that quality of mesh deteriorates 

because mesh could be stretched and distorted as simulation continues, and the mesh is not 

appropriate for the simulation once it is inverted. So remeshing is needed when mesh 

quality drops below a criterion, simulation is then restarted from that stop point with new, 

better-quality mesh.  
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Figure 2.4 Wetting front at remeshing points. Three boundary conditions are also displayed in different 

colors: pressure at source, pressure at wetting front and boundary at the bottom plate. 

2.4 Experimental verification for the analytical solution in three 

dimensional radial imbibition  

Experiments were conducted to measure the evolution of a wetting front with 

respect to time. Soda lime glass microspheres (P2043SL, Cospheric LLC) were loaded in 

a polycarbonate box (60 mm x 60 mm x 60 mm) to form a porous medium in the 

experiments. The microspheres were well mixed in the box using an orbital shaker 

(miniRoto S56, Fisher Scientific) before each experiment to avoid inhomogeneities in the 

porous medium. The experimental setup is depicted in Figure 2.5. 
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Figure 2.5 Experiment setup for the imbibition measurement 

To measure the particle size, the microspheres were immobilized in water between 

a microscope slide and cover slide, and imaged under an inverted microscope. A MATLAB 

code was developed to determine the size of 3000 microspheres: the average diameter dm 

was measured to be 42 μm, with standard deviation σ = 7 μm (see Figure 2.6). The porosity 

was measured to be 0.36 ± 0.02, by comparing three times the weight of an 8 mL beaker 

filled with dry sand to the same system wetted with water. This porosity value is slightly 

lower than values measured for packed beds of same size glass particles, as e.g. in reference 

[26] where particles with diameter of 40 μm were measured to have average porosity of 

0.45. The porosity value found in our study is very close however to the porosity of 0.38 ± 

0.02 measured in packed beads [27] with grains size between 40 and 300 μm. 
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Figure 2.6 The measured size distribution of glass microspheres used in the experiments. 

Two important parameters in equation (2.12) need to be determined, namely the 

permeability k and capillary pressure pc. For a random packing of microspheres of uniform 

size, the permeability k of the porous media, as well as the porosity ε, can be determined 

numerically from the mean diameter of the microspheres dm using simulations of random 

sequential deposition events, as shown in reference [28]. The permeability k of the porous 

media can also be related to the diameter of the microspheres dm, and the porosity ε 

estimated using the Kozeny-Carman model [29]:  

𝑘 =
𝑑𝑚
2

180

𝜀3

(1 − 𝜀)2
 

(2.15) 

We chose to measure the permeability experimentally. A water flow was driven 
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vertically through a Teflon tube (inner diameter 1.58 mm, length 100 mm) filled with glass 

microspheres, with the flow rate controlled by a syringe pump. A thin metal mesh 

membrane (15 μm, Betamesh, BOPP AG, Switzerland) with negligible pressure drop was 

attached to the exit of the tube to retain the microspheres. The pressure difference in the 

porous media was measured by a pressure gauge (DPG 110, Omega). Then the permeability 

of the porous media can be calculated from the measured pressure difference and flow rate 

according to Darcy’s law. The permeability was measured to be k = (1.21 ± 0.07) × 10-12 

m2. The experimental value of permeability is in good agreement with the value calculated 

using the Kozeny-Carman model [29] k = 1.12 × 10-12 m2, or determined numerically in 

reference [28] as k = 9.5 × 10-13 m2. 

The capillary pressure was measured by a 1-D capillary rise experiment, where 

vertical imbibition is resisted by gravity, until an equilibrium height h is reached where the 

hydrostatic pressure is balanced by the capillary pressure, with 

𝜌𝑔ℎ =
2𝛾 cos 𝜃𝑐

𝑟𝑝
 (2.16) 

The final height h obtained experimentally corresponds to a capillary pressure of 3480 Pa 

+/-70 Pa. That value was used as the capillary pressure in equations (2.11) and (2.12), and 

in the results shown in Figure 2.7. If we assume, as in reference [27], that the largest pore 

size, i.e. the maximum radius of curvature, controls the capillary pressure, we can obtain 

independent values for rp and θc as follows. The capillary pressure obtained by the capillary 

rise experiment corresponds by equation (2.16) to a maximum radius of curvature cosθc/rp 
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= 2.39x104 m-1. Neglecting the non-uniformity of the beads, we assume that all beads with 

diameter dm are packed in a cubic face-centered arrangement, with unit cell distance 

√8𝑑𝑚/2. From simple analytical geometry considerations, a relation can be established 

between the wetting angle and the largest radius of curvature [30]. Iterations between that 

relation and equation (2.16) converge towards values of a maximum radius of curvature of 

33 µm, which corresponds to a maximum pore size of 26 µm and a wetting angle of 38°, 

respectively. These estimates are compatible with the actual bead radius (21 µm) and with 

published literature [31-33], where the wetting angle of water on soda lime glass was 

measured as 31°. Note that this method of determining independent values of rp and θc is 

only provided as a side note, since the interpretation of the radial imbibition experiments 

studied in this paper only relies on the value of the capillary pressure measured in the 1-D 

capillary rise experiment. 

The experimental setup to measure the dynamics of the imbibition process is 

illustrated in Figure 2.5. A hole with diameter d = 0.64 mm and length of 5.9 mm was 

drilled in the bottom plate (thickness 5.88 mm) as the inlet for the liquid. In the experiments, 

the height of the wet volume was always kept below 30 mm, which is a height 

corresponding to less than 10% of the capillary pressure generated by 42 μm spheres. The 

box loaded with microspheres was then put in a water-filled glass Petri dish, and the liquid 

level in the Petri dish was adjusted to be the same as the bottom surface of the 

polycarbonate box, which assures that pressure at the inlet is atmospheric and that the 
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imbibition process has access to a nearly infinite liquid supply. The liquid inlet hole was 

filled with microspheres, so that the wetting liquid reached the top side of the box bottom 

in less than 5 seconds, as measured by filling the box with a very thin layer of sand. This 

estimate is in good agreement with predictions from the Lucas-Washburn law, which 

estimates the invasion time to be less than 1 second. Experiments with fluids that fully wets 

glass (silicone oils) were inconclusive because spreading proceeded faster along the plastic 

container walls than in the sand and produce a flat pancake-shaped wetted region in the 

sand. 

The box was capped during the experiments to avoid evaporation. In order to 

determine the time dependence of the imbibition front the wet region was measured at 

different time intervals. In particular, after a given time interval, all of the dry microspheres 

were poured out of the box by gravity [7], by suddenly turning the box upside down. 

Microspheres in the wet volume stuck to each other due to capillary adhesion caused by 

water between the spheres. The wet region also adhered to the bottom plate of 

polycarbonate box, The shape of the wet volume (photographed in Figure 2.7), represented 

by the height (ze(t)) and radius in the orthogonal directions (rL(t) and rR(t)), was then 

measured using a caliper. The experiment was repeated with new dry microspheres for 

another time interval and in this way the time evolution of the advancing front is determined. 

This procedure was repeated five times in order to have five values of ze(t)), rL(t) and rR(t) 

for each of the six times reported in Figure 2.7. The experimental error for the imbibition 
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measurement is shown also. Errors were mainly due to the uncertainty of the dynamic 

viscosity (+/- 7%), and repeatability and uncertainty in the length measurement of the wet 

region (+/- 0.7mm). The latter absolute error is the reason why vertical error bars at earlier 

times are larger. 

2.5 Results and further discussion 

This section compares the theoretical predictions, equations (2.11) and (2.12), for 

imbibition from a point source in a semi-infinite domain to the results of our experiments 

and FEM simulations. To plot the theoretical curve in Figure 2.7, the capillary pressure is 

estimated according to the 1-D capillary rise measurement described above. 

 

Figure 2.7 Non-dimensionalized size of wet area as a function of time. The top left inset shows the 

container filled with wetted glass microspheres, after suddenly pouring the dry sand out of the container, as 

described in the experimental section. 
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The experimental non-dimensional results of position of the front as a function of 

time are plotted in Figure 2.7. Three distinct measurements of the front position (rL, rR, ze), 

as described in the experimental section, are displayed in Figure 2.7. We chose not to 

measure data points at times shorter than one minute because the measurements involve 

turning the box upside down so that the dry sand falls away from the wetted region, which 

is an operation that takes about 5 seconds. For that reason, data points at shorter times have 

larger uncertainty than at later times, as can be seen with the vertical error bars. The 

measurements are non-dimensionalized according to equation (2.14), assuming that the 

contact area between the radial source and the porous medium equals the contact area in 

the experiments, i.e. the cross-section of a tube with diameter d. Therefore, 𝑟𝑠 = 𝑑 2√2⁄ . 

The data points for RL, RR and RZ overlap at every measured time, suggesting that the front 

spreads as a hemisphere. The average values fitted on the measurements using the power 

law 𝑅 = 𝑎 ∙ 𝑇𝑏 are a = 1.03 and b = 0.32, respectively. Both the experimental exponent 

and prefactor are well within 5% of the predicted value of 1 and 1/3 of the power law found 

analytically in equation (2.14), respectively, which confirms the cubic root law. The 

measured slope might be slightly smaller than 1/3 because gravity is not totally negligible 

for the larger measured radii. Figure 2.7 also compares the full solution of the imbibition 

problem, equation (2.11), with its approximation for long times, equation (2.12). Results 

of the comparison show that the relative error between the full solution and its 

approximation for long times becomes less than 10% for T > 120, which in our experiment 
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corresponds to t > 0.4 s. 

The simulation results from COMSOL are compared with theoretical analysis in 

Figure 2.8. The convergence of radial size in different directions are best exemplified by 

the inlet in Figure 2.8, as the value of ratio zs/rs converges to 1 quickly in the simulation. 

We also compare our results with the Lucas-Washburn Law in Figure 2.8, and a clear 

deviation from the classical imbibition law is observed.  

 

Figure 2.8 Comparison between theoretical results and numerical results. The inset compares the radii in 

different direction, and its convergence to 1 confirms assumption of spherical wetting area.  

Since 𝑟𝑓~𝑡
1/3, the radial velocity of the wetting front goes as 𝑟�̇�~𝑡

2/3, which 
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means the advancing of wetting front slows down as t becomes large. This is conceivable 

since the pressure gradient, which is the driven force of advancing of wetting front, 

decreases as rf increases. The radial velocity of the wetting front obtained from simulation 

is plotted against theoretical prediction in Figure 2.9a. Small discontinuities are seen at 

times corresponding to remeshing operations, but the general agreement is very good. Even 

though the advancing of rf decelerates, flow rate q remains constant with time as indicated 

by equation (2.13) and confirmed in Figure 2.9b, because the wet/dry area also increases 

with time to compensate the deceleration of wetting front. 

 

Figure 2.9 a) radial velocity of wetting front; b) flow rate calculated from equation (2.13) 

However, when the geometry is reduced from 3D to 2D, the decreasing pressure 

gradient still holds, the advancing speed still decelerates, but the flow rate is no longer a 

steady value. The radial imbibition in planar geometry is discussed briefly as a comparison 

to the 3D radial imbibition law. 

The basic equations are still Darcy’s law (2.1) with (2.2) and the definition of 
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capillary pressure in porous media (2.6), but in 2D geometry the flow rate is different as 

the surface area of wetting front changes: 

𝑞(𝑡) = 𝜋𝑟𝑓
𝑑𝑟𝑓

𝑑𝑟
 

(2.17) 

So the pressure gradient can be related to radial velocity of wetting front: 

−
𝑑𝑝

𝑑𝑟
=
𝜇𝑞(𝑡)

𝜋𝑟𝑘
 

(2.18) 

With the spatial integration from source r = rs to the wetting front r = rf(t): 

𝑝𝑐 =
𝜇𝑞(𝑡)

𝜋𝑘
(ln 𝑟𝑓 − ln 𝑟𝑠) 

(2.19) 

Plugging flow rate (2.17) into (2.19):  

𝑟𝑓
𝑑𝑟𝑓

𝑑𝑡
(ln 𝑟𝑓 − ln 𝑟𝑠) =

𝑘𝑝𝑐
𝜇

 (2.20) 

Equation (2.20) can be rewritten to:  

𝑟𝑓

𝑟𝑠

𝑑 𝑟𝑓 𝑟𝑠⁄

𝑑𝑡
(ln

𝑟𝑓

𝑟𝑠
) =

𝑘𝑝𝑐
𝜇𝑟𝑠2

 
(2.21) 

With the time integration from starting point rf = rs to current time t:  

𝑘𝑝𝑐
𝜇𝑟𝑠2

𝑡 =
1

4
((
𝑟𝑓

𝑟𝑠
)
2

(2 ln
𝑟𝑓

𝑟𝑠
− 1) + 1) (2.22) 

Plugging capillary pressure (2.6) into (2.22):  

8𝛾 cos 𝜃 𝑘

𝜇𝑟𝑠2𝑟𝑚
𝑡 = (

𝑟𝑓

𝑟𝑠
)
2

(2 ln
𝑟𝑓

𝑟𝑠
− 1) + 1 (2.23) 

This is the implicit solution for radius of wetting front, and it is not easy to discern 

the inherent law with respect to time as compared to cubic law in (2.12). The radius versus 

time is solved in a MATLAB code and is plotted in Figure 2.10 for better understanding. 

As seen in the figure, the wetting front cannot be described by a simple and elegant rule 

with respect to time.  
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Figure 2.10 rf or l of wetted area in terms of time in 1D, 2D radial and 3D radial imbibition. Left column is 

plotted in linear scale, right column is plotted in log scale.  

In conclusion, the imbibition process from a point source into a porous material 

of semi-infinite extent has been studied theoretically, numerically and experimentally. 

These three approaches are in good agreement, and show that when gravity is negligible 

compared to the capillary pressure, the wetting front conserves a hemispherical shape with 

radius evolving with time as r ~ t1/3. This result complements known one- and two-

dimensional imbibition results. If we neglect the initial transitional stage, the flow rate of 

the imbibition process tends to be a time-independent constant, which is similar to the 

discoveries in literature [7]. This work also presents the long-time solution for a series of 
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PDEs in 3D spherical geometry, i.e. 𝐯 = −𝐷∇𝑝 and ∇2𝑝 = 0. The equation states that 

velocity of the interface is proportional to the pressure gradient from interface to source. 

The pressure distribution, however, is governed by the Laplace equation. As the interface 

moving forward, the velocity of the interface decreases because the distance between 

interface and source increases, thus the gradient decreases. Darcy’s law is essentially 

equivalent to Fick’s law in diffusion, Fourier’s law in thermal conduction and Ohm’s law 

in electrical network, so the results could be expected to be applied to relevant problems.  
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Chapter 3. Buckling of Elastic Beam under Lateral 

Constraints 

3.1 Introduction to beam buckling 

A straight elastic beam can maintain its straightness under compressive stress until 

a critical value is reached, then the beam becomes sinuous undergoing a process called 

buckling. The buckling beam without lateral constraint has been analyzed systematically 

[34], and a brief review will be presented in this section.  

