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ABSTRACT

Improving Content Delivery and Service Discovery
in Networks

Suman Srinivasan

Production and consumption of multimedia content on the Internet is rising, fueled by the

demand for content from services such as YouTube, Netflix and Facebook video. The Inter-

net is shifting from host-based to content-centric networking. At the same time, users are

shifting away from a homogenous desktop computing environment to using a heterogeneous

mix of devices, such as smartphones, tablets and thin clients, all of which allow users to

consume data on the move using wireless and cellular data networks.

The popularity of these new class of devices has, in turn, increased demand for mul-

timedia content by mobile users. The emergence of rich Internet applications and the

widespread adoption and use of High Definition (HD) video has also placed higher pressure

on the service providers and the core Internet backbone, forcing service providers to respond

to increased bandwidth use in such networks.

In my thesis, I aim to provide clarity and insight into the usage of core networking

protocols and multimedia consumption on both mobile and wireless networks, as well as

the network core. I also present research prototypes for potential solutions to some of the

problems caused by the increased multimedia consumption on the Internet.

First, this thesis provides details about data usage and working of core protocols (DNS,

HTTP, service discovery) and video traffic on networks through measurements and studies

that I performed. This will help us understand network usage of data and content con-

sumption happening in emerging computing devices such as smartphones, and the rapidly

changing field of content networking, particularly service discovery and content delivery. I

present the study of existing service protocols, particularly Zero Configuration Network-

ing (ZeroConf) and multicast DNS (mDNS), on wireless networks. The findings of certain



shortcomings in the ZeroConf protocol, as well as a proposal of an improved architecture

and implementation that improves existing service discovery protocols are included.

Secondly, the design and implementation of new software architectures and implemen-

tations needed to alleviate problems resulting from existing protocols on wireless networks

is presented. Difficult networking problems such as service discovery are addressed through

building and extending a suite of applications, called Seven Degrees of Separation (7DS),

and BonAHA, a library developed on top of a ZeroConf implementation that makes it easier

for software developers to develop applications for wireless opportunistic networks.

The third contribution of this thesis is the research and implementation of new mech-

anisms to handle increasing data demands at the network core and satisfy the growing

appetite for multimedia by end users. The thesis covers my work on on-path content-

delivery networks (CDNs), as well as a new distributed and dynamic CDN architecture

called ActiveCDN. Both of these CDN projects are part of the NetServ project, which aims

at developing a service-virtualization architecture for next-generation core networks.

Fourth and finally, this thesis also describes research prototypes for a new model of

networking driven by content, aptly called content-centric networking. I designed research

prototypes for content-centric networks, particularly in adding dynamic services and service

scalability in such networks. This work involved bridging the content-centric and host-

centric paradigms of Internet communication through using IPv6 as a common layer, which

is described in detail in the thesis. In addition, I performed an evaluation of real-world video

traffic patterns on the Internet, as well as how the growth in video traffic can be combined

with analysis of content consumption to enable us to more efficiently perform video and

content networking on the Internet of today and tomorrow.
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Chapter 1

Introduction

We are in the middle of technology changes that impact how society and culture consume

data and multimedia content on computer networks. Smartphones, tablets and connected

devices (such as Playstations) have brought networking and computing to billions of people

who may have never interacted with computers before. In addition to providing basic

computing features, these devices can access the Internet and online services through an

array of wireless and cellular data networking technologies as well as traditional wired

networks. These changes require us to have a deeper understanding of the core issues facing

networking and protocols today.

In this thesis, I aim to cover research topics in a broad and diverse array of networking

technologies and protocols, and show how some of these core protocols can be improved

upon to provide a much better experience to users and consumers, while at the same time

making the core network and protocols more efficient.

The exponential growing popularity of mobile devices results in a proportionately grow-

ing demand for data on the move, particularly multimedia and video content and data. Cisco

estimates that data accessed via “Wi-Fi and mobile devices will account for 66 percent of

IP traffic” by 2019 [Cisco, 2015]; the study states that data access on mobile networks was

46% of all IP traffic in 2014. In regards to video traffic, Cisco’s study says that “consumer

internet video traffic will be 80 percent of all consumer Internet traffic in 2019, up from 64

percent in 2014.”

Service discovery and content delivery are networking research problems that are well-
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known and studied. But with the networking landscape changing rapidly in recent years,

new approaches are necessary to tackle emerging problems in these two areas of wireless

networks as well as the core of wired, always-on networks.

The rapid growth of smartphones, tablets and the hybrid “phablets” (smartphones with

a form factor comparble to tablets) has enabled users to consume data on the move and look

for always-connected functionality, either in the presence or absence of cellular and other

wireless networks. Such users, in the absence of other forms of networking, would often

want to communicate with peers in the local network using opportunistic networks, i.e.,

disconnected network islands made of wireless nodes in close range, but with high mobility

and hence high churn rate [Shen et al., 2010].

Meanwhile, at the network core, the increasing consumption of multimedia content

on the existing wired networks and in mobile systems is putting a strain on the network

core. Cisco Systems estimates that video will constitute 90% of all Internet traffic by

2019 [Cisco, 2015]. While content distribution networks (CDNs) are becoming more and

more popular as a means of efficiently distributing multimedia content to end-users on

the Internet [Tom Leighton, 2009], current CDN networks have to work on top of the

existing Internet architecture using redirection mechanisms such as DNS redirection and

pre-deployed hardware and networking routes.

In addition, the emergence of a new class of networking known as content-centric net-

working [Jacobson et al., 2009b] argues that content, not hosts, are the cornerstone of the

Internet today. While content-centric networking has become an active research topic in the

networking field, questions remain about this new class of networking: can we use content-

centric networking on todays Internet, or will it need an entirely new Internet architecture?

First, given that opportunistic networks are a fairly new class of wireless networks, it

is necessary to measure and analyze how existing protocols work in such networks. In

Chapter 5 I will describe the work that Dr. Se Gi Hong and I performed to measure

and analyze a popular service discovery protocol called Zero Configuration Networking

(ZeroConf) [Zeroconf Working Group, 2008] on wireless networks. We discovered problems

facing service discovery protocols in highly mobile and transient networks, and worked on an

implementation to enhance the ZeroConf implementation and allow it to function correctly
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in opportunistic networks. We also evaluated the increasing use of service discovery and

content delivery protocols, particular multicast DNS (mDNS), in real-world networks. I also

touch on my work on WORKIT, a wireless toolkit for measuring and analyzing network

protocols in next-generation wireless and cellular networks.

Second, in addition to analyzing service discovery, I worked on the Seven Degrees of

Separation (7DS) [Srinivasan et al., 2007][Moghadam et al., 2008] suite of applications

which aims to provide end-user application services in disruption-tolerant mobile networks

where data packets could get delayed during transit. 7DS provides the necessary transport

and application layer functionality for mobile nodes to exchange information using store-

carry-forward communication. This is described in detail in Chapter 3.

Third, developing mobile applications that function properly in opportunistic networks

is a difficult process, since such opportunistic network islands do not follow the client-server

model of operation. Even peer-to-peer models of networking do not work in such a network

due to the high churn rate of mobile nodes in such networks. Chapter 4 describes a library I

have written, called BonAHA (Bonjour for Ad-Hoc Applications) [Srinivasan et al., 2009b],

which provides an API framework for building applications that run in such opportunistic

networks: it aims to be easy and intuitive, provide a level of abstraction to opportunistic

networking and at the same time provide flexibility to the developer to develop applications

that run in opportunistic networks.

My fourth contribution involves the first prototype for NetServ [Srinivasan et al., 2009a],

a research effort to design an extensible architecture for core network services for the next

generation Internet. In Chapter 8, I describe our first NetServ prototype, which uses the

Click router [Kohler et al., 2000] and the Java-based OSGi module system. NetServ enables

service virtualization at the Internet core, thus allowing efficient use of applications such as

content delivery networks (CDNs).

My fifth contribution is my work on on-path content delivery networks, which can dy-

namically intercept and redirect requests for content as well as serve content from a local

cache. In Chapter 7, I present the work on my prototype, as well as measurements and

analysis of this implementation using popular content providers on a test network.

My sixth contribution is ActiveCDN, a NetServ module which can dynamically deploy
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CDN modules and serve content from participating NetServ nodes that are located near

the edge of the network. This work, described in Chapter 9, was selected and demonstrated

as part of the NetServ modules at the National Science Foundation”s 8th and 9th GENI

Engineering Conferences (GEC8 and GEC9). ActiveCDN allows for content providers to

dynamically deploy CDN nodes across the Internet based on demand, thus alleviating traffic

load on the core networks.

My seventh contribution is dynamic services on content-centric networking. While

content-centric networks allow for efficient distribution of content and make content the

center of the networking stack, they do not properly or correctly handle the issues of ser-

vices. In Chapter 12, I describe the architecture and implementation of a prototype I built

that allows for building services on top of a pure content-centric networking stack. The

chapter also includes an analysis of how service composition and dynamic scaling can be

achieved by classifying services correctly.

My eighth and final contribution of this thesis is the evaluation of video traffic on the

Internet using real-world data. Chapter 10 contains this evaluation, which can help us

understand the nature of real-world video traffic patterns and can allow us to optimize

content delivery strategies as Internet content grows.

1.1 Glossary

This section formalizes the terms used in the rest of this thesis.

1. Opportunistic networks are network islands that are not connected to the Internet,

consisting of wireless nodes in close range, but with high mobility and hence high churn

rate. They are also called mobile ad-hoc networks (MANETs) which are defined as

self-configuring networks of mobile devices connected by wireless links. They are also

called mobile mesh networks, or sometimes simply ad-hoc networks. [Ibing and Boche,

2012]

2. Network core, or core network, refers to the Internet backbone, which are principal

data routes between large, strategically interconnected networks and core routers in

the Internet.
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3. Active networks are networks in which the traffic flowing through the network

(defined as either services of packets) can execute actions that change the state of the

network. [Wikipedia, 2015b]

4. Content Distribution Networks (CDNs) are nodes set up in order to serve con-

tent to end-users in a highly distributed and efficient manner, meant to provider

end-users with the best content experience in terms of bandwidth and lower latency.

[Rackspace, 2015]

5. Content-centric networking (CCN), also known as Information-Centric Net-

working (ICN), is a networking model that focuses on content as being centric to

network operations. Xerox PARC defines it as an architecture that “operates by ad-

dressing and delivering Content Objects directly by Name instead of merely addressing

network end-points.” [PARC, 2015]

6. Host-based networking refers to how networking on the Internet currently works,

where IP (Internet Protocol) packets are addressed and delivered to specific nodes

identified by their IPv4 or IPv6 addresses. [Wikipedia, 2015a]

7. Wireless networks refers to the IEEE 802.11 protocol based wireless networks that

are setup at the homes of end users or in company offices [Cisco, 2015]. These wireless

networks allow both computers and mobile devices with a 802.11 hardware and soft-

ware stack get connected to the Internet via IP. These networks are usually limited

by a distance of a few dozen meters at most, but provide up to 54 Mbps bandwidth.

8. Cellular networks refers to network services provided by cell-phone carriers such

as Verizon and AT&T in the United States [Cisco, 2015]. Cellular networks allow

devices (mostly mobile, but including laptops with cellular connectivity) to access the

Internet through IP running on 3G or 4G signals from cell phone towers that in the

vicinity. These allow for a much larger range of access than 802.11 wireless networks,

and allow a user to transparently switch from one cellular tower to another to ensure

seamless connectivity.
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Part I

Wireless Networks
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Chapter 2

Introduction: Wireless and

Cellular Networks

The popularity of smartphones and tablets running Apple’s iOS and Google’s Android

operating systems have taken wireless and cellular data networking mainstream. Even

prior to the smartphone revolution though, the popularity of WiFi (IEEE 802.11) brought

the ease of wireless networking to a large number of homes and offices.

But the growing popularity of these mobile devices results in a proportionately growing

demand for data on the move, particularly multimedia and video content and data. Cisco’s

2015 report on Internet traffic [Cisco, 2015] notes that ”global mobile data traffic will grow

three times faster than fixed IP traffic from 2014 to 2019. Global mobile data traffic was

4 percent of total IP traffic in 2014, and will be 14 percent of total IP traffic by 2019.”

The growth of faster mobile networking connections indicate that this growth spurt will

continue.

This complicates networking for a worldwide networking architecture of wireless and

cellular hardware and software that was designed for smaller amounts of traffic. As a

result, there are a variety of interesting engineering problems that need to be solved in

order to deliver data and content more efficiently over wireless and cellular networks.

This thesis focusses on several areas of wireless networking, particularly in terms of

service discovery and network communication across a specific class of wireless networks
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called opportunistic networks. Even as cellular wireless and data standards such as 3G and

4G become more and more popular, there are still large areas where mobile users are unable

to connect to the Internet directly.

Two projects detailed in this thesis - the 7DS application suite and the BonAHA frame-

work - address this problem, and allow mobile users to communicate with one another locally

through wireless (802.11) networks without requiring a wide-area network connection.

Chapter 3 presents the 7DS application suite, which is a set of functional end-user

applications including a web browser, search application, e-mail client, file synchronization

client and a content search and exchange application.

Chapter 4 introduces the BonAHA framework, a library that allows application develop-

ers to develop their own applications that run in opportunistic networks. BonAHA exposes

an easy-to-use API to program such disconnected applications. In addition to the BonAHA

API, this chapter and related appendices also present some useful applications that we built

with BonAHA, such as a instant messaging tool, file transfer program and a Bulletin Board

System (BBS) application.

In addition to BonAHA and 7DS, the thesis introduces the WORKIT project to build

a experimental wireless testbed. Finally, an analysis of traffic patterns in wireless 802.11

networks, particularly for service discovery protocols. are discussed in Chapter 5.
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Chapter 3

7DS - Information Exchange in

Opportunistic Networks

3.1 Introduction

Imagine a scenario where there are several people in the vicinity of each other, but without

connectivity to the Internet. Assuming that they all have mobile devices and are on the

move, it should be possible for data to be transferred among them, as well as in and out to

the Internet as people move from disconnected to connected mode, whether connected via

wireless or cellular networks. The 7DS project described in this chapter aims to make such

a scenario possible.

In the 7DS (Seven Degrees of Separation) [Papadopouli, Maria and Schulzrinne, Hen-

ning, 2001] project, we have been investigating how to emulate two core Internet services,

namely web access for information retrieval and email for delivering messages from mobile

nodes to the Internet. We have implemented and evaluated a 7DS prototype system that

leverages search, feedback and propagation limits to build a scalable system that can deliver

data to and from mobile nodes.

7DS makes data exchange in opportunistic networks possible by providing an application-

level set of protocol services that enables exchange of information between peer devices. It

enables dynamic information exchange by using a proxy server, a multicast query system,

a search engine, and a Mail Transport Agent (MTA) [Crocker, 2009]. With these entities,
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Figure 3.1: The overall structure of the 7DS system, showing the search, multicast and

transport engines

7DS can perform efficient and transparent data exchange among peers in the absence of a

network connection. Data exchange with the larger Internet occurs when peers encounter

an Internet-connected node.

When users connect to each other over opportunistic networks, 7DS enables information

transfer from user queries which are broadcast over a multicast query. Any device on the

network that has content corresponding to the query will return that information to the

querying node, which is relayed to the user and presented in the form of a web-based UI

on the mobile browser. All nodes in the 7DS network are capable of both querying for and

returning data, thus allowing users to ask for and receive information in the network.

7DS also enables e-mail transport by implementing a Mail Transport Agent (MTA)

that receives the e-mail and broadcasts it to the peers. When a peer reaches the Internet,

it forwards the accumulated e-mail to an SMTP server that delivers the e-mail to the

destination.

The 7DS system is described in more technical detail in the rest of the chapter, which
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is organized as follows. In Section 3.2, we introduce the problem of opportunistic networks

and how we approach to this problem and how 7DS is implemented. Section 3.3 details

the architecture of the 7DS system. In Section 3.5, we describe how the 7DS system was

implemented and ported to embedded devices running Linux. We evaluate the performance

of the system in Section 3.6, and present related work in Section 3.8.

3.2 Problem Statement

To facilitate information flow in a opportunistic network, devices need to be running a pro-

tocol that enables data exchange within this opportunistic network. In order to enable data

exchange among peers in a opportunistic network, a peer-to-peer (P2P) data sharing system

is needed. Current P2P file-sharing protocols such as Gnutella [Gnutella, 2004] and Bit-

Torrent [Cohen, Bram, 2004] are built to run on connected networks with high-bandwidth.

These protocols are too heavy-weight for opportunistic networks that are constrained by

bandwidth and connectivity issues.

The 7DS system should be capable of setting up a peer-to-peer network that uses very

little bandwidth and is also very robust. It should be able to work seamlessly in a highly

mobile scenario where users are moving in and out of the opportunistic network. It also

has to be interoperable, platform-independent and use computing and networking resources

sparingly to enable it to run on a variety of devices, from mobile devices and embedded

systems to laptop computers.

The 7DS platform that we have implemented uses a very lightweight protocol involving

simple XML messages for exchanging queries and responses with peers. It works seamlessly

and transparently: in the absence of an Internet connection, the 7DS platform automat-

ically queries its peers, retrieves the requests and presents the user with the data he has

requested. Finally, the 7DS discovery service handles service discovery as well as discov-

ery of neighboring nodes very efficiently, enabling the system to work robustly in dynamic

scenarios.

The 7DS platform was designed as an application-layer solution running as daemons. All

the components of the 7DS system can be used by popular existing software that support
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protocols supported by 7DS by simply changing a few settings. Examples of these are

a proxy server setting on the browser for HTTP traffic (say a Squid reverse proxy at a

company), or the SMTP mail server on the e-mail client for e-mail traffic (e.g., sendmail).

Further, the 7DS components may, if required, be implemented as transparent proxies so

that no reconfiguration of the client software will be needed at all.

3.3 Architecture of the 7DS System

The 7DS system consists of application-level services and CGI executables. The components

of the 7DS system consist of a proxy server, web server, search engine, multicast engine and

a transport engine.

The proxy server provides the intelligence to the 7DS system, routing requests to the

Internet or peers depending on whether Internet connectivity is present or not. The web

server provides the user interface and also allows files to be exchanged using the HTTP

protocol. The search engine enables local content searches, while the multicast engine

enables searches across peers.

These binaries were developed at Columbia University’s Internet Real-Time Lab and

tested on Windows, Mac OS and Linux platforms.

3.3.1 Zero Configuration Networking Setup

The discovery protocol of the 7DS system is mainly based on the Zero Configuration Net-

working specification (ZeroConf) [Zeroconf Working Group, 2008]. ZeroConf enables devices

to obtain IP addresses for network connectivity without a central DHCP server. It uses

multicast DNS (mDNS) [Cheshire and Krochmal, 2013b] for name resolution, and either

DNS Service Discovery (DNS-SD) [Cheshire and Krochmal, 2013a], Simple Service Discov-

ery Protocol (SSDP) [Goland et al., 1999] or Service Location Protocol (SLP) [Guttman et

al., 1999] for service discovery.

In our implementation, IP addresses are allocated through a discovery protocol with

a cross-platform implementation of Zeroconf called Howl [Howl, 2003]. (We will be using

Apple’s Bonjour [Bonjour, 2005] in future versions.) The 7DS discovery program uses Howl
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to publish a service description using ZeroConf publishing services to all the clients that

are listening for the publish message. The program also acts as a ZeroConf subscriber so

that it can receive messages that are being published. As services are removed and added,

the discovered services are stored in memory. This enables the system to find services and

their locations without a discovery server such as DNS Service Discovery.

3.3.2 Proxy Server

The proxy server listens to incoming HTTP requests. Based on the type of request and

whether the device is connected to the Internet or not, the proxy server decides to serve

the request from the cache, the Internet or through querying other 7DS system nodes via

the 7DS multicast engine. The proxy server serves as the interface between the user, the

Internet and other 7DS peers.

The proxy server, based on the incoming query, retrieves the data object most relevant

to the user’s request from the local cache or the Internet, in that order. The proxy server

uses the libcurl [libcurl, 2005] library in order to retrieve files over the network.

The algorithm used by the 7DS server to decide how to serve the client’s request is

outlined in Fig. 3.2. A separate service thread is created to handle each client.

3.3.3 Local Web Server

The web server on the 7DS system serves two functions. First, it runs the web-based user

interface to the 7DS system. Secondly, it works together with the proxy server to display

local cached results in the absence of Internet connectivity.

The web server should be capable of running on embedded devices. One such small

open-source web server is thttpd [thttpd, 2006]. The thttpd binary is only 49 KB in size,

making it suitable for embedded devices. Another web server that is slightly larger in size

but has more features is called lighttpd [lighttpd, 2006]. In addition, any web server that

supports CGI and PHP can be used in conjunction with the 7DS system.

The 7DS system uses a folder where shared files are placed. This directory can be

searched and indexed by the 7DS system components.
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Figure 3.2: The algorithm of the 7DS proxy server for handling HTTP requests
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Figure 3.3: The 7DS search page shows results for a keyword search. The results correspond

to matching files in the local cache.

3.3.4 Search Engine

The functioning of the search engine and the multicast engine are shown in Fig. 3.1. The

search engine is built using the Swish-e library [swish-e, 2006]. It indexes HTML and

XML files for keyword searches. Other file formats, such as Microsoft Word, Adobe PDF

documents, and popular image formats such as JPEG, PNG and GIF, can also be indexed

through a plugin architecture, and enabled us to build plugins for these file types.

The search engine is a CGI binary that runs on the local web server. It provides the user

the ability to find files corresponding to the requested keyword that exist in the device’s

internal database.
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A screenshot of the 7DS search engine in operation is shown in Fig. 3.3.

3.3.5 Cache Manager

The cache manager is a daemon that periodically runs in the background. The default

interval is 20 seconds, but this can be modified through the configuration files. The cache

manager checks if there have been any updates to the cache where the shared files reside

and updates the indexes used to search the cache if necessary. If there have been no updates

to files in that directory, then it just goes to sleep without taking any action.

3.3.6 Multicast Query Engine

For the multicast communication and sharing engine, we decided to use a keyword queries

instead of entire URLs. The reason is as follows: if a user does not have a specific page and

requests it, there is a high likelihood that his or her peers do not have that exact material

or URL stored in their cache, either. So instead of querying for specific URLs, we query for

keywords that represent the closest match to what the user is searching for.

The multicast query engine is used to exchange information among peers in the network.

The user first enters a query through the 7DS web-based user interface. This query is added

to the device’s internal database, and then multicast to other nodes, with the results being

returned asynchronously to the querying node.

The user is then presented with a dynamic page that lists the results corresponding to

the user’s query. This dynamic page, which is generated by a CGI binary, refreshes every

10 seconds and provides the user with an updated result list.

For the multicast system to work seamlessly, the following components are needed.

The queries, results and corresponding peers are stored in a SQLite query database,

which is a small-footprint, open-source database engine [sqlite, 2006]. Unlike the larger and

more popular database engines, SQLite does not require a daemon to handle SQL requests

and is hence very suitable for our project.

The query scheduler broadcast engine broadcasts the query list in an XML-encoded

string to the network. It reads the list of queries, encodes them in an XML-formatted string

and broadcasts the string on a multicast packet. It sleeps for a small interval (20 seconds
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by default) and then resumes and broadcasts again.

The query receiver listens for incoming packets. Upon receiving a query list, it runs

a local search on the device using the search engine. If related information is present, it

encodes it in a RSS-based XML format [RSS, 2006] and sends the XML as a response in

UDP packets to the requesting peer.

The report receiver listens on a UDP port for packets sent by the query receiver.

Upon receiving the XML packet containing the response, it decodes and parses the XML.

It adds the information about the queries, corresponding results and peers to the database

table while avoiding duplication.

In addition to the daemon components that are running on the device, several CGI

programs invoked by the web server provide the user interface to allow the user to add

queries and to view the results. The CGI query page allows a user to add a query to the

database. The CGI results page lists the queries that were made and also shows the results

corresponding to each query. The results page automatically refreshes at regular intervals

in order to return the latest results to the user.

3.4 Mail Transport Engine

In addition to functioning as a query/response system, 7DS is also designed to perform

e-mail gathering and delivery. The core communication protocol for this part is SMTP

[Klensin, 2001].

The SMTP server listens to incoming messages and transfers those messages which

should be propagated through the network to the local Message Transfer Agent (MTA).

The MTA unit later relays them to its neighboring MTAs. The SMTP server also takes

care of managing and storing all the received e-mails in each 7DS mobile node.

The SMTP server receives the e-mail content from the other nodes broadcasting to it

and creates a SHA1 hash of the email and recipient information. When the 7DS node

meets another node, its MTA goes through the hash-table and the email directory, reads

all the stored emails and sends them to the peer’s MTA. When the node is connected to

the Internet, the Transport Engine sends the e-mails to the intended recipient. Because
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of problems with e-mail duplication, we will explore the possibility of filtering the e-mails

through a single server in future versions.

The library used to implement SMTP functionality is libESMTP [libesmtp, 2006].

3.5 Implementation

The first version of the 7DS system written in C was completed in 2006 and tested on

several platforms. A running 7DS system can be downloaded from the 7DS project web

page [7DS Homepage, 2005]. 7DS has been compiled and tested on regular desktop versions

of Linux, a small-footprint Linux running on an embedded hardware platform called WRAP

[PC Engines, 2007], as well as Windows and Mac OS X.

3.5.1 Experimental Setup

We ran the 7DS code on several computers in order to test the different parts of the system

and see whether they performed as expected in providing Internet services in an oppor-

tunistic network. Files from a few test websites were placed in 7DS caches of the different

computers. Searches were performed and if results were found, they were transferred suc-

cessfully.

The computers and devices that ran the 7DS code were all set up and tested in two

wired networks (Computer Science department and Electrical Engineering department), one

wireless network (Columbia University’s Engineering School) and one ad-hoc network (in

Columbia’s COMET Lab). Our pilot test ran on Red Hat Linux, Windows, Mac OS X as

well as an embedded system running a small-footprint Linux operating system (LEAF).

3.5.2 Porting 7DS to WRAP

This section has details about how 7DS was packaged to run on PC Engines’ WRAP

(Wireless Router Application Platform) hardware platform. As of 2015, this product has

reached end-of-life, according to the manufacturer’s website [PC Engines, 2007], but when

we built our 7DS application in 2005-2006, it was one of the leading models for developing

embedded applications.
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Figure 3.4: The inside of the WRAP platform. The hand and the pen in the picture show

how small the WRAP board is.
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Figure 3.5: 7DS running on the WRAP platform. The screenshot shows a Windows Hy-

perTerminal terminal interface with the WRAP board through a serial port connection.

The WRAP board runs the query scheduler broadcast which broadcasts packets with the

queries.
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The WRAP system is a board that is approximately the size of an adult’s palm. The

processor is a National Semiconductor Geode x86. It also has a network interface card and

a wireless card. Our WRAP board boots off a 32 MB Compact Flash (CF) card attached

to the board’s card reader.

We installed a popular embedded version of Linux called Linux Embedded Application

Firewall (LEAF) [LEAF, 2006] on the CF card and configured it to boot from the CF

card on the WRAP board. LEAF is a stripped down version of Linux that boots off most

IDE, memory or other devices with a small-footprint kernel. Packages are added via LEAF

Repository Package (LRP) files which contain the binaries and metadata for running them.

The 7DS system was repackaged for LEAF by packaging the binaries in the LRP format.

Also, because of the absence of libraries necessary for running 7DS on the LEAF platform,

we also repackaged glibc 2.3, libcurl, swish-e, Howl and other Linux libraries in the LRP

format.

3.5.3 7DS on Linux, Mac OS and Windows

7DS was initially built on the Linux platform, and now exists as a GNU-style source dis-

tribution that can be built with configure or make commands. We have ported the 7DS

system to run on the Mac OS X and Windows platforms as well.

For Mac OS X, a packaging system called DarwinPorts [DarwinPorts, 2007] needs to be

installed. DarwinPorts provides an open source packagement management system for the

Mac OS platform. A screenshot of 7DS components running under Mac OS X is shown in

Fig. 3.6. 7DS has also been ported to the Windows platform using the Cygwin [Cygwin,

2007] shell and GNU utilities that come with Cygwin.

3.6 Performance Evaluation

Yuen and Schulzrinne [Yuen and Schulzrinne, 2006] have carried out an analytical study of

the feasibility and performance of the 7DS system in opportunistic networks. In particular,

they have compared time-based and hop-based Time to Live (TTL) schemes during message

transfer between nodes. Some of their results are summarized below in the subsection
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Figure 3.6: The cache manager component running on a Mac OS X system
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analyzing performance evaluation of the 7DS e-mail system.

