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Abstract
In cells lacking telomerase, telomeres shorten progressively during each cell division due to

incomplete end-replication. When the telomeres become very short, cells enter a state that

blocks cell division, termed senescence. A subset of these cells can overcome senescence

and maintain their telomeres using telomerase-independent mechanisms. In Saccharomy-
ces cerevisiae, these cells are called ‘survivors’ and are dependent on Rad52-dependent

homologous recombination and Pol32-dependent break-induced replication. There are two

main types of survivors: type I and type II. The type I survivors require Rad51 and maintain

telomeres by amplification of subtelomeric elements, while the type II survivors are Rad51-

independent, but require the MRX complex and Sgs1 to amplify the C1–3A/TG1–3 telomeric

sequences. Rad52, Pol32, Rad51, and Sgs1 are also important to prevent accelerated

senescence, indicating that recombination processes are important at telomeres even

before the formation of survivors. The Shu complex, which consists of Shu1, Shu2, Psy3,

and Csm2, promotes Rad51-dependent homologous recombination and has been sug-

gested to be important for break-induced replication. It also promotes the formation of

recombination intermediates that are processed by the Sgs1-Top3-Rmi1 complex, as muta-

tions in the SHU genes can suppress various sgs1, top3, and rmi1mutant phenotypes.

Given the importance of recombination processes during senescence and survivor forma-

tion, and the involvement of the Shu complex in many of the same processes during DNA

repair, we hypothesized that the Shu complex may also have functions at telomeres. Sur-

prisingly, we find that this is not the case: the Shu complex does not affect the rate of senes-

cence, does not influence survivor formation, and deletion of SHU1 does not suppress the

rapid senescence and type II survivor formation defect of a telomerase-negative sgs1
mutant. Altogether, our data suggest that the Shu complex is not important for recombina-

tion processes at telomeres.
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Introduction
Telomeres are nucleoprotein structures at the ends of linear chromosomes that help a cell distin-
guish a natural chromosome end from a DNA double-strand break (DSB) [1]. In Saccharomyces
cerevisiae, the telomeric DNA consists of 300 ± 75 bp of C1–3A/TG1–3 repetitive sequences, with
the G-rich strand extending to form a 30 single-stranded overhang [2]. The subtelomeric regions
also contain middle repetitive X and Y0 elements. An X element is found at all chromosome
ends, while the Y0 elements are found in zero to four tandem copies between an X element and
the terminal telomeric repeats [3]. Telomeres are maintained by a specialized reverse transcrip-
tase called telomerase, whose core subunits are a catalytic protein component (Est2) and an
RNA subunit (TLC1), which can extend telomeres by adding TG1–3 repeats to the 30 overhang
[4, 5]. In cells lacking telomerase, telomeres shorten progressively during each cell division due
to incomplete end-replication and nucleolytic degradation [6]. When the telomeres become
very short, cells enter a state that blocks cell division, termed senescence. A subset of these cells
can overcome senescence and maintain their telomeres using recombination-based processes,
becoming ‘survivors’ [7]. There are two main types of survivors: type I and type II. Both types
require Rad52-dependent homologous recombination (HR). Type I survivors also require
Rad51, Rad54, and Rad57, and maintain telomeres by amplification of subtelomeric Y0 elements
[7, 8]. Formation of type II survivors, which exhibit amplification of the C1–3A/TG1–3 sequences,
is Rad51-independent, but requires the MRX complex (Mre11, Rad50, and Xrs2), Rad59, and
Sgs1 [8–11]. The type I subtelomeric and type II telomeric amplification patterns can be easily
distinguished on a genomic blot probing for telomeric sequences. Both types of survivors also
require the DNA polymerase δ subunit Pol32, which is required for break-induced replication
(BIR) [12]. BIR can be Rad51-dependent or Rad51-independent, suggesting that type I and type
II survivors maintain telomeres through Rad51-dependent BIR and Rad51-independent BIR,
respectively [13, 14]. Telomerase-negative cells lacking Rad52, Rad51, Rad54, Rad57, Sgs1, or
Pol32 also senesce very rapidly, indicating that these proteins are important at telomeres even
before the emergence of survivors [7, 10, 11, 15, 16].