At the small strain and moderate rotation which is usually the case at the onset of 

buckling, the deformation of beam can be explained by Euler beam theory:  

𝐸𝐼
𝜕4𝑦

𝜕𝑥4
+ 𝑃

𝜕2𝑦

𝜕𝑥2
= 0 

(3.1) 

where y denotes the lateral displacement, x lies in the original beam direction (ranging from 

0 to length L0), P the applied compressive force, E Young’s modulus and I second moment 

of area of beam. Equation (3.1) has the general solution in the following form: 

𝑦 = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥 + 𝐶𝑥 + 𝐷 (3.2) 

with k2 = P/EI. With appropriate boundary conditions, we can obtain the exact solutions 

for equation (3.1). The simplest boundary conditions are free-rotating ends: 

𝑦(0) = 𝑦"(0) = 0 

𝑦(𝐿) = 𝑦"(𝐿0) = 0 

(3.3) 

The solution will be:  
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𝐵 = 𝐶 = 𝐷 = 0,   sin 𝑘𝐿0 = 0 (3.4) 

Which means kL0 has to be specific values: 

𝑘𝐿0 = 𝑛𝜋 (3.5) 

Therefore the buckling shape is: 

𝑦 = 𝐴 sin
𝑛𝜋

𝐿0
𝑥 (3.6) 

Although the exact value of A is yet to be determined, equation (3.6) provides us 

useful information about the buckling shape. First few buckling modes from equation (3.6) 

corresponding to n = 1, 2, 3 are illustrated in the following figure: 

 
Figure 3.1 First, second and third buckling mode for hinged beam without lateral constraints 
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Each value of n is corresponding to compressive force 𝑃 =
𝑛2𝜋2𝐸𝐼

𝐿0
2 . The smallest 

n, i.e. 1, is corresponding to compressive force 𝑃 =
𝜋2𝐸𝐼

𝐿0
2 , which is usually called critical 

force Pcr. When compressive force is smaller than the critical force, the beam can maintain 

its original straightness. When the compressive force reaches the critical force, small 

perturbation can cause large lateral displacement as described by (3.6). 

While buckling beams without lateral constraints have been analyzed 

systematically, Adan, et al. [35] have shown numerically and experimentally that buckling 

beams under a lateral constraint exhibit bifurcation modes that are distinct from that 

without lateral constraints. Under two parallel lateral constraints, Chai has shown that the 

buckling of a simple-supported beam exhibits new categories of buckling modes, as well 

as different transition behaviors between these modes, compared with the one-side 

constraint [36, 37]. Recently researchers have also explored the effects of elastic constraints 

on the buckling process of elastic beam. The normal forces exerted on the beam can be 

characterized using the stiffness of the elastic constraints K. Consequently an additional 

term is added to the equation (3.1) in order to account for the normal force from constraints:  

𝐸𝐼
𝜕4𝑦

𝜕𝑠4
+ 𝑃

𝜕2𝑦

𝜕𝑠2
+ 𝐾𝑦 = 0 

(3.7) 

The shape of beam at the onset of buckling can be finely tuned into two 

dimensional shape or three dimensional shape by adjusting the value of K [38].  
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3.2 Two dimensional beam buckling under lateral constraints 

Although beam buckling under lateral constraint appears to be a pure mechanics 

problem, it could also provide interesting insights for morphogenesis in natural and 

engineered systems [39, 40]. Recently, Marvi and Hu [41] showed that when a snake crawls 

between two parallel walls, its body takes an unique rectangular wave-like shape which 

also depends on the wall spacing.  

 
Figure 3.2 Four conventional modes for snake locomotion 

In general, a snake usually moves forward in four ways: slithering by lateral 

undulation of the body, rectilinear progression by unilateral contraction/extension of their 

belly, concertina-like motion by folding the body as the pleats of an accordion and 

sidewinding motion by throwing the body into a series of helices [42, 43]. Lateral 

undulation is the most common way for snakes to move forward, in which the sinusoidal-

like lateral bending of body is propagated from head to tail. If a snake is forced to crawl 

through crevices between rocks, its body may be required to conform to the shape of the 

narrow curvy “valley”. However, when the snake crawls through two parallel constraints, 



37 

 

the rectangular wave-like profile, such as the morphology in Figure 3.8, has not yet 

received a theoretical explanation although it has been documented for a long time. 

Inspired by the fact that the sinusoidal morphology of a constrained crawling 

snake is analogous to a buckled beam, insights may be obtained by studying elastic beam 

buckling under two parallel lateral constraints, in particular the formation of rectangular 

wave upon contact. A theoretical framework is established in this section, and the transition 

between different modes is obtained as a function of axial strain and wall spacing. The 

theory is compared with finite element simulations. The buckling profiles from theory and 

simulation are then qualitatively related to the characteristics of the crawling snake. 

3.2.1 Theoretical Model for buckling beam and transition between 

different buckling modes 

The schematic of two-dimensional model with linear elastic response is shown in 

Figure 3.3, which is inspired by results of Chai [36, 37] and is used to represent the axial 

skeleton of a snake [44, 45]. An elastic beam of length L0 and radius r is initially placed in 

the middle of two parallel walls. The beam and walls are placed on the same horizontal 

plane. Both ends are allowed to move freely in the y-direction, yet their rotational degree 

of freedom is constrained, which resembles the snake crawling behavior. To apply axial 

compression, the left end of beam is fixed in x direction and the right end is pushed inward 

by a displacement of ΔL. The wall is assumed rigid and kept fixed throughout, and contact 
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friction is neglected in this model.  

 

Figure 3.3 Schematic of the theoretical model and the first few buckling modes, with beam in red and wall 

in dark blue. (a) Shape of the undeformed beam; (b) buckling mode 1 of the deformed beam; (c) buckling 

mode 2 of the deformed beam; (d) buckling mode 3 of the deformed beam and (d) buckling mode 5 of the 

deformed beam. 

 When the compressive strain exceeds critical strain, the beam buckles and the 

buckling amplitude increases with ΔL, until the deformed beam makes contact with the 

wall. The deformed profile is assumed to be symmetric. This becomes the bifurcation mode 

1, Figure 3.3(b). The shape of mode 1 consists of three parts [36, 37, 46]: straight section 

L1, curved section (with projected length L2) and straight section L1. With the further 

increase of ΔL, the straight sections elongate and their length will be determined in the 
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following section through strain energy minimization. When the straight section becomes 

too long, it loses stability and then the entire beam bifurcates into the next mode, illustrated 

as mode 2 in Figure 3.3(c). Mode 2 consists of two curved sections with straight sections 

in between (length 2L1) and at the ends (length L1 each). With continued compression, the 

straight section of mode 2 may become unstable and mode 2 bifurcates to mode 3, Figure 

3.3(d), and so on to higher modes, Figure 3.3(e) and beyond, with subsequent compression. 

Note that as the modes shift, the beam ends may jump up or down, and such a boundary 

condition was not explored in previous studies. 

To analyze different buckling shape, the exact shape should be solved first. Euler 

beam theory (equation (3.1)) is again the starting point. For beam in the narrow channels, 

the deflection and axial strain in the beam is relative small, so Euler beam equation is still 

valid in our cases for the curved sections since there is no contact between beam and 

constrains. Force and moment from contact are only exerted on the end point of curved 

section (shown in Figure 3.4). With straight parts of beam touching the constraints, a new 

set of boundary conditions should be used. Taking mode 1 in Figure 3.3 as an example, 

boundary conditions of curved section at two ends x = L1 and x = L1 + L2 are (we only 

consider geometrical boundary conditions, force and moment at the boundaries are not 

considered): 

𝑦(𝐿1) = 𝑦′(𝐿1) = 𝑦"(𝐿1) = 0 (3.8) 
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𝑦(𝐿1 + 𝐿2) = 𝐴, 𝑦′(𝐿1 + 𝐿2) = 𝑦"(𝐿1 + 𝐿2) = 0 

Together with general solution (3.2), the contour shape of this curved section is: 

𝑦 = 2𝐴
𝑥 − 𝐿1
𝐿2

−
𝐴

𝜋
sin (

2𝜋

𝐿2
(𝑥 − 𝐿1)) (3.9) 

where A is denoted as the wave amplitude, and 2A = d is the wall spacing. The above shape 

is consistent with finite element simulation results. For this case, the constraint of 

coefficient k in equation (3.1) satisfies:  

𝑘𝐿2
2𝜋

= 1 
(3.10) 

The shape of curved sections of other modes can be described in a similar way as 

equation (3.9), except that the value of L2 is different in each mode. In other words, once 

L1 and L2 are determined (see below), the shape function of deformed beam is obtained. 

The strain energy of the beam consists of two parts in this model: bending energy 

which is assumed to exist only in the curved sections and compressing energy which is 

assumed to be uniform along the beam, and consistent with finite element simulation. 

Based on displacement in equation (3.9), the bending energy of the curved segment is 

calculated as: 

𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 =
𝐸𝐼

2
∫

|𝑦"|2

(1 + 𝑦′2)3
𝐿

𝑑𝑥 
(3.11) 

Denoting the total length of the deformed beam as Ldeformed (which can be readily 

calculated using equation (3.9)), the axial strain ε is: 

𝜀 =
𝐿𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 − 𝐿0

𝐿0
 (3.12) 
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And hence the compressing energy along the beam is: 

𝐸𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =
1

2
𝜀2𝐸𝑎𝐿𝑑𝑒𝑓𝑜𝑟𝑚𝑒𝑑 

(3.13) 

where a is the area of cross section for the beam. 

With increasing load ΔL, the beam morphology varies. Within a particular 

buckling mode, the beam deforms according to minimization of the total strain energy 

(Ebending + Ecompression). This principle, along with the geometrical constraint: 

𝐿𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 + ∆𝐿 = 𝐿0 (3.14) 

can be employed to deduce L1 and L2 for a given ΔL and known mode. The beam stays at 

the current buckling mode until one of straight sections gets buckled according to reference 

[36]: 

𝑘𝑆

2𝜋
= 1 

(3.15) 

where S in the equation above is the length of a straight section. This determines the 

transition point (critical ΔL) from one bifurcation mode to the next. 

3.2.2 Numerical Analysis for the buckling beam under constraints 

In order to verify the key assumptions employed in theoretical analysis as well as 

validate the model, a two dimensional finite element model is established to simulate the 

beam buckling process under parallel constraints, using commercial finite element package 

ABAQUS. Boundary conditions of walls and the beam are stated previously. We started 

this research with a three dimensional finite element model, which was found to be 
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consistent with the two dimensional model with these specific geometrical constraints. So 

two dimensional models were employed throughout the paper. The beam is meshed by 100 

2D linear beam elements, and the wall is modelled by 2D linear discrete rigid elements. 

The mesh density is validated by mesh convergence studies. 

 

Figure 3.4 Shape of buckling beam in the FEM simulation at mode 3 (walls are not shown) and normal 

contact forces at top/bottom wall. The data are normalized by original length L0 in x direction; 

displacements are normalized by amplitude A 

According to the contact theory, when there is a line contact between beam and 

wall, normal contact forces do not distribute uniformly throughout the contact section, but 

rather concentrate on both ends of the contact section (seen in Figure 3.4). This 

phenomenon is used to differentiate the line contact section from curved section in the 

simulation results, and thus the values of L1 and L2 can be determined in the simulation 

results, and compared with the theoretical predictions. 
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3.2.3 Comparison between theoretical analysis and numerical analysis 

According to our model, the projected length of the curved section, L2, is an 

important parameter determining not only the shape of buckled beam, but also the bending 

energy of the system. We didn’t calculate L1 because once L2 is determined, the total length 

of L1 is L0 - ΔL - nL2 where n indicate the buckling mode, while values for individual L1 

vary along the beam because of the asymmetries described in following section. Values of 

L2 from theoretic analysis and simulation are compared at different nominal strain values 

(ΔL/L0) in Figure 3.5, with representative geometrical values L0/d = 10, d/r = 10. As 

illustrated in Figure 3.3, the beam undergoes different buckling modes as the compression 

proceeds (the modes are separated by vertical dot lines in Figure 3.5, according to our 

theoretic model). Within a given buckling mode, L2 decreases as ΔL/L0 increases, implying 

that the strain energy of the beam increases with compression. Whereas when the mode 

transition occurs, L2 suddenly increases as a result of relieving compressive energy. 

It should be remarked that mode 4 is not sketched in Figure 3.3, and this mode is 

rarely observed in reality because when mode 3 reaches critical, it is more natural for its 

two straight sections to buckle simultaneously and become mode 5. This is confirmed by 

FEM simulation results in Figure 3.5. 
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Figure 3.5 L2 for different displacement ΔL, all data are normalized by original length L0. Geometrical 

parameters are L0/d = 10 and d/r = 10.  

The comparison between theoretical model and simulation in Figure 3.5 shows 

that, while for the most parts the variation trend of L2 is predicted by model agrees well 

with FEM simulation, the modal transition points are not consistent, especially for mode 2 

and beginning part of mode 5. In FEM simulation, the mode transition (higher order 

bifurcation) occurs sooner than that in the model, whose reason is analyzed below. 

Examination of FEM simulation results reveals that the deformed profiles are 

often not symmetric, in particular for mode 2 and beginning part of mode 5. As mentioned 

earlier, the theoretical model is based on the assumption that the buckled beam shape is 
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symmetric (Figure 3.3). However, when the straight section is redistributed along the beam 

(while keeping its length fixed) at the instant of modal transition, the total strain energy 

would remain the same. Using mode 2 as an illustrative example, the relocation of straight 

sections is illustrated in Figure 3.6, where the various sibling morphologies share identical 

bending and compressive strain energies. 

 

Figure 3.6 Different sibling morphologies for mode 2, symmetrical case, upper limit and lower limit, which 

affect its transition to the subsequent mode 3 with increasing load. 
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Figure 3.7 Buckling mode map for theoretical analysis and simulation with upper limit and lower limit. 

Geometrical parameters are L0/d = 10 and d/r = 10. 

The reshuffle of the straight sections, however, does affect the modal transition 

point which dictates the instability of the straight section. Such an effect of asymmetry on 

buckling mode transition was first noted by Chai [36] and then Pocheau and Roman [46], 

who provided the upper and lower limits for the modal transition. In the present study, 

Figure 3.6 illustrates the upper limit and lower limit for the transition from mode 2 to mode 

3. At a given nominal strain ΔL, the total length of beam in the projection of x direction is 

L0 – ΔL, which means that a + b + c + d + 2L2 = e + f + g + 2L2 = L0 – ΔL for all cases in 

Figure 3.6. In the symmetric case a = b = c = d. For the upper limit case e = f = g, so every 
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straight section is as short as possible which makes its instability the most difficult. For the 

lower limit, all straight sections merge into a single straight section (there are three possible 

shapes for lower limit at mode 2), which becomes the easiest to buckle. Although prior 

theoretical analysis is based on the symmetric model, similar analyses can be carried out 

for the upper and lower limit cases to obtain the bounds of modal transitions. One expects 

that the real solution (e.g. FEM simulation, which may be sensitive to defects) is within the 

upper and lower bounds. 