An important factor that would affect performance is the presence and density of wireless

Access Points (AP). 7DS itself will benefit nodes in opportunistic networks, allowing them to

retrieve or send information through peers to the Internet, but performance improvements

(measured by lowest delay in reaching the final end-point) in some applications - like e-mail

sending - will depend on the AP density. If performance measurement is done in a state like

North Dakota, where the population density - and hence wireless AP density - is low, the

delay in e-mails reaching the server is much larger. However, in a densely populated area

like Manhattan, 7DS will be of more use and help in reducing delays dramatically. A study

performed in February 2002 [Public Internet, 2002] shows that there were over a total of

13,000 wireless APs deployed in the areas of Manhattan covered by the study. Even though

not all of them are open access points, a recent project called Cable WiFi [Networks et al.,

2014] allows users of the most popular cable networks in the country to be able to connect

to other cable providers’ wireless access points.

3.6.1 E-Mail Performance

We will look at e-mail performance in detail. The most critical part of the e-mail delivery

process is the amount of time the e-mail spends in the 7DS network itself. Once the e-mail

reaches the Internet, delays are minimal, in the order of seconds. Hence, we will attempt

to quantify the performance boost due to 7DS in terms of improvement in delay while the

node is in the 7DS network.

Yuen and Schulzrinne [Yuen and Schulzrinne, 2006] find that message delivery in most

of their target scenarios is of the order of 100 seconds, which is quite reasonable. They

also find a e-mail queue storage size of 50 messages on the node when the wireless AP is

seventeen minutes away, 65 messages when the AP is thirty-four minutes away and 127

messages when the AP is eighty-three minutes away. Given the moderate size of e-mail

messages, and the vastly increased storage in mobile devices today, we believe that the

storage-delay tradeoff is quite worthwhile.

Without 7DS, each node would have had to wait to get to the AP itself, and the delay

would have been five to ten times as large. Even though more e-mails are stored on behalf
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of peers, the storage costs are a small price to pay for the reduction in delay.

3.6.2 Content Sharing

Unlike sending e-mail, sharing of webpages or content is much more dependent on the

data present in the local network. Hence, 7DS will improve deliverability when websites or

other forms of content are requested in an opportunistic network. Studies have shown that

distribution of webpages in terms of popularity follows Zipf’s law [Jelenkovic, Predrag and

Radovanovic, Ana, 2003] [Almeida, Virǵılio and Bestavros, Azer and Crovella, Mark and

Oliveira, Adriana de, 1996]. Since the most popular content will be requested by most of the

nodes in the network, several of the nodes would have an updated version of the requested

content in their cache and could return them to the node that requests the webpage. Even

though the content may be slightly outdated, the retrieval of this information is still more

useful than having to wait to get Internet connectivity.

3.7 Security and Privacy

In developing 7DS, we need to consider the security and privacy of the users exchanging

information. Even though the user might be sharing public content from a website, it

could be content that the user has cached since they visited the site frequently. By making

carefully crafted queries to the network and obtaining cached information from peers, it

may be possible for a rogue user to find out website visit patterns for various users on the

network. While 7DS itself does not identify the user who has shared the data, it may be

possible for a rogue user to install a packet sniffing software and duplicate or spoof 7DS

packets to monitor traffic on the network and analyze website visit information from peers.

To alleviate this, we could block users who are sending spurious query packets, or too many

queries. In order to prevent sniffing, we could also encrypt the exchanges using a pair-wise

key such as ones generated by the Diffie-Hellman protocol. If encryption is not possible,

the adversary will at least not be able to guess the private information of the user who is

sharing content, and will only be able to sniff publicly available content. 7DS also ensures

that we dont cache content loaded over SSL or anything that requires a login, and hence
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does not store or share private information such as financial or medical information which

are always behind an authenticated server.

It may also be possible for a user to send data that has been modified (which results in

the requesting user getting wrong information), or worse, data infected with malware in the

guise of legitimate data (which results in the requesting user getting infected by malware).

This same problem also happens in peer-to-peer file sharing networks [Kalafut et al., 2006],

where shared files might sometimes be infected with malware, and it would be impossible

to prevent this without some form of centralized signing and certification mechanism, or

consensus forming by a majority of peers in the network.

3.8 Related Work

When comparing similar applications, file-sharing applications like Gnutella [Gnutella, 2004]

and BitTorrent [Cohen, Bram, 2004] are the first two applications that come to mind.

However, these protocols are designed to work with always-connected clients. Further, the

base protocols for peer-to-peer file sharing applications are very inefficient and use a lot of

packets to communicate and exchange files. These involve too much overhead for a mobile

network.

JXTA [Sun Microsystems, 2001] is a library that enables development of XML-based

P2P protocols to allow peers in a network to interact with each other. However, just like the

Gnutella and BitTorrent networks, JXTA is suitable for devices that are rarely disconnected

from the Internet or large-scale networks.

Hayes and Wilson [Hayes, Anna and Wilson, David, 2004] have built a platform based

on Gnutella for sharing files on a peer-to-peer mobile ad-hoc network. However, they use

the Gnutella protocol which includes routing capabilities that are not needed in the 7DS

system, which is meant to be a one-hop system. The 7DS protocol is much lighter and

requires very little data to be exchanged. Further, by virtue of being an application level

service, it is abstracted from the underlying network. Hence, in contrast to Hayes’ work

that runs only on Bluetooth, 7DS is capable of running on any IP-based network, be it

Bluetooth, Ethernet, Wi-Fi or other networks.
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Klemm, Lindemann and Waldhorst [Klemm, Alexander and Lindemann, Christoph and

Waldhorst, Oliver, 2003] have built a P2P file-sharing system called ORION (Optimized

Routing Independent Overlay Network) for mobile ad-hoc networks. It uses an overlay

network that combines application level query processing with network layer route discovery

for file sharing. 7DS’ multicast system works similarly, but without requiring a routing

system. Further, 7DS enables a whole set of network applications, not just file sharing.

iClouds [Heinemann et al., 2003] is another P2P application that enables information

sharing in mobile environments. iClouds is built on the J2ME platform. iClouds uses a

UDP “ping/pong” mechanism (to term to describe packets that require acknowledgement)

to discover nearby services. In contrast, 7DS uses ZeroConf for service discovery. The

iClouds’ “virtual notice board” concept using information exchange of iHave and iWant

lists is similar to 7DS’ community extensions, even though they are implemented differently.

The 7DS community extensions allow a user to define and build their own extensions of

content and application sharing.

Proem [Kortuem et al., 2001] is a platform similar to the 7DS system. Like 7DS, it is

meant for P2P sharing on disconnected mobile ad-hoc networks. Proem is a protocol stack

that allows other developers to build on top of it, but is not an application itself that can

be deployed like 7DS.

Earlier versions of the 7DS system were developed several years ago [Papadopouli, Maria

and Schulzrinne, Henning, 2001] [Papadopouli, Maria and Schulzrinne, Henning, 2000], but

they were written in Java. Our current implementation was built from ground-up in C, and

it is hence smaller and faster than the previous version.

TribeHive [TribeHive, 2016] is a company founded in 2013 that builds custom apps for

large sports stadiums, and also provides custom connectivity as an alternative for what

they call expensive Wi-Fi setup at the same venue. TribeHive mobile apps make use of

the WiFi Direct feature found in modern smartphones to connect with other smartphones

in the neighboring vicinity, and allow the apps to share data and update information from

the local network rather than having to connect to the Internet to get the latest data [The

Engineer, 2014] [Engineering and Technology Magazine, 2014]. Previous versions of the app

apparently used Apples GameKit library to offer the link-local data sharing functionality,
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but that has been replaced by WiFi Direct communication in more recent versions of the

software. In this case, the functionality is very similar to how 7DS operates in that it uses

link-local networks to share and exchange information.

3.9 Conclusion

The 7DS system fulfills its role in serving as a platform for exchanging information in a

opportunistic network. The components we have built so far enable webpages and e-mails

to be exchanged within the opportunistic network.

In the absence of ubiquitous connectivity, the 7DS system presents a good solution for

implementing transparent data exchange in an opportunistic network. As devices join and

leave the network, they bring in new information or propagate internal information that

needs to be sent to the outside network.
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Chapter 4

BonAHA: Service Discovery

Framework for Opportunistic

Network Applications

4.1 Introduction

In today’s mobile networks, devices often move from one wireless or cellular network to the

next, forming transitory associations without a standard client-server infrastructure. De-

vices constantly transition from one network to another, meeting new peers and exchanging

information. In this scenario, traditional models for writing networking software, such as

the client-server model or even the peer-to-peer model, turn out to be unsuitable for writing

mobile applications. A new framework needs to be developed for this class of applications

to be aware of device transitions as well as metadata (properties) that the devices possess.

In this chapter, we present a framework we have built for this class of applications. Our

library, called BonAHA (Bonjour for opportunistic network applications) aims to be easy

and intuitive, abstract the opportunistic networking details and at the same time provide

flexibility to the developer to develop powerful and rich opportunistic network applications.

As I showed in Chapter 3, we need a new class of software applications to function

in opportunistic networks. For software applications to work properly in highly mobile
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networks, it is necessary to maintain some sort of awareness of network state and discover

devices entering and leaving the network. This requires multicast queries with unicast

responses in order to keep track of devices in the network.

Service discovery protocols provide a simple framework to match our requirements.

However, raw service discovery APIs, while suitable for writing applications that announce

and browse for services, are not inherently suitable for writing mobile applications that

run in opportunistic networks. This is because service discovery protocols only address

service announcement and discovery, and require the developer to implement the details of

monitoring network transitions, which could quickly become very tedious.

With the BonAHA framework we have developed, we provide a framework for easy

development and deployment of such opportunistic network applications. BonAHA is built

on top of a popular set of service discovery protocols called Zero Configuration networking

(ZeroConf) [Zeroconf Working Group, 2008], the most popular implementation of which is

a library by Apple Computer called Bonjour [Bonjour, 2005].

In this chapter, we will present our motivations for developing the BonAHA API in

Section 4.2. In Section 4.3, we introduce service discovery, its features and its shortcomings

when applied to highly mobile network nodes. We focus on Bonjour.

In Section 4.4, we introduce our BonAHA framework, compare its API to that of ser-

vice discovery and show how BonAHA is much simpler and more intuitive for developing

opportunistic network applications. Several technical details, particularly the comparison

of Bonjour and BonAHA, as well as details about the Bonjour protocol, are also presented.

In Section 4.5, we discuss sample applications that we have written using the BonAHA API

and present sample code to show how it can be used.

4.2 Motivation

An overview of the BonAHA framework we have developed is shown in Figure 4.1. BonAHA

exposes the devices in the network as objects that can be accessed using object-oriented

function calls. It also enables the developer to handle network events such as devices

entering and leaving the network, as described later in the chapter.
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Node 2

Node 1

key21 = value21
key22 = value22
key23 = value23
key24 = value24

key11 = value11
key12 = value12
key13 = value13
key14 = value14

BonAHA – OO Network Events

[2] node1.get(key13)

[1] node1.register()

[3] data =
node1.fileGet(
value13);

Figure 4.1: The overall architecture of BonAHA networking from the developer’s perspec-

tive. The API allows the developer to treat the network as a set of objects with associated

metadata. Network events such as devices entering and leaving the network can be handled

through simple event handling functions. The diagram shows how events are announced

and browsed (1), how metadata is set and obtained (2), and how network communication

is performed based on the above operations (3).
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For networked applications to function consistently in opportunistic networks, they need

to be aware of changes in the network, such as devices entering or leaving the network, and

changes in properties associated with that device.

In order to develop applications that support opportunistic networks, an application

developer will have to write code that implements and handles several networking events.

In fact, when we implemented our first version of an application to allow distributed web

access and e-mail delivery [Srinivasan et al., 2007], we coded multicast packets for announce-

ment and discovery manually. However, it becomes tedious to rewrite the same code and

maintain all internal network state when developing applications for opportunistic network

applications.

We found that the service discovery most suitable for our purpose is an implementation

of multicast DNS in the form of Bonjour, an open-source technology from Apple Computer,

which is implemented and runs on Mac OS, Windows, Linux, Unix variants and several

other platforms. Based on our use of Bonjour for building mobile opportunistic network

applications [Srinivasan et al., 2007], we find that for a truly mobile application to be

completely implemented and functional, it has to implement all the callback functions in

the Bonjour API in order to work well in an opportunistic network. This is difficult unless

the developer completely understands Bonjour.

Our BonAHA framework runs on top of Bonjour and is suitable for writing opportunistic

network applications. By handling the details of the service discovery protocol, BonAHA

allows the developer to focus on developing opportunistic network applications by allowing

him or her to easily keep track of network state, the devices in the network, as well as the

metadata associated with each device.

4.3 Service Discovery

Service discovery refers to protocols which enable automatic detection of devices and services

on a computer network. Service discovery is fairly mature technology and has been around

for over a decade. Service discovery protocols range from lightweight protocols such as

DHCP [Droms, 1997][Lemon and Sommerfeld, 2006][Aboba et al., 2006] (which can include
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DNSSDService
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DNSSD.resolve()

DNSSD.register()

TXTRecord Host IP

DNSSD.browse()

set()

Figure 4.2: The state diagram for the Bonjour API.
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service discovery information on top of the basic DHCP) to heavyweight protocols like

JXTA [Sun Microsystems, 2001].

However, service discovery protocols that can be applied to writing applications that run

in opportunistic networks are very few in number. Examples of these are Peer2Me [Wang

et al., 2007] and LightPeers [Bent Guldbjerg Christensen, 2007], both described in more

detail in Section 4.8.

Service discovery includes classes of distributed technologies such as distributed hash

tables (DHTs). However, such technologies are actually too heavyweight for use in a limited-

device, intermittent network scenario. Further, most of these protocols require some sort of

bootstrap device which is not practical in intermittent and especially highly mobile network

scenarios.

Among the limited set of service discovery protocols that are suitable for opportunistic

network applications, the Bonjour implementation seems to be the most mature and stable.

4.3.1 Bonjour

However, the Bonjour API, even though simple, requires a learning curve and has some

shortcomings that make it not completely applicable to opportunistic networks.

The fundamental reason why Bonjour, in its native form, is not suitable for opportunis-

tic network applications is that it is primarily concerned with changes in the network, such

as services entering and leaving the network. It makes no attempt at capturing and main-

taining a view of nodes currently in the network, which is important for easily developing

applications that work in opportunistic networks.

The following is a list of shortcomings in the Bonjour API when applied to opportunistic

networks:

• Bonjour has three interfaces and five event-handling functions, all of which have to be

completely implemented by an application developer who is attempting to implement

an application that runs in opportunistic networks.

• Bonjour makes no attempt to capture and store the metadata of nodes currently in

the network. Even though the Bonjour API enables the developer to handle network
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BService

BListener

serviceUpdated()

set() register() setListener()

serviceExited()

BNode

get() getHostName() getHostAddress()

Figure 4.3: The state diagram for the BonAHA API.

events, it does not internally store this state of the network, such as devices present

and associated metadata. The developer has to maintain this state himself.

• Bonjour requires a two-step process for detecting a device entry or exit. In order to

access device details and metadata, device entry needs to be chained with another

function that gets metadata from the device.

4.4 BonAHA

We have released BonAHA under the GPL license on Sourceforge [SourceForge, 2009]. As

part of our earlier work, we completed a GUI library called BonSwing [Srinivasan and

Schulzrinne, 2007] which provides developers a GUI library to build applications for oppor-
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Listing 1 The details of the BonAHA API.

Classes:

BService: Description of a DNS-SD service

Bdevice: A device that offers a BService. Note that while a Bdevice maps to a physical

device, there may be a many-to-one relationship as each physical device can offer multiple

services, and hence correspond to multiple Bdevices.

Interfaces:

BListener: Handling network events such as services entering or exiting the network

Callback functions for events

BListener

serviceUpdated() when services appear or are updated

serviceExited() when services leave

tunistic networks. The library and sample applications are also available for download from

SourceForge [Suman Srinivasan, 2009].

4.4.1 Architecture

BonAHA uses a simple concept of service. Applications can register or listen to a particular

service on a network. This service is instantiated as a string name. The name is the same as

the DNS-like names used in DNS-SD’s service names. As an example, a device announcing

a HTTP server service would have its DNS service name set to http. tcp.

Metadata for the device is set using suitable object-oriented function calls. Services on

the network can be discovered by instantiating a service object and registering it to respond

to network events, such as a device update or devices arriving or exiting the network.

Metadata for neighboring devices in the network can be obtained by using making object-

oriented function calls using the underlying mDNS protocol.

The API used for handling network events in BonAHA is given in Listing 1. The state

diagram is outlined in Figure 4.3.
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An application that is announcing a service will usually follow the following steps:

• Create a service object with the name of the service;

• Set any metadata associated with that service;

• Register it.

An application that is listening for service announcements on the network will usually

follow the following steps:

• Create a service object with the name of the service;

• Set an event handler object for this service;

• The class handling events for the service will handle events corresponding to device

updates (which includes devices arriving in a network) and device exits;

• Metadata associated with that device can be retrieved from the devices.

Using the BonAHA library, an application developer would be able to completely have

network device and metadata events in a few lines of code. Without this framework, he

would need to understand Bonjour or other service discovery protocols thoroughly and

implement at least several dozen lines of code to listen to network events and device arrival

and departure.

4.4.2 BonAHA API

The BonAHA API aims to present the network to the developer as a set of objects with

metadata which enter and leave the network, thus triggering events. An outline of the API

can be seen in Figure 4.3 and in Listing 1.

The BService class allows one to construct a service instance which corresponds to a

DNS-SD service in the network. Its constructor allows for easy creation of such service

instances without needing to know the full DNS name of the service.

The BListener interface handles two types of events in the network: device entry (or

update) and device exit. Device arrivals are treated the same as device updates, since this
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simplifies the event handling without sacrificing any functionality. The two functions that

are handled by this event are BListener.serviceUpdated() and BListener.serviceExited(),

both of which return a Bdevice object.

The Bdevice object corresponds to a device in the network offering the service requested,

and exposes properties of the device, such as its host name, host address, service name

offered as well as the metadata (key-value pairs) of the device.

While the Bdevice maps to a physical device, it actually corresponds to a particular

service type that is advertised by the physical device. For instance, a physical device would

return two Bdevice objects if it was offering two services of the same type. Similarly, a

physical device would return a unique instance of a Bdevice for each service type it was

offering.

A developer who needs to offer an instance of, or view instances of, a service type in the

network, would create a BService object. After creating this object, he would do either or

both of the following operations:

• Register a service with BService.register()

• Listen to network events for the service type with BService.setListener

The BService.setListener, which takes an object that implements a BListener inter-

face, associates the network events with the implementation’s function calls.

Using the BonAHA API, we have developed software applications such as an automatic

location finder, and a simple networked Tic-Tac-Toe game that uses only BonAHA to update

game status. These sample applications are described in the next section.

4.5 Sample Applications

In this section, I present two simple sample applications that showcase the functionality

present in the BonAHA API.

4.5.1 Location Finder

The LocationFinder application is a simple command line application. The presumed sce-

nario for this sort of application is where a device does not have access to GPS data and only
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has access to the location information of nearby nodes. Using this information, it updates

its own location by averaging the location of all the other nodes in the neighborhood.

We have written the Location Finder application using the Bonjour API, and for equiv-

alent functionality, the Bonjour code required twice as many lines as code as the BonAHA

code.

Some of the basic code for running the Location Finder application can be found in

Program 1.

4.5.2 Tic Tac Toe

While multiplayer games like Tic-Tac-Toe are rather easy to write using sockets and other

forms of network programming, our BonAHA framework exposes an entirely new way of

writing such multiplayer games.

We will briefly explain how the multiplayer functionality of the game works. First,

a BService object is created and register() is called to announce its availability on the

network. A listener interface is also attached to listen to network events.

Upon receiving a serviceUpdated() event, the event handler code first processes which

node the event update is from. Next, it processes the metadata from the incoming node

and maps it to an internal data structure representing the location of the players’ moves,

which is used to update the game.

Some of the networking code used to create the networked Tic-Tac-Toe application can

be found in Program 2. A screenshot of this program is shown in 4.4.

A traditional multiplayer Tic-Tac-Toe or other networked game would require the de-

veloper to write client and server sockets and process data packets. With the BonAHA

framework, the developer is able to implement the networking functionality in four lines for

the Tic-Tac-Toe game.

The BonAHA framework enables the developer to handle nodes entering and leaving

the network. Our Tic-Tac-Toe game is able to automatically terminate a game when a user

leaves, and wait for and detect when another user wants to join. This feature was added

with just three lines of code.
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Program 1 The program for implementing location updates using the BonAHA API. Only

the code using the BonAHA API for service announcement and updates is shown.

public Locat ionFinder ( ) {

// Create the BonAHA se r v i c e and s e t metadata

s e r v i c e = new BService ( ’ 7 d s l o c a t i o n ’ , ’ tcp ’ ) ;

// Set my l o c a t i o n

s e r v i c e . s e t ( ’ Lat i tude ’ , l a t ) ;

s e r v i c e . s e t ( ’ Longitude ’ , lon ) ;

s e r v i c e . r e g i s t e r ( ) ; // Reg i s t e r myse l f

// L i s t en f o r new nodes on the network

s e r v i c e . s e t L i s t e n e r ( this ) ;

}

/∗ Another node en t e r s or updates i t s l o c a t i o n ∗/

public void serv iceUpdated (BNode n) {

System . out . p r i n t ( ‘ Updates from : ‘+n . getHostName ( ) ) ;

// Get the node ’ s l o c a t i o n metadata

St r ing nodeLat = n . get ( ’ Lat i tude ’ ) ;

S t r ing nodeLong = n . get ( ’ Longitude ’ ) ;

// Process peer ’ s in format ion

}

/∗ When a node l e a v e s the network ∗/

public void s e r v i c eEx i t ed (BNode n) {

System . out . p r i n t l n (n . getHostName ( ) + ‘ ( ‘ +

n . getHostAddress ( ) + ’ ) ’ +‘ l e f t the system ‘ ) ;

}
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Program 2 The code for getting the list of values from neighboring nodes for the Tic-Tac-

Toe game.

/∗ When I make a move ∗/

public void mouseReleased (MouseEvent e ) {

// Get the l o c a t i o n where user wants to move

int c o l = ( e . getX ( ) ∗ 3) / g e tS i z e ( ) . width ;

int row = ( e . getY ( ) ∗ 3) / g e tS i z e ( ) . he ight ;

// Update my node ’ s metadata to r e f l e c t s t a t e .

// This i s announced on the network

s e r v i c e . s e t ( c o l+” , ”+row , c o l+” , ”+row ) ;

}

/∗ New p laye r ; or o ther p l aye r made a move ∗/

public void serv iceUpdated (BNode n) {

// Check which p l aye r made a move .

// Then ge t node va l u e s ( p l aye r p o s i t i o n s )

St r ing [ ] va lue s = n . getValues ( ) ;

// Update i n t e r n a l data s t r u c t u r e

// Repaint the game

this . r epa in t ( ) ;

}

/∗ Player has l e f t ∗/

public void s e r v i c eEx i t ed (BNode n) {

// Disp lay message ; wai t f o r new p l aye r

}
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Figure 4.4: A screenshot of the Tic-Tac-Toe game developed using BonAHA. While it looks

similar to any regular networked two-player Tic-Tac-Toe game, it is much simpler to develop

due to the BonAHA framework.

4.6 Scalability

While building an application that runs in opportunistic networks, software architects need

to consider scalability. For example, such applications may be used in the middle of a

transportation hub such as Penn Station in central Manhattan, with thousands of users in

close proximity at rush hour, and quite possibly, hundreds within the physical proximity

of the wireless opportunistic network close to one user. As described in Chapter 5, the

underlying Bonjour service discovery library is capable of handling discovery packets from

hundreds of users simultaneously, and it is quite unlikely that even in spaces with dense

user populations, more than hundreds of users are on the same opportunistic networkit is

more likely that there will be several network islands identified by their own unique ad-hoc

wireless network names, each with their own opportunistic network that users can join and

leave.
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4.7 Security and Privacy

BonAHA aims to provide functionality that allows discovering nearby peers and exchanging

metadata about the state of the node that would allow devices to further communicate with

each other. BonAHA itself does not provide any cryptographic functionality, and it is up

to the application to provide end-to-end or authentication encryption for data transmission

if necessary.

BonAHA doesnt share any private information other than network connectivity infor-

mation (such as IP addresses) that devices need to communicate with each other. All other

metadata is determined by the application, and the application can choose which data is

public and can be seen by all peers, and which data is private and needs to encrypted before

sharing.

4.8 Related Work

JXTA [Sun Microsystems, 2001] is a peer-to-peer framework implementation made by Sun

Microsystems for the Java platform. JXTA is a very powerful framework and has been

implemented in J2ME for Java-based mobile platforms. However, JXTA does not have

the necessary framework to handle network events, such as devices joining or leaving the

network, which is necessary for our class of applications. In addition, the JXTA protocols

appear to be more suited to maintaining distributed metadata in always-connected networks

and hence more suitable for heavyweight applications such as file-sharing programs.

Peer2Me [Wang et al., 2007] is a implementation of a mobile ad-hoc framework using

JXTA. It appears to overcome the problem of network discovery using a platform-specific

network library for detecting Bluetooth network changes. However, it is currently limited

to J2ME devices and devices that use Bluetooth.

The only framework that is so far closely comparable to our work is the LightPeers

framework [Bent Guldbjerg Christensen, 2007]. LightPeers is a library framework written

in Mono, and runs on Windows Mobile, Windows and Mac OS platforms. LightPeers enables

development of mobile peer-to-peer and opportunistic network applications. There are some

minor differences, in that LightPeers’ discovery mechanism uses an announcement packet
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every second to check for nearby devices, while our mDNS-based platform uses exponential

backoff to reduce the number of packets over time. Further, the BonAHA API allows

developers to get and set metadata associated with each device, which allows the developer

to treat the entire network as a collection of objects and network events. LightPeers does

not have such a feature. Further, LightPeers is built on its own custom network stack,

rather than using service discovery standards such as mDNS.

AllJoyn [Alliance, 2016] is a framework developed by the AllSeen Alliance that allows for

discovery, attachment and data sharing among devices in close proximity. This framework

was first announced at the Mobile World Congress in 2011 by Qualcomm. It runs on the

most popular desktop and mobile operating systems, and supports Wi-Fi, wired Ethernet

and Bluetooth. Instead of using existing service discovery protocols, AllJoyn uses a slightly

modified version of the D-Bus messaging bus service that is used for inter-process com-

munication in Linux through sockets, and extends this to function across multiple devices

for service discovery [Center, 2011]. AllJoyn allows nodes to announce the services they

provide, and connect and share data through sessions, which could be point-to-point (node-

to-node) or multi-point (group of nodes). Its API tutorial [Alliance, 2015] for a sample

Hello World application shows that the general API structure is very similar to BonAHAs

concept of discovery and metadata and information sharing. Using AllJoyn, Lokhandwala

et al. [Lokhandwala et al., 2015] developed an app to allow for users in a local network

to edit documents through a Min-O-Mee (minutes of meeting) app. The Min-O-Mee ap-

plication was specifically developed for sharing and writing meeting minutes over a shared

connection, but other applications can be built on the AllJoyn framework.

OpenPeer [OpenPeer, 2014], developed in 2013, is an open P2P signaling protocol that

is open and allows for peer communication. It allows applications to be built as web applica-

tions that run on web browsers, or as standalone applications. In addition to the discovery

mechanisms, it also supports WebRTC [W3C, 2011], which is a protocol for sharing multi-

media content (mostly for voice and video chat) in a peer-to-peer manner without requiring

a central server. Based on the overview, protocol specification and sample code [GitHub,

2014], OpenPeer is built as an enabling mechanism specifically to support WebRTC and

audio and video calls across a network, rather than enabling generic P2P applications to
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exchange data for other purposes like BonAHA is meant to be.

Apple introduced a library called GameKit [Apple, 2009] for iOS in 2009 that allows

developers to create their own social games. It allows for a mode of connectivity called

peer-to-peer connectivity, which allows your game to create an ad hoc Bluetooth or wireless

network between multiple iPhones in the same local area. The documentation also states

that even though meant for games, the functionality can also be used for other forms of

data transfer. However, this functionality was limited only to running on iOS devices and is

closed source. An additional impediment is lack of published protocol specifications or other

documentation for GameKit, which would mean that we would have to reverse engineer and

look into network packets to reconstruct the protocol, which would make it difficult to port

and run on other platforms. The GameKit library was removed in iOS version 7 (2013)

[Stackoverflow, 2013].

Funai et al [Funai et al., 2016] explore connecting devices through the Wi-Fi Direct

standard mentioned earlier. While Wi-Fi Direct was designed following a client-server

hierarchical architecture, where a single device manages all the communications within a

group of devices, Funai et al. propose other solutions for supporting the communications

between multiple Wi-Fi Direct groups and create multi-hop ad hoc networks. While this

paper explores how to extend WiFi Direct beyond the initial range that it was meant for,

it does not provide for an additional or easier-to-use interface on top of WiFi Direct for

building applications that run in such networks.