The Shu complex, which consists of Shu1, Shu2, Psy3, and Csm2, interacts indirectly with
Rad51 through the Rad51 paralogues Rad55-Rad57 to stimulate Rad51 filament attachment to the
single-stranded DNA, which is essential for the homology recognition and strand invasion steps of
HR [17–19]. When any of these four genes are deleted, a higher rate of mutations and increased
number of genome rearrangements are observed [20, 21]. The Shu complex also promotes the for-
mation of recombination intermediates that are processed by the Sgs1-Top3-Rmi1 complex, as
mutations in the SHU genes can suppress various sgs1, top3, and rmi1mutant phenotypes [21, 22].

Given the role of the Shu complex in recombination-mediated processes, and the role of
recombination proteins in senescence and survivor formation [23], we hypothesized that the Shu
complex also functions during senescence and survivor formation. Surprisingly, we find that the
Shu complex affects neither the rate of senescence nor survivor formation significantly. Further-
more, the deletion of SHU1 does not suppress the rapid senescence and type II survivor forma-
tion defect of a telomerase-negative sgs1Δmutant. Taken together, our findings suggest that the
Shu complex does not normally function in recombination-mediated processes at telomeres.

Materials and Methods

Yeast strains and growth conditions
Standard yeast media and growth conditions were used [24, 25]. Strains used in this study are
listed in Table 1 and all are RAD5 derivatives of W303 (ade2-1 can1-100 his3-11,15 leu2-3,112
trp1-1 ura3-1 RAD5) [26, 27].
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Liquid culture senescence assay
Senescence assays in liquid culture were performed essentially as previously described [28, 29].
Each senescence assay started with est2Δ/EST2 or tlc1Δ/TLC1 heterozygous diploids that were
propagated for at least 50 generations before sporulation to ensure that telomeres were at a sta-
ble equilibrium length. Freshly dissected spores were allowed to form colonies on YPD agar
plates after 2 days of growth at 30°C. Cells from these colonies were serially passaged in liquid
YPD medium at 24-h intervals. For each passage, the cell density of each culture was measured
by optical density (calibrated by cell counting using a haemocytometer) or by using a CASY
Cell Counter, and the cultures were diluted back into fresh YPD medium at a cell density of 2 x
105 cells/ml. Senescence was plotted with respect to population doublings (PDs). PD was used
as a metric rather than time (e.g. days in culture) because senescence caused by telomere short-
ening is related to cell division, not time. In addition, the use of PDs prevents mutations that
only alter the rate of cell division from being mistakenly interpreted as having an effect on the
rate of senescence.

Generation of survivors on agar plates
Diploids were propagated and sporulated as in the liquid culture senescence assays. Cells from
freshly dissected spores were streaked on YPD plates and grown at 30°C for 3 days. Individual
colonies were restreaked for 5–6 times to allow for survivor generation.

Telomere PCR and telomere length measurements
Yeast genomic DNA was isolated using a Wizard Genomic DNA Purification Kit (Promega).
Y0 telomeres and telomere VI-R were amplified by PCR as previously described [30, 31]. Telo-
mere PCR products were separated by agarose gel electrophoresis and average telomere length
was determined as previously described [32].

Telomere genomic blot
Genomic DNA was isolated, digested with XhoI, separated on a 1% (w/v) agarose gel, and
transferred to a Hybond-N+ membrane (GE Healthcare). The membrane was then hybridized
to a telomere-specific (50-CACCACACCCACACACCACACCCACA-30) digoxigenin-labeled
probe.

Table 1. Yeast strains used in this study.

Strain name Relevant genotype

MCY574 MATa/α est2ΔURA3/EST2 shu1ΔHIS3/SHU1

MCY575 MATa/α tlc1ΔHIS3/TLC1 shu2ΔURA3/SHU2

MCY576 MATa/α tlc1ΔHIS3/TLC1 psy3ΔkanMX/PSY3

MCY577 MATa/α tlc1ΔHIS3/TLC1 csm2ΔkanMX/CSM2

YPM1 MATa/α est2ΔURA3/EST2 rad51ΔkanMX/RAD51 shu1ΔHIS3/SHU1

YPM2 MATa/α tlc1ΔHIS3/TLC1 rad51ΔkanMX/RAD51 shu2ΔURA3/SHU2

YPM3 MATa/α est2ΔURA3/EST2 rad59ΔkanMX/RAD59 shu1ΔHIS3/SHU1

YPM4 MATa/α tlc1ΔHIS3/TLC1 rad59ΔkanMX/RAD59 shu2ΔURA3/SHU2

YPM5 MATa/α est2ΔURA3/EST2 sgs1ΔnatMX/SGS1 shu1ΔHIS3/SHU1

doi:10.1371/journal.pone.0151314.t001
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Results and Discussion