Analogous to Chai [36], a buckling mode map (Figure 3.7) is established to predict 

the modal status at different ΔL/L0, which includes that from the upper and lower limits, as 

well as that based on the symmetric assumption. The data points for upper limit and lower 

limit are slightly shifted vertically in order to differentiate themselves from the data points 

for symmetric case. In general, the FEM simulation results is indeed bounded by the upper 

limits and lower limits. 

3.2.4 Effect of geometrical parameters and implication for the crawling 

snake 

For a flexible beam with a given nominal strain ΔL/L0, its morphological profile 

is determined by the geometrical parameters. For the crawling snake in Figure 3.8, its 

morphology is rather distinct when the wall spacing is changed. Assuming the snake 

employs the same nominal strain to crawl forward, Figure 3.9 illustrates the buckling 
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shapes of beams with different L0/d at the same ΔL/L0 = 0.2. The data points are non-

dimensionalized by amplitude d in the y direction, and L0 in the x direction. 

 

Figure 3.8 Wave-like shape of a snake under parallel lateral constraints on a horizontal plane. The length of 

the snakes is 61 ± 4 cm; the radius of the snake is 1 cm; the width between constraints is respectively 2, 3, 

4, 5, 6 cm from (a–e).  

 

Figure 3.9 Buckling shape of beams with different L0/d at the same ΔL/L0 = 0.2. (a, b) show the beam with 

the same length L0/r = 100, but different d/r = 10 and d/r = 4; (c) shows the beam with length L0/r = 200 

and d/r = 5.  
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In general, as the wall spacing d becomes tighter, the number of curved section 

increases for beams with the same length at the same nominal strain. This trend is 

exemplified by 5 curved sections in Figure 3.9(a) and 9 curved sections in Figure 3.9(b), 

and it is qualitatively consistent with the shape of snake in Figure 3.8. Meanwhile, even 

with a larger d/r, the beam in Figure 3.9(c) shows more curved sections than Figure 3.9(b) 

does, because in this case the length of snake increases from L0/r = 100 to L0/r = 200. 

Therefore, the primary dimensionless geometry parameter governing the number of curved 

section (at a certain nominal strain) is L0/d. For beams with the same L0/d, larger d/r 

postpones the transition between buckling modes. 

 

Figure 3.10 Comparison between real snake and simulation results. In (a), 12 curved sections are found in 

both experiments and simulations, geometrical parameters in simulations are L0/r = 200, d/r = 7 and L0/d = 

28.6. In (b), 10 curved sections are found in the experiments, which corresponds to the simulation case of 

11 curved sections. Geometrical parameters in simulations are L0/r = 200, d/r = 10 and L0/d = 20. 

By observing the snake between parallel walls of width of 2 cm, i.e. snake shown 

in Figure 3.8(a), we found that the number of curved sections of snake consistently to be 



50 

 

12 during the crawling process (evidence can be seen in the supplement video). The snake 

between 2 cm walls is characterized by L0/d = 30.5, and it is corresponding to the simulation 

case L0/r = 200, d/r = 7, L0/d = 28.6 in Figure 3.10(a). The head part of snake is not counted 

because it is much stiffer than its body, so we may take a smaller L0/d in the simulation. 

The deformation shape of snake is not uniform because its movement (compressive strain) 

is not uniform throughout the snake body and the radius of snake varies from head to tail. 

Nevertheless, the overall number of curved sections is consistent with our theoretical 

analysis. In Figure 3.10(b), we also compare our model with snake in a channel of width 

of 3 cm, i.e. the snake shown in Figure 3.8(b). Snake under this circumstance is 

characterized by L0/d = 20.3, which is analogous to the present model with L0/r = 200, d/r 

= 10, and L0/d = 20. The number of curved sections of snake is consistently 10 during the 

crawling process, and the present simulation results shows 11 curved sections. This small 

discrepancy comes from the fact that snake does not follow the concertina pattern strictly 

during the procession because the snake has more lateral room to employ their normal 

lateral undulation mode. Moreover, the body of the snake is not uniform. Due to this reason, 

a large part of snake does not touch the sidewall, as shown in Figure 3.10(b). 

3.2.5 Discussion of the 2D confined buckling beam model 

This section describes the buckling shape of a linear elastic beam under two lateral 

constraints. Due to the unique boundary conditions of the beam ends, intriguing buckling 
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shapes are observed which are different from that reported previously [36, 37]. Our results 

elucidate the effects of geometrical parameters, ΔL/L0, L0/d and d/r, on the buckling shape 

of the beam. This study could also be of interest to the study of microtubules of cell 

cytoskeleton and related systems, whose buckling behaviors are constrained by 

surrounding structures [40, 47].   

We then apply our theory to explain why crawling snakes confined in channels 

adapt the unique wave-like shape, and we explain qualitatively the effect of width between 

two constraints on the shape of snakes. Previous researches have documented the shape of 

crawling snakes in concertina mode, and they detected alternative activation of axial 

muscle on two sides of the snake body during the concertina motion [44, 45]. Unlike the 

smooth progression of snake in lateral undulation mode, the snake in concertina mode 

progresses in a two-stage approach (video in the electronic supplementary material): the 

snake compresses its posterior of body into several bends while keeping anterior fixed, then 

the snake uses the areas of contact in the posterior as anchor and extend its anterior part in 

the forward direction. The snake extends its anterior part in a mode similar to lateral 

undulation, while our theory may effectively apply to the compression stage. For narrow 

channels such as Figure 3.8(a) and Figure 3.8(b), contracting snake body has to undertake 

the wave-like buckling shape due to instabilities under lateral constraints as discussed in 

previous sections. For the wider channels such as Figure 3.8(d) and Figure 3.8(e), snakes 

have more freedom to employ their normal lateral undulation mode to crawl, even though 
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the amplitude of undulation is confined by parallel walls [41]. So the shape of crawling 

snakes between lateral constraints with large width is actually a variation of lateral 

undulation mode. 

Our analysis is based on the assumption that the body of the snake is under 

compressive stress, which in reality is due to the muscle contraction along the snake body. 

The snake contracts its axial muscles on two sides of its body alternately in the concertina 

progression [45], so we take the distributive contractile muscle stress as the effective 

compressive stress in the snake body, which is consistent with our theoretical and numerical 

model. Our theory focuses on the linear elastic response of beam/snake, but snake 

occasionally exhibits interesting shapes shown in Figure 3.8(c) which is a spiral type 

buckling mode in the plastic regime [48]. We also observed this large deformation pattern 

in our simulation results, which requires future modeling effort. Furthermore, the friction 

is essential in the lateral undulation mode as well as in the concertina mode, which adds 

another complexity to our model. We hope to encompass the friction between snake and 

walls, as well the friction between snake and horizontal ground in the future studies. The 

model needs to be refined toward real snake behaviors. 

3.3 Three dimensional beam buckling under lateral constraints 

Section 3.2 discusses the buckling beam under lateral constraints confined in 

horizontal plane, and it exhibits buckling shape related to trigonometric functions (seen in 
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equation (3.2) and (3.9)). The exact solutions, however, are depending on the boundary 

conditions. Equation (3.3) and (3.8) show two examples of different boundary conditions. 

But if the elastic beam is not confined in two dimensional plane, a new series of 

deformation patterns develop as a results of the relaxation of constraints and introduction 

of new freedom in extra dimension. Buckling beam surrounded by cylindrical constraints 

in 3D space is usually studied in comparison to two parallel constraints in 2D case, and this 

configuration is widely used in directional drilling in petroleum industry, where the drilling 

bit is guided by the surrounding pipe. The most prominent deformation pattern under 

cylindrical constraints is the spiral shape, or coiled shape, or helical shape, and this shape 

is described wildly in literature [38, 39, 49-51]. The spiral shape is even observed in the 

beam embedded in elastic material, and is used to explain the biological shape in cells [40, 

47]. Researchers also employed the this model to explain the formation of DNA helix strand 

[52, 53]. 

One major difference between the 2D beam and 3D beam is torsion, as there is no 

torsion in 2D cases while torsion itself is an important source for deformations of 3D beam. 

And the beam with large torsion is also referred as rod in literatures. When served at both 

ends of a straight beam as boundary conditions (Figure 3.11), torsion can induce various 

buckling and post buckling shape, such as spiral shape and localized alpha shape [54, 55] 

both of which will be discussed in the following chapters.  
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Figure 3.11The deformation of 3D beam due to the application of torsion at both ends. Beam is divided into 

two strips with different color for better visualization. 

Equation (3.1) for 2D and its derivation equation (3.7) don’t consider torsion in 

the beam, so they are not appropriate to describe the 3D deformation therefore. Under this 

circumstance, Kirchhoff equations are introduced to the solve for the exact shape of beams 

whose length is much larger than their lateral dimensions. But before that, basic 

geometrical parameters have to be introduced [53, 56]. 

 

Figure 3.12 Frenet basis at s on a curve 

A space curve R(s, t) is defined as the central line of 3D beam, with arc length as 

s and time as t. At a certain point s on the curve, the Frenet basis (n, b, t) is defined to be 

the normal, binormal and tangent vectors to the curve as illustrated in Figure 3.12, within 

which tangent vector is calculated as 𝐭(𝑠) =
𝜕𝐑

𝜕𝑠
 and binormal vector defined as b = t × n. 
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In the Frenet basis, curvature κ at point s is given as 𝜅(𝑠) = |
𝜕𝐭

𝜕𝑠
| without sign. 

The Frenet triad forms a right handed orthonormal basis on the space curve R. In 

this system, the unit vectors are related as 

𝜕𝐭

𝜕𝑠
= 𝜅𝐧 

∂𝐧

∂s
= 𝜏𝐛 − 𝜅𝐭 

𝜕𝐛

𝜕𝑠
= −𝜏𝐧 

(3.16) 

within which τ represents torsion, the amount of rotation around the tangent t. This set of 

coupled equations are called as Frenet-Serret equations. We observe that once torsion τ and 

curvature κ are determined, the Frenet triad (n, b, t) can be obtained uniquely in the Frenet-

Serret equation, and the curve R could be reconstructed by integrating the tangent vector t 

along curve s. 

The local basis vectors (e1, e2, e3) on the curve is defined on the cross section of 

one point. Unit tangent vector t coincides with vector e3. The derivatives of triad (e1, e2, e3) 

with respect to arc length s and time t in local basis form twist vector 𝝎(𝑠, 𝑡) = 𝜔1𝐞1 +

𝜔2𝐞2 + 𝜔3𝐞3 and spin vector 𝜼(𝑠, 𝑡) = 𝜂1𝐞1 + 𝜂2𝐞2 + 𝜂3𝐞3, defined as: 

𝜕𝐞𝑖
𝜕𝑠

= 𝝎 × 𝐞𝑖 

𝜕𝐞𝑖
𝜕𝑡

= 𝜼 × 𝐞𝑖 

(3.17) 

Under static cases where derivatives with respect to time, i.e. η, are neglected, 

Kirchhoff equations state the conservation of linear and angular momentum for the central 

line of beam in the absence of external body force: 
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𝜕𝐅

𝜕𝑠
= 0 

(3.18) 

𝜕𝐌

𝜕𝑠
+ 𝐞3 × 𝐅 = 0 

(3.19) 

where F and M indicate the total force and total moment exerted on the beam respectively. 

Torque M is related to twist vector ω in the following equation: 

𝐌 = 𝐸𝐼1𝜔1𝐞1 + 𝐸𝐼2𝜔2𝐞2 + 𝐺𝐽𝜔3𝐞3 (3.20) 

where E represents Young’s modulus, G shear modulus, I1, I2 and J area moments of inertia 

for the beam cross section. For the circular cross section, I1 is equal to I2,  

𝐼 = 𝐼1 = 𝐼2 =
𝐽

2
=
𝜋𝑟4

4
 

(3.21) 

with r being the radius of the cross section. Equation (3.18), (3.19) and (3.20) are called 

Kirchhoff equations for the elastic long beams. Once solved, the solution provides the 

locations and postures for the whole beam. Kirchhoff equation is equivalent to Euler 

equation for the motion of rigid body about a fixed point under gravity as many researchers 

realized long time ago [53, 56].  

Closed analytical solutions for the vector equation system are generally 

troublesome to obtain, but some useful observations from Kirchhoff equations can be made 

with insights from Euler equations. Some first integrals of the Kirchhoff equations can be 

derived, first of which states that the torsion is constant along the beam. This is an important 

implication for the calculation of strain energy in the following content [53, 56, 57]. 

𝑀3′ = 0 (3.22) 

The strain energy in the three dimensional beam consists of four components: 
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bending energy, torsion energy, stretching energy and shear energy.  

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 + 𝐸𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 + 𝐸𝑠ℎ𝑒𝑎𝑟 (3.23) 

For long and slender elastic beam in the linear deformation regime, the shear energy and 

stretching energy can be neglected compared to bending energy and torsion energy [58]. 

Actually for two dimensional beam, the stretching/compressing energy is also a minor part 

compared to the bending energy. The three dimensional bending energy is a natural 

extension from the two dimensional case, given the fact that there is extra dimension in the 

shape. The torsion, however, was never considered in the two dimensional shape as there 

is no freedom for torsion on a beam constrained in a plane. The calculation of bending 

energy and torsion energy will be detailed in the following section considering the specific 

shape at each stage.  

3.3.1 Transition from 2D shape to 3D shape 

Similar to the two dimensional model in section 3.2, a three dimensional FEM 

model was constructed in ABAQUS with beam (initial straight length L0, radius r, diameter 

db) on the central axis of cylinder with diameter dt. One end of the beam is fixed without 

any displacement or rotation; the other end is pressed with displacement ΔL in the original 

beam direction without any rotation. The friction between beam and constraints is not 

considered in our simulation. The beam is meshed by 100 2-node three dimensional linear 

beam elements, and the wall is model by linear discrete rigid elements. The mesh density 
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is validated by mesh convergence studies.  

As the axial displacement ΔL increases from 0, the morphology of the deformed 

beam undergoes three major stages: initial 2D shape, 3D helix/spiral shape, 3D 

alpha/foldup shape. In section 3.3.1, we will characterize the initial 2D shape and address 

the question not answered by literature [38], which starts from the assumption that spiral 

buckling has already come into shape. The question is how the buckling shape transits from 

initial 2D shape to eventual 3D shape, since the original buckling shape deviating from 

straight beam remains in a 2D plane before the middle point touches lateral constraints, as 

shown in Figure 3.13. 

 

Figure 3.13 Two dimensional buckling shape before contact between beam and constraints. Geometrical 
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parameters in simulations are L0/r = 300 and dt/r = 20, displacement ΔL/L0 = 0.003. Lateral constraints are 

omitted. 

To study the 3D buckling shape, Su et al. [38] used a smart way to model the 

general lateral displacement with respect to arc length in equation (3.7), instead of lateral 

displacement in two separate directions. So the displacement in orthogonal direction can 

be described in single function, which is still a variation of Euler beam theory nevertheless. 