4.9 Conclusion

We believe that the BonAHA framework provides a promising start for easing development

of highly mobile opportunistic network applications. The appendix listing some of the

BonAHA applications we have developed, such as chat, bulletin board system, etc shows

that it is possible to build real, functional applications on top of the BonAHA framework.
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Chapter 5

Measuring and Improving Service

Discovery Protocols on Wireless

Networks

5.1 Measurements of Service Discovery Performance in Wire-

less Networks

In this section, I describe my joint work on the measurement and analysis of the popular Zero

Configuration Networking protocol [Zeroconf Working Group, 2008] in wireless networks.

We found that ZeroConf fails to work properly in wireless networks due to its exponential

backoff feature and inability to handle wireless node transitions. We came up with an

algorithm that allows ZeroConf to function properly in wireless networks.

Since service discovery protocols, particularly those based on multicast, could easily

create a large amount of background traffic in wireless networks, it is necessary to evaluate

the impact of these protocols in such networks. I describe our measurement of the use and

prevalence of multicast service discovery protocols on a large campus network, Columbia

University’s wireless network.

In the previous two chapters, we presented applications and frameworks that run on

opportunistic networks. In this chapter, we present our analysis of and improvement on the
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ZeroConf protocol implementation in wireless networks, but this analysis and improvement

applies to opportunistic networks as well, as the transitions of devices in 802.11 wireless

networks is the same as transitions in opportunistic networks.

The service discovery work was joint work done with my colleague Se Gi Hong.

5.2 Improving Service Discovery in Wireless Networks

Service discovery is a vital part of applications that run on wireless and opportunistic net-

works, as it allows those applications to automatically discover services as well as announce

their services. When mobile devices are intermittently connected to the Internet, infor-

mation can be shared with peers using ad-hoc networking. These wireless mobile ad-hoc

networks do not have any infrastructure, such as a DNS server and a DHCP server. For

these reasons, IP-based mobile ad-hoc networks require protocols such as Zero Configu-

ration Networking (Zeroconf) [Zeroconf Working Group, 2008]. Zeroconf provides for the

assignment of IP addresses, host naming, and service discovery without any central servers

or human administration. Therefore, Zeroconf plays an important role in order for such

applications to work properly.

We analyze the service loss rate, which we define as the percentage loss rate of network

service announcements (using ZeroConf packets).

Figure 5.1 show our analysis of the service loss rate for different intervals and various

device residence times in a wireless network [Hong et al., 2007]. From the figure, we can see

that Zeroconf suffers from a large service loss rate in wireless networks, where the frequency

of devices joining and leaving a local wireless network is very high. Network changes are not

announced to other devices, and there is no algorithm in Zeroconf to detect these frequent

network membership changes as nodes enter and exit the network.

In our work, we analyzed the relationship between the interval of service browsing,

average residence time of devices in a local wireless network, and the probability that

new services announced by new joining peers are not discovered. We then proposed a

new algorithm that improves the service discovery protocol and allows devices to discover

network changes and new services in real time while minimizing network overhead. In our
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Figure 5.1: Service loss rate for different residence times and browsing intervals for ZeroConf

in opportunistic networks.

algorithm, each device can detect whether it has joined a new network group by monitoring

changes in its wireless network ID as well as beacon frames. If a node detects that it

has joined a new network, it resolves possible conflicts of IP address and host names, and

announces or browses for services.

Our implementation [Hong et al., 2007] monitors network changes that occur when a

wireless device joins a new wireless network. This enables our networking stack to notify

ZeroConf of node changes that it may not otherwise be aware of.

5.3 Multicast Service Discovery in a Campus-Wide Wireless

Network

iTunes, a highly popular multimedia application, uses the DNS-based service discovery

(DNS-SD) [Cheshire and Krochmal, 2013a] and multicast DNS [Cheshire and Krochmal,

2013b] protocols to allow users to browse playlists of other iTunes users in the same subnet.

mDNS generates significant traffic load. Such load is especially seen on college campuses,

where wireless networks are pervasive and a large number of wireless users are working on

the same subnet.

Since we could not find any previous measurement and analysis of the overhead of

multicast service discovery traffic in a campus wireless network, we measured and analyzed

the traffic overhead of mDNS traffic [Hong et al., 2009] in a typical college wireless network.
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Figure 5.2: Left: the number of packets per second for the various multicast and broadcast

packets in the campus-wide wireless network. Right: the average hourly rate of packets per

second sent over a period of 24 hours.

In Figure 5.2, we show the bandwidth usage of mDNS packets and the effect of multiple

APs on multicast packets in the wireless network of Columbia University. The left graph

of Figure 5.2 shows the number of packets per second for the various multicast packets,

separated by type. The graph on the right shows the number of mDNS packets per second

throughout the day. The graphs show that mDNS is the multicast protocol that is most

widely used, and that the traffic patterns for mDNS are consistent with usage patterns for

college students (usage peaks at afternoons and evenings and drops late at night).

In addition to our measurement of these protocols in a campus network, we also modeled

the behavior of this protocol. We defined three service discovery models which correspond

most closely to the DNS-SD/mDNS traffic behavior. We analyzed the performance of these

three service discovery models in terms of traffic overhead and service discovery delay for

different network sizes and lifetimes.

We did this work primarily because we noticed an increasing number of service discovery

messages in computer networks, particularly mDNS messages due to the increasing pop-

ularity of iTunes and similar services. Our work, done in 2008, corroborated that service

discovery and announcement packets are indeed growing in number (particularly compared

to earlier publications on the same subject) particularly on college campuses.
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Delivering Video Content–CDNs

and Beyond
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Chapter 6

Introduction: Content Delivery

Networks and Content Networking

Internet video has become a cornerpiece of content consumed on the Internet today. By

2012, Youtube was serving up 4 billion streams a day [Reuters, 2012]. In April 2015,

Facebook said its social media site was serving 4 billion views every day [Fortune, 2015].

yet accounts for only 10% of the Internet traffic today [PCMagazine, 2011]. In contrast,

NetFlix traffic constitutes about 33% of the Internet traffic [PCMagazine, 2011], and is in

the midst of developing its own custom content delivery network (CDN) [Netflix, 2012].

Cisco’s 2015 Visual Networking Index predicts that Internet traffic is expected to reach 2

zettabytes per year by 2019 (up from 1 zettabyte at the end of 2016), of which 80% will be

Internet video, up from 67 percent in 2014 [Cisco, 2015].

It has never been more important to study the trends in Internet video, in particular how

content delivery networks (CDNs) such as Akamai and others operate, as video and video

delivery platforms have now become the largest drivers of Internet traffic. In this light, this

thesis includes research performed in relation to CDNs and improving the networking and

delivery of content on such networks.

Chapter 7 explores on-path CDNs, a mechanism to terminate content requests in-

network and serve content more efficiently through a caching node in the network.

Chapter 8 briefly touches upon the NetServ service virtualization framework, which
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allows us to build in-network application modules such as ActiveCDN. Chapter 9 details

ActiveCDN, a CDN platform built on top of the NetServ framework that allows for dynamic

CDN modules to be installed on the fly at edge nodes to provide not only caching, but also

dynamically generated and localized content.

Chapter 10 describes the analysis of video traffic in the real world which I perfomed

while working at Longtail Video, which drives 500 TB of video traffic per month across

various online properties. I believe this analysis will be helpful in evaluating trends in

networked video traffic as well as efficient caching methods for the same.
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Chapter 7

Unveiling the Content-Centric

Features of TCP

7.1 Introduction

Content-centric networks [Jacobson et al., 2009b] have been proposed as a new network

paradigm that is centered around the distribution of content, which we can define as any

reproducible object that end users would like to download in order to view, hear or execute.

A key idea of content-centric networks is to query content by content name rather than

by host name and to enable any node inside the network to respond to content requests

rather than just a few endpoints. Most proposals for content-centric networks require a

“clean slate” approach and a replacement of today’s TCP/IP protocol stack, which raises

questions about a feasible deployment path.

In this chapter, we ask the question to which extent the ideas of content-centric networks

can be realized on top of today’s IP protocol suite, and propose an approach for name-

based addressing that extends today’s TCP/IP protocols in a fully standard compliant

way. We implement our new method in order to demonstrate its feasibility and evaluate

the performance of the system using both latency and processing overhead as measures.

The obtained results, detailed in Section 7.5 demonstrate that name-based addressing on

IP is feasible.

In content-centric networks, any network node can be enabled to respond to a request if
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the node holds the requested content item. Current proposals for content-centric networks

require a departure from today’s IP protocol stack. However, replacing today’s IP protocol

stack with something new requires substantial investment in network infrastructure and

end systems. Given the very slow uptake of the next version of the IP protocol, IPv6,

it is questionable when and if at all a radically new protocol stack can see widespread

deployment.

In this chapter, we question the common belief that content-centric networks require a

radical departure from the current IP protocol suite. We explore to which extent content-

centric networks can be realized on top of IPv6. We propose an approach for a name-based

content nework, On-Path CDN, that extends TCP/IP. Our approach enables any node

on-route between the end user and the content provider to serve requested content.

We have implemented our new method in order to demonstrate its feasibility and evalu-

ate the performance of the system using both latency and processing overhead as measures.

The obtained results demonstrate that it is possible to realize a name-based addressing

mechanism on TCP/IP. We also show that On-Path CDN can enhance end-user experience

for watching audio or video over the Internet.

We detail the operations of traditional and on-path CDNs in Section 7.2. We explain our

mechanism and the implementation of a prototype system in Section 7.3 and Section 7.4,

respectively. In Section 7.5, we evaluate the performance of our system using network

latency and processing overhead as metrics. We discuss related work in Section 7.7.

7.2 CDNs for Content-Centric Networking

7.2.1 Traditional Approach

We first contrast our work on On-Path CDNs to existing methods of content delivery by

highlighting two issues.

The first limitation that we address relates to the method of content delivery itself.

Today, content providers either host their high-bandwidth content themselves, or more

commonly pay content delivery network (CDN) providers such as Akamai and Limelight

Networks for the delivery of their content. When content is hosted on a CDN, a user
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request for it is usually redirected to a server closer to the user that is operated by the CDN

service provider. Though this fundamental task appears to naturally fall into the space of

the networking layer, the host-centric Internet architecture was not designed with such a

service.

This has led to the development of application-specific and non-interoperable mecha-

nisms, the most common of which are: redirection through domain name resolution using

DNS [Mockapetris, 1987a][Mockapetris, 1987c]; request redirection using HTTP [Fielding

et al., 1999]; and other application-level mechanism, e.g., based on HTML rewriting or

distributed hash tables (DHTs) (specific implementations of these are cited in more detail

in Section 7.7). The most popular of these implementations in the real world is the HTTP

and DNS based approach that was popularized by Akamai [Tom Leighton, 2009] and now

used by other CDN vendors.

The above redirection work-arounds require some form of command-and-control mecha-

nism and impede cooperation of CDNs operated by different parties; e.g., to allow a national

or international backbone CDN to reach into a metro network and make use of the CDN

resources of the local operator. Once the redirection is set up, a local CDN will be unable

to serve the content from another node even if it is closer to the end user than the node

that the user has been redirected to. As a consequence, CDN deployment is rather static

and scaling them to adapt to sudden changes, such as unexpected flash crowds, is difficult

with the current Internet architecture. Even using services such as Amazon Cloudfront

[Amazon, a] or its Amazon Web Services cloud architecture, it is only possible to stand up

nodes in the handful of geographical regions that Amazon operates data centers at.

The second issue is in regards to the networking architecture and naming perspective.

Currently, requests for content are usually routed based on the Internet address (IP ad-

dress) of the node that has the content. While this is in keeping with the current Internet

architecture, it does not offer a direct way of addressing content, which is independent of

the location of the content itself. Methods of addressing naming issues, such as Content-

Centric Networking [Jacobson et al., 2009b] as well as systems like DONA [Koponen et al.,

2007] and i3 [Kannan et al., 2004] require a clean-slate redesign of the Internet architecture

in order to be useful. While it is possible to run some of the solutions on top of existing
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protocols such as IP, such a solution would defeat its purpose since it would overlay a pure

content-centric solution on top of something that relies on host names.

Our work presents an implementation of content-centric networking that runs on today’s

Internet technologies and protocols. In this chapter, we raise and answer the question

of how far we can go in the direction of CCN based on today’s IP protocol suite, with

our additions being standards compliant. We propose a design for an IP compliant CCN

architecture, present a prototype implementation, discuss limitations and performance as

well as unexpected road-blocks in the implementaiton.

7.2.2 On-path Content Delivery

Figure 7.1: The handshakes and networking messages used in the TCP-interception method

of on-path CDNs.

We propose an alternative method for the delivery of multimedia content that enables

delivering multimedia content from any node that is on the route from the end user to the

content provider. In our approach, any intermediate node can respond to content requests

and serve content if it has a copy of the content cached. This avoids explicit redirection to

another server and reduces latency, thereby improving the end user’s multimedia experience.
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In addition, our implementation and solution also provides a method of serving content

to the users without redirecting them to a particular node. Our on-path content delivery

mechanism enables true content-based delivery without the network having to worry about

which nodes the content resides on. It makes use of signaling messages that piggyback on

existing TCP handshake mechanisms, as described in the next section.

7.2.3 Advantages of On-Path Content Delivery

There are many advantages in allowing multimedia content to be served using intermediate

nodes on the path from an end user to a content provider, in contrast to using a statically

deployed CDN network, or worse yet, serving content from just one central location. Some

of the advantages are:

1. Network latency is reduced and there is less congestion on the Internet. Especially

as video traffic is predicted to grow and account for 90% of the Internet traffic in 2013

[John Markoff, 2010], having video served from nodes that are closer to the end user will

dramatically reduce congestion in the network.

2. Regional networks and the Internet dynamically adjust to high loads of unanticipated

traffic, e.g., such as in the case of “flash crowds” or highly viral content.

3. Service providers can reduce redundant traffic on expensive transit links.

4. CDN service providers can establish business relations with each other to provide better

end-to-end multimedia experience to a larger user population.

We describe the design decision and details of the core mechanism of our solution, which

enables these advantages, in the following section.

7.3 Mechanism Details

Non-realtime video on the Internet today is delivered almost exclusively using HTTP, with

TCP as its underlying transport protocol. Since the goal of our work is to enable a solution

over today’s Internet without any modifications to the end user and networking stack, we

focus on a solution that is compliant with and requires no changes to the TCP specification

[Postel, 1981].
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At the beginning of a HTTP session the user application establishes a TCP connection

to either the host indicated in the URL [Berners-Lee et al., 1994] that identifies the re-

quested content or to a proxy if configured. Once the TCP session has been established,

the user application then uses the URL to issue a HTTP request identifying the content.

Thus, intercepting a content request on path for inspection and content routing decision

requires proxying the TCP session at the intercepting node. Since an established TCP

connection cannot be renegotiated and transferred, however, on-path routing without ad-

ditional mechanisms could easily result in daisy-chaining TCP connections for a single user

session and result in additional hops and delays for the end user.

Figure 7.2: The details of implementing the handshakes and networking messages in the

TCP-interception method.

Session establishment in TCP is signaled using the same packet format as for the actual

transfer of the application data; i.e., a TCP packet consists of a header and a payload

data. Our method of on-path content delivery exploits the fact that the TCP packets

for the initial handshake of a session don’t include any payload. We piggyback some key
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information in two of three TCP handshake messages, particularly the TCP SYN and the

TCP SYN-ACK packets. Though this would be possible by modifying the protocol stack at

the user end, we enable this through use of a modified HTTP proxy that rewrites the TCP

handshake messages as outlined in Section 7.2. In the proxy scenario, the application (e.g.,

the browser) establishes a session with the proxy server, which rewrites the TCP handshake

messages to enable the on-path delivery mechanism. Thus, there is no need to rewrite the

networking stack at the end user’s node, and at the same time, the user is able to benefit

from an “opt-in” option to make use of this feature.

Our method uses the first TCP SYN message from the client to the content provider

for carrying the pointer to the requested content (such as the URL) in its payload. This

message moves through the network in the direction of the content provider. It passes

through all intermediate nodes that are not able to serve the content (or are ignoring TCP

SYN payloads). However, once an intermediate node detects it has the content referenced

in this packet, it terminates the request forwarding process and replies to the TCP SYN

packet with a TCP SYN-ACK packet.

The TCP SYN-ACK packet sent by the intermediate node contains a payload consisting

of the initial content pointer (the URL), along with a delimiter and an identifier of the node

that has intercepted the request. This allows the networking stack in the proxy server that

is serving the end user to realize that an intermediate node is responding to the initial

content request.

When the client proxy receives the TCP SYN-ACK message, it replies with an ACK to

the intermediate node, thus completing the TCP handshake. At this point, a TCP session

is set up between the proxy and the intermediate node that can serve the content directly,

and all future content requests are served directly from the intermediate node.

We built a prototype of this system, which is described in the next section.

7.4 Prototype Implementation

Our prototype implements the previously described the TCP handshake interception. Fur-

thermore, a module in the prototype evaluates each handshake message to determine
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whether it is able to handle and serve the content that is referenced in the TCP SYN

message, and only then does it decide whether to respond to it with a payload-added SYN-

ACK message.

For our implementation we used iptables [iptables, 2008] and netfilter [nfqueue, 2008]

to set up rules to intercept our required packets. We also use the library libnetfilter queue

(nfqueue) [nfqueue, 2008] to allow us to programatically set up event callbacks to network

events. We intercepted requests for packets on both port 80 for HTTP and port 3128 for

Squid proxy caching.

We implemented our prototype using the Python programming language and relevant

network libraries for intercepting and modifying packets. We used the nfqueue-bindings

[nfqueue, 2008] and the Scapy [scapy, 2009] libraries for advanced networking and packet

functionality. Our Python scripts implemented the functionality required for the protocol

as described in the previous section.

We ran our tests on Alcatel-Lucent (ALU) networks, and hence ALU is considered the

local network. We use a HTTP proxy to communicate with nodes outside the Alcatel-Lucent

network.

Our setup consisted of:

1) A client with a browser set up to use our on-path CDN proxy to access the network

2) Our CDN proxy, which handles the initial TCP SYN packet and also performs the

modification of network addresses in a manner similar to a NAT.

3) Our CDN caching node, which intercepts the TCP SYN signaling message, responds

with a TCP SYN-ACK with the node information payload, and serves the cached content

from its local storage.

4) The origin server, which is the original source for the requested content.

Of the above, we implemented the CDN proxy and the CDN caching node. Both of

these were implemented in the Python programming language using the networking libraries

listed.

We encountered an interesting problem while working with the implementation of the

network stacks that bears mentioning. In order to intercept and serve content based on

request, we added payloads to the TCP SYN and SYN-ACK packets, and correctly changed
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the size and the checksum on these packets. To our surprise, the TCP SYN and SYN-ACK

packets were received and processed correctly by the network stack at the sending and

receiving nodes, but the subsequent data packets were not handled properly, and we saw

TCP RESET messages terminating the session.

We found that the reason this was happening was that the network stacks were assuming

(incorrectly) that the TCP handshake messages had no payload and were expecting corre-

sponding SEQ and ACK counters. In other words, the operating systems’ network stack

implementations completely neglected the data size and SEQ/ACK numbers set in the TCP

handshake messages and started the SEQ/ACK numbers for the data packets assuming a

zero payload. This caused some unexpected problems in the running of our protocol.

In order to resolve this SEQ/ACK problem, our packet processing had to change the

SEQ and ACK numbers in the TCP packets, reducing or incrementing them as necessary

to allow the network stack to recognize them as legitimate packets.

7.5 Performance Evaluation

For our performance measurements, we measured the network latency using the round-trip-

time delay from one control node to four content servers that we worked with during the

course of our experiments.

7.5.1 Experimental Setup

We used one node in the Alcatel-Lucent network as the control node. We measured the

round-trip time of TCP packets to the following nodes:

1. A node on the same subnet;

2. A node on the edge of the network: Alcatel-Lucent’s main web server (www.alcatel-

lucent.com);

3. Cable New Network (CNN’s) main web server (www.cnn.com); and

4. Akamai’s content server for CNN (ht.cdn.turner.com).
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7.5.2 Round-trip Time and Latency

Figure 7.3: TCP latency of the four test nodes.

We used apachebench [ApacheBench, 2008] to test the delays. The ab binary (part of

the apachebench package) allows us to measure round-trip time delays for TCP signaling

messages (SYN and SYN-ACK) which we use to measure the delay in sending and receiving

TCP messages. We used Python’s scapy [scapy, 2009] network package for generating the

network graph, as well as validating the results from apachebench.

The results presented in Figure 7.3 show that the round-trip times for the CNN and

Akamai servers are very close to each other. We believe that this may be because our tests

were conducted in the U.S., and both servers were sufficiently close enough in terms of

network topology to respond to requests with latency close to one another. The interesting

result is the difference in the delay between the edge node (the Alcatel-Lucent web server)

and the CNN and Akamai servers. Our measurements indicate that latency to the edge
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node is only around 50% of the latency for CNN and Akamai; and latency for the edge node

is also far more consistent than the latency to the origin servers, whether CNN or Akamai’s

servers.

The above results show that an on-path CDN with deployed nodes at the edge of the

network can indeed substantially reduce network latency. Furthermore, we conclude that it

can reduce network congestion and other networking problems associated with large volumes

of multimedia traffic on the Internet.

7.5.3 Processing Overhead

Another important performance metric is the processing overhead that our mechanism

adds to the network nodes. As the results of our performance measurements indicate, this

overhead is very small. The typical overhead for simply intercepting and checking the

content of the TCP handshake messages is on the order of 400 to 500 microseconds, and

the overhead of interception and modification of the TCP messages is on the order of 600 to

700 microseconds. Hence, the overhead added to the interception is in the range of 40% to

50% of the base delay. We could expect far lower overhead if we had used C/C++ instead

of Python.

It is important to note that the interception is performed only on TCP handshake

messages, particularly only on TCP SYN messages passing through the content router.

Furthermore, the payload addition is done only for content that the router is able to han-

dle. And finally, our prototype was built using the Python scripting language and an

iptables/netfilter implementation that sent packets from kernel space to user space. With

an implementation in a kernel module, the speed of processing packets could be significantly

improved.

7.6 Implementation Alternatives

There are several alternate ways of implementing our on-path method for serving content,

such as by using UDP signaling or NetServ (described in Chapter 8 of this thesis). We

believe that being able to intercept and serve content in response to TCP message signalling
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is the best way to handle content delivery on network flows that are being set up. In addition,

such methods work on an “off-path” channel or as control messages, and we believe the

TCP intercept mechanism allows for true content-centric networking to be implemented on

today’s Internet architecture.

7.7 Related Work

There has been work on intercepting content requests to serve multimedia content from

nodes on path, such as redirecting requests based on predetermined criteria [John D. W.

Brothers / Nortel Networks, 2002]. Layer 4/7 switches [Web Switch, 2011], also known as

web or content switches perform similar functionality and are used primarily for caching

repeatedly requested content. In contrast to our solution, however, they need to keep track

of every TCP connection that they are routing. This is impractical in a large network.

Sarolahti, Ott and others [Sarolahti et al., 2011] explore providing content-centric net-

working (CCNs) on top of TCP, with some modification of TCP required to work. In

particular, they state that “Our solution, Multi-Receiver TCP (MRTCP), is based on TCP

as the primary transport protocol for our target application class. It requires a modest

amount of modications to sending (usually server) TCP/IP stack, but it works with un-

modied off-the-self TCP receivers (usually clients).” Their implementation is very similar to

ours, in that they maintain awareness of content and flow in their modified TCP (MRTCP)

implementation, and also provide for improved performance when intermediate routers are

MRTCP aware. However, one major difference is that they require modification of the TCP

stack on one side of the connection (server side), while our solution does not require any

changes to the TCP or IP layer at the end points, but only on routers at the network core.

TCP interception has been enabled by Cisco on its routers. While this seems to have

been initially introduced to allow systems to reduce TCP SYN-flooding attacks, such as

NetBouncer [Thomas et al., 2003], it has also been used for a variety of other purposes,

such as speeding up content delivery on wireless networks [Housel et al., 2004] [Kopparty et

al., 2002]. While we were not able to find related work using this feature for content delivery,

we believe this feature allows for our method to be implemented on many commercial, off-
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the-shelf routers as long as content storage is available on these routers.

There is also some work done on QoS routing for multimedia applications [Wang and

Crowcroft, 1996] and multipath routing for unicast video [Chen and Chan, 2001], but these

papers on multimedia routing do not involve intercepting content packets.

There has been a body of work in the fields of naming and redirection. For example, i3

[Kannan et al., 2004] and OCALA [Joseph et al., 2006] are naming overlays that work on top

of the existing Internet architectures. The Data-Oriented Network Architecture (DONA)

[Koponen et al., 2007] attempts to address the issue of Internet naming and name resolution

by allowing a client to request content by name, rather than using a host address.

In contrast to these naming and addressing approaches, Content-Centric Networking

(CCN) [Jacobson et al., 2009b] aims at treating content as a primitive for routing requests

to the destination. However, most of the robust work on naming, addressing and content

based routing require a clean-slate redesign of the Internet. We believe ours is the first

example of work that enables use of signaling for delivery of multimedia content without

requiring a complete overhaul of Internet protocols. Our solution avoids the routing problem

that CCNx suffers from, while allowing for the content location flexibility that it aims to

provide.

7.8 Conclusion

This chapter introduced the concept of on-path content delivery networks which are able to

serve multimedia content to the end user through TCP handshake interception mechanisms.

We described our motivation for developing this new architecture, and detailed how this

architecture helps in improving latency for the end user, while reducing networking problems

such as congestion and latency. We have detailed the protocol call-flows for enabling an on-

path CDN, and have also described the implementation of our prototype on existing Internet

infrastructure. We also presented performance measurements that show how the on-path

CDN is an improvement over existing statically deployed CDNs in terms of reducing latency

and round-trip time. Our approach enables a new class of content networking architectures

with a large number of dynamically deployed content nodes.
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Chapter 8

NetServ: Dynamically Deploying

Software Defined Networking

8.1 Introduction

We present NetServ, an extensible architecture for core network services for the Internet of

today and the future. NetServ aims to provide a layer to allow for executable functionality

at the network core, on Internet routers, similar to software-defined networking [Kirkpatrick,

2013]. The functions and resources available on a network node are broken up into small

and reusable building blocks. A new core network service is implemented by combining the

building blocks, and hosted in a sandboxed execution environment that provides security,

portability, resource control, and the ability to deploy modules dynamically.

We describe our first prototype, a novel combination of the Click router and the Java-

based OSGi module system. Our measurement results indicate that the processing overhead

incurred by the Java layer is a reasonable trade-off for the level of modularity we achieve

in our system.

Despite the tremendous success of the Internet in the past decade, a number of short-

comings of the current Internet architecture have become apparent. The ossification of the

Internet, often suggested as the main problem of the current architecture, refers to the fact

that it is nearly impossible to add new functionality and services to the network core. This

is clearly shown by the dismal rate of adoption of new Internet protocols such as multicast
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routing and QoS, even when the need for them is widely recognized. Many have naturally

turned to implementing network services on the application layer using overlay networks

formed by end hosts, since providing services through overlay networks eliminates the need

to update the network core. However, such solutions tend to be ad hoc, often duplicating

the effort of other overlay networks, and inefficient because certain basic functions can be

achieved much more effectively at the network core.

We present NetServ [NetServ Website, 2011], our on-going research effort to design

an extensible architecture for core network services for the next generation Internet. The

key idea of NetServ is service modularization. The functions and resources available on a

network node are broken up into small and reusable building blocks. A new core network

service can then be implemented by combining the functionality of building blocks available

on multiple network nodes. We use the term service modules to refer to the building blocks

or the composite components that use multiple building blocks.

Another piece of the NetServ architecture is the virtual services framework, which refers

to the architecture of the network nodes that host service modules. The virtual services

framework provides a sandbox-like execution environment for the service modules, offering

security, portability across hardware platforms, and the ability to control resource allocation

among modules. In addition, the framework supports adding and removing service modules

at runtime, by network administrators or even by content providers and end users, enabling

on-demand and per-flow services in the network core.

In this chapter, we describe our first prototype implementation of the NetServ archi-

tecture. We used the Click modular router [Kohler et al., 2000; Click Website, 2009] as a

base router platform, and augmented it with a Java-based dynamic module system called

OSGi [OSGi Alliance, 2011], which provides the ability to load and unload service modules

at runtime. The prototype implemented a component inside the Click router that inter-

cepts incoming packets and sends them to Java service modules that can be installed and

uninstalled at runtime. The Java technology provides portability across hardware plat-

forms, and a comprehensive security framework on which to build our security and resource

control mechanisms in the future.

The rest of this chapter is organized as follows. Section 8.2 gives a brief overview of the
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two technologies that we have used to implement our prototype: the Click modular router

and the OSGi framework. Section 8.3 describes our prototype implementation in detail.

Section 8.4 presents our measurement methods and results. Section 8.5 summarizes the

related work. Finally, we conclude and discuss future work in Section 8.6.