The Shu complex does not affect senescence or survivor formation
To investigate whether the Shu complex plays a role during the process of senescence and in
the formation of survivors in telomerase-negative cells, we first performed liquid culture senes-
cence assays. Diploid strains that are deleted for one copy of either EST2 or TLC1 and also one
copy of one of the four SHU genes were sporulated and the haploid progeny were propagated
in liquid culture for several days (see Materials and Methods). In each case, the rate of senes-
cence and survivor formation of est2Δ or tlc1Δmutants was not affected by deletion of any of
the SHU genes (Fig 1). Since all four shumutants behaved similarly, subsequent experiments
were performed with only one or two shumutants.

We next determined whether the Shu complex influences telomere length homeostasis or
telomere shortening in the absence of telomerase. We measured the telomere length of wild
type, shu1Δ, est2Δ, and est2Δ shu1Δ haploid strains approximately 35 generations after the
sporulation of an est2Δ/EST2 shu1Δ/SHU1 diploid. Deletion of SHU1 did not affect either telo-
mere length homeostasis of telomerase-positive cells or the telomere shortening of est2Δ cells
(Fig 2).

Although our liquid culture senescence assays revealed that telomerase-negative shu
mutants could form survivors (Fig 1), we wished to determine whether both types of survivors

Fig 1. The Shu complex does not influence the rate of senescence or survivor formation. est2Δ/EST2 shu1Δ/SHU1 (top left), tlc1Δ/TLC1 shu2Δ/SHU2
(top right), tlc1Δ/TLC1 psy3Δ/PSY3 (bottom left), and tlc1Δ/TLC1 csm2Δ/CSM2 (bottom right) diploid strains were sporulated to generate the indicated
haploid strains, which were subjected to a liquid culture senescence assay as described in the Materials and Methods. For each experiment, 2–3 isolates of
each telomerase-positive strain and 4–5 isolates of each telomerase-negative strain were followed. The mean cell densities and standard errors of the
means are shown.

doi:10.1371/journal.pone.0151314.g001
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could be formed. We constructed est2Δ rad51Δ shu1Δ, tlc1Δ rad51Δ shu2Δ, est2Δ rad59Δ
shu1Δ, and tlc1Δ rad59Δ shu2Δ strains and passaged them several times on solid medium.
As mentioned above, Rad51 is required for the growth of type I survivors [8], so we can test
whether deletion of SHU1 or SHU2 prevents type II survivor formation in a rad51Δ back-
ground. Likewise, since Rad59 is required for the growth of type II survivors [8], we can test
whether deletion of SHU1 or SHU2 prevents type I survivor formation in a rad59Δ back-
ground. All mutants were able to recover from senescence and form survivors, indicating that
neither type I nor type II survivors depend on the Shu complex for their formation.

To further validate that the Shu complex does not affect type I or type II survivor formation,
we analyzed by genomic blot the telomeres of est2Δ and est2Δ shu1Δ survivors generated by
serial passaging on solid medium after the sporulation of an est2Δ/EST2 shu1Δ/SHU1 diploid
strain. 71 est2Δ single mutants and 69 est2Δ shu1Δ double mutants were followed. Both est2Δ
and est2Δ shu1Δ survivors were able to form type I and type II survivors, and for both geno-
types, type I survivors were more abundant (Table 2), as previously reported [9, 33]. We did
observe a small increase in type II survivor formation in the absence of SHU1, but this effect is
not statistically significant (X2 = 1.49, P = 0.11). Thus, we conclude that the Shu complex does
not play a major role in type I or type II survivor formation.

Deletion of SHU1 does not rescue the rapid senescence and type II
survivor formation defect in est2Δ sgs1Δ cells
Telomerase-negative cells lacking Sgs1 senesce rapidly and fail to form type II survivors [10,
11]. Since mutations in SHU genes can rescue various aspects of the sgs1mutant phenotype
[21], we investigated whether the rapid senescence and type II survivor formation defect of tel-
omerase-negative sgs1Δmutants could be rescued by the deletion of SHU1. An est2Δ/EST2

Fig 2. Deletion of SHU1 does not affect telomere length in the presence or absence of telomerase. Strains of the indicated genotypes, generated from
the sporulation of an est2Δ/EST2 shu1Δ/SHU1 diploid, were assayed for telomere length by Y0 and VI-R telomere PCR after being passaged for
approximately 35 generations. The change in telomere length, compared to wild-type telomere length, was quantified and plotted. Mean ± standard error for
3–4 independent isolates for each genotype are shown. Rawmean telomere length values are given in parentheses.

doi:10.1371/journal.pone.0151314.g002

Table 2. Type II survivor frequencies in est2Δ and est2Δ shu1Δ cells.