Stemming from this idea, the governing equation for the beam at the onset of buckling is 

written as:  

𝐸𝐼
𝜕4𝑦

𝜕𝑠4
+ 𝑃

𝜕2𝑦

𝜕𝑠2
= 0 

(3.24) 

where y denotes the lateral displacement, s the arc length of the beam (ranging from 0 to 

beam length L), P the applied compressive force, E Young’s modulus and I second moment 

of area of beam. The boundary conditions at two ends are fixed without rotations: 

𝑦(0) = 𝑦′(0) = 0 

𝑦(𝐿) = 𝑦′(𝐿) = 0 

(3.25) 

Before the middle point touches the constraints, the deformation remains in a two 

dimensional plane (although the direction of plane could be arbitrary), equation (3.24) is 

actually equivalent to equation (3.1) with the following general solution (with k2 = P/EI): 

𝑦 = 𝐴 sin 𝑘𝑠 + 𝐵 cos 𝑘𝑠 + 𝐶𝑠 + 𝐷 (3.26) 

The coefficients A, B, C and D in equation (3.26) can be determined by boundary 

conditions [34] described in (3.25) [34]:  
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𝐵 + 𝐷 = 0 

𝐴𝑘 + 𝐶 = 0 

𝐴 𝑠𝑖𝑛 𝑘𝐿 + 𝐵 𝑐𝑜𝑠 𝑘𝐿 + 𝐶𝐿 + 𝐷 = 0 

𝐴𝑘 𝑐𝑜𝑠 𝑘𝐿 − 𝐵𝑘 𝑠𝑖𝑛 𝑘𝐿 + 𝐶 = 0 

(3.27) 

In order to have a nontrivial solution for coefficients, the determinant of (3.27) 

should be zero: 

|

0 1
𝑘 0

0 1
1 0

sin 𝑘𝐿 cos 𝑘𝐿
𝑘 cos 𝑘𝐿 −𝑘 sin 𝑘𝐿

𝐿 1
1 0

| = 0 (3.28) 

Thus  

sin
𝑘𝐿

2
(
𝑘𝐿

2
cos

𝑘𝐿

2
− sin

𝑘𝐿

2
) = 0 

(3.29) 

One solution for equation (3.29) is: 

sin
𝑘𝐿

2
= 0 

(3.30) 

That indicates 

𝑘𝐿 = 2𝑛𝜋 (3.31) 

and  

𝑃𝑐𝑟 =
4𝑛2𝜋2𝐸𝐼

𝐿2
 

(3.32) 

So with value of kL determined, we can proceed to determine the value of 

coefficients:  

𝐴 = 𝐶 = 0,   𝐵 = −𝐷 (3.33) 

Therefore the buckling beam before the contact in corresponding to n = 1, and the 
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shape is: 

𝑦 = 𝐵 (cos
2𝜋𝑠

𝐿
− 1) (3.34) 

Coefficient B can be determined by extra geometrical constraints, but the general 

cosine shape can be discerned in XY projection of Figure 3.13. The smallest critical force 

is corresponding to 𝑃𝑐𝑟 = 4𝜋2𝐸𝐼 𝐿2⁄ .  

Upon beam’s touching the lateral constraints, another boundary condition is added 

to the beam in equation (3.25): 

𝑦(𝐿/2) = 𝐻,   𝑦′(𝐿) = 0 (3.35) 

with H being the radius of the cylindrical constraints. Therefore the coefficient B in 

equation (3.34) can be determined using the geometrical constraints: 

𝑦 =
𝐻

2
(1 − cos

2𝜋𝑠

𝐿
) (3.36) 

Equation (3.29) has another solution in addition to (3.30): 

tan
𝑘𝐿

2
=
𝑘𝐿

2
 

(3.37) 

For this scenario, kL/2 is approximately equal to 1.43π, 2.45π, 3.47π, 4.48π, et al. Therefore 

we can combine the two series of solution in equation (3.30) and (3.37), and the 

consequential critical forces Pcr in ascending order are obtained in the following series:  

𝑃𝑐𝑟 =
4𝜋2𝐸𝐼

𝐿2
,
8.18𝜋2𝐸𝐼

𝐿2
,
16𝜋2𝐸𝐼

𝐿2
,
24.01𝜋2𝐸𝐼

𝐿2
,
36𝜋2𝐸𝐼

𝐿2
⋯⋯ 

(3.38) 

The first two critical forces, i.e. first solutions of (3.30) and (3.37), are 

corresponding to first two buckling shapes in Figure 3.14. Immediate observation of 

simulation results reveals that first buckling modes are embodied in XY and XZ projection 
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in the initial stage of 3D buckling at Figure 3.15.  

 

Figure 3.14 Buckling Mode of three dimensional beam with clamped boundary conditions under lateral 

constraints: a) first buckling mode, b) second buckling mode. Lateral constraints are omitted. 

After comparison between 2D buckling shape in Figure 3.13 and 3D buckling 

shape in Figure 3.15, we could observe that 2D buckling begins to transit to 3D buckling 

after point contact between the middle point of beam and lateral constrains. While 

maintaining first buckling mode as illustrated in Figure 3.14a and XY projection in Figure 

3.15, second buckling mode (Figure 3.14b and XZ projection in Figure 3.15) in 

perpendicular to first buckling mode develops as the compression proceeds. So the 

inception of 3D buckling shape is a superposition of two buckling shape in orthogonal 

direction, and the compressive force at the instant of 2D-3D transition is predicted 

theoretically to be 𝑃𝑐𝑟 = 8.18𝜋
2𝐸𝐼 𝐿2⁄ . 

Even though the above theoretical analysis is a simplified estimation, it catches 
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the essentials when compressed beam transits from planar shape to spatial shape. The 

estimated value of 8.18π2 (≈ 80) is found to be consistent with the value of 79 at the 2D-

3D transition with the middle point as anchor in literature [59, 60]. 

 
Figure 3.15 Three dimensional buckling beam after contact between beam and constraints. Geometrical 

parameters in simulations are L0/r = 300 and dt/r = 20, displacement ΔL/L0 = 0.005. Lateral constraints are 

omitted. 

The initial lateral amplitude of buckling mode 2 (Figure 3.14b and XZ projection 

in Figure 3.15) is small at the transition point. But the lateral amplitude keeps on increasing 

as the compression continues, until the beam comes into contact with lateral constraints in 

the second direction (orthogonal to the initial direction). After these second contacts, the 

spiral shape comes into full bloom which is the presumption of literature [38], and the half 
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circle in YZ projection of Figure 3.15 evolves to full circle in YZ projection of Figure 3.16. 

Therefore, the contact part between beam and constraints increase from initial point contact 

to subsequent line contact.  

3.3.2 The spiral/helix shape 

 

Figure 3.16 Spiral shape of buckled beam in cylindrical constraints. Geometrical parameters in simulations 

are L0/r = 300 and dt/r = 20, displacement ΔL/L0 = 0.3. Lateral constraints are omitted. 

At moderate displacement ΔL/L0 = 0.3, the post-buckling spiral shape is illustrated 

in Figure 3.16. The distinct feature in the spiral shape is that almost all of the beam section 

except sections near two ends come into contact with the surrounding cylindrical 

constraints, as seen in the shape in YZ projection. This is in contrast to the 2D post-buckling 
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shape, where only a small portion of beam, i.e. straight section in Figure 3.3 and Figure 

3.6, is touching the lateral constraints.  

Despite the full contact between beam and constraints, sinusoidal shape can still 

be observed in lateral projections, i.e. XY projection and XZ projection in Figure 3.16. Su 

et al. [38] proposed that the onset of 3D spiral shape is the superposition of buckled shape 

in two perpendicular direction, which occur simultaneously at the same compressive stress. 

We can observe in Figure 3.16 that post-buckling spiral shape is indeed the superposition 

in orthogonal directions.  

As explained in section 3.3.1, point contact develops into line contact in spiral 

shape. And the contact length of the beam is also increasing as the axial displacement ΔL 

increased in the helix stage, as illustrated in Figure 3.17.  

 

Figure 3.17 Limit and length of line contact in spiral shape for simulations case L0/r = 600 and dt/r = 50 
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In order to better describe the shape of spiral/helical stage, Euler angles (ϕ, θ, ψ) 

for local basis (e1, e2, e3) need to be introduced beforehand. As illustrate in Figure 3.18, 

Euler angles are defined through a first rotation about Z axis by angle ϕ, a second rotation 

about X axis by angle θ, and finally a rotation about Z axis by angle ψ. 

 

Figure 3.18 Euler angles (ϕ, θ, ψ) at local basis 

Using the newly defined rotation angels, torsion equation (3.22) can be derived 

further into the following [53, 55-57]: 

𝜏 = 𝑤3 =
𝑑𝜓

𝑑𝑠
+
𝑑𝜙

𝑑𝑠
cos 𝜃 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(3.39) 

Equation (3.39) indicates that torsion τ consists of two parts: internal twist 
𝑑𝜓

𝑑𝑠
, 

and tortuosity 
𝑑𝜙

𝑑𝑠
cos 𝜃 which is determined by the general shape of the centerline of curve. 

The internal twist can be best visualized by the colored strip near the two ends in Figure 

3.11, since tortuosity or curvature is zero towards two ends. 
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Figure 3.19 Helix shape in the XY projection with illustration of Euler angle θ = π/2 – α and radius of 

constraint R 

Employing the Euler angles in the spiral shape, θ = π/2 – α is illustrated in Figure 

3.19 where α is the tilt angle between helix and cross section of circular constraint. Angle 

θ or α is uniform in the helix section. And the tortuosity can be further derived to: 

𝑑𝜙

𝑑𝑠
cos 𝜃 =

sin 𝜃 cos 𝜃

𝑅
 

(3.40) 

The internal twist 
𝑑𝜓

𝑑𝑠
  is usually determined from boundary condition, but 

literature [61] proved experimentally that the internal twist is 2(1+ν) per period of helix 

right before the transition from helix shape to alpha shape. 

Bending energy is a function of curvature for the centerline and bending stiffness 

of beam. The curvature for a standard helix shape is determined by the tilt angle α and 

radius of helix/constraints R: 
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𝜅 =
sin 𝜃 sin 𝜃

𝑅
 

(3.41) 

Therefore, the bending energy and torsion energy for unit arc length in the helical 

shape can be expressed as a function of θ since curvature κ and torsion τ are both functions 

of θ, if we assume the segments close to the two ends are in uniform helical shape: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑏𝑒𝑛𝑑𝑖𝑛𝑔 + 𝐸𝑡𝑜𝑟𝑠𝑖𝑜𝑛 =
1

2
𝐸𝐼𝜅2 +

1

2
𝐺𝐽𝜏2 

(3.42) 

Angle θ or α is then related to displacement ΔL for the two ends under the 

assumption that the total arc length L0 for the beam is constant through the deformation 

process (we have discussed that the axial strain of beam is negligible) 

𝛼 = sin−1 (1 −
Δ𝐿

𝐿0
) (3.43) 

Number of periods for the helix can then be calculated as  

𝑛 =
𝐿0 cos 𝛼

2𝜋𝑅
 

(3.44) 

Therefore, the total shape and total strain energy for the helix shape at a certain 

axial displacement ΔL can be determined. 

3.3.3 Foldup/alpha stage in the 3D post-buckling shape  

At moderate compression, the post-buckling beam exhibits spiral shape as 

depicted in Figure 3.16. If the compression continues, the spiral shape becomes unstable 

again at certain point, and a new state called foldup or alpha shape comes into being as 

illustrated in Figure 3.20. After the transition, the monotonous shape in XY projection and 

XZ projection becomes tangled up and the beam no longer touches the lateral constraints 
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perfectly in the YZ projection. Literatures [59, 60] describes the schemes for touching and 

non-touching parts which is drawn from their simulation results, and they also confirmed 

the detachment between the beam and lateral constraints in alpha shape. Therefore, there 

are two criteria indicating the transition from helix shape to alpha shape: first the contact 

length decrease as illustrate in Figure 3.17; second the certain part of beam is detaching 

from constraints compared with perfect contact in helix shape. 

 

Figure 3.20 Foldup shape for the post buckling beam. Geometrical parameters in simulations are L0/r = 300 

and dt/r = 20, displacement ΔL/L0 = 0.36. Lateral constraints are omitted. 

This foldup stage is comparable to the post buckling stage of compressive beam 

in 2D plane studied in reference [48], a typical non-linear behavior which cannot be 
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described by the linear Euler beam equation. The transition from structured spiral shape to 

messy foldup shape dissipates energy stored in the beam, and it is an abrupt event. 

Therefore this transition can also be exemplified by the internal energy of the whole beam. 

As seen in Figure 3.21, the internal energy of the whole beam keeps on increasing smoothly 

from initial 2D shape into the 3D spiral shape, then it undergoes a sudden decrease at the 

transition point into a relatively stable foldup stage.  

 
Figure 3.21 Internal energy of the three dimensional buckling beam under cylindrical constraints at 

different compression rate, from simulation. Spiral shape and subsequent foldup shape can be distinguished 

by the abrupt change of internal energy. 

Since the transition point can be pinpointed by observing the change of strain 
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energy, this leads us to believe that we can propose a theoretical solution for transition point 

by comparing the elastic energy between helix shape and alpha shape. The bending energy 

and torsion energy for helix shape is already calculated using equation (3.42) as we assume 

that the whole beam takes uniform helix shape without end segments. Helix shape is easier 

to process since it assumes an ordered pattern, while the alpha shape possesses more 

difficulties since the its shape can’t be expressed in a simple analytical way. However, we 

can utilize the solutions from established literatures [55], and insert the solution as a 

template to our current theoretical framework. 

The curvature for the alpha shape through L can be expressed as 

𝜅2 =
4𝑃

𝐸𝐼
𝑠𝑖𝑛2 (

𝜃

2
) (3.45) 

where P denotes the force at both ends 

𝑃 =
𝐸𝐼

𝜆2
 (3.46) 

λ represents the characteristic length  

𝜆 =
Δ

8𝐴
 

(3.47) 

Where A is nondimensionlized parameter depending on the general shape at alpha stage 

with A = 1 corresponding to zero gap (self-touch on the beam) and A = 0.3 corresponding 

to wide gap in the side view. In our case, we take A = 0.8 by comparing the shape in our 

simulation and that in literature [55]. 

θ is no longer a constant as the helix shape, and there is a maximum value at the 

center of beam. sin
𝜃

2
 in equation (3.45) can be calculated as  
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sin
𝜃

2
=

𝐴

𝑐𝑜𝑠ℎ(𝐴𝑙/𝜆)
 (3.48) 

There are two points which are key to ensure compatibility between helix shape 

and alpha shape when using the solution template: firstly the axial displacement ΔL/L0 is 

consistent before and after transition; secondly the torsion decreases by a certain amount 

Δτ which can be calculated using the following equation from literature [55]: 

∆𝜏 = 𝜏ℎ𝑒𝑙𝑖𝑥 −
4

𝐿
sin−1 (

𝐵

4𝜆
) (3.49) 

  

Figure 3.22 Strain energy between helical shape and alpha shape at different axial displacement, calculated 

from theoretical model in section 3.3.3 

We then can insert the calculated curvature and torsion in to equation (3.23) to 

obtain total strain energy for alpha shape. Furthermore, the strain energy for alpha shape 

can be compare to that in helix shape at a certain displacement ΔL/L0. As illustrated in 

Figure 3.22, the strain energy in the helix shape increase together with displacement ΔL/L0 
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while the strain energy in the alpha shape decreases together with ΔL/L0. When the axial 

displacement is small, strain energy for helix shape is larger than that for alpha shape. Once 

the axial displacement reaches a critical point, alpha shape serves as better energy efficient 

alternative to the helix shape, and we would expect the transition happens at this 

displacement.  