8.2 Technology Overview

8.2.1 Click Modular Router

Click [Kohler et al., 2000; Click Website, 2009] is a modular software architecture for Linux

and other UNIX-like platforms that allows for the creation of easily reconfigurable routers

and switches. Click functionality is manipulated using a text file that specifies how modules,

called elements, are arranged in a directed graph. The graph structure allows for numerous

possibilities. One such possibility is shown in Figure 8.1. This example of a very simple

Click configuration receives packets from network interface eth0, counts them, and discards

them. Click includes hundreds of predefined elements so it is easy to reconfigure a graph to

implement many types of network devices. In addition, custom elements can be written to

further extend functionality.

The Click router can run in two modes: user-mode or kernel-mode. User-mode runs as a

user-level process. This means it does not replace the routing performed by the underlying

Linux kernel. In contrast, kernel-mode runs as a module inside the Linux kernel and can

replace the routing functionality of Linux.

The performance of the Click router is much higher in kernel-mode, and it can be further

enhanced by replacing the standard Linux Ethernet drivers with polling drivers. Polling

drivers turn off Linux’s interrupt structure and device handling, and allow the network card

to poll for packets.

Kernel-mode uses the proc file system to access data from a running element or to change

the element’s settings. If more extensive changes are required, Click offers the ability to

replace the running configuration with an entirely new one, called hot-swapping. Compared

to NetServ, Click’s hot-swap feature is limited in three ways. First, Click elements are

written in C++, thus the elements in binary form can be installed only on a particular



CHAPTER 8. NETSERV: DYNAMICALLY DEPLOYING SOFTWARE DEFINED
NETWORKING 68

FromDevice(eth0) -> Counter -> Discard;

FromDevice(eth0)

Counter

Discard

Figure 8.1: A minimal Click configuration.

hardware platform. Second, Click elements run inside the kernel so there is little to no

security or access control. Third, the ability to hot-swap a particular element into a running

Click router is dependent on the element having been compiled into the Click kernel module.

The router must be restarted to insert a newly developed element.

8.2.2 OSGi Framework

OSGiTM [OSGi Alliance, 2011] is a component framework for Java. In the OSGi framework,

an application is organized as a set of modules, called bundles, which are Java Archive

(JAR) files [Sun Microsystems, 2004a] that conform to the structure specified by the OSGi

framework. The bundles can be loaded and unloaded at runtime. This enables installing

a new feature into a running application or upgrading a part of it with newly written

code, without having to shutdown and restart the application. There are a number of

implementations of the OSGi framework available today, including open source software

such as Apache Felix [Apache Foundation, 2008] and Eclipse Equinox [Eclipse Foundation,

2007].

In a normal Java application, a class can usually access any other public class in the
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same application, i.e., a class can create an instance of another public class and invoke a

method on it. In OSGi, the scope of such an unrestricted access is limited to the enclosing

bundle. In other words, the classes that belong to a bundle are not visible to the other

classes that belong to other bundles. The only method of inter-bundle communication is

for a bundle to explicitly export a service by listing a package containing the interfaces in

the manifest file of its JAR file, and for another bundle to explicitly import the service, also

by using its manifest file. The OSGi framework achieves this isolation of bundles by using

a custom class loader.

8.3 NetServ Implementation

We implemented a prototype of NetServ using the Click modular router as the base platform.

The Click router provides a high performance router platform that can be easily extended

because of its modular approach. Extending the Click router is a matter of writing a new

C++ class–an element in Click terminology–that extends a simple base class with a few

member functions. This enabled us to develop our prototype concentrating on the NetServ

functionality without having to worry about the basic router functionality. The current

version of NetServ is based on the user-mode Click.

On top of the Click router platform, we used the OSGi framework. OSGi provides

an ideal foundation on which we can realize our vision of a secure and portable services

framework that supports dynamic distribution of services. Since OSGi is based on Java,

it naturally inherits the portability across hardware platforms and the comprehensive Java

security architecture [Sun Microsystems, 2003]. OSGi’s ability to load and unload bundles

at runtime satisfies the fundamental requirement of dynamic distribution of services. The

strict separation of OSGi bundles provides a solid starting point to address the security

concerns associated with dynamic distribution of services.

Figure 8.2 depicts the overall architecture of the prototype implementation. The shaded

boxes represent different components of NetServ, and the thick arrow represents the flow

of a packet being forwarded by the router, taking a detour into the NetServ components.

We wrote a Click element in C++, called NetServ, and configured a Click router to
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Equinox OSGi framework
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Figure 8.2: NetServ prototype architecture.
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place the NetServ element on the path of the packet flow. Our test configuration was

based on the basic IP router configuration that came with the Click software package.

In that configuration, the NetServ element was placed between the CheckIPHeader and

StaticIPLookup elements. When a Click router is started, it calls the initialize() member

function of each element. NetServ’s initialize() creates a Java Virtual Machine (JVM),

launches the OSGi framework, and loads the configured bundles.

The NetServ element creates a JVM using the Invocation API, which is a part of the

Java Native Interface (JNI) [Sun Microsystems, 2004b]. The JNI specification provides

various ways for Java code and C/C++ code to call each other. The Invocation API, in

particular, makes it possible for an application written in C/C++ to embed a whole JVM

in the same process. After creating a JVM, the NetServ element invokes a Java function to

run inside the JVM. That Java function is an entry point into the NetServ.launch package,

represented as a box labeled NetServ OSGi Launcher in Figure 8.2.

The NetServ OSGi Launcher serves two purposes. First, it launches the OSGi frame-

work, which in turn will load the NetServ Building Block Bundle and all configured appli-

cation bundles. Figure 8.2 shows only one application bundle loaded–labeled NetServ App

Bundle–but multiple application bundles can be loaded as well, in which case the packet

will travel through each bundle in the order they were loaded. An application bundle im-

plements the PktProcessor interface, and registers itself with the global packet dispatcher

in order to receive the incoming packets. The global packet dispatcher is a singleton object

which is exported as a service by the NetServ Building Block Bundle.

Second, the NetServ OSGi Launcher provides a Java class called PktConduit, which is

visible from the Building Block Bundle and also accessible from the C++ code in the Net-

Serv element. The PktConduit class therefore acts as a bridge between the Java and C++

regions. Such a bridge is necessary because an OSGi bundle is loaded using a custom class

loader, making it invisible to other bundles or any other code outside the OSGi framework.

The NetServ element’s initialize() function, before it returns, also finds and saves a

handle to the injectPkt method of the PktConduit class using JNI. After the initialization

is completed, the NetServ element diverts every incoming packet to the Java components by

calling PktConduit.injectPkt(), which in turn will hand over the packet to the Building
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Block Bundle, which in turn will invoke all registered packet processors.

We avoid copying a packet when it is passed from C++ to Java. We construct a direct

byte buffer object that simply points to the memory address containing the packet using

the NewDirectByteBuffer() JNI call. The reference to this object is then passed to the

Java components.

8.4 Evaluation

We want to ensure that our goal of increased modularity for network services does not

come with unacceptable trade-offs. There is a performance penalty associated with the

detour that packets take into the Java layer of NetServ. We show that the performance

penalty is a reasonable trade-off. We measure NetServ’s maximum loss free forwarding

rate (MLFFR), which is defined to be the maximum number of packets that a router can

forward without incurring any packet loss. We compare NetServ’s performance to a plain

Click router running in user-mode (Plain Click) and also to a Linux kernel acting as a router

(Bare Linux).

The overall test for MLFFR involves having node 1 send and count packets, node 3

receive and count packets, and node 2 forward packets between node 1 and 3. We compare

the counts from nodes 1 and 3 to determine when and how many packets are dropped. We

identify MLFFR as the highest packet rate for which the packet count at node 1 is the same

as the packet count at node 3. Our measurements show that the MLFFR for Bare Linux

is 115,000 packets/sec, Plain Click is 36,500 packets/sec, and Click with NetServ is 27,900

packets/sec.

When looking at the 1,500 byte packet test, Bare Linux, Plain Click, and Click with

NetServ are all capable of forwarding rates that are comparable: just over 8,200 packets/sec.

Each router levels off at the same maximum rate because they reach the bandwidth limit of

our setup, which is 100 Mb/s. This result is favorable, as real world use of NetServ is more

likely to involve manipulating larger packets instead of sending minimum sized packets as

fast as possible.

Since the MLFFR of 115,000 packets/sec for bare Linux was sufficiently close to the



CHAPTER 8. NETSERV: DYNAMICALLY DEPLOYING SOFTWARE DEFINED
NETWORKING 73

theoretical MLFFR of 148,800 packets/sec for 100 Mb/s Ethernet connection [Kohler et

al., 2000], we tested to make sure that the number represented the limit of the bare Linux

routing performance rather than the line limit. We replaced node 2 with a 10/100 Mb/s

Ethernet switch. A direct connection between the two nodes causes the connection to run

at 1 Gb/s. The switch forced a 100 Mb/s connection. This ensures comparability with

our other test cases which use 100 Mb/s connections. Performing our MLFFR test in this

scenario resulted in a rate of about 142,200 packets/sec. In order to ensure that this is

the line limit for 100 Mb/s and not some other limit, we also directly connected node 1

and 3 allowing the connection to run at 1 Gb/s. This resulted in a forwarding rate that

approached 500,000 packets/sec. These checks demonstrate that we are reaching the limit

of Bare Linux and not another barrier elsewhere (for example, in the CPU or networking

hardware).

8.5 Related Work

Our work is fundamentally different from the active networking proposals such as ANTS [Wether-

all et al., 1998], JanOS [Tullmann et al., 2001], NetScript [Yemini and Silva, 1996] and

Switchware [Alex et al., 1998]. In contrast to active networking, NetServ provides for vir-

tualized services on current, passive networks by installing modules on the router control

plane.

A service-centric view of the network core is not new. Tilman Wolf proposes a new

abstraction for information transfer in the next generation Internet [Wolf, 2006]. NetServ

complements the idea, as it can provide the technology platform on which to implement the

abstraction.

Much work has been done on virtualizing different parts of the Internet architecture.

Their focus is sharing network resources such as bandwidth. NetServ’s focus is providing

a uniform hosting architecture for network services. Three of these virtualization projects

are described below.

The DaVinci project [He et al., 2008] presents the design of a system that allows one

physical network to support multiple classes of traffic. Major commercial routing hard-
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ware vendors, such as Cisco and Juniper, are also offering increasingly fine-grained network

virtualization services for their customers [Cisco, 2009a; Cisco, 2009b; Juniper, 2010]. Vy-

atta, an open-source routing platform vendor, also offers similar networking virtualization

services [Vyatta, 2009].

The OpenSolaris Crossbow [Sun Microsystems, 2009] project aims to enable network

virtualization and resource control for each service or protocol such as HTTP or FTP. It

does so by virtualizing the protocol stack and the NIC for each service.

The VROOM router project [Wang et al., 2008] presents “virtual routers” that can be

moved from one physical node to another and controlled using network primitives. Egi et

al. [Egi et al., 2007] evaluate the implementation issues of designing a virtual router using

the Xen virtual machine framework.

There are several other architectures that decouple control from the data plane in

routers. The OpenFlow Switch [Stanford University, 2010b] aims to allow a standard

interface to routers to enable researchers to run experimental protocols on their campus

networks. Ethane [Stanford University, 2010a] provides a management model that aims to

allow simple management and security in enterprise networks.

It is also interesting to compare NetServ with some of the newer approaches of service

and network virtualization.

Software Defined Networking (SDN) allows network administrators to handle network

services and packets like applications, allowing custom functionality to be applied to a set

of packets or data based on specific conditions. [Wikipedia, 2016] SDN allows for this by

de-coupling the control plane from the data plane at the network layer. OpenFlow [Open

Networking Foundation, 2016] is one of the more popular implementations of SDN which

allows network administrators to instruct switches to route packets based on specific header

information to decoupled nodes that can process the information in specific packets. SDN

has grown in popularity due to the rise of cloud services, big data and a massive increase

in data consumed by end users and consumers. [Wikipedia, 2016] NetServ provides a full

stack solution to the network virtualization problem. While SDNs separate the data plane

and the control plane and allow the control plane to send specific data or packets to other

locations to be processed separately, NetServ provides a network and service virtualization
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framework in the router itself, so it is able to intercept and process the data and packets

as it serves them to the end user or consumer of that data. It is possible for NetServ and

SDN technologies like OpenFlow to co-exist; in fact, a NetServ implementation has been

built on top of OpenFlow. [Maccherani et al., 2012]

Docker [Docker, 2016] is an application virtualization platform that allows for automa-

tion of application deployment inside software containers without requiring operating system

level virtualization. Docker allows for services and applications to be deployed across multi-

ple servers or data centers through configuration files, and uses resource isolation features of

the Linux kernel to create application specific containers without requiring the overhead of

starting up virtual machines with their own operating system. While Docker has increased

in popularity in recent years [ZDNet, 2014], primarily due to the ease with which it is pos-

sible to deploy applications and services through Docker, Docker is limited to application

and application isolation, and does not support network virtualization on routers.

Fog computing [Wall Street Journal, 2014] refers to the use of end-user clients or servers

near the edge of the network to provide services that are usually associated with cloud

computing, such as Software as a Service (SaaS) and Platform as a Service (PaaS). While

Amazon, Google, Microsoft and others provide cloud services through their data centers,

there is a growing need for these sorts of applications to be running and installed at the edge

of a local network, whether in home routers or cellular base stations. Fog computing services

allow for such services. While there appear to be no major vendors of fog computing services,

service providers such as GitHub [GitHub, 2016] allow for locally installed enterprise versions

of their software to run in local enterprise networks. Fog computing provides for Software as

a Service (SaaS) and Platform as a Service (PaaS) service classes, while NetServ provides for

network virtualization, but it is possible to envision fog computing services to be distributed

through NetServ to the end user or edge node, allowing for fog computing services to run on

computing devices in the local network instead of at the data center of the service provider.
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8.6 Conclusion

We described a prototype implementation of NetServ, an extensible architecture for core

network services for the next generation Internet. We augmented the Click router with

the Java-based OSGi framework to provide security, portability, resource control, and the

ability to dynamically deploy service modules. Our measurement results indicate that

the performance difference between our prototype and the Click router (essentially the

processing overhead of the Java layer) is much smaller than the rate difference between the

Click router and the Linux kernel. The difference between Click and Linux comes from the

fact that the Click router runs as a user process and thus every packet incurs a transition

from kernel to user mode. In a system where a module can be installed dynamically, such

transitions are likely unavoidable, because running a service module inside a kernel would

pose an unacceptable security risk.
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Chapter 9

ActiveCDN: Cloud Computing

Meets Content Delivery Networks

9.1 Introduction

In Chapter 8, I described joint work on the NetServ network virtualization project. In

order to demonstrate the usefulness of such virtualization layers in the network, we need to

build useful and working applications that show not only the functionality and purpose of

such a layer, but also the application improvements that could be gained from using such a

layer. In this chapter, I describe one such application, called ActiveCDN, which leverages

the NetServ virtualization framework to set up and run a dynamic topology of CDN nodes

in the network that adapts to changes in network traffic.

Content delivery networks play a crucial role in today’s Internet. They serve a large

portion of the multimedia content on the Internet and solve problems of scalability and

indirectly network congestion. Most content delivery networks today rely on a statically

deployed configuration of nodes and network topology that makes it hard to grow and

scale dynamically. We present ActiveCDN, a novel CDN architecture that allows a content

publisher to dynamically scale their content delivery services using network virtualization

and cloud computing techniques.

Content delivery networks (CDNs) have proved to be crucial for the Internet to scale with

the current increase in multimedia-rich content consumption [Tom Leighton, 2009]. CDNs



CHAPTER 9. ACTIVECDN: CLOUD COMPUTING MEETS CONTENT DELIVERY
NETWORKS 78

allow for content to be distributed to nodes distributed around the world, and retrieved from

nodes that are nearest to the user requesting content. This allows CDNs to serve content

with less latency to the end user, and at the same time, alleviate network load by pushing

content closer to the edges. Today’s CDNs, however, are statically deployed and central

redirection mechanisms which impede dynamic deployability and result in performance

penalties.

Despite this dramatic growth in CDN technology and use, most CDN operators and

networks still rely on static and pre-configured node deployments to operate and serve

content. This could result in over- or under-provisioning of hardware and networking, and

can result in too many CDN nodes in an area that sees few request for content, or too few

CDN nodes in an area that has a lot of demand for content. When such scenarios occur,

it is hard for CDN service operators to dynamically migrate and instantiate new nodes,

resulting in a lack of quick responsiveness to user demand and viral content.

We present ActiveCDN, a novel solution for this problem that utilizes cloud computing

and network virtualization techniques to enhance CDN instantiation. ActiveCDN enables

content publishers to dynamically deploy and instantiate CDN modules on participating

nodes, such as core and edge routers with programmable functionality, based on user re-

quests, and to position and balance the location of these CDN nodes on an as-needed basis.

Content publishers can thus choose to serve the content directly themselves, or instantiate

new CDN nodes at locations closest to the users as more and more requests come in. In

addition, the CDN modules can be set up to “time out” after a certain period of time if

no new requests are seen at an ActiveCDN node, thus freeing up computing and space

resources on that node.

We describe our motivation in more detail in Section 9.2. In Sections 9.3 and 9.4, we

describe our current implementations, one of which was highlighted and chosen as an alpha

project for the National Science Foundation’s (NSF) GENI next-generation networking

project [NSF, 2009].
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9.2 Motivation

The Internet has seen an explosive growth in traffic carrying multimedia content in recent

years. Today, content providers either host their high-bandwidth multimedia content them-

selves, or more commonly host their content on content delivery network (CDN) providers

such as Akamai and Limelight Networks which then deliver the content [Tom Leighton,

2009]. When content is hosted on a CDN, a user request is usually redirected to a server

closer to the user. Application-specific mechanisms are used for this, such as domain name

resolution using DNS [Mockapetris, 1987b] or request redirection using HTTP [Fielding et

al., 1999]. CDNs are statically deployed and scaling them to adapt to sudden changes, such

as unexpected flash crowds, is currently difficult to do without manual intervention and

over-provisioning in advance. An example of such a flash crowd event was the inaugura-

tion of President Barack Obama in January 2009, which “generated massive Web traffic”,

leading to site slowdowns [Perez, 2009].

CDN technology results in reduced traffic for the provider and the network. Pallis and

Vakali [Pallis and Vakali, 2006] show that CDNs can bypass “traffic jams on the Web, since

data is closer to user and there is no need to traverse all of the congested pipes and peering

points.” Pallis states that CDN costs are high (citing costs from 2004), but CDN pricing has

decreased recently. For example, Amazon’s cloud services, such as Amazon S3 [Amazon, b]

(for storing content) and Amazon CloudFront [Amazon, a] (its CDN offering which serves

content hosted on S3), have been estimated to reduce hosting costs for low-bandwidth

sites up to 75% [Pandey et al., 2009]. Hosangar et al [Hosanagar et al., 2004] present an

analysis of how as CPU, infrastructure and traffic costs reduce, the cost of CDN services

will reduce further over time. The website cdnpricing.com [CDNPricing, 2011] contains

updated information about the costs of CDN pricing and is a good reference in this regard.

While cloud computing is delivering on the promise of elastic and flexible compute cycles

in the cloud, we have yet to see it fulfill its promise and potential in the CDN space. For

instance, while the combination of Amazon’s S3 and CloudFront services allow for CDN

functionality, it does not allow for dynamic deployment of nodes, and also relies on a largely

static and pre-configured network topology which is located in a limited set of data centers

around the world.
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Further, while CDNs are able to serve up static content efficiently, they are not able

to process and transform content in a manner required by today’s networking stack. For

instance, a video may need to be accompanied by local weather or finance information,

which today’s CDNs are not able to deliver on due to their niche being on efficiently serving

up static content.

We can see there is a need for being able to dynamically instantiate and deploy nodes

at required places in the network, as well as actively process and serve localized versions of

content. We believe that ActiveCDN solves this problem and provides the features needed.

In the following two sections (sections 9.3 and 9.4), we describe our current implemen-

tations of ActiveCDN, one of which processes and handles content on the edge node, and

one of which processes metadata at the edge node while defering content processing to the

client itself.

9.3 ActiveCDN on the Edge Node

ActiveCDN enables a next-generation content-delivery mechanism using CDNs, and also

allows for “pop-up content store” nodes that appear on an as-needed basis on the Internet

without having to be pre-deployed. Such a CDN architecture would also be able to serve

content more efficiently in disconnected, opportunistic networks. For instance, consider

a highly popular video that is in high demand at a certain location. ActiveCDN can

automatically pop-up a CDN content store at nodes on some of the routes that the content

traverses as it is delivered to the end users (described in Chapter 7 of this thesis), and that

node is able to cache the video on its local storage and serve the video directly to the end

user.

Our current implementation of ActiveCDN operates on top of the NetServ network

virtualization and cloud computing framework [Srinivasan et al., 2009a] [Lee et al., 2011a],

which is described in detail in Chapter 8 of this thesis. NetServ allows for participating

nodes to dynamically instantiate and run modules signed by content publishers.

Figure 9.1 shows how ActiveCDN works in a simple scenario where users are downloading

a video file from a content provider. The content provider develops a ActiveCDN NetServ



CHAPTER 9. ACTIVECDN: CLOUD COMPUTING MEETS CONTENT DELIVERY
NETWORKS 81

module and makes it available for download. The content provider’s server machines respond

to the content requests as usual.

When a content provider sees a request, it can - based on a number of factors such as

content popularity - choose to use NetServ’s signaling capabilities to install a module on a

particular NetServ node along the path to the end user or users.

When the rate of requests from a network location goes above a certain threshold, the

server triggers on-path signaling to tell the NetServ nodes in the path that they should

download and install the provider’s ActiveCDN module. The signaling message contains

the URL and other information about the module, so that the NetServ nodes can determine

if the module is compatible with the node’s policy and capability, and where to download

it from.

Once the module is installed and its binary is verified by the NetServ installer (through

an MD5 checksum), the content provider can signal the ActiveCDN module to process the

video if necessary, and redirect requests for content to the NetServ node that now holds the

cached and processed video. After a NetServ node successfully downloads the module, it

signals back to the provider’s server to register itself as one of the caching nodes. Now, the

content requests originating from the vicinity of that caching node can be redirected to the

node. The caching node will then fetch the requested content, sending it to the user as it

is being fetched, and cache it for future requests.

As part of our implementation, our ActiveCDN service processes the original video,

adding a watermark image on top of the video frames. The ActiveCDN module functionality

was implemented using Java, Java Servlets API and OSGi. A Java library called Xuggler

[Xuggler, 2009] was used for processing video. The ActiveCDN module itself processes

the video and adds a watermark video to the original video, and also serves the processed

video to the end user. (In our NSF GENI demos, we added a watermark and local weather

information as a text overlay on top of the video.)

In our current implementation, the content server keeps track of all the NetServ nodes

that it has instantiated in a database, and upon getting a request from a client, calculates

the closest NetServ node based on Euclidian distance between the two nodes, based on

IP address and geo-location. The content server then redirects the request to the suitable
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Figure 9.1: How on-demand content caching using ActiveCDN works.
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Figure 9.2: A visual depiction of what happens in our ActiveCDN implementation. Our

implementation allows multiple users or clients to request video from the content server.

The content server is able to control which nodes ActiveCDN is instantiated on, and redirect

users to the node of its choice.
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NetServ node, and if no such NetServ node exists, it triggers an on-path installation of an

ActiveCDN module that will install ActiveCDN on a NetServ node closest to the user.

The ActiveCDN module caches the content based on the request and serves the con-

tent, but also performs background processing on the cached content. The processing is

determined by the functionality programmed by the content provider, and could include

anything from ad insertion to news and weather watermarking on top of the video. Subse-

quent requests for the content result in ActiveCDN serving the localized, cached content.

The ActiveCDN module will uninstall itself after a period of inactivity. And, of course,

it can be reinstalled when new demands arise. The content provider controls the tunable pa-

rameters such as the inactivity time before module expiration. In fact, since the ActiveCDN

module is written by the content provider specifically for its own use, the provider controls

every aspect of the module’s behavior, from the cache replacement policy to the algorithm

to locate the nearest caching node. This is indeed the biggest advantage of ActiveCDN com-

pared to the traditional content distribution network. Using ActiveCDN, content providers

can employ any distribution strategy that satisfies their need, rather than being locked in

by the mostly static infrastructures of traditional CDN providers.

Figures 9.3 and 9.4 show screenshots of the content as seen by the user, for a request

that is served from the origin server and by an intermediary ActiveCDN node respectively.

As seen in the second screenshot, the ActiveCDN node can also perform content processing

in addition to actively caching the content. In this particular example, the ActiveCDN node

retrieves the weather information for that location and creates a text overlay on top of the

video.

Our current implementation gets the weather information from NOAA’s web-based

weather API service (weather.gov). This uses latitude and longitude information, which

in turn is obtained using MaxMind’s GeoIP library that resolves IP addresses to a location.

9.4 ActiveCDN on the Client

In addition to processing the content on the nodes, we have also worked on a mechanism to

have content processed on the client, thus relieving the core or edge router from doing most
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Figure 9.3: A screenshot of the original video playing on a user’s browser. This is the video

that is directly served by the origin server.
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Figure 9.4: A screenshot of the processed video playing from one of the ActiveCDN nodes.

The video, in addition to being cached and served from the ActiveCDN node, has been

processed, adding the local weather information.
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of the processing. In this model, the ActiveCDN module would still do some processing,

such as adding additional metadata and dynamic content information, but would only be

adding textual or markup information, with all the heavyweight multimedia processing,

such as watermarks or text and image overlays, done on the client. This would free up

resources on an edge or core router, thus allowing it to handle a larger workload, while at

the same time being indistuiguishable to the client who is able to see the same processed

content. Finally, client-side processing using a markup language (like XML or SMIL [W3C,

2005]) at an intermediate node allows true localization of content and information that is

specific to the end user, while at the same time allowing the local edge node to tag the

content with markup language that can be localized to a particular region.

For our current implementation, we used the SMIL markup language [W3C, 2005].

SMIL is a HTML-like language used for multimedia presentations which integrate audio and

video with images, text and other media types. In the previously described implementation

Xuggler, a Java library, was used for content processing and data overlay, and the processing

was done on a Netserv node or router in the network. In this alternative implementation

using SMIL, we instead only generate a SMIL presentation file at the intermediate node,

and this file is sent to the end user along with the rest of the dependencies.

The module which serves the SMIL file is implemented as a Java servlet process, similar

to the previous implementation. It receives the video requests and serve a SMIL file, and

also fetches the video from the content server and caches it.

The process for serving SMIL enhanced multimedia content is very similar to that de-

scribed in the previous section, using Figures 13.1 and 9.1, with the only difference being

that instead of processing the original video, the ActiveCDN module simply adds an addi-

tional SMIL file with the modified content meta-data along with the original video.

The end user experiences the following steps in this implementation: original video with

localized weather information as a text overlay; advertisement video plays in middle of the

original video; rest of the original video has news ticker overlay on top of the video. The

operations that allow this to happen are described below.

The main components for the client-side ActiveCDN module are a content server, a

NetServ node running the servlet process, and the Ambulant plugin for the Firefox browser
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Figure 9.5: Client processing: A screenshot of the video with a scrolling news ticker over-

layed on the video. The video is unmodified, and the news ticker information comes from

the SMIL file that was sent to the client.
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which displays the SMIL presentation file to the user. Ambulant is an open source SMIL

player which supports the SMIL 3.0 standard. The NetServ node stores a repository of text

and video advertisements. For each video request in our demo, it fetches the local weather

information as well as the latest news feed from a news source (BBC). A weather lookup

(similar to that described in the previous section) is also carried out. We also include a

video advertisement, which in our current implementation is simply a random video chosen

from all the videos in a specified directory. All XML data are parsed with the SAXBuilder

class of JDOM Java library.

When the first request for the video comes in, this video is not in the NetServ node’s

cache. The servlet process in this case generates a SMIL file which points to the video on

the content server and responds to the user with the generated SMIL file. The ActiveCDN

module also downloads the video from the content server and caches it at the node.

For subsequent requests for the video, if the requested video is found in the cache, the

servlet process generates a SMIL file pointing to the video found in cache. Along with this,

it also fetches weather data, a video advertisement and latest news feed and adds them to

the SMIL presentation. The video advertisement is randomly selected from a set of videos

and inserted at a particular position in the original video. The NetServ node runs a lighttpd

web server to serve the cached video when the request comes from Ambulant plugin.

9.5 Implementation

For the ActiveCDN server implemenation, we implemented and tested across seven virtual

machines, which were Fedora or Ubuntu Linux images running on VMWare. The seven

machines consisted of one content server, two NetServ edge nodes and four clients. The

networking and routing tables were set up so that the clients always connected through

the NetServ nodes (the gateway) to the content server. We used Fedora for the content

server and the NetServ nodes since we also ran the same experiment setup on the NSF

GENI Alpha testbed, which all ran the Fedora Linux distribution. The implementation

described in the previous section ran on the virtual machine topology, as well as the real-

world GENI topology that spanned several states and timezones across the United States,
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namely, Massachusetts, Kansas, South Carolina and Utah.