Genotype Type II frequency

est2Δ 5.6% (4/71)

est2Δ shu1Δ 13.0% (9/69)

doi:10.1371/journal.pone.0151314.t002
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sgs1Δ/SGS1 shu1Δ/SHU1 diploid was sporulated to generate haploid meiotic progeny that were
followed in a liquid culture senescence assay. The est2Δ sgs1Δ and est2Δ sgs1Δ shu1Δmutants
senesce at the same rate, and faster than an est2Δ single mutant (Fig 3A). The telomeres of the
survivors were also analyzed by genomic blotting (Fig 3B). Type I survivors exhibit short

Fig 3. Rapid senescence and type II survivor formation defect of est2Δ sgs1Δ cells are not rescued by
deletion of SHU1. (A) Strains for the indicated genotypes, generated from the sporulation of an est2Δ/EST2
sgs1Δ/SGS1 shu1Δ/SHU1 (YPM5) diploid, were subjected to a liquid culture senescence assay. (B) A
telomere genomic blot was performed on genomic DNA from strains of the indicated genotypes. The est2Δ,
est2Δ shu1Δ, est2Δ sgs1Δ shu1Δ, est2Δ sgs1Δ strains were first passaged for 8 days in a liquid culture
senescence assay to generate survivors. A haploid wild-type strain is included (on both sides of the blot),
along with the YPM5 diploid.

doi:10.1371/journal.pone.0151314.g003
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telomeres and strong hybridization at 5.2 kb and 6.7 kb, which is due to amplification of the
tandemly repeated Y0 short and Y0 long elements, respectively. The telomeres of type II survi-
vor are extended and very heterogeneous in size. Since type II survivors grow much better than
type I survivors, they outcompete the type I survivors in a liquid culture senescence assay [9,
33]. Thus, all est2Δ and est2Δ shu1Δ survivors generated this way are type II. The est2Δ sgs1Δ
strains formed only type I survivors, as expected because deletion of SGS1 prevents type II sur-
vivor formation [10, 11]. Deletion of SHU1 did not rescue the inability of est2Δ sgs1Δmutants
to form type II survivors. Taken together, these results indicate that the Shu complex does not
function upstream of Sgs1 with regards to senescence and survivor formation.

Overall, our findings indicate that the Shu complex does not play an important role during
senescence and survivor formation. This result is surprising given the role of recombination
proteins in these processes. In particular, the Shu complex is known to promote Rad51 filament
formation [17–19], and Rad51 is needed to prevent rapid senescence and for type I survivor
formation [8, 15], but telomerase-negative shumutants do not show a similar phenotype (Fig 1
and Table 2). However, shumutants are much less sensitive to DNA damaging agents than
rad51Δ and rad52Δmutants. In addition, spontaneous Rad51 focus formation is only down
twofold in a shu1Δ strain [34], and while the Shu complex stimulates the loading of Rad51
onto RPA-coated single-stranded DNA in vitro, it is not absolutely required [19]. Thus, in the
absence of the Shu complex, suboptimal Rad51 filament formation may be sufficient to delay
senescence and promote survivor formation in telomerase-null cells. Nevertheless, it has
recently been observed that the deletion of PSY3 partially suppresses telomere elongation in
cdc9-1mutants [35], indicating that the Shu complex may have a role at telomeres in certain
situations.

Our work raises intriguing questions about what substrates the Shu complex acts on. It has
been suggested that the Shu complex functions in BIR [35, 36]. If so, it would be interesting to
determine why it does not apparently affect BIR-mediated survivor formation. Of course, cells
may regulate BIR differently at telomeres than at DSBs. Alternatively, telomeres resemble one-
ended DSBs, and the Shu complex may only function when both ends of a DSB are present. If
this is the case, it will be interesting to figure out how the Shu complex differentiates between
one-ended and two-ended DSBs. Finally, while the role of recombination in telomerase-inde-
pendent telomere maintenance is clear, it is much less obvious why recombination proteins are
needed to prevent accelerated senescence. The discovery that the Shu complex is not important
during senescence implies that only some recombination activities are important, which adds
another piece to solving this puzzle.

Supporting Information
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