In our theoretical model we don’t consider the boundary effect of the beam, so we 

choose long beam with L0/dt > 300 to minimize the effect from two ends. Actually in 

literatures [53, 57], they also neglect the two end and the found consistent trend in relevant 

parameters. The boundary effect can be exemplified by the contact length in Figure 3.17, 

as in that case contact length is always smaller that 70% of the whole beam. We only wish 

to demonstrate the general trend of strain energy in helix shape and alpha, the exact shape 

of buckled beam should be calculated with the inclusion of boundary parts. 

We survey the number of period at the transition point with respect to geometrical 

parameter L0/dt in Figure 3.23. The number of period can be measured in YZ projection of 

Figure 3.16. Critical number of periods is in a very good linear relation with L0/dt, which 

means that the beam/rod assumes a constant shape at the transition point. We can also infer 

from the linear correlation that the ratio bending energy over torsion energy is a constant 

value because of the self-similar phenomenon. When the critical period number is smaller 

than 1, we could observe a smooth transition of strain energy from helix shape alpha shape, 

i.e. α1 in Figure 3.23. When the critical period number is larger than 1, we could observe a 
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sharp decrease of strain energy from helix shape alpha shape, i.e. α2 in Figure 3.23. 

 

Figure 3.23 A: number of period at the transition point from helix shape to alpha shape VS L0/dt. The 

simulation case corresponding to sudden decrease of strain energy is noted as α1, the simulation case 

corresponding to smooth transition of strain energy is noted as α2 

We then compile in Figure 3.24 the transition point ΔL/L0 from helix shape to 

alpha shape under different circumstances extracted from FEM simulations, and we can 

examine the effect of geometrical parameters L0/dt and dt/db on transition, just as what we 

did in chapter 3.2 for two dimensional beam buckling. Longer beams tend to possess larger 
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critical displacement due to larger strain energy stored in beam and therefore larger inertia. 

On the other hand, wider constraints can promote the transition from helix shape to alpha 

shape since wider constraints induce smaller bending energy. 

     

Figure 3.24 Critical displacement from helix shape to alpha shape as a function of L0/dt and dt/db from FEM 

simulations 

3.4 Conclusion and further discussions  

In this chapter we have demonstrated analytically and numerically the buckling 

shape and post-buckling shape of elastic beam under lateral constraints in 2D plane as well 

as in 3D space. We have also studied the transition between different buckling and post 

buckling modes in both of the cases. In 2D buckling beam with lateral constraints, the beam 

can be divided into curved segments not touching constraints and straight segments 

contacting constraints. On the contrary, the beam in 3D shape has more freedom to move 
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close to lateral constraints, so in the spiral stage almost every section of beam is touching 

the constraints. Despite its complexity, the 3D buckling shape can be decomposed into 

trigonometric curves in perpendicular planes, which is reminiscent of the basic buckling 

shape in 2D plane.  

We also studied preliminarily different shape of cross section for lateral 

constraints in the 3D case, especially constraints with square cross section instead of 

circular cross section. The spiral buckling shape basically remains, although the line 

contact between beam and constraint in circular constraints becomes point contact between 

beam and constraints in square constraints. We then proceeded to design a specific 

experiment to examine the role of lateral constraints on the spiral shape of buckling beam. 

We used a cardboard as the square constraints since it is easy to flip one side of the 

cardboard. First the beam was compressed to the mentioned spiral state, and then we 

flipped one side of the constraints. We observed that the buckled beam immediately pop 

out of the constraints, even though the friction between beam and constraints acts to refrain 

the popping-out. This indicates that all of the four sides of constraints are necessary to 

maintain the spiral buckling shape, the spiral shape is not stable under three sided 

constraints. A Finite Element Analysis using ABAQUS also confirms that buckling beam 

can’t even form spiral shape with three sided constraints, adding to the understanding that 

four sided constraints are essential to the spiral buckling shape. Other details of square 

lateral constraints need to be explored numerically and experimentally in future study.  
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In addition to the study of morphology, we can utilize this buckling mechanism to 

collect and reuse energy. Kinect energy of the environment can be converted into strain 

energy in the spiral beam using the compression process. Meanwhile, the stored energy can 

be reused if the compressing end is released, and this end will bounce back to its original 

position and release strain energy. The beam should not be compressed into alpha shape, 

since the reaction forces at the ends in alpha shape reverse direction from helix shape. 

Therefore, the critical displacement in Figure 3.24 can guide the design of device. There is 

also another way to release the buckled beam by flipping one part of the lateral constraints. 

The buckled beam will pop out of constraints in lateral direction, which is discussed in the 

above paragraph.  

 

Figure 3.25 Different release mechanism: a, release one end of the buckled beam; b, flip one side of the 

lateral constraints. 
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In all of the cases, friction plays an important role in the buckling process. Friction 

acts to prevent the relative motion between beam and constraints, so transition between 

different buckling modes would be delayed if friction is to be considered. Conceivably, the 

friction will dissipate strain energy stored in the buckling beam. We covered surface of 

beam and constraints with oil to minimize the friction in experiments and we don’t consider 

friction in all of the simulation and theoretic analysis. When the friction is large enough 

that it can prevent the sliding of beam on the surface of constraints, which is the reason 

behind lockup shape in the drilling bit [39]. Nevertheless, friction does exist in reality, and 

it should be studied in future research.  

Finally, our study in buckling beam under lateral constraints can contribute to the 

belief that some intriguing behaviors in nature, be it morphology of plants [62, 63] or 

morphology of animals, can be explained from the perspective of solid mechanics, 

especially buckling phenomena. As a possible extension in future, understanding this could 

also lead to advance of design of snake robots [64] or mechanical self-assembly [5]. 
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Chapter 4. Buckling of Solid Shell/Liquid Core 

Structure 

4.1 Buckling of elastic film on planer compliant substrate 

Since the pioneer work of buckling film on a compliant substrate published in 

1998 [65], in which nanoscale metal film deposited on thick elastomer substrate is under 

compression and then losses its stability to alleviate stress, researches on this topic has 

undergone substantial growth during the past two decades [66, 67]. The amplitude of initial 

buckling shape of one dimension, i.e. wrinkling, might increases eventually into a state 

where deep valley emerges, i.e. folding [68-70]. For soft substrate without hard skin, the 

amplitude of buckling increases until self-contact happens, i.e. creasing state [71, 72]. 

While for equi-biaxial compression, Chen discovered that among several competing 

buckling modes herringbone shape possess the lowest energy and is the most effective way 

to alleviate biaxial compressive stress [73, 74]. Other soft substrates have been studied, 

such as liquid as substrate [75-81], and these system exhibit unique deformation shape 

since surface tension comes into interact with the system.  

 

Figure 4.1 Three stages of buckling film on compliant substrate in one dimension: a), wrinkling; b) folding; 
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c) creasing [68].  

Although buckling has been historically viewed as malfunction and undesirable, 

researchers recently has proposed to utilize the buckling shape of bonded film-substrate 

structure to achieve flexible electronic devices, since the whole system can be stretched or 

compressed without breaking the working structure [82]. Furthermore, researchers have 

design partially bonded film-substrate structure to achieve even greater flexibility, of which 

the films or beams are designed to pop up from the substrate [83, 84].  

4.2 Buckling of elastic film on substrate with curvature 

 
Figure 4.2 Substrate without or with curvature. Open boundary and closed boundary are also compared. 

Previous section briefly summarized the buckling film on planar substrate, but the 

film buckling is also greatly affected by the curvature of the substrate. Researcher has 

already demonstrated that curvature could alter the stiffness of shell structure [85, 86]. Also, 

the buckling of a closed system is different from that of system with open boundary, as new 

geometrical constraints have been introduced. Cao et al. demonstrated that triangular and 
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labyrinth patterns appear as a result of biaxial compressive stress in spherical shell [87]. 

For post buckling analysis, the core/shell structure also exhibits similar wrinkling-to-

folding transition as open system does [88]. Instead of imposing global compressive stress, 

Vella et al. use a point force to introduce localized compressive stress, and they showed 

interesting wrinkles patterns [89-91] not seen on a solid substrate. In addition to liquid core, 

researchers also explored the solid shell filled with air, a compressible fluid, and the system 

shows unique deformation patterns due to the compressibility of air [92, 93].  

 
Figure 4.3 a) Mirror reflection (concave shape) as the buckling shape for thin shell structure; b) protruding 

shape of buckled shell.  

The typical buckling shape for a convex shell structure will be the mirror 

reflection which forms a concave shape on the original convex structure (see Figure 4.3a). 

As Pogorelov explained in his book [94] using geometrical arguments, shell structure tends 

to maintain its original length by adapting the mirror-reflected shape, even though it incurs 
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large local curvature in consequently bending. That’s because the bending stiffness for thin 

shell structure is much smaller than of stretching ability, so bending is easily accomplished 

than stretching. Previous researches have also confirm this trend of deformation [62, 87], 

and our simulation results generally follow this rule.  

 

Figure 4.4 Convex deformation on silicon dioxide shell filled with silver core [95]. 

Nevertheless, Researcher reported that solid shell/liquid core structure can 

generate protruding deformation [95] illustrated in Figure 4.3b. It is an intrigue problem 

which falls out of general theoretic predictions. In Figure 4.4, the protruding deformation 

occurs on the system with very thin SiO2 film encompassing the Ag core. The whole system 

was cooled from temperature of 1535 K when the Ag core is melted. As the temperature 

decreases, the thermal expansion coefficient of SiO2 is larger than that of Ag, which means 

the solid shell shrinks more than the liquid core does. At the same time, the solid shell and 

liquid core remain bonded, which renders SiO2 shell under compressive stress. We will try 

to identify how and when the concave deformation comes into shape in the future 
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discussion section 5.2.3. 

On the application side, Yin et al. utilized the soft core / hard shell model to 

successfully explain the intrigue wavy shape found on a lot of vegetables and fruits [5, 62, 

96], and they further proposed to employ this mechanical self-assembly to fabricate 

micro/nano scale gears. 

What we are going to explore in this chapter will be a new model with elastic solid 

shell encompassing liquid core. Although researchers showed different buckling shape of 

liquid droplet coated by nanoparticles in which the particle layer is deemed to be a 

continuum solid phase [97-103], a systematically study still lacks. By building this model, 

we plan to explain the morphologies of cell and cell nucleus [104-107] and relate the 

morphologies to diseased cell at different stage and to the stress or pressure applied on the 

surface of cells [108-113].  

4.3 The modeling of liquid core 

Typical fluid mechanics is formulated under the Eulerian coordinates, i.e. fluid 

flowing past specific fixed locations and we are studying the fluid properties at these 

specific locations as time lapses. But our study object, i.e. a closed liquid domain, should 

be formulated under Lagrangian coordinates, i.e. we are travelling together with fluid 

domain through space and time. Researchers have done relevant studies using Lagrangian 

formulation, such as the evolution of liquid droplet [114, 115]. At low Reynolds number, 
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Navier-Stokes equation are reduced to Stokes equation with continuity equation (body 

forces are negligible): 

𝜇∇2𝐮 = ∇𝑝 

∇ ∙ 𝐮 = 0 

(4.1) 

where u is the velocity of fluid, p the pressure and µ dynamic viscosity. However, the 

coupling between liquid core and solid shell has to be considered if this liquid model is to 

be used, and the Fluid-Solid Interaction (FSI) is usually computationally expensive. 

Therefore, we proposed to model the fluid core under the framework of solid mechanics to 

ensure the compatibility and convenience of computation.  

For the liquid core (a Newtonian fluid), the shear stress is equal to viscosity 

multiplying shear strain rate in the liquid. In the cases where deformation is a quasi-static 

process, the viscosity can be neglected. When both the strain rate and viscosity are 

prominent to generate shear stress comparable to pressure, the deviatoric behavior can’t be 

omitted. We utilize the Equation of State (EOS) model to simulate the liquid core region. 

The EOS model relates the pressure to the volume of liquid domain in Linear USUP 

Hugoniot form described in equation (4.2), where the relation is governed by the bulk 

modulus that can be configured.  

𝑝 =
𝜌0𝑐0

2𝜂

(1 − 𝑠𝜂)2
(1 −

Γ0𝜂

2
) + Γ0𝜌0𝐸𝑚 (4.2) 

where p is the pressure, ρ0c0
2 is the equivalent to the elastic bulk modulus K at small 

nominal strains (ρ0 indicates the initial density and c0 wave propagation speed), Γ0 is a 
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material constant. c0 and s define the linear relationship between the linear shock velocity, 

Us, and the particle velocity, Up, as 𝑈𝑠 = 𝑐0 + 𝑠𝑈𝑝. s and Γ0 are set to be 0 in the simulation. 

So the pressure is correlated to the nominal volumetric compressive strain η. The definition 

for the nominal volumetric compressive strain is stated as:  

𝜂 = 1 −
𝜌0
𝜌

 (4.3) 

The EOS region as fluid core shall be first verified before put to use. As illustrated 

in Figure 4.5, the typical pressure and shear stress are extracted from 2D FEM test cases 

with small viscosity at different locations with the application of temperature field. Stress 

on the center is consistent with the stress on the fluid/solid interface, showing that fluid 

region exhibit uniform pressure and shear stress everywhere. The viscosity in the test cases 

is small (same as water), so we could observe that the shear stress is zero in around the 

liquid domain. We have also verified the stresses in 3D EOS models, and stresses comply 

with the results from 2D EOS models. 

We have also tested another solid model using zero shear modulus and finite bulk 

modulus (referred as no-shear model) to describe the liquid core, but the no-shear solid 

failed to give results of uniform pressure and consistent shear stress. As a results, the no-

shear model generally generates nonsymmetrical deformations and is then discarded in 

favor of EOS model. 
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Figure 4.5 Typical pressure and shear stress in the 2D EOS liquid domain with small viscosity. a, stresses 

on the centerline; b, stresses on the solid/liquid interface 

One thing to be noted is that when the viscosity is larger or the time scale is small, 

we could observe large shear stress which is comparable to pressure, and pressure is no 

longer uniform. Figure 4.5 only serves as an example under small viscosity circumstances. 
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4.4 Two dimensional solid shell/liquid core structure 

4.4.1 Theoretical linear analysis of 2D solid shell/liquid core  

 

Figure 4.6 Original shape and deformed shape of 2D solid shell/liquid core model, radial displacement are 

notated as w, initial radius a.  

For the sake of simplicity, we will start our linear analysis from 2D solid 

shell/liquid core system and expand the analysis to 3D system in following section. 

Researchers have stated that for spherical core/shell structure with very large radius, the 

results converge to corresponding planar structure [87]. So this two dimensional model is 

illustrative for the following three dimensional model, and can provide some parallel and 

inspirational information for the onset of buckling processes.  