We implemented ActiveCDN client (the “SMIL” implementation) on one physical ma-

chine running Ubuntu 10.04 and two virtual machines (on VirtualBox) running the same

version of Ubuntu. The physical machine was used as the user machine running Ambulant

plugin on Firefox browser. One of the virtual machines hosted the content server and the

other virtual machine hosted the NetServ node running the servlet process.

The screenshots in the previous section were taken from running these implementations

on top of the GENI topology and our local testbed. This experiment took place in 2010

as part of the NetServ project, which itself was part of the National Science Foundation’s

GENI project [NSF, 2009].

9.6 Security and Privacy

ActiveCDN caching and content delivery is publisher driven, in the sense that the publisher

decides when to deploy ActiveCDN modules and where in the network to deploy them.

As such, this CDN deployment mechanism is fully controlled by publishers, as opposed to

interception and end-user caching techniques such as On-path CDN (Chapter 7) and Coral-

CDN [Freedman et al., 2004], respectively. The publisher publishes the ActiveCDN module,

which gets installed on the NetServ router devices, and those modules can cache content

based on publisher directives. In addition to the module being removed when unnecessary,

the ActiveCDN module could also delete cached files when they are not required anymore,

requiring them to be downloaded from the server.

If any data that is associated with the users information is created in the ActiveCDN

node (such as advertisements specific to the user or location where the content is cached),

it can be stored and removed in that particular node, without reaching the central server.

So the privacy of individual users and users in that location can be preserved.

9.7 Related Work

Traditional CDNs, such as Akamai [Tom Leighton, 2009] and Limelight Networks, started

gaining traction in the late 1990s as large content providers resorted to using CDN services
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in lieu of their own hosting to save costs and increase content delivery efficiency. In the

early 2000s, large-scale ISPs (such as AT&T and Level 3) started to build their own CDN

functionality. While most of the early CDNs served large content providers (due to the

costs involved in using a CDN), in recent years, services such as Amazon S3 [Amazon,

b] and Amazon CloudFront [Amazon, a] have introduced the concept of pay-as-you-go

CDN services which allow smaller websites to use CDN services for their content. There

have been several studies of how commercial content-delivery networks operate, mostly

through reverse-engineering [Huang et al., 2008], as well as research-oriented CDN services,

particularly those such as CoDeeN [Wang et al., 2004] that run on PlanetLab. Static CDNs

are mostly made up of pre-deployed nodes placed at optimal locations; the deployment and

location of these nodes is usually calculated based on network traffic and flow. ActiveCDN

introduces a new CDN paradigm by allowing the content publisher to create “pop-up” CDN

nodes on-the-fly, dynamically.

Content-centric networking (CCN) [Jacobson et al., 2009a] has gotten a lot of attention

recently, and for good reason. Content-centric networking, which envisions computer net-

working based on content names rather than host names, allows for multiple, signed copies

of content that can be fetched or placed at any location on the network, with requests for

content being served from the closest location. However, while CCN discovery services such

as flooding and broadcasting work well in local networks, it is hard to see how they scale

to wide-area networks. None of the existing CCN implementations have yet been able to

address this issue. CCNx [Jacobson et al., 2009b] is one of the most complete architectures

and implementations of content-centric networking today. There are other projects aimed

at developing similar content-centric networking models, such as Nebula [Smith, 2010] and

eXpressive Internet Architecture (XIA) [Anand et al., 2011], but they are still in their in-

fancy and it remains to be seen how they fundamentally differ from the seminal CCNx work

and what additional features they would have in comparison to CCNx.

ActiveCDN significantly differs from CCNx. In ActiveCDN, the publisher is able to in-

stantiate nodes, as well as revoke node privileges, as necessary, while in CCNx, once content

is published, it can be disseminated to any node. Naming in ActiveCDN is accomplished

by the user typing in the regular HTTP URL to the content on their existing Internet
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browser (which may be redirected as necessary). CCNx has a tree-based and hierarchical

naming structure similar to HTTP, but cannot be used without the full stack being present

on the end user’s node. Routing in ActiveCDN is performed through redirection from the

central content publisher to the node of the publisher’s choice (usually determined by net-

work location and geographic proximity), whereas in CCNx, routing in the local network is

performed through broadcast announcements for interest packets till a corresponding data

packet is received in response. Routing across a wide-area network in CCNx is not clearly

described yet.

CoralCDN [Freedman et al., 2004] is probably the most prominent peer-to-peer, decen-

tralized CDN, where content is served from P2P nodes that join and leave the network.

Users, upon requesting content, have their DNS requests resolved by a Coral DNS server

which checks for DNS and HTTP proxies near the client’s resolver. The user is then redi-

rected to a Coral node near the user that contains the content. The content publisher has no

control over the location of the content, and in fact, no control over the quality of the net-

work since the P2P nodes join and leave the network at unpredictable intervals. CoralCDN
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relies on a peer-to-peer network for content delivery, which may be unreliable as shown in

the recent massive failure of Skype due to a bug that led to cascading failures [Skype official

blog, 2010]. ActiveCDN, in contrast, allows the content provider to dynamically control the

instantiation of nodes as well as the positioning and location of nodes. ActiveCDN allows

for localization and processing of content. Finally, it runs on NetServ-enabled nodes at edge

routers run by Internet Service Providers, which are likely to be more reliable and backed

by service guanrantees and SLAs.

Among the traditional CDN approaches that come closest to solving the CDN problem

through a dynamic method are those that are optimized for handling flash crowds. A recent

study [Yoshida, 2009] compares some of the state-of-the-art solutions, and I will contrast

ActiveCDN with three of them. DotSlash [Zhao and Schulzrinne, 2006] and FCAN [Pan

et al., 2006] allow websites to deal with flash crowds through a pool of servers that are

designed to handle flash crowds for websites. DotSlash allows several web sites (and their

servers) to work with each other, using spare capacity to offset flash crowds to any of the

participating sites. FCAN uses an overlay of caching proxies to store files and deliver them

to users, and invokes this overlay when there are flash crowds. Globule [Pierre and Steen,

2006], works in a manner similar to DotSlash and FCAN, and allows any web server to join

the pool of available servers through the installation of an Apache module. These solutions

require servers to be pre-configured to handle large increases in traffic volume.

CoopNet [Padmanabhan et al., 2002], DCDN (Distributed Content Delivery Network)

[Mulerikkal and Khalil, 2007] and SCAN (Scalable Content Access Network) [Chen et al.,

2002] are hybrid CDN frameworks that combine infrastructure CDNs with peer-to-peer end

nodes. DCDN uses the concept of “surrogates”, Internet users with high bandwidth, similar

to the “supernode” concept in Skype, which handle content requests redirected from master

or local DCDN nodes. CoopNet uses cached data at the clients to offload the central server,

with a central server handling the redirects. These solutions require modification on the

client-side in order to support the peer-to-peer mode of operation. ActiveCDN requires

NetServ functionality at the edge routers, and does not require any modification on the

client side.

MetaCDN [Broberg et al., 2009] offers a “mashup” service, allowing content providers
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to use cloud services such as Amazon CloudFront and others, through a single interface.

MetaCDN takes care of replicating content and looking up the best location for each request.

While MetaCDN is able to dynamically use cloud services APIs to store content in the

“cloud”, it is still restricted by the server locations of these cloud services since it does not

actually provide any server functionality or control the location of the servers. ActiveCDN

allows the content provider to install nodes at precise locations and points along the path.

Perhaps the feature that is most unique about ActiveCDN is its ability to do local pro-

cessing, with the processing functionality completely controlled by the content publisher.

While there is some existing work on video and content processing for networking applica-

tions, most of the work relates to the processing of the video format itself [Magalhaes and

Pereira, 2004] [Liu et al., 2006] or of pure text-based content (no video or audio content)

[Yuan et al., 2004], and not in regards to the content delivery network. Some recent patents

[Tidwell et al., 2011] do discuss customized advertisement mechanisms, but assume the

functionality is already installed, and focus more on the specifics of delivering customized

ads, not on module placement and dynamic installation. ActiveCDN appears to be the

first content delivery framework that allows the content provider to push custom content

processing power into the delivery or service network.

The Akamai NetSession Interface is a “secure application that may be installed on your

computer to improve the speed, reliability, and efficiency for application, data and media

downloads and video streams from the Internet. It is used by many software and media

publishers to deliver files or streams to” the end user [Akamai, 2015]. NetSession, as an

Akamai application, downloads and caches content to the end users computer, and also uses

idle client bandwidth to serve content to another requesting user, thus effectively serving

as a peer-to-peer last mile caching solution for Akamai. As pointed out in one Microsoft

support forum post [Microsoft Forums, 2012], “Akamai does not come right out and say

it, but the reason NetSession is installed on your computer is to allow them to use your

computer to upstream content to other users. By installing NetSession, you are allowing

Akamai to use your idle bandwidth to upload files to other Akamai users.”

Thus, like CoralCDN [Freedman et al., 2004], Akamai NetSession appears to use the local

users storage and bandwidth to act as a peer-to-peer last mile caching solution, in addition
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to its own network of central servers distributed around the world. While this does provide

the benefits of caching closer to the end user, it requires the user to proactively download

and install NetSession software on their computers. Given that the user has to download

this unknown application, and since NetSession does not offer any particular benefit to the

user himself, it is difficult to imagine end-users installing NetSession on their computers,

although large companies might install NetSession on their managed desktops to reduce

their WAN bandwidth needs.

Anycast [Abley and Lindqvist, 2006] is a addressing and routing mechanism where data

packets from a sender are sent to the nearest node in the network out of a group of receivers.

This could potentially be used by CDN networks to route packets to the servers closest to

the users. While implementation details are sparse, it appears that some popular CDNs

such as MaxCDN [MaxCDN, 2013] and CloudFlare [CloudFlare, 2011] use anycast on their

network to respond to CDN content requests. Since each anycast address adds one routing

entry to the global BGP routing tables, it does not scale well to large numbers of CDNs.

9.8 Conclusion

In this chapter, we described ActiveCDN, a novel approach to dynamic content distribution

networks that can be deployed using network virtualization and cloud computing techniques.

We believe that ActiveCDN is one of the first pieces of work to truly bridge the two disparate

worlds of content delivery networks (CDNs) and cloud computing models. In addition to

the dynamic edge router deployability features, we have also presented how ActiveCDN

can perform processing and media transformation as required by the publisher, thus adding

true CDN service virtualization and presenting it as an in-network functionality.

We argue that deploying ActiveCDN can dramatically increase user satisfaction using

a related study. Golrezaei et al [Golrezaei et al., 2011] describe how the use of femtocells

to cache popular video content helped increase satisfaction for end users. They define and

compare a metric called user satisfaction, where a user is satised “when his/her average

download delay is below a given QOS (in seconds) threshold.” In their work, they study

the effect of deploying femtocell base station “helpers” with large storage capacity. These
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helpers form a wireless distributed caching network, quite similar in setup to ActiveCDN,

all of which cache popular content and deliver the content locally. Their work compares the

quality improvement based on real-world campus traces of video content, and they argue

that through their setup, they can demonstrate “performance improvements on the order of

400% to 500% more users at reasonable QoS levels.” We believe that their analysis corre-

sponds closely to performance improvements that would be seen if we deployed ActiveCDN

in a large network environment.
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Chapter 10

Trends in Online Internet Video

Usage

10.1 Introduction

Video consumption on the Internet has risen rapidly in the past few years [Cisco, 2015]. It

is desirable to evaluate the consumption of video on the Internet, in order to get a better

idea of how we can improve networking protocols and architectures to handle the growing

consumption of multimedia. This chapter presents my analysis of trends in Internet video

consumption based on video data analyzed during my work at JW Player (previously named

LongTail Video).

JW Player is an Internet startup head-quartered in New York, and named after its

flagship product, an online video player called JW Player. The company provides online

video services, such as video hosting, video advertising and transcoding, alongside player

hosting and setup. The flagship product, JW Player, is a very popular hybrid Flash/HTML5

video player that allows for video to be embedded on websites and played on the Internet

along with plugins for advanced playback functionality. Advanced playback functionality

includes live streaming and support for Internet video ad formats such as VAST and VPAID.

Video Player Ad-Serving Interface Definition (VPAID) establishes a standard request format

for video players to deal with ad units, enabling a rich interactive in-stream ad experience.

Video Ad-Serving Template (VAST), provides a common ad response file format for video
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players to enable video ads to be served across all compliant video players. Layering VPAID

onto VAST allows for well-defined ad delivery alongside content to viewers, and also allows

for a consistent framework for collecting ad playback and interaction details for the video

producer.

Commercial versions of JW player are found on popular websites such as the movie

database website IMDb [Internet Movie Database, 2014], The Guardian newspaper [The

Guardian, 2015], popular crowd-funding website Kickstarter [Kickstarter, 2016] and the

White House websites. In 2013, JW Player was delivering an estimated 5 billion streams

monthly and was used by or embedded in over 2 million domains (A domain is defined as a

web site or a set of web sites under the control of a particular organization or individual).

Hence it would qualify as a large sample set for my analysis. However, it is not possible to

run analysis on the entire sample set for most of our analysis, nor is it necessary in most

cases, and for each of my analysis below, I will note which subset (if any) of the data set I

used. I refer to the data as being from the “JW Player network”, that is, content from all

websites or domains that have the JW Player embedded with analytics enabled.

I note that the findings are only an evaluation of this data set and may not generalize

to Internet video as a whole. It is likely to be reflective of short form video rather than

feature-length video content.

10.2 Summary of Results

The results derived from this chapter can be summaried into two sets. The first set deals

with video streams. Streaming video is video content sent (mostly in compressed form) over

the Internet and displayed by the viewer software in real time. With streaming video, the

web user (viewer) does not wait to download the entire video before playing it. Instead, the

media is sent in a continuous stream of data and is played as it arrives. A video stream is

defined as a single video file being viewed over the internet in this form.

In the first set, I find out if there is any correlation between video streams and length

of video; video streams, video length and the type of device playing the video; the length

of video and country; video streams and the domains containing the video. I find that
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shorter videos are much more popular than longer videos across all devices. When it comes

to devices, mobile users prefer shorter videos over longer videos. The top 10 and top 100

domains (domains are ranked by the number of visits in descending order and the top 10

and 100 are picked) follow an exponential distribution with respect to the number of videos

streamed from them.

In the second set, various relationships are studied such as the number of video streams

between 2010 and 2012, with weekly buckets; the relationship between the video viewing

time (time of day) and country; the relationship between the day of week and views per

country. Sunday is the day with the highest number of views. For time of day, afternoon

and evenings seem to be the time when most number of videos are viewed.

10.3 Distribution of Video Popularity

I first analyze the distribution of video popularity, measured in terms of “streams” (number

of plays). How does the popularity distribution of videos change over time and across

countries?

For the analysis in this section, I look at the 100 most popular videos in the JW Player

network (measured by total number of times they were played by end users) across a specific

metric, whether it be time range or country.

10.3.1 Popularity Distribution Based On Time

For the popularity distribution based on time, I look at the distribution of the top 100 videos

for August 2013, broken down by weeks. We want to investigate whether the popularity

distribution of videos over time has a similar pattern, and if so, what sort of regression

model we can apply and whether the curve is similar. Do video distributions follow a Zipf

pattern? Or some other curve?

Unfortunately, this is one analysis where the answer is not so clear cut. The comparitive

graphs for just the top 20 (out of top 100 videos) are shown in Figure 10.1 and it appears

that there is no clear-cut pattern to the curve. While a couple of the curves may fit an

exponential or Zipf pattern, it is clear that distribution of the most popular videos over
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time varies.

Figure 10.1: Popularity distribution of the top 20 videos for August 2013, broken down by

week.

10.4 Video Length and Popularity

The second set of analysis relates to how the length of a video relates to its online popularity.

I use a similar sample set to the one used in the earlier section on video popularity, and use

this to analyse the relationship between video length and popularity of videos.

For this analysis, I took the top 1000 most popular videos (again measured in terms of

total plays by end users) across the entire JW Player network for November 2012.
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Bucket Video length # of plays

1 0 - 30 secs 52,323,431

2 30 - 60 secs 12,262,353

3 1 - 2 mins 3,683,704

4 2 - 5 mins 1,238,470

5 5 - 10 mins 519,437

6 10 - 30 mins 238,274

7 30 - 60 mins 313,817

8 >60 mins 393,484

Table 10.1: Video length and number of plays

10.4.1 Are shorter videos more popular?

As seen in Table 10.1, shorter videos indeed seem more popular. When we look at the top

videos by number of plays, shorter videos outnumber longer videos. The previous analysis

does not take into account the number of shorter videos; that is, since its likely that there

are many more shorter videos than longer ones, the results may be skewed. Hence, we need

to measure the average number of views and the total number of videos in each of those

categories. But even when we take into account average number of views divided by total

number of videos, so as to normalize the the distribution of videos in the top 1000, we can

see from Table 10.2 that shorter videos are still relatively more popular than longer videos.

The average number of views in this analysis follows a U-shaped relationship with respect

to the video length. However, we cannot conclude the same given the limitations of this

data. Further, the bucket size for video length may skew the results. For example, if we

had bucketed video length along, say, buckets of 1-10 minutes, 10-60 minutes and over 60

minutes, the distribution may be changed slightly. Hence we can only say that for our

chosen distribution of data on the JW Player network, the average number of views based

on video length seems to decline proportional to the length of the video, but does show a

U-shaped curve for some long-form video (likely because of the popularity of those videos.)
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Video length # of videos Number of plays Average number of views per video

0 - 30 secs 547 52,323,431 95,655

30 - 60 secs 213 12,262,353 57,570

1 - 2 mins 104 3,683,704 35,420

2 - 5 mins 43 1,238,470 28,802

5 - 10 mins 36 519,437 14,429

10 - 30 mins 27 238,274 8,825

30 - 60 mins 18 313,817 17,434

>60 mins 12 393,484 32,790

Table 10.2: Video length and average number of views

10.4.2 Are Shorter Videos More Popular On Mobile?

A related question is whether shorter videos are more popular on mobile. In other words,

do mobile users have a stronger preference for shorter videos, while desktop users may have

a coutenance for longer videos?

We analyze the data set used in the above video length comparison for mobile vs desktop

device consumption. Note that by the definition of “mobile” in this context refers to hand-

held devices like smartphones, and not tablets (which users may use for watching long-form

content.)

As seen in Table 10.3, video viewing on mobile devices does drop off steeply as the

length of the video increases. This is likely due to the fact that as the video length gets

longer, users who are aware of the fact have either keyed up to watch it on their desktops

or laptops, and avoid using their mobile devices (smartphones) to view long-form content.

This is particularly significant for videos that are longer than 60 minutes in length; there,

the video watching on mobiles drops to less than one percent of the total audience. In

contrast, for videos that are between zero to 30 seconds in length and 30 to 60 seconds in

length, video watching on mobiles hovers between 8.2% and 9.3%.
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# of videos Desktop plays Mobile plays Desktop % Mobile %

0 - 30 secs 547 48,012,933 4,310,498 91.8 8.2

30 - 60 secs 213 11,123,531 1,138,822 90.7 9.3

1 - 2 mins 104 3,469,383 214,321 94.2 5.8

2 - 5 mins 43 1,153,813 84,657 93.2 6.8

5 - 10 mins 36 493,049 26,388 94.9 5.1

10 - 30 mins 27 232,019 6,255 97.4 2.6

30 - 60 mins 18 308,923 4,894 98.4 1.6

>60 mins 12 391,234 2,250 99.4 0.6

Table 10.3: Comparing desktop and mobile plays

10.4.3 Video Length Viewed Across Countries

Yet another question that relates to video length across countries is how average video length

relates to video consumption across different countries. Do countries with higher bandwidth

have an appetite for consuming longer videos, while those that are bandwidth-constrained

consume shorter videos?

In order to establish this, we need to distinguish between countries that are high band-

width and low bandwidth countries. I was unable to find any clear definition of what would

qualify as a high-bandwidth or low-bandwidth country, and hence the measure used for this

study will be as follows: high-bandwidth countries are those countries that have an average

Internet bandwidth of 10 Mbps or higher, while low-bandwidth countries have an average

Internet bandwidth of lower than 10 Mbps. According to NetIndex’s findings [NetIndex

2012, 2012], 72 countries fall into this thesis’ definition of high-bandwidth, and 114 (out of

186 total countries in the study) fall under low-bandwidth.

Using this distinction and the above data-set, we will distinguish video viewership by

high-bandwidth and low-bandwidth and total video length.

As we can tell from Table 10.4, the bandwidth of the country heavily determines the

length of the video that people watch. It is also possible that content providers for those

countries restrict themselves to short-form video content. As we can see from the table,
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# of videos High-bandwidth Low-bandwidth High % Low %

0 - 30 secs 547 41,893,823 10,429,608 80.1 19.9

30 - 60 secs 213 10,738,243 1,524,110 87.6 12.4

1 - 2 mins 104 3,193,842 489,862 86.7 13.3

2 - 5 mins 43 1,133,834 10,4636 91.6 8.4

5 - 10 mins 36 482,043 37,394 92.8 7.2

10 - 30 mins 27 234,039 4,235 98.2 1.8

30 - 60 mins 18 302,843 10,974 96.5 3.5

>60 mins 12 387,029 6,455 98.4 1.6

Table 10.4: Comparing high and low bandwidth countries

videos that are about 0-2 minutes long have more than 10% of their audience in low-

bandwidth countries (as high as 20% for videos less than 30 seconds), but for videos that

are longer than 10 minutes, that viewership rate drops to lower than 3.5%. This implies

that countries with lower bandwidth do indeed view shorter-form content, whether they are

restricted due to their content providers, or whether they experience a poor quality of video

watching over the Internet in those countries.

10.5 Popularity Distribution Across Domains

One of the most interesting questions in the study of video data is the popularity distribution

of videos. While we were not able to investigate the popularity distribution of individual

video URLs, we were able to plot a popularity distribution of streams (or plays) aggregated

to the domain they were streamed on (here domain refers to the full domain name of the

hosting site - so www.columbia.edu, columbia.edu and cs.columbia.edu would register as

three different domains.) This analysis was performed across all domains that had the

latest version of JWPlayer (version 6.0 and above) and at least one stream played from the

domain as an origin for the month of May 2013.

We studied two data sets:

• One is log files containing the access requests to the player’s watermark logo. These
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logos are loaded when the free version of JW Player (which displays the watermark

logo) is initiated on a website and starts playing a video. Due to the popularity of

this player, the access logs total about 4.5 TB of data, with more than 15 billion total

impressions recorded. Through looking at the whole data—or a subset containing

more recent data—we are able to obtain a macroscopic view of general video trends.

• The second data set are log files for access requests to their popular video hosting

platform called “Bits on the Run”. This set of log files is interesting not only in terms

of size—over 40 million streams—but particularly in terms of video engagement (which

we define as how long a user has stayed watching a particular video) and related

metrics. Bits on the Run collects video engagement data that enables customers

(customers are the people who host their video on the platform) to see pingback data

on video, which allows the evaluation of play, pause, stop, progress and skip actions

on video.

Furthermore, I will state what we do and cannot do with the data at our disposal.

• Many of the results shown involve some sort of date and time. In this scenario, how

we adjust for time zones around the world? For hour-of-the-day calculations, we

normalize the time of day from our server logs by adjusting the hour to the user’s

timezone, which we determine by using the user’s IP address for geo-location.

• We are unable to evaluate any data related to meta-data or classification of video

data. This is because even though we might have access to the page URL or video

URL of the data, there is little data that is actually set in the data directly accessible

by the player. In order to actually evaluate any data related to classification of data,

we would have to crawl all the URLs and obtain meta-data on the content related to

that video. This would require us to build our own search engine.

• We are unable to evaluate any metrics related to total length of the video. This

is because (like video classification data) this is metadata, that is not passed to the

player. We find that though there are Javascript-based mechanisms that are supposed

to allow for finding the total length of the video, most of the browser implementations
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do not fully support this. In particular, this is a problem for streaming data which

does not have a length set at all! For this reason, we are able to measure events (such

as play, stop or progress) but not length of the video.

For the data set in the popularity study, we saw a total of 134,214 domains that qualified.

There were 175,000 domains in total that had JWPlayer 6.x embedded, but the rest did

not have a single play on them. These domains had the following characteristics in terms

of data:

• A total of 1.04 billion streams (1,042,070,768 to be precise) were played across all

domains.

• The top domain had 111,860,150 million streams (10.73% of total streams) across the

month.

• The top 10 domains accounted for 406,485,036 streams (39.01% of total streams).

• The top 100 domains accounted for 797,945,601 streams (76.57% of total streams).

We plot the total number of streams per domain for the top 10 domains (Figure 10.2)

and top 100 domains (Figure 10.3) in the following two graphs (a graph mapping all 134,000

domains looks empty due to the long-tail of domains with low streams.) It is clear from

the graphs that the popularity distribution of video plays across domains is an exponential

one.

10.6 Desktop, Mobile and Tablet Usage

One of our first—and one could say most obvious findings—is the steady growth of mobile

and tablet consumption of video. Figure 10.4 shows the super-linear growth of smartphones

and tablets as a percentage of devices used in consuming online video content. In this graph,

we show only the breakdown of percentage of video consumption across mobile devices,

particularly smartphones and videos.

While the growth seems to relate closely to the growth of mobile vs desktop traffic

as observed by other website analytics providers [StatCounter, 2012], we note that usage
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Figure 10.2: Popularity distribution of the top 10 domains serving video in May 2013 based

on streams.
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Figure 10.3: Popularity distribution of the top 100 domains serving videos in May 2013

based on streams.
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of tablets for video consumption seems higher than the adoption numbers seen on website

popularity tracking services. We believe this may be because tablet users—with their larger

screens and easy mobility—to be more interested in visiting and playing video than users

with smaller screens.
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Figure 10.4: Changes in percentage terms of mobile devices (compared to overall device

usage) used to access video on websites over a period of two years.

We note also the growth of the various mobile operating systems and platforms in

Figure 10.5. This is along expected lines. We believe that the growth of Android phones

compared to iOS phones might be due to the nature of JW Player traffic, which sees a lot

of impressions from Europe and Asia and might skew the traffic in favor of Android for

mobile data (and Windows for desktop data.)

We can also drill down to see specifically the growth of mobile traffic over the past couple

of years in Figure 10.5. This figure shows the growth of the mobile operating systems,

particularly Android and iOS, start to dominate the online video viewership.
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Figure 10.5: Percentage of video accesses for four device types (two each of smartphone and

tablet) shows a growth trend, from June 2010 to January 2012.

Finally, in relationship to the above two numbers, we also present the growth the player

numbers itself in Figure 10.6. The player is showing more than 30 million daily impressions

in early 2012, showing the growth of video consumption on the Internet. Regarding the

peak in late September 2011, we are not clear what drove the increase in video consumption

on that one day, but it is possible that a video (or group of videos) went viral.

10.7 Country Viewing by Day and Hour

Another interesting statistic is the viewership of videos by country, and by the hour. I

believe that these statistics give us some very interesting insight into the browsing and

online video consumption habits of different countries. The breakdown of video watching

patterns for four countries by day are shown in Figure 10.7. As we can see, the video

watching patterns are similar across countries, decreasing during the course of a week and

then peaking on Sundays.

A more interesting pattern begins to emerge in the breakdown of viewership by hour,

as shown in Figures 10.8 and 10.9. For this analysis, I have taken the top 10 countries

measured by number of plays or streams from that country, and broken those down into
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Figure 10.6: The number of daily video streams served using just the free version of the pop-

ular JW Player. These statistics include only player versions that are HTML5 compatible

or higher (version 5.3 and above).

Figure 10.7: Breakdown of viewership by country, by day of week.
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two buckets, with the top four countries in one graph, and the next six countries in another.

The graphs are plotted with the number of streams as a percentage of total plays, bucketed

into the hour they were played at, and smoothened to display on a curve.

In these two graphs, the viewership by country and hour is seen to differ slightly between

countries.

One instance of viewership difference is that in our analysis, Russia and the U.S. both

show patterns of usage that only slowly dip over time, even late at night. In contrast, other

countries’ video viewing tends to decrease steeply towards the night, showing that the usage

pattern at late nights is much lower in those countries than in Russia and the U.S.

Figure 10.8: Breakdown of video viewership by country set #1, by hour, for the United

States (with time zones adjusted), Brazil, Vietnam and France.

10.8 OS Viewership by Day

We analyzed how people use their tablets and smartphones to watch video, over time of the

day and day of the week. This data was measured over a period of two months, January

and February 2012.

As seen in Figure 10.10, over the course of a day, tablet users seem to predominantly use
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Figure 10.9: Breakdown of video viewership by country set #2, by hour, for Germany,

Taiwan, United Kingdom, Italy, Canada and Turkey.
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their tablets to watch video during the evening hours (after 6 pm). In contrast, connected

device users (e.g., PlayStation) seem to prefer to use their device in the early hours of the

morning, and so do smartphone users to some extent. Desktop users predominantly use

their devices during the afternoon.

But over the course of the week (Figure 10.11), the variance of video consumption by

various devices is smaller. That being said, phone and tablet usage are slightly higher over

the weekends compared with desktop users.

Figure 10.10: Device usage by time of day. The numbers indicate the hours of day according

to a 24-hour clock, so 0 is midnight, 1 is 1 AM, etc. Blue indicates late night / early morning

hours, pink indicates morning hours, yellow is afternoon / early evening, and green is late

evening / night.

10.9 Play and Open Rate by Day of Week

For this part of the thesis, we define “plays” as when a video play actually happened (either

when the webmaster enables auto-start, thus automatically starting the video when the

page is loaded, or the user clicks the play button). “Opens” are page views or video embed

actions, meaning that the user has opened a website with a video on it, but not necessarily

played it.
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Figure 10.11: Device usage by day of week. Light green is Monday to Thursday, dark green

is Friday, and blue is weekends. (Connected devices, as explained earlier, refer to living

room devices such as the PlayStation.)

We look at the play and open rates of video by day. We use the “Bits on the Run” data

for evaluating it. The results are shown in Figure 10.12.

As can be seen, the ratio of plays to opens are very similar throughout the week.

10.10 State Transitions in Video Playing

Another interesting measurement is the number and ratio of state transitions between var-

ious player states. This is shown in Figure 10.13.

The state transitions measured by “Bits on the Run” analytics are the following: ready,

play, progress, stop, skip, and complete. The states are described briefly here:

“Ready” when a page is loaded with the video player.

“Play” when the play button is pressed and a video starts playing.
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Figure 10.12: A breakdown of open and play rates across the days of the week.

“Progress” when a user has allowed the video to progress for a certain length of time (in

our case, 30 seconds) without taking any action.

“Stop” when the video is stopped.

“Skip” when the user skips to another section of the video.

“Complete” when the video plays to completion (the stop event is additionally triggered

in this case).

We see that there are quite a few state transitions covered in this diagram, and that

viewers cross all state transitions, though some are more popular than the others. For

instance, we can see that only 30% of the people who land on a page with video actually

press play to watch the video. Out of those who play a video, about 40% of them keep

viewing it (progress), 30% stop it and another 15% proactively seek a place in the video

they are interested in (before any other event is triggered).

One thing to note is that even though the number of entry items is normalized to 100

(for easier viewing of transition data), the total number of transitions over the graph do

not add up to 100. The reason for this is that a user could take multiple actions at any
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state. For example, a user, once he starts playing a video, could allow it to progress for 5

intervals, stop it twice, resume it twice and then allow it to progress to completion. So each

entry point could have multiple events associated with it.

Out of the people who skip viewing some length of the video, about 45% of them are

likely to seek again (skip some other section of the video), another 45% just allow the video

to progress and 10% of them stop the video.

Meanwhile, out of the people who are watching the video without frequently skipping,

people are twice as likely to stop the video as to seek to a specific place in the video.

Note that while it is would be interesting to estimate the total number or the length

of time that someone allows a video to progress, we are unable to do so using our current

measurements since: (a) the videos we have are of different lengths (b) each progress event

only indicates that someone had watched that video for 30 seconds prior, but does not

indicate where they were in the video when the event fired.

In addition, it would also be interesting to study abandonment ratio, but we cannot

count this number because this behavior depends on the window close event in a browser.

Tracking this event is difficult across various browsers, particularly the Safari browser and

certain versions of Internet Explorer.

10.11 Related Work

Several studies have focussed on the view of video traffic data from the edge of the network.

Gill et all [Gill et al., 2007] measured Youtube traffic at the edge of the network on a

campus, and provide network characterization and caching analysis of video traffic based

on the Youtube video popularity seen at the edge of the network. We believe that some

of our findings about country and regional localization corraborate their findings about

regional popularity, but at the same time, our advantage of being at the “center” or the

origin as a provider gives us greater insight into global traffic patterns across the world.

From our analysis, the findings in [Gill et al., 2007] apply not only to one edge network,

but are pretty similar to those seen across the world.

Rao et al [Rao et al., 2011] evaluate Netflix and Youtube, which are the primary sources
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Figure 10.13: Video state transitions across the multiple states that we measure (load, play,

seek, stop, progress). The numbers indicated have been normalized to the number of people

who are in the starting (”ready”) state which is set to 100.

of video traffic on the Internet. They evaluate primarily the TCP traffic characteristics

of this traffic, and find that Netflix and Youtube use three streaming strategies ranging

from non-ack on-off to bulk TCP for delivering video efficiently to the end user. Adhikari

et al [Adhikari et al., 2011] reverse engineer of YouTube network and find that it has a

“Flat” video id space, multiple DNS namespaces and a 3-tier physical cache. Finamore et

al [Finamore et al., 2011] find that users abort video playback quite frequently and that

60% of videos are watched for less than 20% of duration. They also find that users access

independent of device used, that Youtube adopts different mechanisms based on device,

and that the amount of video downloaded but not played is large (25%-39%), and larger

for mobile devices.

In contrast to client-side measurements, YouTube statistics have also been measured at

an ISP [Adhikari et al., 2010]. The authors find that YouTube employs a location-agnostic,

load-balanced method for delivering video content. They also build a routing traffic matrix

and analyze the early-exit routing of YouTube traffic in ISP network, and find that YouTube

traffic has what they call a “locality bias” which refers to videos showing popularity mostly

within a region. The paper also explores the potential size of Youtube data centers. This
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paper again differs from ours in that it measures video traffic at the networking layer from

an ISP’s perspective, and the work is complementary to our work.

Yu et al [Yu et al., 2006] study weekly access patterns of usage and infer arrival rates of

video viewers as well as metrics such as session length, popularity and popularity distribu-

tion of popular content. Their findings are also done at the content provider. Their findings

are similar to ours for most metrics such as weekly access patterns, popularity distribution,

etc, with the only difference being in total number of data points. Also, their study was

done in early 2006, and ours is more current (2012) and we believe at a time when Internet

video is more mature. Finally, due to video engagement data, in addition to raw video

loads, we are able to measure much more interesting trends such as user engagement (such

as transition between play, stop, seek and progress states), which gives us more insight into

the interplay between the viewer, the provider and the network.

Costa et al [Costa et al., 2004] study usage patterns of video viewership. But the data

is several years old (it was done in 2004). Our work is more recent, and is being performed

as the Internet video market is becoming rapidly mature and more mainstream.

10.12 Conclusion

This chapter presents my analysis of video consumption based on data seen at JW Player.

I’ve put together several results related to trends in video consumption, such as: the growth

of alternate devices (mobile and tablets); video consumption across countries, time of day,

and day of week; video engagement as measured by event/state transitions. In contrast to

some of the related work (most of which deals with video traffic views from the edge), the

work presented in this chapter presents video consumption as measured from the center of

the service provider.
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Part III

Information Centric Networks
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Chapter 11

Introduction: Information-Centric

Networks

As the volume of video content on the Internet keeps rising, network and service providers

are scrambling to add more hardware and caching to improve the delivery of content, but

a new genre of networking research aims to solve the problem of caching at the networking

layer.

ICN (Information Centric Networking), also known as CCN (Content-Centric Network-

ing), is a networking framework in which content, and not hosts, are a first-class citizen of

the network. In particular, where the Internet Protocol was about host-to-host communi-

cation, ICN/CCN is about content communication: requests are made for pieces of content,

with no knowledge of the underlying network architecture or even end hosts necessary.

While the implementation of ICN is well put together in the CCNx platform [Jacobson

et al., 2009b], ICN is still a fairly nascent research topic, and there are still many real world

problems that ICN faces. For example, do we have to replace our entire current networking

stack - on IP - with a new stack for ICNs? How would services, remote procedures and

dynamic content work?

In addition to the research that on CDNs (presented earlier in this thesis), this thesis also

presents research topics in ICNs that relate to real-world use of networks, such as services

and dynamic processing, as well as using existing networking architectures for ICNs.
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Chapter 12 describes CCNxServ, a platform built on top of CCNx that allows for dy-

namic content to be generated on the fly in CCNx networks, with or without explicit

requests from the end user. The CCNxServ platform does not require any modifications to

the underlying CCNx platform, and runs a service layer, thus enabling migration of services

and processes on an ICN.

Chapter 13 introduces IPv6 for ICN, using a subset of IPv6 addresses as unique content

names/identifiers. Through this approach, we could run a pure ICN or CCN network on

top of today’s IPv6 protocols and current infrastructure without having to re-invest or re-

build an ICN networking architecture from scratch. Several challenges involved in running

a pure ICN network on top of an IP network are also described, as are ways of how we can

overcome those challenges.
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Chapter 12

CCNxServ: Dynamic Service

Scalability in Content-Centric

Networks

12.1 Introduction

Content-centric networks promise to address content networking issues in a better way

than today’s host-based networking architecture. But content-centric networking does not

inherently address the issue of “content services” (which we define as an action that can be

performed on a piece of content to transform that content), particularly service scalability

and mobility. We present our work on CCNxServ, a system that allows for dynamic service

deployment and scalability in a pure content-centric networking implementation (CCNx)

through an intuitive use of the content naming scheme.

Content-centric networking projects, such as CCNx [Jacobson et al., 2009b], XIA [Anand

et al., 2011] and Nebula [Smith, 2010], aim to improve content networking by providing an

entire network stack centered around content and handling content requests. Content-

centric networking typically focuses on static content objects, but many content services do

not deliver the same bits to every receiver, but transform and personalize them. Examples

include personalized advertisements and watermarking for content protection.
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Our previous work, ActiveCDN 9, also deals with distributing content elements to users

and providing content services. The naming of data elements differ due to the nature of

the underlying network layer, but both provide closely-related services, namely access to

content, including the possibility of manipulating the content “on the fly”.

We believe that a complete content networking architecture will focus not only on

content-centric networking, but will involve content services as well. In this chapter, we

present our architecture and implementation of CCNxServ which allows for dynamic ser-

vices and service scalability on top of the CCNx content-centric networking framework. We

present how we use the CCNx naming scheme to add service functionality to the purely

content-centric CCNx architecture, thereby leveraging the existing content-centric features

of CCNx and allowing for service scalability and mobility in CCNx. We add composable

media transformation services as an integral component of the CCNx framework.

In our current service implementation, we are mainly concerned with media transfor-

mation services which provide transformative processing services on media without having

to maintain state for each request or user. We acknowledge that there are a wide variety of

services that require some maintenance of state, databases and personal information, such

as social media and banking applications, to name just two such examples. A complete

treatment of such services in a content-centric network is beyond the scope of this work.

Running services over CCNx and similar content-centric networks will allow for services

to be deployed and to scale dynamically, as they can be distributed and duplicated dynam-

ically, similar to how content would be replicated in such networks. In contrast, today’s

host-based networks require precise information of the network topology as well as knowl-

edge of node location in order to be able to deploy services to those locations. For example,

the popular content delivery network Akamai offers some value-added services on top of

its content delivery network, such as its “Advertising Decision Solutions”, which allows for

companies to “seamlessly incorporate real-time anonymous Web browsing information with

anonymous online purchasing data from advertisers’ websites to present the most relevant

ad” [Akamai, 2008]. However, such services provided by Akamai and other large vendors

are still restricted to predefined services and statically located data centers and do not allow

for dynamic deployment of services in the network, while our services framework running
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Figure 12.1: Overall CCNxServ architecture.

on top of a content-centric network can provide such services and dynamic deployability. In

addition, by being able to replicate services on demand, CCNxServ can scale dynamically

and be replicated closer to hotspots where there is a lot of demand for similar services.

There are a class of services that run based on information from the end user at the

edge of the network. For instance, when a user requests a YouTube page or a website

from a content provider, it is not uncommon for an advertisement to show up alongside the

video or webpage. However, these advertisement requests involve a separate request for the

advertisement content which is still served from an origin server. This is a separate request,

and as such, could be potentially blocked by the end user by ad blocking software. If instead

the advertisement was served to the end user after being processed at an edge node that had

a replica of the service, it would be one piece of content that would be customized to the

user but indistinguishable from the original content request. (We are not trying to argue

for or against advertisement on video or other pieces of content; this is just an example of

how in-network service processing would differ from current service requests.)

12.2 Scaling Services Dynamically in CCNx

In this chapter, we present our implementation of service-centric networking on top of CCNx

[Jacobson et al., 2009b]. We believe that CCNx and its current implementation (available

as open-source on the CCNx website [Xerox PARC, 2010]) are a solid starting point for
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building a service networking architecture. The version of CCNx that we used was the one

that Xerox PARC released in November 2010, which was CCNx 0.3.0 [Michael Plass, 2010].

The architecture for our current implementation is shown in Figure 12.1. Our current

CCNxServ implementation allows for a single service to be invoked alongside the content

name (our naming scheme is contentname+servicename). When such a name is seen by

a content router, the content router is able to parse the name into the content name and

the corresponding service that is to be invoked on it. If it does not yet have a copy of

the requested content, it retrieves the file via CCNx. Also, if it does not yet have a copy

of the service module corresponding to the requested service, it fetches the corresponding

service module via CCNx. Then, the content router invokes the service on the content and,

after the processing is complete, it serves the processed content to the requesting client.

In addition, it places the processed content back into the CCNx namespace so that future

requests for this combination of contentname+servicename will directly be able to fetch the

processed content. We allow these processed content objects to be cached for a default time

interval (say, 15 minutes) for faster response time while enabling the application to change

the caching interval or even disable caching completely.

Today’s data center infrastructures usually require data to be moved to central locations

where they are processed and transformed. CCNxServ allows for services to be moved right

to where the data are situated, thereby enabling service mobility to locations where they

are most needed, and allowing for transfer of lightweight executable modules rather than

requiring large data sets to be moved around.

In CCNx, we can also define such services implicitly in the content request. Because

CCNx allows for the concept of “prefix matching” (where it matches prefixes at any level of

the content name) any content router that implements our architecture could add a service

name to the end of the name. Our current implementation will work in both centralized

and distributed infrastructures that are supported by content-centric networking.
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12.3 Architecture

For our current implementation, we focused on creating and running three commonly-used

services on top of the framework we describe below. The “weather” service takes a video file

as input and generates output with the latest weather information from www.weather.gov

as an overlay on top of the video. The “ads” service inserts a random video advertisement

(from a given list of ad files in a certain directory) in the middle of the video. The “news”

service generates an output with the latest newsfeed (from BBC) as a marquee on top of

the video. This application is similar to the application presented in the previous chapter

on ActiveCDN 9, but the underlying request mechanism and architecture are different, as

described below.

As shown in Figure 12.1, an application running on a client device or a network node

makes a request for a content name and a service it wishes to invoke on the content (e.g.,

ccnx://video.mp4+ad). The request is converted to a CCNx interest packet and forwarded

to CCNx. The request is intercepted by any of the nodes that operate as a Content Router

(step 1 in the figure), and if the (processed) content “video.mp4+ad” does not exist, the

Content Router looks for a service corresponding to the service name. If it does not find

a service in its local cache, it fetches it by issuing a CCNx interest packet for that service

module (step 2). The same is true for the content; if the file (video.mp4) is not in the local

cache, it is fetched from the content-centric network (step 3). Once both content and the

service module are located and downloaded on the Content Router, the service module is

installed (step 4) and executed on the content (step 5), thus producing a processed version

of the content, which is returned to the client (step 6). In addition, the processed content

is put back into the CCNx namespace for future requests (step 7).

In order to demonstrate that we are able to provide “plugin” functionality for a fully

robust service platform, we integrated the CCNx services implementation with the NetServ

service virtualization framework [Lee et al., 2011b]. NetServ is described in detail in Chap-

ter 8. With NetServ, an edge router can become a platform for publishers’ content and

services, allowing content publishers to dynamically deploy within NetServ their services

on these edge routers.

We created a CCNx controller that signals the NetServ service stack and runs service
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functionality through NetServ and its OSGi stack [OSGi Alliance, 2011], while still using

the content networking functionality provided by CCNx. The NSIS signalling protocols

[Hancock et al., 2005] [Schulzrinne and Hancock, 2010] help to instantiate modules. The

NSIS protocol is used for the routing and transport of per-flow signaling messages along

the path taken by that flow through the network. The CCNx controller complements the

IP-based signaling controllers with CCNx-based signaling.

In addition, as a result of our network-based signaling, one CCNx controller will be able

to signal and control multiple NetServ nodes. This mode of operation could be useful in large

data centers, where some of the nodes could be CCNx-enabled and others only IP-enabled,

with some running a service framework and others a content-networking framework. In

addition, such a topology would allow for services and content transformations to be scaled

and moved to appropriate nodes depending on load factors.

12.4 Implementation

We implemented our solution on top of the open-source implementation of CCNx 0.3.0

provided by PARC [Xerox PARC, 2010]. The reference implementation provides the core

CCNx protocol stack implementation along with a few sample applications and utilities.

We use some of the existing utilities in the CCNx implementation, and have modified and

implemented our own functionality on top of it.

One of the utilities that we use is the ccnfileproxy, a proxy for the file system that

makes files on the local file system available over CCNx. It takes a directory from which to

serve files, which it treats as the root of its content tree, and an optional CCNx URI to serve

as the prefix for that file content as represented in CCNx. For example, if there is a directory

/foo in the file system and the CCNx URI is defined as ccnx://testprefix, ccnfileproxy is

called with the arguments -/foo ccnx://testprefix, and a request for ccnx://testprefix/file.txt

would return file.txt.

For our implementation, we modified the ccnfileproxy as follows: we intercept the

interest packet and scan the content name to see if any service names are included. If no

service name is included, we allow the ccnfileproxy to continue its normal mode of execution.
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Figure 12.2: The architecture of our CCNxServiceProxy implementation and how it inter-

acts with the various CCNx utilities.

If there is a service name specified, we map it to an internal service module file name, issue

another interest for the corresponding service file (a JAR file in our implementation) using

ccngetfile, and dynamically load it. Then we find the appropriate class in the JAR file,

and call the appropriate service method in the class on the content file. We call this modified

proxy CCNxServiceProxy.

The pseudocode for our implementation, in pseudo-Java, is shown below:

ccnName = "ccnx://content+service";

array(service, file) = parse(ccnName);

bundleFile = download("ccnx://service" + ".jar");

content = download("ccnx://content/");

controller = intializeOSGi();

serviceBundle = controller.installBundle(bundleFile);

processedFile = serviceBundle.execute(content);

putFileIntoCCNx(processedFile);

To add a new service to our implementation, a new JAR file with the service has to
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be created. The most important file in the JAR file is the service class, which has to

implement our CCNxService interface for the service implementation. The execute(Object

param) method has to be overridden in this service class to provide service functionality

specific to the class. When creating an OSGi bundle, the CCN-Service attribute is used in

the manifest file of the JAR, and this points to the class which implements the CCNxService

interface. An Activator class (which activates and enables the module for OSGi) can be

included in the service bundle as well. All the service related class files are packaged

into a service.jar file. The JAR files are then loaded into CCNx namespace through

ccnxfileproxy or a similar utility.

The overall architecture of our CCNxServiceProxy is shown in Figure 12.2. When the

CCNx interest reaches a CCNxServiceProxy, we invoke the ccnNameToFile() method on the

interest object. This function call translates the CCNx content name into the corresponding

file name while parsing it. If any service is found in the content name, the ccnServiceBridge()

method is invoked. This method handles the loading of the service module, invoking it on

the content, and returning the processed content into the CCNx space.

When the ccnServiceBridge method is invoked, we check whether the output file, of the

form CONTENT NAME%SERVICE NAME, is present in the file repository. If the file is present, we

check for any further service invocations. If the file is not present, we check whether the

OSGi bundle corresponding to the service name is already installed. If the OSGi bundle

is installed, we invoke executeModule() method on the OSGi controller with the bundleID

and content name as the parameters. The executeModule call returns the file name of

the processed file which is used as the input content for the next service in the chain.

This way we can execute multiple services on a single content through chaining, for, e.g,

ccnx://content+service1+service2 ; this call will result in two service invocations, service1

on “content” and service2 on the “content+service1” content file.

When the executeModule method is called, we load the CCN Service class using the

bundle header, CCN-Service. After creating an instance of the CCNxService type class,

we can invoke the execute method of CCNxService interface directly on this class instance.

The invocation returns the file name of the processed file.

Videos are requested as shown below:
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Figure 12.3: A screenshot showing the processing of CCNx content after the Content Router

interprets the content request.

Figure 12.4: The transformed content, with an overlay containing weather information at

the bottom right of the video, being played in VLC player.
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ccngetfile -timeout <value> --loggingoff ccnx://video.mp4+weather <output file>

Figures 12.3 and 12.4 show screenshots from the CCNxServ testbed. Figure 12.3 shows

the processing of CCNx content after the Content Router interprets the above content

request for the weather service invoked on a video file (ccnx://animal.mp4+weather2 ).

After intercepting the interest packet, the content name is scanned and the service name

“weather2” is detected. An interest for the corresponding service file weather2.jar is issued

using ccngetfile. After successfully downloading the JAR file, the service is dynamically

loaded and the content is processed. Finally, the file is sent back to the CCNx layer, which

passes the processed content to the requesting user. Figure 12.4 shows the processed content

being played at the client device. The invoked services added an overlay containing the local

weather information at the bottom right of the video.

12.5 Challenges and Incentives

In this section, we present the economic incentives for the CCNxServ work as well as the

technical challanges that we faced while implementing it.

12.5.1 Economic Incentives

Video and content consumption on the Internet are rapidly growing and require enormous

amounts of bandwidth. At the network core, the increasing consumption of multimedia

content on the existing wired networks and in mobile systems is putting a strain on the

network core.[Cisco, 2015]. Content distribution networks (CDNs) are becoming more and

more popular as a means of efficiently distributing multimedia content to end-users on the

Internet. Pallis and Vakali [Pallis and Vakali, 2006] show that CDNs can reduce “traffic

jams” for web traffic, since data is closer to user and there is no need to traverse all of

the congested pipes and peering points. Content-centric networks (CCN) take the CDN

argument and implementation further with the concept that content, not hosts, are the

cornerstone of the Internet today.

CCN proponents [Jacobson et al., 2009b] have argued that CCNs can decrease the cost

of content delivery on the Internet. Park et al [Park et al., 2012] argue that a backbone
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network provider could see as much as 30 percent traffic reduction using content-centric

networks. In this light, the CCNxServ work that we are doing will enable a new class of

services to run on top of the emerging CCNx architecture at reduced cost. In addition,

as mentioned in Section 12.1, CCNxServ enables lightweight executables to be migrated

to locations where there is a large quantity of content or data requests, achieving service

mobility to cover large datasets, further reducing networking costs.

12.5.2 Technical Challenges

We will briefly describe some of the technical challenges that we faced while building CC-

NxServ.

The first challenge was making CCNxServ work on a completely content-centric network

infrastructure. Because the entire foundation of CCN networks rests on the concept of

content, CCNxServ needs to share services by expressing them as a form of content, and

at the same time, use the naming mechanism to indicate their use as executable services

and not static content. This can be thought of as introducing active networking into a

content-centric network. We believe our mechanism of addressing this solves the services

problem while constraining it to work in a content-centric network.

The second challenge was integrating systems that combined the best features of content-

centric networking and the traditional networking model, particularly for services. We chose

to integrate our CCNxServ implementation with NetServ [Lee et al., 2011b]. We were

helped by the fact that while NetServ was initially built for IP networks and for host-based

communication, its core service modularity allowed its networking layer to be reworked

to support content-centric networking. Through refactoring CCNxServ, we were able to

expose its core functionality as a controller to NetServ, and thus leverage NetServ’s service

APIs while being able to use CCNxServ’s naming and service delivery mechanism on top

of a pure content-centric network. However, this may prove a challenge with frameworks

and libraries that have been hard-coded to the IP networking stack, such as OpenFlow

[McKeown et al., 2008] and others.
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12.6 Related Work

While there has been a lot of work done in the field of information-centric networking (ICN)

the field of service-centric networking, especially as applied on ICNs, is fairly new.

SCAFFOLD [Freedman et al., 2010] allows for multiple service instances to be repre-

sented by one common name, but with the specific service represented through serviceIDs

and selected through anycast routing through service routers. MILNGENI (million-node

GENI) [University of Washington, 2011] allows for services to be deployed and run on top

of many end-systems that are connected via the experimental GENI testbed. Even though

these projects attempt to deal with the problem of addressing content and making content

requests efficient, they operate on top of the IP layer and require host-to-host communica-

tion. Hence, their APIs and middleware are built for host-based networking.

Service-centric networking (SCN) [Braun et al., 2011] is a project aiming to build a

network that runs with services as the primary construct, rather than content. It aims

to supersede CCNx and thus involves building a superset of CCNx. In contrast, we are

building a service platform on top of only CCNx, providing a service stack on top of CCNx,

and we have been able to implement a fully service-oriented networking architecture on top

of a pure ICN stack. We believe this demonstrates that it is possible to build services on

ICN networks without requiring a superset of the features offered in ICN implementations.

SoCCeR [Shanbhag et al., 2011] is an attempt to build a service layer on top of CCNx,

and it works as a control layer to manipulate the underlying Forwarding Information Base

(FIB), thereby performing distributed best-service selection using an ant colony optimiza-

tion (ACO) approach. In contrast to our work, it requires modifying the CCNx interest

and data packets to enable the control layer to work. In addition, our work deals with

service deployment and dynamic scaling, and thus relates to the problem of effective service

placement, which would complement SoCCeR’s best service selection algorithm. Further,

there appears to be no published API or working code for service-centric networking, and

hence no working prototypes or services to test.

Another area that is somewhat related to our CCNx services work is in the field of data

migration to data centers closer to the services. This work deals with large data sets and

data centers, including tackling design issues to address data migration and latency. Tiwana
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et al [Tiwana et al., 2010] propose exposing the network location of data to the service, so

that the service is able to optimize processing of data based on location. Volley [Agarwal et

al., 2010] attempts to automate application data placement across data centers efficiently.

PADS [Belaramani et al., 2009] provides a data plane mechanism for transmitting data and

maintaining consistency in large distributed applications and data centers. Time-shifted

TV [Li and Simon, 2011] uses CCNx to improve localized and cooperative caching using

content routers. It takes advantage of proximity features in CCNx (whereby a node that

is closer and has the data is automatically chosen over a node that is further away) to do

cooperative caching of content. However, all of these approaches only deal with data latency

and moving data across locations to bring them closer to the application. Our approach, in

contrast, is about moving services themselves to where the data is located, and thus being

able to move small executable modules to places with large data, allowing the data to be

processing more efficiently.

Research on service placement is also related to our work. Service placement algorithms

dynamically try to find the optimal number and locations of service instances given a certain

service demand and network topology. A good overview of related work in the area of service

placement is given in [Wittenburg, 2010]. In contrast to pure caching solutions, service

placement tries to increase the performance of a service based on application-specific quality

metrics, while at the same time minimizing the overall network load and service costs.

Therefore, services are replicated in the network and the service locations are dynamically

adapted to the changing network conditions and service demands.

An architecture supporting a dynamic, distributed service provisioning for mobile users

is described in [Lundqvist et al., 2011]. It supports both optimized service placement within

an operators network and placement of service components in a foreign network. This leads

to both more efficient resource usage and better quality for the users.

12.7 Conclusion

We believe that services (as definied in the introduction) are central to network operations.

CCNxServ shows that it is possible to build service functionality including dynamic service
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invocation, scalability, and mobility on top of content-centric networking, thus extending its

features towards a service-centric network. We have a working implementation of scalable,

dynamic service architecture implemented on top of the CCNx protocol stack. Our imple-

mentation enables dynamic invocation of services and true service mobility and scaling in

a purely content-centric network based on need. By exposing services in a content-centric

networking framework and the intuitive use of CCNx’s content naming scheme, we are able

to provide true content-based service functionality in a future Internet platform that is

focussed on providing both content and service functionality.
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Chapter 13

IPv6 Addresses For Naming

Content

13.1 Introduction

Multimedia content is quickly becoming the dominant Internet application. But the problem

of addressing and naming content is one of the most central issues to a practical content-

centric networking approach, since a robust and naming-centric networking strategy will

enable the building of next-generation Internet architectures that can easily scale and adapt

and cache content correctly. In this chapter, we propose using IPv6 addresses for naming

content, and we argue that using IPv6 addresses for naming content will allow us to solve

the problems of routing and directory services associated with naming.

Several research projects attempt to address this using a variety of means. Naming

schemes (such as DONA [Koponen et al., 2007], OCALA [Joseph et al., 2006] and i3 [Kannan

et al., 2004]) aim to solve the problem by looking at the aspect of naming, in particular

through replacing or complementing the DNS for name-based lookups. Content-centric

networking (such as CCNx [Jacobson et al., 2009b] and XIA [Anand et al., 2011]) aim to

replace the IP-based Internet stack with one based on content and content names. (These

pieces of related work are described in more detail in the related work section.)