A representative two dimensional core shell model is illustrated in Figure 4.6. 

There are two components of shell displacement in cylindrical coordinates: radial 

displacement w, taken positive toward the center, and circumferential displacement v, taken 
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positive in the direction of increasing θ. These displacements are detailed in Figure 4.7 with 

the angles and arc length that will be used in the following analysis. 

 

Figure 4.7 An infinitesimal radial section with opening angle dθ, the radial displacement is w, 

circumferential displacement v, ds the arc length of solid shell. 

For the buckling of liquid filled cylindrical shell there are three components of 

total energy E in the linear buckling analysis, the bending energy of shell Ub, the 

circumferential tensile/compressive energy of shell Ut, and the volumetric deformation 

energy of liquid domain Uv. The third term should have been the elastic energy from 

substrate [96] as compared to solid substrate. Since there is no shear stress in the liquid, 

elastic energy consists only of volumetric deformation energy. 

𝐸 = 𝑈𝑏 + 𝑈𝑡 + 𝑈𝑣 (4.4) 

The bending energy can be calculated as 

𝑈𝑏 =
1

2𝐷
∫𝑀2𝑑𝑠 (4.5) 

where D represents the bending stiffness of solid shell:  

𝐷 =
𝐸ℎ3

12(1 − 𝑣2)
 

(4.6) 
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Bending momentum M in (4.5) is proportional to the change of curvature: 

𝑀 = 𝐷 (𝜅 −
1

𝑎
) 

(4.7) 

where κ is the curvature of the cylindrical shell after deformation and 1/a the original 

curvature of solid shell with a denoting the initial radius. The curvature κ after buckling is: 

𝜅 =
𝜑

𝑑𝑠 + Δ𝑠
 (4.8) 

Here φ is the radial angle of the shell in the natural plane between distance ds after 

deformation, which consists of two components: the circumferential displacement v 

(rotation) and deflection displacement w (the change of tangent of arc).  

 
Figure 4.8 Illustration on how to calculate curvature of solid shell in 2D polar coordinates 

The arc length after deformation is  

𝑑𝑠 + Δ𝑠 = √[(𝑎 − 𝑤)(𝑑𝜃 + Δ𝜃)]2 + Δ𝑤2 
(4.9) 

with  

Δ𝑤 =
𝑑𝑤

𝑑𝑠
𝑑𝑠 

(4.10) 

and  



90 

 

Δ𝜃 =
𝑑𝑣

(𝑎 − 𝑤)𝑑𝑠
𝑑𝑠 (4.11) 

So φ can be expressed as: 

𝜑 = 𝑑𝜃 + Δ𝜃 +
𝑑2𝑤

𝑑𝑠2
𝑑𝑠 = 𝑑𝜃 +

𝑑𝑣

(𝑎 − 𝑤)𝑑𝑠
𝑑𝑠 +

𝑑2𝑤

𝑑𝑠2
𝑑𝑠 (4.12) 

and then 

𝜑 = (1 +
𝑎𝑣′

𝑎 − 𝑤
+ 𝑎𝑤′′)𝑑𝜃 (4.13) 

Note that  

𝑑𝑠 = 𝑎𝑑𝜃 (4.14) 

Square root in equation (4.9) can be approximated in the following way: 

𝑑𝑠 + Δ𝑠 ≈ (𝑎 − 𝑤 + 𝑎𝑣′ +
(𝑤′𝑎)2

2(𝑎 − 𝑤 + 𝑎𝑣′)
)𝑑𝜃 (4.15) 

The circumferential tensile energy can be described as  

𝑈𝑡 =
𝐸ℎ

2(1 − 𝑣2)
∫ 𝜀2𝑑𝑠 (4.16) 

in which the circumferential tensile strain ε can be calculate from (4.15): 

𝜀 =
∆𝑠

𝑑𝑠
≈ −

𝑤

𝑎
+ 𝑣′ +

𝑎𝑤′2

2(𝑎 − 𝑤 + 𝑎𝑣′)
 

(4.17) 

 The volumetric deformation energy of the liquid domain is  

𝑈𝑣 =
𝐾𝑉

2
(
∫
(𝑎 − 𝑤)2

2
(𝑑𝜃 + ∆𝜃) − 𝑉

𝑉
− 𝜀0)

2

=
𝐾𝑉

2
(
∫
(𝑎 − 𝑤)2

2 (1 +
𝑎𝑣′
𝑎 − 𝑤)𝑑𝜃 − 𝑉

𝑉
− 𝜀0)

2

 

(4.18) 

where 𝑉 =
4

3
𝜋𝑎3 is the original liquid volume and K is the bulk modulus of the liquid. ε0 

is the shrinking ratio of liquid due to leakage or evaporation. 
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We define the dimensionless displacement as 𝑤1 = 𝑤 𝑎⁄   (𝑤1 < 1 ), 𝑣1 = 𝑣 𝑎⁄  

and 𝑑𝑤 𝑑𝑠⁄ = 𝑑𝑤1 𝑑𝜃⁄ , 𝑑𝑣 𝑑𝑠⁄ = 𝑑𝑣1 𝑑𝜃⁄ . So the bending energy can be rewritten as: 

𝑈𝑏 =
𝐷

2
∫(𝜅 − 1 𝑎⁄ )2𝑑𝑠 =

𝐷

2𝑎
∫(

1 +
𝑣1′

1 − 𝑤1
+ 𝑤1′′

1 − 𝑤1 + 𝑣1
′ +

(𝑤1′)2

2(1 − 𝑤1 + 𝑣1
′)

− 1)

2

𝑑𝜃 
(4.19) 

where the derivations are defined as 𝑤1
′ = 𝑑𝑤1 𝑑𝜃⁄  and 𝑣1

′ = 𝑑𝑣1 𝑑𝜃⁄ .  

Also the circumferential tensile energy is:   

𝑈𝑡 =
𝐸ℎ

2(1 − 𝑣2)
∫ 𝜀2𝑑𝑠 =

𝐸ℎ

2(1 − 𝑣2)
∫(−

𝑤

𝑎
+ 𝑣′ +

𝑎𝑤′2

2(𝑎 − 𝑤 + 𝑎𝑣′)
)

2

𝑑𝑠

=
𝐸ℎ𝑎

2(1 − 𝑣2)
∫(−𝑤1 + 𝑣1

′ +
(𝑤1′)

2

2(1 − 𝑤1 + 𝑣1
′)
)

2

𝑑𝜃 

(4.20) 

The volumetric deformation energy of liquid domain is   

𝑈𝑣 =
𝐾𝜋𝑎2

2
(
∫
(𝑎 − 𝑤)2

2 (1 +
𝑎𝑣′
𝑎 − 𝑤)𝑑𝜃 − 𝜋𝑎

2

𝜋𝑎2
− 𝜀0)

2

=
𝐾𝜋𝑎2

2
(
∫
(1 − 𝑤1)

2

2 (1 +
𝑣1′

1 − 𝑤1
)𝑑𝜃 − 𝜋

𝜋
− 𝜀0)

2

 

(4.21) 

In order to simplify the notation, we can define two nondimensionalized 

coefficients: 

𝐴 =
𝐸ℎ𝑎 (1 − 𝑣2)⁄

𝐷 𝑎⁄
=
12𝑎2

ℎ2
 

𝐵 =
𝑎2𝐾

𝐷 𝑎⁄
=
12(1 − 𝑣2)𝐾𝑎3

𝐸ℎ3
 

(4.22) 

Therefore, the total energy E can be expressed as: 
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𝐸 =
𝐷

2𝑎

{
 

 

∫(
1 +

𝑣1′
1 − 𝑤1

+ 𝑤1′′

1 − 𝑤1 + 𝑣1
′ +

(𝑤1′)2

2(1 − 𝑤1 + 𝑣1
′)

− 1)

2

𝑑𝜃

+ 𝐴∫(−𝑤1 + 𝑣1
′ +

(𝑤1′)
2

2(1 − 𝑤1 + 𝑣1
′)
)

2

𝑑𝜃

+ 𝐵𝜋(
∫
(1 − 𝑤1)

2

2 (1 +
𝑣1′

1 − 𝑤1
)𝑑𝜃 − 𝜋

𝜋
− 𝜀0)

2

}
 

 

 

(4.23) 

As seen in (4.23), the variation of E is correlated to w1 and v1. Starting from this, 

we can obtain the equilibrium equations for the liquid filled solid shell. For a typical sample 

in our study the thickness is very small compared to the radius, i.e. a/h ~ 100 in our case. 

A very small bending stiffness means the shell tends to bend rather than stretch [75], other 

literatures also state the principle of inextensionality when studying the buckling of empty 

solid shell [34]. As the stretching energy (4.20) becomes zero, the term in the parenthesis 

should be zero; 

−𝑤1 + 𝑣1
′ +

(𝑤1′)
2

2(1 − 𝑤1 + 𝑣1
′)
= 0 

(4.24) 

We assume the radial displacement w1 takes the form described in [34] which is 

consistent with the perturbation technique [96]: 

𝑤1 = 𝑤0 + 𝑎𝑛 cos 𝑛𝜃 

𝑣1′ = 𝑏𝑛 cos 𝑛𝜃 

(4.25) 

With the linear buckling analysis, we assume small perturbation with w1 << 1. 

Substitute (4.25) back into (4.24) and take θ as 0, we obtain the relation between parameters:  
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𝑤0 + 𝑎𝑛 = 𝑏𝑛 (4.26) 

Using equation (4.24), (4.25) and (4.26), the total energy in (4.23) could be 

deduced to: 

𝐸 =
𝐷

2𝑎
{𝜋[𝑤0

2 + 2(1 − 𝑛2)𝑤0𝑎𝑛 + (1 − 𝑛
2)2𝑎𝑛

2]

+ 𝐵𝜋 (4𝑤0
2 − 4𝑤0

3 + 2𝑤0
2𝑎𝑛 + 4𝑤0𝜀0 + 𝑤0

4 − 𝑤0
3𝑎𝑛 − 2𝑤0

2𝜀0

+
1

4
𝑤0
2𝑎𝑛

2 + 𝑤0𝜀0𝑎𝑛 + 𝜀0
2)} 

(4.27) 

According to the minimization of total energy, we have two derivatives equal to 

zero 𝜕𝐸 𝜕𝑎𝑛⁄ = 0 and 𝜕𝐸 𝜕𝑤0⁄ = 0. Therefore, we arrive at: 

2𝑎𝑛(1 − 𝑛
2)2 + 2(1 − 𝑛2)𝑤0 + 2𝐵𝑤0

2 − 𝐵𝑤0
3 +

𝐵

2
𝑤0
2𝑎𝑛 + 𝐵𝑤0𝜀0 = 0 

(4.28) 

and 

2𝑤0 + 2(1 − 𝑛
2)𝑎𝑛 + 8𝐵𝑤0 − 12𝐵𝑤0

2 + 4𝐵𝑎𝑛𝑤0 + 4𝐵𝜀0 + 4𝐵𝑤0
3

− 3𝐵𝑎𝑛𝑤0
2 − 4𝐵𝑤0𝜀0 +

𝐵

2
𝑤0𝑎𝑛

2 + 𝐵𝑎𝑛𝜀0 = 0 

(4.29) 

Neglect the higher order terms with w1 << 1, equation (4.28) and (4.29) can be 

approximated into the following equation:  

𝑎𝑛 = (
1

𝑛2 − 1
−

𝐵𝜀0
2(1 − 𝑛2)2

)𝑤0 (4.30) 

and  

𝑤0 =
8(1 − 𝑛2)2𝜀0

𝐵𝜀0
2 + 2𝜀0(1 − 𝑛2) − 16(1 − 𝑛2)2 + 8(1 − 𝑛2)2𝜀0

 (4.31) 

We could observe from equation (4.27) that n = 2 is corresponding to the minimum 

total energy (n = 1 represents the translation of the total structure as a rigid body). And we 

could also deduce the critical shrinking ratio when the solid ring becomes unstable from 
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the original circular shape: 𝜀0 = 2(𝑛
2 − 1) 𝐵⁄ .  

 

Figure 4.9 The buckling of flexible tube filled with liquid under compression, from reference [116]. The 

system configuration is explained in the top plot with indication of pressure at different location. The XY 

plots on the left shows the deformation pattern for the cross section. External pressure increases from (a) to 

(d) on the right four panels 

Our theory is also in accordance with the previous study of flexible tube filled 

with liquid such as human veins [116], depicted in Figure 4.9. The positive pressure 

difference between the outside and the inside Pe - P causes the collapse of the elastic tube, 

and cross section at the onset of buckling is the same with the shape of n = 2 in theoretical 

analysis. The post buckling shape indicates that there is point contact and line contact for 

the solid shell for very large pressure difference, but this behavior is out of our research 

category for now. 
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4.4.2 Finite element simulation of two dimensional solid shell liquid core 

structure 

We have shown analytically that minimum energy state is associated with n = 2 

using the linear perturbation theory, consequently the deformed shapes under different 

circumstances would converge to n = 2 scenario. Linear theory is proven effective on 

predicting the onset of buckling which is elliptical shape, but the following deformation 

processes enter the nonlinear regime which is difficult for the theoretical analysis. 

Therefore, FEM models are setup to determine the nonlinear deformation.  

By employing the liquid model described in section 4.3, the 2D solid shell/liquid 

core system is simulated in the FEM software ABAQUS. The substrate is meshed by over 

1600 linear quadrilateral plane strain elements (EOS can be represented by regular solid 

elements) and the shell is represented by 4 layers of more than 500 linear quadrilateral plain 

strain elements with reduced integration to account for large rotation. In all cases, the mesh 

density is validated from mesh convergence studies. When using EOS model, the meshes 

in liquid domain get distorted easily when the viscosity is small as nodes at the interior of 

liquid have little constraints compared to the bonded liquid boundaries, so Arbitrary 

Lagrangian Eulerian (ALE) remeshing scheme in the ABAQUS solver is needed regularly 

to ensure the good condition of meshes. Generally speaking, remeshing are necessary for 

the Lagrangian FEM simulation for liquid domain. (ABAQUS automatically assume 

sliding boundary condition for the ALE remeshing scheme). 
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A temperature field is imposed on the shell as well as core to simulate the loading 

process. The thermal expanding coefficient of solid shell is much larger than that of core 

(thermal expansion coefficient of core is set to be 0 in the simulations), while the shell and 

core remain perfectly bonded. Therefore, the solid shell undergoes compressive stress and 

eventually buckles to release the compressive stress. The shrinking of liquid domain as the 

activating force is not easily implemented in ABAQUS, so expanding of solid shell is used 

instead which is proved to be equivalent with the liquid shrinking scheme [68]. 

Since we impose the load on the 2D core/shell structure by applying temperature 

field on it, we need to calculate the compressive stress in the solid shell at certain 

temperature through the following equation assuming there is no actual deformation on the 

core shell structure: 

𝜎𝜙𝜙 = −
𝐸𝛼𝑇

1 − 2𝜈
 

(4.32) 

Where σϕϕ represents hoop stress in solid shell, E Young’s modulus of solid shell, 

α thermal expansion coefficient of shell, ν Poisson’s ratio and T the temperature. So we can 

examine the evolution history of 2D solid shell liquid core system at different stress level.  