We propose solving the content issue through a remarkably simply but counter-intuitive

proposal: using IPv6 addresses for content names. Using IPv6 addresses for content names
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solves several problems with content networking in a clean way, and at the same time,

IPv6 provides an architecture for handling routing and security in a coherent way. In other

words, we propose solving the content networking problem by mapping content names to a

resource that addresses network problems comprehensively: IPv6 addresses.

In this chapter, we describe our initial proposal for content networking using IPv6

addresses for content names. We describe the motivation and current problems in more

detail in Section 13.2. In Section 13.3, we look at some of the fundamental properties of

IPv6 that make it so appealing to content-centric networking. In Section 13.5, we specifically

address how we map IPv6 addresses to content names, and vice versa. In Section 13.7, we

describe an initial prototype implementation and initial performance measurements of the

implementation.

13.2 Motivation

Since the beginnings of the Internet as a DARPA project in the 1970s, the Internet has

evolved from a small network used in military research to a planetary network connecting

billions of people. But at the core of the Internet, the protocols used - such as IP, TCP and

UDP - are still point-to-point or host-based and host-centric, and the Internet has, despite

its massive growth, sremained largely host-centric and application-agnostic.

But as content consumption rapidly increases on the Internet [Cisco, 2015] [PCMagazine,

2011], particularly due to the popularity of audio and video sites and services such as

Youtube, Netflix, Pandora, Spotify and iTunes. With the amount of content estimated to

be reaching into zetabytes, with a large amount of duplication [Jacobson et al., 2009b],

there have been several research projects that have proposed an alternative - and in most

cases, a clean slate - approach to solving this problem through a content-centric approach,

called content-centric networking.

While most of the existing work focusses on replacing existing Internet protocols with

a new set of protocols based on content, one key issue stands out: would content routers

scale for large volumes of content?

Our proposal is to use IPv6 addresses as content names, whereby we use part of the
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Figure 13.1: The architecture diagram of our IPv6 content addressing system. In our

system, the regular browser makes a HTTP request through a proxy, which translates

HTTP requests to an IPv6 content addressing system. The request is sent out over the

network, until a router on path that has the content responds to the request. The proxy

then translates the retrieved content back into a HTTP response to the user’s browser.

IPv6 address space as content names, thus allowing IPv6 to function as a content-centric

networking layer.

By using this approach, we no longer have to replace the Internet stack, and can instead

use the existing Internet architecture and move towards a full-fledged information-centrc

architecture that uses IPv6 addresses as content identifiers. This solves the problem of the

clean-slate approach, which would involve a loss of existing massive investment of networking

infrastructure in order to retrofit a new networking architecture, and allows us to re-use the

existing network stack for content networking.



CHAPTER 13. IPV6 ADDRESSES FOR NAMING CONTENT 139

13.3 IPv6 to the Rescue

In our approach, we favor using IPv6 unicast addresses. The IPv6 standard [Deering and

Hinden, 1998] specifies using 64 bits for routing and 64 bits for the interface ID, with a

recommendation to use 48 bits for the routing prefix, 16 bits for the subnet ID and 64 bits

for the interface ID. The routing prefix is allocated globally similar to IPv6. The subnet ID

is used to allow local network administrators to partition their networks into subnets based

on need. The 64-bit interface ID is usually generated automatically from the device’s MAC

address, or assigned through a DHCP server.

Our content-to-IPv6 proposal requires no changes to the initial 64 bits - the 48 bit

routing prefix or the 16 bit subnet ID. The first 64 bits are used to identify the content

publisher. We only focus on the 64-bits for the interface ID and use that as a unique content

identifier.

Having established this, we would be able to map IPv6 addresses to content names and

vice versa. For example, an IPv6 address such as 2001:0db8:85a3:0000:0000:8a2e:0370:7334

could refer to a content identifier ”publisher.com/example/test.html”. Further, the name

doesn’t have to be a HTTP or other URL, it could be a CCNx or other name as well (though

in our implementation, we do focus on HTTP URLs for reasons described in Section 13.3.)

There are several features that we get for ”free” from the IPv6 networking stack once

we have this implementation. The following are only some examples.

Routing Aggregation or ”supernetting” in IPv6 is a useful feature for our content map-

ping. It aggregates routes to smaller networks, and thus increases convergence speed of

routing messages across routers. Assuming that requested content is popular or viral, this

setup enables speedy recovery of content from a nearby cache.

IPv6 also specifies IPsec as part of its security framework. It allows for the payload to

be encrypted while the header is not. This could be used to encrypt the contents of the data

packet inherently in the network, and would be similar to how HTTPS allows for secure

HTTP traffic over SSL. It may further be possible to use authentication header to protect

IP address itself (naming security).

There are several other small features that are very useful for content networking. Mul-

ticasting is guaranteed to be always enabled in IPv6, and this is very useful for multicast
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content such as popular TV shows or sports games.

In regards to router processing of IPv6 packets, there is no fragmentation of packets,

and hence transfer of packets is much more efficient. We can specify the use of jumbograms,

which allow efficient transfer of large amounts of content through large data packets. IPv6

avoids triangular routing, and hence it works well with mobile nodes and mobile networks,

alleviating the need for a shim layer for mobile IP and similar problems.

Finally, we can transfer IPv6 over IPv4 networks through the use of the many so-called

”6on4” proposals (named as such because they identify how to run IPv6 addressing and

networking on top of existing IPv4 networks) and hardware that exist, thus ensuring that

content routing and delivery works even on IPv4 networks.

13.4 Implementation

In the next section, we describe our method of mapping content names to IPv6 addresses,

and vice-versa. But before we delve into that, we would like to highlight the issue of naming

security. Recent literature show that there is interest in securing the name in addition to

the content. We would like to highlight that this would be possible in the IPv6 content

naming architecture.

In our current architecture, we use a central lookup mechanism to map content names to

IPv6 addresses and resolve them (we envision that this may be replaced by DNS hierarchy

mechanisms, such as NAPTR [Mealling and Daniel, 2000]). Our current implementation

thus keeps the content name ”open”, meaning that anyone along the path would be able to

do a reverse-lookup and find the human-readable name of the content.

Our current implementation uses HTTP on top of the IPv6 stack. In order for this to

work, we assume the presence of several nodes along the route that are able to detect these

IPv6 packets and respond to them (an example of this would be NetServ nodes, described

in Chapter 8, that have an IPv6 content identifier module.) The client-side browser is

configured to use our IPv6 proxy, which receives all the HTTP requests for content and

translates them into IPv6 addresses, which it obtains from our central lookup server. New

IPv6 packets are sent out to the network, which contain the content name, with the IPv6
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packet itself having the sender IP as the source address, and the IPv6 content name as the

destination address. When the IPv6 packet hits a router that recognizes this IPv6 content

packet, the router checks its internal cache to see whether it has the corresponding content.

If it does, it performs a TCP termination for that connection, and sends a response with the

content. If it does not, the router allows the packet to pass through, where in the worst-case

scenario, it reaches the origin server which is able to properly handle the request. We use

Cassandra [Apache Foundation, 2012] as the central lookup store.

13.5 Mapping Content Names to IPv6, and Vice Versa

Even though we use IPv6, which can theoretically support up to 2128 content names, we

face some challenges. First, there is an existing hierarchy for IPv6 address allocations, and

these are performed by the IANA. Hence we are not able to arbitarily assign IPv6 addresses

for our content. Hence, we will need some sort of prefix identifier to identify that the

IPv6 addresses are actually referring to content names, so that they do not conflict with

pre-existing and assigned IPv6 addresses.

In addition, we need to be able to segment the IPv6 address so as to be able to dif-

ferentiate between the protocol, publisher and the content name (corresponding to that

publisher). This will allow for uniformity in names, as well as separation of functionality

and naming.

Finally, we require a centralized (perhaps hierarchical) mechanism for storing and look-

ing up IPv6 addresses corresponding to content names. The reason is that even though the

address space for IPv6 is 2128 and hence virtually unlimited, we need to be able to map

the publisher and content names to an IPv6 address using hashing or a similar mechanism.

In this situation, the hash cannot be reversed, and hence we need a lookup or mapping

mechanism similar to DNS for IPv6 content names. Note that while we mentioned using a

Cassandra database for the mapping earlier, that is just at one local node, so we need some

way to make sure that this name-to-IPv6 two-way lookup can be done globally.

Our current mapping of content names to IPv6 addresses is as follows:

- 16 bits = protocol (such as HTTP, etc)
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- 48 bits = publisher name

- 64 bits = content name

Note that we allocate 16 bits for the protocol to allow the publisher to run more sophis-

ticated networking than just plain HTTP. We believe that 216 = 65,536 possible protocol

listings will suffice for identifying a specific protocol. We also believe that there are less than

248 publishers in the known universe. Finally, we believe that 264 possible permutations

suffice for the individual content names corresponding to each publisher.

We implement the mapping of content names to IPv6 addresses as follows: we parse

the content name into protocol, publisher name and content name. An MD5 hash of each

of these strings is then performed. The first 16, 48 and 64 bits (respectively) of each MD5

hash is taken and used for the corresponding parts of the IPv6 address.

Using this implementation, we obtain the following sample IPv6 addresses for the fol-

lowing content names:

d6de :490 c : 6 a8e : b10d : 8 c7d : d922 : ad47 :494 f ccnx : // parc . com/ f i l e

d6de :490 c : 6 a8e : b10d : d41d : 8 cd9 : 8 f00 : b204 ccnx : // parc . com/

8079 :1 d59 :20 f4 : b44b : d41d : 8 cd9 : 8 f00 : b204 http : // g o o g l e . com/

8079 :9 ee : a68a :92 d6 : d41d : 8 cd9 : 8 f00 : b204 http : // epochtim . es /

8079 :1 b37 : 2 6 5 0 : 3 a f8 : 1 d78 : a723 : dee0 :2522 http : // nyt . ms/ v ideo

8079 :1 b37 : 2 6 5 0 : 3 a f8 : e a c f : 331 f : f f c : 35 d4 http : // nyt . ms/

13.6 Potential Improvements

Our current implementation allows for a decentralized lookup mechanism for content names

corresponding to IPv6 addresses.

We envision most IPv6 content name addresses as being public, and we foresee that

there might be a need to hide certain content names for security and other purposes. In

these scenarios, we believe that it is possible to have public and private lookup mechanisms

for the content address. One way of doing this could be through using portions of the

publisher or content name be assigned privately (similar to how IPv6 allows a subset of its
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address to be used for subnet IDs), and those references could work only within a private

network.

In addition, we could secure certain parts of the IPv6 address namespace. For instance,

the protocol and the publisher names could be looked up and made public, while the content

name part of the address could be made private and lookup possible only after one is

authorized to be able to do so.

13.7 Implementation

We have implemented a prototype of the system in the Python programming language. The

implementation uses libraries for packet capturing and packet spoofing. The implementation

has two main components, a content proxy and a content router. The content proxy acts

as an HTTP proxy that converts HTTP URL requests into IPv6 addresses. Upon getting

the request from the browser, we call a central lookup service to get the IPv6 address

corresponding to the content name. If the IPv6 address is retrievable, we create an IPv6

request packet to get the content. In addition, if we are unable to retrieve the IPv6 address,

the content name is converted into IPv6 address and added to the central lookup service

as an ipv6-to-content name mapping and content name-to-ipv6 mapping for content router

lookup.

ContentProxy :

while ( True )

c l i e n t = socket . accept ( )

content name = ge t cont en t ( c l i e n t )

ipv6 = c e n t r a l l o o k u p . get ( content name )

i f ( ipv6 not pre sent )

ipv6 = c o n v e r t c o n t e n t t o i p v 6 ( content name )

c e n t r a l l o o k u p . put ( ipv6 , content name )

c e n t r a l l o o k u p . put ( content name , ipv6 )

data = getContent ( ipv6 )

c l i e n t . send ( data )
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The content router uses the NetFilter API to capture IPv6 packets. We examine the

packets using the Python Scapy library. First, we intialize the NetFilter queue with a

callback function to capture all IPv6 packets. Once the packet is captured in the callback

function, the destination of the IPv6 packet is compared with the corresponding file name in

the router’s local storage. If a match is found, the packet is dropped and the file is returned

to the client. If the file is not found in the local store, we then forward that packet further

or we fetch the content directly from the publisher and store it locally for future requests.

ContentRouter :

queue = nfqueue . queue ( )

queue . bind ( socke t . AF INET6)

queue . s e t c a l l b a c k ( proce s s packe t , 6 )

queue . c r ea t e queue (0 )

while ( True )

queue . t ry run ( )

p roc e s s packe t ( payload )

packet = payload . ge t data ( )

d e s t i n a t i o n = g e t d e s t i n a t i o n ( packet )

source = g e t s o u r c e ( packet )

f i l e = c h e c k l o c a l s t o r a g e ( d e s t i n a t i o n )

i f ( f i l e )

return source . send ( f i l e )

else i f ( forward )

forward ( payload )

else

f i l e = f e t c h c o n t e n t ( c e n t r a l l o o k u p . get (

d e s t i n a t i o n ) )

s t o r e l o c a l l y ( f i l e )

return source . send ( f i l e )
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Our test network topology consisted of eight nodes connected in a local network. We

used eight nodes with two of the nodes being the end nodes, and some of the nodes being

simple routers, and one or two possessing IPv6 content handling functionality. We were

able to get the requests to work over this network.

13.8 Related Work

The biggest differences between our work and the existing work in information-centric net-

working (ICN) is that our IPv6 implementation allows for running a pure ICN network on

top of today’s Internet architecture, using existing hardware and protocols. In contrast,

almost all the work done so far in ICN require a clean-slate approach to networking, which

would translate to billions or trillions of dollars in infrastructure upgrades to replace our

current Internet.

For instance, naming schemes (such as DONA [Koponen et al., 2007], OCALA [Joseph

et al., 2006] and i3 [Kannan et al., 2004]) attempt to solve the content problem by looking

at the aspect of naming. They introduce a level of indirection in the naming scheme to

get around the content and service addressability aspect of the Internet. Content-centric

networking (such as CCNx [Jacobson et al., 2009b] and XIA [Anand et al., 2011]) aim to

replace the IP-based Internet stack with one based on content and content names. While

some of these protocols - such as CCNx - can run on top of IP networks, they tend to require

their own network infrastructure to be able to truly deliver content delivery benefits.

One other area of related work is in the area of naming security. In current protocols

such as HTTP, security (such as SSL/TLS) secure the content but not the name. Work such

as [Atkinson et al., 2010] and [Dannewitz et al., 2010] aim to preserve privacy of content

names in the network. Almost all of these would require some sort of credential validation

to be done on the network.

There are other research projects that attempt to split the concept of ID and location.

LISP (Location/ID Separation Protocol) [Farinacci, 2013] and [LISP, 2014] is an IETF

proposal that deals with a naming system that would configure host-names and machine

network address identifiers and map them to locators. Virtual ID [So-In et al., 2010] is
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an extension to IPv6 that allows ID/location split techniques to be used in mobile IPv6

networking. These deal with removing the coupling between the identifier and location,

but don’t specifically address content naming, though they could be extended for similar

purposes.

13.9 Conclusion

In this chapter, we described our proposal for using IPv6 addresses for content naming, and

describe how IPv6 can solve a host of issues traditionally associated with this information-

centric networking. We also presented an initial implementation of the same. We believe

that using IPv6 addresses for naming content will allow for a robust naming scheme for the

future Internet, while addressing the fundamental issues of caching and routing that are an

anathema to current naming-based schemes.
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Chapter 14

Conclusions

The Internet, which came into being in the 1970s and 1980s, was initially designed to

carry small volumes of information, such as e-mails and networking packets. But with the

introduction of the World Wide Web and HTTP in the 1990s, the Internet transformed into

a platform for transferring richly formatted content through HTML. Today, almost 30 to 40

years after the Internet first came into existence, it is a global consumer network carrying

zetabytes of information, primarily video and multimedia traffic, to billions of consumers

over wireless, wired and cellular networks. Traditional communication platforms, such as

telephone networks and cable, which initially enabled the Internet Protocol and the Internet

itself, are now simply becoming services deployed on top of the IP network.

As the Internet and networking change, there are two specific forms of changes that I

believe are most important, and those two fields form the core of the research topics in my

thesis.

First, there is a rapid growth of powerful handheld devices such as smartphones and

tablets, and use of cellular and wireless networks is becoming pervasive. Telecommunica-

tions players are aiming to bring their cellular services to every corner of the world, but

there are still areas that they cannot yet reach and may be economically unfeasible for

them. This opens up interesting application scenarios for opportunistic networks. In my

thesis, I have explored several ways to enable real-world applications on top of such mobile

opportunistic networks.

Second, multimedia consumption over the Internet is experiencing massive growth,
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driven by online services such as Youtube, Facebook, Pandora and iTunes. With larger

and larger data volumes being pushed over the Internet, advances are necessary in the

fields of Content Delivery Networks (CDNs) and Content-Centric Networking (CCNs) to

make sure that multimedia and large volumes of data are being efficiently transferred over

the Internet. In this thesis, I’ve presented several methods of improving efficient delivery

of multimedia content over the Internet, either using existing IP protocols, content-centric

networks, or a hybrid of both.

14.1 Opportunistic Networks

To enable efficient delivery of content on opportunistic networks, we have to solve the

problem at three layers: the networking protocol, the application layer and by providing a

library or framework that allows for easy development of applications in this network.

Our analysis of Zero Configuration Networking (ZeroConf) protocol on wireless networks

(Chapter 5) enabled us to implement a method to enhance the ZeroConf framework and

allow it to function correctly in opportunistic networks. We also saw an increasing use of

service discovery and content delivery protocols, particularly multicast DNS (mDNS), in

real-world networks (in our case, our university campus), driven by popular applications

such as iTunes.

The Seven Degrees of Separation (7DS) suite of applications (3) provides end-user ap-

plication services in mobile opportunistic networks where data packets could get delayed

during transit. 7DS provides the necessary transport and application layer functionality for

mobile nodes to exchange information using store-carry-forward communication. Using this

application suite, it is possible for users on handheld devices and in opportunistic networks

to communicate meaningfully.

Developing mobile applications that function properly in opportunistic networks is a

difficult process, since opportunistic networks do not follow the client-server model of op-

eration. Even peer-to-peer models of networking do not work in such a network due to the

high churn rate of mobile nodes in such networks. I designed and implemented a software

library called BonAHA (Bonjour for Ad-Hoc Applications) (Chapter 4) which provides an
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API for building applications that run in such opportunistic networks. BonAHA is easy

and intuitive, provides a level of abstraction to opportunistic networking and at the same

time provides flexibility to the developer to develop applications that run in these networks.

The thesis also describes several real-world applications (outside of 7DS) built on top of

the BonAHA library, and describes how it is possible for a developer to build their own

applications using the BonAHA library.

14.2 Content delivery

In my thesis, content delivery improvements at the Internet core are addressed in a few

different ways. First, to enable dynamic deployment of nodes necessary to allow for optimal

delivery and caching of content in response to real-time traffic changes, we look into service

virtualization using NetServ, and building a content-delivery network (ActiveCDN) on top

of this service virtualization framework. Then, I explore a method of enabling dynamic

deployment without an additional service-virtualization layer, through On-Path CDNs.

The thesis introduces the first prototype for NetServ (Chapter 8), a research effort to

design an extensible architecture for core network services for the next generation Internet.

NetServ enables service virtualization at the Internet core, thus allowing efficient use of

applications such as content delivery networks (CDNs). This NetServ prototype demon-

strates the possibilites that active networking and service functionality at the network core

can open up.

Combining the NetServ service virtualization framework and in-network, dynamic con-

tent delivery, ActiveCDN (Chapter 9), a NetServ module, can dynamically deploy CDN

modules and serve content from participating NetServ nodes that are near the edge of the

network. This work was selected and demonstrated as part of the NetServ modules at

the National Science Foundation’s 8th and 9th GENI Engineering Conferences (GEC8 and

GEC9). ActiveCDN allows for content providers to dynamically deploy CDN nodes across

the Internet based on demand, thus alleviating traffic load in core networks.

It is also possible to innovate at the current network core, without using an additional

service virtualization layer. I implemented on-path content delivery networks (Chapter 7),
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which can dynamically intercept and redirect requests for content as well as serve content

from a local cache using existing TCP traffic. The measurements and analysis of this

implementation using popular content providers indicate that it is possible to deploy on-

path CDNs while incurring only a relatively small overhead.

14.3 Content Centric Networks

Revisiting the question of in-network service virtualization, it is possible to perform such vir-

tualization on top of a new model of content networking, called content-centric networking.

While content-centric networks allow for efficient distribution of content and make content

the center of the networking stack, they do not properly or correctly handle the issues of

services. In my thesis, I have addressed the topic of running dynamic content-oriented ser-

vices on content-centric networking (Chapter 12). The architecture and implementation of

a prototype (CCNxServ) were presented, and our prototype allows for building services on

top of a pure content-centric networking stack.

While looking at content-centric networks, we need to also be aware of the fact that most

forms of content-centric networking envision some sort of clean-slate Internet architecture

that invalidates years of investment and development on the existing host-based IP networks.

But by using our proposed IPv6-based content networking (Chapter 13), we could use the

address space of the existing host-based networking as content identifiers, and thus allow

content-centric networks to co-exist with the existing host-based and IP networking stack.

14.4 Real world video traffic patterns

Finally, I presented insight into trends in video traffic on the Internet (Chapter 10) using

real-world data that I gathered and analyzed while working at LongTail Video, which makes

the popular JWPlayer video player used on a large number of popular websites. This

evaluation helps us understand the nature of real-world video traffic patterns and can allow

us to optimize content delivery strategies as Internet content grows.
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Appendix A

BonAHA Applications

A.1 ONEChat: Enabling Group Chat and Messaging in Op-

portunistic Networks

A.1.1 Introduction

Text-based chat applications can enhance collaboration and augment oral communication

in such networks. Hence, a group chat or instant messaging application for opportunistic

networks would be very useful.

A group chat application is a collaborative software (also referred to as groupware)

which is designed to help people communicate with each other in real time. IM (Instant

Messaging) is another tool which allows real-time text-based communication application

among people, either with one another or in a group.

Unfortunately, most existing group-chat and instant messaging applications today work

in a client-server manner. Most of the popular solutions also rely on the use of proprietary

protocols and servers. Hence they cannot be used in opportunistic networks. Recently, a

few IM applications have been proposed for opportunistic networks, but to the best of our

knowledge, they can not support group chat efficiently. More details about related work

will be introduced in Section A.1.2.

We have implemented an efficient group chat application for opportunistic networks

called ONEChat (Opportunistic NEtwork Chat). ONEChat was built in 2009 using the
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Java programming language [Gosling et al., 2005]. Even though we mostly focus on single-

hop local opportunistic networks, ONEChat works in any network that supports multicast

communication.

ONEChat is a group chat and instant messaging program that works in opportunistic

networks. ONEChat uses message multicasting on top of service discovery protocols in

order to support group chat and reduce bandwidth consumption in opportunistic networks.

ONEChat does not require any pre-configuration, a fixed network infrastructure or a client-

server architecture in order to operate. In addition, it supports features such as group chat,

private rooms, line-by-line or character-by-character messaging and file transfer.

ONEChat does not need to be manually configured, nor is a fixed infrastructure required

for it to work properly. ONEChat works very well even in the presence of transient nodes

that enter and leave the network quickly. The implementation of ONEChat is greatly

simplified by building our program on top of the BonAHA framework [Srinivasan et al.,

2009b] and the real-time text protocol [Hellstrom and Jones, 2005].

In addition to supporting simple group chat, ONEChat also has several additional and

useful features that make it a fully featured application. For instance, it allows for users to

create their own private groups, where messages are encrypted and which only users with

the knowledge of a shared key can join. ONEChat also supports exchange of small files as

well as buddy icon updates from other users.

ONEChat leverages the properties of real-time text to allow transmission of messages

in line-by-line mode, with the user indicating the completing a message through a signal

such as pressing the Enter key, or in character-by-character mode, where a character is

transmitted as soon as it is entered.

The rest of the section is organized as follows. Section A.1.2 introduces related work.

Section A.1.3 covers the implementation details of ONEChat.

A.1.2 Related Work

There are a plethora of IM applications today. ICQ [icq, 2006], GTalk [GoogleTalk, 2006],

MSN [MSNMessenger, 2006], AOL [AOLMessenger, 2006], Skype [skype, 2006], and Mul-

tiChat [Schull et al., 2006] are among the most popular and widely known ones. However,
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none of these popular IM programs or their clones can be used in opportunistic networks

because they require connection to the Internet, in particular, connection to the servers

that are run by the companies that host these IM programs.

Recently, some chat applications for opportunistic networks have appeared. iChat

[iChat, 2006], Socialized.NET [Socialized.NET, 2006], Opportunistic Chat [Sorce et al.,

2007], and DTN (Disruption Tolerant Networks) Jabber Proxy [Metzger and Chuah, 2008],

and most recently FireChat [FireChat1, 2015] [FireChat2, 2015] are representative of these

class of applications. However, they can not support group chat for opportunistic networks

due to the drawbacks listed below.

Both iChat and Socialized.NET work in a P2P manner. However, neither of them

support message multicast, so a message has to be sent multiple times in order to reach all

users within a group. This would consume a lot of bandwidth.

Opportunistic Chat [Sorce et al., 2007] introduces a Bluetooth-TCP/IP hybrid approach:

if two users next to each other want to talk directly, they can set up a Bluetooth link; if they

are too far away to be able to use Bluetooth, or if they want to chat within a group, then

they should setup a client-server communication link via a TCP/IP network. Therefore,

Opportunistic Chat cannot handle group chat for opportunistic networks either.

DTN Jabber Proxy can work in opportunistic networks, but it requires a complicated

server configuration and the server proxy needs to be installed and available to the network.

In order to fully support group chat for opportunistic networks, we have implemented

a pure-Java, lightweight and configuration-free application called ONEChat. As soon as

ONEChat applications start up, they can discover each other without querying any central

servers, and they can work without requiring any pre-configuration.

Once a ONEChat application enters or leaves the network, all the other nodes will

be notified automatically. For each message, there is only one multicast transmission to

all the other group members to save bandwidth. The following section will introduce the

implementation details of ONEChat.
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A.1.3 Implementation Of ONEChat

In this section, we will explain how ONEChat works with the BonAHA library and the real-

time text protocol. We will also explain how the different types of groups and messages are

defined in an ONEChat application. We will also detail how some of its essential features

of ONEChat, such as creating a group, joining and leaving a group, notification of network

entry, and notification of leaving a network, work.

A.1.4 Introduction to ONEChat

BonAHA [Srinivasan et al., 2009b] is a framework for opportunistic networks based on

the multicast DNS and Zero Configuration [Zeroconf Working Group, 2008] networking

suite of service discovery protocols. The BonAHA library allows for easy development of

applications that work in link-local, opportunistic networks. BonAHA can work in local

(single-hop) opportunistic networks as well as in regular wired or wireless connections.

For each user, we define his or her network as all users within his or her transmission

range.

Figure A.1 shows a screenshot of ONEChat’s user interface. The left part of the user

interface contains a list of instant messages between users, while the right side of the UI

contains a list of the user’s ”friends” who are in the same network.

For example, in this screenshot, the user’s name is Kate, and there are already two

groups, Global Group and Room 1, in Kate’s ONEChat application. (The Global Group

is always present in the ONEChat applications, while other local rooms can be created as

necessary.)

Correspondingly, there are two tabs on the left part of the UI with these two group

names, and there are two tree components on the right side which display the groups. The

chat messages in a group are shown in the main window under a tab, while a tree component

on the right side of the UI lists the users in that group.

A.1.5 User and Message Discovery Using BonAHA

There are two kinds of messages in ONEChat: system messages and user messages.
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Figure A.1: Tom and Kate chat within group Room 2.

We use BonAHA to send and receive system messages in order to perform the “behind

the scenes” work to allow ONEChat applications and users to signal each other, as well as

entry and exit in the network. We use the Real Time Text (RTT) protocol to send and

receive user messages (The RTP and RTT protocols are described in more detail in the next

section.)

In addition to chat, ONEChat also supports file transfer and the buddy icon update

features, which are also implemented as user messages. These features will be introduced

later in this section.

The message publishing and signalling mechanism for ONEChat is built on top of

BonAHA, which uses mDNS (multicast DNS) service discovery protocol [Zeroconf Working

Group, 2008].

ONEChat is meant to work in opportunistic networks which are highly transient. So it

is necessary to keep track of the state of users in the network, such as users entering and

leaving the network. ONEChat recognizes these events as system events and uses BonAHA

to publish them as system messages.
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ONEChat uses two functions from the BonAHA framework to be notified when users

enter and leave the network - serviceUpdated(BNode n) and serviceExited(BNode n).

ONEChat uses the set(String key, String text) function call in the BonAHA framework

to publish a system message. This sets the global properties of the user’s key, and all the

other users within its transmission range receive this message.

Table A.1.5 summarizes how ONEChat uses the BonAHA functions to handle the low-

level network events in the opportunistic network.

Table A.1: Usage of the four BonAHA functions in ONEChat

Function Usage

serviceUpdated Triggered when a new ONEChat

user enters the network.

serviceExited Triggered when a ONEChat user

leaves the network.

set Called when ONEChat publishes

a system message.

get Called when ONEChat retrieves

the information published on the

network.

A.1.6 Messaging using RTP and RTT

The user message publishing mechanism in ONEChat is built on top of the real-time text

(RTT) protocol, and implemented using the T140 library [t140, 2008].

The real-time text protocol uses RTP (Real-time Transport Protocol) and defines an

RTP payload type [Hellstrom and Jones, 2005] for text conversation. In the real-time

text protocol, as soon as a character is typed, it is sent and displayed immediately to the

recipient. This allows text to be used in the same conversational mode as voice and video.

In ONEChat, we use the real-time text protocol to provide two transmission modes for

user messages: line-by-line mode and character-by-character mode. In line-by-line mode,
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we buffer a group of characters that a user has typed and then transmit them; in character-

by-character mode, text is sent and received character by character in a real-time manner.

As shown in Figure A.1, users can choose a message mode in the Message Mode field.

Once they choose the character-by-character mode, the Send button is disabled since they

do not need it (they just need to type the message and the typed characters will auto-

matically be sent). After the user switches back to the line-by-line mode, this button is

enabled.

A.1.7 Private and Secure Messaging Using ONEChat Groups

We provide a primitive security feature for ONEChat. There are two kinds of groups in

ONEChat: the Global Group and protected groups. All public messages published within

one’s network are displayed in his or her Global Group, which is always present in any

ONEChat session and available to all users currently on that opportunistic network.

By default, each ONEChat user always stays in the Global Group. All the other groups

created by users are protected groups. A protected group must be created with a password,

and others who want to join this group must know this password. We assume that this

password is distributed using some out-of-band method. ONEChat does not send any

password to the network.

All messages published within a protected group will be encrypted with its group pass-

word using AES in Counter Mode.

Currently, we do not consider malicious users bent on disrupting service. In multicast

scenarios where keys are shared between members, it is easy to authenticate the source and

prove that a member of the group has sent a message, but difficult to prevent one member

from impersonating another.

This problem is called DOA (Data Origin Authentication). There are already some

promising proposals in this area [Perrig et al., 2000] [Akkus et al., 2006] [Kang and Ruland,

2005] [Wong and Lam, 1998].

We have not implemented DOA for this current version of our application, but we will

quickly summarize its features. DOA can be done using signatures. There are two kinds of

approaches. The first approach involves signing each RTP packet [16] [17]. This approach
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provides good source authentication but suffers from high computation overhead in signing

and verifying the signature for each packet. The second approach involves amortizing a

single signature over multiple packets or sessions [18] [19]. This reduces the overhead but it

is not satisfactory when transmission is lossy. However, in some scenarios like small group

chat through wireless links, the computation overhead is not a bottleneck, and the first

approach is more acceptable.

A.1.8 Messages in ONEChat

There are two kinds of messages in ONEChat, system messages and user messages.

The first kind is system message, which is sent and received by the set and get functions

provided by the BonAHA framework. Table A.1.8 illustrates the usage of all the five kinds

of ONEChat system messages.

The other kind is user message, which is published by users. In addition, the file transfer

and buddy icon update mechanisms also work on top of user message transmissions.

Table A.2: Usage of the five ONEChat system messages

Type Usage

sys create Notify others that a new group was

created.

sys join Notify group members that I joined

this group.

sys reject Notify someone that the password he

typed

was wrong.

sys enter Notify others that I entered the net-

work.

sys exit Notify others that I left the network.

The user message transmission mechanism is based on the real-time text protocol, and

this protocol works on top of UDP multicast.
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Retransmission of lost packets may result in re-sending a complete file several times.

It is necessary to look into RTP-compatible retransmission mechanisms to mitigate packet

loss. RFC 2354 [20] proposes several techniques, such as FEC (Forward Error Correction),

retransmission, and interleaving, which may be considered to increase packet loss resiliency.

In addition, RFC 4588 [21] proposes a comprehensive RTP retransmission payload format

for both unicast and small multicast groups. This format is defined in the AVPF profile

(RFC 4585 [22]), and is used by receivers to send retransmission requests. There are already

some open source multicast file transfer program like UFTP [23], but they are not based on

RTP. Thus, the RTP-compatible retransmission mechanism mentioned in RFC 4588 may

be more appropriate to mitigate the UDP fragmentation problem.

Both system and user messages have three fields: message type, destination group and

message content. The value of the message type field can be any one of the values in the first

column in Table A.1.8, or user lbl, (a user message under line-by-line mode), or user cbc,

(a user message under character-by-character mode).

Since ONEChat is a local chat application, there is only one multicast RTP group for all

user messages among different chat groups, so we need a destination group field to indicate

which group a message belongs to. A message would only be displayed in a group whose

name is the same as that of the destination group. The message content field stores the real

content of a message.

A.1.9 Creating, Joining and Leaving a Group

When a user creates a new group, he or she is required to enter a password (the group

key), and others who want to join the group need to get this password information from

the group creator.

Take an interaction between two users, Kate and Tom, as an example. As shown in

Figure A.2, suppose Kate creates a group named Room 2. This event will be encapsulated

into a sys create (Table A.1.8) message and broadcast automatically to all users within

Kate’s network. Tom receives this message and a message is displayed on his ONEChat UI,

as shown in Figure A.1.

If Tom is interested in joining Room 2, he double-clicks this and attempts to join the
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group. This results in a popup window which asks Tom to enter a password. After Tom

enters a password, the new group Room 2 will appear in Tom’s ONEChat window, and a

sys join (Table A.1.8) message will be sent to all users in Group Room 2 notifying them

that Tom has joined this group.

After Kate receives this message, she uses the group key (her password) to decrypt the

message and tries to get the tag. If this succeeds, then Kate knows that Tom has typed the

correct password, otherwise a sys reject message will be sent to Tom to expel him from

the session. Tom’s ONEChat window will then close the Room 2 tab.

If Tom is able to successfully authenticate and join Room 2, he can talk to Kate and

others who are members of this group. Figure A.1 shows a screenshot of a established

connection and group chat.

Figure A.2: Tom is informed that Kate created group Room 2.

In Figure A.1, Tom uses an icon (a monkey) and Kate another icon (a girl). The icons in

the two users’ applications are synchronized with the buddy icon update mechanism: once

a user updates his icon, this icon image will be transmitted through multicast to all users

within the network, and the other users can view this updated buddy icon. The buddy icon

update mechanism is encapsulated as a public user message.

A user can leave a group at any time. Suppose Tom wants to leave Room 2, he closes

the tab named Room 2 in his application. A sys leave (Table A.1.8) message will be

automatically multicast to all users within this group.
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This message will appear on the message window in Kate’s Room 2, and Kate knows

that Tom has left. Figure A.3 depicts the interactive sequence of the creating, joining and

leaving group procedures between two users.

Figure A.3: The sequence of the creating, joining and leaving a group.

A.1.10 Enter-Network Notification

Once a user enters the network, all the other users in his or her network will be notified by

BonAHA’s serviceUpdated mechanism. Figure 5 shows how a enter-network notification
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works.

Take Tom and Kate as an example. Once Tom launches a ONEChat application, a

sys enter message (Table A.1.8) is generated automatically and published by the set (Ta-

ble A.1.5) function provided by BonAHA. All the other users in Tom’s network receive this

message immediately. Kate’s ONEChat makes sure that this is a sys enter message and

displays it on the message list of her Global Group, and Tom is listed in Kate’s friend list.

A.1.11 Leave-Network Notification

ONEChat can capture a leave-network event as well as an enter-network event. We have

developed the procedure of leave-network notification by implementing the serviceExited

(Table A.1.5) interface function provided by BonAHA.

Take Tom and Kate as an example. Suppose Tom closes his ONEChat application. This

action triggers a sys exit event down to his BonAHA framework, and this event is multicast

to all the others in Tom’s network. At Kate’s end, a system message with the message Tom

left the network is displayed on the message list of her Global Group and the name Tom is

deleted from her friend list.

A.1.12 Performance Evaluation

We compare the performance of ONEChat’s messaging system in opportunistic networks

by comparing it to peer-to-peer chat and instant messaging clients, since we were not able

to find similar IM clients that operate in a manner similar to ONEChat. We also believe

that this evaluation validates our design of the ONEChat messaging system as efficient in

the opportunistic network scenario.

The performance metric is the total amount of bytes sent to the network (bandwidth

consumption) in the below scenario.

Assume that we have a group G0 with m users: {N1, ..., Nm}. Each user Ni is within

the single-hop communication range of all other users, and he or she is going to send ki

messages to all the others within this group. Each message has a size of L bytes. Let

BONEChat denote the total amount of bytes sent by ONEChat and BP2P by P2P.
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In P2P applications, each message has to be sent to everyone else within the group once

(message retransmission is ignored), so the total amount of bytes sent to the network is:

BP2P =
∑m

i=1 L× ki × (m− 1)

In BonAHA, a multicast message will be sent a few times using the redundant trans-

mission mechanism defined by Zeroconf [Zeroconf Working Group, 2008].

Using Wireshark [14], we found that each system message is transmitted at most three

times, and each user message is transmitted once. Therefore, the average transmission times

(in short, avt), which is defined as the total number of transmitted messages divided by the

total number of distinct transmitted messages. We will consider the worst case scenario for

the avt value, which is three.

Since ONEChat applications perform message multicasting for group chat, the total

amount of bytes sent in the network is:

BONEChat =
∑m

i=1 L× avt× ki

From the two equations above, we can see that when (m−1) > avt, the amount of bytes

sent to the network in P2P applications is more than that in ONEChat. Given avt ≤ 3, if

there are more than four users in a group, ONEChat consumes less bandwidth than P2P.

Hence, we can confirm that ONEChat’s operation for opportunistic networks is more

efficient than regular P2P clients which use unicast for messaging.

A.1.13 Future Work

Our future work for this project includes improving its security against malicious users, and

solving the packet fragmentation problem in large file transfers.

A.1.14 Conclusion

This section describes a group chat application, ONEChat, for opportunistic networks.

There are two main contributions. First, ONEChat eliminates configuration and the neces-

sity of a fixed network infrastructure, making it easily deployable in opportunistic networks.

Second, it uses multicast techniques to reduce bandwidth consumption in group chat sce-

narios. Quantitative performance analysis shows that ONEChat outperforms P2P-based

applications like iChat and Socialized.NET in bandwidth consumption as long as there are
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more than four members in a group.

ONEChat also has several interesting and useful features, such as private groups which

are secure and require a shared key to join, as well as line-by-line and character-by-character

modes of communication using Real-Time Text (RTT), that make it quite useful and usable

as a full-featured application in real opportunistic networks today.

Our implementation of ONEChat (including additional documentation and details of

data transfer protocols and RTP) is available for download at [ONEChatWebsite, 2006].
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A.2 BBS-ONE: Bulletin Board and Forum System for Mo-

bile Opportunistic Networks

A.2.1 Introduction

Electronic bulletin boards and forum systems are commonly used to exchange opinions,

news, event notifications, documents and other media on the Internet. However, such

systems usually require a central server hosting the content. Such servers cannot be installed

in ad-hoc opportunistic wireless networks, which are created when mobile devices congregate

to form a localized and short-lived network without Internet connectivity.

We present BBS-ONE, a bulletin board system for opportunistic networks, and describe

its service model and implementation. BBS-ONE works in highly mobile opportunistic

networks, considers the mobility of nodes, and allows nodes to operate even when churn is

high when nodes join and leave the network. It transparently disseminates public data and

posts and persists desired data by operating in a peer-to-peer fashion and using a store-

carry-forward model of communication. It maintains the data consistency needed for a BBS

and forum system. We have implemented the application on generic desktop OS platforms

(Windows, Linux, Mac) as well as a mobile platform (iPhone/iPod).

Bulletin board systems are an important tool for collaboration and information exchange

among peers. The real-world bulletin board systems on college campuses, apartment com-
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plexes and other social areas provide a way for students, neighbors and peers to interact

with each other and allow others to be mutually aware of events going on as well as facts

that may interest others.

In recent years, with the rise of the Internet, the BBS has come to refer to a central,

online repository or forum where users can post messages and files to exchange with other

members of the board. The online forums or BBSes are often associated with a specific

subject, topic or neighborhood, and provide similar online community features for its mem-

bers.

However, with the growing use of opportunistic networks, where mobile nodes join to-

gether to form network islands with ad-hoc wireless connectivity, the traditional BBS model

begins to fail. In the previously described scenarios, the BBS model only works because

of the presence of a central server that handles the forum and community information. In

opportunistic networks, there is no such central server, and to add to the problem, there is

high mobility and churn rate, with nodes leaving and joining the network frequently.

We explore how we successfully built a real-world BBS application for opportunistic

networks, called BBS for Opportunistic Networks (BBS-ONE). BBS-ONE allows users of

mobile devices, such as iPhones, to share and distribute content with their local community

connected by an opportunistic network, such as an 802.11 ad-hoc network.

By operating in a peer-to-peer manner, BBS-ONE provides BBS and forum functionality

without requiring a central server. Our service model also enables us to keep data persistent,

even when mobile nodes move across networks, thus fulfilling the basic requirement of a

forum which allows for information to be spread in the local community.

We present our design of the system model of BBS-ONE to handle opportunistic net-

works and the state transitions that occur when nodes move in and out of the network.

In Section A.2.2, we introduce the concept of BBSes and forum software. In Section A.3,

we describe the service model on which this system is based, in order to keep, disseminate

and carry data for BBS. In Section A.4, we show how the system was designed and im-

plemented, with details of the specific technologies involved. Screenshots of the BBS-ONE

application on these different platforms are also included.

In Section A.4.3, on related work, we compare this system to various services that provide
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Figure A.4: Usage Scenario for the BBS-ONE. A mobile node moves from one isolated

opportunistic network to another one, carrying desired information to a location where no

connection to the infrastructure. Dotted lines indicate the direction of the movement of the

node in and out of an area with wireless ad-hoc connectivity.
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Figure A.5: System Architecture of the BBS-ONE system. The diagram shows the net-

working, service discovery and rule validators, the post and node managers and how the

components interact.

information sharing, online forums, traditional BBSes, and synchronization applications for

portable devices such as PDA and mobile phones.

A.2.2 Forums and BBS Software

Newsgroups (list servers) and web-based forums became quickly popular on the Internet,

providing a forum for online communities to form and discuss topics and events, based on

either interests or locality.

Generic BBS systems utilize a centralized system hosted on one or more physical servers

which is controlled by system administrators and forum administrators. However, often,

users are allowed to generate, post and exchange content to their heart’s content, unless

such content violates the terms set by the forum administrators.

BBSes can be expanded one step further to become social networking sites used to build

online communities. The most prominent use of these online communities recently has

been seen during political events, such as DeanSpace [Civicspacelabs, 2008] and Facebook

Statuses for Obama [Facebook, 2004].

A.2.3 BBS in Opportunistic Networks

BBS-ONE enables us to share information in opportunistic networks. Unlike the traditional

BBS, our system does not require a central server machine to store all data from users.
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Our implementation needs to work on devices running on opportunistic networks with

high mobility and churn rates and in the absence of a central server. Hence, we need a

unique way of solving the problem of running a BBS or forum. We need to solve the issue

of sharing data in a disconnected network. The nodes need to be aware of such mobility,

and be able to recover gracefully in case of any abrupt cessation of communication.

A.3 Service Model

The fundamental requirements of bulletin board system are providing a virtual space where

people can interact with others by sharing information of interests. BBS-ONE fulfills this

requirement. Throughout the system, data management and networking schemes are used

to provide bulletin board and forum features.

Figure A.4 shows one possible scenario in which a mobile user whose device is the part of

the system enters and leaves opportunistic networks enroute to a location where no wireless

service is available. BBS-ONE works in both networked area (where the node is connected

to an infrastructure such as the Internet) as well as a disconnected area (where the only

connections are local connections). These scenarios show an example of the store-carry-

forward scheme scenario, and the system can be utilized for the different use cases. User A

stores information acquired based on a user’s preferences consisting of keywords.

A.3.1 Data Management

A.3.1.1 Post Handling

A post is a user submitted message in traditional BBSes, and we define it the same way

for BBS-ONE. A post is the conceptual elementary entity of information that users want

to share or to acquire through this system. With a post, user can describe their idea and

information as text with attached resources such as images, music, and possibly other types

of files. We regard a post as the elementary form of information in this system, in that all

operations, such as creating and sharing a post, are applied to posts based on privileges

which can be determined by examining the author of a certain post and other permissions

set on that particular post.



APPENDIX A. BONAHA APPLICATIONS 196

It also has a life cycle that a post must follow. According to the current state of a post

in the life cycle, BBS-ONE determines if a specific post can be shared, edited, or limited in

terms of dissemination.

Each post has a field to keep information about the nodes which the post traversed and

other trace information. It is possible for several nodes to acquire the same post containing

the same content at a certain time. However, it is possible for several copies of an identical

post to have different trace information in it, because it is quite common for a post to

traverse different routes.

A.3.2 Deployment

Our BBS-ONE can operate in two modes: a client-server mode in the presence of a station-

ary node, and a true P2P mode in the absence of an stationary node.

A.3.2.1 Operation in presence of stationary node

The BBS-ONE stationary node refers to a node that is placed in a static location and does

not move. Such a stationary node could be deployed at locations with high traffic, such

as subway stations. The stationary node stores data from incoming nodes and forwards

data to newcomers. When a node comes in a network area, it finds the information of a

neighboring stationary node through service discovery. When it finds an stationary node,

the node sends all posts to that stationary node, including metadata to avoid duplication.

A.3.2.2 P2P operation

In the absence of an stationary node, there is no facility for storing data, so all operations

share data among the mobile nodes and they work in a totally peer-to-peer fashion. Every

node needs to find connection information using multicast service discovery, and it directly

connects to the peer node to exchange posts. When a node wants to acquire a post contain-

ing the desired content, it first sends search keywords to neighboring nodes found during

the discovery phase, and then one of nodes that has the related posts sends an offer to it

in order to get an acceptance response.
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A.3.3 Networking

The various networking operations in BBS-ONE are made to correspond to existing HTTP

and REST [Fielding, 2000] features. This way, our application uses existing standards,

and it is also possible for other developers to build compatible implementations that can

interact with existing networking and web forum applications using XML-RPC and other

web service methods.

A.3.3.1 Pull-based transfer

The transfer of data in BBS-ONE applications is primarily through a pull-based mechanism.

The major advantage of this approach which is that clients can access information when

they need it. The one major disadvantage is that the nodes will not be easily aware of any

network connection below the application layer. In order to check if there are any updates

on posts in nearby peers, clients will need to constantly poll for updates, which might reduce

the battery life. Traffic will increase based on the number of existing nodes, no matter how

many updates nodes have.

A.3.3.2 Push-based transfer

The main advantage of push-based exchanging is that updates will arrive when available,

not when needed and hence continuous polling with all other nodes is not needed. Being

notified of updates is an efficient way for being made aware of when communication has

to be established. However, in contrast to the previous pull-based approach, the traffic to

inform a node of updates will increase as a function of the number of nodes holding updates.

Furthermore, one of characteristics that this system has, is that providing information

(which is pushed to the reader) is determined according to the preference of the reader.

The preferences are supposed to be multicast first, before the information is delivered.

A.3.3.3 Publish/Subscribe

The BBS-ONE system does not use the traditional publish/subscribe messaging paradigm;

rather subscribers in the system multicast their keywords of interest. Publishers get to
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know which nodes are interested in certain contents or data, and initiate exchange of posts

by offering them data which are supposed to be pushed to the subscribers.

Also, a stationary node can act as a stationary or mobile repository. This node is able

to perform a store-and forward function to deliver data from original authors to readers.

Thus, even if nodes that make contact with this access point are disconnected with each

other, they are still able to receive information from nodes that came earlier.

A.3.3.4 Epidemic Dissemination

In epidemic dissemination, a peer node finds information about how it can communicate

with another node using connection information obtained during the discovery phase, and

is able to initiate a connection with a specific node.

When a node has a post to be published but there no access point in the network that

the node has just found, it picks up another node randomly to send posts for advertisements

and public posts in order.

However, epidemic dissemination cannot be applied to every type of data in the system,

since the right to choose which posts can be delivered is on the receiver, not on the data

holder. Every node is restricted by how many posts it can disseminate, and this is based

on how much it contributes when it comes to publishing articles that are of interest to the

user, based on the keywords they have expressed interest in.

A.4 Design and Implementation

In this section we explain our design and implementation of BBS-ONE for two platforms,

Java virtual machine and iPhone, which allow the given service model described in the

previous section, to work.

A.4.1 Architecture Overview

Service discovery and the 7DS [Moghadam et al., 2008] and BonAHA [Srinivasan et al.,

2009b] frameworks are the architectural components that support the system’s working

in an opportunistic networking environment, while abstraction layers and the model-view-
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controller pattern describe how the system has been written from the perspective of actual

implementation.

Figure A.5 shows the overall architecture of BBS-ONE.

A.4.2 Implementation

To implement BBS-ONE, we developed a command-line version of the system in Java

that runs on Windows, Linux and Mac OS platforms. This Java version is built using our

BonAHA framework and allows a user to create, edit and share his or her posts with others.

The iPhone implementation of the BBS-ONE includes a GUI that is very similar to

other iPhone applications. The implementation allows a user to see other posts on the

network and be able to view them through a scroll screen based user interface. The iPhone

implementation was written in Objective-C. (These applications were written in 2008-2009,

shortly after Apple first introduced the iOS developer kit.)

Because the iPhone platform does not support Java, we rewrote portions of the BonAHA

library in Objective-C and integrated it into our application in order to develop the discovery

mechanism of the BBS-ONE application.

The basic components of the implementation are Zero Configuration (Zeroconf) using

Apple’s Bonjour implementation, an internal HTTP proxy (a HTTP server) and its RESTful

service extension, a cache manager as well as data service, and user interfaces, implemented

both on Java virtual machine using JRE1.5 and iPhone OS 2.1 or later.

A.4.2.1 Data Format and Identification

A post is identified based on fields such as author information, the title and the description of

the post. These fields contain hashed values. Some fields in a post such as trace information

cannot be subjected to hashing in order to identify a post. We used MD5 as the hash

function to identify a post.

We have attempted to make BBS-ONE meet the spirit of Web 2.0 and be as easy

to reverse engineer so that alternative implementations compatible with BBS-ONE can be

built. The default format of files presenting a post is based on XML. The schema is described

by XML Schema definition language (XSD) [Thompson et al., 2001] and the publication of
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the post information contained in each node is based on the Atom feed format [Nottingham

and Sayre, 2005].

A.4.2.2 Versioning and Expiration

Once a post leaves its original node, it is not easy for the author of the post to do any

work on it, especially when the Post arrives on another network and it has been completely

isolated from the connected environments. In many cases, disseminated data cannot be

reached by any other nodes that work in physically separated networks.

Accordingly, it is more reasonable that, if a post has been pushed to another node,

it is regarded as an independent data set that should identify itself. In such a case, any

modification generates a new version of the original post.

A.4.2.3 Platforms

We wanted to implement the BBS-ONE application on a variety of platforms in order to

prove its usefulness, while at the same time, meet reasonable goals and deadlines. Hence,

we built the application using Java, which we have tested on Windows, Linux and Mac OS.

It is also quite likely that this application runs on other operating systems and platforms

that are Java compatible.

In choosing a mobile platform, we chose the iPhone/iPod platforms because it is widely

deployed [Times, 2008].

One major difference in the HTTP proxies on the iPhone and the command-line Java

version of BBS-ONE is the socket layer underlying the application layer protocol. The

Java version can use multiple threads and blocking sockets, but in the iPhone version, the

implementation of the HTTP server relies on an asynchronous style or non-blocking sockets.

However, this does not have any major impact on our implementation.

A.4.2.4 Mobile Nodes

For the iPhone OS, BBS-ONE implements only the mobile reader version, allowing a user to

publish, advertise and gather post information from either stationary nodes or other mobile
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nodes. The GUI for this version is based on the native user interface on iPhone as well as

a web browser page displaying posts.

A.4.3 Related Work

The original BBSes were virtual communities created when individuals or service provides

allowed people in the local communities to dial-in and connect to their systems, download,

and upload files and other data, as well as share information with others in the community.

USENET [Horton and Adams, 1987], which evolved from UUCP, allowed users to read

and post messages to categories known as newsgroups. It supported threaded discussions

and could be accessed by any compatible newsreader software. USENET is widely regarded

as a precursor to today’s web forums.

However, with the advent and popularity of the Internet, Internet-based BBS systems

became more and more popular. A huge number of forums (such as Google Groups and

others on Facebook) now exist around the world, spanning almost every conceivable topic.

Due to the open nature of these forums, several have implemented some form of monitoring

and checking.

Among forum use on disconnected, ad-hoc or opportunistic networks, there is very little

work. The primary reason for this seems to be that forums are naturally oriented towards

online, long-term communities.

The only available work similar to ours in this field seems to be the JXTA forum software

[Halepovic and Deters, 2002]. This forum software, built on top of Sun Microsystems’s

JXTA protocol and framework, implements a forum software by converting an existing

client-server system into use in a P2P system. However, even this system requires the use

of a connected network. The authors state, “total decentralization is often neither necessary

nor desirable.” However, opportunistic networks are completely decentralized and mobile.

Further, the system requires a naming service, which requires some long-term or super

nodes, as well as setting up peer groups to avoid a flat search structure. This is not possible

in opportunistic networks either.
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A.4.4 Discussion and Future Work

There are some possible improvements to our current BBS system. For example: exchanging

personal contacts in places such as conference halls or public transportations might be one

way to utilize the peer-to-peer exchanging information in an isolated opportunistic network,

if permissions are considered.

We can also consider the functionality of supporting concurrent transmission of posts,

and limiting the number of times a post moves from/into other nodes. Preventing spamming

using identical posts and prohibited words also needs to be considered. Also, a method for

handling partially transmitted posts needs to be devised.

A.4.5 Conclusion

In this section, we presented BBS-ONE, a system that enables forum and BBS functionality

in opportunistic networks that are highly mobile and disconnected from the network. BBS-

ONE allows users to exchange information and posts even in the absence of central servers

or connection to wide-area networks.

We also presented our implementation of BBS-ONE on desktop platforms using our

Java implementation, as well as on the iPhone and iPod platforms.

We believe that the BBS-ONE application provides a unique and novel implementation

of BBS and forum functionality in a new networking scenario that is rapidly evolving yet has

very few functional applications. BBS-ONE, as with our other applications for opportunistic

networks, will provide users in disconnected and opportunistic networks to be able to share

data with relative ease without needing some physical form of data transmission or file

copying.

We have attempted to build BBS-ONE on as many standard technologies as possible,

such as the Bonjour protocol stack, W3C standards (HTTP, XML and related technolo-

gies), and common concepts of architecture such as REST style and MVC pattern so that

compatible implementations for the same or other platforms can be easily built.
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Figure A.6: A screenshot of the FileXChange system.

A.5 FileXChange: Drag-and-Drop File Sharing in Oppor-

tunistic Networks

Because most file sharing applications and protocols assume the use of always-connected

networks with central servers, there are few suitable applications for file sharing systems

on opportunistic networks, and users have to resort to using archaic methods such as using

USB flash drives to copy data. (The one exception is Apple’s AirDrop [Apple, 2012] which

was introduced in 2011, but that only works on Apple devices and not on other platforms.)

In order to alleviate this problem, we developed FileXChange, a drag-and-drop file

sharing system, to allow users to share files in various network environments, including

opportunistic and transient wireless networks. FileXChange is built on top of our BonAHA

platform, which allows users and applications to automatically detect each other on the

opportunistic networks without any manual configuration or central servers. FileXChange

is designed to be disruption-tolerant to allow file exchange over opportunistic networks and

handle failure gracefully. It can run on any operating system with a Java Virtual Machine.

FileXChange allows users to transfer files through an intuitive drag-and-drop GUI while
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automatically finding peers in opportunistic networks. FileXChange is able to handle peers

entering and leaving the network at any time and displays a list of all peer nodes to the

user. The user interface for FileXChange is shown in Figure A.6.

We use service discovery using our BonAHA library [Srinivasan et al., 2009b] to imple-

ment FileXChange. The service discovery mechanism allows devices to detect each other

through their unique member names, and users can view a list of peers through the GUI.

TCP sockets are used to provide the file transfer service. Two kinds of data are ex-

changed for each file: control and information data including the file’s name, length, sender’s

information, recipient’s response and file data. The control and information data are sent

before the file data, so the recipient can choose to accept or decline the file based on that

information.

There are five kinds of disruptions we handle through the control messages: (1) sender

cancels the transfer; (2) sender leaves the network during the transfer; (3) receiver accepted

the transfer but fails to choose the target file within a certain threshold time (before data

transfer); (4) receiver cancels the transfer during data transfer; (5) receiver leaves the

network during file transfer.
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