Based on the experience of solids core solid shell structures [96], a series of 

models with different geometry parameter R/t and material parameter Ef/Es are studied, 

where R indicates the radius of liquid core, t the thickness of solid shell, Ef the Young’s 

modulus of solid shell and Es bulk modulus of water explained in equation (4.2). We find 

that they all exhibit similar deformation pattern of peanut shape in Figure 4.10 as the 
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compressive stress/strain in solid shell increases. As a result, we choose a representative 

model with R/t = 10 and Ef/Es = 1 as our main studying object in this section. 

 

Figure 4.10 The evolution of 2D solid shell liquid core structure with viscosity of 10-3 Pa·s, radius of core 

0.01 m, density of core 103 kg/m3 and time scale 1 s. The hoop strain in solid shell is given under each 

shape. 

The evolution of a typical peanut shape is documented in Figure 4.10. These shape 

are developed from original buckling shape of n = 2 as indicated as σϕϕ = 0.05. The critical 

compressive hoop stress for the model is around 0.13×108 Pa (corresponding to hoop strain 

of 0.0026), so we are observing the shapes which are well beyond the buckling threshold, 

while in the solid shell solid core system only shapes slightly above buckling threshold are 

reported [62, 96]. The peanut shape can be characterized by the ratio of long axis to original 
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diameter d0 and the ratio of short axis to original diameter d0. The overall trend for the 

structure is that the peanut shape becomes flatter as the compressive stress in solid shell 

increases, seen in Figure 4.11. The volume of the liquid region is almost constant since the 

bulk modulus is much larger than the bending stiffness of solid shell, and we impose the 

loading on solid shell instead of liquid core.  

 

Figure 4.11 Long axis / d0 and short axis / d0 in the deformation process of Figure 4.10, compared with 

simulation results from Lattice Boltzmann Method simulations 

In addition to the models represented in Figure 4.10, we also observe another 

series of deformation where intermediate irregular shape appears before eventual advent of 

peanut shape, as depicted in Figure 4.12. We call this intermediate shape amorphous shape 

since the shape lacks symmetry compared to peanut shape in Figure 4.10, and it is difficult 

to characterize using wave number and wave length as the ordered shape. 
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Figure 4.12 The evolution of 2D solid shell liquid core structure with viscosity of 10-3 Pa·s, radius of core 

0.1 m, density of core 104 kg/m3 and time scale 1 s. The hoop strain in solid shell is given under each shape. 

One stark contrast between liquid core system and solid core system is that liquid 

core system (including peanut shape and amorphous shape) can’t generate ordered gear-

like deformation as the solid core system does. According to literature [62, 96], the 

buckling wave number for solid core solid shell system can be predicted by the relation 

𝑛𝑟 ≈ (
𝑅

𝑡
)
3/4

(
12𝐸𝑠̅̅ ̅

𝐸𝑓̅̅ ̅̅
)
1/4

, where R represents radius of solid core, t thickness of solid shell, 

𝐸𝑓̅̅ ̅ and 𝐸𝑠̅̅ ̅ the equivalent Young’s moduli of shell and core respectively. The small scale 

deformations on the solid shell for gear-like deformation induce large curvature and 

consequent large bending energy, which requires large compatible strain energy in the core 

domain. Liquid domain can’t produce large strain energy since the energy only comes from 
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volumetric change, and the small shear stress has little contribution to the total strain energy. 

In an attempt to generate gear-like structure for the liquid core system, we resort 

to increase the shear stress in the liquid domain. Shear stress can be adjusted by changing 

viscosity and time scale, since shear stress is the produce of viscosity and shear strain rate. 

We use the ratio between shear stress and pressure to represent the process changing from 

liquid core to solid-like core. As shown in Figure 4.13, viscosity increases from a tiny 

portion of pressure to a value compared to pressure by using a larger viscosity and small 

time scale.  

 

Figure 4.13 Increasing the shear stress in liquid region by increasing viscosity and decreasing time scale 

In order to characterize the increase of pressure relative to shear stress, we propose 

a dimensionless parameter Kτ/μ for the liquid core, where K indicates the bulk modulus, τ 

time scale and μ dynamical viscosity for liquid. Increasing viscosity μ and decreasing time 



101 

 

scale τ in Figure 4.13 corresponds to a smaller Kτ/μ. Figure 4.14 shows the pattern evolution 

with increasing hoop strain for different Kτ/μ. Therefore, larger value of Kτ/μ implies cases 

with smaller shear stress compared to pressure, the shapes converge to peanut shape at 

early stage of evolution. Smaller value of Kτ/μ implied an intermediate state between solid 

and liquid. Although the shapes eventually transit to peanut shape, we could observe some 

amorphous shapes before the final transition. What’s more interesting is we can even 

observe ordered gear-like pattern in a small window (highlighted in red rectangle) in the 

left low side of Figure 4.14. This gear-like state exists shortly before entering the 

amorphous state and later peanut state.  

 

Figure 4.14 Deformation map for 2D liquid core solid shell structure with varying Kτ/μ and εϕϕ, with ◊ 

indicating peanut shape, □ indicating the ordered gear-like shape (highlighted in read rectangle), + 

indicating amorphous shape, ○ indicating steady circular shape 

Since we increase the shear stress in liquid core by decreasing the time scale, we 
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are encountering a problem that the simulation is no longer a quasi-static process, and the 

dynamic effect has to be considered, inertia also plays important role at this regime. Similar 

to Reynolds number in fluid mechanics, we propose a similar dimensionless parameter 

ρR2/μτ to describe the ratio between inertia and shear in liquid core, where ρ is the density 

and R is the radius of liquid core. Therefore, increasing density and size of liquid induces 

a larger inertia compared to shear.  

 

Figure 4.15 Deformation map for 2D liquid core solid shell structure with varying ρR2/μτ and εϕϕ, with ◊ 

indicating peanut shape, □ indicating the ordered gear-like shape, + indicating amorphous shape, ○ 

indicating steady circular shape 

Figure 4.15 shows the pattern evolution with increasing hoop strain εϕϕ for 

different ρR2/μτ. When the inertia is small, core shell structure transit to peanut shape 

immediately, skipping the amorphous stage. When the inertia is large, amorphous shape 

stays before peanut shape, and the window for amorphous state expands as the inertia 
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increases. Amorphous state is more prominent for larger inertia because inertia in solid 

shell will introduce dynamic effects and consequential asymmetries in the model. The 

dynamic effects will damp out eventually, and the core shell structure will settle down to 

the final peanut shape.  

For the theoretical analyses in section 4.4.1 about static or quasi-static process, 

they are corresponding to regions where time scale is large enough, i.e. far right in Figure 

4.14 and far left in Figure 4.15. Large time scale means that deformations always converge 

to peanut shape regardless of other parameters, which is also consistent with theoretical 

analysis.  

In summary, we analysis the 2D solid shell liquid core structure theoretically and 

numerically in this section. We observe that liquid core system can’t generate ordered gear-

like deformation pattern as the solid core system does, instead the liquid core system 

converges to peanut shape as the loading process proceeds. An intermediate amorphous 

shape is observed between the initial circular shape and final peanut shape, and the shear 

stress together with inertia will affect the transition between initial circular state and final 

peanut state.  

4.5 Three dimensional solid shell liquid core structure 

The theoretical analysis for 3D solid shell liquid core structure is more difficult 

compared to 2D structure, so we only study the problem through simulations in FEM 
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software ABAQUS. Again, the liquid core is simulated by the EOS model as described in 

last section. The substrate is meshed by over 260,000 hexahedron solid elements (EOS can 

be represented by regular solid elements) and the shell is represented by over 270,000 

hexahedron solid elements with reduced integration to account for large rotation. There are 

a least four layers of element in the solid shell to ensure the accuracy. In all cases, the mesh 

density is validated from mesh convergence studies. 

Using the same loading method and the same remeshing scheme for EOS region 

as what we did in 2D model, we have built a series of 3D solid shell liquid core models 

with different material properties and geometrical properties. We can use the same equation 

(4.32) to estimate the hoop stress in the solid shell. Since we are dealing with initial 

spherical shape, the longitudinal stress is equal to hoop stress [62].  

Because we are dealing with liquid model of viscosity, dynamic effect should be 

considered at small time scale as discussed in 2D cases. Therefore, deformation shape 

shows different pattern at different time scale. Deformation shapes for model with R/t =10 

and Ef/Es = 1 under different strain loading rate are illustrated in Figure 4.16, all of the 

shapes are plotted at the same hoop stress. Large strain loading rate 0.5/0.01s induces small 

scale protruding hills on the shell surface, which looks similar to convex pattern in Figure 

4.4. However, small hills in Figure 4.4 are separated from each other while hills are 

interconnected in Figure 4.16. We will make another efforts to explain the intrigue pattern 

in Figure 4.4 in section 5.2.3 using another set of theory and simulations. On the contrary, 
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the small loading rate induces concave patterns that are like punched sandbag. Deformation 

pattern for strain loading rate 0.5/1s seems interchangeable with that of 0.5/10s, which 

means 0.5/1s case already enters quasi-static regime. Therefore, we will study 0.5/1s case 

as a representation in the following analysis. For all of the model with different loading 

rate, only the fastest loading cases show convex pattern, which is maybe due to the inertia 

in the solid shell and increase of shear stress in the liquid core as discussed in 2D cases.  

 

Figure 4.16 Deformation pattern for different strain loading rate for 3D solid shell liquid core model of R/t 

=10 and Ef/Es =1 

At the same hoop stress in the solid shell, we compile the deformation patterns for 

different Ef/Es and R/t at two strain loading rates, 0.5/0.01s as the large loading rate and 

0.5/1s as the small loading rate. Figure 4.17 illustrates the pattern map for large loading 

rate. Models with smaller R/t have larger critical buckling strain, so we choose deformation 

shapes at different strain in Figure 4.17, i.e. strain of 0.25 for R/t = 10, strain of 0.15 for R/t 

= 20 and strain of 0.1 for R/t = 40 & R/t = 50. The thinnest solid shell we have tested is R/t 

= 100, but the model is not stable with nonsymmetrical deformation, so R/t = 100 is not 

include in the following study.  
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Figure 4.17 Deformation patterns for varying R/t and Ef/Es at strain of 0.25 for R/t = 10, strain of 0.15 for 

R/t = 20 and strain of 0.1 for R/t = 40 & R/t = 50. Large strain loading rate 0.5/0.01s 

The length scale of the deformed structure is related to the bending stiffness of 

solid shell 𝐷 =
𝐸ℎ3

12(1−𝑣2)
 in equation (4.6) and its consequent bending energy in equation 

(4.5), which is dependent on Young’s modulus as well as thickness of shell. Therefore, 

models with smaller bending stiffness, i.e. right lower region in Figure 4.17 such as model 

of R/t = 50 and Ef/Es = 1, can generate finer structure compared to models with larger 

bending stiffness, i.e. left upper region in Figure 4.17 such as model of R/t = 20 and Ef/Es 

= 50. Smaller bending energy also means smaller energy penalty for deformation, so shell 

is easier to bend at right lower region. The deformation pattern for smaller bending stiffness, 

however, resemble the herringbone shape for the solid shell solid core system in planer 
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structure as well as in spherical structure [74, 87]. As explained in last section, smaller time 

scale introduces considerable shear stress to the liquid core, so the liquid core exhibits 

solid-like behaviors. For thin solid shell models with R/t = 40 and R/t =50, the wave length 

of herringbone pattern increase as the Young’s modulus increases, similar to the trend in 

literature [62, 87]. On the contrary, larger bending stiffness region shows the concave 

pattern similar to that in Figure 4.3a, although it shows more solid-like properties compared 

to shapes in Figure 4.18. 

In contrast to Figure 4.17, Figure 4.18 summarize the deformation pattern for 

varying R/t and Ef/Es at small loading rate, which can be considered as static or quasi-static 

loading cases. The prominent deformation shape is the single concave region on the 

spherical surface, similar to theoretical predication of empty solid shell in book [94]. When 

the bending stiffness is small, such as the model of R/t = 50 and Ef/Es = 10, we could 

observe very sharp edge and transition points on the periphery of concave shape. On the 

contrary, there is only round edge on the periphery of concave shape for relative larger 

bending stiffness such as the model of R/t = 20 and Ef/Es = 50. Even smaller bending 

stiffness, such as model of R/t = 50 and Ef/Es = 1 and model of R/t = 40 and Ef/Es = 1, can 

generate two major concave shapes on the whole spherical surface. Models with large 

bending stiffness, such as the models in the column of R/t = 10, generate several small scale 

concave patterns.  
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Figure 4.18 Deformation patterns for varying R/t and Ef/Es at strain of 0.08. Small strain loading rate 0.5/1s 

Upon close observation, the concave shape shows polygonal edges, a secondary 

buckling phenomena after the initial symmetrical pattern, similar to deflating beach ball 

[92] and beach ball on which a point force is applied [91]. The concave shape induces 

compressive stress on the inside of the rim, but tensile stress on the outside of the rim. The 

initial circular edge then losses it stability as the compressive stress exceed the critical 

stress for the circular rim. Our 5 edges in the polygonal pattern is close the prediction in 

literature [92] which states that number of edge is approximately √𝑅/𝑡 ≈ 6. 

4.6 Conclusion and further discussion  

 In this chapter, we studied the buckling and post buckling deformation of solid 



109 

 

shell filled with liquid core both in two dimension and three dimension. We proposed a 

new material model to simulate liquid core, which can be fully integrated to the framework 

of solid mechanics. We then proceeded with this new model in the FEM software ABAQUS 

and obtained qualitative and quantitative results for the buckling process of solid shell 

liquid core system. A series of parameters are examined to reveal their effects on the 

buckling process, such as the strain in solid core, thickness of solid shell, the shear stress 

and inertia in liquid core, the modulus of liquid core.  

We first perform a linear stability analysis for the 2D solid shell liquid core system. 

After calculating the elastic energy of the core shell structure, we determine that n = 2 is 

corresponding to the lowest energy among other value of n. Therefore, the initial circular 

2D structure will transit to elliptical shape at the moment of buckling. Then subsequent 

post-bulking shapes are studied using FEM simulation. Different 2D solid shell liquid core 

models converge to peanut shape eventually, as Figure 4.10 and Figure 4.12 shows. But 

based on two dimensionless parameters Kτ/μ and ρR2/μτ, models at different loading strain 

may exhibit amorphous asymmetrical shape before the final peanut shape, as summarized 

in Figure 4.14 and Figure 4.15. Models with large shear stress and large inertia will show 

amorphous shape and even temporary ordered gear-like shape.  
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Figure 4.19 Solid shell liquid core model for Lattice Boltzmann Method simulation with immersed 

boundary method. Light blue region represents liquid region, and solid orange line represents initial circular 

solid shell, dashed orange line presents deformed solid shell 

The 2D peanut shape is compared to results calculated from Lattice Boltzmann 

Method (LBM) simulation which is a collaboration with another colleague in our lab. As 

illustrated in Figure 4.19, the whole computational domain (light blue region) is marked as 

liquid, with only the red circle are marked as solid. The liquid domain is calculated using 

standard LBM formulation, while the velocity on the solid shell is set to be the same with 

surround liquid both in the shell and out of the shell. The solid shell is essentially a curve 

without thickness in the liquid environment, but the elastic energy for the solid shell is 

calculated by summering bending energy and tensile energy using the same parameters in 

FEM simulations. Total length and curvature for the solid shell shall be monitored for the 

calculation of elastic energy. The whole system is then evolving based on the principle of 
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energy minimization, after a certain initial strain is introduced to the solid shell as activating 

mechanism. Therefore, the LBM simulation represents the shape at equilibrium state. This 

scheme is called immersed boundary method [117, 118], and it is extremely useful for the 

Fluid Solid Interaction simulations.  

Axis lengths for the 2D peanut shape from LBM simulation are compared with 

that from FEM simulation in Figure 4.11. We could observe that general trend for the 

peanut shape evolution in FEM agrees well with the trend in LBM, especially for the short 

axis. However, a discrepancy on the long axis between the two simulations, and the 

discrepancy is increasing as the strain in solid shell increases. The discrepancy indicates 

that there is certain degree of dynamic effect in the FEM simulations, so it is reasonable to 

check the inertia in simulation for 2D cases as well as 3D cases.  

We then employ the same method in FEM simulations of 3D solid shell liquid 

core structure as 2D cases. Similar to 2D models, the deformation patterns are dependent 

on the loading rate and consequently inertia. For large strain loading rate of 0.5/0.01s 

shown in Figure 4.17, the liquid core model generates deformations similar to solid core 

structure, i.e. herringbone pattern for small bending stiffness of solid shell which is 

determine by equation 
𝐸ℎ3

12(1−𝑣2)
. For the small strain loading rate of 0.5/1s shown in Figure 

4.18, the liquid core model generate deformation similar to empty solid shell, i.e. large 

concave pattern on the spherical surface. The 3D LBM case are still under studying, and 

the results from LBM should be compared to that from FEM in 3D.  
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As we have demonstrated both in 2D cases and 3D cases, liquid core system can’t 

generate ordered structures as the solid core system does, i.e. gear-like pattern in 2D and 

herringbone pattern in 3D. It is due to the fact that liquid core only poses bulk modulus but 

no shear modulus when it is a static or quasi-static process. Therefore, by increasing the 

loading rate or viscosity and consequent large shear stress, we can manage to generate 

ordered structure of liquid core system as the solid core system does in literature.   

For solid shell solid core structure [96], the plain strain 2D model has been proved 

effective in predicting the critical buckling wave length and critical stress for 3D cylindrical 

model and prolate spheroidal system, serving as the cross section of long 3D structure. In 

our cases, we only consider the spherical shape in 3D geometry, so the peanut shape in 2D 

cases can’t serve as a basis when considering 3D spherical shape.  

Our simulations can also find verification in literatures, as researchers have done 

relevant experiments with solid shell filled with water in the surrounding liquid 

environment [99]. Due to osmosis from the core to the surrounding liquid, the amount of 

water decreases and initiates buckling process as illustrate in Figure 4.20. The major 

concave pattern has been capture by that in Figure 4.18, although the simulations fail to 

reach the final exhausted stage on the right most of Figure 4.20 due to the extremely large 

deformation.  
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Figure 4.20 Buckling of 3D solid shell liquid core structure, due to osmosis from liquid core through solid 

shell to surrounding liquid [99] 

Researcher have long simulated cells [119, 120], as well as cell nucleus [104, 106, 

107], using liquid core model. Viscosity can also be added to the liquid core since cell 

usually possess a cytoskeleton protein network which provides shear resistance, and 

nucleoplasm also shows viscosity during the experiments. So our model can be useful by 

relating the cell morphology to the age or disease of cell, with the further inclusion of 

parameters that are relevant in real biological experiments.  
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Chapter 5. Conclusion and Prospect 

5.1 Concluding remarks 

We have studied three small subjects in the realm of continuum mechanics: 

imbibition in fluid mechanics, beam/rod buckling in solid mechanics and shell buckling at 

the solid/liquid interface.  

In chapter 2, we examined the radial imbibition into a homogenous semi-infinite 

porous material from a point source with infinite liquid supply. We proved that in the 

absence of gravity (or in the regime while gravity is negligible compared to surface tension), 

the shape of the wet area is a hemisphere, and the radius of the wet area is related to time r 

~ t1/3 (equation (2.12) to be exactly). This new law with respect to time has been verified 

by FEM simulation in software COMSOL and a series of carefully designed experiments 

using packed glass microsphere as the porous media. We also found that as the imbibition 

slows down, the flow rate through the point source remains constant which is predicted by 

equation (2.13). This new result for three dimensional radial imbibition complements the 

classic Lucas-Washburn law in one dimension (equation (2.4)) and two dimensional radial 

imbibition in one plane (equation (2.23)).  

In chapter 3, we studied the elastic beam/rod buckling under lateral constraints in 

two dimension as well as in three dimension. For the two dimensional case with unique 

boundary condition at both ends, the buckled beam can be divided into sections with 
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alternate curved section and straight section. The curved section can be solved by the Euler 

beam equation. The straight sections, however, are key to the transition between different 

buckling modes, and the straight sections set the upper limit and lower limit for the 

transition. We compared our theoretical model and FEM simulation in software ABAQUS 

with good agreement. We then applied this model to explain the crawling snake in 

horizontal plane between parallel walls which shows unique shape like square wave. For 

the three dimensional buckling rod confined in cylindrical constraints, three stages are 

found for the buckling and post buckling process: initial 2D shape, 3D spiral shape and 

final foldup shape. We characterize the shape at each stage, and then we calculate the 

transition points between the three stages using geometrical arguments for energy 

arguments. The theoretical analysis for three dimensional beam/rod are also complemented 

with FEM simulations from ABAQUS. 

In chapter 4, we investigated the buckling shape of solid shell filled with liquid 

core in two dimension and three dimension. A material model for liquid is first described 

that can be readily incorporated in the framework of solid mechanics. We then applied this 

material model in two dimensional and three dimensional Finite Element Method 

simulation using software ABAQUS. For the two dimensional liquid core solid shell model, 

a linear analysis is first performed to find out ellipse corresponds to lowest order of 

buckling with smallest elastic energy. FEM simulation is then performed to determine the 

nonlinear post-buckling process. We discover that 2D liquid core solid shell structure 
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converge to peanut shape eventually while the evolution process is determined by two 

dimensionless parameters Kτ/μ and ρR2/μτ. Amorphous shape exists before final peanut 

shape for certain models with specific Kτ/μ and ρR2/μτ. For the three dimensional liquid 

core solid shell model, the post buckling shape is studied from FEM simulations in 

ABAQUS. Depending on the strain loading rate, the deformations show distinctive patterns. 

Large loading rate induces herringbone pattern on the surface of solid shell which 

resembles solid core solid shell structure, while small loading rate induces major concave 

pattern which resemble empty solid shell structure. For both two dimensional and three 

dimensional liquid core system, small scale ordered deformation pattern can be generated 

by increasing the shear stress in liquid core. 

In each of the three subjects in this thesis, we have showcased that geometry is 

playing a huge role. In chapter 2, the size of wetted area in one dimensional imbibition, 

two dimensional radial imbibition and three dimensional imbibition all show different 

trends with respect to time. In chapter 3, straight line contact between beam and constraints 

are found in the two dimensional case, but no straight line contact exists in the three 

dimensional case. And the transition between different buckling mode for two dimensional 

cases and three dimensional cases exhibit huge contrast. In chapter 4, the post buckling two 

dimensional peanut shape can’t be expanded to three dimensional major concave pattern. 

And the curvature in three dimensional shape plays an important role in determining the 

deformation pattern. Actually the geometry induced phenomena has been investigated in 
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related studies, one case being coffee ring effect where the evaporate flux reaches 

maximum value at the contact line because the open angle and consequently space for 

vapor diffusion is largest at the contact line if we consider the droplet in two dimensional 

radial geometry [121]. The liquid flow and evaporate flux are illustrate in the following 

Figure 5.3.  

5.2 Recommendations for future work 

5.2.1 Imbibition with gravity  

 In chapter 2, we studied the imbibition in the absence of gravity (or in the regime 

where gravity is negligible). However, the gravity comes into play when wetted area is 

large enough. Taking upwards 1D imbibition for example, where the gravity acts to slow 

down the diffusion process, the pressure gradient in equation (2.3) is revisited to 

incorporate gravity ρgl: 

𝑙
𝑑𝑙

𝑑𝑡
=
𝑘

𝜇
(𝑝𝑐 − 𝜌𝑔𝑙) 

(5.1) 

In the upwards 1D imbibition, the length l will reach a value Lcritical where the 

gravity is equal to capillary pressure Pc. and it is Lcritical = Pc/ρg. This critical value is called 

capillary rise and is an important concept in the microfluidics. On the contrary, when the 

imbibition is going downwards, the gravity acts to accelerate the imbibition process, the 

minus sign in parenthesis in equation (5.1) becomes plus sign.  

 Equation (5.1) is a first order nonlinear Ordinary Differential Equation. Although 
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its analytical solutions are difficult to obtain, it is relative easy to solve numerically. 

However in the two dimensional geometry and three dimensional geometry, the gravity is 

not always aligned with the imbibition direction. So we do not have an elegant governing 

equation as (2.10) and (2.20) as the pressure difference should be revisited to reflect gravity 

similarly. FEM software is a good way to solve this problem as we did in section 2.3. It is 

expected the wetted shape will be an ellipse or ellipsoid, but the quantitative results should 

come from the simulations. This study will be practically helpful for the bloodstain analysis 

in the forensics [14] and the understanding of oil transportation in the porous soil. 

5.2.2 Improvement for the three dimensional buckled beam under lateral 

constraints 

We have examined buckling and post buckling patterns for the three dimensional 

beam under cylindrical constraints in chapter 3. Several stages of the buckling and post 

buckling process, i.e. initial 2D stage, 3D spiral stage and foldup stage, and the transition 

between these stages have been studied in the FEM simulation. Experiments of the 3D 

buckled beam with constraints are currently underway, and it is helpful to compare the 

experimental results to the results detailed in section 3.3.  

We have proposed a theoretic frame work to explain the strain energy at helix 

shape and alpha shape. We employ the established results from literature to describe the 

shape at helix stage and alpha stage. A few assumptions are made at current stage of study 
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and they need to be considered in the further research. First the helix in Chapter 3 is 

assumed to be uniform without two ends with are fixed at the central axis of cylindrical 

constraints. We have chosen data points in Figure 3.24 from long beam to minimize the 

effect of the two ends, but the exact shape with the consideration of two ends are of 

academic interest in the following, and we can identify the contribution from two ends by 

solving for the exact shape. Second we use a solution template for the alpha shape stemmed 

from literature, but the current description for alpha shape don’t consider the radius of 

constraints explicitly. So an updated version of analytical description for the alpha shape 

will bring more accurate calculation of strain energies, which leads to more accurate 

transition point for the secondary buckling.  

We also mention that we can utilize the buckled beam under lateral constraints as 

an energy collecting mechanism in section 3.4. Releasing mechanism of stored energy is 

also briefly discussed in Figure 3.25. Based on current collecting and releasing mechanism, 

we could design a small scale device to recycle the minute kinetic energy in the 

environment. In order to do that, we need to study the beam buckling under different lateral 

constraints other that cylindrical shape, such as the square shape and triangular shape of 

which one boundary could be readily removed to release the beam. 
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5.2.3 The protruding pattern on three dimensional core shell structure 

 
Figure 5.1 The evolution of nanoscale solid core solid shell structure using phase field method [122], τ is 

the typical time scale used in the computation 

We have stated that ordinary buckling and post buckling for initial spherical 

structures take the shape of concave pattern, as explained in Figure 4.3. But in Figure 4.4 

an interesting protruding pattern appears on the surface of spherical silica shell silver core 

structure. We have proved in our studies that solid shell liquid core structure can’t generate 

convex pattern by only considering the strain energy. Currently we have been using phase 
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field method to calculate the redistribution of silica shell as illustrate in Figure 5.1. During 

the evolution, the underling silver core doesn’t change, but the molecules in silica shell 

relocate to form the small scale hills due to high diffusion rate at high temperature and 

nanoscale. The whole process is governed by the energy minimization by considering the 

mechanical strain energy and chemical energy. This method is effective on predicting the 

morphology of shell on the cylindrical surface, study on spherical structure requires new 

efforts. 

 

Figure 5.2 Delamination between solid shell and solid core and subsequent growth of protruding pattern 

Phase field method in Figure 5.1 provides one possible explanation for the convex 

pattern on spherical core shell structure. The evolution described in phase field method 

takes a long time and the high temperature is a prerequisite, so it is possible that the convex 

shape doesn’t come into full fledge at the beginning of cooling process. But the aggregation 

of silica molecules at different locations would serve as the initiation of delamination 

between shell and core during the cooling process. Once the delamination sites form, the 

shrinking of the core shell structure will generate protruding pattern on the delamination 
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sites as Figure 5.2 illustrated. A combination work of phase field simulation and 

delamination is still in process.  

5.2.4 Manipulate micro/nano particles using liquid flow  

Another direction has been under consideration recently, which is related to 

currently studies of fluid solid interaction: interaction between liquid and small particles. 

While we have studied the fluid imbibition in the particle assemble, particles are also 

possible to move with the surrounding fluid. So we could utilize natural fluid or designed 

flow to deposit microscale or nanoscale particles into ordered patterns. Researcher have 

studied the spontaneous assembly of microscale particle in the drying process of droplet of 

particle suspension on a flat substrate, so we could observe that exterior of the coffee stain 

is much darker than that of interior because small particles in the coffee droplet are 

transported to the exterior [31, 121, 123].  

 

Figure 5.3 Coffee ring effect. The left side depicts a dried coffee stain; the right side illustrates 2D axi-

symmetrical model of an evaporating droplet, arrows indicate the streamline in the droplet, color indicates 

the evaporative flux (highest on the contact line). 

Furthermore, we could employ the same principle to deposit particles to desired 
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position, but in a more controllable manner [32, 124]. This is to switch contact line from a 

circle to straight line and move the substrate upon which the particles are deposited 

according to the transportation rate of particles. But controlling the evaporation rate and 

moving speed of substrate, we can obtain monolayer or bilayer or multiple layers of ordered 

particles assembly. This particle deposition will be useful to modify the optical properties 

of surface, such as reflectivity [125], and can serve as a precursor for the photonic crystal 

[126] or novel photolithography [127].  

The transportation of particle with the flow of liquid would be difficult to analyze 

theoretically since it involves multiple physics coupled with each other. This process is 

usually demonstrated through experiments, and people are trying to simulate it using FEM 

[128]. The problem with FEM is that it is hard to deal with multiphase in fluidics, and it is 

extremely hard to process the topological change, such as coalescence or breakup of 

droplets and bubbles. The intrinsic discrete methods such Lattice Boltzmann Method would 

be a candidate for simulation of particles, droplets and bubbles. 
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